
Coloratura™

Programmer’s Guide

Document Number 007-3442-001

Coloratura™ Programmer’s Guide
Document Number 007-3442-001

CONTRIBUTORS

Written by Leif Wennerberg
Illustrated by Martha Levine
Production by Allen Clardy
Engineering contributions by Todd Newman
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA.

Disk Thrower image courtesy of Xavier Berenguer, Animatica.

© 1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

ImageVision Library, IRIS, Silicon Graphics, and the Silicon Graphics logo are
registered trademarks; and Coloratura, ImageVision, Impressario, IRIS InSight, and
IRIX are trademarks of Silicon Graphics, Inc.

iii

Contents

List of Figures ix

About This Guide xi
Audience xi
What This Guide Contains xi
Related Materials xii
Conventions Used in This Guide xiii

1. Color Management 1
The Color Management Problem 1
How the Coloratura Color Management System Helps 2
Profiles: Device-Independent Color Spaces 3
Transforms: Color Processing from Profiles 4
Color Manipulation Modules: Algorithms from Transforms 4
Schematics of Program Architecture and Data Flow 5
Pseudocode Example for a Color Conversion 7
Example Outline of a Color Conversion Program 8

Loading Header Files 9
Declaring Variables 9
Opening the Coloratura CMS, the Input Image File, and the Output Profile 9
Preparing the Output Pixel Buffer and Open an Output Image File 10
Selecting an Input Profile 10
Creating a Transform and Initializing Buffers 10
Embedding the Output Profile in the Output Image File 11
Transforming Pixel Data and Cleaning Up 11

2. Using the Coloratura CMS Programming Environment 13
Compiling With the Coloratura CMS 13
Managing Memory 14

iv

:

Error Messages 14
Establishing Program Access to the Coloratura CMS 15

Working State of the Coloratura CMS: CMSContext 15
Initializing the Coloratura CMS: cmsOpen() 15
Terminating the Coloratura CMS: cmsClose() 16

Coloratura Commands 16
cmssgi2* 16
cmstag* 17
coco* 17

Sample Code and Test Profile 18
cocoifl 18
makedevlink and applydevlink 18
threeprof 18
howtagged 18
invert.pf 18

3. Profile Management 21
Identifying a Profile 21

Profile Iteration: Pseudocode Example 22
Data Structure for Profile Iteration: CMSProfileIterator 23
Starting Profile Iteration: cmsStartProfileIteration() 24
Stepping Through Profiles: cmsNextProfileIteration() 24
Examining Headers of Profiles on Disk: cmsGetProfileSpecHeader() 25
Stopping a Profile Iteration: cmsEndProfileIteration() 25

Opening, Closing, and Deleting Profiles 26
Data Structure for Profiles: CMSProfile 26
Loading Profile Data: cmsOpenProfile() 26
Terminating Access to Profile Data: cmsCloseProfile() 27
Deleting a Profile from Disk: cmsDeleteProfile() 28

:

v

Creating New Profiles, Getting and Setting Headers, and Saving Edits 28
Creating a New Profile: cmsCreateProfile() 29
Getting Open-Profile Header Information: cmsGetProfileHeader() 30
Setting Profile Header Information: cmsSetProfileHeader() 30
Saving Profile Changes to Disk: cmsSaveProfile() 31
Saving to a New File on Disk: cmsSaveProfileAs() 32

Importing and Exporting Embedded Profiles 32
Creating an ICC Profile in a Buffer: cmsExportProfile() 33
Deleting an ICC Profile Buffer: cmsFreeProfileExport() 33
Importing an ICC Profile from a Buffer: cmsImportProfile() 34

4. Tag Management 35
Getting Tag Data Sequentially: Tag Iteration 36

Tag Iteration: Pseudocode Example 36
Data Structure for Tag Iteration: CMSTagIterator 37
Starting Tag Iteration: cmsStartTagIteration() 38
Stepping Through Tags: cmsNextTagIteration() 38
Stopping a Tag Iteration: cmsEndTagIteration() 39

Getting Tag Data Directly: cmsGetTag() 40
Setting Tag Data: cmsSetTag() 41
Deleting Tag Data from a Profile: cmsDeleteTag() 42
Freeing Tag Data Storage: cmsFreeTagValue() 43

5. Transform Management 45
Features of Transform Management Tools 45

Selecting a CMM 46
Saving a Transform 46
Gamut Checking 46

vi

:

Transforming Pixel Data 47
Data Structure for Transforms: CMSTfm 47
Data Structure for Pixels: CMSPixelBuffer 47
Creating a Transform: cmsCreateTfm() 49
Applying a Transform: cmsApplyTfm() 50
Saving a Transform as a Look-Up Table: cmsTfmToLUT() 51
Deleting a Transform: cmsDeleteTfm() 52

Checking Gamut Mapping 53
Preparing for a Gamut Map Test: cmsCreateGamutCheck() 53
Checking a Gamut Map: cmsCheckGamut() 55

6. Color Manipulation Module Management 57
Finding CMMs 57

Finding the Default CMM: cmsGetDefaultCmm() 58
Listing the Available CMMs: cmsGetCmmList() 58
Freeing the List: cmsFreeCmmList() 59

Getting Information About a CMM 59
CMM Information Data Structure: CMSInfoName 59
Getting CMM Information: cmsGetCmmInfo() 60

A. Summary of Functions and Data Structures 61
Coloratura Access Functions 62
Profile Functions 62
Tag Functions 64
Transform Functions 65
CMM Functions 66

CMM Information Field Parameters 66
Data Structures 67

B. Listing of the Application cocoifl 69
Code for Loading Header Files 70
Code for Declaring Variables 71
Code for Opening the Coloratura CMS, the Input Image File, and the Output Profile 71
Code for Preparing the Output Pixel Buffer and Open an Output Image File 73
Code for Selecting an Input Profile 75

:

vii

Code for Creating a Transform and Initializing Buffers 77
Code for Embedding the Output Profile in the Output Image File 79
Code for Transforming Pixel Data and Cleaning Up 79

Glossary 81

Index 85

ix

List of Figures

Figure 1-1 Components of a Color-Management Application 5
Figure 1-2 Data Flow for a Typical Color-Management Application 6

xi

About This Guide

The Silicon Graphics Coloratura™ color management system (CMS) is a C library,
available as a dynamically shared object, that provides an application program interface
to color manipulation modules and ICC device characterization profiles. The interface
allows you to use profiles to develop transformations between device-specific
interpretations of color so that the appearances of color images are largely independent
of input or output device characteristics. You can also use the Coloratura CMS along with
appropriate device data to characterize a device.

Audience

To use the Coloratura CMS effectively, you should be a C programmer familiar with color
image file formats. Knowledge of the Image Format Library, which is part of the
ImageVision Library™, will simplify writing code to access image files. You will benefit
from familiarity with terms from color management, such as gamut mapping or CIEXYZ,
and from familiarity with the ICC Profile Format Specification.

What This Guide Contains

Chapter 1, “Color Management,” briefly describes the color management problem and
the major parts of the Coloratura CMS: profiles, tags, transforms, and color manipulation
modules. It provides pseudocode to illustrate elementary components of the Coloratura
CMS and describes the operations of a sample color manipulation application.

Chapter 2, “Using the Coloratura CMS Programming Environment,” shows you how to
link your application to the Coloratura library and begin using the color management
system. It also briefly describes commands and sample programs included in the
Coloratura CMS.

xii

: About This Guide

Chapter 3, “Profile Management,” describes how to find profiles, create and modify
profiles, import profiles embedded in image files, and export profiles so that they can be
embedded in image files.

Chapter 4, “Tag Management,” describes how to access the fundamental data in
profiles— tags and headers, read tags to determine if a profile is appropriate to your
needs, and create or modify tags to change the contents of a profile.

Chapter 5, “Transform Management,” describes how to build transforms from profiles
and apply transforms to pixel data.

Chapter 6, “Color Manipulation Module Management,” describes how to determine the
default CMM and examine available CMMs.

Appendix A, “Summary of Functions and Data Structures,” summarizes Coloratura data
structures and functions.

Appendix B, “Listing of the Application cocoifl,” presents a sample color conversion
application.

The Glossary defines a few terms from color management.

Related Materials

You may find the following web sites useful for getting information on
device-independent color and general topics of color processing:

• The International Color Consortium’s home page: http://www.color.org. The ICC
Profile Format Specification is available from this site.

• The Colour Science and Technology page has many useful links:
http://www.ziggy.derby.ac.uk/web/colour.html.

The Colortron User Manual by Fred Bunting, published by Lightsource Computer Images,
Inc., 1994, has nice introductory discussions of color science and color management, and
an extensive bibliography.

ImageVision Library ™ Programming Guide, document Number 007-1387-050, available
through IRIS Insight™ and at http://techpubs.engr.sgi.com/lib/makepage.cgi?007-1387-050,
documents the Image Format Library.

: About This Guide

xiii

IFL(3). The reference page introduces the Image Format Library, on which the
ImageVision library is built. IFL is a convenient library with C and C++ bindings for
manipulating graphics files in Coloratura applications.

Impressario Programming Guide, document number 007-1633-050, available through IRIS
Insight and at http://techpubs.engr.sgi.com/lib/makepage.cgi?007-1633-050. An appendix
discusses color management within the Impressario printer and scanner environment.

MIPS Compiling and Performance Tuning Guide, document Number 008-2479-001,
http://techpubs.engr.sgi.com/lib/makepage.cgi?007-2479-001, discusses dynamic shared
objects (DSOs).

Xlib Programming Manual for Version 11 of the X Window System by Adrian Nye, O'Reilly
& Associates, Inc., 1992, discusses X-resource files.

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

Bold Function names, language keywords, and data types

Italics Filenames, glossary entries, manual/book titles, new terms, and
program variables

fixed width Code examples

ALL CAPS Environment variables and defined constants

“” (Double quotation marks) References in text to document section titles

() (Parentheses) Follow function names—surround function arguments.

1

Chapter 1

1. Color Management

This chapter briefly introduces you to color management, the main components of the
Coloratura color management system, the basic structure of a Coloratura application,
and outlines a color conversion application.

These are the topics discussed in this chapter:

• “The Color Management Problem” on page 1

• “How the Coloratura Color Management System Helps” on page 2

• “Profiles: Device-Independent Color Spaces” on page 3

• “Transforms: Color Processing from Profiles” on page 4

• “Color Manipulation Modules: Algorithms from Transforms” on page 4

• “Schematics of Program Architecture and Data Flow” on page 5

• “Pseudocode Example for a Color Conversion” on page 7

• “Example Outline of a Color Conversion Program” on page 8

The Color Management Problem

This section briefly surveys the main problems of color management.

How digital color devices interpret colors varies from device to device. Even if two
devices appear identical, detail differences can yield different images from the same data.
You could say that no two devices “see” color in exactly the same way. Often the
differences can dramatically affect image appearance if you transfer a color image from
one device to another without a color management tool. These effects occur largely
because the “recipe” for a particular color on one device rarely gives the same color on
another device, that is, the specifications of which primary colors to use and how much
of each do not agree in any obvious way.

2

Chapter 1: Color Management

A device’s color space, that is, its set of colors and how they are parameterized, is a useful
way of describing its interpretation of color. A device’s color space results from a
combination of design choices and physical constraints. Color spaces can differ in two
main ways:

• primary colors

• color gamut

Device primary colors determine the method of parameterizing colors, and can differ in
two fundamental ways:

• The set of primaries used to describe colors can be obviously different. For example,
a RGB device describes colors with combinations of red, green, and blue; but a
CMYK device uses cyan, magenta, yellow, and black.

• Spectral contents of primaries can differ, even if two devices use nominally the same
primary colors; one device’s red is not necessarily the same as another device’s.

A central task of color management is maintaining a consistent method for translating
between differing sets of color primaries.

The color gamut of a device is the set of possible colors that the device can produce.
Clearly, these sets can vary. A typical practical problem for image development is the set
of colors available on a color monitor is larger than that available on a printer.

How the Coloratura Color Management System Helps

The Coloratura color management system provides a framework for IRIX™ applications
to reconcile device color spaces and to communicate colors accurately; that is it defines a
color management system (CMS). The Coloratura CMS provides an API for access to device
characterization profiles (ICC profiles) and for control of color transformation
computations. For example, you can develop an application that will match your printer
output to a scanned image, or simulate on your monitor the output of your printer.

In general terms, the elements required for a CMS are the following:

• A standard file format to characterize device color characteristics.

• A standard, device-independent color space with which to describe each device’s
color space.

Profiles: Device-Independent Color Spaces

3

• Procedures to manipulate the standard descriptive information.

• Tools to transform color image data.

The next few sections elaborate on how the Coloratura CMS provides these elements.

Profiles: Device-Independent Color Spaces

A device profile is a file in a standard format that characterizes a device’s color
interpretation. The characterization translates the device’s color space into either of two
device-independent color spaces, CIELAB or CIEXYZ, developed by the CIE
(Commission Internationale d’Eclarage, that is, International Committee of Illumination)
to describe human color perception. The profile format used by the Coloratura CMS is
described by the International Color Consortium Color Profile Format Specification, which can
be found at http://www.color.org.

The device-independent color space is called a profile connection space (PCS); it allows you
to transform data characterized by one ICC profile to data characterized by another, with
a minimum distortion of color information. The PCS provides a common language to
describe how colors appear to devices.

The data in a profile is organized into individual blocks, tag data. Tag data detail specific
device characteristics, the information needed to transform image data. For example,
profiles can supply parameters indicating a preferred color conversion algorithm.
Another example of tag data: the ICC Profile Format Specification includes a tag to
characterize rendering intent, which describes how to reconcile differing gamuts when
image data are converted from one color space to another. This tag is useful because the
ideal process of transforming from one color space to another by simply translating a
given color from one color space to another rarely occurs; typically the color gamuts of
input and output devices differ. In any case, often with a change in medium or lighting
conditions you want to modify color content. For more information on rendering intents,
see the ICC Profile Format Specification.

The Coloratura CMS provides tools to examine profiles on disk, read them, write them,
delete them, and edit their tag data. You can also read and write profile data embedded
in image files. See Chapter 3, “Profile Management,” and Chapter 4, “Tag Management.”

4

Chapter 1: Color Management

Transforms: Color Processing from Profiles

You combine profiles into a transform to determine the flow of color information. For
example, suppose you want to drive a printer, which typically uses CMYK, with data
taken from a display screen, which uses RGB. You combine the input profile for the
screen and the output profile for the printer into a transform. Then you apply this
transform to each buffer full of data from the screen to create a buffer full of data for the
printer.

As another example, to simulate on your monitor the output of a printer using input
from your scanner, you create a transform using a sequence of profiles for these devices
in the following order: scanner to printer to monitor.

The Coloratura CMS provides tools to build transforms from profiles, save them,
examine the gamut of transformed image data, and apply transforms to image data. See
Chapter 5, “Transform Management.” To apply the transforms, you need to select a color
manipulation module, discussed in the next section.

Color Manipulation Modules: Algorithms from Transforms

A color manipulation module (CMM) uses the information in a transform to define a color
conversion algorithm. Profiles can be more or less exact in how they characterize the
relationship between a device’s color space and the profile connection space, and CMMs
can be distinguished by how they interpret sparse profile data.

The Coloratura CMS allows you to use several CMMs, which are implemented as
dynamic shared objects (DSOs). The Coloratura framework serves as a dispatcher
between your application and available CMMs, supplying a unified API to them. A
default CMM ships with the Coloratura CMS. Not all CMMs necessarily support all
possible profiles, however the default CMM does.

A CMM is likely to achieve the best quality with profiles generated specifically for that
CMM. Profiles can identify a “preferred” CMM, which best interprets the profile, as well
as any specified rendering intent. This information guides the development of the
transformation algorithm. When performing a transformation, a CMM uses the
rendering intent to make appropriate color adjustments. This can be particularly useful
for generating accurate image simulations.

The Coloratura CMS provides tools to examine the available CMMs on your system. See
Chapter 6, “Color Manipulation Module Management.”

Schematics of Program Architecture and Data Flow

5

Schematics of Program Architecture and Data Flow

You Coloratura application does not interact directly with profile data on disk, nor with
CMMs. The Coloratura CMS mediates the interaction by establishing the relationships
between your application, ICC profiles on disk and CMMs that are illustrated in
Figure 1-1. Also shown in Figure 1-1 are the internal data structures the Coloratura CMS
uses to manage profiles, tags, and transforms. Blocks that are adjacent in the figure
indicate direct communication between the objects.

Figure 1-1 Components of a Color-Management Application

Coloratura
 Profiles:

CMSProfile

Tags

Transforms:
CMSTfm

Color Mgmt Modules
(Default and 3d Party)

Application

ICC Profiles
on disk

Tags

6

Chapter 1: Color Management

Figure 1-2 illustrates the data flow for a typical application. It schematically compares the
flow to that of an application that does not use color management, but, in this example,
uses a “1-minus” conversion from RGB to CMYK. Two input and output paths are shown
for the Coloratura application, corresponding to two likely sources and destinations for
data: devices or image files. Ironically, color managed images are unavailable for this
document, so the color distortions shown in Figure 1-2 can only be rough illustrations of
the effects.

Figure 1-2 Data Flow for a Typical Color-Management Application

Output Profile

Input Data Buffer

Input Driver
Input

Image
File

Intermediate Profile(s)
(Optional: e.g. for out-

put simulation)

Input Profile
(for explicit control,

or if not embedded in
input image)

Cyan = 1-R
Magenta = 1-G
Yellow = 1-B

Your Coloratura
Application

Output Driver
Output
Image

File

Output Data Buffer

Without
a CMS,

for example,

Pseudocode Example for a Color Conversion

7

Pseudocode Example for a Color Conversion

The following lines of code illustrate the basic programming elements of the Coloratura
CMS. The example is not working code, but provides the essential components of a
program for driving a CMYK printer with data taken from a workstation’s monitor. The
next section outlines in more detail the procedures of a color management application,
and Appendix B, “Listing of the Application cocoifl,” presents the code of a working
program that implements these operations.

Note: For the Coloratura CMS, function names all start with “cms”, type names all start
with “CMS”, and library constant names all start with “CMS_”.

• First, allocate data structures and open the Coloratura CMS. The header file cms.h
defines the data types and specifies the function prototypes.

/* Typedefs for some of the variables used in the pseudocode */
CMSContext ctxt;
CMSProfile profSource, profDest, profiles[2];
CMSParameter param;
char *profSpecDest;
CMSTransform tfm;

cmsOpen(&ctxt);

• Next, find the necessary device profiles. The following lines get the source, that is
the monitor’s, profile from the settings and assumes you know the destination
profile.

cmsOpenProfile(ctxt, CMS_DEFAULT_MONITOR, &profSource);
cmsOpenProfile(ctxt, profSpecDest, &profDest);

• The first profile added to a transform is assumed to be the input device; the last
profile, the output device. For this example, we need only two profiles:

profiles[0] = profSource;
profiles[1] = profDest;
cmsCreateTfm(ctxt, 2, profiles, CMS_USE_DEFAULT_CMM, &tfm)

8

Chapter 1: Color Management

• Finally, for each buffer full of pixels from the screen, apply the transform that
corrects for the differing device color mappings and converts the pixels from the
display screen’s RGB space into the printer’s CMYK space. The example skips over
allocating data storage for the input and output buffers. Note that buffers are
usually of different sizes.

while (GetPixelsFromScreen(&pbufIn.data) != NO_MORE_PIXELS) {
 cmsTfmApply(ctxt, tfm, &pbufIn, &pbufOut);
 WritePixelsToPrinter(pbufOut.data);

 }

Example Outline of a Color Conversion Program

This section outlines the procedures in a color conversion application that is more
realistic than the example in the last section. The procedures introduce the main
Coloratura data structures and functions, and the discussion directs you to details in the
rest of this guide.

The data flow of the program is the same as that outlined in Figure 1-2, but without any
intermediate profiles. C++ code for the program, called cocoifl, is in /usr/cms/examples/
and is listed in Appendix B, “Listing of the Application cocoifl.”

Below are the program steps described in this section. Some details, error handling, for
example, have been left out; look at the source code to see how these details are handled.

• “Loading Header Files” on page 9

• “Declaring Variables” on page 9

• “Opening the Coloratura CMS, the Input Image File, and the Output Profile” on
page 9

• “Preparing the Output Pixel Buffer and Open an Output Image File” on page 10

• “Preparing the Output Pixel Buffer and Open an Output Image File” on page 10

• “Selecting an Input Profile” on page 10

• “Creating a Transform and Initializing Buffers” on page 10

• “Embedding the Output Profile in the Output Image File” on page 11

• “Transforming Pixel Data and Cleaning Up” on page 11

Example Outline of a Color Conversion Program

9

Loading Header Files

The program begins by including standard C++ library header files, Image Format
Library (see IFL(3)) headers, and the two files that are sufficient to use the Coloratura
CMS, ic.h and cms.h. These latter two declare Coloratura functions, and ICC profile
structures.

Declaring Variables

The program declares local variables and the Coloratura data structures it needs:

• CMSContext appears in every Coloratura function call. It is discussed in “Working
State of the Coloratura CMS: CMSContext” on page 15.

• CMSProfile, points to an opaque data structure that holds ICC profile data. It is
discussed in “Data Structure for Profiles: CMSProfile” on page 26.

• CMSPixelBuffer holds pixel data used in color transformations. It is discussed in
“Data Structure for Pixels: CMSPixelBuffer” on page 47.

• CMSTfm, points to an opaque data structure that holds a color transformation. It is
discussed in “Data Structure for Transforms: CMSTfm” on page 47.

• icHeader, declared in the file ic.h and discussed in the ICC Profile Format
Specification.

• iflColorModel, and iflSize are IFL objects. See the ImageVision Library™ Programming
Guide and the reference page IFL(3).

Opening the Coloratura CMS, the Input Image File, and the Output
Profile

In any Coloratura application, the first call is to cmsOpen(), discussed in the section
“Initializing the Coloratura CMS: cmsOpen()” on page 15. The program then manages
the command-line arguments and uses an IFL function to open the input image file.

With a call to cmsOpenProfile(), the program then brings an output ICC profile from disk
into the Coloratura data structure identified by a CMSProfile, discussed in “Loading
Profile Data: cmsOpenProfile()” on page 26. From the open profile, cocoifl gets ICC
header information by using the function cmsGetProfileHeader(), discussed in “Getting
Open-Profile Header Information: cmsGetProfileHeader()” on page 30.

10

Chapter 1: Color Management

Preparing the Output Pixel Buffer and Open an Output Image File

The program places some of the output profile header information into the output
CMSPixelBuffer, and sets the IFL color model. It uses an IFL function to creates the
output image file.

Selecting an Input Profile

The program has a hierarchy of possible input profile sources:

• a profile designated to override profile information that might be embedded in the
source image

• an profile embedded in the source

• a profile designated to be used if no embedded profile is found

• a default profile

If no overriding profile is specified, cocoifl determines if an ICC profile is embedded in
the source image and uses an IFL function to read it from the image file. You call
cmsImportProfile() to convert the profile data to the Coloratura CMS’s internal data
structure. This function is discussed in “Importing an ICC Profile from a Buffer:
cmsImportProfile()” on page 34.

Without explicit profile information, cocoifl uses one of two default profiles, depending
on whether the image data are RGB or CMYK data. The default profiles are specified by
the constants CMS_DEFAULT_MONITOR and CMS_DEFAULT_CMYK. See the section
“Loading Profile Data: cmsOpenProfile()” on page 26.

Creating a Transform and Initializing Buffers

With a source and destination profile, the program creates a transform by calling
cmsCreateTfm(), discussed in “Creating a Transform: cmsCreateTfm()” on page 49.

The iflRGBPalette color map creates a special case, because of the unique way it handles
color information; the pixel data are indices to a color palette. For this case, the program
cocoifl sets up the input and output CMSPixelBuffers, and transforms the data.

Example Outline of a Color Conversion Program

11

For all other color maps, pixel data are coordinates in device color spaces. The program
only initialize the output CMSPixelBuffer, and sets up the input CMSPixelBuffer with
header information and pixel data. The program applies the color transformation later.

If no input profile was found, or if the input data use the iflRGBPalette color map and, so,
have already been transformed, the program passes the input directly to the output
buffer.

Embedding the Output Profile in the Output Image File

The program calls cmsExportProfile() to create an ICC formatted data structure, and
embeds the output profile in the output image with a call to an IFL function. The function
cmsExportProfile() is discussed in “Creating an ICC Profile in a Buffer:
cmsExportProfile()” on page 33.

In general, when you are through with data structures created by the Coloratura CMS,
you free the allocated memory. After embedding the profile in the output image, cocoifl
calls cmsFreeProfileExport() to clear the data created by cmsExportProfile().
cmsFreeProfileExport() is discussed in “Deleting an ICC Profile Buffer:
cmsFreeProfileExport()” on page 33

Transforming Pixel Data and Cleaning Up

The program uses IFL calls to get image-file data one tile at a time, reads data from the
input file to the input CMSPixelBuffer, and, with a call to cmsApplyTfm(), applies the
transform that was created by cmsCreateTfm() (see “Applying a Transform:
cmsApplyTfm()” on page 50).

Finally the program frees memory it has allocated.

13

Chapter 2

2. Using the Coloratura CMS Programming Environment

This chapter discusses the basic procedures that apply to the development of any
Coloratura application. It also discusses useful tools that are included in the library:
commands and sample code. These are the topics discussed:

• “Compiling With the Coloratura CMS” on page 13

• “Managing Memory” on page 14

• “Error Messages” on page 14

• “Establishing Program Access to the Coloratura CMS” on page 15

• “Coloratura Commands” on page 16

• “Sample Code and Test Profile” on page 18

Compiling With the Coloratura CMS

To use the Coloratura library, which is implemented as a dynamically shared object,
include the two header files cms.h and ic.h in your source code and compile your program
with the switch -lcms.

The file cms.h defines data structures, function prototypes and parameters specific to the
Coloratura CMS. You do not need to declare Coloratura data structures before you call
Coloratura functions; this is done by including the file cms.h in your source code.

The file ic.h establishes data structures for the ICC Color Profile Format Specification.

14

Chapter 2: Using the Coloratura CMS Programming Environment

Managing Memory

Coloratura applications use one of two approaches to managing memory, depending on
whether a given data object has a fixed size.

• If a data object does not have a fixed size:

– Use Coloratura functions to create the data storage and set a pointer value.

– When you no longer need the data, call a Coloratura function to free the data.
For each type of data, there is a specific function. For example,
cmsGetCmmList() returns a variable-length list of available CMMs. Your
application passes to cmsGetCmmList() the address of a pointer to the list, and
frees the list by calling cmsFreeCmmList().

• If a data object has a fixed size, you need no special Coloratura function to free
storage; you can use standard ANSI C memory management functions.

If your application requires custom memory management, layer the management on top
of the three standard ANSI C functions that are used by the Coloratura CMS: malloc(),
free(), and realloc(). Using two different memory allocation schemes can cause problems
such as memory leaks, data corruption, or core dumps. If you use other functions, check
that all the memory allocators work together.

Error Messages

Every Coloratura function returns CMS_SUCCESS, if there are no errors.

Each Coloratura function has a set of specific error codes that it returns if there are errors.
Before proceeding after a function call, you should always check the value returned.

The Coloratura CMS provides a standard message catalog in
/usr/lib/locale/C/LC_MESSAGES. You can call the function pfmt() to interpret the error
codes returned by Coloratura functions (see the reference pages pfmt(1) and pfmt(3C) for
more details). Because the message catalog is accessed by line numbers, do not modify
the catalog; if you need more error messages, create another catalog.

Establishing Program Access to the Coloratura CMS

15

Establishing Program Access to the Coloratura CMS

The Coloratura CMS maintains a certain amount of bookkeeping information that all
Coloratura functions use. The information is stored in the data structure CMSContext,
which is initialized by cmsOpen(). You must call cmsOpen() before you call any other
Coloratura functions. When you are through with the CMS, call cmsClose() to free
storage allocated by cmsOpen().

Working State of the Coloratura CMS: CMSContext

The pointer CMSContext refers to an opaque data structure that stores the internal
working state of the Coloratura CMS and is used in all function calls. The data type
declaration is:

typedef struct _CMSContext *CMSContext;

Initializing the Coloratura CMS: cmsOpen()

The function cmsOpen() establishes a CMSContext that is an argument in all subsequent
Coloratura calls. Call this function before you call any other Coloratura function. You
pass the address of a CMSContext and cmsOpen() initializes it appropriately.

The function cmsOpen() searches the system to find out which CMMs are available and
stores the information in the CMSContext. Your application cannot use any CMM that
you add after a call to cmsOpen().

• This is the prototype for cmsOpen():

int32 cmsOpen(CMSContext *pctxt);

• This is the active argument of cmsOpen():

pctxt A pointer to the opaque data structure CMSContext.

• These are the error codes returned by cmsOpen():

CMS_OUT_OF_MEMORY
Occurs if there is insufficient memory to create a CMSContext.

CMS_FAILURE
Occurs if the Coloratura CMS is unable to open one of the CMMs on
disk.

16

Chapter 2: Using the Coloratura CMS Programming Environment

Terminating the Coloratura CMS: cmsClose()

Call cmsClose() when you are finished with the Coloratura CMS; no Coloratura function
calls may be made afterwards. The function cmsClose() first requests that any open
CMMs close themselves, and then it closes open resources and frees storage that the
Coloratura CMS still controls. You must make your own calls to free memory that your
application allocated and that cannot be freed by a Coloratura function.

• This is the prototype for cmsClose():

int32 cmsClose(CMSContext ctxt;

• This is the active argument of cmsClose():

ctxt The context initialized by cmsOpen().

Coloratura Commands

Along with the function library that you can use in your application, the Coloratura CMS
provides several commands that perform useful, elementary operations: embedding
profiles and simple color transformations of common image formats.

Below is a brief description of the commands. See the man pages for further details.

cmssgi2*

The following commands perform file format conversions that retain embedded ICC
profile information:

• cmssgi2jpg(1)

• cmssgi2stiff(1)

The commands differ according to the image file format they produce; the format is
indicated by the string following cmssgi2 in the command name.

Coloratura Commands

17

cmstag*

The following commands all embed either a complete ICC device profile or its filename
in one or more image files:

• cmstag(1)

• cmstaggif(1)

• cmstagjpeg(1)

• cmstagsgi(1)

• cmstagstiff(1)

Embedding the filename is only useful if the image data and profile remain in the same
file system.

The commands differ according to the image file format they act on; the format is
indicated by the string following tag in the command name. cmstag embeds profile
information in files of several different formats.

coco*

The following commands use ICC profiles to perform a color management operation
(“color correction,” hence “coco”) on image files:

• cocogif(1)

• cocojpeg(1)

• cocostiff(1)

The operation is a color space conversion from a specified input device color space to a
specified output device color space. The image file format each command acts on is
indicated by the string following coco.

These commands are essentially compiled variants of the sample code cocoifl, outlined
in “Example Outline of a Color Conversion Program” on page 8, and presented in
Appendix B, “Listing of the Application cocoifl.”

18

Chapter 2: Using the Coloratura CMS Programming Environment

Sample Code and Test Profile

The Coloratura CMS includes several code examples to illustrate how to use the library
in typical situations (see /usr/cms/examples/). The library also includes a test profile, which
provides visual feedback indicating that a color transformation program is working
properly.

cocoifl

This example code illustrates a basic color conversion program, using the Image Format
Library to read most image files. The basic operations performed by cocoifl are described
in “Example Outline of a Color Conversion Program” on page 8. Appendix B, “Listing of
the Application cocoifl,” shows the source code.

makedevlink and applydevlink

These examples illustrate a special case of cocoifl: applying a device-link profile to image
data. makedevlink is easily extended.

threeprof

This example illustrates combining three profiles, an operation you would be likely to
perform when simulating an output.

howtagged

This example extracts a profile from an image file and gets the profile’s tag data.

invert.pf

This profile provides a simple visual test that something happened in your color
management application. This will not find flaws in a Coloratura application, as there are
no exact digital values guaranteed, but the visual test gives a good indication of how
(and whether) your application is performing.

Sample Code and Test Profile

19

The profile is like a monitor profile, but the tone curve is flipped. If you embed it in an
image and use the default monitor profile, the image should look somewhat like a
photographic negative. If the Coloratura CMS fails to process the image, you probably
get back the original image.

Or you can make this profile your default monitor profile, by placing it in
/var/cms/profiles/local and calling it monitor.pf. Then if your image has a source device
profile embedded in it, you also see a “sort-of-negative” image.

21

Chapter 3

3. Profile Management

This chapter describes how to manipulate ICC profiles with the Coloratura CMS. Profiles
contain the data required to perform color manipulations.

This chapter does not describe the profile format, which is covered in the ICC Profile
Format Specification. The format of the profile on disk is irrelevant in any case, because
when the Coloratura CMS loads a profile from disk, it stores the data in an opaque data
structure, which is then used in all subsequent interactions with the profile data. Details
about interacting with profile data are covered in Chapter 4, “Tag Management.”

This chapter discusses profile data structures and accessor functions in the following
sections:

• “Identifying a Profile” on page 21

• “Opening, Closing, and Deleting Profiles” on page 26

• “Creating New Profiles, Getting and Setting Headers, and Saving Edits” on page 28

• “Importing and Exporting Embedded Profiles” on page 32

Identifying a Profile

The first task you face in a Coloratura application is to identify the profiles you need.
There are three ways to specify profiles:

• predefined information

• default profiles

• profile iteration

You can use predefined information when you know which device profile you need. For
example, if you are writing an Impressario™ model file for a printer, the profile will have
a name matching the device name, and the profile can be embedded directly in the model
file. Another useful place to put profile names is in an X resource file.

22

Chapter 3: Profile Management

The constants CMS_DEFAULT_MONITOR and CMS_DEFAULT_CMYK specify default
profile names. You can specify preferred values for these parameters, if you do not want
to use those set in cms.h. Alternatively, you can use the default filenames, but use versions
in directories controlled by the environment variable CMS_DEFAULT_PATH. For more
information on CMS_DEFAULT_PATH, see “Loading Profile Data: cmsOpenProfile()”
on page 26.

If you do not know the profile you need and do not want to use a default, you can
examine the profiles available on your system and select one. The technique for doing
this is profile iteration. Typically, you select a profile based on its header information, and
then open it, that is, load the data into a Coloratura data structure for further interaction.
You can also use profile iteration to make a list for a profile selection menu. For example,
you could create a list of all the profiles for a device type or make a list of all profiles that
use a given profile connection space.

Profile Iteration: Pseudocode Example

To perform a profile iteration, you first create a CMSProfileIterator by calling
cmsStartProfileIteration(), and then repeatedly call cmsNextProfileIteration(). If there is
another profile in the iteration sequence, cmsNextProfileIteration() sets a pointer to its
filename. When there are no more profiles on disk, cmsNextProfileIteration() returns
NULL.

To efficiently select a profile or display a set of profiles in a menu, you typically need only
the minimal information kept in profile headers, which are only 128 bytes. Use
cmsGetHeaderProfileSpec() to query a profile on disk for header information.

When there are no more profiles available, you dispose of the iterator by calling
cmsEndProfileIteration().

Identifying a Profile

23

The following code fragment illustrates a profile iteration. In the interest of clarity, the
proper error checking is not shown.

char *pspec;
CMSProfileIterator theIterator;
icHeader header;

cmsStartProfileIteration(context, &theIterator);
while (cmsNextProfileIteration(context, theIterator, &pspec) !=
 NULL) {

 cmsGetProfileSpecHeader(context, spec, &header);
 if (/* tests on fields in header pass */) {
 /* code to add profile to the application */
 }
 free(pspec);
}
cmsEndProfileIteration(context, theIterator);

The next sections detail the data structures and function calls in this example, and
introduce related functions.

The data structure icHeader is not discussed because it is not a Coloratura structure; it is
the profile header data structure defined by the ICC Color Profile Format Specification.
icHeader is defined in ic.h. Since icHeader is of fixed size, you are responsible for
allocating and freeing storage for it, as discussed in “Managing Memory” on page 14.

Data Structure for Profile Iteration: CMSProfileIterator

The pointer CMSProfileIterator refers to an opaque data structure that keeps track of
position in a list of profiles during an iteration. This is the data type declaration:

typedef struct _CMSProfileIterator *CMSProfileIterator;

24

Chapter 3: Profile Management

Starting Profile Iteration: cmsStartProfileIteration()

The function cmsStartProfileIteration() starts a profile iteration and creates a
CMSProfileIterator.

• This is the prototype for cmsStartProfileIteration():

int32 cmsStartProfileIteration(CMSContext ctxt,
 CMSProfileIterator *iterator);

• These are the arguments of cmsStartProfileIteration():

ctxt The context initialized by cmsOpen().

iterator The newly generated iterator.

• This is the error code returned by cmsStartProfileIteration():

CMS_PROFILE_NOT_FOUND
There are no profiles available on the system.

Stepping Through Profiles: cmsNextProfileIteration()

The function cmsNextProfileIteration() finds the next filename in a profile iteration.
When the iteration is complete, the function returns NULL.

• This is the prototype for cmsNextProfileIteration():

int32 cmsNextProfileIteration(CMSContext ctxt,
 CMSProfileIterator profIterator,
 char **spec);

• These are the arguments of cmsNextProfileIteration():

ctxt The context initialized by cmsOpen().

profIterator The profile iterator.

spec The filename of the next profile.

• These are the error codes returned by cmsNextProfileIteration():

CMS_OUT_OF_MEMORY
There is insufficient memory for the next iteration.

CMS_NO_MORE_PROFILES
There are no more profiles over which to iterate.

Identifying a Profile

25

Examining Headers of Profiles on Disk: cmsGetProfileSpecHeader()

The function cmsGetProfileHeader() reads the ICC profile header from a profile on disk.

You can also read a profile header from an open profile, one that has been read into a
Coloratura data structure; see “Getting Open-Profile Header Information:
cmsGetProfileHeader()” on page 30.

• This is the prototype for cmsGetProfileSpecHeader():

int32 cmsGetProfileSpecHeader(CMSContext ctxt,
 char *spec,
 icHeader *pHeader);

• These are the arguments of cmsGetProfileSpecHeader():

ctxt The context initialized by cmsOpen().

spec The filename of the profile.

pHeader A pointer to the data structure in which the profile header is to be
stored.

• The error code cmsGetProfileSpecHeader() returns is

CMS_PROFILE_NOT_FOUND
Is self-explanatory.

Stopping a Profile Iteration: cmsEndProfileIteration()

The function cmsEndProfileIteration() ends a profile iteration and disposes of the
iterator.

• This is the prototype for cmsEndProfileIteration():

int32 cmsEndProfileIteration(CMSContext ctxt,
 CMSProfileIterator profIterator);

• These are the arguments of cmsEndProfileIteration():

ctxt The context initialized by cmsOpen().

profIterator The iterator to be disposed of.

• This is the error code returned by cmsEndProfileIteration():

CMS_FAILURE
Occurs if you have an invalid profile iterator.

26

Chapter 3: Profile Management

Opening, Closing, and Deleting Profiles

After you identify the profiles you need, you must open them to place the data in
appropriate data structures and make the information available to Coloratura functions.
Interactions with profile data then occur via the pointer CMSProfile, which refers to an
opaque Coloratura data structure that holds the profile data; you cannot make any
assumptions about the data structure.

To make profile data available to the Coloratura CMS, call cmsOpenProfile(), which
places the data in a CMSProfile data structure. When you are done working with the
profile, call cmsCloseProfile() to allow the framework to recover some memory. To
completely remove a profile from the file system, call cmsDeleteProfile().

The following sections provide more detail about CMSProfile and the open, close, and
delete functions.

Data Structure for Profiles: CMSProfile

The pointer CMSProfile refers to an opaque data structure that stores profile data. All of
your program’s interactions with profile data are mediated by a CMSProfile.

• This is the prototype for CMSProfile:

typedef struct _CMSProfile *CMSProfile;

Loading Profile Data: cmsOpenProfile()

You call the function cmsOpenProfile() to provide Coloratura functions with access to
profile data that are on disk. Only after the profile is open can your application read from
it, write to it, or include it in a transform. The function cmsOpenProfile() needs a
filename to get the data from disk, but all subsequent references to the profile data are
through the CMSProfile pointer set by cmsOpenProfile().

• This is the prototype for cmsOpenProfile():

int32 cmsOpenProfile(CMSContext ctxt, char *spec,
 CMSProfile *prof);

Opening, Closing, and Deleting Profiles

27

• These are the arguments of cmsOpenProfile():

ctxt The context initialized by cmsOpen().

spec The input filename. This need not include a full pathname. The
Coloratura CMS searches for a file sequentially in the directories
specified by the environment variable CMS_DEFAULT_PATH,
which is a colon-separated list of pathnames similar to that used in
the environment variable MANPATH.

The value of CMS_DEFAULT_PATH defined in cms.h is
“/var/cms/profiles/local:/var/cms/profiles:.”, which allows you to place
profiles you prefer in /var/cms/profiles/local, and generic profiles,
which might have the same names, in /var/cms/profiles or your
working directory.

prof A pointer to the newly created profile data structure.

• These are the error codes returned by cmsOpenProfile():

CMS_OUT_OF_MEMORY
The Coloratura CMS cannot allocate memory for the CMSProfile
data structure.

CMS_PROFILE_NOT_FOUND
Is self-explanatory.

Terminating Access to Profile Data: cmsCloseProfile()

The function cmsCloseProfile() closes the copy of a profile in memory, that is, a
CMSProfile data structure, and frees the memory allocated. If you want to remove the
profile data from disk, use cmsDeleteProfile(), discussed below.

28

Chapter 3: Profile Management

The function cmsCloseProfile() does not automatically save the CMSProfile data to disk.
To save changes to a profile before you call cmsCloseProfile(), call cmsSaveProfile(),
which is discussed in “Saving Profile Changes to Disk: cmsSaveProfile()” on page 31, or
cmsSaveProfileAs(), which is discussed in “Saving to a New File on Disk:
cmsSaveProfileAs()” on page 32.

• This is the prototype for cmsCloseProfile():

int32 cmsCloseProfile(CMSContext ctxt, CMSProfile prof);

• These are the arguments of cmsCloseProfile():

ctxt The context initialized by cmsOpen().

prof The profile to be closed.

Deleting a Profile from Disk: cmsDeleteProfile()

The function cmsDeleteProfile() deletes a profile from the file system. The usual IRIX
permission system applies; you might not have permission to delete a given profile.

• This is the prototype for cmsDeleteProfile():

int32 cmsDeleteProfile (CMSContext ctxt, char *name);

• These are the arguments of cmsDeleteProfile():

ctxt The context initialized by cmsOpen().

name The profile name.

• If cmsDeleteProfile() cannot find the profile, it will return the error

CMS_PROFILE_NOT_FOUND
The named profile cannot be found to be deleted.

Creating New Profiles, Getting and Setting Headers, and Saving Edits

To calibrate devices such as scanners, monitors, or printers, or to fine tune an existing
profile, you often need to create and modify profiles. You create new profiles by calling
cmsCreateProfile().

The function cmsSetProfileHeader() sets new header values for an open profile: a profile
you just created, or a profile you have edited whose header information you want to
change. To inspect the header of an open profile, you can call cmsGetProfileHeader().

Creating New Profiles, Getting and Setting Headers, and Saving Edits

29

This returns the same information as cmsGetProfileSpecHeader() (see “Examining
Headers of Profiles on Disk: cmsGetProfileSpecHeader()” on page 25), but it uses the
CMSProfile, rather than the filename, to identify the profile data.

If you want to change other data in the profile, see Chapter 4, “Tag Management,” which
describes the calls you use to create or modify a profile’s tag data.

To save a modified version of a profile to disk and retain the original, call
cmsSaveProfileAs(). Typically, you call this function when you want to do one of the
following:

• save an edited profile under a new name

• save changes to a newly created profile

To overwrite the original version of a profile on disk that you have opened and edited,
use cmsSaveProfile().

Creating a New Profile: cmsCreateProfile()

The cmsCreateProfile() function creates a new CMSProfile data structure that contains
no tag data. The new profile is not available to the file system until you save it with a call
to cmsSaveProfileAs(), which is discussed in “Saving to a New File on Disk:
cmsSaveProfileAs()” on page 32.

• This is the prototype for cmsCreateProfile():

int32 cmsCreateProfile(CMSContext ctxt, CMSProfile *prof);

• These are the arguments of cmsCreateProfile():

ctxt The context initialized by cmsOpen().

prof A pointer to the new CMSProfile.

• This is the error code returned by cmsCreateProfile():

CMS_OUT_OF_MEMORY
There is not enough memory available to create a new profile data
structure.

30

Chapter 3: Profile Management

Getting Open-Profile Header Information: cmsGetProfileHeader()

The function cmsGetProfileHeader() returns the same information as
cmsGetProfileSpecHeader() (see “Examining Headers of Profiles on Disk:
cmsGetProfileSpecHeader()” on page 25), but differs in that it takes a CMSProfile, rather
than a filename.

cmsGetProfileHeader() gets the header information from an open profile and returns a
pointer to an icHeader data structure, which is declared in ic.h (see the ICC Device Profile
Format Specification for a definition of what is stored in an icHeader structure). Since
icHeader is of fixed size, you must allocate and free storage for it, as discussed in
“Managing Memory” on page 14.

• This is the prototype for cmsGetProfileHeader():

int32 cmsGetProfileHeader(CMSContext ctxt, CMSProfile prof,
 icHeader *pHeader);

• These are the arguments of cmsGetProfileHeader():

ctxt The context initialized by cmsOpen().

prof The CMSProfile where the header data come from.

pHeader A pointer to the data structure in which to store the information.

• This is the error code returned by cmsGetProfileHeader():

CMS_FAILURE

Setting Profile Header Information: cmsSetProfileHeader()

The function cmsSetProfileHeader() stores a header in an open profile. Typically, you use
cmsSetProfileHeader() to put a header in a new profile.

The Coloratura CMS does not provide a function to update selected fields of a header,
which it reads or writes as a whole. To update a specific field, you should first read the
header into an icHeader structure, using cmsGetProfileHeader(). Then update the field
with your own code and write the header to the profile with cmsSetProfileHeader().

Creating New Profiles, Getting and Setting Headers, and Saving Edits

31

The header file ic.h defines icHeader. Since icHeader is of fixed size, you must allocate
and free storage for it. See the ICC Profile Format Specification for a definition of what is
stored in a header.

• This is the prototype for cmsSetProfileHeader():

int32 cmsSetProfileHeader(CMSContext ctxt, CMSProfile prof,
 icHeader *pHeader);

• These are the arguments of cmsSetProfileHeader():

ctxt The context initialized by cmsOpen().

prof The profile whose header you want to set.

pHeader A pointer to the data structure from which to read the information.

• This is the error code returned by cmsSetProfileHeader():

CMS_OUT_OF_MEMORY
There is not enough memory to add the header data to the profile.

Saving Profile Changes to Disk: cmsSaveProfile()

The cmsSaveProfile() function saves an open profile to permanent storage, making it
available to the file system. It does not remove the CMSProfile data structure from
memory; the data remains available for further editing. Use cmsCloseProfile() to delete
the CMSProfile data structure.

• This is the prototype for cmsSaveProfile():

int32 cmsSaveProfile(CMSContext ctxt, CMSProfile prof);

• These are the arguments of cmsSaveProfile():

ctxt The context initialized by cmsOpen().

prof The profile.

• The function cmsSaveProfile() returns an error if you try to save a profile that does
not have a filename. Use cmsSaveProfileAs() to save a profile and attach a name to
it. These are the error codes returned by cmsSaveProfile():

CMS_FAILURE
Something went wrong; no further diagnostic information is
available.

CMS_OUT_OF_MEMORY
There is not enough memory for the profile.

32

Chapter 3: Profile Management

Saving to a New File on Disk: cmsSaveProfileAs()

The function cmsSaveProfileAs() is similar to cmsSaveProfile(), in that it writes a profile
to permanent storage, but it creates a new file with a filename you specify.

• This is the prototype for cmsSaveProfileAs():

int32 cmsSaveProfileAs(CMSContext ctxt, CMSProfile prof, char*spec);

• These are the arguments of cmsSaveProfileAs():

ctxt The context initialized by cmsOpen().

prof The profile to be saved.

spec The filename of the saved profile.

• These are the error codes returned by cmsSaveProfileAs():

CMS_FAILURE
Something went wrong; no further diagnostic information is
available.

CMS_OUT_OF_MEMORY
There is not enough memory for the new profile.

CMS_EXACT_PROFILE_EXISTS
A profile already exists with the name spec.

Importing and Exporting Embedded Profiles

The ICC Color Profile Format Specification prescribes a way to embed ICC profiles in image
data. This allows you to move color data to different computers and operating systems
without concern for whether the necessary profiles are present at the destination.

The functions cmsExportProfile() and cmsImportProfile() exchange data between a
CMSProfile data structure and data in the ICC format. This simplifies interactions with
image data that include embedded profiles. You free storage for the exported data with
cmsFreeProfileExport().

Importing and Exporting Embedded Profiles

33

Creating an ICC Profile in a Buffer: cmsExportProfile()

The function cmsExportProfile() converts the data in a CMSProfile data structure to the
ICC file format. Storage for the exported data is allocated by the Coloratura CMS, so it
must be freed by calling cmsFreeProfileExport().

• This is the prototype for cmsExportProfile():

int32 cmsExportProfile(CMSContext ctxt, CMSProfile prof,
 uint32 *length, void **outputData);

• These are the arguments of cmsExportProfile():

ctxt The context initialized by cmsOpen().

prof The CMSProfile data structure to be converted.

length The size of exported data, in bytes.

outputData A buffer of data in the ICC format.

• This is the error code returned by cmsExportProfile():

CMS_OUT_OF_MEMORY
There is not enough memory to allocate outputData.

Deleting an ICC Profile Buffer: cmsFreeProfileExport()

The function cmsFreeProfileExport() frees the output data storage created by
cmsExportProfile().

• This is the prototype for cmsFreeProfileExport():

int32 cmsFreeProfileExport(CMSContext ctxt, void *outputData);

• These are the arguments of cmsFreeProfileExport():

ctxt The context initialized by cmsOpen().

outputData The buffer of data to be freed.

34

Chapter 3: Profile Management

Importing an ICC Profile from a Buffer: cmsImportProfile()

To create a CMSProfile data structure from a data buffer that is in the ICC format,
typically obtained from an embedded profile, call cmsImportProfile(). You provide a
CMSProfile, which cmsImportProfile() initializes to locate the newly constructed profile
data structure.

• This is the prototype for cmsImportProfile():

int32 cmsImportProfile(CMSContext ctxt,
 uint32 length, void *inputData,
 CMSProfile *profile);

• These are the arguments of cmsImportProfile():

ctxt The context initialized by cmsOpen().

length The size, in bytes, of the input data.

inputData A buffer of data in the ICC format.

profile The profile to be initialized.

• This is the error code returned by cmsImportProfile():

CMS_OUT_OF_MEMORY
There is not enough memory to create a CMSProfile data structure
from the profile data.

CMS_WRONG_DATA
The data do not conform to the ICC file format.

35

Chapter 4

4. Tag Management

This chapter describes Coloratura functions and data structures for access to the data
held in profiles: tag data. For example, you could specify the tone reproduction curve for
the red channel of a device, or data for an abstract profile, which transforms data in a
profile connection space. Other uses for tag access are to determine if the profile is
appropriate for a transform, or to create or modify a profile.

In contrast to headers, which contain fixed-length data that is frequently accessed and
provides generic characterization of a profile, tags contain variable-length and
fixed-length data that is less frequently accessed and provides the technical details that
define a profile. Because tags hold the detailed information, you need access to tag data
for complete control of the color management process. Access to headers is discussed in
the sections of Chapter 3 “Examining Headers of Profiles on Disk:
cmsGetProfileSpecHeader()” on page 25 and “Creating New Profiles, Getting and
Setting Headers, and Saving Edits” on page 28.

The Coloratura CMS does not define tags that are not in the ICC Profile Format
Specification. You can find a complete description of all publicly defined tags there. The
header file ic.h provides brief descriptions of tags and their data types.

These are the topics covered in this chapter:

• “Getting Tag Data Sequentially: Tag Iteration” on page 36

• “Getting Tag Data Directly: cmsGetTag()” on page 40

• “Setting Tag Data: cmsSetTag()” on page 41

• “Deleting Tag Data from a Profile: cmsDeleteTag()” on page 42

• “Freeing Tag Data Storage: cmsFreeTagValue()” on page 43

To access tag data, you use two data structures that are defined in the ICC Profile Format
Specification and declared in ic.h:

• icTagSignature, which identifies tags

• icTagTypeSignature, which identifies a tag’s type

36

Chapter 4: Tag Management

Getting Tag Data Sequentially: Tag Iteration

You can iterate through tags to examine a profile more closely and, perhaps, manipulate
its contents. You typically use tag iteration as a component of a profile validator, which
checks the syntax of a profile or verifies that the contents are meaningful, or a profile
examiner, which lists the contents of a profile and helps you determine whether to use it.

Tag Iteration: Pseudocode Example

Tag iteration is similar to profile iteration, which was discussed in the section “Loading
Profile Data: cmsOpenProfile()” on page 26. After you open a profile with
cmsOpenProfile(), you create a CMSTagIterator data structure by calling
cmsStartTagIteration(), and then repeatedly call cmsNextTagIteration().

In contrast to profile iteration, however, tag iteration functions use the Coloratura
version of the profile, that is a CMSProfile data structure. Thus, you do not obtain
information from the disk version of the profile, and may get unsaved changes to tag
data resulting from previous Coloratura calls.

You can modify tag data during an iteration with the function cmsSetTag(), which is
discussed in “Setting Tag Data: cmsSetTag()” on page 41. Changes are not saved to disk
until you save the profile with cmsSaveProfile() or cmsSaveProfileAs(), discussed in
“Creating New Profiles, Getting and Setting Headers, and Saving Edits” on page 28.

When there are no more tags in a profile, cmsNextTagIteration() returns NULL. You then
call cmsEndTagIteration(). The Coloratura CMS allocates space to store tag data, so, to
free memory, you must call cmsFreeTagValue() when you are done with the data.

Getting Tag Data Sequentially: Tag Iteration

37

Here is pseudocode that illustrates how to step through the tags in a profile. In the
interest of clarity, the proper error checking is not performed.

CMSProfile prof;
CMSTagIterator theIterator;

icTagSignature name;
icTagTypeSignature type;
uint32 size;
char *pdata;

cmsStartTagIteration(context, prof, &theIterator);
while (cmsNextTagIteration(context, theIterator, &name,
 &type, &size, &pdata)!= NULL) {
 /* do whatever with the data from the tag. */
 cmsFreeTagValue(pdata);
}
cmsEndTagIteration(context, theIterator);

Data Structure for Tag Iteration: CMSTagIterator

The pointer CMSTagIterator refers to an opaque data structure that keeps track of
position in a list of tags during an iteration. This is the data type declaration:

typedef struct _CMSTagIterator *CMSTagIterator;

38

Chapter 4: Tag Management

Starting Tag Iteration: cmsStartTagIteration()

The function cmsStartTagIteration() creates a CMSTagIterator and starts a tag iteration.

• This is the prototype for cmsStartTagIteration():

int32 cmsStartTagIteration(CMSContext ctxt,
 CMSProfile prof,
 cmsTagIterator *iterator);

• These are the arguments of cmsStartTagIteration():

ctxt The context initialized by cmsOpen().

prof The profile in which to find tags.

iterator The newly generated iterator.

• This is the error code returned by cmsStartTagIteration():

CMS_OUT_OF_MEMORY

Stepping Through Tags: cmsNextTagIteration()

The function cmsNextTagIteration() returns the next tag in an iteration sequence. When
the iteration is complete, it sets the tag name to NULL and returns
CMS_NO_MORE_TAGS.

To change tag data during an iteration, use the function cmsSetTag(), discussed in
“Setting Tag Data: cmsSetTag()” on page 41.

When you are finished with a tag, free its allocated memory by calling
cmsFreeTagValue(), which is discussed in “Deleting Tag Data from a Profile:
cmsDeleteTag()” on page 42.

• This is the prototype for cmsNextTagIteration():

int32 cmsNextTagIteration(CMSContext ctxt,
 CMSTagIterator iterator,
 icTagSignature *name,

icTagTypeSignature *type,
 uint32 *size,
 void **data);

Getting Tag Data Sequentially: Tag Iteration

39

• These are the arguments of cmsNextTagIteration():

ctxt The context initialized by cmsOpen().

iterator The tag iterator.

name The returned tag name.

type The returned data type.

size The size, in bytes, of the returned data.

data The data.

• These are the error codes returned by cmsNextTagIteration():

CMS_OUT_OF_MEMORY
There is not enough memory to hold the next tag.

CMS_NO_MORE_TAGS
There are no more tags in the profile.

Stopping a Tag Iteration: cmsEndTagIteration()

The function cmsEndTagIteration() terminates a tag iteration and deletes the iterator.

• This is the prototype for cmsEndTagIteration():

int32 cmsEndTagIteration(CMSContext ctxt, CMSTagIterator iterator);

• These are the arguments of cmsEndTagIteration():

ctxt The context initialized by cmsOpen().

iterator The tag iterator.

40

Chapter 4: Tag Management

Getting Tag Data Directly: cmsGetTag()

When you have an open profile and you know the tag you want to work with, you can
read the tag data by calling cmsGetTag() and specifying the tag by name, instead of
searching through the list of tags with an iteration.

The function cmsGetTag() returns the tag data type, a pointer to the data, and the size of
the data structure. Note that the function might return tag data that has been modified
and not yet saved to disk, because the tag data it returns comes from a CMSProfile data
structure. For more information on tag data types, see the header file ic.h and the ICC
Profile Format Specification.

When you no longer need the storage the Coloratura CMS allocates for returned tag data,
free it with a call to cmsFreeTagValue(), discussed in “Deleting Tag Data from a Profile:
cmsDeleteTag()” on page 42.

• This is the prototype for cmsGetTag():

int32 cmsGetTag(CMSContext ctxt,
 CMSProfile prof,
 icTagSignature name,
 icTagTypeSignature *type,
 uint32 *size, void **data);

• These are the arguments of cmsGetTag():

ctxt The context initialized by cmsOpen().

prof The profile that owns the tag.

name The name of the tag being queried.

type The returned value for the tag data type.

size The size, in bytes, of the returned data.

data A pointer to the data.

• These are the error codes returned by cmsGetTag():

CMS_TAG_NOT_FOUND
The tag name was not in profile prof.

CMS_OUT_OF_MEMORY
There is not enough memory to store the tag data.

Setting Tag Data: cmsSetTag()

41

Setting Tag Data: cmsSetTag()

Given a CMSProfile and a tag name, the function cmsSetTag() sets the tag data to values
you supply. If the specified tag doesn’t exist, cmsSetTag() creates it. The tag data must
follow the format given in the ICC Profile Format Specification.

Save modified or newly created tags to a file with cmsSaveProfile() or
cmsSaveProfileAs(), which are discussed in “Creating New Profiles, Getting and Setting
Headers, and Saving Edits” on page 28. Any tag changes or deletions you make that you
do not explicitly save have no effect on the disk image of the profile.

When you pass data to the Coloratura CMS with cmsSetTag(), it makes a copy of the
data. You should, therefore, free storage for your tag data source after you call
cmsSetTag(). You free the Coloratura version of the data with cmsFreeTagValue().

• This is the prototype for cmsSetTag():

int32 cmsSetTag(CMSContext ctxt,
 CMSProfile prof,
 icTagSignature name,
 uint32 size,
 void *data);

• These are the arguments of cmsSetTag():

ctxt The context initialized by cmsOpen().

prof The profile that owns the tag.

name The name of the tag data.

size The size, in bytes, of the data.

data A pointer to the data

• This is the error code returned by cmsSetTag():

CMS_OUT_OF_MEMORY

42

Chapter 4: Tag Management

Deleting Tag Data from a Profile: cmsDeleteTag()

The function cmsDeleteTag() removes tag data from a CMSProfile data structure. Do not
attempt to remove data by calling cmsSetTag() with a data size of zero bytes; this will not
remove the data and may confuse the Coloratura CMS.

Remember to save a modified CMSProfile structure to a disk file by calling
cmsSaveProfile() or cmsSaveProfileAs() (see “Creating New Profiles, Getting and
Setting Headers, and Saving Edits” on page 28). Any tag changes or deletions you make
that you do not explicitly save have no effect on the disk image of the profile.

• This is the prototype for cmsDeleteTag():

int32 cmsDeleteTag(CMSContext ctxt, CMSProfile prof,
icTagSignature tagName);

• These are the arguments of cmsDeleteTag():

ctxt The context initialized by cmsOpen().

prof The profile that owns the tag.

tagName The name of the tag to delete.

• These are the error codes returned by cmsDeleteTag():

CMS_TAG_NOT_FOUND

Freeing Tag Data Storage: cmsFreeTagValue()

43

Freeing Tag Data Storage: cmsFreeTagValue()

The function cmsFreeTagValue() frees tag data returned by cmsNextTagIteration() or
cmsGetTag().

In addition to a data pointer, you must pass cmsFreeTagValue() the tag name to identify
the data type to free, because tag data may have internal structure that affects memory
allocation.

• This is the prototype for cmsFreeTagValue():

int32 cmsFreeTagValue(CMSContext ctxt,
 icTagSignature name,

 void *data);

• These are the arguments of cmsFreeTagValue():

ctxt The context initialized by cmsOpen().

name The name of the tag.

data The data to be freed.

45

Chapter 5

5. Transform Management

A transform converts pixel data from an input color space to an output color space; it is
the central processing step in a color management application. You build a
transformation algorithm by specifying a sequence of one or more primitive color
manipulations, described by profiles, and a CMM. You then apply the transform to pixel
data.

For example, a common two-profile transform converts from an input color space to an
output color space; typically the input profile is a monitor profile and the output is a
printer profile. A useful three-profile transform simulates on one device the output of
another device. The sequence of profiles is first the input, second the simulated device,
and third the simulating device: for example, first a scanner, second a printer, and third
a monitor.

These are sections of this chapter:

• “Features of Transform Management Tools” on page 45

• “Data Structure for Transforms: CMSTfm” on page 47

• “Data Structure for Pixels: CMSPixelBuffer” on page 47

• “Creating a Transform: cmsCreateTfm()” on page 49

• “Applying a Transform: cmsApplyTfm()” on page 50

• “Saving a Transform as a Look-Up Table: cmsTfmToLUT()” on page 51

• “Deleting a Transform: cmsDeleteTfm()” on page 52

• “Checking Gamut Mapping” on page 53

Features of Transform Management Tools

This section introduces the features of the Coloratura transform tools.

46

Chapter 5: Transform Management

Selecting a CMM

The color manipulation module that the Coloratura CMS uses determines the details of
the transformation algorithm. Different CMMs can give different results from the same
input image and set of profiles, depending on how the CMMs interpret the discrete, and
perhaps sparse, data in each profile. When you create a transform, you can select a CMM
explicitly, or you can use the default CMM that is included in the Coloratura CMS or, if
you have other CMMs, you can have the Coloratura CMS let the profiles determine
which CMM to use.

Saving a Transform

You can save a transform, which is convenient if you have a sequence of profiles that you
use repeatedly. For example, if you commonly transform data from your monitor to
output on a specific printer, you can build a device-link profile, which does not represent a
particular device, but provides a one-profile characterization of the transformation
between devices.

Gamut Checking

As discussed earlier, the set of possible colors for a device is called its color gamut. A
central concern for color management is a mismatch between the gamuts of an input and
output device. The severity of this mismatch and the distribution of mismatches over an
image affect the appearance of your output. A fairly common gamut mismatch is that
between a monitor and a printer; any monitor typically has a gamut larger than most
printers.

Output devices necessarily have rules to handle out-of-gamut data. If you do not like the
results, you can modify the source image data or, conceivably, develop an abstract profile
to perform a gamut mapping to adjust out-of-gamut image data. How you accommodate
out-of-gamut image data is a substantial component of an acceptable color conversion,
and much of the art of the process.

Before applying a transform, you may want to know how much of the transformed
image is out of gamut, rather than observe the effects on the output image. The
Coloratura CMS provides gamut-checking tools to give you that information.

Transforming Pixel Data

47

Transforming Pixel Data

To create a transform with the Coloratura CMS, you supply a list of profiles and a CMM
specifier to the function cmsCreateTfm(). You then call cmsApplyTfm() to apply the
transform to a pixel buffer.

During the process of developing a transform, you probably need to delete a current
version. You delete a transform by calling cmsDeleteTfm(). To save a transform, use
cmsTFMToLUT(). The applications mkdevlink and applydevlink in /usr/cms/examples/
illustrate how to use the output of cmsTFMToLUT().

Data Structure for Transforms: CMSTfm

The pointer CMSTfm refers to an opaque structure that stores transform data. This is the
data type declaration:

typedef struct _CMSTfm *CMSTfm;

Data Structure for Pixels: CMSPixelBuffer

Transforms operate on CMSPixelBuffer data structures, which hold color image data.
The two Coloratura functions that accept a CMSPixelBuffer argument are
cmsCheckGamut() and cmsApplyTfm().

The Coloratura CMS makes the following assumptions about the storage of image data
included in a CMSPixelBuffer:

• All the channels for a single pixel are stored together.

• Each channel aligns to byte boundaries. Any padding is in the most significant bits.

• The data is encoded according to one of the valid color ICC encodings.

If a pixel holds non-color information, such as the OpenGL opacity parameter alpha, then
the number of bytes per pixel will be greater than the number of bytes in the image
channel data. When implementing transforms, the Coloratura CMS preserves without
modification the additional information.

48

Chapter 5: Transform Management

The Coloratura CMS does not store color encoding formats. For the Coloratura CMS to
manipulate data with a particular encoding, there must be at least one profile in storage
that has that encoding. For example, if no profile has the HSV encoding, the Coloratura
CMS cannot process an image in HSV format.

• This is the data type declaration for CMSPixelBuffer:

typedef struct _CMSPixelBuffer {
 uint32 width;
 uint32 height;
 uint32 bitsPerChannel;
 uint32 bytesPerPixel;
 uint32 channels;
 uint32 encode;
 unsigned void *data;
} CMSPixelBuffer;

• These are the fields in the declaration for CMSPixelBuffer:

width The width of the image in pixels.

height The height of the image in pixels.

bitsPerChannel The number of bits may range from 1 to 12.

bytesPerPixel The number of bytes must align on 32-bit boundaries.

channels The number of color channels. Possible values are: 1, 3, 4, 5, or 6.

encode These are the possible color space signatures. They correspond to a
the values of the enumerated type icColorSpaceSignature, which is
defined in the header file ic.h.

data A pointer to the image data.

Transforming Pixel Data

49

Creating a Transform: cmsCreateTfm()

The function cmsCreateTfm() translates a set of profiles into a transformation algorithm.
The algorithm is defined by a CMM and a sequence of profiles. The transformation is
built from profiles in the sequence in which they are supplied: the first profile defines the
first step in the transformation, typically from your input device, and the last profile
defines the final step, typically to your output device.

• This is the prototype for cmsCreateTfm():

int32 cmsCreateTfm(CMSContext ctxt,
 int32 profileCount,
 CMSProfile *profs,
 icSignature cmm,
 CMSTfm *ptfm);

• These are the arguments of cmsCreateTfm():

ctxt The context initialized by cmsOpen().

profileCount The number of profiles in a transform.

profs An array of profiles for the transform.

cmm The CMM to use. If you do not directly specify the CMM with a
valid icSignature, a data type declared in ic.h, use one of the
following two constants to direct CMM selection:

CMS_USE_DEFAULT_CMM selects the default CMM.

CMS_USE_PROFILE_CMM prompts the Coloratura CMS to search
the CMMs specified by the profiles in the transform until it finds
one that can perform the transformation. At least one CMM, the
default, can always perform every transform.

In searching, the Coloratura CMS examines the profiles from last to
first, looking at each profile for a CMM that can perform the entire
transformation. The search begins with the last profile because
profiles later in the sequence tend to have the greatest effect on
output, and a preferred CMM is likely to give the best transform
results.

ptfm The new transform.

50

Chapter 5: Transform Management

• These are the error codes returned by cmsCreateTfm():

CMS_OUT_OF_MEMORY
Not enough memory to create a transform.

CMS_WRONG_DATA
The variable ctxt points to something that is not a context.

CMS_BAD_INPLACE_CONVERT
It is not possible to build an in-place conversion for this transform.

CMS_BAD_ENCODE

CMS_BAD_CONTEXT

CMS_TOO_MANY_CHANNELS
The CMM cannot support a transform with the requested number
of channels.

CMS_CMM_NOT_AVAILABLE
The requested CMM is not available.

Applying a Transform: cmsApplyTfm()

Once you have created a transform, call cmsApplyTfm() to apply the transform to pixel
data. This function transforms a pixel buffer with one profile to a buffer associated with
another profile.

Note that you may not always be able to perform in-place conversions; for example, if
the output format requires more space than the input format (RGB to CMYK), or if the
CMM does not support in-place conversions. cmsApplyTfm() returns an error if you
attempt an in-place conversion for one of these cases.

If you are concerned about maintaining interactivity, you may want to transform an
image piece-by-piece, to avoid the possibly slow process of transforming a whole image.

• This is the prototype for cmsApplyTfm():

int32 cmsApplyTfm(CMSContext ctxt, CMSTfm tfm,
 CMSPixelBuffer *psrc,
 CMSPixelBuffer *pdest);

Transforming Pixel Data

51

• These are the arguments of cmsApplyTfm():

ctxt The context initialized by cmsOpen().

tfm The transform to use.

psrc The pixel buffer to be transformed.

pdest The resulting output pixel buffer.

• These are the error codes returned by cmsApplyTfm():

CMS_WRONG_DATA
Either of the pixel-buffer pointers refers to data in the wrong format
for the transform.

CMS_BAD_TFM
The argument tfm is either not a transform or it was not built with
the supplied ctxt.

CMS_BAD_PIXEL_BUF
Either of the pixel-buffer pointers refers to data in the wrong format
for the transform.

CMS_CONVERT_ERROR
The transform could not be applied. This error occurs if a transform
could not be performed in place.

Saving a Transform as a Look-Up Table: cmsTfmToLUT()

The function cmsTfmToLUT() allows you to save transform information in a tag format,
the AToB0Tag described in the ICC Profile Format Specification. To recover the transform
from the tag data produced by cmsTfmToLUT(), do the following:

1. Create a profile by calling cmsCreateProfile(), which is discussed in “Creating New
Profiles, Getting and Setting Headers, and Saving Edits” on page 28. You can
specify any rendering intent for the profile when you create the profile header.

2. Set the tag value by calling cmsSetTag(), which is discussed in “Setting Tag Data:
cmsSetTag()” on page 41. You can save the profile for later use by calling
cmsSaveProfileAs(), which is discussed in “Saving to a New File on Disk:
cmsSaveProfileAs()” on page 32.

3. Create a transform from the profile, by calling cmsCreateTfm().

52

Chapter 5: Transform Management

The application mkdevlink in /usr/cms/examples illustrates the first two steps. The
application applydevlink in the same directory illustrates the last step, and applies the
transform to input data.

• This is the prototype for cmsTfmToLUT():

int32 cmsTfmToLUT(CMSContext ctxt,
 CMSTfm tfm,
 uint32 *psize,
 void **pdata);

• These are the arguments of cmsTfmToLUT():

tfm The transform to save.

psize The size of the tag data.

pdata The tag data.

• This is the error code returned by cmsTfmToLUT():

CMS_NOT_SUPPORTED
The CMM does not create a look-up table from a transform.

Deleting a Transform: cmsDeleteTfm()

The function cmsDeleteTfm() disposes of all data structures associated with a transform.

• This is the prototype for cmsDeleteTfm():

int32 cmsDeleteTfm(CMSContext ctxt, CMSTfm tfm);

• These are the arguments of cmsDeleteTfm():

ctxt The context initialized by cmsOpen().

tfm The transform.

Checking Gamut Mapping

53

Checking Gamut Mapping

You can perform a test for which output pixels have data that lies out of gamut, rather
than apply a transformation and observe the effects of out-of-gamut image data. This
helps you quantify the severity of your gamut mapping problem and to see clearly how
out-of-gamut data affect your image. It may help you to develop a gamut mapping
strategy.

To examine the gamut mismatch, you create a gamut check with
cmsCreateGamutCheck(), which takes the same arguments as cmsCreateTfm(). You
then perform the check with cmsCheckGamut(). This function examines the pixel data
stored in a CMSPixelBuffer data structure, and returns an unsigned char array to
indicate how each pixel is mapped; zero values indicates the image pixel is in gamut,
non-zero indicates out of gamut.

Preparing for a Gamut Map Test: cmsCreateGamutCheck()

The function cmsCreateGamutCheck() takes the same set of arguments as
cmsCreateTfm(); it uses a CMM and a set of profiles to create a gamut checking
transform. The gamut check is built from the profiles in the sequence in which they are
supplied: the first profile defines the first step in the transformation, typically from your
input device, and the last profile defines the final step, typically to your output device.

• This is the prototype for cmsCreateGamutCheck():

int32 cmsCreateGamutCheck(CMSContext ctxt,
 int32 profileCount,
 CMSProfile *profs,
 icSignature cmm,
 CMSTfm *ptfm);

54

Chapter 5: Transform Management

• These are the arguments of cmsCreateGamutCheck():

ctxt The context initialized by cmsOpen().

profileCount The number of profiles in a transform.

profs An array of profiles for the transform.

cmm The CMM to use. If you do not directly specify the CMM with a
valid icSignature, use one of the following two constants to direct
CMM selection:

CMS_USE_DEFAULT_CMM selects the default CMM.

CMS_USE_PROFILE_CMM prompts the Coloratura CMS to search
the CMMs specified by the profiles in the transform until it finds
one that can perform the transformation. See the next section
“Creating a Transform: cmsCreateTfm()” on page 49 for more
details

ptfm The gamut-checking transform.

• These are the error codes returned by cmsCreateGamutCheck():

CMS_OUT_OF_MEMORY
Not enough memory to create a gamut check.

CMS_WRONG_DATA
The ctxt variable points to something that is not a context.

CMS_BAD_ENCODE

CMS_BAD_CONTEXT

CMS_TOO_MANY_CHANNELS
The CMM cannot support a gamut check with the requested
number of channels.

CMS_CMM_NOT_AVAILABLE
The requested CMM is unavailable.

Checking Gamut Mapping

55

Checking a Gamut Map: cmsCheckGamut()

Given a transform and set of pixels, the function cmsCheckGamut() tests whether the
transform maps the pixels within the gamut of the output device. The order of the output
bytes follows the order of the input pixels. A value of zero indicates that an output pixel
is in gamut; a non-zero value indicates that the pixel is out of gamut.

If you are concerned about maintaining interactivity, you may want to check the gamut
mapping of an image piece-by-piece, to avoid the possibly slow process of checking the
whole image. The cmsCheckGamut() function runs at a rate comparable to that of the
transform whose effect it reports.

• This is the prototype for cmsCheckGamut():

int32 cmsCheckGamut(CMSContext ctxt, CMSTfm tfm,
 CMSPixelBuffer *psrc,
 unsigned char pgamutmap);

• These are the arguments of cmsCheckGamut():

ctxt The context initialized by cmsOpen().

tfm The transform to check.

psrc The input pixel buffer.

pgamutmap The resulting gamut-map buffer.

• These are the error codes returned by cmsCheckGamut():

CMS_OUT_OF_MEMORY
There is not sufficient memory available for gamut testing.

CMS_BAD_PIXEL_BUF
The variable psrc does not point to a valid pixel buffer.

CMS_BAD_GAMUT_MAP
The variable pgamutmap is not a valid gamut map buffer.

CMS_BAD_TFM
The argument tfm is either not a transform, or was not built with the
supplied ctxt.

CMS_CONVERT_ERROR
The transform could not be applied.

57

Chapter 6

6. Color Manipulation Module Management

The heart of a color management computation is the color manipulation module (CMM),
which executes the transformation algorithm.When you create a transformation, you
may use one of several CMMs, which are implemented as dynamic shared objects. The
Coloratura CMS serves as a dispatcher between your application and the CMMs.

This chapter discusses the tools the Coloratura CMS provides to examine available
CMMs. These tools allow you to determine which CMM to specify when you call
cmsCreateTfm() (see “Creating a Transform: cmsCreateTfm()” on page 49). You may
want to examine available CMMs, for example, if you do not want to use the default
CMM to perform a transformation, or if you do not want to, or are unable to, use a CMM
determined by the profiles in a transformation via CMM_USE_PROFILE_CMM (see
“Creating a Transform: cmsCreateTfm()” on page 49).

These are the topics covered in this chapter:

• “Finding CMMs” on page 57

• “Getting Information About a CMM” on page 59

Finding CMMs

The Coloratura CMS provides functions to identify the default CMM and to list all
available CMMs. The data structure used to identify CMMs is an icSignature, which is
declared in ic.h and described in the ICC Profile Format Specification.

58

Chapter 6: Color Manipulation Module Management

Finding the Default CMM: cmsGetDefaultCmm()

A default CMM ships with the Coloratura CMS. To identify the current default CMM,
call cmsGetDefaultCmm(), which returns an icSignature for the CMM. To obtain
information about the CMM, you can call cmsGetCmmInfo(), discussed in “Getting
Information About a CMM” on page 59.

• This is the prototype for cmsGetDefaultCmm():

int32 cmsGetDefaultCmm(CMSContext ctxt, icSignature *cmm);

• These are the arguments of cmsGetDefaultCmm():

ctxt The context initialized by cmsOpen().

cmm The identifier of the CMM.

Listing the Available CMMs: cmsGetCmmList()

The function cmsGetCmmList() supplies a list of available CMMs and the number of
CMMs on the list. You may select from the list a preferred CMM to use when creating a
transform. Recall that your application cannot use any CMM that you add after you call
cmsOpen().

To obtain information about a particular CMM, you call cmsGetCmmInfo(), discussed
in “Getting CMM Information: cmsGetCmmInfo()” on page 60. Free the list of CMMs by
calling cmsFreeCmmList().

• This is the prototype for cmsGetCmmList():

int32 cmsGetCmmList(CMSContext ctxt, uint32 *count,
 icSignature **cmms);

• These are the arguments of cmsGetCmmList():

ctxt The context initialized by cmsOpen().

count The number of CMMs available.

cmms The list of identifiers for the CMMs.

Getting Information About a CMM

59

Freeing the List: cmsFreeCmmList()

The function cmsFreeCmmList() frees the list of available CMMs returned by
cmsGetCmmList().

• This is the prototype for cmsFreeCmmList():

int32 cmsFreeCmmList(CMSContext ctxt, icSignature *cmms);

• These are the arguments of cmsFreeCmmList():

ctxt The context initialized by cmsOpen().

cmms The list of identifiers for the CMMs.

Getting Information About a CMM

The Coloratura CMS provides a function, cmsGetCmmInfo() to return information
about a CMM. The information is held in an enumerated data type, CMSInfoName.

CMM Information Data Structure: CMSInfoName

Information about a CMM is held in the enumerated data type CMSInfoName.

• This is the data type declaration for CMSInfoName:

typedef enum {
 CMS_CMM_NAME,
 CMS_CMM_VERSION,
 CMS_FW_VERSION,
 CMS_CAN_DO_IC,
 CMS_MULTIPLE_OK
} CMSInfoName;

• The following lists the meanings of the information fields:

CMS_CMM_NAME
The registered 32-bit CMM name. The name uniquely identifies the
CMM and is often interpreted as a 4-character mnemonic.

CMS_CMM_VERSION
A uint32 uniquely identifying the version of the CMM.

60

Chapter 6: Color Manipulation Module Management

CMS_FW_VERSION
The version of the Coloratura CMS for which the CMM was
programmed. The returned value is a 4-byte string containing the
major version and the minor version. Use
CMS_VERSION_MAJOR_MASK and
CMS_VERSION_MINOR_MASK to extract these numbers from
CMS_FW_VERSION.

CMS_CAN_DO_IC
If TRUE, the CMM supports ICC profiles.

CMS_MULTIPLE_OK
If TRUE, the CMM supports transformations made from more than
two profiles.

Getting CMM Information: cmsGetCmmInfo()

The function cmsGetCmmInfo() queries a CMM and returns identifying information.

• This is the prototype for cmsGetCmmInfo():

int32 cmsGetCmmInfo(CMSContext ctxt, icSignature cmm,
 CMSInfoName name, uint32 *value);

• These are the arguments of cmsGetCmmInfo():

ctxt The context initialized by cmsOpen().

cmm The CMM identifier obtained from cmsGetDefaultCmm() or
cmsGetCmmList().

name The name of the information field for the CMM.

value The value of the specified field.

• These are the error codes returned by cmsGetCmmInfo():

CMS_BAD_CONTEXT
The ctxt argument is not a valid CMS context.

CMS_CMM_NOT_AVAILABLE
The cmm argument was not a valid name for a CMM.

CMS_MISSING
The color management system is missing.

61

Appendix A

A. Summary of Functions and Data Structures

This appendix provides a quick reference to the Coloratura CMS. It lists all the
Coloratura functions, and important data structures and parameters.

The lists of functions are grouped in sections as follows, according to the elements they
affect:

1. “Coloratura Access Functions” on page 62

2. “Profile Functions” on page 62

3. “Tag Functions” on page 64

4. “Transform Functions” on page 65

5. “CMM Functions” on page 66 has a subsection “CMM Information Field
Parameters.”

The section “Data Structures” on page 67 contains brief descriptions of all of the data
structures that are used as arguments of Coloratura functions.

Note: Function names start with “cms”, data type names start with “CMS”, and
parameters start with “CMS_”.

62

Appendix A: Summary of Functions and Data Structures

Coloratura Access Functions

Profile Functions

Function Description

int32 cmsClose(CMSContext
ctxt)<Function>cmsClose()

Frees all allocated memory.

int32 cmsOpen(CMSContext
*pctxt)<Function>cmsOpen()

Establishes a context for all subsequent
calls to the Coloratura CMS.

Function Description

int32 cmsCloseProfile(
 CMSContext ctxt,
CMSProfile
prof)<Function>cmsCloseProfile()

Closes a profile in memory without
saving to permanent storage.

int32 cmsCreateProfile(
CMSContext ctxt,
CMSProfile
*prof)<Function>cmsCreateProfile()

Creates a new, empty profile, with an
uninitialized header and no tag data.

int32 cmsDeleteProfile(
CMSContext ctxt,
char
*name)<Function>cmsDeleteProfile()

Deletes a profile from permanent storage.

int32 cmsEndProfileIteration(
CMSContext ctxt,
CMSProfileIterator
profIterator)<Function>cmsEndProfileIte
ration()

Terminates a profile iteration and
disposes of the iterator. Do not use the
iterator after disposal.

int32 cmsExportProfile(
CMSContext ctxt,
CMSProfile prof,
uint32 *length,
void
**outputData)<Function>cmsExportProfil
e()

Generates an external format
representation from an open profile.

Profile Functions

63

int32 cmsFreeProfileExport(
CMSContext ctxt,
void
*outputData)<Function>cmsFreeProfileE
xport()

Frees storage allocated by
cmsExportProfile().

int32 cmsGetProfileHeader(
CMSContext ctxt,
cmsProfile prof,
icHeader
*pHeader)<Function>cmsGetProfileHead
er()

Gets the header from an open profile.

int32 cmsGetProfileSpecHeader(
CMSContext ctxt,
char *spec,
icHeader
*pHeader)<Function>cmsGetProfileSpec
Header()

Gets the header from a profile, which
need not be open.

int32 cmsImportProfile(
CMSContext ctxt,
uint32 length,
void *inputData,
CMSProfile
prof)<Function>cmsImportProfile()

Generates a new profile from an external
format.

int32 cmsNextProfileIteration(
CMSContext ctxt,
CMSProfileIterator profIterator,
char
**spec)<Function>cmsNextProfileIteratio
n()

Gets the next profile in an iteration.

int32 cmsOpenProfile(
CMSContext ctxt,
char *spec,
CMSProfile
*prof)<Function>cmsOpenProfile()

Opens an existing profile for read/write.

Function Description

64

Appendix A: Summary of Functions and Data Structures

Tag Functions

int32 cmsSaveProfile(
CMSContext ctxt,
CMSProfile
prof)<Function>cmsSaveProfile()

Saves to permanent storage all the
modifications since the cmsOpenProfile()
call. prof stays open in memory after a
save.

int32 cmsSaveProfileAs(
CMSContext ctxt,
CMSProfile prof,
char
*spec)<Function>cmsSaveProfileAs()

Saves a profile to permanent storage
under a new name.

int32 cmsSetProfileHeader(
CMSContext ctxt,
CMSProfile prof,
icHeader
*pHeader)<Function>cmsSetProfileHead
er()

Places a new header in an open profile.

int32 cmsStartProfileIteration(
CMSContext ctxt,
CMSProfileIterator
*profIterator)<Function>cmsStartProfileIt
eration()

Creates an iterator to start a profile
iteration.

Function Description

int32 cmsDeleteTag(
CMSContext ctxt,
CMSProfile prof,
icTagSignature
tagName)<Function>cmsDeleteTag()

Deletes a tag from a profile.

int32 cmsEndTagIteration(
CMSContext ctxt,
CMSTagIterator
iterator)<Function>cmsEndTagIteration(
)

Terminates an iteration and disposes of
the iterator.

Function Description

Tag Functions

65

int32 cmsFreeTagValue(
CMSContext ctxt,
icTagSignature name,
void
*data)<Function>cmsFreeTagValue()

Frees tag data returned by cmsGetTag(),
cmsGetTagProfileSpec(), or
cmsNextTagIteration().

int32 cmsGetTag(
CMSContext ctxt,
CMSProfile prof,
icTagSignature name,
icTagTypeSignature *type,
uint32 *size,
void **data) <Function>cmsGetTag()

Gets data from a profile tag.

int32 cmsNextTagIteration(
CMSContext ctxt,
CMSTagIterator iterator,
icTagSignature *name,
icTagTypeSignature *type,
uint32 *size,
void
**data)<Function>cmsNextTagIteration()

Gets the next tag in an iteration.

int32 cmsSetTag(
CMSContext ctxt,
CMSProfile prof,
icTagSignature name,
uint32 size,
void *data)<Function>cmsSetTag()

Sets the tag name for the profile prof. If
name doesn’t exist in prof, creates the tag.

int32 cmsStartTagIteration(
CMSContext ctxt,
CMSProfile prof,
CMSTagIterator
*iterator)<Function>cmsStartTagIteratio
n()

Creates an iterator and starts an iteration
through all tags in a profile.

Function Description

66

Appendix A: Summary of Functions and Data Structures

Transform Functions

Function Description

int32 cmsApplyTfm(
CMSContext ctxt,
CMSTfm tfm,
CMSPixelBuffer *psrc,
CMSPixelBuffer
*pdst)<Function>cmsApplyTfm()

Applies a transform to convert colors in
the pixel buffer psrc and place the results
in pdst.

int32 cmsCheckGamut(
CMSContext ctxt,
CMSTfm tfm,
CMSPixelBuffer *psrc,
unsigned char
*pgamutmap)<Function>cmsCheckGamut
()

Checks whether transformed pixel colors
are in or out of gamut.

int32 cmsCreateGamutCheck(
CMSContext ctxt,
int32 profileCount,
CMSProfile *profs,
icSignature cmm,
CMSTfm
*ptfm)<Function>cmsCreateGamutChec
k()

Creates a transform to be used for a
gamut check.

int32 cmsCreateTfm(
CMSContext ctxt,
int32 profileCount,
CMSProfile *profs,
icSignature cmm,
CMSTfm
*ptfm)<Function>cmsCreateTfm()

Creates a transform from a set of profiles
and a CMM.

int32 cmsDeleteTfm(
CMSContext ctxt,
CMSTfm
tfm)<Function>cmsDeleteTfm()

Deletes a transform.

CMM Functions

67

CMM Functions

CMM Information Field Parameters

cmsGetCmmInfo() uses the CMM information-field names and values in the
enumerated type CMSInfoName. The values are summarized in the following table.

Function Description

int32 cmsFreeCmmList(
CMSContext ctxt,
icSignature
*cmms)<Function>cmsFreeCmmList()

Frees memory allocated for a CMM list.

int32 cmsGetCmmInfo(
CMSContext ctxt,
icSignature cmm,
CMSInfoName name,
uint32
*value)<Function>cmsGetCmmInfo()

Gets information about a given CMM.

int32 cmsGetCmmList(
CMSContext ctxt,
uint32 *count,
icSignature
**cmms)<Function>cmsGetCmmList()

Lists the available CMMs.

int32 cmsGetDefaultCmm(
CMSContext ctxt,
icSignature
*cmm)<Function>cmsGetDefaultCmm()

Identifies the current default CMM.

Field name Description and Values

CMS_CMM_NAMECMS_CMM_NAME Registered name uniquely identifying the
CMM.
The value can be any ICC-registered
32-bit CMM name.

CMS_CMM_VERSIONCMS_CMM_VER
SION

Version of the CMM.
The value is a uint32 uniquely
distinguishing the version of the CMM
from all others

68

Appendix A: Summary of Functions and Data Structures

Data Structures

CMS_FW_VERSIONCMS_FW_VERSIO
N

Version of the Coloratura framework for
which the CMM has been programmed.
The value is 4 bytes: major version, minor
version, revision, 0.

CMS_CAN_DO_ICCMS_CAN_DO_IC If TRUE, the CMM supports ICC profiles.

CMS_MULTIPLE_OKCMS_MULTIPLE_
OK

If TRUE, the CMM supports
transformations made from more than
two profiles.

Name Declaration Description

CMSContext<Func
tion>CMSContext

typedef struct _CMSContext
*CMSContext;

Points to an opaque data structure
that stores internal working state of
the CMS.

CMSInfoName<Fu
nction>CMSInfoNa
me

typedef enum {
CMS_CMM_NAME,
CMS_CMM_VERSION,
CMS_FW_VERSION,
CMS_CAN_DO_IC,
CMS_MULTIPLE_OK
} CMSInfoName;

Holds CMM information.

CMSPixelBuffer<F
unction>CMSPixel
Buffer

typedef struct
CMSPixelBuffer_s {
uint32 width;
uint32 height;
uint32 bitsPerChannel;
uint32 bytesPerPixel;
uint32 channels;
uint32 encode;
unsigned void *data;
} CMSPixelBuffer;

Describes raster pixel data:

width in pixels
height in pixels
bitsPerChannel 1 to 12
bytesPerPixel 32-bit boundaries
channels 1, 3, 4, 5, or 6
encode color encoding (see cms.h)
data pointer to data

CMSProfile<Functi
on>CMSProfile

typedef struct _CMSProfile
*CMSProfile;

Points to an opaque data structure
that identifies profiles in memory.

Field name Description and Values

Data Structures

69

CMSProfileIterator
<Function>CMSPr
ofileIterator

typedef struct
_CMSProfileIterator
*CMSProfileIterator;

Points to an opaque data structure
that keeps track of position during
profile iterations.

CMSTagIterator<F
unction>CMSTagIt
erator

typedef struct
_CMSTagIterator
*CMSTagIterator;

Points to an opaque data structure
that keeps track of position during
tag iterations.

CMSTfm<Function
>CMSTfm

typedef struct _CMSTfm
*CMSTfm;

Points to an opaque data structure
that holds transform data.

icHeader<Function
>icHeader

This data structure is an
enumerated type declared in
the file ic.h

Lists header entries determined by
the ICC Profile Format Specification

icSignature<Functi
on>icSignature

This data type is declared in
the file ic.h

An identifier determined by the
ICC Profile Format Specification that
is typically used to identify CMMs.

icTagSignature<Fu
nction>icTagSignat
ure

This data structure is an
enumerated type declared in
the file ic.h

Lists names of tag descriptions
determined by the ICC Profile
Format Specification

icTagTypeSignature
<Function>icTagTy
peSignature

This data structure is an
enumerated type declared in
the file ic.h

An identifier determined by the
ICC Profile Format Specification.

Name Declaration Description

70

Appendix A: Summary of Functions and Data Structures

69

Appendix B

B. Listing of the Application cocoifl

This appendix presents source code for a working color conversion application that uses
the Coloratura CMS. A summary of the operations performed appears in “Example
Outline of a Color Conversion Program” on page 8. The sections of this appendix
correspond to the sections of the summary.

The program, which is called cocoifl and is in /usr/cms/examples, is written in C++
because it uses the C++ bindings of the Image Format Library (IFL) to manage image
files. However, cocoifl does not rely heavily on techniques specific to C++; programmers
who know only C can benefit from looking at this example. The IFL also has C bindings,
so you could convert cocoifl into a C program. The data flow for cocoifl is the same as
that illustrated in Figure 1-2, but without intermediate profiles.

The program cocoifl works; it is not a piece of pseudocode. Therefore, it includes code for
manipulating files and error handling, code that is, strictly speaking, irrelevant to the
Coloratura CMS.

As you look at the source code, recall that the names of Coloratura objects use the
following convention: function names start with “cms”, type names start with “CMS”,
and library constant names start with “CMS_”. The names of IFL objects begin with “ifl”.
In the following discussion, little is said about the IFL objects. For more information
about the IFL see the ImageVision Library Programming Guide and the reference page
IFL(3).

The application takes an input image file and input and destination profiles, and
performs a color conversion (hence “coco”) on an output image file. The usage is:

cocoifl [-s < src profile> | -a < src profile>] -d <dst profile> -o <outfile> <infile>

With the -s option the source profile is always used; with the -a option, the source profile
is used if the input image does not have an embedded profile. The syntax is similar to
that for the color conversion commands supplied by the Coloratura CMS; see the man
pages cocogif(1), cocojpeg(1), and cocostiff(1).

The source code for cocoifl contains two functions: an error handler and a main.

70

Appendix B: Listing of the Application cocoifl

Code for Loading Header Files

//See page 9
// cocoifl:
//
// A simple color management program
// using the Image File Library (IFL)
//

#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <getopt.h>

#include <ifl/iflError.h>
#include <ifl/iflFormat.h>
#include <ifl/iflFile.h>
#include <ifl/iflDataSize.h>
#include <ifl/iflConfig.h>
#include <ifl/iflTileIter.h>
#include <ifl/iflMinMax.h>
#include “ic.h”
#include “cms.h”

// simple function to decode IFL status, print message and exit

void
errorExit(char* prefix, iflStatus err)
{
 char msg[1024];
 iflStatusToString(err, msg, sizeof msg);
 fprintf(stderr, “cocoifl: %s: %s\n”, prefix, msg);
 exit(EXIT_FAILURE);
}

Code for Declaring Variables

71

Code for Declaring Variables

// see page 9
void
main(int argc, char* argv[])
{

 int c, fPassThru;
 char *nameAnon, *nameSrc, *nameDst, *nameIn, *nameOut;
 CMSProfile<Function>CMSProfile profSrc, profDst, profs[2];
 CMSContext<Function>CMSContext ctxt;
 CMSPixelBuffer<Function>CMSPixelBuffer pbIn, pbOut;
 CMSTfm<Function>CMSTfm tfm;
 icHeader<Function>icHeader header;
 int32 status;
 iflColorModel cm;
 void* profileData;
 int profileSize;
 void* bufOut;
 iflSize pgSizeOut, pgSizeIn;
 fPassThru = FALSE;

Code for Opening the Coloratura CMS, the Input Image File, and the Output Profile

 // see page 9

 if(cmsOpen(&ctxt) != CMS_SUCCESS) {<Function>cmsOpen()
 fprintf(stderr, “Can’t open CMS\n”);
 exit(EXIT_FAILURE);
 }
 profSrc = (CMSProfile) NULL;
 while ((c = getopt(argc, argv, “a:d:ho:s:”)) != -1) {
 switch (c) {
 case ‘a’:
 nameAnon = optarg;
 break;

 case ‘d’:
 nameDst = optarg;
 break;

 case ‘o’:
 nameOut = optarg;
 break;

72

Appendix B: Listing of the Application cocoifl

 case ‘s’:
 nameSrc = optarg;
 break;

 case ‘h’:
 default:
 fprintf(stderr, “Usage: cocoifl <infilename> <outfilename>\n”);
 exit(EXIT_FAILURE);
 }
 }

 iflStatus err;
 iflFile *in;

 if (optind < argc) {
 nameIn = argv[argc-1];
 in = iflFile::open(nameIn, O_RDONLY, &err);
 } else {
 // no filename given, read from stdin
 in = iflFile::open(0, NULL, O_RDONLY, NULL, &err);
 }

 if (in == NULL) errorExit(“Unable to open input file”, err);

 // Set up the output file. Most parameters match the input, but
 // the number of channels and colorModel may change.

 if(cmsOpenProfile(ctxt, nameDst, &profDst) != CMS_SUCCESS) {
 fprintf(stderr, “Can’t open dest profile %s\n”, nameDst);
 exit(EXIT_FAILURE); <Function>cmsOpenProfile()
 }

cmsGetProfileHeader(ctxt, profDst, &header);
<Function>cmsGetProfileHeader()

Code for Preparing the Output Pixel Buffer and Open an Output Image File

73

Code for Preparing the Output Pixel Buffer and Open an Output Image File

// page 10
pbOut.encode = header.colorSpace;
pbOut.channels = 3;
switch (header.colorSpace) {
case icSigXYZData:
case icSigLabData:
case icSigLuvData:
case icSigYCbCrData:
case icSigYxyData:
 cm = iflMultiSpectral;
 break;

case icSigRgbData:
 // this is needed for GIF in particular
 if (in->getColorModel() == iflRGBPalette)
 cm = iflRGBPalette;
 else
 cm = iflRGB;
 break;

case icSigGrayData:
 cm = iflLuminance;
 pbOut.channels = 1;
 break;

case icSigHsvData:
 cm = iflHSV;
 break;

case icSigHlsData:
case icSigCmykData:
 cm = iflCMYK;
 pbOut.channels = 4;
 break;

case icSigCmyData:
 cm = iflCMY;
 pbOut.channels = 3;
 break;

74

Appendix B: Listing of the Application cocoifl

case icSig2colorData:
 pbOut.channels = 2;
 cm = iflMultiSpectral;
 break;
case icSig15colorData:
 pbOut.channels++;
case icSig14colorData:
 pbOut.channels++;
case icSig13colorData:
 pbOut.channels++;
case icSig12colorData:
 pbOut.channels++;
case icSig11colorData:
 pbOut.channels++;
case icSig10colorData:
 pbOut.channels++;
case icSig9colorData:
 pbOut.channels++;
case icSig8colorData:
 pbOut.channels++;
case icSig7colorData:
 pbOut.channels++;
case icSig6colorData:
 pbOut.channels++;
case icSig5colorData:
 pbOut.channels++;
case icSig4colorData:
 pbOut.channels++;
case icSig3colorData:
 pbOut.channels++;
 cm= iflMultiSpectral;
 break;
}

Code for Selecting an Input Profile

75

iflSize sizeSetup;
in->getSize(sizeSetup, in->getOrientation());
if (cm != iflRGBPalette)
 sizeSetup.c = pbOut.channels;
iflFileConfig cfgOut = iflFileConfig(&sizeSetup,
 in->getDataType(),
 in->getOrder(),
 cm,
 in->getOrientation(),
 in->getCompression());
iflFile *out = iflFile::create(nameOut,
 in,
 &cfgOut,
 in->getFormat(),
 &err);
if (out == NULL) errorExit(“Unable to create output file”, err);

Code for Selecting an Input Profile

// see page 10

// Try to open a source profile. Here’s the order we search:
// 1) profile specified with -s
// 2) embedded profile
// 3) profile specified with -a
// 4) default profile
// if any of these are specified and fail, we just pass the
// image through unmodified

76

Appendix B: Listing of the Application cocoifl

if (nameSrc != (char *) NULL) {
 // profile specified with -s is always used
 if(cmsOpenProfile(ctxt, nameSrc, &profSrc) != CMS_SUCCESS) {
 fprintf(stderr, “Can’t open source profile %s\n”, nameSrc);
 fPassThru = TRUE;<Function>cmsOpenProfile()
 }
} else if (in->getICCProfile(profileSize, profileData) == iflOKAY) {
 // look for embedded profile.
 if (cmsImportProfile(ctxt, (uint32) profileSize, profileData,
 &profSrc) != CMS_SUCCESS) {
 fprintf(stderr, “Can’t open embedded profile”);
 fPassThru = TRUE;<Function>cmsImportProfile()
 }
 in->freeICCProfile(profileData);
} else if (nameAnon != (char *)NULL) {
 // look for anonymous profile
 if(cmsOpenProfile(ctxt, nameAnon, &profSrc) != CMS_SUCCESS) {
 fprintf(stderr, “Can’t open anonymous profile %s\n”, nameAnon);
 fPassThru = TRUE;
 }
} else {
 // look for default profile based on number of image type
 switch(in->getColorModel()) {
 case iflRGB:
 if(cmsOpenProfile(ctxt, CMS_DEFAULT_MONITOR, &profSrc) !=
 CMS_SUCCESS) {
 fprintf(stderr, “Can’t open default profile %s\n”,
 CMS_DEFAULT_MONITOR);
 fPassThru = TRUE;
 }
 break;
 case iflCMYK:
 if(cmsOpenProfile(ctxt, CMS_DEFAULT_CMYK, &profSrc) !=
 CMS_SUCCESS) {
 fprintf(stderr, “Can’t open default profile %s\n”,
 CMS_DEFAULT_CMYK);
 fPassThru = TRUE;
 }
 break;
 default:
 fPassThru = TRUE;
 break;
 }
}

Code for Creating a Transform and Initializing Buffers

77

Code for Creating a Transform and Initializing Buffers

// see page 10

if (!fPassThru) {
 profs[0] = profSrc;
 profs[1] = profDst;
 if((status = cmsCreateTfm(ctxt, 2, profs,
 CMS_USE_DEFAULT_CMM, &tfm)) != CMS_SUCCESS) {
 fprintf(stderr, “Can’t create the transform: returned %d\n”,
 status);
 fPassThru = TRUE;<Function>cmsCreateTfm()
 }
}

out->getPageSize(pgSizeOut, out->getOrientation());
pbOut.bitsPerChannel = 8;
pbOut.bytesPerPixel = pbOut.channels;
pbIn.bitsPerChannel = 8;

if (cm == iflRGBPalette) {
 const iflColormap *cmap;

 in->getColormap(cmap);
 int numChan = cmap->getNumChans();
 iflDataType dataType = cmap->getDataType();
 int length = cmap->getLength();

 if (numChan == 3 && dataType == iflUChar) {
 unsigned char buf[768], *pc;
 unsigned char *pr = (unsigned char *)cmap->getChan(0);
 unsigned char *pg = (unsigned char *)cmap->getChan(1);
 unsigned char *pb = (unsigned char *)cmap->getChan(2);

 // interleave the channels
 pc = buf;
 for (int i = 0; i < length; i++) {
 *pc++ = *pr++;
 *pc++ = *pg++;
 *pc++ = *pb++;
 }
 pbOut.width = length;
 pbOut.height = 1;
 pbOut.data = buf;

78

Appendix B: Listing of the Application cocoifl

 pbIn.width = length;
 pbIn.height = 1;
 pbIn.channels = 3;
 pbIn.bytesPerPixel = 3;
 pbIn.encode = icSigRgbData;
 pbIn.data = buf;

 if ((status = cmsApplyTfm(ctxt, tfm, &pbIn, &pbOut)) !=
 CMS_SUCCESS){
 fprintf(stderr, “Can’t apply tfm: returned %d\n”, status);
 exit (EXIT_FAILURE);<Function>cmsApplyTfm()
 }

 unsigned char bufOut[768];
 pr = bufOut;
 pg = pr + 256;
 pb = pg+256;
 pc = buf;
 // repack the channels
 for (i = 0; i < length; i++) {
 *pr++ = *pc++;
 *pg++ = *pc++;
 *pb++ = *pc++;
 }

 iflColormap cmapOut = iflColormap(bufOut, 3, dataType, 0,
 length -1);
 cmapOut.setData(bufOut);
 out->setColormap(&cmapOut);
 }
 fPassThru = TRUE;
} else if (!fPassThru) {

 // allocate an output buffer for modified pixels
 int bufsizeOut = iflDataSize(out->getDataType(), pgSizeOut);

 bufOut = new char [bufsizeOut];
 if (bufOut == NULL) {
 fprintf(stderr, “cocoifl: unable to allocate %d bytes\n”,
 bufsizeOut);
 exit(EXIT_FAILURE);
 }
 pbOut.data = bufOut;
}

Code for Embedding the Output Profile in the Output Image File

79

// now set up the input
cmsGetProfileHeader(ctxt, profSrc, &header);
<Function>cmsGetProfileHeader()
pbIn.channels = in->getCsize();
pbIn.bytesPerPixel = pbIn.channels; // XXX only 1 byte/channel for now
pbIn.encode = header.colorSpace;

in->getPageSize(pgSizeIn, in->getOrientation());
int bufsizeIn = iflDataSize(in->getDataType(), pgSizeIn);
void* bufIn = new char [bufsizeIn];
if (bufIn == NULL) {
 fprintf(stderr, “cocoifl: unable to allocate %u bytes\n”,
 bufsizeIn);
 exit(EXIT_FAILURE);
}
pbIn.data = bufIn;
if (fPassThru) {
 // We’ll just copy output from input without any color transform
 // on the pixels. There may already have been a tranform on the
 // colormap.
 pbOut.data = bufIn;
}

int sizeProf;
void *dataProf;

Code for Embedding the Output Profile in the Output Image File

// see page 11

if (cmsExportProfile(ctxt, profDst, (uint32 *) &sizeProf, (void **)
 &dataProf) == CMS_SUCCESS)
{<Function>cmsExportProfile()
 (void) out->setICCProfile(sizeProf, dataProf);
 cmsFreeProfileExport(ctxt,
dataProf);<Function>cmsFreeProfileExport()
}

Code for Transforming Pixel Data and Cleaning Up

// see page 11
iflSize sizeOut;

80

Appendix B: Listing of the Application cocoifl

out->getSize(sizeOut, out->getOrientation());
iflConfig config(out->getDataType(), out->getOrder(), sizeOut.c,
 NULL, 0, out->getOrientation());

iflTileIter iter(iflTile3Dint(0, 0, 0, sizeOut.x, sizeOut.y,
 sizeOut.z), pgSizeOut, sizeOut.c);

while (iter.more()) {
 iflSize rwSize(iflMin(sizeOut.x - iter.x, pgSizeOut.x),
 iflMin(sizeOut.y - iter.y, pgSizeOut.y),
 iflMin(sizeOut.z - iter.z, pgSizeOut.z),
 iflMin(sizeOut.c - iter.c, pgSizeOut.c));

 err = in->getTile(iter.x, iter.y, iter.z,
 rwSize.x, rwSize.y, rwSize.z,
 bufIn, &config);
 if (err != iflOKAY) errorExit(“Couldn’t read page from input”,
 err);

 if (!fPassThru) {
 // the width and height may change with each tile
 pbOut.width = pbIn.width = rwSize.x;
 pbOut.height = pbIn.height = rwSize.y;
 if ((status = cmsApplyTfm(ctxt, tfm, &pbIn, &pbOut)) !=
 CMS_SUCCESS){
 fprintf(stderr, “Can’t apply tfm: returned %d\n”, status);
 exit (EXIT_FAILURE);<Function>cmsApplyTfm()
 }
 }

 err = out->setPage(pbOut.data, iter.x, iter.y, iter.z, iter.c,
 rwSize.x, rwSize.y, rwSize.z, pbOut.channels);
 if (err != iflOKAY) errorExit(“Couldn’t write page to output”,
 err);
}
delete[] bufIn;
delete[] bufOut;
err = out->flush();
if (err != iflOKAY) errorExit(“Error flushing output file”, err);
err = out->close();
if (err != iflOKAY) errorExit(“Error closing output file”, err);
err = in->close();
if (err != iflOKAY) errorExit(“Error closing input file”, err);

}

81

Glossary

abstract profile

A profile for making color changes by transforming data within the profile connection
space; it does not represent any device. The color space of the input and output data is
that of the profile connection space, and so abstract profiles cannot be embedded in an
image.

CIE

Commission Internationale de l’Éclairge (International Commission on Illumination).

CMM

See color manipulation module.

CMS

See color management system.

CMYK

Cyan, magenta, yellow, and black primaries, typically used to define color in printers.
Black is included to increase the gamut and because it is difficult to get a true black by
mixing cyan, magenta, and yellow. Including black also reduces the total amount of ink
required and shortens drying times.

color gamut

The range of colors that can be produced by a particular device. When transforming color
data from one device to another, the gamuts might not match. This is one source of color
distortion. For information about how you can check for this effect, see “Checking
Gamut Mapping” on page 53.

color management system

Software to facilitate manipulation of color images and ICC profiles to obtain
appropriate transformed images.

82

Glossary

color manipulation module

The software that performs the calculations necessary for color transformations.

color space

A system for specifying colors. The human visual system allows the description of all
colors with the values of just three parameters; colors thus define an abstract volume.
Exactly how coordinate axes are defined in the volume distinguishes color spaces from
each other. For example, the set of phosphors and input values for each determines the
color space of a monitor. The CIE has defined color spaces that attempt to more
accurately reflect human perception of colors; the better known are referred to as
CIEXYZ and CIELAB.

device-link profile

A profile that is useful if you repeatedly use a particular series of (device and non-device)
profiles that begins and ends with device profiles; it concatenates the series and so
defines a one-profile link between devices. Referred to as a DeviceLink profile in the ICC
Profile Format Specification. Because of its device-specific nature, it does not make sense to
embed this profile in an image file.

gamut mapping

If all colors are not mapped within the gamut of the output color space, which is
determined by the output profile, a gamut mapping is needed to determine how to
transform points in the input color space that would otherwise map out of gamut. Some
of the things you can do in response to the need for gamut mapping are: change the input
data, change profiles, set a flag.

ICC

International Color Consortium. See http://www.color.org, where you can find the ICC
Profile Format Specification.

primary colors

The colorants that are combined to produce all colors in a device’s gamut. Typically three
primaries are needed, corresponding to the three dimensions of the color space.

profile

Characterizes a device’s color space by specifying a mapping of it into either of two
device-independent color spaces, CIELAB or CIEXYZ, developed by the CIE to describe
color appearance. The Coloratura CMS uses the profile format described by the ICC
Profile Format Specification, which can be found at http://www.color.org.

Glossary

83

profile connection space

A color space based on the human visual system that allows a device independent
description of color; it is used to characterize how colors are produced by input and
output device color spaces and so allow color translation between devices. A device
profile defines a mapping between the device’s color space and the profile connection
space and is defined by color measurements. The profile connection space uses either
CIELAB or CIEXYZ color space. See the ICC Profile Format Specification, especially Annex
A, for more details.

rendering intent

A tag in a profile to indicate how to reconcile differences between input and output
gamuts when image data characterized by the profile are transformed. See the ICC Profile
Format Specification for more details.

RGB

Red, green, and blue primary colors, typically used to specify colors on monitors or other
devices that use additive color.

tag

Subsets of profile data that are defined by the ICC Profile Format Specification.

transform

Converts points from one color space to another: typically from the color space of an
input device to that of an output device. A transform may include intermediate color
adjustments. A transform is defined by a sequence of profiles and the computational
algorithm in the CMM.

85

cmsEndTagIteration(), 36, 39, 64
cmsExportProfile(), 33, 62, 79
cmsFreeCmmList(), 14, 59, 66
cmsFreeProfileExport(), 33, 62, 79
cmsFreeTagValue(), 38, 40, 41, 43, 64
cmsGetCmmInfo(), 58, 59, 60, 66
cmsGetCmmList(), 14, 58, 66
cmsGetDefaultCmm(), 58, 66
cmsGetHeaderProfileSpec(), 22
cmsGetProfileHeader(), 25, 30, 62, 72, 79
cmsGetProfileSpecHeader(), 30, 63
cmsGetTag(), 40, 64
cmsImportProfile(), 34, 63, 76
CMSInfoName, 59, 67
cmsNextProfileIteration(), 22, 24, 63
cmsNextTagIteration(), 36, 38, 64
cmsOpen(), 15, 62, 71
cmsOpenProfile(), 26, 36, 63, 72, 76
CMSPixelBuffer, 47, 67, 71
CMSProfile, 26, 67, 71
CMSProfileIterator, 22, 23, 68
cmsSaveProfile(), 28, 31, 63
cmsSaveProfileAs(), 28, 32, 63
cmsSetProfileHeader(), 30, 63
cmsSetTag(), 36, 38, 41, 64
cmsStartProfileIteration(), 22, 24, 63
cmsStartTagIteration(), 36, 38, 65
CMSTagIterator, 36, 37, 68

B

bold type, xiii

C

CMS_CAN_DO_IC, 60, 67
CMS_CMM_NAME, 59, 66
CMS_CMM_VERSION, 59, 66
CMS_DEFAULT_CMYK, 22
CMS_DEFAULT_MONITOR, 22
CMS_DEFAULT_PATH, 22, 27
CMS_FW_VERSION, 60, 67
CMS_MULTIPLE_OK, 60, 67
CMS_USE_DEFAULT_CMM, 49, 54
CMS_USE_PROFILE_CMM, 49, 54
cmsApplyTfm(), 47, 50, 65, 78, 80
cmsCheckGamut(), 47, 53, 55, 65
cmsClose(), 16, 62
cmsCloseProfile(), 26, 27, 62
CMSContext, 15, 67, 71
cmsCreateGamutCheck(), 53, 65
cmsCreateProfile(), 29, 62
cmsCreateTfm(), 49, 53, 57, 65, 77
cmsDeleteProfile(), 26, 28, 62
cmsDeleteTag(), 42, 64
cmsDeleteTfm(), 52, 65
cmsEndProfileIteration(), 22, 25, 62

Index

86

Index

CMSTfm, 47, 68, 71
cmsTfmToLUT(), 51
cocoifl, 8

E

environment variable
CMS_DEFAULT_PATH, 22, 27

environment variables, xiii

F

filenames, xiii
functions, xiii

I

icHeader, 30, 68, 71
icSignature, 49, 57, 68
icTagSignature, 35, 68
icTagTypeSignature, 35, 68
Image Format Library (IFL), 9
italics type, xiii

M

memory management, 14
message catalog, 14

P

parentheses, xiii
profile iteration, 22
publication titles, xiii

Q

quotation marks, xiii

T

tag iteration, 36
titles of publications, xiii

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3442-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

