
OCTANE™ Digital Video
Programmer’s Guide

Document Number 007-3513-001

OCTANE™ Digital Video Programmer’s Guide
Document Number 007-3513-001

CONTRIBUTORS

Written by Carolyn Curtis
Illustrated by Cheri Brown, Scott Pritchett, and Carolyn Curtis
Document Production by Kirsten Johnson
Engineering contributions by Judy Ting, Rick Davis, Matthew Hall, Howard

Chartock, Chris Pirazzi, Grant Dorman, Girish Goyal, Bruno Wolf, Michael
Minakami, Tony Masterson, and Scott Pritchett

St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© 1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, OpenGL, and IRIS are registered
trademarks and OCTANE, Origin, Origin2000, Onyx2, InfiniteReality, O2, Indigo2,
Indigo2 IMPACT, IRIX, IRIS InSight, IRIX, Galileo Video, IndyCam, Graphics Library,
and GL are trademarks of Silicon Graphics, Inc. Gennum is a trademark of Gennum
Corporation. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd. X Window System is
a trademark of Massachusetts Institute of Technology.

Figure 7-4, in Chapter 7, is derived from Thomas Porter and Tom Duff, “Compositing
Digital Images,” published by the Association for Computing Machinery, 1984.

iii

Table of Contents

List of Figures ix

List of Tables xi

About This Guide xiii
Audience xiii
Structure of This Document xiii
Other Documents xv
Conventions xv

1. Features of the OCTANE Digital Video Option 1
OCTANE Digital Video Board Capabilities 1
Video Library Capabilities 3
VL System Software Architecture 4

Video Daemon 5
Generic Video Tools 6
Library and Header Files 7

VL Architectural Model of Video Devices 8
Node 9
Path 9
Port 10

OCTANE Digital Video Formats 12

iv

Table of Contents

2. Creating Video Programs With the Video Library 13
The VL Programming Model 13
Performing Preliminary Steps 15
Opening a Connection to the Video Daemon 15
Specifying Nodes on the Data Path 15
Creating and Setting Up the Data Path 17

Creating the Path 17
Getting the Device ID 18
Adding a Node 18
Setting Up the Data Path 18
Specifying the Path-Related Events to Be Captured 20

Setting Parameters for Data Transfer to or From Memory 22
Synchronizing Data Streams 37

Displaying Video Data Onscreen 41
Transferring Video Data to and From Devices 43

Using Buffers 43
Transferring Video Data Using DMbuffers 46
Transferring Video Data Using VL Buffers 52

Ending Data Transfer 58
Example Programs 60

3. Using VL Controls 61
VL Control Type and Values 64
VL Control Fraction Ranges 65
VL Control Classes 65
VL Control Groupings 66

4. Event Handling 69
OCTANE Digital Video VL Events 70
Querying VL Events 75
Creating a VL Event Loop 77
Creating a Main Loop With Callbacks 78

Table of Contents

v

5. Managing Connections 81
Specifying Connectivity 81

Getting Connections 84
Avoiding Dynamic Switching Problems 89

Crosspoint Mux Timing Restrictions 90
VGI1 Memory Source Timing Restrictions 91

Using the Internal Video Sync Signal 91
Internal Video Sync Producers and Consumers 92
Setting the Internal Video Sync Signal Producer 93

6. Video Real-Time Capture and Playback 97
Video Library Buffers 97
Caching 98
Buffer Alignment 99
Direct I/O to Disk 99
syssgi 100
Asynchronous I/O 101
Capture and Playback Examples 102

7. Blending, Keying, and Transitions 103
The Blender Node 104

Setting Up the Blender Node 106
Setting Normalization 108
Setting and Turning Off Flat Background 111
Adding Shadows 111

Keying 112
Luma Keying 114
Chroma Keying 116
Fades, Tiles, and Wipes 119

The Keyer 122
VL Blending Examples 123

Blending Video and Graphics 123
Creating a Simple Wipe Effect 124

vi

Table of Contents

8. Using Color-Space Conversion 125
Features of the Color-Space Conversion Node 126
Performing Standard Color-Space Conversions 128

Color-Space Conversion Packings 129
Color-Space Conversion Ranges 130
Constant Hue 132
VL_CSC Ports 133
Full-Range and Limited-Range Video 134
Specifying Standard Color-Space Conversion Node Controls 135

Using the Color-Space Converter for Image Processing 136
Using Custom LUTs and Matrix Multiplier Coefficients 136
Using Image-Processing Controls 137

Examples 140

9. Using Video Texture Mapping 147
Performing Video Texture Mapping 148

Real-Time Mipmap Generation 150
Timing Issues 151

Controls for Video Texture Mapping 153
VL_CAP_TYPE 153
VL_OFFSET 153
VL_PACKING 154
VL_RATE 154
VL_SIZE 155
VL_ZOOM 155
VL_MGV_DOMINANCE_FIELD 157
VL_MGV_HASPECT 157
VL_MGV_VASPECT 157
VL_MGV_TEXTURE_ROUND_MODE 158
VL_MGV_TEXTURE_MIPMAP_MODE 158
VL_MGV_TEXTURE_INPUT_LINK 158
VL_MGV_TEXTURE_AUTOSWAP 159

OpenGL Functions for Video Texture Mapping 159
Example Program: vidtotex.c 161

Table of Contents

vii

A. Return Codes 163

B. OCTANE Digital Video Nodes and Their Controls 169
VL_DEVICE 171
VL_BLENDER 175
VL_CSC 179
VL_FB 181
VL_MEM 183

VL_MEM Source 183
VL_MEM Drain 189

VL_SCREEN 194
VL_SCREEN Source 194
VL_SCREEN Drain 196

VL_TEXTURE 199
VL_VIDEO 202

VL_VIDEO Source 202
VL_VIDEO Drain 204

C. OCTANE Digital Video Color-Space Conversions 209
OCTANE Digital Video Color Spaces 209

RGB 210
YUV 210
CCIR 211

Mathematical Operations Performed During Conversions 211
Implications of Color-Space Conversions 212

Precision of Color Conversions Done by the OCTANE Digital Video Option 212
Range Issues For Color Conversions Done by Any Means 213

Example Color Conversions 216
Example 1: 100% Color Bars 216
Example 2: Luminance Ramp 220
Example 3: Simultaneous Chroma/Luma Ramp 224

Index 261

ix

List of Figures

Figure 1-1 VL System Components 4
Figure 1-2 Simple VL Path 9
Figure 1-3 Simple VL Blending 10
Figure 2-1 Zoom and Decimation 29
Figure 2-2 Clipping an Image 31
Figure 2-3 Zoom, Size, Offset, and Origin 32
Figure 2-4 vlGetNextValid() and vlGetLatestValid() 55
Figure 5-1 Hardware Representation 86
Figure 5-2 Software Representation 87
Figure 7-1 Blender Node 104
Figure 7-2 Keyer and Flat-Background Generator Locations on

Source Nodes 105
Figure 7-3 Setting Up the Blender Node 106
Figure 7-4 Binary Compositing 109
Figure 7-5 OCTANE Digital Video Keying, Wipe, and Blender

Control Relationships 113
Figure 7-6 Luma Keying Application: Titling 114
Figure 7-7 Relationships Between OCTANE Digital Video Luma

Keying Controls 115
Figure 7-8 Chroma Keying Application: TV Weather Map 116
Figure 7-9 Relationships Between OCTANE Digital Video Chroma

Keying Controls 118
Figure 7-10 Value, Range, and Transition (Keyer Detail) for a Channel 122
Figure 8-1 Color-Space Conversion Software Model 126
Figure 8-2 Color-Space Conversion Input to Output Paths: YUV to G’B’R’ 128

x

List of Figures

Figure 9-1 Video Texture-Mapping Hardware Configuration
Block Diagram 148

Figure 9-2 Video Delay Through Texture-Map Interface Field Buffer 152
Figure 9-3 Video Delay Through Graphics TRAM 152
Figure 9-4 Video Delay Through Graphics Framebuffer 152
Figure 9-5 Zoom, Size, and Offset for Video Texture Mapping 156
Figure B-1 Rounding for Memory Drain 189
Figure C-1 RGB Cube in CCIR Space 214
Figure C-2 Color Cube With Luminance/Chrominance Ramp Vector 215
Figure C-3 100% Color Bars: Cr/R 217
Figure C-4 100% Color Bars: Y/G 218
Figure C-5 100% Color Bars: Cb/B 219
Figure C-6 Luminance Ramp: Cr/R 221
Figure C-7 Luminance Ramp: Y/G 222
Figure C-8 Luminance Ramp: Cb/B 223
Figure C-9 Chroma/Luma Ramp: Cr/R 225
Figure C-10 Chroma/Luma Ramp: Y/G 226
Figure C-11 Chroma/Luma Ramp: Cb/B 227
Figure Gl-1 SMPTE Color Bars (75%) 234
Figure Gl-2 Color Burst and Chrominance Signal 235
Figure Gl-3 Component Video Signals 237
Figure Gl-4 Horizontal Blanking 243
Figure Gl-5 Horizontal Blanking Interval 244
Figure Gl-6 Waveform Monitor Readings With and Without Setup 251
Figure Gl-7 SMPTE Time Code 252
Figure Gl-8 Red or Blue Signal 256
Figure Gl-9 Y or Green Plus Sync Signal 256
Figure Gl-10 Video Waveform: Composite Video Signal With Setup

(Typical NTSC) 257
Figure Gl-11 Video Waveform: Composite Video Signal (Typical PAL) 258

xi

List of Tables

Table 1-1 Video Formats for OCTANE Digital Video 12
Table 2-1 VL Event Masks 21
Table 2-2 Data Transfer Controls 23
Table 2-3 Dimensions for Timing Choices 24
Table 2-4 VL_FORMAT 25
Table 2-5 Packing Types for Eight Bits per Component 26
Table 2-6 Packing Types for Ten Bits per Component 27
Table 2-7 OCTANE Digital Video Packing Types for Ten Bits

per Component 28
Table 2-8 VL_RATE Values (Items per Second) 34
Table 2-9 VL Buffer and DMBuffer API Functions 45
Table 2-10 Buffer Size Requirements 53
Table 2-11 Buffer-Related Calls 55
Table 2-12 Calls for Extracting Data From a Buffer 56
Table 3-1 Device-Independent Controls for the OCTANE Digital

Video Option 62
Table 3-2 VL Control Groupings 67
Table 4-1 VL Events for the OCTANE Digital Video Device 71
Table 4-2 VL Event Handling Routines 75
Table 5-1 Dynamic Effects of Various Video Data Path Controls 90
Table 5-2 Internal Video Sync Signal Producers and Consumers 92
Table 7-1 General Blender Controls 107
Table 7-2 Choices for Blend Functions A and B 110
Table 7-3 OCTANE Digital Video Luma Keying Controls 115
Table 7-4 OCTANE Digital Video Chroma Keying Controls 117
Table 7-5 Controls for Fades, Tiles, and Wipes 120
Table 7-6 OCTANE Digital Video Controls Specific to Wipes 120

xii

List of Tables

Table 8-1 Supported Video Output Formats 126
Table 8-2 Supported Packing Types for Color-Space Conversion 129
Table 8-3 Supported Ranges 131
Table 8-4 Color-Space Conversion Node Ports 133
Table 8-5 Controls for Standard Color-Space Conversion 135
Table 8-6 Image-Processing Controls 137
Table 8-7 Coefficient Formats 138
Table B-1 Device Node Controls 171
Table B-2 Blender Node Controls 176
Table B-3 Controls for Standard Color-Space Conversion 180
Table B-4 Image-Processing Controls 181
Table B-5 Memory Source Node Controls 184
Table B-6 Memory Drain Node Controls 190
Table B-7 Screen Source Node Controls 195
Table B-8 Screen Drain Node Controls 198
Table B-9 Controls for Video Texture Mapping 200
Table B-10 Video Source Node Controls 203
Table B-11 Video Drain Node Controls 205
Table Gl-12 Videotape Formats 255

xiii

About This Guide

The OCTANE™ Digital Video option board lets a Silicon Graphics® O2™ (OCTANE)
workstation input and output graphic and video images and record them to disk or
videotape.

The OCTANE Digital Video option utilizes calls and controls in the Silicon Graphics
Digital Media library, such as the Video Library. This guide explains features of the Video
Library (VL) that pertain to the OCTANE Digital Video option and gives step-by-step
instructions for creating VL programs that make use of the OCTANE Digital Video
capabilities.

Audience

This guide is written for the sophisticated video user with a background in C
programming who wishes to develop video programs for OCTANE Digital Video
capabilities.

Structure of This Document

This guide contains the following chapters and appendixes:

• Chapter 1, “Features of the OCTANE Digital Video Option,” introduces the features
and capabilities of the OCTANE Digital Video board. It explains VL features and
architecture, and presents the VL programming model.

• Chapter 2, “Creating Video Programs With the Video Library,” explains how to
open a connection to the video daemon and set up a data path, how to set data
transfer parameters, how to display video data onscreen, how to transfer video
data, and how to end data transfer by presenting an annotated sample program that
displays live video input in a graphics window.

• Chapter 3, “Using VL Controls,” explains VL control type and values, VL control
fraction ranges, VL control classes, and VL control groupings.

xiv

About This Guide

• Chapter 4, “Event Handling,” presents the VL events for the OCTANE Digital
Video option and details querying VL events, creating a VL event loop, and creating
a main loop with callbacks.

• Chapter 5, “Managing Connections,” explains how to set up more complex paths in
OCTANE Digital Video programs by specifying connectivity and avoiding dynamic
switching problems. It explains connectivity for the OCTANE Digital Video option
by presenting details of board and software architecture.

• Chapter 6, “Video Real-Time Capture and Playback,” gives guidelines for
optimizing capture or playback to system memory or disk.

• Chapter 7, “Blending, Keying, and Transitions,” explains how to use VL to perform
chroma keying, luma keying, alpha keying, and transitions. It explains the blend
node, keying, the keyer, and blending controls for the OCTANE Digital Video
option.

• Chapter 8, “Using Color-Space Conversion,” describes features of the color-space
conversion node and explains how to perform standard and nonstandard
color-space conversions.

• Chapter 9, “Using Video Texture Mapping,” describes features of the texture nodes
and explains how to capture video fields into the O2 graphics texture memory, from
where they can be used as textures, just like images loaded into texture memory.

• Appendix A, “Return Codes,” lists and explains VL return messages for the
OCTANE Digital Video board.

• Appendix B, “OCTANE Digital Video Nodes and Their Controls,” gives
information on the OCTANE Digital Video nodes and their controls.

• Appendix C, “OCTANE Digital Video Color-Space Conversions,” explains
OCTANE Digital Video color spaces, mathematical operations performed during
conversions, and implications of color-space conversions.

A glossary and an index complete this guide.

About This Guide

xv

Other Documents

The following documents are also included with the OCTANE Digital Video option:

• OCTANE Digital Video and OCTANE Compression Owner’s Guide (007-3466-001)

• Digital Media Programming Guide (007-1799-060) (online only)

Conventions

These type conventions and symbols are used in this guide:

Helvetica Bold Hardware labels

Italics Executable names, filenames, IRIX commands, manual or book titles,
new terms, program variables, tools, utilities, variable command-line
arguments, variable coordinates, and variables to be supplied by the
user in examples, code, and syntax statements

Bold Function names

Fixed-width type

 Error messages, prompts, and onscreen text

Bold fixed-width type

User input, including keyboard keys (printing and nonprinting); literals
supplied by the user in examples, code, and syntax statements

“” (Double quotation marks) Onscreen menu items and references in text
to document section titles

[] (Brackets) Surrounding optional syntax statement arguments

1

Chapter 1

1. Features of the OCTANE Digital Video Option

The OCTANE Digital Video option board and the Video Library (VL) provide video
input and output for OCTANE workstations.

This chapter introduces

• “OCTANE Digital Video Board Capabilities”

• “Video Library Capabilities”

• “VL System Software Architecture”

• “VL Architectural Model of Video Devices”

• “OCTANE Digital Video Formats”

For an introduction to video, see the latest version of the Digital Media Programming Guide
(007-1799-060 or later).

OCTANE Digital Video Board Capabilities

Building on its broadcast-quality, 10-bit digital video architecture, the OCTANE Digital
Video option provides a solid foundation for unlimited applications. You can use O2
graphics with real-time video and keyed or alpha output of the 32-bit, double-buffered
graphics for broadcast applications. Post-production professionals can use OCTANE
Digital Video to capture and play back uncompressed 10-bit video to and from main
system memory.

2

Chapter 1: Features of the OCTANE Digital Video Option

You can send and receive live component video from any serial
CCIR-601/SMPTE-259M-compliant device. Compatible with 525-line (NTSC) and
625-line (PAL) standards, OCTANE Digital Video accommodates all major formats of
serial digital video I/O:

• two channels of YUV 4:2:2 (8- or 10-bit) (single-link)

• one channel of YUVA 4:2:2:4 (8- or 10-bit) (dual-link)

• one channel of YUVA 4:4:4:4 (8- or 10-bit) (dual-link)

• one channel RP175 (RGBA 8- or 10-bit) (dual-link)

• two channels of arbitrary 8-bit data (single-link)

Additional connections provide genlock input, genlock loopthrough, and GPI trigger
signals. You can use the genlock to lock output to analog house sync or to either digital
input. For conversion to or from component or composite analog video, use third-party
digital-to-analog and analog-to-digital solutions.

Note: The OCTANE Digital Video and OCTANE Compression Installation Guide (document
number 007-3466-001) contains instructions on connecting D/A and A/D converters and
other options to connectors on the OCTANE Digital Video board’s I/O panel.

The OCTANE Digital Video serial digital I/O produces valid output only when it
operates in CCIR non-square pixel mode. The I/O ports are not usable when the device
operates in square pixel mode, although the remainder of the device is usable. The
non-square pixel modes are used with the OCTANE Compression™ option card to
capture digital video signals to disk in real time. Serial digital video I/O coupled with
low compression ratios dramatically reduces storage and network bandwidth
requirements, thus facilitating demanding applications such as spot playback and
nonlinear video editing.

Video Library Capabilities

3

For input, you can use, in any combination

• graphics screen

• OCTANE Compression

• digital video

• main memory

The real-time 8-bit alpha blender and key generator enable live creation of many
fundamental video effects, including overlays, dissolves, fades, wipes, chroma and luma
keying, and shadow.

Video Library Capabilities

The Video Library provides a software interface to the OCTANE Digital Video board,
enabling applications to

• display live video in a window

• capture live video to system memory

• encode graphics to video in real time

• produce high-quality full-rate video output

The Video Library (VL) is a collection of device-independent and device-dependent C
language calls for Silicon Graphics workstations equipped with video options. The VL
provides generic video tools, including simple tools for importing and exporting digital
data to and from Silicon Graphics systems, as well as to and from third-party video
devices that adhere to the Silicon Graphics architectural model for video devices. Video
tools are described in the Media Control Panels User’s Guide, which you can view using the
IRIS InSight™ viewer; similar applications are supplied in source-code form as examples
in the directories /usr/share/src/dmedia/video/vl and /usr/share/src/dmedia/video/vl/OpenGL).

The VL works with other Silicon Graphics libraries, such as OpenGL®. The VL does not
depend on the X Window System™, but you can use X Window System libraries or
toolkits to create a windowing interface.

4

Chapter 1: Features of the OCTANE Digital Video Option

The VL allows programs to get events 60 times per second on a quiescent system; it also
enables programs to share resources or to gain exclusive use of resources. It supports
input and output of video data to or from locked-down memory at the nominal frame
rate. The VL provides an API that enables applications to capture or play back video from
system memory.

The software for the OCTANE Digital Video board includes a graphical user interface,
/usr/sbin/vcp, that makes it convenient to access VL capabilities.

VL System Software Architecture

This section describes features of these VL system components and tools:

• video daemon

• generic video tools

• library and header files

Figure 1-1 diagrams the interaction between the VL, the video daemon, the kernel, the
hardware, and the X Window System server.

Figure 1-1 VL System Components

Video
application

Video
Library

Video
daemon

IRIX kernel

interface
X OpenGL

VL System Software Architecture

5

The VL communicates with the IRIX kernel for device initialization, vertical retrace,
setup, and maintenance of any device-supported direct memory access (DMA). See
Chapter 1 of the Digital Media Programming Guide for more information on interfacing to
other libraries.

Besides these components, the VL includes a collection of applications that support
device configuration and control setting and retrieval, generic tools that display video on
a workstation, and video control panels.

Video Daemon

The video daemon /usr/etc/videod, which has device-dependent and device-independent
portions, handles video device management and status information.

Device Management

Management that the video daemon performs includes

• multiple client access to multiple devices

The library supports connections from multiple client applications and manages
their access to a limited number of video devices.

• dispatching events

As events are handled and noted by devices, the daemon notifies applications that
have expressed interest in those events.

• handling events

As events are generated by the various devices, the daemon initiates any action
required by an event before it hands the event off to interested applications.

• maintaining exclusive use

Types of data or control usage for video clients in a Video Library application are
Done Using, Read-only, Lock, and Shared. These usage levels apply only to write
access on controls, not read access. Any application can open and read the control’s
values at any time.

• client cleanup on exit

6

Chapter 1: Features of the OCTANE Digital Video Option

When a client exits or is terminated abnormally, its connection to the daemon is
broken; the daemon performs any cleanup required of the system. Any
exclusive-use modes that have been set are cleared; interested clients are notified
that the device is no longer in exclusive use. Controls set by the client might persist,
but are not guaranteed to remain after the client closes the connection.

Status Information

Status information for which the video daemon is responsible includes

• system status of video devices

The video devices installed in a system can be queried as to availability and control
status.

• video positioning (offset) information

• control setting and retrieval

Device-independent and device-dependent controls are set and retrieved through
the video daemon.

Generic Video Tools

The generic video tools include:

videopanel (vcp) Use this graphical user interface to set controls, such as hue or contrast,
on devices. The panel resizes itself dynamically to reflect available video
devices.

vlcmd Use the Video Library command-line interface to enter Video Library
shell-level and other commands.

videoin Use the video input window tool to view input video in a window.

videoout Use the video output tool to output video from a rectangular area of the
screen on hardware that supports the screen-to-video path.

VL System Software Architecture

7

vlinfo Use the video info tool to display information about video devices
available through the VL, such as the name of the X server, number of
devices on the server, and the types and ID numbers of nodes, sources,
and drains on each device.

vintovout Use this tool to display video input on the device attached to video
output.

vidtomem Use this tool to capture a single frame (the current video input) or a
specified number of frames, depending on the hardware limits for burst
capture, and write the data to disk. Capture size can also be specified.
The data, which can be translated or left as raw data, can be used by the
memtovid tool.

memtovid Use this tool to output frames (images) to video out on hardware that
supports the memory-to-video path.

The vlinfo, vidtomem, and memtovid tools are command-line tools. In addition to their
reference pages, these tools have explanations in the Media Control Panels User’s Guide.
Similar applications are supplied in source-code form as examples in the directories
/usr/share/src/dmedia/video/vl and /usr/share/src/dmedia/video/vl/OpenGL).

Library and Header Files

The client library is /usr/lib/libvl.so. The header files for the VL are in /usr/include/dmedia.
The header file for the VL, vl.h, contains the main definition of the VL API and controls.
The header files for OCTANE Digital Video are /usr/include/dmedia/vl_mgv.h (linked to
/usr/include/vl/dev_mgv.h) and /usr/include/dmedia/vl_impact.h (linked to
/usr/include/vl/dev_impact.h).

The header file /usr/include/dmedia/vl_impact.h contains definitions common to the
OCTANE Digital Video and OCTANE Compression devices.

8

Chapter 1: Features of the OCTANE Digital Video Option

VL Architectural Model of Video Devices

The VL recognizes these classes of objects:

• devices, each including sets of nodes

A video device can be internal, such as the OCTANE Digital Video board, or
external, such as a videotape recorder connected to the OCTANE Digital Video
board.

• nodes: sources, drains, and internal nodes

• paths, connecting sources and drains

• ports, the entities on nodes that produce or consume video data

• events, for monitoring video I/O status

• controls, or parameters, that modify how data flows through nodes; for example:

– video device parameters, such as blanking width, gamma value, horizontal
phase, sync source

– video data capture parameters

– blending parameters

• buffers: for sending video data to and receiving video data from host memory; these
can be either VL buffers or DMbuffers

Central concepts for VL are node, path, and port.

VL Architectural Model of Video Devices

9

Node

The node is an endpoint or internal processing element of the path, such as a video source
like a VTR, video drain (such as to the O2 screen), a device (video), or the blender in which
video sources are combined for output to a drain.

Path

The path is an abstraction for a way of moving data around. A path is a set of nodes with
video routes (connections) between the ports on the nodes. A path defines the useful
connections between video sources and video drains. Figure 1-2 shows a simple path in
which a frame from a videotape is displayed in a workstation window.

Figure 1-2 Simple VL Path

Figure 1-3 shows a more complex path with two video sources: a frame from a videotape
and a computer-generated image are blended and output to a workstation window. This
path is set up in stages.

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

Source Drain

VTR

10

Chapter 1: Features of the OCTANE Digital Video Option

Figure 1-3 Simple VL Blending

Port

The port is an entity on a node that produces or consumes video data.

Most nodes have only one port, such as the video in or video out nodes. Each internal
node has at least two ports, input (drain) and output (source). The blend node has several
ports (A alpha in, A pixel in, B alpha in, B pixel in, pixel out, alpha out).

Source1

Source2

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

VTR

Drain

Source1 Drain

/*Create the screen to video path */
vlPath = vlCreatePath(vlScr, devicenum, src_scr, drn_vid);

/* Add the video source node */
vlAddNode(vlSvr, vlPath, src_vid);

VL Architectural Model of Video Devices

11

Ports have several attributes:

• link type: single-link or dual-link

• data type: alpha, pixel, or pixel-alpha (dual-link)

A device can use this attribute internally to handle data conversions or routing. For
example, the OCTANE Digital Video board includes an alpha LUT to convert
CCIR-range pixel data to full-range alpha values.

• direction: source or drain

• enumerator: A, B, C, and so on, used if a path has several ports with the same link
type, data type, and direction

Ports produce or consume various types of data: pixel, alpha, or dual-link data. The
identification of the port as pixel or alpha may cause the video stream to be treated
differently. For example, alpha data, which can be transmitted or received in the CCIR
range only, is internally expanded to full range before it is used. No range expansion is
performed for pixel data. Dual-link channels carry both alpha and pixel data, although
one data type may be ignored depending on the format.

Ports have generic names; for example:

• VL_IMPACT_PORT_PIXEL_SRC_A: source of a pixel stream (first, or only, port
instance)

• VL_IMPACT_PORT_ALPHA_DRN_B: drain of an alpha stream (second port
instance)

For the symbolic names for ports, see /usr/include/dmedia/vl_impact.h. Appendix B,
“OCTANE Digital Video Nodes and Their Controls,” in this guide gives the ports
associated with each node.

The connections between ports on nodes determine the topology of a path. Single-link
ports can be connected to single-link ports only; dual-link ports can be connected to
dual-link ports only.

Data flows from a source port to a drain port. It is not permissible to connect a source port
to another source port, or a drain port to another drain port. Chapter 5, “Managing
Connections,” provides more information about specifying connections.

12

Chapter 1: Features of the OCTANE Digital Video Option

OCTANE Digital Video Formats

The OCTANE Digital Video board translates video signals into a form usable by the
OCTANE workstation. It also does the reverse, translating graphics from the OCTANE
display into video signals. Table 1-1 summarizes the formats that the OCTANE Digital
Video board supports.

For information on the requirements for recording to and from video, see the Digital
Media Programming Guide.

Table 1-1 Video Formats for OCTANE Digital Video

Format Signal Nodes

Digital component YCrCbA serial
(VL_FORMAT_DIGITAL_COMPONENT_SERIAL)

YCrCb 4:2:2 serial digital signal with 8- or 10-bit
words. Component ranges are 16 to 235 (8-bit) or
64 to 940 (10-bit).

This format is also used to specify YCrCbA
4:4:4:4. Two streams are required to carry this
format. The first is 4:2:2 YCrCb (u0, y0, v0, y1, u2,
y2...). The second is 4:2:2 ACrCb (u1, a0, v1, a1,
u3, a2...).

Conforms to the CCIR-601/656 specification.

All memory
nodes

SMPTE YUV (VL_FORMAT_SMPTE_YUV) Contains YUV components in the range 1-254;
superblack and superwhite values can be
present.

All memory
nodes

Digital component RGB serial
(VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL)

Dual-link RGBA signal with GBR 4:2:2 (b0, g0, r0,
g1, b2, g2, r2...) on the first link and ABR 4:2:2 (b1,
a0, r1, a1, b3, a2, r3...) on the second link.
Component ranges are 16 to 235 (8-bit) or 64-940
(10-bit).

Conforms to the RP175 specification.

All VGI1
memory nodes

RGB (VL_FORMAT_RGB) Full-range 8-bit or 10-bit per component RGBA.
Component range is 0 to 255 (8-bit) and 0-1023
(10-bit).

All VGI1
memory nodes

Raw data (VL_FORMAT_RAW_DATA) Used for encoding arbitrary 8-bit data values (0
to 255 range) in a 10-bit video signal. Within the
coded 10-bit word, bit 9 is 0, bit 8 is 1, and bits 7
through 0 carry the 8-bit data value. When this
format is used, the packing is irrelevant.

All VGI1
single-link
nodes

13

Chapter 2

2. Creating Video Programs With the Video Library

Video Library (VL) calls let you perform video teleconferencing, blend
computer-generated graphics with frames from videotape or any video source, and
output the input video source to the graphics monitor, to a video device such as a VCR,
or both.

This chapter explains the basics of creating video programs for OCTANE Digital Video:

• “The VL Programming Model”

• “Performing Preliminary Steps”

• “Opening a Connection to the Video Daemon”

• “Specifying Nodes on the Data Path”

• “Creating and Setting Up the Data Path”

• “Setting Parameters for Data Transfer to or From Memory”

• “Displaying Video Data Onscreen”

• “Transferring Video Data to and From Devices”

• “Ending Data Transfer”

• “Example Programs”

The VL Programming Model

Syntax elements are as follows:

• VL types and constants begin with uppercase VL; for example, VLServer

• VL functions begin with lowercase vl; for example, vlOpenVideo()

14

Chapter 2: Creating Video Programs With the Video Library

Data transfers fall into two categories:

• transfers involving memory (video to memory, memory to video), which require
setting up a buffer

• transfers not involving memory (such as video to screen and graphics to video),
which do not require a buffer

For the two categories of data transfer, based on the VL programming model, the process
of creating a VL application consists of these steps:

1. Open a connection to the video daemon (vlOpenVideo()); if necessary, determine
which device the application will use (vlGetDevice(), vlGetDeviceList()).

2. Specify nodes on the data path (vlGetNode()).

3. Create the path (vlCreatePath()).

4. (Optional step) Add more connections to a path (vlAddNode()).

5. Set up the hardware for the path (vlSetupPaths()).

6. Specify path-related events to be captured (vlSelectEvents()).

7. Set input and output parameters (controls) for the nodes on the path
(vlSetControl()).

8. For transfers involving memory, create a VL buffer to hold data for memory
transfers (vlGetTransferSize(), dmBufferCreatePool() or vlCreateBuffer()).

9. For transfers involving memory, register the buffer (vlRegisterBuffer()) or
(video-to-memory only) vlDMBufferPoolRegister()

10. Set the path topology (vlSetConnection()).

11. Start the data transfer (vlBeginTransfer()).

12. For transfers involving memory, get the data and manipulate it (DMbuffers:
vlDMBufferGetValid(), vlGetActiveRegion(), dmBufferFree(); VL buffers:
vlGetNextValid(), vlGetLatestValid(), vlGetActiveRegion(), vlPutFree()).

13. Clean up (vlEndTransfer(), vlDeregisterBuffer(), vlDestroyPath(), dmBuffer() or
vlDestroyBuffer(), vlCloseVideo()).

Performing Preliminary Steps

15

Performing Preliminary Steps

To build programs that run under VL, you must

• install the dmedia_dev option

• link with libvl.so

• include vl.h and dev_mgv.h

The client library is /usr/lib/libvl.so. The header files for the VL are in /usr/include/dmedia.
The header file for the VL, vl.h, contains the main definition of the VL API and controls.
The header files for OCTANE Digital Video are /usr/include/dmedia/vl_mgv.h (linked to
/usr/include/vl/dev_mgv.h) and /usr/include/dmedia/vl_impact.h (linked to
/usr/include/vl/dev_impact.h).

Note: When building a VL-based program, you must add -lvl to the linking command.

Opening a Connection to the Video Daemon

The first thing a VL application must do is open the device with vlOpenVideo(). Its
function prototype is

VLServer vlOpenVideo(const char *sName)

where sName is the name of the server to which to connect; set it to a NULL string for the
local server. For example:

vlSvr = vlOpenVideo("")

Specifying Nodes on the Data Path

Use vlGetNode() to specify nodes; this call returns the node’s handle. Its function
prototype is

VLNode vlGetNode(VLServer vlSvr, int type, int kind, int number)

where

VLNode is a handle for the node, used when setting controls or setting up paths

vlSvr names the server (as returned by vlOpenVideo())

16

Chapter 2: Creating Video Programs With the Video Library

type specifies the type of node:

• VL_SRC: source

• VL_DRN: drain

• VL_INTERNAL: internal node, such as the blend node

• VL_DEVICE: device for device-global controls

Note: If you are using VL_DEVICE, the kind should be set to 0.

kind specifies the kind of node:

• VL_BLENDER; see Chapter 7, “Blending, Keying, and
Transitions,”for an explanation of this node

• VL_CSC: color-space conversion, available if the color-space
conversion option board is installed; see Chapter 8, “Using
Color-Space Conversion,” for an explanation of this node

• VL_FB: internal framebuffer node for freezing video

• VL_MEM: region of workstation memory

• VL_SCREEN: workstation screen

• VL_VIDEO: connection to a video device; for example, a video tape
deck or camera

Note: Appendix B, “OCTANE Digital Video Nodes and Their
Controls,” gives full details of all OCTANE Digital Video nodes.

number is the number of the node in cases of two or more identical nodes, such
as two video source nodes

To discover which node the default is, use the control VL_DEFAULT_SOURCE after
getting the node handle the normal way. The default video source is maintained by the
VL. For example:

vlGetControl(vlSvr, path, VL_ANY, VL_DEFAULT_SOURCE, &ctrlval);
nodehandle = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, ctrlval.intVal);

In the first line above, the last argument is a struct that retrieves the value. Corresponding
to VL_DEFAULT_SOURCE, the control VL_DEFAULT_DRAIN gets the default VL_SRC
node.

Creating and Setting Up the Data Path

17

Creating and Setting Up the Data Path

Once nodes are specified, use VL calls to

• create the path

• get the device ID

• add nodes (optional step)

• set up the data path

• specify the path-related events to be captured

Creating the Path

Use vlCreatePath() to create the data path. Its function prototype is

VLPath vlCreatePath(VLServer vlSvr, VLDev vlDev
 VLNode src, VLNode drn)

This code fragment creates a path if the device is unknown:

if ((path = vlCreatePath(vlSvr, VL_ANY, src, drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

This code fragment creates a path that uses a device specified by parsing a devlist:

if ((path = vlCreatePath(vlSvr, devlist[devicenum].dev, src,
 drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

Note: If the path contains one or more invalid nodes, vlCreatePath() returns
VLBadNode.

18

Chapter 2: Creating Video Programs With the Video Library

Getting the Device ID

If you specify VL_ANY as the device when you create the path, use vlGetDevice() to
discover the device ID selected. Its function prototype is

VLDev vlGetDevice(VLServer vlSvr, VLPath path)

For example:

devicenum = vlGetDevice(vlSvr, path);
deviceName = devlist.devices[devicenum].name;
printf("Device is: %s/n", deviceName);

Adding a Node

For this optional step, use vlAddNode(). Its function prototype is

int vlAddNode(VLServer vlSvr, VLPath vlPath, VLNodeId node)

where

vlSvr names the server to which the path is connected

vlPath is the path as defined with vlCreatePath()

node is the node ID

This example fragment adds a source node and a blend node:

vlAddNode(vlSvr, vlPath, src_vid);
vlAddNode(vlSvr, vlPath, blend_node);

Setting Up the Data Path

Use vlSetupPaths() to set up the data path. Its function prototype is

int vlSetupPaths(VLServer vlSvr, VLPathList paths,
 u_int count, VLUsageType ctrlusage,
 VLUsageType streamusage)

where

vlSvr names the server to which the path is connected

paths specifies a list of paths you are setting up

Creating and Setting Up the Data Path

19

count specifies the number of paths in the path list

ctrlusage specifies usage for path controls:

• VL_SHARE: other paths can set controls on this node; this control is
the desired setting for other paths, including vcp, to work

Note: When using VL_SHARE, pay attention to events. If another
user has changed a control, a VLControlChanged event occurs.

• VL_READ_ONLY: controls cannot be set, only read; for example,
this control can be used to monitor controls

• VL_LOCK: prevents other paths from setting controls on this path;
controls cannot be used by another path

• VL_DONE_USING: the resources are no longer required; the
application releases this set of paths for other applications to
acquire

streamusage specifies usage for the data:

• VL_SHARE: transfers can be preempted by other users; paths
contend for ownership

Note: When using VL_SHARE, pay attention to events. If another
user has taken over the node, a VLStreamPreempted event occurs.

• VL_READ_ONLY: the path cannot perform transfers, but other
resources are not locked; set this value to use the path for controls

• VL_LOCK: prevents other paths that share data transfer resources
with this path from transferring; existing paths that share resources
with this path will be preempted

• VL_DONE_USING: the resources are no longer required; the
application releases this set of paths for other applications to
acquire

This example fragment sets up a path with shared controls and a locked stream:

if (vlSetupPaths(vlSvr, (VLPathList)&path, 1, VL_SHARE,
 VL_LOCK) < 0)
{
 vlPerror(_progName);
 exit(1);
}

20

Chapter 2: Creating Video Programs With the Video Library

Note: The Video Library infers the connections on a path if vlBeginTransfer() is called
and no drain nodes have been connected using vlSetConnection() (implicit routing). To
specify a path that does not use the default connections, use vlSetConnection() (explicit
routing). Chapter 5, “Managing Connections,” explains the use of this function and
related requirements.The following rules are used in determining the connections:

• For each internal node on the path, all unconnected input ports are connected to the
first source node added to the path. Pixel ports are connected to pixel ports and
alpha ports are connected to alpha ports.

• For each drain node on the path, all unconnected input ports are connected to the
first internal node placed on the path, if there is an internal node, or to the first
source node placed on the path. Pixel ports are connected to pixel ports and alpha
ports are connected to alpha ports.

Note: Do not combine implicit and explicit routing.

Specifying the Path-Related Events to Be Captured

Use vlSelectEvents() to specify the events you want to receive. Its function prototype is

int vlSelectEvents(VLServer vlSvr, VLPath path, VLEventMask eventmask)

where

vlSvr names the server to which the path is connected

path specifies the data path.

eventmask specifies the event mask; Table 2-1 lists the possibilities

Creating and Setting Up the Data Path

21

Table 2-1 lists and describes the VL event masks.

Table 2-1 VL Event Masks

Symbol Meaning

VLStreamBusyMask Stream is locked

VLStreamPreemptedMask Stream was grabbed by another path

vlStreamChangedMask Video routing on this path has been changed by another path

VLAdvanceMissedMask Time was already reached

VLSyncLostMask Irregular or interrupted signal

VLSequenceLostMask Field or frame dropped

VLControlChangedMask A control has changed

VLControlRangeChangedMask A control range has changed

VLControlPreemptedMask Control of a node has been preempted, typically by another
user setting VL_LOCK on a path that was previously set with
VL_SHARE

VLControlAvailableMask Access is now available

VLTransferCompleteMask Transfer of field or frame complete

VLTransferFailedMask Error; transfer terminated; perform cleanup at this point,
including vlEndTransfer()

VLEvenVerticalRetraceMask Vertical retrace event, even field

VLOddVerticalRetraceMask Vertical retrace event, odd field

VLFrameVerticalRetraceMask Frame vertical retrace event

VLDeviceEventMask Device-specific event, such as a trigger

VLDefaultSourceMask Default source changed

22

Chapter 2: Creating Video Programs With the Video Library

For example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask);

Event masks can be Or’ed; for example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask |
 VLTransferFailedMask);

For more details on VL event handling, see Chapter 4, “Event Handling.”

Setting Parameters for Data Transfer to or From Memory

Transferring data to or from memory requires creating a DMbuffer or VL buffer, as
explained in “Transferring Video Data to and From Devices,” later in this chapter. This
section explains how to set node controls for data transfer.

To set frame data size and to convert from one video format to another, apply controls to
the nodes. The use of source node controls and drain node controls is explained
separately in this section.

Important data transfer controls for source and drain nodes are summarized in Table 2-2.
They should be set in the order in which they appear in the table.

These controls are highly interdependent, so the order in which they are set is important.
In most cases, the value being set takes precedence over other values that were
previously set.

Note: For drain nodes, VL_PACKING must be set first. Note that changes in one
parameter may change the values of other parameters set earlier; for example, clipped
size may change if VL_PACKING is set after VL_SIZE.

Setting Parameters for Data Transfer to or From Memory

23

Table 2-2 Data Transfer Controls

Control Basic Use Video Nodes Memory Nodes Screen Nodes

VL_FORMAT Video format on the
physical connector

See “Using
VL_FORMAT” in
this chapter

N/A N/A

VL_TIMING Video timing See Table 2-3 for
values

Not applicable Not applicable

VL_CAP_TYPE Setting type of field(s) or
frame(s) to capture

Not applicable VL_CAPTURE_NONINTERLEAVED
VL_CAPTURE_INTERLEAVED
VL_CAPTURE_EVEN_FIELDS
VL_CAPTURE_ODD_FIELDS
VL-CAPTURE_FIELDS

Not applicable

VL_PACKING Pixel packing (conversion)
format

Not applicable Changes pixel format of captured
data; see Table 2-5 for values

Not applicable

VL_SIZE Clipping size Full size of video;
read only

Clipped size Clipped size

VL_OFFSET Position within larger area Position of active
region

Offset relative to video offset Pan within the video

VL_ORIGIN Position within video Not applicable Not applicable Screen position of
first pixel displayed

VL_WINDOW Setting window ID for
video in a window

Not applicable Not applicable Window ID

VL_RATE Field or frame transfer
speed

Depends on
capture type as
specified by
VL_CAP_TYPE

Not applicable Not applicable

24

Chapter 2: Creating Video Programs With the Video Library

To determine default values, use vlGetControl() to query the values on the video source
or drain node before setting controls. The initial offset of the video node is the first active
line of video.

Similarly, the initial size value on the video source or drain node is the full size of active
video being captured by the hardware, beginning at the default offset. Because some
hardware can capture more than the size given by the video node, this value should be
treated as a default size.

For all these controls, it pays to track return codes. If the value returned is
VLValueOutOfRange, the value set is not what you requested.

To specify the controls, use vlSetControl(), for which the function prototype is

int vlSetControl(VLServer vlSvr, VLPath vlPath, VLNode node,
 VLControlType type, VLControlValue * value)

The use of VL_TIMING, VL_FORMAT, VL_PACKING, VL_SIZE, VL_OFFSET,
VL_CAP_TYPE, and VL_RATE is explained in more detail in the following sections.

Using VL_TIMING

Timing type expresses the timing of video presented to a source or drain. Table 2-3
summarizes dimensions for VL_TIMING.

Table 2-3 Dimensions for Timing Choices

Timing
Maximum
Width

Maximum
Height

VL_TIMING_525_SQ_PIX (12.27 MHz) 640 486

VL_TIMING_625_SQ_PIX (14.75 MHz) 768 576

VL_TIMING_525_CCIR601 (13.50 MHz) 720 486

VL_TIMING_625_CCIR601 (13.50 MHz) 720 576

Setting Parameters for Data Transfer to or From Memory

25

Using VL_FORMAT

To specify video input and output formats of the video signal on the physical connector,
use VL_FORMAT.

Using VL_PACKING

A video packing describes how a video signal is stored in memory, in contrast with a
video format, which describes the characteristics of the video signal. For example, the
memory source nodes—CC1 and both VGI1 nodes—accept packed video from a
DMbuffer or VL buffer and output video in a given format.

Packings are specified through the VL_PACKING control on the memory nodes. This
control also converts one video output format to another in memory, within the limits of
the nodes.

Note: On dual-linked VGI1 memory nodes, only native packings are available; no
conversions can be performed.

Table 2-4 VL_FORMAT

Format Explanation Supported by Node

VL_FORMAT_DIGITAL
_COMPONENT_SERIAL

8- or 10-bit YCrCb Single-link and dual-link

VL_FORMAT_SMPTE_YUV Backwards compatibility: 8- or
10-bit YCrCb

Single-link and dual-link

VL_FORMAT_RAW_DATA Arbitrary 8-bit data (non-video
format)

Single-link only

VL_FORMAT_RGB Full-range 8-bit (0-255) or 10-bit
(0-1023) RGBA

Dual-link only

VL_FORMAT_DIGITAL
_COMPONENT_RGB_SERIAL

RP175 standard RGBA Dual-link only

26

Chapter 2: Creating Video Programs With the Video Library

Packing types for eight bits per component are summarized in Table 2-5. In this table, the
Native To column lists the nodes to which the packing is native; no software conversion
is required, so these packings are fastest.

Table 2-5 Packing Types for Eight Bits per Component

Type Native To 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

VL_PACKING_YVYU_422_8
YUV 4:2:2, single-link

All memory nodes U0 Y0 V0 Y1 U2 Y2 V2 Y3

VL_PACKING_YUVA_4444_8
YUVA 4:4:4:4, dual-link

VGI1 memory nodes A0 U0 Y0 V0 A1 U1 Y1 V1

VL_PACKING_AUYV_4444_8
AUYV 4:4:4:4, dual-link

VGI1 memory nodes V0 Y0 U0 A0 V1 Y1 U1 A1

VL_PACKING_UYV_8_P VGI1 memory nodes V0 Y0 U0 V1 Y1 U1 V2 Y2

VL_PACKING_RGBA_8
RGBA, dual-link

VGI1 memory nodes A0 B0 G0 R0 A1 B1 G1 R1

VL_PACKING_ABGR_8
ABGR, dual-link

VGI1 memory nodes R0 G0 B0 A0 R1 G1 B1 A1

VL_PACKING_RGB_332_P
RGB, single-link
Each 8-bit pixel, Pn,
is shown as BBGGGRRR

None P7 P6 P5 P4 P3 P2 P1 P0

VL_PACKING_Y_8_P
Grayscale (luminance only),
single-link

None Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

VL_PACKING_RGB_8
RGB, single-link
24-bit word, Xn are ignored

None X0 B0 G0 R0 X1 B1 G1 R1

VL_PACKING_BGR_8_P
RGB, dual-link

VGI1 memory nodes R0 G0 B0 R1 G1 B1 R2 G2

Setting Parameters for Data Transfer to or From Memory

27

Packing types for ten bits per component are summarized in Table 2-6. The ten data bits
are left-aligned within a 16-bit word. The hardware sets the lower six bits to zero before
it writes them to memory. When reading from memory, the lower six bits are ignored. All
are native to VGI1 memory nodes.

In addition, the OCTANE Digital Video option also supports dual-link AYUAYV, a
packed format with three 10-bit components per 32-bit word, with the lowest two bits set
to 0. It is native to VGI1 memory nodes. Bits are

• 63-32: [U0][Y0][A0]00

• 31-0: [V0][Y1][A1]00

Table 2-6 Packing Types for Ten Bits per Component

Type 63-48 47-32 31-16 15-0

VL_PACKING_YVYU_422_10
YUV 4:2:2, single-link

[U0]000000 [Y0]000000 [V0]000000 [Y1]000000

VL_PACKING_YUVA_4444_10
YUVA 4:4:4:4, dual-link

[A0]000000 [U0]000000 [Y0]000000 [V0]000000

VL_PACKING_AUYV_4444_10
AUYV 4:4:4:4, dual-link

[V0]000000 [Y0]000000 [U0]000000 [A0]000000

VL_PACKING_ABGR_10
AUYV 4:4:4:4, dual-link

[V0]000000 [Y0]000000 [U0]000000 [A0]000000

VL_PACKING_RGBA_10
RGBA, dual-link

[A0]000000 [B0]000000 [G0]000000 [R0]000000

VL_PACKING_ABGR_10
ABGR, dual-link

[R0]000000 [G0]000000 [B0]000000 [A0]000000

28

Chapter 2: Creating Video Programs With the Video Library

Finally, OCTANE Digital Video option supports two 10-bit formats that have two bits for
alpha, as summarized in Table 2-7.

Note: Other libraries may use different packing names.

For example:

VLControlValue val;

val.intVal = VL_PACKING_RGBA_10;
vlSetControl(vlSvr, path, memdrn, VL_PACKING, &val);

If the single-link packings VL_PACKING_RGB_332_P, VL_PACKING_RGB_8, and
VL_PACKING_Y_8_P are requested of a memory drain node, the Video Library
performs a software conversion to translate the data from a native packing and format.
The application receives data in the requested packing and format, although the capture
rate may be degraded.

Using VL_ZOOM

VL_ZOOM controls the expansion or decimation of the video image. Values greater than
one expand the video; values less than one perform decimation. Figure 2-1 illustrates
zooming and decimation.

Note: OCTANE Digital Video screen drain nodes support the full range of VL_ZOOM
(7/1, 6/1, 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8). Screen source nodes
support 1/1 and 1/2. The texture node supports decimation only. The remaining nodes
do not support zoom or decimation (the ratio 1/1 only).

Table 2-7 OCTANE Digital Video Packing Types for Ten Bits per Component

Type 63-54 53-44 43-34 33-32 31-22 21-12 11-2 1-0

VL_PACKING_A_2_UYV_10
YUVA packed 4:4:4:4 to 32 bits,
dual-link

V0 Y0 0 A0 V1 Y1 U1 A1

VL_PACKING_A_2_BGR_10
ABGR, dual-link

R0 G0 B0 A0 R1 G1 B1 A1

Setting Parameters for Data Transfer to or From Memory

29

Figure 2-1 Zoom and Decimation

VL_ZOOM takes a nonzero fraction as its argument; do not use negative values. For
example, this fragment captures half-size decimation video to the screen:

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;
if (vlSetControl(server, screen_path, screen_drain_node, VL_ZOOM,
&val)){
 vlPerror("Unable to set zoom");
 exit(1);
}

Note: For a source, zooming takes place before blending; for a drain, blending takes
place before zooming.

This fragment captures half-size decimation video to the screen, with clipping to 320 ×
243 (NTSC size minus overscan):

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;
if (vlSetControl(server,screen_path, screen_drain_node,

VL_ZOOM, &val))
{
 vlPerror("Unable to set zoom");
 exit(1);
}

Zoom

Decimation

Original image factor: 2/1

factor: 1/2

30

Chapter 2: Creating Video Programs With the Video Library

val.xyVal.x = 320;
val.xyVal.y = 243;
if (vlSetControl(server, screen_path, screen_drain_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);
}

This fragment captures xsize × ysize video with as much decimation as possible, assuming
the size is smaller than the video stream:

if (vlGetControl(server, screen_path, screen_source, VL_SIZE, &val))
{
 vlPerror("Unable to get size");
 exit(1);
}
if (val.xyVal.x/xsize < val.xyVal.y/ysize)
 zoom_denom = (val.xyVal.x + xsize - 1)/xsize;
else
 zoom_denom = (val.xyVal.y + ysize - 1)/ysize;
val.fractVal.numerator = 1;
val.fractVal.denominator = zoom_denom;

if (vlSetControl(server, screen_path, screen_drain_node, VL_ZOOM,
&val))

{
 /* allow this error to fall through */
 vlPerror("Unable to set zoom");
}
val.xyVal.x = xsize;
val.xyVal.y = ysize;
if (vlSetControl(server, screen_path, screen_drain_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);
}

Setting Parameters for Data Transfer to or From Memory

31

Using VL_SIZE

VL_SIZE controls how much of the image sent to the drain is used, that is, how much
clipping takes place. This control operates on the zoomed image; for example, when the
image is zoomed to half size, the limits on the size control change by a factor of 2.
Figure 2-2 illustrates clipping.

Figure 2-2 Clipping an Image

For example, to display PAL video in a 320 × 243 space, clip the image to that size, as
shown in the following fragment:

VLControlValue value;
value.xyval.x=320;
value.xyval.y=243;
vlSetControl(vlSvr, path, drn, VL_SIZE, &value);

Note: Because this control is device-dependent and interacts with other controls, always
check the error returns. For example, if offset is set before size and an error is returned,
set size before offset.

Clipping a zoomed image

Clipping an unzoomed image

Image to fit into this space

Placement of clipping area
depends on the value of VL_OFFSET

Original image

32

Chapter 2: Creating Video Programs With the Video Library

Using VL_OFFSET

VL_OFFSET puts the upper left corner of the video data at a specific position; it sets the
beginning position for the clipping performed by VL_SIZE. The values you enter are
relative to the origin.

This example places the data ten pixels down and ten pixels in from the left:

VLControlValue value;
value.xyval.x=10;
value.xyval.y=10;
vlSetControl(vlSvr, path, drn, VL_OFFSET, &value);

To capture the blanking region, set offset to a negative value.

Figure 2-3 shows the relationships between the source and drain size, offset, and origin.

Note: For memory nodes, VL_OFFSET and VL_SIZE in combination define the active
region of video that is transferred to or from memory.

Figure 2-3 Zoom, Size, Offset, and Origin

VL_SIZE

VL_ORIGIN (VL_DRN=SCR only)

VL_ZOOM

VL_OFFSET

Subset of video source:
zoomed portion (zoom factor)

VL_SIZE

VL_OFFSET

Source

Drain

Setting Parameters for Data Transfer to or From Memory

33

Using VL_CAP_TYPE and VL_RATE

An application can request that the OCTANE Digital Video option capture or play back
a video stream in a number of ways. For example, the application can request that each
field be placed in its own buffer, that each buffer contain an interleaved frame, or that
only odd or even fields be captured. This section enumerates the capture types that the
OCTANE Digital Video option supports.

A field mask is useful for identifying which fields will be captured and played back and
which fields will be dropped. A field mask is a bit mask of 60 bits for NTSC or 50 bits for
PAL (two fields per frame). A numeral 1 in the mask indicates that a field is captured or
played back, while a zero indicates that no action occurs.

For example, the following field mask indicates that every other field will be captured or
played back:

10101010101010101010...

Capture types are as follows:

• VL_CAPTURE_NONINTERLEAVED

• VL_CAPTURE_INTERLEAVED (not used for texture node VL_TEX)

• VL_CAPTURE_EVEN_FIELDS

• VL_CAPTURE_ODD_FIELDS

• VL_CAPTURE_FIELDS

34

Chapter 2: Creating Video Programs With the Video Library

These capture types apply to both VL buffers and DMbuffers.

VL_RATE determines the data transfer rate by field or frame, depending on the capture
type as specified by VL_CAP_TYPE, as shown in Table 2-8.

Note: Not all rates are supported on all memory nodes; see Appendix C, “OCTANE
Digital Video Color-Space Conversions,” for details. The buffer size must be set in
accordance with the capture type, as listed in Table 2-10 later in this chapter.

VL_CAPTURE_NONINTERLEAVED

The VL_CAPTURE_NONINTERLEAVED capture type specifies that frame-size units
are captured noninterleaved. Each field is placed in its own buffer, with the dominant
field in the first buffer. If one of the fields of a frame is dropped, all fields are dropped.
Consequently, an application is guaranteed that the field order is maintained; no special
synchronization is necessary to ensure that fields from different frames are mixed.

The rate (VL_RATE) for noninterleaved capture is in terms of fields and must be even.
For NTSC, the capture rate may be from 2-60 fields per second, and for PAL 2-50 fields
per second. Because a frame is always captured as a whole, a rate of 30 fields per second
results in the following field mask:

1100110011001100...

The first bit in the field mask corresponds to the dominant field of a frame. The OCTANE
Digital Video option waits for a dominant field before it starts the transfer.

Table 2-8 VL_RATE Values (Items per Second)

VL_CAP_TYPE Value VL_RATE Value

VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED

NTSC: 1-30 frames/second
PAL: 1-25 frames/second

VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS

NTSC: 1-30 fields/second
PAL: 1-25 fields/second

VL_CAPTURE_FIELDS NTSC: 1-60 fields/second
PAL: 1-50 fields/second

Setting Parameters for Data Transfer to or From Memory

35

If VL_CAPTURE_NONINTERLEAVED is specified for playback, similar guarantees
apply as for capture. If one field is lost during playback, it is not possible to “take back”
the field. The OCTANE Digital Video option resynchronizes on the next frame boundary,
although black or “garbage” video might be present between the erring field and the
frame boundary.

The rate during playback also follows the rules for capture. For each 1 in the mask above,
a field from the VL buffer is output. During the 0 fields, the previous frame is repeated.
Note that the previous frame is output, not just the last field. If there are a pair of buffers,
the dominant field is placed in the first buffer.

VL_CAPTURE_INTERLEAVED

Interleaved capture interleaves the two fields of a frame and places them in a single
buffer; the order of the frames depends on the value set for
VL_MGV_DOMINANCE_FIELD (see Table B-5 or Table B-6 in Appendix B for details).
The OCTANE Digital Video option guarantees that the interleaved fields are from the
same frame: if one field of a frame is dropped, then both are dropped.

The rate for interleaved frames is in frames per second: 1-30 frames per second for NTSC
and 1-25 frames per second for PAL. A rate of 15 frames per second results in every other
frame being captured. Expressed as a field mask, the following sequence is captured:

1100110011001100....

As with VL_CAPTURE_NONINTERLEAVED, the OCTANE Digital Video option begins
processing the field mask when a dominant field is encountered.

During playback, a frame is deinterleaved and output as two consecutive fields, with the
dominant field output first. If one of the fields is lost, the OCTANE Digital Video option
resynchronizes to a frame boundary before playing the next frame. During the
resynchronization period, black or “garbage” data may be displayed.

Rate control follows similar rules as for capture. For each 1 in the mask above, a field
from the interleaved frame is output. During 0 periods, the previous frame is repeated.

This option is not applicable to the texture node VL_TEX.

36

Chapter 2: Creating Video Programs With the Video Library

VL_CAPTURE_EVEN_FIELDS

In the VL_CAPTURE_EVEN_FIELDS capture type, only even (F2) fields are captured,
with each field placed in its own buffer. Expressed as a field mask, the captured fields are

1010101010101010...

The OCTANE Digital Video option begins processing this field mask when an even field
is encountered.

The rate for this capture type is expressed in even fields. For NTSC, the range is 1-30
fields per second, and for PAL 1-25 fields per second. A rate of 15 fields per second
(NTSC) indicates that every other even field is captured, yielding a field mask of

1000100010001000...

During playback, the even field is repeated as both the F1 and F2 fields, until it is time to
output the next buffer. If a field is lost during playback, black or “garbage” data might be
displayed until the next buffer is scheduled to be displayed.

VL_CAPTURE_ODD_FIELDS

The VL_CAPTURE_ODD_FIELDS capture type works the same way as
VL_CAPTURE_EVEN_FIELDS, except that only odd (F1) fields are captured, with each
field placed in its own buffer. The rate for this capture type is expressed in odd fields. A
rate of 15 fields per second (NTSC) indicates that every other odd field is captured. Field
masks are the same as for VL_CAPTURE_EVEN_FIELDS.

VL_CAPTURE_FIELDS

The VL_CAPTURE_FIELDS capture type captures both even and odd fields and places
each in its own buffer. Unlike VL_CAPTURE_NONINTERLEAVED, there is no
guarantee that fields are dropped in frame units. Field synchronization can be performed
by examining the UST (Unadjusted System Time), the MSC (Media Stream Count), or the
dmedia info sequence number associated with each field.

Setting Parameters for Data Transfer to or From Memory

37

The rate for this capture type is expressed in fields. For NTSC, the range is
1-60 fields per second, and for PAL 1-50 fields per second. A rate of 30 fields per second
(NTSC) indicates that every other field is captured, resulting in the following field mask:

101010101010101010...

Contrast this with the rate of 30 for VL_CAPTURE_NONINTERLEAVED, which
captures every other frame.

Field mask processing begins on the first field after the transfer is started; field
dominance, evenness, oddness plays no role in this capture type.

Synchronizing Data Streams

This section explains:

• “Using UST, MSC, and Buffered Media Streams for Synchronization”

• “Media Library Interfaces for UST and MSC”

Using UST, MSC, and Buffered Media Streams for Synchronization

Whenever a VL path is open in continuous mode, the Octane Digital Video board and
certain other Silicon Graphics video devices continuously try to dequeue media stream
samples from the path’s buffer for input, or to enqueue media stream samples onto the
path’s buffer for output. If the buffer between the application and each device never
underflows or overflows, then the application can measure and schedule the timing of
input and output signals to 100% of the accuracy of the underlying device.

Occasionally, the application is held off and audio, video, or both come out late. Buffer
underflow on output and overflow on input can result from the application not keeping
the buffer adequately filled for the following reasons:

• The application is busy with other tasks, allowing too much time between putting
fields into the buffer.

• Processes are subject to various interruptions (10-80 ms for some processes) under
IRIX™ because

– the process for filling the buffer is running at too low a priority

– the process cannot get a resource from IRIX that it needs, such as memory pages

38

Chapter 2: Creating Video Programs With the Video Library

To get around this problem, a mechanism built into the VL helps keep track of data flow
into and out of buffers by providing accurate timing information for each frame of video
that enters or leaves the system. This mechanism, which can be called UST/MSC,
produces matched pairs of two numbers:

• Unadjusted System Time (UST), a time value that is used to state timing
measurements to applications

• Media Stream Count (MSC), a count value that identifies a particular media stream
sample (a video field or frame)

The device keeps a counter called the device media stream count (device MSC), which
increments by one every time the device attempts to enqueue or dequeue a media stream
sample, whether or not the enqueue or dequeue attempt is successful. UST/MSC was
designed to return timing information in a form that is valid whenever the buffer is not
underflowing or overflowing.

The UST/MSC capability and the buffering that goes with it are appropriate for
applications and devices such as movie players and digital video editing devices.

UST/MSC affords maximally accurate synchronization when scheduling cannot be
guaranteed and some buffering is acceptable. Also, if scheduling becomes reliable at
some later point, UST/MSC continues to function the same way with no code changes
required; the buffers can be made smaller, and the result is a low-latency application with
the same accurate synchronization.

Note that UST/MSC itself

• does not add any latency to an application

The buffer adds latency: it increases the time the application would take to respond
to some output event by changing its input (and vice versa). This solution to the
synchronization problem is useful for applications in which a small latency can be
sacrificed for more accuracy.

• does not require that an application trade off latency for accuracy

• does not require that an application use any particular size buffer

• delivers the full accuracy of the underlying hardware’s timing support regardless of
the scheduling characteristics of the application

• could be useful for graphics and texture even for low-latency applications

Setting Parameters for Data Transfer to or From Memory

39

Following is a high-level algorithm to maintain synchronization of two buffered media
streams that send data from memory to hardware outputs; a corresponding one is
necessary for the other direction.

create video buffer between me and the audio output;
create audio buffer between me and the video output;
while (1)
{
 sleep until one of the buffers is getting empty;
 for (video buffer)
 {
 use UST/MSC to determine:
 “at what time (what UST) will the next video data I enqueue
 on the buffer actually go out the jack of the machine?”;
 }

 for (audio buffer)
 {
 (exact same thing as above, except for audio)
 }

 From the predicted video and audio USTs, determine
 “what is the synchronization error between the audio and video
 streams?”

 Enqueue more frames to fill up the audio and video buffer queues.
 If there is synchronization error, enqueue new frames to either skip
 frames on the stream that is behind or repeat frames on the stream
 that is ahead.
 }
}

The answers to the questions in the pseudocode above are obtained with three VL calls
that manipulate UST and MSC and are explained in the next section.

40

Chapter 2: Creating Video Programs With the Video Library

Media Library Interfaces for UST and MSC

UST/MSC calls allow you to associate a UST with a particular piece of data that just left
a buffer or is about to enter a buffer. The VL calls for determining the MSC and UST—
vlGetUSTMSCPair(3dm), vlGetFrontierMSC(3dm), and vlGetUSTPerMSC(3dm)—help
synchronize input and output of different data streams in cases where the application is
getting data from or putting data into each device via a buffer. The application is at the
“frontier” end of this buffer and the devices are at the “device” end of the buffer.

• vlGetUSTMSCPair() gets the timing information for each frame/field as it enters
or leaves the physical jack of a device.

This call returns an atomic UST/MSC pair for the jack (specified with the
VL_NODE and the VLPort for that node) for a given path that contains a VL_MEM
node. The returned MSC is not guaranteed to be the one currently at the jack, nor is
it even guaranteed to be the number of any media stream sample currently in the
application’s buffer. To relate the returned MSC to a particular item in the
application’s buffer, you must use vlGetFrontierMSC().

• vlGetFrontierMSC() gets the frontier MSC associated with a particular VL_MEM
node.

The frontier MSC, at the application end of the media stream, is the MSC of the next
item that the application removes from or puts into the buffer.

• vlGetUSTPerMSC() gets the time spacing of fields/frames in a path (the nominal
average UST time elapsed between media stream samples in a given VLPath that
includes a VL_MEM node).

These calls are used for extrapolating a UST/MSC pair as shown in vlGetFrontierMSC().
For other types of media streams, a similar mechanism extrapolates the UST/MSC pair;
for example, for audio, use equivalent AL calls.

Once you have calculated the extrapolated UST/MSC pairs for both media streams, you
can determine the synchronization error. The difference in the audio and video USTs for
matching frame numbers is the amount they are out of sync. To resynchronize them, you
must enqueue new frames to either skip frames on the stream that is behind or repeat
frames on the stream that is ahead. The number of frames to be skipped or repeated is
the difference in USTs divided by the frame rate.

Displaying Video Data Onscreen

41

To use UST/MSC, the application must have separate handles for each separate piece of
data coming in or going out of some kind of buffer. The application can use these handles
to specify, for example, a particular frame to output or pixels of a particular field to get.

Note: For complete details, including syntax, code examples, and caveats, see the
references pages for these calls.

Displaying Video Data Onscreen

To set up a window for live video, follow these steps, as outlined in the example program
simplev2s.c.

1. Open an X display window; for example:

if (!(dpy = XOpenDisplay("")))
 exit(1);

2. Connect to the video daemon; for example:

if (!(vlSvr = vlOpenVideo("")))
 exit(1);

3. Create a window to show the video; for example:

vwin = XCreateSimpleWindow(dpy, RootWindow(dpy, 0), 10,
 10, 640, 486, 0,
 BlackPixel(dpy,DefaultScreen(dpy)),
 BlackPixel(dpy, DefaultScreen(dpy));
XMapWindow(dpy, vwin);
XFlush(dpy);

4. Create a source node on a video device and a drain node on the screen; for example:

src = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, VL_ANY);
drn = vlGetNode(vlSvr, VL_DRN, VL_SCREEN, VL_ANY);

5. Create a path on the first device that supports it; for example:

if ((path = vlCreatePath(vlSvr, VL_ANY, src, drn)) < 0)
 exit(1);

42

Chapter 2: Creating Video Programs With the Video Library

6. Set up the hardware for the path and define the path use; for example:

vlSetupPaths(vlSvr, (VLPathList)&path, 1, VL_SHARE,
 VL_SHARE);

7. Set the X window to be the drain; for example:

val.intVal = vwin;
vlSetControl(vlSvr, path, drn, VL_WINDOW, &val);

8. Get X and VL into the same coordinate system; for example:

XTranslateCoordinates(dpy, vwin, RootWindow(dpy,
 DefaultScreen(dpy)), 0, 0,&x, &y, &dummyWin);

9. Set the live video to the same location and size as the window; for example:

val.xyVal.x = x;
val.xyVal.y = y;
vlSetControl(vlSvr, path, drn, VL_ORIGIN, &val);
XGetGeometry(dpy, vwin, &dummyWin, &x, &y, &w, &h, &bw,
 &d);
val.xyVal.x = w;
val.xyVal.y = h;
vlSetControl(vlSvr, path, drn, VL_SIZE, &val);

10. Begin the data transfer:

vlBeginTransfer(vlSvr, path, 0, NULL);

11. Wait until the user finishes; for example:

printf("Press return to exit.\n");
c = getc(stdin);

12. End the data transfer, clean up, and exit:

vlEndTransfer(vlSvr, path);
vlDestroyPath(vlSvr, path);
vlCloseVideo(vlSvr);

Transferring Video Data to and From Devices

43

Transferring Video Data to and From Devices

This section explains

• “Using Buffers”

• “Transferring Video Data Using DMBuffers”

• “Transferring Video Data Using VL Buffers”

Using Buffers

The VL supports two buffering mechanisms for capturing or playing back video:

• VL buffers: the original buffering mechanism supported by the VL and specific to it

• Digital Media Buffers (DMbuffers): a buffering mechanism allowing video data to
be exchanged among video, compression, and graphics devices

For OCTANE, this buffering mechanism is supported by the Video, Image
Converter (dmIC), and Movie libraries. It is available with IRIX 6.4 and subsequent
releases.

Note: For complete information on DMbuffers and digital media image converters, see
the Digital Media Programming Guide.

In general, VL buffers and DMbuffers differ in the following ways:

• buffer structure

VL buffers are modeled after a ring buffer. The order of segments (buffers) in the
ring is inflexible, and care must be taken to ensure that items are obtained and
returned in the same order. For example, buffers obtained with vlGetNextValid()
must be returned using vlPutFree() in the same order. Order and allocation of ring
segments are intricately related.

All operations on a VL buffer operate in FIFO order. That is, the first element
retrieved by vlGetNextValid() is the first returned by vlPutFree(). This function
does not take an element as a parameter and always puts back the oldest
outstanding element.

44

Chapter 2: Creating Video Programs With the Video Library

DMbuffers, in contrast, are contained in a DMbufferpool. The pool itself is
unordered; buffers can be obtained from and returned to the pool in any order.
Ordering is achieved by a first-in-first-out queue, and is maintained only while the
buffers are in the queue. The application or library is free to impose any processing
order on buffers, once they have been dequeued.

• buffer size and alignment

The Video Library is responsible for ensuring that VL buffers are of the appropriate
size and alignment for the video device, and for allocating the buffers in the
vlCreateBuffer() call. Except in rare cases, applications cannot modify these
attributes to suit the needs of another library or device.

Because DMbuffers can be used with libraries and devices besides video, the
application queries each library for its buffering requirements. The exact
DMbufferpool requirements are the union of all requested constraints and are
enforced when the pool is created. For example, if one library requests alignment on
4K boundaries and another requests alignment on 16K boundaries, the 16K
alignment is used. By specifying its own pool requirements list, the application can
set minimum buffer sizes (such as for in-place processing of video) or cache
policies.

• buffers and memory nodes

With VL buffers, a particular ring buffer is strictly tied to a particular memory node;
a DMbufferpool is not necessarily tied to a memory node. A memory source node
can receive DMbuffers allocated from any DMbufferpool that meets the memory
node’s pool requirements. Memory drain nodes obtain DMbuffers from a
DMbufferpool specified by the application; this pool is fixed for the duration of a
transfer.

Each buffering mechanism has a set of API functions for creating, registering, and
manipulating buffers. A mismatch between a buffer mechanism and an API call, for
example, applying a VL buffer call to a DMbuffer, results in a VLAPIConflict error return.

Applications can use either VL buffers or DMbuffers, as long as a memory node is used
with only one buffering mechanism at a time. If an application uses multiple memory
paths, each path can use a different buffering mechanism. To switch buffering
mechanisms, the VL path should be torn down and reconstructed.

Transferring Video Data to and From Devices

45

Table 2-9 shows correspondences between VL buffer and DMbuffer API functions.

Table 2-9 VL Buffer and DMBuffer API Functions

VL Buffer API dmBuffer API

vlCreateBuffer() dmBufferCreatePool()

vlPutValid() vlDMBufferPutValid()

vlRegisterBuffer() vlDMBufferPoolRegister()

vlDeregisterBuffer() No equivalent

vlPutFree() dmBufferFree()

vlGetNextValid() vlDMBufferGetValid()

vlGetLatestValid() No equivalent

vlGetFilled() vlGetFilledByNode()

vlDestroyBuffer() dmBufferDestroyPool()

vlBufferGetFd() dmBufferGetPoolFD()

dmBufferSetPoolSelectSize()

vlNodeGetFd()

vlBufferAdvise() dmSetPoolDefaults()

vlBufferReset() vlDMBufferNodeReset()

vlBufferDone() Not applicable

46

Chapter 2: Creating Video Programs With the Video Library

Transferring Video Data Using DMbuffers

The DMbuffer is created through the dmBufferCreatePool() routine and is associated
with a memory node by the dmPoolRegister() routine.

When the OCTANE Digital Video option transfers data from the Video Library to an
application, it places data in a buffer element and marks the element as valid. The
application can retrieve the element through the vlDMBufferGetValid() routine. When
the application is done, it uses the dmBufferFree() routine to alert the video device that
the buffer element can be reused. For complete details on using DMbuffers, see Chapter
5 of the Digital Media Programming Guide (007-1799-060 or later).

This section explains

• “Obtaining DMbufferpool Requirements”

• “Registering a DMBufferpool With the Video Library”

• “Creating a DMbufferpool”

• “Starting Data Transfer”

• “Receiving Buffers From the Video Library”

• “Sending DMbuffers to the Video Library”

Obtaining DMbufferpool Requirements

Before a DMbufferpool is created, you must obtain the pool requirements of any library
that will interact with the pool. Pool requirements are maintained in a DMparams list,
created using dmParamsCreate() and initialized by calling dmBufferSetPoolDefaults().
See Chapter 3 in the Digital Media Programming Guide for an overview of DMparams. The
function prototype for this call is

DMstatus dmBufferSetPoolDefaults(DMparams *poolParams, int
bufferCount, int bufferSize, DMboolean cacheable, DMboolean mapped)

where

poolParams specifies the DMparams list to use for gathering pool requirements

bufferCount specifies the number of buffers the pool should contain

bufferSize specifies the size of each buffer in the pool

Transferring Video Data to and From Devices

47

cacheable specifies whether buffers allocated from the pool can be cached
(DM_TRUE) or not (DM_FALSE).

For more information on caching, see“Caching” in Chapter 6.

mapped specifies whether the memory allocated for the pool should be mapped
as soon as the pool is created (TRUE), or only when
dmBufferMapData() is called (FALSE)

If an application requires a pointer to buffer contents, for example, to
process or store the contents to disk, then the pool should be created
mapped. This option improves the performance of the
dmBufferMapData() call.

The Video Library pool requirements are obtained by calling vlDMBufferGetParams()
on a memory node:

int vlDMBufferGetParams(VLServer svr, VLPath path, VLNode node,
DMparams *params)

where

svr names the server to which the path is connected

path specifies the data path containing the memory node

node specifies the memory node with which the DMbufferpool will be used

params specifies the pool requirements list

As with similar calls in other libraries, vlDMBufferGetParams takes as input a
DMparams list initialized by dmBufferSetPoolDefaults, and possibly other libraries’
pool requirements functions. On output, the Video Library’s requirements are merged
with the input requirements.

48

Chapter 2: Creating Video Programs With the Video Library

Creating a DMbufferpool

After all libraries that will use the pool have been queried for their requirements, the
application can create a DMbufferpool by calling dmBufferCreatePool. Its function
prototype is:

DMstatus dmBufferCreatePool(const DMparams *poolParams, DMbufferpool
*returnPool)

where

poolParams specifies the requirements for the pool

returnPool points to a location where the DMbufferpool handle will be stored

Registering a DMBufferpool With the Video Library

If the application captures video data, it specifies the DMbufferpool the memory node
should use by calling vlDMBufferPoolRegister:

int vlDMBufferPoolRegister(VLServer svr, VLPath path, VLNode node,
DMbufferpool pool)

where

svr specifies the server that the path is attached to

path specifies the path containing the memory node

node specifies the memory node

pool specifies the pool that the memory node should use

When the video device is ready to capture a new frame or field, it will allocate a
DMbuffer from the specified pool, place the field or frame in it, then send the buffer to
the application.

Transferring Video Data to and From Devices

49

Starting Data Transfer

To begin data transfer (for either type of buffer), use vlBeginTransfer(). Its function
prototype is

int vlBeginTransfer(VLServer vlSvr, VLPath path, int count,
 VLTransferDescriptor* xferDesc)

where

vlSvr names the server to which the path is connected

path specifies the data path

count specifies the number of transfer descriptors

xferDesc specifies an array of transfer descriptors

Tailor the data transfer by means of transfer descriptors. Multiple transfer descriptors are
supplied; they are executed in order. The transfer descriptors are

xferDesc.mode Transfer method:

• VL_TRANSFER_MODE_DISCRETE: a specified number of frames
are transferred (burst mode)

• VL_TRANSFER_MODE_CONTINUOUS (default): frames are
transferred continuously, beginning immediately or after a trigger
event occurs (such as a frame coincidence pulse), and continues
until transfer is terminated with vlEndTransfer()

• VL_TRANSFER_MODE_AUTOTRIGGER: frame transfer takes
place each time a trigger event occurs; this mode is a repeating
version of VL_TRANSFER_MODE_DISCRETE

xferDesc.count Number of frames to transfer; if mode is
VL_TRANSFER_MODE_CONTINUOUS, this value is ignored.

xferDesc.delay Number of frames from the trigger at which data transfer begins.

xferDesc.trigger Set of events to trigger on; an event mask. This transfer descriptor is
always required. VLTriggerImmediate specifies that transfer begins
immediately, with no pause for a trigger event. VLDeviceEvent specifies
an external trigger.

If xferDesc is NULL, then VL_TRIGGER_IMMEDIATE and
VL_TRANSFER_CONTINUOUS_MODE are assumed and one transfer
is performed.

50

Chapter 2: Creating Video Programs With the Video Library

This example fragment transfers the entire contents of the buffer immediately.

xferDesc.mode = VL_TRANSFER_MODE_DISCRETE;
xferDesc.count = imageCount;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

This fragment shows the default descriptor, which is the same as passing in a null for the
descriptor pointer. Transfer begins immediately; count is ignored.

xferDesc.mode = VL_TRANSFER_MODE_CONTINUOUS;
xferDesc.count = 0;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

Receiving Buffers From the Video Library

After the transfer has been started, captured video may be retrieved using
vlDMBufferGetValid:

int vlDMBufferGetValid(VLServer svr, VLPath path, VLNode node,
DMbuffer* dmbuffer)

where

svr specifies the server the path is attached to

path specifies the path on which data is received from

node specifies the memory drain node data is received from

dmbuffer points to a location where a DMbuffer handle is stored

The DMbuffer handle returned by vlDMBufferGetValid is an opaque reference to the
captured video. dmBufferMapData can be used to obtain a pointer to the actual image
data so that it can be processed or written to disk. dmBufferMapData does not have to
be called if the buffer will be directly sent to another device or library.

Transferring Video Data to and From Devices

51

Sending DMbuffers to the Video Library

Applications can use vlDMBufferPutValid to send buffers to a video device:

int vlDMBufferPutValid(VLServer svr, VLPath path, VLNode node,
DMbuffer dmbuffer)

where

svr specifies the server to which the path is attached

path specifies the path on which video is sent

node specifies the memory source node to send the buffer to

dmbuffer specifies the buffer to send

The DMbuffer may have been obtained from another library, such as dmIC, or generated
by the application itself. See Chapter 5 in the Digital Media Programming Guide for an
explanation of how to allocate a DMbuffer from a DMbufferpool.

Freeing a DMbuffer

Once the application is done with a buffer, it should call dmBufferFree to indicate that it
no longer intends to use the buffer. After all users of a buffer have called dmBufferFree
on it, the buffer is considered free to be reallocated. The Video Library never implicitly
releases the application’s access to a buffer. Consequently, an application can send the
same buffer to a memory node multiple times, or hold a captured image for an indefinite
period.

52

Chapter 2: Creating Video Programs With the Video Library

Transferring Video Data Using VL Buffers

The processes for data transfer using VL buffers are as follows:

• “Creating a Buffer for Video Data”

• “Registering the VL Buffer”

• “Starting Data Transfer”

• “Reading Data From the VL Buffer”

Each process is explained separately.

Creating a Buffer for Video Data

Once you have specified frame parameters in a transfer involving memory (or have
determined to use the defaults), create a VL buffer for the video data. In this case, video
data is frames or fields, depending on the capture type:

• frames if the capture type is VL_CAPTURE_NONINTERLEAVED

• fields if the capture type is anything else

VL buffers provide a way to read and write varying sizes of video data. A frame of data
consists of the actual frame data and an information structure describing the underlying
data, including device-specific information.

When a VL buffer is created, constraints are specified that control the total size of the data
segment and the number of frame or field buffers (sectors) to allocate. A head and a tail
flag are automatically set in a VL buffer so that the latest frame can be accessed. A sector
is locked down if it is not called; that is, it remains locked until it is read. When the VL
buffer is written to and all sectors are occupied, data transfer stops. The sector last
written to remains locked down until it is released.

All sectors in a VL buffer must be of the same size, which is the value returned by
vlGetTransferSize(). Its function prototype is

long vlGetTransferSize(VLServer vlSvr, VLPath path)

Transferring Video Data to and From Devices

53

For example:

transfersize = vlGetTransferSize(vlSvr, path);

where transfersize is the size of the data in bytes.

To create a VL buffer for the frame data, use vlCreateBuffer(). Its function prototype is

VLBuffer vlCreateBuffer(VLServer vlSvr, VLPath path, VLNode node,
 int numFrames)

where

VLBuffer is the handle of the buffer to be created

vlSvr names the server to which the path is connected

path specifies the data path

node specifies the memory node containing data to transfer to or from the VL
buffer

numFrames specifies the number of sectors in the buffer (fields or frames, depending
on the capture type)

For example:

buf = vlCreateBuffer(vlSvr, path, src, 1);

Table 2-10 shows the relationship between capture type and minimum VL buffer size.

Note: For VGI1 memory nodes, real-time memory or video transfer can be performed
only as long as buffer sectors are available to the OCTANE Digital Video device.

Table 2-10 Buffer Size Requirements

Capture Type Minimum Sectors
for Capture

Minimum Sectors
for Playback

VL_CAPTURE_NONINTERLEAVED 2 4

VL_CAPTURE_INTERLEAVED 1 2

VL_CAPTURE_EVEN_FIELDS 1 2

VL_CAPTURE_ODD_FIELDS 1 2

VL_CAPTURE_FIELDS 1 2

54

Chapter 2: Creating Video Programs With the Video Library

Registering the VL Buffer

Use vlRegisterBuffer() to register the VL buffer with the data path. Its function
prototype is

int vlRegisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer buffer)

where

vlSvr names the server to which the path is connected

path specifies the data path

memnodeid specifies the memory node ID

buffer specifies the VL buffer handle

For example:

vlRegisterBuffer(vlSvr, path, drn, Buffer);

Starting Data Transfer

Start data transfer the same way as for DMbuffers; see “Starting Data Transfer” in
“Transferring Video Data Using DMbuffers.”

Reading Data From the VL Buffer

If your application uses a VL buffer, use various VL calls for reading frames, getting
pointers to active buffers, freeing buffers, and other operations. Table 2-11 lists the
buffer-related calls.

Transferring Video Data to and From Devices

55

Figure 2-4 illustrates the difference between vlGetNextValid() and vlGetLatestValid(),
and their interaction with vlPutFree().

Figure 2-4 vlGetNextValid() and vlGetLatestValid()

Table 2-11 Buffer-Related Calls

Call Purpose

vlGetNextValid() Returns a handle on the next valid frame or field of data

vlGetLatestValid() Reads only the most current frame or field in the buffer, discarding the rest

vlPutValid() Puts a frame or field into the valid list (memory to video)

vlPutFree() Puts a valid frame or field back into the free list (video to memory)

vlGetNextFree() Gets a free buffer into which to write data (memory to video)

vlBufferDone() Informs you if the buffer has been vacated

vlBufferReset() Resets the buffer so that it can be used again

vlGetNextValid() vlGetLatestValid()

Starting buffer and
pointer status

Call

Get data from here

Result

Get data from here

Clear sector

56

Chapter 2: Creating Video Programs With the Video Library

Table 2-12 lists the calls that extract information from a buffer.

Caution: None of these calls has count or block arguments; appropriate calls in the
application must deal with a NULL return in cases of no data being returned.

In summary, for video-to-memory transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
info = vlGetNextValid(vlSvr, buffer);
/* OR vlGetLatestValid(vlSvr, buffer); */
dataptr = vlGetActiveRegion(vlSvr, buffer, info);

/* use data for application */
…
vlPutFree(vlSvr, buffer);

For memory-to-video transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
buffer = vlGetNextFree(vlSvr, buffer, bufsize);
/* fill buffer with data */
…
vlPutValid(vlSvr, buffer);

To read the frames to memory from the buffer, use vlGetNextValid() to read all the
frames in the buffer or get a valid frame of data. Its function prototype is

VLInfoPtr vlGetNextValid(VLServer vlSvr, VLBuffer vlBuffer)

Table 2-12 Calls for Extracting Data From a Buffer

Call Purpose

vlGetActiveRegion() Gets a pointer to the data region of the buffer (video to memory);
called after vlGetNextValid() and vlGetLatestValid()

vlGetDMediaInfo() Gets a pointer to the DMediaInfo structure associated with a frame;
this structure contains timestamp and field count information

vlGetImageInfo() Gets a pointer to the DMImageInfo structure associated with a
frame; this structure contains image size information

Transferring Video Data to and From Devices

57

Use vlGetLatestValid() to read only the most current frame in the buffer, discarding the
rest. Its function prototype is

VLInfoPtr vlGetLatestValid(VLServer vlSvr, VLBuffer vlBuffer)

After removing interesting data, return the buffer for use with vlPutFree() (video to
memory). Its function prototype is

int vlPutFree(VLServer vlSvr, VLBuffer vlBuffer)

To send frames from memory to video, use vlGetNextFree() to get a free buffer to which
to write data. Its function prototype is

VLInfoPtr vlGetNextFree(VLServer vlSvr, VLBuffer vlBuffer,
 int size)

After filling the buffer with the data you want to send to video output, use vlPutValid()
to put a frame into the valid list for output to video (memory to video). Its function
prototype is

int vlPutValid(VLServer vlSvr, VLBuffer vlBuffer)

Caution: These calls do not have count or block arguments; appropriate calls in the
application must deal with a NULL return in cases of no data being returned.

To get DMediaInfo and Image Data from the buffer, use vlGetActiveRegion() to get a
pointer to the active buffer. Its function prototype is

void * vlGetActiveRegion(VLServer vlSvr, VLBuffer vlBuffer,
 VLInfoPtr ptr)

Use vlGetDMediaInfo() to get a pointer to the DMediaInfo structure associated with a
frame. This structure contains timestamp and field count information. The function
prototype for this call is

DMediaInfo * vlGetDMediaInfo(VLServer vlSvr, VLBuffer vlBuffer,
 VLInfoPtr ptr)

Use vlGetImageInfo() to get a pointer to the DMImageInfo structure associated with a
frame. This structure contains image size information. The function prototype for this
call is

DMImageInfo * vlGetImageInfo(VLServer vlSvr, VLBuffer vlBuffer,
 VLInfoPtr ptr)

58

Chapter 2: Creating Video Programs With the Video Library

Ending Data Transfer

To end data transfer for either VL buffers or DMbuffers, use vlEndTransfer(). Its function
prototype is

int vlEndTransfer(VLServer vlSvr, VLPath path)

A discrete transfer is finished when the last frame of the sequence is output. The two
types of memory nodes behave differently at the last frame:

• The CC1 memory source stops transferring data from main memory to the
OCTANE Digital Video device, but continues to output to video the last frame
transferred, which is held in a framebuffer associated with the CC1 memory node.

• The VGI1 memory nodes have no associated framebuffer and consequently emit
black video output after a transfer (discrete or continuous) has been completed.

To accomplish the necessary cleanup to exit gracefully, use the following functions:

• for transfers involving memory:

– DMbuffers: vlDMBufferPoolDeregister(), vlDestroyPath(), dmBuffer()

– VL buffers: vlDeregisterBuffer(), vlDestroyPath(), vlDestroyBuffer()

• for all transfers: vlCloseVideo()

The function prototype for vlDeregisterBuffer() is

int vlDeregisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer ringbufhandle)

where

vlSvr is the server handle

path is the path handle

memnodeid is the memory node ID

ringbufhandle is the VL buffer handle

Ending Data Transfer

59

The function prototypes for vlDestroyPath(), vlDestroyBuffer(), dmBuffer(), and
vlCloseVideo() are, respectively

int vlDestroyPath(VLServer vlSvr, VLPath path)

int vlDestroyBuffer(VLServer vlSvr, VLBuffer vlBuffer)

int vlGetFilledByNode(VLServer vlSvr, VLPath path, VLNode node);

int vlDMBufferNodeReset(VLServer vlSvr, VLPath path, VLNode node);

int vlCloseVideo(VLServer vlSvr)

where vlSvr specifies the server to which the application is attached, and path and node
identify the memory node on which information is requested.

This example ends a data transfer that used a buffer:

vlEndTransfer(vlSvr, path);
vlDeregisterBuffer(vlSvr, path, memnodeid, buffer);
vlDestroyPath(vlSvr, path);
vlDestroyBuffer(vlSvr, buffer);
vlCloseVideo(vlSvr);

For DMbuffers, vlDMBufferPoolDeregister disassociates a DMbufferpool from a
memory node. It should be called to clean up the memory node or allow a new
DMbufferpool to be used after a transfer has been stopped.

Once the application is done with a DMbufferpool, the pool should be destroyed using
the dmBufferDestroyPool call.

60

Chapter 2: Creating Video Programs With the Video Library

Example Programs

The directory /usr/share/src/dmedia/video/vl includes a number of example programs.
These programs illustrate how to create simple video applications; for example:

• a simple screen application: simplev2s.c

This program shows how to send live video to the screen.

• a video-to-memory frame grab: simplegrab.c

This program demonstrates video frame grabbing.

• a memory-to-video frame output simplem2v.c

This program sends a frame to the video output.

• a continuous frame capture: simpleccapt.c

This program demonstrates continuous frame capture.

Note: To simplify the code, these examples do not check returns. However, you should
always check returns.

See Chapter 4 for a description of eventex.c and Chapter 7 for descriptions of simpleblend.c
and simplewipe.c.

The directory /usr/share/src/dmedia/video/vl/OpenGL contains three example OpenGL
programs:

• contcapt.c: performs continuous capture using buffering and sproc

• mtov.c: uses the Silicon Graphics Movie Library to play a movie on the selected
video port

• vidtomem.c: captures an incoming video stream to memory

These programs are the OpenGL equivalents of the programs with the same names in
/usr/share/src/dmedia/video/vl.

61

Chapter 3

3. Using VL Controls

Video Library (VL) controls enable you to

• specify data transfer parameters, such as the frame rate or count

• specify the capture region and decimation, or output window

• specify video format and timing

• adjust signal parameters, such as hue, brightness, vertical sync, and horizontal sync

• specify sync source

This chapter explains

• “VL Control Type and Values”

• “VL Control Fraction Ranges”

• “VL Control Classes”

• “VL Control Groupings”

Device-independent controls are documented in /usr/include/dmedia/vl.h.
Device-dependent controls for the OCTANE Digital Video option are documented in the
header files /usr/include/dmedia/vl_mgv.h (linked to /usr/include/vl/dev_mgv.h) and
/usr/include/dmedia/vl_impact.h (linked to /usr/include/vl/dev_impact.h).

Note: For information on the controls used for specific nodes, see Appendix B,
“OCTANE Digital Video Nodes and Their Controls.” For information on controls for
blending and keying, see Chapter 7, “Blending, Keying, and Transitions.”

62

Chapter 3: Using VL Controls

Table 3-1 lists device-independent VL controls alphabetically, along with their values or
ranges.

Table 3-1 Device-Independent Controls for the OCTANE Digital Video Option

Control Purpose Comments

VL_BLEND_A Input source for foreground (channel A)
image

VLNode type derived from vlGetNode();
must be one of the source nodes

VL_BLEND_B Input source for background (channel B)
image

VLNode type derived from vlGetNode();
must be one of the source nodes

VL_BLEND_A_ALPHA Input source for foreground (channel A)
alpha

VL_BLEND_B_ALPHA Input source for background (channel B)
alpha

VL_BLEND_A_FCN Blend function that controls mixing of
foreground (channel A) signals

VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_A_ALPHA
VL_BLDFCN_MINUS_A_ALPHA

VL_BLEND_B_FCN Blend function that controls mixing of
background (channel B) signals

VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_B_ALPHA
VL_BLDFCN_MINUS_B_ALPHA

VL_BLEND_A_NORMALIZE Follows Porter-Duff model (background
[channel B]’ pixels premultiplied by their
corresponding alphas before blending);
premultiplies foreground (channel A) by
alpha

1 = off

VL_BLEND_B_NORMALIZE Follows Porter-Duff model (background
[channel A]’ pixels premultiplied by their
corresponding alphas before blending);
premultiplies foreground (channel B) by
alpha

0 = off
1 = on

VL_CAP_TYPE Type of frame(s) or field(s) to capture

VL_DEFAULT_SOURCE Default source for the video path

VL_DEFAULT_DRAIN Default drain for the video path

VL_FORMAT Video format

63

Note: For information on controls for keying, blending, or wipes, see Chapter 7. For
detailed information on using VL_CAP_TYPE, VL_FORMAT, VL_OFFSET,
VL_PACKING, VL_RATE, VL_SIZE, and VL_TIMING, see “Setting Parameters for Data
Transfer to or From Memory” in Chapter 2.

VL_FREEZE Data transfer freeze; suspends transfer at the
drain node, used only for video out (FB node)

0 = off
1 = on

VL_OFFSET On VL_VIDEO nodes, the offset to the active
region of the video; on all other nodes, the
offset within the video

Because the default is 0,0, use negative values
to get blanking data

VL_ORIGIN Upper left corner of image in drain (usually a
window); the offset within the node;

Coordinates; default is 0,0

VL_PACKING Packing of video data at source or drain

VL_RATE Transfer rate in fields or frames

VL_SIZE On VL_VIDEO nodes, the size of the video; on
all other nodes, the clipped size of the video

VL_SYNC Sync mode VL_SYNC_INTERNAL
VL_SYNC_GENLOCK

VL_SYNC_SOURCE Sets sync source for analog breakout box Reference input: GEN_PORT
Input 1: GEN_DIN1
Input 2: GEN_DIN2

VL_TIMING Video timing

VL_WINDOW Window ID for video in a window (screen
node only)

Integer

VL_ZOOM Zoom and decimation Screen drain nodes support 7/1, 6/1, 5/1,
4/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5, 1/6,
1/7, 1/8. Screen source nodes support 1/1
and 1/2. Other nodes support zoom and
decimation ratios of 1:1 only, that is, no
zoom or decimation.

Table 3-1 (continued) Device-Independent Controls for the OCTANE Digital Video Option

Control Purpose Comments

64

Chapter 3: Using VL Controls

VL Control Type and Values

The type of VL controls is

typedef long VLControlType;

Common types used by the VL to express the values returned by the controls are

typedef struct __vlControlInfo {
 char name[VL_NAME_SIZE]; /* name of control */
 VLControlType type; /* e.g. WINDOW, HUE, BRIGHTNESS */
 VLControlClass ctlClass; /* SLIDER, DETENT, KNOB, BUTTON */
 VLControlGroup group; /* BLEND, VISUAL QUALITY, SIGNAL, SYNC */
 VLNode node; /* associated node */
 VLControlValueType valueType; /* what kind of data do we have */
 int valueCount; /* how many data items do we have */
 int numFractRanges; /* number of ranges to describe control */
 VLFractionRange *ranges; /* range of values of control */

 int numItems; /* number of enumerated items */
 VLControlItem *itemList; /* the actual enumerations */
} VLControlInfo;

To store the value of different controls, libvl.a uses this struct:

typedef union {
 VLFraction fractVal;
 VLBoolean boolVal;
 int intVal;
 VLXY xyVal;
 char stringVal[96]; /* beware of trailing NULLs! */
 float matrixVal[3][3];
 uint pad[24]; /* reserved */
} VLControlValue;

typedef struct {
 int numControls;
 VLControlInfo *controls;
} VLControlList;

The control info structure is returned by a vlGetControlInfo() call, and it contains many
of the items discussed above.

VL Control Fraction Ranges

65

VLControlInfo.number is the number of the VLControlInfo.node that the information
pertains to. There may be several controls of the same type on a particular node, but
usually there is just one.

VLControlInfo.numFractRanges is the number of fraction ranges for a particular control.
The names correspond 1-to-1 with the rangeNames, up to the number of range names,
numRangeNames. That is, there may be fewer names than ranges, but never more.

VL Control Fraction Ranges

The VL uses fraction ranges to represent the values possible for a control. A
VLFractionRange generated by the VL is guaranteed never to generate a fraction with a
zero denominator, or a fractional numerator or denominator.

For a range type of VL_LINEAR, numerator.increment and denominator.increment are
guaranteed to be greater than zero, and the limit is always guaranteed to be
{numerator,denominator}.base, plus some integral multiple of
{numerator,denominator}.increment.

The type definition for fraction types in the header file is

typedef struct {
 VLRange numerator;
 VLRange denominator;
} VLFractionRange;

VL Control Classes

The VL defines control classes for user-interface developers. The classes are hints only;
they are the VL developer’s idea of how the control is commonly represented in the real
world.

#define VL_CLASS_NO_UI 0
#define VL_CLASS_SLIDER 1
#define VL_CLASS_KNOB 2
#define VL_CLASS_BUTTON 3
#define VL_CLASS_TOGGLE 4
#define VL_CLASS_DETENT_KNOB 5
#define VL_CLASS_LIST 6

66

Chapter 3: Using VL Controls

In the list above, VL_CLASS_NO_UI is often used for controls that have no user-interface
metaphor and are not displayed in the video control panel or saved in the defaults file.

The VL controls can be read-only, write-only, or both. The VL includes these macros:

#define VL_CLASS_RDONLY 0x8000 /* control is read-only */
#define VL_CLASS_WRONLY 0x4000 /* control is write-only */
#define VL_CLASS_NO_DEFAULT 0x2000 /* don’t save in default files */

#define VL_IS_CTL_RDONLY(x) ((x)->ctlClass & VL_CLASS_RDONLY)
#define VL_IS_CTL_WRONLY(x) ((x)->ctlClass & VL_CLASS_WRONLY)
#define VL_IS_CTL_RW(x) (!(VL_IS_CTL_RDONLY(x) || VL_IS_CTL_WRONLY(x)))

The macros test these conditions:

#define VL_CLASS_MASK 0xfff

typedef unsigned long VLControlClass; /* from list above */

VL Control Groupings

Like control class, control grouping is an aid for the user-interface developer. The
groupings are the VL developer’s idea of how the controls would be grouped in the real
world. These groupings are implemented in the video control panel vcp.

The type definition for groupings is

typedef char NameString[80];
#define VL_CTL_GROUP_PATH 9 /* Path Controls */

The maximum length of a control or range name is VL_NAME_SIZE.

VL Control Groupings

67

Table 3-2 summarizes the VL control groupings.

Table 3-2 VL Control Groupings

Grouping Includes controls for...

VL_CTL_GROUP_BLENDING Blending; for example, VL_BLEND_B_FCN

VL_CTL_GROUP_VISUALQUALITY Visual quality of sources or drains; for example, VL_H_PHASE or
VL_V_PHASE

VL_CTL_GROUP_SIGNAL Signal of sources or drains; for example, VL_HUE

VL_CTL_GROUP_CODING Encoding or decoding sources or drains; for example, VL_TIMING or
VL_FORMAT

VL_CTL_GROUP_SYNC Synchronizing video sources or drains; for example, VL_SYNC

VL_CTL_GROUP_ORIENTATION Orientation or placement of video signals; for example, VL_ORIGIN

VL_CTL_GROUP_SIZING Setting the size of the video signal; for example, VL_SIZE

VL_CTL_GROUP_RATES Setting the rate of the video signal; for example, VL_RATE

VL_CTL_GROUP_WS Specifying the windowing system of the workstation; for example,
VL_WINDOW

VL_CTL_GROUP_PATH Specifying the data path through the system; these controls, often marked
with the VL_CLASS_NO_UI, are often internal to the VL, with no direct
access for the user

VL_CTL_GROUP_SIGNAL_ALL Specifying properties of all signals

VL_CTL_GROUP_SIGNAL_COMPOSITE Specifying properties of composite signals

VL_CTL_GROUP_SIGNAL_CLUT_COMPOSITE Specifying properties of composite color lookup table (CLUT) controls

VL_CTL_GROUP_KEYING Specifying properties of chroma or luma keying controls, such as
VL_KEYER_FG_OPACITY

VL_CTL_GROUP_PRO Specifying values not commonly found on the front panel of a real-world
video device; for example, a wipe control

VL_CTL_GROUP_MASK Masking optional bits to extract only the control group

69

Chapter 4

4. Event Handling

The Video Library (VL) provides several ways of handling data stream events, such as
completion or failure of data transfer, vertical retrace event, loss of the path to another
client, lack of detectable sync, or dropped fields or frames. The method you use depends
on the kind of application you’re writing:

• For a strictly VL application, use

– vlSelectEvents() to choose the events to which you want the application to
respond

– vlAddCallback() to specify the function called when the event occurs

– your own event loop or a main loop (vlMainLoop()) to dispatch the events

• For an application that also accesses another program or device driver, or if you’re
adding video capability to an existing X or OpenGL application, set up an event
loop in the main part of the application and use the IRIX file descriptor (FD) of the
event(s) you want to add.

This chapter explains

• “OCTANE Digital Video VL Events”

• “Querying VL Events”

• “Creating a VL Event Loop”

• “Creating a Main Loop With Callbacks”

It concludes with an example illustrating a main loop and event loops.

70

Chapter 4: Event Handling

OCTANE Digital Video VL Events

This section describes the events that the OCTANE Digital Video device generates. Each
event has a standard header, which can be followed by additional data. The additional
data can be accessed through the appropriate structure member of the VLEvent union,
specified for each of the events listed below.

The VLEvent union and its structures are found in /usr/include/dmediavl.h.

The standard header for a VL event contains

• int reason: the event ID, such as VLControlChanged

• VLServer server: the server from which the event originated

• VLDev device: the device from which the event originated

• VLPath path: the path on which the event originated

• uint serial: the serial number of the last request read from the server connection

• uint time: the time at which the event was generated

Note: Hardware-generated events, such as vertical retrace, are not available on pure
video source-to-video drain paths. To receive these events, a path must make use of the
screen, blender, framebuffer, or memory nodes. A path receives a VLBadPath error from
vlSelectEvents() if it attempts to register for events it cannot receive.

OCTANE Digital Video VL Events

71

Table 4-1 summarizes the VL events for the OCTANE Digital Video device.

Table 4-1 VL Events for the OCTANE Digital Video Device

Event Structure Description

VLStreamPreempted vlstreampreempted Generated when a path is preempted by another path that requires some
resource that the first path also requires. The paths may be contending
over a node (such as a video drain), a part of a node (such as a dual-link
input node or one of the single-link nodes that comprise it), or other
resource (such as a connector required to route a path).

The preempted path is indicated by the path member of the
vlstreampreempted structure. Once preempted, the path has a stream
usage of VL_READ_ONLY. When the stream becomes available again,
the path is downgraded to a control usage of VL_SHARE, unless control
usage was at VL_READ_ONLY before the stream was preempted. In this
case, the level remains at VL_READ_ONLY.

A VLStreamAvailable event is delivered when the path can be set up
again to a stream usage of VL_SHARE or VL_LOCK.

VLStreamAvailable vlstreamavailable Generated when all nodes required by a path become available for setup
with a stream usage of VL_SHARE or VL_LOCK. Typically, such a path
becomes available when another path that was using the nodes is set up
with stream usage VL_READ_ONLY or VL_DONE_USING, or is
destroyed. The path in question is indicated by the path member of the
vlstreamavailable structure.

VLStreamAvailable is delivered to all registered paths with a stream
usage of VL_READ_ONLY. Consequently, a rare condition can occur in
which several paths are set up when they receive this event, so that the
last path that was set up “wins.”

VLSyncLost vlsynclost Generated when a node on a path detects invalid timing. The path on
which the timing error occurred is specified by the path member of the
vlsynclost structure. Some memory nodes, such as the VGI1 memory
nodes, have controls to abort a transfer when they detect invalid timing.
In that case, a VLTransferFailed event is generated in its place.

72

Chapter 4: Event Handling

VLSequenceLost vlsequencelost Generated when a video unit (field or frame, depending on the capture
type) is dropped. The path on which the unit was dropped is specified by
the path member of the vlsequencelost structure. If a group of
contiguous units is dropped, only one VLSequenceLost event is
generated. The client can register for VLTransferComplete events to
determine when capture or playback resumes.

Note that VLSequenceLost represents a “soft” error and video transfer
continues on the path. This event is in contrast to VLTransferFailed,
which signals a “hard” error that causes the transfer to abort.

The event is delivered as soon as the missed unit is detected. Note that
for VGI1 memory nodes; this event may not be generated until a valid
unit is transferred.

VLControlChanged vlcontrolchanged Generated when a control’s value changes. In order for a path to receive
this event, it must contain the node on which the control resides. The
node is specified in the node member of the vlcontrolchanged structure,
and the control’s ID is specified by the type member. Use vlGetControl
to retrieve the new value of the control.

This event is never delivered to the path causing the event, that is, the
path on which vlSetControl was called.

Note that the vlcontrolchanged structure contains a value member. This
member is not currently used and does not contain the new value of the
control.

VLTransferComplete vltransfercomplete Generated each time a video unit is captured or played back on a path.
The video unit is a field or a frame, depending on the capture type. The
path on which the event occurred is specified in the path member of the
vltransfercomplete structure.

This event is generated by paths containing memory nodes only.
VLTransferComplete is not sent on “jack-to-jack” paths, for example, a
video input to video output path.

Table 4-1 (continued) VL Events for the OCTANE Digital Video Device

Event Structure Description

OCTANE Digital Video VL Events

73

VLTransferFailed vltransferfailed Generated when a catastrophic error occurs while a path is capturing or
playing back a video unit. The memory transfer is halted. The path on
which the failure occurred is specified by the path member of the
vltransferfailed structure. Note that this event is in contrast to the
VLSyncLost or VLSequenceLost events, which are generated when
noncatastrophic errors are detected.

This event is generated by paths containing memory nodes only.
VLTransferFailed is not sent on “jack-to-jack” paths, for example, a video
input to video output path.

VLEvenVerticalRetrace vlevenverticalretrace Generated at the vertical retrace for each even field in the video stream.
The path on which the event occurred is specified by the path member of
the vlevenverticalretrace structure.

A path must contain a memory, screen, or blender node to receive
VLEvenVerticalRetrace events.

VLOddVerticalRetrace vloddverticalretrace Generated at the vertical retrace for each odd field in the video stream.
The path on which the event occurred is specified by the path member of
the vloddverticalretrace structure.

A path must contain a memory, screen, or blender node to receive
VLOddVerticalRetrace events.

VLFrameVerticalRetrace vlframeverticalretrace Generated at the vertical retrace for each frame. The path to which the
event is delivered is specified by the path member of the
vlframeverticalretrace structure.

A path must contain a memory, screen, or blender node to receive
VLFrameVerticalRetrace events.

VLDeviceEvent vldeviceevent Generated when the external trigger fires. The event is delivered to all
paths registered for it. The path to which an event record is delivered is
specified by the path member of the vldeviceevent structure.

Trigger polarity, trigger line, and other parameters controlling the trigger
are specified by controls on the device node.

VLDefaultSource vldefaultsource Generated when a vlSetControl() on the VL_DEFAULT_SOURCE
control changes the default video source. The new source is specified by
the node member of the vldefaultsource structure.

In order for a path to receive this event, it must contain the new default
source node.

Table 4-1 (continued) VL Events for the OCTANE Digital Video Device

Event Structure Description

74

Chapter 4: Event Handling

VLControlRangeChanged vlcontrolrangechanged Generated when the range for a control changes. In order for a path to
receive this event, it must contain the node on which the control resides.
The node is specified in the node member of the vlcontrolrangechanged
structure, and the control’s ID is specified by the type member.

VLControlPreempted vlcontrolpreempted Delivered to a path that has acquired a node with VL_SHARE control
usage (the preempted path) when a path with VL_LOCK control usage
(the preempting path) is set up. The preempted path retains VL_SHARE
control usage, but is prevented from changing any controls while the
preempting path is set up with control usage VL_LOCK. A
VLControlAvailable event is sent when the controls are unlocked.

The node whose controls have been locked is specified by the node
member of the vlcontrolpreempted structure. The path containing the
node is identified by the path member.

VLControlAvailable vlcontrolavailable Delivered to a path whose controls were previously preempted (see
VLControlPreempted), when controls are unlocked, that is, when the
control usage of the locking path is dropped to VL_SHARE,
VL_READ_ONLY, or VL_DONE_USING.

The node whose controls have been unlocked is specified by the node
member of the vlcontrolavailable structure. The path containing the
node is identified by the path member.

VLDefaultDrain vldefaultdrain Generated when a vlSetControl() changes the default video drain to
VL_DEFAULT_DRAIN control. The new drain is specified by the node
member of the vldefaultdrain structure.

In order to receive this event, the path must contain the new default
drain node.

VLStreamChanged vlstreamchanged Generated when the connectivity of the device is changed by
vlSetConnection(), or by connections generated by the OCTANE Digital
Video device on a path’s behalf. This event is sent to all paths containing
the drain node whose input has changed. Paths containing only the
source node do not receive this event, nor does the path causing the
connectivity change. The affected path is specified by the path member
of the vlstreamchanged structure. The affected drain (node, port) pair are
specified by the drnnode and drnport members. The new source (node,
port) pair is specified by the srcnode and srcport members.

If the source or drain (node, port) pair cannot be represented on the path
because it does not contain the node in question, then the (node, port)
pair has the value (VLUnknownNode, VLUnknownPort).

Table 4-1 (continued) VL Events for the OCTANE Digital Video Device

Event Structure Description

Querying VL Events

75

Querying VL Events

General VL event handling routines are summarized in Table 4-2.

Table 4-2 VL Event Handling Routines

Routine Use

vlGetFD() Retrieves a file descriptor for a VL server

vlNextEvent() Obtains the next event; blocks until the next event from the queue is
obtained

vlCheckEvent() Like a nonblocking vlNextEvent(), checks to see if you have an event
waiting of the type you specify and reads it off the queue without
blocking

vlPeekEvent() Copies the next event from the queue but, unlike vlNextEvent(), does
not update the queue, so that you can see the event without processing
it

vlSelectEvents() Selects video events of interest

vlPending() Queries whether there is an event waiting for the application

vlEventToName() Retrieves the character string with the name of the event; for example,
to use in messages

vlAddCallback() Adds a callback; use for VL events

vlRemoveCallback() Removes a callback for the events specified if the client data matches
that supplied when adding the callback

vlRemoveAllCallbacks() Removes all callbacks for the specified path and events

vlCallCallbacks() Creates a handler; used when creating a main loop or using a supplied,
non-VL main loop

vlRegisterHandler() Registers an event handler; use for non-VL events

vlRemoveHandler() Removes an event handler

76

Chapter 4: Event Handling

The event type is an integer. vlEventToName() allows you to get the character string with
the name of the event, so that you can use the event name, for example, in messages.

Table 2-1 in Chapter 2 summarizes VL event masks.

Call vlGetFD() to get a file descriptor usable from select(2) or poll(2).

Call vlSelectEvents() to express interest in one or more event. For example:

vlSelectEvents(svr, path, VLTransferCompleteMask);

The VLEvent structure returned by vlNextEvent or vlCheckEvent identifies the type of
event that occurred and provides additional information on the event; for example, the
VLControlChanged event, accompanied by the node on which the control resides and by
the new value of the control. These additional pieces of information can be obtained
through the members of the VLEvent union corresponding to each event.

Event masks can be Or’ed together. For example:

vlSelectEvents(svr, path, VLTransferCompleteMask |
 VLTransferFailedMask);

Depending on whether you want to block processing or not, use vlNextEvent()
(blocking) or vlCheckEvent() (nonblocking) to get the next event.

Use vlPeekEvent() to see what the next event in the queue is without removing it from
the queue. For example, the part of the code that actually gets the event from the event
loop uses vlNextEvent(), whereas another part of the code that just wants to know about
it, for example, for priority purposes, uses vlPeekEvent().

Creating a VL Event Loop

77

Creating a VL Event Loop

You can set an event loop to run until a specific condition is fulfilled. The routine
vlSelectEvents() allows you to specify which event the application will receive.

Using an event loop requires creating an event mask to specify the events you want. The
VL event mask symbols are combined with the bitwise OR operator. For example, to set
an event mask to express interest in either transfer complete or control changed events,
use

VLTransferCompleteMask | VLControlChangedMask

To create an event loop, follow these steps:

1. Define the event; for example:

VLEvent ev;

2. Set the event mask; for example:

vlSelectEvents(vlServer, path, VLTransferCompleteMask |
VLControlChangedMask)

3. Block on the transfer process until at least one event is waiting:

for(;;){
vlNextEvent(vlServer, &ev);

4. Create the loop and define the choices; for example:

switch(ev.reason){
 case VLTransferComplete:
 …
 break;
 case VLControlChanged:
 …
 break;
 }
}

78

Chapter 4: Event Handling

Creating a Main Loop With Callbacks

vlMainLoop() is provided as a convenience routine and constitutes the main loop of VL
applications. This routine first reads the next incoming video event; it then dispatches the
event to the appropriate registered procedure. Note that the application does not return
from this call.

Applications are expected to exit in response to some user action. There is nothing special
about vlMainLoop(); it is simply an infinite loop that calls the next event and then
dispatches it. An application can provide its own version of this loop, for example, to test
a global termination flag or to test that the number of top-level widgets is larger than zero
before circling back to the call to the next event.

To specify callbacks, that is, routines that are called when a particular VL event arrives,
use vlAddCallback(). Its function prototype is

int vlAddCallback(VLServer vlServer, VLEvent * event,
 void * clientdata, VLEventMask events,
 VLCallbackProc callback, void *clientData)

Example 4-1 illustrates the use of vlAddCallback().

Creating a Main Loop With Callbacks

79

Example 4-1 Using VL Callbacks

main()
{
 …
 /* Set up the mask for control changed events and Stream preempted events */
 if (vlSelectEvents(vlSvr, vlPath, VLTransferComplete | VLStreamPreemptedMask))
 doErrorExit(“select events”);

 /* Set ProcessEvent() as the callback for VL events */
 vlAddCallback(vlSvr, vlPath, VLTransferCompleteMask | VLStreamPreemptedMask,
 ProcessEvent, NULL);

 /* Start the data transfer immediately (i.e. don’t wait for trigger) */
 if (vlBeginTransfer(vlSvr, vlPath, 0, NULL))
 doErrorExit(“begin transfer”);

 /* Get and dispatch events */
 vlMainLoop();
}

/* Handle VL events */
void
ProcessEvent(VLServer svr, VLEvent *ev, void *data)
{
 switch (ev->reason)
 {
 case VLTransferComplete:
 /* Get the valid video data from that frame */
 dataPtr = vlGetActiveRegion(vlSvr, transferBuf, info);
 /* Done with that frame, free the memory used by it */
 vlPutFree(vlSvr, transferBuf);
 frameCount++;
 break;

 case VLStreamPreempted:
 fprintf(stderr, “%s: Stream was preempted by another Program\n”,
 _progname);
 docleanup(1);
 break;

 default:
 break;
 }
}

80

Chapter 4: Event Handling

Delete a callback with vlRemoveCallback() or vlRemoveAllCallbacks(). Their function
prototypes are

int vlRemoveCallback(VLServer vlServer, VLPath * path,
 VLEventMask events, VLCallbackProc callback, void
 *clientData)

int vlRemoveAllCallbacks(VLServer vlServer, VLPath * path, VLEventMask events)

The functions vlAddHandler() and vlRemoveHandler() are analogous to
vlAddCallback() and vlRemoveCallback(), respectively. Use them for non-VL events.

In /usr/share/src/dmedia/video/vl, the example program eventex.c illustrates how to create a
main loop and event loops.

Caution: To simplify the code, this example does not check returns. You should,
however, always check returns.

81

Chapter 5

5. Managing Connections

You can use the Video Library to set up complex paths in OCTANE Digital Video
programs. Connections obey stream-usage levels set with vlSetupPaths(). Usage is
drain-centric: the usage levels of the path(s) using the drain node serve as the usage level
of the connection.

The functions vlSetConnection() and vlGetConnection() manipulate connections:

• vlSetConnection() sets a connection between a source pair (node, port) pair and a
drain pair (node, port).

• vlGetConnection() returns the set of connections entering or leaving a node or port.

This chapter explains

• “Specifying Connectivity”

• “Avoiding Dynamic Switching Problems”

• “Using the Internal Video Sync Signal”

Specifying Connectivity

The Video Library infers the connections on a path if vlBeginTransfer() is called and no
drain nodes have been connected using vlSetConnection(). This situation simplifies
application development for simple paths and supports the existing set of applications
that do not use vlSetConnection()

82

Chapter 5: Managing Connections

Thus, the use of vlSetConnection() to specify the path connectivity is optional. The
following rules are used in determining the connections:

• For each internal node on the path, all unconnected input ports are connected to the
first source node added to the path. Pixel ports are connected to pixel ports and
alpha ports are connected to alpha ports.

• For each drain node on the path, all unconnected input ports are connected to the
first internal node placed on the path, if there is an internal node, or to the first
source node placed on the path. Pixel ports are connected to pixel ports and alpha
ports are connected to alpha ports.

Because existing connections are preserved, vlSetConnection() can be used to override
part of the default routes, as long as all drain nodes remain unconnected.

The function prototype of vlSetConnection() is

int vlSetConnection(VLServer vlSvr, VLPath path, VLNode source_node, VLPort
source_port, VLNode drain_node, VLPort drain_port, VLBoolean preempt)

where

vlSvr names the server to which the path is connected.

path specifies the data path whose connectivity is being changed.

source_node names the node that data will flow from. This is either a source or
internal node.

source_port specifies the port on the source node to use.

drain_node specifies the node that data will flow to. This is either a drain or internal
node.

drain_port specifies the port on the drain node to use.

preempt specifies whether other paths should be preempted (TRUE) or not
(FALSE) in order to route the connection.

Specifying Connectivity

83

Connections must be specified only if

• the path contains multiple internal nodes; in this case, the ordering of the internal
nodes is ambiguous and may not be inferred properly by the Video Library

• the default connections, described below, are not the ones that the application
desires

• the application wants to change a path’s topology after the path has started
transferring (note that the change in hardware route may cause a timing glitch in
the video stream, depending on the device)

Connections are set up one at a time using vlSetConnection() and take effect either
immediately or at the next vertical interval, depending on the device. In other words, if
vlSetConnection() completes successfully, the hardware connection has been
established.

Paths may be preempted in order to set a connection since scarce connector resources
may be required to route a connection from the source (node, port) to the drain (node,
port). The ability to preempt a path follows the rules for stream usage defined with
vlSetupPaths(). The ability to set a connection, as opposed to only getting (retrieving) it,
follows the rules for control usage.

This example fragment sets the blender node’s foreground pixel input, that is, input A,
to come from the framebuffer node output:

if (vlSetConnection(vlSvr, path, fb_node, VL_IMPACT_PORT_PIXEL_SRC,
blender_node, VL_IMPACT_PORT_PIXEL_DRN_A, FALSE) < 0)
{
 vlPerror(_progName);
 exit(1);
}

If vlSetConnection() returns with -1, an error has occurred. In addition to the standard
error codes, the following have special meaning for vlSetConnection():

VLNoRoute No physical route could be found from the source to the drain.

VLPathInUse A physical route exists between the source and drain, but the required
connector resources are in use. The application has requested that no
paths be preempted by specifying FALSE as the preempt parameter, or
another path has the resources locked.

84

Chapter 5: Managing Connections

Getting Connections

Use vlGetConnection() to retrieve the connections originating or terminating at a given
(node, port). Its function prototype is

int vlGetConnection(VLServer vlSvr, VLPath path, VLNode node, VLPort
port, VLNode *nodelist, VLPort *portlist, int *n)

where

vlSvr specifies the server the application is connected to

path specifies the path whose connectivity is being checked

node specifies the node on the path

port specifies the port on the node

nodelist is an array of VLNode where the connected nodes will be returned

portlist is an array of VLPort where the connected ports are returned

*n specifies the size of the nodelist and portlist arrays; on exit, *n is updated
to reflect the actual number of elements filled in

On successful exit, each (nodelist[i], portlist[i]) pair specifies one connection to (node,
port). If port is a source port, then (nodelist[i], portlist[i]) specifies the drain ports it
broadcasts to. If the port is a drain port, then (nodelist[0], portlist[0]) specifies the input.
Because a drain port can have only one input, only the first entry is used.

If vlGetConnection() returns with -1, an error has occurred. In addition to the generic
error codes, the error code VLNotEnoughSpace has special meaning to
vlGetConnection(). It indicates that the array size, *n, is too small to contain the list of
connections. *n is updated to reflect the required array length.

The fragment in Example 5-1 illustrates vlGetConnection().

Specifying Connectivity

85

Example 5-1 vlGetConnection() Example

/*
 * Connect to the video daemon
 */
svr = vlOpenVideo(““);

/*
 * Acquire video source and drain nodes.
 */
srcnode = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);
drnnode = vlGetNode(svr, VL_DRN, VL_VIDEO, VL_ANY);

/*
 * Create a path with these nodes.
 */
path = vlCreatePath(svr, VL_ANY, srcnode, drnnode);

/*
 * Connect the two nodes. Since this is a simple path with obvious
 * video routing, this step is optional. If the path contained
 * multiple internal nodes or the video route was not obvious, then
 * we would need to explicitly state the connections.
 */
vlSetConnection(svr, path, srcnode, VL_IMPACT_PORT_PIXEL_SRC, drnnode,
VL_IMPACT_PORT_PIXEL_DRN, FALSE);

/*
 * Begin the transfer
 */
vlBeginTransfer(svr, path, 0, NULL);

Figure 5-1 diagrams the OCTANE Digital Video board architecture and shows which
data can flow between blocks. An ellipse joining two links indicates that the two links can
be used either as separate nodes or as a single dual-link mode.

86

Chapter 5: Managing Connections

Figure 5-1 Hardware Representation

Figure 5-2 is a software model of OCTANE Digital Video node connectivity. Each
multiplexer (mux) is a full crossbar: any source can simultaneously broadcast to all
destinations. An ellipse joining two links indicates that the two links can be used either
as separate nodes or as a single dual-link mode.

Two-channel
DMA engine
(VGI1 asic)

Keyer/Blender
(CC/AB ASICs)

Video input
processing Video output

processing

Reference
black
(genlock)

Static 8-bit
YUV 4:2:2
framebuffer

YUV 4:2:2

2 streams YUV 4:2:2 or arbitrary 8-bit
1 stream any format

Serial
digital
video
input

To Main Memory

YUV 4:2:2 (1 or 2)
YUVA 4:2:2:4
8-bit or 8 expanded to 10-bit

12x14 crosspoint
(any source can drive
many destinations)

Window A
32-bit RGB(A)

Window B/C
1 32-bit or 2 12-bit aid->screen

“RGB to” or “RGBA from” graphics screen

YUV 4:2:2 (1 or 2)
arbitrary 8-bit (1 or 2)
YUVA 4:2:2:4
YUVA 4:4:4:4
RGBA RP175
8 or 10 bit

YUV 4:2:2 (1 or 2)
arbitrary 8-bit (1 or 2)
YUVA 4:2:2:4
YUVA 4:4:4:4
RGBA RP175
8 or 10 bit

10-bit YUV 4:2:2
connections to
compression (8-bit)

Note: Loopback does
not work on the
keyer/blender

Serial
digital
video
output

This wire indicates
capacity for 1 YUV
4:2:2 8 or 10-bit:

Constant Hue
Color Space
Converter

Texture
Mapping
Interface

1 or 2 streams YUV 4:2:2
1 stream 4:2:2:4

YUV 4:2:2 (1 or 2)

YUVA 4:2:2:4
YUVA 4:4:4:4
RGBA RP175
8 or 10 bit

RGBA Full Range
Graphics
engine8-bit RGBA

60 Hz

Specifying Connectivity

87

Figure 5-2 Software Representation

Video Src 1

Video Src 2

Video Drn 1

Video Drn 2

VGI Mem Src 1

VGI Mem Src 2

VGI Mem Drn 1

VGI Mem Drn 2

CC1 Mem Src 1
FB

Blender

Srcn Src A

Srcn Src B

Srcn Drn A

Scrn Drn B

Scrn Drn C

VBAR mux

Video Drn DL

Video Src DL VGI Mem Src DL

VGI Mem Drn DL

Pixel

Alpha
Alpha Pixel

Alpha
Mux

Crosspoint mux

Alpha
LUT

Alpha
LUT

CSC

Texture Drn

Texture Drn DL

88

Chapter 5: Managing Connections

The link with the alpha is called the pixel-alpha link, since it can carry pixel or alpha
streams. See the VL_MGV_ALPHA_LUT control in “VL_DEVICE” in Appendix B for an
explanation of this LUT.

• At most two video streams can flow from the VBAR mux to the crosspoint mux, and
at most two video streams can flow from the crosspoint mux to the VBAR mux.
Attempts to set up paths that require more cross-mux streams result in
VLPathInUse return codes, or in the path(s) using the links to be preempted.

• Because only one link in each direction has a specific alpha LUT, at most one alpha
stream can be routed into and at most on one alpha stream routed out of the
crosspoint mux.

• If a path uses a pixel-alpha link for a pixel stream and locks it (that is, sets stream
usage to VL_LOCK), no alpha stream can be routed in that direction.

The allocation of the links is as follows:

• If the target is a blender alpha input, the pixel-alpha link is allocated.

• If the target is anything other than a blender alpha input, then the pixel link is used
if it is available. Otherwise, the pixel-alpha link is used.

The dual-link video and memory nodes are composed of their single-link counterparts.
Consequently, when a dual-link node is used, its single-link counterparts become
unavailable. For example, when the dual-link video source is in use, video source 1 and
video source 2 become unavailable.

Contention for the component single-link resources by the dual-link and single-link
nodes follow normal preemption rules. A path using a dual-link node with stream usage
VL_SHARE can be preempted by another path using one of its single-link constituents
with stream usage VL_SHARE or VL_LOCK.

The CC1 memory source node and the framebuffer node share the same processing
element. Consequently, only one can be in use at a time.

Avoiding Dynamic Switching Problems

89

Unlike most sources, which feed directly into one of the muxes, the alpha from a screen
source node can be fed only to blender alpha input. This restriction is enforced both by
the VL_BLEND_A_ALPHA and VL_BLEND_B_ALPHA controls as well as by
vlSetConnection().

Note: When a screen source is designated as source A alpha, the blender can extract
alpha from it, because a screen source “contains” alpha. Otherwise, any other pixel
stream is 4:2:2. If a source other than screen is designated as source A alpha, the blender
uses the Y value as alpha and discards the U and V values.

Avoiding Dynamic Switching Problems

vlSetConnection() allows path topology to be changed while the path is transferring,
with certain restrictions. This section explains what connections should and should not
be switched during a transfer (dynamic switching). Possible failures include the
following:

• Picture glitch: Dynamic switching causes the output for one field to consist partly of
the field before the switch (usually the top part), the field after the switch (usually
the bottom part), and potentially a few garbage pixels at the transition. This glitch is
due to the lack of vertical boundary resampling of the switching. However, there is
no timing or synchronization glitch.

• Timing glitch: Dynamic switching causes a temporary loss of synchronization.
Picture monitors can tear, VTRs can slew, and downstream equipment hiccups in
one way or another but eventually recovers. This glitch is unacceptable for any
“live” situation.

90

Chapter 5: Managing Connections

In general, a glitch ripples downstream to other nodes. Changing video standards
(PAL/NTSC or square pixel/CCIR601) always causes a timing glitch. Table 5-1 shows
the effects of changing various controls. Glitches caused by changes in the video routing
are explained more fully in the following section.

As indicated in Figure 5-1, the OCTANE Digital Video option has timing restrictions for
the crosspoint mux and for the VGI1 memory source.

Crosspoint Mux Timing Restrictions

The two outputs of the VBAR mux going into the crosspoint mux must be locked to
within six pixels of each other if they are to be blended or displayed in windows B and
C. To do this, make sure that the two video input channels are locked by enabling the
input autophaser: set the VL_MGV_AUTO_PHASE to a value other than
VL_MGV_AUTOPHASE_OFF. (Autophasing locks the video inputs to each other if, on
input, their phase differences are not too great.)

Note: “VL_DEVICE” in Appendix B describes the use of these controls.

Table 5-1 Dynamic Effects of Various Video Data Path Controls

At Video Node Timing Glitch Possible
Causes

Picture Glitch Possible
Causes

Causes No Glitch

Serial digital video output Synchronizer bypass,
horizontal phase, genlock
reference sources

Crosspoint selection to video
out; various blanking

Freeze

Serial digital video input External interruption,
autophase mode

Truncation or rounding N/A

VGI1 memory drain VBAR select to VGI1 Truncation or rounding N/A

VGI1 memory source VGI1 timing source N/A N/A

Blender and screen source VBAR to crosspoint mux Alpha LUT select, various
blanking and rounding,
internal crosspoint

Keyer/blender
controls

Using the Internal Video Sync Signal

91

When one of the VBAR-to-crosspoint links is not in use, the following is done:

• If the pixel-alpha link is not in use, it is set to the same input as the pixel link.

• If the pixel link is not in use, it is set to the same input as the pixel-alpha link.

• If neither links is in use, the output of the black generator is sent to both links.

This arrangement guarantees that if only one link is in use, the two links are locked. If
two links are in use, then the application should ensure that the inputs are locked by
enabling the input autophaser.

Note: The autophaser can affect only the two serial digital inputs.

Sending a video signal with bad timing into the crosspoint mux from the VBAR mux may
cause the nodes attached to the crosspoint mux to operate inconsistently. These nodes
derive master timing from the signal on the pixel-alpha link.

VGI1 Memory Source Timing Restrictions

The VGI1 memory sources derive their timing from the genlock source, or from an
internal black generator if genlock is disabled. Consequently, changing controls
associated with the genlock source may result in a transfer error on the memory node.
Changing the autophase mode, for example, causes a timing glitch in the video stream.

Disconnecting the genlock source while a transfer is in progress causes the transfer to fail.

Using the Internal Video Sync Signal

Internal Video Sync refers to a synchronization signal produced or consumed by some
audio and video devices. The purpose of the signal is to ensure that simultaneous audio
and video signals are precisely synchronized.

This section explains

• “Internal Video Sync Producers and Consumers”

• “Setting the Internal Video Sync Signal Producer”

92

Chapter 5: Managing Connections

Internal Video Sync Producers and Consumers

While there may be multiple consumers of the Internal Video Sync signal, there can be
only one Internal Video Sync producer (master of the Internal Video Sync line) in a
system at any time. Table 5-2 lists Silicon Graphics options that produce or consume the
Internal Video Sync signal.

When the kernel initializes, it generates a list of Internal Video Sync devices but does not
set any as the master of the Internal Video Sync line.

A producer must call ksync_attach() from its attach routine. This call adds the producer
to the hardware graph and stores the arguments passed into the soft state on the new
vertex. Producers must implement the KS_CONTROL_IOCTL call, which takes a single
integer argument, 0 for off (KSYNC_OFF) and 1 for on KSYNC_ON).

A consumer need only call ksync_attach() and implement the KS_CONTROL_IOCTL.
To handle Internal Video Sync disruption, a consumer should register a callback function
in ksync_attach().

Table 5-2 Internal Video Sync Signal Producers and Consumers

Producer Consumer

Octane Digital Video InfiniteReality™ graphics

Octane Compression Radical Baseline Audio

Radical Audio Radical Audio

DIVO digital video option for
Origin2000™/Onyx2™

Using the Internal Video Sync Signal

93

Setting the Internal Video Sync Signal Producer

Routines can use two Internal Video Sync calls, ksyncstat() and ksyncset(). ksyncstat()
returns a list of Internal Video Sync-capable devices in the system. The devices are given
as node names, not full pathnames; for example:

struct kstat_s ks_statbuf[64]
int i;

// Read system ksync configuration
ksyncstat(ks_statbuf, 64);

// Find current Master
for(i=0; ks_statbuf[i].kName[0] != 0; i++) {
 if (ks_statbuf[i].kFlags & KsyncIsProducer)

 // name of current master is in ks_statbuf[i].kName
}

// Search for potential producers..
for(i=0; ks_statbuf[i].kName[0] != 0; i++) {
 if(ks_statbuf[i].kFlags & KsyncProducerCapable) {
 // found a producer, name is
 // in ks_statbuf[i].kName
 }
 else if (ks_statbuf[i].kFlags & KsyncConsumerCapable) {
 // found a consumer, name is
 // in ks_statbuf[i].kName
 }
}

94

Chapter 5: Managing Connections

The structure for ksyncstat() is as follows:

/*
 ** ksync flag values
 */

 #define KsyncIsProducer 0x1
 #define KsyncProducerCapable 0x2
 #define KsyncConsumerCapable 0x4
 #define KsyncActive 0x8

typedef struct {
 char kName[64];
 int kFlags;
 } kstat_t;

 int ksyncstat(
 kstat_t *buf,
 int bufSz); /* in bytes */

The buffer pointed to by buf is filled with as many kstat_t structures as there are Internal
Video Sync devices on the system, or as many as the buffer holds. The element kName is
the name of the device node on the hardware graph. Note that this name is the node
name and not the full pathname.

ksyncset() causes a device to begin producing the Internal Video Sync signal. This call
takes a string as an argument, for example:

ksyncset(“Digital Video”);

This example specifies a device. If another device is already producing the signal, that
device immediately stops producing it and the device specified in the call begins
producing it.

ksyncset(“None”);

Specifying None has the effect of turning off the Internal Video Sync signal. Also, if a
device is specified that is not active in the system, Internal Video Sync signal generation
is turned off and an error message is produced.

ksyncset(ks_statbuf[3].kName);

Using the Internal Video Sync Signal

95

If the string corresponds to a string returned by ksyncstat(), and that name corresponds
to a potential producer, that device becomes the new Internal Video Sync master. If there
are no such correspondences, all producers are shut off. Using the string None (or any
string that does not correspond to a potential producer) also shuts off all producers.

The Internal Video Sync feature is also implemented as a panel. This feature is
incorporated into vcp and apanel as well, accessible in the Utilities menu.

97

Chapter 6

6. Video Real-Time Capture and Playback

The OCTANE Digital Video VGI1 memory nodes are capable of full video-rate capture
and playback to the Video Library buffers. This chapter explains how to optimize capture
or playback to system memory or disk.

• “Video Library Buffers”

• “Caching”

• “Buffer Alignment”

• “Direct I/O to Disk”

• “syssgi”

• “Asynchronous I/O”

• “Capture and Playback Examples”

Video Library Buffers

Data transfer between the VL and an application takes place through a DMbuffer or VL
buffer. When the OCTANE Digital Video option transfers data from the application to the
Video Library, the application retrieves an empty buffer using vlGetNextFree(). After
placing data in the buffer, the application marks it as valid using the vlDMGetValid() or
vlPutValid() routine. When the video device is finished reading from the buffer, it marks
the buffer as free. For more details on the role of buffers in data transfer, see “Transferring
Video Data to and From Devices” in Chapter 2.

98

Chapter 6: Video Real-Time Capture and Playback

Caching

To mark a DMbuffer as cacheable or not, use dmBufferSetPoolDefaults(); for VL buffers,
use the vlBufferAdvise() routine to mark a VL buffer. They have the following
prototypes:

int vlBufferAdvise(VLBuffer buffer, int advice)

where

buffer specifies the ring buffer to be advised

advice specifies the type of advisory being made:

• VL_BUFFER_ADVISE_NOACCESS marks the buffer as
non-cacheable

• VL_BUFFER_ADVISE_ACCESS marks the buffer as cacheable

Marking the buffer non-cacheable indicates that the CPU cache does not have to be
flushed or invalidated when data is read or written to system memory via DMA.
However, any access to the buffer through the CPU must then bypass the cache and must
always go to system memory. This arrangement can severely degrade the performance
of an application that directly manipulates the video data.

Consequently, marking a buffer cacheable or noncacheable is application-dependent. In
general:

• If the application manipulates the data, even if it is only to copy the data into or out
of another region of system memory, the buffer should be set cacheable. This setting
is the default for a VL buffer.

• If the application does not manipulate data, and all transfer is done strictly through
DMA, then performance is optimized by setting the buffer to noncacheable. This is
the case, for example, when video is read into a buffer and then written directly to
disk with raw or direct I/O.

Note: If raw or direct I/O is not used, the data is first copied into the filesystem
cache. In that case, the buffer should be kept cacheable.

Buffer Alignment

99

Buffer Alignment

The performance of the memcpy() and bcopy() routines is greatly affected by the
alignment of the source and destination buffers. For copy operations between buffers
with the same alignment, throughput is approximately 400% greater than between
buffers with mismatched alignments. For memcpy() and bcopy(), the source and target
buffers can be considered aligned if the following condition is met:

(src % 4) == (dest % 4)

In other words, the source and destination buffer addresses are equally distant from a
word boundary.

Because the VL buffers used with the OCTANE Digital Video device are page-aligned,
performance is maximized if the application’s buffers are word-aligned. Note that the
memory allocation routines such as malloc() return double-word (64-bit aligned) buffers.
DMbuffers are guaranteed to be double-word aligned. All buffers received from the VL
are guaranteed to be page-aligned, but not all DMbuffers are guaranteed to be
page-aligned.

Direct I/O to Disk

Capture or playback from a disk subsystem can be greatly improved by using direct I/O.
Direct I/O bypasses the filesystem’s buffer cache, eliminating a data copy and other
overhead. The buffer can also be marked noncacheable, yielding further performance
gains.

Because the filesystem cache is bypassed, device buffer alignment and block size
restrictions fall onto the application. These restrictions can be obtained using

fcntl(int fd, F_DIOINFO, struct dioattr *dioattr)

The device can, for example, require that the buffer be page-aligned. Disk devices usually
require that the buffer’s size be a multiple of 512 bytes (the disk sector size), or a multiple
of the stripe size.

100

Chapter 6: Video Real-Time Capture and Playback

In addition, device performance can be improved with certain alignments or sizes. For
example, a device operating on a non-page-aligned VL buffer can internally break the
request into a nonaligned part and an aligned part, yielding the overhead of two requests
instead of one. In striped disk subsystems, performance is usually improved by reading
or writing entire stripes at a time.

VL buffer elements used with the OCTANE Digital Video device are always
page-aligned, which satisfies the alignment constraints of most devices. DMbuffer
alignment, on the other hand, is a union of all requested alignments; see “Using Buffers”
in Chapter 2.

The VL_MGV_BUFFER_QUANTUM control is provided so that an application can
specify the block size that should be applied to a video unit. (The video unit is a field or
frame, depending on the capture type.) For example, setting this control to 512 rounds
the frame or field size, as reported by vlGetTransferSize(), up to a multiple of 512. This
control should be set to a multiple of the block size returned by fcntl(fd, F_DIOINFO, ...),
or to the optimal block size for the device.

When VL_MGV_BUFFER_QUANTUM is set to a value other than 1, the video data is
padded at the end with random values. Consequently, it is important to use the same
value for VL_MGV_BUFFER_QUANTUM on capture and on playback. Making the
value the same can be a problem if a file is copied from one device to another with a
different allowable block size. It is recommended that the control be set to a common
multiple of the allowable sizes. For example, 4096 satisfies most devices. Otherwise, the
file may need to be reformatted.

syssgi

Some of the standard I/O routines support files sizes only up to 2 GB because file
position is expressed as a signed integer. lseek, for example, only operates up to a 2 GB
range. (Note that it is possible to use the read or write system calls to read or write past
the 2 GB mark, up to the filesystem size).

Asynchronous I/O

101

The syssgi system call can be used to read or write raw disk partitions greater than 2 GB
when used with the following parameters:

int syssgi(int request, int fd, char *data, int blockoffset, int numblocks)

where

request is SGI_READB for a read operation or SGI_WRITEB for a write
operation

fd is a file descriptor of a character special device, as obtained by the open
system call

data points to the buffer to be written from or read to

blockoffset is the block position where reading or writing should commence

numblocks is the number of blocks to read or write starting at blockoffset

Note that syssgi operates in units of device blocks as opposed to bytes. For disk
subsystems, a block is usually 512 bytes, allowing 240 bytes of disk space to be addressed.

As with direct I/O, the application is responsible for ensuring that the data buffer is
properly aligned and that block size constraints are followed.

Asynchronous I/O

Asynchronous I/O allows an application to process multiple read or write requests
simultaneously. On Silicon Graphics platforms, asynchronous I/O is available through
the aio facility. The aio64 facility additionally supports 64-bit file sizes and offsets.

Because multiple I/O requests might be outstanding when asynchronous I/O is used,
the round-trip delay between making a request, having it serviced, and issuing another
request is removed. Asynchronous I/O also eliminates any process-scheduling delay
between these steps. In addition, the device being read from or written to might be able
to optimize performance by carrying out the requests simultaneously.

102

Chapter 6: Video Real-Time Capture and Playback

For VL buffers only, keep the following points in mind when using asynchronous I/O:

• The VL buffer is a first-in first-out mechanism. When putting a buffer element back
into the buffer using vlPutValid(), the “oldest” element retrieved by
vlGetNextFree() is used. There is no way to specify that a different element should
be used.

• Because asynchronous I/O operations can complete out of order, the application
may need to keep a list of filled elements. When the oldest element is filled, the
application can then call vlPutValid() to place it back into the buffer, and check to
see if any other elements are also ready.

• The same restriction applies to vlPutFree() for elements obtained with
vlGetNextValid() or vlGetLatestValid().

Caution: Software conversion can severely degrade capture or playback performance.

Capture and Playback Examples

The following examples of real-time capture and playback are available in
/usr/share/src/dmedia/video/vl:

• vidtodsk: video to disk using direct I/O (up to the disk subsystem rate)

• dsktovid: disk to video using direct I/O (up to the disk subsystem rate)

• vidtodsk_aio: video to disk using asynchronous and direct I/O (up to the disk
subsystem rate)

• dsktovid_aio: disk to video using asynchronous and direct I/O (up to the disk
subsystem rate)

103

Chapter 7

7. Blending, Keying, and Transitions

This chapter explains how to combine video frame information and computer-generated
graphics on the Indigo2 workstation. Use the VL and the OCTANE Digital Video board
to perform three types of blending:

• Chroma keying: overlaying one image on another by choosing a key color. For
example, if chroma keying is set to blue, image A might show through image B
everywhere the color blue appears in image B. A common example is the TV
weather reporter standing in front of the satellite weather map. The weather
reporter, wearing any color but blue, stands in front of a blue background; keying
on blue shows the satellite picture everywhere blue appears. Because there is no
blue on the weatherperson, he or she appears to be standing in front of the weather
map.

• Luma keying: overlaying one image on another by choosing a level of luminance.
For example, to overlay bright text (such as a caption) on video, a graphics source is
created with the text on a dark background. The video source is made to show
through the dark areas of the graphics; the bright text remains on top of the video.

• Transitions: fades, tiles, and wipes, such as single, double, or corner wipes, for
which you can set the angle or center.

The choice “Blend/Wipe Node” in the Pro menu of the panel vcp, a graphical user
interface for VL and the OCTANE Digital Video board, provides convenient access to
blending, keying, and transition controls.

This chapter explains

• “The Blender Node”

• “Keying”

• “The Keyer”

• “VL Blending Examples”

104

Chapter 7: Blending, Keying, and Transitions

The Blender Node

Blending takes place in the VL’s internal blender node, which mixes the foreground and
background video signals by applying a blend function to the foreground and
background pixels.

The blender node is supplied by four independent inputs:

• pixel from a foreground source (A)

• the alpha value for source A

• pixel from a background source (B)

• the alpha value for source B

Figure 7-1 diagrams the blender node.

Figure 7-1 Blender Node

The blender node has four multiplier stages, indicated by ⊗ in Figure 7-1, and one adder
stage, indicated by ⊕ . The values in the four multiplier stages are based on the blending
functions selected and on the input normalization controls.

+ Pixel out

Source A
(set by
VL_BLEND_A_FCN)

Source B
(set by
VL_BLEND_B_FCN)

fbg(a)

X

Source A alpha
(set by
VL_BLEND_A_ALPHA) ffg(a)

X

ffg(a)

X

fbg(a)

X

Source B alpha
(set by
VL_BLEND_B_ALPHA)

The Blender Node

105

Of the four inputs shown in Figure 7-1, two have alternate sources. The OCTANE Digital
Video keyer is hard-wired to alpha source A and the flat-background generator is
hard-wired to pixel source B, as diagrammed in Figure 7-2.

Figure 7-2 Keyer and Flat-Background Generator Locations on Source Nodes

The keyer produces an alpha stream from a pixel stream, generating a key for each pixel
in each source node. It is described in detail in “The Keyer” later in this chapter. The
flat-background generator sets the background pixel stream (source B pixel) to a default
background color or to another color.

Note: When a screen source is designated as source A alpha, the blender can extract
alpha from it, because a screen source “contains” alpha. Otherwise, any other pixel
stream is 4:2:2. If a source other than screen is designated as source A alpha, the blender
uses the Y value as alpha and discards the U and V values.

The rest of this section explains

• setting up the blender node

• setting normalization

• setting and turning off flat background

• adding shadows

SourceDrain

Blender

Source A pixel

Source A alpha

Source B pixel

Source B alpha

Pixel output
Alpha output

Keyer

Flat
background

106

Chapter 7: Blending, Keying, and Transitions

Setting Up the Blender Node

Figure 7-3 diagrams setting up the blender node.

Figure 7-3 Setting Up the Blender Node

The blender node is created with the vlGetNode() function. The code fragment in
Example 7-1 sets up source, drain, and blender nodes. Notice that the drain nodes are set
up before the source nodes.

Example 7-1 Setting Up Source, Drain, and Blender Nodes

/* variable definitions */
{
 VLServer vlSvr;
 VLPath path;
 VLNode drn_scr, drn_vid, src_scr, src_vid, blend_node;
}

/* Open a video device */
vlSvr = vlOpenVideo(“”);

/* Set up drain nodes on the screen and video */
drn_scr = vlGetNode(vlSvr, VL_DRN, VL_SCREEN, VL_ANY);
drn_vid = vlGetNode(vlSvr, VL_DRN, VL_VIDEO, VL_ANY);

/* Set up source nodes on the screen and video */
src_scr = vlGetNode(vlSvr, VL_SRC, VL_SCREEN, VL_ANY);
src_vid = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, VL_ANY);

/* Set up internal blending node */
blend_node = vlGetNode(vlSvr, VL_INTERNAL, VL_BLENDER,
 VL_ANY);

Blender
Source2

Source1 Drain

Source2

Source1 Drain

Source1 Draindrn_scr = vlGetNode(vlSvr, VL_DRN, VL_SCREEN, VL_ANY);
drn_vid = vlGetNode(vlSvr, VL_DRN, VL_VIDEO, VL_ANY);
src_scr = vlGetNode(vlSvr, VL_SRC, VL_SCREEN, VL_ANY);
src_vid = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, VL_ANY);

blend_node = vlGetNode(vlSvr, VL_INTERNAL, VL_BLENDER, VL_ANY);

The Blender Node

107

Table 7-1 summarizes the generic VL blending controls. For all these controls, access is
GST:

• G: The value can be retrieved through vlGetControl().

• S: The value can be set through vlSetControl() while the path is not transferring.

• T: The value can be set through vlSetControl() while the path is transferring.

Table 7-1 General Blender Controls

Control Values Selects

VL_BLEND_A_FCN
type intVal

VL_BLDFCN_ZERO
VL_BLDFCN_ONE (default)
VL_BLDFCN_B_ALPHA
VL_BLDFCN_MINUS_B_ALPHA

Blend function that controls mixing of
foreground signals, and, with
VL_BLEND_B_FCN, provides 16 possible
blends of Pixel A and Pixel B, although not all
are useful. This control is superseded by
vlSetConnection().

VL_BLEND_B_FCN
type intVal

VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_A_ALPHA
VL_BLDFCN_MINUS_A_ALPHA (default)

Blend function that controls mixing of
background signals; see VL_BLEND_B_FCN for
more information. This control is superseded by
vlSetConnection().

VL_BLEND_A
type intVal

VLNode type, derived from vlGetNode();
must be one of the two pixel source nodes

Sets input source A pixel (foreground).

VL_BLEND_B
type intVal

Same as for VL_BLEND_A Sets input source B pixel (background).

VL_BLEND_A_ALPHA
type intVal

VLNode type, derived from vlGetNode();
must be one of the two alpha source nodes

Sets input source A alpha (foreground). If this
control is set to a screen node, screen alpha is
used.

VL_BLEND_B_ALPHA
type intVal

Same as for VL_BLEND_A_ALPHA Sets input source B alpha (background). If this
control is set to a screen node, screen alpha is
used.

VL_BLEND_A_NORMALIZE
type boolVal

(0,1)
0 = off (not supported), 1 = on (default)

Selects normalization for A pixel and alpha
streams. The pixel and alpha of each stream are
applied before the blend operation. Follows
Porter-Duff model (background pixels
premultiplied by their corresponding alphas
before blending)

108

Chapter 7: Blending, Keying, and Transitions

Some of the operations are not very useful, for example VL_BLDFCN_ONE,
VL_BLDFCN_ONE adds the two images; the hardware clips pixels that are too bright.

Note: When sending the blender output to video, it is best to blank the chroma.

Setting Normalization

You can compose the 12 standard Porter-Duff operations by combining the values of
VL_BLEND_A_FCN and VL_BLEND_B_FCN. Figure 7-4 gives some examples of
compositing, assuming normalized inputs. Normalized background pixels for a frame
are premultiplied by their corresponding alphas before they are blended.

VL_BLEND_B_NORMALIZE
type boolVal

(0,1)
0 = off, 1 = on (default)

If set to TRUE, the pixel and alpha of each
stream are applied before the blend operation.
For screen inputs, set this control to FALSE if
you are in VL_MGV_KEYERMODE_NONE
mode; alpha has been applied once by the
graphics in most cases. Otherwise, leave set to
TRUE. Many special effects can be done by
altering this control. Follows Porter-Duff model.

Table 7-1 (continued) General Blender Controls

Control Values Selects

The Blender Node

109

Figure 7-4 Binary Compositing

Operation Diagram f(A)= f(B)=

Clear 0 0

A 1

B 1

A over B 1 1−f(A)

B over A 1−f(B) 1

A in B f(B)

B in A f(A)

A held out by B 1−f(B)

B held out by A 1−f(A)

A atop B f(B) 1−f(A)

B atop A 1−f(B) f(A)

A xor B (union of A
out B and B out A) 1−f(B) 1−f(A)

��
��

��
��

��
��

�
�

�
�

�
�
�

�
�

 Table derived from Thomas Porter and Tom Duff, “ Compositing Digital
 Images,” published by the Association of Computing Machinery, 1984.

110

Chapter 7: Blending, Keying, and Transitions

Table 7-2 shows the choices for the two blend functions A and B, which correspond
exactly.

The value 0.0 sets the display to black (cut the foreground or background value); the
value 1.0 sets the display to white (pass the foreground or background value):

• If both foreground and background are set to 0.0, the result is black (both
foreground and background are cut).

• If foreground is set to 0.0 and background is set to 1.0, foreground is cut (ignored)
and background is passed (displayed).

• If foreground is set to 1.0 and background is set to 1-f(A), background obscures and
overlaps foreground, resulting in compositing.

Normally, chroma is multiplied (scaled) by the selected alpha. For example, the value on
source A can be multiplied by its own alpha value or that from source B. In a normal
blend, f(A), the incoming alpha of source A is applied to the value for A. In the inverse
of this blend, f(A)=1-f(A), the region that was considered opaque (turned off), that is,
outside the volume defined for keying, is applied to source A.

In another way of blending, the alpha from source B can be applied to the component
represented by source A. In the inverse of this blend, f(A)=1-f(B), the region that was
turned off for source B is applied to source A.

For screen inputs, set VL_BLEND_B_NORMALIZE to FALSE if the keyer mode is set to
pass-through (VL_KEYERMODE_NONE), because the alpha has been applied once by
the graphics in most cases. In other words, set VL_BLEND_B_NORMALIZE to FALSE if
it is following another blender.

For foreground-to-background wipes, background alpha is set to a constant value of 1.0,
so that the background shows through the foreground.

Table 7-2 Choices for Blend Functions A and B

Blend Function A Blend Function B

f(A) = 0.0 f(B) = 0.0

f(A) = 1.0 f(B) = 1.0

f(A) = f(A) f(B) = f(B)

f(A) = 1 - f(A) f(B) = 1 - f(B)

The Blender Node

111

Setting and Turning Off Flat Background

For the OCTANE Digital Video option, pixel source B is normally a flat background,
supplied by a flat-background generator on this wire (see Figure 7-2). However, you can
use device-dependent controls to set the background as desired:

• VL_MGV_BLEND_B_FLAT (default: off)

When this control is TRUE (on), the background pixel source is used for pixel
timing only and live video from pixel source B goes to the blender.

When this control is off, you can set three controls listed below to values of your
choosing for the background. The default value for the background is gray.

Note: Set this value before the background is turned on if you wish to avoid a flash.

• VL_MGV_BLEND_B_Y (default: 128)

The legal range of Y is 16 to 235.

• VL_MGV_BLEND_B_U (default: 128 (50% gray))

The legal range of U is 16 to 240.

• VL_MGV_BLEND_B_V (default: 128)

The legal range of V is 16 to 240.

The software does not prevent you from using values outside of the range (1-254):

• The values of 1 and 254 are superblack and superwhite.

• The setting Y=235, U=128, V=128 is 100% white.

Adding Shadows

The shadow hardware adds back the Y information from the area that was cut by the
keyer. If a shadow exists in the cut area, the effect is to dim the pixels in the area of that
shadow in the replaced background.

112

Chapter 7: Blending, Keying, and Transitions

Use these device-dependent controls to set the shadow values:

• VL_MGV_BLEND_SHADOW_ON

Set this control to TRUE to activate the shadow hardware.

• VL_MGV_BLEND_SHADOW_GAIN

The range for this control is 0.0 to 3.0, which shifts the value.

Use this control and the next one to make the shadow darker or lighter than the
“real” shadow you see in the input video.

Note: Darkening a very light shadow can result in noise.

• VL_MGV_BLEND_SHADOW_OFFSET

The range for this control is 0 to 255, which is added to the value.

Shadows that are very dark may be hard to key. These registers affect only the
background pixels; foreground areas are passed through by the blender. Tune the values
for the best effect.

Keying

For each kind of keying—luma keying, chroma keying, and transitions—further VL
controls enable you to specify the properties of the blend.

The values for the OCTANE Digital Video “master” keyer control,
VL_MGV_KEYER_MODE, determine the type of keying performed:

• luma keying: VL_MGV_KEYERMODE_LUMA

• chroma keying: VL_MGV_KEYERMODE_CHROMA

• transitions, that is, fades, tiles, or wipes: VL_MGV_KEYERMODE_SPATIAL

For example, the following fragment specifies a fade:

VLControlType val;
val.intVal = VL_MGV_WIPETYPE_FADE;
vlSetControl(vlSvr, vlPath, blend_node, VL_MGV_WIPE_TYPE,
 &val);

Each type of keying is explained separately in this section. Figure 7-5 shows the
relationships between the OCTANE Digital Video board keying and wipe controls.

Keying

113

Figure 7-5 OCTANE Digital Video Keying, Wipe, and Blender Control Relationships

Note: Controls are enclosed in lozenges;

VL_MGV_KEYER_VALUE_LUMA

values are not.

VL_MGV_KEYERMODE_LUMA

VL_MGV_KEYERMODE_CHROMA

VL_MGV_KEYERMODE_SPATIAL
VL_MGV_KEYER_RANGE_LUMA

VL_MGV_KEYER_VALUE_CHROMA_U

VL_MGV_KEYER_VALUE_CHROMA_V

VL_MGV_KEYER_RANGE_CHROMA_U

VL_MGV_KEYER_RANGE_CHROMA_V

VL_MGV_KEYER_DETAIL

VL_MGV_WIPE_FUZZ

VL_MGV_KEYER_MODE

* Applies only when VL_MGV_WIPE_SYMMETRY is set.

VL_MGV_KEYER_FG_OPACITY

VL_MGV_KEYER_DETAIL

VL_MGV_WIPE_TYPE

VL_MGV_WIPE_ANGLE

VL_MGV_WIPE_POSN

VL_MGV_WIPE_POSN_PERP

VL_MGV_WIPE_CENT

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_F
A

D
E

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_T
IL

E

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_S
IN

G
LE

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_D
O

U
B

LE

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_C
O

R
N

E
R

VL_MGV_WIPE_CENT_PERP

VL_MGV_WIPE_REPT

VL_MGV_WIPE_REPT_PERP

VL_MGV_WIPE_SYMMETRY

VL_MGV_WIPE_INVERT

X X X

X XX X X

X XX X X

X X X

* * *

X X X

X

X

X

*

X XX X X

X

*
Blender controls

114

Chapter 7: Blending, Keying, and Transitions

Luma Keying

Luma keying is typically used to overlay a fixed image on video, such as the name and
title of an individual being interviewed, a cable channel’s logo, or a symbol that denotes
an ongoing news story during a newscast. Figure 7-6 illustrates the results of luma
keying.

Figure 7-6 Luma Keying Application: Titling

The OCTANE Digital Video luma keying controls are summarized in Table 7-3. For each,
the type is intVal and access is GST. The default value is persistent: it is initially obtained
from the defaults file, but is never reset. Many controls available through the video
control panel vcp (for example, the default video input) fall into this category. For this
value, changes made by vlSetControl() are persistent across paths, even if the node goes
into an unused state.

xxx

Background

ForegroundKim Lee
Agriculture

Kim Lee
Agriculture

xxx xxxxx

xxx

xxx xxxxxBlend

Keying

115

Figure 7-7 diagrams the relationships between these controls.

Figure 7-7 Relationships Between OCTANE Digital Video Luma Keying Controls

Table 7-3 OCTANE Digital Video Luma Keying Controls

Control Range Sets

VL_MGV_KEYER_VALUE_LUMA (0,255) Central luma value. This control sets the luma value at which the background
shows through the foreground.

VL_MGV_KEYER_RANGE_LUMA (0,255) One-sided range of the center value. This control determines the range of luma
values where the background shows through the foreground.

VL_MGV_KEYER_FG_OPACITY (0,255) Opacity of the foreground, thus limiting the value of foreground alpha at any
point.

VL_MGV_KEYER_DETAIL,
VL_MGV_KEYER_SHARPNESS,
VL_MGV_KEYER_FUZZ

(-8,7) Sharpness of transition between foreground and background allowing blurring of
edges. The value -8 yields the most gradual transition, +7 the sharpest.

255

2550

All
foreground

All
background

Mixture

Alpha

Pixel luma

Level set by VL_MGV_KEYER_FG_OPACITY

Sharpness of transition set by VL_MGV_KEYER_DETAIL

yr
yv

yv = VL_MGV_KEYER_VALUE_LUMA
yr = VL_MGV_KEYER_RANGE_LUMA

116

Chapter 7: Blending, Keying, and Transitions

Chroma Keying

Chroma keying overlays one image on another based on the color value. Figure 7-8
illustrates an example of chroma keying.

Figure 7-8 Chroma Keying Application: TV Weather Map

Table 7-4 summarizes the controls for OCTANE Digital Video chroma keying and gives
their ranges. For each, default is persistent, access is GST, and type is intVal.

Blend

Keying

117

Note: VL_MGV_KEYER_FG_OPACITY has no effect on OCTANE Digital Video in
chroma key mode.

Figure 7-9 diagrams the relationships between these controls.

Table 7-4 OCTANE Digital Video Chroma Keying Controls

Control Range Sets

VL_MGV_KEYER_VALUE_CHROMA_U (-226,226) Central U value at which the background shows through the
foreground.

VL_MGV_KEYER_RANGE_CHROMA_U (0,452) One-sided range of U where the background shows through the
foreground.

VL_MGV_KEYER_VALUE_CHROMA_V (-179,179) Central V value at which the background shows through the
foreground.

VL_MGV_KEYER_RANGE_CHROMA_V (0,358) One-sided range of V where the background shows through the
foreground.

VL_MGV_KEYER_DETAIL,
VL_MGV_KEYER_SHARPNESS,
VL_MGV_KEYER_FUZZ

(-8,7) Sharpness of transition between foreground and background

118

Chapter 7: Blending, Keying, and Transitions

Figure 7-9 Relationships Between OCTANE Digital Video Chroma Keying Controls

vr = VL_MGV_KEYER _RANGE_CHROMA_V

vv = VL_MGV_KEYER _VALUE_CHROMA_V

ur = VL_MGV_KEYER _RANGE_CHROMA_U

uv = VL_MGV_KEYER _VALUE_CHROMA_U

Sharpness of transition set by
VL_MGV_KEYER_DETAIL

Foreground

Alpha

255

−179

vr
vv

Pixel v
179

Background

ur

uv

−226 Pixel u
226

0

Keying

119

Fades, Tiles, and Wipes

The values used with the control VL_MGV_WIPE_TYPE determine the type of blending
performed:

• from all-foreground to all-background: VL_MGV_WIPETYPE_FADE

• from all-foreground to all-background by randomly tiling screen with rectangles of
a specified size: VL_MGV_WIPETYPE_TILE

• wipe to cross the screen as a vertical, diagonal, or horizontal “front,” with a
specified angle: VL_MGV_WIPETYPE_SINGLE

• wipe in two orthogonal directions simultaneously (two single wipes at the same
time): VL_MGV_WIPETYPE_DOUBLE

• wipe in two orthogonal directions, with the perpendicular position locked to the
normal, or in-line position: VL_MGV_WIPETYPE_CORNER

For example, the following fragment specifies that a fade is to be performed:

VLControlType val;
val.intVal = VL_MGV_WIPETYPE_FADE;
vlSetControl(vlSvr, vlPath, blend_node, VL_MGV_WIPE_TYPE,
 &val);

Fades, tiles, and wipes go from all-foreground (VL_MGV_WIPE_POSN=0) to
all-background (VL_MGV_WIPE_POSN=1000), unless VL_MGV_WIPE_INVERT
control is set, in which case they go from all-background (VL_MGV_WIPE_POSN = 0) to
all-foreground (VL_MGV_WIPE_POSN = 1000).

120

Chapter 7: Blending, Keying, and Transitions

Table 7-5 summarizes controls common to all wipe types.

Table 7-6 summarizes the controls specific to wipes or that work differently for wipes.
For each, access is GST and the default is persistent, except
VL_MGV_WIPE_SYMMETRY and VL_MGV_WIPE_INVERT, for which it is FALSE.
Some of these controls work in conjunction with each other.

Table 7-5 Controls for Fades, Tiles, and Wipes

Control Values Sets

VL_MGV_WIPE_POSN
type fractVal

Numerator (0,1000)
Denominator (1000)

Amount of progress of wipe, from none (numerator = 0) to full
(numerator = 1000).

VL_MGV_WIPE_REPT
type intVal

(0,15) Number of repetitions of pattern in direction of wipe, usually
louvers on single, corner, or double wipe, and length of one
side of rectangles for a tile wipe.
Note that this control does not apply to fades.

VL_MGV_WIPE_INVERT
type intVal

(0,1)
0 = off, 1 = on

Reversal of foreground and background regions of a wipe.
When set to 0, wipes proceed from foreground (position =
minimum) to background (position = maximum). When set to
1, wipes proceed from background (position = minimum) to
foreground (position = maximum).

This value is buffered (does not go into effect) until another
blending control is set.

Table 7-6 OCTANE Digital Video Controls Specific to Wipes

Control Values Sets

VL_MGV_WIPE_DIRECTION
(VL_MGV_WIPE_ANGLE)
type intVal

VL_MGV_WIPEANGLE_E
VL_MGV_WIPEANGLE_NE
VL_MGV_WIPEANGLE_N
VL_MGV_WIPEANGLE_NW
VL_MGV_WIPEANGLE_W
VL_MGV_WIPEANGLE_SW
VL_MGV_WIPEANGLE_S
VL_MGV_WIPEANGLE_SE

Wipe vector direction, that is, the direction in which the
wipe appears to be proceeding as its position increases.

Note: VL_MGV_WIPEANGLE_N and
VL_MGV_WIPEANGLE_S do not work for the wipe
types VL_MGV_WIPETYPE_DOUBLE and
VL_MGV_WIPETYPE_CORNER

VL_MGV_WIPE_FUZZ
(VL_MGV_WIPE
_SHARPNESS)
type intVal

(-8,7) Sharpness of wipe transition band. As for
VL_MGV_KEYER_DETAIL, -8 is most gradual, +7 is
sharpest.

Keying

121

VL_MGV_WIPE_SYMMETRY
type intVal

(0,1)
0 = off, 1 = on

Wipe symmetry (on or off) so that wipe proceeds in both
directions at once from the center line. Effect depends on
type of wipe: no effect for fades or tiling; enables
VL_MGV_WIPE_CENT for single, double, and corner
wipes; enables VL_MGV_WIPE_CENT_PERP control for
double and corner wipes.

VL_MGV_WIPE_POSN_PERP
type fractVal

numerator (0,1000)
denominator (1000)

Amount of progress of wipe, from none (numerator = 0)
to full (numerator = 1000), along a direction
perpendicular to normal wipe position
VL_MGV_WIPE_POSN.

VL_MGV_WIPE_CENT
type fractVal

numerator (0,1000)
denominator (1000)

Offset that is center of a symmetrical wipe along wipe
position. 0 means center is where
VL_MGV_WIPE_POSN is 0, and 1000 means center is
where VL_MGV_WIPE_POSN is 1000. For this control to
work for single, double, and corner wipes,
VL_MGV_WIPE_SYMMETRY must be on.

VL_MGV_WIPE_CENT_PERP
type fractVal

numerator (0,1000)
denominator (1000)

Offset that is center of a symmetrical wipe along a
perpendicular wipe position. 0 means center is where
VL_WIPE_POSN_PERP is 0, and 1000 means center is
where VL_WIPE_POSN_PERP is 1000.
VL_WIPE_SYMMETRY must be on for this control to
work for double and corner wipes.

VL_MGV_WIPE_REPT_PERP
type intVal

(0,15) Number of repetitions perpendicular to wipe direction
for single, double, and corner wipes, and length of other
side of rectangles for tile wipe.

Table 7-6 (continued) OCTANE Digital Video Controls Specific to Wipes

Control Values Sets

122

Chapter 7: Blending, Keying, and Transitions

The Keyer

The role of the keyer is to take a pixel stream and produce an alpha stream. It generates
a key for each pixel in each source node:

• If luma keying is set, the keyer assesses the brightness of each pixel.

• If chroma keying is set, the keyer assesses the color of each pixel.

• If spatial, or transition, keying (fade, tile, wipe) is set, the keyer assesses the (x,y)
coordinates for each pixel.

The keyer determines the alpha value (opacity) of a pixel and sets a value for it ranging
from 0 (completely transparent) to 1 (completely opaque). This alpha value can be used
downstream for further layering operations. The program simpleblend.c illustrates this
procedure; it is included in the software and described at the end of this chapter.

The control VL_MGV_BLEND_H_FILT is a horizontal smoothing filter that, if set to
TRUE, filters pixel information before the alpha extraction. It smooths the alpha output
of the key generator, softening the edges of the image.

Figure 7-10 shows the relationships between value, range, and detail (transition) for a
single channel (for example, A).

Figure 7-10 Value, Range, and Transition (Keyer Detail) for a Channel

Value

Range

Detail Detail

Range

VL Blending Examples

123

VL Blending Examples

This section explains two example programs from /usr/share/src/dmedia/video/vl:

• simpleblend.c

• simplewipe.c

Because the programs are lengthy, they are not duplicated here. Look at the source code
in a separate window, or print them out to look at while you read their descriptions.

Caution: To simplify the code, these examples do not check returns. However, you
should always check returns.

Blending Video and Graphics

simpleblend.c blends video with graphics and outputs it to both a graphics window and
video out. The program

• constrains the window’s aspect ratio

• checks that the device the user requested is in the device list

• sets up a path between the source (screen) and the drain (video)

• adds video source and a screen drain nodes to create the blend

• sets the keyer mode, keyer source, and blend controls

• displays the drain window and sets the video to appear in it

• specifies appropriate event handling

• starts data transfer

• specifies that video is updated if the user changes the size of the window

124

Chapter 7: Blending, Keying, and Transitions

Creating a Simple Wipe Effect

Like simpleblend.c, simplewipe.c blends video with graphics and outputs it to a graphics
window and video out. When the user presses the w key, it executes a wipe.

Specifically, in addition to doing everything that simpleblend.c does, simplewipe.c

• sets up blend parameters (VL_WIPE_TYPE, VL_WIPE_ANGLE or
VL_WIPE_DIRECTION, VL_WIPE_CENT, VL_WIPE_REPT)

• calls a loop that sets the keyer mode to spatial and sets the position in the loop;
doswitchloop() and dowipe() execute the loop

• checks for the w key and calls dowipe(), which in turn calls doswitchloop()

125

Chapter 8

8. Using Color-Space Conversion

A color space is a color component encoding format, for example, RGB and YUV. Because
various types of video equipment use different formats, conversion is sometimes
required. The Video Library for the OCTANE Digital Video option has a particular node,
VL_CSC, to handle color-space conversion.

The OCTANE Digital Video color-space converter (CSC) node controls the color-space
converter hardware. The CSC hardware can perform many types of image-processing
operations on a video path. This node allows VL control over the conversion process.

The OCTANE Digital Video CSC feature can be used in two ways: for standard
conversions between YUV and RGB; or for image processing, for example,
posterization1, solarization2, or color correction. VL for the OCTANE Digital Video
option includes controls for these types of conversions.

This chapter explains

• “Features of the Color-Space Conversion Node”

• “Performing Standard Color-Space Conversions”

• “Using the Color-Space Converter for Image Processing”

• “Examples”

Note: For background information on color-space conversion, see Appendix C,
“OCTANE Digital Video Color-Space Conversions,” later in this guide.

1 Quantizing the distortion of color difference signals to obtain special effects, here limiting the number
of possible colors in the picture, thus giving the effect of a poster painted with a limited number of
colors.

2 A form of contrast enhancement: when transfer functions become so distorted that the slope reverses,
the result is “luminance reversal,” where black and white are effectively interchanged.

126

Chapter 8: Using Color-Space Conversion

Features of the Color-Space Conversion Node

Table 8-1 lists the video formats supported for color-space conversion.

Figure 8-1 is a software model of a color-space converter.

Figure 8-1 Color-Space Conversion Software Model

Table 8-1 Supported Video Output Formats

Format Description

YUV 4:2:2 (CCIR 601)) Single-link YUV

YUVA 4:2:2:4 (CCIR 601) Dual-link YUV with alpha

YUVA 4:4:4:4 (CCIR 601) Dual-link YUV with alpha and all chroma samples

RGBA RP-175 Dual-link RGBA, 8-bit [16-235] or 10-bit [64-940]

RGBA (0-255) Dual-link RGBA [0-255] (8 bits, full-scale)

RGBA (0-1023) RGBA full-scale and 10 bits to or from memory only

Pixel
Port

Alpha
Port

G/Y
LUT

B/U
LUT

R/V
LUT

9x9 Matrix
Multiplier

G/Y
LUT

B/U
LUT

R/V
LUT

Pixel
Port

Alpha
Port

Input,
4:2:2->4:4:4 Output,

4:2:2->4:4:4

Alpha
LUT

Features of the Color-Space Conversion Node

127

The high-level processing blocks comprising a color-space converter in Figure 8-1
include

• an input block taking in pixel/alpha, or dual-linked, input and producing
component streams; 4:2:2 -> 4:4:4 upsampling is performed for 4:2:2 / 4:2:2:4 inputs

• input lookup tables for each component stream

• a 3 x 3 matrix multiplier

• an output lookup table for each coefficient stream

• an output block producing pixel/alpha, or dual-linked, streams; 4:4:4 to 4:2:2
downsampling is performed for 4:2:2 / 4:2:2:4 output packings

These processing blocks allow the standard RGB-to-YUV and YUV-to-RGB color-space
conversions to be implemented, as well as other forms of image processing such as color
correction or posterization.

By default, the Video Library’s color-space converter node loads standard conversion
values for the lookup tables and matrix multiplier, depending on the source and target
color spaces. The application can use the node’s controls to override these values and
achieve nonstandard conversions.

Figure 8-2 shows a more detailed model of OCTANE Digital Video’s color-space
converter, including delay blocks synchronizing the component paths. This model also
shows elements unique to OCTANE Digital Video, such as the constant-hue processing
block.

128

Chapter 8: Using Color-Space Conversion

Figure 8-2 Color-Space Conversion Input to Output Paths: YUV to G’B’R’

Performing Standard Color-Space Conversions

The VL_CSC node converts incoming video from one packing to another, where packing
describes color space, component encoding, and bits per component, as shown in
Table 8-1. The node operates on full-range or limited-range data.

The kind of the color-space conversion node is VL_CSC; its type is VL_INTERNAL; its
number is VL_MGV_NODE_NUMBER_CSC.

The normal usage of the color-space node is to convert from RGB to YUV/YCrCb or from
YUV/YCrCb to RGB color spaces. These conversions are specified by setting the input
and output packing of the color-space converter using the
VL_MGV_CSC_INPUT_PACKING and VL_MGV_CSC_OUTPUT_PACKING controls,
respectively, and by specifying the input and output ranges using the
VL_MGV_CSC_INPUT_RANGE and VL_MGV_CSC_OUTPUT_RANGE. All other
controls on the color-space converter node, such as the input, output, and alpha LUTs
and matrix coefficients, default to values supporting the specified conversion.

x

x

x
Input

10

D1

10

DELAY1

D/I filter

DELAY2

LUT

G

B

R

x

x

x

x

x

x

G

B

R

Y

U

V

Matrix multiplier

Constant

α or 1/2k
α or 1/2k

YUV
input
4:2:2

to 4:4:4

RGB to YUV
YUV to RGB

Converts RGB input to [0-1023]
Converts YUV input to [0-1023]; for U+V, converts to 2’s complement

1/2κ

M
ux

DELAY3

D/I filter
YUV

output
4:4:4

to 4:2:2

LUT

Output

10

10

RGB output: scale conversion, offset added
YUV output: level shifting, scale data (U+V, converts to unsigned)

G/Y

B/U

R/V

G/Y

B/U

R/V

Hue
Process

LUT

Performing Standard Color-Space Conversions

129

This section explains

• color-space conversion packings

• color-space conversion ranges

• constant hue

• ports

• full-range and limited-range video

• specifying standard color-space conversion node controls

Color-Space Conversion Packings

The controls that set color-space packing are VL_MGV_CSC_IN_PACKING and
VL_MGV_CSC_OUT_PACKING. Table 8-2 summarizes the packing types to use with
the color-space converter and their meanings in terms of color space, component
ordering, and component size.

Table 8-2 Supported Packing Types for Color-Space Conversion

Packing Color-Space Components Component Size

VL_PACKING_YVYU_422_8 YUV 4:2:2 Pixel size 24: 8 bits for each

VL_PACKING_YVYU_422_10 YUV 4:2:2 10 bits for each

VL_PACKING_YUVA_4444_8 YUV 4:4:4:4 Pixel size 24: 8 for each

VL_PACKING_YUVA_4444_10 YUV 4:4:4:4 10 bits for each

VL_PACKING_AUYV_4444_8 YUV 4:4:4:4 8 bits for each

VL_PACKING_AUYV_4444_10 YUV 4:4:4:4 10 bits for each

VL_PACKING_A_2_UYV_10 YUV 4:4:4:4 Pixel size 32: 10 bits each for UYV
and 2 for A

VL_PACKING_AYU_AYV_10 YUV 4:2:2:4 10 bits each for Y, U, V, and A

VL_PACKING_RGBA_8 RGB 4:4:4:4 8 bits for each

VL_PACKING_RGBA_10 RGB 4:4:4:4 10 bits for each

VL_PACKING_ABGR_8 RGB 4:4:4:4 8 bits for each

130

Chapter 8: Using Color-Space Conversion

Note: Although the OCTANE Digital Video option supports the packing formats
VL_PACKING_RGB_332_P, VL_PACKING_Y_8_P, and VL_PACKING_RGB_8, the
color-space conversion feature does not.

Besides color space, component encoding, and bits per component, a packing also
denotes component order, as stored in memory, which is ignored by the color-space
converter node.

Eight-bit video supplied through the video inputs or memory nodes is automatically
left-shifted to 10 bits, with bits 0 and 1 set to zero. Consequently, at the color-space
converter’s input and output, all data is 10-bit, and the 8- and 10-bit packings listed in
Table 8-2 are functionally equivalent.

Setting VL_MGV_CSC_IN_PACKING or VL_MGV_CSC_OUT_PACKING loads the
input, output, and alpha LUTs and matrix multiplier coefficients with values that reflect
the conversion specified by this control and by the range controls.

Color-Space Conversion Ranges

The Video Library formats denote the range of pixel components. Note that formats also
convey color-space information; this information is not used by the color-space converter
node, although it is highly recommended that the packing and format color spaces
specified on the input or output agree.

VL_PACKING_BGR_8_P RGB 4:4:4 Pixel size 24: 8 bits for each in
OpenGL format

VL_PACKING_ABGR_10 RGB 4:4:4:4 Pixel size 32: 10 bits each for BGR,
2 for A

VL_PACKING_A_2_BGR_10 RGB 4:4:4:4 Pixel size 32: 10 each for BGR, 2 for
A

Table 8-2 (continued) Supported Packing Types for Color-Space Conversion

Packing Color-Space Components Component Size

Performing Standard Color-Space Conversions

131

The controls that set the input and output ranges of the color-space converter are
VL_MGV_CSC_IN_RANGE and VL_MGV_CSC_OUT_RANGE. Table 8-3 summarizes
the ranges supported by the color-space converter node.

When a range control is set, input, output, and alpha LUTs and matrix multiplier
coefficients are loaded with values that reflect the conversion specified by the
input/output packing and range.

Note: If output packing is VL_PACKING_YVYU_422_8 or
VL_PACKING_YVYU_422_10, output range is VL_FORMAT_SMPTE_YUV (full-range
YUV), and the converted output is to be saved in memory, you must use VGI1 1, that is,
memory drain node 1 (1 or VL_MGV_NODE_NUMBER_MEM_VGI1_2).

Table 8-3 Supported Ranges

Format Range

VL_FORMAT_DIGITAL_COMPONENT_SERIAL CCIR-Range YCrCb

8-bit: 16-235 (Y), 16-240 (Cr, Cb)

10-bit 64-940 (Y), 64-960 (Cr, Cb)

VL_FORMAT_DIGITAL_COMPONENT_SERIAL_RGB RP-175-Range RGB

8-bit: 16-235 (R, G, B)

10-bit: 64-940 (R, G, B)

VL_FORMAT_SMPTE_YUV Full-Range YUV

8-bit: 0-255 (Y, U, V)

10-bit 0-1023 (Y, U, V)

VL_FORMAT_RGB Full-Range RGB

8-bit 0-255 (R, G, B)

10-bit 0-1023 (R, G, B)

132

Chapter 8: Using Color-Space Conversion

Constant Hue

In addition to the standard color-space conversion model, the OCTANE Digital Video
color-space feature provides a constant-hue algorithm. This algorithm allows illegal YUV
values to survive a YUV-to-RGB-to-YUV conversion. In normal conversion, YUV values
that cannot be represented in the RGB color space are clamped or otherwise forced into
the legal RGB range. Because the YUV (YCrCb) color space is a superset of the RGB color
space, illegal RGB values can be generated when YUV is converted to RGB. If the
constant-hue block is disabled, then the illegal RGB values are clipped by the output
LUT. The lost (clipped) information can result in significantly degraded quality when the
image is subsequently transformed back to YUV for video output.

The constant-hue algorithm saves the normally lost information in a correction factor
that can be stored in the alpha channel. To restore the original YUV image, this correction
factor must be saved with the pixel data.

If the constant-hue algorithm is enabled, the illegal RGB values are converted into legal
R’G’B’ values. A constant-hue factor, used to restore R’G’B’ to the original YUV values,
can optionally be stored in the alpha channel. If the constant-hue factor is not saved, then
the R’G’B’ image appears as if it were range-compressed. The
VL_MGV_CSC_ALPHA_CORRECTION control determines whether the alpha channel
is replaced by the constant-hue factors, or if the alpha from the color-space converter’s
input is retained.

Note that because the correction factor computed by the algorithm is directly related to
the pixel value, the correction factor is invalidated if the pixel value is recalculated (for
example, during compositing).

The controls for constant hue are

• VL_MGV_CSC_CONST_HUE: boolean control to enable (TRUE) or disable
(FALSE) the constant-hue algorithm

• VL_MGV_CSC_ALPHA_CORRECTION: boolean control to select the contents of
the alpha channel

If this value is set to TRUE, the constant-hue factor is saved in the alpha channel. If
it is set to FALSE, the alpha value from the input is retained.

Performing Standard Color-Space Conversions

133

Note: VL_MGV_CSC_ALPHA_CORRECTION has no effect if
VL_MGV_CSC_CONST_HUE is disabled. When both VL_MGV_CSC_CONST_HUE
and VL_MGV_CSC_ALPHA_CORRECTION are enabled, it is not advisable to load the
alpha LUT.

By default, the constant-hue processing block is enabled, but the constant-hue factor is
not stored in the alpha channel (the input alpha is retained).

If the constant-hue factor is not stored in the alpha channel, you might need to
range-limit or expand the input alpha value. For example, when full-range RGBA is
converted to YCrCbA, the range is limited from [0-255] to CCIRs [16-235]. The range is
altered using the output alpha LUT. The default contents of this LUT are determined by
the input and output ranges.

VL_CSC Ports

Table 8-4 lists the ports for the color-space conversion node.

Table 8-4 Color-Space Conversion Node Ports

Port Use

VL_IMPACT_PORT_PIXEL_DRN_A Pixel input 4:2:2:4

VL_IMPACT_PORT_ALPHA_DRN_A Alpha input 4:2:2:4

VL_IMPACT_PORT_DUALLINK_DRN_A Dual link input 4:4:4:4

VL_IMPACT_PORT_PIXEL_SRC_A Pixel output 4:2:2:4

VL_IMPACT_PORT_ALPHA_SRC_A Alpha output 4:2:2:4

VL_IMPACT_PORT_DUALLINK_SRC_A Dual link input 4:4:4:4

134

Chapter 8: Using Color-Space Conversion

The color-space converter node has both single- and dual-linked input and output ports.
Only one of these should be used at a time.

• Use the dual-linked ports if the video stream is coming from a dual-linked video or
memory node. In almost all cases, the dual-linked stream contains RGBA, YUV
4:4:4:4, or YUV 4:2:2:4 samples. For RGBA, the components are split across the two
links according to the RP-175 specification: link 1 (pixels) contains RGB 4:2:2, while
link 2 (alpha) contains AGB 4:2:2.

Note: Use dual-linked connections for RGB or YUV 4:4:4:4 input or output. Because
the chrominance samples span both input/output ports, any mistiming between two
single-linked connections results in corrupted video.

• Use the single-linked port if the pixel and alpha are coming from two single-linked
ports. The single-linked nodes allow pixel values to be specified independently of
alpha values for YUV input or output. For example, to convert a YCrCb 4:2:2 stream
to RGB, connect only the pixel input port; the alpha input port contains black.

Note: Exercise caution when both the alpha and pixel ports are connected to
different sources; these sources must be perfectly timed or the output pixels can have
mismatched alpha.

The software model in Figure 8-1 shows the pixel and alpha ports on the input and
output blocks.

Full-Range and Limited-Range Video

The color-space conversion node operates on full-range or limited-range data. Range is
specified by a VL format.

Standard D1 VIdeo Range

The standard D1 video range is as follows:

• RGB (three primaries): Y (the luminance signal) and A (the auxiliary channel) each
contain the ranges 16-235 for 8-bit data and 64-940 for 10-bit data.

• The U (Cb) and V (Cr) signals contain the ranges 16-240 for 8-bit data and 64-960 for
10-bit data.

Performing Standard Color-Space Conversions

135

Standard RGBA Full Range

The standard full range is 0-255 for 8-bit data and 0-1023 for 10-bit data.

For full-range component values, the resulting video stream might contain false
EAV/SAV codes. The VGI1 memory nodes (memory nodes 0, 1, and 2) and the
color-space converter can ignore these codes, but the rest of the device cannot.
Consequently, full-range YUV or RGB data should be exchanged between the VGI1 and
color-space converter only. RP-175-range RGB or CCIR-range YUV video can be
exchanged among all OCTANE Digital Video nodes.

Specifying Standard Color-Space Conversion Node Controls

Table 8-5 summarizes controls for standard color-space conversion.

For all these controls the access is GS:

• G: the value can be retrieved through vlGetControl()

• S: the value can be set through vlSetControl() while the path is not transferring

When any of these controls are set, the LUTs and matrix coefficients are loaded with
values reflecting the input packing/output packing, range conversion, and constant hue,
if it is set. Applications can optionally load custom LUTs or coefficients after setting the
input and output packing and range.

Table 8-5 Controls for Standard Color-Space Conversion

Control Use Default Type

VL_MGV_CSC_IN_PACKING,
VL_MGV_CSC_OUT_PACKING

Sets the packing for the color-space converter
node’s input or output, respectively

VL_PACKING_YVYU
_422_10

intVal

VL_MGV_CSC_IN_RANGE,
VL_MGV_CSC_OUT_RANGE

Sets the input range (RP-175, CCIR, or full)
associated with the input or output video,
respectively

VL_FORMAT_DIGITAL
_COMPONENT_SERIAL

intVal

 VL_MGV_CSC_CONST_HUE Enables or disables constant-hue algorithm TRUE boolVal

VL_MGV_CSC_ALPHA
_CORRECTION

When VL_MGV_CSC_CONST_HUE is enabled,
this control saves the constant hue correction
factor (TRUE) or retains alpha input data
(FALSE)

FALSE boolVal

136

Chapter 8: Using Color-Space Conversion

Using the Color-Space Converter for Image Processing

This section describes the color-space converter in more detail for application developers
who wish to use it as an image processing device capable of posterization, solarization,
or color correction, or for nonstandard conversions. These applications specify custom
values for the lookup tables and matrix coefficients, and require more effort than
standard conversions.

Note: See also Appendix C, “OCTANE Digital Video Color-Space Conversions,” and
“VL_CSC” in Appendix B for information on the CSC controls.

In addition to standard conversions, the color-space converter can be loaded with
user-defined input lookup tables, matrix multiplier coefficients and output lookup
tables. Applications can manipulate the tables and coefficients to perform color
correction, colorization, or other image-processing functions. See Appendix C for a
description of the color-space converter model and the relationships between the various
internal processing blocks.

Using Custom LUTs and Matrix Multiplier Coefficients

User-defined software-loadable lookup tables support operations such as gamma
correction. The input and alpha lookup tables each contain 1024 entries of 12-bit values.
For each of these tables, up to four lookup tables can be loaded simultaneously. An
application can use the LUT selection controls to select which of the tables is active.

The output lookup tables each contain 4096 entries of 10-bit values. Only one table can
be loaded for each of the VR, GY, and UB output LUTs. The matrix multiplier operates
with 23-bit internal precision.

Color-space conversion is supported in the active video region only; the vertical and
horizontal blanking areas are replaced with black (in the appropriate target color space).
Consequently, ancillary data, such as telextext, embedded audio, and embedded
timecode, is lost.

Note: Use the standard controls VL_MGV_CSC_IN_PACKING,
VL_MGV_CSC_OUT_PACKING, VL_MGV_CSC_IN_RANGE, and
VL_MGV_CSC_OUT_RANGE for image processing, even if the input and output
packings/ranges are identical. Even if the application subsequently changes all of the

Using the Color-Space Converter for Image Processing

137

lookup tables and coefficients, it should still set the input and output packing to reflect
the color space and component encoding. The packing control enables or disables parts
of the color-space converter, such as the 4:2:2 to or from 4:4:4 filters.

Standard conversion controls take precedence over those for image processing. For
example, if the input or output packing control is set, lookup tables and coefficient values
are recalculated to effect the conversion implied by the input/output packing and range.

Using Image-Processing Controls

Table 8-6 summarizes image-processing controls. Access for all these controls is GST:

• G: The value can be retrieved through vlGetControl().

• S: The value can be set through vlSetControl() while the path is not transferring.

• T: The value can be set through vlSetControl() while the path is transferring.

Table 8-6 Image-Processing Controls

Control Use Default Type

VL_MGV_CSC_COEF Specifies the matrix
multiplier coefficients

Multiplier operates
in pass-through
mode

extendedVal;
data type MGV_CSC_COEF

VL_MGV_CSC_LUT_IN_PAGE
VL_MGV_CSC_LUT_ALPHA_PAGE

Selects the active LUT 0 intVal

VL_MGV_CSC_LUT_IN_YG
VL_MGV_CSC_LUT_IN_UB
VL_MGV_CSC_LUT_IN_VR
VL_MGV_CSC_LUT_ALPHA

Specifies the contents
of the input or alpha
lookup tables

Pass-through
(1:1 mapping)

extendedVal;
data type MGV_CSC_LUT_INPUT
_AND_ALPHA

VL_MGV_CSC_LUT_OUT_YG
VL_MGV_CSC_LUT_OUT_UB
VL_MGV_CSC_LUT_OUT_VR

Specifies the contents
of the output lookup
tables

Pass-through
(1:1 mapping)

extendedVal
data type MGV_CSC_LUT_OUTPUT

138

Chapter 8: Using Color-Space Conversion

Using Coefficients

The control VL_MGV_CSC_COEFF specifies the matrix multiplier coefficients. It has a data
pointer pointing to an array of nine integers. The coefficients are stored in the following
order:

• data[0] = Y/G 1 data[1] = Y/G 2 data[2] = Y/G 3

• data[3] = U/B 1 data[4] = U/B 2 data[5] = U/B 3

• data[6] = V/R 1 data[7] = V/R 2 data[8] = V/R 3

Each coefficient is a 32-bit fractional two’s complement value. The magnitude of each
coefficient is from -4 to 3.999. Table 8-7 shows values.

Table 8-7 Coefficient Formats

Bit Value

31 -22(signed bit)

30 21

29 20

28 2-1

27 2-2

26 2-3

25 2-4

24 2-5

23 2-6

... ...

4 2-25

3 2-26

2 2-27

1 2-28

0 2-29

Using the Color-Space Converter for Image Processing

139

For OCTANE Digital Video color-space conversion, the valid range for data[0], data[4],
and data[8] is from -4 to 3.999; for the other six coefficients, the valid range is from -2 to
1.999. The 31th and 30th bits of the other six coefficients must be either all 0’s or all 1’s for
the range from -2 to 1.999; otherwise they are clamped to the valid range.

Selecting the Active LUT

The OCTANE DIgital Video color-space converter node can store up to four input LUTs
(each with YG, UB, and VR), and four alpha LUTs. Use the control
VL_MGV_CSC_LUT_IN_PAGE or VL_MGV_CSC_LUT_ALPHA_PAGE in the
application to select which of the four LUTs is active.

Using Input and Alpha LUTs

The controls for specifying the contents of the input or alpha lookup tables are
VL_MGV_CSC_LUT_IN_YG, VL_MGV_CSC_LUT_IN_UB, VL_MGV_CSC_LUT_IN_VR, and
VL_MGV_CSC_LUT_ALPHA.

The data pointer of the extended value points to a VL_MGVInAlphaLutValue structure,
as defined in dev_mgv.h. This structure contains the page number for the LUT being
specified and a lookup table of 1024 integer entries (see VL_MGV_CSC_LUT_IN_PAGE
and VL_MGV_CSC_LUT_ALPHA_PAGE) for selecting the LUT active during
color-space conversion). The range for each entry in the lookup table is 0-1023 (10 bits).

Using Output LUTs

The controls for specifying output LUTs are VL_MGV_CSC_LUT_OUT_YG,
VL_MGV_CSC_LUT_OUT_UB, and VL_MGV_CSC_LUT_OUT_VR.

The data pointer of the extended value points to a VL_MGVOutLutValue structure, as
defined in dev_mgv.h. This structure contains a lookup table of 4096 integer entries. The
OCTANE Digital Video color-space converter can store only one output LUT for each of
the YG/UB/VR paths. The range for each entry in the lookup table is 0-1023 (10 bits).

140

Chapter 8: Using Color-Space Conversion

Examples

This section includes two color-space conversion examples.

Example 8-1 Setting CSC Controls for Standard Color-Space Conversion

/*
 * The following example is to demostrate how to set CSC controls to perform
 * standard color space conversion. Video input in CCIR 10-bit YUV 422 packing
 * is converted to full-range 10-bit ABGR packing which will be saved in
 * memory. Controls for constant hue and alpha correction are enabled.
 *
 * Video input is source, memory (VGI1) is drain, and CSC is a internal node
 * in a video to memory path. Because this is a CSC example, codes other
 * than CSC are replaced by comments in this examples.
 */

#include <errno.h>
#include <stdio.h>
#include <dmedia/vl.h>
#include <dmedia/vl_mgv.h>

void main(void)
{
 VLTransferDescriptor xferDesc;
 VLControlValue val;
 VLServer svr;
 VLPath path;
 VLNode src, drn;
 VLNode csc_node;

 /* We connect to daemon and set up nodes for source and drain */

 /* Create CSC internal node */
 csc_node = vlGetNode(svr, VL_INTERNAL, VL_CSC, VL_MGV_NODE_NUMBER_CSC);

Examples

141

 /*
 * We create a video to memory path with the source and drain
 * created above.
 */

 /* Add the CSC internal node to the path */
 if (vlAddNode(svr, path, csc_node)) {
 vlPerror(“Add CSC Device Node”);
 vlDestroyPath(svr, path);
 }

 /* Set CSC input range to CCIR */
 val.intVal = VL_FORMAT_DIGITAL_COMPONENT_SERIAL;
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_IN_RANGE, &val) < 0)
 vlPerror(“SetControl of CSC input range failed”);

 /* Set CSC input packing to 10-bit YUV 422 */
 val.intVal = VL_PACKING_YVYU_422_10;
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_IN_PACKING, &val) < 0)
 vlPerror(“SetControl of CSC input packing failed”);

 /* Set CSC output range to full range */
 val.intVal = VL_FORMAT_RGB;
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_OUT_RANGE, &val) < 0)
 vlPerror(“SetControl of CSC output range failed”);

 /* Set CSC output packing to 10-bit ABGR */
 val.intVal = VL_PACKING_ABGR_10;
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_OUT_PACKING, &val) < 0)
 vlPerror(“SetControl of CSC output packing failed”);

 /* Enable CSC constant hue algorithm, default is TRUE */
 val.boolVal = TRUE;
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_CONST_HUE, &val) < 0)
 vlPerror(“SetControl of CSC constant hue failed\n”);

142

Chapter 8: Using Color-Space Conversion

 /* Enable alpha correction in the alpha channel, default is FALSE */
 val.boolVal = TRUE;
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_ALPHA_CORRECTION, &val)
 < 0)
 vlPerror(“SetControl of CSC alpha correction failed\n”);

 /* We set VGI1’s controls below */

 /* VGI1’s VL_FORMAT should be same as CSC’s output range */
 val.intVal = VL_FORMAT_RGB;
 if (vlSetControl(svr, path, drn, VL_FORMAT, &val) < 0)
 vlPerror(“SetControl of memory format failed”);

 /* VGI1’s VL_PACKING should be same as CSC’s output packing */
 val.intVal = VL_PACKING_ABGR_10;
 if (vlSetControl(svr, path, drn, VL_PACKING, &val) < 0)
 vlPerror(“SetControl of memory packing failed”);

 /* Begin the data transfer */
 if (vlBeginTransfer(svr, path, 1, &xferDesc)) {
 vlPerror(“vlBeginTransfer failed”);
 }

 /* Loop until all requested frames are grabbed */
 vlMainLoop();

}

Examples

143

Example 8-2 uses the color-space converter node to perform image processing.

Example 8-2 Loading Matrix Coefficients and LUTs

/*
 * The following example is to demostrate how to load matrix coefficients,
 * input luts, output luts and alpha lut. Codes other than loading are
 * replaced by comments in this examples.
 */

#include <errno.h>
#include <stdio.h>
#include <dmedia/vl.h>
#include <dmedia/vl_mgv.h>

void main(void)
{
 VLTransferDescriptor xferDesc;
 VLControlValue val;
 VLServer svr;
 VLPath path;
 VLNode src, drn;
 int i;

 int coef_table[9] =
 {0, 10, 20, 30, 40, 50, 60, 70, 80};

 /* We connect to daemon and set up nodes for source and drain */

 /* Create CSC internal node */
 csc_node = vlGetNode(svr, VL_INTERNAL, VL_CSC, VL_MGV_NODE_NUMBER_CSC);

 /*
 * We create a video to memory path with the source and drain
 * created above.
 */

 /* Add the CSC internal node to the path */
 if (vlAddNode(svr, path, csc_node)) {
 vlPerror(“Add CSC Device Node”);
 vlDestroyPath(svr, path);
 }

 /* Load 9 coefficients */
 extVal.dataPointer = coef_table;
 extVal.dataSize = sizeof (coef_table);
 extVal.dataType = MGV_CSC_COEF;

 val.extVal = extVal;

 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_COEF, &val) < 0) {
 vlPerror(“SetControl of CSC coefficients failed”);
 }

 /* Generate one page of lut */
 for (i = 0; i < 1024; i++)
 inlutVal.lut[i] = 1000;

 /* Assign one page of lut we generated to be in 1st page of
 input luts and alpha lut. */
 inlutVal.pageNumber = 0;

 extVal.dataType = MGV_CSC_LUT_INPUT_AND_ALPHA;
 extVal.dataSize = sizeof(VL_MGVInAlphaLutValue);
 extVal.dataPointer = &inlutVal;

 val.extVal = extVal;

 /* Load the page to input Y/G lut */
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_LUT_IN_YG, &val) < 0) {
 vlPerror(“SetControl of CSC YG input lut failed\n”);
 }

 /* Load the page to input U/B lut */
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_LUT_IN_UB, &val) < 0) {
 vlPerror(“SetControl of CSC UB input lut failed\n”);
 }

 /* Load the page to input V/R lut */
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_LUT_IN_VR, &val) < 0) {
 vlPerror(“SetControl of CSC VR input lut failed\n”);
 }

 /* Load the page to alpha lut */
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_LUT_ALPHA, &val) < 0) {
 vlPerror(“SetControl of CSC ALPHA lut failed\n”);
 }

Examples

145

 /* Select the 1st page of input and alpha luts to be active during
 normal mode, so they will be used for normal operation. */
 val.intVal = 0;
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_LUT_IN_PAGE, &val) < 0)
 vlPerror(“SetControl of CSC input lut page failed\n”);

 val.intVal = 0;
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_LUT_ALPHA_PAGE, &val)
 < 0)
 vlPerror(“SetControl of CSC alphalut page failed\n”);

 /* Generate 4 pages of lut */
 for (i = 0; i < 4096; i++)
 outlutVal.lut[i] = 1000;

 extVal.dataType = MGV_CSC_LUT_OUTPUT;
 extVal.dataSize = sizeof(VL_MGVOutLutValue);
 extVal.dataPointer = &outlutVal;

 val.extVal = extVal;

 /* Load all 4 pages to output Y/G lut */
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_LUT_OUT_YG, &val)
 < 0) {
 vlPerror(“SetControl of CSC YG output lut failed\n”);
 }

 /* Load all 4 pages to output U/B lut */
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_LUT_OUT_UB, &val)
 < 0) {
 vlPerror(“SetControl of CSC YG output lut failed\n”);
 }

 /* Load all 4 pages to output V/R lut */
 if (vlSetControl(svr, path, csc_node, VL_MGV_CSC_LUT_OUT_VR, &val)
 < 0) {
 vlPerror(“SetControl of CSC YG output lut failed\n”);
 }

 /* Here we set VGI1 controls, begin transfer and Loop until all
 requested frames are grabbed */

}

147

Chapter 9

9. Using Video Texture Mapping

The Video Library for the OCTANE Digital Video option contains a texture node for
capturing video streams into the texture memory on OCTANE graphics. Once captured,
a video field can be used as a texture just as if it were an image loaded into texture
memory through function calls to the OpenGL graphics library. 1

The texture map interface hardware has two inputs, link A and link B.

• For single-link transfers, you can specify which input to send to TRAM.

• For dual-link transfers, the RGB data is extracted from link A, and the alpha data is
extracted from link B.

The texture-map interface hardware also has a scaler chip for extracting a rectangular
subregion of the input video field and shrinking it either horizontally or vertically before
it is transferred to TRAM.

Finally, the texture-map interface hardware also contains a real-time mipmap generator,
which can create and transfer the levels of detail necessary to display the video field in
mipmap mode on the graphics subsystem (see the OpenGL Programming Guide for a
discussion of mipmapping).

Double-buffered video texture applications require 4 MB of TRAM, which is available
with OCTANE graphics.

Figure 9-1 diagrams the hardware configuration that supports the texture node.

1 For a more detailed explanation of the OpenGL routines mentioned in this chapter, see the OpenGL
Programming Guide.

148

Chapter 9: Using Video Texture Mapping

Figure 9-1 Video Texture-Mapping Hardware Configuration Block Diagram

This chapter covers the following topics:

• “Performing Video Texture Mapping”

• “Controls for Video Texture Mapping”

• “OpenGL Functions for Video Texture Mapping”

• “Example Program: vidtotex.c”

Performing Video Texture Mapping

Initially, you use VL calls to create a path between a source node and the texture drain
node. Typically, the source node is a video input node. The texture drain node supports
both single-link and dual-link transfers.

• For single-link transfers, use the VL_MGV_TEXTURE_INPUT_LINK control to
specify the input link that supplies the data sent to TRAM. In addition, you can use
the VL_MGV_TEXTURE_AUTOSWAP control to make the input link selection
toggle automatically after each capture into TRAM. This feature is useful for
applications that require two live video textures simultaneously.

• For dual-link transfers, an RGBA stream is sent to TRAM. In this mode, the RGB
data is extracted from link A and the alpha data is extracted from link B.

Mipmap
generator

Link A

Link B

Input
select Scaler

YUV
to

RGB

Field
buffer

Texture-map interface hardware

Texture RAM
(TRAM)

OCTANE graphics

Performing Video Texture Mapping

149

Once the path is set up, use the vlBeginTransfer() routine. At this point, data is being
transferred from the video source to the texture drain. However, to capture this data into
the TRAM on the OCTANE graphics board, you must explicitly tell OpenGL to do it;
otherwise the data is simply lost.

The OpenGL function glCopyTexSubImage2DEXT() captures into TRAM the data that
the VL is transferring. To specify to this function that a video transfer is occurring, the
GLX read drawable must be set to a video input stream. The function
glXCreateGLXVideoSource() creates a handle for a video input stream. This handle can
then be passed as the read-drawable parameter to the function
glXMakeCurrentReadSGI(). Once this handle is passed, each call to
glCopyTexSubImage2DEXT() begins a capture into TRAM of the data that is being sent
to the VL texture drain node. It is important to realize that this function begins a capture
into TRAM and then returns to the caller. Thus, the caller can continue executing while
the video field is being captured.

To use the simplest example, you create a loop that calls glCopyTexSubImage2DEXT(),
and then draw with the captured video field. To display completely drawn fields, use
double-buffered drawing. Even if the drawing routine is very fast, however, this
implementation can capture only every other video field that is being sent to the texture
node. Although the framebuffer used for drawing is double buffered, the texture buffer
itself is not. Any attempt to draw with the single-buffered texture causes the OpenGL
draw routine to wait for the video field to finish loading into TRAM. When this load
finishes, the drawing begins. However, the video field being sent to the texture node
while the drawing is occurring is not captured.

The solution to this problem is to double-buffer the TRAM loads. Then, while a video
field is being captured into one of the texture buffers, the other one can be used for
drawing. This overlapping of loading one video field into TRAM at the same time that
another one is being used for drawing enables you to do real-time video texturing. You
can use the OpenGL function glHint() to enable double-buffer texture loads on an
OCTANE graphics system that has enough TRAM to support it.

Note: Double-buffered video texture applications require 4 MB of TRAM, which you can
obtain by installing the Texture Upgrade to 4 MB of Texture Memory for OCTANE
graphics.

150

Chapter 9: Using Video Texture Mapping

Real-Time Mipmap Generation

If you want your application to use the texture node’s ability to do real-time mipmap
generation, several issues should be considered. Before a texture is created, the OpenGL
minifying filter must be set to a filter that enables mipmapping. You set it by calling the
OpenGL function glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
filter) and passing one of the following values for filter:

• GL_NEAREST_MIPMAP_NEAREST

• GL_LINEAR_MIPMAP_NEAREST

• GL_NEAREST_MIPMAP_LINEAR

• GL_LINEAR_MIPMAP_LINEAR

When a texture is created using the OpenGL function glTexImage2D(), ten
Level-Of-Details (LODs) must be defined (rather than just one for non-mipmap
applications). These LODs must be sized so that LOD 0 is 512 horizontally by 256
vertically, and each subsequent LOD (except LOD 9) is half the size, both horizontally
and vertically, of the preceding one. LOD 9 must be sized as 1 × 1.

Once the VL texture node control VL_MGV_TEXTURE_MIPMAP_MODE is set to
VL_MGV_TEXTURE_MIPMAP_ON, each subsequent call to the OpenGL function
glCopyTexSubImage2DEXT() generates all ten LODs for the current video field and
loads them into TRAM.

To scale the entire video input field in mipmap mode, the zoom and aspect controls must
be set correctly. Normally, you set the VL_ZOOM control to 1. For the
VL_MGV_HASPECT control, the numerator would be set to 512 and the denominator
set to the width of the active video field in pixels. For the VL_MGV_VASPECT control,
the numerator would be set to 256 and the denominator set to the larger of 256 and the
height of the active video field in lines.

Performing Video Texture Mapping

151

Timing Issues

For real-time video texturing on an OCTANE workstation with the OCTANE Digital
Video option, these two subsystems must be frame-locked. If they are not, you can still
perform video texturing, but real-time performance cannot be guaranteed.

To frame-lock the graphics and video hardware, use setmon. Before running a video
texture application, enter one of these commands:

• NTSC/525-line systems: /usr/gfx/setmon -Fe 1280x1024_59

• PAL/625-line systems: /usr/gfx/setmon -Fe 1280x1024_49

The texture map interface hardware on the OCTANE Digital Video board contains a field
buffer that introduces a one-field delay between the input source and the texture
memory on the graphics board. This one-field delay is hidden by the fact that whenever
you call the glCopyTexSubImage2DEXT() function to capture a video field, the actual
capture does not occur until the beginning of the next video field. This delay occurs
regardless of whether the call to glCopyTexSubImage2DEXT() occurs during the video
vertical blanking interval or during the active video interval.

For example, the /usr/share/src/dmedia/video/impact/vidtotex.c program is a simple
application of video texturing. It captures each video input field into TRAM, and draws
a flat polygon in an X window with it. In this example, the following actions occur:

1. The call to glCopyTexSubImage2DEXT() occurs when video field n is being sent
into the texture-map interface input select hardware (see Figure 9-1).

2. When the next video field, n + 1, is being sent to the texture map interface
hardware, field number n is being transferred out of the field buffer and captured
into TRAM on the graphics board, as diagrammed in Figure 9-2.

152

Chapter 9: Using Video Texture Mapping

Figure 9-2 Video Delay Through Texture-Map Interface Field Buffer

3. During the video field time for field n + 2, field n is being transferred out of TRAM
and into the graphics framebuffer, as diagrammed in Figure 9-3.

Figure 9-3 Video Delay Through Graphics TRAM

4. During the video field time for field n + 3, field n is displayed on the screen, as
diagrammed in Figure 9-4.

Figure 9-4 Video Delay Through Graphics Framebuffer

Thus, for this application, the call to glCopyTexSubImage2DEXT() results in the capture
of the video field that is entering the texture map interface input select hardware at the
time of the call. This field is displayed on the screen three video fields later.

Field buffer
Field n

Input select TRAM on
graphics board

Graphics
framebuffer

Screen
Field n + 1

Input select
Field buffer TRAM on

graphics board

Graphics
framebuffer

Field n + 2 Field nField n + 1
Screen

Input select
Field buffer

Field n + 3 Field n + 2 Field n
TRAM on

graphics board

Graphics
framebufferField n + 1

Screen

Controls for Video Texture Mapping

153

Controls for Video Texture Mapping

This section describes the controls available on the VL texture drain node. Changing
these controls is unrestricted; for example, they can be changed before or after
vlBeginTransfer() has been called. However, they must match those that are set up
through calls to OpenGL; otherwise, the call to glCopyTexSubImage2DEXT() returns an
error.

VL_CAP_TYPE

VL_CAP_TYPE specifies the type of field to capture even fields, odd fields, all fields, and
non-interleaved frames. Specifying even or odd fields causes each call to OpenGL to
initiate a capture to block until the correct field type is present.

If you specify the non-interleaved frame capture type, use the field dominance control
(see VL_MGV_DOMINANCE_FIELD, below) to determine the field of the frame to
capture first.

VL_OFFSET

VL_OFFSET specifies the upper left corner of a subregion of the active video region used
to generate the texture. The x value is the horizontal offset from the left-hand edge in
pixels, and the y value is the vertical offset from the top edge in lines. Along with
VL_SIZE, this control can be used to extract any subregion of the input video field.

VL_OFFSET operates on the unzoomed (undecimated) image; it does not change if the
zoom factor is changed.

154

Chapter 9: Using Video Texture Mapping

The minimum horizontal offset is 0. The minimum vertical offset depends on the video
standard:

• NTSC/525-line: -13

• PAL/625-line: -18 if VL_CAP_TYPE is VL_CAPTURE_ODD_FIELDS; otherwise -19

The maximum horizontal and vertical offsets are restricted: unzoomed size plus offset
must not extend past the end of the active video region. The horizontal offset must be an
even number.

VL_PACKING

VL_PACKING specifies the current packing format. For single-link transfers, this control
can be set to either VL_PACKING_RGB_8 or VL_PACKING_RGBA_8. For dual-link
transfers, this control is always set to VL_PACKING_RGBA_8.

VL_RATE

VL_RATE is a read-only control that specifies the number of textures per second to
capture into TRAM. Since each capture is initiated by a call to OpenGL, you should make
at least the same number of calls per second as is specified by this control.

The VLTransferComplete event is generated at the end of a capture into TRAM. The
VLSequenceLost event is generated each time a capture into TRAM is missed. However,
these events are reported only if they are enabled via the vlSelectEvents() routine.

Controls for Video Texture Mapping

155

VL_SIZE

VL_SIZE specifies the amount of the image to send to texture RAM; that is, how much
clipping takes place. The x value is interpreted as the subregion width in pixels, and the
y value is interpreted as the subregion height in lines.

This control operates on the decimated image. For example, when the image is
decimated to half size using VL_ZOOM, the limits of the VL_SIZE control change by a
factor of 2.

Along with the VL_OFFSET control, VL_SIZE can be used to extract any subregion of the
input video field. Controlling size is useful for cropping bad data at the edges of the
video region.

The minimum width is 4 pixels; the minimum height is 3 lines. The maximum width is
equal to the active line length multiplied by the product of the zoom and the horizontal
aspect values. The maximum height is equal to the total field height minus 4, multiplied
by the product of the zoom and the vertical aspect values. The width must be an even
number.

maxwidth = active_line_length x (zoom x horiz_aspect)

maxheight = (total_field_height - 4) x (zoom x vert_aspect)

VL_ZOOM

VL_ZOOM specifies the amount of scaling applied to the video subregion used as a
texture source. Because only decimation is allowed on the texture node, the zoom value
is always less than or equal to 1. For different zoom factors along the horizontal and
vertical axes, use VL_MGV_HASPECT and VL_MGV_VASPECT controls. The zoom
factor along each axis is equal to the product of the VL_ZOOM value and the aspect value
for that axis.

156

Chapter 9: Using Video Texture Mapping

Figure 9-5 Zoom, Size, and Offset for Video Texture Mapping

VL_ZOOM x VL_MGV_HASPECT (decimation horizontally)

VL_ZOOM x VL_MGV_VASPECT (decimation vertically)

VL_SIZE

VL_OFFSET

Video texture to TRAM

Video texture input

V
L_

O
F

F
S

E
T

Controls for Video Texture Mapping

157

VL_MGV_DOMINANCE_FIELD

VL_MGV_DOMINANCE_FIELD specifies the field dominance when VL_CAP_TYPE is
set to non-interleaved frames. In that case, VL_MGV_DOMINANCE_FIELD specifies
the field of the frame to be captured into TRAM first.

VL_MGV_HASPECT

VL_MGV_HASPECT specifies the scaling along the horizontal axis that is applied to the
video subregion used as a texture source. The overall scale factor horizontally is the
product of this value and the VL_ZOOM value. This control enables you to scale the
horizontal axis independently of the vertical axis, which is useful when mipmapping is
enabled.

To scale the entire video input field horizontally when mipmapping is on, set the zoom
to 1, and then set the numerator for VL_MGV_HASPECT to 512 and the denominator to
the width of the video field in pixels.

VL_MGV_VASPECT

VL_MGV_VASPECT specifies the scaling along the vertical axis that is applied to the
video subregion used as a texture source. The overall scale factor vertically is the product
of this value and the VL_ZOOM value. This control enables you to scale the vertical axis
independently of the horizontal axis, which is useful when mipmapping is enabled.

To scale the entire video input field vertically when mipmapping is on, set the zoom to
1, and then set the numerator for VL_MGV_VASPECT to 256 and the denominator to the
larger of 256 and the height of the video field in lines.

158

Chapter 9: Using Video Texture Mapping

VL_MGV_TEXTURE_ROUND_MODE

VL_MGV_TEXTURE_ROUND_MODE specifies the type of rounding used to convert
from 10-bit to 8-bit input. You can either round

• normally: VL_MGV_TEXTURE_ROUND_8BIT

• with a pseudonumber generator: VL_MGV_TEXTURE_ROUND_RNG

• with a pseudonumber generator that resets each field:
VL_MGV_TEXTURE_ROUND_RNGFRM

VL_MGV_TEXTURE_MIPMAP_MODE

The VL_MGV_TEXTURE_MIPMAP_MODE control turns mipmap mode off or on.
When mipmap mode is on, the texture node generates mipmaps sized as follows:

• 512 × 256

• 256 × 128

• 128 × 64

• 64 × 32

• 32 × 16

• 16 × 8

• 8 × 4

• 4 × 2

• 2 × 1

• 1 × 1

VL_MGV_TEXTURE_INPUT_LINK

VL_MGV_TEXTURE_INPUT_LINK specifies the input link, A or B, that sends pixel data
to TRAM. This control is available only in single-link mode.

OpenGL Functions for Video Texture Mapping

159

VL_MGV_TEXTURE_AUTOSWAP

VL_MGV_TEXTURE_AUTOSWAP turns autoswap mode off or on. When autoswap
mode is on, the input link toggles automatically after each capture into TRAM.

If VL_CAP_TYPE is set to non-interleaved frame, toggling occurs after frame captures.
VL_MGV_TEXTURE_AUTOSWAP is useful for applications that require two live video
textures simultaneously, and is available only in single-link mode.

OpenGL Functions for Video Texture Mapping

This section explains how to use OpenGL functions for video texture mapping. For
complete information on these functions, see the OpenGL Programming Guide.

• glGenTexturesEXT(GLsizei count, GLuint *texnames)

This function generates texture names, which are unsigned integers, and puts count
texture names in texnames. The generated texture names have no dimensionality,
but assume that of the texture target to which they are first bound (see
glBindTexureEXT(), below).

For applications that use more than one video texture at a time (for example,
double-buffering the TRAM loads), use this function to get the names of textures so
that they can later be passed to glBindTexturesEXT() in order to identify them.

• glBindTextureEXT(GLenum target, GLuint texname)

This function makes it possible to use named textures besides the usual OpenGL
texture targets. While a texture is bound, GL operations on the target to which it is
bound affect the bound texture. For video texturing applications, target should
always be GL_TEXTURE_2D.

• glHint(GLenum target, GLenum mode)

You can control TRAM double buffering with hints (like other aspects of OpenGL
behavior). To enable double buffering, call this function with target set to
GL_TEXTURE_MULTI_BUFFER_HINT_SGIX and mode set to GL_FASTEST. To
disable double buffering, use the same target, but set mode to GL_NICEST.

• glEnable(GLenum capability)

Use this function to enable texturing. Setting capability to GL_TEXTURE_2D enables
two-dimensional texturing.

160

Chapter 9: Using Video Texture Mapping

• glXCreateGLXVideoSourceSGIX(Display *dpy, int screen, VLServer svr, VLPath
path, int nodeClass, VLNode node)

This function creates a GLX handle for a video input stream that can be used as the
read parameter on a call to glXMakeCurrentReadSGI(). Thereafter, the GL
transfers video data into texture memory when glCopyTexSubImage2DEXT() is
called.

If any control that affects the transfer of video data is changed on the video transfer
path for which a particular GLX video source was created, destroy the GLX video
source and create a new one. Otherwise, the data read from the source will be
undefined. The configuration of a GLX video source is static, and is fixed when the
GLX video source is created.

• glXMakeCurrentReadSGI(Display *dpy, GLXDrawable draw, GLXDrawable read,
GLXContext gc)

This function attaches a GLX context to separate read and write drawables. The
handle returned by glXCreateGLXVideoSourceSGIX() can be passed as the read
parameter. Thereafter, the GL transfers video data into texture memory when
glCopyTexSubImage2DEXT() is called.

• glTexParameteri(GLenum target, GLenum pname, GLint param)

This function assigns the value in param to the texture parameter specified by pname
for the target given by target. To enable or disable mipmapping, set target to
GL_TEXTURE_2D and pname to GL_TEXTURE_MIN_FILTER. To turn mipmapping
off, set param to either GL_NEAREST or GL_LINEAR. To turn mipmapping on, set
param to one of the following: GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR. See the OpenGL Programming Guide for a
description of these parameters.

• glTexImage2D(GLenum target, GLint level, GLint components, GLsizei width, GLsizei
height, GLint border, GLenum format, GLenum type, const GLvoid *pixels)

This function defines a texture image. The arguments describe the parameters of the
texture image, such as height, width, level-of-detail number, and the internal
resolution and format used to store the image.

The height and width must be powers of two. When mipmapping is not used, only
level-of-detail number 0 need be defined; otherwise all ten LODs must be defined.
For video textures, pixels can be set to NULL, because the texture data itself is
loaded through calls to glCopyTexSubImage2DEXT().

Example Program: vidtotex.c

161

• glCopyTexSubImage2DEXT(GLenum target, GLint level, GLint xoffset, GLint yoffset,
GLint x, GLint y, GLsizei width, GLsizei height)

This function replaces a rectangular portion of a two-dimensional texture image
with pixels from the current GL_READ_BUFFER. The screen-aligned pixel
rectangle with lower left corner at (x,y) having width width and height height
replaces the portion of the texture array with x indices xoffset through xoffset + width
- 1, inclusive, and y indices yoffset through yoffset + height - 1, inclusive, at the
mipmap level specified by level.

However, for video texture loads, to load all 10 mipmap levels, enable mipmapping
using glTexParameteri() and call this function with level set to 0. For video textures,
this setting initiates a load into texture memory from the video port.

If any OpenGL texture parameters do not match the corresponding parameters set
up through the Video Library, no load occurs and the GL error flag (see
glGetError()), is set accordingly.

• glGetError()

This function returns the value of the error flag. Each detectable error is assigned a
numeric code and a symbolic constant. When an error occurs, the error flag is set to
the appropriate error code value. No other errors are recorded until glGetError() is
called, the error code is returned, and the flag is reset to GL_NO_ERROR.

For video texture loads, a mismatch between the OpenGL parameters and the Video
Library parameters generates an error that can be detected with this function.

Example Program: vidtotex.c

The example program /usr/share/src/dmedia/video/impact/vidtotex.c continuously captures
a stream of live video from a video source and repeatedly loads it into an OpenGL texture
map. Those texture maps are then used to texture a polygon in an X window on the
graphics display.

The video source can be selected via a command-line option, or via the default input
device control on vcp. The output of vlinfo shows valid video source numbers and their
mappings.

163

Appendix A

A. Return Codes

This appendix explains the return codes that are used with the Video Library for the
OCTANE Digital Video option. The return code is accessible through the vlGetErrno()
routine; see also vlPerror() and vlStrError().

VLAPIConflict

You have called an API routine that is not supported on this platform.

VLSuccess

The Video Library routine completed without error.

VLBadAccess

The client attempted to perform an operation that is illegal given the state of the
client, the node, or the path. This error is returned, for example, if the client
attempts to add a node to a path that has been set up, or call vlSetControl() on a
path with control usage est to VL_READ_ONLY.

VLBadAlloc

The Video Library could not allocate the system resources required for the
requested operation, for example, memory and semaphores. If the source of the
error is not evident (that is, sufficient physical memory and paging space was
present), report this error to technical support.

VLBadAtom

The server does not recognize the value specified by the atom parameter in the
request as a valid atom ID.

VLBadBuffer

The value of the buffer parameter is not a DMbuffer ID recognized by the Video
Library.

164

Appendix A: Return Codes

VLBadControl

The value specified by the control parameter is not recognized by the node the
request was made to.
The node to which the request was made does not recognize the value specified
by the control parameter for vlSetControl() or vlGetControl().

VLBadDevice

The server does not recognize the value specified by the device parameter in the
request as a valid device ID. See also VLBadMatch.

VLBadIDChoice

The requested resource ID is not in range; report this error to Customer Support.

VLBadImplementation

An internal processing error occurred. Report the error and the context in which
it occurred to Customer Service.

VLBadIoctl

An error occurred between the video daemon and the device driver associated
with the video device. This error can result from an invalid parameter setting in
vlSetControl(), although it can also represent an internal processing error. This
error should be reported to technical support.

VLBadLength

The video daemon received a request with an invalid length. Report this internal
processing error to Customer Support.

VLBadMatch

The arguments specified for the node, path, or device parameters are not
consistent. The node may not reside on the path, or the path may not reside on
the device.

VLBadName

An error took place when the DMparams list was to be retrieved; see
VLDMGETPARAMS(3dm).

165

VLBadNode

The server does not recognize the value specified by the node parameter in the
request as a valid node ID. See also VLBadMatch.

VLBadPath

The server does not recognize the value specified by the path parameter in the
request as a valid path. See also VLBadMatch.

VLBadPort

The value specified by the port parameter is not a recognized port on the
associated node.

VLBadRequest

The daemon has received a bad request code. Report this internal processing
error to technical support.

VLBadServer

The value of the server parameter is not a server ID recognized by the Video
Library.

VLBadSize

The size of the DMbuffer elements associated with a memory node are not
compatible with the size of a video unit (field or frame), given the node’s control
settings.

VLBadValue

The value of a parameter is invalid. When generated by vlGetControl(),
VLBadValue can indicate that the incorrect control value type was used, that the
value is not within the range for the control, or that the node cannot accept the
specified value due to a conflict with other node settings.

VLBadWinAlloc

vlSetupPaths() can return this code if there is insufficient screen space to place a
screen source or drain. See Appendix B, “OCTANE Digital Video Nodes and
Their Controls,” for placement constraints.

166

Appendix A: Return Codes

VLBufferTooSmall

The size of the DMbuffer elements associated with a memory node are smaller
than the size of a video unit (field or frame) given the node’s control settings.

VLInputsNotLocked

The processing element associated with a node cannot lock to the input signal.
This code may indicate that no signal is present or that the supplied video signal
uses a different timing standard than that expected by the node (see VL_TIMING
on the input or device node).

VLNoRoute

vlSetConnection() can return this error if no route could be found from the
source (node, port) to the drain (node, port). The probable reason is that all
connector resources are in use.

VLNotEnoughSpace

The supplied data region did not contain enough space to hold the information
returned by the server.

VLNotSupported

vlSetConnection() or vlGetConnection() can return this code if the video device
does not support explicit connections.

VLPathInUse

This error is generated if a required resource, for example a node
(vlSetupPaths()) or a connector (vlSetConnection()) cannot be acquired.

• In the case of vlSetupPaths(), the node cannot be acquired because
the path has requested VL_SHARE stream usage while another
path has the required nodes with a stream of VL_LOCK, or the path
has requested VL_SHARE control usage while another path has the
required nodes with a control usage of VL_LOCK.

• For vlSetConnection(), the paths using the required connector
could not be preempted because the application has requested that
no preemption occur, or because a path using the connector has
stream usage set to VL_LOCK.

167

VLSetupFailed

A general failure occurred during a vlSetupPaths() request. If multiple paths
were specified for vlSetupPaths(), some or none of the paths may have been set
up. In addition, some paths may have been preempted in order to set up those
paths.

It is recommended that the application set up the paths again to stream usage
VL_READ_ONLY and control usage VL_READ_ONLY or VL_SHARE in order
to reset the state of all paths. This combination of control and stream usage is
guaranteed to succeed.

VLValueOutOfRange

The control value specified for a vlSetControl() operation is not within the range
accepted by the node. The value was adjusted before being set. (Compare with
VLBadValue, where the control’s value is not changed at all.) Use the
vlGetControlInfo() routine to retrieve the valid ranges for the control.

169

Appendix B

B. OCTANE Digital Video Nodes and Their Controls

This appendix describes the nodes available to the OCTANE Digital Video option. It lists
the ports and controls associated with each node, as well as special considerations
involved in node usage.

In the tables that summarize the control set for a node, the columns are as follows:

Default The default value for the control. If the value is Dynamic, the default
value depends on the value of other controls. For example, frame size is
dependent on device timing. The default value is described in the
verbose description of the control.

If the value is Persistent, the default value is initially obtained from the
defaults file, but is never reset. Many controls available through the
video control panel vcp (for example, the default video input) fall into
this category. For this value, changes made by vlSetControl() are
persistent across paths, even if the node goes into an unused state.

If the default is a specific value or is Dynamic, the control is
reinitialized to the default value when the node is no longer in use, that
is, when all application paths have been destroyed and the only
applications remaining are supervisory. At present, the vcp is the only
supervisory application.

Some controls, such as VL_WINDOW, have a default value of None.
This value means that the control must be set before a transfer can be
started on a path containing the node.

170

Appendix B: OCTANE Digital Video Nodes and Their Controls

Type The member of the VLControlValue union used to set or get the value of
the control.

Access Access is one or more of the following:

• G: The value can be retrieved through vlGetControl().

• S: The value can be set through vlSetControl() while the path is not
transferring.

• T: The value can be set through vlSetControl() while the path is
transferring.

The nodes are as follows:

• VL_DEVICE

• VL_BLENDER

• VL_CSC: color-space conversion node

• VL_FB: internal framebuffer node for freezing video

• VL_MEM: region of workstation memory

• VL_SCREEN: workstation screen

• VL_TEXTURE: texture node

• VL_VIDEO: connection to a video device; for example, a video tape deck or camera

Chapters in this guide explain these specific nodes:

• VL_BLENDER: Chapter 7, “Blending, Keying, and Transitions”

• VL_CSC: Chapter 8, “Using Color-Space Conversion”

• VL_TEX: Chapter 9, “Using Video Texture Mapping”

VL_DEVICE

171

VL_DEVICE

The device node (digital video source node) provides controls that affect the operation of
the OCTANE Digital Video device as a whole. These controls include global parameters
such as timing, as well as default information such as the default source or drain.

For device nodes:

• type is VL_DEVICE

• kind is 0

• number is 0

• port is none

Table B-1 lists device node controls. For all these controls, access is GST, except
VL_MGV_TRIGGER_WAIT, which is G only.

Table B-1 Device Node Controls

Control Default Type Use

VL_DEFAULT_DRAIN Persistent intVal The VL_DEFAULT_DRAIN control determines the drain node the Video
Library selects when a node is acquired with vlGetNode(VL_DRAIN,
VL_VIDEO, VL_ANY). The value of the control is a video drain node
number, as reported by vlGetDeviceList().

Once a path is set up, the node number is fixed for the lifetime of the path.
Consequently, changing this control does not change paths previously set
up using a default drain node. Paths can register for the VLDefaultDrain
event to be notified when this control’s value is changed.

VL_DEFAULT_SOURCE Persistent intVal The VL_DEFAULT_SOURCE control determines the source node the
Video Library selects when a node is acquired with vlGetNode(VL_SRC,
VL_VIDEO, VL_ANY). The value of the control is a video source node
number, as reported by vlGetDeviceList().

Once a path is set up, the node number is fixed for the lifetime of the path.
Consequently, changing this control does not change paths previously set
up using a default source node. Paths can register for the
VLDefaultSource event to be notified when this control’s value is
changed using vlSelectEvents().

172

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_SYNC Persistent intVal The OCTANE Digital Video device can derive timing from an external
source or use an internal free-running clock. If VL_SYNC is set to
VL_SYNC_INTERNAL, the internal timing source is used. When
VL_SYNC is set to VL_SYNC_GENLOCK, timing is derived from an
external clock selected by the VL_SYNC_SOURCE control.

VL_SYNC_SOURCE Persistent intVal When the VL_SYNC control is set to VL_SYNC_GENLOCK, this control
selects the source of synchronization for the OCTANE Digital Video
device. The device can accept external timing from

GEN_PORTanalog reference input

GEN_DIN1serial digital input 1

GEN_DIN2serial digital input 2

VL_TIMING Persistent intVal This control selects the input timing for the OCTANE Digital Video device
and affects the timing for all nodes. The device supports the following
modes:

VL_TIMING_525_SQ_PIX: NTSC, 525-line square pixel timing

VL_TIMING_525_CCIR601: CCIR 601, 525-line non-square pixel timing

VL_TIMING_625_SQ_PIX: PAL, 625-line square pixel timing

VL_TIMING_625_CCIR601: CCIR 601, 625-line non-square pixel timing

Square pixel modes are used with the OCTANE Compression option only.

Table B-1 (continued) Device Node Controls

Control Default Type Use

VL_DEVICE

173

VL_MGV_AUTOPHASE Persistent intVal Autophasing allows the video inputs to be locked to each other if, on
input, their phase differences are not too great. This control selects
whether input autophasing is enabled and, if enabled, the type of
autophasing performed. The options for this control are as follows:

VL_MGV_AUTOPHASE_NORMAL: This mode synchronizes the video
inputs to the reference input. It can accommodate a vertical interval
switch with a maximum deviation of +/- 1/2 line from the reference.

VL_MGV_AUTOPHASE_EXTENDED: This extended autophase mode
allows frequency-locked inputs to be +/- 4 lines relative to the reference
input.

VL_MGV_AUTOPHASE_VARIABLE: The variable mode allows the two
inputs to be nonsynchronous with the reference and can accommodate
inputs that are offset by up to +/- 4 lines. Variable autophasing uses the
clock from the “last” input as the clock for both video channels. The last
input is determined by monitoring the field (F) bit of channel 1 and 2. If
channel 2 is already in the odd field when channel 1 enters the odd field,
channel 1 is assumed to be the latest input.

VL_MGV_AUTOPHASE_OFF: Autophasing is disabled; signals are
passed through with their original timing.

VL_MGV_INPUT
_ALPHA_LUT_SELECT

VL_MGV
_ALPHA_LUT
_CCIR601

intVal This control selects the type of LUT to be used when video data is routed
into the crosspoint mux (see “Getting Connections” in Chapter 5) to a
blender alpha input. The LUT is generally used to expand limited-range
data to full-range value for use as alpha. The following LUTs are
available:

VL_MGV_ALPHA_LUT_PASS: A pass-through LUT for use when the
input is video (not alpha). Values 2-253 are passed unmodified. Input
values 254 and 1 are mapped to 255 and 0, respectively.

VL_MGV_ALPHA_LUT_CCIR601: Used to expand CCIR-range input to
full-range input. Values >=235 are mapped to 255, values <=16 are
mapped to 0, and values 17-234 are mapped to 1-254.

VL_MGV_ALPHA_LUT_SUPERBLACK: Used for inputs that have been
quantized with setup and the key extends into the blanking level. Values
>=235 are mapped to 255, value 1 to 0, and values 2-234 to 1-254.

VL_MGV_ALPHA_LUT_REDUCED_RANGE: Used for input keys that
do not extend the full range. Values >=224 are mapped to 255, values <=32
to 0, and values 32-221 to 1-254. This control takes effect only when video
is fed from the VBAR mux to the blender alpha input; when video is fed
into a pixel input, then VL_MGV_ALPHA_LUT_PASS is always selected.

Table B-1 (continued) Device Node Controls

Control Default Type Use

174

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_MGV_OUTPUT
_ALPHA_LUT_SELECT

VL_MGV
_ALPHA_LUT
_CCIR601

intVal This control selects the LUT to use when alpha data is routed from the
blender out of the crosspoint mux. Its function is to map the full-range
alpha values to CCIR or other range values. The values for this control are
the same as for VL_MGV_INPUT_ALPHA_LUT_SELECT, with the
inverse mappings applied.

VL_MGV_TRIGGER
_LINE

Persistent intVal This control reports the line on which the GPI trigger input is sampled.
The OCTANE Digital Video device samples the trigger on a per-field basis
at lines 4 and 266 for NTSC (reported as line 4 by vlGetControl()) and
lines 1 and 313 for PAL (reported as 1 by vlGetControl()).

VL_MGV_TRIGGER
_POLARITY

Persistent intVal This control selects the polarity, indicating that the GPI trigger has gone
off. Valid values are as follows:

POLAR_NEG: The GPI trigger input has become negative.

POLAR_POS: The GPI trigger input has become positive.

VL_MGV_TRIGGER
_WAIT

Default: none

None boolVal Allows a client to “sniff” the GPI trigger. A vlGetControl() call with
VL_MGV_TRIGGER_WAIT blocks the client application until the trigger
goes off. While the application is blocked, events received from the video
daemon are queued on the client’s connection to the daemon.

For an application to be notified when the trigger fires, it must be
registered for VLDeviceEvent. Using the event mechanism has the
advantage that the client application can continue to interact with the
Video Library or perform local processing while waiting for the event.
VL_MGV_TRIGGER_WAIT is provided for applications that require a
faster response to the trigger than can be provided with VLDeviceEvent.

Table B-1 (continued) Device Node Controls

Control Default Type Use

VL_BLENDER

175

VL_BLENDER

The blender node provides two-layer blending and keying. The foreground pixel input
(PIXEL_DRN_A) can be used as an input to the keyer to provide for chroma and luma
key generation. The blender can also be used with external pixel and alpha sources to
perform user-defined blend operations. For the blender node:

• type is VL_INTERNAL

• kind is VL_BLENDER

• number is VL_MGV_NODE_NUMBER_BLENDER

• ports are

– VL_IMPACT_PORT_PIXEL_DRN_A, foreground pixel input

– VL_IMPACT_PORT_ALPHA_DRN_A, foreground pixel input

– VL_IMPACT_PORT_PIXEL_DRN_B, background pixel input

– VL_IMPACT_PORT_ALPHA_DRN_B, background pixel input

– VL_IMPACT_PORT_PIXEL_SRC_A, pixel output

– VL_IMPACT_PORT_ALPHA_SRC_B, alpha output

The blender is the only node that can use the screen node alpha information. To use the
screen alpha you must route the screen pixel data to blender alpha inputs. The blender
alpha output can then be sent to the video outputs or memory.

Note: The blender operates only on YUV:4:2:2 8 bit video. When sending the blender
output to video, it is best to blank the chroma.

The OCTANE Digital Video blender is a Porter-Duff style blender; see “Setting
Normalization” in Chapter 7 for more information.

The blender does not stop you from doing special-effects blends. The output is clipped
into the standard range. For a nice effect, try looping the output of the blender through a
framebuffer back to the input of the blender in various modes.

Note: For more information on blending and keying, see Chapter 7.

176

Appendix B: OCTANE Digital Video Nodes and Their Controls

Table B-2 lists blender controls. Access for all controls is GST. For more information on
blender node controls, see Chapter 7.

Table B-2 Blender Node Controls

Control Default Type Use

VL_BLEND_A_FCN VL_BLDFCN_MINUS
_A_ALPHA

intVal Sets blend function that controls mixing of foreground
signals.

VL_BLEND_B_FCN VL_BLDFCN_ONE intVal Sets blend function that controls mixing of background
signals.

VL_BLEND_A Dynamic intVal Sets input source for foreground image.

VL_BLEND_B Dynamic intVal Sets input source for background image.

VL_BLEND_A_ALPHA Dynamic intVal Sets input source for foreground alpha.

VL_BLEND_B_ALPHA Dynamic intVal Sets input source for background alpha.

VL_BLEND_A_NORMALIZE TRUE boolVal Sets normalization; off is not supported by the OCTANE
Digital Video option.

VL_BLEND_B_NORMALIZE TRUE boolVal Sets normalization, following Porter-Duff model
(background pixels premultiplied by their
corresponding alphas before blending).

VL_MGV_KEYER_MODE Persistent intVal Selects “master” keyer control that determines the type
of keying performed (luma, chroma, or spatial).

VL_MGV_KEYER_DETAIL Persistent intVal Sets sharpness of transition between foreground and
background allowing blurring of edges. The value -8
yields the most gradual transition, +7 the sharpest.

VL_MGV_KEYER_FG_OPACITY Persistent intVal Sets opacity of the foreground, thus limiting the value of
foreground alpha at any point.

VL_MGV_KEYER_VALUE_LUMA Persistent intVal Sets central luma value. This control sets the luma value
at which the background shows through the foreground.

VL_MGV_KEYER_RANGE
_LUMA

Persistent intVal Sets one-sided range of the center value. This control
determines the range of luma values where the
background shows through the foreground.

VL_MGV_KEYER_VALUE
_CHROMA_U

Persistent intVal Sets central U value at which the background shows
through the foreground.

VL_BLENDER

177

VL_MGV_KEYER_RANGE
_CHROMA_U

Persistent intVal Sets one-sided range of U where the background shows
through the foreground.

VL_MGV_KEYER_VALUE
_CHROMA_V

Persistent intVal Sets central V value at which the background shows
through the foreground.

VL_MGV_KEYER_RANGE
_CHROMA_V

Persistent intVal Sets one-sided range of V where the background shows
through the foreground.

VL_MGV_WIPE_SYMMETRY FALSE intVal Sets wipe symmetry (on or off) so that wipe proceeds in
both directions at once from the center line. Effect
depends on type of wipe: no effect for fades or tiling;
enables VL_MGV_WIPE_CENT for single, double, and
corner wipes; enables VL_MGV_WIPE_CENT_PERP
control for double and corner wipes.

VL_MGV_WIPE_INVERT FALSE intVal Reverses foreground and background regions of a wipe.
When set to 0, wipes proceed from foreground (position
= minimum) to background (position = maximum).
When set to 1, wipes proceed from background (position
= minimum) to foreground (position = maximum).

This value is buffered (does not go into effect) until
another blending control is set.

VL_MGV_WIPE Persistent intVal Sets autowiper on.

VL_MGV_WIPE_TYPE Persistent intVal Selects type of blending (wipe) performed.

VL_MGV_WIPE_ANGLE
VL_MGV_WIPE_DIRECTION

Persistent intVal Sets wipe vector direction, that is, the direction in which
the wipe appears to be proceeding as its position
increases.

Note that VL_MGV_WIPEANGLE_N and
VL_MGV_WIPEANGLE_S do not work for the wipe
types VL_MGV_WIPETYPE_DOUBLE and
VL_MGV_WIPETYPE_CORNER.

VL_MGV_WIPE_SHARPNESS Persistent intVal Sets sharpness of wipe transition band. As for
VL_MGV_KEYER_DETAIL, -8 is most gradual, +7 is
sharpest.

VL_MGV_WIPE_FUZZ Persistent intVal Same as VL_MGV_WIPE_SHARPNESS.

Table B-2 (continued) Blender Node Controls

Control Default Type Use

178

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_MGV_WIPE_SPEED Persistent intVal Sets speed at which the autowiper sweeps the wipe. The
value is the speed of the wipe in units of number of fields
for each wipe position change.

VL_MGV_WIPE_POSN Persistent fractVal Sets amount of progress of wipe, from none (numerator
= 0) to full (numerator = 1000).

VL_MGV_WIPE_POSN_PERP Persistent fractVal Sets amount of progress of wipe, from none (numerator
= 0) to full (numerator = 1000), along a direction
perpendicular to normal wipe position
VL_MGV_WIPE_POSN.

VL_MGV_WIPE_CENT Persistent intVal Sets offset that is center of a symmetrical wipe along
wipe position. 0 means center is where
VL_MGV_WIPE_POSN is 0, and 1000 means center is
where VL_MGV_WIPE_POSN is 1000. For this control
to work for single, double, and corner wipes,
VL_MGV_WIPE_SYMMETRY must be on.

VL_MGV_WIPE_CENT_PERP Persistent intVal Sets offset that is center of a symmetrical wipe along a
perpendicular wipe position. 0 means center is where
VL_WIPE_POSN_PERP is 0, and 1000 means center is
where VL_WIPE_POSN_PERP is 1000.
VL_WIPE_SYMMETRY must be on for this control to
work for double and corner wipes.

VL_MGV_WIPE_REPT Persistent intVal Sets number of repetitions of pattern in direction of
wipe, usually louvers on single, corner, or double wipe,
and length of one side of rectangles for a tile wipe. This
control does not apply to fades.

VL_MGV_WIPE_REPT_PERP Persistent intVal Sets number of repetitions perpendicular to wipe
direction for single, double, and corner wipes, and
length of other side of rectangles for tile wipe.

VL_MGV_WIPE_EXT_TRIG FALSE boolVal If set to TRUE, causes the trigger to initiate an automatic
wipe (autowipe).

VL_MGV_WIPE_SPEED 10 intVal Sets duration of an autowipe in tenths of a second.

VL_MGV_BLEND_B_FLAT Persistent intVal Sets flat-background generator on, so that background
pixel source is used for pixel timing only and live video
from pixel source B goes to the blender.

Table B-2 (continued) Blender Node Controls

Control Default Type Use

VL_CSC

179

VL_CSC

The color-space converter (CSC) node controls the color-space converter hardware. The
CSC hardware can perform many image-processing operations on a video path, allowing
VL control over the conversion process.

The CSC hardware can be used in two ways: standard conversions, or nonstandard
conversions with fine control over the color-space hardware. In many cases, the standard
conversions are sufficient. For example, the standard controls can set up a conversion
from YCrCbA (CCIR range) to RGBA in a few calls.

For application developers who wish to use VL_CSC as an image processing device
capable of posterization, solarization, or color correction, or for nonstandard
conversions, nonstandard control commands are provided. To use these controls, you
must understand how the hardware works and how color-space conversion is
performed. See Appendix C, “OCTANE Digital Video Color-Space Conversions.”

VL_MGV_BLEND_B_Y Persistent intVal Sets value of background Y.

VL_MGV_BLEND_B_U Persistent intVal Sets value of background U.

VL_MGV_BLEND_B_V Persistent intVal Sets value of background V.

VL_MGV_BLEND_SHADOW_ON Persistent boolVal Activates shadow hardware. See “Adding Shadows” in
Chapter 7 for information.

VL_MGV_BLEND_SHADOW
_GAIN

Persistent intVal Sets value shift for shadow.

VL_MGV_BLEND_SHADOW
_OFFSET

Persistent intVal Adds to shadow value. Note that darkening a very light
shadow can result in noise.

VL_MGV_BLEND_H_FILT Persistent boolVal Sets horizontal smoothing filter that filters pixel
information before the alpha extraction and smooths the
alpha output of the key generator.

Table B-2 (continued) Blender Node Controls

Control Default Type Use

180

Appendix B: OCTANE Digital Video Nodes and Their Controls

Chapter 8, “Using Color-Space Conversion” provides information on using this node.
For the color-space conversion node VL_CSC:

• type is VL_INTERNAL

• kind is VL_CSC

• number is VL_MGV_NODE_NUMBER_CSC

See Chapter 8 for video formats, ports, ranges, and packings for VL_CSC.

Table B-3 summarizes controls for standard color-space conversion. Access for all
controls is GS.

Table B-4 summarizes image-processing (nonstandard) controls. Access for all these
controls is GST.

Table B-3 Controls for Standard Color-Space Conversion

Control Default Type Use

VL_MGV_CSC_IN_PACKING
VL_MGV_CSC_OUT_PACKING

VL_PACKING_YVYU
_422_10

intVal Sets the packing for the color-space converter
node’s input or output, respectively.

VL_MGV_CSC_IN_RANGE
VL_MGV_CSC_OUT_RANGE

VL_FORMAT_DIGITAL
_COMPONENT_SERIAL

intVal Sets the input range (RP-175, CCIR, or full)
associated with the input or output video,
respectively.

 VL_MGV_CSC_CONST_HUE TRUE boolVal Enables or disables constant-hue algorithm.

VL_MGV_CSC_ALPHA
_CORRECTION

FALSE boolVal When VL_MGV_CSC_CONST_HUE is enabled,
this control saves the constant hue correction
factor (TRUE) or retains alpha input data (FALSE).

VL_FB

181

VL_FB

The framebuffer node provides a mechanism for freezing a video stream. This node is
most useful when it is used with the video source nodes, which lack freeze capability. It
is also suitable when a snapshot of a video stream is required and the application cannot
freeze the input because the live feed is used elsewhere.

Table B-4 Image-Processing Controls

Control Default Type Use

VL_MGV_CSC_COEF Multiplier
operates in
pass-through
mode

extendedVal;
data type MGV_CSC_COEF

Specifies the matrix
multiplier
coefficients

VL_MGV_CSC_LUT_IN_PAGE
VL_MGV_CSC_LUT_ALPHA_PAGE

0 intVal Selects the active
LUT

VL_MGV_CSC_LUT_IN_YG
VL_MGV_CSC_LUT_IN_UB
VL_MGV_CSC_LUT_IN_VR
VL_MGV_CSC_LUT_ALPHA

Pass-through
(1:1 mapping)

extendedVal;
data type MGV_CSC_LUT_INPUT
_AND_ALPHA

Specifies the contents
of the input or alpha
lookup tables

VL_MGV_CSC_LUT_OUT_YG
VL_MGV_CSC_LUT_OUT_UB
VL_MGV_CSC_LUT_OUT_VR

Pass-through
(1:1 mapping)

extendedVal
data type MGV_CSC_LUT_OUTPUT

Specifies the contents
of the output lookup
tables

182

Appendix B: OCTANE Digital Video Nodes and Their Controls

Note that the memory and screen source nodes have inherent freeze capability. For the
framebuffer node:

• type is VL_INTERNAL

• kind is VL_FB

• number is VL_MGV_NODE_NUMBER_FB

• ports are

– VL_IMPACT_PORT_PIXEL_SRC_A, 8-bit single-link output

– VL_IMPACT_PORT_PIXEL_DRN_A, 8-bit single-link input

The framebuffer node imposes a one-frame delay on the video stream.

The framebuffer element is shared between this node and the CC1 memory source node.
Consequently, only one of the two can be in use at a time. Attempts to set up both on a
path with stream usage VL_SHARE or VL_LOCK result in the first path being
preempted. If the framebuffer node and the CC1 memory source node are set up on the
same path, an error is returned.

The framebuffer node is internal to the crosspoint mux. Consequently, to avoid
consuming the (scarce) VBAR-crosspoint connectors, ensure that its use is required in the
path. For example, this node is usually not needed to freeze the video output, since the
video drain nodes have freeze capability.

The default control for this node is VL_FREEZE. If set to TRUE, this control freezes the
video stream passing through the framebuffer. If set to FALSE, live video resumes. For
this control, the default is FALSE, type is boolVal, access is GST.

VL_MEM

183

VL_MEM

This discussion divides the VL_MEM nodes into their manifestations as source and
drain.

VL_MEM Source

The OCTANE Digital Video option supports four memory source nodes: VGI1 1, VGI1 2,
VGI1 DL, and CC1. The VGI1 memory sources provide real-time single- and dual-link
paths from main memory to the OCTANE Digital Video option. For the memory source
node:

• type for all four memory source nodes is VL_SRC

• kind for all four memory source nodes is VL_MEM

• number is VL_MGV_NODE_NUMBER_VGI_1,
VL_MGV_NODE_NUMBER__VGI_2, and VL_MGV_NODE_NUMBER__VGI_DL,
and VL_MGV_NODE_NUMBER__CC, respectively

• ports are

– memory source nodes VGI1 1 and VGI1 2: VL_PORT_PIXEL_SRC_A:
single-link 8- or 10-bit video stream capable of real-time operation

– dual-link video source node: VL_PORT_DUALLINK_SRC_A: dual-link 8- or
10-bit video stream capable of real-time operation

– memory source node CC1:
VL_PORT_PIXEL_SRC_A: single-link 8-bit video stream, no 10-bit support,
does not guarantee real-time operation, but has attached framebuffer

The CC1 node is used mostly to support alpha for the blender. If the blender
uses an image from this framebuffer, the Y value is interpreted as alpha and the
blender uses it accurately. Data in this buffer allows you to put a nonrectangular
shape (for example, a heart or an irregularly shaped logo) as a matte around an
image.

The CC1 memory source node is also useful for slide shows or other
static-image situations in which video input changes only every 10 or 20
seconds and real-time performance is not critical. Because the CC1 node has its
own framebuffer, there is no CPU overhead.

184

Appendix B: OCTANE Digital Video Nodes and Their Controls

Table B-5 lists memory source node controls. For all these controls, access is GS.

Table B-5 Memory Source Node Controls

Control Default Type Use

VL_CAP_TYPE CAP_TYPE
_INTERLEAVED

intVal Specifies the type of video units—fields or frames—that the
application obtains from the ring buffer. Valid capture types are
VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, VL_CAPTURE_ODD_FIELDS,
and VL_CAPTURE_FIELDS. See “Using VL_CAP_TYPE and
VL_RATE” in Chapter 2 for information on capture types.

VL_FORMAT VL_FORMAT_DIGITAL
_COMPONENT_SERIAL

intVal Specifies the type of video format to be produced. See “Using
VL_FORMAT” in Chapter 2 for formats and explanations.

VL_PACKING Single link:
VL_PACKING_YVYU
_422_8

Dual link:

VL_PACKING_YUVA
_4444_8

intVal Specifies the bit order in which the video components are stored
in memory. The native packings supported by
VL_MGV_NODE_NUMBER_VGI_[1,2] are
VL_PACKING_YVYU_422_8 and
VL_PACKING_YVYU_422_10.

Supported non-native single link packings (implemented
automatically in software) are VL_PACKING_Y_8_P,
VL_PACKING_RGB_332_P, and VL_PACKING_RGB_8.

The native packings supported by
VL_MGV_NODE_NUMBER_VGI_DL are
VL_PACKING_YUVA_4444_8, VL_PACKING_YUVA_4444_10,
VL_PACKING_AUYV_4444_8, VL_PACKING_AUYV_4444_10,
VL_PACKING_RGBA_8, VL_PACKING_RGBA_10,
VL_PACKING_ABGR_8, VL_PACKING_ABGR_10, and
VL_PACKING_AYU_AYV_10.

See “Using VL_PACKING” in Chapter 2 for the specifications of
each packing.

VL_OFFSET (0,0) xyVal Specifies the upper left corner of a video region to be output. The
coordinates are offsets of the upper left corner of the active video
and take precedence over the size. Therefore, in order to
accommodate the given offset, the size may be changed. A
VLControlChanged event is generated to inform interested
parties of any change in size.

VL_MEM

185

VL_RATE Dynamic; depends on
timing and capture type

fractVal Specifies the rate at which the hardware extracts video units
(fields or frames, depending on the capture type) from the ring
buffer. The video unit is repeated, or black is output, to achieve
the video output rate of 60 fields per second (NTSC) or 50 fields
per second (PAL). The VGI1 memory source nodes can consume
video units from system memory at any rate up to the video
standard rate.

For VL_CAPTURE_NONINTERLEAVED and VL_CAPTURE
FIELDS, valid ranges are as follows:

NTSC: 1 through 60 units per second (must be multiple of fields
per frame for noninterleaved)

PAL: 1 through 50 units per second (must be multiple of fields
per frame for noninterleaved)

For VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, or
VL_CAPTURE_ODD_FIELDS, valid ranges are 1 through 30
units per second for NTSC and 1 through 25 units per second for
PAL.

VL_SIZE Dynamic; depends on
timing and capture type

xyVal Specifies the width (pixels) and height (lines) of the video data
contained within each ring buffer entry. These values, along
with VL_PACKING, determine the size in bytes of each ring
buffer entry and thus the transfer size. The width must be a
multiple of four pixels. The length must be a minimum of one
line for field capture types and two lines for frames.

The specified size is constrained by the maximum allowable (as
dictated by the device timing) and by the current offset position
(VL_OFFSET). If the size is too large, it is reduced. The offset is
not changed. It is recommended that VL_OFFSET be set before
VL_SIZE.

VL_TIMING Dynamic; from device node intVal Retrieves the current device-wide video timing value. See
“VL_DEVICE” in this chapter for more details. Setting this
control on any other node type has no effect.

VL_ZOOM 1.0 fractVal Specifies the amount of scaling to be applied to the video before
it is transferred to memory. The VGI1 memory source nodes
have no scaling ability. The only legal value is 1.0.

Table B-5 (continued) Memory Source Node Controls

Control Default Type Use

186

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_MGV
_DOMINANCE
_FIELD

VL_MGV_DOMINANCE
_F1

intVal Sets the field dominance mode, which determines the order in
which the fields are read from memory. This control applies only
to the frame-oriented capture types
(VL_CAPTURE_INTERLEAVED and
VL_CAPTURE_NONINTERLEAVED).

For VL_CAPTURE_INTERLEAVED, values are as follows:

VL_MGV_DOMINANCE_F1: For video timings
VL_TIMING_525_CCIR601 and VL_TIMING_525_SQ_PIX, F1
(also known as odd) dominance dictates that data for the F1 field
resides in memory after that for F2. For
VL_TIMING_625_CCIR601 and VL_TIMING_625_SQ_PIX, the
data for F1 resides in memory before that of F2.

VL_MGV_DOMINANCE_F2: For VL_TIMING_525_CCIR601
and VL_TIMING_525_SQ_PIX, F2 (also known as even timings),
dominance dictates that data for the F1 field resides in memory
before that for F2. For VL_TIMING_625_CCIR601 and
VL_TIMING_625_SQ_PIX, the data for F1 resides in memory
after that of F2.

The meaning of before and after depends on the capture type. For
interleaved frames, before indicates that the data that compose
the first line of the designated field begins at the first byte of the
buffer. In this format, the lines of F1 and F2 are interleaved
within the one ring buffer; thus the second line of the buffer
belongs to the other field, and so forth.

For noninterleaved frames, before indicates that the dominant
field is in a buffer preceding the buffer(s) containing
nondominant fields.

For VL_CAPTURE_NONINTERLEAVED, values are as follows:

VL_MGV_DOMINANCE_F1: The F1 field is in the first buffer of
the pair, and the F2 field in the second.

VL_MGV_DOMINANCE_F2: The F2 field is in the first buffer of
the pair, the F1 field in the second.

Table B-5 (continued) Memory Source Node Controls

Control Default Type Use

VL_MEM

187

VL_MGV_BUFFER
_QUANTUM

1 intVal The granularity, or quantum, of data transfer required by the
application. The video data is padded at the end so that the size
of a field/frame is a multiple of
VL_MGV_BUFFER_QUANTUM. This control is intended for
applications that do I/O directly from the ring buffer, and may
consequently require the frame or field size to be a multiple of
the device block size. Direct I/O, for example, usually requires
that 512 bytes of data be transferred at a time.

VL_MGV_DMA
_ERROR_RESTART

VL_MGV_DMA_RESTART
_ON

intVal If enabled (VL_MGV_DMA_RESTART_ON), a video transfer
continues when an error is encountered. Otherwise
(VL_MGV_DMA_RESTART_OFF), the video transfer is aborted.
This control covers three types of errors:

The reference video timing is not clean, resulting in short/long
lines, fields, or both. These errors are with respect to the
programmed size and offset.

The system GIO bus bandwidth was insufficient to transfer
video from system memory at video rates.

The video clock was interrupted.

VL_MGV_DMA
_VOUT_EXPAND

VL_MGV_DMA_EXPD
_OFF

intVal Specifies whether or not 8-bit data read from memory is
expanded to 10-bit data before being output by the DMA
channel to the VBAR mux. If enabled
(VL_MGV_DMA_EXPD_ON), then zeroes are inserted into the
least significant two bits; otherwise
(VL_MGV_DMA_EXPD_OFF), all 10 bits are output
unmodified.

Table B-5 (continued) Memory Source Node Controls

Control Default Type Use

188

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_MGV_DMA
_VOUT
_STARVATION

VL_MGV_DMA_VO
_STARV_RPT

intVal Sets the video output policy to use when the memory node
underflows the ring buffer (that is, the application has not filled
the ring buffer at the rate that the memory node consumes it). An
application can choose between two starvation policies. In each
case, video output from system memory resumes when the
application places the next field/frame in the ring buffer via
vlPutValid().

VL_MGV_DMA_VO_STARV_BLK: Outputs black fields or
frames. This choice does not involve further access to memory
until a new buffer becomes available.

VL_MGV_DMA_VO_STARV_FLD: Causes the last field output
to be repeated.

VL_MGV_DMA_VO_STARV_RPT: Repeats the last unit (field or
frame) that was transferred from main memory. The repetition is
performed by continuing to transfer the same field/frame from
memory to video until a new buffer becomes available or the
transfer is ended. This results in system bus bandwidth
continuing to be consumed.

Caution: In order to maintain compatibility with the behavior of
the CC1 memory source node as well as the earlier Galileo
Video™ products, where a framebuffer is incorporated, the
default value for this control is
VL_MGV_DMA_VO_STARV_RPT. Therefore the ring buffer
used in the transfer must contain a minimum of two buffer
entries (four for VL_CAPTURE_NONINTERLEAVED), so that
one buffer can be repeated by the system while the application is
filling the second. If only one buffer is used, then the first buffer
output is repeated indefinitely and vlGetNextFree() never
returns a free buffer.

Table B-5 (continued) Memory Source Node Controls

Control Default Type Use

VL_MEM

189

VL_MEM Drain

The OCTANE Digital Video option supports three memory drain nodes: VGI1 1, VGI1 2,
and VGI1 DL. The VGI1 memory drains provide real-time single- and dual-link paths
from the OCTANE Digital Video device to ring buffers. For the memory drain:

• type for all three memory drain nodes is VL_DRN

• kind for all three memory drain nodes is VL_MEM

• number is VL_MGV_NODE_NUMBER_VGI1_1,
VL_MGV_NODE_NUMBER__VGI1_2, and
VL_MGV_NODE_NUMBER__VGI1_DL, respectively

• ports are as follows:

– memory drain nodes VGI1 1 and VGI 2: VL_PORT_PIXEL_DRN_A: single-link
source for 8- or 10-bit video stream capable of real-time operation

– dual-link video drain node: VL_PORT_DUALLINK_DRN_A: dual-link source
for 8- or 10-bit video stream capable of real-time operation

With the VL_MGV_DMA_VIN_ROUND control enabled, the components of the 10-bit
video signal applied to the VGI1 memory drain are rounded to 8 bits; otherwise all 10
bits are passed through and written to memory.

With rounding disabled, setting an 8-bit packing while capturing 10-bit data truncates
the data to 8 bits.

Figure B-1 shows the bit relationships for the CCIR 601 8- and 10-bit video format
components

Figure B-1 Rounding for Memory Drain

0123456789

8 bits/component

10 bits/component

LS
B

M
S

B

190

Appendix B: OCTANE Digital Video Nodes and Their Controls

When rounding is enabled, 10-bit data is converted to 8-bit data depending on the
rounding type and the randomized rounding mode. In simple rounding, if bit 1 is set,
then the value is rounded up (one is added to bit 2), otherwise it is rounded down.

Randomized rounding involves using a 22-bit shift register to generate two
pseudo-random bits to be added to bits 1 and 0 of the 10-bit component, which may or
may not result in a carry to bit 2.

The behavior of the shift register is dictated by the randomized rounding mode. With
repeated randomized rounding, the shift register is initialized to the same value at the
start of each odd (F1) field. Thus, the same pseudo-random sequence will be used for
each frame. However, in free-wheel mode, the shift register is never reset and the
sequence becomes totally random. The shift register is guaranteed never to become stuck
at zero.

Rounding occurs only on active lines and during the digital active line between, and not
including, SAV and EAV. The digital blanking data is not modified.

Table B-6 lists memory drain node controls. For all these controls, access is GS.

Table B-6 Memory Drain Node Controls

Control Default Type Use

VL_CAP_TYPE CAP_TYPE_
INTERLEAVED

intVal Specifies the type of video units—fields or frames—that the
application obtains from the ring buffer by the application.
Valid capture types are VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS, and VL_CAPTURE_FIELDS.
(See “Using VL_CAP_TYPE and VL_RATE” in Chapter 2 for
information on capture types.)

VL_FORMAT Dynamic intVal Specifies the type of video format to be produced. (See “Using
VL_FORMAT” in Chapter 2 for formats and explanations.)

VL_MEM

191

VL_PACKING Single link:
VL_PACKING_YVYU
_422_8

Dual link:

VL_PACKING_YUVA
_4444_8

intVal Specifies the bit order in which the video components are stored
in memory. The native packings supported by
VL_MGV_NODE_NUMBER_VGI_[1,2] are
VL_PACKING_YVYU_422_8 and
VL_PACKING_YVYU_422_10.

Supported non-native single link packings (implemented
automatically in software) are VL_PACKING_Y_8_P,
VL_PACKING_RGB_332_P, and VL_PACKING_RGB_8.

The native packings supported by
VL_MGV_NODE_NUMBER_VGI_DL are
VL_PACKING_YUVA_4444_8,
VL_PACKING_YUVA_4444_10,
VL_PACKING_AUYV_4444_8,
VL_PACKING_AUYV_4444_10, VL_PACKING_RGBA_8,
VL_PACKING_RGBA_10, VL_PACKING_ABGR_8,
VL_PACKING_ABGR_10, and VL_PACKING_AYU_AYV_10.

See “Using VL_PACKING” in Chapter 2 for the specifications
of each packing.

VL_OFFSET (0,0) xyVal Specifies the upper left corner of a video region to be output.
The coordinates are offsets of the upper left corner of the active
video and take precedence over the size. Therefore, in order to
accommodate the given offset, the size may be changed. A
VLControlChanged event is generated to inform interested
parties of any change in size.

Table B-6 (continued) Memory Drain Node Controls

Control Default Type Use

192

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_RATE Dynamic; depends on
timing and capture type

fractVal Specifies the rate at which video units (fields or frames
depending on capture type) are extracted from the ring buffer.
The video unit is repeated, or black is output, to achieve the
video output rate of 60 fields per second (NTSC) or 50 fields per
second (PAL). The VGI1 memory source nodes can consume
video units from system memory at any rate up to the video
standard rate.

For VL_CAPTURE_NONINTERLEAVED and VL_CAPTURE
FIELDS, valid rates are as follows:

NTSC: 1 through 60 units per second (must be multiple of fields
per frame for noninterleaved)

PAL: 1 through 50 units per second (must be multiple of fields
per frame for noninterleaved)

For VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, or
VL_CAPTURE_ODD_FIELDS, valid ranges are 1 through 30
units per second for NTSC and 1 through 25 units per second
for PAL.

VL_SIZE Dynamic; depends on
timing and capture type

xyVal Specifies the width (pixels) and height (lines) of the video data
contained within each ring buffer entry which—along with
VL_PACKING—determines the size in bytes of each ring buffer
entry and thus the transfer size. The width must be a multiple
of four pixels. The length must be a minimum of one line for
field capture types, and two lines for frames.

The specified size is constrained by both the maximum
allowable (as dictated by the device timing and capture type) as
well as the current offset position (VL_OFFSET). If the size is too
large, it is reduced. The offset is not changed. It is recommended
that VL_OFFSET be set before VL_SIZE.

VL_TIMING Dynamic; from device node intVal Retrieves the current device-wide video timing value. See
“VL_DEVICE” in this chapter for more details. Setting this
control on any other node type has no effect.

VL_ZOOM 1.0 fractVal Specifies the amount of scaling to be applied to the video before
it is transferred to memory. The VGI1 memory drain nodes have
no scaling ability. The only legal value is 1.0.

Table B-6 (continued) Memory Drain Node Controls

Control Default Type Use

VL_MEM

193

VL_MGV_BUFFER
_QUANTUM

1 intVal The granularity, or quantum, of data transfer required by the
application. The video data is padded at the end so that the size
of a field/frame is a multiple of
VL_MGV_BUFFER_QUANTUM. This control is intended for
applications that do I/O directly from the ring buffer, and may
consequently require the frame or field size to be a multiple of
the device block size. Direct I/O, for example, usually requires
that 512 bytes of data be transferred at a time.

VL_MGV
_DOMINANCE
_FIELD

VL_MGV_DOMINANCE
_F1

intVal Sets the field dominance mode, determining the order in which
the fields are read from memory. This control applies only to the
frame-oriented capture types (VL_CAPTURE_INTERLEAVED
and VL_CAPTURE_NONINTERLEAVED). See the discussion
of VL_MGV_DOMINANCE_FIELD in Table B-5 earlier in this
appendix for more details.

VL_MGV_DMA
_ERROR_RESTART

VL_MGV_DMA
_ERROR_RESTART_OFF

intVal If enabled (VL_MGV_DMA_RESTART_ON), a video transfer
continues when an error is encountered. Otherwise
(VL_MGV_DMA_RESTART_OFF), the video transfer is
aborted. This control covers three types of errors:

The reference video timing is not clean, resulting in short/long
lines, fields, or both. These errors are with respect to the
programmed size and offset.

The system GIO bus bandwidth was insufficient to transfer
video from system memory at video rates.

The video clock was interrupted.

VL_MGV_DMA
_ROUND_TYPE

VL_MGV_DMA_RND
_SMPLE

intVal Specifies type of rounding algorithm to be used. The simple
rounding method (VL_MGV_DMA_RND_SMPLE) rounds up
if bit 1 is one or rounds down if bit 1 is zero. The randomized
rounding method (VL_MGV_DMA_RND_RAND) makes the
decision whether or not to round up based on comparing the
two least-significant bits to a random sequence.

Table B-6 (continued) Memory Drain Node Controls

Control Default Type Use

194

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_SCREEN

This discussion divides the VL_SCREEN nodes into their manifestations as source and
drain.

VL_SCREEN Source

The OCTANE Digital Video option supports two screen source nodes: A and B.

The screen source nodes provide a means of using the graphics screen as a source of
video data. Both pixel and alpha information can be extracted from the screen source area
(although note that the alpha data can be sent only to the blender node’s alpha inputs).
For screen nodes:

• type for both screen drain nodes is VL_SRC

• kind for both screen drain nodes is VL_SCREEN

• number is VL_MGV_NODE_NUMBER_SCREEN_A
andVL_MGV_NODE_NUMBER_SCREEN_B, respectively

• ports are as follows:

– VL_IMPACT_PORT_ALPHA_SRC_[A,B], single-link 8-bit CCIR pixel stream
derived from a graphics window’s alpha contents

– VL_IMPACT_PORT_PIXEL_SRC_[A,B], single-link 8-bit CCIR pixel stream
derived from a graphics window’s pixel contents

VL_MGV_DMA
_RAND_ROUND
_MODE

VL_MGV_DMA
_RND_RAND
_RPT

intVal Determines whether or not the random sequence used for
randomized rounding is repeated. If the sequence is to be
repeated (VL_MGV_DMA_RND_RAND_RPT), then a shift
register is seeded to a fixed value at the start of each odd field.
Otherwise, the shift register free-wheels.

VL_MGV_DMA
_VIN_ROUND

VL_MGV_DMA_RND_OFF intVal Enables (VL_MGV_DMA_RND_ON) or disables
(VL_MGV_DMA_RND_OFF) rounding of 10-bit video data to
8 bits per component. Only the active area data is rounded.

Table B-6 (continued) Memory Drain Node Controls

Control Default Type Use

VL_SCREEN

195

Certain constraints apply to window positioning. If an application attempts to place the
window in an illegal location, the node attempts to place the window at a valid location.
The size of the window can also be changed. If either the position or size is changed, the
application is notified by a VLValueChanged event. If the window cannot be placed
anywhere on the screen, vlSetControl() returns VLBadValue.

Make sure your application meets these constraints:

• Windows A and B must not overlap vertically.

• The vertical distance between windows A and B must be greater than 12 pixels.

Table B-7 lists screen source node controls. For all these controls, access is GST.

Table B-7 Screen Source Node Controls

Control Default Type Use

VL_FREEZE FALSE boolVal When set to TRUE, this control freezes the contents of the screen drain.
Updates to the graphics framebuffer continue to be displayed on the
graphics display but are not reflected on the video output. If set to FALSE,
live output resumes.

VL_OFFSET (0, 0) xyVal Specifies the upper left corner of a subregion of the graphics area used to
produce the video output. The offset is relative to VL_ORIGIN. See also
VL_SIZE, which defines the size of the subregion.

VL_ORIGIN (0, 0) xyVal Specifies the upper left corner of a frame-size graphics area used to
produce the video. The origin is specified in X Window root-window
coordinates. VL_OFFSET and VL_SIZE can be used to specify a subregion
of this area.

VL_SIZE CCIR 601 525: 720x486

CCIR 601 625: 768x576

NTSC: 640x486

PAL: 768x576

xyVal Specifies the size of a subregion of the graphics area used to produce the
video output. See also VL_OFFSET, which specifies the location of the
subregion, and VL_ORIGIN, which maps a graphics window area to a
frame.

This control is applied before VL_ZOOM.

196

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_SCREEN Drain

The OCTANE Digital Video option supports three screen drain nodes: A, B, and C.

The screen drain nodes provide a means of displaying video data in a graphics window.
The OCTANE Digital Video device displays the video over a specified window,
obscuring any graphics contents that may have been there. Note that the OCTANE
Digital Video device does not place the video data into the framebuffer, but instead
injects data directly into the raster. Consequently, a glReadPixels() (OpenGL) or
lrectwrite() (IRIS GL) operation returns the contents that were drawn into the window,
not the video data. For the screen drain:

• type for all three screen drain nodes is VL_DRN

• kind for all three screen drain nodes is VL_SCREEN

• number is VL_MGV_NODE_NUMBER_SCREEN_A,
VL_MGV_NODE_NUMBER_SCREEN_B, and
VL_MGV_NODE_NUMBER_SCREEN_C, respectively

• port is VL_IMPACT_PORT_PIXEL_DRN_[A,B,C], single-link 8-bit drain of
CCIR-601 range video for display in a graphics window

To display live video using the graphics framebuffer, video frames should be captured
using one of the VGI1 memory drain nodes, and then drawn using GL or OpenGL
functions.

VL_ZOOM 1.0 fractVal Sets the amount of zoom that is applied to the graphics area before it is
converted to video. Valid values are 1 and 1/2.

Note: The 1/2 zoom value selects full-screen video output and should be
used only when the OCTANE Digital Video device is operating on
square-pixel timing (used with the OCTANE Compression option only).

VL_MGV_
DEINTERLAC
E

TRUE boolVal Specifies how the video fields are generated from the frame-size graphics
area with origin VL_ORIGIN. If this control is set to TRUE, a video field
line is produced by averaging the corresponding graphics frame lines. If
set to FALSE, the corresponding graphics line is selected depending on the
field dominance and is output verbatim.

Table B-7 (continued) Screen Source Node Controls

Control Default Type Use

VL_SCREEN

197

Screen drains B and C share the same physical framebuffer. When only drain B is used,
the framebuffer is 24 bits deep. When drains B and C are used, or when only C is used,
the framebuffer is split into two 12-bit logical framebuffers.

A 12- to 24-bit dithering is applied to produce the output of each window. While
windows B and C can accept data from different sources, the following controls affect
both nodes when applied to either:

• VL_SIZE

• VL_ZOOM

• VL_FREEZE

Window positioning has certain constraints. If an application attempts to place the
window in an illegal location, the node attempts to place the window at a valid location.
The size of the window can also be changed. If either the position or size is changed, the
application is notified by a VLValueChanged event. If the window cannot be placed
anywhere on the screen, vlSetControl() returns VLBadValue.

Make sure your application meets these constraints:

• Window A must not overlap B or C vertically, although it can overlap them
horizontally.

• Windows B and C must not overlap horizontally, although they can overlap
vertically.

• Window C must be to the right of window B by at least 45 pixels.

• The top of window C must be level with or below window B.

• The bottom of window B must be level with or higher than the bottom of window
C.

• The vertical distance between window A and window B or C must be greater than
12 pixels.

198

Appendix B: OCTANE Digital Video Nodes and Their Controls

Table B-8 lists screen drain node controls. For all these controls, access is GST, except
VL_MGV_DEINTERLACE and VL_WINDOW, which are GS.

Table B-8 Screen Drain Node Controls

Control Default Type Use

VL_FREEZE FALSE boolVal If set to TRUE, this control freezes the contents of the screen drain. If
set to FALSE, live video display resumes.

VL_OFFSET (0, 0) xyVal Specifies the upper left corner of a subregion of the video frame to be
displayed. See also VL_SIZE, which specifies the size of the subregion.
When used with VL_ZOOM, VL_OFFSET is applied after VL_ZOOM.

VL_ORIGIN (0, 0) xyVal Specifies the location on the screen where the video is displayed. The
window coordinates are X-Server window coordinates.

VL_SIZE CCIR 601 525: 720 x 486

CCIR 601 625: 768 x 576

NTSC: 640 x 486

PAL: 768 x 576

xyVal Specifies the size of a subregion of the video frame to be displayed. See
also VL_OFFSET, which specifies the location of the subregion. When
used with VL_ZOOM, VL_SIZE is applied after VL_ZOOM.

VL_WINDOW None intVal Specifies the window in which the video is displayed. The value set is
the X Server window ID, as returned by XtWindow(), for example.
The window ID cannot be changed while a screen drain is
transferring.

VL_ZOOM 1.0 fractVal Sets the amount of zoom applied to the video data before it is
displayed. Valid values are 7/1, 6/1, 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3,
1/4, 1/5, 1/6, 1/7, and 1/8. Zoom is applied before offset (pan) and
size.

VL_TEXTURE

199

VL_TEXTURE

The texture drain node enables you to use video as a graphics texture source. The texture
drain node can automatically generate mipmaps for use by the texture engine.

The texture node has two forms:

• single-link: VL_TEXTURE__NODE_NUMBER_TEXTURE

• dual-link: VL_TEXTURE_NODE_NUMBER_TEXTURE_DL

Chapter 9 provides information on using this node. For the texture drain node:

• type is VL_TEXTURE

• kind is VL_DRN

• number is VL_MGV_NODE_NUMBER_TEXTURE or
VL_MGV_NODE_NUMBER_TEXTURE_DL

VL_MGV_ALPHA
_NOT_PIXEL

TRUE boolVal Specifies whether the screen drain should take pixel or alpha data
from the source node. The preferred mechanism for specifying this
information is to use vlSetConnection(); this function overrides the
value of this control.

If VL_MGV_ALPHA_NOT_PIXEL is set to TRUE, the screen drain
takes input from the source’s alpha port. Otherwise, it takes input
from the source’s pixel port. If the source node has no alpha port, then
the pixel port is used.

VL_MGV
_DEINTERLACE

FALSE boolVal Sets deinterlacing method.

Converting video (which is interlaced) to graphics (which is
progressive scan) requires deinterlacing the image: that is, replacing
the missing lines with something. Two types of deinterlace methods
are available: replacing the missing lines with black lines (the simplest
method) or interpolating missing lines by simple filtering of adjacent
lines.

If set to TRUE, then the average of the adjacent lines is used to produce
a full-brightness deinterlaced screen. If set to FALSE, then the lines
contain black, producing a half-brightness window but with the same
interlacing as video.

Table B-8 (continued) Screen Drain Node Controls

Control Default Type Use

200

Appendix B: OCTANE Digital Video Nodes and Their Controls

For the texture drain node VL_TEXTURE__NODE_NUMBER_TEXTURE, ports are
VL_IMPACT_PORT_PIXEL_DRN_A and VL_IMPACT_PORT_PIXEL_DRN_B, which
are single-link pixel drains feeding the graphics texture engine.

For the texture drain node VL_TEXTURE__NODE_NUMBER_TEXTURE_DL, ports are

• VL_IMPACT_PORT_DUALLINK_DRN_A: dual-link pixel drain feeding the
graphics texture engine

• VL_IMPACT_PORT_PIXEL_DRN_A: single-link pixel drain feeding the graphics
texture engine

• VL_IMPACT_PORT_ALPHA_DRN_A: single-link alpha drain feeding the graphics
texture engine

Table B-9 summarizes controls for texture mapping. Access for all controls is GST.

Table B-9 Controls for Video Texture Mapping

Control Default Type Use

VL_CAP_TYPE VL_CAPTURE_FIELDS intVal Specifies type of field to capture. Valid capture types are
VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS, and
VL_CAPTURE_FIELDS. Note that texture nodes do not
use VL_CAPTURE_INTERLEAVED. See “Using
VL_CAP_TYPE and VL_RATE” in Chapter 2 for
information on capture types.

VL_OFFSET (0, 0) xyVal Specifies upper left corner of a subregion of the active
video region used to generate the texture. Offset is relative
to the upper left corner of the active video region. The
subregion is defined by VL_OFFSET and VL_SIZE.

VL_PACKING Single-link:
VL_PACKING_RGB_8

Dual-link:
VL_PACKING_RGBA_8

intVal Specifies packing format for texture node. Valid values for
single-link transfers are VL_PACKING_RGB_8 and
VL_PACKING_RGBA_8. The only valid value for
dual-link transfers is the default value

VL_RATE NTSC: 60 fields/second

PAL: 50 fields/second

fractVal Specifies number of textures generated per second. This
value is always equal to the maximum number of textures
that can be generated per second based on the current
value of VL_CAP_TYPE.

VL_TEXTURE

201

VL_SIZE Dynamic xyVal Specifies size of subregion of active video region used to
generate the texture. The location of the subregion is
specified by VL_OFFSET.

VL_ZOOM 1.0 fractVal Specifies scaling (for texture nodes, decimation only)
applied to the video subregion used as a texture source.
The video subregion is defined by VL_OFFSET and
VL_SIZE. The scale factor along each axis of the subregion
is a product of the zoom value and the aspect value for
that axis.

VL_MGV_DOMINANCE
_FIELD

VL_MGV
_DOMINANCE_F1

intVal Specifies field dominance when VL_CAP_TYPE is
VL_CAPTURE_NONINTERLEAVED. Valid values are
VL_MGV_DOMINANCE_F1 and
VL_MGV_DOMINANCE_F2.

VL_MGV_HASPECT 1.0 fractVal Specifies scaling applied to the video subregion along the
horizontal axis. The overall scale factor horizontally is the
product of this value and the VL_ZOOM value.

VL_MGV_VASPECT 1.0 fractVal Specifies scaling applied to the video subregion along the
vertical axis. The overall scale factor vertically is the
product of this value and the VL_ZOOM value.

VL_MGV_TEXTURE
_ROUND_MODE

VL_MGV_TEXTURE
_ROUND_8BIT

intVal Specifies the type of rounding to use to convert from 10- to
8-bit input. Valid values are
VL_MGV_TEXTURE_ROUND_8BIT,
VL_MGV_TEXTURE_ROUND_RNG, and
VL_MGV_TEXTURE_ROUND_RNGFRM.

VL_MGV_TEXTURE
_MIPMAP_MODE

VL_MGV_TEXTURE
_MIPMAP_OFF

intVal Specifies whether mipmap mode is enabled or not. Valid
values are VL_MGV_TEXTURE_MIPMAP_OFF and
VL_MGV_TEXTURE_MIPMAP_ON.

Table B-9 (continued) Controls for Video Texture Mapping

Control Default Type Use

202

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_VIDEO

This discussion divides the VL_VIDEO node into its manifestations as source and drain.

VL_VIDEO Source

The OCTANE Digital Video option supports three digital video source nodes: 1, 2, and
dual-link.

The video source nodes correspond to two video input connectors available on the
OCTANE Digital Video device. These connectors can be used separately to feed
CCIR-601 video to the OCTANE Digital Video option, or as a dual link to supply RP-175
RGB or YUV 4:4:4:4 or 4:2:2:4 video. When used in dual-link mode, the connector labelled
1 is used for pixel input while the connector labelled 2 is used for alpha input.

VL_MGV_TEXTURE_INPUT
_LINK

VL_MGV_TEXTURE
_INPUT_LINK_A

intVal Specifies which input link sends pixel data to the texture
engine. This command is available only in single-link
mode when autoswapping is off. Valid values are
VL_MGV_TEXTURE_INPUT_LINK_A and
VL_MGV_TEXTURE_INPUT_LINK_B.

VL_MGV_TEXTURE
_AUTOSWAP

VL_MGV_TEXTURE
_AUTOSWAP_OFF

intVal Specifies whether to swap the input automatically to the
texture engine. When autoswapping is enabled, the input
to the texture engine alternates between the two texture
drain ports after each capture into texture memory. If
VL_CAP_TYPE is set to
VL_CAPTURE_NONINTERLEAVED, swapping occurs
after frame transfers. This control is available only in
single-link mode. Valid values are
VL_MGV_TEXTURE_AUTOSWAP_OFF and
VL_MGV_TEXTURE_AUTOSWAP_ON.

Table B-9 (continued) Controls for Video Texture Mapping

Control Default Type Use

VL_VIDEO

203

The uses of the connectors in single- or dual-link modes are mutually exclusive. When
either of the single-linked nodes are in use, the dual-linked node is unavailable. Similarly,
if the dual-link node is in use, both single-linked nodes are considered to be in use.
Mutual exclusion takes place when paths are set up with stream usage VL_SHARE or
VL_LOCK. Mutual exclusion conditions are not applied to paths with stream usage
VL_READ_ONLY. For the video source:

• type for all three screen drain nodes is VL_SRC

• kind for all three screen drain nodes is VL_VIDEO

• number is VL_MGV_NODE_NUMBER_VIDEO_1
VL_MGV_NODE_NUMBER_VIDEO_2, and
VL_MGV_NODE_NUMBER_VIDEO_DL, respectively

• ports are as follows:

– video source nodes 1 and 2: VL_IMPACT_PORT_PIXEL_SRC_A. single-link
serial digital video input

– dual-link video source node: VL_IMPACT_PORT_DUALLINK_SRC_A -
RP-175 style RGB or YUV dual-link serial digital video

Table B-10 lists video source node controls. For all these controls, access is GST, except
VL_FORMAT, which is GS.

Table B-10 Video Source Node Controls

Control Default Type Use

VL_FREEZE FALSE boolVal Freezes the input video stream. Because the OCTANE Digital
Video device does not support frozen inputs, this control can be
set only to FALSE.

VL_FORMAT VL_FORMAT_DIGITAL_
COMPONENT_SERIAL
(single-link)

VL_FORMAT_DIGITAL_
COMPONENT_DUAL_
SERIAL (dual-link)

intVal Specifies the format of the incoming video. Valid values for the
single-link nodes are
VL_FORMAT_DIGITAL_COMPONENT_SERIAL and
VL_FORMAT_RAW_DATA.

Valid values for the dual-link node are
VL_FORMAT_DIGITAL_COMPONENT_DUAL_SERIAL and
VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL. (See
“Using VL_FORMAT” in Chapter 2 for format explanations.)

VL_OFFSET (0, 0) xyVal Pans within the video. The OCTANE Digital Video source nodes
support an offset of (0, 0) only.

204

Appendix B: OCTANE Digital Video Nodes and Their Controls

VL_VIDEO Drain

The OCTANE Digital Video option supports three digital video drain nodes: 0, 1, and 2.

The video drain nodes correspond to two video output connectors available on the
OCTANE Digital Video device. These connectors can be used separately to output
CCIR-601 video from the OCTANE Digital Video option, or as a dual link to output
RP-175 RGB or YUV 4:4:4:4 or 4:2:2:4 video. When used in dual-link mode, the connector
labelled 1 is used for pixel output while the connector labelled 2 is used for alpha output.

VL_SIZE Dynamic xyVal Reports the width and height of the active video region. The
values are fixed for each timing mode:

CCIR 525: 720 x 486

CCIR 625: 720 x 576

NTSC square pixel: 640 x 486

PAL square pixel: 768 x 576

Square pixel modes are used with the OCTANE Compression
option only. Timing is specified through the VL_TIMING control
on the device node.

VL_MGV_INPUT
_8BIT

FALSE boolVal Enables 10-bit to 8-bit truncating when 10-bit video input is
supplied. Internally, the OCTANE Digital Video option treats all
video streams as 10-bit. As a result, when this control is set to
TRUE, the lower two bits are forced to zero. If set to FALSE, the
input stream passes unmodified. If the input video contains 8-bit
data, then it is left-shifted two bits to produce a 10-bit value. The
lower two bits contain zeros.

Table B-10 (continued) Video Source Node Controls

Control Default Type Use

VL_VIDEO

205

The uses of the connectors in single or dual-link modes are mutually exclusive. When
either of the single-linked nodes are in use, the dual-linked node is unavailable. Similarly,
if the dual-link node is in use, both single-linked nodes are considered to be in use.
Mutual exclusion takes place when paths are set up with stream usage VL_SHARE or
VL_LOCK. Mutual exclusion conditions are not applied to paths with stream usage
VL_READ_ONLY. For the video drain:

• type for all three video drain nodes: VL_DRN

• kind for all three video drain nodes: VL_VIDEO

• number: VL_MGV_NODE_NUMBER_VIDEO_1
VL_MGV_NODE_NUMBER_VIDEO_2, and
VL_MGV_NODE_NUMBER_VIDEO_DL, respectively

• ports:

– video source nodes 1 and 2: VL_IMPACT_PORT_PIXEL_SRC_A: single-link
serial digital video input

– dual-link video source node: VL_IMPACT_PORT_DUALLINK_SRC_A: RP-175
style RGB or YUV dual-link serial digital video

Table B-11 lists video drain node controls. For all these controls, access is GST, except
VL_FORMAT, which is GS.

Table B-11 Video Drain Node Controls

Control Default Type Use

VL_FREEZE FALSE boolVal If set to TRUE, the output of the drain node is frozen. For
dual-link, both outputs are frozen simultaneously. Use the
VL_MGV_OUTPUT_DL_SELECT_FREEZE control to freeze
specific links of the dual-link nodes.

Note that VL_MGV_OUTPUT_FSYNC must be set to TRUE in
order for the video to freeze.

VL_FORMAT VL_FORMAT_DIGITAL_
COMPONENT_SERIAL
(single-link)

VL_FORMAT_DIGITAL_
COMPONENT_DUAL_
SERIAL (dual-link)

intVal Specifies the format of the incoming video. Valid values for the
single-link nodes are
VL_FORMAT_DIGITAL_COMPONENT_SERIAL and
VL_FORMAT_RAW_DATA (arbitrary 8-bit data).

Valid values for the dual-link node are
VL_FORMAT_DIGITAL_COMPONENT_DUAL_SERIAL and
VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL.

VL_OFFSET (0, 0) xyVal Sets offset; the OCTANE Digital Video drain nodes support an
offset of (0, 0) only.

VL_SIZE Dynamic xyVal Reports the width and height of the active video region. The
values are fixed for each timing mode:

CCIR 525: 720 x 486

CCIR 625: 72 0x 576

NTSC square pixel: 640 x 486

PAL square pixel: 768 x 576

Square pixel modes are used with the OCTANE Compression
option only. Timing is specified through the VL_TIMING
control on the device node.

VL_MGV_ALPHA
_NOT_PIXEL

FALSE boolVal If the node supplying the video drain node has both pixel and
alpha outputs, this control selects whether the alpha (TRUE) or
pixel (FALSE) channel is selected.

This control is provided only for compatibility with Galileo
Video applications. It is recommended that the application use
vlSetConnection() to specify the output port.

VL_MGV_OUTPUT
_BLANK

Persistent boolVal If this control is set to TRUE, the video output is blanked; that
is, video black is output on the serial digital port. If set to
FALSE, live video is displayed.

VL_MGV_OUTPUT_FSYNC must be set to TRUE for this
control to have any effect.

VL_MGV_OUTPUT
_CHROMA

Persistent boolVal If set to TRUE, the chroma portion of a video stream is passed
through. If set to FALSE, chroma is blanked.

VL_MGV_OUTPUT_FSYNC must be set to TRUE for this
control to have any effect.

VL_MGV_OUTPUT
_FSYNC

Persistent boolVal If set to TRUE, this control enables the output synchronization
hardware.

The output synchronizer must be enabled for the VL_FREEZE,
VL_MGV_OUTPUT_BLANK, VL_MGV_OUTPUT_HPHASE,
or VL_MGV_OUTPUT_CHROMA controls to have any effect.

Table B-11 (continued) Video Drain Node Controls

Control Default Type Use

VL_VIDEO

207

VL_MGV_OUTPUT
_HPHASE

0xC00 intVal Specifies the horizontal phase of the video output with respect
to the video input. It is a 12-bit unsigned integer that
increments in steps of the pixel clock (typically 74 nsec). The
output occurs later in time as the value of this control
increases.

This control has a range of 1 to 0xFFF, which can advance the
output by slightly more than three lines or delay the output by
slightly more than one line. The default value 0xC00 makes the
output match the timing of the video input. The value 0 is
illegal.

VL_MGV_OUTPUT_FSYNC must be set to TRUE for this
control to have any effect.

VL_MGV_DL
_SELECT_BLANK

VL_MGV_DL_SELECT
_ALL

intVal Selects the channels (pixel, alpha, both) on the dual-link node
to blank. Valid values are VL_MGV_DL_SELECT ALPHAL
(alpha channel only), VL_MGV_DL_SELECT_PIXEL (pixel
channel only), and VL_MGV_DL_SELECT_AL (pixel and
alpha channels).

VL_MGV_OUTPUT
_DL_SELECT
_CHROMA

VL_MGV_DL_SELECT
_ALL

intVal Selects the channels (pixel, alpha, both) on the dual-link node
on which chroma should be blanked. Valid values are the same
as for VL_MGV_OUTPUT_DL_SELECT_BLANK.

VL_MGV_OUTPUT
_DL_SELECT
_FREEZE

VL_MGV_DL_SELECT
_ALL

intVal Selects the channels (pixel, alpha, both) on the dual-link node
to freeze. If both channels are selected, the freeze is performed
atomically on both channels. Valid values are the same as for
VL_MGV_OUTPUT_DL_SELECT_BLANK.

VL_MGV_OUTPUT
_DL_SELECT
_FSYNC

VL_MGV_DL_SELECT
_ALL

intVal Selects the output on the dual-link node synchronizers to
enable or disable. Valid values are the same as for
VL_MGV_OUTPUT_DL_SELECT_BLANK.

Table B-11 (continued) Video Drain Node Controls

Control Default Type Use

209

Appendix C

C. OCTANE Digital Video Color-Space Conversions

The OCTANE Digital Video option supports three native color spaces—RGB, YUV, and
CCIR. The choice of color space is determined by the external equipment for video I/O
connections, by the system for connections to the graphics subsystem, and by application
software for transfers to and from system memory. Application software can avoid all
color-space conversions during video I/O. The OCTANE Digital Video option can
translate between YUV and RGB with high accuracy in real time.

Understanding the capabilities of the OCTANE Digital Video option to perform
color-space conversions and the results of these conversions allows developers and end
users to maximize the quality of their output. This appendix explains

• “OCTANE Digital Video Color Spaces”

• “Mathematical Operations Performed During Conversions”

• “Implications of Color-Space Conversions”

• “Example Color Conversions”

OCTANE Digital Video Color Spaces

The OCTANE Digital Video option uses a minimum of ten bits of precision for each color
component at all steps of its internal pipeline. Representations for the three native
internal color representations are explained separately in this section.

210

Appendix C: OCTANE Digital Video Color-Space Conversions

RGB

RGB is the color space used by the graphics subsystem; screen sources and drains and
some memory transfers use this color space. RGB has the most accurate representation
of visible colors, because all possible combinations are valid. This color space does not
support superblack or other nonvisible color values. Each component is represented by
a 10-bit value between 0 and 1023. Black has the value [0,0,0], and white is
[1023,1023,1023].

When converting to RGB, each resulting RGB component is clamped to the range
[0..1023]. It is possible to overflow the clamping mechanism when dramatically illegal
colors are input. Overflows occur only when the resulting red, green, or blue value is
greater than 2047 or less than -2048.

Note: Do not use 4:2:2 coding with RGB data.

YUV

The YUV color space is obtained from RGB by the matrix transformation in equation 1.

Equation 1

The V, Y, and U values range from [0..1023]. Black has the VYU value [512,0,512]. White
has the value [512,1023,512].

This color space is used by the Betacam, M-II, and YUV formats. With proper filtering,
4:2:2 coding can be used.

0.500 0.419– 0.081–

0.299 0.587 0.114

0.169– 0.331– 0.500

R
G
B

×
512

0

512

+
V
Y
U

=

Mathematical Operations Performed During Conversions

211

CCIR

The CCIR color space is obtained from RGB by the matrix transformation in equation 2.

Equation 2

The Cr, Y, and Cb values are clamped to the range [4..1019]. Black has the CrYCb value
[512,64,512]. White has the value [512,940,512].

This color space is used by the component digital formats. With proper filtering, 4:2:2
coding can be used.

Mathematical Operations Performed During Conversions

The OCTANE Digital Video option can process and store each color space explained in
the previous section. For best precision, the input color space should be maintained
through the processing path. For example, an application that implements DDR
functionality could choose to store data in the native representation of the input signal:
Betacam data could be stored as YUV, input from an RGB camera as RGB, and data from
a D1 deck as CCIR. If the application works in this way, no conversions are performed
and the data is passed directly through the system. In particular, CCIR601 data coming
from a D1 deck is bit-accurate in this case.

However, it might not be desirable for the application to work this way. If that is the case,
the application can use all of the conversion, decimation and interpolation capabilities of
the OCTANE Digital Video option to perform real-time color space and 4:2:2 ⇔ 4:4:4
conversions.

0.500 0.419– 0.081–

0.299 0.587 0.114

0.169– 0.331– 0.500

R
G
B

×

896
1023

876
1023

896
1023

512

64

512

+×
Cr
Y

Cb

=

212

Appendix C: OCTANE Digital Video Color-Space Conversions

Conversions are performed only when absolutely required. Each incoming stream can be
converted from its current color space to any other color space. Conversions can also be
performed when going to graphics and digital video outputs.

The output color space controls conversions. For example, if you blend a CCIR stream
from a digital video input with an RGB stream from graphics and send the result to the
digital video output, the RGB signal is converted to CCIR before the blend occurs. The
CCIR stream is not converted. If you sent the same blend to a Betacam output, both
streams are converted to YUV before the blend.

Implications of Color-Space Conversions

The two major concerns when performing conversions from one color space to another
are precision and range.

Precision of Color Conversions Done by the OCTANE
Digital Video Option

The OCTANE Digital Video option stores colors at all steps in its pipeline with a
minimum of 10 bits of precision. When performing color-space conversions, the data is
converted to 12-bit signed values before it is passed to the matrix multipliers. The matrix
multipliers have 15-bit coefficients and 26-bit accumulators. The most significant 16 bits
of the matrix-multiplication result are passed on to additional hardware, which applies
any needed offsets and then clamps to the proper range.

Silicon Graphics, Inc., has verified both through simulation and hardware testing that the
maximal error for two conversions (RGB to CCIR to RGB) is four units out of 1024. The
matrix coefficients have been biased to round slightly high rather than slightly low to
avoid the type of problems that can otherwise easily occur in the blue component.

Conversions between RGB and YUV are more accurate (a maximum error of 3 in 1024
after two conversions), since data is not as compressed in the YUV representation.

Implications of Color-Space Conversions

213

Range Issues For Color Conversions Done by Any Means

Different color spaces allocate the available bits of precision in different ways. The RGB
space is designed to maximize the accuracy of color representations. The YUV and CCIR
color spaces are designed to strongly uncouple chrominance and luminance information.

Since RGB represents visible colors, it is contained inside the YUV and CCIR spaces. The
CCIR color space also has a slight amount of additional headroom that was intended to
prevent aliasing artifacts when Finite Impulse Response filtering operations are
performed on the digital data.

Whenever a conversion operation is performed between CCIR and RGB or between
CCIR and YUV, the colors that are not representable in the destination color space must
be somehow mapped into colors that are representable. The usual way to do this is to
clamp each component to the available range in the destination color space. Other
methods, such as projecting towards the center of the representable space, might produce
results that appear to be better in some cases, but are not feasible to implement in
hardware.

When converting from CCIR to YUV, the axes of the two spaces are parallel, so the result
of this clamping operation is very predictable. Superblack and superwhite are clipped to
black and white, respectively, and oversaturated colors might also be clipped.

When converting from RGB to YUV or CCIR, clamping never occurs, because all RGB
colors are representable in those color spaces.

When converting from CCIR or YUV to RGB, the results of clamping are much less
intuitive, because these conversions involve rotation and scaling operations, with the
result that the component axes in one color space do not align with those in the other.

214

Appendix C: OCTANE Digital Video Color-Space Conversions

Figure C-1 RGB Cube in CCIR Space

Figure C-1 shows the RGB color cube inside the CCIR color space. The volume contained
within the outer (CCIR) cube, but outside the inner (RGB) cube, represents “illegal”
colors that cannot be displayed.

As shown in the figure, the CCIR color space allocates almost three quarters of its
available bit combinations to illegal colors. When any of these color values are converted
to RGB, the result is clamped to the edge of the RGB cube. Since the inner cube contains
the displayable colors, this clamping operation has no impact on them.

Cr

Y

Cb

Black

White

Red

Green

Blue

Yellow

Magenta

Cyan

Implications of Color-Space Conversions

215

Figure C-2 Color Cube With Luminance/Chrominance Ramp Vector

If CCIR is converted to RGB and back to CCIR using certain types of test signals, the
output can appear to be vastly wrong. A common and extreme version of this is the
signal that simultaneously ramps Cr, Y, and Cb from the minimum to maximum possible
values.

In Figure C-2, the heavy diagonal line passing through the figure is the set of colors in the
luma/chroma ramp test signal. As shown in the figure, a large portion of this pattern is
outside the RGB cube. In fact, over two thirds of this pattern is outside the displayable
range.

Cr

Y

Cb
Black

White

Red

Green

Blue

Yellow

Magenta

Cyan

216

Appendix C: OCTANE Digital Video Color-Space Conversions

Example Color Conversions

This section includes example graphs that display the results of converting from CCIR to
RGB and back. They show the same type of result you would see if you brought a digital
signal into the OCTANE Digital Video option, passed it through a screen or memory
node using RGB format, and sent it back out to the digital output.

These effects do not occur if you simply pass digital data through the OCTANE Digital
Video board using the CCIR format. In these cases, the output matches the input on a
bit-by-bit basis.

Note: These examples show conversion from CCIR to full-range RGB, without use of the
constant-hue algorithm.

Example 1: 100% Color Bars

This example, like the other two in this section, consists of three graphs. Each graph
displays the input CCIR pattern, intermediate RGB pattern, and output CCIR pattern for
a given color component. Figure C-3 shows the red and Cr components, Figure C-4 the
green and Y components, and Figure C-5 the blue and Cb components. In this example
and the others, if the input and output CCIR values are identical, only two lines are
shown.

In this example, conversion to RGB and back has no effect on the image. The 100%
amplitude color bar signal lies within the visible range and therefore is perfectly
represented in RGB.

Example Color Conversions

217

Figure C-3 100% Color Bars: Cr/R

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Cr

RGB R

Output Cr

218

Appendix C: OCTANE Digital Video Color-Space Conversions

Figure C-4 100% Color Bars: Y/G

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Y

RGB G

Output Y

Example Color Conversions

219

Figure C-5 100% Color Bars: Cb/B

0.60

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.80 1.00

X x 10 3

Input Cb

RGB B

Output Cb

220

Appendix C: OCTANE Digital Video Color-Space Conversions

Example 2: Luminance Ramp

In this example, the conversion to RGB and back affects only the superblack and
superwhite regions. All luminance values that are blacker than black are clamped to
black; all values whiter than white are clamped to white.

In the RGB color space, each component ramps from 0 to 1023 as the input luminance
ramps from 64 (black) to 940 (white). This test pattern lies along the Y axis of the color
cubes.

Example Color Conversions

221

Figure C-6 Luminance Ramp: Cr/R

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Cr

RGB R

Output Cr

222

Appendix C: OCTANE Digital Video Color-Space Conversions

Figure C-7 Luminance Ramp: Y/G

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Y

RGB G

Output Y

Example Color Conversions

223

Figure C-8 Luminance Ramp: Cb/B

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 103

Input Cb

RGB B

Output Cb

224

Appendix C: OCTANE Digital Video Color-Space Conversions

Example 3: Simultaneous Chroma/Luma Ramp

This example is the most extreme of the three, and shows how surprising the results of
color conversions can be when arbitrary synthetic CCIR inputs are used.

Each CCIR input signal ramps from 0 to 1023 simultaneously. As mentioned in the first
example, over two thirds of this pattern lies outside the legal range. The portion within
the legal range is represented exactly, but the region outside is clamped to the RGB cube
surface.

Example Color Conversions

225

Figure C-9 Chroma/Luma Ramp: Cr/R

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 103

Input Cr

RGB R

Output Cr

226

Appendix C: OCTANE Digital Video Color-Space Conversions

Figure C-10 Chroma/Luma Ramp: Y/G

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Y

RGB G

Output Y

Example Color Conversions

227

Figure C-11 Chroma/Luma Ramp: Cb/B

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Cb

RGB B

Output Cb

229

Glossary

active video

The portion of the video signal containing the chrominance or luminance information; all
video lines not occurring in the vertical blanking signal containing the chrominance or
luminance information. See also chrominance, composite video, horizontal blanking,
luminance, and video waveform.

aliasing

One of several types of digital video artifact appearing as jagged edges. Aliasing results
when an image is sampled that contains frequency components above the Nyquist limit
for the sampling rate. See also Nyquist limit.

alpha

See alpha value.

alpha blending

Overlaying one image on another so that some of the underlying image may or may not
be visible. See also key.

alpha plane

A bank of memory that stores alpha values; the values are 8 bits per pixel.

alpha register

Registers that stores an alpha value.

alpha value

The component of a pixel that specifies the pixel’s opacity, translucency, or transparency.
The alpha component is typically output as a separate component signal.

antialiasing

Filtering or blending lines of video to smooth the appearance of jagged edges in order to
reduce the visibility of aliasing.

230

Glossary

APL

Average Picture Level, with respect to blanking, during active picture time, expressed as
a percentage of the difference between the blanking and reference white levels. See also
blanking level.

artifact

In video systems, an unnatural or artificial effect that occurs when the system reproduces
an image; examples are aliasing, pixellation, and contouring.

aspect ratio

The ratio of the width to the height of an electronic image. For example, the standard
aspect ratio for television is 4:3.

back porch

The portion of the horizontal pedestal that follows the horizontal synchronizing pulse.
In a composite signal, the color burst is located on the back porch, but is absent on a YUV
or GBR signal. See also blanking level, video waveform.

Betacam

A component videotape format developed by Sony® that uses a Y/R-Y/B-Y video signal
and 1/2-inch tape.

Betacam format

Advanced form (Superior Performance) of Betacam using special metal tape and offering
longer recording time (90 minutes instead of 30 minutes) and superior performance.

bit map

A region of memory that contains the pixels representing an image. The pixels are
arranged in the sequence in which they are normally scanned to display the image.

bitplane

One of a group of memory arrays for storing an image in bitmap format on a workstation.
The workstation reads the bitplanes in parallel to re-create the image in real time.

black burst

Active video signal that has only black in it. The black portion of the video signal,
containing color burst. See also color burst.

Glossary

231

black level

In the active video portion of the video waveform, the voltage level that defines black.
See also horizontal blanking and video waveform.

blanking level

The signal level at the beginning and end of the horizontal and vertical blanking
intervals, typically representing zero output (0 IRE). See also video waveform and IRE
units.

blend

To combine proportional amounts of a 3D graphic over a clip frame by frame, pixel by
pixel, with the alpha determining how they are combined. See also key, frame, and alpha.

breezeway

In the horizontal blanking part of the video signal, the portion between the end of the
horizontal sync pulse and the beginning of the color burst. See also horizontal blanking
and video waveform.

broad pulses

Vertical synchronizing pulses in the center of the vertical interval. These pulses are long
enough to be distinguished from other pulses in the signal; they are the part of the signal
actually detected by vertical sync separators.

Bruch blanking

In PAL signals, a four-field burst blanking sequence used to ensure that burst phase is the
same at the end of each vertical interval.

burst, burst flag

See color burst.

burst lock

The ability of the output subcarrier to be locked to input subcarrier, or of output to be
genlocked to an input burst.

232

Glossary

burst phase

In the RS-170A standard, burst phase is at field 1, line 10; in the European PAL standards,
it is at field 1, line 1. Both define a continuous burst waveform to be in phase with the
leading edge of sync at these points in the video timing. See also vertical blanking interval
and video waveform.

B-Y (B minus Y) signal

One of the color difference signals used on the NTSC and PAL systems, obtained by
subtracting luminance (Y) from the blue camera signal (B). This signal drives the
horizontal axis of a vectorscope. Color mixture is close to blue; phase is 180 degrees
opposite of color sync burst; bandwidth is 0.0 to 0.5 MHz. See also luminance, R-Y signal,
Y signal, and Y/R-Y/B-Y.

C signal

Chrominance; the color portion of the signal. For example, the Y/C video format used
for S-VHS has separate Y (luminance) and C (chrominance) signals. See also chrominance.

CAV

Component Analog Video; a generic term for all analog component video formats, which
keep luminance and chrominance information separate. D1 is a digital version of this
signal. See also component video.

C format

Type C, or one-inch reel-to-reel videotape machine; an analog composite recording
format still used in some broadcast and postproduction applications.

CCIR 601

The digital interface standard developed by the CCIR (Comite’ Consultatif International
de Radiodiffusion, International Radio Consultative Committee) based on component
color encoding, in which the luminance and chrominance (color difference) sampling
frequencies are related in the ratio 4:2:2: four samples of luminance (spread across four
pixels), two samples of CR color difference, and two samples of CB color difference. The
standard, which is also referred to as 4:2:2, sets parameters for both 525-line and 625-line
systems.

chroma

See chrominance.

Glossary

233

chroma keying

Overlaying one video source on another by choosing a key color. For example, if chroma
keying is on blue, video source A might show through video source B everywhere the
color blue appears in video source B. A common example is the TV weather reporter
standing in front of the satellite weather map. The weather reporter, wearing any color
but blue, stands in front of a blue background; keying on blue shows the satellite picture
everywhere blue appears. Because there is no blue on the weatherperson, he or she
appears to be standing in front of the weather map.

chroma signal

A 3.58 MHz (NTSC) or 4.43 MHz (PAL) subcarrier signal for color in television. SECAM
uses two frequency-modulated color subcarriers transmitted on alternate horizontal
lines; SCR is 4.406 MHz and SCB is 4.250 MHz.

chrominance

In an image reproduction system, a separate signal that contains the color information.
Black, white, and all shades of gray have no chrominance and contain only the luminance
(brightness) portion of the signal. However, all colors have both chrominance and
luminance.
Chrominance is derived from the I and Q signals in the NTSC television system and the
U and V signals in the PAL television system. See also luminance.

chrominance signal

Also called the chroma, or C, signal. The high-frequency portion of the video signal
(3.58 MHz for NTSC, 4.43 MHz for PAL) color subcarrier with quadrature modulation by
I (R-Y) and Q (B-Y) color video signals. The amplitude of the C signal is saturation; the
phase angle is hue. See also color subcarrier, hue, and saturation.

client

In the context of the Video Library, an application that has connected to the video
daemon to perform video requests.

clip

Segment of video, audio, or both. An image is a clip that is one frame long.

234

Glossary

color bars

A test pattern used by video engineers to determine the quality of a video signal,
developed by the Society of Television and Motion Picture Engineers (SMPTE). The test
pattern consists of equal-width bars representing black, white, red, green, blue, and
combinations of two of the three RGB values: yellow, cyan, and magenta. These colors
are usually shown at 75% of their pure values. Figure Gl-1 diagrams the color bars.

Figure Gl-1 SMPTE Color Bars (75%)

color burst

Also called burst and burst flag. The segment of the horizontal blanking portion of the
video signal that is used as a reference for decoding color information in the active video
part of the signal. The color burst is required for synchronizing the phase of 3.58 MHz
oscillator in the television receiver for correct hues in the chrominance signal.
In composite video, the image color is determined by the phase relationship of the color
subcarrier to the color burst. The color burst sync is 8 to 11 cycles of 3.58 MHz color
subcarrier transmitted on the back porch of every horizontal pulse; the hue of the color
sync phase is yellow-green.

Blue Black100%
WhiteBlue

75
%

 w
hi

te

Ye
llo

w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

e

(lo
ok

s
gr

ay
)

Glossary

235

Figure Gl-2 diagrams the relationship of the color burst and the chrominance signal. See
also color subcarrier and video waveform.

Figure Gl-2 Color Burst and Chrominance Signal

color difference signals

Signals used by color television systems to convey color information so that the signals
go to zero when the picture contains no color; for example, unmodulated R-Y and B-Y, I
and Q, U, and V.

color-frame sequence

In NTSC and S-Video, a two-frame sequence that must elapse before the same
relationship between line pairs of video and frame sync repeats itself. In PAL, the
color-frame sequence consists of four frames.

color space

A color component encoding format defined by three color components, such as R, G,
and B or Y, U, and V.

t

t

Zero
phase

reference

Zero
phase

reference

Color burst

C signal

0
180°

90° 57° 147°

(R - Y) (B - Y)
I

Q

236

Glossary

color subcarrier

A portion of the active portion of a composite video signal that carries color information,
referenced to the color burst. The color subcarrier’s amplitude determines saturation; its
phase angle determines hue. Hue and saturation are derived with respect to the color
burst. Its frequency is defined as 3.58 MHz in NTSC and 4.43 MHz in PAL. See also color
burst.

complementary color

Opposite hue and phase angle from a primary color. Cyan, magenta, and yellow are
complementary colors for red, green, and blue, respectively.

comb filtering

Process that improves the accuracy of extracting color and brightness portions of the
signal from a composite video source.

component video

A color encoding method for the three color signals—R, G, and B; Y, I, and Q; or Y, U, and
V—that make up a color image. See also RGB, YIQ, and YUV.

component video signals

A video signal in which luminance and chrominance are send as separate components,
for example:

• RGB (basic signals generated from a camera)

• YIQ (used by the NTSC broadcasting standard)

• Y/R-Y/B-Y (used by Betacam and M-II recording formats and SECAM
broadcasting standard)

• YUV (subset of Y/R-Y/B-Y used by the PAL broadcasting standard)
Separating these components yields a signal with a higher color bandwidth than that of
composite video.
Figure Gl-3 depicts video signals for one horizontal scan of a color-bar test pattern. The
RGB signals change in relation to the individual colors in the test pattern. When a
secondary color is generated, a combination of the RGB signals occurs. Since only the
primary and secondary colors are being displayed at 100% saturation, the R, G, and B
waveforms are simply on or off. For more complex patterns of color, the individual R, G,
and B signals would be varying amplitudes in the percentages needed to express that
particular color.
See also composite video, RGB, YUV, Y/R-Y/B-Y, and YIQ.

Glossary

237

Figure Gl-3 Component Video Signals

W
hi

te

Y
el

lo
w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

e

One horizontal
scanning line

1.0

0

1.0

0

0.89 0.70 0.59 0.41 0.30 0.11

0
+

- 0.31 0.21
0.52

0.52
0.21 0.31

0
+

-

0.32

0.60
0.28

0.28
0.60

0.32

0
+

-

0.45 0.63 0.59 0.63 0.450.59
3.58 MHz
subcarrier

H blanking
period begins

H sync pulse

1.0
1.34 1.33 1.18 1.00 0.93

0.56
0.44

0.07 0 -0.18
-0.34

3.58 MHz
color burst

1.0

0

Time

238

Glossary

compositing

Combining graphics with another image.

composite video

A color encoding method or a video signal that contains all of the color, brightness, and
synchronizing information in one signal. The chief composite television standard signals
are NTSC, PAL, and SECAM. See also NTSC, PAL, and SECAM.

cross-chrominance, cross-luminance

Also known as cross-color, hanging dots, dot crawl; moving colors on stationary objects.
This undesirable artifact is caused by high bandwidth luminance information being
misinterpreted as color information. Hanging dots are a byproduct of the comb filters
(used to help separate the color and brightness information) found in most modern
television receivers. This artifact can be reduced or eliminated by using S-Video or a
component video format.

cross-fade

A type of transition in which one video clip is faded down while another is faded up.

D1

Digital recording technique for component video; also known as CCIR 601, 4:2:2. D1 is
the best choice for high-end production work where many generations of video are
needed. D1 can be an 8-bit or 10-bit signal. See also CCIR 601.

D2

Digital recording technique for composite video. As with analog composite, the
luminance and chrominance information is sent as one signal. A D2 VTR offers higher
resolution and can make multiple generation copies without noticeable quality loss,
because it samples an analog composite video signal at four times the subcarrier (using
linear quantization), representing the samples as 8-bit digital words. D2 is not
compatible with D1.

D3, DX

Developed by Panasonic, a 1/2-inch tape version of D2. More often called DX.

Glossary

239

decoder

Hardware or software that converts, or decodes, a composite video signal into the
various components of the signal. For example, to grab a frame of composite video from
a VHS tapedeck and store it as an RGB file, it would have to be decoded first. Several
Silicon Graphics video options have on-board decoders.

dithering

Approximating a signal value on a chroma-limited display device by producing a matrix
of color values that fool human perception into believing that the signal value is being
reproduced accurately. For example, dithering is used to display a true-color image on a
display capable of rendering only 256 unique colors, such as IndigoVideo images on a
Starter Graphics display.

drain

In the context of the Video Library, a target or consumer of video signals.

editing

The process in which data is examined, created, and modified. In video, the part of the
postproduction process in which the finished videotape is derived from raw video
footage. Animation is a subset of editing.

encoder

Device that combines the R, G, and B primary color video signals into hue and saturation
for the C portion of a composite signal. Several Silicon Graphics video options have
on-board encoders.

equalizing pulse

Pulse of one half the width of the horizontal sync pulse, transmitted at twice the rate of
the horizontal sync pulse, during the portions of the vertical blanking interval
immediately before and after the vertical sync pulse. The equalizing pulse makes the
vertical deflection start at the same time in each interval, and also keeps the horizontal
sweep circuits in step during the portions of the vertical blanking interval immediately
before and after the vertical sync pulse.

event

Exceptional or noteworthy condition produced during video processing, such as loss of
sync, dropping of frames or fields, and synchronization with other applications.

240

Glossary

exclusive use

A term applied to usage of the video data stream and controls on a pathway. A pathway
in exclusive-use mode is available for writing of controls only to the client that requested
the exclusive use, yet any application may read the controls on that pathway.

fade

To modify the opacity and/or volume of a clip. A faded-up clip is unaffected, a clip faded
down to 50% has 50% less opacity or volume, and a faded-down clip is completely
transparent of turned off.

field

One of two (or more) equal parts of information in which a frame is divided in interlace
scanning. A vertical scan of a frame carrying only its odd-numbered or its
even-numbered lines. The odd field and even field make up the complete frame. See also
frame and interlace.

field averaging

A filter that corrects flicker by averaging pixel values across successive fields. See also
flicker.

field blanking

The blanking signals at the end of each field, used to make the vertical retrace invisible.
Also called vertical blanking; see vertical blanking and vertical blanking interval.

filter

To process a clip with spatial or frequency domain methods. Each pixel is modified by
using information from neighboring (or all) pixels of the image. Filter functions include
blur (low-pass) and crisp (high-pass).

flicker

The effect caused by a one-pixel-deep line in a high-resolution graphics frame that is
output to a low-resolution monitor, because the line is in only one of the alternating fields
that make up the frame. This effect can be filtered out by field averaging. See also field
and frame.

frame

The result of a complete scanning of one image. In television, the odd field (all the odd
lines of the frame) and the even field (all the even lines of the frame) make up the frame.
In motion video, the image is scanned repeatedly, making a series of frames.

Glossary

241

freeze, freeze-frame

A condition on the digitized video signal where the digitizing is stopped and the
contents of the signal appear frozen on the display or in the buffer. Sometimes used to
capture the video data for processing or storage.

frequency

Signal cycles per second.

frequency interlace

Placing of harmonic frequencies of C signal midway between harmonics of horizontal
scanning frequency Fh. Accomplished by making color subcarrier frequency exactly
3.579545 MHz. This frequency is an odd multiple of H/2.

front porch

The portion of the video signal between the end of active video and the falling edge of
sync. See also back porch, horizontal blanking, and video waveform.

G-Y signal

Color mixture close to green, with a bandwidth 0.0 MHz to 0.5 MHz. Usually formed by
combining B-Y and R-Y video signals.

gamma correction

Correction of gray-scale inconsistency. The brightness characteristic of a CRT is not linear
with respect to voltage; the voltage-to-intensity characteristic is usually close to a power
of 2.2. If left uncorrected, the resulting display has too much contrast and detail in black
regions is not reproduced.
To correct this inconsistency, a correction factor using the 2.2 root of the input signal is
included, so that equal steps of brightness or intensity at the input are reproduced with
equal steps of intensity at the display.

genlocking

Synchronizing with another video signal serving as a master timing source. The master
timing source can be a composite video signal, a video signal with no active video (only
sync information), or, for video studio, a device called house sync. When there is no
master sync available, VideoFramer, for example, can be set to “free run” (or
“stand-alone”) mode, so that it becomes the master timing device to which other devices
sync. See also line lock.

242

Glossary

gray-scale

Monochrome or black-and-white, as in a monitor that does not display color.

H rate

Number of complete horizontal lines, including trace and retrace, scanned per second.

HDTV

High-definition television. Though there is more than one proposal for a broadcast
standard for HDTV, most currently available equipment is based on the 1125/60
standard, that is, 1125 lines of video, with a refresh rate of 60Hz, 2:1 interlacing (same as
NTSC and PAL), and aspect ratio of 16:9 (1920 x 1035 viewable resolution), trilevel sync,
and 30 MHz RGB and luminance bandwidth.

Hi-8mm

An 8mm recording format developed by Sony; accepts composite and S-Video signals.

horizontal blanking

The period when the electron beam is turned off, beginning when each scan line finishes
its horizontal path (scan) across the screen (see Figure Gl-4).

Glossary

243

Figure Gl-4 Horizontal Blanking

horizontal blanking interval

Also known as the horizontal retrace interval, the period when a scanning process is
moving from the end of one horizontal line to the start of the next line. This portion of
the signal is used to carry information other than video information. See also video
waveform.

Visible
Video
Picture

Active Video Area

Front
Porch

Hor.
Sync
Pulse

Back
Porch

Front
Porch

Hor.
Sync
Pulse

Back
Porch

Blanking
Period

Blanking
Period

(NOT DRAWN

Setup Level 7.5 IRESetup Level 7.5 IRE

Front porch = 1.5 sec.
Hor. sync = 4.7 sec
Back porch = 4.7 sec.

FCC NTSC standards:

Blanking period = 10.9 sec.

TO SCALE)

244

Glossary

Figure Gl-5 Horizontal Blanking Interval

horizontal drive

The portion of the horizontal blanking part of the video signal composed of the sync
pulse together with the front porch and breezeway; that is, horizontal blanking minus the
color burst. See also video waveform.

horizontal sync

The lowest portion of the horizontal blanking part of the video signal, it provides a pulse
for synchronizing video input with output. Also known as
h sync. See also horizontal blanking and video waveform.

HSI

See hue-saturation-intensity.

HSV

Hue-saturation-value; see hue-saturation-intensity.

100

80

60

40

20

0

-20

-40

7.5

NTSC

Color burst signal

Horizontal
sync pulse

Start of horizontal
blanking period

Video black

Level 7.5 IRE

End of horizontal
blanking period

Breezeway
(period between the sync
pulse and color burst.)

Back porch

+

+

-

-
Line lock

0 phase point

Burst lock
0 phase point

Setup

Glossary

245

hue

The designation of a color in the spectrum, such as cyan, blue, magenta. Sometimes
called tint on NTSC television receivers. The varying phase angles in the 3.58 MHz
(NTSC) or 4.43 MHz (PAL) C signal indicate the different hues in the picture information.

hue-saturation-intensity

A tristimulus color system based on the parameters of hue, saturation, and intensity
(luminance). Also referred to as HSI or HSV.

I signal

Color video signal transmitted as amplitude modulation of the 3.58 MHz C signal
(NTSC). The hue axis is orange and cyan. This signal is the only color video signal with
a bandwidth of 0 to 1.3 MHz.

image plane

See bitplane.

image processing

Manipulating an image by changing its color, brightness, shape, or size.

interlace

A technique that uses more than one vertical scan to reproduce a complete image. In
television, the 2:1 interlace used yields two vertical scans (fields) per frame: the first field
consists of the odd lines of the frame, the other of the even lines. See also field and frame.

IRE units

A scale for measuring analog video signal levels, normally starting at the bottom of the
horizontal sync pulse and extending to the top of peak white. Blanking level is 0 IRE
units and peak white level is 100 IRE units (700mv). An IRE unit equals 7.14mv (+100 IRE
to -40 IRE = 1v). IRE stands for Institute of Radio Engineers, a forerunner of the IEEE.

246

Glossary

keying

Combining proportional amounts of two frames, pixel by pixel, with optional opacity.
This process resembles taking two panes of glass with images on them and placing one
pane on top of the other. The opacity of the top pane determines the parts of the bottom
pane that show. Usually, keying is a real-time continuous process, as in the “over the
shoulder” graphics in TV news programs. The alpha component of each pixel, which
defines its opacity, determines how the images are combined. Combining images based
on the alpha component is often called alpha keying or luma keying. See also compositing
and mixing.

leading edge of sync

The portion of the video waveform after active video, between the sync threshold and
the sync pulse. See also video waveform.

level

Signal amplitude.

line

The result of a single pass of the sensor from left to right across the image.

line blanking

The blanking signal at the end of each horizontal scanning line, used to make the
horizontal retrace invisible. Also called horizontal blanking.

line frequency

The number of horizontal scans per second, normally 15,734.26 times per second for
NTSC color systems. The line frequency for the PAL 625/50H. system is 15,625 times per
second.

line lock

Input timing that is derived from the horizontal sync signal, also implying that the
system clock (the clock being used to sample the incoming video) is an integer multiple
of the horizontal frequency and that it is locked in phase to the horizontal sync signal.
See also at video waveform.

linear matrix transformation

The process of combining a group of signals through addition or subtraction; for
example, RGB signals into luminance and chrominance signals.

Glossary

247

live video

Video being delivered at a nominal frame rate appropriate to the format.

luma

See luminance.

luminance

The video signal that describes the amount of light in each pixel. Luminance is a
weighted sum of the R, G, and B signals. See also chrominance and Y signal.

map

Numerical lookup of pixel data that modifies each pixel without using neighboring
pixels. This large category of video editing functions includes clip/gain, solarization,
and histogram equalization.

MII (M2)

A second-generation recording format based on a version of the Y/R-Y/B-Y video
signal. Developed by Panasonic, MII is also marketed by other video manufacturers.
Though similar to Betacam, it is nonetheless incompatible.

matrix transformation

The process of converting analog color signals from one tristimulus format to another, for
example, RGB to YUV. See also tristimulus color system.

mixing

In video editing, combining two clips frame by frame, pixel by pixel. Usually, a linear
interpolation between the pixels in each clip is used, with which one can, for example,
perform a cross-fade. Other operations include averaging, adding, differencing,
maximum (non-additive mix), minimum, and equivalence (white where equal, else
black). See also compositing and keying.

multiburst

A test pattern consisting of sets of vertical lines with closer and closer spacing; used for
testing horizontal resolution of a video system.

248

Glossary

NTSC

A color television standard or timing format encoding all of the color, brightness, and
synchronizing information in one signal. Used in North America, most of South
America, and most of the Far East, this standard is named after the National Television
Systems Committee, the standardizing body that created this system in the U.S. in 1953.
NTSC employs a total of 525 horizontal lines per frame, with two fields per frame of 262.5
lines each. Each field refreshes at 60Hz (actually 59.94Hz).

Nyquist limit

The highest frequency of input signal that can be correctly sampled without aliasing. The
Nyquist limit is equal to half of the sampling frequency.

offset

In the context of a video signal, the relative coordinates from the upper left corner of the
video image where signal sampling begins.

overscan

To scan a little beyond the display raster area of the monitor so that the edges of the raster
are not visible. Television is overscanned; computer displays are underscanned.

PAL

A color television standard or timing format developed in West Germany and used by
most other countries in Europe, including the United Kingdom but excluding France, as
well as Australia and parts of the Far East. PAL employs a total of 625 horizontal lines
per frame, with two fields per frame of 312.5 lines per frame. Each field refreshes at 50Hz.
PAL encodes color differently from NTSC. PAL stands for Phase Alternation Line or
Phase Alternated by Line, by which this system attempts to correct some of the color
inaccuracies in NTSC. See also NTSC and SECAM.

pathway

In the Video Library, a connection of sources and drains that provide useful processing
of video signals. Pathways have controls and video streams. Pathways can be locked for
exclusive use, and are the target of events generated during video processing. See also
exclusive use and event.

pedestal

See setup; see also video waveform.

Glossary

249

pixel

Picture element; the smallest addressable spatial element of the computer graphics
screen. A digital image address, or the smallest reproducible element in analog video. A
pixel can be monochrome, gray-scale, or color, and can have an alpha component to
determine opacity or transparency. Pixels are referred to as having a color component
and an alpha component, even if the color component is gray-scale or monochrome.

pixel map

A two-dimensional piece of memory, any number of bits deep. See also bitmap.

postproduction

The processes that occur before release of the finished video product, including editing,
painting (2D graphics), production, and 3D graphics production.

primary colors

Red, green, and blue. Opposite voltage polarities are the complementary colors cyan,
magenta, and yellow.

Q signal

The color video signal that modulates 3.58 MHz C signal in quadrature with the I signal.
Hues are green and magenta. Bandwidth is 0.0 MHz to 0.5 MHz. See also C signal, I signal,
YC, and YIQ.

quantization error

The magnitude of the error introduced in a signal when the actual signal is between
levels, resulting from subdividing a video signal into distinct increments, such as levels
from 0 to 255.

raster

The scanning pattern for television display; a series of horizontal lines, usually left to
right, top to bottom. In NTSC and PAL systems, the first and last lines are half lines.

raster operation, raster op

A logical or arithmetic operation on a pixel value.

registration

The process of causing two frames to coincide exactly. In component video cameras or
displays, the process of causing the three color images to coincide exactly, so that no color
fringes are visible.

250

Glossary

resolution

Number of horizontal lines in a television display standard; the higher the number, the
greater a system’s ability to reproduce fine detail.

RGB

Red, green, blue; the basic component set used by graphics systems and some video
cameras, in which a separate signal is used for each primary color.

RGB format

The technical specification for NTSC color television. Often (incorrectly) used to refer to
an RGB signal that is being sent at NTSC composite timings, for example, a Silicon
Graphics computer set to output 640 x 480. The timing would be correct to display on a
television, but the signal would still be split into red, green and blue components. This
component signal would have to go through an encoder to yield a composite signal
(RS-170A format) suitable for display on a television receiver.

R-Y (R minus Y) signal

A color difference signal obtained by subtracting the luminance signal from the red
camera signal. It is plotted on the 90 to 270 degree axis of a vector diagram. The R-Y
signal drives the vertical axis of a vectorscope. The color mixture is close to red. Phase is
in quadrature with B-Y; bandwidth is 0.0 MHz to 0.5 MHz. See also luminance, B-Y (B
minus Y) signal, Y/R-Y/B-Y, and vectorscope.

sample

To read the value of a signal at evenly spaced points in time; to convert representational
data to sampled data (that is, synthesizing and rendering).

sampling rate, sample rate

Number of samples per second.

saturation

Color intensity; zero saturation is white (no color) and maximum saturation is the
deepest or most intense color possible for that hue. Different saturation values are
varying peak-to-peak amplitudes in the 3.58 MHz modulated C signal. In signal terms,
saturation is determined by the ratio between luminance level and chrominance
amplitude. See also hue.

scaling

To change the size of an image.

Glossary

251

scan

To convert an image to an electrical signal by moving a sensing point across the image,
usually left to right, top to bottom.

SECAM

Sequentiel Couleur avec Memoire, the color television system developed in France and
used there as well as in eastern Europe, the Near East and Mideast, and parts of Africa
and the Caribbean.

setup

The difference between the blackest level displayed on the receiver and the blanking
level (see Figure Gl-6). A black level that is elevated to 7.5 IRE instead of being left at 0.0
IRE, the same as the lowest level for active video. Because the video level is known, this
part of the signal is used for black-level clamping circuit operation. Setup is typically
used in the NTSC video format and is typically not used in the PAL video format; it was
originally introduced to simplify the design of early television receivers, which had
trouble distinguishing between video black levels and horizontal blanking. Also called
pedestal.
Figure Gl-6 shows waveform displays of a signal with and without setup. See also video
waveform.

Figure Gl-6 Waveform Monitor Readings With and Without Setup

100

80

60

40

20

0

-20

-40

7.5

NTSC

Without Setup level

100

80

60

40

20

0

-20

-40

7.5

NTSC

With Setup level

252

Glossary

smear

An artifact usually caused by mid-frequency distortions in an analog system that results
in the vertical edges of the picture spreading horizontally.

SMPTE time code

A signal specified by the Society of Motion Picture and Television Engineers for
facilitating videotape editing; this signal uniquely identifies each frame of the video
signal. Program originators use vertical blanking interval lines 12 through 14 to store a
code identifying program material, time, frame number, and other production
information (see Figure Gl-7).

Figure Gl-7 SMPTE Time Code

source

In the context of the Video Library, a provider of video input signals.

subcarrier

A portion of a video signal that carries a specific signal, such as color. See color subcarrier.

subpixel

A unit derived from a pixel by using a filter for sizing and positioning.

S-VHS, S-Video

Video format in which the Y (luminance) and C (chrominance) portions of the signal are
kept separate. Also known as YC.

sync information

The part of the television video signal that ensures that the display scanning is
synchronized with the broadcast scanning. See also video waveform.

00:00:00.00

Hours

Minutes

Seconds

Frame

PAL = 25 frames/sec. (0-24)

NTSC = 30 frames/sec. (0-29)

Glossary

253

sync pulse

A vertical or horizontal pulse (or both) that determines the display timing of a video
signal. Composite sync has both horizontal and vertical sync pulses, as well as
equalization pulses. The equalization pulses are part of the interlacing process.

sync tip

The lowest part of the horizontal blanking interval, used for synchronization. See also
video waveform.

synchronize

To perform time shifting so that things line up.

texturing

Applying images to three-dimensional objects to give additional realism to displayed
renderings.

termination

To send a signal through a transmission line accurately, there must be an impedance at
the end which matches the impedance of the source and of the line itself. Amplitude
errors, frequency response, and pulse distortions and reflections (ghosting) occur on a
line without proper termination. Video is a 75Ohm system; therefore a 75Ohm
terminator of .5% to .25% accuracy must be installed at the end of the signal path.

threshold

In a digital circuit, the signal level that is specified as the division point between levels
used to represent different digital values; for example, the sync threshold is the level at
which the leading edge of sync begins. See also video waveform.

time-base errors

Analog artifacts caused by nonuniform motion of videotape or of the tape head drum.
Time-base errors usually cause horizontal display problems, such as horizontal jitter.

time code

See SMPTE time code.

time-delay equalization

Frame-by-frame alignment of all video inputs to one sync pulse, so that all frames start
at the same time. This alignment is necessary because cable length differences cause
unequal delays. See time-base errors.

254

Glossary

transcoder

A device that converts a component video signal to a different component video signal,
for example, RGB to Y/R-Y/B-Y, or D1 to RGB.

transducer

A microphone, video camera, or other device that can convert sounds or images to
electrical signals.

transform

The geometric perspective transformation of 3-D graphics models and planar images.

tristimulus color system

A system of transmitting and reproducing images that uses three color signals, for
example, RGB, YIQ, and YUV.

U signal

One of the chrominance signals of the PAL color television system, along with V.
Sometimes referred to as B-Y, but U becomes B-Y only after a weighting factor of 0.493 is
applied. The weighting is required to reduce peak modulation in the composite signal.

U-Matic

Sony trademark of its 3/4-inch composite videotape format. SP U-Matic is an improved
version using metal tape.

underscan

To scan a television screen so that the edges of the raster are visible. See also overscan.

V signal

One of the chrominance signals of the PAL color television system, along with U.
Sometimes referred to as R-Y, but V becomes R-Y only after a weighting factor of 0.877 is
applied. The weighting is required to reduce peak modulation in the composite signal.

vectorscope

A specialized oscilloscope that demodulates the video signal and presents a display of
R-Y versus B-Y for NTSC (V and U for PAL). Video engineers use vectorscopes to
measure the amplitude (gain) and phase angle (vector) of the primary (red, green, and
blue) and the secondary (yellow, cyan, and magenta) color components of a television
signal.

Glossary

255

vertical blanking

The portion of the video signal that is blanked so that the vertical retrace of the beam is
not visible.

vertical blanking interval

The blanking portion at the beginning of each field. It contains the equalizing pulses, the
vertical sync pulses, and vertical interval test signals (VITS). Also the period when a
scanning process is moving from the lowest horizontal line back to the top horizontal
line.

video level

Video signal amplitude.

video output

See drain.

video signal

The electrical signal produced by a scanning image sensor.

videotape formats

Table Gl-12 lists major videotape formats.

Table Gl-12 Videotape Formats

Electronics Consumer Professional Broadcast Postproduction

Analog VHS cassette U-Matic (SP) cassette, 3/4-inch Type C reel-to-reel, 1-inch composite

S-VHS Type B (Europe), composite

S-Video (YC-358) S-Video (YC-358)

Beta

8mm

Hi-8mm (YC) Hi-8mm (YC)

Betacam (component)

Type MII (component)

Digital D1 525/625 (YUV)

D2 525 (NTSC)

D2 625 (PAL)

256

Glossary

video waveform

The main components of the video waveform are the active video portion and the
horizontal blanking portion. Certain video waveforms carry information during the
horizontal blanking interval.
Figure Gl-8 and Figure Gl-9 diagram a typical red or blue signal, which carries no
information during the horizontal blanking interval, and a typical Y or green-plus-sync
signal, which carries a sync pulse.

Figure Gl-8 Red or Blue Signal

Figure Gl-9 Y or Green Plus Sync Signal

Horizontal Blanking

Active Video Active Video

Horizontal Blanking

Active Video Active Video

Glossary

257

Figure Gl-10 and Figure Gl-11 show the video waveform and its components for
composite video in more detail. The figures show the composite video waveform with
and without setup, respectively.
Figure Gl-10 shows a composite video signal with setup.

Figure Gl-10 Video Waveform: Composite Video Signal With Setup (Typical NTSC)

Active Video Active Video

100% Sync

50% Sync

0% Sync

Line Lock
0 Phase Point

Burst Lock
0 Phase Point

Back Porch

+7.5 IRE

0 IRE
Black Level
Blanking Level

Setup or

Leading Edge
of Sync

Pedestal

258

Glossary

Figure Gl-11 shows a composite video signal without setup.

Figure Gl-11 Video Waveform: Composite Video Signal (Typical PAL)

white level

In the active video portion of the video waveform, the 1.0-volt (100 IRE) level. See also
video waveform.

Y signal

Luminance, corresponding to the brightness of an image. See also luminance and
Y/R-Y/B-Y.

Active Video Active Video

Back Porch

100 IRE
1.0 Volts

0 IRE

-40 IRE
0.0 Volts

Burst

Breezeway

Sync or
Front
Porch

H Sync

Horizontal
Blanking

White Level

Blanking

Sync Tip

and Black Level

Glossary

259

YC

A color space (color component encoding format) based on YIQ or YUV. Y is luminance,
but the two chroma signals (I and Q or U and V) are combined into a composite chroma
called C, resulting in a two-wire signal. C is derived from I and Q as follows:
C - I cos(2 fsct) + Q sin(2 fsct)
where fsc is the subcarrier frequency. YC-358 is the NTSC version of this
luminance/chrominance format; YC-443 is the PAL version. Both are referred to as
S-Video formats.

YIQ

A color space (color component encoding format) used in decoding, in which Y is the
luminance signal and I and Q are the chrominance signals. The two chrominance signals
I and Q (in-phase and quadrature, respectively) are two-phase amplitude-modulated;
the I component modulates the subcarrier at an angle of 0 degrees and the Q component
modulates it at 90 degrees. The color burst is at 33 degrees relative to the Q signal.
The amplitude of the color subcarrier represents the saturation values of the image; the
phase of the color subcarrier represents the hue value of the image.
Y = 0.299R + 0.587G + 0.114B
I = 0.596R - 0.275G - 0.321B
Q = 0.212R - 0.523G + 0.311B

Y/R-Y/B-Y

A name for the YUV color component encoding format that summarizes how the
chrominance components are derived. Y is the luminance signal and R-Y and B-Y are the
chrominance signals. R-Y (red minus Y) and B-Y (blue minus Y) are the color differences
or chrominance components. The color difference signals R-Y and B-Y are derived as
follows:
Y = 0.299R + 0.587 + 0.114B
Y/R-Y/B-Y has many variations, just as NTSC and PAL do. All component and
composite color encoding formats are derived from RGB without scan standards being
changed. The matrix (amount of red, green, and blue) values and scale (amplitude)
factors can differ from one component format to another (YUV, Y/R-Y, B-Y, SMPTE
Y/R-Y, B-Y).

260

Glossary

YUV

A color space (color component encoding format) used by the PAL video standard, in
which Y is the luminance signal and U and V are the chrominance signals. The two
chrominance signals U and V are two-phase amplitude-modulated. The U component
modulates the subcarrier at an angle of 0 degree, but the V component modulates it at 90
degrees or 180 degrees on alternate lines. The color burst is also line-alternated at +135
and -135 degrees relative to the U signal. The YUV matrix multiplier derives colors from
RGB via the following formula:
Y = .299R + .587 G + .114 B
CR = R - Y
CB = B - Y
In this formula, Y represents luminance; red and blue are derived from it: CR denotes red
and (V), CB denotes blue. V corresponds to CR; U corresponds to CB c. The U and V
signals are carried on the same bandwidth. This system is sometimes referred to as
Y/R-Y/B-Y.
The name for this color encoding method is YUV, despite the fact that the order of the
signals according to the formula is YVU.

261

Index

A

application
creating, 13-59
sample, location, 3, 7

asynchronous I/O, 101
autophase

and crosspoint mux, 90
and timing glitch, 91
control, 173

autoswap, for texture node, 148, 159, 202
autowipe, 178

B

blender node, 104-112, 175-179
controls, 176-179

blending, 103-124
before or after zooming, 29
node, 104-112

setting up, 106-108
buffer, 8

alignment, 99
and data transfer, 43-59, 97
creating for video data, 52-53
getting DMediaInfo and image data from, 57
reading data from, 54-57
reading frames to memory from, 56
registering, 54

C

caching, 98
capture, 97-102
CC1 memory source node, 182, 183
chroma

blanking when sending blender output to video,
108

keying, 103, 116-118, 122
client, 5
color space

conversion, 209-227
and image processing, 136-139
controls

image-processing, 137-139
standard, 135

custom LUTs, coefficients, 136-137
full-range, limited-range data, 134
math operations, 211-212
packings, 129-130
performing, 125-145
port, 133-134
precision, 212
range, 130-131, 213-215
saved in memory, 131
software model, 126-128
video formats, 126

262

Index

connection, 11, 82-89
connectivity. See connection
constant hue, 132-133
contcapt.c (OpenGL), 60
control, 8, 22-37, 61-67, 169-207

access, 107, 170
and nodes, 169-207
blender, 107-108
blending, 104, 106
classes, 65-66
default values explained, 169
fraction ranges, 65
groupings, 66-67
in header file, 61
keying, 112-121

listed, 113
type and values, 64-65
type explained, 170
VL, listed, 62-63

conventions, xv
crosspoint mux, 182

and LUT, 173
timing restrictions, 90-91

ctrlusage, 19

D

daemon, video, 5-6
opening connection to, 15

data transfer, 14
ending, 58-59
starting, 49-50, 54
to and from memory, 22-32

decimation, 28-30, 32
texture node, 155-156

deinterlacing control, 199
dev_mgv.h, 7, 15, 61

device, 8
ID, getting, 18
management, 5-6
node, 171-174

controls, 171-174
video, transferring data, 43-59

direct I/O to disk, 99
DMbuffer, 43-51
DMediaInfo, getting from buffer, 57
drain, 9

blending and zooming, 29
control for default, 171
contrrol for default, 16
node controls, setting, 22-37
See also memory node, screen node, video node

dual-link
texture node, 147, 148, 200

packing, 200
video drain node, 189
video source node, 183

E

error codes, 163-167
event

capture into TRAM, 154
handling, 69-80

routines, 75
listed, 71-74
masks, 20-21
querying, 75-76
specifying path-related, 20-22
trigger, 49
type, 76

eventex.c, 80
explicit routing, 20

263

Index

F

fades, 119-121
field dominance

memory drain node control, 193
memory source node control, 186
texture node, 157, 201

field mask, 33
filter, horizontal smoothing, 122, 179
flat background

controls, 111
generator, 105
setting and turning off, 111

framebuffer node, 181-182
and CC1 memory, 182

G

glBindTextureEXT, 159
glCopyTexSubImage2DEXT, 161
glEnable, 159
glGenTexturesEXT, 159
glGetError(), 161
glHint, 159
glitch, 89-90
glTexImage2D, 160
glTexParameteri, 160
glXMakeCurrentReadSGI, 160
GPI trigger, controls, 174
GST control access, 107, 170

H

header file
OCTANE Digital Video, 7, 15
VL, 7, 15

horizontal smoothing filter, 122, 179

I

image data, getting from buffer, 57
implicit and explicit routing, 20

See also connection
I/O, direct to disk, 99

K

keyer, 122
and alpha source A, 105
controls, 176-177
purpose, 105

keying, 103, 112-121
See also chroma keying, luma keying, transitions

L

linking, 15
luma keying, 103, 114-115, 122
LUT, selecting, control for, 173
-lvl, 15

264

Index

M

memory
and data transfer, 22-32
node, 183-194

drain, 189-194
controls, 190-194
rounding, 189-190

source, 183-188
CC1 and framebuffer, 182
controls, 184-188

reading from buffer to, 56
sending frames to video from, 57

memtovid, 7
mipmap, 147, 158, 201

and scaling, 157
mtov.c (OpenGL), 60
multiple clients, 5

N

node, 8, 169-207
adding, 18
blender, 104-112, 175-179

controls, 176-179
setting up, 106-108

color-space conversion, 179-181
defined, 9-10
device, 171-174

controls, 171-174
framebuffer, 181-182
memory, 183-194

drain, controls, 190-194
source, controls, 184-188

screen, 194-199
drain, controls, 198-199
source, controls, 195

setting controls, 22-37
specifying, 15-16
texture, 147-161, 199-202

controls, 153-159, 200-202
video, 202-207

drain, controls, 205-207
source, controls, 203

normalization, 104, 108-110, 176

O

OpenGL
functions for texture mapping, 159-161
programs, 60

P

packings, 25-28
color-space conversion, 129-130

path, 8
blending, 10
creating, 17
creating and setting up, 17-22
defined, 9-10
setting up, 18-19
specifying events, 20-22
specifying nodes on, 15-16

picture glitch, 89-90
playback, 97-102

265

Index

port
defined, 10-11
VL_BLENDER, 175
VL_CSC, 133-134
VL_DEVICE, 171
VL_FB, 182
VL_MEM

drain, 189
source, 183

VL_SCREEN
drain, 196
source, 194

VL_TEX, 200
VL_VIDEO

drain, 205
source, 203

Porter-Duff model, 108-110, 176
See also normalization

positioning windows, 195, 197

R

restart policy, 187, 193
return codes, 163-167
rounding for memory drain, 189-190

S

sample programs, 3, 7, 80, 140-145, 161
screen node, 194-199

drain, controls, 198-199
source, controls, 195

shadow, 111
controls, 112, 179

simpleccapt.c, 60
simplegrab.c, 60
simplem2v.c, 60
simplev2s.c, 60
source, 9

blending and zooming, 29
control for default, 16, 171
node controls, setting, 22-37
See also memory node, screen node, video node

starvation policy, 188
status information, 6
streamusage, 19
syntax, 13
syssgi, 101

T

texture
mapping, 147-161, 199-202

block diagram, 148
controls, 153-159
OpenGL functions, 159-161

node, 147-161, 199-202
timing, 151-152

tiles, 119-121
timing

glitch, 89-90
texture node, 151-152

tools, VL, 6-7
transitions, 103, 119-121
trigger, 49

266

Index

V

VBAR mux, 87, 90-91
vcp, 6
VGI1

memory drain node, 189
memory source

node, 183
timing restrictions, 91

video
daemon, 5-6

opening connection to, 15
data transfer, 43-59

ending, 58-59
starting, 49-50, 54
to and from memory, 22-32

displaying data onscreen, 41-42
drain, 9
format, 12

converting, 25-28
for color-space conversion, 126

node, 202-207
drain, 204-207

controls, 205-207
source, 202-204

controls, 203
sending frames from memory to, 57
source, 9
unit, defined, 184

videod, 5-6
videoin, 6
Video Library. See VL
videoout, 6
videopanel, 6
vidtomem, 7
vidtomem.c (OpenGL), 60
vidtotex.c, 161
vintovout, 7

VL
capabilities, 3-4
control, 22-37, 61-67

blending, 104, 106
keying, 112-121
See also control

device management, 5-6
header files, 7, 15
programming model, 13-14
requirements for running, 15
status information, 6
syntax, 13
system software architecture, 4
tools, 6-7

VL_BLENDER, 175-179
See also blender

VL_CAP_TYPE, 33-37
See also control and node
texture node, 153

VL_CSC, 125-139, 179-181
See also color space conversion

VL_DEVICE, 171-174
See also device node

VL_FB, 181-182
See also framebuffer node

VL_FORMAT, 25
See also control and node

VL_MEM, 183-190
See also memory node

vl_mgv.h, 7, 15, 61
VL_OFFSET, 32

See also control and node
texture node, 153, 156

VL_ORIGIN, 32
See also control and node

VL_PACKING, 22, 25-28
See also control and node
texture node, 154

VL_RATE, 33-37

267

Index

See also control and node
texture node, 154

VL_SCREEN, 194-198
See also screen node

VL_SIZE, 31, 32
See also control and node
texture node, 155, 156

VL_TEXTURE, 147-161, 199-202
See also texture node

VL_TIMING, 24
See also control and node

VL_VIDEO, 202-207
See also video node

VL_ZOOM, 28-30, 32
See also control and node
texture node, 155, 156

vlAddCallback(), 69
vlAddNode(), 18
vlBeginTransfer(), 49
VL buffer, 43-54
vlCheckEvent(), 76
vlCloseVideo(), 58-59
vlcmd, 6
vlCreateBuffer(), 53
vlCreatePath(), 17
vlDeregisterBuffer(), 58
vlDestroyBuffer(), 58-59
vlDestroyPath(), 58-59
vlEndTransfer(), 49, 58
vlEventToName(), 76
vlGetActiveRegion(), 57
vlGetControl(), 24
vlGetDevice(), 18

vlGetDMediaInfo(), 57
vlGetFD(), 76
vlGetImageInfo(), 57
vlGetLatestValid(), 55, 57
vlGetNextFree(), 57
vlGetNextValid(), 55, 56
vlGetNode(), 15, 106
vlGetTransferSize(), 52
vl.h, 7, 15
vlinfo, 7
vlMainLoop(), 69
vlNextEvent(), 76
vlOpenVideo(), 15
vlPeekEvent(), 76
vlPutFree(), 55, 57
vlPutValid(), 57
vlRegisterBuffer(), 54
vlSelectEvents(), 20, 69, 76, 77
vlSetConnection(), 20, 82-89
vlSetControl(), 24
vlSetupPaths(), 18

W

window positioning, 195, 197
wipes, 110, 119-121

controls, 177-178

Z

zoom, 28-30, 32
before or after blending, 29

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3513-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

