
DIVO Option and DIVO-DVC Option
Owner’s Guide
Document Number 007-3524-004

CONTRIBUTORS
Written by Carolyn Curtis and Alan Stein, with material by Sandra Motroni
Illustrated by Dany Galgani, Dan Young, Cheri Brown, and Carolyn Curtis
Production by Kirsten Pekarek and Karen Jacobson
Engineering contributions by Frank Bernard, Dheeren Bebortha, Tri Tran, Ashok Yerneni, Douglas Scott, Tony Chatzigianis, Scott Pritchett, Ed

Miszkiewicz, Will McGovern, and Paul Spencer
Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications

COPYRIGHT
© 2000, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere
herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, IRIX, OpenGL, Geometry Engine, Onyx, and IRIS are registered trademarks and SGI, the SGI logo, XIO, Origin,
Onyx2, Onyx2 InfiniteReality, Origin200, Origin2000, Graphics Library, REACT, XFS, and Sirius Video are trademarks of Silicon
Graphics, Inc. QuickTime is a registered trademark of Apple Computer, Inc. Abekas is a registered trademark of Carlton
International Corporation, Carlton Communications PLC. Gennum is a registered trademark of Gennum, Inc. Videomedia is a
registered trademark and V-LAN is a trademark of VideoMedia, Inc. DVCam is a trademark of Sony, Inc. DVCPRO is a
trademark of Panasonic, Inc.

For regulatory and compliance information, see your system owner’s guide.

Contents

List of Figures . . ix

List of Tables . . xiii
Audience . xv
Structure of This Guide . xvi
Other Documents . . xvi
Conventions Used in This Guide xvii
Reader Comments . . xviii

1. DIVO and DIVO-DVC Features and Capabilities 1
DIVO and DIVO-DVC Features 2
DIVO-DVC Features . . 4
DIVO and DIVO-DVC Board Architecture 5
DIVO/DIVO-DVC Panel . . 7
Digital Video Ports . 9
Color-Space Converters . 10
Serial Data Transport Interface (SDTI) 11
Interpolation and Decimation Filters 11
Orion Graphical V-LAN Control Utility 12
DIVO/DIVO-DVC Audio . 13

2. Programming DIVO and DIVO-DVC 15
VL Basics for DIVO and DIVO-DVC 16

VL Concepts . 17
VL Syntax Elements . . 17
VL Object Classes . . 18
VL Nodes for DIVO and DIVO-DVC 19
VL Data Transfer Functions 21

DIVO/DIVO-DVC Controls 22
007-3524-004 iii

Contents
Compression Through the VL 26
Rice Compression . . 27
DV and DVCPRO Compression for DIVO-DVC 27

Programming the DIVO/DIVO-DVC Board for SDTI 29
SDTI Data Structure . 29
Sending SDTI DV . . 31
Receiving SDTI DV . 31

Setting Field Dominance . . 32
VL Support for the General-Purpose Interface (GPI) 36

Using VL_GPI_OUT_MODE 36
Using VL_GPI_STATE . 37
Using VL_TRANSFER_TRIGGER 38

VL Support for Vertical Interval Time Code (VITC) 39
DIVO/DIVO-DVC Events. . 39
Setting Inline Controls . . 41
Capturing Graphics to Video 42
Reporting . 42

3. Audio Data Conversion . 43
Digital Media Audio Conversion Library 43
Using the Audio Conversion API. 46
Creating a Converter Instance 47
Configuring a Converter Instance 47

Source and Destination Parameters 49
PCM Mapping Parameters 50
Compression Parameters 52
Conversion Parameters . 55

Converting Data Using a Converter Instance 59
Destroying a Converter Instance 60
DV Audio Compression Library 60
Audio Rate Conversion Library 62

A. DIVO/DIVO-DVC I/O Panel Connectors 63
DIVO/DIVO-DVC Connectors 63
iv 007-3524-004

Contents
Genlock . . 65
GPI Interface . 65

GPI Connectors . 65
GPI Transmitter . 67
GPI Receiver . . 69

B. Setting Up DIVO and DIVO-DVC for Your Video Hardware 71
Setting Up Digital Source Video 72
Setting Up the Output (Drain) 74
Setting Up Sync . 75

Setting Up Internal Sync 75
Setting Up External Sync. 76

Saving Settings . . 77

C. Pixel Packings and Color Spaces 79
DIVO/DIVO-DVC Pixel Packings 79

Packings and Color Spaces 80
Packing Diagram Conventions 80
Packings and Library Tokens 82
Packing Naming Conventions 83
8-Bit Pixel Packings . 85
16-Bit Pixel Packings . . 87
20-Bit Pixel Packings . . 89
24-Bit Pixel Packings . . 90
32-Bit Pixel Packings . . 92
36-Bit Pixel Packing . . 99
48-Bit Pixel Packings . .100
64-Bit Pixel Packings . .102

Sampling Patterns . .105
4:4:4 and 4:4:4:4 Sampling 106
4:2:2 and 4:2:2:4 Sampling 106
4:1:1 Sampling (DIVO-DVC Only) 107
4:2:0 Sampling (DIVO-DVC Only) 108
007-3524-004 v

Contents
Color Spaces . 109
Determining the Color Space. 110

D. Color-Space Conversions 113
 DIVO/DIVO-DVC Color Spaces 113

RGB . . 114
YUV . . 114
CCIR . 115
RP-175 Compressed RGB 115

Mathematical Operations Performed During Conversions 116
Implications of Color Space Conversions 116

Precision of Color Conversions Done by DIVO/DIVO-DVC. 116
Range Issues For Color Conversions Done by Any Means 117

Example Color Conversions 120
Example 1: 100% Color Bars 120
Example 2: Luminance Ramp 124
Example 3: Simultaneous Chroma/Luma Ramp 127

E. Programming Methods for Real-Time Digital Media Recording and Playback 131
 Direct I/O . . 132
Scatter/Gather I/O. . 134
 Multiprocessing . 137
Asynchronous I/O . . 138
File Formats . . 138

F. DV and DVCPRO Standards. 141
DV Standard . 141

DV Sampling . 142
DV Compression . . 143

DVCPRO Standard . . 145
DV Technology Comparison 146

G. GPI Interface (DIVO Option Only) 149
GPI Headers (DIVO Option Board Only) 150
vi 007-3524-004

Contents
GPI Receiver, Switch Closure Mode, and Current Sense Mode 152
GPI Receiver Switch Closure Mode (Factory Setting) 153
GPI Receiver Current Sense Mode (DIVO Option Board Only)154

Index .155
007-3524-004 vii

List of Figures

Figure 1-1 DIVO Board Architecture 5
Figure 1-2 DIVO-DVC Board Architecture 6
Figure 1-3 DIVO/DIVO-DVC I/O Panel 7
Figure 1-4 DIVO/DIVO-DVC Video Top-Level System Diagram. 9
Figure 1-5 Orion Main Window 12
Figure 2-1 Simple VL Path 17
Figure 2-2 DIVO/DIVO-DVC 525-Line and 625-Line Frames and Fields . . 33
Figure 2-3 Output GPI (OFF Assumed to Be Low) 36
Figure 3-1 Channel Conversion 58
Figure A-1 GPI Connectors 65
Figure A-2 GPI Pinouts 66
Figure A-3 GPI Transmitter Electrical Specifications 67
Figure A-4 GPI Receiver (Switch Closure) electrical Specifications 69
Figure B-1 DIVO/DIVO-DVC Ports 71
Figure B-2 Selecting Digital Input Video Format in vcp 73
Figure B-3 Selecting Video Drain Format. 74
Figure B-4 Setting Standalone or Genlock Sync 75
Figure B-5 GEN IN Port on the DIVO/DIVO-DVC I/O Panel 76
Figure C-1 VL_PACKING_444_8 81
Figure C-2 VL_PACKING_4_8 85
Figure C-3 VL_PACKING_R444_332 86
Figure C-4 VL_PACKING_444_332 86
Figure C-5 VL_PACKING_242_8 87
Figure C-6 VL_PACKING_R242_8 87
Figure C-7 VL_PACKING_X4444_5551 88
Figure C-8 VL_PACKING_444_5_6_5 88
Figure C-9 VL_PACKING_242_10 89
007-3524-004 ix

List of Figures
Figure C-10 VL_PACKING_R242_10 89
Figure C-11 VL_PACKING_444_8 90
Figure C-12 VL_PACKING_R444_8 90
Figure C-13 VL_PACKING_4444_6 91
Figure C-14 VL_PACKING_4444_8 92
Figure C-15 VL_PACKING_R4444_8 93
Figure C-16 VL_PACKING_R0444_8 93
Figure C-17 VL_PACKING_0444_8 94
Figure C-18 VL_PACKING_4444_10_10_10_2 95
Figure C-19 VL_PACKING_2424_10_10_10_2Z 96
Figure C-20 VL_PACKING_R2424_10_10_10_2Z 96
Figure C-21 VL_PACKING_242_10_in_16_L 97
Figure C-22 VL_PACKING_242_10_in_16_R 97
Figure C-23 VL_PACKING_R242_10_in_16_L 98
Figure C-24 VL_PACKING_R242_10_in_16_R 98
Figure C-25 VL_PACKING_SDTI_DV 99
Figure C-26 VL_PACKING_444_12 99
Figure C-27 VL_PACKING_4444_12 100
Figure C-28 VL_PACKING_444_10_in_16_L 101
Figure C-29 VL_PACKING_4444_10_in_16_L 102
Figure C-30 VL_PACKING_4444_10_in_16_R 103
Figure C-31 VL_PACKING_4444_12_in_16_L 103
Figure C-32 VL_PACKING_4444_12_in_16_R 104
Figure C-33 VL_PACKING_4444_13_in_16_L 104
Figure C-34 VL_PACKING_4444_13_in_16_R 105
Figure C-35 4:4:4 Sampling 106
Figure C-36 4:2:2 Sampling 106
Figure C-37 4:1:1 Sampling 107
Figure C-38 4:2:0 Sampling 108
Figure D-1 RGB Cube in CCIR Space 118
Figure D-2 Color Cube With Luminance/Chrominance Ramp Vector. . . 119
Figure D-3 100% Color Bars: Cr/R 121
Figure D-4 100% Color Bars: Y/G 122
x 007-3524-004

List of Figures
Figure D-5 100% Color Bars: Cb/B 123
Figure D-6 Luminance Ramp: Cr/R 125
Figure D-7 Luminance Ramp: Y/G 126
Figure D-8 Luminance Ramp: Cb/B 127
Figure D-9 Chroma/Luma Ramp: Cr/R 128
Figure D-10 Chroma/Luma Ramp: Y/G 129
Figure D-11 Chroma/Luma Ramp: Cb/B 130
Figure F-1 DV Compression 143
Figure G-1 GPI Jumper Locations (Factory Setting), DIVO Option Only . . .150
Figure G-2 Example GPI Interface (DIVO Option Only) 151
Figure G-3 Jumpering for GPI Switch Closure (Factory Setting) 153
Figure G-4 Jumpering for GPI Current Sense Mode, DIVO Option Only . . .154
007-3524-004 xi

List of Tables

Table 1-1 Interface for Video Equipment 7
Table 1-2 DIVO Panel LEDs 8
Table 2-1 DIVO/DIVO-DVC Node Controls 23
Table 2-2 Controls for the DIVO and DIVO-DVC Option Boards 24
Table 2-3 DIVO/DIVO-DVC Events. 40
Table 3-1 Digital Media Audio Conversion API 45
Table 3-2 Source and Destination Parameters 49
Table 3-3 Parameters for PCM Mapping 51
Table 3-4 Query Parameters for All Codecs. 53
Table 3-5 DV Audio Parameters 53
Table 3-6 Buffer Length Parameters 56
Table 3-7 Rate Conversion Parameter 57
Table 3-8 DV Audio Library API. 60
Table 3-9 Audio Rate Conversion Library API 62
Table A-1 Return Loss for DIVO/DIVO-DVC Video and Genlock Channels . 63
Table A-2 Characteristics for DIVO/DIVO-DVC Digital Video Out Channels . 63
Table A-3 Usage for LINK A and LINK B in 4:2:2:4 Mode 64
Table A-4 Usage for LINK A and LINK B in 4:4:4:4 Mode 64
Table A-5 GPI Pinouts 66
Table A-6 GPI Transmitter Electrical Specifications 68
Table A-7 GPI Receiver Input Optoisolator Electrical Specifications 69
Table C-1 DIVO/DIVO-DVC Packings 83
Table C-2 VL_COLORSPACE Options 110
Table D-1 Clamping Ranges for RGB Component Conversions 114
Table F-1 DV Specifications: General 142
Table F-2 DV Specifications: Audio Recording Method 142
Table F-3 DV Technology Comparison 146
Table G-1 GPI Receiver Input Optoisolator 152
007-3524-004 xiii

About This Guide

The Digital Video Option (DIVO) board (marketing code XT-DIVO) is an XIO option
board that provides broadcast-quality video for SGI workstations and servers that accept
XIO boards. The option also provides 4 channels of audio.

The DIVO-DVC XIO option board (marketing code XT-DIVO-DVC) has all the
functionality of the DIVO board and also supports DVCPRO, DV video coding and
decoding, and DVCam.

Note: These option boards require IRIX 6.4 or later. Installations on SGI 3000 series
systems require IRIX 6.5.10 or later (with patches, as required).

Features of both options are controlled with the Video Library (VL) and the Audio
Library (AL). VL device-independent calls and controls are explained in the Digital Media
Programming Guide (007-1799-060 or later; online only). That manual also gives
information on using the AL.

Audience

This guide was written for the sophisticated video user in a professional or research
environment. You should be familiar with video standards, the operation of the SGI
workstation or server, and the VL information in the Digital Media Programming Guide.

Many current SGI owner’s guides, programming guides, and user’s guides are available
through the World Wide Web: http://techpubs.sgi.com/library.
007-3524-004 xv

About This Guide
Structure of This Guide

This guide includes the following chapters and appendices:

• Chapter 1, “DIVO and DIVO-DVC Features and Capabilities,” outlines the main
components of the DIVO option.

• Chapter 2, “Programming DIVO and DIVO-DVC,” describes using the VL to
accomplish common specific tasks.

• Chapter 3, “Audio Data Conversion,” describes the Digital Media Audio
Conversion Library, its converters, and its use.

• Appendix A, “,” summarizes technical specifications for the option boards.

• Appendix B, “,” describes connecting video equipment to DIVO or DIVO-DVC
board connectors and using the control panel vcp to configure the DIVO board for
the equipment.

• Appendix C, “,” sets forth all packing formats used by the DIVO or DIVO-DVC
hardware.

• Appendix D, “,” explains DIVO/DIVO-DVC color spaces, the mathematical
operations performed during conversions, and the implications of color-space
conversions.

• Appendix E, “,” explains programming concepts, such as real-time disk I/O, and
gives examples.

• Appendix F, “,” explains the DV and DVCPRO standards.

• Appendix G, “,” contains information on the DIVO board’s GPI receiver settings.

An index completes this guide.

Other Documents

Besides this guide, Digital Media Connections (007-3525-002 or later) is shipped with the
DIVO and DIVO-DVC option boards.

The Digital Media Programming Guide is available with the IRIX digital media
development environment software (dmedia_dev).

It is also a good idea to have your system owner’s guide available.
xvi 007-3524-004

About This Guide
If you do not have these guides handy, the information is also online in the following
locations:

• IRIS InSight Library: from the Toolchest, choose Help > Online Books >
SGI EndUser or SGI Admin, and select the applicable guide.

• Technical Publications Library: if you have access to the Internet, enter the
following URL in your Web browser location window:
http://techpubs.sgi.com/library/

Once you are in the library, choose Catalogs > Hardware Catalog > and look under
the Owner’s Guides for the applicable owner’s guide. For software guides, look on
the bookshelf for the applicable IRIX version.

Conventions Used in This Guide

In command syntax descriptions and examples, square brackets ([]) surrounding an
argument indicate an optional argument. Variable parameters are in italics. Replace these
variables with the appropriate string or value.

In text descriptions, IRIX filenames are in italics.

Helvetica Bold font is used for labels on hardware, such as the names of ports on the I/O
panel.

Messages and prompts that appear on-screen are shown in typewriter font. Entries
that are to be typed exactly as shown are in boldface typewriter font.

Because the DIVO and DIVO-DVC options share most features, most of the information
in this guide covers both options at once, such as the VL controls explained in Chapter 2.
Specifically:

• The options are referred to as DIVO/DIVO-DVC in sections that describe features
common to both (identical functionality); for example, “DIVO/DIVO-DVC Panel”
in Chapter 1.

• The options are referred to as DIVO and DIVO-DVC in sections that describe both
options; for example, “DIVO and DIVO-DVC Board Architecture” in Chapter 1.

• Separate portions of the guide describe features that occur in one option only; the
heading or title clearly distinguishes these sections; for example, “DIVO-DVC
Features” in Chapter 1, or Appendix G, “.”

In each chapter or appendix in which the Digital Media Programming Guide is referenced,
it is referred to by its full title at the first occurrence and thereafter as the DMPG.
007-3524-004 xvii

About This Guide
Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please send them to SGI. Be sure to include the title and document number of
the manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, you can find the document number on the
back cover.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.
xviii 007-3524-004

Chapter 1

1. DIVO and DIVO-DVC Features and Capabilities

The DIVO XIO option board provides broadcast-quality video input and output for
deskside and server workstations that accept XIO boards. Supporting the SMPTE 259
10-bit digital video standard, it fully integrates video into SGI workstation and server
environments.

The DIVO option also provides transparent color space conversion between the YCbCr
and RGB color spaces. The DIVO option board can be genlocked to an external digital or
analog sync signal, and provides loopthrough to allow genlocking of other video
equipment. The DIVO option provides built-in lossless compression (Rice compression),
which results in an average 2:1 compression ratio, while maintaining bit-accurate data.

The DIVO-DVC option board has all the functionality of the DIVO option, but also
supports DVCPRO, and DV video coding and decoding. The DIVO-DVC option consists
of the DIVO base board and two factory-installed daughterboards.

Both options utilize one XIO slot and provide independent dual-link 10-bit serial digital
component input and output ports. Depending on the system type, multiple DIVO or
DIVO-DVC option boards can be installed on a system for video server applications.

The DIVO and DIVO-DVC options have no direct physical connection with the graphics
board set, unlike some previous SGI video boards, such as Sirius Video. Any transfers to
or from graphics must go through memory: DIVO has a CCIR 601 dual-link input to
memory, and a CCIR 601 dual-link output from memory. Low-latency CCIR 601 output
from graphics requires the GVO option board in addition; GVO is a daughterboard for
the DG5 board, which is part of the Onyx2 InfiniteReality or Reality graphics board set.
007-3524-004 1

1: DIVO and DIVO-DVC Features and Capabilities
This chapter consists of these sections:

• “DIVO and DIVO-DVC Features” on page 2

• “DIVO-DVC Features” on page 4

• “DIVO and DIVO-DVC Board Architecture” on page 5

• “DIVO/DIVO-DVC Panel” on page 7

• “Digital Video Ports” on page 9

• “Color-Space Converters” on page 10

• “Serial Data Transport Interface (SDTI)” on page 11

• “Interpolation and Decimation Filters” on page 11

• “Orion Graphical V-LAN Control Utility” on page 12

• “DIVO/DIVO-DVC Audio” on page 13

Note: Installing an XIO board, such as the DIVO or DIVO-DVC board, in an Origin200
GIGAchannel chassis is explained in Chapter 2 of the Origin200 and Origin200
GIGAchannel Maintenance Guide (007-3709-001). Installing the DIVO or DIVO-DVC board
in an Onyx2, Onyx 3000, Origin2000, or Origin 3000 chassis is performed only by a
qualified SGI System Support Engineer (SSE).

DIVO and DIVO-DVC Features

The DIVO and DIVO-DVC options include these features:

• dual-link 10-bit serial digital video (SMPTE 259) streaming to and from system
memory

• serial digital transport interface (SDTI; SMPTE 305) streaming to and from system
memory

• transparent color-space conversion between YUV and RGB

• lossless built-in (Rice) compression and decompression using adaptive entropy
coding that retains bit-accurate data with approximately 2:1 compression

• flexible data-packing capability to facilitate easy integration to OpenGL component
packing methods
2 007-3524-004

DIVO and DIVO-DVC Features
• unadjusted system time/media stream count (UST/MSC) hardware-supported
audio/video synchronization mechanisms

• low latency in video transfers to or from system memory (typically less than one
frame)

• support for fields and frames

• encoding through the in pipe and decoding through the out pipe

• AES3-1992 (AES/EBU) embedded audio and ancillary data (SMPTE 272M) with up
to 24-bit precision and a sample rate of 48 KHz; up to 4 channels output and 16
channels input

• vertical interval time code (VITC) extraction and insertion recorded in the subcode
and video auxiliary regions

• SDTI multiplexing and demultiplexing via a dmIC API

• hardware error detection and handling (EDH) and link autophasing

• for each video pipe, two channels of input and output trigger signal pairs based on
the general-purpose interface (GPI)

• support for the Orion graphical V-LAN control utility

• output genlocking

The DIVO and DIVO-DVC option boards support video and audio data transfers to and
from system memory only. You can view the video in real time on the Onyx2 and Onyx
3000 workstations using the OpenGL interface to copy video images to graphics. The
DIVO and DIVO-DVC options support a wide variety of packing formats to facilitate
easy integration of video in graphics; Appendix C, “,” explains these packings.

For controlling videotape recorders, you can use a direct RS-422 connection to the deck
with third-party software, or an RS-422 V-LAN controller option and V-LAN software
from SGI with the on-board GPI triggering mechanism.

The DIVO and DIVO-DVC options are fully integrated into the SGI Digital Media
Library interfaces. The Video Library (VL) API has been enhanced to support some of its
advanced features.
007-3524-004 3

1: DIVO and DIVO-DVC Features and Capabilities
DIVO-DVC Features

In addition to the features summarized in “DIVO and DIVO-DVC Features,” the
DIVO-DVC option provides DV video coding and decoding. For explanations of the
DVCPRO and DV standards, see Appendix F, “.”

The option consists of the DIVO option board, which can manipulate digital video,
including Rice lossless compression and decompression, and two daughterboards. With
its speed of 25 Mbps, the DIVO-DVC option provides a flexible and cost-effective way to
accomplish a wide range of video projects.

The DIVO-DVC option supports 4:1:1 sampling, which yields a 5:1 compression ratio, for
both NTSC and PAL. The DIVO-DVC option also supports 4:2:0 PAL for the DV video
formats. Audio processing for DV and DVCPRO is done via a dmAC; Chapter 3, “Audio
Data Conversion,” explains the procedure.

Despite its tape-oriented technology, DVCPRO, like DV, is an open format that is also
designed for use with nonlinear editors and server-based systems. A 4X transfer speed
record and play capability is possible for DVCPRO and DV, using SDTI; the mechanism
is explained in “Programming the DIVO/DIVO-DVC Board for SDTI” on page 29 in
Chapter 2.

VL-based sample applications, such as divo_vitc, divo_ee, divo_memtovid,
divo_vidtomem, divo_videowarp, divo_vidtotex, inline.c, and vflip, are
included with the DIVO and DIVO-DVC options in the directory
/usr/share/src/dmedia/video/DIVO/.
4 007-3524-004

DIVO and DIVO-DVC Board Architecture
DIVO and DIVO-DVC Board Architecture

Figure 1-1 is a top-level diagram of the DIVO board. Each DIVO board has two
independent pipes, each with its own dedicated R4650 processor and SDRAM.

Figure 1-1 DIVO Board Architecture

Bridge
R4650

CPCI

CPCI

OUT LINK A

OUT LINK B

Input
LoopPipe 1

Pipe 2IN LINK A

IN LINK B

LINCSDRAMR4650

GenlockGPI

LINCSDRAM Output

video
pipe

Input

video
pipe
007-3524-004 5

1: DIVO and DIVO-DVC Features and Capabilities
Figure 1-2 is a top-level diagram of the DIVO-DVC board. Each DIVO-DVC board has
two independent pipes, each with its own dedicated R4650 processor and SDRAM, and
two identical daughterboards that provide DVC encoding and decoding.

Figure 1-2 DIVO-DVC Board Architecture

The DVC decode card can decode DVCPRO- or DVC-formatted data stored on disk as a
digital interface format (DIF) file. After decoding, the audio and video are encoded into
a SMPTE 272-compliant audio/video serial stream.

DVCPRO 625-line rate data is processed as 4:1:1 data; in DVC, it is processed as 4:2:0
data. Thus, the DVCPRO superblock structure is similar to that for 525-line rate data, but
the two formats are not compatible. Also, for DVCPRO, only 48 KHz audio is encoded.

Besides the sampling patterns 4:4:4 and 4:2:2, the DIVO-DVC board is also capable of
4:1:1 and 4:2:0 sampling. Details are in “4:1:1 Sampling (DIVO-DVC Only)” on page 107
and “4:2:0 Sampling (DIVO-DVC Only)” on page 108, respectively, in Appendix C.

Bridge
R4650

OUT LINK A

OUT LINK B

Input
LoopPipe 1

Pipe 2IN LINK A

IN LINK B

LINCSDRAMR4650

GenlockGPI

LINCSDRAM

CPCI

CPCI

Daughterboard

Daughterboard

Input video pipe

Output video pipe
6 007-3524-004

DIVO/DIVO-DVC Panel
DIVO/DIVO-DVC Panel

Figure 1-3 shows features of the DIVO/DIVO-DVC I/O panel. Although the board is
installed vertically in the chassis, Figure 1-3 shows the panel sideways to facilitate
reading of the connector and LED labels.

Figure 1-3 DIVO/DIVO-DVC I/O Panel

Table 1-1 summarizes DIVO/DIVO-DVC board external connectors that interface with
video equipment.

Table 1-1 Interface for Video Equipment

Connector Format Use

IN LINK A, IN LINK B 10-bit CCIR 601-2
75-ohm BNCs
Terminated, unbalanced

Serial digital video input from digital tape deck or other recording
device. Conforms to SMPTE 259M for component video, SMPTE
272M for embedded audio, and SMPTE 266M for DVITC. Both
inputs autophased.

OUT LINK A, OUT LINK B 10-bit CCIR 601-2
75-ohm BNCs

Serial digital video output to digital tape deck or other recording
device. Conforms to SMPTE 259M for component video, SMPTE
272M for embedded audio, and SMPTE 266M for DVITC.

Note: The transfer mode (packing format) selected determines
LINK A and LINK B usage, as explained in Table A-3 and Table A-4
in Appendix A, “DIVO/DIVO-DVC I/O Panel Connectors”.

525 A-LCK

525

625625 D-LCK
OUT GPI GEN IN GEN OUTOUT LINK BOUT LINK AIN LINK BIN LINK A IN GPI

SYNC525 525

625 625

GPI input

Serial digital
video in, Link B

LEDs for IN LINK A LEDs for OUT LINK A
and OUT LINK B

LEDs for sync

LEDs for IN LINK B LED for digital output sync

Serial digital
video in, Link A

Serial digital
video out, Link A

LED for analog
output sync

Serial digital
video out, Link B

GPI output

Genlock loopthrough
007-3524-004 7

1: DIVO and DIVO-DVC Features and Capabilities
See Appendix A, “,” for technical details of the connectors, including GPI pinouts.

Table 1-2 summarizes the function of the LEDs on the panel.

GEN IN 75-ohm BNC
Loopthrough,
unbalanced,
unterminated

External analog sync source (precision time base or other source of
house sync) or analog loopthrough.

GEN OUT 75-ohm BNC
Loopthrough,
unbalanced,
unterminated

External reference loop out; passive loopthrough for genlock input
with buffered signal to workstation.

Note: If you attach a cable to one GEN connector, you must attach
either another cable to other equipment accepting analog sync or a
75-ohm BNC terminator to the other GEN connector.

GPI IN, GPI OUT 8-pin mini-DIN General Purpose Interface for each video port; frame-accurate
event triggering to or from source or destination (tape deck or
digital recorder). Configurable for switch closure (factory setting)
or current sense operation.

Table 1-2 DIVO Panel LEDs

LED Purpose

Leftmost LEDs between IN LINK A and
IN LINK B (525 and 625)

Top LED lights when valid 525-line serial digital signal detected on IN LINK A.

Bottom LED lights when valid 625-line serial digital signal detected on IN LINK A.

Rightmost LEDs between IN LINK A
and IN LINK B (525 and 625)

Valid 525-line (top LED) or 625-line (bottom LED) serial digital signal detected on
IN LINK B.

Leftmost LEDs between OUT LINK A
and OUT LINK B (525 and 625)

Valid 525-line (top LED) or 625-line (bottom LED) serial digital signal detected on
OUTLINK A and OUT LINK B; these outputs are locked together, regardless of
whether OUT LINK B is used.

A-LCK Output is locked to an analog source: standalone, genlock (to another sync source), or
free run.

D-LCK Output is locked to a digital source (IN LINK A or IN LINK B).

SYNC 525 and 625 Valid 525-line sync source (top LED) or 625-line sync source (bottom LED) detected.

Table 1-1 (continued) Interface for Video Equipment

Connector Format Use
8 007-3524-004

Digital Video Ports
Figure 1-4 diagrams how the DIVO and DIVO-DVC option boards interact with other
workstation components.

Figure 1-4 DIVO/DIVO-DVC Video Top-Level System Diagram

Digital Video Ports

The DIVO and DIVO-DVC options each have two independent 10-bit serial digital video
ports for equipment that complies with the CCIR 601-2 standard. The ports can be
configured for 4:4:4:4 or 4:2:2:4 in dual-link mode, or 4:2:2 in single-link mode where
alpha is ignored.

Each port consists of two unidirectional interconnections, Link A and Link B:

• In 4:4:4:4 mode, Link A carries Y plus Cr and Cb from even-numbered sample
points; Link B carries alpha plus Cr and Cb from odd-numbered sample points.

• In 4:2:2:4 mode, Link A carries Y plus Cr and Cb; Link B carries alpha only.

Node boards memory

XBOW

XBOW

XTOWN

GFX

DIVO

XIO

XIO

XIO slots
007-3524-004 9

1: DIVO and DIVO-DVC Features and Capabilities
The video format selected determines Link A and Link B usage. For more information,
see the following standards, which contain provisions for video signals:

• CCIR 601-2: Encoding Parameters of Digital Television for Studios (4:2:2 component
video signals, single link)

• ANSI/SMPTE 125M-1992: Television—Component Video Signal 4:2:2—Bit-Parallel
Digital Interface

• SMPTE Recommended Practice (RP) 175-1993: Digital Interface for 4:4:4:4
Component Video Signals (Dual Link)

• SMPTE 259M-1993: Television—10-Bit 4:2:2 Component and 4fsc NTSC composite
Digital Signals—Serial Digital Interface

• SMPTE RP 157-1990: Key Signals

• SMPTE 272M: Television - Formatting AES/EBU Audio and Auxiliary Data into
Digital Video Ancillary Data Space

Color-Space Converters

Four color spaces are native to the DIVO/DIVO-DVC option: full-range RGBA,
compressed range RGB (RP-175), CCIR601, and full-range YUV. The video interface
supports only RP-175 and CCIR 601-2. The memory interface supports all four color
spaces. See “Color Spaces” in Appendix C for an explanation of full- and
compressed-range color spaces.

The DIVO/DIVO-DVC option uses the Gennum GF9105 component digital transcoder.
The GF9105 uses 13-bit multiplier coefficients and provides up to 13-bit output
resolution, allowing for transparent color-space conversion between YUV and RGB.
10 007-3524-004

Serial Data Transport Interface (SDTI)
Serial Data Transport Interface (SDTI)

The DIVO/DIVO-DVC option supports the transmission of audio, subcode data, and
compressed video packets associated with DV-based 25-Mbps data structures for 525/60
and 625/50 systems, including faster than real-time transfers and multichannel
transmission.

The section “Programming the DIVO/DIVO-DVC Board for SDTI” in Chapter 2 explains
how to program the DIVO/DIVO-DVC option board for SDTI. For more information on
SDTI and on SDTI with embedded DV, refer to the most recent editions of the following:

• Proposed SMPTE standard 305M for Television—Serial Data Transport Interface

• Proposed SMPTE Standard 306M for Television Digital Recording—6.35-mm Type
D-7 Component Format, Video Compression at 25 Mb/s, 525/60 and 625/50

• Proposed SMPTE Standard 314M for Television—Data Structure for DV-Based
Audio, Data and Compressed Video - 25 and 50 Mb/s

SMPTE’s web site is http://www.smpte.org/.

Interpolation and Decimation Filters

The GF9105 transcoder provides interpolation and decimation filtering between the
4:2:2:4 and 4:4:4:4 sampling rates. Both interpolation and decimation operations are fully
compliant with the CCIR 601-2 standard.
007-3524-004 11

1: DIVO and DIVO-DVC Features and Capabilities
Orion Graphical V-LAN Control Utility

The DIVO/DIVO-DVC option supports the SGI Orion graphical utility for tapedeck
control and for capture and playback. Figure 1-5 shows the main window.

Figure 1-5 Orion Main Window
12 007-3524-004

DIVO/DIVO-DVC Audio
The Orion utility offers

• standard deck controls: rewind, fast forward, stop, play, and so on

• editing controls, such as in point, out point, preroll, postroll

• deck shuttle control

• a variety of video file formats including QuickTime

• capture and playback in both field and frame mode

• support for synchronized audio and video capture and playback

• V-LAN triggering for capture and playback

• support for multiple DIVO/DIVO-DVC boards and multiple V-LAN devices

Note: If “Audio Device” is set to Default in the video control panel (vcp) and the DIF
stream contains audio data, audio is played out on the default audio devices while Video
Decode/Playout is in progress.

The Orion utility is at /usr/dmedia/bin/DIVO/orion. The utility is fully described
in its man page, orion(1M).

DIVO/DIVO-DVC Audio

The DIVO/DIVO-DVC option provides one 4-channel wide input device and one
four-channel wide output device, which are compliant with the SMPTE 272M standard.
Applications can open either device as two or four channels. Unused output channels are
set to zero; unused input channels are discarded. DIVO/DIVO-DVC audio supports a
sample rate of 48 KHz. It supports 20- and 24-bit word sizes. Access to the audio is
through the Audio Library (AL) interfaces specified in the Digital Media Programming
Guide.
007-3524-004 13

Chapter 2

2. Programming DIVO and DIVO-DVC

The DIVO and DIVO-DVC boards support the Video Library (VL) and the Audio Library
(AL) programming APIs. The APIs are described in the Digital Media Programming Guide
(007-1799-060 or later; hereafter referred to as the DMPG).

This chapter explains

• “VL Basics for DIVO and DIVO-DVC” on page 16

• “DIVO/DIVO-DVC Controls” on page 22

• “Compression Through the VL” on page 26

• “Programming the DIVO/DIVO-DVC Board for SDTI” on page 29

• “Setting Field Dominance” on page 32

• “VL Support for the General-Purpose Interface (GPI)” on page 36

• “VL Support for Vertical Interval Time Code (VITC)” on page 39

• “DIVO/DIVO-DVC Events” on page 39

• “Setting Inline Controls” on page 41

• “Capturing Graphics to Video” on page 42

• “Reporting” on page 42
007-3524-004 15

2: Programming DIVO and DIVO-DVC
VL Basics for DIVO and DIVO-DVC

To build programs that run under VL, you must

• install the dmedia_dev and dmedia_eoe options

• link with libvl

• include dmedia/vl.h and dmedia/vl_DIVO.h for device-dependent
functionality

The client library for VL is /usr/lib32/libvl.so. The header files for the VL are in
/usr/include/dmedia; the main file is vl.h. This file contains the main definition of
the VL API and controls that are common across all hardware. Several useful digital
media programming examples are in /usr/share/src/dmedia/tools (such as
capture/avcapture, capture/avplayback, and vlan/vlan).

Note: When building a VL-based program, you must add -lvl to the linking command.

For more information on the Video Library and the API usage, see the latest version of
the DMPG.

This section explains

• “VL Concepts” on page 17

• “VL Syntax Elements” on page 17

• “VL Object Classes” on page 18

• “VL Nodes for DIVO and DIVO-DVC” on page 19

• “VL Data Transfer Functions” on page 21
16 007-3524-004

VL Basics for DIVO and DIVO-DVC
VL Concepts

The Video Library defines a basic set of primitives and mechanisms to specify
interconnections and controls to achieve the desired setup. The two central concepts for
VL are

• path: an abstraction for a way of moving data around

• node: an endpoint of the path

The basic nodes are a source (such as a VTR) and a drain (such as memory). Figure 2-1
diagrams the simplest VL path, with one of each of these two nodes.

Figure 2-1 Simple VL Path

DIVO/DIVO-DVC nodes are further discussed in “VL Nodes for DIVO and
DIVO-DVC” on page 19.

VL Syntax Elements

VL syntax elements are as follows:

• VL types and constants begin with uppercase VL; for example, VLServer

• VL functions begin with lowercase vl; for example, vlOpenVideo()

Source Drain

VTR

Picture in
memory
007-3524-004 17

2: Programming DIVO and DIVO-DVC
VL Object Classes

The VL recognizes these classes of objects:

• devices, each including sets of nodes

• nodes, which are sources, drains, and internal nodes (as discussed in the preceding
section)

• paths, connecting sources and drains (as discussed in the preceding section)

• buffers, for sending and receiving field/frame data to and from host memory

DIVO and DIVO-DVC require the use of DMbuffers (digital media buffers) and not
the original ring buffer mechanisms (VL buffers) used with earlier SGI video
options. The new buffering scheme is much more flexible and versatile than the
older VL buffer-based scheme. See Chapter 5 of the DMPG.

DMbuffers, an abstraction of main memory, allow efficient and API-independent
interchange of data between the different digital media libraries. For example, video
fields can be captured into DMbuffers via VL and then displayed in graphics using
OpenGL. They can also be passed between two processes without the data having
to be copied explicitly. Refer to Chapter 5, “Digital Media Buffers,” in the Digital
Media Programming Guide for details.

• events, for monitoring video I/O status

• controls, or parameters that modify how data flows through nodes; for example:

– video device parameters, such as sync source

– video data parameters such as packing, size, and color space

VL controls fall into two categories:

• device-global or device-independent (prefix VL_), which can be used by several SGI
video products

For details of the device-independent controls, refer to the DMPG.

• device-dependent (prefix VL_DIVO_), specific to a particular video device, in this
case, DIVO and DIVO-DVC

Both types of VL controls are explained in this chapter with respect to their usage with
DIVO and DIVO-DVC.
18 007-3524-004

VL Basics for DIVO and DIVO-DVC
VL Nodes for DIVO and DIVO-DVC

Use vlGetNode() to specify nodes. This call returns the node’s handle, which is used
when setting controls or setting up paths. Its function prototype is:

VLNode vlGetNode(VLServer svr, int type, int kind, int number)

In this prototype, variables are as follows:

svr Names the server (as returned by vlOpenVideo()).

type Specifies the type of node:

• VL_SRC: source, such as a digital tapedeck connected to an input
port

Note: The DIVO and DIVO-DVC options have only one input.

• VL_DRN: drain, such as system memory

• VL_DEVICE: global control, such as a default source; Table 2-1
summarizes the values for this type

Note: If you are using VL_DEVICE, the VLNode should be set to 0.

kind Specifies the kind of node:

• VL_VIDEO: connection to a video device equipment; for example,
a video tapedeck or camera

• VL_MEM: workstation memory

number Number of the node in cases of two or more identical nodes, such as two
video source nodes. The default value for all kinds is 0.

VL_ANY can also used as a value for number to reference the first available node of the
specificated type and kind.
007-3524-004 19

2: Programming DIVO and DIVO-DVC
In general, a path on DIVO and DIVO-DVC has a memory node and a video node. The
following fragment creates a digital video input source node and a memory drain node,
and creates the path:

VLServer svr;
VLPath path;
VLNode src;
VLNode drn;
 /*Set up video source node */
VLControlValue timing,format, val;
src = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);
 /*Set up memory drain node */
drn = vlGetNode(svr, VL_DRN, VL_MEM, VL_ANY);
 /* Create source-to-drain path */
if((path = vlCreatePath(svr, VL_ANY, src, drn)) < 0){
 fprintf(stderr,”%s\n”,vlStrError(vlGetErrno()));
 exit(1);
}
 /* Set up path with shared src and drn node */
vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE, VL_SHARE);

After nodes are specified, use vlSetControl() to specify parameters:

• video nodes: video timing (drain only) and format (for example digital component)

• memory nodes: timing, packing, and color space

Controls for each node are defined in “DIVO/DIVO-DVC Controls” later in this chapter,
and are summarized in Table 2-1.
20 007-3524-004

VL Basics for DIVO and DIVO-DVC
VL Data Transfer Functions

This section summarizes VL data transfer categories, and gives the basic steps of creating
an application. For DIVO and DIVO-DVC, VL data transfers always involve memory
(video to memory, memory to video) and require setting up a DMbuffer pool.

In the VL programming model, the process of creating a VL application consists of these
steps:

1. Open a connection to the video daemon (vlOpenVideo()).

2. Specify nodes on the data path (vlGetNode()).

3. Create the path (vlCreatePath()).

4. Optional step: add more nodes to a path (vlAddNode()).

5. Set up the hardware for the path (vlSetupPaths()).

6. Specify path-related events to be captured (vlSelectEvents(), vlAddCallback()).

7. Set input and output parameters (controls) for the nodes on the path
(vlSetControl()); video format and timing must be specified.

8. Create a dmBuffer pool to hold data for memory transfers (vlDMGetParams(),
dmBufferSetPoolDefaults(), dmBufferCreatePool(), vlGetTransferSize()).

9. Register the buffer (vlDMPoolRegister(),vlDMPoolDeregister()).

10. Start the data transfer (vlBeginTransfer()).

11. Get the data (vlDMBufferGetValid(), vlDMBufferPutValid(), dmBufferAllocate(),
dmBufferAllocateSize(), dmBufferGetPoolState(), dmBufferGetPoolFD(),
dmBufferSetPoolSelectSize(), dmBufferMapData(), dmBufferFree()) to
manipulate frame data.

12. Handle data stream events (vlSelectEvents(), vlNextEvent(), vlPending()).

13. Clean up (vlEndTransfer(), vlDMPoolDeregister(), vlDestroyPath(),
vlCloseVideo()).

Note: Error handling (vlPerror()) is accomplished throughout.
007-3524-004 21

2: Programming DIVO and DIVO-DVC
DIVO/DIVO-DVC Controls

To determine the available devices (that is, video options in the workstation, such as the
DIVO or DIVO-DVC option board) and the nodes available on them, run vlinfo. To
determine possible controls for each device, enter

vlinfo -l

Note: VL controls specified as true with vlSetControl() are executed immediately.
However, it is not guaranteed that they execute at a specific time. For better precision on
the execution of these controls, see “Setting Inline Controls” on page 41.

To set controls for DIVO/DIVO-DVC nodes, use vlSetControl(). The following example
sets video format and timing on a node:

timing.intVal = VL_TIMING_525_CCIR601;
format.intVal = VL_FORMAT_RGB;

if (vlSetControl(svr, path, drn, VL_TIMING, &timing) <0)
{
 vlPerror(“VlSetControl:TIMING”);
 exit(1);
}
if (vlSetControl(svr, path, drn, VL_FORMAT, &format) <0)
{
 vlPerror(“VlSetControl:FORMAT”);
 exit(1);
 }

For details on vlSetControl() and vlGetControl(), see the latest version of the DMPG.

Tables in this section summarize

• device-global controls for DIVO/DIVO-DVC

• controls for DIVO/DIVO-DVC nodes

• control values and uses
22 007-3524-004

DIVO/DIVO-DVC Controls
Table 2-1 summarizes supported node controls for the DIVO/DIVO-DVC option.

Table 2-1 DIVO/DIVO-DVC Node Controls

Control Video Source Memory Source Video Drain Memory Drain

VL_ASPECT X (read-only) X (read only)

VL_CAP_TYPE X X

VL_COLORSPACE X X

VL_COMPRESSION X X

VL_DIVO_CLOSED_CAPTION X X

VL_DIVO_FIELD_DISPLAY X X

VL_DIVO_LOOPBACK X

VL_FIELD_DOMINANCE X X

VL_FORMAT X X

VL_GPI_OUT_MODE X X

VL_GPI_STATE X X

VL_OFFSET X (read-only) X X (read-only) X

VL_PACKING X X

VL_RICE_COMP_PRECISION X X

VL_RICE_COMP_SAMPLING X X

VL_SDTI_HEADER X X (read-only)

VL_SDTI_MODE X X

VL_SIZE X (read-only) X X (read-only) X

VL_SYNC X

VL_SYNC_SOURCE X

VL_TIMING X (read-only) X X X

VL_TRANSFER_TRIGGER X X

VL_ZOOM X (read-only) X (read-only) X (read-only) X (read-only)
007-3524-004 23

2: Programming DIVO and DIVO-DVC
Table 2-2 summarizes the values and uses of controls for the DIVO/DIVO-DVC option.

Table 2-2 Controls for the DIVO and DIVO-DVC Option Boards

Control Values or Range Use

VL_ASPECT Aspect (read-only). Reads aspect ratio.

VL_CAP_TYPE Memory nodes:

VL_CAPTURE_FIELDS
VL_CAPTURE_INTERLEAVED
VL_CAPTURE_NONINTERLEAVED

Selects type of frame(s) or field(s) to
capture.

VL_COLORSPACE VL_COLORSPACE_RGB (full-range RGB)
VL_COLORSPACE_CCIR601 (compressed-range
YUV)
VL_COLORSPACE_RP175 (compressed-range
RGB)
VL_COLORSPACE_YUV (full-range YUV)

Specifies color space of video data in
memory.

VL_COMPRESSION VL_COMPRESSION_NONE
VL_COMPRESSION_RICE
VL_COMPRESSION_DV (DIVO-DVC only)
VL_COMPRESSION_DVCPRO (DIVO-DVC
only)

Specifies compression option for video.
See vl.h for information on
compression-specific controls. For
example, to access Rice entropy coding, use
VL_COMPRESSION_RICE as the
compression control for the memory node.

VL_DIVO_CLOSED_CAPTION VL_DIVO_CLOSED_CAPTION_ON

VL_DIVO_CLOSED_CAPTION_OFF

Specifies if closed-caption should be
extracted from input or inserted into
output.

VL_DIVO_LOOPBACK VL_DIVO_LOOPBACK_ON
VL_DIVO_LOOPBACK_OFF

Specifies if the video source on input
should be from the output pipe.

VL_DIVO_FIELD_DISPLAY VL_DIVO_FIELD_DISPLAY_F1F2
VL_DIVO_FIELD_DISPLAY_F2F1
VL_DIVO_FIELD_DISPLAY_F1F1
VL_DIVO_FIELD_DISPLAY_F2F2

Specifies output field display order. For
example, to display only one field of a
DVCPRO frame, use
VL_DIVO_FIELD_DISPLAY_F1F1.

This control is supported only in
DV/DVCPRO compression mode on the
DIVO-DVC option board.
24 007-3524-004

DIVO/DIVO-DVC Controls
VL_FIELD_DOMINANCE VL_F1_IS_DOMINANT
VL_F2_IS_DOMINANT

(Frames that are output are deinterlaced
differently depending on the choice of output field
dominance. Deinterlacing is specified in the
application.)

Identifies frame boundaries in a field
sequence; see “Setting Field Dominance.”

VL_FORMAT
VL_FORMAT_DIGITAL_COMPONENT_SERIAL
VL_FORMAT_DIGITAL_COMPONENT_DUAL_
SERIAL

Sets video format in or out:
Serial 4:2:2:4
Serial 4:4:4:4

VL_GPI_OUT_MODE

Conditions:
VL_GPI_OUT_XFER_START
VL_GPI_OUT_XFER_STOP

Specifies when the GPI_OUT line is
asserted, to control downstream devices in
a studio environment. For more
information, see “VL Support for the
General-Purpose Interface (GPI).”
Asserts GPI_OUT at BeginTransfer.
Asserts GPI_OUT at EndTransfer.

VL_GPI_STATE State:
VL_GPI_CLEAR
VL_GPI_OFF
VL_GPI_ON
VL_GPI_PULSE (transition for one field time)

Sets or gets the state of output_gpi lines.
For more information, see “VL Support for
the General-Purpose Interface (GPI)” on
page 36.

VL_OFFSET Any position within the video raster. Sets the position within the video raster to
stuff bits.

VL_PACKING Supported packings; see Appendix C, “,”for
information.

Sets packing format for memory source or
drain node.

VL_RICE_COMP_PRECISION VL_RICE_COMPRESSION_8
VL_RICE_COMPRESSION_10
VL_RICE_COMPRESSION_12
VL_RICE_COMPRESSION_13

Specifies the component size.

VL_RICE_COMP_SAMPLING VL_RICE_COMPRESSION_422
VL_RICE_COMPRESSION_4224
VL_RICE_COMPRESSION_444
VL_RICE_COMPRESSION_4444

Specifies the sampling resolution.

Table 2-2 (continued) Controls for the DIVO and DIVO-DVC Option Boards

Control Values or Range Use
007-3524-004 25

2: Programming DIVO and DIVO-DVC
Compression Through the VL

Compression is handled via enhancements to the VL API; the DIVO and DIVO-DVC
boards do not support the Compression Library API.

For DIVO and DIVO-DVC, compression in the VL is supported by adding
compression-related controls on memory nodes. The control VL_COMPRESSION
specifies the compression. Based on the compression type—Rice, DV (DIVO-DVC only),
DVCPRO (DIVO-DVC only), DVCam (DIVO-DVC only), or none—additional controls
specify compression-related parameters. Table 2-2 earlier in this chapter summarizes
these controls.

VL_SDTI_HEADER stringVal Sets or gets the SDTI header as an array of
bytes (stringVal).

VL_SDTI_MODE VL_SDTI_MODE_OFF
VL_SDTI_MODE_ON

Specifies if the memory node data should
be processed as SDTI data.

VL_SIZE Any size of the raster. Size plus offset or origin should not exceed
the raster dimensions.

VL_SYNC VL_SYNC_INTERNAL
VL_SYNC_GENLOCK

Sets sync mode for source or drain; on
source, this is set to VL_SYNC_GENLOCK.

VL_SYNC_SOURCE VL_DIVO_SYNC_HOUSE
VL_DIVO_SYNC_DIGITAL_INPUT_LINK_A
VL_DIVO_SYNC_DIGITAL_INPUT_LINK_B
VL_DIVO_SYNC_DBOARD

Selects the genlock source:
VL_DIVO_SYNC_DBOARD is used when
the compressed stream provides a sync
source.

VL_TIMING
VL_TIMING_525_CCIR601
VL_TIMING_625_CCIR601

Sets or gets video timing:
13.50 MHz, 720 x 486
13.50 MHz, 720 x 576

VL_TRANSFER_TRIGGER VL_TRIGGER_NONE
VL_TRIGGER_GPI
VL_TRIGGER_VITC
VL_TRIGGER_MSC

Specifies the conditions under which
transfers begin on a path (video nodes
only); see “Using
VL_TRANSFER_TRIGGER” in this
chapter.

VL_ZOOM Zoom factor (read-only) Reads zoom factor of video stream.

Table 2-2 (continued) Controls for the DIVO and DIVO-DVC Option Boards

Control Values or Range Use
26 007-3524-004

Compression Through the VL
Note: Compression for the DIVO-DVC option is different from compression for DIVO;
see “DV and DVCPRO Compression for DIVO-DVC” on page 27.

Rice Compression

The DIVO and DIVO-DVC option boards can use Rice compression, a lossless entropy
coding mechanism that provides an average compression of 2:1 while retaining
bit-accurate data. In some cases, compression can add to the size of the data being
transferred, but is limited to a maximum of 1% increase. Tests at SGI show that this
compression mechanism can reduce data in ratios of 2:1 to 6:1.

For encoding, specify the controls VL_COMPRESSION, VL_RICE_COMP_PRECISION,
and VL_RICE_COMP_SAMPLING. For decoding, the control information is already
embedded in the stream; you need specify only the data type, with the
VL_COMPRESSION control. For best memory utilization with Rice compression, use
variably sized buffers.

Refer to the source examples (divo_vidtomem.c for encoding and
divo_memtovid.c for decoding) in the directory
/usr/share/src/dmedia/video/DIVO.

DV and DVCPRO Compression for DIVO-DVC

The DIVO-DVC board is capable of additional types of encoding defined in the DV,
DVCam, and DVCPRO standards. For DV/DVCam and DVCPRO encoding, specify the
control VL_COMPRESSION with the VL_COMPRESSION_DV or
VL_COMPRESSION_DVCPRO parameter, respectively. For decoding, the control
information is already embedded in the stream; you need specify only the data type, with
the VL_COMPRESSION control. DV/DVCam and DVCPRO compression mechanisms
can reduce data in the ratio of 5:1.

For 525/60, frame size is 12,000 bytes; for 625/50, frame size is 144,000 bytes. You must
specify VL_PACKING as VL_PACKING_DV, as illustrated by the following code
fragment.

{
 int GvlPacking;
 VLControlValue val;
 int GvlCspace;
 int GvlCapType;
007-3524-004 27

2: Programming DIVO and DIVO-DVC
VL_PACKING_242_8
VL_COLORSPACE_CCIR(0)

GvlCapType = VL_CAPTURE_INTERLEAVED;

 val.intVal = GvlPacking;
 if (vlSetControl(GvlSvr, GvlPath, GvlMemNode, VL_PACKING, &val) < 0)
 vl_error(“vlSetControl(VL_PACKING) on memory node”);
 if (vlGetControl(GvlSvr, GvlPath, GvlMemNode, VL_PACKING, &val) < 0)
 vl_error(“vlGetControl(VL_PACKING) on memory node”);
 if (val.intVal != GvlPacking)
 other_error(“can’t set VL_PACKING on memory node”);

 val.intVal = GvlCspace;
if (vlSetControl(GvlSvr, GvlPath, GvlMemNode, VL_COLORSPACE, &val) <

0)
 vl_error(“vlSetControl(VL_COLORSPACE) on memory node”);

if (vlGetControl(GvlSvr, GvlPath, GvlMemNode, VL_COLORSPACE, &val) <
0)
 vl_error(“vlGetControl(VL_COLORSPACE) on memory node”);
 if (val.intVal != GvlCspace)
 other_error(“can’t set VL_COLORSPACE on memory node”);

 val.intVal = GvlCapType;
 if (vlSetControl(GvlSvr, GvlPath, GvlMemNode, VL_CAP_TYPE, &val) <
0)
 vl_error(“vlSetControl(VL_CAP_TYPE) on memory node”);
 if (vlGetControl(GvlSvr, GvlPath, GvlMemNode, VL_CAP_TYPE, &val) <
0)
 vl_error(“vlGetControl(VL_CAP_TYPE) on memory node”);
 if (val.intVal != GvlCapType)
 other_error(“can’t set VL_CAP_TYPE on memory node”);

}

Use the VL_DIVO_FIELD_DISPLAY control to specify output field display order. To
display only one field of a DVCPRO frame, specify the field. In the following example,
VL_DIVO_FIELD_DISPLAY_F2F2 is used:

/* display only field # 2 */
 field_display = VL_DIVO_FIELD_DISPLAY_F2F2;
 val.intVal = field_display;
 if (vlSetControl(GvlSvr, GvlPath, GvlVidNode, VL_DIVO_FIELD_DISPLAY,
&val) <0)
28 007-3524-004

Programming the DIVO/DIVO-DVC Board for SDTI
 vl_error(“vlSetControl(VL_DIVO_FIELD_DISPLAY) on video node”);
 if (vlGetControl(GvlSvr, GvlPath, GvlVidNode, VL_DIVO_FIELD_DISPLAY,
&val) <0)
 vl_error(“vlGetControl(VL_DIVO_FIELD_DISPLAY) on video node”);
 if (val.intVal != field_display)
 other_error(“can’t set VL_DIVO_FIELD_DISPLAY on video node”);

Programming the DIVO/DIVO-DVC Board for SDTI

For the DIVO and DIVO-DVC options, SDTI with embedded DV is handled by means of
features in the VL API and hardware support in the input and output pipes. The API
includes the following SDTI features:

• The 32-bit packing VL_PACKING_SDTI_DV specifies how the signal is stored in
memory. The layout for this packing is diagrammed in “SDTI Packing” on page 99
in Appendix C.

• The VL has two SDTI-related controls on memory nodes:

– VL_SDTI_MODE enables or disables SDTI mode. When SDTI is enabled and
the payload data type is DV, the start lines for each field are changed for 525
timing: start lines are F1=21, F2=284 instead of the default F1=21, F2=283. (For
625 timing, start lines are the same as the defaults, F1=23 and F2=336.)

– VL_SDTI_HEADER sets or gets the SDTI header as an array of bytes; the data
structure is explained in this section.

This section consists of the following:

• “SDTI Data Structure” on page 29

• “Sending SDTI DV” on page 31

• “Receiving SDTI DV” on page 31

SDTI Data Structure

For both DIVO and DIVO-DVC, the control VL_SDTI_HDR overlaps the string variable.
The SDTI header is defined in vl_divo.h as follows:

 /* SDTI Header */
typedef struct {
 u_char did; /* data id identifier */
 u_char sdid; /* sec. data id identifier */
007-3524-004 29

2: Programming DIVO and DIVO-DVC
 u_char dc; /* data word count */
 u_char lnum[2]; /* linenumber0 and linenumber1 */
 u_char lnumcrc[2]; /* linenumber0 and linenumber1 crc */
 u_char aai_code; /* appl identifier and code */
 u_char dst_addr[16]; /* destination address */
 u_char src_addr[16]; /* source address */
 u_char btype; /* block type */
 u_char crcflag; /* payload crc flag */
 u_char dextflag; /* data extension flag */
 u_char reserved[4]; /* reserved words */
}

void init_sdti_header_dv(sdti_hdr_t * sdti_hdr, VLControlValue *val)
{
 int i;

 sdti_hdr->did = 0x40; /* see smpte 305M spec */
 sdti_hdr->sdid = 0x01;
 sdti_hdr->dc = 0x2E;
 sdti_hdr->lnum[0] = 0x00;
 sdti_hdr->lnum[1] = 0x00;
 sdti_hdr->lnumcrc[0] = 0x00;
 sdti_hdr->lnumcrc[1] = 0x00;
 sdti_hdr->aai_code = 0x01;

 for(i=0;i<16;i++) sdti_hdr->dst_addr[i] = 0; /* dst_addr[0] is msb */
 for(i=0;i<16;i++) sdti_hdr->src_addr[i] = 0; /* src_addr[0] is msb */

sdti_hdr->btype = DIVO_SDTI_BLOCK_TYPE_FIXED; /* fixed block,
no ecc
*/
 sdti_hdr->crcflag = 0x01; /* insert CRC */
 sdti_hdr->dextflag = 0x00; /* no data extension packets */
 for(i=0;i<4;i++) sdti_hdr->reserved[i] = 0; /* set to zero */

 /* copy sdti header into control string variable */
 bcopy(sdti_hdr,val->stringVal,sizeof(sdti_hdr_t));

}

 /* Set the SDTI Header */
if (vlSetControl(GvlSvr, GvlPath, GvlMemNode, VL_SDTI_HEADER, &val)

< 0)
 vl_error(“vlSetControl(VL_SDTI_HEADER) on memory node”);
30 007-3524-004

Programming the DIVO/DIVO-DVC Board for SDTI
Sending SDTI DV

To multiplex and send SDTI DV, follow these steps:

1. Enable SDTI mode by setting the VL_SDTI_MODE control.

2. Set the color space to VL_COLORSPACE_CCIR601.

3. Set the packing to VL_PACKING_SDTI_DV.

4. Initialize the SDTI header by setting the VL_SDTI_HEADER control. For an
example, see init_sdti_header_dv in
/usr/share/src/dmedia/video/DIVO/divo_memtovid.c

5. Set ysize to the active payload region.

6. Multiplex DIF frames and send buffers. For an example, see init_sdti_header_dv in
/usr/share/src/dmedia/video/DIVO/divo_memtovid.c

Note: The Reed-Solomon error correction code (ECC) is not supported on DIVO or
DIVO-DVC.

Receiving SDTI DV

To receive and demultiplex SDTI DV, follow these steps:

1. Enable SDTI mode by setting the VL_SDTI_MODE control.

2. Set the color space to VL_COLORSPACE_CCIR601.

3. Set the packing to VL_PACKING_SDTI_DV.

4. Set ysize to the active payload region.

5. Receive field buffers and demultiplex DIF frames. For an example, see
init_sdti_header_dv in
/usr/share/src/dmedia/video/DIVO/divo_memtovid.c
007-3524-004 31

2: Programming DIVO and DIVO-DVC
Setting Field Dominance

Field dominance identifies the frame boundaries in a field sequence; that is, it specifies
which pair of fields in a field sequence constitute a frame. The control
VL_FIELD_DOMINANCE allows you to specify whether an edit occurs on the nominal
video field boundary (Field 1, or F1) or on the intervening field boundary (Field 2, or F2).

• F1 dominant: The edit occurs on the nominal video field boundary.

• F2 dominant: The edit occurs on the intervening field boundary.

Whether a field is Field 1 or Field 2 is determined by the setting of bit 9, the F bit, in the
XYZ word of the EAV and SAV sequences. The setting means the following:

• For Field 1 (also called the odd field), the F bit is 0.

• For Field 2 (also called the even field), the F bit is 1.
32 007-3524-004

Setting Field Dominance
Figure 2-2 shows fields and frames as defined for digital 525-line and 625-line formats for
the DIVO/DIVO-DVC option.1

Figure 2-2 DIVO/DIVO-DVC 525-Line and 625-Line Frames and Fields

Editing is usually on Field 1 boundaries, where Field 1 is defined as the first field in the
video standard’s two-field output sequence. 525-line standards send the second (whole)
raster line out to begin the first field, and the first (half) raster line out to begin the second
field; 625-line standards send the first (half) raster line out to begin the first field, and the
second (whole) raster line to begin the second field.

1 The line numbers for the DIVO/DIVO-DVC option diverge slightly from those defined in SMPTE
259M.

FieldFrame (raster)
Line number

Digital 525 Frame (raster)
Line number

.

.

.

283 (F2)
21 (F1)

284 (F2)
22 (F1)

285 (F2)
.

.

.

262 (F2)
525 (F1)
263 (F2)

Field 1: Odd field
(243 lines active video

Field 2: Even field
(243 lines active video

preceded by

preceded by

Digital 625

.

.

.

336 (F2)
24 (F1)

337 (F2)
25 (F1)

.

.

.

622 (F2)
310 (F1)
623 (F2)

FieldFrame (raster)
Line number

23
24

.
309
310

335
337
338

.
623

Frame (raster)
Line number

.

283
284

.
524
525

.

.

.

21
22

.
263

.

.

.

23 (F1)

Field 1: Odd field
(288 lines active video

Field 2: Even field
(288 lines, active video

preceded by

preceded by 23 blanking lines

20 blanking lines)

19 blanking lines)

22 blanking lines)

and followed by 2 blanking lines)

.

.

.

.

.

.

.

007-3524-004 33

2: Programming DIVO and DIVO-DVC
However, some users may want to edit on F2 boundaries, which fall on the field in
between the video standard’s frame boundary. To do so, use this control, then program
your deck to select F2 edits.

If you use component 525-line format, you might need to vary the field dominance
choice, depending on the origin of the input material they are to edit.

To output a set of frames, they must be deinterlaced into fields differently, depending on
the choice of output field dominance. For example, when F1 dominance is selected, the
field with the topmost line must be the first field to be transferred; when F2 dominance
is selected, the field with the topmost line must be the second field to be transferred.
Deinterlacing must be specified in the application; the following code fragment contains
an example of how to consult the field dominance control to determine deinterleave
order.

/*
* Set the memory node’s timing based upon the video drain’s timing,
 * which has been set up by the daemon from the defaults file, or by
 * the user via vcp.
 *
 * When we get around to reading image files, we’ll check the file
 * size against the size reported by the VL for this node: if the file
 * size does not match the format’s, we’ll punt.
 */

int is_525, F1_is_first;
VLControlValue drn timing, dominance;
if (vlGetControl(svr, MEMtoVIDPath, drn, VL_TIMING, &drainTiming) < 0)
{
 vlPerror(“GetControl(VL_TIMING) on video drain failed”);
 exit(1);
}
if (vlSetControl(svr, MEMtoVIDPath, src, VL_TIMING, &drainTiming) < 0)
{
 vlPerror(“SetControl(VL_TIMING) on memory source failed”);
 exit(1);
}

34 007-3524-004

Setting Field Dominance
/*
 * Read the video drains’s field dominance control setting and timing,
 * then set a variable to indicate which field has the first line, so
 * readimage() will know how to deinterleave frames to fields.
 */
if (vlGetControl(svr, MEMtoVIDPath, drn,
 VL_FIELD_DOMINANCE, &dominance) < 0) {
 vlPerror(“GetControl(VL_FIELD_DOMINANCE) on video drain failed”);
 exit(1);
}

is_525 = (drainTiming.intVal == VL_TIMING_525_CCIR601));

switch (dominance.intVal) {
 case VL_F1_IS_DOMINANT:
 if (is_525) {
 F1_is_first = 0;
 } else {
 F1_is_first = 1;
 }
 break;
 case VL_F2_IS_DOMINANT:
 if (is_525) {
 F1_is_first = 1;
 } else {
 F1_is_first = 0;
 }
 break;
 }
007-3524-004 35

2: Programming DIVO and DIVO-DVC
VL Support for the General-Purpose Interface (GPI)

The DIVO and DIVO-DVC option boards have two GPI connectors, each associated with
one of the serial digital video ports. Each port has two transmit and two receive channels,
lines 0 and 1 in and out.

The VL API supports the GPI as a device-independent interface. It supports GPI triggers
in three vlSetControl() interfaces. The union VLControlValue supports the controls for

• output triggering, discussed in “Using VL_GPI_OUT_MODE” on page 36

• explicitly setting and querying the GPI lines, discussed in “Using VL_GPI_STATE”
on page 37

• setting up triggering to begin transfers on a path, discussed in “Using
VL_TRANSFER_TRIGGER” on page 38

Note: See Appendix G, “,” and the section “GPI Interface” in Appendix A for extensive
hardware information on the GPI interface for the DIVO board only.

Using VL_GPI_OUT_MODE

Use VL_GPI_OUT_MODE to program the gpi_out line. Two conditions are supported
for asserting the GPI line: transfer_start and transfer_stop. You can have multiple trigger
conditions outstanding.

Figure 2-3 diagrams the effect of VL_GPI_OUT_MODE values.

Figure 2-3 Output GPI (OFF Assumed to Be Low)

Note: In this section, OFF is assumed to be low. VL_CLEAR_GPI changes the state of the
GPI signal to low.

ON

OFF

VL_GPI_OUT_XFER_START VL_GPI_OUT_XFER_STOP
36 007-3524-004

VL Support for the General-Purpose Interface (GPI)
The following pseudocode segment illustrates a setup for gpi_out line 1 to toggle at the
beginning and end of transfer:

VLControlValue val;

 /* make sure the GPI line is high */
val.gpi_state.gpi = VL_GPI_OUT;
val.gpi_state.instance = <which GPI line>; /* integer */
val.gpi_state.state = VL_GPI_OFF;
vlSetControl(svr,path,VL_GPI_STATE,&val);

 /* transfer start */
val.gpi_out.condition = VL_GPI_OUT_XFER_START;
val.gpi_out.instance = <which GPI output line >;
val.gpi_out.state = VL_GPI_ON;

vlSetControl(svr,path,VL_GPI_OUT_MODE,&val);

 /* transfer stop */
val.gpi_out.condition = VL_GPI_OUT_XFER_STOP;
val.gpi_out.instance = <which GPI output line >;
val.gpi_out.state = VL_GPI_OFF;

vlSetControl(svr,path,VL_GPI_OUT_MODE,&val);

To clear all outstanding trigger controls on a particular line, use the gpi_state control with
the clear flag.

Using VL_GPI_STATE

Use VL_GPI_STATE to query the state of the input GPI lines and to set or get the state of
output GPI lines. The states are ON, OFF, PULSE (transition for one field time), and
CLEAR.

The following code fragment clears all output triggers on the specified line:

val.gpi_state.gpi = VL_GPI_OUT;
val.gpi_state.instance = <which GPI line>;
val.gpi_state.state = VL_GPI_CLEAR;

vlSetControl(svr,path,VL_GPI_STATE,&val);
007-3524-004 37

2: Programming DIVO and DIVO-DVC
To get the GPI state on an input line, use

val.gpi_state.gpi = VL_GPI_IN;
val.gpi_state.instance = <which GPI line>;
vlGetControl (svr, path, VL_GPI_STATE, &val);

Using VL_TRANSFER_TRIGGER

The VL_TRANSFER_TRIGGER control specifies the conditions under which transfers
begin on a path based on external GPI triggers. This control is valid only on video nodes.

The following code illustrates an input GPI-based trigger transfer setup:

VLTransferDescriptor desc;
int num_images = 30; /* 1 second of video */
int trigger = TRUE;/* enable trigger transfers */

if (trigger) {
 val.xfer_trigger.triggerType = VL_TRIGGER_GPI;
 val.xfer_trigger.value.instance = 1; /* GPI line 1 */
 desc.trigger = VLDeviceEvent;
}
else { /* reset for subsequent transfers */
 val.xfer_trigger.triggerType = VL_TRIGGER_NONE;
 desc.trigger = VLTriggerImmediate;
}

vlSetControl(svr, path, src, VL_TRANSFER_TRIGGER, &val);

desc.mode = VL_TRANSFER_MODE_DISCRETE;
desc.count = num_images;
desc.delay = 0;

vlBeginTransfer(svr, path, 1, &desc);

Note: The trigger type is a persistent device control setting and remains valid until reset.
Thus the VL_TRANSFER_TRIGGER control must be set to VL_TRIGGER_NONE if
subsequent transfers are of a nontrigger type.
38 007-3524-004

VL Support for Vertical Interval Time Code (VITC)
VL Support for Vertical Interval Time Code (VITC)

Over-the-wire electrical time-code signals are used as clocks by which one master device
can drive the input or output of data by other slave devices. Each tick of the clock consists
of a unique signal that represents a time code.

VITC time code is a standardized part of a 525- or 625-line video signal. The code itself
occupies lines in the vertical blanking interval of each field of the video signal. Each VITC
code word contains a time code, 32 user bits, an F1/F2 field indicator, and other useful
information. People use the user bits to store information such as reel and shot number
for indexing footage. Under certain circumstances, the original VITC recorded with
footage can go along with that footage as it is edited, so that you can produce an edit list
or track assets for a final prototype edit.

The DIVO and DIVO-DVC options always extract VITC information from the fields as
they are captured and pass this information to the application as buffer information
associated with the dmBuffer. To extract this information, call
vlDMBufferGetVideoInfo(). In the structure returned, a valid bit (validinfo) indicates if
the VITC is valid. Refer to the programming example divo_vitc.c in the directory
/usr/share/src/dmedia/video/DIVO.

To insert VITC, fill the DMBufferVideoInfo* structure and call the function
vlDMBufferSetVideoInfo().

To parse a VITC image out of a pixel buffer, you can use a VITC parser included in
libdmedia (see dmVITC(3dm)); see /usr/share/src/dmedia/video/vitc.c for
sample code.

DIVO/DIVO-DVC Events

The VL provides several ways of handling data stream events, such as completion or
failure of data transfer, vertical retrace event, loss of the path to another client, lack of
detectable sync, or dropped fields or frames. The method you use depends on the kind
of application you are writing:

• For a strictly VL application, use

– vlSelectEvents() to choose the events to which you want the application to
respond

– vlCallback() to specify the function called when the event occurs

– your own event loop or a main loop (vlMainLoop()) to dispatch the events
007-3524-004 39

2: Programming DIVO and DIVO-DVC
• For an application that also accesses another program or device driver, or if you are
adding video capability to an existing X or OpenGL application, set up an event
loop in the main part of the application and use the IRIX file descriptor (FD) of the
event(s) you want to add.

For more information on these functions, see Chapter 4 in the Digital Media Programming
Guide.

Table 2-3 summarizes events for DIVO/DIVO-DVC. For these options, this table
supersedes the table of events in Chapter 14, “VL Event Handling,” in the DMPG; DIVO
and DIVO-DVC support only the events listed in Table 2-3.

Table 2-3 DIVO/DIVO-DVC Events

Event Use

VLSyncLost Sync is not detected

VLStreamStarted Stream started delivery

VLStreamStopped Stream stopped delivery

VLSequenceLost A field/frame was dropped

VLControlChanged A control on the path has changed

VLTransferComplete A field/frame transfer has completed

VLTransferFailed A transfer has failed and DMA is aborted

VLEvenVerticalRetrace Vertical retrace event for an even field

VLOddVerticalRetrace Vertical retrace event for an odd field

VLDeviceEvent A device-specific event

VLTransferError A transfer error was discovered; field may be invalid
40 007-3524-004

Setting Inline Controls
Setting Inline Controls

Because of the asynchronous nature of the implementation, controls executed with
vlSetControl() have no guarantees as to when they are executed once transfers are in
progress. However, in certain situations, it is useful to be able to specify when controls
on a path are executed; for example, to play out video clips with different packings or
color-space formats without having to stop transfers while a memory-to-video operation
is in progress.

Inline controls specify control changes to happen between buffers. For example, if you
want to play out two video clips that have different packing formats in memory, the
application would set up the path, queue the buffers from the first clip, set up inline
controls to match the next clip, and queue the buffers from the second clip. The syntax
for usage is

int vlSetControlInLine(VLServer svr, VLPath path, VLNode node,
 VLNode refnode, VLControlType control, VLControlValue *val)

In this syntax, refnode is the reference node, identifying a unique connection in a path
with more than two nodes.

Inline controls are generally applied on a memory node being used as the source node.
Control changes are queued to the hardware along with the buffers and are executed in
order. To change packing control inline, for example, use

VLNode mem;
mem = vlGetNode(svr, VL_SRC, VL_MEM, VL_ANY);
val.intval = VL_PACKING_444_12;
vlSetControlInLine(svr, path, mem, mem, VL_PACKING, &val);
007-3524-004 41

2: Programming DIVO and DIVO-DVC
Capturing Graphics to Video

To capture graphics to video, you can use OpenGL to read pixels into memory. However,
the coordinate system differs between video and Open GL; under OpenGL, the origin is
at the lower left corner and in video, origin is in the upper left corner. To adjust for this
difference, the image must be inverted in memory before it is sent to the DIVO board for
output.

Besides sending an image out to the DIVO board, you can use the GVO graphics option
to get zero-latency transcoding to CCIR 601-2 digital video.

Reporting

The DMediaInfo structure reports the Unadjusted System Time (UST) and VITC
information.

The DIVO and DIVO-DVC options make use of the error events noted in Chapter 4 of the
DMPG, as well as VLTransferErrorEvent, which reports nonfatal video transfer errors,
including error detection and handling (EDH) errors. The VLTransferComplete and
VLSequenceLost events also report the Media Stream Count (MSC) of the field or frame
transferred or failed.
42 007-3524-004

Chapter 3

3. Audio Data Conversion

The Digital Media Audio Conversion Library provides data format conversion for
applications that do real-time audio capture, playback, and file conversion. This library
lets you move data efficiently between any audio producer and any audio consumer,
regardless of their native formats.

This chapter describes the Digital Media Audio Conversion Library, its converters, and
its use, in these sections:

• “Digital Media Audio Conversion Library” on page 43

• “Using the Audio Conversion API” on page 46

• “Creating a Converter Instance” on page 47

• “Configuring a Converter Instance” on page 47

• “Converting Data Using a Converter Instance” on page 59

• “Destroying a Converter Instance” on page 60

• “DV Audio Compression Library” on page 60

• “Audio Rate Conversion Library” on page 62

Digital Media Audio Conversion Library

The Digital Media Audio Conversion library provides a single API for performing
memory-to-memory sound compression and format conversion. This library serves as a
“wrapper” around the standalone Digital Media Audio Codecs and Digital Media Audio
Rate Conversion Library, allowing conversion of audio data without the need to keep
track of buffer sizes and other such issues.
007-3524-004 43

3: Audio Data Conversion
In addition to the compression and decompression done by the codec, an audio converter
may perform the following transformations:

• audio sampling rate conversion

• conversion between different numerical sample representations, such as unsigned
integer and two’s complement signed integer

• conversion between big-endian and little-endian byte orders

• conversion between different numbers of interleaved channels, such as mono and
stereo

• pulse code modulation (PCM) mapping

• scaling or offsetting samples by arbitrary amounts

Compression, decompression, and audio sampling rate conversion can be accomplished
using either the Digital Media Audio Conversion Library or standalone
conversion-specific routines (see “DV Audio Compression Library” on page 60). All
other conversions listed above can be accomplished only with the Digital Media Audio
Conversion Library.

The commonly used codec accessed through the Audio Conversion API is
DM_AUDIO_DV, which is DV and DVCPRO audio compression and decompression.
See “DV Audio Compression Library” on page 60 for more information about the DV
standalone routines. DM_AUDIO_DV is the identification value used with
dmACSetParams() as described in “Configuring a Converter Instance.”
44 007-3524-004

Digital Media Audio Conversion Library
Table 3-1 lists the functions of the Digital Media Audio Conversion Library API. These
functions are described more fully in the sections mentioned in the Description column.
More details about the specific functions, such as the errors they return, can be found by
looking at the man pages also mentioned in the Description column.

Table 3-1 Digital Media Audio Conversion API

Function Parameters Description

DMstatus dmACConvert (DMaudioconverter converter,
void *inbuffer,
void *outbuffer,
int *in_amount,
int *out_amount)

Convert the audio data format, sampling rate, and
compression. See “Converting Data Using a
Converter Instance” on page 59 and the
dmACConvert(3dm) man page for more details.

DMstatus dmACCreate (DMaudioconverter *converter) Create a DMaudioconverter handle to use for
audio format conversion. See “Creating a
Converter Instance” on page 47 and the
dmACCreate(3dm) man page for more details.

DMstatus dmACDestroy (DMaudioconverter converter) Destroy a DMaudioconverter handle used for
audio format conversion. See “Destroying a
Converter Instance” on page 60 and the
dmACDestroy(3dm) man page for more details.

DMstatus dmACReset (DMaudioconverter converter) Reset a DMaudioconverter handle to its default
state. See “Configuring a Converter Instance” on
page 47 and the dmACReset(3dm) man page for
more details.

DMstatus dmACSetParams (DMaudioconverter converter,
DMparams *sourceparams,
DMparams *destparams,
DMparams *conversionparams)

Set the DMaudioconverter parameter values. See
“Configuring a Converter Instance” on page 47
and the dmACSetParams(3dm) man page for more
details.

DMstatus dmACGetParams (DMaudioconverter converter,
DMparams *sourceparams,
DMparams *destparams,
DMparams *conversionparams)

Get the DMaudioconverter parameter values. See
“Configuring a Converter Instance” on page 47
and the dmACGetParams(3dm) man page for
more details.
007-3524-004 45

3: Audio Data Conversion
Using the Audio Conversion API

When an application uses the Digital Media Audio Conversion API to perform
conversions, it creates a converter instance (also referred to simply as a converter). A
converter instance includes an input buffer, an output buffer, and state information in the
form of parameters that describe the input data, output data, and conversion process.

A converter instance can be viewed as a pipeline. At the input end of the pipeline is data
in the unconverted format. At the output end is data in the requested format. The
pipeline processing is done by the codec and/or converter. When multiple
transformations are required, the converter makes sure that they are done in an order
that best maintains the quality of the data.

The next four sections describe the steps an application follows when performing an
audio conversion:

• “Creating a Converter Instance” on page 47

• “Configuring a Converter Instance” on page 47

• “Converting Data Using a Converter Instance” on page 59

• “Destroying a Converter Instance” on page 60

To use the digital media conversion libraries to create a converter instance, you must link
your application with libdmedia.so. To use the Audio Conversion API, include these
header files:

#include <dmedia/dm_audioconvert.h>
#include <dmedia/dm_audioutil.h>
46 007-3524-004

Creating a Converter Instance
Creating a Converter Instance

To create an audio converter instance, use dmACCreate():

DMstatus dmACCreate (DMaudioconverter* converter)

This function creates and initializes converter, a handle to a DMaudioconverter instance.
All of the Audio Conversion Library functions use this handle, which is declared as
follows:

typedef struct _DMaudioconverter *DMaudioconverter;

Note: All of the Audio Conversion Library functions return a DMstatus value of
DM_SUCCESS if they succeed, DM_FAILURE if not. After a receiving a DM_FAILURE,
your application can call the function dmGetErrorForPID() or dmGetError() to retrieve
an error message and error number. See the DMPG for more information on error
handling.

Configuring a Converter Instance

Once a converter instance has been created, it must be configured. An application does
this by using DMparams data structures to specify a set of source parameters, a set of
destination parameters, and, optionally, a set of conversion parameters. See the DMPG
for more information on DMparams.

The Audio Conversion Library lets you:

• Configure an audio converter by setting the source, destination, and conversion
parameters with dmACSetParams():

DMstatus dmACSetParams (DMaudioconverter converter,
DMparams *sourceparams,
DMparams *destparams,
DMparams *conversionparams)

– converter is a DMaudioconverter handle created by a previous call to
dmACCreate().

– sourceparams and destparams point to DMparams structures that describe the
formats of the audio data prior to and after conversion.

– conversionparams points to a DMparams structure that contains parameters
specific to the conversion process.
007-3524-004 47

3: Audio Data Conversion
destparams and conversionparams are optional and may be set to NULL. The output
format defaults to the input values, with the exception of compression (defaults to
uncompressed) and byte order (defaults to big-endian).

• Retrieve the source, destination, and conversion parameter settings of a configured
audio converter with dmACGetParams():

DMstatus dmACGetParams (DMaudioconverter converter,
DMparams *sourceparams,
DMparams *destparams,
DMparams *conversionparams)

– converter is a DMaudioconverter handle created by a previous call to
dmACCreate().

– sourceparams and destparams point to DMparams structures that describe the
formats of the audio data prior to and after conversion.

– conversionparams points to a DMparams structure that contains parameters
specific to the conversion process.

Any parameter list pointer may be set to NULL if the application does not need to
retrieve that parameter set.

• Reset an audio converter’s internal state with dmACReset():

DMstatus dmACReset (DMaudioconverter converter)

converter is a DMaudioconverter handle created by a previous call to
dmACCreate().

dmACReset() clears out any internal buffers and/or state associated with
compression, decompression, and/or rate conversion, and resets all counters,
essentially returning the converter to the state it was in immediately following a call
to dmACSetParams(). This might be desirable in a case where an existing stream of
data is interrupted and replaced with a new stream, and you want to be certain that
all of the previously processed data was cleared.

The rest of this section consists of the following:

• “Source and Destination Parameters” on page 49

• “PCM Mapping Parameters” on page 50

• “Compression Parameters” on page 52

• “Conversion Parameters” on page 55
48 007-3524-004

Configuring a Converter Instance
Source and Destination Parameters

The source parameters describe the data to be converted and are contained in the
DMparams structure indicated by sourceparams. The destination parameters describe the
output audio data and are contained in the DMparams structure indicated by destparams.
Any excess or unrecognized parameters in sourceparams or destparams are ignored.

Table 3-2 lists the source and destination parameters, their data types, legal values, and
any pertinent information about their use. There are no default values for source
parameters—they must be specified.

Table 3-2 Source and Destination Parameters

Parameter
(Data Type) Legal Values Other Info

DM_AUDIO_BYTE_ORDER
(DM_TYPE_ENUM)

DM_AUDIO_BIG_ENDIAN

DM_AUDIO_LITTLE_ENDIAN

As source parameter:
No default value. Must be specified.

As destination parameter:
Defaults to DM_AUDIO_BIG_ENDIAN

DM_AUDIO_CHANNELS
(DM_TYPE_INT)

The number of audio channels. An integer
value greater than 0.

As source parameter:
No default value. Must be specified.

As destination parameter:
Defaults to source value.

DM_AUDIO_COMPRESSION
(DM_TYPE_STRING)

DM_AUDIO_UNCOMPRESSED or
DM_AUDIO_DV.

As source parameter:
No default value. Must be specified.

As destination parameter:
Defaults to DM_AUDIO_UNCOMPRESSED.

DM_AUDIO_FORMAT
(DM_TYPE_ENUM)

DM_AUDIO_TWOS_COMPLEMENT

DM_AUDIO_UNSIGNED

DM_AUDIO_FLOAT

DM_AUDIO_DOUBLE

As source parameter:
No default value. Must be specified.

As destination parameter:
Defaults to source value.
007-3524-004 49

3: Audio Data Conversion
PCM Mapping Parameters

Table 3-3 lists the four parameters for PCM mapping whose values, although they can be
set for source data, are normally specified only for destination data. These parameters are
useful when you need to convert integer data to floating point or vice versa. The
parameters specify the numeric mapping of one format to another, using one PCM value
that corresponds to zero voltage and a differential value that corresponds to full voltage.
See the afIntro(3dm) man page for a more detailed discussion of the PCM mapping
model.

The function dmACSetParams() automatically calculates default input and output PCM
parameters from the input and output data format specifications. (For instance, the
default values for 16 bit, two’s complement data are 0.0 for intercept, 32767.0 for maxclip,
-32768.0 for minclip, and 32767.0 for slope.)

DM_AUDIO_RATE
(DM_TYPE_FLOAT)

The audio sampling rate in Hz. A float
value greater than 0.0.

As source parameter:
No default value. Must be specified.

As destination parameter:
Defaults to source value.

DM_AUDIO_WIDTH
(DM_TYPE_INT)

The width of the data in bits. An integer
value between 1 and 32, inclusive.

As source parameter:
No default value. Must be specified.

As destination parameter:
Defaults to source value.

Table 3-2 (continued) Source and Destination Parameters

Parameter
(Data Type) Legal Values Other Info
50 007-3524-004

Configuring a Converter Instance
Your application needs to set these parameters only if it has special mapping
requirements, such as input data with a fixed offset like a DC bias. If your application sets
any of these parameters, it must set all of them.

Table 3-3 Parameters for PCM Mapping

Parameter
(Date Type) Description Other Info

DM_AUDIO_PCM_MAP_INTERCEPT
(DM_TYPE_FLOAT)

The zero voltage PCM value. As source parameter:
Rarely used.

As destination parameter:
Default is calculated from the output data
format specifications.

DM_AUDIO_PCM_MAP_MAXCLIP
(DM_TYPE_FLOAT)

Clip all PCM values to this
maximum value.

As source parameter:
Rarely used.

As destination parameter:
Default is calculated from the output data
format specifications.

DM_AUDIO_PCM_MAP_MINCLIP
(DM_TYPE_FLOAT)

Clip all PCM values to this
minimum value.

As source parameter:
Rarely used.

As destination parameter:
Default is calculated from the output data
format specifications.

DM_AUDIO_PCM_MAP_SLOPE
(DM_TYPE_FLOAT)

The full voltage PCM value. As source parameter:
Rarely used.

As destination parameter:
Default is calculated from the output data
format specifications.
007-3524-004 51

3: Audio Data Conversion
Compression Parameters

Compression parameters that modify DM_AUDIO_DV and their values are outlined in
the following sections:

• “Compression Parameters Common to All Codecs” on page 52

• “DV Audio Parameters” on page 53

When working with codecs, keep these points in mind:

• All format parameters interact with the codec parameters. For instance, some
codecs work only at certain rates or channel counts. Refer to the relevant man pages
for each codec for more information about using specific parameters.

• No cross-compression is supported; that is, input and output cannot both be
compressed. Applications must create two converter instances and handle the
intermediate uncompressed buffer themselves.

• The particular codec being used cannot be changed during the lifetime of the
converter instance. If this needs to be done, destroy and recreate the converter.

• All other parameters may be changed without recreating the converter. The Digital
Media Audio Conversion Library is designed to allow real-time tracking of changes
in audio input and output format, such as sampling rate and number of interleaved
channels.

Compression Parameters Common to All Codecs

The parameters listed in Table 3-4 apply to all codecs and can be queried using the
dmACGetParams().

Ordinarily, when your application is using the Digital Media Audio Conversion library
to control the standalone codec routines, these parameters are solely informational—
your application uses the buffer length parameters instead (see “Buffer Length
Parameters” on page 56). For DV and MPEG1 codecs operating in decode mode,
however, these parameters must be set (see “DV Audio Parameters” on page 53).
Table 3-4 gives query parameters for all codecs.
52 007-3524-004

Configuring a Converter Instance
DV Audio Parameters

The DV Audio codec implements DV and DVCPRO audio compression and
decompression.

Table 3-5 lists the codec-specific parameters used with the DV Audio codec. See the
dmDVAudioEncode(3dm) man page and dmedia/dm_audioutil.h for more
information on using these and other source and destination parameters with this codec.

Table 3-4 Query Parameters for All Codecs

Parameter
(Data Type) Description

DM_AUDIO_CODEC_FILTER_DELAY

(DM_TYPE_INT)

Indicates delay, in sample frames, introduced by
compression and decompression processing. This is
usually different for compression and decompression.

DM_AUDIO_CODEC_FRAMES_PER_BLOCK

(DM_TYPE_INT)

Specifies how many sample frames are contained in each
compressed data block.

DM_AUDIO_CODEC_MAX_BYTES_PER_BLOCK

(DM_TYPE_INT)

Indicates the maximum number of bytes that will make
up a compressed data block.

Table 3-5 DV Audio Parameters

Parameter (Data Type) Legal Values, Default Values

Encoding,
Decoding, or
Query

DM_AUDIO_MEDIUM

(DM_TYPE_ENUM)

DM_AUDIO Encoding and
decoding

DM_DVAUDIO_FORMAT

(DM_TYPE_INT)

DM_DVAUDIO_NTSC

DM_DVAUDIO_PAL

Encoding only

DM_DVAUDIO_LOCK_MODE

(DM__TYPE_INT)

Non-zero if audio is locked according to the DV audio
specification, zero if it is not locked (default = locked)

Encoding only

DM_DVAUDIO_TYPE

(DM_TYPE_INT)

DM_DVAUDIO_DV

DM_DVAUDIO_DVCPRO

(default = DM_DVAUDIO_DV)

Encoding only
007-3524-004 53

3: Audio Data Conversion
Note: If you use the Digital Media Audio Conversion Library to control standalone DV
Audio decoder functions, your application must call dmDVAudioHeaderGetParams()
to get the parameter values to pass to dmDVAudioDecoderSetParams(). See the
dm_dv(3dm) and dmDVAudioHeaderGetParams(3dm) man pages for more details (and
sample code) on this process.

DM_DVAUDIO_CHANNEL_MODE

(DM_TYPE_INT)

DM_DVAUDIO_SD_2CH

DM_DVAUDIO_SD_4CH
(Not currently supported for encoding)

Query only

DM_DVAUDIO_CHANNEL_POLICY

(DM_TYPE_INT)

See dmedia/dm_audioutil.h for more
information about this parameter.

With DM_DVAUDIO_SD_2CH mode:
DM_DVAUDIO_SD_2CH_STEREO
DM_DVAUDIO_SD_2CH_2CH_MONO *
DM_DVAUDIO_SD_2CH_MONO
With DM_DVAUDIO_SD_4CH mode:
DM_DVAUDIO_SD_4CH_STEREO_STEREO *
DM_DVAUDIO_SD_4CH_STEREO_2CH_MONO *
DM_DVAUDIO_SD_4CH_STEREO_1CH_MONO *
DM_DVAUDIO_SD_4CH_STEREO **
DM_DVAUDIO_SD_4CH_2CH_MONO_STEREO *
DM_DVAUDIO_SD_4CH_4CH_MONO *
DM_DVAUDIO_SD_4CH_3CH_MONO_1 *
DM_DVAUDIO_SD_4CH_2CH_MONO_1 *
DM_DVAUDIO_SD_4CH_1CH_MONO_STEREO *
DM_DVAUDIO_SD_4CH_3CH_MONO_2 *
DM_DVAUDIO_SD_4CH_2CH_MONO_2 *
DM_DVAUDIO_SD_4CH_1CH_MONO *
DM_DVAUDIO_SD_4CH_3_1_STEREO *
DM_DVAUDIO_SD_4CH_3_0_STEREO_1CH_MONO *
DM_DVAUDIO_SD_4CH_3_0_STEREO *
DM_DVAUDIO_SD_4CH_2_2_STEREO *
* Not currently supported for encoding.

Query only

Table 3-5 (continued) DV Audio Parameters

Parameter (Data Type) Legal Values, Default Values

Encoding,
Decoding, or
Query
54 007-3524-004

Configuring a Converter Instance
Conversion Parameters

The conversion parameters, which modify the codec settings and other aspects of the
conversion process, are contained in the DMparams structure indicated by
conversionparams.

The five categories of conversion parameters are discussed in these subsections:

• “Processing Mode Parameter” on page 55

• “Buffer Length Parameters” on page 56

• “Dithering Parameter” on page 57

• “Rate Conversion Parameters” on page 57

• “Channel Conversion Parameter” on page 58

Processing Mode Parameter

The DM_AUDIO_PROCESS_MODE (DM_TYPE_INT) parameter determines the
converter's processing mode. It can also be used to set the processing mode when both
the input and output data are uncompressed. Its legal values are
DM_AUDIO_PROCESS_PULL and DM_AUDIO_PROCESS_PUSH:

• In pull mode, the application requests a fixed number of frames from the converter,
and the converter determines how much input data to consume in order to satisfy
this request. Decompression requires pull mode, and the application must use the
dmACConvert() argument out_amount (see “Converting Data Using a Converter
Instance” on page 59) to specify how many frames of uncompressed data the
converter instance should put in the output buffer of dmACConvert().

• In push mode, the application gives the converter a fixed number of frames, and the
converter produces a (possibly variable) amount of output, depending on the
conversion being done. Compression requires push mode, and the application must
use the dmACConvert() argument in_amount (see “Converting Data Using a
Converter Instance” on page 59) to specify how many frames of data need to be
compressed.
007-3524-004 55

3: Audio Data Conversion
Buffer Length Parameters

The three buffer length parameters are used to determine appropriate sizes for the input
or output buffers. Your application must specify them only during compression,
decompression, or rate conversion because the input and output buffer lengths are equal
at all other times.

When performing compression, decompression, or rate conversion, your application
must follow these steps:

1. Set DM_AUDIO_MAX_REQUEST_LEN equal to the maximum amount of data the
application will push to or pull from the converter, using dmParamsSetInt(). (For
information on DMparams, see the Digital Media Programming Guide.)

2. Call dmACSetParams() with the DMParams list from the call to dmParamsSetInt().

3. Call dmACGetParams() to obtain the correct values for
DM_AUDIO_MIN_INPUT_LEN and DM_AUDIO_MIN_OUTPUT_LEN.

If the converter is operating in pull mode, DM_AUDIO_MIN_INPUT_LEN specifies the
minimum number of frames or bytes the converter requires in the input buffer. If the
converter is operating in push mode, DM_AUDIO_MIN_OUTPUT_LEN specifies the
minimum number of frames or bytes the converter requires in the output buffer. Your
application can use buffers equal to or longer than the specified values. See “Processing
Mode Parameter” on page 55 for more information on push and pull modes.

Table 3-6 lists the buffer length parameters and their data types and legal values.

Table 3-6 Buffer Length Parameters

Parameter
(Data Type) Legal Values

DM_AUDIO_MAX_REQUEST_LEN
(DM_TYPE_INT)

Integer value greater than 0

DM_AUDIO_MIN_INPUT_LEN
(DM_TYPE_INT)

Integer value

DM_AUDIO_MIN_OUTPUT_LEN
(DM_TYPE_INT)

Integer value
56 007-3524-004

Configuring a Converter Instance
Dithering Parameter

The DM_AUDIO_DITHER_ALGORITHM parameter (DM_TYPE_INT) is used only
when data is converted from a larger to a smaller data type, such as when converting
from floating point to 16-bit integer samples. The dithering algorithm is applied to
reduce the quantization error distortion inherent in reducing resolution.

The possible values for this parameter are DM_AUDIO_DITHER_NONE (default) and
DM_AUDIO_DITHER_LSB_TPDF. The latter specifies the Least Significant Bit—
Triangular Probability Density Function described by John Watkinson in The Art of
Digital Audio (Focal Press, 1994).

Rate Conversion Parameters

Rate conversion parameters affect the rate conversion algorithm and are used only when
the input and output sampling rates are not equal (see the
dmAudioRateConverterSetParams(3dm) man page for more information). Table 3-7 lists
the rate conversion parameters and their data types and legal values.

Table 3-7 Rate Conversion Parameter

Parameter (Data Type) Legal Values

DM_AUDIO_RC_ALGORITHM

(DM_TYPE_STRING)

DM_AUDIO_RC_JITTER_FREE (default)
(jitter-free interpolation/decimation)

DM_AUDIO_RC_POLYNOMIAL_ORDER_1
(first order polynomial, linear interpolation)

DM_AUDIO_RC_POLYNOMIAL_ORDER_3
(third order polynomial)

DM_AUDIO_RC_JITTER_FREE_STOPBAND_ATTENUATION

(DM_TYPE_FLOAT)

Applies only to JITTER_FREE.

DM_AUDIO_RC_JITTER_FREE_STOPBAND_
ATTENUATION_78_DB

DM_AUDIO_RC_JITTER_FREE_STOPBAND_
ATTENUATION_96_DB

DM_AUDIO_RC_JITTER_FREE_STOPBAND_
ATTENUATION_120_DB

(default = DM_AUDIO_RC_JITTER_FREE_
STOPBAND_ATTENUATION_78_DB)
007-3524-004 57

3: Audio Data Conversion
Channel Conversion Parameter

DM_AUDIO_CHANNEL_MATRIX (DM_TYPE_FLOAT_ARRAY), the channel
conversion or channel matrix parameter, determines the manner in which the input
channels are mapped into the output channels. The matrix is a one-dimensional array
representing a two-dimensional array in row-major order, where each row represents an
output channel and each column represents an input channel. Its legal values are a
DMfloatarray of double-precision floating point numbers. For a detailed explanation, see
the afSetChannelMatrix(3dm) man page.

Figure 3-1 illustrates a channel conversion from four input channels to two output
channels. Inputs 1 and 2 are split between the outputs.

Figure 3-1 Channel Conversion

DM_AUDIO_RC_JITTER_FREE_TRANSITION_BANDWIDTH

(DM_TYPE_FLOAT)

Applies only to JITTER_FREE.

DM_AUDIO_RC_JITTER_FREE_TRANSITION_
BANDWIDTH_1_PERCENT

DM_AUDIO_RC_JITTER_FREE_TRANSITION_
BANDWIDTH_10_PERCENT

DM_AUDIO_RC_JITTER_FREE_TRANSITION_
BANDWIDTH_20_PERCENT

DM_AUDIO_RC_FLUSH_VALUE

(DM_TYPE_FLOAT)

The value used to flush the rate converter during
dmAC flush mode (to avoid an audible click).

Table 3-7 (continued) Rate Conversion Parameter

Parameter (Data Type) Legal Values

L 1.0
R 0.0

Input

Output

L .75
R .25

L .25
R .75

L 0.0
R 1.0

0 1

1(R)

0(L)

2 3
58 007-3524-004

Converting Data Using a Converter Instance
Converting Data Using a Converter Instance

Use dmACConvert() to convert the audio data’s format, sampling rate, and
compression. This function performs the data format, sampling rate, and compression or
decompression specified by the previous call to dmACSetParams():

DMstatus dmACConvert (DMaudioconverter converter,
void *inbuffer,
void *outbuffer,
int *in_amount,
int *out_amount)

• converter is a handle to an audio converter previously created with dmACCreate()
and configured with dmACSetParams().

• inbuffer and outbuffer point to the buffers that contain the audio data prior to and
after conversion. As described in “Configuring a Converter Instance” on page 47
your application may need to determine the number of frames or bytes these
buffers hold using the DM_AUDIO_MIN_INPUT_LEN or
DM_AUDIO_MIN_OUTPUT_LEN parameters.

• in_amount points to an integer containing the number of frames (bytes if the input is
compressed) of input data available to the converter instance. This can be any value
greater than 0. In pull mode, dmACConvert() resets this value to the number of
frames (bytes) read from inbuffer by the converter. (To review the push and pull
modes, see the discussion in “Processing Mode Parameter” on page 55.)

• out_amount is a pointer to an integer containing the number of frames (bytes if the
output is compressed) of converted data your application is requesting from the
converter. In push mode, the initial value is ignored. After processing the data,
dmACConvert() resets out_amount to the number of frames (bytes) actually placed
into outbuffer. If the conversion involves rate conversion, compression, or
decompression, this value can vary significantly from the in_amount value.
out_amount can be zero even when in_amount was positive. This is because the
converter must often do internal buffering to allow the application to request
arbitrary amounts of data.

Note: Flushing the converter is advisable in certain situations. Many conversion
operations, such as rate conversion, cause the converter to store portions of the audio
signal in internal buffers. When your application has no more data to pass to the
converter, it should flush these buffers into the output buffer to avoid losing the end of
the audio stream. To flush these buffers, call dmACConvert() with inbuffer set to NULL
until *out_amount equals 0. This action usually takes only one call.
007-3524-004 59

3: Audio Data Conversion
Destroying a Converter Instance

The Audio Conversion library provides the function dmACDestroy() to destroy an
audio converter instance:

DMstatus dmACDestroy (DMaudioconverter converter)

The function frees the memory associated with the DMaudioconverter handle. The
handle is not valid after this call returns.

DV Audio Compression Library

The DV Audio codec implements DV and DVCPRO audio compression and
decompression. Table 3-8 summarizes the calls. For an example, see recdvaudio.c and
playdvaudio.c in /usr/share/src/dmedia/dvaudiotest.

Table 3-8 DV Audio Library API

Function Parameters Description

DMstatus dmDVAudioDecode (DMDVaudiodecoder decoder,
void *inbuf,
void *outbuf,
int *nsamples)

Do DV and DVCPRO audio decompression. See
also dmDVAudioDecode(3dm).

DMstatus dmDVAudioDecoderCreate (DMDVaudiodecoder *decoder) Allocate new DMDVaudiodecoder structure.
See also dmDVAudioDecoderCreate(3dm).

DMstatus dmDVAudioDecoderDestroy (DMDVaudiodecoder decoder) Deallocate a DMDVaudiodecoder structure. See
also dmDVAudioDecoderDestroy(3dm).

DMstatus dmDVAudioDecoderGetParams (DMDVaudiodecoder decoder,
DMparams *params)

Get DV audio decoder parameter values. See
also dmDVAudioDecoderGetParams(3dm).

DMstatus dmDVAudioDecoderReset (DMDVaudiodecoder decoder) Fill decoder internal buffers with zeros. See also
dmDVAudioDecoderReset(3dm).

DMstatus dmDVAudioDecoderSetParams (DMDVaudiodecoder decoder,
DMparams *params)

Set DV Audio decoder parameter values. See
also dmDVAudioDecoderSetParams(3dm).
60 007-3524-004

DV Audio Compression Library
DMstatus dmDVAudioEncode (DMDVaudioencoder encoder,
void *inbuf,
void *outbuf,
int *nsamples)

Do DV and DVCPRO audio compression. See
also dmDVAudioEncode(3dm).

DMstatus dmDVAudioEncoderCreate (DMDVaudioencoder *encoder) Allocate new DMDVaudioencoder structure.
See also dmDVAudioEncoderCreate(3dm).

DMstatus dmDVAudioEncoderDestroy (DMDVaudioencoder encoder) Deallocate DMDVaudioencoder structure. See
also dmDVAudioEncoderDestroy(3dm).

DMstatus
dmDVAudioEncoderGetFrameSize

(DMDVaudioencoder handle,
int *numSampFrame)

Get number of audio samples required for DIF
frame.

DMstatus dmDVAudioEncoderGetParams (DMDVaudioencoder encoder,
DMparams *params)

Get DV audio encoder parameter values. See
also dmDVAudioEncoderGetParams(3dm).

DMstatus dmDVAudioEncoderReset (DMDVaudioencoder encoder) Fill encoder internal buffers with zeros. See also
dmDVAudioEncoderReset(3dm).

DMstatus dmDVAudioEncoderSetParams (DMDVaudioencoder encoder,
DMparams *params)

Set DV audio encoder parameter values. See
also dmDVAudioEncoderSetParams(3dm).

DMstatus dmDVAudioHeaderGetParams (void *dif,
DMparams *params,
int *numSampFrames)

Get DV audio decoder parameter values based
on the information in a DIF block handed to the
routine. See also
dmDVAudioHeaderGetParams(3dm).

Table 3-8 (continued) DV Audio Library API

Function Parameters Description
007-3524-004 61

3: Audio Data Conversion
Audio Rate Conversion Library

The Audio Rate Conversion library enables the sampling rate conversion of
single-channel, 32-bit, floating point audio data. Table 3-9 summarizes the functions in
this library.

Table 3-9 Audio Rate Conversion Library API

Function Parameters Description

DMstatus dmAudioRateConvert (DMaudiorateconverter
handle, float *inbuf, float
*outbuf, int inlen, int *numout)

Convert the data sampling rate.
See also dmAudioRateConvert(3dm).

DMstatus
dmAudioRateConverterCreate

(DMaudiorateconverter
*converter)

Allocate a new DMaudiorateconverter structure.
See also dmAudioRateConverterCreate(3dm).

DMstatus
dmAudioRateConverterDestroy

(DMaudiorateconverter
handle)

Deallocate an DMaudiorateconverter structure.
See also dmAudioRateConverterDestroy(3dm).

DMstatus
dmAudioRateConverterGetParams

(DMaudiorateconverter
handle, DMparams *params)

Get the parameter values of a DMaudiorateconverter
structure. See also
dmAudioRateConverterGetParams(3dm).

DMstatus
dmAudioRateConverterSetParams

(DMaudiorateconverter
handle, DMparams *params)

Set the parameter values of a DMaudiorateconverter
structure. See also dmAudioRateConverterSet
Params(3dm).

DMstatus
dmAudioRateConverterReset

(DMaudiorateconverter
handle, float resetval)

Fill the internal buffers of a DMaudiorateconverter
structure with a constant value. See also
dmAudioRateConverterReset(3dm).
62 007-3524-004

Appendix A

A. DIVO/DIVO-DVC I/O Panel Connectors

This appendix summarizes hardware specifications for the DIVO and DIVO-DVC option
boards, in these sections

• “DIVO/DIVO-DVC Connectors” on page 63

• “Genlock” on page 65

• “GPI Interface” on page 65

DIVO/DIVO-DVC Connectors

Table A-1 summarizes return loss for the IN LINK A, IN LINK B, and GEN IN connectors.

Table A-2 summarizes output characteristics for the OUT LINK A and OUT LINK B
connectors.

Table A-1 Return Loss for DIVO/DIVO-DVC Video and Genlock Channels

Channel Value

IN LINK A, IN LINK B > 15 dB @ 270 MHz

GEN IN > 40 dB @ 6 MH

Table A-2 Characteristics for DIVO/DIVO-DVC Digital Video Out Channels

Characteristic Value

Amplitude 800 mV +/-10%

Rise/fall time .75 nsec to 1.5 nsec

Overshoot <10% p-p

Alignment jitter <740 ps p-p
007-3524-004 63

A: DIVO/DIVO-DVC I/O Panel Connectors
Table A-3 summarizes the use of LINK A and LINK B connectors for 4:2:2:4 mode. If
LINK B is not used in 4:2:2:4 format, the resulting format is 4:2:2. The LINK A connector
carries 10-bit wide UVY information; the LINK B connector carries 10-bit alpha. Usage is
similar for 10-bit RGBA.

Table A-4 summarizes the use of LINK A and LINK B connectors for 4:4:4:4 mode. The LINK
A connector carries a 4:2:2 sampled portion of 10-bit wide UVY; the LINK B connector
carries the remaining 10-bit UV samples and 10-bit alpha. Usage is similar for 10-bit
RGBA.

Table A-3 Usage for LINK A and LINK B in 4:2:2:4 Mode

Sample LINK A LINK B

0 Cb0 x

1 Y0 A0

2 Cr0 x

3 Y1 A1

Table A-4 Usage for LINK A and LINK B in 4:4:4:4 Mode

Sample LINK A LINK B

0 Cb0 Cb1

1 Y0 A0

2 Cr0 Cr1

3 Y1 A1
64 007-3524-004

Genlock
Genlock

The GEN OUT and GEN IN connectors make up a passive genlock loopthrough
connection. If you attach a cable to one GEN connector, you must attach to the other GEN
connector either a 75-ohm BNC terminator or a cable to other equipment accepting
analog sync. If another cable is connected, it must ultimately be terminated.

GPI Interface

For each video pipe, the General Purpose Interface (GPI) provides two channels of input
and output trigger signal pairs. This section consists of the following:

• “GPI Connectors” on page 65

• “GPI Transmitter” on page 67

• “GPI Receiver” on page 69

GPI Connectors

The panel on the DIVO and DIVO-DVC option boards has two GPI connectors, each
associated with one of the serial digital video ports (two transmit and two receive
channels each). Figure A-1 points out the GPI connectors on the DIVO/DIVO-DVC
panel.

Figure A-1 GPI Connectors

525 A-LCK

525

625625 D-LCK
OUT GPI GEN IN GEN OUTOUT LINK BOUT LINK AIN LINK BIN LINK A IN GPI

SYNC525 525

625 625

GPI for IN
video connectors

GPI for OUT
video connectors
007-3524-004 65

A: DIVO/DIVO-DVC I/O Panel Connectors
Figure A-2 shows pinouts for the GPI; the information is applicable for both the IN GPI
and OUT GPI connectors. In this figure, CCT denotes contact closure transmit, and CCR
denotes contact closure receive.

Figure A-2 GPI Pinouts

Each +/- signal pair of the same name applies to one channel of either a receive or
transmit optical device. Table A-5 gives the meaning of the pins in Figure A-2.

Table A-5 GPI Pinouts

Pin Symbol Name Channel

8 CCT0+ Contact Closure Transmit + 0

4 CCT0- Contact Closure Transmit - 0

5 CCT1+ Contact Closure Transmit + 1

2 CCT1- Contact Closure Transmit - 1

6 CCR0+ Contact Closure Receive + 0

7 CCR0- Contact Closure Receive - 0

3 CCR1+ Contact Closure Receive + 1

1 CCR1- Contact Closure Receive - 1

CCR0-

CCR0+

CCR1+

CCR1-CCT1-

CCT1+

CCT0-

CCT0+
66 007-3524-004

GPI Interface
GPI Transmitter

GPI contact closure transmit (CCT) outputs use an optically coupled solid-state relay
(SSR) to provide a means of electrical isolation for destination equipment. The GPI
transmitter is triggered by setting VL_GPI_STATE (see “Using VL_GPI_STATE” on
page 37 in Chapter 2), which forward-biases the internal LED, which in turn drives the
output MOSFET, closing the contacts of the SSR.

When the GPI trigger is off, a high resistance exists between the CCT+/- terminals. When
the GPI is on (triggered by setting VL_TRANSFER_TRIGGER to VL_TRIGGER_GPI (see
“Using VL_TRANSFER_TRIGGER” on page 38 in Chapter 2), a low resistance exists
between the terminals.

Figure A-3 and Table A-6 show electrical specifications for the GPI transmitter.

Figure A-3 GPI Transmitter Electrical Specifications

+V

CCT+

CCT-

S and S1 (bi-directional outputs)

Typical OFF resistance: 5000 G ohms
Typical ON resistance: 10 ohms

Computer
trigger

Optical solid state relay (SSR)

S1

S

007-3524-004 67

A: DIVO/DIVO-DVC I/O Panel Connectors
The GPI transmitter can be interfaced to the destination equipment by tying the CCT-
terminal to GND and using the CCT+ terminal as a current sink. The input device can
consist of a logic device with active pullup, an optoisolator LED with series-limiting
resistor, or relay primary with series-limiting resistor.

The GPI transmitter’s logic sense can be swapped (inverted) by tying the CCT+ terminal
to the logic power supply (VCC) of the destination equipment and using the CCT-
terminal to drive the input of the receiving device.

Table A-6 GPI Transmitter Electrical Specifications

Parameter Value

On resistance 10 ohms typical, 15 ohms maximum

Off resistance 5000 G ohms

Current limit 360 mA typical, 460 mA maximum

Output capacitance 60 pF

Continuous DC load current 180 mA

Output power dissipation 600 mW

Isolation voltage 3750 V rms
68 007-3524-004

GPI Interface
GPI Receiver

GPI contact closure receive (CCR) inputs use an optical isolator device to provide a
means of electrical isolation from source equipment. The device consists of a
bidirectional input LED optically coupled to a bipolar transistor. A voltage pulse applied
across the CCR+/- pins causes the LED to become forward-biased and to produce a GPI
trigger to the computer.

Figure A-4 shows electrical specifications for the GPI receiver.

Figure A-4 GPI Receiver (Switch Closure) electrical Specifications

Table A-7 summarizes electrical specifications for the GPI receiver optoisolator.

Table A-7 GPI Receiver Input Optoisolator Electrical Specifications

Parameter Value

Forward voltage (VF) 1.55 V, 1.2 V typical (IF = 10 mA)

Continuous forward current (IF) 30 mA

Peak forward current 1000 mA (10 us duration, 1% DC)

Reverse current (IR) 0.1 uA, 100 uA maximum (VR = 6 V)

Isolation surge voltage (V10) 2500 VACRMS (t = 1 min)

32

41

Computer
trigger

Optoisolator

0V +5V

470
CCR -

CCR +
007-3524-004 69

A: DIVO/DIVO-DVC I/O Panel Connectors
The +5 V power supply and ground of the DIVO/DIVO-DVC board are not electrically
isolated from the chassis of the source equipment. The GPI receiver can be interfaced to
the source equipment by tying the CCR+ and CCR- terminals across the output terminals
of an optoisolator, solid-state relay, or any device that acts like a single-pole contact
switch.

The GPI receiver is set to switch closure mode, which creates a digital pulse. A GPI
trigger is generated as long as the source switch is closed.

Note: Polarity of the CCR+/- signals must be observed for the source equipment.
70 007-3524-004

Appendix B

B. Setting Up DIVO and DIVO-DVC for Your Video
Hardware

This appendix illustrates how to attach video equipment to connectors on the
DIVO/DIVO-DVC I/O panel and how to use the video control panel vcp to set the
option to match your installation.

This appendix explains

• “Setting Up Digital Source Video” on page 72

• “Setting Up the Output (Drain)” on page 74

• “Setting Up Sync” on page 75

• “Saving Settings” on page 77

Figure B-1 shows connectors on the DIVO/DIVO-DVC I/O panel.

Figure B-1 DIVO/DIVO-DVC Ports

525 A-LCK

525

625625 D-LCK
OUT GPI GEN IN GEN OUTOUT LINK BOUT LINK AIN LINK BIN LINK A IN GPI

SYNC525 525

625 625
007-3524-004 71

B: Setting Up DIVO and DIVO-DVC for Your Video Hardware
Setting Up Digital Source Video

The DIVO/DIVO-DVC panel has two 10-bit digital video input ports (IN LINK A and IN
LINK B) for equipment that complies with the CCIR 601 standard. The ports can be
configured for 4:4:4:4 or 4:2:2:4 dual-link mode; for 4:2:2 single-link mode, ignore the
alpha:

• In 4:4:4:4 mode, Link A carries Y plus the U and V from even-numbered sample
points; Link B carries alpha plus the U and V from odd-numbered sample points.

• In 4:2:2:4 mode, Link A carries Y plus the U and V from all sample points; Link B
carries alpha only.

To set up the option for a digital video source, follow these steps:

1. Connect a video device to IN LINK A and, if you are using a device for alpha key
data, also IN LINK B. If you use only one input, it must be IN LINK A.

2. Call up the panel:

/usr/sbin/vcp
72 007-3524-004

Setting Up Digital Source Video
3. In the Inputs(s): DIVO Digital Video Source section of the control panel vcp for the
channel(s) you are using, select the format that matches your equipment, as shown
in Figure B-2.

Figure B-2 Selecting Digital Input Video Format in vcp

4. In the Digital Video Source portion of the panel for the channel(s) you are using,
select the timing that matches your equipment: CCIR 525 or CCIR 625.
007-3524-004 73

B: Setting Up DIVO and DIVO-DVC for Your Video Hardware
Setting Up the Output (Drain)

To set up the digital video output, follow these steps:

1. Connect the video equipment to OUT LINK A and, if you are using a device for alpha
key data, also OUT LINK B. If you use only one output, it must be OUT LINK A.

2. If necessary, call up the panel (/usr/sbin/vcp).

3. In the Output(s): DIVO Video Drain section of the control panel, select the format
that matches your equipment, as shown in Figure B-3.

Figure B-3 Selecting Video Drain Format

4. Select the timing that matches your equipment: CCIR 525 or CCIR 625.

5. To set field dominance, at the “Input Timing” menu item select “F1 dominant” for
the edit to occur on the nominal video field boundary, or “F2 dominant” for the edit
to occur on the intervening field boundary. See “Setting Field Dominance” in
Chapter 2 for more information on field dominance.
74 007-3524-004

Setting Up Sync
Setting Up Sync

This section explains

• “Setting Up Internal Sync” on page 75

• “Setting Up External Sync” on page 76

Setting Up Internal Sync

In the Output(s): DIVO Digital Video Drain section of the control panel, select the Sync
format that matches your equipment:

• standalone (not synced to another device): select Standalone (internal)

• output sync to an external source connected to the genlock in: select Genlock

These two choices toggle, as shown in Figure B-4.

Figure B-4 Setting Standalone or Genlock Sync
007-3524-004 75

B: Setting Up DIVO and DIVO-DVC for Your Video Hardware
Setting Up External Sync

To set up the /DIVO-DVC option for an external sync source, follow these steps:

1. Connect the sync source equipment to one of the following connectors:

• the GEN IN BNC on the I/O panel, as diagrammed in Figure B-5.

Figure B-5 GEN IN Port on the DIVO/DIVO-DVC I/O Panel

• IN LINK A or IN LINK B (if the device is not already cabled to this connector)

2. If you are using the same signal for other equipment, attach a BNC cable to the GEN
OUT BNC to loop the signal through the board. Make sure the final element in the
chain is terminated.

If DIVO/DIVO-DVC is the last element in the sync chain, make sure a terminator is
attached to the GEN OUT BNC.

3. If necessary, call up the panel (/usr/sbin/vcp).

4. Select the appropriate setting in Output(s): Sync Source:

• select External for a device connected to GEN IN

• select Digital Input Link A or B if you are syncing to the device attached to IN
LINK A or IN LINK B, respectively

525 A-LCK

525

625625 D-LCK
OUT GPI GEN IN GEN OUTOUT LINK BOUT LINK AIN LINK BIN LINK A IN GPI

SYNC525 525

625 625

Sync from
external source
76 007-3524-004

Saving Settings
Saving Settings

Once you have set values in vcp to match your installation, save them; they are written
to /usr/etc/video/videod.defaults. Select “Restore Settings” on the video
control panel File menu to load the values in this file to vcp.

The last settings saved are automatically loaded every time the system is reinitialized. If
the panel is running, current settings are in effect.

Note: You do not need to open the panel to put its settings into effect.

You can also use File menu choices to restore the factory defaults and close the panel.
007-3524-004 77

Appendix C

C. Pixel Packings and Color Spaces

This appendix explains

• “DIVO/DIVO-DVC Pixel Packings” on page 79

• “Sampling Patterns” on page 105

• “Color Spaces” on page 109

DIVO/DIVO-DVC Pixel Packings

This section presents each packing used by the DIVO/DIVO-DVC hardware, giving a
diagram and its tokens in the pertinent libraries. It explains

• “Packings and Color Spaces” on page 80

• “Packing Diagram Conventions” on page 80

• “Packings and Library Tokens” on page 82

• “Packing Naming Conventions” on page 83

• “8-Bit Pixel Packings” on page 85

• “16-Bit Pixel Packings” on page 87

• “20-Bit Pixel Packings” on page 89

• “24-Bit Pixel Packings” on page 90

• “32-Bit Pixel Packings” on page 92

• “36-Bit Pixel Packing” on page 99

• “48-Bit Pixel Packings” on page 100

• “64-Bit Pixel Packings” on page 102
007-3524-004 79

C: Pixel Packings and Color Spaces
Packings and Color Spaces

A packing

• determines which of the four components are sampled, either RGBA or VYUA
(more correctly, CrYCbA)

• determines the sampling pattern (for example, 4:4:4:4 or 4:2:2:4), which specifies
where and how often each component of the image is sampled

• allocates a certain number of bits to represent the component samples, and
positions those samples along with possible padding in memory; each sample is an
unsigned number, unless specified otherwise in the description of the packing

A color space

• determines the color in each component by specifying the color set (see Table C-2)

• specifies a canonical minimum and maximum value for each component, either full
range or compressed range (headroom range); see “Color Spaces” on page 109 for
an explanation

In most SGI libraries, a single token encodes both color space and packing. For example,
VL_PACKING_RGBA_8 is a 32-bit packing in the RGBA color space. For the VL of
DIVO/DIVO-DVC and other advanced products, the two parameters are specified
separately with different controls: VL_PACKING and VL_COLORSPACE. The color
space must be defined with the VL_COLORSPACE control.

Packing Diagram Conventions

In all illustrations, as you move from left to right:

• each byte goes from the most significant bit to the least significant bit

• the bytes increase in memory address by 1

• component samples go from most significant bit to least significant bit

Each illustration shows the smallest repeating spatial pattern of component samples that
is a multiple of 8 bits wide. No additional padding or alignment is to be inferred. For
example, a 24-bit-per-pixel diagram, such as that for VL_PACKING_444_8 (Figure C-1),
indicates 3-byte quantities packed together in memory; the values are not padded out to
32-bit boundaries.
80 007-3524-004

DIVO/DIVO-DVC Pixel Packings
Figure C-1 VL_PACKING_444_8

The packing defines a bit layout, but for convenience, as shown in Figure C-1, the
component slots are filled with the RGBA or VYUA color set as appropriate. (See “Color
Spaces” later in this appendix for more information.) For chroma components, Cr and Cb
are more accurate terms than V and U, because the analog NTSC video specification
ANSI/SMPTE 170M uses V and U with a slightly different meaning. However, this
appendix uses the letters V and U in the illustrations of packings for typographical
convenience.

Packings that use 4:2:2 sampling also show the location of each component sample: left
and right for 4:2:2. The diagrams assume row-major, left-to-right ordering of pixels in
memory.

• An x (“don’t care”) in a bit means the following:

– Readers may get any garbage in this bit.

– Writers can leave this bit as garbage.

• A 0 means the following:

– Readers may assume this bit is zero.

– Writers can leave this bit as garbage.

• An s indicates a padding bit that is a sign extension bit. For the DIVO or DIVO-DVC
option, this convention applies only to the more significant bits in 12-bit and 13-bit
packings with rightward orientation; that is, VL_PACKING_4444_12_in_16_R and
VL_PACKING_4444_13_in_16_R.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

r r r r r r r r g g g g g g g g b b b b b b b b

v v v v v v v v y y y y y y y y u u u u u u u u
007-3524-004 81

C: Pixel Packings and Color Spaces
• A p indicates a padding bit in the least significant bits of a left-justified 10-, 12-, or
13-bit word, such as VL_PACKING_R242_10_in_16_L or
VL_PACKING_4444_13_in_16_L:

– Readers can assume that the bits are replicated from the component found in
the same word: With bits numbered starting with 0 for the least significant,
there are n contiguous p bits to the right of the component. The p bits contain a
copy of bits [9,9-n+1] of the component.

– Writers can leave the p bits as garbage.

The DIVO or DIVO-DVC device can natively transfer data of all the packings shown in
this appendix in real time.

Packings and Library Tokens

Following each packing diagram are comments and library tokens for that packing,
listing, where applicable, the color set (RGBA or VYUA) and the library (VL, OpenGL,
and DM) for each library token.

• DM refers to the tokens in /usr/lib/dmedia/dm_image.h, which are used by
several libraries (libdmedia (dmParams, dmIC, dmColor), libmoviefile,
libmovieplay, and others). See “Color Spaces” in this appendix for more
information.

• For most packings, two indications are given for VL:

– VL, new style, includes the packing control value and a color-space control
value; for example, VL_PACKING_4_8 + VL_COLORSPACE_{CCIR,YUV}. For
DIVO or DIVO-DVC, you set packing and color space separately for memory
nodes. In contrast to Sirius Video, VL_COLORSPACE replaces VL_FORMAT on
DIVO/DIVO-DVC memory nodes. The new definitions provide a more flexible
way to specify memory layout of pixels and their color spaces.

– VL, old style (for example, VL_PACKING_Y_8_P) is included for reference;
these tokens are still recognized in case you are using programs for earlier SGI
video options that include these. The old style is not recommended for new
development.
82 007-3524-004

DIVO/DIVO-DVC Pixel Packings
Packing Naming Conventions

In packing tokens, the following applies:

• _L or _R appended to the end of a token with padding (0 bits) indicates that the 0
bits are at the left end or the right end of the pattern, respectively; for example,
VL_PACKING_4444_10_in_16_L and VL_PACKING_4444_10_in_16_R).

• X before the numerical part of the token at the end of a token indicates a component
order other than the standard (RGBA or ABGR, VYUA or AUYV); for example,
VL_PACKING_X4444_5551, which uses ARGB order.

• R before the numerical part of the token indicates reverse order of the components;
for example, VL_PACKING_242_8 and VL_PACKING_R242_8 have the same
pattern of component bits, but their order is reversed in VL_PACKING_R242_8.

• Z at the end of the token name means that the packing is padded to the word
boundary; for example, the packing in VL_PACKING_2424_10_10_10_2Z is 30 bits
per pixel, but it is padded to 32 bits per pixel.

Table C-1 lists the DIVO/DIVO-DVC packings in the order of the number of bits in the
pattern of component samples—the order in which they are described in the rest of this
section.

Table C-1 DIVO/DIVO-DVC Packings

Packing Bits Color Space

VL_PACKING_4_8 8 VYUA monochrome/luma only

VL_PACKING_R444_332 8 RGBA

VL_PACKING_444_332 8 RGBA

VL_PACKING_242_8 16 VYUA

VL_PACKING_R242_8 16 VYUA

VL_PACKING_X4444_5551 16 RGBA

VL_PACKING_444_5_6_5 16 RGBA

VL_PACKING_242_10 20 VYUA

VL_PACKING_R242_10 20 VYUA

VL_PACKING_444_8 24 RGBA/VYUA
007-3524-004 83

C: Pixel Packings and Color Spaces
VL_PACKING_R444_8 24 RGBA/VYUA

VL_PACKING_4444_6 24 RGBA/VYUA

VL_PACKING_4444_8 32 RGBA/VYUA

VL_PACKING_R4444_8 32 RGBA/VYUA

VL_PACKING_R0444_8 32 RGBA/VYUA

VL_PACKING_0444_8 32 RGBA/VYUA

VL_PACKING_4444_10_10_10_2 32 RGBA/VYUA

VL_PACKING_2424_10_10_10_2Z 32 VYUA

VL_PACKING_R2424_10_10_10_2Z 32 VYUA

VL_PACKING_242_10_in_16_L 32 VYUA

VL_PACKING_242_10_in_16_R 32 VYUA

VL_PACKING_R242_10_in_16_L 32 VYUA

VL_PACKING_R242_10_in_16_R 32 VYUA

VL_PACKING_DV 32 Y only

VL_PACKING_SDTI_DV 32 Cb/Y/Cr/Y

VL_PACKING_444_12 36 RGBA/VYUA (signed)

VL_PACKING_4444_12 48 RGBA/VYUA (signed)

VL_PACKING_444_10_in_16_L 48 RGBA/VYUA

VL_PACKING_4444_10_in_16_L 64 RGBA/VYUA

VL_PACKING_4444_10_in_16_R 64 RGBA/VYUA

VL_PACKING_4444_12_in_16_L 64 RGBA (signed)

VL_PACKING_4444_12_in_16_R 64 RGBA (signed)

VL_PACKING_4444_13_in_16_L 64 RGBA (signed)

VL_PACKING_4444_13_in_16_R 64 RGBA (signed)

Table C-1 (continued) DIVO/DIVO-DVC Packings

Packing Bits Color Space
84 007-3524-004

DIVO/DIVO-DVC Pixel Packings
The packings are explained in these categories:

• “8-Bit Pixel Packings” on page 85

• “16-Bit Pixel Packings” on page 87

• “20-Bit Pixel Packings” on page 89

• “24-Bit Pixel Packings” on page 90

• “32-Bit Pixel Packings” on page 92

• “36-Bit Pixel Packing” on page 99

• “48-Bit Pixel Packings” on page 100

• “64-Bit Pixel Packings” on page 102

8-Bit Pixel Packings

Figure C-2 shows the VL_PACKING_4_8, an 8-bit packing useful for VYUA
monochrome/luma only.

Figure C-2 VL_PACKING_4_8

This packing is

• VL_PACKING_4_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

• VL_PACKING_Y_8_P in the VL, old style

• GL_LUMINANCE GL_UNSIGNED_BYTE in OpenGL

• DM_IMAGE_PACKING_LUMINANCE in DM

P i x e l 1

B y t e 1

y y y y y y y y
007-3524-004 85

C: Pixel Packings and Color Spaces
Figure C-3 shows VL_PACKING_R444_332, an 8-bit packing in the RGBA color space.

Figure C-3 VL_PACKING_R444_332

This packing is

• VL_PACKING_R444_332 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

• VL_PACKING_RGB_332_P in the VL, old style

• DM_IMAGE_PACKING_BGR233 in DM

Figure C-4 shows VL_PACKING_444_332, an 8-bit RGBA packing.

Figure C-4 VL_PACKING_444_332

This packing is

• VL_PACKING_444_332 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

• GL_RGB GL_UNSIGNED_BYTE_3_3_2_EXT in OpenGL

• DM_IMAGE_PACKING_RGB332 in DM

P i x e l 1

B y t e 1

b b g g g r r r

P i x e l 1

B y t e 1

r r r g g g b b
86 007-3524-004

DIVO/DIVO-DVC Pixel Packings
16-Bit Pixel Packings

Figure C-5 shows VL_PACKING_242_8, a 16-bit VYUA packing.

Figure C-5 VL_PACKING_242_8

Note: Cr and Cb are more accurate terms than V and U; however, this appendix uses the
letters V and U in the illustrations of packings for typographical convenience.

This rarely used packing is VL_PACKING_242_8 + VL_COLORSPACE_{CCIR,YUV} in
the VL. It samples chroma and luma in a 4:2:2 pattern. See “Sampling Patterns,” later in
this appendix.

Figure C-6 shows VL_PACKING_R242_8, a 16-bit 4:2:2 VYUA packing. The most
commonly used 4:2:2 packing, it is used by other SGI video hardware as well as DIVO or
DIVO-DVC hardware.

Figure C-6 VL_PACKING_R242_8

This packing is

• VL_PACKING_R242_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

• VL_PACKING_YVYU_422_8 in the VL, old style

• GL_YCRCB_422_SGIX GL_UNSIGNED_BYTE in OpenGL

• DM_IMAGE_PACKING_CbYCrY in DM

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4

v v v v v v v v y y y y y y y y u u u u u u u u y y y y y y y y

l e f t r i g h t

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4

u u u u u u u u y y y y y y y y v v v v v v v v y y y y y y y y

l e f t r i g h t
007-3524-004 87

C: Pixel Packings and Color Spaces
Figure C-7 shows VL_PACKING_X4444_5551, a 16-bit RGBA packing that corresponds
to the QuickTime file 16-bit uncompressed format with alpha.

Figure C-7 VL_PACKING_X4444_5551

This packing is

• VL_PACKING_X4444_5551 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

• VL_PACKING_ARGB_1555 in the VL, old style

DM_IMAGE_PACKING_XRGB1555 in DM (even though the upper bit is really alpha)

Figure C-8 shows VL_PACKING_444_5_6_5, a 16-bit RGBA packing.

Figure C-8 VL_PACKING_444_5_6_5

This packing is VL_PACKING_444_5_6_5 + VL_COLORSPACE_{RGB,RP175} in the VL,
new style.

P i x e l 1

B y t e 1 B y t e 2

a r r r r r g g g g g b b b b b

P i x e l 1

B y t e 1 B y t e 2

r r r r r g g g g g g b b b b b
88 007-3524-004

DIVO/DIVO-DVC Pixel Packings
20-Bit Pixel Packings

Figure C-9 shows VL_PACKING_242_10, a 20-bit VYUA packing.

Figure C-9 VL_PACKING_242_10

This packing is VL_PACKING_242_10 + VL_COLORSPACE {CCIR,YUV}.

Figure C-10 shows VL_PACKING_R242_10, a 20-bit VYUA packing.

Figure C-10 VL_PACKING_R242_10

This packing is VL_PACKING_R242_10 + VL_COLORSPACE {CCIR,YUV}.

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5

v v v v v v v v v v y y y y y y y y y y u u u u u u u u u u y y y y y y y y y y

l e f t r i g h t

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5

u u u u u u u u u u y y y y y y y y y y v v v v v v v v v v y y y y y y y y y y

l e f t r i g h t
007-3524-004 89

C: Pixel Packings and Color Spaces
24-Bit Pixel Packings

Figure C-11 shows VL_PACKING_444_8, a 24-bit RGBA/VYUA packing.

Figure C-11 VL_PACKING_444_8

This packing is

• RGBA:

– GL_RGB GL_UNSIGNED_BYTE in OpenGL

– VL_PACKING_444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– VL_PACKING_BGR_8_P in the VL, old style

– GL_RGB GL_UNSIGNED_BYTE in OpenGL

– DM_IMAGE_PACKING_RGB in DM

• VYUA:

– VL_PACKING_444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– VL_PACKING_UYV_8_P in the VL, old style

Figure C-12 shows VL_PACKING_R444_8, a 24-bit RGBA/VYUA packing.

Figure C-12 VL_PACKING_R444_8

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

r r r r r r r r g g g g g g g g b b b b b b b b

v v v v v v v v y y y y y y y y u u u u u u u u

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

b b b b b b b b g g g g g g g g r r r r r r r r

u u u u u u u u y y y y y y y y v v v v v v v v
90 007-3524-004

DIVO/DIVO-DVC Pixel Packings
This packing is

• RGBA:

– VL_PACKING_R444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– VL_PACKING_RGB_8_P in the VL, old style

– DM_IMAGE_PACKING_BGR in DM

• VYUA:

– VL_PACKING_R444_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

– DM_IMAGE_PACKING_CbYCr in DM

Figure C-13 shows VL_PACKING_4444_6, a 24-bit DIVO/DIVO-DVC-only packing
with 6 bits per pixel.

Figure C-13 VL_PACKING_4444_6

This packing is

• RGBA: VL_PACKING_4444_6 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

• VYUA: VL_PACKING_4444_6 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

r r r r r r g g g g g g b b b b b b a a a a a a

v v v v v v y y y y y y u u u u u u a a a a a a
007-3524-004 91

C: Pixel Packings and Color Spaces
32-Bit Pixel Packings

This section explains

• “OpenGL-Like 32-Bit Pixel Packing” on page 92

• “IRIS GL-Like 32-Bit Pixel Packings” on page 93

• “32-Bit Pixel Packing for QuickTime” on page 94

• “4:4:4:4 10_10_10_2 32-Bit Pixel Packing” on page 95

• “4:2:2:4 10_10_10_2 32-Bit Pixel Packings” on page 96

• “4:2:2 10_in_16 32-Bit Pixel Packings” on page 97

• “SDTI Packing” on page 99

OpenGL-Like 32-Bit Pixel Packing

Figure C-14 shows VL_PACKING_4444_8, an OpenGL-like 32-bit packing. This packing,
supported by many SGI video products, is the most commonly used OpenGL packing.

Figure C-14 VL_PACKING_4444_8

This packing is

• RGBA:

– VL_PACKING_4444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– VL_PACKING_ABGR_8 in the VL, old style

– GL_RGBA GL_UNSIGNED_BYTE in OpenGL (the default)

– DM_IMAGE_PACKING_RGBA in DM

• VYUA:

– VL_PACKING_4444_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

– VL_PACKING_AUYV_4444_8 or VL_PACKING_AUYV_8 in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

r r r r r r r r g g g g g g g g b b b b b b b b a a a a a a a a

v v v v v v v v y y y y y y y y u u u u u u u u a a a a a a a a
92 007-3524-004

DIVO/DIVO-DVC Pixel Packings
IRIS GL-Like 32-Bit Pixel Packings

Figure C-15 shows VL_PACKING_R4444_8, an IRIS GL-like 32-bit packing. This
packing, supported by many SGI video products, is the default IRIS GL packing.

Figure C-15 VL_PACKING_R4444_8

This packing is

• RGBA:

– VL_PACKING_R4444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

– VL_PACKING_RGBA_8 in the VL, old style

– GL_ABGR_EXT GL_UNSIGNED_BYTE in OpenGL

– DM_IMAGE_PACKING_ABGR in DM

• VYUA:

– VL_PACKING_R4444_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

– VL_PACKING_YUVA_4444_8 in the VL, old style

Figure C-16 shows VL_PACKING_R0444_8, an IRIS GL-like 32-bit packing. This packing
is supported by many SGI video products.

Figure C-16 VL_PACKING_R0444_8

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

a a a a a a a a b b b b b b b b g g g g g g g g r r r r r r r r

a a a a a a a a u u u u u u u u y y y y y y y y v v v v v v v v

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

x x x x x x x x b b b b b b b b g g g g g g g g r r r r r r r r

x x x x x x x x u u u u u u u u y y y y y y y y v v v v v v v v
007-3524-004 93

C: Pixel Packings and Color Spaces
• RGBA:

– VL_PACKING_R0444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

– VL_PACKING_RGB_8 in the VL, old style

– DM_IMAGE_PACKING_XBGR

Use DM_IMAGE_PACKING_ABGR instead of this packing unless you
specifically want to inform a piece of software (such as dmColor) not to spend
processing time on the alpha channel.

• VYUA:

– VL_PACKING_R0444_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

– VL_PACKING_YUV_444_8 in the VL, old style

32-Bit Pixel Packing for QuickTime

Figure C-17 shows VL_PACKING_0444_8, a 32-bit packing used for QuickTime files
(uncompressed format without alpha).

Figure C-17 VL_PACKING_0444_8

This packing is

• RGBA:

– VL_PACKING_0444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– DM_IMAGE_PACKING_XRGB in DM

• VYUA: VL_PACKING_0444_8 + VL_COLORSPACE_{CCIR,YUV}

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

x x x x x x x x r r r r r r r r g g g g g g g g b b b b b b b b

x x x x x x x x v v v v v v v v y y y y y y y y u u u u u u u u
94 007-3524-004

DIVO/DIVO-DVC Pixel Packings
4:4:4:4 10_10_10_2 32-Bit Pixel Packing

Figure C-18 shows VL_PACKING_4444_10_10_10_2, the 32-bit 4:4:4:4 10_10_10_2
packing.

Figure C-18 VL_PACKING_4444_10_10_10_2

This packing is

• RGBA:

– VL_PACKING_4444_10_10_10_2 + VL_COLORSPACE_{RGB,RP175} in the VL,
new style

– VL_PACKING_A_2_BGR_10 in the VL, old style

– GL_RGBA GL_UNSIGNED_INT_10_10_10_2_EXT in OpenGL

• VYUA:

– VL_PACKING_4444_10_10_10_2 + VL_COLORSPACE_{CCIR,YUV} in the VL,
new style

– VL_PACKING_A_2_UYV_10 in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

r r r r r r r r r r g g g g g g g g g g b b b b b b b b b b a a

v v v v v v v v v v y y y y y y y y y y u u u u u u u u u u a a
007-3524-004 95

C: Pixel Packings and Color Spaces
4:2:2:4 10_10_10_2 32-Bit Pixel Packings

Figure C-19 shows VL_PACKING_2424_10_10_10_2Z, the 4:2:2:4 10_10_10_2 32-bit
VYUA packing. Only DIVO and DIVO-DVC use this packing.

Figure C-19 VL_PACKING_2424_10_10_10_2Z

This packing is

• 4:2:2:4 sampling; see “Sampling Patterns” on page 105 in this appendix

• VL_PACKING_2424_10_10_10_2Z + VL_COLORSPACE_{CCIR,YUV} in the VL,
new style

Figure C-20 shows VL_PACKING_R2424_10_10_10_2Z, an alternate 4:2:2:4 10_10_10_2
32-bit packing.

Figure C-20 VL_PACKING_R2424_10_10_10_2Z

This packing is

• 4:2:2:4 sampling; see “Sampling Patterns” on page 105 in this appendix

• VL_PACKING_R2424_10_10_10_2Z + VL_COLORSPACE_{CCIR,YUV} in the VL,
new style

• VL_PACKING_AYU_AYV_10 in the VL, old style

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

v v v v v v v v v v y y y y y y y y y y a a a a a a a a a a 0 0 u u u u u u u u u u y y y y y y y y y y a a a a a a a a a a 0 0

l e f t 0 0 l e f t r i g h t 0 0

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

u u u u u u u u u u y y y y y y y y y y a a a a a a a a a a 0 0 v v v v v v v v v v y y y y y y y y y y a a a a a a a a a a 0 0

l e f t 0 0 l e f t r i g h t 0 0
96 007-3524-004

DIVO/DIVO-DVC Pixel Packings
4:2:2 10_in_16 32-Bit Pixel Packings

The diagrams of packings that use 4:2:2 sampling show the location (left and right) of
each component sample. Only DIVO and DIVO-DVC use this packing.

Figure C-21 shows VL_PACKING_242_10_in_16_L, a DIVO/DIVO-DVC-only 4:2:2
10_in_16 32-bit VYUA packing. For an explanation of the p bit, see “Packing Diagram
Conventions” on page 80.

Figure C-21 VL_PACKING_242_10_in_16_L

This packing is

• 4:2:2 sampling; see “Sampling Patterns” on page 105 in this appendix

• VL_PACKING_242_10_in_16_L + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

Figure C-22 shows VL_PACKING_242_10_in_16_R, a DIVO/DIVO-DVC-only 4:2:2
10_in_16 32-bit VYUA packing.

Figure C-22 VL_PACKING_242_10_in_16_R

This packing is

• 4:2:2 sampling; see “Sampling Patterns” on page 105 in this appendix

• VL_PACKING_242_10_in_16_R + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

v v v v v v v v v v p p p p p p y y y y y y y y y y p p p p p p u u u u u u u u u u p p p p p p y y y y y y y y y y p p p p p p

l e f t p p p p p p l e f t p p p p p p l e f t p p p p p p r i g h t p p p p p p

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

0 0 0 0 0 0 v v v v v v v v v v 0 0 0 0 0 0 y y y y y y y y y y 0 0 0 0 0 0 u u u u u u u u u u 0 0 0 0 0 0 y y y y y y y y y y

0 0 0 0 0 0 l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 r i g h t
007-3524-004 97

C: Pixel Packings and Color Spaces
Figure C-23 shows VL_PACKING_R242_10_in_16_L, a 4:2:2 10_in_16 32-bit VYUA
packing. This packing is supported by several SGI video products. For an explanation of
the p bit, see “Packing Diagram Conventions” on page 80.

Figure C-23 VL_PACKING_R242_10_in_16_L

This packing is

• 4:2:2 sampling; see “Sampling Patterns” on page 105 in this appendix

• VL_PACKING_R242_10_in_16_L + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

• VL_PACKING_YVYU_422_10 in the VL, old style

Figure C-24 shows VL_PACKING_R242_10_in_16_R, a DIVO/DIVO-DVC-only 4:2:2
10_in_16 32-bit VYUA packing.

Figure C-24 VL_PACKING_R242_10_in_16_R

This packing is

• VYUA VL_PACKING_R242_10_in_16_R + VL_COLORSPACE_{CCIR,YUV}

• 4:2:2 sampling; see “Sampling Patterns” on page 105 in this appendix

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

u u u u u u u u u u p p p p p p y y y y y y y y y y p p p p p p v v v v v v v v v v p p p p p p y y y y y y y y y y p p p p p p

l e f t p p p p p p l e f t p p p p p p l e f t p p p p p p r i g h t p p p p p p

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

0 0 0 0 0 0 u u u u u u u u u u 0 0 0 0 0 0 y y y y y y y y y y 0 0 0 0 0 0 v v v v v v v v v v 0 0 0 0 0 0 y y y y y y y y y y

0 0 0 0 0 0 l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 r i g h t
98 007-3524-004

DIVO/DIVO-DVC Pixel Packings
SDTI Packing

Figure C-25 shows the SDTI packing VL_PACKING_SDTI_DV.

Figure C-25 VL_PACKING_SDTI_DV

This packing

• is VL_PACKING_ SDTI_DV + VL_COLOR_SPACE_CCIR601

• uses 4:2:2 sampling; see “Sampling Patterns” on page 105 in this appendix

36-Bit Pixel Packing

Figure C-26 shows VL_PACKING_444_12, the 36-bit packing, which has 12 bits per
component. Only DIVO and DIVO-DVC use this packing.

Figure C-26 VL_PACKING_444_12

This packing is

• RGBA: VL_PACKING_444_12 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

• VYUA: VL_PACKING_444_12 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

Pixel 1 Pixel 2

Byte 1 Byte 2 Byte 3 Byte 4

Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

P i x e l 1 P i x e l 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8 B y t e 9

r r r r r r r r r r r r g g g g g g g g g g g g b b b b b b b b b b b b r r r r r r r r r r r r g g g g g g g g g g g g b b b b b b b b b b b b

v v v v v v v v v v v v y y y y y y y y y y y y u u u u u u u u u u u u v v v v v v v v v v v v y y y y y y y y y y y y u u u u u u u u u u u u
007-3524-004 99

C: Pixel Packings and Color Spaces
The components in this packing are signed:

• For RGB and RP-175 color spaces, the components are often negative.

• For the YUV color space, they are negative when the incoming video signal has
values outside of the nominal range.

• For the CCIR601 color space, they are always positive.

48-Bit Pixel Packings

Figure C-27 shows VL_PACKING_4444_12, a 48-bit packing, with 12 bits per
component. Only DIVO and DIVO-DVC use this packing.

Figure C-27 VL_PACKING_4444_12

This packing is

• RGBA: VL_PACKING_4444_12 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

• VYUA: VL_PACKING_4444_12 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

The components in this packing are signed:

• For RGB and RP-175 color spaces, the components are often negative.

• For the YUV color space, they are negative when the incoming video signal has
values outside of the nominal range.

• For the CCIR601 color space, they are always positive.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6

r r r r r r r r r r r r g g g g g g g g g g g g b b b b b b b b b b b b a a a a a a a a a a a a

v v v v v v v v v v v v y y y y y y y y y y y y u u u u u u u u u u u u a a a a a a a a a a a a
100 007-3524-004

DIVO/DIVO-DVC Pixel Packings
Figure C-28 shows VL_PACKING_444_10_in_16_L, a 48-bit packing, with 10 bits per
component and no alpha. For an explanation of the p bit, see “Packing Diagram
Conventions” on page 80.

Figure C-28 VL_PACKING_444_10_in_16_L

This packing is

• RGBA: VL_PACKING_444_10_in_16_L + VL_COLORSPACE_{RGB,RP175} in the
VL, new style

• VYUA: VL_PACKING_444_10_in_16_L, + VL_COLORSPACE_{CCIR,YUV} in the
VL, new style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6

r r r r r r r r r r p p p p p p g g g g g g g g g g p p p p p p b b b b b b b b b b p p p p p p

v v v v v v v v v v p p p p p p y y y y y y y y y y p p p p p p u u u u u u u u u u p p p p p p
007-3524-004 101

C: Pixel Packings and Color Spaces
64-Bit Pixel Packings

Figure C-29 shows VL_PACKING_4444_10_in_16_L. For an explanation of the p bit, see
“Packing Diagram Conventions” on page 80.

Figure C-29 VL_PACKING_4444_10_in_16_L

This packing is

• RGBA:

– VL_PACKING_4444_10_in_16_L + VL_COLORSPACE_{RGB,RP175} in the VL,
new style

– VL_PACKING_ABGR_10 in the VL, old style

• VYUA:

– VL_PACKING_4444_10_in_16_L + VL_COLORSPACE_{CCIR,YUV} in the VL,
new style

– VL_PACKING_AUYV_4444_10 in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

r r r r r r r r r r p p p p p p g g g g g g g g g g p p p p p p b b b b b b b b b b p p p p p p a a a a a a a a a a p p p p p p

v v v v v v v v v v p p p p p p y y y y y y y y y y p p p p p p u u u u u u u u u u p p p p p p a a a a a a a a a a p p p p p p
102 007-3524-004

DIVO/DIVO-DVC Pixel Packings
Figure C-30 shows VL_PACKING_4444_10_in_16_R.

Figure C-30 VL_PACKING_4444_10_in_16_R

This packing is

• RGBA: VL_PACKING_4444_10_in_16_R + VL_COLORSPACE_{RGB,RP175}

• VYUA: VL_PACKING_4444_10_in_16_R + VL_COLORSPACE_{CCIR,YUV}

Figure C-31 shows VL_PACKING_4444_12_in_16_L, a 64-bit RGBA packing. For an
explanation of the p bit, see “Packing Diagram Conventions” on page 80.

Figure C-31 VL_PACKING_4444_12_in_16_L

This packing is VL_PACKING_4444_12_in_16_L + VL_COLORSPACE_{RGB,RP175} in
the VL, new style.

The components in this packing are signed:

• For RGB and RP-175 color spaces, they are often negative.

• For the YUV color space, they are negative when the incoming video signal has
values outside of the nominal range.

• For the CCIR601 color space, they are always positive.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

0 0 0 0 0 0 r r r r r r r r r r 0 0 0 0 0 0 g g g g g g g g g g 0 0 0 0 0 0 b b b b b b b b b b 0 0 0 0 0 0 a a a a a a a a a a

0 0 0 0 0 0 v v v v v v v v v v 0 0 0 0 0 0 y y y y y y y y y y 0 0 0 0 0 0 u u u u u u u u u u 0 0 0 0 0 0 a a a a a a a a a a

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

r r r r r r r r r r r r p p p p g g g g g g g g g g g g p p p p b b b b b b b b b b b b p p p p a a a a a a a a a a a a p p p p
007-3524-004 103

C: Pixel Packings and Color Spaces
Figure C-32 shows VL_PACKING_4444_12_in_16_R, a 64-bit RGBA packing for use with
extended RGB components.

Figure C-32 VL_PACKING_4444_12_in_16_R

This packing is VL_PACKING_4444_12_in_16_R + VL_COLORSPACE_{RGB,RP175} in
the VL, new style.

Note: The components in this packing are signed, with positive and negative values
varying by color space, as explained for VL_PACKING_4444_12_in_16_L. The s in the
more significant bits in Figure C-32 indicates a sign extension padding bit.

Figure C-33 shows VL_PACKING_4444_13_in_16_L, a 64-bit RGBA packing for use with
extended RGB components. For an explanation of the p bit, see “Packing Diagram
Conventions” on page 80.

Figure C-33 VL_PACKING_4444_13_in_16_L

This packing is VL_PACKING_4444_13_in_16_L + VL_COLORSPACE_{RGB,RP175} in
the VL, new style.

The components in this packing are signed, with positive and negative values varying by
color space, as explained for VL_PACKING_4444_12_in_16_L.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

s s s s r r r r r r r r r r r r s s s s g g g g g g g g g g g g s s s s b b b b b b b b b b b b s s s s a a a a a a a a a a a a

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

r r r r r r r r r r r r r p p p g g g g g g g g g g g g g p p p b b b b b b b b b b b b b p p p a a a a a a a a a a a a a p p p
104 007-3524-004

Sampling Patterns
Figure C-34 shows VL_PACKING_4444_13_in_16_R, a 64-bit packing for use with
extended RGB components.

Figure C-34 VL_PACKING_4444_13_in_16_R

This packing is VL_PACKING_4444_13_in_16_R + VL_COLORSPACE_{RGB,RP175} in
the VL, new style.

Note: The components in this packing are signed, with positive and negative values
varying by color space, as explained for VL_PACKING_4444_12_in_16_L. The s in the
more significant bits in Figure C-34 indicates a sign extension padding bit.

Sampling Patterns

Sampling patterns are described in these sections:

• “4:4:4 and 4:4:4:4 Sampling” on page 106

• “4:2:2 and 4:2:2:4 Sampling” on page 106

• “4:1:1 Sampling (DIVO-DVC Only)” on page 107

• “4:2:0 Sampling (DIVO-DVC Only)” on page 108

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

s s s r r r r r r r r r r r r r s s s g g g g g g g g g g g g g s s s b b b b b b b b b b b b b s s s a a a a a a a a a a a a a
007-3524-004 105

C: Pixel Packings and Color Spaces
4:4:4 and 4:4:4:4 Sampling

Some of the diagrams in the “DIVO/DIVO-DVC Pixel Packings” section indicate 4:4:4 or
4:4:4:4 sampling. This video industry terminology means that each of the three or four
components is sampled at every pixel. Figure C-35 diagrams this sampling pattern.

Figure C-35 4:4:4 Sampling

4:2:2 and 4:2:2:4 Sampling

The packings shown in diagrams that indicate 4:2:2 sampling make sense only in the
VYUA color spaces. For every two pixels, there are two luma samples (two Ys) but only
one chroma sample (one sample of Cr and Cb, which together determine the chroma), as
shown in Figure C-36.

Figure C-36 4:2:2 Sampling

The chroma samples belong at the same instant in space as the left Y sample (the
chrominance samples and the left Y are co-sited). The diagrams for 4:2:2 packings in the
“DIVO/DIVO-DVC Pixel Packings” section of this appendix show the location of each
Y, Cr, or Cb component as left or right. The first pixel of each line is a left pixel.

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr
Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb

Luma:

Chroma:

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr Cr Cr Cr
Cb Cb Cb Cb Cb Cb Cb

Luma:

Chroma:
106 007-3524-004

Sampling Patterns
Converting 4:4:4 video to 4:2:2 video is like converting 44.1 kHz audio into 22.05 kHz
audio: just dropping every other Cr,Cb sample yields extremely poor results. Video
devices that need to convert between 4:4:4 and 4:2:2 use carefully designed filters. The
characteristics of the required filter are specified in ITU-R BT.601-4 (Rec. 601).

4:2:2 sampled packings that also include alpha are called 4:2:2:4. This method has one
alpha value per pixel, like the Y value.

4:1:1 Sampling (DIVO-DVC Only)

The packings shown in diagrams that indicate 4:1:1 sampling make sense only in the
VYUA color spaces. For every four pixels, there are four luma samples (four Ys) but only
one chroma sample (one sample of Cr and Cb, which together determine the chroma), as
shown in Figure C-37.

Figure C-37 4:1:1 Sampling

The chroma samples belong at the same instant in space as the left Y sample (the
chrominance samples and the left Y are co-sited).

The DIVO-DVC board uses 4:1:1 sampling for 525/60 (NTSC) DV, NTSC DVCPRO, and
625/50 (PAL) DVCPRO compression.

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr
Cb Cb Cb Cb

Luma:

Chroma:
007-3524-004 107

C: Pixel Packings and Color Spaces
4:2:0 Sampling (DIVO-DVC Only)

The packings shown in diagrams that indicate 4:2:0 sampling make sense only in the
VYUA color spaces. For every two pixels, there are two luma samples (two Ys) but only
one chroma sample (on alternate lines, one sample of Cr and one sample of Cb), as shown
in Figure C-38.

Figure C-38 4:2:0 Sampling

The chroma samples belong at the same instant in space as the left Y sample (the
chrominance samples and the left Y are co-sited).

The DIVO-DVC board uses 4:2:0 sampling for PAL (625/50) DV compression.

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr

Luma:

Chroma:

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cb Cb Cb Cb

Luma:

Chroma:
108 007-3524-004

Color Spaces
Color Spaces

Each component of an image has

• a color that it represents

• a canonical minimum value

• a canonical maximum value

Normally, a component stays within the minimum and maximum values. For example,
for a luma signal such as Y, you can think of these limits as the black level and the peak
white level, respectively. For an unsigned component with n bits, there are two
possibilities for [minimum value, maximum value]:

• full range: [0, (2nbits)-1], which provides the maximum resolution for each
component

• compressed (headroom) range, which provides numerical headroom, which is often
useful when processing video images:

– Cr and Cb: [(2n)/16, 15*(2n)/16]

– Y, A, R, G, and B: [(2n)/16, 235*(2n)/256]

Compressed range is defined for 8 and 10 bits in ITU-R BT.601-4 (Rec. 601). For example:

• for 8-bit components:

– Cr and Cb: [16, 240]

– Y, A, R, G, B: [16, 235]

• for 10-bit components:

– Cr and Cb: [64, 960]

– Y, A, R, G, B: [64, 940]

Two sets of colors are commonly used together, RGB (RGBA) and YCrCb/YUV (VYUA).
YCrCb (YUV), the most common representation of color from the video world,
represents each color by a luma component called Y and two components of chroma,
called Cr (or V), and Cb (or U). The luma component is loosely related to brightness or
luminance, and the chroma components make up a quantity loosely related to hue. These
components are defined rigorously in ITU-R BT.601-4 (also known as Rec. 601 and CCIR
601).
007-3524-004 109

C: Pixel Packings and Color Spaces
The alpha channel is not a real color. For that channel, the canonical minimum value
means completely transparent, and the canonical maximum value means completely
opaque.

For more information about color spaces, see A Technical Introduction to Digital Video, by
Charles A. Poynton (New York: Wiley, 1996).

Determining the Color Space

For OpenGL, IRIS GL, and DM:

• the library constant indicates whether the data is RGBA or VYUA

• RGBA data is full-range by default

• VYUA data in DM can be full-range or compressed-range; you must determine this
from context

Using the traditional VL_PACKING tokens from IRIX 6.2, the VL_PACKING constant
indicates whether the data is RGBA or VYUA (as in VL_PACKING_UYV_8_P). The VL
that comes with the DIVO or DIVO-DVC option (for IRIX 6.4 and later) makes all of the
parameters (packing, set of colors, range of components) explicit:

• Use VL_PACKING to specify only the memory layout. The new memory-only
VL_PACKING tokens are disjoint from the old, and the old tokens are still honored,
so this change is backward-compatible.

• Use VL_COLORSPACE to specify the color-space parameters, as shown in
Table C-2.

The option VL_COLORSPACE_NONE is useful when you want to treat CCIR 601
digital video as a raw 10-bit data stream (as in SDDI).

Table C-2 VL_COLORSPACE Options

Color Set Full-Range Components Compressed-Range Components

RGBA VL_COLORSPACE_RGB VL_COLORSPACE_RP175

VYUA VL_COLORSPACE_YUV VL_COLORSPACE_CCIR
110 007-3524-004

Color Spaces
The DIVO and DIVO-DVC options perform color-space conversion if the color space
implied by VL_FORMAT on the video node disagrees with that implied by
VL_COLORSPACE on the memory node.
007-3524-004 111

Appendix D

D. Color-Space Conversions

The DIVO and DIVO-DVC boards support four native color spaces—RGB, YUV, CCIR,
and RP-175 compressed RGB. The choice of color space is determined by the format
control for video sources and drains and by the color-space controls for memory sources
and drains. If the color space selected for memory sources and drains matches that used
by the current video format, no color-space conversions are performed. When
DIVO/DIVO-DVC performs color-space conversions, extreme care is taken to assure the
correctness and precision of the result.

Understanding the capabilities of DIVO/DIVO-DVC to perform color space conversions
and the results of these conversions allows developers and end users to maximize the
quality of their output. This appendix explains

• “DIVO/DIVO-DVC Color Spaces” on page 113

• “Mathematical Operations Performed During Conversions” on page 116

• “Implications of Color Space Conversions” on page 116

The appendix concludes with examples.

 DIVO/DIVO-DVC Color Spaces

The DIVO/DIVO-DVC option uses a minimum of ten bits of precision for each color
component at all steps of its internal pipeline. Representations for the four native internal
color representations are explained separately in this section.
007-3524-004 113

D: Color-Space Conversions
RGB

RGB is the color space used by the graphics subsystem. RGB has the most accurate
representation of visible colors, because all possible combinations are valid. This color
space does not support superblack or other nonvisible color values. Each component is
represented by a 10-bit value between 0 and 1023. Black has the value [0,0,0], and white
is [1023,1023,1023]. Table D-1 summarizes the clamping range for each resulting RGB
component for various conversions.

 DIVO/DIVO-DVC uses this color space only at the memory interface.

Note: You should not normally use 4:2:2 coding with RGB data.

YUV

The YUV color space is obtained from RGB by the matrix transformation in the following
equation.

The V, Y, and U values range from [0..1023]. Black has the VYU value [512,0,512]. White
has the value [512,1023,512].

DIVO/DIVO-DVC uses this color space only at the memory interface. With proper
filtering, 4:2:2 coding can be used.

Table D-1 Clamping Ranges for RGB Component Conversions

When converting to...
Each resulting RGB component is
clamped to the range

10-bit RGB [0..1023]

8-bit RGB [0..255]

12-bit signed RGB [-2048..2047]

13-bit signed RGB [-4096..4095]

0.500 0.419– 0.081–

0.299 0.587 0.114

0.169– 0.331– 0.500

R
G
B

×
512

0

512

+
V
Y
U

=

114 007-3524-004

DIVO/DIVO-DVC Color Spaces
CCIR

The CCIR color space is obtained from RGB by the matrix transformation in the follwing
equation.

The Cr, Y, and Cb 10-bit values are clamped to the range [4..1019]. Black has the CrYCb
value [512,64,512]. White has the value [512,940,512]. For 8 bits, the values are clamped
to the range [1..254]; black has the CrYCb value [128,16,128], and white has the value
[128,235,128].

This color space is used by the component digital formats. The memory interface can use
this color space. With proper filtering, 4:2:2 coding can be used.

RP-175 Compressed RGB

The RP-175 color space is obtained from RGB by the matrix transformation in the
following equation.

When converting to 10-bit R‘G‘B‘, the R‘, G‘, and B‘ values are clamped to the range
[0..1023]. Black has the R‘G‘B‘ value [64,64,64]. White has the value [940,940,940]. Other
clamping ranges are the same as the standard RGB case.

This color space is used by the component digital RGB format. The memory interface can
use this color space. You should not use 4:2:2 coding with this color space.

0.500 0.419– 0.081–

0.299 0.587 0.114

0.169– 0.331– 0.500

R
G
B

×

896
1023

876
1023

896
1023

512

64

512

+×
Cr
Y

Cb

=

876
1023

R
G
B

×
64

64

64

+
R'
G'
B'

=

007-3524-004 115

D: Color-Space Conversions
Mathematical Operations Performed During Conversions

 DIVO/DIVO-DVC can process and store each color space explained in the previous
section. For best precision, the input color space should be maintained through the
processing path. For example, an application that implements DDR functionality could
choose to store data in the native representation of the input signal: Data from a D1 deck
should be stored as a 8-bit 4:2:2 in the CCIR color space. Data from a dual-link telecine
could be stored as 4:4:4 10-bit RP-175 RGB. If the application works in this way, no
conversions are performed and the data is passed directly through the system. In
particular, CCIR601 data coming from a D1 deck is bit-accurate in this case.

However, it might not be desirable for the application to work this way. If that is the case,
the application can use all of the conversion, decimation and interpolation capabilities of
the DIVO/DIVO-DVC option to perform real-time color space and 4:2:2 ⇔ 4:4:4
conversions.

Conversions are performed only when absolutely required. Each incoming or outgoing
stream can be converted from its current color space to any other color space.

Implications of Color Space Conversions

The two major concerns when performing conversions from one color space to another
are precision and range.

Precision of Color Conversions Done by DIVO/DIVO-DVC

The DIVO/DIVO-DVC board stores colors with a minimum of 10 bits of precision at all
steps in its pipeline. When performing color space conversions, the data is converted to
13-bit signed values before being passed to the matrix multipliers. The matrix multipliers
have 13-bit coefficients and 26-bit accumulators. The most significant 14 bits of the
matrix-multiplication result are passed on to additional hardware, which applies any
needed offsets and then clamps to the proper range.

SGI, has verified both through simulation and hardware testing that the maximal error
for two conversions (RGB to CCIR to RGB) is two units out of 1024. The matrix
coefficients have been biased to round slightly high rather than slightly low to avoid the
type of problems that can otherwise easily occur in the blue component.
116 007-3524-004

Implications of Color Space Conversions
Range Issues For Color Conversions Done by Any Means

Different color spaces allocate the available bits of precision in different ways. The RGB
space is designed to maximize the accuracy of color representations. The YUV and CCIR
color spaces are designed to strongly decouple chrominance and luminance information.

Since RGB represents visible colors, it is contained inside the YUV and CCIR spaces. The
CCIR and RP-175 color spaces also have a slight amount of additional headroom that was
intended to prevent aliasing artifacts when Finite Impulse Response filtering operations
are performed on the digital data.

Any time a conversion operation is performed between CCIR and one of the other color
spaces, the colors that are not representable in the destination color space must be
somehow mapped into colors that are representable. The usual way to do this is to clamp
each component to the available range in the destination color space. Other methods,
such as projecting towards the center of the representable space, might produce results
that appear to be better in some cases, but imply modification of the original signal and
generally result in a loss of saturation.

During conversion from CCIR to YUV, the axes of the two spaces are parallel, so the
result of this clamping operation is very predictable. Superblack and superwhite are
clipped to black and white, respectively, and oversaturated colors might also be clipped.

During conversion from RGB to YUV or CCIR, clamping never occurs, because all RGB
colors are representable in those color spaces.

During conversion from CCIR or YUV to RGB or RP-175 RGB, the results of clamping are
much less intuitive, because these conversions involve rotation and scaling operations,
with the result that the component axes in one color space don’t align with those in the
other.

 DIVO/DIVO-DVC also supports signed RGB representations with 12 or 13 significant
bits. If one of these representations is used, the entire CCIR color space is representable
and no clamping will occur. Application software must specifically select this mode and
handle the (12/13)-bit data to gain this benefit.

Figure D-1 shows the RGB color cube inside the CCIR color space. The volume contained
within the outer (CCIR) cube, but outside the inner (RGB) cube, represents “illegal”
colors that cannot be displayed.
007-3524-004 117

D: Color-Space Conversions
Figure D-1 RGB Cube in CCIR Space

As shown in the figure, the CCIR color space allocates almost three quarters of its
available bit combinations to illegal colors. When any of these color values are converted
to RGB, the result is clamped to the edge of the RGB cube. Since the inner cube contains
the displayable colors, this clamping operation has no impact on them.

Cr

Y

Cb

Black

White

Red

Green

Blue

Yellow

Magenta

Cyan
118 007-3524-004

Implications of Color Space Conversions
If CCIR is converted to RGB and back to CCIR using certain types of test signals, the
output can appear to be vastly wrong. A common and extreme version of this is the
signal that simultaneously ramps Cr, Y, and Cb from the minimum to maximum possible
values.

In Figure D-2, the heavy diagonal line passing through the figure is the set of colors in
the luma/chroma ramp test signal. As shown in the figure, a large portion of this pattern
is outside the RGB cube. In fact, over two thirds of this pattern is outside the displayable
range.

Figure D-2 Color Cube With Luminance/Chrominance Ramp Vector

Cyan
Green

YellowWhite

Magenta Red

Blue
Black

Cb

Cr

Y

007-3524-004 119

D: Color-Space Conversions
Example Color Conversions

This section includes example graphs that display the results of converting from CCIR to
eight or ten bit RGB and back. They show the same type of result you would see if you
passed a digital signal through DIVO/DIVO-DVC using the soft_ee program with
RGB as the color space and an eight or ten-bit data-packing. If you use CCIR as the
memory color space or use a data-packing with 12/13-bit signed representations, the
output will look exactly like the input. If the memory color space matches the video color
space, the output will be a bit-perfect copy of the input.

Example 1: 100% Color Bars

This example, like the other two in this section, consists of three graphs. Each graph
displays the input CCIR pattern, intermediate RGB pattern, and output CCIR pattern for
a given color component. Figure D-3 shows the red and Cr components, Figure D-4 the
green and Y components, and Figure D-5 the blue and Cb components. In this example
and the others, if the input and output CCIR values are identical, only two lines are
shown.

In this example, conversion to RGB and back has no effect on the image. The 100%
amplitude color bar signal lies within the visible range and therefore is perfectly
represented in RGB.
120 007-3524-004

Example Color Conversions
Figure D-3 100% Color Bars: Cr/R

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Cr

RGB R

Output Cr
007-3524-004 121

D: Color-Space Conversions
Figure D-4 100% Color Bars: Y/G

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Y

RGB G

Output Y
122 007-3524-004

Example Color Conversions
Figure D-5 100% Color Bars: Cb/B

0.60

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.80 1.00

X x 10 3

Input Cb

RGB B

Output Cb
007-3524-004 123

D: Color-Space Conversions
Example 2: Luminance Ramp

In this example, the conversion to RGB and back affects only the superblack and
superwhite regions. All luminance values that are blacker than black are clamped to
black; all values whiter than white are clamped to white.

In the RGB color space, each component ramps from 0 to 1023 as the input luminance
ramps from 64 (black) to 940 (white). This test pattern lies along the Y axis of the color
cubes.
124 007-3524-004

Example Color Conversions
Figure D-6 Luminance Ramp: Cr/R

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Cr

RGB R

Output Cr
007-3524-004 125

D: Color-Space Conversions
Figure D-7 Luminance Ramp: Y/G

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Y

RGB G

Output Y
126 007-3524-004

Example Color Conversions
Figure D-8 Luminance Ramp: Cb/B

Example 3: Simultaneous Chroma/Luma Ramp

This example is the most extreme of the three, and shows how surprising the results of
color conversions can be when arbitrary synthetic CCIR inputs are used.

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 103

Input Cb

RGB B

Output Cb
007-3524-004 127

D: Color-Space Conversions
Each CCIR input signal ramps from 0 to 1023 simultaneously. As mentioned in the first
example, over two thirds of this pattern lies outside the legal range. The portion within
the legal range is represented exactly, but the region outside is clamped to the RGB cube
surface.

Figure D-9 Chroma/Luma Ramp: Cr/R

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 103

Input Cr

RGB R

Output Cr
128 007-3524-004

Example Color Conversions
Figure D-10 Chroma/Luma Ramp: Y/G

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Y

RGB G

Output Y
007-3524-004 129

D: Color-Space Conversions
Figure D-11 Chroma/Luma Ramp: Cb/B

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Cb

RGB B

Output Cb
130 007-3524-004

Appendix E

E. Programming Methods for Real-Time Digital Media
Recording and Playback

This appendix explains the following real-time disk I/O concepts:

• “Direct I/O” on page 132

• “Scatter/Gather I/O” on page 134

• “Multiprocessing” on page 137

• “Asynchronous I/O” on page 138

• “File Formats” on page 138

The example source for the utilities discussed in this appendix can be found in
/usr/share/src/dmedia/tools. The code examples are written to Digital Media
buffers (DMbuffers), a real-time data transport facility. See the Digital Media Programming
Guide (document number 007-1799-060 or later, hereafter referred to as the DMPG) for
more details. The emphasis here is not on how data is acquired from or transported to
the video device, but rather on how data is moved to disk in real time.

The DMPG covers basic digital media programming concepts; two simple programming
examples in /usr/share/src/dmedia/video/DIVO, divo_vidtomem.c and
divo_memtovid.c, illustrate how video data is copied into and out of the DMbuffers for
the simpler non-real-time case. At an abstract level, high-bandwidth throughput is
simple; the work is in the details, as explained in this appendix.
007-3524-004 131

E: Programming Methods for Real-Time Digital Media Recording and Playback
Direct I/O

The most efficient way to move data on and off a disk device is to use the XFS filesystem
with direct I/O mode and large data transfer sizes. If large transfer sizes cannot be
achieved, you can combine memory pages from noncontiguous locations using writev(2)
or readv(2). Finally, you can use asynchronous I/O to queue multiple I/O requests to the
kernel without waiting for blocked calls to return. Other real-time software features and
products, such as REACT, can be used to assure low-latency interrupts and high-priority
scheduling, but are not absolutely necessary for digital media applications.

Normally, when a disk file is opened with no status flags specified, a call to write(2) for
that file returns as soon as the data has been copied to a buffer managed by the device
driver (see open(2)). The actual disk write may not take place until considerable time has
passed. A common pool of disk buffers is used for all disk files.

Disk buffering is integrated with the virtual memory paging mechanism. A daemon
executes periodically and initiates output of buffered blocks according to the age of the
data and the needs of the system. You can force the writing of all pending output for a
file by calling fsync(2) or by opening the file and specifying the O_SYNC flag. However,
the process blocks until the data has been written to disk, and all output data must still
be copied from the buffer in the user address space to a buffer in the kernel address space.
See Chapter 8, “Optimizing Disk I/O for a Real-Time Program,” in the REACT Real Time
Programmer’s Guide for details.

If you use the O_DIRECT flag, writes to the file take place directly from your program’s
buffer, and the data is not copied to a buffer in the kernel first. Because the filesystem
cache is bypassed, your application must manage buffer alignment and block size
specification. To use O_DIRECT, you must transfer data in quantities that are multiples
of the filesystem block size. The following code shows how to query the filesystem block
size and system DMA transfer size limit.

struct dioattr da;
struct stat fileStat;
char *ioFileName = “videodata”;
int ioBlockSize, ioMaxXferSize;

ioFileFD = open(ioFileName,O_DIRECT | O_RDWR | O_CREAT | O_TRUNC,0644);
if (ioFileFD < 0)
 return(DM_FAILURE);
if (fcntl(ioFileFD, F_DIOINFO, &da) < 0)
 return(DM_FAILURE);
ioBlockSize = da.d_miniosz;

ioMaxXferSize = da.d_maxiosz;
132 007-3524-004

Direct I/O
The two important constraints of direct I/O with XFS are memory address alignment
and buffer length. Direct I/O requires all memory addresses to be page-aligned. XFS
requires buffers to be allocated as a multiple of the filesystem block size, ioBlockSize.
DMbuffers are guaranteed to be page-aligned, but to ensure that the buffers are properly
padded, you must set the buffer size, bytesPerXfer, to the size of the image data you will
transfer rounded up to the nearest multiple of ioBlockSize.

VLServer vlServer;
VLPath vlPath;
DMparams * paramsList;
int dmBufferPoolSize = 30; /* 1 second of video */
int vlBytesPerImage = vlGetTransferSize(vlServer, vlPath);
int ioBlocksPerImage = (vlBytesPerImage+ioBlockSize - 1) / ioBlockSize;
int bytesPerXfer = ioBlocksPerImage * ioBlockSize;

if (dmBufferSetPoolDefaults(paramsList,dmBufferPoolSize,bytesPerXfer,
 DM_TRUE, DM_TRUE) == DM_FAILURE) {
 fprintf(stderr, “error setting pool defaults\n”);
 return(DM_FAILURE);
}

All SGI systems have a configurable maximum DMA transfer size (see systune(1M)).
This value should be compared with the user’s I/O request size.

if (bytesPerXfer > ioMaxXferSize) {
 fprintf(“DMA request size is too small. Reconfigure with
 systune()\n”);
 return(DM_FAILURE);

}

007-3524-004 133

E: Programming Methods for Real-Time Digital Media Recording and Playback
Scatter/Gather I/O

As shown in DMPG Chapter 5, “Digital Media Buffers,” and in the example programs
divo_vidtomem.c and divo_memtovid.c, video data is generally transported to or
from DMbuffers one image at a time using standard write and read functions that specify
the number of bytes and a pointer to a buffer. However, large reads and writes can
usually increase I/O performance. This technique reduces the number of transactions
performed between the application, operating system, and I/O device, and can allow the
device to optimize some of its activities. These advantages are particularly true with disk
arrays.

Since the DMbuffer’s memory pages are not guaranteed to be contiguous, standard
reads or writes cannot be made across multiple buffers. The readv(2) and writev(2)
interfaces allow an application to provide a list of I/O vectors, which are data structures
consisting of an address and byte-count pair. Because the list of vectors is submitted to
the operating system as a unit, it can be treated as a single large I/O request. Using
readv() and writev() with direct I/O is particularly efficient.

The restrictions on buffer alignment and block size for readv()/writev() are similar to
those of direct I/O. The address for each I/O vector must be page-aligned, but the length
of each I/O vector must be a multiple of the system page size, rather than the filesystem
block size, as is the case with direct I/O. Thus, the easy solution is to always use the
larger of the two values, page size or filesystem block size. This requirement wastes some
space, but is necessary to maintain functionality and performance. This calculation must
be performed before dmBufferSetPoolDefaults(3dm) is called.

int ioAlignment, ioBlockSize;
ioAlignment = getpagesize();
if (ioAlignment > ioBlockSize)
 ioBlockSize = ioAlignment;

The maximum allowable number of I/O vectors can be queried with sysconf(3C).

int ioVecCount=2; /* set default to two images */
long ioVecCountMax;
/* check for range */
 ioVecCountMax = sysconf(_SC_IOV_MAX);
 if (ioVecCount > ioVecCountMax) {
 ioVecCount = ioVecCountMax;
 fprintf(stderr, “cannot create more than %d I/O vectors\n”,
 ioVecCountMax);
 }
 else if (ioVecCount <= 0)
 ioVecCount = 2;
134 007-3524-004

Scatter/Gather I/O
The aggregate size of all the I/O vectors cannot exceed the maximum DMA transfer size,
so you must check for this condition and adjust the number of I/O vectors if necessary:

int ioVecCount=2; /* set default to two images */
if (bytesPerXfer * ioVecCount > ioMaxXferSize)
 ioVecCount = ioMaxXferSize/bytesPerXfer;

When you work with video data using readv()/writev(), it is much easier to manage
frames or an even number of fields with one I/O vector per field or frame. Most SGI
video devices can support either field or frame mode, which is selected with the
VL_CAPTURE_TYPE device control (see Chapter 4, “Video I/O Concepts” in the Digital
Media Programming Guide). Hereafter, the term video image refers to a video data
quantum: field or frame, depending on how the hardware is set up. The restriction of
working on frame or even field boundaries is also relevant to the data file format, which
is discussed at the end of this appendix.

The following code fragment illustrates writing to disk. Upon the successful capture of a
video image, the VLTransferComplete event is placed on the event queue. A pointer to a
valid DMbuffer is returned by vlDMBufferGetValid(3dm); then the actual video data is
mapped into user space. Data is not written to disk until there are enough video images
to complete an I/O vector.

case VLTransferComplete:

 /* loop until we get a valid buffer */
 while (((retval = vlDMBufferGetValid(vlServer, vlPath, vlDrnNode,
 &dmBuffers[dmbuffer_index])) != VLSuccess) && (vlErrno == VLAgain))
 sginap(1);
 if (retval == VLSuccess) {
 /* map data to I/O vectors */
 (videoData+iov_index)->iov_base =
 dmBufferMapData(dmBuffers[dmbuffer_index]);
 (videoData+iov_index)->iov_len = bytesPerXfer;

 /* increment the buffer index for the next image */
 dmbuffer_index = (dmbuffer_index+1) % dmBufferPoolSize;

 /* write data to disk when we have enough I/O vectors */
 if (!(++iov_index % ioVecCount)) {
 first_index = vlXferCount - iov_index + 1
 dataOffset = (off64_t) vlXferCount *
 (off64_t) bytesPerXfer;
 /* seek to the correct position in the file, must use
 * lseek64() as the 64-bit offset value is necessary for
007-3524-004 135

E: Programming Methods for Real-Time Digital Media Recording and Playback
 * XFS filesystems larger than 2 gigabytes
 */
 if (lseek64(ioFileFD, dataOffset, SEEK_SET) != dataOffset)
 return(DM_FAILURE);

 /* write the I/O vector to disk */
 if (writev(ioFileFD, videoData, ioVecCount) < 0)
 return(DM_FAILURE);

 /* the dmbuffers are managed as a ring buffer,
 * dmbuffer_free_index points to the next free buffer */
 for (i=0, dmbuffer_free_index = (dmbuffer_index - 1);
 i < iov_index; i++, dmbuffer_free_index--) {
 if (dmbuffer_free_index < 0)
 dmbuffer_free_index = dmbuffer_max_index;

 dmBufferFree(dmBuffers[dmbuffer_free_index]);
 }

 /* write the QuickTime movie offset data */
 if (mvFormat == MV_FORMAT_QT) {
 last_index = first_index + iov_index;
 if (write_qt_offset_data() == DM_FAILURE)
 return(DM_FAILURE);
 }

 /* reset the I/O vector index */
 iov_index = 0;
 }
 vlXferCount++;
 }
 else {
 fprintf(stderr, “cannot get a valid DM buffer: %s\n”,
 vlStrError(vlErrno));
 }
 break;

The example for reading data from disk can be found in
/usr/share/src/dmedia/tools.
136 007-3524-004

Multiprocessing
Multiprocessing

Some aspects of digital media programming lend themselves to a multiprocessing
programming model. On a multiprocessor system, the various tasks of moving multiple
streams of video and audio data on and off disk, serial I/O control of external video
equipment and input devices, processing of video data, or the transport of video data in
and out of the graphics framebuffer can be assigned to different processors. New
processes must be created with all virtual space attributes (shared memory, mapped files,
data space) shared. The following fragment illustrates how to create a process to perform
video recording.

if ((video_recorder_pid = sproc(video_recorder, PR_SADDR|PR_SFDS))<0){
 perror(“video_recorder”);
 exit(DM_FAILURE);
}

If you use multiprocessing, note the following caveats:

• When VL calls are made, VL objects such as VLServer, VLPath, VLNode, and so on,
are passed through the kernel to the video driver. However, you cannot create any
VL objects without first creating a VLServer, from which everything else is
instanced.

• In a process share group, only one VL call whose arguments derive from a VLServer
can execute at a time. This requirement applies even to VL calls that do not
explicitly take a VLServer as an argument (for example, vlBufferAdvise(3dm)).

• You can use objects derived from a given VLServer in any number of threads as
long as you use a locking scheme, such as usnewsema(3P) or
pthread_mutex_init(3P), to make the use in each thread mutually exclusive of a use
in any of the other threads.

The VL error state, returned by vlGetErrno(3dm), is global to a share group, not per
VLServer. If a VL call using one VLServer in one thread executes simultaneously with a
VL call using another VLServer in another thread, both calls try to set the error state
returned by vlGetErrno(). This call should be global only to the thread, not to the entire
process share group.
007-3524-004 137

E: Programming Methods for Real-Time Digital Media Recording and Playback
Asynchronous I/O

Asynchronous I/O allows an application to process multiple read or write requests
simultaneously. On SGI platforms, asynchronous I/O is available through the aio
facility. This facility, based on sproc(2)’ed processes, provides all of the benefits of
multiprocessing for free. Because multiple I/O requests might be outstanding, when you
use asynchronous I/O, the round-trip delay between making a request, having it
serviced, and issuing another request is removed. Any process-scheduling delay
between these steps is also eliminated.

Because asynchronous I/O operations complete out of sequence, the application must
keep track of the order in which data appears in the DMbuffers. DMbuffers are contained
in a DMbufferPool; the pool itself is unordered and buffers can be obtained and returned
to the pool in any order. Ordering is achieved by a first-in-first-out queue and maintained
only while the buffers reside in the queue. The application is free to impose any
processing order once buffers are dequeued.

File Formats

Each time a DMbuffer is written to disk, an offset must be recorded for the QuickTime
file.

MVid theMovie;
MVid mvImageTrack;
off64_t mvFieldGap= bytesPerXfer - vlBytesPerImage;
MVtimescale mvImageTimeScale=MV_IMAGE_TIME_SCALE_NTSC;
int mvFrameTime = 1001; /* for NTSC */
off64_t meta_data_offset;
int mv_frame_index;
MVframe mv_dummy_offset;
int i;

mvInsertTrackDataAtOffset(
 mvImageTrack,
 1,
 (MVtime) (i * mvFrameTime),
 (MVtime) mvFrameTime,
 mvImageTimeScale,
 (off64_t) meta_data_offset,
 vlBytesPerImage,
 MV_FRAMETYPE_KEY,
 0)
138 007-3524-004

File Formats
/* get the index for the libmovie data corresponding to this field.
 * this is necessary in order to set the gap and field sizes for the
 * fields in the frame.*/
mvGetTrackDataIndexAtTime(
 mvImageTrack,
 (MVtime) (i * mvFrameTime),
 mvImageTimeScale,
 &mv_frame_index,
 &mv_dummy_offset)

/* tell libmovie the field gap and sizes for each field in the frame */
mvSetTrackDataFieldInfo(
 mvImageTrack,
 mv_frame_index,
 vlBytesPerImage, /* absolute size of field 1 */
 mvFieldGap, /* gap between fields */
 vlBytesPerImage) /* absolute size of field 2 */

When data recording completes, the following function must be called to close the
QuickTime file properly.

write_qt_file_header(void)
{
 int flags;

 /* if direct I/O mode is enabled, disable it because the
 * movie library does not do direct I/O
 */
 if (ioFileFD) {
 fsync(ioFileFD);
 flags = fcntl(ioFileFD, F_GETFL);
 flags &= ~FDIRECT;
 if (fcntl(ioFileFD, F_SETFL, flags) < 0) {
 fprintf(stderr,“unable to reset direct I/O file status\n”);
 return(DM_FAILURE);
 }
 }

 if (mvClose(theMovie) == DM_FAILURE) {
 fprintf(stderr, “unable to write movie file header %s\n”,
 mvGetErrorStr(mvGetErrno()));
 return(DM_FAILURE);
 }
}

007-3524-004 139

Appendix F

F. DV and DVCPRO Standards

DVCPRO is based on the original DV consumer-based video format. This appendix gives
an overview of both the DV and DVCPRO digital video formats. It also compares various
available video formats in the industry. This appendix consists of these sections:

• “DV Standard” on page 141

• “DVCPRO Standard” on page 145

• “DV Technology Comparison” on page 146

DV Standard

DV is a ubiquitous video format developed by the HD Digital VCR Consortium, which
is composed of more than 50 companies, including Sony, Matsushita, Philips, Thomson,
Toshiba, Hitachi, JVC, Sanyo, Sharp, and Mitsubishi. See the “Specifications of
Consumer-Use Digital VCRs Using 6.3 mm Magnetic tape” (distributed to Consortium
members) for complete details of DV.

The DV initial specification was introduced on July 1, 1993, and now covers both
Standard Definition (SD) and High Definition (HD). Table F-1 shows some SD
specifications; Table F-2 shows audio recording method specifications.
007-3524-004 141

F: DV and DVCPRO Standards
DV Sampling

DV supports 4:1:1 for 525/60 and 4:2:0 for 625/50. The bit rate is kept constant and is
dependent on luminance sampling structure, quantization depth, ratio of luminance to
color difference samples, number of frames per second, and the compression ratio (5:1
for DV).

Note: For sampling pattern illustrations and descriptions, see “Sampling Patterns” on
page 105 in Appendix C.

Table F-1 DV Specifications: General

Specification Value

Sampling frequency Y: 13.5 MHz
Cb, Cr: 6.75 MHz

Quantization 8-bit

Compression ratio 5:1

Video rate 25 Mbps

Recording time Standard DV: 270 minutes
Mini DV: 60 minutes

Digital compression method Discrete Cosine Transform (DCT)

Table F-2 DV Specifications: Audio Recording Method

Specification Value

PCM Digital 2CH 2CH 2CH 4CH

Sampling frequency 48 KHz 44.1 KHz 32 KHz 32 KHz

Quantization 16-bit 16-bit 16-bit 12-bit
142 007-3524-004

DV Standard
DV Compression

Figure F-1 summarizes the compression process used in DV.

Figure F-1 DV Compression

The steps performed by DV are as follows:

1. Pixels are assembled into appropriate blocks.

2. DCT is applied to each block.

3. Macroblocks of six DCT blocks are formed. These macroblocks are then selected at
various places of the picture (hence the shuffling process) and categorized into
classes of importance.

This method better preserves the fine details of the picture throughout the entire
frame.

4. DV applies the popular compression method Discrete Cosine Transform (DCT) to
each macroblock.

The assembling process combines four luminance blocks with two chrominance
blocks (4:1:1 or 4:2:0) to form a macroblock. Five macroblocks are selected from five
different regions in a picture to form a video segment. DCT is applied to each
macroblock.

This mathematical formula transforms each block’s pixel signal levels into
frequency domain coefficients. The coefficients are quantized at different levels to
achieve the best compression without affecting quality. The rate control process
makes sure a constant bit rate is achieved by varying the quantization scale.

5. Variable-length coding (VLC, or Huffman encoding) is applied to shorten the data
length. Deshuffling puts VLC-coded data into 77-byte packets. Highly detailed
macroblocks requiring more data space might use other less-detailed macroblocks
to store information.

DCT blocking and shuffling DCT quantization

Rate control

Variable-length codingAdaptive Framing and deshuffling
007-3524-004 143

F: DV and DVCPRO Standards
Overall, this compression process differs from MPEG or M-JPEG compression in these
ways:

• DV compresses a picture using only intraframe, and each frame is compressed to a
fixed size. This method makes editing easier.

• Intraframe avoids all motion artifacts associated with interframe coding, a trade-off
for its higher bandwidth requirement and a lower compression ratio.

On one hand, considerable effort was expended to make MPEG codec nonsymmetrical:
the encoder is significantly more complex than the decoder, making distribution
appropriate. On the other hand, DV is designed to be symmetrical, compact, and
cost-effective. The same chipset can perform both compression and decompression.

For tape requirements, DV uses 1/4-inch wide tapes at a track pitch of 10 µm. Each track
has four primary data areas:

• Insert and track information (ITI): this section includes location information, track
pitch, servo information, and the application ID of a track (APT). The APT indicates
the data structure of that particular track.

• Audio: this section contains audio information, audio auxiliary data, and an APT.

• Video: compressed video data, video auxiliary data, and an APT are stored in this
section.

• SubCode: SMPTE/EBU time code, absolute track number, and APT are stored here.

Additional space (editing guard bands) is also included between each of the areas
discussed above.

A 525/60 system has 10 tracks per frame; a 625/50 system has 12 tracks per frame. Each
track corresponds to a horizontal band of the picture.

For audio, DV allows several modes:

• The 48-KHz mode captures two channels of AES/EBU professional digital audio
using 16-bit linear samples.

• Two channels are also possible for 44.1 KHz and 32 KHz, also using 16-bit linear
samples.

• A four-channel mode is available for 32 KHz, using 12-bit nonlinear samples. The
audio is divided into frames, which are grouped onto video tracks. For example, in
525/60, channel 1 audio is grouped on tracks 0-4, and channel 2 audio is grouped
on tracks 5-9.
144 007-3524-004

DVCPRO Standard
DVCPRO Standard

Developed by Panasonic, DVCPRO is a nonproprietary video format standard for the
production, broadcast, and distribution of digital television video. It is also known as
SMPTE D-7; see that documentation for full details of the DVCPRO video format.

DVCPRO is built on the DV format (6.35 mm), but is simpler and thus more suitable for
the professional and broadcast markets. Instead of metal evaporated tape, metal particle
tape is used. Track pitch is increased from 10 microns (DV) to 18 microns. Tape speed is
increased from ~18.8 mm per second to ~33.8 mm per second.

As a subset of DV, DVCPRO uses the same video compression method as DV for 525/60.
The video signal is sampled at 13.5 MHz for luminance (Y) and 6.75 MHz for color
differences (Cb and Cr). Then the sampled video data is compressed via DCT, 8-bit
quantization, and VLC.

Audio is recorded via two 16-bit audio channels at 48 KHz, synchronous with video. In
addition, another cue audio track is included to allow intelligible audio during variable
play speeds. A control track is also added to help minimize tape preroll and more
accurate frame editing.

For 625/50, DVCPRO uses a 4:1:1 sampling structure instead of 4:2:0 as used in DV. The
DIVO-DVC option board supports 4:1:1 sampling for both 525/60 and 625/50, and
supports 4:2:0 625/50 for DV video format. VITC carries additional information and is
recorded in the subcode and video auxiliary regions, like DV.

Despite its tape-oriented technology, DVCPRO, like DV, is an open format designed for
use with nonlinear editors and server-based systems. As with DV, DVCPRO has a 4X
transfer speed record-and-play capability.

DVCPRO for 525/60 is backward-compatible with DVC; you can play 525/60 DVC tape
on a DVCPRO tape deck.

At 25 Mbps and using a 4:1:1 sampling structure, which yields a 5:1 compression ratio,
the DIVO-DVC board can accomplish a wide range of work flexibly and cost-effectively.
007-3524-004 145

F: DV and DVCPRO Standards
For information on DVCPRO, see

• Proposed SMPTE standard 305M for Television - Serial Data Transport Interface

• Proposed SMPTE Standard 306M for Television Digital Recording — 6.35-mm Type
D-7 Component Format — Video Compression at 25 Mb/s — 525/60 and 625/50

• Proposed SMPTE Standard SMPTE xxxx for Television Data Stream Format for the
Exchange of DV Based Audio, Data and Compressed Video over a Serial Data
Transport Interface (SDTI)

SMPTE’s web site is http://www.smpte.org/.

DV Technology Comparison

Table F-3 compares DVT options.

Table F-3 DV Technology Comparison

Feature
DV (Sony, JVC,
Panasonic) DVCam (Sony)

DVCPRO
(Panasonic)

DIGITAL-S
(JVC)

DVCPRO50
(Panasonic)

Bit rate (Mbps) 25 25 25 50 50

525/60 subsampling 411 411 411 422 422

625/50 subsampling 420 420 411 422 422

525/60 frame size 720 x 480 720 x 480 720 x 480 720 x 480 720 x 487.5

625/50 frame size 720 x 576 720 x 576 720 x 576 720 x 576 720 x 583.5

16:9 display Not on all models Yes Yes Yes Yes

Extended play (12.5 Mpbs) Yes No No No No

Audio frequency (KHz) 32, 44.1, 48 32, 48
(44.1 nonpro mode)

48 48 48

Audio mode Locked and unlocked Unlocked/locked Locked Locked Locked

Audio channels 2 2 and 4 2 2 4

Aux packs Main Main, timecode, take,
mark in/out, reel, scene, ok

Main,
timecode

Main,
timecode

Main,
timecode
146 007-3524-004

DV Technology Comparison
Tape type ME ME MP MP MP

Track pitch (µm) 10 15 18 (plays
10+15)

20 18 (plays
10+15)

Tape speed (min/sec) 18.8 29.193 33.8 57.737 525: 67.640
625:67.708

Table F-3 (continued) DV Technology Comparison

Feature
DV (Sony, JVC,
Panasonic) DVCam (Sony)

DVCPRO
(Panasonic)

DIGITAL-S
(JVC)

DVCPRO50
(Panasonic)
007-3524-004 147

Appendix G

G. GPI Interface (DIVO Option Only)

For each video pipe of the DIVO option board, the General Purpose Interface (GPI)
provides two channels of input and output trigger signal pairs. This appendix explains

• “GPI Headers (DIVO Option Board Only)” on page 150

• “GPI Receiver, Switch Closure Mode, and Current Sense Mode” on page 152

Note: This appendix is pertinent to the DIVO option board only; the information in it
does not apply to the DIVO-DVC option board.
007-3524-004 149

G: GPI Interface (DIVO Option Only)
GPI Headers (DIVO Option Board Only)

The DIVO board has two GPI headers. Each GPI header (row of four pins) configures one
of four receiver channels: two channels for GPI in and two channels for GPI out.
Figure G-1 shows the location of the jumper pins on the DIVO option board.

Figure G-1 GPI Jumper Locations (Factory Setting), DIVO Option Only

Note: This information on GPI jumpers pertains to the DIVO option board only; it does
not apply to the DIVO-DVC option board.

Note that the jumpers for the OUT GPI connector are near the OUT GPI mini-DIN
connector, while the jumpers for the IN GPI connector are relatively far away from the IN
GPI connector.

For the factory setting of switch closure mode, two jumpers are factory-installed,
shorting pins 1-2 and pins 3-4. These jumpers need not be moved unless you wish to use
current sense mode. You can choose to mix the modes for the various channels. This
reconfiguration is typically performed by a SGI System Service Engineer when the DIVO

IN GPI
Jumpers

OUT GPI
Jumpers
150 007-3524-004

GPI Headers (DIVO Option Board Only)
board is installed in the chassis. Switch closure and current sense modes are explained in
“GPI Receiver, Switch Closure Mode, and Current Sense Mode” on page 152.

Figure G-2 shows GPI headers and jumpering. The printed circuit board (PCB) reference
designators are included to aid identification of the header associated with each GPI
receiver channel.

Figure G-2 Example GPI Interface (DIVO Option Only)

Note: This information on GPI jumpers pertains to the DIVO option board only; it does
not apply to the DIVO-DVC option board.

For information on VL controls for configuring the GPI ports, see “VL Support for the
General-Purpose Interface (GPI)” in Chapter 2. For information on the GPI connectors
and transmitter, see “GPI Interface” in Appendix A.

C4J7
(channel 1)

Pin 1

Pin 1

Pin 1 Pin 1

OUT GPI IN GPI

Current Sense Switch Closure

Jumper across 2-3 Jumpers across 1-2 and 3-4

C4J9
(channel 0)

A9H8
(channel 1)

A2H8
(channel 0)
007-3524-004 151

G: GPI Interface (DIVO Option Only)
GPI Receiver, Switch Closure Mode, and Current Sense Mode

GPI contact closure receive (CCR) inputs use an optical isolator device to provide a
means of electrical isolation from source equipment. The device consists of a
bidirectional input LED optically coupled to a bipolar transistor. A voltage pulse applied
across the CCR+/- pins causes the LED to become forward-biased and to produce a GPI
trigger to the computer.

Table G-1 summarizes electrical specifications for the GPI receiver optoisolator.

Depending on jumpering (see “GPI Headers (DIVO Option Board Only)” on page 150),
the DIVO board GPI receiver can be set to switch closure or current sense mode, as
discussed in these sections:

• “GPI Receiver Switch Closure Mode (Factory Setting)” on page 153

• “GPI Receiver Current Sense Mode (DIVO Option Board Only)” on page 154

Note: Setting the board for current sense mode is possible only for the DIVO option
board, and only at the time of installation. Current sense mode does not apply to the
DIVO-DVC option board.

Table G-1 GPI Receiver Input Optoisolator

Parameter Value

Forward voltage (VF) 1.55 V, 1.2 V typical (IF = 10 mA)

Continuous forward current (IF) 30 mA

Peak forward current 1000 mA (10 us duration, 1% DC)

Reverse current (IR) 0.1 uA, 100 uA maximum (VR = 6 V)

Isolation surge voltage (V10) 2500 VACRMS (t = 1 min)
152 007-3524-004

GPI Receiver, Switch Closure Mode, and Current Sense Mode
GPI Receiver Switch Closure Mode (Factory Setting)

Figure G-3 shows switch closure jumpering, which creates a digital pulse.

Figure G-3 Jumpering for GPI Switch Closure (Factory Setting)

In switch closure mode, the +5 V power supply and ground of the DIVO board are not
electrically isolated from the chassis of the source equipment.

For switch closure mode, the GPI receiver can be interfaced to the source equipment by
tying the CCR+ and CCR- terminals across the output terminals of an optoisolator,
solid-state relay, or any device that acts like a single-pole contact switch. A GPI trigger is
generated as long as the source switch is closed.

Note: Polarity of the CCR+/- signals must be observed for the source equipment in
switch closure mode.

32

41

Computer
trigger

Optoisolator

Jumper pins 1-2 and 3-4

0V +5V

470
CCR -

CCR +
007-3524-004 153

G: GPI Interface (DIVO Option Only)
GPI Receiver Current Sense Mode (DIVO Option Board Only)

Figure G-4 shows current sense jumpering.

Figure G-4 Jumpering for GPI Current Sense Mode, DIVO Option Only

Note: Setting the board for current sense mode is possible only for the DIVO option
board, and only at the time of installation. Current sense mode does not apply to the
DIVO-DVC option board.

In current sense mode, the DIVO board is electrically isolated from the chassis of the
source equipment.

For current sense mode, the CCR+ and CCR- signals can be interfaced by tying the CCR+
terminal to the output of a TTL or CMOS logic device, and by tying the CCR- terminal to
GND of the source equipment. Whenever the logic device is sourcing current (driving a
logic high), a GPI trigger is generated.

In current sense mode, the logic sense can be swapped (inverted) by moving the CCR-
signal from GND to the logic power supply (typically VCC) of the source equipment. The
CCR+ signal remains connected to the output of the logic device; however, in this
configuration an open collector type device can be used. Whenever the logic device is
sinking current (driving a logic low), a GPI trigger is generated.

32

41

Computer
trigger

Optoisolator

Jumper pins 2-3

0V +5V

CCR -

CCR +

470
154 007-3524-004

Index
Numbers

0 bit in packing, 81
4:1:1 sampling, 107
4:2:0 sampling, 108
4:2:2

format, 9
sampling, 106
video, converting, 107

4:2:2:4
connector usage, 64
control for setting, 25
format, and Links A and B, 9, 72
sampling, 106, 107

4:4:4
sampling, 106
video, converting, 107

4:4:4:4
connector usage, 64
control for setting, 25
format, and Links A and B, 9, 72
sampling, 106

A

aspect, control for, 23, 24
asynchronous I/O, 138
audio, 13

data conversion, 43-61
API, 46-60
library, 43-45

audio rate conversion library, 62

B

buffer, 18
audio converter instance, 46, 48, 59
examples, 131
I/O, 132-138
length parameters, audio conversion, 56
output, of dm ACConvert(), 55
pool, 21, 132

and data transfer, 21
Rice compression, 27
setting inline controls, 41
VITC, 39

C

capture type, control for, 23, 24
CCIR 601-2. See color space.
CCIR color space, 115
closed-caption

control, 23, 24
color space, 10, 109-111

compressed-range, 109-110
control, 23, 24
conversion, ??-130

math operations, 116
precision, 116
range, 117-119
007-3524-004 155

Index
converters, 10
full-range, 109-110

compressed-range color space, 109-110
compression, 26

control, 23, 24, 25
field display, 23, 24, 28

DV, 143-144
DV and DVCPRO for DIVO-DVC, 27-29
Rice, 27

control, 23, 25
control

determining for device, 22
device-dependent, 18
device-global, 18, 22-26
device-independent. See control, device-global.
DIVO/DIVO-DVC-specific, 18
inline, 41
prefix, 18
setting, 22
values and uses, 24-26

conventions, xvii
current sense, 154

D

decimation filter, 11
device, 18

controls, 22-26
determining, 22

digital video drain, setting up, 74
digital video ports, 9-10
digital video source

setting up, 72-73
timing in panel, 73

direct I/O, 132-133
DIVO

audio, 13
board architecture, 5

compression, 26-27
connectors, 7

resistance, 7-8
controls for, 18, 22-26
digital video ports, 9-10
features, 2-3
functional block diagram, 9
I/O panel, 7, 71
LEDs, 7, 8
path, 20
ports, 9
setting up for hardware, 71-77

DIVO board
installing, 2

DIVO-DVC
audio, 13
board architecture, 6
compression, 26-29
connectors, 7

resistance, 7-8
controls for, 18, 22-26
digital video ports, 9-10
features, 2-4
functional block diagram, 9
I/O panel, 7
LEDs, 7, 8
path, 20
ports, 9

DIVO-DVC board
installing, 2

DMbuffer, 18
drain node. See node, drain.
dual-link mode, 9, 72-73
DV audio compression, 60
DV standard, 141-144, 146-147
DVCam, 146-147
DVCPRO audio compression, 60
DVCPRO standard, 145-147
156 007-3524-004

Index
E

events, 39-40
external sync source, 8

F

field dominance, 32-35, 74
control, 23, 25

file formats, 138-139
filter

decimation, 11
interpolation, 11

format control, 23, 25
full-range color space, 109-110

G

GEN IN, 8, 65
GEN OUT, 8, 65
general-purpose interface. See GPI.
genlock, 65

interface, 8
GPI

control, 23, 25
hardware, 65-70, 149-154
interface, 8
pinouts, 66
programming, 36-38
receiver, 69-70, 152-154

interfacing, 153
transmitter, 67-68

interfacing, 68
graphics to video, 42
GVO graphics option, 1, 42

H

headroom-range color space. See compressed-range
color space.

I

Installation, 2
interpolation filter, 11
I/O

asynchronous, 138
direct, 132-133
panel, 7
scatter/gather, 134-136

K

kind, 19

L

LEDs, 7, 8
LINK A, 9, 72

interface, 7
transfer mode usage, 64

LINK B, 9, 72
interface, 7
transfer mode usage, 64

linking, 16
loopback control, 23, 24
loopthrough for genlock input, 8, 65

M

MSC (media stream count), 3, 42
multiprocessing, 137
007-3524-004 157

Index
N

node, 17, 18, 19-20
drain, 17, 19
source, 17, 19

number, 19

O

offset control, 23, 25
Onyx 3000

installing in, 2
Onyx2

installing in, 2
OpenGL to read pixels into memory, 42
Origin 200 GIGAchannel

installing in, 2
Origin 2000

installing in, 2
Origin 3000

installing in, 2
origin, different in OpenGL and video, 42
Orion utility, 12-13

P

packing, 79-105
0 bit, 81
16-bit, 87-88
20-bit, 89
24-bit, 90-91
32-bit, 92-98
36-bit, 99
48-bit, 100-101
64-bit, 102-105
8-bit, 85-86
control, 23, 25

native to DIVO, 82
sampling pattern, 80
SDTI, 99
x bit, 81

panel, 72-77
callup, 72
Digital Video Drain, 74
Digital Video Source, 73
external sync source, 76
restoring settings, 77
saving settings, 77

path, 17, 18, 20

R

Receiving, 31
Reed-Solomon error correction code, 31
return loss for IN connectors, 63
RGB, 109, 114

See also color space.
Rice compression, 27

control, 23, 25
RP-175 compressed RGB, 115

S

sampling pattern, 105-108
and DV, 142
and packing, 80

scatter/gather I/O, 134-136
SDTI, 11, 29-35

control, 23, 26
header, 29-30
packing, 99
SMPTE standard, 11, 146

SDTI DV
receiving, 31
158 007-3524-004

Index
sending, 31
serial data transport interface. See SDTI.
size control, 23, 26
SMPTE standards, 11, 146
source node. See node, source.
specifications, 63-64
switch closure, 153
sync

connectors, 8, 65
control, 23, 26
setting up, 75-76
source control, 23, 26

T

timing control, 23, 26
triggering, 38

control, 23, 26
type, 19

U

UST (unadjusted system time), 3

V

vcp, 71-77
callup, 72

vcp
See also panel.

Video Library. See VL.
VITC, 39
VL

central concepts, 17
data transfer functions summarized, 21
header files, 16

object classes, 18
path, 17
requirements for running, 16

VL_ANY, 19
VL_ASPECT, 23, 24
VL_CAP_TYPE, 23, 24
VL_COLORSPACE, 23, 24
VL_COMPRESSION, 23, 24
VL_DIVO_CLOSED_CAPTION, 23, 24
VL_DIVO_FIELD_DISPLAY, 23, 24, 28
VL_DIVO_LOOPBACK, 23, 24
VL_FIELD_DOMINANCE, 23, 25, 32-35
VL_FORMAT, 23, 25
VL_GPI_OUT_MODE, 23, 25, 36-37
VL_GPI_STATE, 23, 25, 37
VL_MEM, 19
VL_OFFSET, 23, 25
VL_PACKING, 23, 25
VL_PACKING_0444_8, 94
VL_PACKING_242_10, 89
VL_PACKING_242_10_in_16_L, 97
VL_PACKING_242_10_in_16_R, 97
VL_PACKING_242_8, 87
VL_PACKING_2424_10_10_10_2Z, 96
VL_PACKING_4_8, 85
VL_PACKING_444_10_in_16_L, 101
VL_PACKING_444_12, 99
VL_PACKING_444_332, 86
VL_PACKING_444_5_6_5, 88
VL_PACKING_444_8, 80, 90
VL_PACKING_4444_10_10_10_2, 95
VL_PACKING_4444_10_in_16_L, 102
VL_PACKING_4444_10_in_16_R, 103
VL_PACKING_4444_12, 100
VL_PACKING_4444_12_in_16_L, 103
007-3524-004 159

Index
VL_PACKING_4444_12_in_16_R, 104
VL_PACKING_4444_13_in_16_L, 104
VL_PACKING_4444_13_in_16_R, 105
VL_PACKING_4444_6, 91
VL_PACKING_4444_8, 80, 92
VL_PACKING_R0444_8, 93
VL_PACKING_R242_10, 89
VL_PACKING_R242_10_in_16_L, 98
VL_PACKING_R242_10_in_16_R, 98
VL_PACKING_R242_8, 87
VL_PACKING_R2424_10_10_10_2Z, 96
VL_PACKING_R444_332, 86
VL_PACKING_R444_8, 90
VL_PACKING_R4444_8, 93
VL_PACKING_SDTI_DV, 99
VL_PACKING_X4444_5551, 88
VL_RICE_COMP_PRECISION, 23, 25
VL_RICE_COMP_SAMPLING, 23, 25
VL_SDTI_HEADER, 23, 26
VL_SDTI_MODE, 23, 26
VL_SIZE, 23, 26
VL_SYNC, 23, 26
VL_SYNC_SOURCE, 23, 26
VL_TIMING, 23, 26
VL_TRANSFER_TRIGGER, 23, 26, 38
VL_VIDEO, 19
VL_ZOOM, 23, 26
V-LAN, 3
vlGetNode(), 19
vlinfo, 22
vlOpenVideo(), 17, 19
vlSetControl(), 20, 22

X

x bit in packing, 81
XIO board

installing, 2

Y

YUV, 109, 114
See also color space.

Z

zoom factor control, 23, 26
160 007-3524-004

	Contents
	List of Figures
	List of Tables
	About This Guide
	Audience
	Structure of This Guide
	Other Documents
	Conventions Used in This Guide
	Reader Comments

	DIVO and DIVO-DVC Features and Capabilities
	DIVO and DIVO-DVC Features
	DIVO-DVC Features
	DIVO and DIVO-DVC Board Architecture
	DIVO/DIVO-DVC Panel
	Digital Video Ports
	Color-Space Converters
	Serial Data Transport Interface (SDTI)
	Interpolation and Decimation Filters
	Orion Graphical V-LAN Control Utility
	DIVO/DIVO-DVC Audio

	Programming DIVO and DIVO-DVC
	VL Basics for DIVO and DIVO-DVC
	VL Concepts
	VL Syntax Elements
	VL Object Classes
	VL Nodes for DIVO and DIVO-DVC
	VL Data Transfer Functions

	DIVO/DIVO-DVC Controls
	Compression Through the VL
	Rice Compression
	DV and DVCPRO Compression for DIVO-DVC

	Programming the DIVO/DIVO-DVC Board for SDTI
	SDTI Data Structure
	Sending SDTI DV
	Receiving SDTI DV

	Setting Field Dominance
	VL Support for the General-Purpose Interface (GPI)
	Using VL_GPI_OUT_MODE
	Using VL_GPI_STATE
	Using VL_TRANSFER_TRIGGER

	VL Support for Vertical Interval Time Code (VITC)
	DIVO/DIVO-DVC Events
	Setting Inline Controls
	Capturing Graphics to Video
	Reporting

	Audio Data Conversion
	Digital Media Audio Conversion Library
	Using the Audio Conversion API
	Creating a Converter Instance
	Configuring a Converter Instance
	Source and Destination Parameters
	PCM Mapping Parameters
	Compression Parameters
	Compression Parameters Common to All Codecs
	DV Audio Parameters

	Conversion Parameters
	Processing Mode Parameter
	Buffer Length Parameters
	Dithering Parameter
	Rate Conversion Parameters
	Channel Conversion Parameter

	Converting Data Using a Converter Instance
	Destroying a Converter Instance
	DV Audio Compression Library
	Audio Rate Conversion Library

	Appendix�A
	DIVO/DIVO-DVC I/O Panel Connectors
	DIVO/DIVO-DVC Connectors
	Genlock
	GPI Interface
	GPI Connectors
	GPI Transmitter
	GPI Receiver

	Appendix�B
	Setting Up DIVO and DIVO-DVC for Your Video Hardware
	Setting Up Digital Source Video
	Setting Up the Output (Drain)
	Setting Up Sync
	Setting Up Internal Sync
	Setting Up External Sync

	Saving Settings

	Appendix�C
	Pixel Packings and Color Spaces
	DIVO/DIVO-DVC Pixel Packings
	Packings and Color Spaces
	Packing Diagram Conventions
	Packings and Library Tokens
	Packing Naming Conventions
	8-Bit Pixel Packings
	16-Bit Pixel Packings
	20-Bit Pixel Packings
	24-Bit Pixel Packings
	32-Bit Pixel Packings
	OpenGL-Like 32-Bit Pixel Packing
	IRIS GL-Like 32-Bit Pixel Packings
	32-Bit Pixel Packing for QuickTime
	4:4:4:4 10_10_10_2 32-Bit Pixel Packing
	4:2:2:4 10_10_10_2 32-Bit Pixel Packings
	4:2:2 10_in_16 32-Bit Pixel Packings
	SDTI Packing

	36-Bit Pixel Packing
	48-Bit Pixel Packings
	64-Bit Pixel Packings

	Sampling Patterns
	4:4:4 and 4:4:4:4 Sampling
	4:2:2 and 4:2:2:4 Sampling
	4:1:1 Sampling (DIVO-DVC Only)
	4:2:0 Sampling (DIVO-DVC Only)

	Color Spaces
	Determining the Color Space

	Appendix�D
	Color-Space Conversions
	DIVO/DIVO-DVC Color Spaces
	RGB
	YUV
	CCIR
	RP-175 Compressed RGB

	Mathematical Operations Performed During Conversions
	Implications of Color Space Conversions
	Precision of Color Conversions Done by DIVO/DIVO-DVC
	Range Issues For Color Conversions Done by Any Means

	Example Color Conversions
	Example 1: 100% Color Bars
	Example 2: Luminance Ramp
	Example 3: Simultaneous Chroma/Luma Ramp

	Appendix�E
	Programming Methods for Real-Time Digital Media Recording and Playback
	Direct I/O
	Scatter/Gather I/O
	Multiprocessing
	Asynchronous I/O
	File Formats

	Appendix�F
	DV and DVCPRO Standards
	DV Standard
	DV Sampling
	DV Compression

	DVCPRO Standard
	DV Technology Comparison

	Appendix�G
	GPI Interface (DIVO Option Only)
	GPI Headers (DIVO Option Board Only)
	GPI Receiver, Switch Closure Mode, and Current Sense Mode
	GPI Receiver Switch Closure Mode (Factory Setting)
	GPI Receiver Current Sense Mode (DIVO Option Board Only)

	Index

