Performance Co-Pilot™ Programmer’s
Guide

007-3434-005 Version 2.3

CONTRIBUTORS
Mlustrated by Dany Galgani
Edited by Susan Wilkening
Production by Glen Traefald

Engineering and written contributions by David Chatterton, Michael Gigante, Mark Goodwin, Tony Kavadias, Seppo Keronen,
Johnathon Knispel, Ken McDonell, Max Matveev, Ania Milewska, Daniel Moore, Heidi Muehlebach, Ivan Rayner, Terry Schultz,
Nathan Scott, Timothy Shimmin, and Bill Tuthill

COPYRIGHT

© 1996-1999, 2001, 2002, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated
elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND

The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX are registered trademarks and Performance Co-Pilot is a trademark of Silicon Graphics, Inc.
Cisco is a registered trademark of Cisco Systems, Inc. UNIX is a registered trademark of The Open Group.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

007-3434-005

New Features in This Guide

This manual has been updated with information to support Performance Co-Pilot
applications running on SGI IA-64 Linux machines.

Corrected the Example 3-12, PMAPI Metrics Sevices, in Section 3.7.6.1, page 82.

In addition, miscellaneous formatting and editing changes were made throughout the
document.

007-3434-005

Record of Revision

Version

003

004

005

Description

July 1999
Revised to support the Performance Co-Pilot release 2.1 for SGI
systems running the IRIX 6.2, 6.3, 6.4, and 6.5 operating systems.

March 2001

Revised to support the Performance Co-Pilot release 2.2 for SGI
systems running the IRIX 6.2, 6.3, 6.4, and 6.5.11 and later operating
systems.

December 2002

Revised to support the Performance Co-Pilot release 2.3 for SGI
systems running the IRIX 6.5.18 and later operating systems or the
SGI ProPack 2.1 for Linux or later operating systems.

Contents

About This Guide
What This Guide Contains
Audience for This Guide
Related Resources

Man Pages

Release Notes
SGI Web Sites
Obtaining Publications

Conventions

Reader Comments

1. Programming Performance Co-Pilot

PCP Architecture
Distributed Collection

Name Space

Distributed PMNS

Retrospective Sources of Performance Metrics
Overview of Component Software

Application and Agent Development
PMDA Development

Overview

Building a PMDA
In-Process (DSO) Method
Daemon Process Method

Shell Process Method

007-3434-005

XXV
XXV
XXV
XXVi

XXVi

. Xxvii
. Xxvii

. Xxvii

. Xxviii

XXIX

O O 0 00 0 N NN O o O U W

<

Contents

Client Development and PMAPI
Library Reentrancy and Threaded Applications

2. Writing a PMDA
Implementing a PMDA
PMDA Architecture

Overview
DSO PMDA
Daemon PMDA
Caching PMDA
Domains, Metrics, and Instances
Overview
Domains
Metrics
Data Structures
Semantics
Instances
N Dimensional Data
Data Structures
Other Issues

Extracting the Information

Latency and Threads of Control

Name Space

PMDA Help Text

Management of Evolution within a PMDA
DSO Interface

Overview
Trivial PMDA
Simple PMDA

viii

10

11
11

12
12
13
15
17
17
17
18
19
19
22
23
23
24
27
27

28
29
30
32

33
33
34
34

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

si npl e_st or e in the Simple PMDA 37
Return Codes for pndaFet ch Callbacks 39
PMDA Structures 40
Initializing a PMDA 42
Overview 42
Common Initialization 42
Trivial PMDA 43
Simple PMDA 43
Daemon Initialization 44
Testing and Debugging a PMDA 45
Overview 45
Debugging Information 46
dbpnda Debug Utility 47
Integration of PMDA 48
Installing a PMDA 48
Upgrading a PMNS to Include Metrics from a New PMDA e ¥4
Removing a PMDA 52
Contfiguring PCP Tools 52
3. PMAPI—The Performance Metrics API 55
Naming and Identifying Performance Metrics 55
Performance Metric Instances 56
Current PMAPI Context 58
Performance Metric Descriptions 59
Performance Metrics Values 62
PMAPI Programming Style and Interaction 65
Variable Length Argument and Results Lists 66
PMAPI Error Handling 66
007-3434-005 ix

Contents

PMAPI Procedural Interface e e e e 67
PMAPI Name Space Services 067
pnGet Chi | dren Function L L. ... 67
pnGet Chi | dr enSt at us Function C e 68
pnGet PMNSLocat i on Function e 68
pnmLoadNaneSpace Function 69
pmLoadASCl | NaneSpace Function 69
prmLookupNamne Function e 70
pmNaneAl | Function e e 70
pmNanel D Function L 0L L 71
pmilr aver sePMNS Function Ce e 71
prnl oadNameSpace Function Ce e 71
PMAPI Metrics Description Services 71
prmLookupDesc Function e 72
prLookupl nDoniText Function Ce e 72
prmLookupText Function e 72
PMAPI Instance Domain Services Ce e e 73
pnCet | nDomFunction Ce e 73
pnmLookupl nDomFunction L. L. 73
pmNanel nDomFunction o . L. oL L L. 73
PMAPI Context Services C e e 73
pmewCont ext Function S 75
pnDest r oyCont ext Function S 76
pnmDupCont ext Function S 76
prmseCont ext Function S 77
pmAhi chCont ext Function Ce e e 77
pmAddPr of i | e Function e e 77
pnDel Prof i | e Function C e e 77

X 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

pnSet Mode Function e 78
pnmReconnect Cont ext Function 80
pnCet Cont ext Host Nanme Function 80
PMAPI Timezone Serviceso 81
pmewCont ext Zone Function S 81
pmewZone Function Ce e 81
pnmseZone Function Ce e e 82
pmti chZone Function L. . oL Lo 82
PMAPI Metrics Services e e 82
pnfet ch Function e e e 82
pnFreeResul t Function e 84
pntt or e Function S 84
PMAPI Record-Mode Services e e 85
pnmRecor dAddHost Function L L. L oL 85
pnmRecor dControl Function 85
pmRecor dSet up Function L. L L. 86
PMAPI Archive-Specific Services 89
pnGet Ar chi veLabel Function Ce e 89
pnGet Ar chi veEnd Functiono 90
pnGet | nDomAr chi ve Function S 90
pnmLookupl nDomAr chi ve Function 91
pmNanel nDomAr chi ve Function 91
pnet chAr chi ve Function Ce e e 91
PMAPI Time Control Services 92
PMAPI Ancillary Support Services 93
pnGet Conf i g Function e e 93
pnErrStr Function o Lo oL L. 94
pnExt r act Val ue Function e e 94

007-3434-005 Xi

Contents

pnConvScal e Function
prni t sStr Function
pm DSt r Function
pm nDontt r Function
pnlypeSt r Function
pmAt ont r Function
pmNunber St r Function
pnPri nt Val ue Function
pnf | ush Function
prpri nt f Function
pntor t | nst ances Function
prPar sel nt er val Function
prPar seMet ri cSpec Function
PMAPI Programming Issues and Examples
Symbolic Association between a Metric’s Name and Value
Initializing New Metrics
Iterative Processing of Values
Accommodating Program Evolution
Handling PMAPI Errors
Compiling and Linking PMAPI Applications

4. Trace PMDA

Performance Instrumentation and Tracing
Trace PMDA Design
Application Interaction
Sampling Techniques
Simple Periodic Sampling
Rolling-Window Periodic Sampling

Xii

96
97
97
97
97
98
98
98
99
100
100
101
101
102
102
104
104
105
105
107

109
109

110
110
111
111
112

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Rolling-Window Periodic Sampling Example e B
Configuring the Trace PMDA 115
Trace AP . 116
Transactions e 819
Point Tracing e 4
Observations and Counters e it
Configuring the Trace Library 119
Instrumenting Applications to Export Performance Data o oo ..o 120

Appendix A. Acronyms+ .« . .« . o o . . . 123

Index 0 . e e e e el e e e .. 125

007-3434-005 Xiii

Figure 1-1
Figure 1-2
Figure 1-3
Figure 3-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

007-3434-005

Figures

PCP Global Process Architecture

Process Structure for Distributed Operation

Architecture for Retrospective Analysis

A Structured Result for Performance Metrics from pnfet ch
Trace PMDA Overview

Sample Duration Comparison

Sampling Intervals

Application and PCP Relationship

63
110
113
114
121

XV

Table 2-1
Table 3-1
Table 3-2
Table 3-3
Table 4-1
Table 4-2
Table 4-3

Table 4-4
Table 4-5
Table 4-6

Table A-1

Tables

Variables to Control Behavior of Generic pndapr oc. sh Procedures
Context Components of PMAPI Functions

Time Control Functions in PMAPI

PMAPI Type Conversion

Selected Command-Line Options

trace. transact Metrics

trace. poi nt Metrics

trace. obser ve Metrics
Environment Variables

State Flags

Performance Co-Pilot Acronyms and Their Meanings

007-3434-005

49
74
92
95
115

117
118

118
119
120

123

XVii

Example 2-1
Example 2-2
Example 2-3
Example 2-4
Example 2-5
Example 2-6
Example 2-7
Example 2-8
Example 2-9
Example 2-10
Example 2-11
Example 2-12
Example 2-13
Example 2-14
Example 2-15
Example 2-16
Example 2-17
Example 2-18
Example 2-19
Example 2-20
Example 2-21
Example 2-22
Example 2-23

007-3434-005

Examples

Simple IRIX PMDA as a DSO

Simple Linux PMDA as a DSO

Simple IRIX PMDA as a Daemon

Simple Linux PMDA as a Daemon

_pm D_i nt Structure in IRIX

_pm D_i nt Structure in Linux

prmdaMet ri ¢ Structure

Trivial PMDA

Effect of Semantics on a Metric
prdal nsti d Structure
prmdal ndomStructure
_pm nDom i nt Structure in IRIX
_pm nDom_i nt Structure in Linux
Simple PMDA
pmms File for the Simple PMDA
Alternate prms File for the Simple PMDA
Help Text for the Simple PMDA
Setting Values
Request Handing Callbacks in the Trivial PMDA
Request Handing Callbacks in the Simple PMDA
si npl e. nunf et ch Metric
si npl e. col or Metric

si npl e. ti me Metric

14
14
16
16
20
21
21
22
23
24
24
25
25
25
29
30
30
32
34
34
35
35
36

Xix

Contents

Example 2-24
Example 2-25
Example 2-26
Example 2-27
Example 2-28
Example 2-29
Example 2-30
Example 2-31
Example 2-32
Example 2-33
Example 2-34
Example 2-35
Example 2-36
Example 3-1
Example 3-2
Example 3-3
Example 3-4
Example 3-5
Example 3-6
Example 3-7
Example 3-8
Example 3-9
Example 3-10
Example 3-11
Example 3-12
Example 3-13
Example 3-14

XX

si npl e. now Metric
si npl e_st or e in the Simple PMDA
si mpl e. col or and PM _ERR | NST Errors
PM_ERR_PM D Errors
- EACCES and PM_ERR_PM D Errors
pndal nt er f ace Structure
prmdaExt Stucture
Initialization in the Trivial PMDA
Initialization in the Simple PMDA
mai n in the Simple PMDA
si npl e. nunf et ch in the Simple PMDA
I nstal |l Script for the Trivial PMDA
Changing Variable Assignments
Metrics Sharing the Same Instance Domain
pnDesc Structure
prni t s and pnDesc IRIX Structures
prni t s and pnDesc Linux Structures
pnal ueBl ock and pnWal ue Structures
pnVal ueBl ock Structure in IRIX
pnVal ueBl ock Structure in Linux
pnVal ueSet Structure
pnmResul t Structure
Dumping Values in Temporal Sequence
Replaying Interpolated Metrics
PMAPI Metrics Services
pnRecor dHost Structure
prmLoglLabel Structure

36
37
38
39
39
40
41
43
43
44
47
49
51
57
59
60
61
63
64
64
64
65
79
79
83
87
89

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Example 3-15
Example 3-16
Example 3-17
Example 3-18
Example 3-19
Example 3-20
Example 3-21
Example 3-22

pmAt onVal ue Structure

Using pnPr i nt Val ue to Print Values
pmivet ri cSpec Structure

C Code Produced by prgenmap Input
Initializing Metric Specifications
Iterative Processing

Adding a Metric

PMAPI Error Handling

Example 4-1 Rolling-Window Sampling Technique

007-3434-005

94

99
101
103
104
104
105
105
111

XXi

Procedures

Procedure 2-1 Creating a PMDA

Procedure 3-1 Creating a Recording Session

007-3434-005

11
87

XXiii

About This Guide

This guide describes how to program Performance Co-Pilot (PCP), a software package
of advanced performance management applications for the SGI family of graphical
workstations and servers. PCP provides a systems-level suite of tools that cooperate
to deliver distributed, integrated performance monitoring and performance
management services spanning the hardware platform, the operating system, service
layers, user applications, and distributed application architectures.

What This Guide Contains

This guide contains the following chapters:

¢ Chapter 1, page 1, contains a thumbnail sketch of how to program the various
PCP components.

e Chapter 2, page 11, describes how to write Performance Metrics Domain Agents
(PMDAs) for PCP.

e Chapter 3, page 55, describes the interface that allows you to design custom
performance monitoring tools.

¢ Chapter 4, page 109, provides an introduction to the design of the trace
Performance Metrics Domain Agent (PMDA).

¢ Appendix A, page 123, provides a comprehensive list of the acronyms used in this
guide, in the PCP man pages, and in the release notes.

Audience for This Guide

The guide describes the programming interfaces to Performance Co-Pilot (PCP) for
the following intended audience:

¢ Performance analysts or system administrators who want to extend or customize
performance monitoring tools available with PCP

¢ Developers who need to integrate their applications into the PCP framework

007-3434-005 XXV

About This Guide

This book is written for those who are competent with the C programming language,
the UNIX or the Linux operating systems, and the target domain from which the
desired performance metrics are to be extracted. Familiarity with the PCP tool suite is
assumed.

Related Resources

Man Pages

XXVi

The Performance Co-Pilot for IRIX Advanced User’s and Administrator’s Guide and
Performance Co-Pilot for IA-64 Linux User’s and Administrator’s Guide, which are
companion documents to the Performance Co-Pilot Programmer’s Guide, are intended for
system administrators and performance analysts who are directly using and
administering PCP applications.

Additional resources include man pages, release notes (IRIX only), and SGI Web sites.

The operating system man pages provide concise reference information on the use of
commands, subroutines, and system resources. There is usually a man page for each
PCP command or subroutine. To see a list of all the PCP man pages, enter the
following command:

man -k perfornmance
To see a particular man page, supply its name to the man command, for example:
man pcp

The man pages are divided into the following seven sections:

@D General commands

) System calls and error numbers
3) Library subroutines

4) File formats

5) Miscellaneous

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Release Notes

SGI Web Sites

6) Demos and games
) Special files

When referring to man pages, this guide follows a standard convention: the section
number in parentheses follows the item. For example, pnmda(3) refers to the man page
in section 3 for the pnda command.

Release notes provide specific information about the current product release, available
online through the r el not es command. Exceptions to the printed and online
documentation are found in the release notes. The gr el not es command provides a
graphical interface to the release notes of all products installed on your system. For
additional information, see the r el not es(1) and gr el not es(1) man pages. Release
notes are not available on the Linux operating system.

The following Web sites are accessible to everyone with general Internet access:

URL Description

http://ww. sgi.com The SGI general Web site, with
search capability

http://ww. sgi.conl soft ware Links to Performance Co-Pilot
product information

http://oss.sgi.conl projects/pcp Some parts of the PCP
infrastructure that have also been
released as open source

Obtaining Publications

007-3434-005

You can obtain SGI documentation in the following ways:

¢ See the SGI Technical Publications Library at: htt p://docs. sgi . com Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

XXVii

About This Guide

e If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type i nf osear ch on a command line.

* You can also view release notes by typing either gr el not es or rel notes on a
command line.

* You can also view man pages by typing man title on a command line.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

Ellipses indicate that a preceding element can be
repeated.

ALL CAPS All capital letters denote environment variables,
operator names, directives, defined constants, and
macros in C programs.

0 Parentheses that follow function names surround
function arguments or are empty if the function has no

XXViii 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Reader Comments

arguments; parentheses that follow IRIX commands
surround man page section numbers.

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact SGI in any of the following ways:

Send e-mail to the following address:

techpubs@sgi.com

Use the Feedback option on the Technical Publications Library Web page:
http://docs. sgi.com

Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

Send mail to the following address:

Technical Publications

SGI

1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043-1351

Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

007-3434-005

XXiX

Chapter 1

Programming Performance Co-Pilot

Performance Co-Pilot (PCP) provides a systems-level suite of tools that cooperate to
deliver distributed, integrated performance management services. PCP is designed
for the in-depth analysis and sophisticated control that are needed to understand and
manage the hardest performance problems in our most complex systems.

PCP provides unparalleled power to quickly isolate and understand performance
behavior, resource utilization, activity levels and performance bottlenecks.

Performance data may be collected and exported from multiple sources, most notably
the hardware platform, the operating system kernel, layered services, and end-user
applications.

There are several ways to extend PCP by programming certain of its components:

¢ By writing a Performance Metrics Domain Agent (PMDA) to collect performance
metrics from an uncharted performance domain (Chapter 2, page 11)

¢ By creating new analysis or visualization tools using documented functions from
the Performance Metrics Application Programming Interface (PMAPI) (Chapter 3,
page 55)

¢ By adding performance instrumentation to an application using the trace facilities
of the PCP trace library (I i bpcp_trace) and the trace PMDA (Chapter 4, page
109)

In addition, the topic of customizing a PCP installation is covered in the chapter on
customizing and extending PCP service in the Performance Co-Pilot for IRIX Advanced
User’s and Administrator’s Guide or in the Performance Co-Pilot for IA-64 Linux User’s
and Administrator’s Guide.

1.1 PCP Architecture

007-3434-005

This section gives a brief overview of PCP architecture. For an explanation of terms
and acronyms, refer to Appendix A, page 123.

PCP consists of several monitoring and collecting tools. Moni t ori ng t ool s such as
pmval and pm nf o visualize metrics, but have minimal interaction with target
systems. Col | ection tools, called PMDAs, extract performance values from target
systems, but do not provide graphical user interfaces.

1: Programming Performance Co-Pilot

Systems supporting PCP services are broadly classified into two categories:

Collector Hosts that have the PMCD and one or more PMDAs
running to collect and export performance metrics

Monitor Hosts that import performance metrics from one or
more collector hosts to be consumed by tools to monitor,
manage, or record the performance of the collector hosts

Each PCP enabled host can operate as a collector, or a monitor, or both.

There are separate node-locked licenses for additional tools when available on IRIX
systems for collector and monitor functions.

Figure 1-1 shows the architecture of PCP. The monitoring tools consume and process
performance data using a public interface, the Performance Metrics Application
Programming Interface (PMAPI).

Below the PMAPI level is the PMCD process, which acts in a coordinating role,
accepting requests from clients, routing requests to one or more PMDAs, aggregating
responses from the PMDAs, and responding to the requesting client.

Each performance metric domain (such as IRIX, Linux, or some Database
Management System (DBMS)) has a well-defined name space for referring to the
specific performance metrics it knows how to collect.

2 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Monitoring Monitoring

Figure 1-1 PCP Global Process Architecture

1.1.1 Distributed Collection

007-3434-005

The performance metrics collection architecture is distributed, in the sense that any
monitoring tool may be executing remotely. However, a PMDA is expected to be
running on the operating system for which it is collecting performance measurements;
there are some notable PMDAs such as Cisco and Array that are exceptions, and
collect performance data from remote systems.

1: Programming Performance Co-Pilot

As shown in Figure 1-2, monitoring tools communicate only with PMCD. The
PMDAs are controlled by PMCD and respond to requests from the monitoring tools
that are forwarded by PMCD to the relevant PMDAs on the colllector host.

Remote host Local host

Monitor Monitor Monitor

Figure 1-2 Process Structure for Distributed Operation

The host running the monitoring tools does not require any collection tools, including
PMCD, since all requests for metrics are sent to the PMCD process on the collector
host.

The connections between monitoring tools and PMCD processes are managed in

l'i bpcp, below the PMAPI level; see the prmapi (3) man page. Connections between
PMDAs and PMCD are managed by the PMDA functions; see the pmda(3) and
pntd(l) man pages. There can be multiple monitor clients and multiple PMDAs on
the one host, but there may be only one PMCD process.

4 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

1.1.2 Name Space

Each PMDA provides a domain of metrics, whether they be for the operating system,
a database manager, a layered service, or an application module. These metrics are
referred to by name inside the user interface, and with a numeric Performance Metric
Identifier (PMID) within the underlying PMAPL

The PMID consists of three fields: the domain, the cluster, and the item number of the
metric. The domain is a unique number assigned to each PMDA. For example, two
metrics with the same domain number must be from the same PMDA. The cluster
and item numbers allow metrics to be easily organized into groups within the PMDA,
and provide a hierarchical taxonomy to guarantee uniqueness within each PMDA.

The Performance Metrics Name Space (PMNS) describes the exported performance
metrics, in particular the mapping from PMID to external name, and vice-versa.

1.1.3 Distributed PMNS

007-3434-005

As of release 2.0 release, PMNS operations by default are directed to the host or
archive that is the source of the desired performance metrics.

In Figure 1-2, both Performance Metrics Collection Daemon (PMCD) processes would
respond to PMNS queries from monitoring tools by referring to their local PMNS. If
different PMDAs were installed on the two hosts, then the PMNS used by each
PMCD would be different, to reflect variations in available metrics on the two hosts.

Distributed PMNS services necessitated changes to PCP protocols between client
applications and PMCD, and to the internal format of PCP archive files.

The - n pmnsfile option may be used with all PCP monitoring tools to force use of the
local PMNS in preference to the PMNS at the source of the metrics.

1: Programming Performance Co-Pilot

1.1.4 Retrospective Sources of Performance Metrics

The distributed collection architecture described in the previous section is used when
PMAPI clients are requesting performance metrics from a real-time or live source.

The PMAPI also supports delivery of performance metrics from a historical source in
the form of a PCP archive log. Archive logs are created using the pm ogger utility,
and are replayed in an architecture as shown in Figure 1-3.

Monitoring
tool

~

55 T) i

Figure 1-3 Architecture for Retrospective Analysis

1.2 Overview of Component Software

Performance Co-Pilot (PCP) is composed of text-based tools, optional graphical tools,
and related commands. Each tool or command is fully documented by a man page.
These man pages are named after the tools or commands they describe, and are
accessible through the man command. For example, to see the pmi nf 0(1) man page
for the pm nf 0 command, enter this command:

man pm nfo

Many PCP tools and commands are accessible from an Icon Catalog on the IRIX
desktop, grouped under PerfTools. In the Toolchest Find menu, choose PerfTools; an
Icon Catalog appears, containing clickable PCP programs. To bring up a Web-based
introduction to Performance Co-Pilot, click the AboutPCP icon.

6 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

A list of PCP tools and commands, grouped by functionality, is provided in the
following sections.

1.2.1 Application and Agent Development

The following PCP tools aid the development of new programs to consume
performance data, and new agents to export performance data within the PCP
framework:

chkhel p Checks the consistency of performance metrics help
database files.
dbpnda Allows PMDA behavior to be exercised and tested. It is

an interactive debugger for PMDAs.

newhel p Generates the database files for one or more source files
of PCP help text.

pmapi Defines a procedural interface for developing PCP
client applications. It is the Performance Metrics
Application Programming Interface (PMAPI).

precl i ent Is a simple client that uses the PMAPI to report some
high-level system performance metrics. The source
code for pneli ent is included in the distribution.

prda Is a library used by many shipped PMDAs to
communicate with a pntd process. It can expedite the
development of new and custom PMDAs.

prgenmap Generates C declarations and cpp macros to aid the
development of customized programs that use the
facilities of PCP. It is a program development tool.

1.3 PMDA Development

007-3434-005

A collection of Performance Metrics Domain Agents (PMDAs) are provided with PCP
to extract performance metrics. Each PMDA encapsulates domain-specific knowledge
and methods about performance metrics that implement the uniform access protocols
and functional semantics of the PCP. There is one PMDA for the operating system,
another for process specific statistics, one each for common DBMS products, and so
on. Thus, the range of performance metrics can be easily extended by implementing

1: Programming Performance Co-Pilot

1.3.1 Overview

and integrating new PMDAs. Chapter 2, page 11, is a step-by-step guide to writing
your own PMDA.

Once you are familiar with the PCP and PMDA frameworks, you can quickly
implement a new PMDA with only a few data structures and functions. This book
contains detailed discussions of PMDA architecture and the integration of PMDAs
into the PCP framework. This includes integration with PMCD. However, details of
extracting performance metrics from the underlying instrumentation vary from one
domain to another and are not covered in this book.

A PMDA is responsible for a set of performance metrics, in the sense that it must
respond to requests from PMCD for information about performance metrics, instance
domains, and instantiated values. The PMCD process generates requests on behalf of
monitoring tools that make requests using PMAPI functions.

You can incorporate new performance metrics into the PCP framework by creating a
PMDA, then reconfiguring PMCD to communicate with the new PMDA.

1.3.2 Building a PMDA

A PMDA interacts with PMCD across one of several well-defined interfaces and
protocol mechanisms. These implementation options are described in the Performance
Co-Pilot for IRIX Advanced User’s and Administrator’s Guide or the Performance Co-Pilot
for [A-64 Linux User’s and Administrator’s Guide.

It is strongly recommended that code for a new PMDA be based on the source of one
of the demonstration PMDAs below the / var/ pcp/ pndas directory.

1.3.2.1 In-Process (DSO) Method

This method of building a PMDA uses a Dynamic Shared Object (DSO) that is
attached by PMCD, using dl open, at initialization time. This is the highest
performance option (there is no context switching and no interprocess communication
(IPC) between the PMCD and the PMDA), but is operationally intractable in some
situations. For example, difficulties arise where special access permissions are
required to read the instrumentation behind the performance metrics, or where the
performance metrics are provided by an existing process with a different protocol
interface. The DSO PMDA effectively executes as part of PMCD; so care is required
when crafting a PMDA in this manner.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

When developing PMDAs for IRIX or Linux, multiple object code formats for the
DSO may be required because PMCD must execute with the same object code format
as the running operating system kernel. This would be 032 for some low-end
platforms (IRIX 6.3 and earlier), n32 for other low-end platforms (IRIX 6.5 and later),
and n64 for high-end platforms.

1.3.2.2 Daemon Process Method

Functionally, this method may be thought of as a DSO implementation with a
standard mai n routine conversion wrapper so that communication with PMCD uses
message passing rather than direct procedure calls. (See
[var/pcp/pndas/trivial/trivial.c file)

The daemon PMDA is actually the most common, because it allows multiple threads
of control, permits linking with existing dynamic libraries, and provides more
resilient error encapsulation than the DSO method.

1.3.2.3 Shell Process Method

This method offers the least performance, but may be well-suited for rapid
prototyping of performance metrics, or for diagnostic metrics that are not going into
production.

Implementation of the ASCII protocols is rather lengthy. The suggested approach is to
take the / var/ pcp/ pndas/ news/ prdanews PMDA as an illustrative example, and
adapt it for the particular metrics of interest.

Note: The ASCII protocols have not been extensively used; so their support may be
discontinued in a future PCP release. Newer versions of the PMDA libraries have
dramatically reduced the code development effort required for a new PMDA (either
the DSO or daemon approach), thereby reducing the need for ASCII protocols.

1.4 Client Development and PMAPI

007-3434-005

Application developers are encouraged to create new PCP client applications to
monitor, display, and analyze performance data in a manner suited to their particular
site, application suite, or information processing environment.

PCP client applications are programmed using the Performance Metrics Application
Programming Interface (PMAPI), documented in Chapter 3, page 55. The PMAPI,

1: Programming Performance Co-Pilot

which provides performance tool developers with access to all of the distributed
services of the Performance Metrics Collection Subsystem (PMCS), is the interface
used by the standard PCP utilities.

Source for a sample IRIX PMAPI client may be found in the

/var/ pcp/ denos/ pntl i ent directory if the pcp. sw. dend subsystem has been
installed. Source for a sample Linux PMAPI client may be found in the

/usr/ shar e/ pcp/ denos/ pntl i ent directory.

1.5 Library Reentrancy and Threaded Applications

10

Most of the PCP libraries are not thread safe. This is a deliberate design decision to
trade-off commonly required performance and efficiency against the less common
requirement for multiple threads of control to call the PCP libraries.

The simplest and safest programming model is to designate at most one thread to
make calls into the PCP libraries. This approach applies to both PMDAs using

| i bpcp_pnda and monitoring applications using PMAPI and calling the | i bpcp
library.

An important exception is the | i bpcp_t race library for instrumenting applications;
it is thread safe.

Particular care should be taken with the utility functions in the | i bpcp library; for
example, pmpri ntf and pnf | ush share a buffer that may be corrupted if calls to
these functions from multiple threads are overlapped.

007-3434-005

Chapter 2

Writing a PMDA

This chapter constitutes a programmer’s guide to writing a Performance Metrics
Domain Agent (PMDA) for Performance Co-Pilot (PCP).

The presentation assumes the developer is using the standard PCP | i bpcp_pnda
library, as documented in the pnda(3) and associated man pages.

2.1 Implementing a PMDA

007-3434-005

The job of a PMDA is to gather performance data and report them to the Performance
Metrics Collection Daemon (PMCD) in response to requests from PCP monitoring
tools routed to the PMDA via PMCD.

An important requirement for any PMDA is that it have low latency response to
requests from PMCD. Either the PMDA must use a quick access method and a single
thread of control, or it must have asynchronous refresh and two threads of control:
one for communicating with PMCD, the other for updating the performance data.

The PMDA is typically acting as a gateway between the target domain (that is, the
performance instrumentation in an application program or service) and the PCP
framework. The PMDA may extract the information using one of a number of
possible export options that include a shared memory segment or nmap file; a
sequential log file (where the PMDA parses the tail of the log file to extract the
information); a snapshot file (the PMDA rereads the file as required); or
application-specific communication services (IPC). The choice of export methodology
is typically determined by the source of the instrumentation (the target domain)
rather than by the PMDA.

Procedure 2-1 describes the suggested steps for designing and implementing a PMDA:

Procedure 2-1 Creating a PMDA

1. Determine how to extract the metrics from the target domain.
2. Select an appropriate architecture for the PMDA (daemon or DSO, IPC, spr oc).
3. Define the metrics and instances that the PMDA will support.

4. Implement the functionality to extract the metric values.

11

2: Writing a PMDA

10.

11.

Assign Performance Metric Identifiers (PMIDs) for the metrics, along with names
for the metrics in the Performance Metrics Name Space (PMNS).

Specify the help file and control data structures for metrics and instances that are
required by the standard PMDA implementation library functions.

Write code to supply the metrics and associated information to PMCD.
Implement any PMDA-specific callbacks, and PMDA initialization functions.

Exercise and test the PMDA with the purpose-built PMDA debugger; see the
dbpnda(l) man page.

Install and connect the PMDA to a running PMCD process; see the pncd(1) man
page.

Configure or develop tools to use the new metrics. For examples of visualization
tools, see the pnthart (1), pngadget s(1), and pnvi ew(1) man pages (IRIX only).
For an examples of text-based tools, see the prmval (1) and pmi nf o(1) man pages.
For examples of alarm tools, see the pri e(1) and pmi econf (1) man pages.

Where appropriate, define pri ogger configurations suitable for creating PCP
archives containing the new metrics. For more information, see the pm ogger (1)
man page.

2.2 PMDA Architecture

2.2.1 Overview

12

This section discusses the two methods of connecting a PMDA to a PMCD process:

As a separate process using some interprocess communication (IPC) protocol.

As a dynamically attached library (that is, a dynamic shared object or DSO).

All PMDAs are launched and controlled by the PMCD process on the local host.
PMCD receives requests from the monitoring tools and forwards them to the PMDAs.
Responses, when required, are returned through PMCD to the clients. The requests
fall into a small number of categories, and the PMDA must handle each request type.
For a DSO PMDA, each request type corresponds to a method in the agent. For a
daemon PMDA, each request translates to a message or protocol data unit (PDU) that
may be sent to a PMDA from PMCD.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

2.2.2 DSO PMDA

007-3434-005

For daemon PMDA, the following request PDUs must be supported:

PDU_FETCH Request for metric values (see the prnFet ch(3) man
page.)
PDU_PRCFI LE A list of instances required for the corresponding

metrics in subsequent fetches (see the
pmAddPr of i | e(3) man page).

PDU_| NSTANCE_REQ Request for a particular instance domain for instance
descriptions (see the pnGet | nDom(3) man page).

PDU_DESC REQ Request for metadata describing metrics (see the
pmLookupDesc(3) man page).

PDU_TEXT_REQ Request for metric help text (see the pmLookupText (3)
man page).

PDU _RESULT Values to store into metrics (see the pntt or €(3) man
page).

Each PMDA is associated with a unique domain number that is encoded in the
domain field of metric and instance identifiers, and PMCD uses the domain number
to determine which PMDA can handle the components of any given client request.

Each PMDA is required to implement a function that handles each of the request
types. By implementing these functions as library functions, a PMDA can be
implemented as a dynamically shared object (DSO) and attached by PMCD at run
time with the dI open call; see the dl open(3) man page. This eliminates the need for
an IPC layer (typically a UNIX pipe) between each PMDA and PMCD, because each
request becomes a function call rather than a message exchange. The required library
functions are detailed in Section 2.5, page 33.

A PMDA that interacts with PMCD in this fashion must abide by a formal
initialization protocol so that PMCD can discover the location of the library functions
that are subsequently called with function pointers. When a DSO PMDA is installed,
the PMCD configuration file, / et ¢/ pntd. conf on IRIX;

/var/pcp/ confi g/ pncd/ pned. conf, is updated to reflect the domain and name
of the PMDA, the location of the shared object, and the name of the initialization
function. The initialization sequence is discussed in Section 2.6, page 42.

13

2: Writing a PMDA

As superuser, install the simple PMDA as a DSO, as shown in Example 2-1 and
Example 2-2, page 14, and observe the changes in the PMCD configuration file. The
output may differ slightly depending on the other PMDAs you have installed.

Example 2-1 Simple IRIX PMDA as a DSO

cd /var/ pcp/ prdas/ si npl e
cat /etc/pntd. conf

Nane |Id | PC | PC Par ans Fil e/ Crd

irix 1 dso irix_init i birixpnda. so

prcd 2 dso precd_i ni t prmda_pntd. so

proc 3 dso proc_init prmda_proc. so

./lnstall

You wi Il need to choose an appropriate configuration for installation

of the ‘‘sinple’’ Performance Metrics Domai n Agent (PMDA).

col | ector coll ect performance statistics on this system
noni t or allow this systemto nonitor |ocal and/or renote systens
bot h col l ector and nonitor configuration for this system

Pl ease enter c(ollector) or nmlonitor) or b(oth) [b] both

Updating the Performance Metrics Nane Space (PMS)
Installing pnthart views)
Install sinple as a daenon or dso agent? [daenpn] dso

Check sinmple nmetrics have appeared ... 5 metrics and 9 val ues
cat /etc/pntd. conf

Nane |Id I PC | PC Par ans Fil e/ Crd

irix 1 dso irix_init i birixpnda. so

prcd 2 dso pred_i ni t prmda_pntd. so

proc 3 dso proc_init prmda_proc. so

sinple 253 dso sinple_init prda_si npl e. so

As can be seen from the contents of / et ¢/ pntd. conf, the DSO version of the
simple PMDA is in a library named pnda_si npl e. so and has an initialization
function called si npl e_i ni t. The domain of the simple PMDA is 253, as shown in
the column headed 1 d.

Example 2-2 Simple Linux PMDA as a DSO

cat /var/pcp/ confi g/ pntd/ pntd. conf

Performance Metrics Domain Specifications

#

This file is automatically generated during the build

14 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Name |Id I PC | PC Par ans Fil e/ Crd
prcd 2 dso pred_i ni t /var/ pcp/ pndas/ pntd/ pnda_pntd. so
i nux 60 dso linux_init /var/ pcp/ pndas/ | i nux/ pnda_l i nux. so

shia 63 pipe binary /var/pcp/ pndas/sni a/ pndasnia -d 63
sinple 254 dso sinple_init prda_si npl e. so

As can be seen from the contents of / var/ pcp/ confi g/ pncd/ pned. conf, the DSO
version of the simple PMDA is in a library named pnda_si npl e. so and has an
initialization function called si npl e_i ni t. The domain of the simple PMDA is 254,
as shown in the column headed | d.

2.2.3 Daemon PMDA

A DSO PMDA provides the most efficient communication between the PMDA and
PMCD. This approach has some disadvantages resulting from the DSO PMDA being
the same process as PMCD:

¢ An error or bug that causes a DSO PMDA to exit also causes PMCD to exit.

* There is only one thread of control in PMCD; as a result, a computationally
expensive PMDA, or worse, a PMDA that blocks for 1/0, adversely affects the
performance of PMCD.

* The PMCD runs as superuser; so any DSO PMDAs also run as superuser.
¢ A memory leak in a DSO PMDA also causes a memory leak for PMCD.
Consequently, many PMDAs are implemented as a daemon process.

The | i bpcp_pnda library is designed to allow simple implementation of a PMDA
that runs as a separate process. The library functions provide a message passing layer
acting as a generic wrapper that accepts PDUs, makes library calls using the standard
DSO PMDA interface, and sends PDUs. Therefore, you can implement a PMDA as a
DSO and then install it as either a daemon or a DSO, depending on the presence or
absence of the generic wrapper.

The PMCD process launches a daemon PMDA with f or k and execv. You can easily
connect a pipe to the PMDA using standard input and output. The PMCD process
may also connect to a daemon PMDA using TCP/IP or UNIX domain sockets; see the
i net (7) or uni x(7) man page.

007-3434-005 15

2: Writing a PMDA

As superuser, install the simple PMDA as a daemon process as shown in Example 2-3
for IRIX and Example 2-4, page 16 for Linux. As in Example 2-1, the output may
differ due to other PMDAs already installed.

Example 2-3 Simple IRIX PMDA as a Daemon

The specification for the simple PMDA now states the connection type of pi pe to
PMCD and the executable image for the PMDA is
/ var/ pcp/ prdas/ si npl e/ pndasi npl e, using domain number 253.

cd /var/ pcp/ prdas/ si npl e
./lnstall

Install sinple as a daenon or dso agent? [daenon] daenon
PMCD shoul d communi cate with the daenon via pipe or socket? [pipe] pipe

cat /etc/pntd. conf

Nane |Id | PC I PC Parans File/Cnd

irix 1 dso irix_init libirixpnda.so

prcd 2 dso pred_init prmda_pntd. so

proc 3 dso proc_init prda_proc. so

sinple 253 pipe bi nary /var/ pcp/ pndas/ si mpl e/ pndasi npl e -d 253

Example 2-4 Simple Linux PMDA as a Daemon

The specification for the simple PMDA now states the connection type of pi pe to
PMCD and the executable image for the PMDA is
/var/ pcp/ prdas/ si npl e/ pndasi npl e, using domain number 253.

cd /var/ pcp/ prdas/ si npl e

./lnstall

Install sinple as a daenon or dso agent? [daenon] daenon
PMCD shoul d comuni cate with the daenon via pipe or socket? [pipe] pipe

cat /var/pcp/ confi g/ pncd/ pntd. conf
Performance Metrics Domain Specifications

This file is automatically generated during the build

#

Name |d | PC
prcd 2 dso
i nux 60 dso

| PC Par ans Fil e/ Crd
pred_i ni t /var/ pcp/ pndas/ pntd/ pnda_pntd. so
linux_init /var/ pcp/ prdas/ | i nux/ pnda_l i nux. so

shia 63 pipe binary /var/pcp/ pndas/sni a/ pndasnia -d 63

16

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

sinple 253 pipe

2.2.4 Caching PMDA

bi nary /var/ pcp/ pndas/ si npl e/ pndasi npl e -d 253

When either the cost or latency associated with collecting performance metrics is
high, the PMDA implementer may choose to trade off the currency of the
performance data to reduce the PMDA resource demands or the fetch latency time.

One scheme for doing this is called a caching PMDA, which periodically instantiates
values for the performance metrics and responds to each request from PMCD with
the most recently instantiated (or cached) values, as opposed to instantiating current
values on demand when the PMCD asks for them.

The Cisco PMDA is an example of a caching PMDA. For additional information, see
the contents of the / var/ pcp/ pndas/ ci sco directory and the prndaci sco(1) man

page.

2.3 Domains, Metrics, and Instances

2.3.1 Overview

007-3434-005

This section defines metrics and instances, discusses how they should be designed for
a particular target domain, and shows how to implement support for them.

The examples in this section are drawn from the trivial and simple PMDAs, which are
distributed in source format with PCP. Refer to the / var/ pcp/ pndas/trivi al and
/ var/ pcp/ pndas/ si npl e directories, respectively.

Domains are autonomous performance areas, such as the operating system or a
layered service or a particular application. Metrics are raw performance data for a
domain, and typically quantify activity levels, resource utilization or quality of
service. Instances are sets of related metrics, as for multiple processors, or multiple
service classes, or multiple transaction types.

PCP employs the following simple and uniform data model to accommodate the
demands of performance metrics drawn from multiple domains:

* Each metric has an identifier that is unique across all metrics for all PMDAs on a
particular host.

17

2: Writing a PMDA

2.3.2 Domains

18

¢ Externally, metrics are assigned names for user convenience—typically there is a
1:1 relationship between a metric name and a metric identifier.

* The PMDA implementation determines if a particular metric has a singular value
or a set of (zero or more) values. For instance, the metric hi nv. ndi sk counts the
number of disks and has only one value on a host, whereas the metric
di sk. dev. tot al counts disk I/O operations and has one value for each disk on
the host.

e If a metric has a set of values, then members of the set are differentiated by
instances. The set of instances associated with a metric is an instance domain. For
example, the set of metrics di sk. dev. t ot al is defined over an instance domain
that has one member per disk spindle.

The selection of metrics and instances is an important design decision for a PMDA
implementer. The metrics and instances for a target domain should have the
following qualities:

¢ Obvious to a user

¢ Consistent across the domain

® Accurately representative of the operational and functional aspects of the domain
For each metric, you should also consider these questions:

* How useful is this value?

* What units give a good sense of scale?

* What name gives a good description of the metric’s meaning?

¢ Can this metric be combined with another to convey the same useful information?

As with all programming tasks, expect to refine the choice of metrics and instances
several times during the development of the PMDA.

Each PMDA must be uniquely identified by PMCD so that requests from clients can
be efficiently routed to the appropriate PMDA. The unique identifier, the PMDA's
domain, is encoded within the metrics and instance domain identifiers so that they
are associated with the correct PMDA, and so that they are unique, regardless of the
number of PMDAs that are connected to the PMCD process.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

2.3.3 Metrics

2.3.3.1 Data Structures

007-3434-005

The default domain number for each PMDA is defined in / var/ pcp/ prms/ st dpnmi d.
This file is a simple table of PMDA names and their corresponding domain number.
However, a PMDA does not have to use this domain number—the file is only a guide
to help avoid domain number clashes when PMDAs are installed and activated.

The domain number a PMDA uses is passed to the PMDA by PMCD when the
PMDA is launched. Therefore, any data structures that require the PMDA’s domain
number must be set up when the PMDA is initialized, rather than declared statically.
The protocol for PMDA initialization provides a standard way for a PMDA to
implement this run-time initialization.

Tip: Although uniqueness of the domain number in the / et ¢/ pntd. conf control
file used by PMCD is all that is required for successful starting of PMCD and the
associated PMDAs, the developer of a new PMDA is encouraged to add the default
domain number for each new PMDA to the / var/ pcp/ prms/ st dpni d. | ocal file
and then to run the Make. st dpmi d script in / var/ pcp/ pmms to recreate

[var/ pcp/ prms/ st dpmi d; this file acts as a repository for documenting the known
default domain numbers.

A PMDA provides support for a collection of metrics. In addition to the obvious
performance metrics, and the measures of time, activity and resource utilization, the
metrics should also describe how the target domain has been configured, as this can
greatly affect the correct interpretation of the observed performance. For example,
metrics that describe network transfer rates should also describe the number and type
of network interfaces connected to the host.

In addition, the metrics should describe how the PMDA has been configured. For
example, if the PMDA was periodically probing a system to measure quality of
service, there should be metrics for the delay between probes, the number of probes
attempted, plus probe success and failure counters. It may also be appropriate to
allow values to be stored (see the pnst or €(1) man page) into the delay metric, so
that the delay used by the PMDA can be altered dynamically.

Each metric must be described in a pnDesc structure; see the pnLookupDesc(3) man
page:

19

2: Writing a PMDA

20

typedef struct {

pm D

int

pm nDom

int

prni ts
} prDesc;

pmi d; /* unique identifier */
type; /* base data type */

i ndom /* instance domain */
sem /* semantics of value */
units; /* dinmension and units */

This structure contains the following fields:

pmd

type

i ndom

sem

units

A unique identifier, Performance Metric Identifier (PMID), that
differentiates this metric from other metrics across the union of all
PMDAs

A data type indicator showing whether the format is an integer (32 or
64 bit, signed or unsigned); float; double; string; or arbitrary aggregate
of binary data

An instance domain identifier that links this metric to an instance
domain

An encoding of the value’s semantics (counter, instantaneous, or
discrete)

A description of the value’s units based on dimension and scale in the
three orthogonal dimensions of space, time, and count (or events)

Symbolic constants of the form PM_TYPE_*, PM_SEM *, PM_SPACE_*, PM_TI ME_*,
and PM_COUNT_* are defined in the / usr /i ncl ude/ pcp/ pmapi . h file. You may
use them to initialize the elements of a pnDesc structure. The pm D type is an
unsigned integer that can be safely cast to a _pm D_i nt structure, which contains
fields defining the metric’s (PMDA’s) domain, cluster, and item number as shown in
Example 2-5 for IRIX and Example 2-6, page 21 for Linux:

Example 2-5 _pm D_i nt Structure in IRIX

typedef struct {

int
unsi
unsi
unsi
} _pmD.int;

pad: 2;
gnhed int donmi n: 8;
gnhed int cluster: 12;
gnhed int item 10;

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Example 2-6 _pml D_i nt Structure in Linux

typedef struct {

unsi gned int item 10;
unsi gned int cluster: 12;
unsi gned int donmi n: 8;
int pad: 2;

} _pmD.int;

For additional information, see the / usr/i ncl ude/ pcp/i npl . h file.

The pad field should be ignored. The domai n number should be set at run time
when the PMDA is initialized. The PMDA _PM D macro defined in

[usr/include/ pcp/ pmapi . h can be used to set the cl ust er and i t emfields at
compile time, as these should always be known and fixed for a particular metric.

Note: The three components of the PMID should correspond exactly to the three-part
definition of the PMID for the corresponding metric in the PMNS described in Section
2.4.3, page 29.

A table of pndaMet ri ¢ structures should be defined within the PMDA, with one
structure per metric as shown in Example 2-7.

Example 2-7 pnmdaMet ri ¢ Structure

typedef struct {

voi d *m user; /* for users external use */
pmDesc m desc; /* metric description */
} pndaMetri c;

This structure contains a pnDesc structure and a handle that allows PMDA-specific
structures to be associated with each metric. For example, m user could be a pointer
to a global variable containing the metric value, or a pointer to a function that may be
called to instantiate the metric’s value.

The trivial PMDA, shown in Example 2-8, has only a singular metric (that is, no
instance domains):

007-3434-005 21

2: Writing a PMDA

2.3.3.2 Semantics

22

Example 2-8 Trivial PMDA

static pndaMetric netrictab[] = {
/[* time */
{ (void *)0,
{ PMDA_PM D(0, 1), PM TYPE_U32, PM.|NDOM NULL, PM SEM | NSTANT,
PMDA_ PMUNI TS (0O, 1, 0, 0, PM TIME_SEC, 0)),)
b

This single metric (t ri vi al . ti me) has the following:

e A PMID with a cluster of 0 and an item of 1

¢ An unsigned 32-bit integer (PM_TYPE_U32)

* A singular value and hence no instance domain (PM_| NDOM_NULL)
e An instantaneous semantic value (PM_SEM | NSTANT)

e Dimension “time” and the units “seconds”

The metric’s semantics describe how PCP tools should interpret the metric’s value.
The following are the possible semantic types:

e Counter (PM_SEM COUNTER)
¢ Instantaneous value (PM_SEM | NSTANT)
e Discrete value (PM_SEM DI SCRETE)

A counter should be a value that monotonically increases (or monotonically
decreases, which is less likely) with respect to time, so that the rate of change should
be used in preference to the actual value. Rate conversion is not appropriate for
metrics with instantaneous values, as the value is a snapshot and there is no basis for
assuming any values that might have been observed between snapshots. Discrete is
similar to instantaneous; however, once observed it is presumed the value will persist
for an extended period (for example, system configuration, static tuning parameters
and most metrics with nonnumeric values).

For a given time interval covering six consecutive timestamps, each spanning two
units of time, themetric values, in Example 2-9, are exported from a PMDA (“N/A”
implies no value is available):

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

2.3.4 Instances

Example 2-9 Effect of Semantics on a Metric

Ti mest anps: 1 3 5 7 9 11
Val ue: 10 30 60 80 90 NA

The default display of the values would be as follows:

Ti mest anps: 1 3 5 7 9 11
Semanti cs:

Count er NA 10 15 10 5 NA
I nst ant aneous 10 30 60 80 90 NA
Di screte 10 30 60 80 90 90

Singular metrics have only one value and no associated instance domain. Some
metrics contain a set of values that share a common set of semantics for a specific
instance, such as one value per processor, or one value per disk spindle, and so on.

Note: The PMDA implementation is solely responsible for choosing the instance
identifiers that differentiate instances within the instance domain. The PMDA is also
responsible for ensuring the uniqueness of instance identifiers in any instance domain.

2.3.4.1 N Dimensional Data

007-3434-005

Where the performance data can be represented as scalar values (singular metrics) or
one-dimensional arrays or lists (metrics with an instance domain), the PCP
framework is more than adequate. In the case of metrics with an instance domain,
each array or list element is associated with an instance from the instance domain.

To represent two or more dimensional arrays, the coordinates must be one of the
following:

* Mapped onto one dimensional coordinates.
* Enumerated into the Performance Metrics Name Space (PMNS).

For example, this 2 x 3 array of values called M can be represented as instances 1,..., 6
for a metric M:

M1 M2 M3]
M4l M5 Mé6]

23

2: Writing a PMDA

2.3.4.2 Data Structures

24

Or they can be represented as instances 1, 2, 3 for metric M1 and instances 1, 2, 3 for
metric M2:

ML[1] M[2] M][3]
M[1] M[2] MR 3]

The PMDA implementer must decide and consistently export this encoding from the
N-dimensional instrumentation to the 1-dimensional data model of the PCP.

In certain special cases (for example, such as for a histogram), it may be appropriate
to export an array of values as raw binary data (the type encoding in the descriptor is
PM_TYPE_AGGREGATE). However, this requires the development of special PMAPI
client tools, because the standard PCP tools have no knowledge of the structure and
interpretation of the binary data.

If the PMDA is required to support instance domains, then for each instance domain
the unique internal instance identifier and external instance identifier should be
defined using a pndal nsti d structure as shown in Example 2-10:

Example 2-10 pndal nsti d Structure

typedef struct {

int i _inst; /* internal instance identifier */

char *i _nane; /* external instance identifier */
} pndal nsti d;
The i _i nst instance identifier must be a unique integer within a particular instance
domain.

The complete instance domain description is specified in a pndal ndomstructure as
shown in Example 2-11:

Example 2-11 pndal ndomStructure

typedef struct {

pm nDom it_indom /* indom filled in */

int it_num nst; /* nunber of instances */

pmdal nstid *it_set; /* instance identifiers */
} pndal ndom

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

007-3434-005

The i t _i ndomelement contains a pm nDomthat must be unique across every PMDA.
The other fields of the pndal ndomstructure are the number of instances in the
instance domain and a pointer to an array of instance descriptions.

Example 2-12 for IRIX and Example 2-13 for Linux shows that the pm nDomcan be
safely cast to _pm nDom_i nt, which specifies the PMDA’s domain and the instance
number within the PMDA:

Example 2-12 _pm nDom_ i nt Structure in IRIX

typedef struct {

int pad: 2;
unsi gned int donmi n: 8; /* the administrative PMD */
unsi gned int serial:22; /* unique within PMD */

} _pm nDom.nt;

Example 2-13 _pm nDom i nt Structure in Linux

typedef struct {

unsi gned int serial:22; /* unique within PMD */
unsi gned int donmi n: 8; /* the administrative PMD */
int pad: 2;

} _pm nDom. nt;

As with metrics, the PMDA domain number is not necessarily known until run time;
so the domai n field must be set up when the PMDA is initialized.

For information about how an instance domain may also be associated with more
than one metric, see the prdal ni t (3) man page.

The simple PMDA, shown in Example 2-14, has five metrics and two instance
domains of three instances.

Example 2-14 Simple PMDA
/*
* |ist of instances
*/
static pndalnstid color[] = {
{0 “‘red’” }, {1, “‘green’’ }, { 2, ‘‘blue’’ }

}s

static pndalnstid *ti menow = NULL;
static unsigned int tinmesize = 0;

/*

25

2: Writing a PMDA

* |ist of instance domains

*/
static pndal ndom indontab[] = {
#defi ne COLOR_| NDOM 0
{ COLOR_INDOM 3, color },
#defi ne NOW | NDOM 1
{ NOWINDOM 0, NULL },
b
/*
* all netrics supported in this PVDA - one table entry for each
*/

static pndaMetric netrictab[] = {
/* nunfetch */
{ NULL,
{ PVMDA PM D(0,0), PM TYPE U32, PM_|NDOM NULL, PM SEM | NSTANT,
PMDA PMUNITS (0,0,0,0,0,0) }, 1},
/* color */
{ NULL,
{ PVMDA PM D(0, 1), PM TYPE 32, COLOR_| NDOM PM SEM | NSTANT,
PMDA PMUNITS (0,0,0,0,0,0) }, 1},
/* tine.user */
{ NULL,
{ PVMDA PM D(1,2), PM TYPE DOUBLE, PM | NDOM NULL, PM SEM COUNTER,
PVMDA PMUNITS (O, 1, O, O, PMTIME_SEC, 0) }, },
/* time.sys */
{ NULL,
{ PVMDA PM D(1,3), PM TYPE DOUBLE, PM | NDOM NULL, PM SEM COUNTER,
PMDA PMUNITS (O, 1, O, O, PMTIME_SEC, 0) }, },
/* now */
{ NULL,
{ PVDA PM D(2,4), PM TYPE_U32, NOW.I|NDOM PM SEM | NSTANT,
PMDA PMUNITS { 0,0,0,0,0,0 } }, 1},
i

The metric si npl e. col or is associated, via COLOR_| NDOM with the first instance
domain listed in i ndont ab. PMDA initialization assigns the correct domain portion
of the instance domain identifier in i ndont ab[0] . i t _i ndomand

nmetrictab[1] . m desc. i ndom This instance domain has three instances: red,
green, and blue.

26 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

2.4 Other Issues

The metric si npl e. now is associated, via NOWV | NDOV with the second instance
domain listed in i ndont ab. PMDA initialization assigns the correct domain portion
of the instance domain identifier in i ndont ab[1] . i t _i ndomand

metrictab[4] . m desc. i ndom This instance domain is dynamic and initially has
no instances.

All other metrics are singular, as specified by PM_| NDOM_NULL.

In some cases an instance domain may vary dynamically after PMDA initialization
(for example, si npl e. now), and this requires some refinement of the default
functions and data structures of the | i bpcp_pnda library. Briefly, this involves
providing new functions that act as wrappers for pndal nst ance and pndaFet ch
while understanding the dynamics of the instance domain, and then overriding the
instance and fetch methods in the pndal nt er f ace structure during PMDA
initialization.

For the simple PMDA, the wrapper functions are si npl e_f et ch and
si mpl e_i nst ance, and defaults are over-ridden by the following assignments in the
si npl e_i ni t function:

dp->version.two.fetch = sinple_fetch;
dp->version.two. i nstance = sinpl e_i nstance;

Other issues include extracting the information, latency and threads of control, Name
Space , PMDA help text, and management of evolution within a PMDA.

2.4.1 Extracting the Information

007-3434-005

A suggested approach to writing a PMDA is to write a standalone program to extract
the values from the target domain and then incorporate this program into the PMDA
framework. This approach avoids concurrent debugging of two distinct problems:

e Extraction of the data
¢ Communication with PMCD
These are some possible ways of exporting the data from the target domain:

¢ Accumulate the performance data in a public shared memory segment.

27

2: Writing a PMDA

¢ Write the performance data to the end of a log file.
¢ Periodically rewrite a file with the most recent values for the performance data.

¢ Implement a protocol that allows a third party to connect to the target application,
send a request, and receive new performance data.

e For IRIX, if the data is in the operating system kernel, provide a system call
(preferred) or global data (for a / dev/ knemreader) to export the performance
data.

Most of these approaches require some further data processing by the PMDA.

2.4.2 Latency and Threads of Control

28

The PCP protocols expect PMDAs to return the current values for performance
metrics when requested, and with short delay (low latency). For some target
domains, access to the underlying instrumentation may be costly or involve
unpredictable delays (for example, if the real performance data is stored on some
remote host or network device). In these cases, it may be necessary to separate
probing for new performance data from servicing PMCD requests.

An architecture that has been used successfully for several PMDAs is to create one or
more sproc child processes to obtain information while the main process
communicates with PMCD; see the spr oc(2) man page.

Note: The spr oc(2) function is not available on Linux. You can use the
exec(2)/f ork(2) and set gpi d(2) calls as an alternative.

At the simplest deployment of this arrangement, the two processes may execute
without synchronization. Pthreads have also been used as a more portable
multithreading mechanism; see the pt hr eads(5) man page.

By contrast, a complex deployment would be one in which the refreshing of the
metric values must be atomic, and this may require double buffering of the data
structures. It also requires coordination between parent and child processes.

Tip: Since PMAPI is not thread-safe, only one PMDA process or thread of control
should call any PMAPI functions, and this would typically be the thread servicing
requests from the PMCD.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

2.4.3 Name Space

007-3434-005

One caveat about this style of caching PMDA—it is generally better if the PMDA
converts counts to rates based upon consecutive periodic sampling from the
underlying instrumentation. By exporting precomputed rate metrics with
instantaneous semantics, the PMDA prevents the PCP monitor tools from computing
their own rates upon consecutive PMCD fetches (which are likely to return identical
values from a caching PMDA).

The PMNS file defines the name space of the PMDA. It is a simple text file that is
used during installation to expand the Name Space of the PMCD process. The format
of this file is described by the pnms(4) man page.

Client processes will not be able to access the PMDA metrics if the PMNS file is not
installed as part of the PMDA installation procedure on the collector host. The
installed list of metric names and their corresponding PMIDs can be found in

[var/ pcp/ prms/root.

Example 2-15 shows the simple PMDA, which has five metrics:
¢ Three metrics immediately under the si npl e node
e Two metrics under another non-terminal node called si npl e. ti ne

Example 2-15 pmms File for the Simple PMDA

simple {
nunf et ch SI MPLE: 0: O
col or SIMPLE: 0: 1
time
now SI MPLE: 2: 4
}
sinple.tine {
user SI MPLE: 1: 2
Sys SI MPLE: 1: 3
}

Metrics that have different clusters do not have to be specified in different subtrees of
the PMNS. Example 2-16 shows an alternative PMNS for the simple PMDA:

29

2: Writing a PMDA

Example 2-16 Alternate prms File for the Simple PMDA

simple {
nunf et ch SI MPLE: 0: O
col or SIMPLE: 0: 1
usertine SI MPLE: 1: 2
systine SI MPLE: 1: 3
}

In this example, the SI MPLE macro is replaced by the domain number listed in
/var/ pcp/ prms/ st dpmi d for the corresponding PMDA during installation (for the
simple PMDA, this would normally be the value 253).

2.4.4 PMDA Help Text

For each metric defined within a PMDA, the PMDA developer is strongly encouraged
to provide both terse and extended help text to describe the metric, and perhaps
provide hints about the expected value ranges.

The help text is used to describe each metric in the visualization tools and pmi nf o
with the - T option. The help text, such as the help text for the simple PMDA in
Example 2-17, is specified in a specially formatted file, normally called hel p. This file
is converted to the expected run-time format using the newhel p command; see the
newhel p(1) man page. Converted help text files are usually placed in the PMDA'’s
directory below / var/ pcp/ prndas as part of the PMDA installation procedure.

Example 2-17 Help Text for the Simple PMDA

The two instance domains and five metrics have a short and a verbose description.
Each entry begins with a line that starts with the character “@” and is followed by
either the metric name (si npl e. nunf et ch) or a symbolic reference to the instance
domain number (SI MPLE. 1), followed by the short description. The verbose
description is on the following lines, terminated by the next line starting with “@” or
end of file:

@ SI MPLE. 1 I nstance dormain ‘‘colour’’ for sinple PVDA
Universally 3 instances, ‘‘red’’ (0), ‘‘green’’ (1) and ‘‘blue’’ (3).

@ SI MPLE. 2 Dynami ¢ instance domain ‘‘tine’’ for sinple PVDA
An instance domain is conputed on-the-fly for exporting current tine
information. Refer to the help text for sinple.now for nore details.

30

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

@ si npl e. nunf et ch Nunber of pnFetch operations.
The cumul ative nunber of pnFetch operations directed to ‘‘sinple’’ PNMA
This counter may be nodified with pnstore(l).

@sinple.color Metrics which increment with each fetch
This netric has 3 instances, designated ‘‘red’’, ‘‘green’’ and ‘‘blue .

The val ue of the netric is nonotonic increasing in the range 0 to
255, then back to 0. The different instances have different starting
val ues, namely 0 (red), 100 (green) and 200 (bl ue).

The nmetric values ny be altered using pnstore(1).

@sinple.tine.user Tinme agent has spent executing user code
The time in seconds that the CPU has spent executing agent user code.

@sinple.tine.sys Tine agent has spent executing system code
The time in seconds that the CPU has spent executing agent system code.

@sinple.now Tine of day with a configurable instance domain

The value reflects the current tine of day through a dynanically
reconfigurabl e i nstance donmain. On each nmetric value fetch request,

t he agent checks to see whether the configuration file in

/var/ pcp/ prdas/ si npl e/ si npl e. conf has been nodified - if it has then
the file is re-parsed and the instance donain for this metric is again
constructed according to its contents.

This configuration file contains a single |line of comm-separated tine
tokens fromthis set:

‘'sec (seconds after the mnute),

“‘min’ (mnutes after the hour),

‘“hour’’ (hour since mdnight).

1

An exanple configuration file could be: sec, mn, hour

and in this case the sinple.now netric would export values for the

three instances ‘‘sec’’, ‘‘min’’ and ‘‘hour’’ corresponding respectively to
t he components seconds, minutes and hours of the current tine of day.

The instance domain reflects each token present in the file, and the
values reflect the time at which the PMDA processes the fetch.

007-3434-005 31

2: Writing a PMDA

2.4.5 Management of Evolution within a PMDA

32

Evolution of a PMDA, or more particularly the underlying instrumentation to which
it provides access, over time naturally results in the appearance of new metrics and
the disappearance of old metrics. This creates potential problems for PMAPI clients
and PCP tools that may be required to interact with both new and former versions of
the PMDA.

The following guidelines are intended to help reduce the complexity of implementing
a PMDA in the face of evolutionary change, while maintaining predictability and
semantic coherence for tools using the PMAPI, and for end users of those tools.

Try to support as full a range of metrics as possible in every version of the PMDA.
In this context, support means responding sensibly to requests, even if the
underlying instrumentation is not available.

If a metric is not supported in a given version of the underlying instrumentation,
the PMDA should respond to pnLookupDesc requests with a pnDesc structure
whose t ype field has the special value PM_TYPE_NOSUPPORT. Values of fields
other than pm d and t ype are immaterial, but Example 2-18 is typically benign:

Example 2-18 Setting Values
pmDesc dumy = {

PMDA PM D(3, 0), /* pmd, fill this in */
PM_TYPE_NOSUPPORT, /* this is the inmportant part */
PM | NDOM NULL, /* singul ar, causes no problens */
0 /* no semantics */

{00 0 O O, 0} /* no units */
}s

If a metric lacks support in a particular version of the underlying instrumentation,
the PMDA should respond to pnFet ch requests with a pnrResul t in which no
values are returned for the unsupported metric. This is marginally friendlier than
the other semantically acceptable option of returning an illegal PMID error or
PM_ERR_PM D.

Help text should be updated with annotations to describe different versions of the
underlying product, or product configuration options, for which a specific metric
is available. This is so pmLookupText can always respond correctly.

The pn&t or e operation should fail with return status of - EACCES if a user or
application tries to amend the value of an unsupported metric.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

* The value extraction, conversion, and printing functions (pmExt r act Val ue,
pnConvScal e, pmAt onSt r, pmTypeSt r, and pnPri nt Val ue) return the
PM_ERR_CONV error or an appropriate diagnostic string, if an attempt is made to
operate on a value for which t ype is PM_TYPE_NOSUPPORT.

If performance tools take note of the t ype field in the pnDesc structure, they
should not manipulate values for unsupported metrics. Even if tools ignore t ype
in the metric’s description, following these development guidelines ensures that
no misleading value is ever returned; so there is no reason to call the extraction,
conversion, and printing functions.

2.5 DSO Interface

2.5.1 Overview

007-3434-005

This section describes an interface for the request handling callbacks in a PMDA. This
interface is used by PMCD for communicating with DSO PMDAs, and can also be
used by daemon PMDAs with prdaMai n.

Both daemon and DSO PMDAs must handle multiple request types from PMCD. A
daemon PMDA communicates with PMCD using the PDU protocol, while a DSO
PMDA defines callbacks for each request type. To avoid duplicating this PDU
processing (in the case of a PMDA that can be installed either as a daemon or as a
DSO), and to allow a consistent framework, prdaMai n can be used by a daemon
PMDA as a wrapper to handle the communication protocol using the same callbacks
as a DSO PMDA. This allows a PMDA to be built as both a daemon and a DSO, and
then to be installed as either.

To further simplify matters, default callbacks are declared in
[usr/incl ude/ pcp/ pnda. h:

e pndaFet ch
e pndaProfile

e pndal nst ance

e pndaDesc
e pndaText
e pndaStore

33

2: Writing a PMDA

Each callback takes a pmdaExt structure as its last argument. This structure contains
all the information that is required by the default callbacks in most cases. The one
exception is pmdaFet ch, which needs an additional callback to instantiate the current
value for each supported combination of a performance metric and an instance.

Therefore, for most PMDAs all the communication with PMCD is automatically
handled by functions in | i bpcp. so and | i bpcp_pnda. so.

2.5.1.1 Trivial PMDA

The trivial PMDA uses all of the default callbacks as shown in Example 2-19. The
additional callback for pndaFet ch is defined as tri vi al _f et chCal | Back:

Example 2-19 Request Handing Callbacks in the Trivial PMDA

static int
trivial _fetchCall Back(pndaMetric *nmdesc, unsigned int inst, pmAtonVal ue *aton

{

__pmD_int *idp = (__pm D_int *)& ndesc->m desc. pnid);
if (idp->cluster !'= 0 || idp->item!= 0)
return PM ERR PM D;
else if (inst !'= PM_IN_NULL)
return PM ERR | NST;
atom >l = time(NULL);
return O;

This function checks that the PMID and instance are valid, and then places the metric
value for the current time into the pmAt onVal ue structure. The callback is set up by
a call to pndaSet FetchCal I Back intrivial _init.

2.5.1.2 Simple PMDA

The simple PMDA callback for pndaFet ch is more complicated because it must
support more metrics, some metrics are instantiated with each fetch, and one instance
domain is dynamic. The default pndaFet ch callback, shown in Example 2-20, is
replaced by si npl e_f et ch in si npl e_i ni t, which increments the number of
fetches and updates the instance domain forl NDOM_NOWbefore calling pndaFet ch:

Example 2-20 Request Handing Callbacks in the Simple PMDA

static int
sinple_fetch(int nunmpmid, pmiD pnidlist[], pnResult **resp, pndaExt *pnda)

34

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

nunf et ch++;

sinpl e_ti nenow_check();

sinpl e_tinmenow_refresh();

return pndaFet ch(nunpmid, pmdlist, resp, pnda);

The callback for prrdaFet ch is defined as si npl e_f et chCal | Back. The PMID is
extracted from the pndaMet ri ¢ structure, and if valid, the appropriate field in the
pmAt onVal ue structure is set.

The si npl e. nunf et ch metric has no instance domain and is easily handled first as
shown in Example 2-21:

Example 2-21 si npl e. nunf et ch Metric

static int
sinpl e_fetchCal | Back(pnmdaMetric *ndesc, unsigned int inst, pmAtonVal ue *aton

{

int i;

static int ol dfetch = 0;

static struct tns tns;

__pmD_int *idp = (__pm D_int *)& nmdesc->m desc. pmnid);

if (inst !'= PM.IN_NULL &&
I'(idp->cluster == 0 & idp->item == 1) &&
I(idp->cluster == 2 & idp->item == 4))
return PM ERR | NST;
if (idp->cluster == 0) {
if (idp->item==0) { /* sinple.nunfetch */
atom >l = nunfetch;

}

In Example 2-22, the i nst parameter is used to specify which instance is required for
the si npl e. col or metric:

Example 2-22 si npl e. col or Metric

else if (idp->item== 1) { /* sinple.color */
switch (inst) {
case O: /* red */
red = (red + 1) % 256;
atom >l = red;
br eak;

007-3434-005 35

2: Writing a PMDA

case 1: /* green */
green = (green + 1) % 256;
atom >l = green;
br eak;
case 2: /* blue */
blue = (blue + 1) % 256;
atom >l = bl ue;
br eak;
defaul t:
return PM ERR | NST;
}
}
el se

return PM ERR PM D;

In Example 2-23, the si npl e. t i me metric is in a second cluster and has a simple
optimization to reduce the overhead of calling t i mes twice on the same fetch and
return consistent values from a single call to t i mes when both metrics
sinmple.time. user and si npl e. ti me. sys are requested in a single prFet ch.
The previous fetch count is used to determine if the t ms structure should be updated:

Example 2-23 si npl e. ti ne Metric

else if (idp->cluster == 1) { /* simple.tine */
if (oldfetch < nunfetch) {
times(& ns);
ol df etch = nunfetch;

}

if (idp->item== 2) /* sinple.tine.user */
atom>d = (tms.tnms_utine / (double)CLK _TCK);

else if (idp->item== 3) /* sinmple.tine.sys */
atom>d = (tms.tns_stine / (double)CLK TCK);

el se

return PM ERR PM D;
}

In Example 2-24, the si npl €. now metric is in a third cluster and uses i nst again to
select a specific instance from the | NDOM_NOWinstance domain:

Example 2-24 si npl e. now Metric

else if (idp->cluster == 2) {
if (idp->item==4) { /* sinple.now */

36 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

/* this loop will always match one of the named */
/* time constants fromthe tinmeslices structure */
for (i =0; i < numtimeslices; i++) {
if (inst == tineslices[i].inst_id) {
atom>l = timeslices[i].tmfield;
br eak;
}
}
if (i == numtineslices)
return PM _ERR | NST;
}
el se

return PM_ERR PM D;

2.5.1.3 sinpl e_store in the Simple PMDA

The simple PMDA permits some of the metrics it supports to be modified by pntt or e
as shown in Example 2-25. For additional information, see the pnst or e(1) man page.

Example 2-25 si npl e_st or e in the Simple PMDA

The pndaSt or e callback (which returns - EACCESS to indicate no metrics can be
altered) is replaced by si npl e_st or e in si npl e_i ni t. This replacement function
must take the same arguments so that it can be assigned to the function pointer in the
prdal nt er f ace structure.

The function traverses the pnmResul t and checks the cluster and unit of each PMID to
ensure that it corresponds to a metric that can be changed. Checks are made on the
values to ensure they are within range before being assigned to variables in the
PMDA that hold the current values for exported metrics:

static int
sinpl e_store(pnmResult *result, pndaExt *pnda)
{
int i, j, val, sts = 0;
pmAt omval ue av;
pmval ueSet *vsp = NULL;
_pmD_int *pmdp = NULL;
for (i =0; i <result->nunmpnid; i++) {
vsp = result->vset[i];
pmidp = (__pm D_int *)&sp->pmd;

007-3434-005 37

2: Writing a PMDA

38

if (pmidp->cluster == 0) { /* storable nmetrics are cluster0 */
switch (pmidp->itenm) {
case O: /* sinmple.nunfetch */
val = vsp->vlist[0].value.lval;

if (val <0) {
sts = PM ERR Sl G\,

val = 0;
}
nunfetch = val;
br eak;
case 1: /* sinple.color */
for (j =0; j < vsp->nunval && sts == 0; j++) {
val = vsp->vlist[j].value.lval;

if (val <0) {
sts = PM_ERR _SI G\,
val = O;

} if (val > 255) {
sts = PM_ERR_CONV,
val = 255;

}

The si npl e. col or metric has an instance domain that must be searched because
any or all instances may be specified. Any instances that are not supported in this
instance domain should cause an error value of PM ERR | NST to be returned as
shown in Example 2-26:

Example 2-26 si npl e. col or and PM_ERR | NST Errors

switch (vsp->vlist[j].inst) {

case 0: /* red */
red = val;
br eak;

case 1: /* green */
green = val;
br eak;

case 2: /* blue */
blue = val;
br eak;

defaul t:
sts = PM ERR | NST;

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Any other PMIDs in cluster 0 that are not supported by the simple PMDA should
result in an error value of PM_ERR_PM D as shown in Example 2-27:

Example 2-27 PM_ERR_PM D Errors

defaul t:
sts = PM ERR PM D
br eak;

}

Any metrics that cannot be altered should generate an error value of - EACCES, and
metrics not supported by the PMDA should result in an error value of PM_ERR_PM D
as shown in Example 2-28:

Example 2-28 - EACCES and PM_ERR_PM D Errors

else if ((pmdp->cluster == 1 &&
(pmidp->tem==2 || pnmidp->item== 3)) ||
(pmidp->cluster == 2 && pnmidp->item== 4)) {
sts = - EACCES;

br eak;

}

el se {
sts = PM ERR PM D;
br eak;

}

}

return sts;

}

The structure pndaExt argument is not used by the si npl e_st or e function above.

2.5.1.4 Return Codes for pndaFet ch Callbacks

In PVMDA_| NTERFACE_1 and PMDA_| NTERFACE_2, the return codes for the
prdaFet ch callback function are defined:

007-3434-005 39

2: Writing a PMDA

Value Meaning

<0 Error code (for example, PM_ERR_PM D, PM_ERR | NST
or PM_ERR _AGAI N)

0 Success

In PMDA | NTERFACE_3, the return codes for the prndaFet ch callback function are
defined:

Value Meaning

<0 Error code (for example, PM_ERR_PM D, PM_ERR | NST)
0 Metric value not currently available

>0 Success

2.5.2 PMDA Structures

40

PMDA structures used with the pcp_pnda library are defined in
[usr/include/ pcp/ pnda. h. Example 2-29 and Example 2-30 describe the
prdal nt er f ace and pndaExt structures.

Example 2-29 pndal nt er f ace Structure

The callbacks must be specified in a pndal nt er f ace structure:

typedef struct {

int domain; /* set/return performance netrics domain id here */
struct {

unsigned int pnda_interface : 8; /* PMDA DSO version */

unsi gned int pnmapi_version : 8; /* PMAPI version */

unsigned int flags : 16; /* usage TBD */
} comm /* set/return conmmuni cation and version info */
int status; /* return initialization status here */
uni on {

/*
* Interface Version 2 (PCP 2.0) or later
* PNMDA_| NTERFACE2, PMDA_I NTERFACES,

*/
struct {
prdaExt *ext;
i nt (*profile)(__pnProfile *, pndaBExt *);
i nt (*fetch)(int, pm D *, pnResult **, pndaExt *);
i nt (*desc) (pm D, pnmDesc *, pndaExt *);

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

int
int
int
} two;
} version;

} pndai nterface;

(*instance) (pm nDom int, char *, _ pmnResult **,
prmdaExt *);

(*text)(int, int, char **, pndaExt *);

(*store) (pnResult *, pndaExt *);

This structure is passed by PMCD to a DSO PMDA as an argument to the
initialization function. This structure supports two versions—the second version adds
support for the prmdaExt structure. Protocol version one is for backwards
compatibility only, and should not be used in any new PMDA.

Example 2-30 pndaExt Stucture

Additional PMDA information must be specified in a prdaExt structure:

typedef struct {
unsi gned int e_flags;

voi d *e ext;

char *e_socknane;
char *e nane;
char *e_logfile;
char *e_hel pt ext;
int e_status;
int e_infd;

int e_outfd;

int e_port;

int e_singul ar;
int e_ordinal ;
int e _direct;
int e_domai n;
int e _nnetrics;
int e_ni ndons;

i nt e_hel p;

__pnProfile *e_prof;
prdal oType e_io;

prmdal ndom *e_i ndons;
prdal ndom *e_i dp;
pmdaMetric *e_metrics;

prmdaResul t Cal | Back e_resul t Cal | Back;
prdaFet chCal | Back e_fetchCal | Back;

007-3434-005

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

used internally within |ibpcp_pnda */
used internally within |ibpcp_pnda */
socket nane to pntd */

name of this pnda */

path to log file */

path to help text */

=0 is OK */

input file descriptor frompncd */
output file descriptor to pncd */
port to pntd */

=0 for singular values */

>=0 for non-singular values */

=1 if pmid map to neta table */
nmetrics domain */

nunber of metrics */

nunber of instance domains */

help text cones via this handle */
| ast received profile */
connection type to pncd */
instance domain table */

i nstance domai n expansi on */
metric description table */

/* to clean up pnResult after fetch */
/* to assign netric values in fetch */

41

2: Writing a PMDA

prmdaCheckCal | Back
prdaDoneCal | Back
} pndaExt;

e_checkCal | Back; /* callback on receipt of a PDU */
e_doneCal | Back; /* callback after PDU is processed */

The pmdaExt structure contains filenames, pointers to tables, and some variables
shared by several functions in the pcp_pnda library. All fields of the

prdal nt er f ace and pndaExt structures can be correctly set by PMDA initialization
functions; see the pndaDaenon(3), pndaDSQO3), pndaCet Opt (3), pndal ni t (3), and
prmdaConnect (3) man pages for a full description of how various fields in these
structures may be set or used by pcp_pnda library functions.

2.6 Initializing a PMDA

2.6.1 Overview

Several functions are provided to simplify the initialization of a PMDA. These
functions, if used, must be called in a strict order so that the PMDA can operate
correctly.

The initialization process for a PMDA involves opening help text files, assigning
callback function pointers, adjusting the metric and instance identifiers to the correct
domains, and much more. The initialization of a daemon PMDA also differs
significantly from a DSO PMDA, since the pndal nt er f ace structure is initialized by
mai n or the PMCD process, respectively.

2.6.2 Common Initialization

42

As described in Section 2.2.2, page 13, an initialization function is provided by a
DSO PMDA and called by PMCD. Using the standard PMDA wrappers, the same
function can also be used as part of the daemon PMDA initialization. This PMDA
initialization function performs the following tasks:

* Assigning callback functions to the function pointer interface of pndal nt er f ace
* Assigning pointers to the metric and instance tables from prdaExt
¢ Opening the help text files

¢ Assigning the domain number to the instance domains

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

2.6.2.1 Trivial PMDA

2.6.2.2 Simple PMDA

007-3434-005

¢ Correlating metrics with their instance domains

If the PMDA uses the common data structures defined for the pcp_pnda library,
most of these requirements can be handled by the default prdal ni t function; see the
prdal ni t (3) man page.

Because the initialization function is the only initialization opportunity for a DSO
PMDA, the common initialization function should also perform any DSO-specific
functions that are required. A default implementation of this functionality is provided
by the pndaDSO function; see the pmdaDSQ(3) man page.

Example 2-31 shows the trivial PMDA, which has no instances (that is, all metrics
have singular values) and a single callback. This callback is for the pndaFet ch
function called tri vi al _f et chCal | Back; see the pnaFet ch(3) man page:

Example 2-31 Initialization in the Trivial PMDA

void trivial _init(pndal nterface *dp)

{
prdaSet Fet chCal | Back(dp, trivial _fetchCall Back);
prmdal nit (dp, NULL, O,
nmetrictab, sizeof(netrictab)/sizeof(nmetrictab[0]));
}

The trivial PMDA is always installed as a daemon PMDA.

In Example 2-32, the simple PMDA uses its own callbacks to handle PDU_FETCH and
PDU_RESULT request PDUs (for pnFet ch and pnft or e operations respectively), as
well as providing pndaFet ch with the callback si npl e_f et chCal | Back.

Example 2-32 Initialization in the Simple PMDA

static int isDSO = 1; /* =0 | am a daenbn */
void sinmple_init(pndal nterface *dp)
{

if (isDSO

pndaDSQO(dp, PMDA_| NTERFACE 2, ‘‘sinple DSO ',
“*[var/pcp/ prdas/ sinmpl e/ help’');
if (dp->status != 0)

43

2: Writing a PMDA

}

return;
dp->version.two.fetch = sinple_fetch;
dp->version.two. store = sinple_store;
dp->version.two. i nstance = sinpl e_i nstance;
prdaSet Fet chCal | Back(dp, sinple_fetchCall Back);
prdal nit (dp, indontab, sizeof(indontab)/sizeof(indontabl[0]),
nmetrictab, sizeof(netrictab)/sizeof(nmetrictab[0]));

The simple PMDA may be installed either as a daemon PMDA or a DSO PMDA. The
static variable isDSO indicates whether the PMDA is running as a DSO or as a
daemon. A daemon PMDA should change the value of this variable to 0 in mai n.

2.6.3 Daemon Initialization

int
mai

{

44

In addition to the initialization function that can be shared by a DSO and a daemon
PMDA, a daemon PMDA must also meet the following requirements:

Create the pndal nt er f ace structure that is passed to the initialization function
Parse any command-line arguments

Open a log file (a DSO PMDA uses PMCD’s log file)

Set up the IPC connection between the PMDA and the PMCD process

Handle incoming PDUs

All these requirements can be handled by default initialization functions in the

p
p

cp_pnda library; see the prdaDaenon(3), pndaGet Opt (3), prdaCpenlLog(3),
nmdaConnect (3), and pndaMai n(3) man pages.

The simple PMDA requires no additional command-line arguments other than those
handled by prmdaGet Opt as shown in Example 2-33. For additional information, see
the prmdaGet Opt (3) man page.

Example 2-33 mai n in the Simple PMDA

n(int argc, char **argv)

int
prdal nt er f ace
char

err = 0;
di spat ch;
*p;

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

/* trimcnmd nanme of |eading directory conponents */
prmPrognanme = argv[0];
for (p = pnProgname; *p; p++) {
if (*p=="/1")
pnPrognane = p+1;

}

i sDSO = 0;

prdaDaenon(&li spat ch, PNMDA_| NTERFACE 2, pnProgname, S| MPLE,

‘‘*simple.log ', ‘‘/var/pcp/pndas/sinplelhelp ’);

if (prdaGet Opt(argc, argv, ‘‘D:d:i:l:pu:?’, &dispatch, &err)) != ECF)
err++;

if (err)
usage();

prmdaQpenLog(&di spat ch) ;
sinpl e_i nit (&di spatch);
sinpl e_ti nenow_check();
prmdaConnect (&di spat ch) ;
prmdaMai n(&di spat ch) ;
exit(0);

/ * NOTREACHED* /

2.7 Testing and Debugging a PMDA

Ensuring the correct operation of a PMDA can be difficult, because the responsibility
of providing metrics to the requesting PMCD process and simultaneously retrieving
values from the target domain requires nearly real-time communication with two
modules beyond the PMDA'’s control. Some tools are available to assist in this
important task.

2.7.1 Overview

Thoroughly testing a PMDA with PMCD is difficult, although testing a daemon
PMDA is marginally simpler than testing a DSO PMDA. If a DSO PMDA exits, PMCD
also exits because they share a single address space and control thread. If the PMDA
dumps core, dbx and related tools on IRIX or gdb(1) on Linux cannot reasonably
explore the generated core image, which includes the PMCD image and any other
active DSO PMDAs. For more information, see the dbx(1) or gdb(1)man page.

007-3434-005 45

2: Writing a PMDA

The difficulty in using PMCD to test a daemon PMDA results from PMCD requiring
timely replies from the PMDA in response to request PDUs. Although a timeout
period can be set in / et ¢/ confi g/ pntd. opti ons on IRIX or

/var/ pcp/ confi g/ pncd/ pntd. opti ons on Linux, attaching dbx or gdb to the
PMDA process (or any other long delay) might cause an already running PMCD to
close its connection with the PMDA. If timeouts are disabled, PMCD could wait
forever to connect with the PMDA.

If you suspect a PMDA has been terminated due to a timeout failure, check the
PMCD log file, usually / var / adni pcpl og/ pntd. | og for IRIX or
[var /| og/ pcp/ pncd/ pned. | og for Linux.

A more robust way of testing a PMDA is to use the dbpnda tool, which is similar to
PMCD except that dbpnda provides complete control over the PDUs that are sent to
the PMDA, and there are no time limits—it is essentially an interactive debugger for
exercising a PMDA. See the dbpnda(3) man page for details.

In addition, careful use of PCP debugging flags can produce useful information
concerning a PMDA's behavior; see the pmapi (3) and pndbg(1) man pages for a
discussion of the PCP debugging and tracing framework.

2.7.2 Debugging Information

46

You can activate debugging flags in PMCD and most other PCP tools with the - D
command-line option. Supported flags can be listed with the pndbg command; see
the pmdbg(1l) man page. Setting the debug flag for PMCD in

[etc/config/pntd. opti ons on IRIX or

/var/ pcp/ confi g/ pncd/ pned. opti ons on Linux might generate too much
information to be useful, especially if there are other clients and PMDAs connected to
the PMCD process.

The PMCD debugging flag can also be changed dynamically by storing a new value
into the metric pncd. contr ol . debug:

pnstore pntd. control . debug 5

Most of the pcp_pnda library functions log additional information if the
DBG_TRACE_LI BPMDA flag is set within the PMDA; see the pnda(3) man page. The
command-line argument - D is trapped by pndaGet Opt to set the global debugging
control variable pnDebug. Adding tests within the PMDA for the
DBG_TRACE_APPLO, DBG_TRACE_APPL1, and DBG_TRACE_APPL2 trace flags permits
different levels of information to be logged to the PMDA’s log file.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

All diagnostic, debugging, and tracing output from a PMDA should be written to the
standard error stream. By convention, all debugging information is enclosed by
preprocessor #i f def DEBUG statements so that they can be compiled out of the
program at a later stage, if required.

Adding this segment of code to the si npl e_st or e metric causes a log message to be
sent to the current log file whenever pnst or e attempts to change si npl e. nunf et ch
and pnDebug has the DBG_TRACE_APPLO flag set as shown in Example 2-34:

Example 2-34 si npl e. nunf et ch in the Simple PMDA

case 0: /* sinple.nunfetch */
val = vsp->vlist[O0].value.lval;
if (val <0) {
sts = PM ERR _SI GN\;
val = O;
}
#i f def DEBUG
if (pnDebug & DBG TRACE_APPLO) {
fprintf(stderr,
"sinple: % stored into nunfetch", val);
}
#endi f
nunfetch = val;
br eak;

For a description of prst or e, see the pnst or €(1) man page.

2.7.3 dbpnda Debug Utility

007-3434-005

The dbpnda utility provides a simple interface to the PDU communication protocol.
It allows daemon and DSO PMDAs to be tested with most request types, while the
PMDA process may be monitored with dbx, par on IRIX or gdb, strace on Linux,
and other diagnostic tools. The dbpnda(l) man page contains a sample session with
the si npl e PMDA.

47

2: Writing a PMDA

2.8 Integration of PMDA

Several steps are required to install (or remove) a PMDA from a production PMCD
environment without affecting the operation of other PMDAs or related visualization
and logging tools.

The PMDA typically would have its own directory below / var / pcp/ prndas into
which several files would be installed. In the description in Section 2.8.1, page 48, the
PMDA of interest is assumed to be known by the name newbi e, hence the PMDA
directory would be / var/ pcp/ pndas/ newbi e.

Note: Any installation or removal of a PMDA involves updating files and directories
that are typically well protected. Hence the procedures described in this section must
be executed as the superuser.

2.8.1 Installing a PMDA

48

A PMDA is fully installed when these tasks are completed:

* Help text has been installed in a place where the PMDA can find it, usually in the
PMDA directory / var / pcp/ pndas/ newbi e.

* The name space has been updated in the / var/ pcp/ pmrms directory.

¢ The PMDA binary has been installed, usually in the directory / var/ pcp/ i b for
a DSO PMDA, or in the PMDA directory / var/ pcp/ pndas/ newbi e for a
daemon PMDA.

e The/etc/pncd. conf file on IRIX or the / var/ pcp/ confi g/ pntd/ pntd. conf
file on Linux has been updated.

® The PMCD process has been restarted or notified (with a SI GHUP signal) that the
new PMDA exists.

The Makef i | e should include an i nstal | target to compile and link the PMDA (as
a DSO, or a daemon or both) in the PMDA directory, and in the case of a DSO
PMDA, install the shared library in / var/ pcp/1i b for IRIX and

/'usr/share/ pcp/lib for Linux. The cl obber target should remove any files
created as a by-product of the i nst al | target.

You may wish to use / var / pcp/ pndas/ si npl e/ Makefil e as a template for
constructing a new PMDA Makef i | e; changing the assignment of | AMfrom si npl e
to newbi e would account for most of the required changes.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Since the object format of a DSO PMDA must match the object format of PMCD,
which in turn must match the object format of the booted operating system kernel,
there might be multiple DSO targets in the Makef i | e. For an example on IRIX, see
targets m ps_o32. pnda_$(1 AM . so, m ps_n32. prda_$(| AM . so, and

m ps_64. prda_$(1 AM . so for the simple PMDA.

The I nst al | script should make use of the generic procedures defined in the script
[usr/pcp/lib/pndaproc. sh on IRIX and / usr/ shar e/ pcp/ | i b/ pndapr oc. sh
on Linux, and may be as straightforward as the one used for the trivial PMDA,
shown in Example 2-35:

Example 2-35 I nst al | Script for the Trivial PMDA

Get the common procedures and vari abl e assi gnnents
#
/usr/pcp/lib/pnmdaproc. sh
The name of the PVDA
#
iametrivial
Do it
#
prdaSet up
prdai nst al |
exit O

The variables, shown in Table 2-1, may be assigned values to modify the behavior of

the prdaSet up and prdai nst al | procedures from / usr/ pcp/ | i b/ pmdaproc. sh
or / usr/share/ pcp/li b/ pndaproc. sh on Linux.

Table 2-1 Variables to Control Behavior of Generic pndapr oc. sh Procedures

Shell Variable

$i am

$dso_opt

$daenon_opt

007-3434-005

Use Default
Name of the PMDA; assignment to this variable is

mandatory.

Example: i amFnewbi e

Can this PMDA be installed as a DSO? fal se
Can this PMDA be installed as a daemon? true

49

2: Writing a PMDA

Shell Variable Use Default
$pi pe_opt If installed as a daemon PMDA, is the default IPC via true
pipes?

$socket _opt

$socket i net _def

$i pc_prot

$check_del ay

$args

$pnda_i nterface

$pms_sour ce

$pms_nane

$hel p_source

$pnda_nane
$dso_nane
$dso_entry
$domai n
$SYMNDOM

If installed as a daemon PMDA, is the default IPC via an fal se
Internet socket?

If installed as a daemon PMDA, and the IPC method uses
an Internet socket, the default port number.

IPC style for PDU exchanges involving a daemon PMDA; bi nary
bi nary or t ext.

Delay in seconds between installing PMDA and checking 3
if metrics are available.

Additional command-line arguments passed to a daemon

PMDA.

Version of the | i bpcp_pnda library required, used to 1

determine the version for generating help text files.

The name of the PMNS file (by default relative to the pms

PMDA directory).

First-level name for this PMDA’s metrics in the PMNS. $i am

The name of the help file (by default relative to the PMDA hel p
directory).

The name of the executable for a daemon PMDA. pnda$i am
The name of the shared library for a DSO PMDA. pnda$i am so

The name of the initialization function for a DSO PMDA. ${ian}_init
The numerical PMDA domain number (from donai n. h).

The symbolic name of the PMDA domain number (from
domai n. h).

50

In addition, the variables do_pnda and do_check will be set to reflect the intention
to install the PMDA (as opposed to install just the PMNS) and to check the
availability of the metrics once the PMDA is installed. By default, each variable is

t r ue; however, the command-line options - Nand - Qto | nst al | may be used to set
the variables to f al se, as follows: do_pnda (- N) and do_check (- Nor - Q.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

007-3434-005

The variables may also have their assignments changed by the user’s response to the
common prompt as shown in Example 2-36:

Example 2-36 Changing Variable Assignments

You wi Il need to choose an appropriate configuration for installation
of the ... Performance Metrics Domai n Agent (PNDA).
col | ector coll ect performance statistics on this system
noni t or allow this systemto nonitor |ocal and/or renote systens
bot h col l ector and nonitor configuration for this system

Obviously, for anything but the most trivial PMDA, after calling the prdaSet up
procedure, the I nst al | script should also prompt for any PMDA-specific
parameters, which are typically accumulated in the args variable and used by the
prdai nst al | procedure.

The detailed operation of the pndai nst al | procedure involves the following tasks:

¢ Using default assighments, and interaction where ambiguity exists, determine the
PMDA type (DSO or daemon) and the IPC parameters, if any.

* Copy the $pmms_sour ce file, replacing symbolic references to SYMDOMby the
desired numeric domain number from domai n.

* Merge the PMDA’s name space into the PCP name space at the non-leaf node
identified by $pmms_nane.

e If any pnthart views can be found (files with names ending in “.pmchart”), copy
these to the standard directory (/ var/ pcp/ confi g/ pnchart) with the
“.pmchart” suffix removed.

* Create new help files from $hel p_sour ce after replacing symbolic references to
SYMDOMby the desired numeric domain number from domai n.

¢ Terminate the old daemon PMDA, if any.
¢ Use the Makefi | e to build the appropriate executables.
* Add the PMDA specification to PMCD'’s configuration file (/ et ¢/ pntd. conf).

¢ Notify PMCD. To minimize the impact on the services PMCD provides, sending a
S| GHUP to PMCD forces it to reread the configuration file and start, restart, or
remove any PMDAs that have changed since the file was last read.

e Check that the metrics from the new PMDA are available.

51

2: Writing a PMDA

There are some PMDA changes that may trick PMCD into thinking nothing has
changed, and not restarting the PMDA. Most notable are changes to the PMDA
executable. In these cases, you may need to explicitly remove the PMDA as described
in Section 2.8.3, page 52, or more drastically, restart PMCD on IRIX as follows:

/etc/init.d/ pcp start
Restart PMCD on Linux as follows:
/etc/rc.d/init.d pcp start

The files / var / pcp/ pndas/ */ I nst al | provide a wealth of examples that may be
used to construct a new PMDAI nstal | script.

2.8.2 Upgrading a PMNS to Include Metrics from a New PMDA

When invoked with a - N command-line option, the PMDA | nstal | script may be
used to update the PMNS without installing the PMDA. This is typically used on a
monitoring system to populate the local PMNS with the names of the performance
metrics from a PMDA installed on a remote host. The - N option also installs
prchart views useful on a monitoring system.

2.8.3 Removing a PMDA

The simplest way to stop a PMDA from running, apart from killing the process, is to
remove the entry from / et ¢/ pntd. conf and signal PMCD (with SI GHUP) to reread
its configuration file. To completely remove a PMDA requires the reverse process of

the installation, including an update of the Performance Metrics Name Space (PMNS).

This typically involves a Renove script in the PMDA directory that uses the same
common procedures as the | nst al | script described Section 2.8.1, page 48.

The / var/ pcp/ pndas/ */ Renove files provide a wealth of examples that may be
used to construct a new PMDA Renove script.

2.8.4 Configuring PCP Tools

52

Most PCP tools have their own configuration file format for specifying which metrics
to view or to log. By using canned configuration files that monitor key metrics of the
new PMDA, users can quickly see the performance of the target system, as
characterized by key metrics in the new PMDA.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

007-3434-005

Any configuration files that are created should be kept with the PMDA and installed
into the appropriate directories when the PMDA is installed.

As with all PCP customization, some of the most valuable tools can be created by
defining views, scenes, and control-panel layouts that combine related performance
metrics from multiple PMDAs or multiple hosts.

Parameterized alarm configurations can be created using the pmi econf facilities; see
the pm econf (1) and pm e(1) man pages. In addition, pm e rules involving metrics
from the new PMDA may be created directly.

Daily logs can be specified in pml ogger configuration files, or with the

pm ogger _dai | y mechanism; see the pm ogger (1) and pm ogger _dai | y(1) man
pages. The services of pmenap may be used to incorporate the new performance
metrics into charts that may be periodically regenerated and published via a World
Wide Web server.

53

Chapter 3

PMAPI—The Performance Metrics API

This chapter describes the Performance Metrics Application Programming Interface
(PMAPI) provided with Performance Co-Pilot (PCP).

The PMAPI is a set of functions and data structure definitions that allow client
applications to access performance data from one or more Performance Metrics
Collection Daemons (PMCDs) or from PCP archive logs. The PCP utilities are all
written using the PMAPL

The most common use of PCP includes running performance monitoring utilities on a
workstation (the monitoring system) while performance data is retrieved from one or
more remote collector systems by a number of PCP processes. These processes
execute on both the monitoring system and the collector systems. The collector
systems are typically servers, and are the targets for the performance investigations.

In the development of the PMAPI the most important question has been, “How easily
and quickly will this API enable the user to build new performance tools, or exploit
existing tools for newly available performance metrics?” The PMAPI and the
standard tools that use the PMAPI have enjoyed a symbiotic evolution throughout the
development of PCP.

It will be convenient to differentiate between code that uses the PMAPI and code that
implements the services of the PMAPL The former will be termed “above the
PMAPI” and the latter “below the PMAPIL.”

3.1 Naming and Identifying Performance Metrics

007-3434-005

Across all of the supported performance metric domains, there are a large number of
performance metrics. Each metric has its own description, format, and semantics.
PCP presents a uniform interface to these metrics above the PMAPI, independent of
the source of the underlying metric data. For example, the performance metric

hi nv. physmemhas a single 32-bit unsigned integer value, representing the number
of megabytes of physical memory in the system, while the performance metric

di sk. dev. t ot al has one 32-bit unsigned integer value per disk spindle,
representing the cumulative count of I/O operations involving each associated disk
spindle. These concepts are described in greater detail in Section 2.3, page 17.

For brevity and efficiency, internally PCP avoids using ASCII names for performance
metrics, and instead uses an identification scheme that unambiguously associates a

55

3: PMAPI—The Performance Metrics API

3.2 Performance

56

single integer with each known performance metric. This integer is known as a
Performance Metric Identifier, or PMID. For functions using the PMAPI, a PMID is
defined and manipulated with the typedef pmi D.

Below the PMAPI, the integer value of the PMID has an internal structure that reflects
the details of the PMCD and PMDA architecture, as described in Section 2.3.3, page 19.

Above the PMAP]I, a Performance Metrics Name Space (PMNS) is used to provide a
hierarchic classification of external metric names, and a one-to-one mapping of
external names to internal PMIDs. A more detailed description of the PMNS can be
found in the Performance Co-Pilot User’s and Administrator’s Guide.

Applications that use the PMAPI may have independent versions of a PMNS,
constructed from an initialization file when the application starts. Not all PMIDs need
be represented in the PMNS of every application. For example, an application that
monitors disk traffic could use a Name Space that references only the PMIDs for I/O
statistics. Other applications require a stable PMNS that can be assumed to be the
same on all systems. The distributed implementation includes a default PMNS for
just this purpose.

The vast majority of PCP users and applications using the PMAPI will choose to use
the default PMNS.

As of PCP release 2.0 the default PMNS comes from the performance metrics source,
either a PMCD process or a PCP archive. This PMNS always reflects the available
metrics from the performance metrics source; so most applications never use the local
version of a PMNS.

Metric Instances

When performance metric values are returned across the PMAPI to a requesting
application, there may be more than one value for a particular metric; for example,
independent counts for each CPU, or each process, or each disk, or each system call
type, and so on. This multiplicity of values is not enumerated in the Name Space, but
rather when performance metrics are delivered across the PMAPL

The notion of met ri ¢ i nst ances is really a number of related concepts, as follows:
¢ A particular performance metric may have a set of associated values or instances.

* The instances are differentiated by an instance identifier.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

007-3434-005

* An instance identifier has an internal encoding (an integer value) and an external
encoding (a corresponding external name or label).

¢ The set of all possible instance identifiers associated with a performance metric on
a particular host constitutes an instance domain.

* Several performance metrics may share the same instance domain.
Consider Example 3-1:

Example 3-1 Metrics Sharing the Same Instance Domain

$ pnminfo -f filesys.free

filesys.free
inst [1 or ‘‘/dev/root’’] value 1803
inst [2 or ‘‘/dev/usr’’] value 22140
inst [3 or ‘‘/dev/dsk/dks0d2s0’’] value 157938

The metric fi | esys. fr ee has three values, currently 1803, 22140, and 157938. These
values are respectively associated with the instances identified by the internal
identifiers 1, 2 and 3, and the external identifiers / dev/ r oot , / dev/ usr, and

/ dev/ dsk/ dks0d2s0. These instances form an instance domain that is shared by
the performance metrics fi | esys. capacity, fil esys. used,fil esys.free,

fil esys. mountdir, and so on.

Each performance metric is associated with an instance domain, while each instance
domain may be associated with many performance metrics. Each instance domain is
identified by a unique value, as defined by the following t ypedef declaration:

t ypedef unsigned | ong pm nDom

The special instance domain PM_| NDOM_NULL is reserved to indicate that the metric
has a single value (a singular instance domain). For example, the performance metric
mem f r eememalways has exactly one value. Note that this is semantically different
to a performance metric like ker nel . per cpu. syscal | that has a non-singular
instance domain, but may have only one value available; for example, on a system
with a single processor.

In the results returned above the PMAPI, each individual instance, within an instance
domain, is identified by an internal integer instance identifier. The special instance
identifier PM_I N_NULL is reserved for the single value in a singular instance domain.
Performance metric values are delivered across the PMAPI as a set of instance
identifier and value pairs.

57

3: PMAPI—The Performance Metrics API

The instance domain of a metric may change with time. For example, a machine may
be shut down, have several disks added, and be rebooted. All performance metrics
associated with the instance domain of disk devices would contain additional values
after the reboot. The difficult issue of transient performance metrics means that
repeated requests for the same PMID may return different numbers of values, or
some changes in the particular instance identifiers returned. This means applications
need to be aware that metric instantiation is guaranteed to be valid only at the time
of collection.

Note: Some instance domains are more dynamic than others. For example, consider
the instance domains behind the performance metrics pr oc. menory. physi cal . dat
(one instance per process), swap. f r ee (one instance per swap partition) and

kernel . percpu. cpu.intr (one instance per CPU).

3.3 Current PMAPI Context

58

When performance metrics are retrieved across the PMAP], they are delivered in the
context of a particular source of metrics, a point in time, and a profile of desired
instances. This means that the application making the request has already negotiated
across the PMAPI to establish the context in which the request should be executed.

A metric’s source may be the current performance data from a particular host (a live
or real-time source), or an archive log of performance data collected by pm ogger at
some remote host or earlier time (a retrospective or archive source). The metric’s
source is specified when the PMAPI context is created by calling the prmNewCont ext
function.

The collection time for a performance metric is always the current time of day for a
real-time source, or current position for an archive source. For archives, the collection
time may be set to an arbitrary time within the bounds of the archive log by calling
the pnBet Mbde function.

The last component of a PMAPI context is an instance profile that may be used to
control which particular instances from an instance domain should be retrieved.
When a new PMAPI context is created, the initial state expresses an interest in all
possible instances, to be collected at the current time. The instance profile can be
manipulated using the pmAddPr of i | e and pnDel Profi | e functions.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

3.4 Performance Metric Descriptions

/* pnDesc.type - data
PM TYPE_NOSUPPORT -1 /* not in this version */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

PM TYPE_32
PM TYPE_U32
PM TYPE_64

PM TYPE_U64
PM TYPE_FLOAT

PM TYPE_DOUBLE

For each defined performance metric, there is associated metadata encoded in a
performance metric description (pnDesc structure) that describes the format and
semantics of the performance metric. The pnDesc structure, in Example 3-2, provides
all of the information required to interpret and manipulate a performance metric
through the PMAPL. It has the following declaration:

Example 3-2 pnDesc Structure

/* Performance Metric Descriptor */
typedef struct {
pm D pmi d; /* unique identifier */

i nt type; /* base data type (see below) */
pm nDom i ndom /* instance domain */
int sem /* semantics of value (see below) */

pmunits units; /* dinension and units (see below) */
} pmDesc;

The t ype field in the prDesc structure describes various encodings of a metric’s
value. Its value will be one of the following constants:

type of metric values */

/* 32-bit signed integer */
/* 32-bit unsigned integer */
/* 64-bit signed integer */
/* 64-bit unsigned integer */
/* 32-bit floating point */
/* 64-bit floating point */

a b wWNPEFLO

PM_TYPE_STRI NG 6 /* array of char */

PM_TYPE_AGGREGATE 7 /* arbitrary binary data */

PM TYPE_AGCGREGATE_STATIC 8 /* static pointer to aggregate */
PM_TYPE_UNKNOMN 255 /* used in pnWVal ueBl ock, not pnDesc */

007-3434-005

By convention PM_TYPE_STRI NGis interpreted as a classic C-style null byte
terminated string.

If the value of a performance metric is of type PM_TYPE_AGGREGATE (or indeed
PM_TYPE_STRI NG), the interpretation of that value is unknown to most PCP
components. In these cases, the application using the value and the Performance
Metrics Domain Agent (PMDA) providing the value must have some common
understanding about how the value is structured and interpreted.

59

3: PMAPI—The Performance Metrics API

60

PM_TYPE_NOSUPPORT indicates that the PCP collection framework knows about the
metric, but the corresponding service or application is either not configured or is at a
revision level that does not provide support for this performance metric.

The semantics of the performance metric is described by the semfield of a pnDesc
structure and uses the following constants:

/* pnDesc.sem - semantics of metric values */

#define PM_SEM COUNTER 1 /* cunul ative count, monotonic increasing */
#define PM SEM I NSTANT 3 /* instant. value continuous domain */
#define PM SEM DI SCRETE 4 /* instant. value discrete domain */

Each value for a performance metric is assumed to be drawn from a set of values that
can be described in terms of their dimensionality and scale by a compact encoding, as
follows:

¢ The dimensionality is defined by a power, or index, in each of three orthogonal
dimensions: Space, Time, and Count (dimensionless). For example, 1/O
throughput is Space!.Time™!, while the running total of system calls is Count!,
memory allocation is Space!, and average service time per event is Time'.Count™.

® In each dimension, a number of common scale values are defined that may be
used to better encode ranges that might otherwise exhaust the precision of a 32-bit
value. For example, a metric with dimension Space!.Time™! may have values
encoded using the scale megabytes per second.

This information is encoded in the prmni t s data structure, shown in Example 3-3
and Example 3-4. It is embedded in the pnDesc structure :

Example 3-3 pnni t s and pnDesc IRIX Structures

/*

* Encoding for the units (dinensions and

* scale) for Performance Metric Val ues

*

* For exanple, a pmnits struct of

*{ 1, -1, 0, PM SPACE_MBYTE, PM TIME_SEC, 0 }
* represents Mytes/sec, while

*{ o0 1, -1, 0, PM.TIME_HOUR, 6 }

* represents hours/mllion-events

*/

typedef struct {
i nt di nSpace: 4; /* space di mension */
int dinline: 4; /* time dinmension */

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

007-3434-005

nt di nCount: 4; /* event dinension */
nt scal eSpace: 4; /* one of PM SPACE * bel ow */
nt scaleTine:4; /* one of PMTIME * bel ow */
nt scal eCount:4; /* one of PM COUNT_* bel ow */
nt pad: 8;
} prmnits; /* dimensional units and scal e of value */
/* pnnits. scal eSpace */

#define PM_SPACE_BYTE O /* bytes */

#defi ne PM_SPACE_KBYTE 1 /* Kil obytes (1024) */
#defi ne PM_SPACE_MBYTE 2 /* Megabytes (102472) */
#defi ne PM_SPACE_GBYTE 3 /* G gabytes (102473) */
#defi ne PM_SPACE_TBYTE 4 /* Terabytes (102474) */
/* pnnits. scal eTinme */

#define PM_TI ME_NSEC 0 /* nanoseconds */

#define PM_TI ME_USEC 1 /* mcroseconds */
#define PM_TI ME_MSEC 2 /* mlliseconds */

#define PM_TI ME_SEC 3 /* seconds */

#define PM.TIME_M N 4 /* mnutes */

#define PM_TI ME_HOUR 5 /* hours */

/*

* pmnits.scal eCount (e.g. count events, syscalls,
* interrupts, etc.) -- these are sinmply powers of 10,

* and not enunerated here.
* e.g. 6 for 1076, or -3 for 107-3

*/

#define PM COUNT ONE O /* 1 */

The strucutures in Linux are as follows:

Example 3-4 prni t s and pnDesc Linux Structures

/*

* Encoding for the units (di nensions and
* scale) for Performance Metric Val ues

*

* For exanple, a pmnits struct of

*{1,

-1, 0, PM SPACE_MBYTE, PM TIME_SEC, O }

* represents Mytes/sec, while

*{o0 1, -1, 0, PM.TIME_HOUR, 6 }
* represents hours/mllion-events
*/

typedef struct {

61

3: PMAPI—The Performance Metrics API

int pad:8;

int scaleCount:4; /* one of PM COUNT_* bel ow */
bel ow */

int scaleTine:4; [/* one of PMTIME * bel ow */

int scal eSpace: 4; /* one of PM SPACE * bel ow */

bel ow */
int di nCount: 4; /* event dinension */
int dinline: 4; /* time dinmension */
i nt di nSpace: 4; /* space di mension
} prmnits; /* di mensional units and scal e of value */

/* pnnits. scal eSpace */

#defi ne PM_SPACE_BYTE O /* bytes */

#defi ne PM_SPACE_KBYTE 1 /* Kil obytes (1024) */
#defi ne PM_SPACE_MBYTE 2 /* Megabytes (102472) */
#defi ne PM_SPACE_GBYTE 3 /* G gabytes (102473) */
#defi ne PM_SPACE_TBYTE 4 /* Terabytes (102474) */
/* pnnits. scal eTinme */

#define PM_TI ME_NSEC 0 /* nanoseconds */
#define PM_TI ME_USEC 1 /* mcroseconds */
#define PM_TI ME_MSEC 2 /* mlliseconds */
#define PM_TI ME_SEC 3 /* seconds */

#define PM.TIME_M N 4 /* mnutes */

#define PM_TI ME_HOUR 5 /* hours */

/*
* pmnits.scal eCount (e.g. count events, syscalls,
* interrupts, etc.) -- these are sinply powers of 10,

* and not enunerated here.

* e.g. 6 for 1076, or -3 for 107-3
*/

#define PM COUNT_ONE O /* 1 */

3.5 Performance Metrics Values

An application may fetch (or store) values for a set of performance metrics, each with
a set of associated instances, using a single pnet ch (or pnSt or e) function call. To
accommodate this, values are delivered across the PMAPI in the form of a tree data
structure, rooted at a pnResul t structure. This encoding is illustrated in Figure 3-1,
and uses the component data structures in Example 3-5:

62 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Example 3-5 pnVal ueBl ock and pnVval ue Structures

typedef struct {

int inst; /* instance identifier */
uni on {
pmval ueBl ock *pval ; /* pointer to val ue-block */
int | val ; /* integer value insitu */
} val ue;
} pnval ue;
Pmy,
El
SRy SSet
time Pmig
numStamp MMy
Pmj Pm v
d I Va'Ue[] in Allfimy v
St aly
EB|0
k
Pm
Pmiy
prn\/alue umVal
Seqq Valuen Valf,
ingt
Value
inst
Valye
ingt
Value
lnSt
Value

Figure 3-1 A Structured Result for Performance Metrics from pnfet ch

The internal instance identifier is stored in the i nst element. If a value for a
particular metric-instance pair is a 32-bit integer (signed or unsigned), then it will be
stored in the | val element. If not, the value will be in a pnVal ueBl ock structure, as
shown in Example 3-6 and Example 3-7, and will be located via pval :

007-3434-005 63

3: PMAPI—The Performance Metrics API

64

Example 3-6 pnVal ueBl ock Structure in IRIX
typedef struct {

unsi gned i nt vtype : 8; /* value type */
unsi gned i nt vlen : 24; /* bytes for vtype/vlen + vbuf */
char vbuf[1]; /* the value */

} pnVval ueBl ock;

The pnal ueBl ock structure in Linux is as follows:

Example 3-7 pnVal ueBl ock Structure in Linux

typedef struct {

unsi gned i nt vlen : 24; /* bytes for vtype/vlen + vbuf */
unsi gned i nt vtype : 8; /* value type */
char vbuf[1]; /* the value */

} pnval ueBl ock;

The length of the pmVval ueBl ock (including the vt ype and vl en fields) is stored in
vl en. Despite the prototype declaration of vbuf, this array really accommodates

vl en minus si zeof (vl en) bytes. The vt ype field encodes the type of the value in
the vbuf [] array, and is one of the PM_TYPE_* macros defined in

/usr/incl ude/ pmapi . h.

A pnVal ueSet structure, as shown in Example 3-8, contains all of the values to be
returned from pnFet ch for a single performance metric identified by the pmi d field.

Example 3-8 pnVal ueSet Structure

typedef struct {

pm D pmi d; /* metric identifier */
int nunval ; /* nunber of values */
int val fnt; /* value style, insitu or ptr */
pmval ue vlist[1]; /* set of instances/values */
} pnVal ueSet;

If positive, the nunval field identifies the number of value-instance pairs in the

vl i st array (despite the prototype declaration of size 1). If nunmval is zero, there are
no values available for the associated performance metric and vl i st [0] is undefined.
A negative value for nunval indicates an error condition (see the pnErr St r (3) man

page) and vl i st [0] is undefined. The val f nt field has the value PM_VAL_| NSI TU to
indicate that the values for the performance metrics should be located directly via the

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

| val member of the val ue union embedded in the elements of vl i st ; otherwise,
metric values are located indirectly via the pval member of the elements of vl i st.

The prmResul t structure, as shown in Example 3-9, contains a time stamp and an
array of nunpmi d pointers to pnmval ueSet .

Example 3-9 pnResul t Structure

/* Result returned by pnFetch() */
typedef struct {

struct tineval tinestanp; /* stanped by collector */
int nunmpm d; /* nunber of PMDs */
pmval ueSet *vset[1]; /* set of value sets */

} pnResul t

There is one pnVal ueSet pointer per PMID, with a one-to-one correspondence to the
set of requested PMIDs passed to pnfet ch.

Along with the metric values, the PMAPI returns a time stamp with each pnResul t
that serves to identify when the performance metric values were collected. The time
is in the format returned by get t i meof day and is typically very close to the time
when the metrics are exported across the PMAPIL

Note: There is a question of exactly when individual metrics may have been
collected, especially given their origin in potentially different performance metric
domains, and variability in metric updating frequency by individual PMDAs. PCP
uses a pragmatic approach, in which the PMAPI implementation returns all metrics
with values accurate as of the time stamp, to the maximum degree possible, and
PMCD demands that all PMDAs deliver values within a small realtime window. The
resulting inaccuracy is small, and the additional burden of accurate individual
timestamping for each returned metric value is neither warranted nor practical (from
an implementation viewpoint).

The PMAPI provides functions to extract, rescale, and print values from the above
structures; refer to Section 3.8, page 93.

3.6 PMAPI Programming Style and Interaction
The following sections describe the PMAPI programming style:

¢ Variable length argument and results lists

007-3434-005 65

3: PMAPI—The Performance Metrics API

* PMAPI error handling

3.6.1 Variable Length Argument and Results Lists

All arguments and results involving a “list of something” are encoded as an array
with an associated argument or function value to identify the number of elements in
the array. This encoding scheme avoids both the var ar gs approach and
sentinel-terminated lists. Where the size of a result is known at the time of a call, it is
the caller’s responsibility to allocate (and possibly free) the storage, and the called
function assumes that the resulting argument is of an appropriate size.

Where a result is of variable size and that size cannot be known in advance (for
example, prGet Chi | dr en, pmGet | nDom prNanel nDom pnmiNanel D,
pnmLookupText, and prfet ch), the underlying implementation uses dynamic
allocation through mal | oc in the called function, with the caller responsible for
subsequently calling f r ee to release the storage when no longer required. In the case
of the result from pnfet ch, there is a function (pnFr eeResul t) to release the
storage, due to the complexity of the data structure and the need to make multiple
calls to f r ee in the correct sequence. As a general rule, if the called function returns
an error status, then no allocation is done, the pointer to the variable sized result is
undefined, and f r ee or pnFr eeResul t should not be called.

3.6.2 PMAPI Error Handling

66

Where error conditions may arise, the functions that compose the PMAPI conform to
a single, simple error notification scheme, as follows:

* The function returns an i nt. Values greater than or equal to zero indicate no error,
and perhaps some positive status: for example, the number of items processed.

¢ Values less than zero indicate an error, as determined by a global table of error
conditions and messages.

A PMAPI library function along the lines of strerror is provided to translate error
conditions into error messages; see the pEr r St r (3) man page. The error condition is
returned as the function value from a previous PMAPI call; there is no global error
indicator (unlike er r no). This is an attempt to anticipate and accommodate a
programming environment that does not hinder the implementation of
multi-threaded performance tools. The available error codes may be displayed with
the following command:

prerr -1

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

3.7 PMAPI Procedural Interface

The following sections describe all of the PMAPI functions that provide access to the
PCP infrastructure on behalf of a client application:

¢ PMAPI Name Space services

* PMAPI metric description services
e PMAPI instance domain services

e PMAPI context services

e PMAPI timezone services

¢ PMAPI metrics services

e PMAPI record-mode services

¢ PMAPI archive-specific services

e PMAPI time control services

e PMAPI ancillary support services

3.7.1 PMAPI Name Space Services

The functions described in this section provide Performance Metrics Application
Programming Interface (PMAPI) Name Space services.

3.7.1.1 pntet Chi | dr en Function
int pnCet Chil dren(const char *name, char ***offspring)

Given a full pathname to a node in the current PMNS, as identified by name, return
through offspring a list of the relative names of all the immediate descendents of name
in the current PMNS. As a special case, if name is an empty string, (that is, " " but not
NULL or (char *)0), the immediate descendents of the root node in the PMNS are
returned.

Normally, prGet Chi | dr en returns the number of descendent names discovered, or a
value less than zero for an error. The value zero indicates that the name is valid, and
associated with a leaf node in the PMNS.

007-3434-005 67

3: PMAPI—The Performance Metrics API

The resulting list of pointers (offspring) and the values (relative metric names) that the
pointers reference are allocated by pnGet Chi | dr en with a single call to mal | oc, and
it is the responsibility of the caller to issue a f r ee(offspring) system call to release the
space when it is no longer required. When the result of pmGet Chi | dr en is less than
one, offspring is undefined (no space is allocated, and so calling f r ee is
counterproductive).

3.7.1.2 pntet Chi | drenSt at us Function

i nt
pnGet Chi | drenSt at us(const char *mname, char ***offspring, int **status)

The pnCet Chi | dr enSt at us function is an extension of pnCet Chi | dr en that
optionally returns status information about each of the descendent names.

Given a fully qualified pathname to a node in the current PMNS, as identified by
name, prGet Chi | dr enSt at us returns by means of offspring a list of the relative
names of all of the immediate descendent nodes of name in the current PMNS. If name
is the empty string (””), it returns the immediate descendents of the root node in the
PMNS.

If status is not NULL, then pnCet Chi | dr enSt at us also returns the status of each
child by means of status. This refers to either a leaf node (with value
PMNS_LEAF_STATUS) or a non-leaf node (with value PMNS_NONLEAF_STATUS).

Normally, prGet Chi | dr enSt at us returns the number of descendent names
discovered, or else a value less than zero to indicate an error. The value zero indicates
that name is a valid metric name, being associated with a leaf node in the PMNS.

The resulting list of pointers (offspring) and the values (relative metric names) that the
pointers reference are allocated by prmGet Chi | dr enSt at us with a single call to

mal | oc, and it is the responsibility of the caller to f r ee(offspring) to release the space
when it is no longer required. The same holds true for the status array.

3.7.1.3 pnzet PMNSLocat i on Function

68

int pmGet PMNSLocati on(voi d)

If an application needs to know where the origin of a PMNS is,

pnGet PMNSLocat i on returns whether it is an archive (PMNS_ARCHI VE), a local
PMNS file (PMNS_LQOCAL), or a remote PMCD (PMNS_REMOTE). This information may
be useful in determining an appropriate error message depending on PMNS location.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

3.7.1.4 pnLoadNanmeSpace Function

i nt pnLoadNameSpace(const char *filename)

Before requesting any services involving a local Performance Metrics Name Space
(PMNS), the application must load the PMNS using pnlLoadNameSpace.

The filename argument designates the PMNS of interest. For applications that do not
require a tailored Name Space, the special value PM_NS_DEFAULT may be used for
filename, to force a default local PMNS to be established. Externally, a PMNS may be
stored in either an ASCII or binary format. The prmsconp utility is used to create the
binary format from the ASCII format.

Note: The distributed PMNS services in PCP 2.x avoid the need for a local PMNS in
most cases; so applications typically would not use pnmLoadNaneSpace. If
applications do not call prLoadNaneSpace, the default PMINS is the one at the
source of the performance metrics.

3.7.1.5 pnloadASCl | NameSpace Function

007-3434-005

i nt pnLoadASCl | NameSpace(const char *filename, int dupok)

If the application wants to force using a local Performance Metrics Name Space
(PMNS) instead of a distributed PMNS, it must load the PMNS using

pmLoadASCI | NareSpace or prmLoadNaneSpace. If the application wants to use a
distributed PMNS, then it should not make a call to load the PMNS explicitly.

pmLoadASCI | NaneSpace is a variant of pmLoadNaneSpace, which only processes
an ASCII format PMNS. The dupok argument may be used to control the handling of
multiple names in the PMNS that may be associated with a single Performance Metric
Identifier (PMID). A value of 0 disallows duplicates; any other value allows duplicates.

The filename argument designates the PMNS of interest. For applications not requiring
a tailored PMNS, the special value PM_NS_DEFAULT may be used for filename, to force
the default local PMNS to be loaded. Since this PMNS exists in a binary format,
prLoadNaneSpace is the more efficient function to use.

The default local PMNS is found in the / var / pcp/ prms/ r oot file unless the
PMNS_DEFAULT environment variable is set. Then the value is assumed to be the
pathname to the file containing the default local PMNS.

prLoadASCl | NaneSpace returns zero on success.

69

3: PMAPI—The Performance Metrics API

Syntax and other errors in the parsing of the PMNS are reported on stderr with a
message of the form:

Error Parsing ASCI1 PMS:

PM_ERR_DUPPMNS is an error to try and load more than one PMNS, or to call either
pnLoadASCI | NaneSpace or pnLoadNaneSpace more than once. PM_ERR_PMNS
indicates a syntax error in an ASCII format PMNS.

3.7.1.6 pniookupNane Function

int pnLookupName(int numpmid, char *namelist[], pm D pmidlist[])

Given a list in namelist containing numpmid full pathnames for performance metrics
from the current PMNS, pnlLookupName returns the list of associated PMIDs through
the pmidlist parameter. Invalid metrics names are translated to the error PMID value
of PM_I D_NULL.

The result from prnLookupNane is the number of names translated in the absence of
errors, or an error indication. Note that argument definition and the error protocol
guarantee a one-to-one relationship between the elements of namelist and pmidlist;
both lists contain exactly numpmid elements.

3.7.1.7 pmNaneAl | Function

70

int pnNameAl | (pm D pmid, char ***nameset)

Given a performance metric ID in pmid, pnNameAl | determines all the corresponding
metric names, if any, in the PMNS, and returns these through nameset.

The resulting list of pointers nameset and the values (relative names) that the pointers
reference are allocated by pnmiNaneAl | with a single call to mal | oc. It is the caller’s
responsibility to call f r ee and release the space when it is no longer required.

In the absence of errors, pmNaneAl | returns the number of names in naneset .

For many PMNS instances, there is a 1:1 mapping between a name and a PMID, and
under these circumstances, pmiNanel D provides a simpler interface in the absence of
duplicate names for a particular PMID.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

3.7.1.8 pnmNan®el D Function

int pnmNamel D(pm D pmid, char **name)

Given a performance metric ID in pmid, pnNamel D determines the corresponding
metric name, if any, in the current PMNS, and returns this through name.

In the absence of errors, prNamel D returns zero. The name argument is a null byte
terminated string, allocated by pmNanel D using mal | oc. It is the caller’s
responsibility to call f r ee and release the space when it is no longer required.

3.7.1.9 pnr aver sePWNS Function

int pnTraver sePMNS(const char *name, void (*dometric)(const char *))

The function pmlr aver sePMNS may be used to perform a depth-first traversal of the
PMNS. The traversal starts at the node identified by name —if name is an empty
string, the traversal starts at the root of the PMNS. Usually, name would be the
pathname of a non-leaf node in the PMNS.

For each leaf node (actual performance metrics) found in the traversal, the
user-supplied function donmet ri ¢ is called with the full pathname of that metric in
the PMNS as the single argument; this argument is a null byte-terminated string, and
is constructed from a buffer that is managed internally to pmilr aver sePIMNS.
Consequently, the value is valid only during the call to donet r i c—if the pathname
needs to be retained, it should be copied using st r dup before returning from
donetri c; see the st r dup(3C) man page.

3.7.1.10 pnlnl oadNanmeSpace Function

i nt pmnl oadNaneSpace(voi d)

If a local PMINS was loaded with prmLoadNaneSpace, calling pmnl oadNameSpace
frees up the memory associated with the PMNS and force all subsequent Name Space
functions to use the distributed PMNS. If pmnl oadNameSpace is called before
calling pniLoadNanmeSpace, it has no effect.

3.7.2 PMAPI Metrics Description Services

007-3434-005

The functions described in this section provide Performance Metrics Application
Programming Interface (PMAPI) metric description services.

71

3: PMAPI—The Performance Metrics API

3.7.2.1 pnlookupDesc Function

i nt pnLookupDesc(pm D pmid, pnDesc *desc)

Given a Performance Metric Identifier (PMID) as pmid, pmLookupDesc returns the
associated prDesc structure through the parameter desc from the current PMAPI
context. For more information about pnDesc, see Section 3.4, page 59.

3.7.2.2 pniookupl nDonrext Function

i nt pnLookupl nDonrext (pm nDom indom, int level, char **buffer)

Provided the source of metrics from the current PMAPI context is a host, retrieve
descriptive text about the performance metrics instance domain identified by indom.

The level argument should be PM_TEXT_ONELI NE for a one-line summary, or
PM_TEXT_HELP for a more verbose description suited to a help dialogue. The space
pointed to by buffer is allocated in prLookupl nDonilext with mal | oc, and it is the
responsibility of the caller to free unneeded space; see the mal | oc(3C) and free(3C)
man pages.

The help text files used to implement prLookupl nDonilext are created using
newhel p and accessed by the appropriate PMDA response to requests forwarded to
the PMDA by PMCD. Further details may be found in Section 2.4.4.

3.7.2.3 pniookupText Function

72

int pnLookupText (pm D pmid, int level, char **buffer)

Provided the source of metrics from the current PMAPI context is a host, retrieve
descriptive text about the performance metric identified by pmid. The argument level
should be PM_TEXT_ONELI NE for a one-line summary, or PM_TEXT_HELP for a more
verbose description, suited to a help dialogue.

The space pointed to by buffer is allocated in pmLookupText with mal | oc, and it is
the responsibility of the caller to f r ee the space when it is no longer required; see the
mal | oc(3C) and f r ee(3C) man pages.

The help text files used to implement prmLookupText are created using newhel p and
accessed by the appropriate PMDA in response to requests forwarded to the PMDA
by PMCD. Further details may be found in Section 2.4.4.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

3.7.3 PMAPI Instance Domain Services

The functions described in this section provide Performance Metrics Application
Programming Interface (PMAPI) instance domain services.

3.7.3.1 pnteet | nDomFunction
int pmCGet | nDom(pm nDom indom, int **instlist, char ***namelist)

In the current PMAPI context, locate the description of the instance domain indom,
and return through instlist the internal instance identifiers for all instances, and
through namelist the full external identifiers for all instances. The number of instances
found is returned as the function value (or less than zero to indicate an error).

The resulting lists of instance identifiers (instlist and namelist), and the names that the
elements of namelist point to, are allocated by pnGet | nDomwith two calls to mal | oc,
and it is the responsibility of the caller to use f r ee(instlist) and f r ee(namelist) to
release the space when it is no longer required. When the result of pnGet | nDomis
less than one, both instlist and namelist are undefined (no space is allocated, and so
calling f r ee is a bad idea); see the mal | 0oc(3C) and f r ee(3C) man pages.

3.7.3.2 pniookupl nDomFunction
i nt prLookupl nDom(pm nDom indom, const char *name)

For the instance domain indom, in the current PMAPI context, locate the instance with
the external identification given by name, and return the internal instance identifier.

3.7.3.3 pmNanel nDomFunction
i nt prmNamel nDom(pm nDom indom, int inst, char **mname)
For the instance domain indom, in the current PMAPI context, locate the instance with
the internal instance identifier given by inst, and return the full external identification
through name. The space for the value of name is allocated in pmiNamel nDomwith

mal | oc, and it is the responsibility of the caller to free the space when it is no longer
required; see the mal | oc(3C) and f r ee(3C) man pages.

3.7.4 PMAPI Context Services

Table 3-1 shows which of the three components of a PMAPI context (metrics source,
instance profile, and collection time) are relevant for various PMAPI functions. Those

007-3434-005 73

3: PMAPI—The Performance Metrics API

74

PMAPI functions not shown in this table either manipulate the PMAPI context
directly, or are executed independently of the current PMAPI context.

Table 3-1 Context Components of PMAPI Functions

Metrics Instance Collection
Function Name Source Profile Time Notes
pmAddProfil e Yes Yes
pnDel Profile Yes Yes
prmDupCont ext Yes Yes Yes
prFet ch Yes Yes Yes
prFet chAr chi ve Yes Yes @
pmCet Ar chi veEnd Yes @D
pnGet Ar chi velLabel Yes @
pnGet Chi | dren Yes (5)
pnGet Chi | drenStatus Yes (5)
prmGet PMNSLocat i on Yes
pmGet | nDom Yes Yes 2)
pnGet | nDonAr chi ve Yes @
pri_ookupDesc Yes ®3)
prLookupl nDom Yes Yes)
prmLookupl nDomAr chi ve Yes (1,2)
prmLookupl nDomText Yes 4)
prLookupNarme Yes ®)
prLookupText Yes 4)
pr\aneAl | Yes ®)
prm\anel D Yes ®)
prNamel nDom Yes Yes 2)
prm\arrel nDomAr chi ve Yes (1,2)

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Metrics Instance Collection
Function Name Source Profile Time Notes
prSet Mbde Yes Yes
pnst or e Yes (6)
pniTr aver sePMNS Yes (5)
Notes:
1. Operation supported only for PMAPI contexts where the source of metrics is an

archive.

A specific instance domain is included in the arguments to these functions, and
the result is independent of the instance profile for any PMAPI context.

The metadata that describes a performance metric is sensitive to the source of the
metrics, but independent of any instance profile and of the collection time.

. Operation is supported only for PMAPI contexts where the source of metrics is a

host. The text associated with a metric is assumed to be invariant with time and is
definitely insensitive to the current members of the instance domain. In all cases
this information is unavailable from an archive context (it is not included in the
archive logs), and is directly available from a PMDA via PMCD in the other cases.

PMNS service functions using a local PMNS do not depend on the PMAPI
context, whereas PCP 2.x distributed PMNS services are dependent on the source
of metrics.

This operation is supported only for contexts where the source of the metrics is a
host. Further, the instance identifiers are included in the argument to the function,
and the effects upon the current values of the metrics are immediate (retrospective
changes are not allowed). Consequently, from the current PMAPI context, neither
the instance profile nor the collection time influence the result of this function.

3.7.4.1 pmNewCont ext Function

007-3434-005

int pmNewCont ext (i nt type, const char *name)

The pmNewCont ext function may be used to establish a new PMAPI context. The
source of metrics is identified by name, and may be a host name (type is
PM_CONTEXT_HCST) or the basename of an archive log (type is
PM_CONTEXT_ARCHI VE).

75

3: PMAPI—The Performance Metrics API

In the case where type is PM_CONTEXT_LOCAL, name is ignored, and the context uses
a stand-alone connection to the PMDA methods used by PMCD. When this type of
context is in effect, the range of accessible performance metrics is constrained to those
from the operating system, and optionally the pr oc and sanpl e PMDAs.

The initial instance profile is set up to select all instances in all instance domains, and
the initial collection time is the current time at the time of each request for a host, or
the time at the start of the log for an archive. In the case of archives, the initial
collection time results in the earliest set of metrics being returned from the archive at
the first pnfet ch.

Once established, the association between a PMAPI context and a source of metrics is
fixed for the life of the context; however, functions are provided to independently
manipulate both the instance profile and the collection time components of a context.

The function returns a “handle” that may be used in subsequent calls to

pmUseCont ext . This new PMAPI context stays in effect for all subsequent context
sensitive calls across the PMAPI until another call to pmNewCont ext is made, or the
context is explicitly changed with a call to prDupCont ext or pnmiseCont ext .

3.7.4.2 pnDest r oyCont ext Function

i nt prmDestroyContext (int handle)

The PMAPI context identified by handle is destroyed. Typically, this implies
terminating a connection to PMCD or closing an archive file, and orderly clean-up.
The PMAPI context must have been previously created using pnmiNewCont ext or
prmDupCont ext .

On success, pmDest r oyCont ext returns zero. If handle was the current PMAPI
context, then the current context becomes undefined. This means the application must
explicitly re-establish a valid PMAPI context with pmseCont ext , or create a new
context with pmNewCont ext or pmDupCont ext , before the next PMAPI operation
requiring a PMAPI context.

3.7.4.3 pnDupCont ext Function

76

i nt prmDupCont ext (voi d)

Replicate the current PMAPI context (source, instance profile, and collection time).
This function returns a handle for the new context, which may be used with
subsequent calls to priseCont ext . The newly replicated PMAPI context becomes
the current context.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

3.7.4.4 pnlseCont ext Function

int pmseContext (int handle)

Calling prmiJseCont ext causes the current PMAPI context to be set to the context
identified by handle. The value of handle must be one returned from an earlier call to
pmewCont ext or pnmDupCont ext .

Below the PMAPI, all contexts used by an application are saved in their most recently
modified state, so pmJseCont ext restores the context to the state it was in the last
time the context was used, not the state of the context when it was established.

3.7.4.5 pmihi chCont ext Function

i nt pmhi chCont ext (voi d)

Returns the handle for the current PMAPI context (source, instance profile, and
collection time).

3.7.4.6 pmAddPr of i | e Function

int pmAddProfil e(pm nDom indom, int numinst, int instlist[])

Add new instance specifications to the instance profile of the current PMAPI context.
At its simplest, instances identified by the instlist argument for the indom instance
domain are added to the instance profile. The list of instance identifiers contains
numinst values.

If indom equals PM_| NDOM_NULL, or numinst is zero, then all instance domains are
selected. If instlist is NULL, then all instances are selected. To enable all available
instances in all domains, use this syntax:

pmAddPr of i | e(PM | NDOM NULL, 0, NULL).

3.7.4.7 pnDel Profil e Function

007-3434-005

int prmDel Profil e(pm nDom indom, int numinst, int instlist[])

Delete instance specifications from the instance profile of the current PMAPI context.
In the simplest variant, the list of instances identified by the instlist argument for the
indom instance domain is removed from the instance profile. The list of instance
identifiers contains numinst values.

77

3: PMAPI—The Performance Metrics API

If indom equals PM_| NDOM_NULL, then all instance domains are selected for deletion.
If instlist is NULL, then all instances in the selected domains are removed from the
profile. To disable all available instances in all domains, use this syntax:

pnDel Profile(PM I NDOM NULL, 0, NULL)

3.7.4.8 pnSet Mode Function

78

int pnSet Mode(int mode, const struct tineval *when, int delta)

This function defines the collection time and mode for accessing performance metrics
and metadata in the current PMAPI context. This mode affects the semantics of
subsequent calls to the following PMAPI functions: pnfet ch, pnFet chAr chi ve,
prmLookupDesc, pnGet | nDom priookupl nDom and pniNanel nDom

The pnSet Mode function requires the current PMAPI context to be of type
PM_CONTEXT_ARCHI VE.

The when parameter defines a time origin, and all requests for metadata (metrics
descriptions and instance identifiers from the instance domains) are processed to
reflect the state of the metadata as of the time origin. For example, use the last state
of this information at, or before, the time origin.

If the mode is PM_MODE_| NTERP then, in the case of pnfet ch, the underlying code
uses an interpolation scheme to compute the values of the metrics from the values
recorded for times in the proximity of the time origin.

If the mode is PM_MODE_FORW then, in the case of prFet ch, the collection of recorded
metric values is scanned forward, until values for at least one of the requested metrics
is located after the time origin. Then all requested metrics stored in the PCP archive
at that time are returned with a corresponding time stamp. This is the default mode
when an archive context is first established with pniNewCont ext .

If the mode is PM_MODE_BACK, then the situation is the same as for PM_MODE_FORW
except a pnFet ch is serviced by scanning the collection of recorded metrics backward
for metrics before the time origin.

After each successful pnFet ch, the time origin is reset to the time stamp returned
through the prnResul t .

The prSet Mbde parameter delta defines an additional number of time unit that
should be used to adjust the time origin (forward or backward) after the new time
origin from the pmResul t has been determined. This is useful when moving through
archives with a mode of PM_MODE_| NTERP. The high-order bits of the mode

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

007-3434-005

parameter field is also used to optionally set the units of time for the del t a field. To
specify the units of time, use the PM_XTB_SET macro with one of the values
PM TI ME_NSEC, PM _TI ME_MSEC, PM Tl ME_SEC, or so on as follows:

PM_MODE_| NTERP | PM XTB_SET(PM TI ME_XXXX)
If no units are specified, the default is to interpret delta as milliseconds.

Using these mode options, an application can implement replay, playback, fast
forward, or reverse for performance metric values held in a PCP archive log by
alternating calls to pnSet Mbde and pnfet ch.

In Example 3-10, the code fragment may be used to dump only those values stored in
correct temporal sequence, for the specified performance metric my. netri c. name:

Example 3-10 Dumping Values in Temporal Sequence

int sts;
pm D pmi d;
char *name = ‘‘ny.netric. name’’;

sts = pmNewCont ext (PM_CONTEXT_ARCHI VE, ‘' ‘nyarchive’’);

sts = prmLookupNane(1, &nane, &pmid);
for (5 ;) {
sts = pnfFetch(1l, &pnid, &result);
if (sts < 0)
br eak;
/* dunp value(s) fromresult->vset[O]->vlist[] */
prFreeResul t (resul t);
}

Alternatively, the code fragment in Example 3-11 may be used to replay interpolated
metrics from an archive in reverse chronological order, at ten-second intervals (of
recorded time):

Example 3-11 Replaying Interpolated Metrics

int sts;
pm D pmi d;
char *name = ‘‘ny.netric. name’’;

struct tineval endtine;
sts = pmNewCont ext (PM_CONTEXT_ARCHI VE, ‘' ‘nyarchive'’);
sts prmLookupNane(1, &nane, &pmid);
sts = pmGet Archi veEnd(&endti ne) ;
sts prSet Mode(PM_MODE_| NTERP, &endti me, -10000);

79

3: PMAPI—The Performance Metrics API

while (pnFetch(l, &mnid, &esult) !'= PMERR EQ) {
/*
* process interpolated nmetric values as of result->tinestanp
*/
prFreeResul t (resul t);

3.7.4.9 pnReconnect Cont ext Function
i nt pmReconnect Cont ext (i nt handle)

As a result of network, host, or PMCD (Performance Metrics Collection Daemon)
failure, an application’s connection to PMCD may be established and then lost.

The function pmReconnect Cont ext allows an application to request that the PMAPI
context identified by handle be re-established, provided the associated PMCD is
accessible.

Note: handle may or may not be the current context.

To avoid flooding the system with reconnect requests, pmrReconnect Cont ext
attempts a reconnection only after a suitable delay from the previous attempt. This
imposed restriction on the reconnect re-try time interval uses a default exponential
back-off so that the initial delay is 5 seconds after the first unsuccessful attempt, then
10 seconds, then 20 seconds, then 40 seconds, and then 80 seconds thereafter. The
intervals between reconnection attempts may be modified using the environment
variable PMCD_RECONNECT_TI MEQUT and the time to wait before an attempted
connection is deemed to have failed is controlled by the PMCD_CONNECT_TI MEQUT
environment variable; see the PCPI nt r o(1) man page.

If the reconnection succeeds, pnReconnect Cont ext returns handle. Note that even
in the case of a successful reconnection, prmReconnect Cont ext does not change the
current PMAPI context.

3.7.4.10 pntet Cont ext Host Nanme Function
const char *pmGet Cont ext Host Nane(i nt id)
Given a valid PCP context identifier previously created with pmNewCont ext or

pmDupCont ext , the pnGet Cont ext Host Nane function provides a possibility to
retrieve a host name associated with a context regardless of the context type.

80 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

If id is not a valid PCP context identifier, this function returns a zero length string and
therefore never fails.

3.7.5 PMAPI Timezone Services

The functions described in this section provide Performance Metrics Application
Programming Interface (PMAPI) timezone services.

3.7.5.1 pmNewCont ext Zone Function

i nt pmNewCont ext Zone(voi d)

If the current PMAPI context is an archive, the pmNewCont ext Zone function uses the
timezone from the archive label record to set the current reporting timezone. The
current reporting timezone affects the timezone used by pnCt i me and pniocal ti me.

If the current PMAPI context corresponds to a host source of metrics,
pmNewCont ext Zone executes a pnFet ch to retrieve the value for the metric
prntd. ti mezone and uses that to set the current reporting timezone.

In both cases, the function returns a value to identify the current reporting timezone
that may be used in a subsequent call to pmJseZone to restore this reporting
timezone.

PM_ERR_NOCONTEXT indicates the current PMAPI context is not valid. A return
value less than zero indicates a fatal error from a system call, most likely mal | oc.

3.7.5.2 pmNewZone Function

007-3434-005

i nt pmNewZone(const char *tz)

The pmNewZone function sets the current reporting timezone, and returns a value that
may be used in a subsequent call to pmseZone to restore this reporting timezone.
The current reporting timezone affects the timezone used by pmCti e and

prLocal ti me.

The tz argument defines a timezone string, in the format described for the TZ
environment variable. See the envi r on(5) man page.

A return value less than zero indicates a fatal error from a system call, most likely
mal | oc.

81

3: PMAPI—The Performance Metrics API

3.7.5.3 pnlUseZone Function

int pmseZone(const int fz_handle)

In the pnUseZone function, tz_handle identifies a reporting timezone as previously
established by a call to pmNewZone or pmNewCont ext Zone, and this becomes the
current reporting timezone. The current reporting timezone effects the timezone used
by pmCti me and priocal ti ne).

A return value less than zero indicates the value of tz_handle is not legal.

3.7.5.4 pmhhi chZone Function

i nt pmhi chZone(char **tz)

The pmAhi chZone function returns the handle of the current timezone, as previously
established by a call to pmNewZone or pmNewCont ext Zone. If the call is successful
(that is, there exists a current reporting timezone), a non-negative integer is returned
and ¢z is set to point to a static buffer containing the timezone string itself. The
current reporting timezone effects the timezone used by pmCt i me and pniocal ti me.

A return value less than zero indicates there is no current reporting timezone.

3.7.6 PMAPI Metrics Services

3.7.6.1 pntet ch Function

82

The functions described in this section provide Performance Metrics Application
Programming Interface (PMAPI) metrics services.

int pnFetch(int numpmid, pm D pmidlist[], pnResult **result)

The most common PMAPI operation is likely to be calls to pnFet ch, specifying a list
of PMIDs (for example, as constructed by pmLookupNane) through pmidlist and
numpmid. The call to pnFet ch is executed in the context of a source of metrics,
instance profile, and collection time, previously established by calls to the functions
described in Section 3.7.4.

The principal result from pnfet ch is returned as a tree structured result, described in
the Section 3.5.

If one value (for example, associated with a particular instance) for a requested metric
is unavailable at the requested time, then there is no associated pnial ue structure in

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

007-3434-005

the result. If there are no available values for a metric, then numuval is zero and the
associated pmval ue[] instance is empty; valfmt is undefined in these circumstances,
but pmid is correctly set to the PMID of the metric with no values.

If the source of the performance metrics is able to provide a reason why no values are
available for a particular metric, this reason is encoded as a standard error code in the
corresponding numuval; see the prrer r (1) and prEr r St r (3) man pages. Since all error
codes are negative, values for a requested metric are unavailable if numuval is less than
or equal to zero.

The argument definition and the result specifications have been constructed to ensure
that for each PMID in the requested pmidlist there is exactly one pnial ueSet in the
result, and that the PMIDs appear in exactly the same sequence in both pmidlist and
result. This makes the number and order of entries in result completely deterministic,
and greatly simplifies the application programming logic after the call to pnFet ch.

The result structure returned by pnfet ch is dynamically allocated using one or more
calls to mal | oc and specialized allocation strategies, and should be released when no
longer required by calling pnFr eeResul t. Under no circumstances should f r ee be
called directly to release this space.

As common error conditions are encoded in the result data structure, only serious
events (such as loss of connection to PMCD, mal | oc failure, and so on) would cause
an error value to be returned by prFet ch. Otherwise, the value returned by the
pnfet ch function is zero.

In Example 3-12, the code fragment dumps the values (assumed to be stored in the
lval element of the pnVal ue structure) of selected performance metrics once every 10
seconds:

Example 3-12 PMAPI Metrics Services

int i, j, sts;

pm D pmidlist[10];

pmResult *result;

time_t now,

/* set up PMAPI context, nunpmd and pmidlist[] ... */

while ((sts = pnFetch(10, prmidlist, &esult)) >= 0) {
now = (tinme_t)result->tinestanp.tv_sec;
printf("\n@%", ctime(&now));

for (i =0; i <result->nunmpnid; i++) {
printf("PMD. %", pm DStr(result->vset[i]->pnmid));
for (j =0; j <result->vset[i]->nunval; j++) {

83

3: PMAPI—The Performance Metrics API

printf(" Ox%", result->vset[i]->vlist[j].value.lval);
putchar(’\n’);
}

}
prFreeResul t (resul t);

sl eep(10);

Note: If a response is not received back from PMCD within 10 seconds, the pnFet ch
times out and returns PM_ERR_TI MEQUT. This is most likely to occur when the
PMAPI client and PMCD are communicating over a slow network connection, but
may also occur when one of the hosts is extremely busy. The time out period may be
modified using the PMCD_REQUEST_TI MEQUT environment variable; see the

PCPI nt r o(1) man page.

3.7.6.2 pnFreeResul t Function

3.7.6.3 pntt or e Function

84

voi d pnFreeResul t (pnmResul t *result)

Release the storage previously allocated for a result by pret ch.

int pnBtore(const prResul t *request)

In some special cases it may be helpful to modify the current values of performance
metrics in one or more underlying domains, for example to reset a counter to zero, or
to modify a metric, which is a control variable within a Performance Metric Domain.

The pnt or e function is a lightweight inverse of pnFet ch. The caller must build the
pnResul t data structure (which could have been returned from an earlier pnfFet ch
call) and then call prSt or e. It is an error to pass a request to prSt or e in which the
nunval field within any of the pnVal ueSet structure has a value less than one.

The current PMAPI context must be one with a host as the source of metrics, and the
current value of the nominated metrics is changed. For example, pnt or e cannot be
used to make retrospective changes to information in a PCP archive log.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

3.7.7 PMAPI Record-Mode Services

The functions described in this section provide Performance Metrics Application
Programming Interface (PMAPI) record-mode services.

3.7.7.1 pnRecor dAddHost Function

i nt pnRecor dAddHost (const char *host, int isdefault, pnmRecor dHost **rhp)

The pnRecor dAddHost function adds hosts once prRecor dSet up has established a
new recording session. The pmRecor dAddHost function along with the
pnRecor dSet up and pnRecor dCont r ol functions are used to create a PCP archive.

prRecor dAddHost is called for each host that is to be included in the recording
session. A new pnRecor dHost structure is returned via rhp. It is assumed that
PMCD is running on the host as this is how pm ogger retrieves the required
performance metrics.

If this host is the default host for the recording session, isdefault is nonzero. This
ensures that the corresponding archive appears first in the PCP archive folio. Hence
the tools used to replay the archive folio make the correct determination of the archive
associated with the default host. At most one host per recording session may be
nominated as the default host.

The calling application writes the desired pm ogger configuration onto the stdio
stream returned via the f _confi g field in the pmRecor dHost structure.

pnmRecor dAddHost returns 0 on success and a value less than 0 suitable for decoding
with prErr Str on failure. The value El NVAL has the same interpretation as er r no
being set to EI NVA.

3.7.7.2 pnRecor dCont r ol Function

007-3434-005

int pnRecordControl (prRecor dHost *rhp, int request, const char *options)

Arguments may be optionally added to the command line that is used to launch
pm ogger by calling the pnmRecor dCont r ol function with a request of
PM_REC_SETARG The pnRecor dCont r ol along with the pnmRecor dSet up and
pnRecor dAddHost functions are used to create a PCP archive.

The argument is passed via options and one call to pmRecor dCont r ol is required for
each distinct argument. An argument may be added for a particular pm ogger
instance identified by rhp. If the rhp argument is NULL, the argument is added for all
pm ogger instances that are launched in the current recording session.

85

3: PMAPI—The Performance Metrics API

Independent of any calls to prrRecor dCont r ol with a request of PM_REC_SETARG
each pml ogger instance is automatically launched with the following arguments: - c,
-h, -1, -x, and the basename for the PCP archive log.

To commence the recording session, call prrRecor dCont r ol with a request of
PM_REC_ON, and riip must be NULL. This launches one pri ogger process for each
host in the recording session and initializes the f d_i pc, | ogfi | e, pi d, and st at us
fields in the associated prmRecor dHost structure(s).

To terminate a prm ogger instance identified by rhp, call pnrRecor dCont r ol with a
request of PM_REC_CFF. If the rhp argument to pmRecor dCont r ol is NULL, the
termination request is broadcast to all pri ogger processes in the current recording
session. An informative dialogue is generated directly by each pm ogger process.

To display the current status of the pml ogger instance identified by rhp, call
pmRecor dCont r ol with a request of PM_REC_STATUS. If the rhp argument to
pnmRecor dCont r ol is NULL, the status request is broadcast to all pni ogger
processes in the current recording session. The display is generated directly by each
pm ogger process.

To detach a pml ogger instance identified by rhp, allow it to continue independent of
the application that launched the recording session and call prfRecor dCont r ol with
a request of PM_REC_DETACH. If the rhp argument to pmRecor dCont r ol is NULL,
the detach request is broadcast to all pml ogger processes in the current recording
session.

pRecor dCont r ol returns 0 on success and a value less than 0 suitable for decoding
with pnErr Str on failure. The value EI NVAL has the same interpretation as er r no
being set to EI NVA

pmRecor dCont r ol returns PM_ERR | PC if the associated pm ogger process has
already exited.

3.7.7.3 pnRecor dSet up Function

86

FI LE *prRecor dSet up(const char *folio, const char *creator, int replay)

The prRecor dSet up function along with the pmRecor dAddHost and
prRecor dCont r ol functions may be used to create a PCP archive on the fly to
support record-mode services for PMAPI client applications.

Each record mode session involves one or more PCP archive logs; each is created
using a dedicated pml ogger process, with an overall Archive Folio format as

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

007-3434-005

understood by the pmaf mcommand, to name and collect all of the archive logs
associated with a single recording session.

The pnRecor dHost structure is used to maintain state information between the
creator of the recording session and the associated pml ogger process(es). The
structure, shown in Example 3-13, is defined as:

Example 3-13 pnRecor dHost Structure

typedef struct {

}

FILE *f_config; /* caller wites pm ogger configuration here */
i nt fd_ipc; /* 1 PC channel to pm ogger */

char *| ogfile; /* full pathname for pm ogger error logfile */
pid_t pid; /* process id for pm ogger */

int st at us; /* exit status, -1 if unknown */

prmRecor dHost ;

In Procedure 3-1, the functions are used in combination to create a recording session.

Procedure 3-1 Creating a Recording Session

1.

Call prRecor dSet up to establish a new recording session. A new Archive Folio
is created using the name folio. If the folio file or directory already exists, or if it
cannot be created, this is an error. The application that is creating the session is
identified by creator (most often this would be the same as the global PMAPI
application name, pnPr ognane). If the application knows how to create its own
configuration file to replay the recorded session, replay should be nonzero. The
pmRecor dSet up function returns a stdio stream onto which the application
writes the text of any required replay configuration file.

. For each host that is to be included in the recording session, call

pnmRecor dAddHost . A new pnRecor dHost structure is returned via rhp. It is
assumed that PMCD is running on the host as this is how pri ogger retrieves the
required performance metrics. See Section 3.7.7.1 for more information.

Optionally, add arguments to the command line that is used to launch pm ogger
by calling pmRecor dCont r ol with a request of PM_REC_SETARG The argument
is passed via options and one call to prrRecor dCont r ol is required for each
distinct argument. See Section 3.7.7.2 for more information.

. To commence the recording session, call prrRecor dCont r ol with a request of

PM REC_ON, and rhp must be NULL.

87

3: PMAPI—The Performance Metrics API

88

5. To terminate a pri ogger instance identified by rhp, call pnRecor dCont r ol with
a request of PM_REC_OFF.

6. To display the current status of the prm ogger instance identified by, rhp, call
pmRecor dCont r ol with a request of PM_REC_STATUS.

7. To detach a pri ogger instance identified by rhp, allow it to continue
independent of the application that launched the recording session, call
pmRecor dCont r ol with a request of PM_REC_DETACH.

The calling application should not close any of the returned stdio streams;
prRecor dCont r ol performs this task when recording is commenced.

Once pm ogger has been started for a recording session, pm ogger assumes
responsibility for any dialogue with the user in the event that the application that
launched the recording session should exit, particularly without terminating the
recording session.

By default, information and dialogues from pm ogger is displayed using xconfi rrn.
This default is based on the assumption that most applications launching a recording
session are GUI-based. In the event that xconf i r mfails to display the information
(for example, because the DI SPLAY environment variable is not set), prm ogger writes
on its own stderr stream (not the stderr stream of the launching process). The output
is assigned to the XXXXXX. host . | og file. For convenience, the full pathname to
this file is provided via the | ogfi | e field in the prrRecor dHost structure.

If the options argument to pmRecor dCont r ol is not NULL, this string may be used
to pass additional arguments to xconf i r min those cases where a dialogue is to be

displayed. One use of this capability is to provide a -geometry string to control the

placement of the dialogue.

Premature termination of a launched pri ogger process may be determined using the
pRecor dHost structure, by calling sel ect on the f d_i pc field or polling the
st at us field that will contain the termination status from wai t pi d if known, or -1.

These functions create a number of files in the same directory as the folio file named
in the call to pnRecor dSet up. In all cases, the XXXXXX component is the result of
calling mkt enp.

¢ If replay is nonzero, XXXXXX is the creator’s replay configuration file, else an
empty control file, used to guarantee uniqueness.

e The folio file is the PCP Archive Folio, suitable for use with the pmaf mcommand.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

e The XXXXXX. host. confi g file is the pm ogger configuration for each host. If
the same host is used in different calls to pmRecor dAddHost within the same
recording session, one of the letters ‘a’” through 'z’ is appended to the XXXXXX
part of all associated file names to ensure uniqueness.

e XXXXXX. host .| og is stdout and stderr for the prm ogger instance for each host.

* The XXXXXX. host. {0, met a, i ndex} files comprise a single PCP archive for
each host.

pmRecor dSet up may return NULL in the event of an error. Check errno for the
real cause. The value El NVAL typically means that the order of calls to these
functions is not correct; that is, there is an obvious state associated with the current
recording session that is maintained across calls to the functions.

For example, calling prRecor dCont r ol before calling pmRecor dAddHost at least
once, or calling pmRecor dAddHost before calling prrRecor dSet up would produce
an El NVAL error.

3.7.8 PMAPI Archive-Specific Services

The functions described in this section provide archive-specific services.

3.7.8.1 pntet Ar chi veLabel Function

/*

* Label

*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

i nt pnCet Ar chi veLabel (prLogLabel *Ip)

Provided the current PMAPI context is associated with a PCP archive log, the
prGet Ar chi velLabel function may be used to fetch the label record from the
archive. The structure returned through Ip is as shown in Example 3-14:

Example 3-14 pnioglLabel Structure

Record at the start of every log file - as exported above the PMAPI

PM TZ_MAXLEN 40
PM LOG_MAXHOSTLEN 64
PM LOG MAG C 0x50052600

PM _LOG VERS01 0x1

PM_LOG_VERS02 0x2

PM LOG VOL_TI -2 /* tenporal index */
PM LOG VOL_META -1 /* meta data */

007-3434-005 89

3: PMAPI—The Performance Metrics API

typedef struct {
i nt
pid_t
struct tineval
char
char
} pnlLoglLabel ;

I'l _magi c; /* PMLOG MMAG@C | log format version no. */
| _pid; /* PID of |ogger */

Il _start; /* start of this log */

I'l _host name[PM_LOG_MAXHOSTLEN] ; /* name of collection host */
| _tz[PM TZ NMAXLEN]; /* $TZ at collection host */

3.7.8.2 pntzet Ar chi veEnd Function

int pnCet Archi veEnd(struct tinmeval *tup)

Provided the current PMAPI context is associated with a PCP archive log,

prGet Ar chi veEnd finds the logical end of file (after the last complete record in the
archive), and returns the last recorded time stamp with tvp. This times tamp may be
passed to pnSet Mode to reliably position the context at the last valid log record, for
example, in preparation for subsequent reading in reverse chronological order.

For archive logs that are not concurrently being written, the physical end of file and
the logical end of file are co-incident. However, if an archive log is being written by
pm ogger at the same time that an application is trying to read the archive, the
logical end of file may be before the physical end of file due to write buffering that is
not aligned with the logical record boundaries.

3.7.8.3 pntet | nDomAr chi ve Function

90

int pmCGet| nDomAr chi ve(pm nDom indom, int **instlist, char ***mnamelist)

Provided the current PMAPI context is associated with a PCP archive log,

pmCet | nDomAr chi ve scans the metadata to generate the union of all instances for
the instance domain indom that can be found in the archive log, and returns through
instlist the internal instance identifiers, and through namelist the full external
identifiers.

This function is a specialized version of the more general PMAPI function
pnGet | nDom

The function returns the number of instances found (a value less than zero indicates
an error).

The resulting lists of instance identifiers (instlist and namelist), and the names that the
elements of namelist point to, are allocated by pmGet | nDomAr chi ve with two calls to
mal | oc, and it is the responsibility of the caller to use f r ee(instlist) and

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

f r ee(namelist) to release the space when it is no longer required; see the mal | oc(3C)
and f r ee(3C) man pages.

When the result of pmGet | nDomAr chi ve is less than one, both instlist and namelist
are undefined (no space is allocated; so calling f r ee is a singularly bad idea).

3.7.8.4 pniookupl nDomAr chi ve Function

i nt prmLookupl nDomAr chi ve(pm nDom indom, const char *name)

Provided the current PMAPI context is associated with a PCP archive log,
prLookupl nDomAr chi ve scans the metadata for the instance domain indom, locates
the first instance with the external identification given by name, and returns the
internal instance identifier.

This function is a specialized version of the more general PMAPI function
prLookupl nDom

The prLookupl nDomAr chi ve function returns a positive instance identifier on
success.

3.7.8.5 pmNanel nDomAr chi ve Function

i nt pmNanmel nDomAr chi ve(pm nDom indom, int inst, char **name)

Provided the current PMAPI context is associated with a PCP archive log,

prmNanmel nDomAr chi ve scans the metadata for the instance domain indom, locates the
first instance with the internal instance identifier given by i nst, and returns the full
external instance identification through name. This function is a specialized version of
the more general PMAPI function prNarel nDom

The space for the value of name is allocated in priNamel nDomAr chi ve with mal | oc,
and it is the responsibility of the caller to free the space when it is no longer required;
see the mal | 0c(3C) andf r ee(3C) man pages.

3.7.8.6 pntet chAr chi ve Function

007-3434-005

i nt pnFet chArchi ve(pnResul t **result)

This is a variant of pnFet ch that may be used only when the current PMAPI context
is associated with a PCP archive log. The result is instantiated with all of the metrics

(and instances) from the next archive record; consequently, there is no notion of a list
of desired metrics, and the instance profile is ignored.

91

3: PMAPI—The Performance Metrics API

It is expected that prFet chAr chi ve would be used to create utilities that scan
archive logs (for example, prdunpl 0g), and the more common access to the archives
would be through the pnFet ch interface.

3.7.9 PMAPI Time Control Services

The PMAPI provides a common framework for client applications to control time and
to synchronize time with other applications. The user interface component of this
service is fully described in the companion Performance Co-Pilot User’s and
Administrator’s Guide. See also the pnt i me(1) man page.

This service is most useful when processing PCP archive logs, to control parameters
such as the current archive position, update interval, replay rate, and timezone, but it
can also be used in live mode to control a subset of these parameters. Applications
such as pnchart, pnvi ew, ovi ew, and pnval use the time control services to
connect to an instance of the time control server process, pnt i me, which provides a
uniform graphical user interface to the time control services.

A full description of the PMAPI time control functions along with code examples can
be found in man pages as listed in Table 3-2:

Table 3-2 Time Control Functions in PMAPI

Man Page Synopsis of Time Control Function

pnCti me(3) Formats the date and time for a reporting timezone.
prLocal ti me(3) Converts the date and time for a reporting timezone.

prPar seTi meW ndow(3) Parses time window command line arguments.

pnili meConnect (3) Connects to a time control server via a command socket.
pnili meDi sconnect (3) Closes the command socket to the time control server.

pnili meGet Por t (3) Obtains the port name of the current time control server.
pnili neRecv(3) Blocks until the time control server sends a command message.
pnili meSendAck(3) Acknowledges completion of the step command.

pnili neSendBounds(3) Specifies beginning and end of archive time period.

pnili meSendMode(3) Requests time control server to change to a new VCR mode.

92

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Man Page Synopsis of Time Control Function
pniTi meSendPosi ti on(3) Requests time control server to change position or update intervals.
pmili meSendTi nezone(3) Requests time control server to change timezones.

pnili meShowDi al 0g(3)

Changes the visibility of the time control dialogue.

pnii meCet St at ePi xmap(3) Returns array of pixmaps representing supplied time control state.

3.8 PMAPI Ancillary Support Services

The functions described in this section provide services that are complementary to,
but not necessarily a part of, the distributed manipulation of performance metrics
delivered by the PCP components.

3.8.1 pntet Confi g Function

007-3434-005

char *pntet Confi g(const char *variable)

The pnCet Conf i g function searches for a variable first in the environment and then,
if one is not found, in the PCP configuration file and returns the string result. If a
variable is not already in the environment, it is added with a call to the put env
function before returning.

The default location of the PCP configuration file is / et ¢/ pcp. conf, but this
location may be changed by setting PCP_CONF in the environment to a new location,
as described in the pcp_conf (4) man page.

If the variable is not found in either the environment or the PCP configuration file (or
the PCP configuration file is not found and PCP_CONF is not set in the environment),
then a fatal error message is printed and the process will exit. Although this sounds
drastic, it is the only course of action available because the PCP configuration or
installation is fatally flawed.

If this function returns, the returned value points to a string in the environment; and
so although the function returns the same type as the get env function (which should
probably be a const char *), changing the content of the string is not
recommended.

93

3: PMAPI—The Performance Metrics API

3.8.2 pnErrStr Function

char *pnErrStr(int code)

This function translates an error code into a text string, suitable for generating a
diagnostic message. By convention within PCP, all error codes are negative. The
small values are assumed to be negated versions of the UNIX error codes as defined
in errno. h, and the strings returned are according to st r er r or. The large, negative
error codes are PMAPI error conditions, and pmErr Str returns an appropriate
PMAPI error string, as determined by code.

The string value is held in a single static buffer; so the returned value is valid only
until the next call to pnErr Str.

3.8.3 pnExtract Val ue Function

94

int pnExtractVal ue(int walfmt, const pnVal ue *ival, int itype,
pmAt onVal ue *owval, int otype)

The pnVal ue structure is embedded within the pmResul t structure, which is used to
return one or more performance metrics; see the pnFet ch man page.

All performance metric values may be encoded in a pmAt omVal ue union, defined in
Example 3-15:

Example 3-15 pmAt onVal ue Structure

/* CGeneric Union for Val ue-Type conversions */
t ypedef union {

_int32_t l; /* 32-bit signed */
uint32_t ul; /* 32-bit unsigned */
_int64_t I /* 64-bit signed */
—uint64_t ull; /* 64-bit unsigned */

f | oat f; /* 32-bit floating point */
doubl e d; /* 64-bit floating point */
char *cp; /* char ptr */

voi d *vp; /* void ptr */

} pmAt onVal ue;
The prExt r act Val ue function provides a convenient mechanism for extracting

values from the pnal ue part of a pnResul t structure, optionally converting the
data type, and making the result available to the application programmer.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

The itype argument defines the data type of the input value held in ival according to
the storage format defined by walfmt (see the pnFet ch man page). The otype
argument defines the data type of the result to be placed in oval. The value for itype is
typically extracted from a pnDesc structure, following a call to pmLookupDesc for a
particular performance metric.

Table 3-3 defines the various possibilities for the type conversion. The input type
(itype) is shown vertically, and the output type (otype) horizontally. The following
rules apply:

* Y means the conversion is always acceptable.
* N means conversion can never be performed (function returns PM_ERR_CONV).
* P means the conversion may lose accuracy (but no error status is returned).

¢ T means the result may be subject to high-order truncation (if this occurs the
function returns PM_ERR_TRUNC).

¢ S means the conversion may be impossible due to the sign of the input value (if
this occurs the function returns PM_ERR_SI GN).

If an error occurs, oval is set to zero (or NULL).

Note: Note that some of the conversions involving the PM TYPE_STRI NG and
PM_TYPE_AGGREGATE types are indeed possible, but are marked N; the rationale is
that pmExt r act Val ue should not attempt to duplicate functionality already
available in the C library through sscanf and sprintf.

Table 3-3 PMAPI Type Conversion

STRIN
TYPE 32 U32 64 U64 FLOAT DBLE G AGGR
32 Y S Y S N N
u32 T Y Y Y P p N N
64 T TS Y S p p N N
u64 T T T Y P p N N
FLOAT PT PTS PT PTS Y Y N N

007-3434-005 95

3: PMAPI—The Performance Metrics API

STRIN
TYPE 32 U32 64 U64 FLOAT DBLE G AGGR
DBLE PT PTS PT PTS P Y N N
STRING N N N N N N Y N
AGGR N N N N N N N Y

In the cases where multiple conversion errors could occur, the first encountered error
is returned, and the order of checking is not defined.

If the output conversion is to one of the pointer types, such as otype

PM_TYPE_STRI NG or PM_TYPE_AGGREGATE, then the value buffer is allocated by
pmExt r act Val ue using mal | oc, and it is the caller’s responsibility to free the space
when it is no longer required; see the mal | oc(3C) and f r ee(3C) man pages.

Although this function appears rather complex, it has been constructed to assist the
development of performance tools that convert values, whose type is known only
through the t ype field in a pmDesc structure, into a canonical type for local
processing.

3.8.4 pnConvScal e Function

96

int
pnConvScal e(i nt type, const pmAtonVal ue *ival, const pnUnits *iunit,
pmAt omval ue *owval, pmnits *ounit)

Given a performance metric value pointed to by ival, multiply it by a scale factor and
return the value in oval. The scaling takes place from the units defined by iunit into
the units defined by ounit. Both input and output units must have the same
dimensionality.

The performance metric type for both input and output values is determined by type,
the value for which is typically extracted from a pnDesc structure, following a call to
prmLookupDesc for a particular performance metric.

pmConvScal e is most useful when values returned through pnfet ch (and possibly
extracted using pmExt r act Val ue) need to be normalized into some canonical scale
and units for the purposes of computation.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

3.8.5 pnmni t sStr Function
const char *pmUni tsStr(const prnits *pu)

As an aid to labeling graphs and tables, or for error messages, prmni t sStr takes a
dimension and scale specification as per pu, and returns the corresponding text string.

pu is typically from a pnDesc structure, for example, as returned by pnmLookupDesc.

If *pu were {1, -2, 0, PM_SPACE_MBYTE, PM Tl ME_MSEC, 0}, then the result
string would be Myt e/ sec”2.

The string value is held in a single static buffer; so concurrent calls to prmni t sSt r
may not produce the desired results.

3.8.6 pnl DSt r Function
const char *pm DStr (pm D pmid)

For use in error and diagnostic messages, return a human readable version of the
specified PMID, with each of the internal domai n, cl ust er, and i t emsubfields
appearing as decimal numbers, separated by periods.

The string value is held in a single static buffer; so concurrent calls to pm DSt r may
not produce the desired results.

3.8.7 pml nDontt r Function
const char *pm nDontt r (pm nDom indom)

For use in error and diagnostic messages, return a human readable version of the
specified instance domain identifier, with each of the internal domai n and ser i al
subfields appearing as decimal numbers, separated by periods.

The string value is held in a single static buffer; so concurrent calls to prm nDont r
may not produce the desired results.

3.8.8 pnilypeSt r Function
const char *pmlypeStr (int type)
Given a performance metric type, produce a terse ASCII equivalent, appropriate for

use in error and diagnostic messages.

007-3434-005 97

3: PMAPI—The Performance Metrics API

Examples are “32” (for PM_TYPE_32), “U64” (for PM TYPE_U64), “AGGREGATE”
(for PM_TYPE_AGGREGATE), and so on.

The string value is held in a single static buffer; so concurrent calls to pnilypeSt r
may not produce the desired results.

3.8.9 pmAt onSt r Function

3.8.10 pmNunber Str

const char *pmAtonStr(const pmAtonVal ue *avp, int type)

Given the pmAt onVal ue identified by avp, and a performance metric type, generate
the corresponding metric value as a string, suitable for diagnostic or report output.

The string value is held in a single static buffer; so concurrent calls to pmAt onSt r
may not produce the desired results.

Function
const char *pmNunber Str(doubl e wvalue)

The pmNunber St r function returns the address of a static 8-byte buffer that holds a
null-byte terminated representation of value suitable for output with fixed-width
fields.

The value is scaled using multipliers in powers of one thousand (the decimal kilo)
and has a bias that provides greater precision for positive numbers as opposed to
negative numbers. The format depends on the sign and magnitude of value.

3.8.11 pnPri nt Val ue Function

98

voi d prPrintVal ue(FI LE *f, int walfmt, int type, const pnVal ue *wal,
i nt minwidth)

The value of a single performance metric (as identified by val) is printed on the
standard I/O stream identified by f. The value of the performance metric is
interpreted according to the format of val as defined by wvalfmt (from a pnVal ueSet
within a pnResul t) and the generic description of the metric’s type from a pnDesc
structure, passed in through.

If the converted value is less than minwidth characters wide, it will have leading
spaces to pad the output to a width of minwidth characters.

007-3434-005

Performance Co-Pilot™ Programmer’s Guide

Example 3-16 illustrates using pnPri nt Val ue to print the values from a prResul t
structure returned via pnfet ch:

Example 3-16 Using prPr i nt Val ue to Print Values

int numpmid, i, j, sts;

pm D pmidlist[10];

prmDesc desc[10];

prmResul t *result;

/* set up PMAPI context, nunpmd and pmidlist[] ... */

/* get metric descriptors */
for (i =0; i < nunpmid; i++) {
if ((sts = pnLookupDesc(pmidlist[i], &desc[i])) < 0) {
printf("pnmlookupDesc(pm d=%): %s\n",
pm DStr(pmidlist[i]), pnErrStr(sts));
exit(1);
}
}
if ((sts = pnFetch(nunpmid, prmidlist, &esult)) >= 0) {
/* once per netric */
for (i =0; i <result->nunmpnid; i++) {
printf("PMD. %", pm DStr(result->vset[i]->pnmid));
/* once per instance for this metric */
for (j =0; j <result->vset[i]->nunval; j++) {
printf(" [%]", result->vset[i]->vlist[j].inst);
pnPri nt Val ue(stdout, result->vset[i]->valfnt,
desc[i].type,
& esult->vset[i]->vlist[j],

8);
}
putchar(’\n");
}
prFreeResul t (resul t);
}
el se

printf("pnmFetch: %\n", pnErrStr(sts));

3.8.12 pnfl ush Function

int pnflush(void);

007-3434-005 99

3: PMAPI—The Performance Metrics API

The pnf | ush function causes the internal buffer which is shared with pnprintf to
be either displayed in a window, printed on standard error, or flushed to a file and
the internal buffer to be cleared.

The PCP_STDERR environment variable controls the output technique used by
pnf | ush:

e [If PCP_STDERR is unset, the text is written onto the stderr stream of the caller.

e If PCP_STDERR is set to the literal reserved word DI SPLAY, then the text is
displayed as a GUI dialogue using xconfirm

The pnf | ush function returns a value of zero on successful completion. A negative
value is returned if an error was encountered, and this can be passed to pmErr Str to
obtain the associated error message.

3.8.13 pnprintf Function
int pnprintf(const char *fmt, ... [*args*/);

The prpri nt f function appends the formatted message string to an internal buffer
shared by the pnpri ntf and pnfl ush functions, without actually producing any
output. The fmt argument is used to control the conversion, formatting, and printing
of the variable length args list.

The prpri nt f function uses the t empnamfunction to create a temporary file, using
the value of the global variable pmProgname as a prefix. This temporary file is deleted
when pnf | ush is called.

On successful completion, prpri nt f returns the number of characters transmitted. A
negative value is returned if an error was encountered, and this can be passed to
pmErr Str to obtain the associated error message.

3.8.14 pntort | nst ances Function
voi d pnSort | nstances(pnResul t *result)

The pnSor t | nst ances function may be used to guarantee that for each
performance metric in the result from pnfet ch, the instances are in ascending
internal instance identifier sequence. This is useful when trying to compute rates
from two consecutive pnFet ch results, where the underlying instance domain or
metric availability is not static.

100 007-3434-005

Performance Co-Pilot™ Programmer’s Guide

3.8.15 pnPar sel nt er val Function

int pnParselnterval (const char *string, struct timeval *rsit,
char **errmsg)

The prrPar sel nt er val function parses the argument string specifying an interval of
time and fills in the t v_sec and t v_usec components of the r sl t structure to
represent that interval. The input string is most commonly the argument following a
-t command line option to a PCP application, and the syntax is fully described in the
PCPI nt r o(1) man page.

prPar sel nt er val re