
Cosmo 3D™

Programmer’s Guide

Document Number 007-3445-001

Cosmo 3D™ Programmer’s Guide
Document Number 007-3445-001

CONTRIBUTORS

Written by George Eckel
Illustrated by Dany Galgani
Engineering contributions by John Rohlf, Brad Grantham, Chris Tanner, Rich Silba,

Michael Jones.

© 1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and the Silicon Graphics logo are registered trademarks of Silicon
Graphics, Inc. Cosmo 3D, ImageVision, Inspector, OpenGL Optimizer, Open
Inventor, and Performer are trademarks and OpenGL is a registered trademark of
Silicon Graphics, Inc. Java is a registered trademark of Sun Microsystems, Inc.

iii

Contents at a Glance

List of Figures xv

List of Tables xvii

About This Guide xix
What This Guide Contains xix
Who Should Read This Guide xx
What You Should Know Before Reading This Book xx
Suggestions for Further Reading xxi
Style Conventions xxi

1. Introduction to Cosmo 3D 1
Cosmo 3D Overview 1
Cosmo 3D Contents 2

2. Your First Cosmo 3D Application 7
Cube.cxx Explained 8
Understanding the Different Parts of Cube.cxx 16
Scene Graph 16

3. Creating Geometries 23
Using Large Geometries 24
Creating csGeoSet Objects 24
csGeoSet Attributes 27
Setting Attributes 29
Cosmo 3D-Derived csGeoSet Objects 36

4. Specifying the Appearance of Geometries 43
Specifying the Appearance of a Geometry 43
Changing the Context 44
Using csAppearance 45

iv

Contents at a Glance

Applying Textures to Geometries 47
Material Settings 55
Transparency Settings 57

5. Scene Graph Nodes 59
What Is a Node 59
Leaf Nodes 61
Group Nodes 61
Setting the Values in Scene Graph Nodes 63

6. Building a Scene Graph 67
Creating Scene Graphs 68
Diagramming Scene Graphs 70
Altering Scene Graphs 74
Loading a VRML Scene Graph 75
Saving Scene Graphs 76
Troubleshooting Scene Graph Construction 76

7. Placing Shapes in a Scene 77
Creating a Sense of Depth 77
Transforming Shapes to New Locations, Sizes, and Orientations 78

8. Traversing the Scene Graph 83
Scene Graph Actions 83
The Order In Which Actions Are Passed Between Nodes 86

9. Lighting 89
Using Lights in Scenes 89
Limiting the Scope of Lights 91
Shade Model Settings 92
Making the Screen One Color 93

10. Viewing the Scene 95
Setting the Screen Display of the Scene 95
Using a Camera to View a Scene 96

Contents at a Glance

v

11. Scene Graph Engines 101
Engines 101
Engines that Interpolate Values 104
Engines That Change Shapes 110

12. User Interface Mechanisms 115
Creating Your Own Window 115
Creating a csWindow 116
Handling User Input 118
Selecting Screen Objects 119

13. Optimizing Rendering 123
Reducing the Number of Vertices Rendered 123
Performance Programming Techniques 127

14. Adding Sounds To Virtual Worlds 131
Overview 131
How to Play a Sound File 137
Specifying Audio Files 139
Playing Sound in Immediate Mode 141

A. Cosmo Basic Types 143
Array Storage Class Types 143
Vector Classes 147
Bounding Volumes 150
Field Classes 151
Other Math Classes 154

Index 157

vii

Contents

List of Figures xv

List of Tables xvii

About This Guide xix
What This Guide Contains xix
Who Should Read This Guide xx
What You Should Know Before Reading This Book xx
Suggestions for Further Reading xxi
Style Conventions xxi

1. Introduction to Cosmo 3D 1
Cosmo 3D Overview 1
Cosmo 3D Contents 2

Fundamentals 2
Graphics State 2
Geometry 2
Grouping Nodes 3
Leaf Nodes 3
Engines 3
Sound 4
Traversals 4
Cameras and Viewing 4
Basic Classes 4
Geometry Attributes 5
Field Types 5

2. Your First Cosmo 3D Application 7
Cube.cxx Explained 8
Understanding the Different Parts of Cube.cxx 16

viii

Contents

Scene Graph 16
Relating Local Space to World Space 18
Creating the User Interface 20
Rendering World Space 20
Summary 20

3. Creating Geometries 23
Using Large Geometries 24
Creating csGeoSet Objects 24

csGeoSet Fields 26
Setting the Number of Primitives 26

csGeoSet Attributes 27
Attribute Bindings 27

Setting Attribute Bindings 28
Setting Attributes 29

Indexing Attributes 30
When to Index Attributes 31

Specifying Attributes 32
Using More Specific Attribute Arrays 33
Setting Attributes Sequentially 34
Indexing Attributes 34

Setting Attributes Example 35
Cosmo 3D-Derived csGeoSet Objects 36

Using csPointSet 36
Using csLineSet 37
Using csIndexedLineSet 37
Using csLineStripSet 37
Using csTriSet 38
Using csTriFanSet 38
Using csTriStripSet 38
Using csPolySet 39
Using csSprite 39
Using csQuadSet 41
Using csIndexedFaceSet 41

Contents

ix

4. Specifying the Appearance of Geometries 43
Specifying the Appearance of a Geometry 43

csContext and csAppearance Differences 44
Changing the Context 44
Using csAppearance 45

Inheriting Appearance Values 45
Setting Appearance Fields Locally 45

Lazy Updating of Appearance Values 46
Applying Textures to Geometries 47

Texture Map Coordinates 47
Applying a Texture 48
Specifying a Texture Image 49

Texture Mode Settings 49
Texture Environment Settings 50

Color Components 51
Specifying Texture Coordinates 52

Using the Default 52
Using the Texture Coordinate Function 53
Setting the csTexGen Mode 54
Enabling Texture Generation 55

Material Settings 55
Material Example 56

Filling Geometries 56
Transparency Settings 57

Producing Transparency Without Blending 57

5. Scene Graph Nodes 59
What Is a Node 59

Node Types 60
Leaf Nodes 61

csShape 61

x

Contents

Group Nodes 61
Group Node Types 62
Switching Between Nodes 63

Using csSwitch 63
Setting the Values in Scene Graph Nodes 63

Using set() and get() Methods to Set and Get Single-Value Fields 64
Using Tokens to Set and Get Single-Value Fields 64
Using set() and get() Methods to Set and Get Multiple-Value Fields 65
Using Tokens to Set and Get Multiple-Value Fields 65

6. Building a Scene Graph 67
Creating Scene Graphs 68

Root Node 68
Applying Actions to Root Nodes 69
Creating A Sample Scene Graph 70

Diagramming Scene Graphs 70
Scene Graph Diagrams At A Glance 71

Altering Scene Graphs 74
Loading a VRML Scene Graph 75
Saving Scene Graphs 76
Troubleshooting Scene Graph Construction 76

7. Placing Shapes in a Scene 77
Creating a Sense of Depth 77

Overriding the Default Order of Layering Shapes 77
Transforming Shapes to New Locations, Sizes, and Orientations 78

Placing Transform Nodes 79
Setting the Transformation 79
Ordering Transformations 81
Placing Geometries in World Space 81
Locating Transformation Nodes in Scene Graphs 82
 Cosmo 3D Matrices 82

Contents

xi

8. Traversing the Scene Graph 83
Scene Graph Actions 83

Action Types 84
Deriving from csAction 84
Rendering the Scene 85
Playing Sound Files 85

The Order In Which Actions Are Passed Between Nodes 86
Top-Down Traversals 86

9. Lighting 89
Using Lights in Scenes 89

csLight 89
csDirectionalLight 90
csSpotLight 90
csPointLight 91

Limiting the Scope of Lights 91
The Scope of the Light Array 92
csEnvironment Methods 92

Shade Model Settings 92
Making the Screen One Color 93

10. Viewing the Scene 95
Setting the Screen Display of the Scene 95
Using a Camera to View a Scene 96

csCamera 97
csOrthoCamera 99
csPerspCamera 99

11. Scene Graph Engines 101
Engines 101

Input and Output Fields 102
Engine Terminology 102
Connecting Engines to Other Nodes 103
Engine Types 104

xii

Contents

Engines that Interpolate Values 104
csSpline 105

Keys and Key Values 106
Different Orders of Splines 107
csSpline Fields 107
csColorInterpolator 107
csCoordinateInterpolator 108
csNormalInterpolator 108
csOrientationInterpolator 109
csPositionInterpolator 109
csScalarInterpolator 109
csSelectorEng 110
csSelectorEng3f and csSelectorEng4f 110

Engines That Change Shapes 110
csMorphEng 110

csMorphEng Fields 111
csMorphEng3f and csMorphEng4f 111

csTransformEng 112
csTransformEng3f 113

12. User Interface Mechanisms 115
Creating Your Own Window 115
Creating a csWindow 116

Manipulating the Window Stack 117
Handling User Input 118

Handling Multiple Events 118
Handling Mouse Events 118

Selecting Screen Objects 119
Using csIsectAction 119
Using Pick() 120
Storing Selected Screen Objects 120

Contents

xiii

13. Optimizing Rendering 123
Reducing the Number of Vertices Rendered 123

Face Culling 123
Culling the View Frustum 124
Level of Detail Reduced for Performance 125

Choosing a Child Node Based on Range 125
Transitioning Between Levels of Detail 126

Performance Programming Techniques 127
Minimize Use of csAppearance Fields 128
Minimize Use of csAppearance Modes 128
Indexing csGeoSet Attributes 128
Setting the Transformation Matrix Directly 128
Compiling Part of a Scene Graph 129

14. Adding Sounds To Virtual Worlds 131
Overview 131

csSound Fields 132
Choosing Sound Samples to Play 133

Sound Priority 133
Playing the Sound File 134
Locating and Directing the Sound 134

Reverse Direction Sound 136
csSound Methods 137

How to Play a Sound File 137
Specifying Audio Files 139

Manipulating the Audio Samples Directly 140
Example Setting a csAudioSamples Node 141

Playing Sound in Immediate Mode 141
csSoundPlayer Methods 142

xiv

Contents

A. Cosmo Basic Types 143
Array Storage Class Types 143

Data Class 144
Array Classes 144

Array Methods 145
Vector Classes 147

Vector Math 147
Vector Methods 147

csVec4ub Methods 149
Transforming csVec3f Vectors 149

Bounding Volumes 150
Field Classes 151

csField 151
csFieldInfo 152
csMField 152
csAtomField 153
csArrayField 153

Other Math Classes 154
csSeg 154
csPlane 155
csFrustum 155

Index 157

xv

List of Figures

Figure 2-1 Cube Application 7
Figure 2-2 Cube Scene Graph 17
Figure 2-3 Two transformation into World Space 19
Figure 3-1 Primitives in a csGeoSet 25
Figure 3-2 Sequential Specification of Attributes Per Primitive 30
Figure 3-3 Indexed Attributes 31
Figure 3-4 Deciding Whether to Index Attributes 32
Figure 3-5 Stride and Offset Values 34
Figure 3-6 TriFanSet 38
Figure 3-7 Triangle Strip 39
Figure 4-1 Applying a Texture to a Geometry 47
Figure 4-2 Texture Coordinates 48
Figure 4-3 Non-Perspective and Perspective Modes 50
Figure 4-4 Texture Coordinate Function 53
Figure 4-5 Repeated Texture on a Geometry 54
Figure 5-1 A Simple Grouping 62
Figure 5-2 Setting Single and Multiple-Value Variables 64
Figure 6-1 Scene Graph 67
Figure 6-2 Multiple Root Nodes 69
Figure 6-3 Simple Scene Graph 71
Figure 6-4 Two Sets of Data Rendered Differently 72
Figure 6-5 Torso Subgraph 73
Figure 6-6 Showing the Same Geometry in Two Locations 74
Figure 7-1 Placement of csTransform Nodes 79
Figure 7-2 Scaling in Different Orientations 80
Figure 7-3 Order of Transformations 81
Figure 7-4 Placement of a Transformation Node 82

xvi

List of Figures

Figure 8-1 The Flow of an Action Through A Scene Graph 86
Figure 10-1 Viewport 96
Figure 10-2 Aspect Ratio 97
Figure 10-3 Changing the Window Without Changing the Image’s Aspect 98
Figure 10-4 Perspective Explained 100
Figure 11-1 Engine Terminology 103
Figure 11-2 Keys and Key Values 105
Figure 11-3 Spline 106
Figure 12-1 Creating Your Own Window 116
Figure 12-2 Ray Pick Action 119
Figure 13-1 csLOD Ranges 127
Figure 13-2 Arranging Scene Graph Nodes 130
Figure 14-1 Sound Classes 132
Figure 14-2 Sound Direction 135
Figure 14-3 Forward and Reverse Sound Propagation 136
Figure A-1 Bounding Sphere 150

xvii

List of Tables

Table 3-1 Attribute Bindings 28
Table 5-1 Examples of Fields in Nodes 60
Table 14-1 csAudioClip Fields 138
Table 14-2 Fields of csSoundSamples 139

xix

About This Guide

Cosmo 3D™ is a new toolkit that brings 3D graphics programming to desktop
applications. Cosmo 3D is new, but similar to concepts developed in Open Inventor™,
Performer™, and OpenGL®.

This guide shows you how to develop Cosmo 3D applications. Included are descriptions
of Cosmo 3D applications that you can run on your workstation, as well as code
examples that you can use as a guide when developing your Cosmo 3D applications.

What This Guide Contains

This guide presents information about Cosmo 3D in a task-oriented manner: the topics
in this guide are arranged to coincide with the order in which you need to refer to them
while writing a Cosmo 3D application. To illustrate the use of Cosmo 3D, code examples
are sprinkled throughout the guide. Additional sample source code is provided in the
cosmo1.0/cosmo/test/C++ directory.

Brief descriptions of the chapters in this guide follow:

• Chapter 1, “Introduction to Cosmo 3D,” provides an overview of Cosmo 3D.

• Chapter 2, “Your First Cosmo 3D Application,” introduces you to a simple Cosmo
3D application that is included in the cosmo1.0/cosmo/test/C++ directory, called
cube.cxx.

• Chapter 3, “Creating Geometries,” discusses large, ready-made geometries, such as
csSphere and csCube objects, how to create your own csGeoSet-derived classes,
and how to use the csGeoSet-derived classes provided by Cosmo 3D.

• Chapter 4, “Specifying the Appearance of Geometries,” describes the appearance
fields in csContext and csAppearance.

• Chapter 5, “Scene Graph Nodes,” describes nodes and node types.

• Chapter 6, “Building a Scene Graph,” describes how to build and edit a scene
graph.

xx

About This Guide

xx

• Chapter 7, “Placing Shapes in a Scene,” describes how to place shapes in scenes.

• Chapter 8, “Traversing the Scene Graph,” describes how an action traverses a scene
graph and a description of the actions available in Cosmo 3D.

• Chapter 9, “Lighting,” describes how to use lights, change the shadow modeling,
and change the screen to one color.

• Chapter 10, “Viewing the Scene,” describes how to set up the viewport and how to
use cameras to view a scene.

• Chapter 11, “Scene Graph Engines,” describes csEngine and the multiple subclasses
derived from it

• Chapter 12, “User Interface Mechanisms,” discusses how to implement user
interaction using X window code, csWindow, and selection mechanisms.

• Chapter 13, “Optimizing Rendering,” describes the Cosmo 3D nodes and
programming techniques that can help optimize your application’s performance.

• Chapter 14, “Adding Sounds To Virtual Worlds,” describes how to set and play
sound using Cosmo 3D.

• Appendix A, “Cosmo Basic Types,” discusses all of the basic types that are used in
other Cosmo 3D classes.

These chapters are followed by an index.

Who Should Read This Guide

This guide is written for developers of Optimizer applications. Developers use Cosmo
3D scene graph nodes and actions to develop OpenGL Optimizer™ applications.

What You Should Know Before Reading This Book

This guide is written with the assumption that the reader is experienced with

• C++

• Character animation

This book does not review C++ programming techniques; it is assumed that the reader
can read and program in C++. This book does not cover character animation directly.

About This Guide

xxi

Suggestions for Further Reading

For information about Open Inventor, see the following:

• Wernecke, Josie, The Inventor Mentor. Reading, Mass.:Addison Wesley 1994

• Wernecke, Josie, The Inventor Toolmaker. Reading, Mass.:Addison Wesley 1994

• Open Inventor Architecture Group, Open Inventor C++ Reference Manual.
Mass.:Addison Wesley 1994

Style Conventions

These style conventions are used in this guide:

• Bold—Functions, class names, node names, data members, and data types

• Italics—Variables, filenames, spatial dimensions, and commands

• Regular—Program names and enumerated types

Code examples are set off from the text in a fixed-space font.

1

Chapter 1

1. Introduction to Cosmo 3D

Cosmo 3D is a toolkit that brings 3D graphics programming to desktop applications. The
toolkit is designed to provide fast, general 3D rendering across a wide range of
platforms, from PCs to workstations. Cosmo 3D defines a C++ interface for
high-performance, 3D desktop applications.

This book presents the developer’s view of the Cosmo 3D’s C++ library with C++
examples.

These are the sections in this chapter:

• “Cosmo 3D Overview” on page 1.

• “Cosmo 3D Contents” on page 2.

Cosmo 3D Overview

Cosmo 3D is a platform-independent graphics toolkit that brings ultra-high
performance, real-time, 3D applications to the Internet and the desktop.

Cosmo 3D is independent of its underlying rendering architecture enabling maximum
portability across all hardware platforms. Developed concurrently on both mainstream
personal computers (PCs), as well as high-end professional workstations, Cosmo 3D
provides extensive stability.

Cosmo 3D provides high-performance 3D graphics technology for developers of
powerful desktop applications. With advanced features, such as a scene graph
architecture, morphing, view culling, level of detail (LOD), 2D texture mapping, and
spatialized audio, Cosmo 3D enables you to develop, for example, professional character
animations and gaming applications.

2

Chapter 1: Introduction to Cosmo 3D

Cosmo 3D Contents

The following list of class descriptions provides an overview of the functionality of the
Cosmo 3D library.

Fundamentals

• Scene Graph - A directed acyclic graph (DAG) of nodes, which represent a database.

• Node - The abstract base class for objects that may be connected to and acted upon
in a scene graph.

• Fields - Classes or simple data types that set and return node values.

• Type - Specifies the fields of a class by listing the fields that an instance of the class
contains.

Graphics State

• Context - Manages the graphics state of the rendering engine.

• Appearance - Encapsulates the graphics attributes that define the appearance of a
csGeometry object.

• Material - Defines the light reflectance characteristics of a surface.

• Texture - Defines an image that may be applied to a surface for increased detail.

• TexGen - Automatically generates texture coordinates from vertex coordinates.

Geometry

• Geometry - The abstract base class for geometric primitives.

• GeoSet - A collection of like primitives.

• PointSet - A collection of equally-sized points.

• LineStripSet - A collection of linestrips (polylines) of equal width.

• TriStripSet - A collection of triangle strips.

• TriFanSet - A collection of triangle fans.

• PolySet - A collection of polygons.

Cosmo 3D Contents

3

• IndexedFaceSet - A set of polygons.

• IndexedLineSet - A set of polylines.

• Sprite - A rectangle which is rotated to face the viewer.

Grouping Nodes

• Group - A node that may have other nodes as children.

• Switch - A group node that selects none, one, or all of its children depending on its
value.

• LOD - A switch node that selects among its children based on an evaluation
function, such as the distance between the viewer and a shape.

• Transform - Translates the coordinate system of its children into that of its parent
node.

• Environment - A grouping node that defines the scope and effect of Light and Fog.

Leaf Nodes

• Shape - A leaf node that associates a csGeometry object with a csAppearance object.

• Light - An abstract base class for light sources.

• DirectionalLight - A directional light source whose origin is at infinity.

• PointLight - A point light source that radiates equally in all directions.

• SpotLight - A conical spotlight.

• Fog - Defines the atmospheric attenuation of light.

• Sound - Defines a spatialized sound.

Engines

• Spline - Interpolates an arbitrary, non-uniform spline and outputs a weight array.

• MorphVec - An Engine that produces a weighted sum of attribute sets.

• TransformVec - An Engine that transforms a set of coordinates.

4

Chapter 1: Introduction to Cosmo 3D

Sound

• AudioClip - Contains state information about how a sound file should be played.

• AudioSamples - Contains actual sound samples in a specified format.

Traversals

• Action - An abstract traversal that maintains state and transformation stacks.

• DrawAction - Renders a scene graph.

• IsectAction - Intersects a set of line segments with a subgraph.

• SoundAction - Plays sound specified in csSound nodes.

Cameras and Viewing

• Camera - An abstract base class that defines the viewing parameters used when
rendering and picking.

• OrthoCamera - Defines an orthographic projection.

• PerspCamera - Defines a perspective projection whose frustum is symmetric.

Basic Classes

• BitMask - A collection of bits settable individually or as a range.

• Data - A raw, untyped storage similar in spirit to void *.

• Array - Optionally interleaved array classes.

• Vec2f - A two-element floating point vector.

• Vec3f - A three-element floating point vector.

• Vec4f - A four-element floating point vector.

• Matrix4f - A 4x4 floating point matrix.

• Name - A descriptive string.

• Rotation - Axis-amount representation of a rotation.

• Bound - Abstract bounding volume.

Cosmo 3D Contents

5

• BoxBound - A rectangular solid bounding volume.

• SphereBound - A spherical bounding volume.

• Frustum - Truncated pyramid used for culling.

• Seg - Line segment used for intersection.

Geometry Attributes

• CoordSet - A set of coordinates.

• NormalSet - A set of normals.

• ColorSet - A set of colors.

• TexCoordSet - A set of texture coordinates.

• IndexSet - An optional set of indices for indirection into an attribute set.

Field Types

• Single Item Fields - Single-valued field types, including SFDouble, SFEnum, SFRef,
SFString, SFInt, SFFloat, SFVec2f, SFVec3f, SFVec4f, SFBitMask, SFName,
SFMatrix4f, SFRotation.

• Multiple Item Fields - Multi-valued field types, including MFRef, MFString, MFInt,
MFFloat, MFMatrix4f, MFVec2f, MFVec3f, MFVec4f, MFRotation.

7

Chapter 2

2. Your First Cosmo 3D Application

This chapter introduces you to a simple Cosmo 3D application that is included in the
/trees/cosmo/cosmo/test/C++ directory, called cube.cxx. The executable, cube, is also
included in the same directory so you can see what the application looks like, as shown
in Figure 2-1.

Figure 2-1 Cube Application

In cube.cxx, two cubes, one red the other green, slowly revolve.

This chapter gives you the feeling of Cosmo 3D, the basic structure of its applications,
and some of the functionality you can look forward to implementing in your own

8

Chapter 2: Your First Cosmo 3D Application

applications. The remaining chapters in the book describe the classes and concepts
presented in this chapter in greater detail.

These are the sections in this chapter:

• “Cube.cxx Explained” on page 8.

• “Understanding the Different Parts of Cube.cxx” on page 16.

• “Scene Graph” on page 16.

Cube.cxx Explained

Example 2-1 shows the cube.cxx application. It also includes embedded comments (not
found in the cube.cxx file) that explain the functionality of each section of cube.cxx. The
sections that follow Example 2-1 explain the structure and functionality of the code in
more generic terms so that you can understand the principles of programming Cosmo
3D applications.

Example 2-1 cube.cxx

// Most Cosmo 3D classes comprise their own file; to use them, include
// their header files at the top of the application

include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <Cosmo3D/csField.h>
#include <Cosmo3D/csWindow.h>
#include <Cosmo3D/csColorSet.h>
#include <Cosmo3D/csNormalSet.h>
#include <Cosmo3D/csCoordSet.h>
#include <Cosmo3D/csQuadSet.h>
#include <Cosmo3D/csContext.h>
#include <Cosmo3D/csAppearance.h>
#include <Cosmo3D/csPerspCamera.h>
#include <Cosmo3D/csOrthoCamera.h>
#include <Cosmo3D/csTransform.h>
#include <Cosmo3D/csDrawAction.h>
#include <Cosmo3D/csShape.h>
#include <Cosmo3D/csPointLight.h>
#include <Cosmo3D/csMaterial.h>
#include <Cosmo3D/csEnvironment.h>

Cube.cxx Explained

9

#define RED
//#define GREEN
#define FUNKY

static csGroup* makeCube();

static csTransform* fgTransform;
static csTransform* bgTransform;
static csTransform* xxTransform;
static csAppearance* highlight;
static csEnvironment* environment;

// Start the application here

int
main(int argc, char *argv[])
{

// Parse the arguments; (-o) specifies using an orthocam
// otherwise use a perspcam

int doOrthoCam = 0;
 int doFlash = 0;

 if(argc > 1)
 {
 argv++;
 argc--;
 while(argc > 0)
 {
 if(argv[0][0] == ‘-’)
 switch(argv[0][1])
 {
 case ‘f’:
 doFlash = 1;
 break;
 case ‘o’:
 doOrthoCam = 1;
 break;
}

 argv++;
 argc--;
 }
 }

10

Chapter 2: Your First Cosmo 3D Application

 /* define scene */
 csGroup *root = makeCube();

 /* define render window */
 new csWindow(“cube”);

 /* define rendering context */
 csContext *cxt = new csContext;
 cxt->setDepthFunc(csContext::LEQUAL_DFUNC);
 cxt->setCullFace(csContext::BACK_CULL);
 cxt->makeCurrent();

 // csContext::setDepthFunc(csContext::LEQUAL_DFUNC);
 // csContext::setCullFace(csContext::BACK_CULL);

// Set up the camera

csCamera *cam;
 if (doOrthoCam)
 {
 csOrthoCamera *orthoCam = new csOrthoCamera;
 orthoCam->setWidth(4.0f);
 orthoCam->setHeight(4.0f);
 cam = orthoCam;
 }
 else
 {
 csPerspCamera *perspCam = new csPerspCamera;
 cam = perspCam;
 }

 csDrawAction *da = new csDrawAction;
 da->setCamera(cam);

 cam->draw();
 while(1)
 {
 static int frame = 0;

 if(frame % 30 == 0 && doFlash)
 csContext::pushOverrideAppearance(highlight);
 else if(frame % 30 == 15 && doFlash)
 csContext::popOverrideAppearance();

Cube.cxx Explained

11

#if 0
 if (frame == 60)
 environment->addChild(xxTransform);

#endif

 /* clear the window */
 csContext::clear(csContext::COLOR_CLEAR |
csContext::DEPTH_CLEAR);

// Render and rotate the cube in real space

#ifdef RED
 bgTransform->setRotation(1.0f, 1.0f, 0.0f, CS_DEG2RAD(frame));
#endif
#ifdef GREEN
 fgTransform->setRotation(0.5f, 0.1f, 1.0f, CS_DEG2RAD(frame));
#endif
#ifdef FUNKY
 xxTransform->setRotation(0.2f, 1.0f, 0.3f, CS_DEG2RAD(frame));
#endif

 /* draw the scene */
 da->apply(root);

 /* swap buffers */
 csWindow::swapBuffers();
 frame++;
 }
}

// Create a cube; the cube will be rendered twice

static csGroup*
makeCube()
{
 static float cubeCoords[24][3] =
 {
 {-1.0f, -1.0f, 1.0f}, { 1.0f, -1.0f, 1.0f}, /* +Z */
 { 1.0f, 1.0f, 1.0f}, {-1.0f, 1.0f, 1.0f}, /* +Z */
 {-1.0f, -1.0f, -1.0f}, {-1.0f, 1.0f, -1.0f}, /* -Z */
 { 1.0f, 1.0f, -1.0f}, { 1.0f, -1.0f, -1.0f}, /* -Z */
 { 1.0f, -1.0f, 1.0f}, { 1.0f, -1.0f, -1.0f}, /* +X */

12

Chapter 2: Your First Cosmo 3D Application

 { 1.0f, 1.0f, -1.0f}, { 1.0f, 1.0f, 1.0f}, /* +X */
 {-1.0f, -1.0f, 1.0f}, {-1.0f, 1.0f, 1.0f}, /* -X */
 {-1.0f, 1.0f, -1.0f}, {-1.0f, -1.0f, -1.0f}, /* -X */
 {-1.0f, 1.0f, 1.0f}, { 1.0f, 1.0f, 1.0f}, /* +Y */
 { 1.0f, 1.0f, -1.0f}, {-1.0f, 1.0f, -1.0f}, /* +Y */
 {-1.0f, -1.0f, 1.0f}, {-1.0f, -1.0f, -1.0f}, /* -Y */
 { 1.0f, -1.0f, -1.0f}, { 1.0f, -1.0f, 1.0f} /* -Y */
 };
 static int numCubeCoords =
sizeof(cubeCoords)/sizeof(cubeCoords[0]);

 static float cubeNorms[6][3] =
 {
 { 0.0f, 0.0f, 1.0f}, /* +Z */
 { 0.0f, 0.0f, -1.0f}, /* -Z */
 { 1.0f, 0.0f, 0.0f}, /* +X */
 {-1.0f, 0.0f, 0.0f}, /* -X */
 { 0.0f, 1.0f, 0.0f}, /* +Y */
{ 0.0f, -1.0f, 0.0f} /* -Y */
 };
 static int numCubeNorms = sizeof(cubeNorms)/sizeof(cubeNorms[0]);

 static float cubeColors[6][3] =
 {
 { 1.0f, 0.0f, 1.0f},
 { 0.0f, 0.0f, 1.0f},
 { 1.0f, 0.0f, 0.0f},
 { 1.0f, 1.0f, 0.0f},
 { 0.0f, 1.0f, 0.0f},
 { 1.0f, 1.0f, 0.0f}
 };
 static int numCubeColors =
sizeof(cubeColors)/sizeof(cubeColors[0]);

// Specify the data attributes

/*
 * specify cube as 6 quads
 */

 csQuadSet *gset = new csQuadSet;

 /* cube vertices */
 csCoordSet3f *cset = new csCoordSet3f(numCubeCoords);
 csVec3f *coords = cset->point()->edit();

Cube.cxx Explained

13

 for (int i=0; i<numCubeCoords; i++)
 cset->point()->set(i,
 csVec3f(cubeCoords[i][0], cubeCoords[i][1],
cubeCoords[i][2]));
 cset->point()->editDone();
 gset->setCoordSet(cset);

 /* cube normals */
 csNormalSet3f *nset = new csNormalSet3f(numCubeNorms);
 csVec3f *norms = nset->vector()->edit();
 for (i=0; i<numCubeNorms; i++)
 nset->vector()->set(i,
 csVec3f(cubeNorms[i][0], cubeNorms[i][1], cubeNorms[i][2]));
 nset->vector()->editDone();
 gset->setNormalSet(nset);

 /* cube colors */
 csColorSet3f *clrset = new csColorSet3f(numCubeColors);
 csVec3f *colors = clrset->color()->edit();
 for (i=0; i<numCubeColors; i++)
 clrset->color()->set(i,
 csVec3f(cubeColors[i][0], cubeColors[i][1],
cubeColors[i][2]));
 clrset->color()->editDone();

 gset->setPrimCount(6);
 gset->setCullFace(csContext::NO_CULL);
 gset->setNormalBind(csGeoSet::PER_PRIM_NORMAL);
 gset->setColorBind(csGeoSet::NO_COLOR);

// Specify the appearance and material attributes

 /* highlight, yellow. */
 csMaterial *hlMaterial = new csMaterial;
 hlMaterial->setSpecularColor(0.0f, 0.0f, 0.0f);
 hlMaterial->setDiffuseColor(1.0f, 1.0f, 0.0f);
 hlMaterial->setShininess(.0078125 *16.0f);
 hlMaterial->setTransparency(0.0f);

 highlight = new csAppearance;
 highlight->setMaterial(hlMaterial);
 highlight->setLightEnable(1);

#ifdef RED
 /* red cube */

14

Chapter 2: Your First Cosmo 3D Application

 csMaterial *redMaterial = new csMaterial;
 redMaterial->setSpecularColor(1.0f, 1.0f, 1.0f);
 redMaterial->setDiffuseColor(0.8f, 0.1f, 0.1f);
 redMaterial->setShininess(.0078125 *16.0f);
 redMaterial->setTransparency(0.5f);

 csAppearance *redAppearance = new csAppearance;
 redAppearance->setMaterial(redMaterial);
 redAppearance->setLightEnable(1);
 redAppearance->setTranspMode(csContext::BLEND_TRANSP);
 redAppearance->setTranspEnable(1);

 csShape *redShape = new csShape;
redShape->setAppearance(redAppearance);
 redShape->setGeometry(0, gset);

 bgTransform = new csTransform;
 bgTransform->setTranslation(0.0f, 0.0f, -5.0f);
 bgTransform->addChild(redShape);
#endif

#ifdef GREEN
 /* green cube */
 csMaterial *greenMaterial = new csMaterial;
 greenMaterial->setSpecularColor(1.0f, 1.0f, 1.0f);
 greenMaterial->setDiffuseColor(0.1f, 0.8f, 0.1f);
 greenMaterial->setShininess(.0078125 *16.0f);
 greenMaterial->setTransparency(0.5f);

 csAppearance *greenAppearance = new csAppearance;
 greenAppearance->setMaterial(greenMaterial);
 greenAppearance->setLightEnable(1);
 greenAppearance->setTranspMode(csContext::BLEND_TRANSP);
 greenAppearance->setTranspEnable(1);

 csShape *greenShape = new csShape;
 greenShape->setAppearance(greenAppearance);
 greenShape->setGeometry(0, gset);

 fgTransform = new csTransform;
 fgTransform->setTranslation(0.5f, 0.1f, -6.0f);
 fgTransform->addChild(greenShape);
#endif

#ifdef FUNKY

Cube.cxx Explained

15

 /* funky cube with all sorts of fun colors */
 csQuadSet *funky_gset = new csQuadSet;
 funky_gset->setCoordSet(cset);
 funky_gset->setNormalSet(nset);
 funky_gset->setColorSet(clrset);
 funky_gset->setPrimCount(6);
 funky_gset->setNormalBind(csGeoSet::PER_PRIM_NORMAL);
 funky_gset->setColorBind(csGeoSet::PER_PRIM_COLOR);

 csAppearance *funkyAppearance = new csAppearance;
 funkyAppearance->setLightEnable(1);
 funkyAppearance->setTranspMode(csContext::BLEND_TRANSP);
 funkyAppearance->setTranspEnable(1);

 csShape *funkyShape = new csShape;
 funkyShape->setAppearance(funkyAppearance);
 funkyShape->setGeometry(0, funky_gset);

 xxTransform = new csTransform;
 xxTransform->setTranslation(-0.5f, -0.1f, -6.0f);

xxTransform->addChild(funkyShape);
#endif

 /* environment */
 csPointLight *lt = new csPointLight;
 environment = new csEnvironment;
 environment->light()->append(lt);
#ifdef GREEN
 environment->addChild(fgTransform);
#endif
#ifdef FUNKY
 environment->addChild(xxTransform);
#endif
#ifdef RED
 environment->addChild(bgTransform);
#endif
 return environment;
}

16

Chapter 2: Your First Cosmo 3D Application

Understanding the Different Parts of Cube.cxx

The embedded comments in Example 2-1 call out the different functional parts of
cube.cxx, which include:

• Include statements and global method declarations.

• Create a window in which the application runs and with which a user can interact
with the application.

• Instantiate and setup a camera.

• Create a scene graph.

• Draw and rotate the cubes represented by the data in the scene graph.

Scene Graph

Scene graphs provide the structure for Cosmo 3D applications. Cosmo 3D applications
use scene graphs to specify the objects rendered. Figure 2-2 shows the scene graph used
for cube.cxx.

Scene Graph

17

Figure 2-2 Cube Scene Graph

csShape nodes define a shape; they associate a csAppearance, which describes the look
of a shape, such as its color, with a csGeometry, which defines the dimensions of the
geometry, such as whether the geometry is a cube or sphere.

In cube.cxx, csGeometry defines a cube and the csAppearance nodes specify the green
and red colors of the cubes.

Note: Neither csGeometry nor csAppearance are nodes; they are classes associated by a
csShape node.

Pointlight

Xform lxf

Xform xf

Geometry

Appearance

Shape

Appearance

Shape

Group

18

Chapter 2: Your First Cosmo 3D Application

Relating Local Space to World Space

Once you define the orientation of a shape, you use csTransformation nodes to place and
orient the shape in a different coordinate system. World space is the coordinate system of
the root node. If all of the shapes in a scene graph are transformed into world space, a
csCamera object attached to the root node can view all of the shapes in the scene graph
together in one coordinate system.

World space is rendered when a draw action is applied to the root node of the scene
graph; local space is rendered when a draw action is applied to a subsection of the scene
graph. The same object rendered in these two spaces may appear different, for example,
a shape in world space may appear smaller than in local space because it is farther from
the viewer; it might also be rotated and positioned differently.

Generally, there are many transformation nodes in a scene graph and a shape is often
transformed more than once, as shown in Figure 2-3.

Scene Graph

19

Figure 2-3 Two transformation into World Space

In Figure 2-3, after the leaf node is transformed twice, it is placed in world space.

In cube.cxx, two transformation nodes transform the shapes into world space.

Group node

Leaf node

Group node

Transformation node

Transformation node

20

Chapter 2: Your First Cosmo 3D Application

Creating the User Interface

csWindow encapsulates the user interface: it includes the methods you use to construct
a window in which a Cosmo 3D application runs. csWindow manages a csContext object
to control the graphics context as well as a csEvent object that handles user actions, like
mouse events.

csWindow is replete with default values that satisfy most application needs. cube.cxx, for
example, uses all of the default values except for the title of the window, which is
specified with the InitWindow() method.

Cosmo 3D also allows you to construct your own window using X window code. This
option gives you complete control over the look and functionality of the window.

For a complete description of csWindow and using X window code, see Chapter 12,
“User Interface Mechanisms.”

Rendering World Space

To render a scene graph, the csDrawAction::apply() method is applied to the root node
of the scene graph, as follows:

da->apply(root);

where da is a csDrawAction object.

Summary

The following procedure summarizes the steps you take to create and render a very
simple scene graph.

1. Create csAppearance and csGeometry containers to define the appearance and the
geometry of an object. For more information on setting csAppearance values, see
Chapter 4, “Specifying the Appearance of Geometries.” For more information on
setting csGeometry values, see Chapter 3, “Creating Geometries.”

2. Relate the csAppearance and csGeometry nodes in a csShape node. For more
information on setting csShape values, see Chapter 3, “Creating Geometries.”

Scene Graph

21

3. Add the csShape nodes as children of the csTransform nodes. The csTransform
node orients and positions the csShape objects in world space. For more
information on setting csTransform values, see Chapter 7, “Placing Shapes in a
Scene.”

Note: A csShape node by itself can be a complete scene graph. Typically, however,
scene graphs have many csShape nodes, most of which are connected to other parts
of the scene graph with a csTransform nodes.

4. Add the csTransform nodes to the scene graph. For more information about adding
nodes to scene graphs, see Chapter 7, “Placing Shapes in a Scene.”

5. Create a window, csWindow, in which to view and interact with the application.

6. Set the current graphical context, csContext.

7. Draw all of the shapes in world space by applying a csDrawAction to the root of the
scene graph. For more information about draw actions, see Chapter 8, “Traversing
the Scene Graph.”

Now that you understand the general organization of the nodes in a scene graph, you
need to know how to set the values for the nodes.

23

Chapter 3

3. Creating Geometries

csGeometry is a virtual class. All derivations of the class represent one or more shapes,
such as a sphere, cube, or geoSet. The appearance of a shape—whether a sphere is dotted
or striped— is characterized by a csAppearance object, csContext object, or both.
Combining a geometry with an appearance completely describes the graphic content of
a rendered object.

A csContext object contains the default appearance characteristics used for all
geometries. You use csAppearance objects to customize the default appearance settings
for shapes.

In this book,

• A geometry is an object of any form; the surface of which is uniform and
non-descript, encapsulated in csGeometry objects or objects derived from this class.

• An appearance contains all the parameters that specify the look of a geometry,
encapsulated in a csAppearance object.

• A shape is a combination of a geometry and an appearance, encapsulated in a
csShape node.

A csGeoSet is a collection of primitives, such as points, lines, triangles, and triangle
strips, that, when arranged, create a geometry. For example, a collection of points can
represent a star field and a collection of triangles can be arranged to form a sphere or a
landscape.

The first part of this chapter discusses large, ready-made geometries, such as csSphere
and csCube objects. The remainder of the chapter discusses how to create your own
csGeoSet-derived classes and how to use the csGeoSet-derived classes provided by
Cosmo 3D.

These are the sections in this chapter:

• “Using Large Geometries” on page 24.

• “csGeoSet Attributes” on page 27.

24

Chapter 3: Creating Geometries

• “Setting Attributes” on page 29.

• “Cosmo 3D-Derived csGeoSet Objects” on page 36.

Using Large Geometries

Cosmo 3D comes with four ready-made geometries:

• csSphere

• csCube

• csBox

• csCone

Each of these classes have methods that allow you to set and retrieve the values necessary
to define the geometry, including, where appropriate,

• the coordinates of the center

• length of the radius

• height

• width

The names of the methods that set and retrieve these values are intuitively obvious, for
example, to set and retrieve the coordinates of the center of a geometry, you use methods
similar to the following:

void setCenter(const csVec3f& center);
void getCenter(csVec3f& center);

Creating csGeoSet Objects

csGeoSet is a virtual class from which all geometric primitives are derived. Each
csGeoSet-derived class contains a collection of primitives, such as points, squares, or
triangle strips. All of the primitives in a collection are of the same type. You can construct
a shape by specifying the coordinates of each of these primitives in a collection, for
example, you can arrange triangles to form a sphere or a landscape. The vertices,
normals, colors, and texture coordinates of each primitive is captured as attributes of
each primitive.

Creating csGeoSet Objects

25

Each csGeoSet-derived object contains an array of primitive shapes, each primitive is
made of an array of four attributes, and each of the four attributes refers to an array of
attribute values, as shown in Figure 3-1.

Figure 3-1 Primitives in a csGeoSet

These attributes are captured in csGeoSet fields.

StripLengths
PrimCoords
ColorBind
MormalBind
TexCoordBind

CoordSet
ColorSet
NormalSet
TexCoordSet

CoordIndexSet
ColorIndexSet
NormalIndexSet
TextCoordIndexSet

< x, y, z >
.
.
.

< r, g, b >
.
.
.

< nx, ny, nz >
.
.
.

< x, y, z >
.
.
.

n1
n2
n3
.
.
.

csGeoSet

26

Chapter 3: Creating Geometries

csGeoSet Fields

The fields in a csGeoSet object can be grouped in the following manner:

// General settinge
short cullFace BACK
int primCount 0

// Attribute specifications
Color colors NULL
Normal normals NULL
TexCoord texCoords NULL
Coord coords NULL

// Attribute index specifications
Index colorIndices NULL
Index normalIndices NULL
Index texCoordIndices NULL
Index coordIndices NULL

// Attribute binding specifications
char colorBind OFF
char normalBind OFF
char texCoordBind OFF

The remainder of this section describes csGeoSet general settings. The other parts of this
chapter describe the attribute fields.

Setting the Number of Primitives

The following csGeoSet methods effect all of the primitives in a csGeoSet object:

void setPrimCount(csInt primCount);
csInt getPrimCount();

To specify or return the number of primitives in a csGeoSet object, use the
setPrimCount() and getPrimCount() methods, respectively.

csGeoSet Attributes

27

csGeoSet Attributes

csGeoSet is a virtual class from which all geometric primitives are derived. Cosmo
3D-supplied csGeoSet-derived classes include,

• csPointSet—A collection of equally-sized points.

• csLineStripSet—A collection of linestrips, also known as polylines, of equal width.

• csTriStripSet—A collection of triangle strips.

• csPolySet—A collection of convex, coplanar polygons.

• csSprite—A rectangle rotated to face the viewer.

All of the primitives in each of their classes are of equal size. These primitives are
constructed from an array of four attributes:

• color—(red, green, blue, alpha)

• normal—(Nx, Ny, Nz)

• texture coordinates—(S, T)

• coordinates—(X, Y, Z)

Each attribute consists of an array of two to four values; one primitive is defined by
twelve attribute values.

Note: Although texture coordinates can be specified using four values, S, T, R, Q, the R
value has no current meaning and the Q value is always one.

Attribute Bindings

Not all attributes, however, can be applied with the same level of specificity. The levels
of specificity include

• The entire collection of primitives in a csGeoSet object.

• Individual primitives in a csGeoSet object.

• Individual vertices of individual primitives in a csGeoSet object.

For example, a single color can be specified for the entire collection of primitives, for
individual primitives, or per vertex. One set of coordinates, on the other hand, cannot be
specified for the entire collection of primitives, cannot be specified for individual

28

Chapter 3: Creating Geometries

primitives, but must be specified per vertex—it does not make sense for all of the
primitives in a collection to have the same coordinates, nor does it make sense for all
vertices in each primitive to have the same coordinates; each vertex must have its own
coordinates.

Each of these levels of specificity is called a different binding, for example, an attribute
that is specified for an entire collection of primitives is said to have an OVERALL
binding. A binding tells you how many primitives in a csGeoSet object an attribute
applies to. Table 3-1 shows the different possible bindings.

All primitives in a csGeoSet collection must share the same set of attribute bindings, for
example, you cannot specify colors-per-vertex for some primitives and
colors-per-primitive for others in the same csGeoSet object.

Setting Attribute Bindings

Three set...() methods in csGeoSet specify the attribute bindings for a csGeoSet object:

void setNormalBind(NormalBindEnum normalBind);
void setColorBind(ColorBindEnum colorBind);
void setTexCoordBind(TexCoordBindEnum texCoordBind);

There is a corresponding set of get...() methods that retrieve the attribute bindings for the
normals, colors, and texture coordinates, respectively.

The enumerated binding values that are valid for each of the attributes coincide with the
entries in Table 3-1.

enum NormalBindEnum
{
NO_NORMS,
OVERALL_NORMS,

Table 3-1 Attribute Bindings

OFF OVERALL PER_PRIMITIVE PER_VERTEX

colors yes yes yes yes

normals yes yes yes yes

texture coordinates yes no no yes

coordinates no no no yes

Setting Attributes

29

PER_PRIM_NORMS,
PER_VERTEX_NORMS,
};

enum ColorBindEnum
{
NO_COLORS,
OVERALL_COLORS,
PER_PRIM_COLORS,
PER_VERTEX_COLORS,

 };
enum TexCoordBindEnum

{
NO_TEX_COORDS,
PER_VERTEX_TEX_COORDS
}

To set the color of all the primitives in a csGeoSet object to the same value, for example,
use the OVERALL_COLORS binding in code similar to the following:

csTriangleStripSet* myTriangleStrip = new csTriangleStripSet();
myTriangleStrip->setColorBind(csGeoSet::OVERALL_COLORS);

Setting Attributes

Now that you know how to set attribute bindings, you need to know how to set the
attributes themselves.

As shown in Figure 3-1, csGeoSet objects store their primitives in an array. The array
contains:

• three attribute values in the Normal array.

• three (or four) attribute values in the Color array.

• two attribute values in the Texture Coordinate array.

• three attribute values in the Coordinate array.

This pattern continues, as shown in Figure 3-2.

30

Chapter 3: Creating Geometries

Figure 3-2 Sequential Specification of Attributes Per Primitive

Indexing Attributes

Another option is to index the attribute values so that primitives can access any attribute
value and more than one primitive can use the same attribute value, as shown in
Figure 3-3.

Array of
csGeoSet primitives

 primitives
 primitives
 primitives
 primitives
 primitives
 .
 .
 .

Array of
color values

 color value1
 color value2
 color value3
 color value4

 color value5
 color value6
 color value7
 color value8
 .
 .
 .

Array of
normal values

 normal value1
 normal value2
 normal value3

 normal value4
 normal value5
 normal value6
 .
 .
 .

Array of
attributes

attribute 1 color
attribute 1 normal
attribute 1 coord
attribute 1 tex coord

attribute 2 color
attribute 2 normal
attribute 2 coord
attribute 2 tex coord
 .
 .
 .

Setting Attributes

31

Figure 3-3 Indexed Attributes

When to Index Attributes

The choice of using indexed or sequential attributes applies to all of the primitives in a
csGeoSet; that is, all of the primitives within one csGeoSet must be referenced
sequentially or by index; you cannot mix the two.

The governing principle for indexing attributes or not is how many vertices in a
geometry are shared. Consider the following two examples in Figure 3-4 where each dot
marks a vertex.

StripLengths
PrimCoords
ColorBind
MormalBind
TexCoordBind

CoordSet
ColorSet
NormalSet
TexCoordSet

CoordIndexSet
ColorIndexSet
NormalIndexSet
TextCoordIndexSet

< x, y, z >
.
.
.

< r, g, b >
.
.
.

< nx, ny, nz >
.
.
.

< x, y, z >
.
.
.

n1
n2
n3
.
.
.

n1
n2
n3
.
.
.

n1
n2
n3
.
.
.

n1
n2
n3
.
.
.

n1
n2
n3
.
.
.

csGeoSet

32

Chapter 3: Creating Geometries

Figure 3-4 Deciding Whether to Index Attributes

In the triangle strip, each vertex is shared by two adjoining triangles. In the square, the
same vertex is shared by eight triangles. Consider the task that is required to move these
vertices when, for example, morphing the object. If the vertices were not indexed, in the
square, the application would have to look up and alter eight triangles to change one
vertex.

In the case of the square, it is much more efficient to index the attributes. On the other
hand, if the attributes in the triangle strip were indexed, since each vertex is shared by
only two triangles, the index look-up time would exceed the time it would take to simply
update the vertices sequentially. In the case of the triangle strip, rendering is improved
by handling the attributes sequentially.

The deciding factor governing whether or not to index attributes relates to the number
of primitives that share the same attribute: if attributes are shared by many primitives,
the attributes should be indexed; if attributes are not shared by many primitives, the
attributes should be handled sequentially.

“Indexing Attributes” on page 34 describes the methods you use to index attributes.

Specifying Attributes

Whether you index your attributes or not, you must use the following set...() methods in
csGeoSet to specify the attributes in a specific csGeoSet object:

void setCoordsSet(csCoordSet* coords);
void setNormalsSet(csNormalSet* normals);
void setColorsSet(csColorSet* colors);
void setTexCoordsSet(csTexCoordSet* texCoords);

There is a corresponding set of get...() methods that retrieve the index settings for the
coordinates, normals, colors, and texture coordinates, respectively.

Setting Attributes

33

coords is a three-dimensional array of coordinates representing the coordinates of every
vertex in every primitive in a csGeoSet object.

normals is a three-dimensional array of normals for potentially every vertex in every
primitive in a csGeoSet object, depending on the binding.

colors is a four-dimensional array of colors for potentially every vertex in every primitive
in a csGeoSet object, depending on the binding.

texCoords is a two-dimensional array of coordinates representing the texture coordinates
of every vertex in every primitive in a csGeoSet object.

Using More Specific Attribute Arrays

Each of the four attributes has its own array. You must use one of the more
specifically-defined virtual array classes, as follows:

csCoordSet3f();
csNormalSet3f();
csColorSet3f();
csColorSet4f();
csTexCoordSet2f();

Each of these null constructors is overridden by a set of constructors similar in form to
the following:

csCoordSet3f(int n);
csCoordSet3f(csData *array, short offset, short stride);

The first constructor allows you to specify the number of array primitives, n.

The second constructor allows you to reference an array, *array, of attribute values,
specify the offset, offset, if any, and the stride, stride. The stride specifies the grouping of
array primitives when reading the data. If the stride value is one, every color value is
read. If the stride value is three, only every third value is read.

The normal implementation is to set the offset to the number into the primitive array of
the value you want to access, such as the red value of the first vertex. The stride value is
then set to the number of array elements between the red array element and the next
array element, as shown in Figure 3-5.

34

Chapter 3: Creating Geometries

Figure 3-5 Stride and Offset Values

Set and Get Methods

Each of the virtual attribute-array classes, both the general and specific, have set and get
methods to set and return the values of the array. All of set and get methods use the
following form:

void setCoordsSet(csCoordSet* coords);
csCoordSet* getCoordsSet();

Setting Attributes Sequentially

To use the attribute values sequentially in their arrays, you set all of the set...Indices()
methods to NULL. Because the Indices array is NULL, the array of primitives maps
directly to the array of attribute values, as shown in Figure 3-2.

Indexing Attributes

An indexed csGeoSet object uses a list of unsigned short integers to index an attribute
array. Four set...() methods in csGeoSet specify these indices:

void setCoordIndices(csIndexSet* coordIndices);

data
offset 0
stride 12 X Y Z

R G B

Nx Ny Nz

Tx Ty

X Y Z

R G B

Nx Ny Nz

Tx Ty

CoordSet
(csData, offset, stride)

csData

data
offset 6
stride 12

NormalSet
(csData, offset, stride)

Setting Attributes

35

void setNormalIndices(csIndexSet* normalIndices);
void setColorIndices(csIndexSet* colorIndices);
void setTexCoordIndices(csIndexSet* texCoordIndices);

There is a corresponding set of get...() methods that retrieve the index settings for the
coordinates, normals, colors, and texture coordinates, respectively.

coordIndices is an array of coordinate indices. Each index points to a member in the
coordinate attribute array, as shown in Figure 3-3.

normalIndices is an array of normal indices. colorIndices is an array of color indices.
texCoordIndices is an array of texture coordinate indices.

Setting Attributes Example

Example 3-1 shows how to set attributes and their bindings.

Example 3-1 Setting Attributes

// Create a csGeoSet object
csTriStripSet *gset = new csTriStripSet;

// Allocate the attribute arrays
csCoordSet3f *vset = new csCoordSet3f(NumRings*RingVerts);
csNormalSet3f *nset = new csNormalSet3f(NumRings*RingVerts);
csIndexSet *iset = new csIndexSet((NumRings-1) *

2 * (RingVerts + 1));
csColorSet4f *cset = new csColorSet4f(NumRings-1);
csIndexSet *lengths = new csIndexSet(NumRings-1);

// Set the attributes
gset->setCoords(vset);
gset->setCoordIndices(iset);
gset->setNormals(nset);
gset->setColors(cset);
// Set the attribute indices
gset->setNormalIndices(iset);
gset->setPrimCount(NumRings-1);

// Set the attribute bindings
gset->setNormalBind(csGeoSet::PER_VERTEX_NORMS);
gset->setColorBind(csGeoSet::PER_PRIM_COLORS);

36

Chapter 3: Creating Geometries

// Prepare to fill the Attribute and Indices arrays
csVec3f *coords = vset->coords()->edit();
csVec3f *norms = nset->normals()->edit();
int *indices = iset->indices()->edit();

Cosmo 3D-Derived csGeoSet Objects

 Cosmo 3D provides the following ready-made csGeoSet collections. Each is a derivative
of csGeoSet.

• csPointSet—A collection of equally-sized points.

• csLineSet—A collection of lines of equal length.

• csIndexedLineSet—A set of indexed line strips.

• csLineStripSet—A collection of linestrips, also known as polylines, of equal width.

• csTriSet—A collection of triangles.

• csTriFanStrip—A collection of triangles that all share one vertex point.

• csTriStripSet—A collection of triangle strips.

• csPolySet—A collection of convex, coplanar polygons.

• csSprite—A rectangle rotated to face the viewer.

• csQuadSet—A collection of quadrilaterals.

• csIndexedFaceSet—A polygon with faces that are indexed.

The following sections describe each of these primitive collections.

All of the classes contain virtual draw() and boundingbox() methods. The draw()
method handles a draw; it specifies how a csGeoSet object is drawn.

Using csPointSet

A csPointSet object contains a collection of equally-sized points. Point size is the
diameter of each point in pixels.

csPointSet contains the following methods:

void setSize(csFloat size);

Cosmo 3D-Derived csGeoSet Objects

37

csFloat getSize();

The setSize() and getSize() methods allow you to specify and find out, respectively, the
diameter, in pixels, of all the points in a csPointSet object.

Using csLineSet

A csLineSet object contains a collection of lines of equal length. The member functions
allow you to set and return the length of the lines in the collection.

void setWidth(csFloat width);
csFloat getWidth();

Using csIndexedLineSet

A csIndexedLineSet object contains an indexed collection of lines of equal length. The
member functions allow you to set and return the colors of the lines in the collection.

csMFInt* coordIndex() const;
csMFInt* colorIndex() const;
void setColorPerVertex(csBool colorPerVertex);
csBool getColorPerVertex();

Using csLineStripSet

A csLineStripSet object contains a collection of linestrips, otherwise known as polylines,
of equal width. Line width is specified in pixels.

csLineStripSet contains the following methods:

void setStripLengths(csIndexSet* stripLengths);
csIndexSet* getStripLengths();

void setWidth(csFloat width);
csFloat getWidth();

The setStripLengths() and getStripLengths() methods allow you to specify and find out,
respectively, how many line segments are in a csLineStripSet object.

38

Chapter 3: Creating Geometries

The setWidth() and getWidth() methods allow you to specify and find out, respectively,
the width, in pixels, of each linestrip in a csLineStripSet object.

Using csTriSet

A csTriSet object contains a collection of lines of equal length.

Using csTriFanSet

A csTriFanSet is a set of triangles all of which share one common vertex, as shown in
Figure 3-6.

Figure 3-6 TriFanSet

You use the following method to set the number of triangles in the csTriFanSet.

csMFInt* fanLength() const;

Using csTriStripSet

A csTriStripSet object contains a collection of triangle strips. A triangle strip is a series of
adjacent triangles that form a strip, as shown in Figure 3-7.

Cosmo 3D-Derived csGeoSet Objects

39

Figure 3-7 Triangle Strip

csTriStripSet contains the following methods:

void setStripLengths(csIndexSet* stripLengths);
csIndexSet* getStripLengths();

The setStripLengths() and getStripLengths() methods allow you to specify and find out,
respectively, how long, in pixels, each triangle strip is in a csTriStripSet object.

Using csPolySet

A csPolySet object contains a collection of polygons. Polygons may have different
numbers of sides but must be convex and coplanar.

csPolySet contains the following methods:

void setPolyLengths(csIndexSet* polyLengths);
csIndexSet* getPolyLengths();

The setPolyLengths() and getPolyLengths() methods allow you to specify and find out,
respectively, how long, in pixels, all of the polygon sides are in a csPolySet object.

Using csSprite

A csSprite object contains a collection of sprites. A sprite is a rectangle that is rotated to
face the viewer. When properly textured, a Sprite can realistically simulate complex
objects with point or axis symmetry, such as clouds or trees, respectively, but with far less
cost than if the objects were modeled with complex geometry.

A sprite is a rectangle defined by two corners that are translated by the Sprite’s position.
The +Z axis of the Sprite’s coordinate system is always rotated to face the viewer. How
this rotation is constrained defines the sprite mode. Sprite modes include

40

Chapter 3: Creating Geometries

• AXIAL: The object coordinate +Y axis is constrained to the sprite axis, defined in
object coordinates. This mode is typically used for roughly cylindrical objects like
trees.

• POINT_EYE: The object coordinate +Y axis is constrained to the sprite axis, defined
in eye coordinates. This mode is typically used to keep text upright on the screen.

• POINT_OBJECT: The object coordinate +X axis is constrained to the sprite axis,
defined in object coordinates. This mode is typically used to keep clouds from
rolling with the viewer.

Sprites may be given an overall normal for lighting calculations. Their color is taken from
the current Material.

csSprite contains the following methods:

void setBottomLeft(const csVec3f& bottomLeft);
void getBottomLeft(csVec3f& bottomLeft);
void setBottomLeft(csFloat v0, csFloat v1, csFloat v2);
void getBottomLeft(csFloat *v0, csFloat *v1, csFloat *v2);

void setTopRight(const csVec3f& topRight);
void getTopRight(csVec3f& topRight);
void setTopRight(csFloat v0, csFloat v1, csFloat v2);
void getTopRight(csFloat *v0, csFloat *v1, csFloat *v2);

void setPosition(const csVec3f& position);
void getPosition(csVec3f& position);
void setPosition(csFloat v0, csFloat v1, csFloat v2);
void getPosition(csFloat *v0, csFloat *v1, csFloat *v2);

void setNormal(const csVec3f& normal);
void getNormal(csVec3f& normal);
void setNormal(csFloat v0, csFloat v1, csFloat v2);
void getNormal(csFloat *v0, csFloat *v1, csFloat *v2);

void setAxis(const csVec3f& axis);
void getAxis(csVec3f& axis);
void setAxis(csFloat v0, csFloat v1, csFloat v2);
void getAxis(csFloat *v0, csFloat *v1, csFloat *v2);

void setMode(ModeEnum mode);
ModeEnum getMode();

Cosmo 3D-Derived csGeoSet Objects

41

You can set the size of the sprites by setting the opposite corners of a sprite rectangle
using setBottomLeft() and setTopRight() methods. setPosition() allows you to specify
the lower-left corner coordinates of the sprites in the collection. setNormal() allows you
to specify the orientation of all the sprites. setAxis() allows you to specify the axis around
which the sprite orients itself. setMode() specifies the sprite mode; the valid values are
enumerated in ModeEnum.

enum ModeEnum
 {
 AXIAL,
 POINT_EYE,
 POINT_WORLD,
 };

These values are explained earlier in this section.

Using csQuadSet

A csQuadSet object contains a collection of quadrilaterals.

Using csIndexedFaceSet

A csIndexedFaceSet object contains a collection of polyhedrons of equal size. The
member functions allow you to set and return the size of the polyhedrons in the
collection.

csMFInt* coordIndex() const;
csMFInt* colorIndex() const;
csMFInt* normalIndex() const;
csMFInt* texCoordIndex() const;

void setCCW(csBool ccw);
void setSolid(csBool solid);
void setConvex(csBool convex);
void setCreaseAngle(csFloat creaseAngle);
void setColorPerVertex(csBool colorPerVertex);
void setNormalPerVertex(csBool normalPerVertex);

There is a corresponding get...() method for every set...() statement.

The first four fields contain arrays for storing the colore.

setCCW() is true if the vertices of these faces wind counter-clockwise when viewed from
the front.

setSolid() is true if this set of faces forms a closed volume (“solid”); in that case, faces on
the side of the solid facing away from the viewpoint don’t need to be drawn.

setConvex() is true if the faces in this set are convex. (Currently ignored.)

setCreaseAngle() sets the crease angle. If the angle between two faces is more than the
crease angle, the faces are assumed to be part of a single surface and are smooth shaded.
(Currently ignored.)

coordIndex() sets a VRML 2.0-style vertex coordinate index set.

colorIndex() sets a VRML 2.0-style color index set.

texCoordIndex() sets a VRML 2.0-style texture coordinate index set.

normalIndex() sets a VRML 2.0-style normal index set.

setColorPerVertex() is true if colors are assigned per vertex, otherwise per face.

setNormalPerVertex() is true if normals are assigned per vertex, otherwise per face.

43

Chapter 4

4. Specifying the Appearance of Geometries

Two classes specify the appearance of a csGeometry object:

• csContext

• csAppearance

csContext provides the default appearance values for all of the shapes in a scene graph.
csAppearance objects allow you to customize the appearance of shapes.

This chapter describes the appearance fields in csContext and csAppearance.

These are the sections in this chapter:

• “Specifying the Appearance of a Geometry” on page 43.

• “Changing the Context” on page 44.

• “Using csAppearance” on page 45.

• “Applying Textures to Geometries” on page 47.

• “Material Settings” on page 55.

• “Transparency Settings” on page 57.

Specifying the Appearance of a Geometry

A csContext object contains all of the default appearance values necessary to render a
shape; but it does not specify the shape to render. The appearance fields of a csContext
object specify such things as the surface reflectance of a geometry (csMaterial), the
texture that is applied to the geometry (csTexture), whether or not the geometry is
transparent, and what shading model is used in the rendering.

csAppearance objects inherit all of their field values from csContext objects by default.
These field values should be reset in a csAppearance object only if they change often.

44

Chapter 4: Specifying the Appearance of Geometries

Tip: For optimal performance, set as few csAppearance object fields as possible by
setting the global defaults in csContext to values that satisfy the majority of geometries
in a scene graph.

csContext and csAppearance Differences

csAppearance objects have the same appearance fields and methods as csContext, except
that csAppearance has setInherit().

The setInherit() function specifies, by way of a bitmask, whether or not csAppearance
fields inherit their values from the fields in a csContext object. For more information
about setInherit(), see “Inheriting Appearance Values” on page 45.

The getLightTarget() method returns the ID of the geometry the light is pointed at.

All of the other appearance fields and methods in csContext are identical to those in
csAppearance.

Since the appearance fields in csContext are identical to those in csAppearance, the
description of the fields is presented only in the discussion of csAppearance.

Changing the Context

You can create multiple csContext objects, only one, however, can be active at a time. In
this way, in addition to changing field values in a context object, you can change the
entire context all at once using makeCurrent(). This method replaces the current context
with the csContext object specified in the argument, for example,

csContext* context1 = new csContext;
csContext* context2 = new csContext;

context1->makeCurrent(display, window));
context2->makeCurrent(display, window));

In this example, the second context replaces the first.

display is a pointer to the X window display.

window is the GLXDrawable in which the scene is displayed.

Using csAppearance

45

getCurrent() returns the context object on top of the Context stack.

csWindow has a context and calls makeCurrent() automatically.

Using csAppearance

csAppearance fields can define the appearance of a csGeometry object, for example, its
texture, material, or color. Almost all of the fields in csAppearance are duplicates of the
fields in csContext.

Inheriting Appearance Values

To specify the appearance of a csGeometry, you can either

• Set all of the appearance fields in a csAppearance object.

• Use the inherited, global, default values from the current context, csContext.

• Use a combination of the first two options.

If you set all of the fields of an appearance object, the appearance object becomes the full
graphic context of the csShape. The more appearance fields you set, however, the slower
the application’s performance and the more complex the database required to handle the
values.

For maximum performance, set the appearance values in csContext to satisfy the
maximum number of shapes so that the fewest number of csAppearance fields are set on
a per-shape basis.

Setting Appearance Fields Locally

The only fields that you should set locally are those that change often, such as the field
values for material and texture. Changing a field value locally overrides any value
inherited from csContext.

The csAppearance class includes a series of set...() methods to define the appearance
characteristics of a geometry. A series of corresponding get...() methods provide access
to those values. The following list of set...() methods are described in greater detail in the
rest of this chapter:

46

Chapter 4: Specifying the Appearance of Geometries

void setInherit(const csBitMask& inherit);

void setTexture(csTexture* texture);
void setTexEnable(csBool texEnable);
void setTexMode(csContext::TexModeEnum texMode);
void setTexBlendColor(const csVec4f& texBlendColor);
void setTexBlendColor(csFloat v0, csFloat v1, csFloat v2, csFloat v3);
void setTexEnv(csContext::TexEnvEnum texEnv);
void setTexGen(csTexGen* texGen);
void setTexGenEnable(csBool texGenEnable);

void setMaterial(csMaterial* material);
void setLightEnable(csBool lightEnable);
void setShadeModel(csContext::ShadeModelEnum shadeModel);
void setTranspEnable(csBool transpEnable);
void setTranspMode(csContext::TranspModeEnum transpMode);
void setAlphaFunc(csContext::AlphaFuncEnum alphaFunc);
void setAlphaRef(csFloat alphaRef);
void setBlendColor(const csVec4f& blendColor);
void setBlendColor(csFloat v0, csFloat v1, csFloat v2, csFloat v3);
void setSrcBlendFunc(csContext::SrcBlendFuncEnum srcBlendFunc);
void setDstBlendFunc(csContext::DstBlendFuncEnum dstBlendFunc);
void setColorMask(const csVec4ub &colorMask);
void setColorMask(csUByte v0, csUByte v1, csUByte v2, csUByte v3);
void setDepthFunc(csContext::DepthFuncEnum depthFunc);
void setDepthMask(csUInt depthMask);
void setFogEnable(csBool fogEnable);
void setPolyMode(csContext::PolyModeEnum polyMode);

These method are separated into three groups:

• The setInherit() method that you use to set the bitmask.

• Those methods containing the string “tex,” which modify textures.

• The remaining methods modify the appearance of geometries.

Lazy Updating of Appearance Values

csAppearance values are updated in a lazy way: a value is changed only when it is used.
For example, if a ball is currently displayed and you change its color using setColor(), the
ball would change color immediately on the screen. If, however, the ball is out of view of
the camera, the color of the ball would not be updated until it is seen by the camera.

Applying Textures to Geometries

47

Applying Textures to Geometries

One way to affect the appearance of a geometry is to apply a texture to it. A texture is a
rectangular, 2D image, for example, a 2D map of the world. This rectangular texture is
squeezed, expanded, or repeated to fit on the surface of a 3D object, such as a sphere. The
squeezing and repetition of a texture over a surface is programmatically controllable.

To create the image of an orange, for example, you first create the orange, pitted texture
of orange rind and then apply it to a sphere. The difference between using and not using
a texture, in this example, is the difference between rendering a generic sphere and a
realistic-looking orange.

Figure 4-1 Applying a Texture to a Geometry

Texture Map Coordinates

A texture map is always defined by the coordinates s, for the horizontal component, and
t, for the vertical component, each of which range in values from 0.0 to 1.0, as shown in
Figure 4-2.

48

Chapter 4: Specifying the Appearance of Geometries

Figure 4-2 Texture Coordinates

Texture coordinates are assigned to each vertex of a geometry either by you or by Cosmo
3D.

Applying a Texture

To apply a texture to a geometry, set the argument of the csAppearance::setTexEnable()
method to ON. If you do not want to apply a texture to a geometry, set the argument of
setTexEnable() to OFF.

Texture rendering uses the texture values specified in csContext by default. To set the
texture values locally, however, use the following methods in csAppearance:

setTexture() to specify the image used as the texture.

setTexMode() to specify the speed and quality of the rendered texture.

setTexBlendColor()
to specify the color to use in “blend” mode.

setTexEnv() to specify how texture colors are blended with the colors of a geometry.

setTexGen(), setTexGenEnable()
to generate, if enabled, texture coordinates automatically instead of
using the csGeoSet’s NormalSet.

setTranspMode(), setTranspEnable()
to specify transparency.

The following sections describe these methods.

1.0

0.0 1.0

t

s

Applying Textures to Geometries

49

Specifying a Texture Image

To apply a texture to a geometry, supply a csTexture object in the argument of
setTexture(). csTexture is a class consisting of the following fields and default values:

csSFString filename “noName”
csMFRef imageLevel[]
csSFEnum format 0
csSFEnum repeat_S REPEAT
csSFEnum repeat_T REPEAT
csSFEnum minFilter FAST
csSFEnum magFilter FAST
csSFEnum source 0

csImage is an array of MIPmap levels for this texture of type csImages. If this field is not
set or has all NULL values, the texture is loaded from csSFString fileName instead.

format is the pixel format of the image.

repeat_S and repeat_T specify whether or not the texture is repeated in the s and t
directions on the geometry, respectively.

minFilter specifies what to do with texels that project smaller than a screen pixel.
Possible values include NEAREST_MIN, LINEAR_MIN, or MIPMAP.

magFilter specifies what to do with texels that project larger than a screen pixel. Possible
values include NEAREST_MAX or LINEAR_MAX.

Texture Mode Settings

The texture mode method allows you to specify texture rendering speed, quality, and
perspective where speed and quality, and speed and perspective are trade-offs.

You specify the mode of the texture rendering using setTexMode() with one of the
following arguments from csContext::TexModeEnum:

FAST_TEX for a low quality, more quickly-rendered texture.

NICE_TEX for a high quality, more slowly-rendered texture.

NON_PERSP_TEX
for a non-perspectively-correct, more quickly-rendered texture.

PERSP_TEX for a more slowly-rendered texture in perspective.

50

Chapter 4: Specifying the Appearance of Geometries

When you choose the NON_PERSP_TEX mode, Cosmo 3D applies the texture to a
geometry without proper perspective. For example, if you apply a texture to a plane
extending into the Z dimension, the pattern should not distort but just appear to recede
into the distance. In NON_PERSP_TEX mode, however, the pattern is distorted, as
shown in Figure 4-3.

Figure 4-3 Non-Perspective and Perspective Modes

If you enable texture rendering but do not set the texture mode in a csContext or
csAppearance object, the texture rendering mode is defined by the csTexture object in the
argument of csAppearance::setTexture() or csContext::setTexture(). A csTexture object
can specify one of the values in TexModeEnum.

Texture Environment Settings

Texture environment variables specify how texture colors are blended with the colors of
a geometry; the texture color can replace, blend with, or subtract from the colors already
on the geometry.

Non Perspective Perspective

Applying Textures to Geometries

51

To set the way in which texture colors are blended in with the colors of a geometry, use
the setTexEnv() method with one of the following csContext::TexEnvEnum values as an
argument:

MODULATE_TENV
multiplies the shaded color of the geometry by the texture color. If the
texture has an alpha component, the alpha value modulates the
geometry’s transparency, for example, if a black and white texture, such
as text, is applied to a green polygon, the polygon remains green and the
writing appears as dark green lettering. MODULATE is the default
value.

BLEND_TENV
uses the texture color to blend together the blend color and the
underlying geometry’s color. In the above example, the lettering would
be a mixture of green, white, and black.

REPLACE_TENV
replaces the underlying geometry’s color with the texture color. If the
texture has an alpha component, the alpha value specifies the texture’s
transparency, allowing the geometry’s color to show through the
texture. In the above example, the lettering would be white and black.

ADD_TENV adds the underlying geometry’s color with the texture color.

DECAL_TENV replaces the underlying geometry’s color with the color of the texture.
When this token is used with RGBA values, the alpha value determines
the blending between the shape’s and texture’s color: when the alpha
value is 1.0, the color is only the texture’s; when the value is 0.0, the color
is only that of the shape’s.

Tip: If you use MODULATE, you might want to surround your texture images with a
one-pixel border of white pixels and set csTexture::setRepeatS() and
csTexture::setRepeatT() to CLAMP so the geometry’s color is used where the texture
runs out.

Color Components

A texture image can have up to four components per texture element:

• A one-component image consists of a luminance value, Lt. One-component textures
are often referred to as intensity maps. For example, an image of a statue could use
polygons of different intensities to shade and provide detail.

52

Chapter 4: Specifying the Appearance of Geometries

• A two-component image consists of luminance, Lt, and transparency, At. For example,
you could create an architect’s diagram of a house using polygons of different
intensities to give detail to the building materials and then vary the transparency of
the polygons to see through the building materials.

• A three-component image consists of a set of RGB values, referred to as a color triplet,
Ct. For example, any color image is at least a three-component image.

• A four-component image consists of an RGB (or Ct) set of values, and transparency, At.
The “t” subscript denotes the transparency or the color of the texture. For example,
you could create an architect’s diagram of a house using a variety of colors and
transparencies.

The color components work with the texture environments in the following way:

• MODULATE works with any texture file.

• BLEND works with one- to four-component textures.

• REPLACE works with three- or four-component textures.

• ADD works with three- or four-component textures.

• DECAL works with three- or four-component textures.

Tip: MODULATE works best with bright materials because the texture intensity is
reduced by the factor of the geometry’s intensity.

Specifying Texture Coordinates

There are two ways to specify how a texture as it is applied to a geometry:

• Use the default. Cosmo 3D applies textures to geometries according to the
geometry.

• Use the texture coordinate function, setTexGen().

Using the Default

Cosmo 3D applies textures to geometries according to the geometry. For all geometries
subclassed from csGeometry, Cosmo 3D

• Computes the bounding box

• Turns the texture so its longest side is in the horizontal (s) direction.

Applying Textures to Geometries

53

The horizontal (s) value ranges from 0.0 to 1.0 and the vertical component ranges from
0.0 to n, where n equals the ratio of the t dimension to the s dimension; this ratio
maintains the texture without distorting it.

Using the Texture Coordinate Function

The setTexGen() method generates texture coordinates by, in effect, projecting a texture
plane onto a geometry, as shown in Figure 4-4.

Figure 4-4 Texture Coordinate Function

The setTexGen() method specifies

• Whether or not the texture plane is repeated across the geometry.

• Whether the texture plane is stationary or moves in concert with the motion of the
geometry.

The setTexGen() method takes a csTexGen object for an argument. In a csTexGen object,
you set the

• Repetition of the texture image in three dimensions, s, t, and r.

• Mode of the texture in each of the dimensions.

For example, the csTexGen::setPlaneS(2.5, 0, 0, 0) repeats the texture two-and-a-half
times in the s dimension.

Figure 4-5 shows how a texture plane is repeated across a geometry.

54

Chapter 4: Specifying the Appearance of Geometries

Figure 4-5 Repeated Texture on a Geometry

The default values of both s plane equations are (1,0,0,0), both t plane equations are
(0,1,0,0), and all r and q plane equations are (0,0,0,0).

Setting the csTexGen Mode

If you think of the texture plane as being projected onto the surface of a geometry rather
than being on the surface of a geometry, it is easy to understand how the mode settings
in csTexGen work. Either the plane is stationary and the geometry moves “under” it or
the plane moves in concert with the geometry. In the second case, the colors of the plane
appear to be part of the geometry when it moves; in the first case, the colors of the plane
appear to ride over the geometry when it moves.

You set the mode of each plane in csTexGen to one of the following values:

OFF Turns off the texture.

EYE_LINEAR Lets the geometry turn independently of the texture plane. In this case,
the colors of the plane appear to ride over the geometry when it moves.
This value is the default.

OBJECT_LINEAR
Lets the texture move in coordination with the geometry. In this case, the
texture appears to be on the surface of the geometry.

SPHERE_MAP
Lets the texture pattern remain stationary as the geometry moves thus
producing a mirror-like, circular reflection.

Material Settings

55

Enabling Texture Generation

The setTexGen() function is enabled or disabled using setTexGenEnable() with an
argument of ON or OFF, respectively. Enabling the generation is, in effect, like turning on
the light which shines through the plane and onto a geometry. Disabling the generation
turns off the light.

The remaining sections apply to the appearance of the geometry itself.

Material Settings

The material field in csAppearance defines the surface qualities of a geometry, such as
how well it reflects light, what color it reflects, and what color it emits. The material field
is of type csMaterial, which has the following set...() methods:

void setAmbientIntensity(csFloat ambientintensity);
void setAmbientColor (const csVec3f& ambientColor);
void setDiffuseColor(const csVec3f& diffuseColor);
void setDiffuseColor(float v0, float v1, float v2);
void setSpecularColor(const csVec3f& specularColor);
void setSpecularColor(float v0, float v1, float v2);
void setEmissiveColor(const csVec3f& emissiveColor);
void setEmissiveColor(float v0, float v1, float v2);
void setAmbientIndex(csShort ambientIndex);
void setDiffuseIndex(csShort diffuseIndex);
void setSpecularIndex(csShort specularIndex);
void setShininess(csFloat shininess);
void setTransparency(csFloat transparency);

csMaterial also has a corresponding set of get...() functions.

Ambient color is the color of the light reflected from an object when lit by another ambient
object in the scene. The default value is [0.2, 0.2, 0.2]. Ambient intensity refers to the
strength of the reflection—a value between 0.0 and 1.0 where 1.0 is a strong reflection.
Ambient index refers to a color lookup table in which each ambient color is paired with
an index number for easy look ups.

Diffuse color is an object’s base color. The default value is [0.8, 0.8, 0.8]. Diffuse index
refers to a color lookup table in which each diffuse color is paired with an index number
for easy look ups.

56

Chapter 4: Specifying the Appearance of Geometries

Specular color is the reflected color of an object’s highlights. Specular intensity refers to
the strength of the reflection. The default value is [0.0, 0.0, 0.0]. Specular index refers to a
color lookup table in which each specular color is paired with an index number for easy
look ups.

Emissive color is the color emitted by an object. A lamp shade for example, might have a
base color of yellow. When the lamp is turned on, however, the emissive color might be
white. The default value is [0.0, 0.0, 0.0].

Shininess describes how much of the surroundings are reflected by an object, for example,
a mirror would have a large shininess value so that surrounding objects would be seen
in it. Values range from 0.0, for a very dull surface, to 1.0, for a highly polished surface.
The default value is 0.2.

Transparency describes how opaque or clear an object is, for example, water might be
more clear than opaque. Values range from 0.0, for opaque, to 1.0, for complete
transparency. The default value is 0.0.

Material Example

The following example shows the material settings for gold:

csMaterial *gold = new csMaterial;

gold->setAmbientColor(.3, .1, .1);
gold->setDiffuseColor(.8, .7, .2);
gold->setSpecularColor(.4, .3, .1);
gold->setShininess(.4);

Since gold is opaque, the default value, 0.0, for transparency suffices.

Filling Geometries

The setPolyMode() method specifies how to render the elementary polygons that
compose a geometry. The following values for the method are valid:

POINT_PMODE
The polygon is rendered as points.

LINE_PMODE
The polygon is rendered as a line. This option is equivalent to rendering
the geometry as a wireframe.

Transparency Settings

57

FILL_PMODE
The polygon is rendered as filled.

For example, if you use POINT_PMODE, a triangle would appear as three points.
LINE_PMODE would render a triangle as a set of three lines; FILL_PMODE would
render the triangle as filled.

Transparency Settings

To specify the transparency of a geometry locally, enable the transparency mode by
setting setTranspEnable() to ON and then specifying the transparency mode in the
argument of setTranspMode(). The possible transparency values include

FAST_TRANSP produces as quickly-rendered, lower-quality transparent geometry.

NICE_TRANSP produces a more slowly-rendered, higher-quality transparent geometry.

BLEND_TRANSP
produces a smooth transparency between foreground and background
images.

Commonly, you use the setTranspMode() twice to specify FAST_TRANSP or
NICE_TRANSP, and BLEND_TRANSP or SCREEN_DOOR_TRANSP.

Producing Transparency Without Blending

The setAlphaFunc() method sets the requirements for whether or not a pixel is rendered.
Not rendering some of the pixels in a geometry has the effect of making the geometry
partially transparent.

To use the setAlphaFunc() method, you first set the reference value against which you
measure the alpha value of the pixel to be drawn using setAlphaRef(), for example

setAlphaRef(10);

Then you supply, as an argument to setAlphaFunc(), one of the values of
csContext::AlphaFuncEnum:

• NEVER_AFUNC

• LESS_AFUNC

• EQUAL_AFUNC

58

Chapter 4: Specifying the Appearance of Geometries

• LEQUAL_AFUNC

• GREATER_AFUNC

• NOTEQUAL_AFUNC

• GEQUAL_AFUNC

• ALWAYS_AFUNC

For example, the following code

setAlphaRef(0.5);
setAlphaFunc(LESS_AFUNC);

is similar to the following lines of code:

if(Alpha < 0.5) (
//draw the pixel);

where Alpha is the alpha values of pixels to be drawn in a geometry.

If you use NEVER_AFUNC, the incoming pixel is never rendered; this function has the
effect of creating a totally transparent geometry. If you use LESS_AFUNC, the incoming
pixel is rendered only if its alpha value is less than the reference value. If you use
ALWAYS_AFUNC, the incoming pixel is always displayed; this function has the effect of
creating an opaque geometry.

59

Chapter 5

5. Scene Graph Nodes

A node is an object that can be part of or entirely comprise a scene graph. Typically, a node
is a collection of one or more fields and methods that together perform a specific
function, for example, a csShape node encapsulates all information about the shape and
appearance of a geometry.

Cosmo 3D nodes are divided into two types:

• group—associate other nodes.

• leaf— contain rendering information.

This chapter describes nodes and node types.

These are the sections in this chapter:

• “What Is a Node” on page 59.

• “Group Nodes” on page 61.

• “Leaf Nodes” on page 61.

• “Setting the Values in Scene Graph Nodes” on page 63.

What Is a Node

Only nodes can be part of a scene graph. A node is a collection of one or more fields and
methods. Each field is a C++ class with data members and methods that get and set those

60

Chapter 5: Scene Graph Nodes

member values. The fields set a variety of parameters. For example, some of the fields in
the csGeoSet are summarized in Table 5-1.

Each node supplies default values for each of its fields.

Node Types

There are two types of nodes:

• Group—associates nodes into hierarchies.

• Leaf—sets the visual and audio values for a scene.

The following sections describe these node types.

Table 5-1 Examples of Fields in Nodes

Field
Type

Fields Description

SFRef COORDS Is a csCoordSet containing vertex coordinates.

SFRef NORMALS Is a csNormalSet containing normals for a geometry.

SFRef COLORS Is a csColorSet containing colors for a geometry.

SFRef TEX_COORDS Is a csTexCoord containing texture coordinates for a
geometry.

SFRef COORD_INDICES Is a csIndexSet providing indices into a csCoordSet.

SFRef NORMAL_INDICES Is a csIndexSet providing indices into a csNormalSet.

SFRef COLOR_INDICES Is a csIndexSet providing indices into a csColorSet.

SFRef TEX_COORD_INDICES Is a csIndexSet providing indices into a csTexCoordSet.

SFEnum CULL_FACE Specifies whether to cull back-facing polygons,
front-facing polygons, or no polygons.

Leaf Nodes

61

Leaf Nodes

Leaf nodes are responsible for defining the visual and aural elements portrayed in a
scene. Leaf nodes cannot have child nodes.

The following list shows all of the different types of Cosmo 3D leaf nodes; all are
derivatives of csLeaf.

• csShape—associates a csGeometry object with a csAppearance object.

• csLight—is an abstract base class for light sources.

• csDirectionalLight—is a directional light source whose origin is at infinity.

• csPointLight—is a point source of light that radiates equally in all directions.

• csSpotLight—is a conical spot light.

The following section describes csShape. All of the other nodes are described in
Chapter 9, “Lighting.”

csShape

A csShape node associates a csGeometry object with a csAppearance object. Together,
the csGeometry and csAppearance objects create a complete description of a shape.

To associate a csGeometry object with a csAppearance object, use the following
methods:

void setAppearance(csAppearance* appearance);
void setGeometry(csGeometry* geometry);

There is a corresponding set of get...() methods that return the current appearance and
geometry objects in the csShape object.

Group Nodes

Group nodes associate other nodes into a hierarchy known as a scene graph. Only group
nodes can have children. A group node, for example, might associate two csShape
nodes, as shown in Figure 5-1.

62

Chapter 5: Scene Graph Nodes

Figure 5-1 A Simple Grouping

Actions, such as a draw action, applied to a group node may be applied in no particular
order to some or all of its children. A group node, then, defines the scope of an action.

For more information about actions, see Chapter 8, “Traversing the Scene Graph.”

Group Node Types

The following list shows all of the different types of Cosmo 3D group nodes; all are
derivatives of csGroup:

• csSwitch—selects none, one, or all of its children, depending on its value.

• csLOD—(level-of-detail) is a switch that selects one of its children based on the
distance between the camera and the shape encapsulated by the csLOD; the closer
the shape, the greater the detail used when rendering the shape, the farther away
the shape, the less detailed the shape. For more information, see Chapter 13,
“Optimizing Rendering.”

• csTransform—positions and orients a shape in the coordinate system of the parent
node to csTransform. For more information, see Chapter 7, “Placing Shapes in a
Scene.”

• csEnvironment—is a grouping node which defines the scope of influence for the
effects provided by csLight. For more information, see Chapter 9, “Lighting.”

Group
node

csShape
node

csShape
node

Setting the Values in Scene Graph Nodes

63

The following section describes csSwitch.

Switching Between Nodes

The csSwitch node selects none, one, or all of its children, depending on the value of the
argument in its constructor:

csSwitch();

To specify whether none, one, or all of a csSwitch node’s children are selected, use the
following member function:

void setWhichChild(int which);

The possible values of which are

• NO_CHILDREN—to select no nodes

• an integer—to specify a child node

• ALL_CHILDREN—to select all of the children of the csSwitch node

Each child of a switch node is assigned an index number when added to the group node:
the first child added is index 0, the second child added is index 1, and so on.

Using csSwitch

You might use a csSwitch node to create an animation sequence. For example, if each of
the five child nodes of a csSwitch node contained the image of a character in different
stages of walking, your application could switch sequentially between the child nodes to
create a simple animation sequence.

Setting the Values in Scene Graph Nodes

Cosmo 3D allows you to set the values for nodes in two ways: either using the set()
method in each of the node’s fields, or by using tokens.

Setting the fields is different depending on whether or not the variable has a single or
multiple value. If the variable has a single value, the variable can be set directly; if it has
multiple values, the particular value in the set of values must be specified, as shown in
Figure 5-2.

64

Chapter 5: Scene Graph Nodes

Figure 5-2 Setting Single and Multiple-Value Variables

Using set() and get() Methods to Set and Get Single-Value Fields

Nodes are composed of one or more fields, each of which is a class containing set(), get(),
and, optionally, other methods. The csAppearance node, for example, contains many
fields, some of which are Shininess, Material, and TranspEnable (enable transparency).
To define one of these fields, you use the appropriate set() method, such as

csMaterial *mtl->setShininess(ShininessValue);

ShininessValue = mtl->getShininess();
color = mtl->getDiffuseColor();

ShininessValue is a float. The first line of code sets the shininess value of the csMaterial,
mtl. The following lines return an atomic, single value, ShininessValue, and a composite,
single value, color. A composite, single value is a set of numbers that represent a single
feature, for example, RGB values represent one feature: color

Using Tokens to Set and Get Single-Value Fields

To use tokens to set or get single-value fields, you

1. Get a handle to the field specified by the token.

2. Use the handle to set or get the field.

For example:

F = mtl->getField(SHININESS);
F-> set(ShininessValue);

Single value field Multiple value field

Must specify
one of these
values to set

Setting the Values in Scene Graph Nodes

65

ShininessValue = F->get();
F->get(c);

ShininessValue is a float. The first line of code returns a handle, F, to the shininess field.
The second line then sets the value of that field.

The third line returns an atomic, single value. Since there is only one value, it does not
need to be specified in the argument. The last line returns a composite, single value, F.

Using set() and get() Methods to Set and Get Multiple-Value Fields

Multiple-value fields are arrays of variables. For example, the csMaterial field has a
number of values, including

sfFloat Shininess;
sfVec DiffuseColor;

To get or set a value in a csMaterial field, you must specify which of the values in the
field you are retrieving or setting, for example:

csGroup *g;
g->addChild(child);

child = g->getChild(1);

Child nodes of a group node are numbered, starting with zero. To retrieve the specific
child in the csGroup, you must specify in the argument of getChild() which child you
want returned; in this example, it is child number one.

Using Tokens to Set and Get Multiple-Value Fields

To use tokens to set or get multiple-value fields, you

1. Get a handle to the field specified by the token.

2. Use the handle to set or get values from a specific variable in the field.

For example:

csMFRef *F;
csGroup *g;

66

Chapter 5: Scene Graph Nodes

F = g->getField(CHILDREN);

F->append(child);
child = F->get(1);

To retrieve the specific child in the csGroup, the last line of code shows that you must
specify in the argument of get() which child you want returned; in this example, it is child
number one.

67

Chapter 6

6. Building a Scene Graph

A scene graph can be a single node or a hierarchy of nodes, as shown in Figure 6-1.

Figure 6-1 Scene Graph

The hierarchy specifies the order in which the nodes are acted upon when an action is
applied to the scene graph. The hierarchy is established by the order in which the group
nodes are added to the branches in a scene graph branch.

This chapter describes how to build and edit a scene graph.

This chapter includes the following sections:

• “Creating Scene Graphs” on page 68.

• “Diagramming Scene Graphs” on page 70.

• “Altering Scene Graphs” on page 74.

myLight

myShape

myFog

Root

68

Chapter 6: Building a Scene Graph

• “Loading a VRML Scene Graph” on page 75.

• “Saving Scene Graphs” on page 76.

• “Troubleshooting Scene Graph Construction” on page 76.

Creating Scene Graphs

The top node in a scene graph is called the root node; it must be a group-type node.
Actions applied to the root node visit all of the children nodes of the root node.

To create a scene graph, you start with the root node and add children to it using the
csGroup::addChild() method, as follows:-

root->addChild(myLight);
root->addChild(myShape);

In this simple example, the myLight node is added first to the scene graph whose root
node is called root; the myShape node is added second. When a draw action is applied to
the root node, either of these nodes may be evaluated.first.

To complete the scene graph, you add children to any child nodes of the root node that
are a group-type. You continue adding children to group-type nodes until the complete
scene is encapsulated in the scene graph.

Root Node

Most scene graphs have a root node of type csGroup. If you have a one-node scene
graph, for example, a csShape node, which is a leaf node, then the root node, the only
node, is a leaf node.

It is also possible to have multiple root nodes for a scene graph, as shown in Figure 6-2.

Creating Scene Graphs

69

Figure 6-2 Multiple Root Nodes

Applying Actions to Root Nodes

An action applied to one of the roots would only traverse to the descendants of the
specific root node. While this hierarchy of nodes is legal, if your application is going to
draw both scene graphs anyway, you should create a single root node common to both
scene graphs. In Figure 6-2, this could be done by adding a group node above the root
nodes shown, thus making them children of the single group node. The advantage to this
construction is that you do not have to apply the same action repeatedly to different root
nodes.

Actions applied to a root node flow (potentially) to all of the other nodes in the scene
graph. Passing the action from one node to another is called traversing. As an action
traverses a scene graph, variables set by the nodes in the scene graph change the
graphical context, which, in turn, changes the objects in the scene according to the node
values.

70

Chapter 6: Building a Scene Graph

Creating A Sample Scene Graph

Example 6-1 is a simple scene graph.

Example 6-1 A Simple Scene Graph

// create the root node of the scene graph
csGroup *root = new csGroup;

// create the nodes for the scene graph
csSpotLight *mySpotLight = new csSpotLight;
csShape *myShape = new csShape;

// Add the nodes to the group node to create a scene graph
root->addChild(mySpotLight);
root->addChild(myShape);
root->addChild(myFog);

In this example, a root node is created using the new directive and children nodes are
added to it using the csGroup::addChild() method. The order in which the children are
added to the root node is the order in which the nodes are acted upon when an action is
applied to the root node.

Diagramming Scene Graphs

Diagramming a scene graph is helpful in visualizing the structure of a Cosmo 3D
application. Figure 6-3 shows a diagram representing the scene graph coded in
Example 6-1.

Diagramming Scene Graphs

71

Figure 6-3 Simple Scene Graph

In diagrams of scene graphs, circles represent nodes and lines represent the node
hierarchy. The different types of circles represent the different types of nodes, for
example, root is a csGroup-type node whereas myShape is a csLeaf-type node. Notice
how the nodes are positioned: the three leaf nodes are children of the csGroup node and
the leaf nodes appear in the same order in which they were added to the root node in
Example 6-1. Remember, however, that actions may traverse these leaf nodes in any
order since they all are at the same level.

Scene Graph Diagrams At A Glance

Diagrams of scene graphs provide an overview of the functionality of a Cosmo 3D
application without the bother of delving into the complexity of the code. A diagram of
a scene graph, for example, can show the number of data sets that can be rendered.

For more information about the order in which nodes are acted upon, see “The Order In
Which Actions Are Passed Between Nodes” on page 86.

There are no rules for constructing a scene graph, however, it is customary to organize it
in the following way:

myLight

myShape

myFog

Root

72

Chapter 6: Building a Scene Graph

• Reading the nodes left to right shows you the different geometries rendered in a
scene graph.

• Reading the nodes from top to bottom shows you the different parts that are
combined to form a larger geometry.

For example, reading horizontally, Figure 6-4 shows that the two subgraphs, Molecules
and Hydrogen bonds, are separate geometries that appear together in world space.

Figure 6-4 Two Sets of Data Rendered Differently

In the subgraph shown in Figure 6-5, you can see that the foot, leg, and torso nodes are
parts which, when rendered together, display the lower half of a body.

Molecules

Hydrogen
bonds

Root
node

Diagramming Scene Graphs

73

Figure 6-5 Torso Subgraph

Since the left leg looks different from the right leg, you need two different shape nodes.
If, however, you want to display the same geometry twice, but in different locations, you
can use two transformation nodes to place the same object in different locations, as
shown in Figure 6-6.

Torso
node

Leg
node

Foot
node

Leg
node

Foot
node

74

Chapter 6: Building a Scene Graph

Figure 6-6 Showing the Same Geometry in Two Locations

In this example, the scene graph makes it easy to see that a cube is rendered in two
locations by two csTransform nodes.

Altering Scene Graphs

After using csGroup::addChild() to create a scene graph, you can use the following
methods to edit it:

void removeChild(int i);
int removeChild(csNode *node);
int replaceChild(csNode *old, csNode *node);
void insertChild(int i, csNode *node);

These methods allow you to remove, replace, or insert a child node, respectively. For
example, to insert a node between two children, use the insertChild() method:

csShape *myShape = new csShape;
root->insertChild(2, myShape);

Cube

transforn
location 1

transforn
location 2

Root
node

Loading a VRML Scene Graph

75

The children nodes are numbered starting with 0. The “2” in the argument of
insertChild() specifies that the myShape node should be inserted in the scene graph as
the number two node.

Note: Although leaf nodes attached to the same group node can be acted upon in any
order, it is always the case that the first node added to a group node is node zero, the
second node added to the root node in the code is node one, and so forth.

csGroup also supplies the following methods for finding the number of a node in a scene
graph, returning the number of children in a scene graph, and setting the number of
nodes in a group, respectively.

int searchChild(csNode *node);
int getChildCount();
void setChildCount(int count);

In general, you use the searchChild() method to return the number of a node so you can
perform other functions on or around it, such as replacing it.

Loading a VRML Scene Graph

Example 6-2 shows a portion of vrml.cxx. This code shows how to load a VRML scene
graph.

Example 6-2 Loading a VRML Scene Graph

csGroup *vrml = new csGroup;

 for (int i=1; i<argc; i++)
 {
 csContainer *v;
 static char path[512];
 char *lastSlash;

 strcpy(path, argv[i]);
 lastSlash = strrchr(path, ‘/’);
 if (lastSlash != NULL)
 *lastSlash = ‘\0’;

 strcat(path, “:.”);
 csGlobal::setFilePath(path);

76

Chapter 6: Building a Scene Graph

 if (vlDB::readFile(argv[i], v, viewPoints) && v != NULL)
 {
 printf(“Read %s was ok\n”, argv[i]);
 vrml->addChild((csNode*)v);
 }
 else
 printf(“Read %s was bad\n”, argv[i]);
 }

 new csWindow(“vrml”);

Saving Scene Graphs

The data in the scene graph database is not necessarily static. You might, therefore, might
need to save scene graph data into a file. To do so, you use the following method:

csGlobal::StoreFile(NameOfFile, *dataStructure);

where NameOfFile is the name of the file where you want to store the data and
dataStructure is the Cosmo3d in-memory data structure to store. The method returns
TRUE if the file is stored successfully, FALSE otherwise.

Troubleshooting Scene Graph Construction

A common mistake in Cosmo 3D applications is forgetting to include a csLight or
csCamera node. The csDrawAction::setCamera() method specifies the camera and
points it at the shapes in the scene graph.

For more information about csLight or csCamera, see Chapter 9, “Lighting” and
Chapter 10, “Viewing the Scene,” respectively.

Another common error in Cosmo 3D applications is pointing the camera in the wrong
direction in which case the camera may produce a blank image.

77

Chapter 7

7. Placing Shapes in a Scene

When you create a geometry, it has a specified size, location, and orientation, as defined
in its own space. You place such a geometry

• In relationship to other shapes in the same scene.

• Into the coordinate system of the root node, known as world space.

This chapter describes how to perform each of those tasks.

The final transformation that affects the view of the user is that created with the camera.
Rotating the camera has an obvious affect on the view of the scene. To read more about
the camera transformation, see “Using a Camera to View a Scene” on page 96.

This chapter has the following sections:

• “Creating a Sense of Depth” on page 77.

• “Transforming Shapes to New Locations, Sizes, and Orientations” on page 78.

Creating a Sense of Depth

Geometries are layered by Cosmo 3D according to the order in which they are rendered,
usually, for example, the first geometry rendered is covered by the second geometry if
they overlap.

Overriding the Default Order of Layering Shapes

To override this layering effect, you can use the csDepthFunc() method; it determines the
layering order of geometries in a scene according to values in the Z dimension. To specify
a layering method, use one of the tokens in csContext::DepthFuncEnum.

NEVER_DFUNC

LESS_DFUNC

78

Chapter 7: Placing Shapes in a Scene

EQUAL_DFUNC

LEQUAL_DFUNC

GREATER_DFUNC

NOTEQUAL_DFUNC

GEQUAL_DFUNC

ALWAYS_DFUNC

For example, if you use NEVER_DFUNC, the incoming pixel is never displayed on top
of the current, corresponding pixel in the buffer; this function has the effect of reversing
the normal order of layering: pixels are rendered behind the pixels currently in the buffer.
If you use LESS_DFUNC, a pixel is displayed only if its Z component is less than the Z
value of the corresponding pixel currently in the buffer. This function presents the
intuitive representation of close objects appearing in front of distant objects. Choosing
ALWAYS_DFUNC always displays the incoming pixel on top of what is currently
displayed regardless of the Z component.

The default is LEQUAL_DFUNC.

Transforming Shapes to New Locations, Sizes, and Orientations

The csTransform node

• Allows you to specify vertex coordinates of a shape in local space, using (0, 0, 0) as
the origin.

• Translates the local coordinates into the coordinates of its parent node.

If there is more than one csTransform node in a hierarchy of nodes, each csTransform
node translates the child node coordinates into coordinates of its parents all the way up
the hierarchy until a final csTransform node translates the coordinates of the shape into
those of the root node. The coordinate system of the root node is called world space
because all shapes in all parts of the scene graph are translated into that coordinate
system.

Transforming Shapes to New Locations, Sizes, and Orientations

79

Placing Transform Nodes

Typically, csTransform nodes are placed between csShape or csGroup-type nodes and
the rest of the scene graph, as shown in Figure 7-1.

Figure 7-1 Placement of csTransform Nodes

Any node, however, can be the child of a transformation node.

Setting the Transformation

The csTransform node allows you to set the location (translation), rotation, and scale of
its children using the following methods:

void setTranslation(const csVec3f& translation);
void setTranslation(csFloat v0, csFloat v1, csFloat v2);

void setRotation(const csRotation& rotation);
void setRotation(csFloat v0, csFloat v1, csFloat v2, csFloat v3);

void setScale(const csVec3f& scale);
void setScale(csFloat v0, csFloat v1, csFloat v2);

void setScaleOrientation(const csRotation& scaleOrientation);
void setScaleOrientation(csFloat v0, csFloat v1, csFloat v2,

csFloat v3);

void setCenter(const csVec3f& center);

Transfornation node

Shape node

Scene graph

80

Chapter 7: Placing Shapes in a Scene

void setCenter(csFloat v0, csFloat v1, csFloat v2);
void setMatrix(Matrix4f mat)

There is a corresponding set of get...() methods for each of these methods.

Each method is overridden so that you can specify the arguments to the methods either
as objects or individual coordinates.

setTranslation() positions the children of the transform in the space of the node that is
the parent to csTransform.

setCenter() specifies the point around which an object rotates.

setRotation() rotates the children of the transform around the point specified in
setCenter().

setScale() specify the scale factor of the children of the transform along the X, Y, and Z
axes.

setScaleOrientation() specifies the orientation in which the scaling takes effect.
Figure 7-2 shows a shape scaled by a factor of 2 in two different orientations, 0 and 45
degrees, respectively.

Figure 7-2 Scaling in Different Orientations

All of these methods invisibly set a transformation matrix to carry out their actions. If
you want to set the matrix directly, you can use the setMatrix() method.

x

z

y

x

z

y

Transforming Shapes to New Locations, Sizes, and Orientations

81

Ordering Transformations

The order in which you perform transformations can effect the final result. Take, for
example, translating and rotating an image. If you perform the transformations in this
order, you end up with a rotated model translated, for example, down the X axis, as
shown in Figure 7-3.

Figure 7-3 Order of Transformations

When you reverse the order of the transformations, the end result is different. Since the
center of rotation is about the origin, the rotation transformation lifts the object above the
X axis.

Placing Geometries in World Space

Multiple transformation nodes can orient and size all shapes in a scene graph into the
space of the root node. The space of the root node is called world space.

World space is the coordinate system of the root node in which all shapes in a scene graph
can reside. Local space is a coordinate system in a subsection of a scene graph.

x

y

1-Rotate

2-Translate

x

y

2-Rotate

1-Translate

82

Chapter 7: Placing Shapes in a Scene

Locating Transformation Nodes in Scene Graphs

A transformation node appears in a scene graph between a shape node and the
remainder of the scene graph, as shown in Figure 7-4.

Figure 7-4 Placement of a Transformation Node

 Cosmo 3D Matrices

Many geometry variables are defined in local space. To translate those values into the
world space you use a transformation matrix. The transformation matrix is a 4 × 4 matrix
of type csMatrix4f that contains scaling, translation, and rotation information. You can
set the matrix explicitly or, more easily, you can use class methods to generate a
transformation matrix.

 Cosmo 3D matrices are column major, which means their members are ordered in the
following way:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

You can set a transform matrix directly, or you can use csContext methods to scale and
orient a shape in world space. The next sections describe both approaches.

Shape
node

Transfornation
node

Scene graph

83

Chapter 8

8. Traversing the Scene Graph

Once you create a scene graph, you apply an action to the root node to trigger the events
prescribed in the scene graph nodes. Most nodes include an overwritten apply() method
that triggers an appropriate response when a specific action is applied to the node.
Actions include rendering the scene (draw action) and playing sound files (sound
action).

This chapter describes how an action traverses a scene graph and the actions available in
Cosmo 3D.

This chapter has the following sections:

• “Scene Graph Actions” on page 83.

• “The Order In Which Actions Are Passed Between Nodes” on page 86.

Scene Graph Actions

An action is an operation that is carried out on one or more nodes in a scene graph. In
response to actions,

• csLeaf nodes set values.

• csGroup nodes pass actions from one child node to another.

For example, when a csDrawAction is applied to the root node of a scene graph, the
action operates on (potentially) all of the nodes in the scene graph so that all of the
csShape nodes in it are rendered.

The action-specific responses taken by a node are implemented in the following node
functions:

• draw()—for csDrawAction

• isect()—for csIsectAction

84

Chapter 8: Traversing the Scene Graph

• compile()—for csCompileAction

• sound()—for csSoundAction

When an action operates on one node after another, the action is said to be traversing the
scene graph.

Action Types

In Cosmo 3D, there are four kinds of actions:

• csDrawAction—Renders a scene graph.

• csIsectAction—Selects objects intersecting a ray.

• csCompileAction—Compiles a subgraph.

• csSoundAction—Plays spatialized (3D) sounds in a scene graph.

All of the actions are derived from csAction.

For more information about

• csIsectAction, see “Using csIsectAction” on page 119.

• csCompileAction, see “Compiling Part of a Scene Graph” on page 129.

Deriving from csAction

csAction is a virtual class from which all actions are derived. An action is an operation
that is performed on some or all of the nodes in a scene graph, for example, a
csDrawAction, when applied to the root node, renders a scene graph.

csAction contains the following method:

virtual void apply(csNode *node) = 0;

You invoke an action by creating an instance of an action class and applying it to a node
(commonly the root node), for example:

csGroup* rootNode = new csGroup;
...
csDrawAction* renderAction = new csDrawAction;
renderAction->apply(rootNode);

Scene Graph Actions

85

In this example, a draw action, renderAction, is applied to the root node, rootNode, of a
scene graph.

When an action is applied to a node, each kind of node responds in its own way. When
a draw action is invoked on a leaf node, for example, it sets the values that describe a
shape. When a draw action is invoked on a group node, it applies the action to some or
all of its children.

Rendering the Scene

A csDrawAction causes leaf nodes to set the variables that affect the rendering of the
shapes in a scene graph and causes the shapes to be rendered.

A csDrawAction has the following get and set methods:

void reset();
virtual csTravDirective apply(csNode *node);

reset() Resets the cull stack and transformation stack.

The virtual function apply() is the method you use to apply the draw action on a node in
a scene graph, for example:

renderAction->apply(rootNode);

where renderAction is a csDrawAction instance and rootNode is the root node of a scene
graph. A draw action can be applied to any node in a scene graph. If you apply a draw
action to a leaf node, the node may set a value but the action does not spread to any other
nodes.

Playing Sound Files

csSoundAction plays sound files. The csSound node indirectly specifies through
csAudioClip and csAudioSamples nodes the sound file to play. The csSoundAction
places the listener (referred to as the microphone in Cosmo 3D) relative to the sound
source for spatial effects, such as volume based on the proximity of the listener to the
sound source.

void setMicrophone(Microphone mic);
Microphone getMicrophone();

86

Chapter 8: Traversing the Scene Graph

When the csSoundAction traverses a scene graph, it creates a list of active sounds in the
scene graph and supplies that information to csContext internally. If any sounds are
active, csContext sends instructions to play the associated sound files for a specific
duration.

For more information about sounds, see Chapter 14, “Adding Sounds To Virtual
Worlds.”

The Order In Which Actions Are Passed Between Nodes

In a scene graph, group nodes are acted upon in a top-to-bottom sequence. Leaf nodes
under any one group node are acted upon in an unspecified order. While not every child
node may be visited, for example, under a csSwitch node, it is guaranteed that all parent
nodes are visited before their children nodes.

Top-Down Traversals

In diagrams of scene graphs, this order of node evaluation, called an in-order traversal,
is represented by the layout of the nodes so that actions traverse from the top to bottom
of the scene graph. For example, the numbers in Figure 8-1 show one order in which an
action might traverse the nodes in a scene graph.

Figure 8-1 The Flow of an Action Through A Scene Graph

1

2

3

4

5

6

7

8

9

10

Root node

The Order In Which Actions Are Passed Between Nodes

87

A top-down traversal means that a node can never affect a node “above” it. For example,
node 3 in Figure 8-1 cannot affect nodes 4 and 5, however, node 4 can affect node 5. So,
that branch of the scene graph is traversed in the following way when an action is
applied to the root node:

1. The action traverses from node 1 to any of its children.

2. When the action visits node 2, node 2 propagates the action to one of its children.

3. If the action propagates to node 3, the action takes effect and the attribute variables
are reset to their values prior to node 3 after which the action visits node four.

4. The action then traverses nodes 4 and 5 at which point the traversal state is reset to
its state prior to node 2.

5. The action then traverses to any of the other child nodes of node 1.

Each node can immediately change the image in the frame buffer according to the
content to the node.

Whether all of the children of a group node are evaluated depends on the group node
type. For example, in Figure 8-1, if the number 1 node is of type csSwitch, the traversal
may visit all, one, or none of nodes 2, 6, 7, 9, and 10.

89

Chapter 9

9. Lighting

Lights illuminate shapes in a scene. Without lights, shapes are not visible.

To limit the range of a light, such as limiting the rays of a light to the room it is in, you
include the lights in the light array in csEnvironment.

This chapter describes how to use lights, change the shadow modeling, and change the
screen to one color.

This chapter contains the following sections:

• “Using Lights in Scenes” on page 89.

• “Limiting the Scope of Lights” on page 91.

• “Shade Model Settings” on page 92.

• “Making the Screen One Color” on page 93.

Using Lights in Scenes

Cosmo 3D provides a variety of light types. This chapter describes the light types
presented in Cosmo 3D in addition to the virtual light class, csLight, from which you can
create your own light objects.

csLight

csLight is an abstract base class for light sources. It provides the following methods for
setting light values:

void setOn(csBool on);
void setIntensity(csFloat intensity);
void setAmbientIntensity(csFloat ambientIntensity);
void setColor(const csVec3f& color);
void setColor(csFloat v0, csFloat v1, csFloat v2);

90

Chapter 9: Lighting

There is a corresponding set of get...() methods that return each of the light settings.

setOn() turns on the csLight object.

setIntensity() sets the brightness of the csLight object.

setAmbientIntensity() sets the brightness of the ambient color. The ambient intensity is
how bright the light makes all objects appear.

setColor() sets the color of the csLight object.

csDirectionalLight

csDirectionalLight is a directional light source that approximates distant light sources,
such as the sun, and can improve rendering performance over local light sources, such
as csPointLight and csSpotLight. Use csDirectionalLight to set the direction of general
lighting for a scene using one of the following methods:

void setDirection(const csVec3f& direction);
void setDirection(csFloat v0, csFloat v1, csFloat v2);

There is a corresponding set of get...() methods that return the lighting direction.

A csDirectionalLight has no range limitations so it affects all children of a
csEnvironment object when included in a light array.

Note: A csDirectionalLight object’s direction is affected by all csTransform nodes above
it in the scene hierarchy.

csSpotLight

csSpotLight is a directional light source. The light emanates as a cone; the axis of the cone
specifies the direction of the spot light and is defined in the following methods:

void setDirection (const csVec3f& direction)
void setDirection (csFloat v0, csFloat v1, csFloat v2)

The beam width of the light is set with the following method:

void setBeamWidth (csFloat beamWidth);

Limiting the Scope of Lights

91

csPointLight

csPointLight is a point light source that radiates equally in all directions. The range of a
csPointLight’s effect is localized to a csEnvironment object when the csPointLight is
included in its light array.

All descendants of a csEnvironment object that lay within the csPointLight’s shining
radius are affected by the csPointLight. csTransform objects affect the location and
shining radius of each csPointLight.

You use the following methods to define a csPointLight.

void setLocation(const csVec3f& location);
void setLocation(csFloat v0, csFloat v1, csFloat v2);

void setRadius(csFloat radius);

void setAttenuation(const csVec3f& attenuation);
void setAttenuation(csFloat v0, csFloat v1, csFloat v2);

There is a corresponding set of get...() methods that return the current point light
settings.

setLocation() defines the location of the csPointLight.

setRadius() defines the maximum range of the light.

setAttenuation() defines how quickly the intensity of the light declines over distance.

Limiting the Scope of Lights

csEnvironment defines the scope of environmental effects, such as how far light from a
csLight object can travel. When you create a virtual room, the goal is to make a lamp in
the room shine in the room only—not leak through walls into the hallway. When you
make a csLight part of the light array in csEnvironment, the lamp light stops at the walls
of the room.

Another application of csEnvironment is rendering headlights on a car. The goal is to
have the lights move with the car and extend only a couple of hundred feet in front of the

92

Chapter 9: Lighting

car. To do that, you add a csPointLight to the csEnvironment light array and limit the
csPointLight to several hundred feet.

The Scope of the Light Array

The csEnvironment node serves as the root node for the effects of all lights in its array.
csEnvironment uses an array of lights because you might have more than one csLight in
a room, but the light from all of the lamps should end at the walls of the room. All
csLights in the light array have the same range limitations.

csEnvironment Methods

csEnvironment contains the following method that specifies an array of lights:

csMFRef* light() const;

For example, if you wanted to add two lights but remove a third, you would use code
similar to the following:

// create an Environment
csEnvironment* park = new csEnvironment;
...

// find and remove light #3
csLight* badLight = park->getLight(3);
park->light()->remove(badLight);

//create two lights
csSpotLight* spot = new csSpotLight;
csPointLight* flood = new csPointLight;

// add the lights to the environment light array
park->light()->append(3, spot);
park->light()->append(4, flood);

Shade Model Settings

You set the shading model using the setShadeModel() method with one of the following
csContext::ShadeModelEnum values as its argument:

Making the Screen One Color

93

FLAT_SHADE where each primitive, geometric polygon that comprises a geometry has
the same shade value. This option has the effect of making the primitive,
geometric polygons visible.

SMOOTH_SHADE
where shade values are interpolated across primitive, geometric
polygons. This option makes the primitive polygons look more like a
curved surface.

Making the Screen One Color

To change the screen to a specified color, use one of the following csContext methods:

static void clear(int which);
static void clear(int which, float r, float g, float b, float a);

where which is a bitmask specifying whether to clear the color planes, depth planes, or
both.

The first clear() method clears the screen to black. The second version allows you to set
a uniform color and transparency.

95

Chapter 10

10. Viewing the Scene

To view a scene, you must define:

• The size of the viewport.

• The position and the orientation of the camera.

This chapter describes how to set up the viewport and how to use cameras to view a
scene.

This chapter has the following sections:

• “Setting the Screen Display of the Scene” on page 95.

• “Using a Camera to View a Scene” on page 96.

Setting the Screen Display of the Scene

The viewport is the rectangular portal through which you view a scene. The viewport
can be as large as a csWindow, or it can be just a portion of a csWindow, as shown in
Figure 10-1.

96

Chapter 10: Viewing the Scene

Figure 10-1 Viewport

You set the size of the viewport using the following csContext method:

static void setViewport(csInt x, csInt y, csInt w, csInt h);

x and y are the coordinates of the lower, left corner of the viewport (where the lower, left
corner of the csWindow is (0. 0)).

w and h are the width and height dimensions of the viewport.

Using a Camera to View a Scene

Cosmo 3D provides a variety of cameras to position, orient, and delimit the view of the
shapes in the scene graph. This section describes the different cameras that are available,
including:

• “csCamera” on page 97.

• “csOrthoCamera” on page 99.

• “csPerspCamera” on page 99.

Window

Monitor screen

Viewport

Scene

Using a Camera to View a Scene

97

csCamera

csCamera is an abstract base class from which all other cameras are derived. csCamera
defines the viewing volume. The viewing volume is bounded by the camera’s origin and
orientation, the far clip plane, and an aspect ratio. The aspect ratio is defined as the
image’s width divided by its height, as shown in Figure 10-2.

Figure 10-2 Aspect Ratio

The distances to the near and far clip planes are in the Z dimension in camera space. The
viewing frustum can be transformed into world space using the position and orientation
methods in csCamera.

Normally, the aspect ratio of the image matches that of the window. If the aspect ratio
does not match that of the window, the image is distorted: it is either expanded or
contracted along one or both axes, as shown in Figure 10-3.

wAspect Ratio =
h

Near clip plane

Far clip plane

wh

Frustum
Viewing volume

98

Chapter 10: Viewing the Scene

Figure 10-3 Changing the Window Without Changing the Image’s Aspect

It is important, therefore, to change the aspect of the image if the window is revised. To
do that, you use csWindow, as explained in Chapter 12, “User Interface Mechanisms.”

The following fields set the orientation of a camera and the aspect mode of the image it
takes.

void setPosition (const csVec3f& position);
void setPosition (csFloat v0, csFloat v1, csFloat v2);
void setOrientation (const csRotation& orientation);
void setOrientation (csFloat v0, csFloat v1, csFloat v2, csFloat v3);

There is a corresponding get.() field for each set() field.

The following methods set the frustum:

void setNearClip (csFloat nearClip);
void setFarClip (csFloat farClip);

There is a corresponding get.() method for each set.() method.

You use the setPosition() methods locate the camera in the scene. Initially, it is pointing
along the Z axis. To rotate the camera use the setOrientation() field. You set the near and
far clip planes using the setNear() and setFar() methods.

The following sections describe the different cameras available in Cosmo 3D.

Using a Camera to View a Scene

99

csOrthoCamera

csOrthoCamera defines an orthographic projection. An orthographic projection uses a
parallelepiped (box) frustum. Unlike the frustum in Figure 10-2, the size of the frustum
does not change from one end to the other. For this reason, the distance from the camera
to an object in the frustum does not affect the size of the object.

You use this type of camera when you do not want to view objects in perspective, for
example, when you create architectural blueprints and CAD models, it is important to
maintain the actual sizes of objects and angles between them when they’re projected.

csOrthoCamera uses the following methods to define the viewing frustum:

void setWidth(csfloat width)
void setHeight(csfloat height)
void setCenter(const csVec2f* center)
void setCenter(csFloat v0, csFloat v1);

There is a corresponding get...() field for each set...() field.

The width and height methods define the left, right, top, and bottom of the
parallelepiped (box) frustum. The setCenter() method points the csOrthoCamera at the
center of the scene you want to view.

csPerspCamera

A csPerspCamera creates a perspective view in which objects closer to the camera appear
larger than the same-sized objects located further from the camera. This type of camera
imitates normal vision. For example, train tracks and the distance between them appear
smaller the more distant they are.

You can understand why more distant objects appear smaller by looking at Figure 10-4.

100

Chapter 10: Viewing the Scene

Figure 10-4 Perspective Explained

If you compare the height of an object in the near clipping plane to the height of the near
clipping plane, you see that the ratio is larger than the ratio of the height of the same
object in the far clipping plane to the height of the far clipping plane.

Hobject Hobject

-------- > ---------
Hnear Hfar

Consequently, when you compare the size of the object to its surroundings, it appears
smaller in the distance.

You use the following get() fields to set the horizontal and vertical fields of view (FOV)
values of the frustum.

void setHorizFOV(csFloat horizFOV)
void setVertFOV(csFloat vertFOV)

There is a corresponding get() field for each set() field.

101

Chapter 11

11. Scene Graph Engines

There are classes that work with scene graphs, but are not nodes; they cannot be part of
the scene graph, but they serve the vital function of enabling animation. csEngine is such
a class.

This chapter describes csEngine and the multiple subclasses derived from it.

These are the sections in this chapter:

• “Engines” on page 101.

• “Engines that Interpolate Values” on page 104.

• “Engines That Change Shapes” on page 110.

Engines

A csEngine performs a specified function on input data and outputs a result. These
results can be used, for example, to encapsulate scene graph behavior. If part of a scene
graph renders a car, you might, for example, attach an engine to the transform node of
each wheel of the car to animate its rotation.

You might also tie the motion of one tire to the motion of all the other tires so that when
one wheel moves, the others move. You might also tie the motion of the wheels to the
motion of other shapes in the scene so they appear to pass by when the car moves. You
might also tie the motion of the car to the motion of the csCamera so the camera follows
the car. Finally, you might cycle the car through a set of colors repeatedly.

A csEngine is a derivative of csNode, but usually it is not included as a node in a scene
graph. It is, of course, included in your application that contains the scene graph being
rendered.

102

Chapter 11: Scene Graph Engines

Input and Output Fields

A csEngine has input and output fields. When its input fields change, a csEngine
updates its output fields according to the function carried out by the csEngine. For
example, a very simple engine might take two inputs and output the average of the two.

Many engines interpolate between two values at specified increments. For example, a
rotation interpolator might take the beginning and ending rotation coordinates and the
incremental changes between the two. It’s output might be moving an object through a
series of coordinates that rotate it from the beginning to the ending coordinates.

Another example for using an engine is color cycling. You might take an interpolator
engine that takes as its input two color specifications and the number of gradations you
want between the two. The output for the engine could be an incremental change of
colors between the beginning and ending color values.

Engine Terminology

Engines take one or more input values, perform a function on them, and output a result.
The relationship between the input and output values can be represented by a graph
where the x axis represents the input values and the y axis represents the output values.
Graphing the points (xn, yn) shows the shape of the engine’s function.

Interpolator engine methods use the following terminology:

• keys—input values represented on the x axis.

• key values—output values represented on the y axis.

• setFraction()—a method in interpolator engines that specifies a point on the y axis.

Figure 11-1 illustrates these terms.

Engines

103

Figure 11-1 Engine Terminology

Connecting Engines to Other Nodes

You connect an engine to other nodes or engines to create an animation, to cause a chain
reaction of motions, or to cycle through a set of attributes, such as color cycling. You use
csContainer::connect() to make the connections, for example:

csColorInterpolator* myEngine = new csColorInterpolator;
myEngine->connect(MYFIELD, yourEngine, YOURFIELD);

where yourEngine is also a csEngine. To make a color interpolator engine change a
specific field in a shape, connect the engine to it as follows:

csColorInterpolator* myEngine = new csColorInterpolator;
csMaterial* rose = new csMaterial;

myEngine->getfield(VALUE)->connect(rose->getfield(DIFFUSE_COLOR);
// do a color cycle here

In this example, myEngine is connected to the color field of the rose object.

x

y

K
ey values

Keys

setFraction()

104

Chapter 11: Scene Graph Engines

Engine Types

In general, you use interpolator engines to create the data used by other engines that
change some feature of a shape.

The following csEngines interpolate data:

• csSpline—interpolates an arbitrary, non-uniform spline and outputs a weighted
array that defines a weight for each key in the spline.

• csInterpolator—interpolate between keyframe values, selected from the key array
by a floating point fraction, ranging from 0 to 1.

• csColorInterpolator—interpolates among a set of MFColor key values.

• csCoordinateInterpolator—linearly interpolates among a set of MFVec3f values.

• csNormalInterpolator—interpolates among a set of MFVec3f values.

• csOrientationInterpolator—interpolates among a set of MFRotation values.

• csPositionInterpolator—linearly interpolates among a set of MFVec3f values.

• csScalarInterpolator—linearly interpolates between a set of MFFloat values.

• csSelectorEng—selects one coordinate from an array input as its single output.
Derived classes include csSelectorEng3f and csSelectorEng4f.

The following csEngines change some feature of a shape:

• csMorphVec—produces a weighted sum of attribute sets. Derived classes include
csMorphVec3f and csMorphVec4f.

• csTransformEng—transforms attribute sets consisting of points or vectors
(homogeneous coordinate implicitly 1 or 0 respectively). Derived classes include
csTransformEng3f.

The following sections describe each of these nodes.

Engines that Interpolate Values

csInterpolator is an abstract base class that interpolates between keys, as shown in
Figure 11-2. The keys might be location, normal, or rotation values.

Engines that Interpolate Values

105

Figure 11-2 Keys and Key Values

Interpolator nodes are designed for linear, keyframed animation, that is, an interpolator
node defines a piecewise linear function, f(k), on the interval (-infinity, infinity). The
piecewise linear function is defined by n keys and n corresponding key values, f(k). The
keys must be monotonic and non-decreasing. An interpolator node evaluates f(k) given
any value of k.

csInterpolator Fields

The fields in csInterpolator include:

void setFraction(float fraction);
float getFraction();

csMFFloat* key();

For an explanation of key() and setFraction(), see, “Engine Terminology” on page 102.

csSpline

A csSpline takes an array of keys as its input and outputs a set of weights. A key is one
or more pieces of data; a weight is a fractional scaling factor. How the output is weighted
depends on the order of the spline. Figure 11-3 shows two different splines that use the
same key values, but are of different orders: piecewise linear and cubic.

K
ey values, attributes

Keys

106

Chapter 11: Scene Graph Engines

Figure 11-3 Spline

Typically, the output of a csSpline is used as the input of a csMorphEng.

Keys and Key Values

In Figure 11-3, the X axis represents keys, such as time, and the Y axis represents any
attribute or set of attributes, such as location, color, or transparency. Y axis values are
called key values. Notice that the interval between the key values is non uniform. After
setting the key values, csSpline fills in the values between the key values.

The difference between the piecewise linear and cubic splines is created by the different
weight factors.

Values outside of the maximum and minimum keys are clamped to the maximum and
minimum keys and key values.

Key values, such as colors or coordinates, are not kept in a csSpline object. Consequently,
a single csSpline object can define the animation spline for many keys. Key values are
typically kept in a csMorphEng engine, which calculates the weighted sum of key values
to produce the final result.

x

y

A
ttribute

Time

Piecewise linear
Cubic

Engines that Interpolate Values

107

Different Orders of Splines

The matrix field in csSpline enables you to specify an infinite number of splines. Cosmo
3D, however, provides tokens for the following splines:

• piecewise linear

• quadratic

• cubic

Spline curves can be more or less smooth according to the order of the spline. The higher
the order, the smoother the curve. Whereas a piecewise linear spline connects the input
points with straight lines, the cubic spline performs a weighted average of the
coordinates to create a smooth interpolation between the points. Smoothing the curve in
this way produces smooth changes in location or attribute values.

csSpline Fields

The following fields set the spline values:

csMFFloat* key() const;
csMFFloat* weight() const;

void setFraction(csFloat fraction);
csFloat getFraction();

void setBasis(const csMatrix4f& basis);
void getBasis(csMatrix4f& basis);

For an explanation of key() and setFraction(), see, “Engine Terminology” on page 102.

weight() specifies the multiplication factor that changes the linear graph into a spline
curve.

setBasis() specifies the matrix you multiply the four key values (closest to the fraction)
by to get the weight values.

csColorInterpolator

This node interpolates among a set of csMFColor key values to produce a csSFColor
(RGB) color.

108

Chapter 11: Scene Graph Engines

csColorInterpolator contains the following field:

csMFVec3f* keyValue() const;

keyValue() is a set of RGB color values over which you want to interpolate. The number
of colors in the keyValue field must be equal to the number of keyframes in the key field.

csCoordinateInterpolator

This node linearly interpolates among a set of MFVec3f values. This would be
appropriate for interpolating coordinate positions for a geometric morph.

csCoordinateInterpolator contains the following fields:

csMFVec3f* keyValue() const;

keyValue() contains the keys used for the coordinate interpolation.

csNormalInterpolator

csVec3f values can represent unit vectors normal to the surface of a unit sphere.
csNormalInterpolator interpolates between normals.

The output values for a linear interpolation from a point P on the unit sphere to a point
Q also on a unit sphere should lie along the shortest arc (on the unit sphere) connecting
points P and Q.

When P and Q are pointed in opposite directions, they are on opposite sides of the unit
sphere, and therefore all arcs connecting them on the unit sphere are the same length, so
an infinite number of arcs describe the shortest path between the two points. The
interpolation can be along any one of these arcs.

csNormalInterpolator contains the following fields:

csMFVec3f* keyValue() const;

keyValue() contains the keys used for the coordinate interpolation.

Engines that Interpolate Values

109

csOrientationInterpolator

csOrientationInterpolator is identical to a csNormalInterpolator engine except that it
considers an additional field: rotation. csOrientationInterpolator then interpolates
between the quaternion values of X, Y, Z, and rotation for two unit vectors.

A csOrientationInterpolator interpolates between two orientations by computing the
shortest path on the unit sphere between the two orientations. The interpolation will be
linear in arc length along this path.

If two vectors are pointed in opposite directions, they are on opposite sides of the unit
sphere and therefore all arcs connecting them on the unit sphere are the same length, so
an infinite number of arcs describe the shortest path between the two points. The
interpolation can be along any one of these arcs.

csOrientationInterpolator contains the following fields:

csMFVec3f* keyValue() const;

keyValue() contains the keys used for the coordinate interpolation.

csPositionInterpolator

csPositionInterpolator linearly interpolates between sets of SFVec3f values. This is
appropriate for interpolating a translation. The vectors are interpreted as absolute
positions in local space. The keyValue field must contain exactly as many values as in the
key field.

csPositionInterpolator Fields

csPositionInterpolator contains the following field:

MFVec3f keyValue[]

For an explanation of keyValue(), see, “Engine Terminology” on page 102.

csScalarInterpolator

csScalarInterpolator linearly interpolates between a set of csSFFloat values. This
interpolator is appropriate for any parameter that is defined with a single floating point
value, for example., width, radius, and intensity.

110

Chapter 11: Scene Graph Engines

csScalarInterpolator contains the following field:

MFVec3f keyValue[]

For an explanation of keyValue(), see, “Engine Terminology” on page 102.

csSelectorEng

csSelectorEng selects one coordinate from in the input array as its output. csSelectorEng
is an abstract class from which you subclass. Subclasses included in Cosmo 3D include
csSelectorEng3f and csSelectorEng4f.

csSelectorEng contains the following field:

void setSelector (int selector);

csSelectorEng3f and csSelectorEng4f

csSelectorEng3f and csSelectorEng4f are derived from csSelectorEng. The only
difference between the parent and children classes is that the children classes restrict
their input and output values to csMFVec3f and csMFVec4f, respectively.

Engines That Change Shapes

The following engines generally use as input the output of one of the interpolator
engines for the purpose changing some feature of a csShape object.

csMorphEng

csMorphEng is an abstract class derived from csEngine that morphs a set of attributes
from one setting to another, such as you might expect when one value incrementally
changes to another. The output of this engine is a weighted sum of attributes, such as a
set of coordinates. Any number of variably-sized attribute sets, however, can be packed
into the single input field.

The input and output data are held in different vec arrays, such as a csMFVec3f,
according to the dimensions of the attribute data.

Engines That Change Shapes

111

csMorphEng is an abstract class from which you subclass. Subclasses included in Cosmo
3D include cscsMorphEng3f and csMorphEng4f. The only difference between the
classes is the number of attributes transformed.

csMorphEng Fields

csMorphEng contains the following fields:

csMFInt* count() const;
csMFInt* index() const;
csMFFloat* weight() const;

count() contains the number of keys through which the csMorphEng morphs.

index() enables you to index into a csVec() array. You pass into index() the number of the
csMFVec3f set you want to access. You do this to access only that part of the array you
want to use. For example, rather than downloading seven different versions of a clock, a
file might contain a clock with a pendulum seven different positions. To display the face,
the application woutd display the face and then index into the file to the correct
pendulum position.

weights() sets the relative weight of each of the csMFVec3f sets in the csVec().

csMorphEng3f and csMorphEng4f

csMorphEng3f and csMorphEng4f are derived from csMorphEng. The only difference
between the parent and children classes is that the children classes restrict their input and
output values to csMFVec3f and csMFVec4f, respectively.

Example 11-1, taken from the test program, worm.cxx, shows how to build a
csMorphEng3f engine.

Example 11-1 Building a Morph Engine: the Worm

// Build morph engine
 MorphCoords = new csMorphEng3f;
 // “Neutral” is non-indexed and always has weight of 1
 MorphCoords->vecs()->setRange(0, NumRings*RingVerts, coords);
 MorphCoords->counts()->set(0, NumRings*RingVerts);
 MorphCoords->weights()->set(0, 1.0f);

// build the coordinate vectors for the rings on the worm

112

Chapter 11: Scene Graph Engines

 for (k=0,i=0; i<NumRings; i++)
 {
 for (j=0; j<RingVerts; j++,k++)
 {
 csVec3f v(coords[k]);

 v.scale(.5f, v);

 // Set displacement vectors for “target” i
 MorphCoords->vecs()->set(k+NumRings*RingVerts, v);
 MorphCoords->indices()->set(k, k);
 }
 // targets are indexed
 MorphCoords->counts()->set(i+1, -RingVerts);
 }
 MorphCoords->connectOutput(csMorphVec3f::OUT_VECS,
 SkelCoords, csTransformEng::VECS);

This engine moves the rings in the worm.

csTransformEng

csTransformEng is a csEngine that translates attribute sets consisting of points or
vectors. A transform engine changes the orientation and location of a shape. The
csTransformEng output is a single array which may be used as a csGeoSet attribute list,
csCoordSet3f, csNormalSet3f, for example

Any number of variably-sized attribute sets can be packed into the input field.

csTransformEng is an abstract class from which you subclass. Subclasses included in
Cosmo 3D include csTransformEng3f. csTransformEng3f restricts its input and output
values to csMFVec3f.

csTransformEng Fields

csTransformEng has the following fields:

void setTransformType(TransformTypeEnum transformType);
TransformTypeEnum getTransformType();

csMFInt* count() const;
csMFInt* index() const;

Engines That Change Shapes

113

csMFMatrix4f* matrix() const;

transformType() specifies the input data type. If the transformType() value is

• POINT—the input is interpreted as points with a homogeneous value of 1.0.

• VECTOR—the input is interpreted as vectors with a homogeneous value of 0.0 and
are transformed by the inverse transpose of the matrices in matrix().

matrix() specifies the transformation matrix. The matrix array should supply a matrix for
each attribute set in input.

count() lists the number of attributes in each input, attribute set.

Optionally, attribute sets may index into the output list if the index csMFInt field has a
non-zero count. If so, the input[i] vector contributes to output[index[i]].

Example 11-2 creates a sample csTransformEng.

Example 11-2 Creating a csTransform Engine

// Build transform engine
SkelCoords = new csTransformEng;
SkelCoords->setTransformType(csTransformEng::POINT);
SkelCoords->vecs()->setRange(0, NumRings*RingVerts, coords);

This transformation engine positions and orients the rings on the worm in worm.cxx.

csTransformEng3f

csTransformEng3f is derived from csTransformEng. The only difference between the
two is that csTransformEng3f provides input() and output() fields of type csMFVec3f.

115

Chapter 12

12. User Interface Mechanisms

Cosmo 3D applications either appear within a csWindow object or a window object that
you create using X window code. The window provides an interface for users to interact
with the Cosmo 3D application.

Cosmo 3D also supports user interaction by enabling the selection of screen objects.

This chapter discusses how to implement user interaction using X window code,
csWindow, and selection mechanisms.

These are the sections in this chapter:

• “Creating Your Own Window” on page 115.

• “Creating a csWindow” on page 116.

• “Handling User Input” on page 118.

• “Selecting Screen Objects” on page 119

Creating Your Own Window

Instead of using the window provided by Cosmo 3D, csWindow, you can instead create
your own window using X11 window code. In this case your application controls the
csContext, csEvent, and X window, as shown in Figure 12-1.

116

Chapter 12: User Interface Mechanisms

Figure 12-1 Creating Your Own Window

Creating a csWindow

All of the csWindow fields have default values. You may find that they satisfy the needs
of your application. cube.cxx, for example, uses all the default values except that it
provides a title for the window using the setWindowTitle() method.

If you want to change the initial position, size, and mode of the csWindow object, you
use the following methods:

static void initDisplayMode(unsigned long mode);
static void initPosition(int x, int y);
static void initSize(int width, int height);

To reposition or reshape the window after its initial display, use the following methods:

static void positionWindow(int x, int y);
static void reshapeWindow(int width, int height);

To specify the title of the window or its icon, use the following methods:

Application

csContext

GLXContext

csEvent

X Windows

Window

Creating a csWindow

117

static void setWindowTitle(const char *title);
static void setIconTitle(const char *title);

To show, hide, or iconify a window, use the following methods:

static void iconifyWindow(void);
static void showWindow(void);
static void hideWindow(void);

Manipulating the Window Stack

You can create more than one csWindow object at a time. You control the display of the
csWindow objects by manipulating the Window stack: the csWindow object on top of the
stack displays.

The following methods in csWindow manipulate the Window stack:

static csWindow* getCurrent();
static void makeCurrent(csWindow *win);
static void popWindow(void);
static void pushWindow(void);
static void swapBuffers();

You place a csWindow object on top of the window stack using the makeCurrent()
method. The popWindow() method removes the top csWindow object on the stack so
that the object directly below it becomes the current window.

The pushWindow() method copies the csWindow object on the top of the stack and
pushes the copy on the top of the stack, sinking the original csWindow object down one
level.

Cosmo 3D uses two buffers:

• Front buffer—contains the graphic information currently being displayed.

• Back buffer—stores the next image to be displayed.

When the rendered image is ready to be displayed, you switch the source of the graphic
information from one buffer to the other using the swapBuffers() method.

118

Chapter 12: User Interface Mechanisms

Handling User Input

User input to Cosmo 3D consists of

• mouse clicks

• window resize and update events

• key presses

To monitor user input, use the following methods:

static int get(QueryEnum what);
static int getDevice(QueryDeviceEnum what);
static int getMouseX();
static int getMouseY();
static unsigned int getMouseButtons();

QueryEnum covers a wide variety of window information, such as the window’s height,
width, and position. The getDevice() method determines which device the user event
was generated by, such as the mouse, keyboard, or space ball. The remaining methods
specify the mouse cursor location and which of the mouse’s three buttons was pushed.

Handling Multiple Events

Cosmo 3D uses an event array to store events. You use the following methods to place
the events in the array, and to erase all of the events in the array:

const csEventArray& getEvents();
void resetEvents();

Handling Mouse Events

You handle mouse events using the following procedure.

1. Use getDevice() to get a handle to a device and determine which, if any devices,
received user input.

2. Use the getMouseButtons() method to determine which mouse button was pressed.
The return value (MouseButtonEnum) for the method specifies whether the left,
middle, or right mouse button was pushed.

Selecting Screen Objects

119

3. Use the getMouseX() and the getMouseY() methods to determine the location of the
mouse cursor when the mouse button was pressed.

Selecting Screen Objects

Cosmo 3D enables the selection of screen objects in the following ways:

• csIsectAction—selects the shape closest to the camera based on a ray.

• csCamera::pick()—selects the shape closest to the camera based on window
coordinates.

These mechanisms use the direction of the camera and its proximity to a screen objects
to select one.

These methods use a csHit object for storing the selected objects.

Using csIsectAction

csIsectAction when applied to the root node selects all graphical objects intersected by a
csSeg ray that emanates from the camera position as shown in Figure 12-2.

Figure 12-2 Ray Pick Action

S csPickPoints

120

Chapter 12: User Interface Mechanisms

The shape closest to the camera and intersected by the line segment is recorded in a csHit
object. For information about csHit, see “Storing Selected Screen Objects” on page 120.

Using Pick()

csCamera::pick() uses window and viewpoint coordinates to select the screen object
closest to the ray connecting the camera to the point. You might supply the window
coordinates using the mouse methods; see “Handling Mouse Events” on page 118.

When you supply pick() with window coordinates, the method internally uses
csContext::getViewpoint() to convert the coordinates to viewpoint coordinates. The
method then calls csIsectAction to construct a ray from the camera to the coordinates.
The screen object closest the camera on the ray is recorded in a csHit object. For
information about csHit, see “Storing Selected Screen Objects” on page 120.

For information about csContext::getViewpoint(), see “Setting the Screen Display of the
Scene” on page 95.

Storing Selected Screen Objects

csHit objects hold pointers to objects selected using a variety of mechanisms. The
methods in csHit allow you to access the information held by csHit, including:

• The index number, geomPartNumber, of the triangle, quadrilateral, or polygon inside
of a csGeoSet.

• The csGeometry that was intersected.

• The csShape that was intersected.

• The normal in local space at the intersection point. (The space of the geometry that
was intersected.)

• The intersection point in local space. (The space of the geometry that was
intersected.)

• The model view matrix for the csGeometry intersected. The model view is the
concatenation of the viewing matrix and all the matrices in all csTransform objects
above the csShape node.

• The normal in world space at the intersection point. (The space of the camera used
to calculate the hit.)

Selecting Screen Objects

121

• The list of nodes leading from the root of the scene graph to the intersected
csGeometry.

• The intersection point in world space. (The space of the camera used to calculate the
hit.)

• Distance of the intersection from the csSeg origin, which is the same as the distance
from the csCamera object.

• The line segment, csSeg, expressed in three dimensions, that was used in the
intersection test.

123

Chapter 13

13. Optimizing Rendering

One of the greatest challenges you face as a developer after you create an application is
optimizing its performance.This chapter describes the Cosmo 3D nodes and
programming techniques that can help optimize your application’s performance.

For more information about performance tools, see the OpenGL Optimizer Programming
Guide.

These are the sections in this chapter:

• “Reducing the Number of Vertices Rendered” on page 123.

• “Performance Programming Techniques” on page 127.

Reducing the Number of Vertices Rendered

The more vertices calculated and rendered, the slower the application’s performance. To
the extent that you can reduce calculations and rendering, you can improve your
applications performance.

• The following sections list means by which you can reduce the number of
calculations made and the number of vertices rendered:

• “Face Culling” on page 123.

• “Level of Detail Reduced for Performance” on page 125.

• “Culling the View Frustum” on page 124.

Face Culling

When a three-dimensional geometry is rendered, the side of it facing away from the
camera is normally hidden by the side that faces the camera. For example, when a sphere
is rendered, you normally only see its front side.

124

Chapter 13: Optimizing Rendering

You can avoid rendering the back side of a geometry using the setCullFace() method,
defined in csContext and csGeoSet as follows:

void setCullFace(csContext::CullFaceEnum cullFace);

The argument in setCullFace() specifies how much of a geometry is rendered. The
possible argument values, enumerated in csContext::CullFaceEnum(), include

• NO_CULL—Both front and back sides of geometries are rendered.

• FRONT_CULL—Only the back sides of all geometries are rendered.

• BACK_CULL—Only the front sides of all geometries are rendered.

• BOTH_CULL—Geometries are not rendered.

getCullFace() returns one of these values, whichever is current.

Not rendering either the front or back side of a geometry improves rendering
performance.

Culling the View Frustum

View frustum culling eliminates from the rendering list all of those shapes not in the
viewing frustum.

View frustum culling works best if the objects in a csGroup node are close together, for
example, all of the nodes representing a body are linearly hierarchical. When this is the
case, the CULL process only needs to visit the top of the body subgraph. If the body
nodes were distributed horizontally, the CULL process would have to visit at least some
of the other body nodes.

View frustum culling also works best when the csShapes are small compared to the full
database size.

Objects that are roughly the same length in each of the three dimensions cull better than
long, thin objects. An object that spans the database, for example, a beam across the
ceiling of the building, cannot be culled as easily as two halves of the beam. It may be
useful to divide up objects that can be easily divided.

OpenGL Optimizer provides tools to group together in the scene graph nodes whose
shapes close together in world space.

Reducing the Number of Vertices Rendered

125

Level of Detail Reduced for Performance

The children of a level of detail (csLOD) node each encapsulate a shape at a different of
detail. The factor of resolution between children of a csLOD is often one quarter; so when
a lower resolution child replaces the current csLOD child displayed, only one quarter of
the current number of vertices need to be rendered. The maximum reduction of detail is
when all of the vertices of the highest-resolution image are reduced to a single pixel.

The csLOD (level of detail) node is a subclass of csSwitch. csLOD switches between its
children nodes based on the proximity of an object to the camera.The further a shape is
from the viewer, the less resolution needed to display it. Cosmo switches between the
children automatically, based on range, to display a shape at the correct level of detail.

csLOD allows you to reach a compromise between performance and the level of detail
rendered. For high quality images, a shape close to the camera should be rendered in
high detail. When a shape recedes from the camera, the same level of detail is not
necessary. Reducing the level of image detail reduces the number of vertices required to
render a shape, which results in improved performance.

OpenGL Optimizer can create the csLOD children nodes.

Choosing a Child Node Based on Range

The distance, called the range, that determines which child of the csLOD is displayed is
defined as the distance between a camera and a shape’s center. Each child node of a
csLOD node is associated with a range of distance values. The range is computed during
the traversal of the scene graph. You set the range value using csLOD methods:

void setCenter(const csVec3f& c);
void getCenter(csVec3f &c) const;

void setRange(int index, float nearDistance,float farDistance);
void setRangeNear(int child,float distance);
void setRangeFar(int child,float distance);

int getNumRanges() const {return numRanges; }
float getRangeNear(int child) const;
float getRangeFar(int child) const;

The setCenter() method specifies the center of the LOD. This point aids in calculating the
range between the camera and the shape.

126

Chapter 13: Optimizing Rendering

The setRange() method specifies the ranges over which a child node of the csLOD node
is selected for display. The number of ranges must correspond to the number of csLOD
child nodes. If that is not the case:

• If too few ranges are specified, the highest-order child nodes are ignored.

• If too many ranges are specified, the extra ranges are ignored.

Instead of using setRange(), you can use setRangeNear() together with setRangeFar() to
specify the range over which a child node of a csLOD node is selected for display.

The camera may disregard range values and

• Display an already-fetched level of detail while a higher level of detail is
downloaded from disk.

• Adjust the level of detail displayed to maintain a constant frame rate; this is always
the case if you leave the range() field empty.

• Disregard the range values for any other implementation-dependent reason.

Tip: For best results, specify ranges only where necessary; give browsers as much
freedom as possible to choose levels of detail based on performance.

Transitioning Between Levels of Detail

The transition() method specifies the range over which one csLOD child changes into
the next, as shown in Figure 13-1.

Performance Programming Techniques

127

Figure 13-1 csLOD Ranges

Performance Programming Techniques

The following sections provided programming tips for improving the performance of
your application:

• “Minimize Use of csAppearance Fields” on page 128.

• “Minimize Use of csAppearance Modes” on page 128.

• “Indexing csGeoSet Attributes” on page 128.

• “Setting the Transformation Matrix Directly” on page 128.

• “Compiling Part of a Scene Graph” on page 129.

High resolution image

Low resolution image

Transition region

Range 1

Range 2

128

Chapter 13: Optimizing Rendering

Minimize Use of csAppearance Fields

Many of the fields in csContext set the appearance of a geometry. The fields in
csAppearance match those in csContext. Setting a csAppearance field overrides the
values of the same fields set in csContext. Overriding csContext values, however,
reduces performance because the field has to be reevaluated every time the
csAppearance object is acted upon.

To maximize performance, set csContext fields to values that satisfy a majority of the
shapes in a scene. In this way, you set the minimum number of csAppearance fields.

Minimize Use of csAppearance Modes

Some of the fields set in csAppearance are much more graphics-intensive than others. In
particular, the blending, texture, and lighting fields require larger amounts of CPU time.
To improve performance, it is better not to turn on these modes if your application does
not need them.

Indexing csGeoSet Attributes

You can specify the appearance of all the csGeoSet elements making up a geometry
either individually or collectively. You have the option of specifying the attribute values
sequentially, so that the first element is described by the first csAttribute values or you
can use an index system.

Choosing to index the attribute values or not can dramatically affect the performance if
your application. The general rule to remember when indexing or not is to determine
whether many elements share the same vertices, or not. If many elements share the same
vertex, index the attribute values; if a vertex is not shared by many elements, specify the
attribute values of the elements sequentially

For more information about indexing, see “Indexing Attributes” on page 30.

Setting the Transformation Matrix Directly

Whether you set the transformation matrix explicitly or you use the csContext methods
that set the transformation matrix for you, rendering performance is optimized for the

Performance Programming Techniques

129

following reason: a shape can be translated, scaled, and rotated. Rather than computing
these methods every time a shape is drawn, the transformation matrix represents the
product of all three methods. Likewise, when a transformation matrix node is the parent
of many shape nodes, the transformation for all of the children shape nodes is captured
in a single transformation matrix.

Compiling Part of a Scene Graph

Although there are no restrictions on the way in which you create a scene graph, it is
customary to find that pieces deep in a scene graph branch add to pieces above them
which add to pieces above them until an entire object is described. For example, the
lowest node in a branch might be a toe, the node above it might be the foot, the node
above that the leg, the node above that the body; taken together, the nodes describe one
side of the lower half of a body, as shown in Figure 13-2. When an action traverses a scene
graph, the more nodes it visits, the longer it takes to execute the action. If scene graph
branches are deep, the traversal can become expensive. To correct this problem, if you
find that the elements in the branch do not change often, you can precompile that branch
using csCompileAction. This action compiles a specified subgraph into a data structure,
which optimizes setting the traversal state.

To compile a subgraph, create a csCompileAction object and apply it to the root node of
the scene graph, as follows

csCompileAction *compileIt = new csCompileAction;
compileIt->apply(node_name);

where node_name is the name of the node below which you want to precompile.

130

Chapter 13: Optimizing Rendering

Figure 13-2 Arranging Scene Graph Nodes

Torso
node

Leg
node

Foot
node

Leg
node

Foot
node

131

Chapter 14

14. Adding Sounds To Virtual Worlds

You can incorporate sound into your virtual worlds by including at least one csSound
node in a scene graph and by invoking a csSoundAction. The csSoundAction plays the
sound file specified in the csSound node. This node also includes parameters, such as
volume, for playing the sound.

This chapter describes how to set and play sound using Cosmo 3D.

These are the sections in this chapter:

• “Overview” on page 131.

• “How to Play a Sound File” on page 137.

• “Specifying Audio Files” on page 139.

• “Playing Sound in Immediate Mode” on page 141.

Overview

A csSound node contains the location of a sound file and the parameters used for playing
it. To play a sound file in a virtual world, attach one or more csSound objects to a scene
graph and apply a csSoundAction to it. To associate a specific sound to a specific shape,
either include the csSound object in the csShape node or make the csSound object and
shape nodes children of the same group nodes.

A csSound node references a csAudioClip node and a csAudioClip node references a
csAudioSamples node, as shown in Figure 14-1.

132

Chapter 14: Adding Sounds To Virtual Worlds

Figure 14-1 Sound Classes

A csAudioSamples node contains the raw sound data. A csAudioClip node specifies
how a sound file should be played.

For more information about csAudioClip, see “How to Play a Sound File” on page 137.
For more information about csAudioSamples, see “Specifying Audio Files” on page 139.

csSound Fields

The fields in csSound specify the sound source to play by specifying a csAudioClip
object. csSound can optionally specify the location, the direction of the sound, and the
spatial characteristics of the sound.

void setSource(csAudioClip* audioClip);
void setSpatialize(csBool spatialize);

void setControl(ControlEnum control);

void setLocation(const csVec3f& location);
void setLocation(csFloat v0, csFloat v1, csFloat v2);
void setDirection(const csVec3f& direction);
void setDirection(csFloat v0, csFloat v1, csFloat v2);

csSound

csAudioClip

csAudioSamples

Overview

133

void setIntensity(csFloat intensity);
void setMaxIntensity(csFloat maxIntensity);
void setCullIntensity(csFloat cullIntensity);

void setCurrentFrame(csFloat currentFrame);
void setPriority(csFloat priority);

void setMinFront(csFloat minFront);
void setMaxFront(csFloat maxFront);
void setMinBack(csFloat minBack);
void setMaxBack(csFloat maxBack);
const csIntArray& getEvents();

The following sections describe these fields.

Choosing Sound Samples to Play

To specify how to play a sound file, pass a csAudioClips object to setSource(). The
csAudioClips object identifies a csAudioSample object, which contains the sound file to
play. For more information about csAudioClips, see “How to Play a Sound File” on
page 137.

A sound file commonly contains more than one sound sample. Some samples may
contain more than one sound channel per sound interval to create, for example, stereo.

To choose a starting location in a sound file, pass the starting frame to the
setCurrentFrame() field. A frame is equal to (1/SampleRate) of a second. The sample rate
might be, for example, 44KHz, or 44,000 Hz. If, for example, you pass 44000.0 into the
setCurrentFrame() field, the sound would begin playing one second (44000 × 1/44000 =
1) into the sound file.

Sound Priority

Your application can play only a limited number of sounds at the same time. The factors
that determine whether or not a sound is heard include

• The proximity of the listener to the source.

• The priority level of the sound.

134

Chapter 14: Adding Sounds To Virtual Worlds

Higher priority sounds are heard instead of lower priority sounds if too many sounds
could possibly be heard by the listener at the same time. Set the priority level of a sound
in the setPriority() method.

Playing the Sound File

The setControl() field provides an intuitive interface for playing the sound sample in
sound files. You pass into setControl() any of the ControlEnum values, including PLAY,
PAUSE, REWIND, FASTFORWARD, and STOP.

Locating and Directing the Sound

To enable all of the other effects implemented by the fields in the csSound node, covered
in the next section, pass a non NULL value to setSpatialize(). If you pass a NULL value
to the field, the volume is a constant value throughout the scene. This choice is
appropriate, for example, for background music.

Locating the sound source in a scene is as easy as passing its coordinates to the
setLocation() field.

Cosmo 3D gives you a great deal of control over how sound propagates from the source.
When you supply a vector describing the direction of the sound, the sound propagates
in all directions, but attenuates least in specified direction. The attenuation of the sound
over distance is characterized by an ellipse, as shown in Figure 14-2.

Overview

135

Figure 14-2 Sound Direction

In this figure, (1.0, 1.0, 0.0) is passed as the direction vector to setDirection(). The ellipse
tips, accordingly, at a 45 degree angle.

Note: A transformation node can reorient the sound’s location and direction.

Cosmo 3D provides the following limiting tools to fashion the attenuation of the sound
over the ellipse:

• Maximum intensity—defines the maximum possible volume regardless of how
close the listener is to the sound source.

• Minimum intensity—defines the lowest possible volume of a sound. In practice,
since this value is often set to zero, the minimum intensity perimeter defines the
range of the sound.

The setIntensity() field specifies the volume of the sound at its source. The
setMaxIntensity() field specifies the maximum volume of a sound. If a maximum
intensity is set, as is the case in Figure 14-2, the intensity of the sound within the
maximum intensity perimeter does not attenuate and is equal to the volume specified by
setIntensity(). The maxFront() field specifies the maximum intensity perimeter within
which the listener hears the maximum volume of the sound.

Sou
nd

 d
ire

cti
on

Sound source Minimum forward sound
intensity perimeter

Maximum forward sound
intensity perimeter

136

Chapter 14: Adding Sounds To Virtual Worlds

Outside of the maximum intensity perimeter, the intensity of the sound attenuates over
distance until it reaches the minimum intensity perimeter. Beyond the minimum
intensity perimeter, the volume of the sound source is constant, defined by the
setCullIntensity() field.

Reverse Direction Sound

Cosmo 3D also provides a complimentary set of fields that allow you to define the
propagation and attenuation of the same sound in the opposite direction, as shown in
Figure 14-3.

Figure 14-3 Forward and Reverse Sound Propagation

The minimum and maximum intensities in the reverse direction are the same as those in
the forward direction. The minimum and maximum intensity perimeters, however, are
specified separately with the minBack(), and maxBack() fields.

How to Play a Sound File

137

csSound Methods

The csSound node provides virtual methods to handle csDrawAction and
csSoundAction actions. The csSound node also provides the fieldChanged() method
that specifies which csSound fields, if any, have changed since an action was last applied.
If none of the fields changed, the fields in the node should not be evaluated. You might
also create a method that keeps track of which fields changed so that only those fields are
reevaluated.

The csSound methods are as follows:

virtual void fieldChanged(short fieldId);

virtual void draw(csDrawAction *da);
virtual void draw();

virtual void sound();
virtual void sound(csSoundAction *sa);
int sound(char *dst, int nFrames, float frequencyFactor,

float intensityFactor, int numDstChannels);

Because these methods are virtual, you must provide your own implementation of them
in your application.

How to Play a Sound File

You use csAudioClip to specify how to play the sound files referenced in the
csAudioSamples node.

csAudioClip contains the following fields:

csMFString* url() const;
void setSamples(csAudioSamples* samples);
void setPitch(csFloat pitch);
void setStartTime(csTime startTime);
void setStopTime(csTime stopTime);
void setDoppler(csBool doppler);
void setLoop(csBool loop);
void setDescription(const csString& description);
csTime getDuration();
csBool getIsActive();

138

Chapter 14: Adding Sounds To Virtual Worlds

These set() fields have corresponding get() fields. Table 14-1 describes how these fields
are used.

Example 14-1 sets all of the fields in a csAudioSamples node.

Example 14-1 Setting the Fields in an csAudioClip Object

// create a csAudioClip object
csAudioClip* clip = new csAudioClip();

// attach the audio clip to a csAudioSamples object
clip->setSamples(csAudioSamples truck_horn);

// Set the parameters of the csAudioClip object
clip->setPitch(1.0);
clip->setIntensity(1.0);

Table 14-1 csAudioClip Fields

Field Description

url Specifies a WWW URL where the sound source file can be found.

setSamples Attaches the csAudioClip object to a csAudioSamples object.

setPitch Adjusts the pitch of a sound sample.

setStartTime Specifies a beginning time for the sound sample to begin playing. Time here
is an expression of clock time.

setStopTime Specifies an ending time for the sound sample to stop playing. Time here is
an expression of clock time.

setDoppler Enables the doppler effect, which is the attenuation of a sounds pitch based
on the velocity of the sound source relative to the listener, for example, when
a sound source, like a train whistle, approaches a listener rapidly, the pitch
sounds higher; when the same sound source passes the listener, the pitch
lowers.

setLoop Allows a sound file to keep playing.

setDescription Provides a description in the node of the sound source.

getDuration Returns the duration of the playing of the sound source; subtracts
setStartTime from setStopTime.

getIsActive Returns whether or not the sound should be played.

Specifying Audio Files

139

clip->setMaxIntensity(4.0);
clip->setLoop(TRUE);
clip->setDescription(“Truck horn”0;

Specifying Audio Files

You use the csAudioSamples node to specify the source of the audio files and a variety
of parameters that describe those sound samples. To use the audio files specified by this
node, pass a csAudioSamples object as the argument to csAudioClip::setSamples(), for
example,

csAudioSamples* truck_horn_file = new csAudioSamples;
csAudioClip* truck_horn_style = new csAudioClip;

truck_horn_style->setSamples(truck_horn_file);

In this example, the truck_horn_file is used as the audio file for the truck_horn_style object.

csAudioSamples has the following fields:

void setFileName(const csString& fileName);
void setNumFrames(csInt numFrames);
void setSampleRate(csFloat sampleRate);
void setSampleSize(csInt sampleSize);
void setSampleType(SampleTypeEnum sampleType);
void setNumChannels(csInt numChannels);
void setSampleScale(csFloat scale);
void setLoadStatus(LoadStatusEnum loadStatus);
LoadStatusEnum getLoadStatus();
csMFByte* samples() const;

These set() fields have corresponding get() fields. Table 14-2 describes how these fields
are used.

Table 14-2 Fields of csSoundSamples

Field Description

setFileName Attaches the csAudioSample node to a specific sound source file.

 setNumFrames Is the equivalent to the sampling rate of the sound sample, for example, 44
KHz.

140

Chapter 14: Adding Sounds To Virtual Worlds

Manipulating the Audio Samples Directly

csAudioSample::samples() returns the multivalued array field that contains the actual
audio samples. This handle allows you to directly manipulate the array field. For
example, to set a sound value, use the following code:

samples->set(index, value);

To set the number of samples and then edit the array directly, use the following code:

samples->setCount(16*44400);
char *samps = samples->edit();
for(i=0;i<16*44400);i++)
 samps[i]=DETERMINE_SAMPLE(i);
samples->editDone();

 setSampleRate Specifies the sampling rate of the sound sample.

setSampleSize Specifies the size of the source sound files.

setSampleType Specifies the format of the sampling rate. Valid values include
UNSIGNED_INT_SAMPLE_TYPE or FLOAT_SAMPLE_TYPE.

setNumChannels Specifies the number of channels for each sound, for example, stereo has
two channels, quad sound has four channels.

setSampleScale Scales the overall volume of the sound sample. If if sound sample was
recorded to loud or soft compared to other sound samples, you can scale
the volume of the sound file so that its volume matches that of the other
sound files.

setLoadStatus Returns the status of whether or not the sound file loaded; valid values
include LOAD_NEEDED, LOAD_FAILED, LOAD_PENDING, and
LOAD_COMPLETE.

samples Returns the multivalued array field that contains the actual audio
samples.

Table 14-2 (continued) Fields of csSoundSamples

Field Description

Playing Sound in Immediate Mode

141

Example Setting a csAudioSamples Node

Example 14-2 sets all of the fields in a csAudioSamples node.

Example 14-2 Setting the Fields in an csAudioSamples Object

// create an audio sample node
csAudioSamples* horn = new csAudioSamples;

// attach the audio sample node to a specific file
horn->setFileName(“truck_horn.xxx”);

// Set the parameters for the source sound file
horn->setNumFrames(44000.0);
horn->setSampleRate(44000.0);
horn->setSampleSize(2000);
horn->setSampleType(UNSIGNED_INT_SAMPLE_TYPE);
horn->setNumChannels(2);
horn->setSampleScale(1.0);
...

// Load the sound sample by setting the audiosample filename
horn->load();

// Make sure the sound loaded successfully
if (horn->getLoadStatus();”LOAD_FAILED”)

abort();

When load() is called, Cosmo 3D reads the samples in the file into the sample field
directly.

Playing Sound in Immediate Mode

When a csSoundAction is invoked on a scene graph, the action traverses the scene graph
and gathers a list of active csSound nodes. The action notifies csContext internally of this
list of nodes. When the context is applied to the rendering pipeline, the sounds specified
in the associated csAudioSamples nodes are played.

You can also play a sound file immediately. Instead of using a csSoundAction to trigger
the playing of the sound file, you use a csSoundPlayer node.

142

Chapter 14: Adding Sounds To Virtual Worlds

All of the code used to play sounds, either using csSoundAction or csSoundPlayer, is
encapsulated in csSoundPlayer. Consequently, all of the field settings discussed
previously in this chapter also need to be specified in csSoundPlayer.

csSoundPlayer Methods

csSoundPlayer methods

• Open and close audio ports

• Update and clean the sound buffer

• Provide a virtual method to detect field changes

• Return the number of sound players available

• Specify the sound fiile to be played

• Locate the microphone (viewer) in the virtual world

• Locate the sound source in the virtual world

• Simulate a doppler shift for a moving viewer

• Simulate a doppler shift for a moving sound source

• Set the maximum and minimum sound levels for a sound source as well as the
current intensity of the sound

• Allow you to set up a buffer size and queue to play sound files sequentially

143

Appendix A

A. Cosmo Basic Types

This chapter discusses all of the basic types that are used in other Cosmo 3D classes. The
basic class types fall into the following categories:

• Array storage—stores data.

• Vector classes—stores vectors.

• Bounding shapes—creates a volume around a specified shape.

• Field classes—specifies the classes for the node fields: single value.

• Other math classes—miscellaneous math classes.

This chapter examines each of these class categories.

These are the sections in this chapter:

• “Array Storage Class Types” on page 143.

• “Vector Classes” on page 147.

• “Bounding Volumes” on page 150.

• “Field Classes” on page 151.

• “Other Math Classes” on page 154.

Array Storage Class Types

The array classes store data.

• csData—stores raw data.

• csArray—is a virtual array class.

• Array-derived classes—are derivations of csArray.

The following sections describe each of these array classes.

144

Appendix A: Cosmo Basic Types

Data Class

The csData class is similar to malloc: it stores raw data. You can use the csData class
directly, such as in storing data in arrays, but it is more common to derive your own class
from it.

The methods in the class set and delete the amount of storage necessary for the data
being stored:

void* getData () const;
int getSize () const;
void operator delete (void* ptr);
void* operator new (size_t s, size_t nbytes);

getData() returns the data.

getSize() returns the size of the data.

new() specifies the number, s, of bytes, of size nbytes, allocated.

delete() deallocates the object created by the new() method.

Array Classes

csArray is a virtual array class from which all other array classes are derived. Arrays are
used as storage vehicles for a variety of types. Cosmo 3D provides a wealth of
csArray-derived array classes for different types, including:

• csPtrArray—An array of pointers often used to point to values in other arrays.

• csFieldArray—An array of fields.

• csByteArray—An array of bytes.

• csIntArray—An array of integers.

• csFloatArray—An array of floats.

• csVec2fArray—An array of Vec2fs.

• csVec3fArray—An array of Vec3fs.

• csVec3sArray—An array of Vec3ss.

• csVec4fArray—An array of Vec4fs.

Array Storage Class Types

145

• csMatrix4fArray—An array of Matrix4f.

• csRotationArray—An array of rotation vectors.

• csStringArray—An array of strings.

• csShortArray—An array of shorts.

• csFieldInfoArray—An array of field descriptions.

• csRefArray—An array of references.

• csEventArray—An array of events; an event is a user action, such as a mouse click.

The methods in all of the array classes are similar, as described in the following section.

Array Methods

The methods in csArray and all of the derived array classes are similar; the differences
stem from the different types filling the arrays. The following example explains the
methods in csIntArray but you can easily apply the same descriptions to all of the other
array classes.

To specify a specific array object to manipulate, use the following method:

<type>* getArray() const;

To fill an array, or to retrieve values from an array, use one of the set() or get() methods
in the class, respectively, replacing <type> with the base type of the array.

void set(int i, csInt t);
void get(int i, csInt& t) const;
<type> get(int i) const;
void set(const csIntArray &l);

The first argument, i, is the position of the value in the array. The second argument, t, is
the value of that element in the array. The second version of the set() method allows you
to copy the contents of one array to another.

You can fill an array by setting groups of values using the following methods:

void setRange(int i, int count, csInt vals[]);
void getRange(int i, int count, csInt vals[]);
void fillRange(int i, int count, csInt vals[]);

146

Appendix A: Cosmo Basic Types

The first argument, i, is the position in the array where you want to begin setting values.
The second argument, count, is the number of array elements you want to set. The third
argument, vals[], is an array of values that you want to enter into the array.

The fillRange() method sets all of the values in an array to the value passed in the
argument.

The operator, [], assigns values.

<type> operator[](int i) const;

The following methods manipulate the values in the array:

void append(<type> elt);
void insert(int index, <type> elt);
int replace(csInt old, <type> elt);
int remove(<type> elt);
void removeIndex(int i);
int fastRemove(<type> elt);
void fastRemoveIndex(int i);
int find(<type> elt) const;
void write(csOutput *out);

To add a value after the last value in an array, to insert a value at a specified index
location, to replace one value with another, or to remove a specific value or a value
located at a specific index, use the append(), insert(), replace(), remove(), or
removeIndex() methods, respectively. The remove() method removes the first value it
finds that matches its argument.

You can also remove array elements more quickly: fastRemove() removes the array
element, elt, and replaces it with the last element of the array, whereas remove() moves
all the remaining elements down one. Also, you can remove the array element, elt, by
passing in the index value, i, to fastRemoveIndex().

You can find the index of a specific value in an array using the find() method. You can
also write the contents of the array to System.out using the write() method.

Vector Classes

147

Vector Classes

Cosmo 3D provides a wealth of vector math classes. Vectors of different dimensions
allow for data categorization according to need, for example, a color value could include
four component values; in this case, a four component vector would be used: csVec4f.

The following sections describe the vector classes and their transformation class.

Vector Math

Vectors are used in a variety of ways in Cosmo 3D. Commonly, they are used to define
orientation, rotation, and transformations. Cosmo 3D provides the following
multi-dimensional vectors.

• csVec2f— represents a two-element floating point vector.

• csVec3f— represents a three-element floating point vector.

• csVec4f— represents a four-element floating point vector, often used as a
homogenous space coordinate.

• csVec4ub— represents a four-element unsigned byte vector, most often used as a
color value. The elements range from 0 to 255, inclusive.

Vector Methods

The methods in the csVec2f, csVec3f, csVec4f, classes are similar; the differences between
them stem only from additional argument members that account for the different
dimensions of the classes. The following discussion describes the csVec2f class, but can
easily be extended to the other classes as well.

The classes use the following overridden get() and set() methods to return and define,
respectively, the vectors.

void set(float a, float b, float c, float d);
void get(float *a, float *b, float *c, float *d) const;
void set(int i, float f);
float get(int i) const;
void set(const csVec2f &v);
void get(csVec4f &v) const;

148

Appendix A: Cosmo Basic Types

For the csVec2f class, the third and fourth argument members are set to zero in each of
these methods. For the csVec3f class, just the last argument is set to zero.

The classes contain the following methods:

csBool equal(const csVec4f& v) const;
csBool almostEqual(const csVec4f& v, float tol) const;
void negate(const csVec4f& v);
float dot(const csVec4f& v) const;
void add(const csVec4f& v1, const csVec4f& v2);
void sub(const csVec4f& v1, const csVec4f& v2);
void scale(float s, const csVec4f& v);
void addScaled(const csVec4f& v1, float s, const csVec4f& v2);
void combine(float a, const csVec4f& v1, float b, const,

csVec4f& v2);
float sqrDistance(const csVec4f& v) const;
float normalize();
float length() const;
float distance(const csVec4f& v) const;
void xform(const csVec4f& v, const csMatrix4f& m);

The methods have the following functionality:

• almostEqual()—returns TRUE if the values are within .99 of each other.

• negate()—negates the vector, which, in effect, reverses its direction.

• scale()—enlarges or reduces a vector by the multiplier passed in.

• addScaled()—adds to a vector the scaled vector passed in.

• combine()—performs the vector addition of two vectors.

• sqrDistance()—square

• normalize()—makes the vector orthogonal to its original direction.

• distance()—determines the distance between two vectors.

• xform()—transforms the vector by the matrix passed in.

The classes also provide the following write and operator methods:

void write(csOutput *out);

csVec4f& operator=(const csVec4f &v);
csVec4f& operator=(float v);
float& operator[](int i);

Vector Classes

149

float operator[](int i) const;
csBool operator==(const csVec4f &v) const;
csBool operator!=(const csVec4f &v) const;

The write() method prints the vector to the device or file defined by out.

The operator() method defines an operation that can be performed on two vectors. The
first two operator methods are assignment operators, the second two are access
operators, and the last two are equality operators. For example,

csVec2f *myVec = new csVec2f();
csVec2f *yourVec = new csVec2f();
...

if (myVec == yourVec) {...}

csVec4ub Methods

The csVec4ub class contains a subset of the above methods, including the set(), get(),
equal(), write(), and operator() methods for two-, three-, and four-dimensional ubyte
quantities. For example, the four-dimensional definition is

csVec4ub(ubyte a, ubyte b, ubyte c, ubyte d);

Transforming csVec3f Vectors

csVec3f vectors are commonly used to specify the placement and orientation of objects
in world space. There are three ways to transform a csVec3f when passing a csMatrix4f
into xform():

• A csVec3f transform vector treats the csVec3f like a vector, as if it were a csVec4f
with 0.0f stored as the fourth element. This is particularly useful for surface
normals.

• A csVec3f.transform point treats the csVec3f like a point, as if it was a csVec4f with
1.0f stored as the fourth element, but does not perform perspective division. This is
most useful for non-projective transformations.

• A csVec3f.transform point treats the csVec3f like a point, as if it was a csVec4f with
1.0f stored as the fourth element, but does perform the perspective division. This is
useful for projective transformations such as perspective projection.

150

Appendix A: Cosmo Basic Types

Bounding Volumes

Bounding volumes provide an efficient means of determining which shapes are in and
out of the view frustum. The bounding volume for most shapes is a sphere, as shown in
Figure A-1.

Figure A-1 Bounding Sphere

Cosmo 3D provides several bounding shapes as well as an abstract class from which you
can derive your own bounding shapes. You use the bounding shape that most closely
resembles the object being enclosed, for example, use a csSphereBound with spherical
objects.

• csBound— is the abstract base class from which bounding objects are derived.

• csBoxBound—prescribes the minimum-sized box that can enclose an object.

• csSphereBound—prescribes the minimum-sized sphere that can enclose an object.

csBound is the abstract base class from which bounding objects are derived. Methods are
provided to compute a bounding object around a group of points, boxes, or spheres, and
to extend an existing bounding object by any of these. In addition, there are methods to
determine if a point, bounding box, or bounding sphere is contained entirely within a

Field Classes

151

bounding object. Methods are also provided to transform bounding objects using a
matrix, test it for emptiness, or test it for intersection with a line segment.

Cosmo 3D provides two bounding shape classes: csBoxBound and csSphereBound.
Most shapes use a spherical bounding volume. Box-like shapes, however, such as
csCube, use box-shaped bounding volumes.

Field Classes

Together, fields and methods comprise a scene graph node. A field is a class with set()
and get() methods that set and return the values of the field. Fields can also have other
methods that perform other operations related to setting or returning the field value.

Cosmo 3D contains the following Field classes:

• csField— represents a simple data type, such as float, csVec3f, and arrays of simple
types.

• csFieldInfo—maintains information about the fields of a class including string
name, integer id, default value, and a pointer to a member in csContainer.

• csMField— is an abstract class containing some of the functionality common to
arrays.

• csAtomField<Type>—is a single-valued atomic field type.

• csArrayField<Type>—is a single-valued array field type.

You can substitute for <Type> any character type, such as Int, Short, or Field. The
following sections describe each of these field classes.

csField

csField is the abstract class from which all of the other field classes are derived. Because
it does not have a constructor, you cannot use it directly.

152

Appendix A: Cosmo Basic Types

csFieldInfo

csFieldInfo maintains information about the fields of a class, including the string name,
integer id, default value, and storage offset from class instance, all of which you set in the
constructor:

csFieldInfo(const char *name, short id, char csContainer::*offset);

The class methods provide means of obtaining the argument values.

const char* getName();
short getId();
char csContainer::* getOffset();

csFieldInfo also provides additional methods that allow you to create an enumeration
by pairing an integer with a string, and to create an alias for the field name.

void addEnum(int e, const char *str);
void addAlias(const char *alias);

The following virtual fields instantiate, reset, write, and determine whether or not a
specified container is the default value.

virtual csField* instantiate(csContainer *p) = 0;
virtual void reset(csContainer *p) = 0;
virtual void write(csOutput *out, csContainer *cnt) = 0;
virtual void write(csOutput *out);
virtual csBool isDefault(csContainer *cnt) = 0;

csMField

csMField is an abstract class containing some of the functionality common to arrays,
including a container object, an index, and a storage value, as defined by the constructor:

csMField(csContainer *p, short i);

The set and get methods in the class define array-type functionality, including returning
an offset value in the array where, for example, you might like to begin reading data. The
stride function allows you to step through the values in the array at increments of two or
more values at a time, for example, if the stride is two, you might read every other value
in the array.

The count and size methods set and return the number of elements in the object, such as
the number of values in an array, and the total number of elements in the object.

Field Classes

153

The editDone() method allows you to signal when you have finished manipulating the
csMField object so that, for example, you can allow its values to take effect.

short getOffset() const;
short getStride() const;

void setCount(int n);
int getCount();

void setSize(int n);
int getSize();
void editDone();

csAtomField

csAtomField is a single-valued composite field type. A single value field can be
something as simple as an integer or a csVec4f.

csAtomField<Val>(csContainer *p, short i, Val *stor);

csArrayField

csArrayField is a single-valued array field type. It is commonly used as the type for array
class fields.

csArrayField<ValType, ValRef>(csContainer *p, short i,
 csGenArray<ValType, ValRef> *stor);

The class set and get methods provide the means of setting and returning these values.

void set(int i, ValRef t);
void get(int i, ValType& t);
ValRef get(int i);
void set(const csGenArray<ValType, ValRef> &l);

void setRange(int i, int count, const ValType vals[]);
void getRange(int i, int count, ValType vals[]);
void fillRange(int i, int count, ValRef val);

ValRef operator[](int i);

You can fill an array by setting groups of values using the following methods:

void setRange(int i, int count, csInt vals[]);

154

Appendix A: Cosmo Basic Types

void getRange(int i, int count, csInt vals[]);
void fillRange(int i, int count, csInt vals[]);

The first argument, i, is the position in the array where you want to begin setting values.
The second argument, count, is the number of array elements you want to set. The third
argument, vals[], is an array of values that you want to enter into the array.

The fillRange() method sets all of the values in an array to the value passed in the
argument, vals[]

The operator, [], assigns values.

csInt operator[](int i) const;

Other Math Classes

Cosmo 3D includes the following classes used for mathematical calculations.

• csSeg— encapsulates a line segment.

• csPlane—encapsulates a plane.

• csFrustum— encapsulates a viewing frustum.

The following sections explain these classes.

csSeg

csSeg encapsulates a line segment in 3-space as an origin, a normalized direction vector,
and a length.

The methods in the class allow you to

• Construct a line from a pair of points.

• Create a vector given a point and polar coordinates.

• Clip a segment out of a line.

Other Math Classes

155

csPlane

csPlane represents a half space with a normal and an offset, which together form the
parameters of the traditional Ax + By + Cz = D plane equation.

The methods in the class allow you to

• Determine the distance between a point off a plane and a point on a plane.

• Determine whether or not it intersects with a shape.

• Construct a plane from three points.

• Construct the normal to the plane at a point.

• Transform the orientation of the plane.

csFrustum

csFrustum is a truncated, possibly asymmetric pyramid for the purposes of testing
objects against view volumes.

The methods in the class allow you to

• Determine if a point or shape is in the frustum.

• Copy the contents of the frustum.

• Set and return the near and far clipping planes of the frustum.

• Create an orthogonal frustum.

• Transform the frustum.

• Return the aspect of the frustum and the position of the camera.

157

csAppearance, 17, 23, 128
csArray, 144
csArrayField, 153
csAtomField, 153
csAudioClip, 137
csAudioSamples, 131, 139
csBound, 150
csBox, 24
csBoxBound, 151
csCamera, 97
csColorInterpolator, 104, 107
csCompileAction, 84, 129
csCone, 24
csContext, 23, 43, 128
csCoordinateInterpolator, 104, 108
csCube, 24
csData, 144
csDepthFunc(), 77
csDirectionalLight, 61, 90
csDrawAction, 20, 84, 85
csEngine, 101
csEnvironment, 62, 91, 92
csField, 151
csFieldInfo, 152
csFrustum, 155
csGeometry, 17, 23, 45
csGeoSet, 24, 36, 128
csGroup, 68

A

actions, 69, 83
addChild(), 68
ambient, 55
application, simple, xix, 7
aspect ratio, 97
attribute, 25, 27

indexing, 30
setting, 28
specifying, 32

B

binding, 28
BLEND, 57
BLEND_TENV, 51
bounding shape, 150

C

camera, 97
ortho, 99
perspective, 99

compile, scene graph, 129
coordIndices, 35
Cosmo 3D, 1

defined, 1
csAction, 84

Index

158

Index

csHit, 120
csIndexedFaceSet, 41
csIntArray, 145
csInterpolator, 104
csIsectAction, 84, 119
csLight, 61, 89
csLineSet, 37
csLineStripSet, 27, 37
csLOD, 62, 125

transition between child nodes, 126
csMaterial, 55
csMatrix4f, 82
csMField, 152
csMorph, 106
csMorphEng, 110, 111
csMorphEng3f, 111
csMorphEng4f, 111
csMorphVec3f, 104
csNormalInterpolator, 104, 108
csOrientationInterpolator, 104, 109
csOrthoCamera, 99
csPerspCamera, 99
csPlane, 155
csPointLight, 61, 91
csPointSet, 27, 36
csPolySet, 27, 39
csPositionInterpolator, 104, 109
csQuadSet, 41
csScalarInterpolator, 104, 109
csSeg, 154
csSelectorEng, 110
csSelectorEng3f, 110
csSelectorEng4f, 110
csShape, 17, 61
csSound, 131

fields, 132
methods, 137

csSoundAction, 84, 85, 131
csSoundPlayer, 142

methods, 142
csSphere, 24
csSphereBound, 151
csSpline, 104, 105
csSpotLight, 61
csSprite, 27, 39
csSwitch, 62, 63
csTexGen, 54
csTexture, 43, 49
csTransform, 62, 78
csTransformEng, 104, 112
csTransformEng3f, 113
csTriSet, 38
csTriStripSet, 27, 38
csVec2f, 147
csVec3f, 147
csVec4f, 147
csVec4ub, 149
csWindow, 20, 115

using a portion of, 95
cube.cxx, xix, 7
cull, 123

sides of geometries, 123
view frustum, culling, 124

D

depth, sense of, 77
DepthFuncEnum, 77
diffuse, 55

159

Index

E

emissive color, 56
engine, 101
engine, connecting, 103
engine, input and output, 102
engine, terminology, 102
EYE_LINEAR, 54

F

FAST, 57
FAST_TEX, 49
field classes, 151
fields

setting, 63
FILL_PMODE, 57
FLAT_TEX, 93
frustum, 124, 155
frustum culling, 124

G

geometry, 43
placing in a scene, 77
ready-made, 24

group node, 61

I

insertChild(), 74
interface, 115

K

key, 102, 106
key value, 102, 106

L

layering shapes, 77
level of detail, 125
light, setting boundaries for, 91
LINE_PMODE, 56
line segment, 154
loading a scene graph, 75
local space, 81

M

makeCurrent(), 44
material, 55
MODULATE_TENV, 51
mouse events, 118
multiple-value field, 65

N

NICE, 57
NICE_TEX, 49
node, 59

group, 61
NON_PERSP_TEX, 49
normalIndices, 35

160

Index

O

OBJECT_LINEAR, 54
optimize, 123
optimize,setCullFace(), 123
optimizing performance, 123
orthographic projection, 99

P

parts of a Cosmo application, 16
performance, tips, 127
performance tools, 123
PERSP_TEX, 49
perspective, 50
pick(), 120
playing sounds without using an action, 141
POINT_PMODE, 56

R

range(), 126
ready-made geometries, 24
rendering, 20

optimized, 128
REPLACE_TENV, 51
resolution, 125
root node, 68, 69
rotate, 80

S

saving a scene graph, 76
scale, 80
scene graph, 16, 59

at a glance, 67
common mistakes, 76
compiling part of, 129
diagram, 70
editing, 74
loading, 75
saving, 76
transversal order of nodes, 86

scope, of lighting, 91
screen objects, storing, 120
selecting screen objects, 119
setAlphaFunc(), 57
setCullFace(), 124
setMatrix(), 80
setPolyMode(), 56
setPosition(), 98
setScaleOrientation(), 80
setTexGen(), 55
setting fields, 63
setTranslation(), 80
shading model, 92
shininess, 56
single-value field, 64
SMOOTH_TEX, 93
sound, 131

locating and directing, 134
playing, 134
priority, 133
reverse direction, 136
spatialized, 134

sound file
specifying, 133

specular, 56
SPHERE_MAP, 54
store data, classes that, 143
storing selected screen objects, 120
summary of Cosmo features, 2

161

Index

T

texture, 48
texture coordinates, 48
token, 64
transformation, 19
transform nodes, 79
transition

between csLOD child nodes, 126
transparency, 56, 57
traversal, 86
troubleshooting, scene graphs, 76

U

user interface, 20, 115

V

view
using camera, 96

viewport, 95
VRML, 75

W

window, creating your own, 115
world space, 18, 78, 81

X

X window, 115

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3445-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

