
OCTANE™ Compression
Programmer’s Guide

Document Number 007-3514-001

OCTANE™ Compression Programmer’s Guide
Document Number 007-3514-001

CONTRIBUTORS

Written by Carolyn Curtis
Illustrated by Carolyn Curtis
Production by Kirsten Johnson
Engineering contributions by Nat Gurumwoorthy, Gregory Poist, Matthew Hall,

Chuck Jerian, and Howard Chartock
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, OpenGL, Indigo, and IRIS are registered
trademarks and OCTANE, Origin, Indigo2, Indigo2 IMPACT, Cosmo Compress, and
Galileo Video are trademarks of Silicon Graphics, Inc. MIPS and R3000 are registered
trademarks of MIPS Technologies, Inc. X Window System is a trademark of
Massachusetts Institute of Technology.

iii

Contents

List of Figures vii

List of Tables ix

About This Guide xi
Audience xi
Structure of This Document xi
Other Documents xii
Conventions xiii

1. OCTANE Compression Features and Capabilities 1
OCTANE Compression Features 1
OCTANE Compression and Video Options 3
OCTANE Compression and the Compression Library 4
OCTANE Compression and the Video Library 4

2. Programming With the Compression Library 7
Error Handling 8
Opening a Compression Session 9
Using the Still Image Interface 10
Using the Sequential Frame Interface 14

Compressing a Sequence of Frames 15
Decompressing a Sequence of Frames 19

Using the Buffering Interface 25
Creating a Buffer 27
Managing Buffers 29
Producing and Consuming Data in Buffers 31
Hardware Buffer Flushing and Latency 34
Creating a Buffered Record and Play Application 35
Creating Buffered Multiprocess Record and Play Applications 39

iv

Contents

3. Programming With the Video Library 41
Video Library Capabilities 41

VL System Software Architecture 42
Library and Header Files 46
VL Architectural Model of Video Devices 46

The VL Programming Model 50
Performing Preliminary Steps 52
Opening a Connection to the Video Daemon 53
Specifying Nodes on the Data Path 53
Creating and Setting Up the Data Path 54

Creating the Path 54
Getting the Device ID 55
Adding a Node 55
Setting Up the Data Path 56
Specifying the Path-Related Events to Be Captured 58

Setting Parameters for Data Transfer to or From Memory or Codec Nodes 59
Setting Node Controls for Data Transfer 59

Transferring Video Data to and From Devices 73
Creating a Buffer for Video Data 73
Registering the VL Buffer 75
Starting Data Transfer 76
Reading Data From the Buffer 77

Ending Data Transfer 81
Example Programs 82

Contents

v

4. Using the Compression Library With OCTANE Compression 83
Adding OCTANE Compression Support to an Application 84

Determining the JPEG Codec 84
Controlling Compression and Decompression Operation 85

Using OCTANE Compression Image Formats 86
Getting Compressed Image Information 88
Specifying Memory-to-Memory Compression and Decompression 89

Memory-to-Memory Compression 89
Memory-to-Memory Decompression 91
Interleaving 92

Compressing and Decompressing Video Through External Connections 93
Video-to-Memory Compression 93
Memory-to-Video Decompression 95
Setting Interlacing for NTSC and PAL 97

5. Using Video Library Controls 99
VL Control Type and Values 101
VL Control Fraction Ranges 102
VL Control Classes 102
VL Control Groupings 103

6. Using Compression Library Parameters 105
Compression Library Parameter Definitions 105

Image Frame Dimension Parameters 105
Data Format Parameters 106
Buffer Parameters 107
Compression Ratio and Quality Parameters 108
JPEG and MPEG Parameters 108

Setting and Querying Compression Library Parameters 109
Using Frame Type Parameters 116

vi

Contents

7. Using Compression Library Algorithms 117
Choosing a Compression Library Algorithm 117
Querying Compression Library Algorithms 120

Getting a List of Algorithms 120
Getting an Algorithm Scheme or Name 121
Getting License Information 122

Controlling JPEG Compressed Image Quality 123
Specifying a JPEG Quality Factor 124
Defining and Using Custom JPEG Quantization Tables 125
Specifying a Bit Rate Target 125

8. Differences Between OCTANE Compression and Earlier Silicon Graphics
Compression Options 127
Hardware Differences 127
Software Differences 129

A. Video Library Controls and Compression Library Parameters for the OCTANE
Compression Option 131
Device Node Controls 131
Codec Node Parameters 132
Memory Node Controls 136
Memory Node DMA Controls 138
Analog Input and Output Device Controls 140

Index 143

vii

List of Figures

Figure 2-1 Ring Buffer 26
Figure 2-2 Snapshots of Buffer State During Producing and

Consuming Processes 32
Figure 2-3 Flow of Data in a Buffered Compression and

Decompression Scheme 33
Figure 3-1 VL System Components 43
Figure 3-2 Simple VL Path 47
Figure 3-3 Simple VL Blending 48
Figure 3-4 Decimation 63
Figure 3-5 Clipping an Image 65
Figure 3-6 Zoom (Decimation), Size, and Offset 66
Figure 3-7 Field Dominance 71
Figure 3-8 vlGetNextValid(), vlGetLatestValid(), and vlPutFree() 78

ix

List of Tables

Table 2-1 Compression Library Calls 8
Table 2-2 Still Image Interface Calls 10
Table 2-3 Sequential Frame Interface Calls 14
Table 2-4 Typical Stream Header Contents 20
Table 2-5 Additional Video Stream Header Contents 21
Table 2-6 Buffering Interface Calls 25
Table 3-1 Video Formats for OCTANE Compression 50
Table 3-2 Video Library Calls for Data Transfer 52
Table 3-3 VL Event Masks 58
Table 3-4 Data Transfer Controls 60
Table 3-5 Dimensions for Timing Choices 61
Table 3-6 VL_FORMAT 61
Table 3-7 Packing Types for Eight Bits per Component 62
Table 3-8 VL_RATE Values (Items per Second) 67
Table 3-9 Padding and Scaling Controls 72
Table 3-10 Buffer Size Requirements 75
Table 3-11 Buffer-Related Calls 77
Table 3-12 Calls for Extracting Data From a Buffer 78
Table 4-1 OCTANE Compression Image Format Parameters 86
Table 4-2 OCTANE Compression Video Field Dimensions 94
Table 4-3 OCTANE Compression Field Widths for Compression

With Decimation 95
Table 4-4 OCTANE Compression Field Widths for Decompression 96
Table 5-1 Device-Independent VL Controls 100
Table 5-2 VL Control Groupings 104
Table 7-1 Capabilities of Image and Video Algorithms

(Indigo Workstations With 33 MHz MIPS R3000) 119

x

List of Tables

Table A-1 OCTANE Compression Device Node Controls 131
Table A-2 OCTANE Compression Image Format Parameters 132
Table A-3 OCTANE Compression Memory Node Controls 136
Table A-4 OCTANE Compression Memory Node DMA Controls 138
Table A-5 OCTANE Compression Analog Input Device Controls 140
Table A-6 OCTANE Compression Analog Output Device Controls 141

xi

About This Guide

The OCTANE™ Compression motion JPEG option card from Silicon Graphics® provides
two independent channels of full-resolution, full-motion, real-time video compression or
decompression for the OCTANE desktop workstation.

OCTANE Compression fully utilizes all calls and controls in the Silicon Graphics
Compression Library (CL), and works with other Silicon Graphics programming
libraries, such as the Video Library (VL).

This guide explains features of the CL and VL for OCTANE Compression and gives
step-by-step instructions for creating programs using CL, VL, or both that make use of
OCTANE Compression board capabilities.

Audience

This guide is written for the sophisticated user with a background in
C programming who wishes to develop programs for OCTANE Compression
capabilities, with or without interaction with its on-board video capability or the
OCTANE Digital Video option.

Structure of This Document

This guide contains the following chapters and appendix:

• Chapter 1, “OCTANE Compression Features and Capabilities,” explains how the
OCTANE Compression board works with the Compression Library and presents
features of the CL.

• Chapter 2, “Programming With the Compression Library,” presents the CL’s three
interfaces for compressing and decompressing image, audio, and video data.

xii

About This Guide

• Chapter 3, “Programming With the Video Library,” explains how to open a
connection to the video daemon and set up a data path, how to set data transfer
parameters, how to display video data onscreen, how to transfer video data, and
how to end data transfer by presenting an annotated sample program that displays
live video input in a graphics window.

• Chapter 4, “Using the Compression Library With OCTANE Compression,” explains
how to add OCTANE Compression support to an application, use OCTANE
Compression image formats, get compressed image information, specify
memory-to-memory compression and decompression, and how to compress and
decompress video through external connections to analog video or OCTANE
Compression.

• Chapter 5, “Using Video Library Controls,” explains VL control type and values, VL
control fraction ranges, VL control classes, and VL control groupings.

• Chapter 6, “Using Compression Library Parameters,” describes the Compression
Library parameters and summarizes how to use them.

• Chapter 7, “Using Compression Library Algorithms,” explains how to query and
use Compression Library algorithms.

• Chapter 8, “Differences Between OCTANE Compression and Earlier Silicon
Graphics Compression Options,” explains hardware and software differences
between the two options for those porting applications from these earlier products.

• Appendix A, “Video Library Controls and Compression Library Parameters for the
OCTANE Compression Option,” summarizes the VL controls and CL parameters
for OCTANE Compression.

An index completes this guide.

Other Documents

The following online documents are also included with the OCTANE Compression
option:

• OCTANE Digital Video and OCTANE Compression Installation Guide (007-3466-001)

• Digital Media Programming Guide (007-1799-060 or later)

About This Guide

xiii

Conventions

These type conventions and symbols are used in this guide:

Helvetica Bold Hardware labels

Italics Executable names, filenames, IRIX commands, manual or book titles,
new terms, program variables, tools, utilities, variable command line
arguments, variable coordinates, and variables to be supplied by the
user in examples, code, and syntax statements

Bold Function name

Fixed-width type

 Error messages, prompts, and on-screen text

Bold fixed-width type

User input, including keyboard keys (printing and nonprinting); literals
supplied by the user in examples, code, and syntax statements

“” (Double quotation marks) On-screen menu items and references in text
to document section titles

[] (Brackets) Surrounding optional syntax statement arguments

1

Chapter 1

1. OCTANE Compression Features and Capabilities

The OCTANE Compression motion JPEG option card from Silicon Graphics provides
two independent channels for compression and decompression for the OCTANE
desktop workstation. Besides compressing and decompressing still images, OCTANE
Compression enables an OCTANE workstation to input and output compressed video
and record it to disk or videotape. When OCTANE Digital Video is also installed in the
workstation, you can input and output CCIR 601 digital video.

In this chapter:

• “OCTANE Compression Features” presents specific features of the hardware.

• “OCTANE Compression and Video Options” summarizes how the compression
board and the OCTANE Digital Video option interact.

• “OCTANE Compression and the Compression Library” introduces the CL.

• “OCTANE Compression and the Video Library” introduces the VL.

OCTANE Compression Features

Designed to work with the OCTANE Digital Video option, OCTANE Compression
overcomes the obstacle presented by the colossal data streams that video sources
generate. Thus, OCTANE Compression is a powerful tool for video production, digital
video distribution, motion video analysis, and video-based training. OCTANE
Compression is an integral part of the digital studio that combines leading computer
graphics, image processing, digital video, and high-quality video in an efficient desktop
environment.

Note: The OCTANE Compression option does not perform audio compression.

2

Chapter 1: OCTANE Compression Features and Capabilities

For applications that demand broadcast quality, OCTANE Compression with OCTANE
Digital Video allows compressed digital video streams to be used as elements in
sophisticated effects such as real-time keying, blending, and video texture mapping. The
option provides an ideal environment for broadcast-quality nonlinear editing, spot
playback, and still storage.

OCTANE Compression is an integral part of the Silicon Studio solution for film and
video production, which integrates 2D and 3D graphics, image processing, digital audio,
and high-quality video in a single environment.

OCTANE Compression features include

• the ability to encode or decode the board’s two channels in any combination

• capture and playback of full-resolution, full-motion video to and from memory or
disk in real time:

– 60 fields, or 30 frames, per second compression and decompression of
full-resolution NTSC video

– 50 fields, or 25 frames, per second compression and decompression of
full-resolution PAL video

– single-frame compression and decompression

• composite or S-Video capture, and playback with genlock capability

• compression ratios as low as 2:1

• during real-time compression, scaling of full-size fields by half in the horizontal or
vertical direction or both

• real-time color-space conversion in memory-to-memory decompression or
uncompressed video capture or playback modes

• during decompressing to main memory or uncompressed video capture, image
scaling for flexible viewing of video clips and for processing transitions and effects

• compatibility with all OCTANE graphics solutions

• data formats: 8-bit per component 4:2:2 YUV, XBGR, or RGBX (32 bits per pixel, 8
bits per component)

• capture of uncompressed data to memory; playback of uncompressed data from
memory

OCTANE Compression and Video Options

3

OCTANE Compression has these modes of operation:

• capturing uncompressed video from the base analog input or optional OCTANE
Digital Video option into a memory buffer

• playing back of uncompressed video from a memory buffer to the base analog
output or optional OCTANE Digital Video option

• compressing video from the base analog input or optional OCTANE Digital Video
option into a memory buffer

• decompressing video from a buffer to the base analog output or optional OCTANE
Digital Video option

• compressing an image stored in memory into another area of memory

• decompressing a stored compressed image and placing it into another area of
memory

Because of the high data rates produced by video sources, your priorities might alternate
between image quality on the one hand and storage size and transmission bandwidth on
the other. OCTANE Compression adjusts to your needs with a wide range of
compression ratios under complete software control.

OCTANE Compression works with the Compression Library, a complete API for
compressing single images, video-streaming applications, and more.

OCTANE Compression and Video Options

The OCTANE Compression option can be used as a simple analog capture and playback
device for video, or with the OCTANE Digital Video option for capture and playback and
for CCIR 601 digital video.

The OCTANE Compression option’s real-time compression and decompression lets you
perform nonlinear editing and real-time playback from disk of special effects,
composites, and animations. The OCTANE Compression option uses JPEG, the ideal
compression algorithm for postproduction processes because it preserves individual
video frames.

4

Chapter 1: OCTANE Compression Features and Capabilities

OCTANE Compression and the Compression Library

The Silicon Graphics Compression Library (CL) was designed to exploit the full
capabilities of the OCTANE Compression option:

• compression ratios

• data formats

• in conjunction with the Video Library, capture and playback to and from video
destinations

• digital movie recording, editing, and playback

The CL provides three interfaces, for successively more complex compression: a still
image API for single images, a sequential access API for video-streaming applications,
and a buffered interface. Chapter 2, “Programming With the Compression Library,”
explains these interfaces in detail.

The CL works with other Silicon Graphics Digital Media libraries—Audio Library (AL)
and Movie Library (ML)—as well as the Video Library (VL).

Note: Although the CL supports audio compression, the OCTANE Compression board
does not.

OCTANE Compression and the Video Library

The Video Library provides a software interface to the OCTANE Compression board,
which lets applications

• capture live video in system memory

• encode graphics to video in real time

• produce full-rate video output

OCTANE Compression and the Video Library

5

The Video Library (VL) is a collection of device-independent and device-dependent C
language calls for Silicon Graphics workstations equipped with video options. The VL
provides generic video tools, including simple tools for importing and exporting digital
data to and from Silicon Graphics systems or third-party video devices that adhere to the
Silicon Graphics architectural model for video devices.

Chapter 3, “Programming With the Video Library,” explains the basics of using the VL to
create video programs for OCTANE Compression.

Note: See page 10 for information on the order of operation between CL and VL calls.

7

Chapter 2

2. Programming With the Compression Library

This chapter describes how to use the Compression Library API to compress and
decompress image and video data. The CL provides three interfaces for successively
more complex compression:

• still image API for single images

• sequential access API for video-streaming applications where the input is live, or
where there is no control over playback and the amount of compressed data for
each frame is known in advance

• buffered interface that includes the calls of the sequential interface, plus
buffer-management routines to access compressed data and uncompressed
framebuffers

Note: Using the CL with video options is explained in detail in Chapter 4, “Using the
Compression Library With OCTANE Compression.”

In this chapter:

• “Error Handling” describes the CL error-handling facility.

• “Opening a Compression Session” explains the steps required for starting a session.

• “Using the Still Image Interface” explains how to compress still images with a
single call.

• “Using the Sequential Frame Interface” explains how to compress or decompress
sequential data using a compressor or decompressor.

• “Using the Buffering Interface” explains how to use CL buffers.

8

Chapter 2: Programming With the Compression Library

Table 2-1 lists calls explained in this chapter.

Error Handling

In the CL, file I/O is handled by the caller. The CL has an error handler that prints error
messages to stderr. Most CL routines return a negative error code upon failure.

You can override the default error-handling routine and establish an alternate
compression error-handling routine using clSetErrorHandler().

The function prototype for clSetErrorHandler() is

CL_ErrFunc clSetErrorHandler(CL_ErrFunc efunc)

where

efunc is a pointer to an error handling routine declared as

void ErrorFunc(CLhandle handle, int code, const char*
fmt,...)

The returned value is a pointer to the previous error-handling routine.

The code fragment in Example 2-1 demonstrates how to silence error reporting for a
section of code.

Table 2-1 Compression Library Calls

Compression and Decompression Buffers Miscellaneous

clCompress()
clDecompress()
clOpenCompressor()
clOpenDecompressor()
clCloseCompressor()
clCloseDecompressor()
clCompressImage()
clDecompressImage()

clCreateBuf()
clDestroyBuf()
clQueryBufferHdl()
clQueryHandle()
clQueryFree()
clUpdateHead()
clUpdateTail()
clDoneUpdatingHead()
clQueryValid()
clQuery()
clUpdate()

clSetErrorHandler()
clQuerySchemeFromName()
clQueryScheme()
clGetParams()
clSetParams()
clReadHeader()
clQueryMaxHeaderSize()

Opening a Compression Session

9

Example 2-1 Using a Custom Error-Handling Routine

#include <cl.h>
...
CL_ErrFunc originalErrorHandler;
void SilentCLError(CLhandle handle, int errorCode,

const char* fmt, ...)
{
/* ignore all CL errors */
}

...
originalErrorHandler = clSetErrorHandler(silentCLError);
/* cl errors here will go unnoticed */

...
clSetErrorHandler(originalErrorHandler);
/* back to normal reporting of CL errors */
...

Note: If an application attempts to decompress data that is not valid JPEG data, the
decompressor can hang.

Opening a Compression Session

Unlike the Cosmo Compress™ option, the OCTANE Compression option does not have
a predefined scheme value; that is, no scheme pound define is specified for OCTANE
Compression. Instead, applications use clQuerySchemeFromName() to query the CL
whether a scheme with the name impact is available in the system.

If the scheme is available, the return from this function specifies the scheme identifier to
pass to the CL routines. As other schemes are added to the Compression Library on a
specific workstation, the actual value assigned to OCTANE Compression can change.

10

Chapter 2: Programming With the Compression Library

Example 2-2 Querying the Scheme Name

#include <cl.h>
int scheme;
CLhandle clHandle;

scheme = clQuerySchemeFromName (CL_ALG_VIDEO, "impact");
if (scheme < 0) {
 fprintf(stderr, "compression scheme ;’impact’ is not configured\n");
 return;

}
clOpenCompressor (scheme, &clHandle);

In modes where the CL and VL interact to control the OCTANE Compression hardware,
applications must follow an ordering of when events are requested. For all operations
involving a CL_EXTERNAL_DEVICE, the order of startup is:

1. vlBeginTransfer()

2. clCompress() or clDecompress()

The call to clCompress() or clDecompress() actually starts the device operating. If the
vlBeginTransfer() is initiated after the CL operation, indeterminate data is captured or
the first fields of output are lost.

Using the Still Image Interface

Table 2-2 lists the calls explained in this section.

The single image method is designed to make still image compression as simple as
possible. The still image interface consists of two calls, one for compression and one for
decompression. No interframe compression/decompression, such as the method that
takes advantage of similarities between frames in MPEG, is possible with this interface.

Table 2-2 Still Image Interface Calls

Compression Decompression Miscellaneous

clCompressImage() clDecompressImage() clQueryMaxHeaderSize()

Using the Still Image Interface

11

A simple interface exists for compressing or decompressing still images with a single call.
To compress a still image, use clCompressImage(), which compresses the data from the
specified frameBuffer, stores the compressed image in compressedData, and stores its
resulting size in compressedBufferSize.

Pass to clCompressImage() the compression scheme; the width, height, and format of
the image; the desired compression ratio; pointers to reference the buffer containing the
image and the buffer that is to store the compressed data; and a pointer to return the size
of the compressed data.

You should allocate a buffer large enough to store the compressed data. In most cases, a
buffer the size of the source image plus the maximum header size, which you can get by
calling clQueryMaxHeaderSize(), is sufficient. When calculating the data storage of the
source image, you can use the CL macro CL_BytesPerPixel() to determine the number of
bytes per pixel for certain packing formats.

The function prototypes for the compress and decompress image routines are

int clCompressImage(int compressionScheme, int width,
int height, int originalFormat, float compressionRatio,
void *frameBuffer, int *compressedBufferSizePtr,
void *compressedData)

int clDecompressImage(int decompressionScheme, int width,
int height, int originalFormat,int compressedBufferSize,
void *compressedData, void *frameBuffer)

where

compressionScheme
is the compression or decompression scheme to use.

width is the width of the image.

height is the height of the image.

12

Chapter 2: Programming With the Compression Library

originalFormat is the format of the original image to (de)compress. For video, use

• CL_RGB

• CL_RGBX

• CL_RGBA

• CL_RGB332

• CL_GRAYSCALE

• CL_YUV

• CL_YUV422

• CL_YUV422DC

compressionRatio
is the target compression ratio. The resulting quality depends on the
value of this parameter and on the algorithm that is used. Use 0.0 to
specify a nominal value. The nominal values for some of the algorithms
are

• MVC1 = 5.3:1

• JPEG = 15.0:1

• MPEG = 48.0:1

frameBuffer is a pointer to the framebuffer that contains the uncompressed image
data.

compressedBufferSizePtr
is a pointer to the size, in bytes, of the compressed data buffer. If it is
specified as a nonzero value, the size indicates the maximum size of the
compressed data buffer. The value pointed to is overwritten by
clCompressImage() when it returns the actual size of the compressed
data.

compressedBufferSize
is the size of the compressed data in bytes.

compressedBuffer
is a pointer to the compressed data buffer.

Using the Still Image Interface

13

Use clDecompressImage() to decompress an image. clDecompressImage()
decompresses the data that is stored in compressedBuffer, whose size is
compressedBufferSize, and stores the resulting image in frameBuffer.

The values of the state parameters used with the other compression library calls have no
effect on these routines, but their defaults do. The arguments width, height, originalFormat,
and compressionRatio function the same as the state parameters by the same names but
are given as direct arguments to facilitate the single-command interface.

Example 2-3 demonstrates how to compress and decompress a color image using the
JPEG algorithm. The image is 320 pixels wide by 240 pixels high and its data is in the
RGBX format.

Example 2-3 Compressing and Decompressing a Single Frame

/* Compress and decompress a 320 by 240 RGBX image with JPEG */
int frameIndex, compressedBufferSize, maxCompressedBufferSize;
int *compressedBuffer, frameBuffer[320][240];

/* malloc a big enough buffer */
maxCompressedBufferSize = 320 * 240 * CL_BytesPerPixel(CL_RGBX)
 + clQueryMaxHeaderSize(CL_JPEG);
compressedBuffer = (int *)malloc(maxCompressedBufferSize);

/* Compress and decompress it */
clCompressImage(CL_JPEG, 320, 240, CL_RGBX, 15.0,
 frameBuffer, &compressedBufferSize, compressedBuffer);
clDecompressImage(CL_JPEG, 320, 240, CL_RGBX,
 compressedBufferSize, compressedBuffer, frameBuffer);

Note: If an application attempts to decompress data that is not valid JPEG data, the
decompressor can hang.

14

Chapter 2: Programming With the Compression Library

Using the Sequential Frame Interface

Table 2-3 lists the calls explained in this section.

The sequential interface is designed for video-streaming applications where the input is
live, or where there is no control over playback and the amount of compressed data for
each frame is known in advance; in fact, an error is reported if insufficient data is passed.

This interface is more complex, requiring a series of compress or decompress calls to be
encapsulated within an open-close block. Each compressor or decompressor keeps state
information appropriate to the selected compression algorithm in parameters that you
can query and set.

This section describes how to work with sequential frames of video data. See “Using the
Buffering Interface” for a description of how to work with nonsequential data, or for
situations where the decompression rate is different from the compression rate. See
Chapter 5 of the Digital Media Programming Guide (007-1799-060 or later) for a complete
description of buffers

Table 2-3 Sequential Frame Interface Calls

Compression Decompression Miscellaneous

clOpenCompressor() clOpenDeompressor() clGetParams()

clCloseCompressor() clCloseDecompressor() clSetParams()

clCompress() clDecompress() clQueryScheme()

clCompressImage() clDecompressImage() clReadHeader()

clQueryMaxHeaderSize()

Using the Sequential Frame Interface

15

Compressing a Sequence of Frames

To compress sequential data and video streams, use a compressor. A compressor is an
abstraction that modularizes compression operations.

To compress a sequence of frames, follow these steps:

1. Open a compressor to establish the beginning of a sequence of compression calls.

2. Compress frames one at a time, storing the compressed data after each frame has
been compressed.

3. Close the compressor to deallocate the resources associated with that compressor.

Each of these steps is discussed in detail in the following sections.

Opening a Compressor

Call clOpenCompressor() to open a compressor for a given algorithm. Its function
prototype is

int clOpenCompressor(int scheme, CLhandle *handlePtr)

where

scheme is the compression scheme to use.

handlePtr is a pointer, which is overwritten by the returned handle of the
compressor that is used by subsequent calls to identify the compressor.

More than one compressor can be open at a time. Use the handle that is returned in handle
to identify a specific compressor.

Compressing Frames

After a compressor has been opened, call clCompress() to compress the data. Pass to
clCompress() the handle returned by clOpenCompressor(), the number of frames to be
compressed, and pointers to reference the framebuffer containing the data frames, the
size of the data, and the location of the buffer that is to store the compressed data.

16

Chapter 2: Programming With the Compression Library

The function prototype for clCompress() is

int clCompress(CLhandle handle, int numberOfFrames,
void *frameBuffer, int *compressedDataSize,
void *compressedBuffer);

where

handle is a handle to the compressor

numberOfFrames
is the number of frames to compress: generally 1 for video data, or either
CL_CONTINUOUS_BLOCK or CL_CONTINUOUS_NONBLOCK to
continue compression until either the framebuffer is marked as done or
clCloseCompressor() is called. With CL_CONTINUOUS_NONBLOCK,
the call to clCompress() returns immediately while the compression
occurs in a separate thread; CL_CONTINUOUS_BLOCK blocks until
compression is completed.

frameBuffer is a pointer to the location of the buffer that contains the data that is to
be compressed. Using a NULL argument here invokes the buffered
interface that is described in “Using the Buffering Interface” on page 23.
An error is reported if no buffer exists. Some compressors allow a value
of CL_EXTERNAL_DEVICE, indicating a direct connection to an
external video source.

compressedDataSize
is a pointer to the returned size of the compressed data in bytes.

compressedBuffer
is a pointer to the location where the compressed data is to be written.
Using a NULL argument here invokes the buffered interface that is
described in “Using the Buffering Interface” on page 23.

Using the Sequential Frame Interface

17

Call clCompress() once to compress numberOfFrames sequential frames. clCompress()
reads the raw data from the location pointed to by frameBuffer and writes the compressed
data to the location pointed to by compressedBuffer. clCompress() returns either the
number of frames successfully compressed, or in the case of
CL_CONTINUOUS_NONBLOCK, returns SUCCESS immediately.

The size of the compressed data is stored in compressedDataSize, even if this size exceeds
the COMPRESSED_BUFFER_SIZE state parameter. If COMPRESSED_BUFFER_SIZE is
less than the actual size returned by clCompress(), then the data returned in
compressedBuffer is not complete.

An application-allocated compressed buffer must be at least
COMPRESSED_BUFFER_SIZE bytes. This parameter should be determined by calling
clGetParams() after the framebuffer dimensions are defined by clSetParams(). It is not
required to set the COMPRESSED_BUFFER_SIZE, because the default is the largest
possible compressed data size, which is computed from the given parameters.

Note: Parameters are explained in detail in Chapter 6, “Using Compression Library
Parameters.”

Closing a Compressor

To close a compressor, call clCloseCompressor() with the handle of the compressor you
wish to close. This frees resources associated with the compressor.

The code fragment in Example 2-4 demonstrates how to compress a series of frames
using the CL_MVC1 algorithm. A compressor is opened, and then a compression loop is
entered, where frames are accessed one at a time and compressed using the selected
algorithm, then written to a data buffer. The compressor is closed when all of the frames
have been compressed.

18

Chapter 2: Programming With the Compression Library

Example 2-4 Compressing a Series of Frames

#include <dmedia/cl.h>

int pbuf[][2] = {
 CL_IMAGE_WIDTH, 0,
 CL_IMAGE_HEIGHT, 0,
 CL_COMPRESSED_BUFFER_SIZE, 0
};
 ...
/* Compress a series of frames */
clOpenCompressor(CL_MVC1, &handle);

/* set parameters */
pbuf[0][1] = 320;
pbuf[1][1] = 240;
clSetParams(handle, (int *)pbuf, 4);
/* allocate the required size buffer */
clGetParams(handle, (int *)pbuf, 6);
compressedBuffer = malloc(pbuf[2][1]);

for(i = 0; i < numberOfFrames; i++)
{
 /* Get a frame from somewhere */
 ...
 clCompress(handle, 1, frameBuffer, &compressedBufferSize,
 compressedBuffer);
 /* Write the compressed data to somewhere else. */
 ...
}
clCloseCompressor(handle);

Using the Sequential Frame Interface

19

Decompressing a Sequence of Frames

Decompressing sequential data and video streams requires the use of a decompressor. A
decompressor is an abstraction that modularizes decompression operations.

To decompress a sequence of frames, follow these steps:

1. Query the stream header to get the compression scheme used.

2. Open a decompressor to establish the beginning of a sequence of decompression
calls.

3. Decompress frames one at a time, storing the decompressed data after each frame
has been decompressed.

4. Close the decompressor to deallocate the resources associated with that
decompressor.

Each of these steps is discussed in detail in the following sections.

Getting Stream Information

To determine which scheme to pass to the decompressor, use clQueryScheme() to get the
scheme from the 16 bytes of the stream header (see Table 2-4 for a list of typical header
contents, and Table 2-5 for a list of additional video stream header contents).
clQueryScheme() returns the scheme, or the (negative) error code when an error occurs.

Once you determine the scheme, you can open the decompressor and read the header
using clReadHeader(), which returns the actual size of the header, or zero if none is
detected. Use clQueryMaxHeaderSize(), which returns the maximum size of the header,
or zero if none is detected, to determine the size of the header to send to clReadHeader().
You should free the space used for the header buffer when you are finished with it.

clReadHeader() is generally called before clCreateBuf() to help calculate the compressed
buffer size. It uses the data passed to it without affecting the buffering. clReadHeader()
also sets up any state parameters that can be determined from the header.

20

Chapter 2: Programming With the Compression Library

The function prototypes are

int clQueryScheme(void *header)

int clQueryMaxHeaderSize(int scheme)

int clReadHeader(CLhandle handle, int headerSize,void *header)

where

header is a pointer to a buffer containing at least 16 bytes of the header.

scheme is the decompression scheme to use.

handle is a handle to the decompressor.

headerSize is the maximum size of the header in bytes.

header is a pointer to a buffer containing the header.

A typical header begins with a start code and a size, followed by parameter-value pairs
such as those listed in Table 2-4.

Note: For complete information on algorithms used with the OCTANE Compression
option, see Chapter 7, “Using Compression Library Algorithms.” For information on
parameters, see Chapter 6, “Using Compression Library Parameters.”

Table 2-4 Typical Stream Header Contents

Parameter Information supplied

CL_ALGORITHM_ID Algorithm scheme

CL_ALGORITHM_VERSION Version of the algorithm

CL_INTERNAL_FORMAT Format of images immediately before compression

CL_NUMBER_OF_FRAMES Number of frames in the sequence

CL_FRAME_RATE Frame rate

Using the Sequential Frame Interface

21

In addition, video algorithms usually supply the width and height parameters listed in
the header, as shown in Table 2-5.

The code fragment in Example 2-5 demonstrates how to query a stream header and read
its contents.

Example 2-5 Getting the Decompression Scheme From a Header

#include <cl.h>
...
int decompressionScheme;
...
/*
 * Determine the scheme from the first 16 bytes of the
 * header(from the beginning of video data)
*/
header = malloc(16);
read(inFile, header, 16);
decompressionScheme = clQueryScheme(header);
if(decompressionScheme < 0) {

fprintf(stderr, “Unknown compression scheme in stream
header.0);

exit(0);
}
free(header);

clOpenDecompressor(decompressionScheme, &decompressorHdl);

/* Find out how big the header can be. */
headerSize = clQueryMaxHeaderSize(decompressionScheme);
if(headerSize > 0) {

/* Read the header from the beginning of video data */
header = malloc(headerSize);
lseek(inFile, 0, SEEK_SET);

read(inFile, header, headerSize);
}

Table 2-5 Additional Video Stream Header Contents

Parameter Information Supplied

CL_IMAGE_WIDTH Width

CL_IMAGE_HEIGHT Height

22

Chapter 2: Programming With the Compression Library

Opening a Decompressor

Call clOpenDecompressor(), with the desired compression scheme and a pointer for
returning a handle, to open a decompressor for a given algorithm. Its function prototype
is

int clOpenDecompressor(int scheme, CLhandle *handlePtr)

where

scheme is the decompression scheme to use

handlePtr is a pointer to the returned handle of the decompressor that is used by
subsequent calls to identify the decompressor.

More than one decompressor can be open at a time. Use the handle that is returned in
handle to identify a specific decompressor.

Decompressing Frames

After a decompressor has been opened, call clDecompress() to decompress the data. Pass
to clDecompress() the handle returned by clOpenDecompressor(), the number of
frames to be decompressed, the size of the data, and pointers to reference the
decompressed data and the framebuffer that contains the compressed frames.

The function prototype for clDecompress() is

int clDecompress (CLhandle handle, int numberOfFrames,
 int compressedDataSize, void *compressedData
 void *frameBuffer);

where

handle is a handle to the decompressor.

Using the Sequential Frame Interface

23

numberOfFrames
is the number of frames to decompress: generally 1 for video data, or
either CL_CONTINUOUS_BLOCK or
CL_CONTINUOUS_NONBLOCK to continue decompression until
either the framebuffer is marked as done or clCloseDecompressor() is
called. With CL_CONTINUOUS_NONBLOCK, the call to
clDecompress() returns immediately while the compression occurs in a
separate thread; CL_CONTINUOUS_BLOCK blocks until compression
is completed. Using a NULL argument invokes the buffered interface
that is described in “Using the Buffering Interface” on page 23.

compressedDataSize
is a pointer to the returned size of the decompressed data in bytes.

compressedData
is a pointer to the location where the decompressed data is to be written.

frameBuffer is a pointer to the location of the framebuffer that contains the data that
is to be decompressed. Some compressors allow a value of
CL_EXTERNAL_DEVICE, indicating a direct connection to an external
video source. Using a NULL argument invokes the buffered interface
that is described in “Using the Buffering Interface” on page 23. An error
is reported if no buffer exists.

Closing a Decompressor

To close a decompressor, call clCloseDecompressor() with the handle of the
decompressor you wish to close.

The code fragment in Example 2-6 demonstrates how to decompress a series of 320 × 240
(32-bit) RGBX frames by using the CL_MVC1 algorithm. A decompressor is opened, then
a decompression loop is entered, where frames are accessed one at a time and
decompressed by using the selected algorithm, then written to a location such as the
screen. The decompressor is closed when all of the frames have been compressed.

24

Chapter 2: Programming With the Compression Library

Example 2-6 Decompressing a Series of Frames

#include <cl.h>
...
int compressedBufferSize;
int compressedBuffer[320][240], frameBuffer[320][240];
int width, height, k;
static int paramBuf[][2] = {
 CL_IMAGE_WIDTH, 0,
 CL_IMAGE_HEIGHT, 0,
 CL_ORIGINAL_FORMAT, 0,
};
width = 320;
height = 240;

clOpenDecompressor(CL_MVC1, &decompressorHdl);
paramBuf[0][1] = width;
paramBuf[1][1] = height;
paramBuf[2][1] = CL_RGBX;
clSetParams(decompressorHdl, (int *)paramBuf,

sizeof(paramBuf) / sizeof(int));

for (k = 0; k < numberOfFrames; k++)
{ /* Decompress each frame and display it */
 dataSize = GetCompressedVideo(k, frameSize, data);
 clDecompress(decompressorHdl, 1, dataSize, data,

frameBuffer);
 lrectwrite(0, 0, width-1, height-1,

(unsigned int *)frameBuffer);
}
/* Close Decompressor */
clCloseDecompressor(decompressorHdl);

Using the Buffering Interface

25

Using the Buffering Interface

Table 2-6 lists the calls explained in this section.

The buffered interface is designed for

• VCR-like control over the video stream

• maximum efficiency by buffering compressed data and uncompressed frames

• blocking and nonblocking access

• transparent buffering for hardware acceleration or for multiprocessor operation

• multi-threaded applications

This interface includes the calls of the sequential interface, plus buffer-management
routines to access the compressed data and the uncompressed framebuffers.

The buffer management routines allow blocking and nonblocking access and
accumulation of compressed data and decompressed frames. The compression or
decompression modules can each be placed in separate processes. Separating the
processes allows the compression or decompression process to get ahead a few frames,
which is advantageous for algorithms such as MPEG, which compress the data using
techniques that take advantage of similarities between frames, and it also facilitates
hardware acceleration.

Table 2-6 Buffering Interface Calls

Creating and Destroying
Buffers

Managing Buffers

clCreateBuf() clQueryFree()

clDestroyBuf() clUpdateHead()

clQueryBufferHdl() clUpdateTail()

clQueryHandle() clQueryValid()

clDoneUpdatingHead()

clQuery()

clUpdate()

26

Chapter 2: Programming With the Compression Library

Buffers manage compression and decompression for data that is accessed randomly, or
when it is necessary to separate the task into several processes or across multiple
processors. Buffering allows the accumulation of compressed data to be independent of
that of decompressed frames. The buffering interface can be used for multi-threaded
applications.

Buffers are implemented as ring buffers in libcl. A ring buffer contains a number of blocks
of arbitrary size. It maintains a pointer to the buffer location, a size, and pointers to the
head of newest and tail of oldest valid data. Separate processes can be producing (adding
to the buffer) and consuming (removing from the buffer).

Figure 2-1 is a conceptual drawing of a ring buffer.

Figure 2-1 Ring Buffer

The circle represents the ring buffer. The shaded part of the circle contains frames or data,
depending on the buffer type; the blank part is free space. The size of the data (or the
number of frames) available and the size of the space (or the number of frames of space)
are shown by the arrows within the circles. Head marks the location where new data or
frames, depending on the buffer type, are inserted. Tail marks the location where the
oldest data or frames, depending on the buffer type, are removed. The head and tail
march around the circle as data or frames, depending on the buffer type, are produced
and consumed. The double vertical bar at the top signifies the discontinuity between the
end of the buffer and the beginning of the buffer in linear physical memory.

Note: The OCTANE Compression hardware is optimized for use in the asynchronous
ring-buffer modes of operation of the CL. Both the compressed and uncompressed
channels to main memory are buffered; flushing those buffers slows processing.
Applications that require real-time operation must use the ring-buffer modes of the CL.

Size

Space
HeadTail

Using the Buffering Interface

27

DMA operations on OCTANE Compression vary depending upon the number of bytes
available to transfer. The device driver attempts to transfer data in large blocks, but can
step it down to less efficient, smaller block sizes to transfer data out of a ring buffer
completely. The minimum transfer size supported by the OCTANE Compression option
is eight bytes.

Creating a Buffer

The buffer management routines allow buffer space to be allocated by the library
(internal) or by the application (external). A buffer often already exists in memory where
the frames exist (on compression) or need to be placed (on decompression). External
buffering allows this to happen without having to copy the data to or from an internal
buffer. An external buffer is managed entirely within libcl as a ring buffer.

Use clCreateBuf() to create an internal or external buffer. Use clDestroyBuf() to destroy
an internal or external buffer. If clDecompress() or clCompress() is called with NULL for
the compressed data or framebuffer parameters, then the buffer specified by
clCreateBuf() is used. An error is reported if no buffer was created.

The function prototypes are

CLbufferHdl * clCreateBuf (CLhandle handle, int bufferType,
 int blocks, int blockSize, void **bufferPtr)

int clDestroyBuf (CLbufferHdl bufferHdl)

where

handle is the handle to the compressor or decompressor.

bufferType specifies the type of the ring buffer, which can be either

• CL_FRAME for a framebuffer

• CL_DATA for a data buffer

blocks specifies the number of blocks in the buffer.

28

Chapter 2: Programming With the Compression Library

blockSize specifies the size in bytes of the block. This value is either 1 for data
buffering or a multiple of the frame size for frame buffering.

bufferPtr is a pointer to a pointer to the ring buffer. If it points to a NULL pointer,
it specifies an internally allocated buffer, and the value it points to
receives the buffer pointer.

bufferHdl is a handle to the buffer.

The handle returned in bufferHdl is used in subsequent buffering calls, with which you
can get the buffer handle or the compressor or decompressor handle.

Use clQueryBufferHdl() to get the buffer handle from a compressor or decompressor
handle. Its function prototype is

CLbufferHdl clQueryBufferHdl(CLhandle handle,
 int bufferType, void **bufferPtr2)

Use clQueryHandle() to get the compressor or decompressor handle from a buffer
handle. Its function prototype is

CLhandle clQueryHandle(CLbufferHdl bufferHdl)

The code fragment in Example 2-7 demonstrates how to create and use an internal buffer.

Example 2-7 Creating and Using an Internal Buffer

#include <cl.h>
CLhandle handle;
CLbufferHdl bufferHdl;
void *buffer;
 ...
clOpenCompressor(CL_MVC1, &handle);

/* Create a buffer of 10 blocks of size 10000 */
buffer = NULL;
bufferHdl = clCreateBuf(handle, CL_DATA, 10, 10000, &buffer);
bufferHdl = clQueryBufferHdl(handle, CL_DATA, &buffer);
handle = clQueryHandle(bufferHdl);
 ...
clDestroyBuf(bufferHdl);
clCloseCompressor(handle);

The code fragment in Example 2-8 demonstrates how to create and use an external buffer.

Using the Buffering Interface

29

Example 2-8 Creating and Using an External Buffer

#include <cl.h>
CLhandle handle;
CLbufferHdl bufferHdl;
void *buffer;
clOpenCompressor(CL_MVC1, &handle);

/* Create a buffer of 10 blocks of size 10000 */
buffer = malloc(10*10000);
bufferHdl = clCreateBuf(handle, CL_DATA, 10, 10000, &buffer);
bufferHdl = clQueryBufferHdl(handle, CL_DATA, &buffer);
handle = clQueryHandle(bufferHdl);
 ...
clDestroyBuf(bufferHdl);
clCloseCompressor(handle);

Managing Buffers

The buffer management routines are used for both uncompressed (or decompressed)
frames and compressed data. When used for compressed data, they return the number
of blocks (of selectable byte size) of valid contiguous data (or free space for data). When
used for frames, they return the actual number of valid contiguous frames (or free space
for frames).

Use clQueryFree() to find out how much free space is available and where it is located.

Use clUpdateHead() to notify the library that data has been placed in the ring buffer and
to update the head pointer.

Use clQueryValid() to find out how many blocks of valid data are available and where
they are located.

Use clUpdateTail() to notify the library that valid data has been consumed from the ring
buffer and that data is no longer needed.

Use clDoneUpdatingHead() to notify a decompressor that no more data will be arriving,
in which case clDecompress() returns when the buffer empties.

30

Chapter 2: Programming With the Compression Library

The function prototypes are

int clQueryFree (CLbufferHdl bufferHdl, int space,
 void **freeData, int *wrap)

int clUpdateHead (CLbufferHdl bufferHdl, int amountToAdd)

int clQueryValid (CLbufferHdl bufferHdl, int amount,
 void **ValidData, int *wrap)

int clUpdateTail (CLbufferHdl bufferHdl, int amountToRelease)

int clDoneUpdatingHead (CLbufferHdl bufferHdl)

where

bufferHdl is a handle to a compressor buffer.

space is the number of blocks of free space in the framebuffer to wait for. If it
is zero, then the current number of blocks of space is returned without
waiting.

freeData is a pointer to the returned pointer to the location where data or frames
can be placed.

wrap is the number of blocks that have wrapped to the beginning of the ring
buffer (see Figure 2-2 and the accompanying discussion). If it is greater
than zero, then the end of the ring buffer has been reached and the
routine return value will not increase (on subsequent calls) until either
clUpdateHead() for free space or clUpdateTail() for valid data has been
called.

amountToAdd is the number of blocks of free space that were written by the caller and
are ready to be consumed by the library.

amount is the number of blocks of valid data in the data buffer to wait for. If it is
zero, then the number of blocks currently available is returned without
waiting.

validData is a pointer to the returned pointer to the location where valid data can
be retrieved.

amountToRelease
is the number of blocks of valid data that were consumed by the call and
can be reused by the library.

Each compressor or decompressor can have a (compressed) data buffer and a
(uncompressed) framebuffer.

Using the Buffering Interface

31

The block size for the uncompressed framebuffer must be a multiple of the size of one
frame. This value, multiplied by the number of blocks specified, determines how many
frames ahead a decompressor can get if you allow it to work ahead.

Producing and Consuming Data in Buffers

Figure 2-2 shows snapshots of the buffer state over time as a sequence of produce and
consume processes operate on the buffer. Initially, the buffer is empty and both head and
tail point to the beginning of the buffer. When head and tail are equal, the buffer is either
empty or full—in this case, the buffer is empty. The library keeps track internally of
whether the buffer is empty or full.

In the first frame of Figure 2-2, a process begins producing—adding data to the buffer.
First, a call is made to clQueryFree() to determine how much free space is available. An
amount equal to the entire buffer size is returned. Data is written to the buffer, then the
location of head is updated to point to the beginning of the next available free space.

In the second frame of Figure 2-2, the next call to clQueryFree() returns the free space
that exists from head to tail. More data is written and the head is updated once again.

In the third frame of Figure 2-2, a process begins consuming—taking data from the
buffer. A call is made to clQueryValid() to determine the amount of valid data in
existence. The size of the data that was written by the producers so far is returned. Data
is read from the beginning of the buffer to the desired location, and tail is updated to
point to the next location containing valid data.

The final frame of Figure 2-2 shows what happens when the free space is not contiguous.
When the next producer queries for the available free space, two pieces of free space
exist—one on each side of the buffer discontinuity. The first piece of free space, which is
from head to the end of the buffer, is returned as usual. The second piece of free space,
which is from the beginning of the buffer to tail, is returned in the wrap argument. You
can’t write data across the buffer boundary, so it must be written to the buffer in two
steps. First write the data until the end of the buffer is reached, then write the data from
the beginning of the buffer until all of the data has been used. Head can then be updated
to point to the next available free space.

The process for reading data across the frame discontinuity is analogous.

32

Chapter 2: Programming With the Compression Library

Figure 2-2 Snapshots of Buffer State During Producing and Consuming Processes

HeadTail HeadTail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail Tail

Head

Tail

Head

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Initial State Write data
clUpdateHead()

clQueryFree()

Write data clUpdateHead()

clQueryValid()

Read data

clUpdateTail()

clQueryFree()
Write data fromWrite data until clUpdateHead()

returns entire buffer

Producing

clQueryFree()

Producing

Consuming

Producing

beginning of bufferend of buffer is
reachedreturns free space

plus a wrap
value that is
greater than
zero

Using the Buffering Interface

33

Figure 2-3 shows the architecture of the buffer management. Rectangles represent code
modules that can be placed in separate synchronized processes. The buffer management
routines are shown within the boxes. Arrows show the flow of data from the modules to
and from the buffers.

.

Figure 2-3 Flow of Data in a Buffered Compression and Decompression Scheme

clQueryFree(dataHdl)

clUpdateHead(dataHdl)

clQueryValid(frameHdl)

clUpdateTail(frameHdl)

Size

Space

Size

Space Head

Tail

Tail
Head

Playback

Play

Record

Source

Compressor
Decompressor

clDecompress()

Storage

Size

Space

Size

Space Head

Tail

Tail

Head

Storage

clQueryFree(frameHdl)

clUpdateHead(frameHdl)

clCompress()

clQueryValid(dataHdl)

clUpdateTail(dataHdl)

data

data

frames

frames

frames

frames

data

data

34

Chapter 2: Programming With the Compression Library

Hardware Buffer Flushing and Latency

When an image is compressed or decompressed in memory-to-memory modes, it can be
partially contained in the hardware for some time. The device driver does not notify the
application that data is available until all data for a particular field has made its way to
memory and a complete processor cache line has been completed.

This situation is of concern only for applications that use the asynchronous ring-buffer
mode of operation, and do not wish to close the compressor or decompressor (codec).
When the codec is closed, any buffered data is processed and flushed to the application.

A portion of the image is usually trapped in hardware buffering until either the
compressor is closed or a subsequent image flushes this image portion out. If the
application is decompressing to a CL_EXTERNAL_DEVICE, the application should
ensure that the last compressed image sent to the board is completely decompressed.
When the application wants to explicitly flush an image out to the video portion of the
board, it should send 16 bytes of the value 255 (0 × FF), as shown in Example 2-9.

Example 2-9 Flush Compressed Data to CL_EXTERNAL_DEVICE
...
/* get an image from somewhere and put into ring buffer */
/* send an image of data to the decompressor */
clUpdateHead(bufferHandle, size_of_image);
/* flush data though JPEG decompressor */
avail = clQueryFree(bufferHandle, 16, &free, &wrap);
if (prewrap > 16) {
 memset(free, 0xFF, 16);
 clUpdateHead(bufferHandle, 16);
}
else {
 /* handle wrapped CL buffers */
}

Note: This flush operation is necessary only when the application expects some time
between the images that are decompressed. If the application is immediately sending
another compressed image, that image flushes the previous image through the
decompressor.

Using the Buffering Interface

35

Creating a Buffered Record and Play Application

This section provides several examples of how to use buffering. Blocking and
nonblocking playback and record examples are provided.

Creating a Basic Buffered Playback Application

The code fragment in Example 2-10 demonstrates how to use buffers for a playback
application. The amount of space is queried, the data is read directly into the data buffer,
and the decompressor is notified of the change. The data can then be decompressed and
retrieved by querying the number of frames, displaying them directly from the
framebuffer, then releasing the consumed frames.

Example 2-10 Using Buffers for Playback

#include <cl.h>
 ...
actualLen = clQueryFree(decompressorHdl, len, &buf, &wrap);
read(fd, buf, actualLen);
len = clUpdateHead(dataHdl, actualLen);

clDecompress(decompressorHdl, 1, 0, NULL, NULL);

actualNumberOfFrames = clQueryValid(frameHdl, numberOfFrames,
 &frameBuffer, &wrap);
ConsumeFrames(actualNumberOfFrames, frameBuffer);
numberOfFrames = clUpdateTail(bufferHdl, actualNumberOfFrames);

clUpdateHead() indicates to the library that the data has been placed in the data buffer,
but does not copy the data.

clDecompress() reads compressed data from the data buffer and writes uncompressed
frames to the framebuffer. If space for a frame exists in the framebuffer, then the routine
begins decompressing directly to the framebuffer. It consumes data from the data buffer
until there is no more data, then it sleeps for a while and periodically continues to check
for data until there is enough. When it finishes decompressing a frame, it updates the
framebuffer pointers and returns. clDecompress() does not return until decompression
is complete or until an error occurs.

If no more data is added to the buffer, the application can call clDoneUpdatingHead() so
that the library does not stall.

36

Chapter 2: Programming With the Compression Library

clQueryValid() returns the pointer into the frame ring buffer. clUpdateTail() is required
to free the internal framebuffer space, which you don’t want to happen until after you
consume it. The pointer to the next valid frame is kept internally, and only the actual
number of framebuffers that have been decompressed are returned.

The size (or numberOfFrames) returned by the routines are for the contiguous data (or
frames, depending on the buffer type). The wrap argument of the clQuery() routines
returns the actualLen (or numberOfFrames) that have wrapped to the beginning of the
buffer.

The frame accesses does not cross the buffer boundary, and the wrap argument does not
need to be used if both

• the allocated size of the frame ring buffer is a multiple of the size of a frame times
the numberOfFrames that will be requested, and

• the same number of frames will always be requested

If the len (or numberOfFrames) passed to the clQuery() routines is greater than zero, the
routine blocks until that much data (or that many frames) is available. If it is less than or
equal to zero, then the routine returns immediately with whatever data is available. In
either case, the buffer pointers are not adjusted until the clUpdate() routines are called.

Creating a Nonblocking Buffered Playback Application

The code fragment in Example 2-11 demonstrates how to implement nonblocking
playback.

Example 2-11 Using Buffers for Nonblocking Playback

actualLen = clQueryFree(decompressorHdl, 0, &buf, &wrap);
if((actualLen > MIN_READ_SIZE) || (wrap > 0)) {
 read(fd, buf, actualLen);
 len = clUpdateHead(decompressorHdl, actualLen);
}
/* Go do something else */
 ...

Using the Buffering Interface

37

Each call to clQueryFree() returns the same buf pointer but increasing values of actualLen
until MIN_READ_SIZE is reached, whereupon clUpdateHead(dataHdl) updates the
pointers, and the next call to clQueryFree() returns a different buf pointer and a reset
actualLen. If wrap becomes greater than zero, the end of the buffer has been reached and
actualLen does not get any larger, so the amount remaining in the buffer must be
consumed.

Creating a Buffered Record Application

The code fragment in Example 2-12 demonstrates how to use buffers for recording.

Example 2-12 Using Buffers for Recording

actualNumberOfFrames = clQueryFree(bufferHdl, numberOfFrames,
 &frameBuffer, &wrap);
ProduceFrames(actualNumberOfFrames, frameBuffer);
numberOfFrames = clUpdateHead(bufferHdl, actualNumberOfFrames);

clCompress(compressorHdl, 1, NULL, 0, NULL);

actualBufSize = clQueryValid(compressorHdl, bufSize, &buf,
 &wrap);
write(fd, buf, actualBufSize);
bufSize = clUpdateTail(compressorHdl, actualBufSize);

The amount of free space is queried, the frames are read directly into the framebuffer, and
the compressor is notified of the change. The frames can then be compressed and the data
can be retrieved by querying the amount of the data, consuming directly from the data
buffer, then releasing the consumed data.

clUpdateHead() indicates that the frames have been placed in the framebuffer, but does
not copy the data.

clCompress() reads from the framebuffer and writes to the data buffer. If a frame exists
in the framebuffer, then the routine begins compressing directly from the framebuffer. It
places compressed data in the data buffer until there is no more room, then it blocks until
there is enough room. When it completes compression of a frame, it updates the
framebuffer pointers and returns. clCompress() does not return until compression is
complete (or an error occurs).

38

Chapter 2: Programming With the Compression Library

clQueryValid() returns the pointer into the data ring buffer. clUpdateTail() is required to
free the internal data buffer space, which you don’t want to happen until after you
consume it—in this case, by writing it. The pointer to valid data is kept internally, and
clUpdateTail() returns only the actual number of bytes released.

The amount/numberOfFrames returned by the routines are for contiguous data or frames.
The wrap parameter of the clQuery() routines returns the amount/numberOfFrames that
have wrapped to the beginning of the buffer.

If the allocated size of the frame ring buffer is a multiple of the size of a frame times the
numberOfFrames that will be requested, assuming that the same number of frames is
always requested, then the frame accesses will not cross the buffer boundary, and the
wrap parameter does not need to be used.

If the amount passed to the clQuery() routines is greater than zero, then the routine blocks
until that much data is available. If it is less than or equal to zero, then the routine returns
immediately with whatever data is available. In either case, the buffer pointers are not
adjusted until the clUpdate() routine is called.

Creating a Nonblocking Buffered Record Application

The code fragment in Example 2-13 demonstrates how to use buffers for nonblocking
recording.

Example 2-13 Using Buffers for Nonblocking Recording

actualLen = clQueryValid(dataHdl, 0, &buf, &wrap);
if((actualLen > MIN_READ_SIZE) || (wrap > 0)){

write(fd, buf, actualLen);
len = clUpdateTail(dataHdl, actualLen);

}

Each call to clQueryValid() returns the same buf pointer but increasing values of
actualLen until MIN_READ_SIZE is reached, whereupon clUpdateTail() updates the
pointers, and the next call to clQueryValid() returns a different buf pointer and a reset
actualLen. If wrap becomes greater than zero, then the end of the buffer has been reached,
and actualLen does not get any larger, so the amount remaining in the buffer must be
consumed.

Using the Buffering Interface

39

Note that the consuming, compressing or decompressing, and producing have been
separated into different sets of calls. The most powerful use of the interface is to separate
these functional groupings into shared processes using sproc(), or to allocate them to
separate (shared data) processors. See sproc(2) for more information about using sproc().

The buffers are set up by clCreateBuf(). To use data input buffering, clDecompress()
receives NULL for compressedData. To use frame output buffering, clDecompress()
receives NULL for frameBuffer.

clCompress() reads from the framebuffer and writes to the data buffer. If a frame exists
in the framebuffer, then the routine begins compressing directly from the framebuffer. It
places compressed data in the data buffer until there is no more room, then it sleeps for
a while and checks again until there is enough room. When it finishes compressing a
frame, it updates the framebuffer pointers and returns. clCompress() does not return
until compression is complete or until an error occurs.

Creating Buffered Multiprocess Record and Play Applications

Consuming, compressing or decompressing, and producing can be separated into
different sets of calls. The most powerful use of the buffering interface, however, is to
separate these functional groups into shared processes using sproc() or to allocate them
to separate (shared data) processors.

The code fragment in Example 2-14 demonstrates how to implement multiprocess
playback. The functions in boldface can be implemented as separate processes.

Example 2-14 Using Buffers for Multiprocess Playback

ProduceDataProcess()
 actualLen = clQueryFree(dataHdl, len, &buf, &wrap);
 read(fd, buf, actualLen);
 len = clUpdateHead(dataHdl, actualLen);

DecompressProcess()
 clDecompress(decompressorHdl, 1, 0, NULL, NULL);

ConsumeFrameProcess()
 actualNumberOfFrames = clQueryValid(frameHdl,
 numberOfFrames, &frameBuffer, &wrap);
 lrectwrite(0, 0, width - 1, height - 1, frameBuffer);
 numberOfFrames = clUpdateTail(frameHdl,actualNumberOfFrames);

40

Chapter 2: Programming With the Compression Library

The code fragment in Example 2-15 demonstrates how to use buffers for multiprocess
recording. The functions in boldface can be implemented as separate processes.

Example 2-15 Using Buffers for Multiprocess Recording

ProduceFrameProcess()
 actualNumberOfFrames = clQueryFree(frameHdl,
 numberOfFrames, &frameBuffer, &wrap);
 lrectread(0, 0, width - 1, height - 1, frameBuffer);
 numberOfFrames = clUpdateHead(frameHdl,
 actualNumberOfFrames);

CompressProcess()
 clCompress(compressorHdl, 1, NULL, &compressedDataSize,
 NULL);

ConsumeDataProcess()
 actualBufSize = clQueryValid(dataHdl, bufSize,&buf, &wrap);
 write(fd, buf, actualBufSize);
 bufSize = clUpdateTail(dataHdl, actualBufSize);

Implementing functions as separate processes allows the application nonblocking access
to compression and decompression. The application will almost always use
ProduceDataProcess() for playback and the ProduceFrameProcess() for record, since the
single process blocks forever within clDecompress()/clCompress() if insufficient data or
frames, depending on the buffer type, are supplied. The other processes can be made
parts of the main() process. These processes could also be spread across multiple
processors.

41

Chapter 3

3. Programming With the Video Library

Video Library (VL) calls let you perform video teleconferencing, blend
computer-generated graphics with frames from videotape or any video source, and
output the input video source to the graphics monitor, to a video device such as a VCR,
or both.

This chapter explains the basics of creating video programs for OCTANE Compression:

• “Video Library Capabilities”

• “The VL Programming Model”

• “Performing Preliminary Steps”

• “Opening a Connection to the Video Daemon”

• “Specifying Nodes on the Data Path”

• “Creating and Setting Up the Data Path”

• “Setting Parameters for Data Transfer to or From Memory or Codec Nodes”

• “Transferring Video Data to and From Devices”

• “Ending Data Transfer”

• “Example Programs”

Video Library Capabilities

The Video Library provides a software interface to the OCTANE Compression board,
enabling applications to

• display live video in a window

• capture live video in system memory

• encode graphics to video in real time

• produce high-quality full-rate video output

42

Chapter 3: Programming With the Video Library

The Video Library (VL) is a collection of device-independent and device-dependent C
language calls for Silicon Graphics workstations equipped with video options. The VL
provides generic video tools, including simple tools for importing and exporting digital
data to and from Silicon Graphics systems, as well as to and from third-party video
devices that adhere to the Silicon Graphics architectural model for video devices. Video
tools are described in the Media Control Panels User’s Guide, which you can view using the
IRIS InSight™ viewer; similar applications are supplied in source-code form as examples
in the directories /usr/share/src/dmedia/video/vl and /usr/share/src/dmedia/video/vl/OpenGL).

The VL works with other Silicon Graphics libraries, such as OpenGL®. The VL does not
depend on the X Window System™, but you can use X Window System libraries or
toolkits to create a windowing interface.

 The VL allows programs to get events 60 times per second on a quiescent system; it also
enables programs to share resources or to gain exclusive use of resources. It supports
input and output of video data to or from locked-down memory at the nominal frame
rate. The VL provides an API that enables applications to capture or play back video from
system memory.

The OCTANE Compression board software includes a graphical user interface,
/usr/sbin/vcp, that makes it convenient to access VL capabilities.

This section explains

• VL system software architecture

• VL architectural model of video devices

• OCTANE Digital Video formats

VL System Software Architecture

This section describes features of these VL system components and tools:

• video daemon

• generic video tools

• library and header files

Video Library Capabilities

43

Figure 3-1 diagrams the interaction between the VL, the video daemon, the kernel, the
hardware, and the X Window System server.

Figure 3-1 VL System Components

The VL communicates with the IRIX kernel for device initialization, vertical retrace,
setup, and maintenance of any device-supported direct memory access (DMA). See
Chapter 1 of the Digital Media Programming Guide for more information on interfacing to
other libraries.

Besides these components, the VL includes a collection of applications that support
device configuration and control setting and retrieval, generic tools that display video on
a workstation, and video control panels.

Video Daemon

The video daemon /usr/etc/videod, which has device-dependent and device-independent
portions, handles video device management and status information.

Management that the video daemon performs includes

• multiple client access to multiple devices

The library supports connections from multiple client applications and manages
their access to a limited number of video devices.

Video
application

Video
Library

Video
daemon

IRIX kernel

interface
X GL OpenGL

44

Chapter 3: Programming With the Video Library

• dispatching events

As events are handled and noted by devices, the daemon notifies applications that
have expressed interest in those events.

• handling events

As events are generated by the various devices, the daemon initiates any action
required by an event before it hands the event off to interested applications.

• maintaining exclusive use

Types of data or control usage for video clients in a Video Library application are
Done Using, Read-only, Lock, and Shared. These usage levels apply only to write
access on controls, not read access. Any application can open and read the control’s
values at any time.

• client cleanup on exit

When a client exits or is terminated abnormally, its connection to the daemon is
broken; the daemon performs any cleanup required of the system. Any
exclusive-use modes that have been set are cleared; interested clients are notified
that the device is no longer in exclusive use. Controls set by the client might persist,
but are not guaranteed to remain after the client closes the connection.

Status information for which the video daemon is responsible includes

• system status of video devices

The video devices installed in a system can be queried as to availability and control
status.

• video positioning (offset) information

• control setting and retrieval

Device-independent and device-dependent controls are set and retrieved through
the video daemon.

Video Library Capabilities

45

Generic Video Tools

The generic video tools include

videopanel (vcp) Use this graphical user interface to set controls, such as hue or contrast,
on devices. The panel resizes itself dynamically to reflect available video
devices.

vlcmd Use the Video Library command-line interface to enter Video Library
shell-level and other commands.

videoin Use the video input window tool to view input video in a window.

videoout Use the video output tool to output video from a rectangular area of the
screen on hardware that supports the screen-to-video path.

vlinfo Use the video info tool to display information about video devices
available through the VL, such as the name of the X server, number of
devices on the server, and the types and ID numbers of nodes, sources,
and drains on each device.

vintovout Use this tool to display video input on the device attached to video
output.

memtovid Use this tool to output frames (images) to video out on hardware that
supports the memory-to-video path.

vidtomem Use this tool to capture a single frame (the current video input) or a
specified number of frames, depending on the hardware limits for burst
capture, and write the data to disk. Capture size can also be specified.
The data, which can be translated or left as raw data, can be used by the
memtovid tool.

The vlinfo, vidtomem, and memtovid tools are command-line tools. In addition to their
reference pages, these tools have explanations in the Media Control Panels User’s Guide.
Similar applications are supplied in source-code form as examples in the directories
/usr/share/src/dmedia/video/vl and /usr/share/src/dmedia/video/vl/OpenGL).

46

Chapter 3: Programming With the Video Library

Library and Header Files

The client library is /usr/lib/libvl.so. The header files for the VL are in /usr/include/dmedia.
The header file for the VL, vl.h, contains the main definition of the VL API and controls.
The header files for OCTANE Compression are

• /usr/include/dmedia/dev_mgv.h (linked to /usr/include/vl/vl_mgv.h)

• /usr/include/dmedia/dev_impact.h (linked to /usr/include/vl/vl_impact.h)

• /usr/include/dmedia/dev_mgc.h (linked to /usr/include/vl/vl_mgc.h), which is the header
file for OCTANE Compression

• /usr/include/dmedia/vl_impact.h (linked to /usr/include/vl/dev_impact.h), which
contains definitions common to the OCTANE Digital Video and OCTANE
Compression devices

VL Architectural Model of Video Devices

The VL recognizes these classes of objects:

• devices, each including sets of nodes

A video device can be internal, such as the OCTANE Digital Video board, or
external, such as a videotape recorder connected to the OCTANE Digital Video
board.

• nodes: sources, drains, and internal nodes

• paths, connecting sources and drains

• ports, the entities on nodes that produce or consume video data

• controls, or parameters, that modify how data flows through nodes; for example:

– video device parameters, such as blanking width, gamma value, horizontal
phase, sync source

– video data capture parameters

– blending parameters

• buffers, for sending frame data to and receiving frame data from host memory; the
VL buffers contain a number of blocks; each with a pointer, a size, and pointers to
the head (oldest) and tail (newest) valid data

Central concepts for VL are node, path, and port.

Video Library Capabilities

47

Node

The node is an endpoint or internal processing element of the path, such as a video source
like a VTR, video drain (such as to the OCTANE screen), a device (video), or the blender in
which video sources are combined for output to a drain.

Path

The path is an abstraction for a way of moving data around. A path is a set of nodes with
video routes (connections) between the ports on the nodes. A path defines the useful
connections between video sources and video drains. Figure 3-2 shows a simple path in
which a frame from a videotape is displayed in a workstation window.

Figure 3-2 Simple VL Path

Figure 3-3 shows a more complex path with two video sources: a frame from a videotape
and a computer-generated image are blended and output to a workstation window. This
path is set up in stages.

equerry qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

Source Drain

VTR

48

Chapter 3: Programming With the Video Library

Figure 3-3 Simple VL Blending

Port

The port is an entity on a node that produces or consumes video data.

Most nodes have only one port, such as the video in or video out nodes. Each internal
node has at least two ports, input (drain) and output (source). The blend node has several
ports (A alpha in, A pixel in, B alpha in, B pixel in, pixel out, alpha out).

Source1

Source2

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

VTR

Drain

Source1 Drain

/*Create the screen to video path */
vlPath = vlCreatePath(vlScr, devicenum, src_scr, drn_vid);

/* Add the video source node */
vlAddNode(vlSvr, vlPath, src_vid);

Video Library Capabilities

49

Ports have several attributes:

• link type: single-link or dual-link

• data type: alpha, pixel, or pixel-alpha (dual-link)

A device can use this attribute internally to handle data conversions or routing. For
example, the OCTANE Digital Video board includes an alpha LUT to convert
CCIR-range pixel data to full-range alpha values.

• direction: source or drain

• enumerator: A, B, C, and so on, used if a path has several ports with the same link
type, data type, and direction

Ports produce or consume various types of data: pixel, alpha, or dual-link data. The
identification of the port as pixel or alpha may cause the video stream to be treated
differently. For example, alpha data, which can be supplied to OCTANE video in the
CCIR range only, is internally expanded to full range before it is used. No range
expansion is performed for pixel data. Dual-link channels carry both alpha and pixel
data, although one data type may be ignored depending on the format.

Ports have generic names; for example:

• VL_IMPACT_PORT_PIXEL_SRC_A: source of a pixel stream (first, or only, port
instance)

• VL_IMPACT_PORT_ALPHA_DRN_B: drain of an alpha stream (second port
instance)

For the symbolic names for ports, see /usr/include/dmedia/dev_impact.h. Appendix A,
“Video Library Controls and Compression Library Parameters for the OCTANE
Compression Option,” gives the ports associated with each node.

The connections between ports on nodes determine the topology of a path. Single-link
ports can be connected to single-link ports only; dual-link ports can be connected to
double-link ports only.

Data flows from a source port to a drain port. It is not permissible to connect a source port
to another source port, or a drain port to another drain port.

Connections obey stream-usage levels set with vlSetupPaths(). Usage is drain-centric:
the usage levels of the path(s) using the drain node serve as the usage level of the
connection.

50

Chapter 3: Programming With the Video Library

The functions vlSetConnection() and vlGetConnection() manipulate connections:

• vlSetConnection() sets a connection between a source pair (node, port) pair and a
drain pair (node, port).

• vlGetConnection() returns the set of connections entering or leaving a node or port.

OCTANE Compression Formats

The OCTANE Compression board translates video signals into a form usable by the
Indigo2 workstation. It also does the reverse, translating memory buffers into video
signals.

Table 3-1 summarizes the formats that the OCTANE Compression board supports.

The VL Programming Model

Syntax elements are as follows:

• VL types and constants begin with uppercase VL; for example, VLServer

• VL functions begin with lowercase vl; for example, vlOpenVideo()

Data transfers fall into two categories:

• transfers involving memory (video to memory, memory to video), which require
setting up a buffer

• transfers that do not involve memory (video in to video out), which do not require
setting up a buffer.

Table 3-1 Video Formats for OCTANE Compression

Format Signal Nodes

SMPTE YUV (VL_FORMAT_SMPTE_YUV) Contains YUV components in the range 1-254;
superblack and superwhite values can be present.

All memory nodes

RGB (VL_FORMAT_RGB) Full-range 8-bit per component RGBA. Component
range is 0 to 255 (8-bit).

All memory nodes

The VL Programming Model

51

For the two categories of data transfer, based on the VL programming model, the process
of creating a VL application consists of these steps:

1. Open a connection to the video daemon (vlOpenVideo()); if necessary, determine
which device the application will use (vlGetDevice(), vlGetDeviceList()).

2. Specify nodes on the data path (vlGetNode()).

3. Create the path (vlCreatePath()).

4. (Optional step) Add more connections to a path (vlAddNode()).

5. Set up the hardware for the path (vlSetupPaths()).

6. Specify path-related events to be captured (vlSelectEvents()).

7. Set input and output parameters (controls) for the nodes on the path
(vlSetControl()).

8. For transfers involving memory, create a VL buffer to hold data for memory
transfers (vlGetTransferSize(), dmBufferCreatePool() or vlCreateBuffer()).

9. For transfers involving memory, register the buffer (vlRegisterBuffer()) or
(video-to-memory only) vlDMBufferPoolRegister()

10. Set the path topology (vlSetConnection()).

11. Start the data transfer (vlBeginTransfer()).

12. For transfers involving memory, get the data and manipulate it (DMbuffers:
vlDMBufferGetValid(), vlGetActiveRegion(), dmBufferFree(); VL buffers:
vlGetNextValid(), vlGetLatestValid(), vlGetActiveRegion(), vlPutFree()).

13. Clean up (vlEndTransfer(), vlDeregisterBuffer(), vlDestroyPath(), dmBuffer() or
vlDestroyBuffer(), vlCloseVideo()).

52

Chapter 3: Programming With the Video Library

Table 3-2 lists calls explained in this chapter.

Performing Preliminary Steps

To build programs that run under VL, you must

• install the dmedia_dev option

• link with libvl.so

• include vl.h, dev_mgv.h, and dev_mgc.h

The client library is /usr/lib/libvl.so. The header files for the VL are in /usr/include/dmedia;
see “Library and Header Files” on page 46 for a list.

Note: When building a VL-based program, you must add -lvl to the linking command.

Table 3-2 Video Library Calls for Data Transfer

All Transfers Transfers Involving Memory Setting Controls

vlOpenVideo()
vlGetDevice()
vlGetDeviceList()
vlGetNode()
vlCreatePath()
vlSetConnection()
vlGetConnection()
vlAddNode()
vlRemoveNode()
vlSetupPaths()
vlSelectEvents()
vlBeginTransfer()
vlEndTransfer()
vlDestroyPath()
vlCloseVideo()

vlGetTransferSize()
vlCreateBuffer()
vlRegisterBuffer()
vlGetNextValid()
vlGetLatestValid()
vlPutValid()
vlGetNextFree()
vlGetActiveRegion()
vlPutFree()
vlGetDMediaInfo()
vlGetImageInfo()
vlDeregisterBuffer()
vlDestroyBuffer()

vlSetControl()
vlGetControl()
vlControlList()
vlGetControlInfo()

Opening a Connection to the Video Daemon

53

Opening a Connection to the Video Daemon

The first thing a VL application must do is open the device with vlOpenVideo(). Its
function prototype is

VLServer vlOpenVideo(const char *sName)

where sName is the name of the server to which to connect; set it to a NULL string for the
local server. For example:

vlSvr = vlOpenVideo("")

Specifying Nodes on the Data Path

Use vlGetNode() to specify nodes; this call returns the node’s handle. Its function
prototype is

VLNode vlGetNode(VLServer vlSvr, int type, int kind, int number)

where

VLNode is a handle for the node, used when setting controls or setting up paths

vlSvr names the server (as returned by vlOpenVideo())

type specifies the type of node:

• VL_SRC: source

• VL_DRN: drain

• VL_DEVICE: device for device-global controls

Note: If you are using VL_DEVICE, the kind should be set to 0.

kind specifies the kind of node:

• VL_CODEC: compressor/decompressor (codec node)

• VL_MEM: region of workstation memory

• VL_VIDEO: connection to a video device; for example, a video tape
deck or camera

Note: Appendix A gives full details of all OCTANE Digital Video nodes.

number is the number of the node in cases of two or more identical nodes, such
as two video source nodes

54

Chapter 3: Programming With the Video Library

To discover which node the default is, use the control VL_DEFAULT_SOURCE after
getting the node handle the normal way. The default video source is maintained by the
VL. For example:

vlGetControl(vlSvr, path, VL_ANY, VL_DEFAULT_SOURCE, &ctrlval);
nodehandle = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, ctrlval.intVal);

In the first line above, the last argument is a struct that retrieves the value. Corresponding
to VL_DEFAULT_SOURCE, the control VL_DEFAULT_DRAIN gets the default VL_SRC
node.

Creating and Setting Up the Data Path

Once nodes are specified, use VL calls to

• create the path

• get the device ID

• add nodes (optional step)

• set up the data path

• specify the path-related events to be captured

Creating the Path

Use vlCreatePath() to create the data path. Its function prototype is

VLPath vlCreatePath(VLServer vlSvr, VLDev vlDev,
 VLNode src, VLNode drn)

This code fragment creates a path if the device is unknown:

if ((path = vlCreatePath(vlSvr, VL_ANY, src, drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

Creating and Setting Up the Data Path

55

This code fragment creates a path that uses a device specified by parsing a devlist:

if ((path = vlCreatePath(vlSvr, devlist[devicenum].dev, src,
 drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

Note: If the path contains one or more invalid nodes, vlCreatePath() returns
VLBadNode.

Getting the Device ID

If you specify VL_ANY as the device when you create the path, use vlGetDevice() to
discover the device ID selected. Its function prototype is

VLDev vlGetDevice(VLServer vlSvr, VLPath path)

For example:

devicenum = vlGetDevice(vlSvr, path);
deviceName = devlist.devices[devicenum].name;
printf("Device is: %s/n", deviceName);

Adding a Node

For this optional step, use vlAddNode(). Its function prototype is

int vlAddNode(VLServer vlSvr, VLPath vlPath, VLNodeId node)

where

vlSvr names the server to which the path is connected

vlPath is the path as defined with vlCreatePath()

node is the node ID

This example fragment adds a source node and a blend node:

vlAddNode(vlSvr, vlPath, src_vid);
vlAddNode(vlSvr, vlPath, blend_node);

56

Chapter 3: Programming With the Video Library

Setting Up the Data Path

Use vlSetupPaths() to set up the data path. Its function prototype is

int vlSetupPaths(VLServer vlSvr, VLPathList paths,
 u_int count, VLUsageType ctrlusage, VLUsageType streamusage)

where

vlSvr names the server to which the path is connected

paths specifies a list of paths you are setting up

count specifies the number of paths in the path list

ctrlusage specifies usage for path controls:

• VL_SHARE: other paths can set controls on this node; this control is
the desired setting for other paths, including vcp, to work

Note: When using VL_SHARE, pay attention to events. If another
user has changed a control, a VLControlChanged event occurs.

• VL_READ_ONLY: controls cannot be set, only read; for example,
this control can be used to monitor controls

• VL_LOCK: prevents other paths from setting controls on this path;
controls cannot be used by another path

• VL_DONE_USING: the resources are no longer required; the
application releases this set of paths for other applications to
acquire

Creating and Setting Up the Data Path

57

streamusage specifies usage for the data:

• VL_SHARE: transfers can be preempted by other users; paths
contend for ownership

Note: When using VL_SHARE, pay attention to events. If another
user has taken over the node, a VLStreamPreempted event occurs.

• VL_READ_ONLY: the path cannot perform transfers, but other
resources are not locked; set this value to use the path for controls

• VL_LOCK: prevents other paths that share data transfer resources
with this path from transferring; existing paths that share resources
with this path will be preempted

• VL_DONE_USING: the resources are no longer required; the
application releases this set of paths for other applications to
acquire

This example fragment sets up a path with shared controls and a locked stream:

if (vlSetupPaths(vlSvr, (VLPathList)&path, 1, VL_SHARE,
 VL_LOCK) < 0)
{
 vlPerror(_progName);
 exit(1);
}

Note: The Video Library infers the connections on a path if vlBeginTransfer() is called
and no drain nodes have been connected using vlSetConnection() (implicit routing). To
specify a path that does not use the default connections, use vlSetConnection() (explicit
routing).

• For each internal node on the path, all unconnected input ports are connected to the
first source node added to the path. Pixel ports are connected to pixel ports and
alpha ports are connected to alpha ports.

• For each drain node on the path, all unconnected input ports are connected to the
first internal node placed on the path, if there is an internal node, or to the first
source node placed on the path. Pixel ports are connected to pixel ports and alpha
ports are connected to alpha ports.

Note: Do not combine implicit and explicit routing.

58

Chapter 3: Programming With the Video Library

Specifying the Path-Related Events to Be Captured

Use vlSelectEvents() to specify the events you want to receive. Its function prototype is

int vlSelectEvents(VLServer vlSvr, VLPath path,
 VLEventMask eventmask)

where

vlSvr names the server to which the path is connected

path specifies the data path.

eventmask specifies the event mask; Table 3-3 lists the possibilities

Table 3-3 lists and describes the VL event masks.

Table 3-3 VL Event Masks

Symbol Meaning

VLStreamBusyMask Stream is locked

VLStreamPreemptedMask Stream was grabbed by another path

vlStreamChangedMask Video routing on this path has been changed by another
path

VLAdvanceMissedMask Time was already reached

VLSyncLostMask Irregular or interrupted signal

VLSequenceLostMask Field or frame dropped

VLControlChangedMask A control has changed

VLControlRangeChangedMask A control range has changed

VLControlPreemptedMask Control of a node has been preempted, typically by
another user setting VL_LOCK on a path that was
previously set with VL_SHARE

VLControlAvailableMask Access is now available

VLTransferCompleteMask Transfer of field or frame complete

VLTransferFailedMask Error; transfer terminated; perform cleanup at this point,
including vlEndTransfer()

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

59

For example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask);

Event masks can be Or’ed; for example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask |
 VLTransferFailedMask);

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

Transferring data to or from memory requires creating a VL buffer; its size is determined
by the size of the frame data you are transferring.

To set frame data size and to convert from one video format to another, apply controls to
the nodes. The use of source node controls and drain node controls is explained
separately in this section.

Setting Node Controls for Data Transfer

Important data transfer controls for source and drain nodes are summarized in Table 3-4.
They should be set in the order in which they appear in the table.

These controls are highly interdependent, so the order in which they are set is important.
In most cases, the value being set takes precedence over other values that were
previously set.

VLEvenVerticalRetraceMask Vertical retrace event, even field

VLOddVerticalRetraceMask Vertical retrace event, odd field

VLFrameVerticalRetraceMask Frame vertical retrace event

VLDeviceEventMask Device-specific event, such as a trigger

VLDefaultSourceMask Default source changed

Table 3-3 (continued) VL Event Masks

Symbol Meaning

60

Chapter 3: Programming With the Video Library

Note: For drain nodes, VL_PACKING must be set first. Note that changes in one
parameter may change the values of other parameters set earlier; for example, clipped
size may change if VL_PACKING is set after VL_SIZE.

To determine default values, use vlGetControl() to query the values on the video source
or drain node before setting controls. The initial offset of the video node is the first active
line of video.

Similarly, the initial size value on the video source or drain node is the full size of active
video being captured by the hardware, beginning at the default offset. Because some
hardware can capture more than the size given by the video node, this value should be
treated as a default size.

For all these controls, it pays to track return codes. If the value returned is
VLValueOutOfRange, the value set is not what you requested.

Table 3-4 Data Transfer Controls

Control Basic Use Video Nodes Memory and Codec Nodes

VL_FORMAT Video format on the physical
connector

See “Using VL_FORMAT” in
this chapter

N/A

VL_TIMING Video timing See Table 3-5 for values N/A

VL_CAP_TYPE Setting type of field(s) or frame(s)
to capture

N/A VL_CAPTURE_NONINTERLEAVED
VL_CAPTURE_INTERLEAVED
VL_CAPTURE_EVEN_FIELDS
VL_CAPTURE_ODD_FIELDS
VL-CAPTURE_FIELDS

VL_PACKING Pixel packing (conversion) format N/A Changes pixel format of captured data;
see Table 3-7 for values

VL_ZOOM Decimation size N/A Memory nodes only: any n/m where n
is less than or equal to m
Codec nodes: N/A

VL_SIZE Clipping size Full size of video; read only Clipped size

VL_OFFSET Position within larger area Position of active region; read
only

Offset relative to video offset

VL_RATE Field or frame transfer speed N/A If type is INTERLEAVED, rate is in
frames; otherwise, it is in fields

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

61

To specify the controls, use vlSetControl(), for which the function prototype is

int vlSetControl(VLServer vlSvr, VLPath vlPath, VLNode node,
 VLControlType type, VLControlValue * value)

The use of VL_TIMING, VL_FORMAT, VL_PACKING, VL_ZOOM, VL_SIZE,
VL_OFFSET, VL_CAP_TYPE, and VL_RATE is explained in more detail in the following
sections.

Using VL_TIMING

Timing type expresses the timing of video presented to a source or drain. Table 3-5
summarizes dimensions for VL_TIMING.

Using VL_FORMAT

To specify video input and output formats of the video signal on the physical connector,
use VL_FORMAT. Table 3-6 summarizes the options.

Table 3-5 Dimensions for Timing Choices

Timing
Maximum
Width

Maximum
Height

VL_TIMING_525_SQ_PIX (12.27 MHz) 640 486

VL_TIMING_625_SQ_PIX (14.75 MHz) 768 576

VL_TIMING_525_CCIR601 (13.50 MHz) 720 486

VL_TIMING_625_CCIR601 (13.50 MHz) 720 576

Table 3-6 VL_FORMAT

Format Explanation

VL_FORMAT_SMPTE_YUV 8-bit YCrCb

VL_FORMAT_RGB Full-range 8-bit (0-255) RGBA

62

Chapter 3: Programming With the Video Library

Using VL_PACKING

A video packing describes how a video signal is stored in memory, in contrast to a video
format, which describes the characteristics of the video signal.

Packings are specified through the VL_PACKING control on the memory nodes. This
control also converts one video output format to another in memory, within the limits of
the nodes.

Packing types for eight bits per component are summarized in Table 3-7.

Using VL_ZOOM

In the VL, VL_ZOOM controls the expansion or decimation of the video image. For
OCTANE Compression, VL_ZOOM is used in this way:

• OCTANE Compression memory drain nodes support any ratio where the
numerator is less than or equal to the denominator—that is, decimation, but not
zoom.

• Other OCTANE Compression nodes support zoom and decimation ratios of 1:1
only, that is, neither zoom nor decimation.

Figure 3-4 illustrates decimation.

Table 3-7 Packing Types for Eight Bits per Component

Type 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

VL_PACKING_YVYU_422_8
YUV 4:2:2, single-link

U0 Y0 V0 Y1 U2 Y2 V2 Y3

VL_PACKING_RGB_8
RGB, single-link
24-bit word, values beginning with
X are ignored

X0 B0 G0 R0 X1 B1 G1 R1

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

63

Figure 3-4 Decimation

VL_ZOOM takes a nonzero fraction as its argument; do not use negative values. For
example, this fragment captures half-size decimation video to the screen:

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;
if (vlSetControl(server, screen_path, screen_drain_node, VL_ZOOM,
&val)){
 vlPerror("Unable to set zoom");
 exit(1);
}

Note: For a source, decimation takes place before blending; for a drain, blending takes
place before decimation.

This fragment captures half-size decimation video to the screen, with clipping to 320 ×
243 (NTSC size minus overscan):

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;
if (vlSetControl(server,screen_path, screen_drain_node,

VL_ZOOM, &val))
{
 vlPerror("Unable to set zoom");
 exit(1);
}
val.xyVal.x = 320;
val.xyVal.y = 243;
if (vlSetControl(server, screen_path, screen_drain_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);
}

Decimation

Original image

factor: 1/2

64

Chapter 3: Programming With the Video Library

This fragment captures xsize × ysize video with as much decimation as possible, assuming
the size is smaller than the video stream:

if (vlGetControl(server, screen_path, screen_source, VL_SIZE, &val))
{
 vlPerror("Unable to get size");
 exit(1);
}
if (val.xyVal.x/xsize < val.xyVal.y/ysize)
 zoom_denom = (val.xyVal.x + xsize - 1)/xsize;
else
 zoom_denom = (val.xyVal.y + ysize - 1)/ysize;
val.fractVal.numerator = 1;
val.fractVal.denominator = zoom_denom;

if (vlSetControl(server, screen_path, screen_drain_node, VL_ZOOM,
&val))

{
 /* allow this error to fall through */
 vlPerror("Unable to set zoom");
}
val.xyVal.x = xsize;
val.xyVal.y = ysize;
if (vlSetControl(server, screen_path, screen_drain_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);
}

Using VL_SIZE

VL_SIZE controls how much of the image sent to the drain is used, that is, how much
clipping takes place. This control operates on the zoomed image; for example, when the
image is zoomed to half size, the limits on the size control change by a factor of 2.
Figure 3-5 illustrates clipping.

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

65

Figure 3-5 Clipping an Image

For example, to display PAL video in a 320 × 243 space, clip the image to that size, as
shown in the following fragment:

VLControlValue value;
value.xyval.x=320;
value.xyval.y=243;
vlSetControl(vlSvr, path, drn, VL_SIZE, &value);

Note: Because this control is device-dependent and interacts with other controls, always
check the error returns. For example, if offset is set before size and an error is returned,
set size before offset.

Using VL_OFFSET

VL_OFFSET puts the upper left corner of the video data at a specific position; it sets the
beginning position for the clipping performed by VL_SIZE. The values you enter are
relative to the origin.

This example places the data ten pixels down and ten pixels in from the left:

VLControlValue value;
value.xyval.x=10;
value.xyval.y=10;
vlSetControl(vlSvr, path, drn, VL_OFFSET, &value);

Clipping a decimated image

Clipping an undecimated image

Image to fit into this space

Placement of clipping area
depends on the value of VL_OFFSET

Original image

66

Chapter 3: Programming With the Video Library

To capture the blanking region, set offset to a negative value.

Figure 3-6 shows the relationships between the source and drain size, and offset.

Note: For memory nodes, VL_OFFSET and VL_SIZE in combination define the active
region of video that is transferred to or from memory.

Figure 3-6 Zoom (Decimation), Size, and Offset

Using VL_CAP_TYPE and VL_RATE

An application can request that OCTANE Compression capture or play back a video
stream in a number of ways. For example, the application can request that each field be
placed in its own buffer, that each buffer contain an interleaved frame, or that only odd
or even fields be captured. This section enumerates the capture types that OCTANE
Compression supports.

A field mask is useful for identifying which fields will be captured and played back and
which fields will be dropped. A field mask is a bit mask of 60 bits for NTSC or 50 bits for
PAL (two fields per frame). A numeral 1 in the mask indicates that a field is captured or
played back, while a zero indicates that no action occurs.

VL_SIZE

VL_ZOOM

VL_OFFSET

Subset of video source:
decimated portion (decimation factor)

VL_SIZE

VL_OFFSET

Drain

Source

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

67

For example, the following field mask indicates that every other field will be captured or
played back:

10101010101010101010...

Capture types are as follows:

• VL_CAPTURE_NONINTERLEAVED

• VL_CAPTURE_INTERLEAVED

• VL_CAPTURE_EVEN_FIELDS

• VL_CAPTURE_ODD_FIELDS

• VL_CAPTURE_FIELDS

VL_RATE determines the data transfer rate by field or frame, depending on the capture
type as specified by VL_CAP_TYPE, as shown in Table 3-8.

Note: Not all rates are supported on all memory nodes; see Appendix A, “VL Controls
and CL Parameters for the OCTANE Compression Option,” for details. The buffer size
must be set in accordance with the capture type, as listed in Table 3-10 in this chapter.

VL_CAPTURE_NONINTERLEAVED

The VL_CAPTURE_NONINTERLEAVED capture type specifies that frame-size units
are captured noninterleaved. Each field is placed in its own buffer, with the dominant
field in the first buffer. If one of the fields of a frame is dropped, all fields are dropped.
Consequently, an application is guaranteed that the field order is maintained; no special
synchronization is necessary to ensure that fields from different frames are mixed.

Table 3-8 VL_RATE Values (Items per Second)

VL_CAP_TYPE Value VL_RATE Value

VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED

NTSC: 1-30 frames/second
PAL: 1-25 frames/second

VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS

NTSC: 1-30 fields/second
PAL: 1-25 fields/second

VL_CAPTURE_FIELDS NTSC: 1-60 fields/second
PAL: 1-50 fields/second

68

Chapter 3: Programming With the Video Library

The rate (VL_RATE) for noninterleaved capture is in terms of fields and must be even.
For NTSC, the capture rate may be from 2 to 60 fields per second, and for PAL, from 2 to
50 fields per second. Because a frame is always captured as a whole, a rate of 30 fields per
second results in the following field mask:

1100110011001100...

The first bit in the field mask corresponds to the dominant field of a frame. OCTANE
Digital Video waits for a dominant field before it starts the transfer.

If VL_CAPTURE_NONINTERLEAVED is specified for playback, similar guarantees
apply as for capture. If one field is lost during playback, it is not possible to “take back”
the field. OCTANE Digital Video resynchronizes on the next frame boundary, although
black or “garbage” video might be present between the erring field and the frame
boundary.

The rate during playback also follows the rules for capture. For each 1 in the mask above,
a field from the VL buffer is output. During the 0 fields, the previous frame is repeated.
Note that the previous frame is output, not just the last field. If there are a pair of buffers,
the dominant field is placed in the first buffer.

VL_CAPTURE_INTERLEAVED

Interleaved capture interleaves the two fields of a frame and places them in a single
buffer; the order of the frames depends on the value set for
VL_MGV_DOMINANCE_FIELD (see Table A-3 or Table A-4 in Appendix A for details).
OCTANE Digital Video guarantees that the interleaved fields are from the same frame: if
one field of a frame is dropped, then both are dropped.

The rate for interleaved frames is in frames per second: 1-30 frames per second for NTSC
and 1-25 frames per second for PAL. A rate of 15 frames per second results in every other
frame being captured. Expressed as a field mask, the following sequence is captured:

1100110011001100....

As with VL_CAPTURE_NONINTERLEAVED, OCTANE Digital Video begins
processing the field mask when a dominant field is encountered.

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

69

During playback, a frame is deinterleaved and output as two consecutive fields, with the
dominant field output first. If one of the fields is lost, OCTANE Digital Video
resynchronizes to a frame boundary before playing the next frame. During the
resynchronization period, black or “garbage” data may be displayed.

Rate control follows similar rules as for capture. For each 1 in the mask above, a field
from the interleaved frame is output. During 0 periods, the previous frame is repeated.

VL_CAPTURE_EVEN_FIELDS

In the VL_CAPTURE_EVEN_FIELDS capture type, only even (F2) fields are captured,
with each field placed in its own buffer. Expressed as a field mask, the captured fields are

1010101010101010...

OCTANE Digital Video begins processing this field mask when an even field is
encountered.

The rate for this capture type is expressed in even fields. For NTSC, the range is 1-30
fields per second, and for PAL 1-25 fields per second. A rate of 15 fields per second
(NTSC) indicates that every other even field is captured, yielding a field mask of

1000100010001000...

During playback, the even field is repeated as both the F1 and F2 fields, until it is time to
output the next buffer. If a field is lost during playback, black or “garbage” data might be
displayed until the next buffer is scheduled to be displayed.

VL_CAPTURE_ODD_FIELDS

The VL_CAPTURE_ODD_FIELDS capture type works the same way as
VL_CAPTURE_EVEN_FIELDS, except that only odd (F1) fields are captured, with each
field placed in its own buffer. The rate for this capture type is expressed in odd fields. A
rate of 15 fields per second (NTSC) indicates that every other odd field is captured. Field
masks are the same as for VL_CAPTURE_EVEN_FIELDS.

70

Chapter 3: Programming With the Video Library

VL_CAPTURE_FIELDS

The VL_CAPTURE_FIELDS capture type captures both even and odd fields and places
each in its own buffer. Unlike VL_CAPTURE_NONINTERLEAVED, there is no
guarantee that fields are dropped in frame units. Field synchronization can be performed
by examining the UST, the MSC, or the dmedia info sequence number associated with
each field.

The rate for this capture type is expressed in fields. For NTSC, the range is
1-60 fields per second, and for PAL 1-50 fields per second. A rate of 30 fields per second
(NTSC) indicates that every other field is captured, resulting in the following field mask:

101010101010101010...

Contrast this with the rate of 30 for VL_CAPTURE_NONINTERLEAVED, which
captures every other frame.

Field mask processing begins on the first field after the transfer is started; field
dominance, evenness, oddness play no role in this capture type.

Note: The OCTANE Digital Video can make use of the Unadjusted System Time
(UST)/Media Stream Count (MSC) feature. See Chapter 2 of the OCTANE Digital Video
Programmer’s Guide for information.

Setting Field Dominance

Use the control VL_MGC_DOMINANCE_FIELD to set the field dominance mode, which
determines the order in which the fields are read from memory. This control applies only
to the frame-oriented capture types VL_CAPTURE_INTERLEAVED and
VL_CAPTURE_NONINTERLEAVED.

The values for the control VL_MGC_DOMINANCE_FIELD are
VL_MGC_DOMINANCE_F1 (the default) and VL_MGC_DOMINANCE_F2. Figure 3-7
diagrams the field dominance values.

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

71

Figure 3-7 Field Dominance

You can set field dominance independently for each DMA channel.

• VL_CAPTURE_INTERLEAVED

– VL_MGC_DOMINANCE_F1: For video timings VL_TIMING_525_CCIR601
and VL_TIMING_525_SQ_PIX, F1 (odd) dominance dictates that data for the F1
field resides in memory after that for F2. For VL_TIMING_625_CCIR601 and
VL_TIMING_625_SQ_PIX, the data for F1 resides in memory before that of F2.

– VL_MGC_DOMINANCE_F2: For VL_TIMING_525_CCIR601 and
VL_TIMING_525_SQ_PIX, F2 (even timings) dominance dictates that data for
the F1 field resides in memory before that for F2. For
VL_TIMING_625_CCIR601 and VL_TIMING_625_SQ_PIX, the data for F1
resides in memory after that of F2.

The meaning of before and after depends on the capture type. For interleaved frames,
before indicates that the data comprising the first line of the designated field begins
at the first byte of the buffer. In this format, the lines of F1 and F2 are interleaved
within the one ring buffer, thus the second line of the buffer belongs to the other
field, and so forth.

For noninterleaved frames, before indicates that the dominant field is in a buffer
preceding the buffer(s) containing nondominant fields.

• Values for VL_CAPTURE_NONINTERLEAVED:

– VL_MGC_DOMINANCE_F1: The F1 field is in the first buffer of the pair, and
the F2 field in the second.

– VL_MGC_DOMINANCE_F2: The F2 field is in the first buffer of the pair, the F1
field in the second.

F1 F2 F1 F2

F2 dominance

F1 dominance

72

Chapter 3: Programming With the Video Library

Padding and Scaling

OCTANE Compression has hardware acceleration for shrinking images that have an
original size of up to 1000 × 1000 pixels. Original sizes with height or width larger than
1000 pixels are sized (and optionally converted to the RGB color space) by software on
the host CPU.

Table 3-9 lists controls you can use to pad and scale images on capture.

For examples, see /usr/share/src/dmedia/video/vl/OpenGL/contcapt.c.

Table 3-9 Padding and Scaling Controls

Control Values or Range Type Use

VL_MGC_HASPECT
VL_MGC_VASPECT

0 < value ≤ 1/VL_ZOOM fractVal Fraction less than or equal to 1 that shrinks the
horizontal or vertical aspect, respectively

VL_MGC_PAD_TOP
VL_MGC_PAD_BOTTOM

 0 intVal Number of lines to pad at the top or bottom
(respectively of the image on capture

VL_MGC_PAD_LEFT
VL_MGC_PAD_RIGHT

 0 intVal Number of pixels to pad at the left or right
(respectively) of the image on capture

VL_MGC_PAD_ENABLE 0, 1 boolVal Boolean value that activates or deactivates padding

VL_MGC_PAD_Y
VL_MGC_PAD_U
VL_MGC_PAD_V

1 ≤ value ≤ 254 intVal Value between 16 and 235 that specifies the padding
color of the Y, U, or V value, respectively; default is
black

VL_MGC_VIDEO_TOP_CLIP 0 intVal Number of lines to clip from the top on playback to
video output

Transferring Video Data to and From Devices

73

Transferring Video Data to and From Devices

The processes for data transfer are as follows:

• creating a buffer for video data (for transfers involving memory)

• registering the VL buffer with the path (for transfers involving memory)

• starting data transfer

• reading data from the buffer (for transfers involving memory)

Each process is explained separately.

Note: You can use either VL buffers or DM buffers. For information on DMbuffers, see
Chapter 5 of the Digital Media Programming Guide (007-1799-060), or Chapter 2 of the
OCTANE DIgital Video Programmer’s Guide (007-3513-001).

Creating a Buffer for Video Data

Once you have specified frame parameters in a transfer involving memory (or have
determined to use the defaults), create a buffer for the video data. In this case, video data
is frames or fields, depending on the capture type:

• frames if the capture type is VL_CAPTURE_NONINTERLEAVED

• fields if the capture type is anything else

Like other libraries in the IRIX digital media development environment, the VL uses VL
buffers. VL buffers provide a way to read and write varying sizes of video data. A frame
of data consists of the actual frame data and an information structure describing the
underlying data, including device-specific information.

When a VL buffer is created, constraints are specified that control the total size of the data
segment and the number of frame or field buffers (sectors) to allocate.

A head and a tail flag are automatically set in a VL buffer so that the latest frame can be
accessed. A sector is locked down if it is not called; that is, it remains locked until it is
read. When the VL buffer is written to and all sectors are occupied, data transfer stops.
The sector last written to remains locked down until it is released.

74

Chapter 3: Programming With the Video Library

All sectors in a VL buffer must be of the same size, which is the value returned by
vlGetTransferSize(). Its function prototype is

long vlGetTransferSize(VLServer vlSvr, VLPath path)

For example:

transfersize = vlGetTransferSize(vlSvr, path);

where transfersize is the size of the data in bytes.

To create a VL buffer for the frame data, use vlCreateBuffer(). Its function prototype is

VLBuffer vlCreateBuffer(VLServer vlSvr, VLPath path,
 VLNode node, int numFrames)

where

VLBuffer is the handle of the buffer to be created

vlSvr names the server to which the path is connected

path specifies the data path

node specifies the memory node containing data to transfer to or from the VL
buffer

numFrames specifies the number of sectors in the buffer (fields or frames, depending
on the capture type)

For example:

buf = vlCreateBuffer(vlSvr, path, src, 1);

Table 3-10 shows the relationship between capture type and minimum VL buffer size.

Transferring Video Data to and From Devices

75

Note: For memory nodes, real-time memory or video transfer can be performed only as
long as buffer sectors are available to the OCTANE Digital Video device.

Registering the VL Buffer

Use vlRegisterBuffer() to register the VL buffer with the data path. Its function
prototype is

int vlRegisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer buffer)

where

vlSvr names the server to which the path is connected

path specifies the data path

memnodeid specifies the memory node ID

buffer specifies the VL buffer handle

For example:

vlRegisterBuffer(vlSvr, path, drn, Buffer);

Table 3-10 Buffer Size Requirements

Capture Type Minimum Sectors
for Capture

Minimum Sectors
for Playback

VL_CAPTURE_NONINTERLEAVED 2 4

VL_CAPTURE_INTERLEAVED 1 2

VL_CAPTURE_EVEN_FIELDS 1 2

VL_CAPTURE_ODD_FIELDS 1 2

VL_CAPTURE_FIELDS 1 2

76

Chapter 3: Programming With the Video Library

Starting Data Transfer

To begin data transfer, use vlBeginTransfer(). Its function prototype is

int vlBeginTransfer(VLServer vlSvr, VLPath path, int count,
 VLTransferDescriptor* xferDesc)

where

vlSvr names the server to which the path is connected

path specifies the data path

count specifies the number of transfer descriptors

xferDesc specifies an array of transfer descriptors

Tailor the data transfer by means of transfer descriptors. Multiple transfer descriptors are
supplied; they are executed in order. The transfer descriptors are

xferDesc.mode Transfer method:

• VL_TRANSFER_MODE_DISCRETE: a specified number of frames
are transferred (burst mode)

• VL_TRANSFER_MODE_CONTINUOUS (default): frames are
transferred continuously, beginning immediately or after a trigger
event occurs (such as a frame coincidence pulse), and continues
until transfer is terminated with vlEndTransfer()

• VL_TRANSFER_MODE_AUTOTRIGGER: frame transfer takes
place each time a trigger event occurs; this mode is a repeating
version of VL_TRANSFER_MODE_DISCRETE

xferDesc.count Number of frames to transfer; if mode is
VL_TRANSFER_MODE_CONTINUOUS, this value is ignored.

xferDesc.delay Number of frames from the trigger at which data transfer begins.

xferDesc.trigger Set of events to trigger on; an event mask. This transfer descriptor is
always required. VLTriggerImmediate specifies that transfer begins
immediately, with no pause for a trigger event. VLDeviceEvent specifies
an external trigger.

If xferDesc is NULL, then VL_TRIGGER_IMMEDIATE and
VL_TRANSFER_CONTINOUS_MODE are assumed and one transfer is
performed.

Transferring Video Data to and From Devices

77

This example fragment transfers the entire contents of the buffer immediately.

xferDesc.mode = VL_TRANSFER_MODE_DISCRETE;
xferDesc.count = imageCount;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

This fragment shows the default descriptor, which is the same as passing in a null for the
descriptor pointer. Transfer begins immediately; count is ignored.

xferDesc.mode = VL_TRANSFER_MODE_CONTINUOUS;
xferDesc.count = 0;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

Reading Data From the Buffer

If your application uses a buffer, use various VL calls for reading frames, getting pointers
to active buffers, freeing buffers, and other operations. Table 3-11 lists the buffer-related
calls.

Table 3-11 Buffer-Related Calls

Call Purpose

vlGetNextValid() Returns a handle on the next valid frame or field of data

vlGetLatestValid() Reads only the most current frame or field in the buffer,
discarding the rest

vlPutValid() Puts a frame or field into the valid list (memory to video)

vlPutFree() Puts a valid frame or field back into the free list (video to
memory)

vlGetNextFree() Gets a free buffer into which to write data (memory to
video)

vlBufferDone() Informs you if the buffer has been vacated

vlBufferReset() Resets the buffer so that it can be used again

78

Chapter 3: Programming With the Video Library

Figure 3-8 illustrates the difference between vlGetNextValid() and vlGetLatestValid(),
and their interaction with vlPutFree().

Figure 3-8 vlGetNextValid(), vlGetLatestValid(), and vlPutFree()

Table 3-12 lists the calls that extract information from a buffer.

Caution: None of these calls has count or block arguments; appropriate calls in the
application must deal with a NULL return in cases of no data being returned.

Table 3-12 Calls for Extracting Data From a Buffer

Call Purpose

vlGetActiveRegion() Gets a pointer to the data region of the buffer (video to
memory); called after vlGetNextValid() and
vlGetLatestValid()

vlGetDMediaInfo() Gets a pointer to the DMediaInfo structure associated with
a frame; this structure contains timestamp and field count
information

vlGetImageInfo() Gets a pointer to the DMImageInfo structure associated
with a frame; this structure contains image size
information

vlGetNextValid() vlGetLatestValid()

Starting buffer and
pointer status

Call

Get data from here

Result

Get data from here

Clear sector

Transferring Video Data to and From Devices

79

In summary, for video-to-memory transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
info = vlGetNextValid(vlSvr, buffer);
/* OR vlGetLatestValid(vlSvr, buffer); */
dataptr = vlGetActiveRegion(vlSvr, buffer, info);

/* use data for application */
…
vlPutFree(vlSvr, buffer);

For memory-to-video transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
buffer = vlGetNextFree(vlSvr, buffer, bufsize);
/* fill buffer with data */
…
vlPutValid(vlSvr, buffer);

These calls are explained in separate sections.

Reading the Frames to Memory From the Buffer

Use vlGetNextValid() to read all the frames in the buffer or get a valid frame of data. Its
function prototype is

VLInfoPtr vlGetNextValid(VLServer vlSvr, VLBuffer vlBuffer)

Use vlGetLatestValid() to read only the most current frame in the buffer, discarding the
rest. Its function prototype is

VLInfoPtr vlGetLatestValid(VLServer vlSvr, VLBuffer vlBuffer)

After removing interesting data, return the buffer for use with vlPutFree() (video to
memory). Its function prototype is

int vlPutFree(VLServer vlSvr, VLBuffer vlBuffer)

80

Chapter 3: Programming With the Video Library

Sending Frames From Memory to Video

Use vlGetNextFree() to get a free buffer to which to write data. Its function prototype is

VLInfoPtr vlGetNextFree(VLServer vlSvr, VLBuffer vlBuffer,
 int size)

After filling the buffer with the data you want to send to video output, use vlPutValid()
to put a frame into the valid list for output to video (memory to video). Its function
prototype is

int vlPutValid(VLServer vlSvr, VLBuffer vlBuffer)

Caution: These calls do not have count or block arguments; appropriate calls in the
application must deal with a NULL return in cases of no data being returned.

Getting DMediaInfo and Image Data From the Buffer

Use vlGetActiveRegion() to get a pointer to the active buffer. Its function prototype is

void * vlGetActiveRegion(VLServer vlSvr, VLBuffer vlBuffer,
 VLInfoPtr ptr)

Use vlGetDMediaInfo() to get a pointer to the DMediaInfo structure associated with a
frame. This structure contains timestamp and field count information. The function
prototype for this call is

DMediaInfo * vlGetDMediaInfo(VLServer vlSvr,
 VLBuffer vlBuffer, VLInfoPtr ptr)

Use vlGetImageInfo() to get a pointer to the DMImageInfo structure associated with a
frame. This structure contains image size information. The function prototype for this
call is

DMImageInfo * vlGetImageInfo(VLServer vlSvr,
 VLBuffer vlBuffer, VLInfoPtr ptr)

Ending Data Transfer

81

Ending Data Transfer

To end data transfer, use vlEndTransfer(). Its function prototype is

int vlEndTransfer(VLServer vlSvr, VLPath path)

A discrete transfer is finished when the last frame of the sequence is output. The two
types of memory nodes behave differently at the last frame:

• The CC1 memory source stops transferring data from main memory to the
OCTANE Digital Video device, but continues to output to video the last frame
transferred, which is held in a frame buffer associated with the CC1 memory node.

• The VGI1 memory nodes have no associated frame buffer and consequently emit
black video output after a transfer (discrete or continuous) has been completed.

To accomplish the necessary cleanup to exit gracefully, use the following functions:

• for transfers involving memory: vlDeregisterBuffer(), vlDestroyPath(),
vlDestroyBuffer()

• for all transfers: vlCloseVideo()

The function prototype for vlDeregisterBuffer() is

int vlDeregisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer ringbufhandle)

where

vlSvr is the server handle

path is the path handle

memnodeid is the memory node ID

ringbufhandle is the VL buffer handle

The function prototypes for vlDestroyPath(), vlDestroyBuffer() and vlCloseVideo() are,
respectively,

int vlDestroyPath(VLServer vlSvr, VLPath path)

int vlDestroyBuffer(VLServer vlSvr, VLBuffer vlBuffer)

int vlCloseVideo(VLServer vlSvr)

82

Chapter 3: Programming With the Video Library

This example ends a data transfer that used a buffer:

vlEndTransfer(vlSvr, path);
vlDeregisterBuffer(vlSvr, path, memnodeid, buffer);
vlDestroyPath(vlSvr, path);
vlDestroyBuffer(vlSvr, buffer);
vlCloseVideo(vlSvr);

Example Programs

The directory /usr/share/src/dmedia/video/vl includes a number of example programs.
These programs illustrate how to create simple video applications; for example:

• a simple screen application: simplev2s.c

This program shows how to send live video to the screen.

• a video-to-memory frame grab: simplegrab.c

This program demonstrates video frame grabbing.

• memory-to-video frame output simplem2v.c

This program sends a frame to the video output.

• continuous frame capture: simpleccapt.c

This program demonstrates continuous frame capture.

Note: To simplify the code, these examples do not check returns. However, you should
always check returns.

The directory /usr/share/src/dmedia/video/vl/OpenGL contains three example OpenGL
programs:

• contcapt.c: performs continuous capture using buffering and sproc

• mtov.c: uses the Silicon Graphics Movie Library to play a movie on the selected
video port

• vidtomem.c: captures an incoming video stream to memory

These programs are the OpenGL equivalents of the programs with the same names in
/usr/share/src/dmedia/video/vl.

83

Chapter 4

4. Using the Compression Library With OCTANE
Compression

This chapter gives specific information for using the CL with OCTANE Compression.
Besides the interfaces presented in Chapter 2, the CL includes JPEG-specific and
board-specific CL parameters.

In this chapter:

• “Adding OCTANE Compression Support to an Application” explains how to add
OCTANE Compression support to your application.

• “Using OCTANE Compression Image Formats”describes the CL image parameters
that OCTANE Compression supports.

• “Getting Compressed Image Information” explains how to get such information as
the size, timestamp, and a relative image index value for images as they are
compressed or decompressed.

• “Specifying Memory-to-Memory Compression and Decompression” explains how
to use memory-to-memory compression and decompression to compress images
from a movie file to a buffer or scale down the images as you decompress them.

• “Compressing and Decompressing Video Through External Connections” explains
how to use OCTANE Compression to compress images from an external video
connection into memory and decompress JPEG images from memory to a video
device.

Note: For information on tuning the JPEG algorithm, trading quality for compression
ratio, and vice versa, see Chapter 7, “Using Compression Library Algorithms.”

84

Chapter 4: Using the Compression Library With OCTANE Compression

Adding OCTANE Compression Support to an Application

To add OCTANE Compression support to your application, follow these steps:

1. Include the dmedia/cl_impactcomp.h header in order to get definitions for OCTANE
Compression:

#include <dmedia/cl_impactcomp.h>

2. Set OCTANE Compression-specific compression parameters:

■ Set image formats as described in “Using OCTANE Compression Image
Formats” on page 88.

■ Enable CL_ENABLE_IMAGEINFO as described in “Getting Compressed
Image Information” on page 90.

3. Query the CL to determine the appropriate scheme argument for
clOpenCompressor() when opening a compressor or clOpenDecompressor() when
opening a decompressor, as described in “Opening a Compression Session” in
Chapter 2.

Only two OCTANE Compression codecs are available concurrently. An error is
returned if no OCTANE Compression codec is available.

4. Compress or decompress frames.

Determining the JPEG Codec

OCTANE Compression has two independent JPEG codecs. When an application opens a
compressor or decompressor, one of these codecs is allocated to the application.

The control CL_IMPACT_VIDEO_INPUT_CONTROL is used by the application to
determine which codec was allocated; when CL_EXTERNAL_DEVICE is used, it
specifies the CL_CODEC node to be used by the VL.

Values for this control are CL_IMPACT_VIDEO_CHANNEL0 and
CL_IMPACT_VIDEO_CHANNEL1; they depend upon which codec was allocated.
There is no default value for this parameter.

Adding OCTANE Compression Support to an Application

85

An application can query this parameter at any time, but can set it only before a call to a
data-processing routine, such as clCompress() or clDecompress(). Since the codec
channels are identical, it is not usually necessary to select a specific channel.

Although you can try to set the value of this parameter to the other possible value,
success is not guaranteed; another application might have the other codec allocated.
Example 4-1 shows use of this control.

Example 4-1 Capture Using CL_IMPACT_VIDEO_INPUT_CONTROL

channel = clGetParam(clHandle,CL_IMPACT_VIDEO_INPUT_CONTROL);
...
vlGetNode(videoServer,VL_DRN,VL_CODEC,channel);

Controlling Compression and Decompression Operation

An application can control compression or decompression with the CL parameter
CL_IMPACT_CODEC_CONTROL. The default value of this parameter is
CL_IMPACT_START.

If this value of CL_IMPACT_CODEC_CONTROL is CL_IMPACT_START, the operation
begins immediately when clCompress() or clDecompress() is called. If the value is
CL_IMPACT_STOP, the CL configures and initializes the hardware necessary for the
operation, but does not begin the operation until the value is set to CL_IMPACT_START.
This feature allows more precise control over the time that the operation begins.

After a codec has begun operation, setting the parameter
CL_IMPACT_CODEC_CONTROL to the value CL_IMPACT_STOP halts the
compression or decompression operation. If clCompress() or clDecompress() was called
with CL_CONTINUOUS_BLOCK, the function returns. If clCompress() or
clDecompress() was called with CL_CONTINUOUS_NONBLOCK, the associated
thread terminates.

Setting the value to CL_IMPACT_START on a codec that is already processing data has
no effect, nor does setting the value to CL_IMPACT_STOP on a codec that is not
processing data.

86

Chapter 4: Using the Compression Library With OCTANE Compression

Using OCTANE Compression Image Formats

The Compression Library works with data that is contained in frames. A frame is defined
as a sample in time so that:

width * height * components * bitsPerComponent/8 = n bytes

For video compression or decompression, images must be supplied as fields. Because the
JPEG compression algorithm processes images in blocks of 16 × 8 pixels, OCTANE
Compression requires that input images have a height that is a multiple of 8 pixels and a
width that is a multiple of 16 pixels. The CL associates two sets of image dimensions with
an instance of a video compressor or decompressor:

• CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT

• CL_INTERNAL_IMAGE_WIDTH and CL_INTERNAL_IMAGE_HEIGHT

For compression operations, CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT equal the
original, uncompressed image size, and CL_INTERNAL_IMAGE_WIDTH and
CL_INTERNAL_IMAGE_HEIGHT equal the final compressed image size.

For decompression operations, CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT equal
the final, uncompressed image size, and CL_INTERNAL_IMAGE_WIDTH and
CL_INTERNAL_IMAGE_HEIGHT equal the original, compressed image size.

Table 4-1 summarizes the image format parameters.

Table 4-1 OCTANE Compression Image Format Parameters

Image
Attribute

Description Parameter Values

Pixel
format

The option supports 32-bit RGB or
YCrCb 4:2:2 for
memory-to-memory transfers and
YCrCb 4:2:2 only for
video-to-memory transfers.

CL_ORIGINAL_FORMAT CL_RGBX

CL_YUV

Interlacing The option operates on interlaced
NTSC or PAL video data for
video-to-memory compression and
memory-to-video decompression.
Even and odd fields are compressed
as separate images.

DM_IMAGE_INTERLACING NTSC or CCIR(525):
DM_IMAGE_INTERLACED_EVEN

PAL or CCIR(625):
DM_IMAGE_INTERLACED_ODD

Using OCTANE Compression Image Formats

87

Orientation The option
compresses/decompresses images
that have top-to-bottom or
bottom-to-top orientation.

CL_ORIENTATION CL_TOP_DOWN

CL_BOTTOM_UP

DM_TOP_TO_BOTTOM
(for Silicon Graphics movies)

Dimensions
 in pixels

Compression operations: original,
uncompressed image height.

Decompression operations: final,
uncompressed image height

CL_IMAGE_HEIGHT Range: 16–4088, in multiples of 8
(NTSC must use either 240 or 248)
Memory-to-memory
decompression can be any size less
than or equal to
CL_INTERNAL_IMAGE_HEIGHT
Default: 248

Compression operations: original,
uncompressed image height.

Decompression operations: final,
uncompressed image width

CL_IMAGE_WIDTH Range: 16-4080 in multiples of 16
Memory-to-memory
decompression can be any size less
than or equal to
CL_INTERNAL_IMAGE_WIDTH
Default: 640

Dimensions
 in pixels

Compression operations: final,
compressed image height).

Decompression operations:
original, compressed image height.

CL_INTERNAL_IMAGE_HEIGHT Range: 16–4088, in multiples of 8
Default:

Compression operations: final,
compressed image width.

Decompression operations:
original, compressed image width.

CL_INTERNAL_IMAGE_WIDTH Range: 16-4080, in multiples of 16
Default: 320

Table 4-1 (continued) OCTANE Compression Image Format Parameters

Image
Attribute

Description Parameter Values

88

Chapter 4: Using the Compression Library With OCTANE Compression

Getting Compressed Image Information

The CL provides a function used exclusively by hardware-assisted JPEG operations that
lets you get information such as the size, timestamp, and a relative image index value for
images (fields or frames) as they are compressed or decompressed through OCTANE
Compression. For compressing from external video, the timestamp returned represents
the time at which the first line of the uncompressed field arrived at the OCTANE
Compression board.

Note: If an application attempts to decompress data that is not valid JPEG data, the
decompressor can hang.

To get compressed image information, follow these steps:

1. Call clSetParam() to set the CL_ENABLE_IMAGEINFO parameter to TRUE before
compressing or decompressing any frames.

2. Call clGetNextImageInfo() to get a structure containing information about the
compressed image:

int clGetNextImageInfo(CL_Handle handle, CLimageInfo *info,
 int sizeofimageinfo)

handle specifies an open handle that is actively compressing or
decompressing

info is a pointer where a CLimageInfo structure is to be placed

sizeofimageinfo specifies the size of the CLimageInfo structure in bytes

The CLimageInfo structure is defined in dmedia/cl.h and has the following fields:

typedef struct {
 unsigned size; /* size of compressed image in bytes */
 long long ustime; /* time in nanoseconds */
 unsigned imagecount; /* media stream counter */
 unsigned status; /* additional status information */
} CLimageInfo;

The ustime field returns a meaningful value only when compressing from or
decompressing to an external device. The status field is reserved for future use.

Note: To get valid JPEG data, an application using the compressor must enable
clGetNextImageInfo() by setting CL_ENABLE_IMAGEINFO, and then read a
CLimageInfo structure corresponding to each compressed image, before calling
clQueryValid to read the compressed image data.

Specifying Memory-to-Memory Compression and Decompression

89

For the decompressor, you do not need to read CLimageInfo structures. When
clGetNextImageInfo() is called, the CL queries the hardware for information pertaining
to the field that was most recently displayed on the video hardware.
clGetNextImageInfo() blocks only when it is waiting for the first valid decompressed
field to exit the decompressor.

Specifying Memory-to-Memory Compression and Decompression

You can use OCTANE Compression to compress images from a memory archive to a
buffer. For example, you can use OCTANE Compression to compress images from a
movie file to a buffer, and then insert the JPEG-compressed images into a movie file to
create a compressed movie. Taking this idea a step further, you can then use OCTANE
Compression to scale down the images as it decompresses them, in order to display
thumbnail images similar to the ones in Movie Player.

Memory-to-Memory Compression

To compress frames into memory using OCTANE Compression:

1. Open an OCTANE Compression compressor.

2. Set the CL image parameters to characterize the input image data.

3. Compress images into memory.

When compressing images from memory into a buffer, OCTANE Compression supports
image widths of 16–4080 (in multiples of 16 pixels) and image heights of 16–4088 (in
multiples of 8 pixels). Images may be scaled down to one half horizontally and/or one
half vertically. Images may also have black padding regions added to the image prior to
the scaling operation.

The CL parameters CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT specify the original
uncompressed image size, and the parameters CL_INTERNAL_IMAGE_WIDTH and
CL_INTERNAL_IMAGE_HEIGHT specify the final compressed image size.

The uncompressed data format must be 32-bit RGB (CL_RGBX) or YUV 4:2:2 (CL_YUV),
and the uncompressed image size cannot be larger than 4080 × 4088 pixels.

NTSC video frames have a height of 243 lines, but OCTANE Compression supports only
input image heights that are multiples of 8. For NTSC, you must specify an image height

90

Chapter 4: Using the Compression Library With OCTANE Compression

of either 240 (causing the image to be cropped 3 lines from the bottom) or 248 (causing
the image to be padded with 5 extra lines of black).

Example 4-2 demonstrates memory-to-memory compression of NTSC video.

Example 4-2 Memory-to-Memory Compression

#include <dmedia/cl.h>
...
 int pbuf[][2] = {
 CL_IMAGE_WIDTH, 0,
 CL_IMAGE_HEIGHT, 0,
 CL_COMPRESSED_BUFFER_SIZE, 0
 };
 ...
 scheme = clQuerySchemeFromName (CL_ALG_VIDEO, "impact");
 if (scheme < 0) {
 fprintf(stderr, "compression scheme ;’impact’ is"
 " not configured\n");
 return;
 }
 clOpenCompressor (scheme, &handle);

 /* set parameters */
 pbuf[0][1] = 640;
 pbuf[1][1] = 240;
 clSetParams(handle, (int *)pbuf, 3);

 /* allocate the required size buffer */
 clGetParams(handle, (int *)pbuf, 6);
 compressedBuffer = malloc(pbuf[2][1]);

 for(i = 0; i < numberOfFrames; i++)
 {
 /* Get a frame from somewhere */
 ...
 clCompress(handle, 1, frameBuffer,
 &compressedBufferSize, compressedBuffer);
 /* Write the compressed data to somewhere else. */
 ...
 }
 clCloseCompressor(handle);

Specifying Memory-to-Memory Compression and Decompression

91

After compressing the images, you can use mvInsertCompressedImage() to insert the
compressed images into a movie file, as described in Chapter 5 of the Digital Media
Programming Guide (007-1799-060 or later).

Memory-to-Memory Decompression

To decompress JPEG images from memory using OCTANE Compression, follow these
steps:

1. Open an OCTANE Compression decompressor.

2. Set the CL image parameters to characterize the output image data.

3. Decompress images into a buffer.

You can shrink the images as they are decompressed, which is useful for displaying
thumbnail images. When decompressing images from memory into a buffer, OCTANE
Compression supports image widths of 16 to 768 and image heights of 16 to 336.

Scaling can be arbitrary, that is, you can scale the image dimensions down by any
amount, and the output image dimensions do not have to be multiples of 8. To shrink
images as they are decompressed, make the uncompressed image dimensions
(CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT) less than the corresponding
compressed image dimensions (CL_INTERNAL_IMAGE_WIDTH and
CL_INTERNAL_IMAGE_HEIGHT).

For information on padding and scaling images on capture, see “Padding and Scaling”
in Chapter 3.

92

Chapter 4: Using the Compression Library With OCTANE Compression

Interleaving

OCTANE Compression supports interleaving fields as they are being decompressed to
memory, and deinterleaving as the fields are compressed from memory. This
functionality is useful, for example, for taking field-captured media such as that captured
from a video source and converting it to a frame medium, such as for display on the
graphics monitor.

The interleaving and deinterleaving capability is available only in the
memory-to-memory modes of operation. In other modes, use VL controls to select
interleaving; see “Using VL_CAP_TYPE and VL_RATE” in Chapter 3.

The CL parameters that control interleaving are CL_IMPACT_FRAME_INTERLEAVE
and CL_IMPACT_INTERLEAVE_MODE:

• The CL_IMPACT_FRAME_INTERLEAVE parameter’s two possible values, TRUE
and FALSE (the default), turn interleaving on and off.

• The way that the fields are actually interleaved into memory is controlled by the
CL_IMPACT_INTERLEAVE_MODE parameter.

When CL_IMPACT_FRAME_INTERLEAVE is TRUE, the
CL_IMPACT_INTERLEAVE_MODE parameter specifies which of the two fields
occupies the top line of the uncompressed region of memory:

• CL_IMPACT_INTERLEAVE_EVEN specifies that the first field decompressed or
compressed occupies the first (top) line of the uncompressed memory buffer. This
value is appropriate for PAL and CCIR(625) captured media.

• CL_IMPACT_INTERLEAVE_ODD (the default) specifies that the first field
decompressed or compressed occupies the second line of the uncompressed
memory buffer. This value is appropriate for NTSC and CCIR(525) captured media.

Note: The width and height of each field to be interleaved must be the same. During
compression, the width has the same value as CL_IMAGE_WIDTH; during
decompression, the width has the same value as CL_INTERNAL_IMAGE_WIDTH.

Compressing and Decompressing Video Through External Connections

93

Compressing and Decompressing Video Through External Connections

You can use OCTANE Compression as a real-time JPEG codec between your application
and the analog video ports on OCTANE Compression or the OCTANE Digital Video
option.

Video-to-Memory Compression

To capture video from an external video device using OCTANE Compression, follow
these steps:

1. Connect the video device to the appropriate port. For example, use either analog
port 1 or digital port 1. Video port connections are managed from the videopanel
control panel.

2. Open a compressor as described in Example 4-1.

3. Query the CL to retrieve the appropriate VL_CODEC drain node identifier.

4. Open a connection to the video server by calling vlOpenVideo("").

5. Create the video transfer paths.

■ Get the source (VL_SRC) node for the video signal connection by calling
vlGetNode().

■ Specify the drain node using the drain node identifier from step 3.

■ Create the path from source to drain by calling vlCreatePath().

■ Set up the path to share (VL_SHARE) data by calling vlSetupPaths().

6. Set the CL parameters for image dimensions, quality factor, and compressed image
information (CL_ENABLE_IMAGEINFO).

7. Start the video transfer.

8. Use the CL buffered interface to compress frames by calling clCompress() with
CL_CONTINUOUS_NONBLOCK as the framecount parameter and
CL_EXTERNAL_DEVICE as the frameBuffer parameter.

9. Call clGetNextImageInfo() to get a structure containing information about the
compressed image.

94

Chapter 4: Using the Compression Library With OCTANE Compression

Note: Instead of using CL_CONTINUOUS_NONBLOCK, you can call clCompress()
from a separate thread with the value CL_CONTINUOUS_NONBLOCK. In this case,
clCompress() does not return until the transfer is complete.

See capture.c in /usr/share/src/dmedia/dmrecord/dmrecord.cosmo/ for an example of capturing
external video through OCTANE Compression.

Video fields entering OCTANE Compression from the direct video connection are
captured into an array of field buffers. The field buffers support field widths from 640 to
768 and field heights from 16 to 336. Field dimensions depend on the video timing, as
shown in Table 4-2.

When the compressed image’s height is less than the height of the incoming video fields,
the video fields are clipped from the bottom before they are sent to the compressor. When
the compressed image’s height is greater than the height of the incoming video fields,
additional lines of black data are appended to the valid video data before the data is sent
to the compressor.

Note: NTSC fields have a height (243 pixels) that is not a multiple of 8. For NTSC capture,
you can choose to have your application either throw away 3 lines from the bottom of
each field (giving a 240 pixel height) or append 5 extra blank lines to the bottom of each
field (giving a 248 pixel height) before compression.

You can scale the captured image to half-size before compressing it. This allows for an
additional increase in data compression by factor of 4.

Specify vertical decimation by setting the compressed image height
(CL_INTERNAL_IMAGE_HEIGHT) to half the size of the uncompressed image height
(CL_IMAGE_HEIGHT). Compressed image heights can range from 16 to 168, and
uncompressed image heights can range from 32 to 336.

Table 4-2 OCTANE Compression Video Field Dimensions

Video Format WIdth (Pixels) Height (Pixels)

NTSC 640 243

PAL 768 288

CCIR(525) 720 243

CCIR(625) 720 288

Compressing and Decompressing Video Through External Connections

95

Specify horizontal decimation by setting the compressed image width
(CL_INTERNAL_IMAGE_WIDTH) to half the size of the uncompressed image width
(CL_IMAGE_WIDTH) as indicated in Table 4-3.

Note: When CCIR(525) or CCIR(625) images are decimated to one half, they are 360
pixels wide, which is not a multiple of 16 pixels. It is for this reason that one-half
horizontal decimation is not available for these image sizes.

During video compression from an external device, CLimageInfo.imagecount is initialized
to 1 when the first field is received by the compressor after calling clCompress(). The
count advances when a new field arrives. If the compression data buffer fills up, then a
field will be dropped, but the imagecount continues to increase. An application can thus
detect a dropped field by noticing a jump in the imagecount field of more than one. The
ustime indicates the time the uncompressed field entered the compressor.

To select the fields to capture, the application can modify the video parameters
associated with the VL_CODEC node. It is here that the application specifies the capture
type (any fields, paired fields, odd or even fields only) and the rate at which they should
be captured (30/60 fields per second, 10/30 frames per second). See “Setting Parameters
for Data Transfer to or From Memory or Codec Nodes” in Chapter 3.

Memory-to-Video Decompression

The connections for decompressing from memory to an external video are set up
similarly to those for capturing video, except that a decompressor is opened. See clInit.c
in /usr/share/src/examples/dmedia/dmplay/dmplay.cosmo/ for example code that initializes
the CL for JPEG decompression (optionally through OCTANE Compression) from
memory to external video.

Table 4-3 OCTANE Compression Field Widths for Compression With Decimation

Video Format CL_IMAGE_WIDTH (Pixels) CL_INTERNAL_IMAGE_WIDTH (Pixels)

NTSC 640 320

PAL 768 384

CCIR(525) 720 360

CCIR(625) 720 360

96

Chapter 4: Using the Compression Library With OCTANE Compression

Video and audio playback of the decompressed frames require media synchronization.
See dmplay.c and streamDecompress.c in /usr/share/src/examples/dmedia/dmplay for more
information.

Uncompressed fields leaving the JPEG decompressor can optionally be scaled up by a
factor of 2 in the horizontal and/or vertical dimensions. NTSC, PAL or
CCIR(525)/CCIR(625) fields are then scanned out of the array of field buffers. Horizontal
scaling is performed by pixel replication; vertical scaling is performed by line doubling.

If the uncompressed fields leaving the decompressor have fewer lines than the field
height required by the NTSC/PAL or CCIR(525)/CCIR(625) connection (after optional
pistoling), additional lines of black data are added at the bottom of the uncompressed
images. If the uncompressed fields leaving the decompressor have more lines than the
NTSC/PAL/CCIR(525)/CCIR(625) field height (after optional pistoling), lines are
clipped from the bottom of the uncompressed images.

If the uncompressed image is too narrow (less than 640 pixels wide for square-pixel
NTSC), the OCTANE Compression board adds extra (black) pixels to make the image the
correct width. For example, if the image is 400 pixels wide, the OCTANE Compression
board adds 240 black pixels.

Specify horizontal scaling by setting the uncompressed image width
(CL_IMAGE_WIDTH) that is twice the compressed image width
(CL_INTERNAL_IMAGE_WIDTH) as indicated in Table 4-4.

Table 4-4 OCTANE Compression Field Widths for Decompression

Video Format CL_IMAGE_WIDTH (Pixels) CL_INTERNAL_IMAGE_WIDTH (Pixels)

NTSC 640 320

PAL 768 384

CCIR(525) 720 Not available

CCIR(625) 720 Not Available

Compressing and Decompressing Video Through External Connections

97

Specify vertical scaling by setting the uncompressed image height
(CL_IMAGE_HEIGHT) to twice the size of the compressed image height
(CL_INTERNAL_IMAGE_HEIGHT). Compressed image heights can range from 16 to
168, and uncompressed image heights can range from 32 to 336.

During video decompression to an external device, CLimageInfo.imagecount reflects the
count of fields sent by the application to the decompressor. The ustime indicates the time
that field left the decompressor. In certain situations, fields are repeated on output, in
which case the imagecount remains the same, but the ustime increases.

Use the CL parameter CL_IMPACT_CODEC_CONTROL to control compression or
decompression. When a codec is opened, this parameter is initialized with the value
CL_IMPACT_START. If this value is CL_IMPACT_START when clCompress() or
clDecompress() is called, the operation begins immediately. If the value is
CL_IMPACT_STOP, the operation configures and initializes the hardware necessary for
the operation, but does not begin the operation until the value is set to
CL_IMPACT_START.

After a codec has begun operation, setting CL_IMPACT_CODEC_CONTROL to the
value CL_IMPACT_STOP halts the compression or decompression operation. If
clCompress() or clDecompress() was called with CL_CONTINUOUS_BLOCK, the
function returns. If clCompress() or clDecompress() was called with
CL_CONTINUOUS_NONBLOCK, the associated thread terminates.

Setting Interlacing for NTSC and PAL

For video-to-memory compression and memory-to-video decompression, use the
control DM_IMAGE_INTERLACING to set interlacing for NTSC or PAL video data:

• for NTSC or CCIR(525), use DM_IMAGE_INTERLACED_EVEN

• for PAL or CCIR(625), use DM_IMAGE_INTERLACED_ODD

Even and odd fields are compressed as separate images.

99

Chapter 5

5. Using Video Library Controls

Video Library (VL) controls enable you to

• specify data transfer parameters, such as the frame rate or count

• specify the capture region and decimation, or output window

• specify video format and timing

• adjust signal parameters, such as hue, brightness, vertical sync, and horizontal sync

• specify sync source

This chapter explains

• VL control type and values

• VL control fraction ranges

• VL control classes

• VL control groupings

Device-independent controls are documented in /usr/include/dmedia/vl.h.
Device-dependent controls for the OCTANE Digital Video option are documented in the
header files

• /usr/include/dmedia/dev_mgv.h (linked to /usr/include/vl/vl_mgv.h)

• /usr/include/dmedia/dev_impact.h (linked to /usr/include/vl/vl_impact.h)

• /usr/include/dmedia/dev_mgc.h (linked to /usr/include/vl/vl_mgc.h)

Note: For information on the controls used for specific nodes, see Appendix A.

100

Chapter 5: Using Video Library Controls

Table 5-1 is an alphabetical list of device-independent VL controls that apply to the
Compression option, along with their values or ranges. For a complete listing of VL
controls for OCTANE Compression, see Appendix A

Note: For detailed information on using VL_CAP_TYPE, VL_FORMAT, VL_OFFSET,
VL_PACKING, VL_RATE, VL_SIZE, and VL_TIMING, see “Setting Parameters for Data
Transfer to or From Memory or Codec Nodes” in Chapter 3.

Table 5-1 Device-Independent VL Controls

Control Purpose Comments

VL_CAP_TYPE Type of frame(s) or field(s) to capture

VL_DEFAULT_SOURCE Default source for the video path

VL_DEFAULT_DRAIN Default drain for the video path

VL_FORMAT Video format

VL_FREEZE Data transfer freeze; suspends transfer at the
drain node, used only for analog video out

0 = off
1 = on

VL_OFFSET On VL_VIDEO nodes, the offset to the active
region of the video; on all other nodes, the
offset within the video

Because the default is 0,0, use negative values
to get blanking data

VL_PACKING Packing of video data at source or drain

VL_RATE Transfer rate in fields or frames

VL_SIZE On VL_VIDEO nodes, the size of the video; on
all other nodes, the clipped size of the video

VL_SYNC Sync mode VL_SYNC_INTERNAL
VL_SYNC_GENLOCK
VL_MGC_SYNC_SLAVE

VL_SYNC_SOURCE Sets sync source for analog breakout box 0 = composite
1 = S-Video
2 = genlock

VL_TIMING Video timing

VL_ZOOM Decimation Memory nodes only: n/m where n ≤ m

VL Control Type and Values

101

VL Control Type and Values

The type of VL controls is

typedef long VLControlType;

Common types used by the VL to express the values returned by the controls are

typedef struct __vlControlInfo {
 char name[VL_NAME_SIZE]; /* name of control */
 VLControlType type; /* e.g. WINDOW, HUE, BRIGHTNESS */
 VLControlClass ctlClass; /* SLIDER, DETENT, KNOB, BUTTON */
 VLControlGroup group; /* BLEND, VISUAL QUALITY, SIGNAL, SYNC */
 VLNode node; /* associated node */
 VLControlValueType valueType; /* what kind of data do we have */
 int valueCount; /* how many data items do we have */
 int numFractRanges; /* number of ranges to describe control */
 VLFractionRange *ranges; /* range of values of control */

 int numItems; /* number of enumerated items */
 VLControlItem *itemList; /* the actual enumerations */
} VLControlInfo;

To store the value of different controls, libvl.a uses this struct:

typedef union {
 VLFraction fractVal;
 VLBoolean boolVal;
 int intVal;
 VLXY xyVal;
 char stringVal[96]; /* beware of trailing NULLs! */
 float matrixVal[3][3];
 uint pad[24]; /* reserved */
} VLControlValue;

typedef struct {
 int numControls;
 VLControlInfo *controls;
} VLControlList;

The control info structure is returned by a vlGetControlInfo() call, and it contains many
of the items discussed above.

102

Chapter 5: Using Video Library Controls

VLControlInfo.number is the number of the VLControlInfo.node that the information
pertains to. There may be several controls of the same type on a particular node, but
usually there is just one.

VLControlInfo.numFractRanges is the number of fraction ranges for a particular control.
The names correspond 1-to-1 with the rangeNames, up to the number of range names,
numRangeNames. That is, there may be fewer names than ranges, but never more.

VL Control Fraction Ranges

The VL uses fraction ranges to represent the values possible for a control. A
VLFractionRange generated by the VL is guaranteed never to generate a fraction with a
zero denominator, or a fractional numerator or denominator.

For a range type of VL_LINEAR, numerator.increment and denominator.increment are
guaranteed to be greater than zero, and the limit is always guaranteed to be
{numerator,denominator}.base, plus some integral multiple of
{numerator,denominator}.increment.

The type definition for fraction types in the header file is

typedef struct {
 VLRange numerator;
 VLRange denominator;
} VLFractionRange;

VL Control Classes

The VL defines control classes for user-interface developers. The classes are hints only;
they are the VL developer’s idea of how the control is commonly represented in the real
world.

#define VL_CLASS_NO_UI 0
#define VL_CLASS_SLIDER 1
#define VL_CLASS_KNOB 2
#define VL_CLASS_BUTTON 3
#define VL_CLASS_TOGGLE 4
#define VL_CLASS_DETENT_KNOB 5
#define VL_CLASS_LIST 6

VL Control Groupings

103

In the list above, VL_CLASS_NO_UI is often used for controls that have no user-interface
metaphor and are not displayed in the video control panel or saved in the defaults file.

The VL controls can be read-only, write-only, or both. The VL includes these macros:

#define VL_CLASS_RDONLY 0x8000 /* control is read-only */
#define VL_CLASS_WRONLY 0x4000 /* control is write-only */
#define VL_CLASS_NO_DEFAULT 0x2000 /* don’t save in default files */

#define VL_IS_CTL_RDONLY(x) ((x)->ctlClass & VL_CLASS_RDONLY)
#define VL_IS_CTL_WRONLY(x) ((x)->ctlClass & VL_CLASS_WRONLY)
#define VL_IS_CTL_RW(x) (!(VL_IS_CTL_RDONLY(x) || VL_IS_CTL_WRONLY(x)))

The macros test these conditions:

#define VL_CLASS_MASK 0xfff

typedef unsigned long VLControlClass; /* from list above */

VL Control Groupings

Like control class, control grouping is an aid for the user-interface developer. The
groupings are the VL developer’s idea of how the controls would be grouped in the real
world. These groupings are implemented in the video control panel vcp.

The type definition for groupings is

typedef char NameString[80];
#define VL_CTL_GROUP_PATH 9 /* Path Controls */

The maximum length of a control or range name is VL_NAME_SIZE.

Table 5-2 summarizes the VL control groupings.

104

Chapter 5: Using Video Library Controls

Table 5-2 VL Control Groupings

Grouping Includes controls for...

VL_CTL_GROUP_BLENDING Blending; for example, VL_BLEND_B_FCN

VL_CTL_GROUP_VISUALQUALITY Visual quality of sources or drains; for example, VL_H_PHASE or
VL_V_PHASE

VL_CTL_GROUP_SIGNAL Signal of sources or drains; for example, VL_HUE

VL_CTL_GROUP_CODING Encoding or decoding sources or drains; for example, VL_TIMING or
VL_FORMAT

VL_CTL_GROUP_SYNC Synchronizing video sources or drains; for example, VL_SYNC

VL_CTL_GROUP_ORIENTATION Orientation or placement of video signals; for example, VL_ORIGIN

VL_CTL_GROUP_SIZING Setting the size of the video signal; for example, VL_SIZE

VL_CTL_GROUP_RATES Setting the rate of the video signal; for example, VL_RATE

VL_CTL_GROUP_WS Specifying the windowing system of the workstation; for example,
VL_WINDOW

VL_CTL_GROUP_PATH Specifying the data path through the system; these controls, often marked
with the VL_CLASS_NO_UI, are often internal to the VL, with no direct
access for the user

VL_CTL_GROUP_SIGNAL_ALL Specifying properties of all signals

VL_CTL_GROUP_SIGNAL_COMPOSITE Specifying properties of composite signals

VL_CTL_GROUP_SIGNAL_CLUT_COMPOSITE Specifying properties of composite color lookup table (CLUT) controls

VL_CTL_GROUP_KEYING Specifying properties of chroma or luma keying controls, such as
VL_KEYER_FG_OPACITY

VL_CTL_GROUP_PRO Specifying values not commonly found on the front panel of a real-world
video device; for example, a wipe control

VL_CTL_GROUP_MASK Masking optional bits to extract only the control group

105

Chapter 6

6. Using Compression Library Parameters

The CL has a group of routines for working with a set of state variables called
“parameters” that are unique for each instantiation. These routines—clQueryParams(),
clGetParams(), clSetParams(), clGetDefault(), clSetDefault()—are similar to a set of
routines in the Audio Library. You can get and set parameters, either individually or as a
group; however, all of the parameters have reasonable defaults that are
algorithm-dependent and need not be set.

This chapter describes how to use the Compression Library parameters:

• “Compression Library Parameter Definitions” describes parameters by category.

• “Setting and Querying Compression Library Parameters” explains how to use the
parameters in programs.

Compression Library Parameter Definitions

Parameters provide state information about or set frame characteristics, data formats,
and algorithms for each compressor/decompressor. This section discusses parameters
by category.

Image Frame Dimension Parameters

The CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT parameters provide information
about image frame dimensions. For more information on these parameters, see “Using
OCTANE Compression Image Formats” in Chapter 4.

106

Chapter 6: Using Compression Library Parameters

Data Format Parameters

These parameters describe data formats:

CL_ORIGINAL_FORMAT
On compression, this is the format of the original video. On
decompression, this is the format that you want after decompression.
The value, a symbolic constant, is CL_RGB, CL_RGBX (default),
CL_RGBA, CL_RGB332, CL_GRAYSCALE, CL_YUV, CL_YUV422, or
CL_YUV422DC.

CL_INTERNAL_FORMAT
Some video algorithms have several “natural” formats that can be
compressed without color-space conversion. This parameter allows the
selection of one of these formats. The video default is algorithm-specific.

CL_COMPONENTS
A read-only value, as determined by CL_ORIGINAL_FORMAT, that
indicates the number of components in the data. For example, video is
generally 1 for gray-scale, and 3 or 4 for color. The default is 4.

CL_BITS_PER_COMPONENT
The number of bits per component. For OCTANE Digital Video, this
value is always 8.

CL_ORIENTATION
Specifies the orientation of compressed data, which can be one of the
following:

• CL_TOP_DOWN: for pixels arranged top-to-bottom (default)

• CL_BOTTOM_UP: for pixels arranged bottom-to-top

• DM_TOP_TO_BOTTOM for Silicon Graphics movies

The orientation of compressed data is always top down. When
compression or decompression is specified, the original format (or final
format) of the data can be bottom up. Specify this inversion by setting
the CL_ORIENTATION parameter to CL_BOTTOM_UP instead of the
default.

Compression Library Parameter Definitions

107

Buffer Parameters

These parameters describe buffer sizes and characteristics:

CL_FRAME_BUFFER_SIZE
The maximum size, in bytes, of the frame buffer. If clDecompress() is
called with numberOfFrames larger than 1, this value should be the frame
size × numberOfFrames.

CL_COMPRESSED_BUFFER_SIZE
The maximum size of the compressed data buffer. The default is
calculated as the maximum possible size, taking into account all the
factors such as algorithm, encoding method, data type, and so on. If you
want to use a smaller buffer, you can set this value explicitly. If
clCompress() is called with numberOfFrames larger than 1, this value
should be the maximum compressed size of one frame ×
numberOfFrames.

CL_BLOCK_SIZE
The natural block size of the algorithm in samples. It is most efficient to
specify numberOfFrames to be a multiple of the block size when calling
clCompress() or clDecompress().

CL_PREROLL
The number of blocks of frames that must be supplied to
clDecompress() before decompressed frames are returned.

CL_FRAME_RATE
The requested number of frames per second.

CL_FRAME_TYPE
The decompressor fills in the frame type when it decompresses a frame.
Frame type is one of:

CL_KEYFRAME frame is a keyframe

CL_INTRA equivalent to CL_KEYFRAME

CL_PREDICTED frame contains information about its
succeeding frames

CL_BIDIRECTIONAL frame contains information about frames
that precede and succeed it

108

Chapter 6: Using Compression Library Parameters

Compression Ratio and Quality Parameters

These parameters control the compression ratio and quality:

CL_ALGORITHM_ID
A parameter that can be queried to find out the scheme identifier of the
algorithm of an open compressor or decompressor.

CL_EXACT_COMPRESSION_RATIO
A flag determines whether the compression ratio is a target or must be
exact. Some algorithm implementations, such as for JPEG, can be only
approximated and can never be exact. For algorithms that do support it,
it is generally kept within a small range that over time is guaranteed to
average out to the specified compression ratio.

JPEG and MPEG Parameters

JPEG has the following additional parameters:

CL_JPEG_COMPONENT_TABLES
Specifies the IDs of the AC Huffman table, DC Huffman table, and
quantization table to be used for each component. This parameter
cannot be changed directly; rather, it is set up automatically for
processing the selected CL_INTERNAL_FORMAT.

YUV formats use AC Huffman table 0, DC Huffman table 0, and
quantization table 0 for component 0; AC Huffman table 1, DC
Huffman table 1, and quantization table 1 for components 1 and 2. RGB
formats use tables AC table 0, DC table 0, and quantization table 0 for
all components.

CL_JPEG_QUANTIZATION_TABLES
Sets or gets the quantization tables to be used. For more information, see
“Defining and Using Custom JPEG Quantization Tables” in Chapter 7.

Setting and Querying Compression Library Parameters

109

CL_JPEG_QUALITY_FACTOR
A JPEG quantization table scale factor that represents a rough
percentage of the image detail preservation. For more information, see
“Defining and Using Custom JPEG Quantization Tables” in Chapter 7.

MPEG_VIDEO has the following additional parameter:

CL_END_OF_SEQUENCE
An end-of-sequence flag. When the decompressor arrives at the end of
the sequence, it sets this flag. The default is FALSE (0).

For a summary of parameters and their types, ranges, and defaults, see Table A-1 in
Appendix A, “Video Library Controls and Compression Library Parameters for the
OCTANE Compression Option.””

Setting and Querying Compression Library Parameters

After a compressor or decompressor is opened, thus specifying the compression scheme
to use, various parameters can be modified using clSetParams(). All of these parameters
have reasonable defaults that are algorithm-dependent and need not be set. Some
parameters, such as CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT for video
compression, should be set, but setting them is not required.

Getting a List of Parameters and Parameter Types

Use clQueryParams() to get a list of valid parameters and their types for a specified a
compressor or decompressor. The compressor being queried is identified by its handle.
Its function prototype is:

int clQueryParams(CLhandle handle,int *paramValuebuffer, int maxLength)

where

handle is the handle to a compressor or decompressor.

110

Chapter 6: Using Compression Library Parameters

paramValuebuffer
is a pointer to an array of ints into which clQueryParams() can write
parameter identifier/parameter type pairs for each parameter
associated with the compressor or decompressor. The even (0,2,4,...)
entries receive a string that is the parameter identifier. The odd entries
(1,3,5,...) receive the parameter type. Parameter type is one of four
values:

• CL_RANGE_VALUE, meaning that a parameter can assume a
range of values in which the relative magnitude of the value is
meaningful—that is, increasing values indicate increasing
quantities of whatever this parameter controls, and vice versa.

• CL_ENUM_VALUE, meaning that a parameter assumes values
from an enumerated type. The values have a limited range, but
there is no inherent relationship between the range values.

• CL_FLOATING_RANGE_VALUE, meaning that a parameter can
assume a range of floating point values, in which the relative
magnitude of the value is meaningful—that is, increasing values
indicate increasing quantities of whatever this parameter controls,
and vice versa.

• CL_FLOATING_ENUM_VALUE, meaning that a parameter
assumes values from an enumerated type. The values have a
limited floating point range, but there is no inherent relationship
between the range values.

maxLength is the length of the buffer, in ints, pointed to by paramValuebuffer. If
maxLength is zero, then paramValuebuffer is ignored and only the return
value is valid.

clQueryParams() returns the size of the buffer, in ints, needed to hold all the parameter
identifier/parameter type pairs for the compressor or decompressor identified by handle.
The parameters are returned in the even locations of paramValuebuffer, and their types are
returned in the odd locations.

If the size of the paramValuebuffer is smaller than the returned value, a partial list of the
parameter identifier/parameter type pairs is returned, making it necessary to enlarge the
paramValuebuffer in order to receive a complete list. To avoid this situation, you can obtain
the correct size of the buffer by calling clQueryParams() with a NULL buffer pointer and
a maxLength of 0 to return the actual buffer length without writing any data.

Setting and Querying Compression Library Parameters

111

clQueryParams() also reports whether the parameter is one of a set of enumerated types,
any integer number within a specific range, or any floating point number within a
specific range. In each case, the values are numbers within the range returned by
clGetMinMax() and have the defaults returned by clGetDefault().

Example 6-1 demonstrates how to get a list of parameters for a specified
compressor/decompressor.

Example 6-1 Getting a List of Parameters for a Compressor/Decompressor

#include <dmedia/cl.h>
#include <malloc.h>

/*
* Get a buffer containing all the parameters for a specified
* compressor or decompressor.
*/

int *buf, bufferLength;
bufferLength = clQueryParams(handle, 0, 0);
buf = (int *)malloc(bufferLength * sizeof(int));
clQueryParams(handle, buf, bufferLength);

Getting the Parameter ID that Corresponds to a Parameter Name

If you know the name of a parameter, but not its identifier, you can use clGetParamID()
to get the identifier of a parameter from its name.

Its function prototype is:

int clGetParamID(CLhandle handle, char *name)

Getting and Setting Parameter Values

You can get or set parameter values as a group or individually.

Use clGetParams() to return the current values for the parameters referenced in the
paramValuebuffer array. The values are written into the odd locations of paramValuebuffer
immediately after the corresponding parameters.

Use clSetParams() to set the current state of the parameters referenced in the
paramValuebuffer array.

112

Chapter 6: Using Compression Library Parameters

To change a state parameter:

1. Call clQueryParams() to find out which parameters are available.

2. Call clGetParams() to find out the current state.

3. Fill in the even entries of the paramValuebuffer array corresponding to the
parameters to be changed and then call clSetParams().

The function prototypes are:

void clGetParams (CLhandle handle, int *paramValuebuffer,
 int bufferLength)

void clSetParams (CLhandle handle, int *paramValuebuffer,
 int bufferLength)

where

handle is a handle that identifies a compressor or decompressor.

paramValuebuffer
is a pointer to an array of pairs of ints. The even elements of this array
select the parameters to be read or changed. The subsequent odd
elements are the current or new values of these parameters.

bufferLength is the number of ints in the buffer pointed to by paramValuebuffer.

Alternatively, parameters can be changed individually with clSetParam() and
clGetParam(). clGetParam() returns the current value of the parameter. clSetParam()
returns the previous value of the parameter.

The function prototypes are:

int clGetParam(CLhandle handle, int paramID)

int clSetParam(CLhandle handle, int paramID, int value)

where

handle is a handle that identifies a compressor or decompressor.

paramID is the identifier of the parameter to get or set.

value is the new value of the parameter.

Setting and Querying Compression Library Parameters

113

Example 6-2 demonstrates how to extract the current value of specific parameters from
a list of parameters returned as a group. In this case, the current block size and preroll
values are obtained from the list of parameters that are returned in paramValuebuffer from
clGetParams().

Example 6-2 Getting the Current Values of Selected Parameters

#include <dmedia/cl.h>
...
/* Get the block size and preroll */
int paramValueBuffer[][2] = {
CL_BLOCK_SIZE, 0,
CL_PREROLL, 0
};
clGetParams(handle, (int *)paramValueBuffer,
sizeof(paramValueBuffer) / sizeof(int));
/* paramValueBuffer[0][1] is the block size */
/* paramValueBuffer[1][1] is the preroll */

Getting or Setting the Value of a Floating Point Parameter

Some parameters, such as CL_FRAME_RATE, are floating point values. You don’t have
to cast expressions involving floating point values, because macros are provided within
libcl that handle the conversions for you; even though a value is a float you can cast to an
int. To set a floating point value, use the macro CL_TypeIsInt(); to retrieve a floating
point value, use the macro CL_TypeIsFloat().

The argument must be a variable, because the type definitions in /usr/include/dmedia/cl.h
are

float *(float *) &value

int *(int *) &value

Example 6-3 demonstrates how to use the libcl macros to get/set a floating point
parameter value.

Example 6-3 Using Macros to Get or Set the Value of a Floating Point Parameter

float number;
number = 3.0;
...
clSetParam(handle, CL_COMPRESSION_RATIO, CL_TypeIsInt(number));
number = CL_TypeIsFloat(clGetParam(handle,CL_COMPRESSION_RATIO));

114

Chapter 6: Using Compression Library Parameters

Getting or Setting Individual Parameter Attributes

You can query parameters individually to get the name, defaults, and range of valid
values, given the parameter identifier and a handle.

Use clGetName() to return a pointer to a null-terminated string that supplies the English
name of a parameter. Its function prototype is

char* clGetName(CLhandle handle, int param)

where

handle is a handle that identifies a compressor or decompressor.

param is a parameter identifier.

Use clGetDefault() to return the default value of the parameter specified by param. Use
clSetDefault() to set the default value. Setting the default value is particularly useful
when an algorithm has been added and new defaults need to be set.

The function prototypes are

int clGetDefault(CLhandle handle, int param)

int clSetDefault(int scheme, int paramID, int value)

where

handle is a handle that identifies a compressor or decompressor.

paramID is a parameter identifier.

scheme is the identifier of the scheme for which to set the defaults.

value is the new default value associated with param.

Example 6-4 demonstrates how to get and set defaults for a parameter. In this case, the
default for the CL_ORIGINAL_FORMAT parameter is set to CL_RGBX for the specified
decompressor.

Setting and Querying Compression Library Parameters

115

Example 6-4 Getting and Setting Parameter Defaults

#include <dmedia/cl.h>
int default;
...
clOpenDecompressor(scheme, &handle);
...
default = clGetDefault(handle, CL_ORIGINAL_FORMAT);
clSetDefault(scheme, CL_ORIGINAL_FORMAT, CL_RGBX);
...

Use clGetMinMax() to get the maximum and minimum values for a parameter. Use
clSetMin() and clSetMax() to set new minimum and maximum parameter values, or to
establish the minimum and maximum values when adding a new algorithm.

The function prototypes are

int clGetMinMax (CLhandle handle, int param, int *minParam,
 int *maxParam)

int clSetMin(int scheme, int paramID, int min)

int clSetMax(int scheme, int paramID, int max)

where

handle is a handle that identifies a compressor or decompressor.

paramID is a parameter identifier.

minParam is a pointer to the parameter into which clGetMinMax() can write the
minimum value associated with paramID.

maxParam is a pointer to the parameter into which clGetMinMax() can write the
maximum value associated with paramID.

scheme is the identifier of the scheme that is to have its minimum or maximum
value changed.

min is the new minimum value associated with paramID.

max is the new maximum value associated with paramID.

116

Chapter 6: Using Compression Library Parameters

Example 6-5 demonstrates how to get and set the minimum and maximum values of a
particular parameter for the specified compressor or decompressor.

Example 6-5 Getting and Setting Minimum and Maximum Parameter Values

#include <dmedia/cl.h>
int oldMin, oldMax;
...
clOpenDecompressor(scheme, &handle);
6
...
clGetMinMax(handle, CL_ORIGINAL_FORMAT, &oldMin, &oldMax);
clSetMin(scheme, CL_ORIGINAL_FORMAT, CL_RGB);
clSetMax(scheme, CL_ORIGINAL_FORMAT, CL_RGB332);
...

Using Frame Type Parameters

Some compression algorithms do not allow direct compression or decompression of an
arbitrary frame. These algorithms—MPEG, CCITT H.261, and so on—have blocks of
frames, where each frame can be decompressed only if all previous frames in the block
have been decompressed. The frame at the beginning of the block is called a keyframe.

A frame can be queried for its status as a keyframe by using the CL_FRAME_TYPE state
parameter. Legal values are CL_KEYFRAME (or CL_INTRA), CL_PREDICTED, and
CL_BIDIRECTIONAL. Predicted frames use information from a previous keyframe,
bidirectional frames use information from both previous and future reference frames,
where a reference frame is either of the other two types—CL_KEYFRAME or
CL_PREDICTED. The Compression Library interface allows keyframe control from the
application.

Some algorithms contain only keyframes, such as JPEG, MVC1, RTR, RLE, G.711, and so
on. MPEG Video is the only algorithm currently supported that has all three types of
frames.

117

Chapter 7

7. Using Compression Library Algorithms

This chapter describes how to use the algorithms that are supplied with libcl. To use one
of these algorithms, you need to select an appropriate algorithm for your application and
specify it in the compress or decompress routines.

In this chapter:

• “Choosing a Compression Library Algorithm” gives factors for selecting an
algorithm for specific types of applications.

• “Querying Compression Library Algorithms” tells how to get a list of available
algorithms, the name and type of the algorithm, and licensing information for it.

• “Controlling JPEG Compressed Image Quality” explains controls for optimizing the
JPEG compression algorithm.

Choosing a Compression Library Algorithm

Perhaps the most important aspect of developing an application that uses libcl is selecting
the appropriate algorithm to use for the application. The algorithm affects the data size
and quality and the rate of compression and decompression, so it is important to
consider how an algorithm might affect the end result and whether a particular
algorithm achieves the desired effect. A certain amount of experimentation may be
necessary.

If you are interested in a particular quality level, you need to set the compression ratio to
achieve that quality; if you are primarily interested in a particular data size or data rate,
you need to set the compression ratio to achieve the desired data size or rate.

118

Chapter 7: Using Compression Library Algorithms

Here are some suggestions for typical application categories:

Note: The performance quoted is for Indigo® workstations with 33 MHz MIPS® R3000®

processors only. Corresponding capabilities for the OCTANE workstation have not yet
been measured, but are expected to surpass these statistics generally.

• multimedia information delivery applications

The key factors to consider when choosing a video compression algorithm for
multimedia applications are playback speed, data size or rate, and quality.

MPEG gives the best video quality for a given data size or rate, but playback speed
is limited by the CPU. MVC1 is usually the best choice if MPEG is not fast enough.
If an expensive frame-by-frame VCR is not available, recording in real time to disk
is important, which can be done with RTR1.

• telecommunications applications

The key factors to consider when choosing a video compression algorithm for
video/voice mail, video teleconferencing, and other telecommunications
applications are the combined compression-decompression speed, data size/rate,
and to a lesser extent, quality.

MVC1 gives the best result for video of about 10 frames per second for a 160 by 120
frame size at the cost of a very high data rate. More performance can be achieved by
using gray-scale.

• previewing animations

The key factors when choosing a video compression algorithm for previewing 2D
and 3D animations are playback speed, quality, and, to a lesser extent, data
size/rate. MVC1 gives the appropriate speed and quality.

• editing movies

The key factors to consider when choosing a video compression algorithm for
movie editing applications are decompression speed, image quality, data size/rate,
and compression speed.

For motion video applications, MVC1 is the best choice, especially when the
playback is provided by the MoviePlayer tool. MVC1 provides rapid
decompression. Playback speed can be traded off with image quality. When
recording from video hardware to disk, recording in real time to disk is important if
a frame-by-frame VCR is not available—leading to the use of RTR1.

Choosing a Compression Library Algorithm

119

Table 7-1 summarizes the compression and performance relationships of the image and
motion video algorithms. Compression, decompression, and codec performance
measurements are in frames per second (FPS), as measured for 320 by 240 frames on
Indigo workstations with 33 Mhz MIPS R3000 processors only.

Note: The corresponding capabilities for OCTANE workstation have not yet been
measured, but are expected to surpass these statistics generally.

a. Decompressed frame per second is the measured performance, including reading the data from disk, decompressing it, and writing it to the
screen.

b. NYM: not yet measured.

Table 7-1 Capabilities of Image and Video Algorithms
(Indigo Workstations With 33 MHz MIPS R3000)

Algorithm

Typical
Compression
Ratio From
24-bit RGB

Average
Bits
per
Pixel

Megabits per
Second at
15 Frames
per Second

Kilobytes
per
Frame
compression

Compress
(Frames per
Second)

Decompressa

(Frames per
Second)

Codec
(Frames per
Second)

Uncompresse
d

1:1 24 27.65 230.4

RLE 8-bit 4.8:1 5 5.76 48 6 11.5 3.9

MVC1 5.33:1 4.5 5.2 43.2 3 25 2.8

MVC1
Gray-scale

8:1 3 3.456 28.8 7 28 5.6

RTR1 6:1 4 4.608 38.4 NYMb 2.5 2.0

RTR1
Gray-scale

9:1 2.67 3.072 25.6 NYM 8 NYM

JPEG 16:1 1.5 1.728 14.4 1.1 1.8 0.7

MPEG 48:1 0.5 0.576 4.8 << 1 4.75 <<1

120

Chapter 7: Using Compression Library Algorithms

Querying Compression Library Algorithms

This section explains how you can get a list of available algorithms for a video
compressor or decompressor, along with the name and type of algorithm, or find the
identifier for an algorithm given its name. Other features of the algorithms can also be
queried by the application at run time. Querying algorithms, rather than having
hard-coded setups, makes it possible to have an algorithm-independent interface, which
lets you take advantage of future algorithms as they are implemented without
redesigning your code.

Getting a List of Algorithms

Use clQueryAlgorithms() to get a list of algorithms for the compressor or decompressor
identified by handle. clQueryAlgorithms() returns the size of the buffer needed to contain
the list of algorithms and their types.

If the size of the algorithmTypeBuffer is smaller than the returned value, a partial list of the
algorithms and their types is returned, and you must enlarge the algorithmTypeBuffer in
order to receive a complete list.

The function prototype for clQueryAlgorithms() is:

int clQueryAlgorithms (int algorithmMediaType,
 int *algorithmTypebuffer, int bufferLength)

where

algorithmMediaType
is the media type of the algorithm. For OCTANE Digital Video, always
set this to CL_ALG_VIDEO.

Querying Compression Library Algorithms

121

algorithmTypeBuffer
is a pointer to an array of ints into which clQueryAlgorithms() can write
algorithm name/type pairs for each parameter associated with handle.
The even (0,2,4,...) entries receive the algorithm name. The odd entries
(1,3,5,...) receive the types.

The returned types take on one of three values:

bufferLength is the length of the buffer, in ints, pointed to by paramValueBuffer. If
bufferLength is zero, then paramValueBuffer is ignored and only the return
value is valid.

Getting an Algorithm Scheme or Name

Use clQuerySchemeFromHandle() or clQuerySchemeFromName() to return the
algorithm scheme identifier used by the other compression functions. Use
clGetAlgorithmName() to return the algorithm name. Their function prototypes are:

int clQuerySchemeFromHandle(CLhandle handle)

int clQuerySchemeFromName(int algorithmMediaType, char *name)

char *clGetAlgorithmName(int scheme)

where

handle is a handle to a compressor or a decompressor

algorithmMediaType
is the media type of the algorithm. For OCTANE Digital Video, always
set this to CL_ALG_VIDEO.

name is the algorithm name

scheme is the algorithm scheme

CL_COMPRESSOR for compression

CL_DECOMPRESSOR for decompression

CL_CODEC for both compression and decompression

122

Chapter 7: Using Compression Library Algorithms

Example 7-1 demonstrates how to query the CL for a list of algorithms—in this case,
video algorithms. The necessary buffer size is returned in the first call to
clQueryAlgorithms(), and then malloc() is used to allocate enough buffer space to store
the returned list of video algorithms.

Example 7-1 Getting a List of Compression Library Algorithms

#include <dmedia/cl.h>
#include <malloc.h>

int *buffer, bufferLength;
char *name;
/*
* Get a buffer containing all the video algorithms and types
*/
bufferLength = clQueryAlgorithms(CL_VIDEO, NULL, 0);
buffer = (int *)malloc(bufferLength * sizeof(int));
clQueryAlgorithms(CL_VIDEO, buffer, bufferLength);

scheme = clQuerySchemeFromName(handle);
name = clGetAlgorithmName(scheme);

Getting License Information

Use clQueryLicense() to obtain license information about an algorithm. The returned
message is text intended for inclusion in a message box that is displayed for a user,
explaining how to license an algorithm. Failure returns the license error code.

The function prototype is:

int clQueryLicense (int scheme, int functionality,
 char **message)

where

scheme is the algorithm scheme.

Controlling JPEG Compressed Image Quality

123

functionality is the type of algorithm, which can be one of:

• CL_COMPRESSOR for compression

• CL_DECOMPRESSOR for decompression

• CL_CODEC for both compression and decompression

message is a pointer to a returned pointer to a character string containing a
message.

Controlling JPEG Compressed Image Quality

JPEG is a tunable algorithm—you can trade quality for compression ratio and vice versa.
You can specify a hint (CL_COMPRESSION_RATIO) for an approximate compression
ratio, or you can set more explicit quality factors or target bit rates, as described in this
section.

The source image is compressed in three basic steps.

1. Data is transformed from spatial to frequency form in eight-by-eight blocks using a
discrete cosine transform (DCT).

2. The frequency coefficients are filtered down by a linear quantization.

3. The coefficients are Huffman-encoded into a bit stream.

The process is reversed for decompression.

The quantization step controls the trade-off between image quality and size. The JPEG
quantization table is used to scale each of the 64 DCT coefficients. The luminance (Y) and
the chrominance (Cr and Cb) components each use a separate table.

The CL provides three methods for controlling image quality from these quantization
tables. You can

• specify an overall JPEG quality factor (CL_JPEG_QUALITY_FACTOR) for scaling
the default JPEG quantization tables

• manually set the quantization tables using CL_JPEG_QUANTIZATION_TABLES

• specify a target bit rate that you would like the compressed data to approximate

124

Chapter 7: Using Compression Library Algorithms

The JPEG algorithm does not allow you to specify exact compression ratios, but the
hardware implementation of JPEG used in OCTANE Compression supports the concept
of a target bit rate. Specifying CL_BITRATE causes the hardware to create a new
quantization table as each field is compressed. If the current field were compressed
again, this quantization table would yield the exact target bit rate. Since this bit rate
would reduce the maximum capture rate, the CL applies the new quantization table to
the next field, since adjacent fields usually have similar compressibility.

Specifying a JPEG Quality Factor

You can use the CL_JPEG_QUALITY_FACTOR parameter to specify a JPEG
quantization table scale factor that represents a rough percentage of the image detail
preservation. This is one method to control the image loss and therefore the compression
ratio for the OCTANE Compression JPEG algorithm.

Each time the quality factor is set, the reference quantization tables are scaled and
downloaded into the codec. The formula used to obtain the scale factor is:

scalefactor = 50/quality (quality < 50)
scalefactor = 2 - 2*quality/100; (otherwise)

The default quality is CL_JPEG_QUALITY_DEFAULT, which represents a good-quality
compressed image. A quality factor of 1 results in coarse quantization, a high
compression ratio, and very poor image quality.
A quality factor of 100 results in the finest possible quantization, a low compression ratio
(perhaps even image expansion), and near-perfect image quality. The most useful quality
factor is typically in the range of 25–95.

To bypass scaling, specify CL_JPEG_QUALITY_NO_SCALE.

When CL_QUALITY_FACTOR is set, the approximate value of
CL_COMPRESSION_RATIO is calculated; when CL_COMPRESSION_RATIO is set, the
approximate value of CL_QUALITY_FACTOR is calculated. When decompressing JPEG,
clDecompress() fills in this value. The actual compression ratio is determined by the
quality factor and the image content and therefore may not be exactly what you expect.

Controlling JPEG Compressed Image Quality

125

Defining and Using Custom JPEG Quantization Tables

You can customize the JPEG quantization tables by using the
CL_JPEG_QUANTIZATION_TABLES parameter. To set the tables, specify an unsigned
short *qtables[4] argument. For each j, qtables[j] must either be NULL or point to a
unsigned short[64] area of memory that represents a JPEG-baseline quantization table in
natural scanning order. These custom tables are stored as reference tables; then scaled
versions of them based on the current CL_JPEG_QUALITY_FACTOR are downloaded
into the codec, becoming the tables associated with the ID j.

When getting the value of CL_JPEG_QUANTIZATION_TABLES, the CL allocates the
required memory and returns the currently used tables, as indicated by
CL_JPEG_COMPONENT_TABLES, scaled by the value of
CL_JPEG_QUALITY_FACTOR. Your application is responsible for freeing the memory
allocated to return these tables.

You can specify the quantization tables on a per-component basis, by using the
CL_JPEG_COMPONENT_TABLES parameter. It specifies the IDs of the AC Huffman
table, DC Huffman table, and quantization table to be used for each component. You
cannot change this parameter for OCTANE Compression; it is set up for YUV422
processing. This setting uses AC Huffman table 0, DC Huffman table 0, and quantization
table 0 for component 0; AC Huffman table 1, DC Huffman table 1, and quantization
table 1 for components 1 and 2.

Specifying a Bit Rate Target

You can specify a target bit rate for the compressed data stream. The bit rate is the
number of bits per second.

bitrate = (image_height * image_width * components_per_pixel
 * fields_per_second * 8) / compression_ratio;

Useful values for bit rate for NTSC video range from 15,000,000 (2:1 compression) to
3,000,000 (100:1).

127

Chapter 8

8. Differences Between OCTANE Compression and
Earlier Silicon Graphics Compression Options

OCTANE Compression is functionally the same as the Indigo2 IMPACT Compression
board. The Indigo2 IMPACT Compression board has, with some exceptions, a superset
of the functionality provided by Cosmo Compress option board.

Before an application for the Indigo2 IMPACT Compression or Cosmo Compress option
board can run on the OCTANE Compression option, it must be ported.

This chapter is designed for those porting software from Cosmo Compress to OCTANE
Compression. It explains hardware and software differences between the options.

Note: Compression programs that currently execute on the Indigo2 IMPACT
Compression board should be recompiled on the OCTANE workstation because of
issues related to the change of operating system.

Hardware Differences

This section describes hardware changes between the options, including additional
functionality and restricted functionality.

Data created with OCTANE Compression is compatible with Indigo2 IMPACT
Compression and Cosmo Compress, with these caveats:

• Movies created with low compression ratios (greater than approximately 7:1) do not
play in real time on Cosmo Compress hardware.

• Images larger than 768 x 300 pixels cannot be decompressed with Cosmo Compress.

128

Chapter 8: Differences Between OCTANE Compression and Earlier Silicon Graphics Compression Options

The following points summarize hardware differences between the two compression
options:

• Two independent JPEG codecs

OCTANE Compression and Indigo2 IMPACT Compression add a second identical
and independent JPEG codec circuit. This circuit allows two applications to process
JPEG compressed data independently, or allows one application to achieve both
JPEG compression and decompression concurrently.

Instead of depending upon a separate video option board for video input and
output, OCTANE Compression and Indigo2 IMPACT Compression add built-in
analog video support. The options can also be installed with OCTANE Digital
Video for I/O of digital component video formats; the two boards can operate
together.

OCTANE Compression and Indigo2 IMPACT Compression include one analog
input, which is accessible by both codecs simultaneously, and one analog output,
which is accessible by only one codec at a time. Analog genlock capability is
included.

Analog formats supported are standard NTSC and PAL, and non-square pixel
format NTSC (CCIR 525) and PAL (CCIR 625).

• Maximum image size

The Cosmo Compress option requires all images to transit the field buffer
memories, even in memory-to-memory modes. OCTANE Compression and Indigo2

IMPACT Compression remove this limitation, and support image sizes up to 4080
pixels wide by 4088 lines high in memory-to-memory modes.

OCTANE Compression and Indigo2 IMPACT Compression do not process images
larger than video size (768 x 576 at 50 fields/second) in real time.

Software Differences

129

OCTANE Compression has the following capabilities not found in Cosmo Compress:

• Compression ratios as low as one output byte for each two input bytes (2:1) in real
time (for video-sized images)

• Hardware-implemented approximate target bit-rate control

• Enhanced management of access and transactions on the GIO bus (the Silicon
Graphics proprietary option bus used in the Indigo2 and Indy® workstations):

– real-time memory-to-memory transfers (of images up to 768 x 576 at 50
fields/second)

– uncompressed data transfers in top-down, bottom-up, or interleaved (both odd
or even) patterns

• Scaler and color-space conversion on each codec subsystem for video-sized images
with a maximum size of 1000 x 1000 pixels during memory-to-memory
decompression operations; larger images scaled and converted on the host CPU by
a thread that the CL creates

– shrinking of video-sized images

– YCrCb 4:2:2-to-RGBX color-space conversion

Software Differences

OCTANE Compression CL software uses the same programming paradigms as Indigo2

IMPACT Compression and Cosmo Compress, with differences necessary to enable the
added capabilities of the hardware. The most pervasive change from Cosmo Compress
is in the way that the Compression Library and the Video Library interact. OCTANE
Compression is treated as a combination VL and CL device, with synchronization
between the two libraries being handled at the device driver level.

OCTANE Compression does not have a predefined value for its compression scheme.
Instead, as for Indigo2 IMPACT Compression, applications use the
clQuerySchemeFromName() routine to query the CL for the current scheme value for
the name impact. See the example “Memory-to-Memory Compression” on page 90.

130

Chapter 8: Differences Between OCTANE Compression and Earlier Silicon Graphics Compression Options

Since OCTANE Compression has two JPEG codecs, an application that processes data to
a CL_EXTERNAL_DEVICE needs a way of telling the VL which VL_CODEC node to
open. (There is a one-to-one correspondence between the two VL_CODEC nodes and the
two JPEG codecs.) See “Compressing and Decompressing Video Through External
Connections” in Chapter 4 for a discussion and example.

For Cosmo Compress, the application sets CL parameters to control the video capture
rate. OCTANE Compression controls the rate with the control VL_RATE on the
VL_CODEC node that is the source or drain of the VL path.

OCTANE Compression software includes Internal Video Sync, a synchronization signal
that ensures that simultaneous audio and video signals are precisely synchronized with
other devices that have this feature. For a complete explanation of how to use Internal
Video Sync, see Chapter 5 of the OCTANE Digital Video Programmer’s Guide.

131

Appendix A

A. Video Library Controls and Compression Library
Parameters for the OCTANE Compression Option

This appendix summarizes Video Library controls and Compression Library parameters
for the OCTANE Compression option:

• “Device Node Controls”

• “Codec Node Parameters”

• “Memory Node Controls”

• “Memory Node DMA Controls”

• “Analog Input and Output Device Controls”

Device Node Controls

Table A-1 summarizes device node controls.

Table A-1 OCTANE Compression Device Node Controls

Control Default Type Use

VL_MGC_DEFAULT_ANALOG
_PLAY_SYNC_SOURCE

VL_MGC_SYNC_SOURCE
_ANALOG_GENLOCK

intVal Sets default value of sync source for playback to
analog destination. Values are

VL_MGC_SYNC_SOURCE_DEFAULT,
VL_MGC_SYNC_SOURCE_ANALOG_IN, or
VL_MGC_SYNC_SOURCE_ANALOG
_GENLOCK

VL_MGC_DEFAULT_DIGITAL
_PLAY_SYNC_SOURCE

VL_MGC_SYNC_SOURCE
_DIGITAL_GENLOCK

intVal Sets default value of sync source for playback to
digital destination. Values are

VL_MGC_SYNC_SOURCE_DEFAULT or
VL_MGC_SYNC_SOURCE_DIGITAL
_GENLOCK

132

Appendix A: Video Library Controls and Compression Library Parameters for the OCTANE Compression Option

Codec Node Parameters

Codec parameters fall into several categories:

• image frame dimensions

• data formats

• buffer characteristics

• compression ratio and quality control

• compression algorithms

For more information on these categories, see “Compression Library Parameter
Definitions” in Chapter 6.

Table A-2 summarizes codec parameters.

Table A-2 OCTANE Compression Image Format Parameters

Parameter Values or Range Use

CL_ALGORITHM_ID Current ID Returns ID of current algorithm.

CL_ALGORITHM_VERSION Current version Returns version of current algorithm.

CL_BITRATE 10,000 to 100,000,000 bits per second of
compressed data (default 0: no bitrate control)

Specifies a target bit rate to which to
approximate the compressed data.

CL_BITS_PER_COMPONENT Always 8 for OCTANE Compression Number of bits per component.

CL_BLOCK_SIZE 0–2 billion
Default: 1; depends on algorithm

Natural block size of algorithm in samples.
It is most efficient to specify
numberOfFrames to be a multiple of the block
size when calling clCompress() or
clDecompress().

CL_COMPONENTS Always 3 for OCTANE Compression Read-only value indicating number of
components in the data.

Codec Node Parameters

133

CL_COMPRESSED_BUFFER
_SIZE

0–2 billion

Default: maximum possible size, taking into
account all the factors such as algorithm,
encoding method, data type, and so on.

Maximum number of bytes in compressed
data buffer. For a smaller buffer than the
default, set this value explicitly. If
clCompress() is called with numberOfFrames
larger than 1, set this value to the maximum
compressed size of one frame ×
numberOfFrames.

CL_COMPRESSION_RATIO JPEG: 15.0:1

Default depends on original format and
algorithm

Determines whether compression ratio is a
target or is exact. Some algorithms (MVC1,
JPEG, and MPEG) are tunable, that is, they
allow quality to be traded for compression
ratio.

CL_ENABLE_IMAGEINFO 0 (FALSE (default)), 1 (TRUE) Set to TRUE before getting compressed
image information (hardware-assisted JPEG
operations).

CL_END_OF_SEQUENCE
(MPEG_VIDEO only)

0 (FALSE (default)), 1 (TRUE) Set by decompressor when it arrives at end
of sequence.

CL_EXACT_COMPRESSION
_RATIO

Always 0 for OCTANE Compression Determines whether compression ratio is a
target or must be exact.

CL_FRAME_BUFFER_SIZE 0–2 billion

Default: size of one frame

Maximum amount of compressed data
needed for one frame. If clDecompress() is
called with numberOfFrames larger than 1,
this value should be the frame size ×
numberOfFrames.

CL_FRAME_RATE 0–1 million; default: 30.0 Requested number of frames per second.

CL_FRAME_TYPE 0–2
CL_KEYFRAME, CL_INTRA: frame is a
keyframe
CL_PREDICTED: frame contains information
about its succeeding frames
CL_BIDIRECTIONAL: frame contains
information about frames that precede and
succeed it

Supplied by decompressor.

Table A-2 (continued) OCTANE Compression Image Format Parameters

Parameter Values or Range Use

134

Appendix A: Video Library Controls and Compression Library Parameters for the OCTANE Compression Option

CL_IMAGE_HEIGHT

CL_IMAGE_WIDTH

Range: 16–4088, in multiples of 8 (NTSC must
use either 240 or 248; default is 248)
Memory-to-memory decompression can be any
size less than or equal to
CL_INTERNAL_IMAGE_HEIGHT

Range: 16-4080 in multiples of 16 (default: 640)
Memory-to-memory decompression can be any
size less than or equal to
CL_INTERNAL_IMAGE_WIDTH

Compression: height in pixels of original
uncompressed image.
Decompression: height in pixels of final
uncompressed image.

Compression: width in pixels of original
uncompressed image.
Decompression: width in pixels of final
uncompressed image.

DM_IMAGE_INTERLACING NTSC or CCIR(525):
DM_IMAGE_INTERLACED_EVEN

PAL or CCIR(625):
DM_IMAGE_INTERLACED_ODD

Interlacing: the option operates on
interlaced NTSC or PAL video data for
video-to-memory compression and
memory-to-video decompression. Even and
odd fields are compressed as separate
images.

CL_IMPACT_CODEC
_CONTROL

CL_IMPACT_START (default)

CL_IMPACT_STOP

Initializes and configures hardware for
compression or decompression.

For more information, see “Determining the
JPEG Codec” in Chapter 4.

CL_IMPACT_FRAME
_INTERLEAVE

0 (FALSE (default)), 1 (TRUE) Determines whether to interleave fields as
they are being decompressed to memory.

CL_IMPACT_INTERLEAVE
_MODE

CL_IMPACT_INTERLEAVE_EVEN (use for
PAL and CCIR(625)

CL_IMPACT_INTERLEAVE_ODD (default; use
for NTSC and CCIR(525))

Sets type of frame interleaving (whether
odd or even field occupies top line of
uncompressed region of memory), when
CL_IMPACT_FRAME_INTERLEAVE is
TRUE.

CL_IMPACT_VIDEO_INPUT
_CONTROL

CL_IMPACT_VIDEO_CHANNEL0

CL_IMPACT_VIDEO_CHANNEL1

Determines which codec was allocated.
When CL_EXTERNAL_DEVICE is used, it
specifies the CL_CODEC node to be used by
the VL.

CL_INTERNAL_FORMAT Always CL_FORMAT_YCbCr422 for OCTANE
Compression

Selects “natural” format for the video
algorithm in use, which can be compressed
without color-space conversion.

Table A-2 (continued) OCTANE Compression Image Format Parameters

Parameter Values or Range Use

Codec Node Parameters

135

CL_INTERNAL_IMAGE
_HEIGHT

CL_INTERNAL_IMAGE
_WIDTH

Range: 16–4088
Default: 248

Range: 16-4080
Default: 640

Compression: height in pixels of final
uncompressed image height.
Decompression: height in pixels of original
compressed image.

Compression: width in pixels of final
uncompressed image.
Decompression: width in pixels of original
compressed image.

CL_JPEG_COMPONENT
_TABLES (JPEG only)

0, 1; set by CL_INTERNAL_FORMAT Specifies IDs of AC or C Huffman table for
each component.

CL_JPEG_QUALITY_FACTOR
(JPEG only)

0-100 (default 75) Specifies an overall JPEG quality factor for
scaling the default JPEG quantization tables:

CL_JPEG_QUALITY_DEFAULT to set
default compression quality; range 1-100,
with 25-95 being the most useful quality
factor range.

CL_JPEG_QUALITY_NO_SCALE to
bypass quantization table scaling.

CL_JPEG_QUANTIZATION
_TABLES
(JPEG only)

0-100

See “Compression Library Parameter
Definitions” in Chapter 6

Sets the quantization tables manually to
custom-designed tables stored as reference
tables, which this control downloads to
codec.

CL_ORIENTATION CL_TOP_DOWN (default)
CL_BOTTOM_UP
DM_TOP_TO_BOTTOM (for Silicon Graphics
movies)

Image orientation: compress or decompress
images that have top-to-bottom or
bottom-to-top orientation. Compressed
data is always top down unless specified
otherwise.

CL_ORIGINAL_FORMAT CL_RGB,
CL_RGBX (default),
CL_FORMAT_YCbCr422,
CL_FORMAT_XBGR

Symbolic constant from the following,
depending on its data type.

Compression: sets format of original video.

Decompression: sets format desired after
decompression for video.

CL_PREROLL 0–2 billion

Default: 0, depends on algorithm

Number of blocks of frames to supply to
clDecompress() before decompressed
frames are returned.

Table A-2 (continued) OCTANE Compression Image Format Parameters

Parameter Values or Range Use

136

Appendix A: Video Library Controls and Compression Library Parameters for the OCTANE Compression Option

Memory Node Controls

Table A-3 summarizes memory node controls.

Note: For more detail on VL controls, see Chapter 3.

Table A-3 OCTANE Compression Memory Node Controls

Control Values or Range Type Use

VL_CAP_TYPE VL_CAPTURE_NONINTERLEAVED

VL_CAPTURE_INTERLEAVED

VL_CAPTURE_EVEN_FIELDS

VL_CAPTURE_ODD_FIELDS

VL-CAPTURE_FIELDS

intVal Type of field(s) or frame(s) to capture

VL_FORMAT VL_FORMAT_SMPTE_YUV: 8-bit
YCrCb

VL_FORMAT_RGB: full-range 8-bit
(0-255) RGBA

intVal Video format on the physical connector

VL_FREEZE 0,1 boolVal Data transfer freeze; suspends transfer
at the drain node, used only for analog
video out

VL_MGC_HASPECT
VL_MGC_VASPECT

0 < value ≤ 1/VL_ZOOM fractVal Fraction less than or equal to 1 that
shrinks the horizontal or vertical
aspect, respectively

VL_MGC_PAD_TOP
VL_MGC_PAD_BOTTOM

 0 intVal Number of lines to pad at the top or
bottom (respectively) of the image on
capture

VL_MGC_PAD_LEFT
VL_MGC_PAD_RIGHT

 0 intVal Number of pixels to pad at the left or
right (respectively) of the image on
capture

VL_MGC_ENABLE 0, 1 boolVal Boolean value that activates or
deactivates padding

VL_MGC_PAD_Y
VL_MGC_PAD_U
VL_MGC_PAD_V

1 ≤ value ≤ 254 intVal Value between 16 and 235 that specifies
the padding color of the Y, U, or V
value, respectively; default is black

Memory Node Controls

137

VL_MGC_VIDEO_TOP_CLIP 0 intVal Number of lines to clip from the top on
playback to video output

VL_MGC_F1_EXTRA_OFFSET
VL_MGC_F2_EXTRA_OFFSET

Range depends on other controls intVal Number of lines to offset on capture
and playback of frame 1 or 2,
respectively

VL_MGC_VOUT
_STARVATION

VL_MGV_DMA_VO_STARV_RPT
(default)

VL_MGV_DMA_VO_STARV_FLD

intVal See Table A-4

VL_OFFSET (0,0) xyVal Position within larger area

VL_PACKING See Table 3-7 for values intVal Pixel packing (conversion) format

VL_RATE Depends on capture type as specified
by VL_CAP_TYPE

fractVal Field or frame transfer speed

VL_SIZE Depends on timing and capture type xyVal Clipping size

VL_TIMING See Table 3-5 for values intVal Video timing

VL_ZOOM Memory nodes only: n/m where n ≤ m fractVal Decimation ratio

Table A-3 (continued) OCTANE Compression Memory Node Controls

Control Values or Range Type Use

138

Appendix A: Video Library Controls and Compression Library Parameters for the OCTANE Compression Option

Memory Node DMA Controls

Table A-4 summarizes memory node DMA controls.

Table A-4 OCTANE Compression Memory Node DMA Controls

Control Values Type Use

VL_MGC_DMA
_VIN_ROUND

VL_MGC_DMA_RND_OFF
(default)

VL_MGC_DMA_RND_ON

intVal For capture and compression only, when the source is
10-bit digital video from the OCTANE Video board,
this control sets GIO DMA memory drain or codec
drain to round from 10-bit to 8-bit as follows:

VL_MGC_DMA_RND_OFF: disables rounding,
truncates instead.

VL_MGC_DMA_RND_ON: enables rounding.

Only active area data is rounded.

VL_MGC_DMA
_ROUND_TYPE

VL_MGC_DMA_RND_SMPLE
(default)

VL_MGC_DMA_RND_RAND

intVal For GIO DMA memory drain and codec drain nodes
only, sets the rounding type:

VL_MGC_DMA_RND_SMPLE (simple rounding):
rounds up if bit 1 is one, or rounds down if bit 1 is
zero.

VL_MGC_DMA_RND_RAND: (randomized
rounding): makes the decision whether or not to
round up based on comparing the two least
significant bits to a random sequence.

VL_MGC_DMA
_RAND_ROUND
_MODE

VL_MGC_DMA_RND_RAND
_RPT (default)

VL_MGC_DMA_RND_RAND
_FREE

intVal For GIO DMA memory drain or codec drain,
determines whether or not the random sequence
used for randomized rounding is repeated.

VL_MGC_DMA_RND_RAND_RPT: repeats the
random sequence; in this case a shift register is
seeded to a fixed value at the start of each odd field.

VL_MGC_DMA_RND_RAND_FREE: causes the
random sequence to free-wheel.

VL_MGC
_DOMINANCE_FIELD

VL_MGC_DOMINANCE_F1
(default)

VL_MGC_DOMINANCE_F2

intVal Sets the field dominance mode, which determines the
order in which the fields are read from memory. This
control applies only to the frame-oriented capture
types (VL_CAPTURE_INTERLEAVED and
VL_CAPTURE_NONINTERLEAVED). For more
information, see “Setting Field Dominance” in
Chapter 3.

Memory Node DMA Controls

139

VL_MGC_BUFFER
_QUANTUM

Default: 1 intVal The granularity, or quantum, of data transfer
required by the application. The video data is padded
at the end so that the size of a field/frame is a
multiple of VL_MGC_BUFFER_QUANTUM. This
control is intended for applications that do I/O
directly from the ring buffer, and may consequently
require the frame or field size to be a multiple of the
device block size. Direct I/O, for example, usually
requires that 512 bytes of data be transferred at a
time.

VL_MGC_VOUT
_STARVATION

VL_MGV_DMA_VO_STARV_RPT
(default)

VL_MGV_DMA_VO_STARV_FLD

The default value for this control is
VL_MGV_DMA_VO_STARV_RPT.
Therefore, the ring buffer used in the
transfer must contain a minimum of
two buffer entries (four for
VL_CAPTURE
_NONINTERLEAVED), so that one
buffer can be repeated by the system
while the application is filling the
second. If only one buffer is used,
then the first buffer output is
repeated indefinitely and
vlGetNextFree() never returns a free
buffer.

intVal For memory and codec source nodes only, sets the
video output policy to use in data transfer using a
GIO DMA channel when the memory node
underflows the ring buffer (that is, the application
has not filled the ring buffer at the rate that the
memory node consumes it, or is repeating data
because of rate control). An application can choose
between two starvation policies:

VL_MGV_DMA_VO_STARV_RPT: Repeats the last
unit transferred (field or frame), until the next
transfer unit becomes available. For this repetition,
the unit is DMAed continuously.

VL_MGV_DMA_VO_STARV_FLD: For frames,
repeat only the last field until the next transfer unit is
available. Once starvation is detected, the
nondominant field is output as both the F1 and F2
fields. This policy halves the vertical resolution but
eliminates interfield motion blur. In order to repeat,
the field is DMAed continuously.

If the capture type is a field, this control value causes
identical behavior identical to
VL_MGV_DMA_VO_STARV_RPT.

In each case, video output from system memory
resumes when the application places the next
field/frame in the ring buffer via vlPutValid().

Table A-4 (continued) OCTANE Compression Memory Node DMA Controls

Control Values Type Use

140

Appendix A: Video Library Controls and Compression Library Parameters for the OCTANE Compression Option

Analog Input and Output Device Controls

Table A-5 summarizes analog input device (that is, video) controls.

Table A-5 OCTANE Compression Analog Input Device Controls

Control Default Type Use

VL_MGC_APERTURE 2 = 0.5 intVal Sets aperture factors for luminance for composite and Y/C
inputs

VL_MGC_AUFD 0 = off
1 = on (default)

boolVal Sets automatic field detect

VL_MGC_BANDPASS 1 = one intVal Selects bandpass filters for luminance for composite and
Y/C inputs

VL_MGC_CHROMA_AGC 0 = slow intVal Sets automatic gain control speed for chrominance for
composite or Y/C

VL_MGC_CHROMA_GAIN 44/255 fractVal Adjusts burst and chrominance output level of composite
and Y/C simultaneously

VL_MGC_COLOR_KILL_THRES -938/42 fractVal Controls level at which burst amplitude decides if composite
or Y/C input is color or monochrome when color mode is
automatically set

VL_MGC_CORING 1 intVal Selects coring levels for luminance for composite and Y/C
inputs

VL_MGC_FORCE_COLOR 1 = FALSE boolVal Forces color input

VL_MGC_LUMA_DELAY Depends on
format

intVal Changes composite or Y/C luminance delay without
affecting chrominance delay

VL_MGC_PAL_SENS Fraction range:
0,255,1
Default 144

intVal In PAL timing, the chroma modulation phase inverts every
line. Dropouts off the tape can disrupt this pattern. Use this
control to set the recovery time constant (maximum for poor
quality tape).

VL_MGC_PREFILTER 0 - off boolVal Boosts luminance frequency response for composite and
Y/C formats

VL_MGC_VNOISE_REDUCER normal intVal Selects mode of vertical noise reduction

VL_MGC_VTR_LOCK 1 = on boolVal Locks videotape recorder

Analog Input and Output Device Controls

141

Table A-6 summarizes analog output device controls.

Table A-6 OCTANE Compression Analog Output Device Controls

Control Default Type Use

VL_MGC_ANTI_DITHER Off boolVal Removes interference between frequency components
generated by dithered graphics images (Y/C and composite
out only) and chrominance frequency present in video
signals by using a notch filter in luminance

VL_MGC_CHROMA_BAND 0 = standard boolVal Selects standard chrominance bandwidth of about 1.3 MHz
or enhanced bandwidth (nonstandard) of about 2.5 MHz for
composite and Y/C outputs

VL_MGC_COLOR_OUT_KILL Off boolVal Makes composite or Y/C output into monochrome by
turning off color burst and chrominance

VL_MGC_DELAY_SYNC 0 fractVal Like VL_MGC_H_OFFSET or VL_MGC_V_OFFSET, delays
timing of entire video signal (sync and picture) relative to
timing reference such as genlock; no effect in slave mode for
output timing, but with a narrow range: resolution in pixel
clock steps

VL_MGC_C_GAIN
VL_MGC_YC_GAIN

1 fractVal Adjusts burst and chrominance output level of composite
and C or Y/C (respectively) simultaneously

VL_MGC_H_OFFSET
VL_MGC_V_OFFSET

0 fractVal Delays timing of entire video signal (sync and picture)
relative to timing reference such as genlock; no effect in slave
mode for output timing

VL_MGC_SCH_PHASE 0 fractVal Adjusts SC-H phase +/- 180 degrees

VL_MGC_SUB_FREQ 0 fractVal Provides fine adjustment of composite and Y/C output color
subcarrier frequency

143

Index

A

API, Compression Library, 7
application

creating, 41-82
sample, location, 42, 45

audio compression, 1

B

blending, before or after zooming, 63
bufCompression Library

buffered interface, 25
buffer, 46

CL, 25-40
creating, 27-29
creating for video data, 73-74
flushing, 34
getting DMediaInfo and image data from, 80
internal versus external, 27
managing, 29-31

architecture, 33
non-blocking playback, 36
non-blocking recording application, 38
playback application, 35
reading data from, 77-80
reading frames to memory from, 79
record application, 37
registering, 75
ring, 26

C

capture type, specifying in application, 95
CL_ALGORITHM_ID, 108
CL_BITS_PER_COMPONENT, 106
CL_BLOCK_SIZE, 107
CL_CODEC, 84
CL_COMPONENTS, 106
CL_COMPRESSED_BUFFER_SIZE, 107
CL_COMPRESSION_RATIO, 123
CL_CONTINUOUS_BLOCK, 16, 85
CL_CONTINUOUS_NONBLOCK, 16, 85, 93
CL_ENABLE_IMAGEINFO, 84, 88, 93
CL_END_OF_SEQUENCE, 109
CL_EXACT_COMPRESSION_RATIO, 108
CL_EXTERNAL_DEVICE, 16
CL_FRAME_BUFFER_SIZE, 107
CL_FRAME_RATE, 107
CL_FRAME_TYPE, 107, 116
CL_IMAGE_HEIGHT, 21, 86, 87, 89, 91, 94, 97, 105
CL_IMAGE_WIDTH, 21, 86, 87, 89, 91, 95, 96, 105
CL_IMPACT_CODEC_CONTROL, 85, 97
CL_IMPACT_FRAME_INTERLEAVE, 92
CL_IMPACT_INTERLEAVE_MODE, 92
CL_IMPACT_VIDEO_INPUT_CONTROL, 84-85
CL_INTERNAL_FORMAT, 106
CL_INTERNAL_IMAGE_HEIGHT, 86, 87, 89,

91, 94, 97

144

Index

CL_INTERNAL_IMAGE_WIDTH, 86, 87, 89,
91, 95, 96

CL_JPEG_COMPONENT_TABLES, 108, 125
CL_JPEG_QUALITY_FACTOR, 109, 124
CL_JPEG_QUANTIZATION_TABLES, 108, 125
CL_MVC1, 17, 23
CL_ORIENTATION, 87, 106
CL_ORIGINAL_FORMAT, 86, 106
CL_PREROLL, 107
clCloseCompressor(), 17
clCloseDecompressor(), 23
clCompress(), 15, 17, 37, 39
clCompressImage(), 11
clCreateBuf(), 19, 27
clDecompress(), 22, 35
clDecompressImage(), 13
clDestroyBuf(), 27
clDoneUpdatingHead(), 29, 35
clGetAlgorithmName(), 121
client, 43
clipping

compression, 94
decompression, 96
VL control, 72

clOpenCompressor(), 15
clOpenDecompressor(), 22
clQuery(), 36, 38
clQueryAlgorithms(), 120
clQueryBufferHdl(), 28
clQueryFree(), 29, 31
clQueryHandle(), 28
clQueryLicense(), 122
clQueryMaxHeaderSize(), 19
clQueryScheme(), 19
clQuerySchemeFromHandle(), 121

clQuerySchemeFromName(), 9, 121
clQueryValid(), 29, 31, 36, 38
clReadHeader(), 19
CL. See Compression Library
clUpdateHead(), 29, 35, 37
clUpdateTail(), 29, 36, 38
codec

available, 84
JPEG, determining, 84-85
node, 53

COMPRESSED_BUFFER_SIZE, 17
compression

format, 50
hardware acceleration, 25
image, 10
multiprocessing example, 39
multithreading, 26
performance, 119

Compression Library, 3, 4
algorithms, 117-123

choosing, 117-119
independence, 120
performance statistics, 119
querying, 120-123

API, 7
buffered interface, 25-40
error handling, 8
file I/O, 8
parameters, 105-116, 131-141

definitions, 105-109
frame type, 116
setting, querying, 109-116

sequential interface, 14
still-frame interface, 10

compressor, 15
connection, 49-50
consuming, 26, 31-32
contcapt.c (OpenGL), 82

145

Index

control, 46, 59-70, 99-104, 131-141
classes, 102-103
fraction ranges, 102
groupings, 103-104
in header file, 99
type and values, 101-102

conventions, xiii
ctrlusage, 56

D

daemon, video, 43-44
opening connection to, 53

data transfer
ending, 81-82
starting, 76-77
to and from memory, 59-66

decimation, 62-64, 66
compression, 94-95

decompressor, 19
dev_mgv.h, 46
device, 46

ID, getting, 55
management, 43-44
video, transferring data, 73-80

DM_IMAGE_INTERLACING, 86, 97
DMediaInfo, getting from buffer, 80
documentation, other, xii
drain, 47

blending and zooming, 63
contrrol for default, 54
node controls, setting, 59-70
See also memory node, screen node, video node

E

error handling, Compression Library, 8
event

masks, 58-59
specifying path-related, 58-59
trigger, 76

explicit routing, 57
external buffer, 27

F

field dominance, memory source node control, 70,
138

field mask, 66
file I/O in the Compression Library, 8
format, compression, 50

G

gray-scale, 118

H

hardware acceleration, 72
compression, 25

header
reading, 19
structure, 20

header file, 46
VL, 46

Huffman encoding, 108, 123, 125

146

Index

I

image compression, 10
image data, getting from buffer, 80
implicit and explicit routing, 57

See also connection
interlacing, 97
interleaving, 92
internal buffer, 27

J

JPEG, 13
data

getting, 88
invalid, 13, 88

L

latency, 34
license, algorithms, 122
linking, 52
-lvl, 52

M

malloc(), 122
manuals, other, xii
memory

and data transfer, 59-66
node, 53
node controls, 136-137
node DMA controls, 138-139
reading from buffer to, 79
sending frames to video from, 80

memtovid, 45

MPEG, 118
mtov.c (OpenGL), 82
multimedia applications, choosing a compression

method, 118
multiple clients, 43
multiprocessing compression, 26

example, 39
MVC1, 118

N

node, 46
adding, 55
defined, 47-48
setting controls, 59-70
specifying, 53-54

NTSC interlacing, 97

O

OCTANE Compression
and video options, 3
features, 1-3

OpenGL programs, 82

P

padding
compression, 94
decompression, 96
VL controls, 72

PAL interlacing, 97
parameters, Compression Library, 105-116

definitions, 105-109
frame type, 116
setting, querying, 109-116

147

Index

path, 46
blending, 48
creating, 54
creating and setting up, 54-59
defined, 47-48
setting up, 56-57
specifying events, 58-59
specifying nodes on, 53-54

playback, non-blocking, 36
port, defined, 48-49
predefined scheme value, 9
producing, 26, 31-32

R

recording
using buffers for non-blocking compression, 38
using buffers to compress for, 37

ring buffer
head and tail, 26
See also buffer

RTR1, 118

S

sample programs, 42, 45
scaling, 94

compression, 94
decompression, 96
VL controls, 72

scheme pound define, 9
sequential interface of the Compression Library, 14
simpleccapt.c, 82
simplegrab.c, 82
simplem2v.c, 82
simplev2s.c, 82

source, 47
blending and zooming, 63
control for default, 54
node controls, setting, 59-70
See also memory node, screen node, video node

sproc(), 39
starvation policy, 139
streamusage, 57
syntax, 50

T

telecommunications, choosing a compression
method, 118

tools, VL, 45
trigger, 76

V

vcp, 45
video

daemon, 43-44
opening connection to, 53

data transfer, 73-80
ending, 81-82
starting, 76-77
to and from memory, 59-66

drain, 47
format, converting, 62
node, 53
sending frames from memory to, 80
source, 47

videod, 43-44
videoin, 45
Video Library, 4-5
Video Library. See VL

148

Index

videoout, 45
videopanel, 45
vidtomem, 45
vidtomem.c (OpenGL), 82
vintovout, 45
VL

capabilities, 41-42
control, 59-70, 99-104

See also control
controls, 131-141
device management, 44
header files, 46
programming model, 50-51
requirements for running, 52
syntax, 50
system software architecture, 43
tools, 45

VL_CAP_TYPE, 66-70
and buffer size, 74

VL_CODEC, 53
VL_FORMAT, 61
VL_MEM, 53
VL_MGC_HASPECT, 72
VL_MGC_PAD_BOTTOM, 72
VL_MGC_PAD_ENABLE, 72
VL_MGC_PAD_LEFT, 72
VL_MGC_PAD_RIGHT, 72
VL_MGC_PAD_TOP, 72
VL_MGC_PAD_Y/U/V, 72
VL_MGC_VASPECT, 72
VL_MGC_VIDEO_TOP_CLIP, 72
VL_MGV_DOMINANCE_FIELD, 68
vl_mgv.h, 46
VL_OFFSET, 65-66
VL_PACKING, 60, 62
VL_RATE, 66-70

VL_SIZE, 64-65, 66
VL_TIMING, 61
VL_VIDEO, 53
VL_ZOOM, 62-64, 66
vlAddNode(), 55
vlBeginTransfer(), 76
VL buffer, 73-75
vlCloseVideo(), 81
vlcmd, 45
vlCreateBuffer(), 74
vlCreatePath(), 54
vlDeregisterBuffer(), 81
vlDestroyBuffer(), 81
vlDestroyPath(), 81
vlEndTransfer(), 76, 81
vlGetActiveRegion(), 80
vlGetControl(), 60
vlGetDevice(), 55
vlGetDMediaInfo(), 80
vlGetImageInfo(), 80
vlGetLatestValid(), 78, 79
vlGetNextFree(), 80
vlGetNextValid(), 78, 79
vlGetNode(), 53
vlGetTransferSize(), 74
vl.h, 46
vlinfo, 45
vlOpenVideo(), 53
vlPutFree(), 78, 79
vlPutValid(), 80
vlRegisterBuffer(), 75
vlSelectEvents(), 58
vlSetConnection(), 57
vlSetControl(), 61
vlSetupPaths(), 56

149

Index

W

wrap, 30, 31

Z

zoom, 62-64, 66
before or after blending, 63

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3514-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

