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Using This Guide

How This Book Is Organized

This book is organized for easy navigation. For an easy-to-use chart on navigating
through this book, see Table i.

Chapter 1, “Alphabetical Listing of C and C++ Pragmas,” contains a table of all pragmas
in this book, arranged in alphabetical order. For each pragma there is a brief description,
along with a link to the chapter in which it is discussed.

Chapters 2 through 12 each contain descriptions of all of the pragmas within one
functional group. At the beginning of each chapter is a table listing all pragmas discussed
within the chapter (in alphabetical order), along with a short description, and a link to
the longer description. The titles of the chapters are as follows:

• Chapter 2, “C++ Instantiation Pragmas”

• Chapter 3, “Data Layout Pragmas”

• Chapter 4, “Distributed Shared Memory (DSM) Optimization Pragmas”

• Chapter 5, “Inlining Pragmas”

• Chapter 6, “Loader Information Pragmas”

• Chapter 7, “Loop Nest Optimization Pragmas”

• Chapter 8, “Multiprocessing Pragmas”

• Chapter 9, “Precompiled Header Pragmas”

• Chapter 10, “Scalar Optimization Pragmas”

• Chapter 11, “Warning Suppression Control Pragmas”

• Chapter 12, “Miscellaneous Pragmas”
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Using This Guide

Navigating Through This Guide

Table i describes the best way to navigate through this guide.

Table i Navigating Through This Guide

If you... Then start with... Which contains...

Know the name of the
pragma you wish to
look up.

Chapter 1, “Alphabetical
Listing of C and C++
Pragmas”

- An alphabetical table of all pragmas in
this book.

- A brief description of each pragma.

- A link to the chapter containing more
information.

Do not know the name
of the pragma, but do
know the functional
group to which it
belongs.

The table of contents A list of all chapters in the book. Pragmas
are broken down into functional groups,
with one group covered in each chapter.

Just want to browse. Chapter 1, “Alphabetical
Listing of C and C++
Pragmas”

- An alphabetical table of all pragmas in
this book.

- A brief description of each pragma.

- A link to the chapter containing more
information.

OR

The table of contents

A list of all chapters in the book. Pragmas
are broken down into functional groups
with one group covered in each chapter.
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Typographical Conventions Used in This Guide

The conventions used in this guide help make information easy to access and
understand. The following list defines the notation and syntax conventions:

[ ] (brackets) Enclose optional command arguments. Do not enter the
brackets.

. . . (ellipses) Indicates that the preceding optional items can appear more
than once in succession.

( ) (parentheses) Enclose items. Enter the text exactly as shown, including the
parentheses.

{ } (braces) Enclose items from which you must select exactly one. Do
not enter the braces.

| (vertical bar) Separates items from which you can choose one.

italic Indicates arguments in a command line that you must
replace with a valid value. In text, it is used to indicate
document titles, filenames, and variables. In code examples,
it is used to indicate variables.

courier Indicates computer output and program listings.

Bold Indicates command-line options.
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Chapter 1

1. Alphabetical Listing of C and C++ Pragmas

Table 1-1 is an alphabetical list of Silicon Graphics® supported pragmas, with a short
description of each and a link to the chapter where the pragma is discussed.

Table 1-1 Silicon Graphics Pragmas

#pragma Short Description Functional Group

aggressive inner loop fission Fission inner loops into as many
loops as possible.

Chapter 7, “Loop Nest
Optimization Pragmas”

align_symbol Specifies alignment of user
variables, typically at cache-line
or page boundaries.

Chapter 3, “Data Layout
Pragmas”

blocking size Sets the blocksize of the
specified loop that is involved in
a blocking for the primary
(secondary) cache.

Chapter 7, “Loop Nest
Optimization Pragmas”

can_instantiate Indicates that the specified
declaration can be instantiated
in the current compilation, but
need not be.

Chapter 2, “C++
Instantiation Pragmas”

copyin Copies the value from the
master thread's version of an
-Xlocal-linked global variable
into the slave thread's version.

Chapter 8,
“Multiprocessing
Pragmas”

critical Protects access to critical
statements.

Chapter 8,
“Multiprocessing
Pragmas”

distribute Specifies data distribution. Chapter 4, “Distributed
Shared Memory (DSM)
Optimization Pragmas”
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Chapter 1: Alphabetical Listing of C and C++ Pragmas

distribute_reshape Specifies data distribution with
reshaping.

Chapter 4, “Distributed
Shared Memory (DSM)
Optimization Pragmas”

do_not_instantiate Prevents instantiation of the
specific declaration in this
compilation unit, even if that
instance is used in the code.

Chapter 2, “C++
Instantiation Pragmas”

dynamic Tells the compiler that the
specified array may be
redistributed in the program.

Chapter 4, “Distributed
Shared Memory (DSM)
Optimization Pragmas”

enter gate Indicates the point that all
threads must clear before any
threads are allowed to pass the
corresponding #pragma exit
gate.

Chapter 8,
“Multiprocessing
Pragmas”

exit gate Stops threads from passing this
point until all threads have
cleared the corresponding
#pragma enter gate.

Chapter 8,
“Multiprocessing
Pragmas”

fill_symbol Tells the compiler to insert any
necessary padding to ensure
that the user variable does not
share a cache-line with any other
symbol.

Chapter 3, “Data Layout
Pragmas”

fission Fission the enclosing specified
levels of loops after this pragma.

Chapter 7, “Loop Nest
Optimization Pragmas”

fissionable Disables validity testing. Chapter 7, “Loop Nest
Optimization Pragmas”

fusable Disables validity testing. Chapter 7, “Loop Nest
Optimization Pragmas”

fuse Fuse the following specified
number of loops, which must be
immediately adjacent.

Chapter 7, “Loop Nest
Optimization Pragmas”

Table 1-1 Silicon Graphics Pragmas

#pragma Short Description Functional Group
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hdrstop Indicates the point at which the
precompiled header mechanism
snapshots the headers. If –pch is
off, #pragma hdrstop is ignored.

Chapter 9, “Precompiled
Header Pragmas”

hidden Tells the compiler that the
specified symbols are invisible
to all executables or DSOs except
the current one.

Chapter 6, “Loader
Information Pragmas”

ident Adds a .comment section in the
object file and puts the revision
string inside the .comment
section.

Chapter 12,
“Miscellaneous
Pragmas”

independent Tells the compiler to run an
independent code section in
parallel with the rest of the code
in the parallel region.

Chapter 8,
“Multiprocessing
Pragmas”

inline {here|routine|global}] Tells the compiler to inline the
named functions. Keywords:
here (next statement only),
routine (rest of routine or until
corresponding noinline is
found), and global (entire file, or
until corresponding noinline is
found).

Chapter 5, “Inlining
Pragmas”

instantiate Causes a specified instance of a
template declaration to be
immediately instantiated at that
spot.

Chapter 2, “C++
Instantiation Pragmas”

int_to_unsigned Identifies the specified function
name as a function whose type
was int in a previous release of
the compilation system, but
whose type is unsigned int in
the MIPSpro™ compiler release.

Chapter 12,
“Miscellaneous
Pragmas”

Table 1-1 Silicon Graphics Pragmas

#pragma Short Description Functional Group
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Chapter 1: Alphabetical Listing of C and C++ Pragmas

internal Tells the compiler that the
specified symbols are not
referenced outside the current
executable or DSO.

Chapter 6, “Loader
Information Pragmas”

intrinsic Allows certain preselected
functions from math.h, stdio.h,
and string.h to be inlined at a
callsite for execution efficiency.

Chapter 12,
“Miscellaneous
Pragmas”

ivdep Liberalizes dependence
analysis. This applies only to
inner loops. Given two memory
references, where at least one is
loop variant, ignore any
loop-carried dependences
between the two references.

Chapter 7, “Loop Nest
Optimization Pragmas”

local Tells the compiler the names of
all the variables that must be
local to each thread.

Chapter 8,
“Multiprocessing
Pragmas”

mips_frequency_hint {NEVER|INIT} Specifies the expected frequency
of execution so the compiler can
move exception code and
initialization code into separate
pages to minimize working set
size.

Chapter 10, “Scalar
Optimization Pragmas”

no blocking Prevents the compiler from
involving this loop in cache
blocking.

Chapter 7, “Loop Nest
Optimization Pragmas”

no_delete Inhibits deletion of functions
that are never referenced.

Chapter 7, “Loop Nest
Optimization Pragmas”

no fission Keeps the following loop from
being fissioned. Its innermost
loops, however, are allowed to
be fissioned.

Chapter 7, “Loop Nest
Optimization Pragmas”

no fusion Keeps the following loop from
being fused with other loops.

Chapter 7, “Loop Nest
Optimization Pragmas”

Table 1-1 Silicon Graphics Pragmas

#pragma Short Description Functional Group
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no interchange Prevents the compiler from
involving the loop directly
following this pragma (or any
loop nested within this loop) in
an interchange.

Chapter 7, “Loop Nest
Optimization Pragmas”

no side effects Tells the compiler to assume that
all of the named functions are
safe to execute concurrently.

Chapter 8,
“Multiprocessing
Pragmas”

no_pch Disables the precompiled
header mechanism.

Chapter 9, “Precompiled
Header Pragmas”

noinline {here|routine|global} Tells the compiler not to inline
the named functions. Keywords:
here (next statement only),
routine (rest of routine or until
corresponding inline is found),
and global (entire file, or until
corresponding inline is found).

Chapter 5, “Inlining
Pragmas”

once Ensures (in -n32 and –64 mode)
that each include file is included
at most one time in each
compilation unit.

Chapter 9, “Precompiled
Header Pragmas”

one processor Causes next statement to be
executed on only one processor.

Chapter 8,
“Multiprocessing
Pragmas”

optional Tells the linker that the specified
symbols are optional. This is the
basic mechanism used for
adding extensions to a library
that can then be queried.

Chapter 6, “Loader
Information Pragmas”

Table 1-1 Silicon Graphics Pragmas

#pragma Short Description Functional Group
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Chapter 1: Alphabetical Listing of C and C++ Pragmas

pack Controls the layout of structure
offsets, such that the strictest
alignment for any structure
member will be n bytes, where n
is 0, 1, 2, 4, 8, or 16. When n is 0,
the compiler returns to default
alignment for any subsequent
struct definitions.

Chapter 3, “Data Layout
Pragmas”

page_place Controls the placement of data
on a DSM (distributed shared
memory) machine.

Chapter 4, “Distributed
Shared Memory (DSM)
Optimization Pragmas”

parallel Starts a parallel region. Chapter 8,
“Multiprocessing
Pragmas”

pfor Marks a for loop to run in
parallel.

Chapter 8,
“Multiprocessing
Pragmas”

prefetch Controls prefetching for each
level of the cache.

Chapter 7, “Loop Nest
Optimization Pragmas”

prefetch_manual Specifies whether manual
prefetches (through pragmas)
should be respected or ignored.

Chapter 7, “Loop Nest
Optimization Pragmas”

prefetch_ref Generates a prefetch and
connects it to the specified
reference (if possible).

Chapter 7, “Loop Nest
Optimization Pragmas”

prefetch_ref_disable Explicitly disables prefetching
for the specified reference.

Chapter 7, “Loop Nest
Optimization Pragmas”

protected Tells the compiler that the
specified symbols are not
preemptible.

Chapter 6, “Loader
Information Pragmas”

redistribute Specifies dynamic data
redistribution.

Chapter 4, “Distributed
Shared Memory (DSM)
Optimization Pragmas”

Table 1-1 Silicon Graphics Pragmas

#pragma Short Description Functional Group
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reset woff Resets listed warnings to the
state specified in the command
line.

Chapter 11, “Warning
Suppression Control
Pragmas”

section_gp Causes an object to be placed in
a gp_relative section.

Chapter 6, “Loader
Information Pragmas”

section_non_gp Keeps an object from being
placed in a gp_relative section.

Chapter 6, “Loader
Information Pragmas”

set chunksize Tells the compiler which values
to use for chunksize.

Chapter 8,
“Multiprocessing
Pragmas”

set numthreads Tells the compiler which values
to use for numthreads.

Chapter 8,
“Multiprocessing
Pragmas”

set schedtype Tells the compiler which values
to use for schedtype.

Chapter 8,
“Multiprocessing
Pragmas”

set woff Suppresses listed compiler
warnings.

Chapter 11, “Warning
Suppression Control
Pragmas”

shared Tells the compiler the names of
all the variables that the threads
must share.

Chapter 8,
“Multiprocessing
Pragmas”

synchronize Stops threads until all threads
reach this point. This pragma is
a classic barrier construct.

Chapter 8,
“Multiprocessing
Pragmas”

Table 1-1 Silicon Graphics Pragmas

#pragma Short Description Functional Group
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unroll Suggests to the compiler that n-1
copies of the loop body be added
to the inner loop. If the loop
following this pragma is an
inner loop, then it indicates
standard unrolling (version 7.2
and later). If the loop following
this pragma is not innermost,
then outer loop unrolling (unroll
and jam) is performed (version
7.0 and later).

Chapter 7, “Loop Nest
Optimization Pragmas”

weak weak_symbol = strong_symbol Sets weak_symbol to be an alias
for the function or data object
denoted by strong_symbol,
unless a defining declaration for
weak_symbol is encountered at
static link time. If encountered,
the defining declaration
preempts the weak denotation.

Chapter 6, “Loader
Information Pragmas”

weak weak_symbol Tells the link editor not to issue a
warning if it does not find a
defining declaration of
weak_symbol. Also allows the
overriding of a current
definition by a non-weak
definition.

Chapter 6, “Loader
Information Pragmas”

Table 1-1 Silicon Graphics Pragmas

#pragma Short Description Functional Group
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Chapter 2

2. C++ Instantiation Pragmas

Instantiation pragmas control the instantiation of specific template entities or sets of
template entities.

Table 2-1 lists the C++ instantiation pragmas covered in this chapter, along with a brief
description of each and the compiler versions in which the pragma is supported.

Table 2-1 C++ Template Instantiation

#pragma Short Description Compiler
Versions

“#pragma instantiate” Causes a specified instance of a
template declaration to be
immediately instantiated at that spot.

7.1 and later

“#pragma can_instantiate” Indicates that the specified declaration
can be instantiated in the current
compilation, but need not be.

7.0 and later

“#pragma do_not_instantiate” Prevents instantiation of the specific
declaration in this compilation unit,
even if that instance is used in the
code.

7.0 and later
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Chapter 2: C++ Instantiation Pragmas

#pragma instantiate

#pragma instantiate causes a specific instance of a template declaration to be
immediately instantiated at that spot.

Using #pragma instantiate

The syntax of the instantiate pragma is as follows:

#pragma instantiate entity

The argument, entity, can be any of the following:

The template definition of entity must be present in the compilation for an instantiation
to occur. If you use #pragma instantiate to explicitly request the instantiation of a class
or function for which no template definition is available, the compiler issues a warning.

The declaration needs to be a complete declaration of a function or a static data member,
exactly as if you had specified it for a specialization of the template.

The argument to an instantiation pragma cannot be a compiler-generated function, an
inline function, or a pure virtual function.

A template class name A<int>

A member function name A<int>::foo

A member function declaration void A<int>::foo(int, char)

A static data member name A<int>::name

A template function declaration char* foo(int, float)



#pragma instantiate
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A member function name (for example, A<int>::foo) can be used as an argument for a
#pragma instantiate directive only if it refers to a single, user-defined member function
that is not an overloaded function. Compiler-generated functions are not considered, so
a name can refer to a user-defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be instantiated
by providing the complete member function declaration, as the following example
shows:

char * A<int>::foo(int))

Note: Using the instantiate pragma to instantiate a template class is equivalent to
repeating the directive for each member function and static data member declared in the
class. When instantiating an entire class, you can exclude a given member function or
static data member by using the “#pragma do_not_instantiate” directive.
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Chapter 2: C++ Instantiation Pragmas

#pragma can_instantiate

The #pragma can_instantiate directive indicates that the specified entity can be
instantiated in the current compilation, but need not be. It is used in conjunction with
automatic instantiation to indicate potential sites for instantiation if the template entity
is deemed to be required by the compiler.

Using #pragma can_instantiate

The syntax of the can_instantiate pragma is as follows:

#pragma can_instantiate entity

The argument, entity, can be any of the following:

The template definition of entity must be present in the compilation for an instantiation
to occur. If you use #pragma can_instantiate to explicitly request the instantiation of a
class or function for which no template definition is available, the compiler issues a
warning.

The argument to a can_instantiate pragma cannot be a compiler-generated function, an
inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an argument for a
#pragma can_instantiate directive only if it refers to a single, user-defined member
function that is not an overloaded function. Compiler-generated functions are not
considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded member
functions can be instantiated by providing the complete member function declaration, as
shown in the following example:

char * A<int>::foo(int)

A template class name A<int>

A member function name A<int>::foo

A member function declaration void A<int>::foo(int, char)

A static data member name A<int>::name

A template function declaration char* foo(int, float)
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#pragma do_not_instantiate

The #pragma do_not_instantiate directive is the opposite of #pragma instantiate: if this
pragma is present, the compiler will not instantiate the specified declaration in this
compilation unit, even if you use that instance in your code.

Using #pragma do_not_instantiate

The syntax of the do_not_instantiate pragma is as follows:

#pragma do_not_instantiate entity

The argument, entity, can be any of the following:

The argument to a do_not_instantiate pragma cannot be a compiler-generated function,
an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an argument for
the #pragma do_not_instantiate directive only if it refers to a single, user-defined
member function that is not overloaded. Compiler-generated functions are not
considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded member
functions can be specified by providing the complete member function declaration, as
the following example shows:

char * A<int>::foo(int)

A template class name A<int>

A member function name A<int>::foo

A member function declaration void A<int>::foo(int, char)

A static data member name A<int>::name

A template function declaration char* foo(int, float)
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Chapter 3

3. Data Layout Pragmas

Table 3-1 lists the pragmas covered in this chapter, along with a short description of each
and the compiler versions in which the pragma is supported.

Table 3-1 Data Layout Pragmas

#pragma Short Description Compiler
Versions

“#pragma align_symbol” Specifies alignment of user variables, typically at
cache-line or page boundaries.

7.2 and later

“#pragma fill_symbol” Tells the compiler to insert any necessary
padding to ensure that the user variable does not
share a cache-line or page with any other
symbol.

7.2 and later

“#pragma pack” Controls the layout of structure offsets, such that
the strictest alignment for any structure member
will be n bytes, where n is 0, 1, 2, 4, 8, or 16. When
n is 0, the compiler returns to default alignment
for any subsequent struct definitions.

7.0 and later
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#pragma align_symbol

The #pragma align_symbol directive specifies the alignment of user variables, typically
at cache-line or page boundaries.

Using #pragma align_symbol

The syntax of the align_symbol pragma is as follows:

#pragma align_symbol (symbol, size)

The first argument to this pragma is a symbol. The symbol can be a global or automatic
variable, but it cannot be a formal parameter to a function, or an element of a structured
type such as a structure or array.

The second argument can be any one of the following:

• L1cacheline, a machine-specific first-level cache line size, typically 32 bytes

• L2cacheline, a machine-specific second-level cache line size, typically 128 bytes

• page, a machine specific page size, typically 16 Kilobytes

• a user-specified value, which must be a power of two

The align_symbol pragma aligns the start of symbol at the specified alignment boundary.

For global variables this pragma must be specified where the variable is defined. The
pragma is optional where the variable is declared.
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Cautions for Using #pragma align_symbol

When using the #pragma align_symbol directive, there are two points to keep in mind:

• The align_symbol pragma is ineffective for local variables of fixed-size symbols,
such as simple scalars or arrays of known size. The pragma is most effective for
stack-allocated arrays of dynamically determined size.

• A variable cannot have both “#pragma fill_symbol” and #pragma align_symbol
directives applied to it.

Example of #pragma align_symbol

The following code fragment illustrates the use of the align_symbol pragma:

int x; /* x is a global variable */

#pragma align_symbol (x, 32) /* x will start at a 32-byte boundary */

#pragma align_symbol (x, 2) /* Error: cannot request an alignment lower than
the natural alignment of the symbol. */
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#pragma fill_symbol

The #pragma fill_symbol directive tells the compiler to insert any necessary padding to
ensure that the user variable does not share a cache-line, page, or other specified block of
memory with any other symbol.

Using #pragma fill_symbol

The syntax of the fill_symbol pragma is as follows:

#pragma fill_symbol (symbol, size)

The first argument to this pragma is a symbol. The symbol can be a global or automatic
variable, but it cannot be a formal parameter to a function, or an element of a structured
type such as a structure or array.

The second argument can be any one of the following:

• L1cacheline, a machine-specific first-level cache line size, typically 32 bytes

• L2cacheline, a machine-specific second-level cache line size, typically 128 bytes

• page, a machine specific page size, typically 16 kilobytes

• a user-specified value that must be a power of two

The fill_symbol pragma pads the named symbol with additional storage so that the
symbol is assured not to overlap with any other data item within the storage of the
specified size. The additional padding required is heuristically divided between each end
of the specified variable.

For instance, a fill_symbol pragma for the L1cacheline guarantees that the specified
symbol will not suffer from false-sharing (multiple, unrelated symbols sharing the same
cache line) between multiple processors for the L1 cache line.

For global variables this pragma must be specified where the variable is defined. The
pragma is optional where the variable is declared.

A variable cannot have both #pragma fill_symbol and “#pragma align_symbol”
directives applied to it.
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Example of #pragma fill_symbol

The following code fragment illustrates the use of #pragma fill_symbol:

double y; /* y is a global or local variable */

#pragma fill_symbol (y, L2cacheline) /* Allocates extra storage both before
and after y so that y is within an
L2cacheline (128 bytes) all by
itself. */
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#pragma pack

This pragma controls the layout of structure offsets. The strictest alignment for any
structure member is the specified number of bytes (1, 2, 4, 8, or 16).

Using #pragma pack

The syntax of the pack pragma is as follows:

#pragma pack (n)

The pack pragma works according to the following rules:

• A struct type defined in the scope of a #pragma pack has at most an alignment of n
bytes, where n is 0, 1, 2, 4, 8, or 16. When n is 0, the compiler returns to default
alignment for any subsequent structure definitions.

• The packed characteristics of the type apply wherever the type is used, even outside
the scope of the pragma in which the type was declared.

• The scope of a #pragma pack ends with the next #pragma pack, hence this pragma
does not nest. There is no way to “return” from one instance of the pragma to a
lexically earlier instance of the pragma.

Cautions for Using #pragma pack

• Silicon Graphics strongly discourages the use of #pragma pack, because it is a
nonportable feature and the semantics of this pragma may change in future
compiler releases.

• A structure declaration must be subjected to identical instances of a #pragma pack
in all files, or else misaligned memory accesses and erroneous structure member
dereferencing may ensue.

• References to fields in packed structures may be less efficient than references to
fields in unpacked structures.

• The pack pragma is not supported for C++ in -n32 and -64 modes.
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4. Distributed Shared Memory (DSM) Optimization
Pragmas

Table 4-1 lists the pragmas discussed in this chapter, along with a short description of
each and the compiler versions in which the pragma is supported. These pragmas are
useful primarily on systems with distributed shared memory, such as Origin™ servers.

Table 4-1 Distributed Shared Memory Pragmas

#pragma Short Description Compiler
Versions

“#pragma distribute” Specifies data distribution. 7.2 and later

“#pragma distribute_reshape” Specifies data distribution with reshaping. 7.2 and later

“#pragma dynamic” Tells the compiler that the specified array
may be redistributed in the program.

7.2 and later

“#pragma page_place” Allows the explicit placement of data. 7.1 and later

“#pragma pfor” (Discussed in
Chapter 8, “Multiprocessing
Pragmas.”)

affinity clause allows data-affinity or
thread-affinity scheduling; nest clause
exploits nested concurrency. See “#pragma
pfor clauses.”

6.0 and later

“#pragma redistribute” Specifies dynamic redistribution of data. 7.2 and later
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#pragma distribute

The distribute directive specifies the distribution of data across the processors. It
functions by influencing the mapping of virtual addresses to physical pages without
affecting the layout of the data structure. Because the granularity of data allocation is a
physical page (at least 16 KB), the achieved distribution is limited by the underlying page
granularity. However, the advantages to using this directive are that it can be added to
an existing program without any restrictions, and can be used for affinity scheduling. See
“affinity: Specifying Thread and Data Affinity” in Chapter 8 for more information about
data affinity.

Using #pragma distribute

The syntax of the distribute pragma is as follows:

#pragma distribute array[dst1][[dst2]...] [onto (dim1, dim2[, dim3 ...])]

• array is the name of the array you wish to have distributed.

• dst is the distribution specification for each dimension of the array. It can be any one
of the following:

• dim is the specification for partitioning the processors across the distributed
dimensions (see “onto Clause” on page 23 for more information).

Value Effect

* Not distributed.

block Partitions the elements of an array dimension into blocks equal
to the size of the dimension (N) divided by the number of
processors (P). The size of each block will be equal to N/P,
rounded up to the nearest integer value (ceiling (N/P)).

cyclic [(size_expr)] Partitions the elements of an array dimension into chunks and
distributes the chunks sequentially across the processors. The
size of the pieces is equal to the value of size_expr. If size_expr is
not specified, the chunk size defaults to 1. A cyclic distribution
with a chunk size that is either greater than 1 or is determined
at run time is sometimes also called block-cyclic.
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The following are some further points about #pragma distribute:

• You must specify the distribute directive in the declaration part of the program,
along with the array declaration.

• You can specify a data distribution directive for any local or global array.

• Each dimension of a multi-dimensional array can be independently distributed.

• A distributed array is distributed across all of the processors being used in that
particular execution of the program, as determined by the environment variable
MP_SET_NUMTHREADS.

Example of #pragma distribute

The following code fragment demonstrates the use of #pragma distribute:

float A[200][300];
...
#pragma distribute A[cyclic][block];
...

On a machine with eight processors, the first dimension of array A is distributed across
the processors in chunks of 1, and the second dimension is distributed in chunks of 25 for
each processor.

onto Clause

If an array is distributed in more than one dimension, then by default the processors are
apportioned as equally as possible across each distributed dimension. For instance, if an
array has two distributed dimensions, then an execution with 16 processors assigns
4 processors to each dimension (4 × 4 = 16), whereas an execution with 8 processors
assigns 4 processors to the first dimension and 2 processors to the second dimension.
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You can override this default and explicitly control the number of processors in each
dimension by using the onto clause. The onto clause allows you to specify the processor
topology when an array is being distributed in more than one dimension. For instance,
if an array is distributed in two dimensions, and you want to assign more processors to
the second dimension than to the first dimension, you can use the onto clause as in the
following code fragment:

float A[100][200];

/* Assign to the second dimension twice as many processors as to the first
dimension. */

#pragma distribute A[block][block] onto (1, 2)
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#pragma distribute_reshape

The distribute_reshape directive, like #pragma distribute specifies the desired
distribution of an array. In addition, however, the distribute_reshape directive declares
that the program makes no assumptions about the storage layout of that array. The
compiler performs aggressive optimizations for reshaped arrays that violate standard
layout assumptions but guarantee the desired data distribution for that array.

For information about using data affinity with #pragma redistribute-reshape, see
“affinity: Specifying Thread and Data Affinity” on page 104.

Using #pragma distribute_reshape

The syntax of the distribute_reshape pragma is as follows:

#pragma distribute_reshape array[dst1][[dst2]...]

The distribute_reshape directive accepts the same distributions as the #pragma
distribute directive:

• array is the name of the array you wish to have distributed.

• dst is the distribution specification for each dimension of the array. It can be any one
of the following:

Value Effect

* Not distributed.

block Partitions the elements of an array dimension into blocks equal
to the size of the dimension (N) divided by the number of
processors (P). The size of each block will be equal to N/P,
rounded up to the nearest integer value (ceiling (N/P)).

cyclic (size_expr) Partitions the elements of an array dimension into chunks and
distributes the chunks sequentially across the processors. The
size of the pieces is equal to the value of size_expr. If size_expr is
not specified, the chunk size defaults to 1. A cyclic distribution
with a chunk size that is either greater than 1 or is determined
at run time is sometimes also called block-cyclic.
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The following are some further points about #pragma distribute_reshape:

• You must specify the distribute_reshape directive in the declaration part of the
program, along with the array declaration.

• You can specify a data distribution directive for any local or global array.

• Each dimension of a multi-dimensional array can be independently distributed.

• A distributed array is distributed across all of the processors being used in that
particular execution of the program, as determined by the environment variable
MP_SET_NUMTHREADS.

• A reshaped array is passed as an actual parameter to a subroutine, in which case
two possible scenarios exist:

– The array is passed in its entirety (func(A) passes the entire array A, whereas
func(A([i][j]) passes a portion of A). The C compiler automatically clones a
copy of the called function and compiles it for the incoming distribution. The
actual and formal parameters must match in the number of dimensions, and the
size of each dimension.

The C++ compiler does not perform this cloning automatically, due to
interactions in the compiler with the C++ template instantiation mechanism.
For C++, therefore, the user has the two options.

The first option is to specify the distribute_reshape pragma directly on the
formal parameter of the called function.

The second option is to compile with -MP:clone=on to enable automatic
cloning in C++.

Caution: This option may not work for some programs that use templates.

You can restrict a function to accept a particular reshaped distribution on a
parameter by specifying a distribute_reshape directive on the formal
parameter within the function. All calls to this function with a mismatched
distribution will lead to compile- or link-time errors.

– A portion of the array can be passed as a parameter, but the callee must access
only a single processor’s portion. If the callee exceeds a single processor’s
portion, then the results are undefined. You can use intrinsics to access details
about the array distribution (see the “Parallel Programming on Origin Servers”
chapter in the C Language Reference Manual for more details).
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Cautions for Using #pragma distribute_reshape

Because the distribute_reshape directive specifies that the program does not depend on
the storage layout of the reshaped array, restrictions on reshaping arrays include the
following (for more details on reshaping arrays, see the C Language Reference Manual):

• The distribution of a reshaped array cannot be changed dynamically (that is, there is
no redistribute_reshape directive).

• Initialized data cannot be reshaped.

• Arrays that are explicitly allocated through alloca/malloc and accessed through
pointers cannot be reshaped. Use variable length arrays instead.

• An array that is equivalenced to another array cannot be reshaped.

• A global reshaped array cannot be linked –Xlocal. This user error is not caught by
the compiler or linker.

Example of #pragma distribute_reshape

The following code fragment demonstrates the use of #pragma distribute_reshape:

float A[400][300];
...
#pragma distribute_reshape A[block][cyclic(3)];
...

On a machine with eight processors, the first dimension of array A is distributed in
chunks of 50 for each processor, and the second dimension is distributed across the
processors in chunks of 3.



28

Chapter 4: Distributed Shared Memory (DSM) Optimization Pragmas

#pragma dynamic

By default, the compiler assumes that a distributed array is not dynamically
redistributed, and directly schedules a parallel loop for the specified data affinity. In
contrast, a redistributed array can have multiple possible distributions, and data affinity
for a redistributed array must be implemented in the run-time system based on the
particular distribution.

The #pragma dynamic directive notifies the compiler that the named array may be
dynamically redistributed at some point in the run. This tells the compiler that any data
affinity for that array must be implemented at run time. For information about using data
affinity with #pragma dynamic, see “affinity: Specifying Thread and Data Affinity” on
page 104.

Using #pragma dynamic

The syntax of the dynamic pragma is as follows:

#pragma dynamic array

array is the name of the array in question.

The dynamic directive informs the compiler that array may be dynamically
redistributed. Data affinity for such arrays is implemented through a run-time lookup.
Implementing data affinity in this manner incurs some extra overhead compared to a
direct compile-time implementation, so you should use the dynamic directive only if it
is actually necessary.

You must explicitly specify the dynamic declaration for a redistributed array under the
following conditions:

• The function contains a pfor loop that specifies data affinity for the array.

• The distribution for the array is not known.



#pragma dynamic

29

Under the following conditions, you can omit the dynamic directive and just supply the
distribute directive with the particular distribution:

• The function contains data affinity for the redistributed array.

• The array has a specified distribution throughout the duration of the function.

Because reshaped arrays cannot be dynamically redistributed, this is an issue only for
regular data distribution.
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#pragma page_place

The page_place pragma is useful for dealing with irregular data structures. It allows you
to explicitly place data in the physical memory of a particular processor. This pragma is
often used in conjunction with thread affinity (see “affinity: Specifying Thread and Data
Affinity” in Chapter 8 for more information).

Using #pragma page_place

The syntax of the page_place pragma is as follows:

#pragma page_place (object, size, threadnum)

The parameters for this pragma are as follows:

On a system with physically distributed shared memory, you can explicitly place all data
pages spanned by the virtual address range [&object, &object+ size-1] in the
physical memory of the processor corresponding to the specified thread. This directive is
an executable statement; therefore, you can use it to place either statically or dynamically
allocated data.

The function getpagesize() can be invoked to determine the page size. On the
Origin2000™ server, the minimum page size is 16384 bytes.

object The object you wish to place

size The size in bytes

threadnum The number of the destination processor



#pragma page_place

31

Example of #pragma page_place

The following is an example of the use of #pragma page_place:

double A[8192];
#pragma page_place (A[0], 32768, 0)
#pragma page_place (A[4096], 16384, 1)

The first page_place pragma causes the first half of the array to be placed in the physical
memory associated with thread 0. The second causes the next quarter of the array to be
placed in the physical memory associated with thread 1. The remaining portion of A is
allocated based on the operating system’s allocation policy (default is “first-touch”).
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#pragma redistribute

The #pragma redistribute directive allows you to dynamically redistribute previously
distributed arrays. For information about using data affinity with #pragma redistribute,
see “affinity: Specifying Thread and Data Affinity” on page 104.

Using #pragma redistribute

The syntax of the redistribute pragma is as follows:

#pragma redistribute array[dst1][[dst2]...] [onto (dim1, dim2[, dim3 ...])]

The redistribute directive accepts the same distributions as the #pragma distribute
directive:

• array is the name of the array you wish to have distributed.

• dst is the distribution specification for each dimension of the array. It can be any one
of the following:

• dim is the specification for partitioning the processors across the distributed
dimensions (see “onto Clause” on page 23 for more information).

Value Effect

* Not distributed.

block Partitions the elements of an array dimension into blocks equal
to the size of the dimension (N) divided by the number of
processors (P). The size of each block will be equal to N/P,
rounded up to the nearest integer value (ceiling (N/P)).

cyclic (size_expr) Partitions the elements of an array dimension into chunks and
distributes the chunks sequentially across the processors. The
size of the pieces is equal to the value of size_expr. If size_expr is
not specified, the chunk size defaults to 1. A cyclic distribution
with a chunk size that is either greater than 1 or is determined
at run time is sometimes also called block-cyclic.
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The following are some further points about #pragma redistribute:

• It is an executable statement and can appear in any executable portion of the
program.

• It changes the distribution permanently (or until another redistribute statement).

• It also affects subsequent affinity scheduling.

onto Clause

The onto clause for the redistribute pragma is identical to the one for the distribute
pragma. See “onto Clause” on page 23 for more information.

Example of #pragma redistribute

The following code fragment demonstrates the use of #pragma redistribute:

float A[500][300];
...
#pragma redistribute A[cyclic(1)][cyclic (5)];
...

After the redistribute pragma, the first dimension of array A is distributed across the
processors in chunks of 1, the second dimension in chunks of 5.
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5. Inlining Pragmas

Table 5-1 lists the pragmas covered in this chapter, along with a brief description of each.

Table 5-1 Inlining Pragmas

#pragmas Short Description Compiler
Versions

#pragma inline (see
“#pragma inline and #pragma
noinline”)

Tells the compiler to inline the named functions.

Keywords:

- here (next statement only)

- routine (rest of routine or until corresponding
noinline or inline is found)

- global (entire file, or until corresponding
noinline or inline is found)

7.1 and later

#pragma noinline (see
“#pragma inline and #pragma
noinline”)

Tells the compiler not to inline the named
functions.

Keywords:

- here (next statement only)

- routine (rest of routine or until corresponding
noinline or inline is found)

- global (entire file, or until corresponding
noinline or inline is found)

7.1 and later
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#pragma inline and #pragma noinline

The inline and noinline pragmas tell the compiler whether or not to inline the named
functions. These pragmas can have next-line, entire routine, or global scope.

Using #pragma inline and #pragma noinline

The syntax of the inline and noinline pragmas is as follows:

#pragma [no]inline {here|routine|global} [(name1[,name2 ...])]

here, routine, and global are keywords (see “Keywords”).

The optional name1 and name2 are function names. If they are present, they follow these
rules:

• If any functions are named in the directive, it applies only to them.

• If no function names are given, the pragma applies to all functions.

• If a specified function is not in the universe, a warning message is issued, and the
pragma is ignored.

If the list of function names is empty, the parentheses around the function names are not
required.
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Keywords

The keywords, here, routine, and global are described below. These keywords must
appear in lowercase, because function names are case sensitive.

here The pragma applies only to the next statement.

routine The pragma applies to the rest of the routine, or until a corresponding
noinline appears. (Or, if the first pragma was a noinline, until the
corresponding inline pragma.)

global The pragma applies to the entire file, or until toggled with a noinline
pragma. (Or, if the first pragma was a noinline, until the corresponding
inline pragma.) Typically, global pragmas appear only at the top of the
source file.

no keyword The inline and noinline pragmas with no keyword have the same effect
as using the here keyword, unless the pragmas appear at the top of the
file, before any lines of source code. In that case, the pragmas apply to
the entire file, as if the global keyword had been used.

Caution for Using #pragma inline and #pragma noinline

For C++ code, #pragma inline and #pragma noinline take C++ style function names. If
you use mangled names, the results are undefined. The compiler gives a warning if it
cannot find the supplied name.
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Examples of #pragma inline and #pragma noinline

The following five examples illustrate different aspects of the inline and noinline
pragmas.

Example 5-1 Using the here keyword with the noinline pragma

This example illustrates the use of the noinline pragma with the here keyword. All
occurrences of f1(int) are marked for inlining, except the one directly following the
#pragma noinline here.

int ig = 0;
double dg = 0.;

inline void f1(int) {ig++;}
void f1(double){dg++;}

void main ()
{

int i;
double d;
f1(i); // f1(int) is marked for inlining
f1(d);

#pragma noinline here (void f1(int))
f1(i); // f1(int) is not marked for inlining
f1(d);
f1(i); // f1(int) is marked for inlining

printf(“Result is %d\n”, ig + (int) dg);
}
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Example 5-2 Using the here keyword with the inline and noinline pragmas

This example illustrates the use of the inline and noinline pragmas with the here
keyword. All occurrences of f1(int) are marked for inlining, except the one directly
following the #pragma noinline here. The only occurrence of f1(double) that is marked
for inlining is the one directly following the #pragma inline here.

int ig = 0;
double dg = 0.;

inline void f1(int) {ig++;}
void f1(double){dg++;}

void main ()
{

int i;
double d;

f1(i); // f1(int) is marked for inlining
f1(d); // f1(double) is not marked for inlining

#pragma noinline here (void f1(int))
f1(i); // f1(int) is not marked for inlining

#pragma inline here (void f1(double))
f1(d); // f1(double) is marked for inlining
f1(i); // f1(int) is marked for inlining

printf(“Result is %d\n”, ig + (int) dg);
}
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Example 5-3 Using the global keyword with the inline pragma

This example illustrates the use of the inline pragma with the global keyword. All
occurrences of f1(int) following the #pragma inline global are marked for inlining,
except the one following the #pragma noinline here.

int ig = 0;
double dg = 0.;

void f1(int) {ig++;}
void f1(double){dg++;}

void main ()
{
#pragma inline global (void f1(int));

int i;
double d;
f1(i); // f1(int) is marked for inlining
f1(d); // f1(double) is not marked for inlining

#pragma noinline here (void f1(int))
f1(i); // f1(int) is not marked for inlining

#pragma inline here (void f1(double))
f1(d); // f1(double) is marked for inlining
f1(i); // f1(int) is marked for inlining

printf(“Result is %d\n”, ig + (int) dg);
}
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Example 5-4 Using the routine keyword with the inline pragma

This example illustrates the use of the inline pragma with the routine keyword. All
occurrences of f1(int) following the #pragma inline routine are marked for inlining,
except the one following the #pragma noinline here.

int ig = 0;
double dg = 0.;

void f1(int) {ig++;}
void f1(double){dg++;}

void main ()
{
#pragma inline routine (void f1(int))

int i;
double d;
f1(i); // f1(int) is marked for inlining
f1(d); // f1(double) is not marked for inlining

#pragma noinline here (void f1(int))
f1(i); // f1(int) is not marked for inlining

#pragma inline here (void f1(double))
f1(d); // f1(double) is marked for inlining
f1(i); // f1(int) is marked for inlining

printf(“Result is %d\n”, ig + (int) dg);
}
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Example 5-5 Using the routine keyword with the noinline pragma

This example illustrates the use of the noinline pragma with the routine keyword. None
of the occurrences of f1(int) following the #pragma noinline routine are marked for
inlining, except the one following the #pragma inline here.

int ig = 0;
double dg = 0.;

inline void f1(int) {ig++;}
void f1(double){dg++;}

void main ()
{

int i;
double d;

#pragma noinline routine (void f1(int))
f1(i); // f1(int) is not marked for inlining
f1(d); // f1(double) is not marked for inlining

#pragma inline here (void f1(int))
f1(i); // f1(int) is marked for inlining

#pragma noinline here (void f1(double))
f1(d); // f1(double) is not marked for inlining
f1(i); // f1(int) is not marked for inlining

printf(“Result is %d\n”, ig + (int) dg);
}
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6. Loader Information Pragmas

Table 6-1 lists the pragmas covered in this chapter, along with a brief description of each
and the compiler versions in which the pragma is supported.

Table 6-1 Loader Information Pragmas

#pragma Short Description Compiler
Versions

“#pragma hidden” Tells the compiler that the specified symbols
are invisible to all executables or DSOs except
the current one.

7.2 and later

“#pragma internal” Tells the compiler that the specified symbols
are not referenced outside the current
executable or DSO.

7.2 and later

“#pragma no_delete” Inhibits deletion of functions that are never
referenced.

7.1 and later

“#pragma optional” Tells the linker that the specified symbols are
optional. This is the basic mechanism used for
adding extensions to a library that can then be
queried.

7.2.1 and
later

“#pragma protected” Tells the compiler that the specified symbols
are not preemptible.

7.1 and later

“#pragma section_gp” Causes an object to be placed in a gp_relative
section.

7.2 and later

“#pragma section_non_gp” Keeps an object from being placed in a
gp_relative section.

7.2 and later
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“#pragma weak” Tells the link editor not to issue a warning if it
does not find a defining declaration of the
weak_symbol. Also allows the overriding of a
current definition by a non-weak definition.

7.0 and later

“#pragma weak”
weak_symbol = strong_symbol

Sets weak_symbol to be an alias for the function
or data object denoted by strong_symbol, unless
a defining declaration for weak_symbol is
encountered at static link time. If encountered,
the defining declaration preempts the weak
denotation.

7.0 and later

Table 6-1 Loader Information Pragmas

#pragma Short Description Compiler
Versions
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#pragma hidden

The #pragma hidden directive tells the compiler that the specified symbols are invisible
to all executables or DSOs except the current one. This allows hidden data objects to be
placed in the small data area and accessed using the (fast) gp-relative load/store. Hidden
symbols need not be put into the hash table of a DSO because they are not globally
visible.

Using #pragma hidden

The syntax of the hidden pragma is as follows:

#pragma hidden symbol1 [, symbol2 ...]

#pragma hidden is not currently supported in C++, except for symbols marked
extern “C”.

All of the listed symbols are marked as STO_HIDDEN. This means that the symbol
definition can be referenced only within an object, not from outside. Even though a
hidden symbol can not be directly referenced from outside a DSO, its address may be
taken and passed, so it is possible to call a hidden function from another DSO.
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#pragma internal

The #pragma internal directive tells the compiler that the specified functions are not
referenced outside the current executable or DSO. Internal symbols are the same as
hidden symbols, except that they are guaranteed not to be referenced from outside a
DSO, even through pointers or weak bindings.

Using #pragma internal

The syntax of the internal pragma is as follows:

#pragma internal func1 [, func2 ...]

#pragma internal is not currently supported in C++, except for symbols marked
extern “C”.

The specified functions are marked STO_INTERNAL. This means that this function
need not save, restore, or recalculate $gp (global pointer), because it is callable only from
a location that has the same $gp (global pointer) value.
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#pragma no_delete

The #pragma no_delete directive inhibits deletion of functions that are never referenced.

Using #pragma no_delete

The syntax of the no_delete pragma is as follows:

#pragma no_delete
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#pragma optional

The #pragma optional directive tells the linker that the specified symbols are optional.

The static linker (ld), converts references to optional definitions (in another DSO) to
optional references. Unresolved optional references are not reported as errors.

The run-time linker (rld) resolves any unresolved optional references to a special symbol
in libc.so.1.

Programs can check for the existence of an optional symbol by use of macros defined in
the header file /usr/include/optional_sym.h.

This is the basic mechanism used for adding extensions to a library that you can then
query. For example, when new functions are added to the next revision of libfoo.so they
can be added as optional functions; then programs can check for their existence and use
them only when the new revision of the library is available and avoid them on older
systems, thus giving backwards and forwards compatibility across a family of releases.

Using #pragma optional

The syntax of the optional pragma is as follows:

#pragma optional symbol1 [, symbol2 ... ]

The following rules apply to #pragma optional:

• #pragma optional must come after the declaration or definition of symbol.

• #pragma optional is not currently supported in C++, except for symbols marked
extern “C”.

Caution for Using #pragma optional

The optional will not be fully implemented until the 7.2.1 compiler release. Until then,
use it cautiously.
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#pragma protected

The #pragma protected directive tells the compiler that the specified symbols are not
preemptible, but are visible from outside of a DSO.

Using #pragma protected

The syntax of the protected pragma is as follows:

#pragma protected symbol1 [, symbol2 ...]

#pragma protected is not currently supported in C++, except for symbols marked
extern “C”.

The specified symbols are marked STO_PROTECTED. This means that the symbol
definition can not be preempted by another definition.
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#pragma section_gp

MIPS binaries have a global pointer (gp) that can be used to reference global data more
efficiently (by using gp + offset) than constructing the entire address when that variable
is referenced. Only a limited set of elements can be referenced in this fashion because the
size of offset is limited to 16 bits. The compiler heuristically places global data in either
gp-relative or non-gp-relative sections. However, it is sometimes useful to manually
control which variables go within the gp-relative section and which need to be addressed
explicitly.

The #pragma section_gp directive causes an object to be placed in a gp_relative section,
while the “#pragma section_non_gp” directive causes an object to be placed in a
non-gp-relative section.

Using #pragma section_gp

The syntax of the section_gp pragma is as follows:

#pragma section_gp (symbol1[, symbol2 ...])

symbol must be a static or global variable.
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#pragma section_non_gp

MIPS binaries have a global pointer (gp) that can be used to reference global data more
efficiently (by using gp + offset) than constructing the entire address when that variable
is referenced. Only a limited set of elements can be referenced in this fashion because the
size of offset is limited to 16 bits. The compiler heuristically places global data in either
gp-relative or non-gp-relative sections. However, it is sometimes useful to manually
control which variables go within the gp-relative section and which need to be addressed
explicitly.

The “#pragma section_gp” directive causes an object to be placed in a gp_relative
section, while the #pragma section_non_gp directive causes an object to be placed in a
non-gp-relative section.

Using #pragma section_non_gp

The syntax of the section_non_gp pragma is as follows:

#pragma section_non_gp (symbol1[, symbol2 ...])

symbol must be a static or global variable.
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#pragma weak

The #pragma weak directive can be used in two ways. It can tell the link editor not to
issue a warning if it does not find a defining declaration of the specified weak symbol, or
it can allow the overriding of a current definition by a non-weak definition.

About Weak Definitions

Weak definitions behave as follows:

• A definition is weak if a symbol defined in an executable or DSO is marked as weak
at the point of definition.

• A weak definition is preemptible and will be preempted by any strong global
definition of the same name in the executable, the DSOs linked in at static link time,
or the DSOs linked in at run time. Multiple weak definitions follow the same
preemption rules as for global symbols except that they will all be preempted by
any strong definition of their name.

• Multiple global weak definitions of a symbol may or may not result in an error:

– At static link time, multiple global definitions of a weak symbol within a DSO
or executable result in an error. For example, linking a.o and b.o when they both
have definitions for the symbol x results in an error.

– At run time, multiple global weak definitions of a symbol across the executable
and its DSOs, result in the first definition preempting all others. No error
message is generated. For example, if your executable, j, references the DSOs
k.so and l.so that have weak definitions of the symbol y, the first definition
encountered is used, and the other is ignored.

• Unresolved weak references do not cause a run-time error, even if the environment
variable LD_BIND_NOW is set. They have a value of 0 (that is, the symbol address
is taken as 0). Attempting a call of a weak undefined function symbol gets either a
core dump (if LD_BIND_NOW is 1) or a fatal run-time linker error on an attempted
address of an unresolved symbol (if LD_BIND_NOW is not 1). Attempting a load
or store of an undefined weak symbol results in a core dump because the address is
0, and 0 is normally not a legal virtual address.

• Weak references do not trigger the loading of delay-loaded libraries. This implies
that weak object references may go unresolved until some other event triggers the
loading of the delay-load library.
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Using #pragma weak

The syntax of the weak pragma is as follows:

#pragma weak weak_symbol [= strong_symbol]

When #pragma weak applies to a C++ function, weak_symbol and strong_symbol must be
the mangled names.

The #pragma weak directive can be used in the following two ways:

• #pragma weak weak_symbol

Used in this way, the weak pragma tells the link editor not to issue a warning if it
does not find a defining declaration of weak_symbol. References to the symbol use
the appropriate lvalue if the symbol is defined; otherwise, it uses memory location
zero (0).

• #pragma weak weak_symbol = strong_symbol

In this case, the weak_symbol is an alias that denotes the same function or data object
as that denoted by the strong_symbol, unless a defining declaration for the
weak_symbol is encountered at static link time or in dynamically linked in libraries. If
encountered, the defining declaration preempts the weak denotation.

Observe the following conventions when using this form of the pragma:

– Define the strong_symbol within the same compilation unit in which the pragma
occurs.

– Declare the weak and strong symbols with compatible types. When the strong
symbol is a data object, its declaration must be initialized.

– Declare the weak_symbol with extern linkage in the same compilation unit. The
extern declaration of the weak symbol is not required, unless the symbol is
referenced within the compilation unit, but Silicon Graphics recommends it for
type-checking purposes.

Weak extern declarations are typically used to export non-ANSI C symbols
from a library without polluting the ANSI C name-space. As an example, libc
may export a weak symbol read(), which aliases a strong symbol _read(), where
_read() is used in the implementation of the exported symbol fread(). You can
either use the exported (weak) version of read(), or define your own version of
read() thereby preempting the weak denotation of this symbol. This will not
alter the definition of fread(), because it depends only on the (strong) symbol
_read(), which is outside the ANSI C name-space.
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For example, the following code defines a new version of read() (which is a
weak symbol in libc.so.1):

/* read() is a weak symbol in libc.so.1
   This program omits error checking and makes no
   attempt at good style!
*/
#include <stdio.h>
char *read(int);

int main(int argc, char **argv)
{

char *var;
int c;

c = getchar();

var = read(c);
printf(“%s\n”,var);
return c;

}

char *read(int val)
{

static char buf[100];
sprintf(buf,”%d”,val);
return buf;

}

This program (which admittedly makes no attempt at good style) reads a single
character from standard input and prints the character’s decimal value. Even
though getchar() uses the libc.so version of fread(), the redefinition of read() has
no effect on the internal processing in libc.so because fread() uses the strong
symbol _read().

Caution for Using #pragma weak

#pragma weak is not supported in -32 C++.
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7. Loop Nest Optimization Pragmas

Table 7-1 contains an alphabetical list of the pragmas covered in this chapter, along with
a brief description of each and the compiler versions in which the pragma is supported.

Table 7-1 Loop Nest Optimization Pragmas

#pragma Short Description Compiler
Versions

“#pragma aggressive inner loop fission” Tells the compiler to fission inner loops
into as many loops as possible.

7.0 and later

“#pragma blocking size” Sets the blocksize of the specified loop,
if it is involved in a blocking for the
primary (or secondary) cache.

7.0 and later

“#pragma fission” Tells the compiler to fission the
enclosing specified levels of loops after
this pragma.

7.0 and later

“#pragma fissionable” Disables validity testing. 7.0 and later

“#pragma fusable” Disables validity testing. 7.0 and later

“#pragma fuse” Tells the compiler to fuse the following
n loops, which must be immediately
adjacent.

7.0 and later

“#pragma ivdep” Liberalizes dependence analysis. This
applies only to inner loops. Given two
memory references, where at least one
is loop variant, ignore any loop-carried
dependences between the two
references.

6.0 and later

“#pragma no blocking” Prevents the compiler from involving
this loop in cache blocking.

7.0 and later



56

Chapter 7: Loop Nest Optimization Pragmas

“#pragma no fission” Keeps the following loop from being
fissioned. Its innermost loops, however,
are allowed to be fissioned.

7.0 and later

“#pragma no fusion” Keeps the following loop from being
fused with other loops.

7.0 and later

“#pragma no interchange” Prevents the compiler from involving
the loop directly following this pragma
(or any loop nested within this loop) in
an interchange.

7.0 and later

“#pragma prefetch” Specifies prefetching for each level of
the cache. Scope: entire function
containing the pragma.

7.1 and later

“#pragma prefetch_manual” Specifies whether manual prefetches
(through pragmas) should be respected
or ignored. Scope: entire function
containing the pragma.

7.1 and later

“#pragma prefetch_ref” Generates a prefetch and connects it to
the specified reference (if possible).

7.0 and later

“#pragma prefetch_ref_disable” Disables prefetching for the specified
reference in the current loop nest.

7.1 and later

“#pragma unroll” Suggests to the compiler that a
specified number of copies of the loop
body be added to the inner loop. If the
loop following this pragma is an inner
loop, then it indicates standard
unrolling (version 7.2 and later). If the
loop following this pragma is not
innermost, then outer loop unrolling
(unroll and jam) is performed (version
7.0 and later).

7.0 and later

Table 7-1 (continued) Loop Nest Optimization Pragmas

#pragma Short Description Compiler
Versions
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#pragma aggressive inner loop fission

The #pragma aggressive inner loop fission directive tells the compiler to fission inner
loops into as many loops as possible.

Using #pragma aggressive inner loop fission

The syntax of the aggressive inner loop fission pragma is as follows:

#pragma aggressive inner loop fission

The aggressive inner loop fission pragma must be followed by an inner loop and has no
effect if that loop is no longer inner after loop interchange.
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#pragma blocking size

The #pragma blocking size directive sets the blocksize of the specified loop.

Using #pragma blocking size

The syntax of the blocking size pragma is as follows:

#pragma blocking size (n1, n2)

The loop specified, if it is involved in a blocking for the primary (secondary) cache, will
have a blocksize of n1 (n2). The compiler tries to include this loop within such a block. If
a 0 blocking size is specified, then the loop is not stripped, but the entire loop is inside
the block.

Example of #pragma blocking size

In the following code, the compiler makes 20 × 20 blocks when blocking:

void amat (double x, double y, double z, int n, int m, int mm)
{

int i, j, k;

for (k = 0; k < n; k++)
{

#pragma blocking size (20)
for (j = 0; j < m; j++)
{

#pragma blocking size (20)
for (i = 0; i < mm; i++)

z(i,k) = z(i,k) + x(i,j) * y(j,k)
}

}
}
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#pragma no blocking

The #pragma no blocking directive prevents the compiler from involving this loop in
cache blocking.

Using #pragma no blocking

The syntax of the no blocking pragma is as follows:

#pragma no blocking
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#pragma fission

The #pragma fission directive causes the compiler to fission the enclosing n levels of
loops after this pragma.

Using #pragma fission

The syntax of the fission pragma is as follows:

#pragma fission [(n)]

The default for n is 1. The compiler performs a validity test unless a
“#pragma fissionable” is also specified. The compiler does not reorder statements.
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#pragma fissionable

The fissionable pragma disables validity testing for loop fissioning.

Using #pragma fissionable

The syntax of the fissionable pragma is as follows:

#pragma fissionable
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#pragma no fission

The #pragma no fission tells the compile that the loop directly following this pragma
should not be fissioned. Any inner loops, however, are allowed to be fissioned.

Using #pragma no fission

The syntax of the no fission pragma is as follows:

#pragma no fission
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#pragma fuse

The #pragma fuse directive tells the compiler to fuse the specified number of
immediately adjacent loops.

Using #pragma fuse

The syntax of the fuse pragma is as follows:

#pragma fuse [(num, level)]

The loops to be fused must immediately follow the fusion pragma.

The default is value for num is 2. Fusion is attempted on each pair of adjacent loops and
the level, by default, is determined by the maximal perfectly nested loop levels of the
fused loops, although partial fusion is allowed. Iterations may be peeled as needed
during fusion; the limit of this peeling is 5 or the number specified by the
–LNO:fusion_peeling_limit option. No fusion is done for non-adjacent outer loops.

When the “#pragma fusable” directive is present, no validity test is done and the fusion
is done up to the maximal common levels.
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#pragma fusable

The #pragma fusable directive disables validity testing for loop fusing.

Using #pragma fusable

The syntax of the fusable pragma is as follows:

#pragma fusable
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#pragma no fusion

The #pragma no fusion directive tells the compiler that the loop following this pragma
should not be fused with other loops.

Using #pragma no fusion

The syntax of the no fusion pragma is as follows:

#pragma no fusion
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#pragma no interchange

The #pragma no interchange directive prevents the compiler from involving the next
loop in an interchange. The pragma also applies to any loop nested within the indicated
loop.

Using #pragma no interchange

The syntax of the no interchange pragma is as follows:

#pragma no interchange

The pragma statement must immediately precede the loop to which it applies.
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#pragma ivdep

The #pragma ivdep directive causes the compiler to liberalize dependence analysis.

Using #pragma ivdep

The syntax of the ivdep pragma is as follows:

#pragma ivdep

Given two memory references, where at least one is loop variant, this pragma causes the
compiler to ignore any loop-carried dependences between the two references. The
#pragma ivdep directive applies only to inner loops. If #pragma ivdep is used on a loop
that has an inner loop, the compiler ignores it.

Examples of #pragma ivdep

The following are some examples of the use of #pragma ivdep:

• ivdep does not break the dependence because b(k) is not loop variant:

#pragma ivdep
for (i = 0; i < n; i++)

b(k) = b(k) +a(i);

• ivdep breaks the dependence, but the compiler warns the user that it’s breaking an
obvious dependence:

#pragma ivdep
for (i = 0; i < n; i++)

a(i) = a(i-1) + 3.0;
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• ivdep breaks the dependence:

#pragma ivdep
for (i = 0; i < n; i++)

a(b(i)) = a(b(i)) + 3.0;

• ivdep does not break the dependence on a(i) because it is within an iteration:

#pragma ivdep
for (i = 0; i < n; i++)
{

a(i) = b(i);
c(i) = a(i) + 3.0;

}

If –OPT:cray_ivdep=TRUE is specified, ivdep tells the compiler to use Cray semantics
and break all backward dependences:

• ivdep breaks the dependence but the compiler warns the user that it’s breaking an
obvious dependence:

#pragma ivdep
for (i = 0; i < n; i++)
{

a(i) = a(i - 1) + 3.0;
}

• ivdep does not break the dependence, because the dependence is from the load to
the store, and the load comes lexically before the store:

#pragma ivdep
for (i = 0; i < n; i++)
{

a(i) = a(i + 1) + 3.0;
}

To break all dependences, specify –OPT:liberal_ivdep=TRUE.
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#pragma prefetch

The #pragma prefetch directive specifies prefetching for each level of the cache.

Using #pragma prefetch

The syntax of the prefetch pragma is as follows:

#pragma prefetch [(n1, n2)]

n1 controls the level 1 cache; n2 controls level 2. n1 and n2 can have the following values:

The scope of this pragma is the entire function that contains it.

Value Effect

0 prefetching off (default for all processors except R10000)

1 prefetching on, but conservative (default at –03 when prefetch is on)

2 prefetching on, and aggressive
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#pragma prefetch_manual

The #pragma prefetch_manual directive tells the compiler whether manual prefetches
(through pragmas) should be respected or ignored.

Using #pragma prefetch_manual

The syntax of the prefetch_manual pragma is as follows:

#pragma prefetch_manual[(n)]

The scope of this pragma is the entire function that contains it.

Value Effect

0 Compiler ignores manual prefetches (default for all processors except
R10000)

1 Compiler respects manual prefetches (default at –03 for R10000 and beyond)
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#pragma prefetch_ref

The #pragma prefetch_ref directive generates a prefetch and connects it to the specified
reference (if possible).

Using #pragma prefetch_ref

The syntax of the prefetch_ref pragma is as follows:

pragma prefetch_ref = ref [, stride = num1 [, num2]]
[, level = [lev1][, lev2]]
[, kind = {rd|wr}]
[, size = sz]

ref is the object you want prefetched.

Table 7-2 describes each of the possible #pragma prefetch_ref clauses. These clauses are
optional.

Table 7-2 Clauses for #pragma prefetch_ref

Clause Effect Default Value

stride Prefetches every num iterations of this loop. 1

level Specifies the level in memory hierarchy to prefetch. The possible
values for level are

1: prefetch from L2 to L1 cache

2: prefetch from memory to L1 cache

2

kind Specifies read or write. write

size Specifies the size (in KB) of the object referenced in this loop. Must
be a constant.

N/A
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The #pragma prefetch_ref pragma causes the compiler to take the following actions:

• Generate a prefetch and connect to the specified object (if possible).

• Search for references in the current loop-nest that match the supplied object.

– If such a reference is found, then the prefetch for that object is scheduled
relative to the prefetch node, based on the miss latency for the specified level of
the cache.

– If no such reference is found, the prefetch is generated at the start of the loop
body.

• Ignore all references by the automatic prefetcher (if enabled) to this variable in this
loop-nest.

• Have the automatic prefetcher (if enabled) use the supplied size (if specified) in its
volume analysis for this object.

This pragma has no scope; it just generates a prefetch.
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#pragma prefetch_ref_disable

The #pragma prefetch_ref_disable directive explicitly disables prefetching for the
specified reference (in the current loop nest).

Using #pragma prefetch_ref_disable

The syntax of the prefetch_ref_disable pragma is as follows:

#pragma prefetch_ref_disable = ref [, size = num]

ref is the object for which you want to disable prefetching.

num specifies the size (in KB) of the object referenced in this loop (optional). The size
must be a constant. This explicitly disables the prefetching of all references to object ref
in the current loop nest. If enabled, the auto-prefetcher runs but ignores ref. The size is
used for volume analysis.

The scope of this pragma is the entire function containing it.
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#pragma unroll

The #pragma unroll directive suggests to the compiler the type of unrolling that should
be done.

Using #pragma unroll

The syntax of the unroll pragma is as follows:

#pragma unroll (n)

This pragma suggests to the compiler that n-1 copies of the loop body be added to the
inner loop. If the loop that this pragma directly precedes is an inner loop, then it indicates
standard unrolling (version 7.2 and later). If the loop that this pragma directly precedes
is not innermost, then outer loop unrolling (unroll and jam) is performed (version 7.0 and
later).

The value of n must be at least 1. If it is exactly 1, then no unrolling is performed.

Caution for Using #pragma unroll

#pragma unroll works only on loops that are legal to unroll. Loops are often not
unrollable in C because of potential aliasing. In these cases you may wish to use restrict
pointers (see the C Language Reference Manual) or the option -OPT:alias=disjoint. When
-OPT:alias=disjoint is specified, distinct pointer expressions are assumed to point to
distinct, non-overlapping objects.

Note: -OPT:alias=disjoint is unsafe, and may cause existing C programs to fail in
obscure ways, so it should be used with extreme care.
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Examples of #pragma unroll

The following code samples show the effect of using #pragma unroll. The code in
Sample 1 becomes Sample 2, not Sample 3:

• Sample 1:

#pragma unroll (2)
for (i = 0; i < 10; i++)
{

for (j = 0; j < 10; j++)
{

a([i][j] = a[i][j] + b[i][j];
}

}

• Sample 2:

for (i = 0; i < 10; i + 2)
{

for (j = 0; j < 10; j++)
{

a[i][j] = a[i][j] + b[i][j];
a[i+1][j] = a[i+1][j] + b[i+1][j];

}
}

• Sample 3:

for (i = 0; i < 10; i + 2)
{

for (j = 0; j < 10; j++)
a[i][j] = a[i][j] + b[i][j];

for (j = 0; j < 10; j++)
a[i+1][j] = a[i+1][j] + b[i+1][j];

}

The unroll pragma is attached to the given loop, so that if an interchange is performed,
the corresponding loop is still unrolled. That is, Sample 1 is equivalent to the following:

#pragma interchange
for (j = 0; j < 10; j++)
{

#pragma unroll (2)
for (i = 0; i < 10; i++)

a[i][j] = a[i][j] + b[i][j];
}
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8. Multiprocessing Pragmas

Table 8-1 contains an alphabetical list of the pragmas covered in this chapter, along with
a brief description of each and the compiler versions in which the pragma is supported.

Table 8-1 Multiprocessing Pragmas

#pragma Short Description Compiler
Versions

“#pragma copyin” Copies the value from the master thread's
version of an -Xlocal-linked global variable
into the slave thread's version.

6.0 and later

“#pragma critical” Protects access to critical statements. 6.0 and
later

#pragma enter gate (see “#pragma
enter gate and #pragma exit gate”)

Indicates the point that all threads must clear
before any threads are allowed to pass the
corresponding exit gate.

6.0 and later

#pragma exit gate (see “#pragma
enter gate and #pragma exit gate”)

Stops threads from passing this point until all
threads have cleared the corresponding enter
gate.

6.0 and later

“#pragma independent” Tells the compiler to run independent code
section in parallel with the rest of the code in
the parallel region.

6.0 and later

“#pragma local” Tells the compiler the names of all the
variables that must be local to each thread.

6.0 and later

“#pragma no side effects” Tells the compiler to assume that all of the
named functions are safe to execute
concurrently.

7.1 and later

“#pragma one processor” Causes the next statement to be executed on
only one processor.

6.0 and later

“#pragma parallel” (see also
“#pragma parallel clauses”)

Marks the start of a parallel region. 6.0 and later
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“#pragma pfor” (see also
“#pragma pfor clauses”)

Marks a for loop to run in parallel. 6.0 and later

“#pragma set chunksize” Tells the compiler which values to use for
chunksize.

6.0 and later

“#pragma set numthreads” Tells the compiler which values to use for
numthreads.

6.0 and later

“#pragma set schedtype” Tells the compiler which values to use for
schedtype.

6.0 and later

“#pragma shared” Tells the compiler the names of all the
variables that the threads must share.

6.0 and later

“#pragma synchronize” Stops threads until all threads reach this point. 6.0 and later

Table 8-1 Multiprocessing Pragmas

#pragma Short Description Compiler
Versions
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#pragma copyin

It is occasionally desirable to be able to copy values from the master thread's version of
an -Xlocal-linked global variable into the slave thread's version. The special pragma
copyin allows this.

Using #pragma copyin

#pragma copyin has the following syntax:

#pragma copyin item1 [, item2 ...]

Each item must be a localized (that is, linked -Xlocal) global variable.

Do not place this pragma inside a parallel region.

Example of #pragma copyin

The following line of code demonstrates the use of the copyin pragma:

#pragma copyin x,y, A[i]

This propagates the master thread’s values for x, y, and the ith element of array A into
each slave thread’s copy of the corresponding variable. All of these items must be linked
-Xlocal. This pragma is translated into executable code, so in this example i is evaluated
at the time this statement is executed.
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#pragma critical

Sometimes the bulk of the work done by a loop can be done in parallel, but the entire loop
cannot run in parallel because of a single data-dependent statement. Often, you can
move such a statement out of the parallel region. When that is not possible, you can
sometimes use a lock on the statement to preserve the integrity of the data.

Using #pragma critical

The syntax of the critical pragma is as follows:

#pragma critical [(lock_variable)]
{ code }

The statements after the critical pragma are executed by all threads, one at a time.

In the multiprocessing C/C++ compiler, you can use the critical pragma to put a lock on
a critical statement (or compound statement using {}). When you put a lock on a
statement, only one thread at a time can execute that statement. If one thread is already
working on a critical protected statement, any other thread that needs to execute that
statement must wait until the first thread has finished executing it.

The lock variable is an optional integer variable that must be initialized to zero. The
parentheses are required. If you don’t specify a lock variable, the compiler automatically
uses a global lock variable. Multiple critical constructs inside the same parallel region are
considered to be dependent on each other unless they use distinct explicit lock variables.

Caution for Using #pragma critical

This pragma works slightly differently in the IRIS POWER C Analyzer (PCA) for
compiler versions 7.1 and older. See the IRIS Power C User’s Guide for more information.

Diagram of #pragma critical

Figure 8-1 illustrates critical segment execution.
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Figure 8-1 Critical Segment Execution

A

A

A

A

...
#pragma parallel ...
{ ...
#pragma critical
      { ...
      }
} ...

} A
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#pragma enter gate and #pragma exit gate

The #pragma enter gate and #pragma exit gate directives provide an additional tool for
coordinating the processing of code within a parallel region. These pragmas work as a
matched set, by establishing a section of code bounded by gates at the beginning and
end. These gates form a special barrier. No thread can exit a gated region until all threads
have entered it. This construct gives more flexibility when managing dependences
between the work-sharing constructs in a parallel region.

Using #pragma enter gate and #pragma exit gate

By using enter and exit gate pairs, you can make subtle distinctions about which
construct is dependent on which other construct.

#pragma enter gate

The syntax of the enter gate pragma is as follows:

#pragma enter gate

Put this pragma after the work-sharing construct that all threads must clear before any
can pass the #pragma exit gate.

#pragma exit gate

The syntax of the exit gate pragma is as follows:

#pragma exit gate

Put this pragma before the work-sharing construct that is dependent on the preceding
#pragma enter gate. No thread enters this work-sharing construct until all threads have
cleared the work-sharing construct controlled by the corresponding #pragma enter gate.

Note: Nesting of enter gate and exit gate pragmas is not supported.
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Caution for Using #pragma enter gate and #pragma exit gate

These pragmas work slightly differently in the IRIS POWER C Analyzer (PCA) for
compiler versions 7.1 and older. See the IRIS Power C User’s Guide for more information

Diagram of #pragma enter gate and #pragma exit gate

Figure 8-2 is a “time-lapse” sequence showing execution using enter and exit gates.
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Figure 8-2 Execution Using Gates

1

enter gate
exit gate

2

3

4

...

#pragma parallel ...
{ ...
#pragma enter gate
  ...
#pragma exit gate
  ...
} ...
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Example of #pragma enter gate and #pragma exit gate

This example shows how to use these two pragmas to work with parallelized segments
that have some dependences.

For example, suppose you have a parallel region
consisting of the work-sharing constructs A, B,
C, D, E, and so forth. A dependency may exist
between B and E such that you can not execute
E until all the work on B has completed (see
code at right).

#pragma parallel ...

{

..A..

..B..

..C..

..D..

..E.. (depends on B)

}

One option is to put a synchronize before E. But
this pragma is wasteful if all the threads have
cleared B and are already in C or D. All the faster
threads pause before E until the slowest thread
completes C and D.

#pragma parallel ...
{

..A..

..B..

..C..

..D..

#pragma synchronize

..E..

}
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To reflect this dependency, put #pragma enter
gate after B and #pragma exit gate before E.
Putting the enter gate after B tells the system to
note which threads have completed the B
work-sharing construct. Putting the exit gate
pragma prior to the E work sharing construct
tells the system to allow no thread into E until
all threads have cleared B.

#pragma parallel ...

{

..A..

..B..

#pragma enter gate

..C..

..D..

#pragma exit gate

..E..

}
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#pragma independent

Running a loop in parallel is a class of parallelism sometimes called “fine-grained
parallelism” or “homogeneous parallelism.” It is called homogeneous because all the
threads execute the same code on different data. Another class of parallelism is called
“coarse-grained parallelism” or “heterogeneous parallelism.” As the name suggests, the
code in each thread of execution is different.

Ensuring data independence for heterogeneous code executed in parallel is not always
as easy as it is for homogeneous code executed in parallel. (Ensuring data independence
for homogeneous code is not a trivial task, either.)

Using #pragma independent

The syntax of the independent pragma is as follows:

#pragma independent
{ code }

The independent pragma has no modifiers. Use this pragma to tell the multiprocessing
C/C++ compiler to run code in parallel with the rest of the code in the parallel region.
Other threads can proceed past this code as soon as it starts execution.

Diagram of #pragma independent

Figure 8-3 shows an independent segment with execution by only one thread.
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Figure 8-3 Independent Segment Execution

A B

...
#pragma parallel ...
{ ...
#pragma independent
      { ...
      }
#pragma independent
      { ...
      }  
} ...

} A

} B
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#pragma local

The #pragma local directive tells the multiprocessing C/C++ compiler the names of all
the variables that must be local to each thread.

Using #pragma local

The syntax of the local pragma is as follows:

#pragma local (variable1 [, variable2...])

Note: A variable in a local clause cannot have initializers and cannot be an array element
or a field within a class, structure, or union.
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#pragma no side effects

C functions frequently produce more information than just the returned value. Changing
values of arguments via pointers or arrays, changing global data, and I/O can make a
function unsafe to run concurrently.

The #pragma no side effects pragma tells the compiler to assume that all of the named
functions are safe to execute concurrently. This means that the functions perform no I/O
and that they modify only local variables.

Using #pragma no side effects

The syntax of the no side effects pragma is as follows:

#pragma no side effects (function1 [, function2...])

The functions named must be declared before the directive.

#pragma no side effects is not currently supported in C++, except for symbols marked
extern “C”.

If you use this directive and you pass pointers or array names to any listed function, the
compiler assumes that the memory locations represented by those parameters are not
modified.
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#pragma one processor

The #pragma one processor directive causes the statement that follows it to be executed
by exactly one thread.

Using #pragma one processor

The syntax of the one processor pragma is as follows:

#pragma one processor
{ code }

If a thread is executing the statement enclosed by this pragma, other threads that
encounter this statement must wait until the statement has been executed by the first
thread, then skip the statement and continue.

If a thread has completed execution of the statement enclosed by this pragma, then all
threads encountering this statement skip the statement and continue without pause.

Diagram of #pragma one processor

Figure 8-4 shows code executed by only one thread. No thread can proceed past this code
until it has been executed.
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Figure 8-4 One Processor Segment

Apause for A pause for A pause for A

...
#pragma parallel ...
{ ...
#pragma one processor
      { ...
      }
} ...

} A
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#pragma parallel

The parallel pragma indicates that the subsequent statement (or compound statement)
is to be run in parallel. #pragma parallel has four clauses, shared, local, if, and
numthreads, that provide the compiler with further information on how to run the block
of code (see “#pragma parallel clauses” on page 95). These clauses can either be listed on
the same line as the parallel pragma, or can be broken out into separate pragmas (see
“Example of #pragma parallel” on page 94).

Using #pragma parallel

The syntax of the parallel pragma is as follows:

#pragma parallel [clause1[, clause2 ...]]

Use the parallel pragma to start a parallel region. This pragma has a number of clauses
(see “#pragma parallel clauses” on page 95 for more details), but to run a single loop in
parallel, the only clauses you usually need are shared and local. These options tell the
multiprocessing C/C++ compiler which variables to share between all threads of
execution and which variables to treat as local.

The code that makes up the parallel region is usually delimited by curly braces ({ }) and
immediately follows the parallel pragma and its modifiers.

Objects are shared by default unless declared within a parallel program region. If they
are declared within a parallel program region, they are local by default. For example:

main() {
int x, s, l;

#pragma parallel shared (s) local (l)
{

int y;

/* within this parallel region, by the default rules
x and s are shared  whereas l and y are local */

...
}
...

}
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Caution for Using #pragma parallel

This pragma works slightly differently in the IRIS POWER C™ Analyzer (PCA) for
compiler versions 7.1 and older. See the IRIS Power C User’s Guide for more information

Example of #pragma parallel

For example, suppose you want to start a parallel region in which to run the following
code in parallel:

for (idx=n; idx; idx--) {
a[idx] = b[idx] + c[idx];

}

Then, you must enter the following code before the statement or compound statement
(code in curly braces, { }) that makes up the parallel region:

#pragma parallel shared( a, b, c ) shared(n) local( idx )
#pragma pfor

Or you can enter this:

#pragma parallel
#pragma shared( a, b, c )
#pragma shared(n)
#pragma local(idx)
#pragma pfor

Any code within a parallel region but not within any of the explicit parallel constructs
(pfor, independent, one processor, and critical) is local code. Local code typically
modifies only local data and is run by all threads.
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#pragma parallel clauses

The parallel pragma has four possible clauses; each clause may also be written as a
separate pragma, following the parallel pragma:

• shared

• local

• if

• numthreads

shared: Specifying Shared Variables

The shared clause tells the multiprocessing C/C++ compiler the names of all the
variables that the threads must share.

The syntax of #pragma parallel with the shared clause is as follows:

#pragma parallel shared (var1 [, var2 ...])

Note: A variable in a shared clause cannot be an array element or a field within a class,
structure, or union.

local: Specifying Local Variables

The local clause tells the multiprocessing C/C++ compiler the names of all the variables
that must be local to each thread.

The syntax of #pragma parallel with the local clause is as follows:

#pragma parallel local (var1 [, var2 ...])

A variable in a local clause cannot have initializers and cannot be any of the following:

• an array element

• a field within a class, structure, or union

• an instance of a C++ class
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if: Specifying Conditional Parallelization

The if clause lets you set up a condition that is evaluated at run time to determine
whether to run the statements serially or in parallel. At compile time, it’s not always
possible to judge how much work a parallel region does (for example, loop indices are
often calculated from data supplied at run time). The if clause lets you avoid running
trivial amounts of code in parallel when the possible speedup doesn’t compensate for the
overhead associated with running code in parallel.

The syntax of #pragma parallel with the if clause is as follows:

#pragma parallel if (expr)

The if condition, expr, must evaluate to an integer. If expr is false (evaluates to zero), then
the subsequent statements runs serially. Otherwise, the statements run in parallel.

numthreads: Specifying the Number of Threads

The numthreads clause tells the multiprocessing C/C++ compiler how many of the
available threads to use when running this region in parallel. (The default is all the
available threads.)

In general, you should avoid having more threads of execution than you have processors,
and you should specify numthreads with the MP_SET_NUMTHREADS environment
variable at run time (see the “Multiprocessing Advanced Features” chapter in the C
Language Reference Manual for more details). If you want to run a loop in parallel while
you run some other code, you can use this option to tell the compiler to use only some of
the available threads.

The syntax of #pragma parallel with the numthreads clause is as follows:

#pragma parallel numthreads(expr)

The variable expr should evaluate to a positive integer.
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#pragma pfor

#pragma pfor marks a for loop to run in parallel. This pragma must follow a parallel
pragma and be contained within a parallel region. pfor takes several clauses (see
“#pragma parallel clauses” on page 95 for more details), which control various aspects
such as the following:

• how the work load are partitioned over the available processors

• which variables are local to each process

• which variables are involved in a reduction operation

• which iterations are assigned to which threads

• how the iterations are shared by the available processors

• how many iterations make up the “chunks” assigned to the threads

Using #pragma pfor

Use #pragma pfor to run a for loop in parallel only if the loop meets all of these
conditions:

• The pfor is contained within a parallel region.

• All the values of the index variable can be computed independently of the
iterations.

• All iterations are independent of each other; that is, data used in one iteration does
not depend on data created by another iteration. A quick test for independence is if
the loop can be run backwards, then chances are good the iterations are
independent.

• The number of iterations is known (no infinite or data-dependent loops) at
execution time. The number of times the loop must be executed must be determined
once, upon entry to the loop, and based on the loop initialization, loop test, and
loop increment statements.

Note: If the number of times the loop is actually executed is different from what is
computed above, the results are undefined. This can happen if the loop test and
increment change during the execution of the loop, or if there is an early exit from
within the for loop. An early exit or a change to the loop test and increment during
execution may have serious performance implications.
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• The chunksize, if specified, is computed before the loop is executed, and the
behavior is undefined if its value changes within the loop.

• The loop control variable cannot be an array element, or a field within a class,
structure, or union.

• The test or the increment should not contain expressions with side effects.

Caution for Using #pragma pfor

This pragma works slightly differently in the IRIS POWER C™ Analyzer (PCA) for
compiler versions 7.1 and older. See the IRIS Power C User’s Guide for more information

Diagram of #pragma pfor

Figure 8-5 shows parallel code segments using #pragma pfor running on four threads
with simple scheduling.
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Figure 8-5 Parallel Code Segments Using #pragma pfor

A(0-99) A(100-199) A(200-299) A(300-399)

...
#pragma parallel local (i)...
{
#pragma pfor
      for (i=0;i<400;i++) {
       ...
        }
}  ...

} A(0-399)
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C++ Multiprocessing Considerations With #pragma pfor

If you are writing a pfor loop for the multiprocessing C++ compiler, the index variable i
can be declared within the for statement using

int i = 0;

The ANSI C++ Standard states that the scope of the index variable declared in a for
statement extends to the end of the for statement, as in this example:

#pragma pfor
for (int i = 0, ...) { ... }

The MIPSpro 7.2 C++ compiler does not enforce this rule. By default, the scope extends
to the end of the enclosing block. The default behavior can be changed by using the
command line option -LANG:ansi-for-init-scope=on which enforces the ANSI C++
standard.

To avoid future problems, write for loops in accordance with the ANSI standard, so a
subsequent change in the compiler implementation of the default scope rules does not
break your code.
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#pragma pfor clauses

The pfor pragma has seven clauses:

iterate Gives the multiprocessing C compiler the information it needs to
partition the work load over the available processors.

local Specifies the variables that are local to each process.

lastlocal Specifies the variables that are local to each process, saving only the
value of the variables from the logically last iteration of the loop.

reduction Specifies variables involved in a reduction operation.

affinity Assigns certain iterations to specific threads (for Origin200™ and
Origin2000™ only).

nest Exploits nested concurrency.

schedtype Specifies how the loop iterations are to be shared among the processors.

chunksize Specifies how many iterations make up a chunk.

iterate: Specifying the for Loop

The syntax of #pragma pfor with the iterate clause is as follows:

#pragma pfor iterate (index = expr1; expr2; expr3)

The iterate clause gives the multiprocessing C compiler the information it needs to
identify the unique iterations of the loop and partition them to particular threads of
execution. This clause is optional. The compiler automatically infers the appropriate
values from the subsequent for loop.
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Table 8-2 describes the components of the iterate clause.

iterate Example

Consider this for loop:

for (idx=n; idx; idx--) {
a[idx] = b[idx] + c[idx];
}

The iterate clause to pfor should be as follows:

iterate(idx=n;n;-1)

This loop counts down from the value of n, so the starting value is the current value of n.
The number of trips through the loop is n, and the increment is -1.

local and lastlocal: Specifying Local Variables

The syntax of #pragma pfor with the local clause is as follows:

#pragma pfor local (var1[, var2,...])

local specifies the variables that are local to each process. If a variable is declared as local,
each iteration of the loop is given its own uninitialized copy of the variable. You can
declare a variable as local if its value does not depend on any other iteration of the loop
and if its value is used only within a single iteration. In effect the local variable is just
temporary; a new copy can be created in each loop iteration without changing the final
answer.

Table 8-2 Components of the iterate Clause

Component Description

index The index variable of the for loop you want to run in parallel.

expr1 The starting value for the index variable.

expr2 The number of iterations for the loop you want to run in parallel.

expr3 The increment of the for loop you want to run in parallel.
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The pfor local clause has the same restrictions as the parallel local clause (see “local:
Specifying Local Variables” on page 95).

The syntax of #pragma pfor with the lastlocal clause is as follows:

#pragma pfor lastlocal (var1[, var2,...])

lastlocal specifies the variables that are local to each process. Unlike with the local clause,
the compiler saves the value from only the logically last iteration of the loop when it
completes.

reduction: Specifying Variables for Reduction

The syntax of #pragma pfor with the reduction clause is as follows:

#pragma pfor reduction (var1[, var2,...])

Specifies variables involved in a reduction operation. In a reduction operation, the
compiler keeps local copies of the variables and combines them when it exits the loop.
An element of the reduction list must be an individual variable (also called a scalar
variable) and cannot be an array or structure. However, it can be an individual element
of an array. When the reduction clause is used, it appears in the list with the correct
subscripts.

One element of an array can be used in a reduction operation, while other elements of the
array are used in other ways. To allow for this, if an element of an array appears in the
reduction list, the entire array can also appear in the share list.

The two types of reductions supported are sum(+) and product(*). For more information,
see the “Parallel Reduction Operations in C and C++” section in the “Multiprocessing
C/C++ Compiler Directives” chapter of the C Language Reference Manual.

The compiler confirms that the reduction expression is legal by making some simple
checks. The compiler does not, however, check all statements in the for loop for illegal
reductions. You must ensure that the reduction variable is used correctly in a reduction
operation.
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affinity: Specifying Thread and Data Affinity

The affinity clause can be used for thread or data affinity. Thread affinity assigns
particular iterations to a particular thread. Data affinity applies to distributed arrays (and
is useful only on Origin systems).

Thread Affinity

The syntax of #pragma pfor with the affinity clause for thread affinity is as follows:

#pragma pfor affinity variable = thread (expr)

The effect of thread-affinity is to execute iteration i on the thread number given by the
user-supplied expression (modulo the number of threads). Because the threads may need
to evaluate this expression in each iteration of the loop, the variables used in the
expression (other than the loop induction variable) must be declared shared and must
not be modified during the execution of the loop. Violating these rules may lead to
incorrect results.

If the expression does not depend on the loop induction variable, then all iterations will
execute on the same thread and will not benefit from parallel execution.

Thread affinity is often used in conjunction with “#pragma page_place.”.

Data Affinity

Data affinity applies only to distributed arrays and is useful only on Origin systems. See
Chapter 4, “Distributed Shared Memory (DSM) Optimization Pragmas,” for more
information about distributed arrays.

The syntax of #pragma pfor with the affinity clause for data affinity is as follows:

#pragma pfor affinity(idx) = data(array(expr))

idx is the loop-index variable; array is the distributed array; and expr indicates an element
owned by the processor on which you want this iteration to execute.
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The following code shows an example of data affinity:

#pragma distribute A[block]
#pragma parallel shared (A, a, b) local (i)
#pragma pfor affinity(i) = data(A[a*i + b])
for (i = 0; i < n; i++)
   A[a*i + b] = 0;

The multiplier for the loop index variable (a) and the constant term (b) must both be
literal constants, with a greater than zero.

The effect of this clause is to distribute the iterations of the parallel loop to match the data
distribution specified for the array A, such that iteration i is executed on the processor
that owns element A[a*i + b], based on the distribution for A. The iterations are scheduled
based on the specified distribution, and are not affected by the actual underlying
data-distribution (which may differ at page boundaries, for example).

In the case of a multi-dimensional array, affinity is provided for the dimension that
contains the loop-index variable. The loop-index variable cannot appear in more than
one dimension in an affinity directive. For example,

#pragma distribute A[block][cyclic(1)]
#pragma parallel shared (A, n) local (i, j)
#pragma pfor
#pragma affinity (i) = data(A[i + 3, j])
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
A[i + 3, j] = A[i + 3, j-1];

In this example, the loop is scheduled based on the block distribution of the first
dimension. See Chapter 4, “Distributed Shared Memory (DSM) Optimization Pragmas,”
for more information about distribution directives.

Data affinity for loops with non-unit stride can sometimes result in non-linear affinity
expressions. In such situations the compiler issues a warning, ignores the affinity clause,
and defaults to simple scheduling.
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Data Affinity for Redistributed Arrays

By default, the compiler assumes that a distributed array is not dynamically
redistributed, and directly schedules a parallel loop for the specified data affinity. In
contrast, a redistributed array can have multiple possible distributions, and data affinity
for a redistributed array must be implemented in the run-time system based on the
particular distribution.

However, the compiler does not know whether or not an array is redistributed, because
the array may be redistributed in another function (possibly even in another file).
Therefore, you must explicitly specify the #pragma dynamic declaration for
redistributed arrays. This directive is required only in those functions that contain a pfor
loop with data affinity for that array (see “#pragma dynamic” on page 28 for additional
information). This informs the compiler that the array can be dynamically redistributed.
Data affinity for such arrays is implemented through a run-time lookup.

Data Affinity for a Formal Parameter

You can supply a distribute directive on a formal parameter, thereby specifying the
distribution on the incoming actual parameter. If different calls to the subroutine have
parameters with different distributions, then you can omit the distribute directive on the
formal parameter; data affinity loops in that subroutine are automatically implemented
through a run-time lookup of the distribution. (This is permissible only for regular data
distribution. For reshaped array parameters, the distribution must be fully specified on
the formal parameter.)

Data Affinity and the #pragma pfor nest Clause

The nest clause for #pragma pfor is described in “nest: Exploiting Nested Concurrency”
on page 107. This section discusses how the nest clause interacts with the affinity clause
when the program has reshaped arrays.

When you combine a nest clause and an affinity clause, the default scheduling is simple,
except when the program has reshaped arrays and is compiled -O3. In that case, the
default is to use data affinity scheduling for the most frequently accessed reshaped array
in the loop (chosen heuristically by the compiler). To obtain simple scheduling even at
–O3, you can explicitly specify the schedtype on the parallel loop.
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The following example illustrates a nested pfor with an affinity clause:

#pfor nest(i, j) affinity(i, j) = data(A[i][j])
for (i = 2; i < n; i++)

for (j = 2; j < m; j++)
A[i][j] = A[i][j] + i * j;

nest: Exploiting Nested Concurrency

The nest clause allows you to exploit nested concurrency in a limited manner. Although
true nested parallelism is not supported, you can exploit parallelism across iterations of
a perfectly nested loop-nest.

The syntax of #pragma pfor with the nest clause is as follows:

#pragma pfor nest(i, j[, ...])

This clause specifies that the entire set of iterations across the (i, j[, ...) loops can
be executed concurrently. The restriction is that the loops must be perfectly nested; that
is, no code is allowed between either the for statements or the ends of the respective
loops, as illustrated in the following example:

#pragma pfor nest(i, j)
for (i = 0; i < n; i++)

for (j = 0; j < m; j++)
A[i][j] = 0;

The existing clauses such as local and shared behave as before. You can combine a nested
pfor with a schedtype of simple or interleaved (dynamic and gss are not currently
supported). The default is simple scheduling.

Note: The nest clause requires support from the MP run-time library (libmp). IRIX
operating system versions 6.3 (and above) are automatically shipped with this new
library. If you wish to access these features on a system running IRIX 6.2, then contact
your local Silicon Graphics service provider or Silicon Graphics Customer Support
(1-800-800-4744) for libmp.
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schedtype: Sharing Loop Iterations Among Processors

The syntax of #pragma pfor with the schedtype clause is as follows:

#pragma pfor schedtype (type)

schedtype tells the multiprocessing C compiler how to share the loop iterations among
the processors. The schedtype chosen depends on the type of system you are using and
the number of programs executing (see Table 8-4).

Valid Types for schedtype

You can use the types in Table 8-3 to modify schedtype.

Table 8-3 Schedtype Types

Type Function

simple
(the default)

Tells the run-time scheduler to partition the iterations evenly among all
the available threads.

dynamic Tells the run-time scheduler to give each thread chunksize iterations of
the loop. chunksize should be smaller than the number of total iterations
divided by the number of threads. The advantage of dynamic over
simple is that dynamic helps distribute the work more evenly than
simple.

interleave Tells the run-time scheduler to give each thread chunksize iterations of
the loop, which are then assigned to the threads in an interleaved way.

gss
(guided
self-scheduling)

Tells the run-time scheduler to give each processor a varied number of
iterations of the loop. This is like dynamic, but instead of a fixed
chunksize, the chunksize iterations begin with big pieces and end with
small pieces.

If I iterations remain and P threads are working on them, the piece size
is roughly

I/(2P) + 1

Programs with triangular matrices should use gss.

runtime Tells the compiler that the real schedule type will be specified at run
time, based on environment variables (see the “Run-time Environment
Variables” section in the “Multiprocessing Advanced Features” chapter
of the C Language Reference Manual for more information).
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Loop Scheduling

Figure 8-6 shows how the iteration chunks are apportioned over the various processors
by the different types of loop scheduling.

Figure 8-6 Loop Scheduling Types
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Choosing a schedtype

The best schedtype to use for any given program depends on your system, program, and
data. For instance, with certain types of data, some iterations of a loop can take longer to
compute than others, so some threads may finish long before the others. In this situation,
if the iterations are distributed by simple, then the thread waits for the others. But if the
iterations are distributed by dynamic, the thread does not wait, but goes back to get
another chunksize iteration until the threads of execution have run all the iterations of the
loop.

The Table 8-4 describes how to choose a schedtype.

If you are on a single-user system but are executing multiple programs, select the
scheduling from the multiuser rows.

If you are on a multiuser system, you should also consider using the environment
variable, MP_SUGNUMTHD. Setting MP_SUGNUMTHD causes the run-time library to
automatically adjust the number of active threads based on the overall system load.
When idle processors exist, this process increases the number of threads, up to a
maximum of MP_SET_NUMTHREADS. When the system load increases, it decreases
the number of threads. For more details about MP_SUGNUMTHD, see the “Run-time
Environment Variables” section in the “Multiprocessing Advanced Features” chapter of the C
Language Reference Manual.

Table 8-4 Choosing a schedtype

For a... Where... Use...

Single-User System iterations take same amount of time simple

data-sensitive iterations vary slightly gss

data-sensitive iterations vary greatly dynamic

Multiuser System data-sensitive iterations vary slightly gss

data-sensitive iterations vary greatly dynamic
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chunksize: Specifying the Number of Iterations in a Chunk

chunksize tells the multiprocessing C compiler how many iterations to define as a chunk
when using the dynamic or interleave clause (see “schedtype: Sharing Loop Iterations
Among Processors” on page 108).

The syntax of #pragma pfor with the chunksize clause is as follows:

#pragma pfor chunksize (expr)

expr should be a positive integer. Silicon Graphics recommends using the following
formula:

(number of iterations)/X

X should be between twice and ten times the number of threads. Select twice the number
of threads when iterations vary slightly. Reduce the chunk size to reflect the increasing
variance in the iterations. Performance gains may diminish after increasing X to ten times
the number of threads.
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#pragma set chunksize

#pragma set chunksize sets the value of chunksize, which tells the multiprocessing C
compiler how many iterations to define as a chunk when using the dynamic or
interleave clause (see “#pragma set schedtype” on page 114 and “#pragma pfor clauses”
on page 101 for more information).

Using #pragma set chunksize

The syntax of the set chunksize pragma is as follows:

#pragma set chunksize (n)

Silicon Graphics recommends using the following formula:

(number of iterations)/X

X should be between twice and ten times the number of threads. Select twice the number
of threads when iterations vary slightly. Reduce the chunk size to reflect the increasing
variance in the iterations. Performance gains may diminish after increasing X to ten times
the number of threads.
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#pragma set numthreads

#pragma set numthreads sets the value for numthreads, which tells the multiprocessing
C/C++ compiler how many of the available threads to use when running this region in
parallel. The default is all the available threads.

If you want to run a loop in parallel while you run some other code, you can use this
option to tell the compiler to use only some of the available threads.

Using #pragma set numthreads

The syntax of the set numthreads pragma is as follows:

#pragma set numthreads (n)

n can range from 1 to 255. If if n is greater than 255, the compiler assumes the maximum
and generates a warning message. If n is less than 1, the compiler generates a warning
message and ignores the pragma.

In general, you should never have more threads of execution than you have processors,
and you should specify numthreads with the MP_SET_NUMTHREADS environment
variable at run time (see the “Run-time Environment Variables” in the “Multiprocessing
Advanced Features” chapter of the C Language Reference Manual for more information).
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#pragma set schedtype

#pragma set schedtype sets the value of schedtype, which tells the multiprocessing C
compiler how to share the loop iterations among the processors. The schedtype chosen
depends on the type of system you are using and the number of programs executing (see
“#pragma pfor clauses” on page 101 for more information on schedtype).

Using #pragma schedtype

The syntax of the schedtype pragma is as follows:

#pragma set schedtype (type)

The schedtype types are

• simple

• dynamic

• interleave

• gss

• runtime

See Table 8-3 for a description of each type.
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#pragma shared

The #pragma shared directive tells the multiprocessing C/C++ compiler the names of all
the variables that the threads must share. This pragma must be used in conjunction with
the parallel pragma. shared can also be used as a clause for the parallel pragma (see
“#pragma parallel clauses” on page 95).

Using #pragma shared

The syntax of the shared pragma is as follows:

#pragma shared (variable1, [, variable2...])

Note: A variable in a shared clause cannot be an array element or a field within a class,
structure, or union.
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#pragma synchronize

The #pragma synchronize directive tells the multiprocessing C/C++ compiler that
within a parallel region, no thread can execute the statement that follows this pragma
until all threads have reached it. This pragma is a classic barrier construct.

Using #pragma synchronize

The syntax of the synchronize pragma is as follows:

#pragma synchronize

Diagram of #pragma synchronize

Figure 8-7 is a “time-lapse” sequence showing the synchronization of all threads.
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Figure 8-7 Synchronization
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9. Precompiled Header Pragmas

Table 9-1 lists the precompiled header pragmas, along with a short description of each
and the compiler versions in which the pragma is supported.

Table 9-1 Precompiled Header Pragmas

#pragma Short Description Compiler
Versions

“#pragma hdrstop” Indicates the point at which the precompiled header
mechanism snapshots the headers. If –pch is off,
#pragma hdrstop is ignored.

7.2 and later

“#pragma no_pch” Disables the precompiled header mechanism. 7.2 and later

“#pragma once” Ensures (in -n32 and –64 mode) that an include file is
included at most one time in each compilation unit.

7.0 and later
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#pragma hdrstop

The #pragma hdrstop directive indicates the point at which the precompiled header
mechanism snapshots the headers.

Using #pragma hdrstop

The syntax of the hdrstop pragma is as follows:

#pragma hdrstop

If –pch is on, #pragma hdrstop indicates the point at which the precompiled header
mechanism snapshots the headers.

If –pch is off, #pragma hdrstop is ignored.

See the MIPSpro Compiling and Performance Tuning Guide for details on the precompiled
header mechanism.
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#pragma no_pch

The #pragma no_pch directive disables the precompiled header mechanism.

Using #pragma no_pch

The syntax of the no_pch pragma is as follows:

#pragma no_pch
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#pragma once

The #pragma once directive ensures (in -n32 and –64 mode) that each include file is
included at most one time in each compilation unit.

Using #pragma once

The syntax of the once pragma is as follows:

#pragma once

This pragma has no effect in –32 mode, but will ensure idempotent include files in -n32
and –64 mode (that is, that an include file is included at most one time in each compilation
unit).

Silicon Graphics recommends enclosing the contents of an include file afile.h with an
#ifdef directive similar to the following:

#ifndef afile_INCLUDED
#define afile_INCLUDED
<contents of afile.h>
#endif
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10. Scalar Optimization Pragmas

Table 10-1 lists the pragmas covered in this chapter, along with a short description of
each and the compiler versions in which the pragma is supported.

Table 10-1 Scalar Optimization Pragmas

#pragma Short Description Compiler
Versions

“#pragma mips_frequency_hint” Specifies the expected frequency of
execution so that cord2 can move
exception code and initialization code
into separate pages to minimize working
set size.

7.2 and later

“#pragma section_gp” (in Chapter 6,
“Loader Information Pragmas”)

Causes an object to be placed in a
gp_relative section.

7.2 and later

“#pragma section_non_gp” (in
Chapter 6, “Loader Information
Pragmas”)

Keeps an object from being placed in a
gp_relative section.

7.2 and later

“#pragma unroll” (in Chapter 7, “Loop
Nest Optimization Pragmas”)

Suggests to the compiler that a specified
number of copies of the loop body be
added to the inner loop. If the loop
following this pragma is an inner loop,
then it indicates standard unrolling. If the
loop following this pragma is not
innermost, then outer loop unrolling
(unroll and jam) is performed.

7.2 and later
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#pragma mips_frequency_hint

This directive allows you to specify the expected frequency of execution of the named
function so the compiler can move exception code and initialization code into separate
pages to minimize working-set size.

Using #pragma mips_frequency_hint

The syntax of the mips_frequency_hint pragma is as follows:

#pragma mips_frequency_hint {NEVER|INIT} [function_name]

#pragma mips_frequency_hint is not currently supported in C++, except for symbols
marked extern “C”.

This pragma provides a mechanism for you to give information about execution
frequency for certain regions in the code. You can provide the following frequency
specifications:

NEVER This region of code is never or rarely executed. The compiler
might move this region of the code away from the normal path.
This movement might either be to the end of the procedure or at
some point to an entirely separate section.

INIT This region of code is executed only during initialization or
startup of the program. The compiler might try to put all regions
under “INIT” together to provide better locality during startup
of a program.
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You can use this pragma in two ways:

• You can specify it with a function declaration. The pragma then applies everywhere
the function is called.

extern void Error_Routine();
#pragma mips_frequency_hint NEVER Error_Routine

Note: In this case, the pragma must appear after the function declaration.

• You can specify it without a function declaration. In this case, you can place the
pragma anywhere in the body of a procedure. It then applies to the statement
directly following the pragma.

if (some_condition)
{

#pragma mips_frequency_hint NEVER
Error_Routine ();
...

}

Cautions for Using #pragma mips_frequency_hint

This is for compiler version 7.2 only, and does not work for -32, because it requires an ELF
object file with .MIPS.content sections.
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11. Warning Suppression Control Pragmas

Table 11-1 lists the pragmas discussed in this chapter, along with a brief description and
the compiler versions in which the pragma is supported.

Table 11-1 Warning Suppression Control Pragmas

#pragma Short Description Compiler
Versions

“#pragma set woff” Suppresses compiler warnings (either all, or by
warning number).

7.2 and later

“#pragma reset woff” Resets listed warnings to the state specified in the
command line.

7.2 and later
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#pragma set woff

The #pragma set woff directive suppresses complier warnings individually by warning
number.

Using #pragma set woff

The syntax of the set woff pragma is as follows:

#pragma set woff (warning_list)

warning_list consists of a list of the warning numbers that you want suppressed. Ranges
are allowed. Only the specified compiler warnings are suppressed.

For example, the following pragma turns off warnings 1, 2, 300 through 310, and 8:

#pragma set woff 1,2,300-310,8

#pragma set woff does not nest. That is, any #pragma reset woff on a given number
resets the value to that implied by the command line.



#pragma set woff

129

Example of #pragma set woff

The following code illustrates the use of #pragma set woff:

cc -woff 300,302

/*  example.c */
#pragma set woff 400
/* warnings 300,302, and 400  are off  in example.c */

#include “example.h”
/* You would expect that warnings 300,302,and 400 would be off

in example.h. However, the #pragma set woff does not travel
into #includes properly. In MIPSpro7.2 300 and 302 are off, but
400 is on in example.h. In a future release 400 may be off in
example.h

*/

#pragma reset woff 400
/*  400 is reset to command line state; that is, 400 is on. */

#pragma reset woff 300
/* 300 is reset to command line state; that is, 300 is still off */
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#pragma reset woff

The #pragma reset woff directive resets listed warnings to the state specified in the
command line.

Using #pragma reset woff

The syntax of the reset woff pragma is as follows:

#pragma reset woff (warning_list)

warning_list consists of a list of the warning numbers that you want reset to the state
specified in the command line. Ranges are allowed. Only the specified compiler
warnings are reset.

For example, the following pragma sets warnings 1, 2, 300 through 310, and 8 back to the
command-line setting:

#pragma set woff 1,2,300-310,8

This pragma does not nest.
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Example of #pragma reset woff

The following code illustrates the use of #pragma reset woff:

cc -woff 300,302

/*  example.c */
#pragma set woff 400
/* warnings 300,302, and 400 are off in example.c */

#include “example.h”
/* You would expect that warnings 300,302,and 400 would be off

in example.h. However, the #pragma set woff does not travel
into #includes properly. In MIPSpro7.2 300 and 302 are off,
but 400 is on in example.h. In a future release 400 may be off
in example.h

*/

#pragma reset woff 400
/*  400 is reset to command line state; that is, 400 is on. */

#pragma reset woff 300
/* 300 is reset to command line state; that is, 300 is still off */
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12. Miscellaneous Pragmas

Table 12-1 lists the pragmas described in this chapter, along with a brief description of
each.

Table 12-1 Miscellaneous Pragmas

#pragma Short Description Compiler
Versions

“#pragma ident” Adds a .comment section to the object file
and puts the supplied string inside the
.comment section.

6.0 and
later (-32
only)

“#pragma int_to_unsigned” Identifies identifier as a function whose type
was int in a previous release of the
compilation system, but whose type is
unsigned int in the MIPSpro compiler
release.

7.0 and
later

“#pragma intrinsic” Allows certain preselected functions from
math.h, stdio.h, and string.h to be inlined at a
call site. Can also enable the compiler to get
additional information about the function to
improve execution efficiency.

7.0 and
later
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#pragma ident

The #pragma ident directive adds a .comment section to the object file and puts the
supplied string inside the .comment section.

Using #pragma ident

The syntax of the ident pragma is as follows:

#pragma ident “string”

string is the string you wish to add to the .comment section in the object file. The string
must be enclosed in double quotes.

Caution for Using #pragma ident

The ident pragma is not available with -n32 or -64 mode. It is only available with -32
mode.
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#pragma int_to_unsigned

The #pragma int_to_unsigned directive tells the compiler that the named function has a
different type (unsigned int) in the MIPSpro compiler release than it did in previous
releases (int).

Using #pragma int_to_unsigned

The syntax of the int_to_unsigned pragma is as follows:

#pragma int_to_unsigned function_name

#pragma int_to_unsigned is not currently supported in C++, except for symbols marked
extern “C”.

This pragma identifies function_name as a function whose type was int in a previous
release of the compilation system, but whose type is unsigned int in the MIPSpro
compiler release. The declaration of the identifier must precede the pragma:

unsigned int strlen(const char*);
#pragma int_to_unsigned strlen

This declaration makes it possible for the compiler to identify where the changed type
may affect the evaluation of expressions.
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#pragma intrinsic

The #pragma intrinsic directive allows certain preselected functions from math.h, stdio.h,
and string.h to be inlined at a call site for execution efficiency.

Using #pragma intrinsic

The syntax of the intrinsic pragma is as follows:

#pragma intrinsic (function_name)

Cautions for Using #pragma intrinsic

• This pragma has no effect on functions other than the preselected ones.

• Exactly which functions may be inlined, how they are inlined, and under what
circumstances inlining occurs is implementation defined and may vary from one
release of the compilers to the next.

• The inlining of intrinsics may violate some aspect of the ANSI C standard (for
example, the errno setting for math.h functions).

• All intrinsics are activated through pragmas in the respective standard header files
and only when the preprocessor symbol __INLINE_INTRINSICS is defined and the
appropriate include files are included. __INLINE_INTRINSICS is predefined by
default only in –cckr and –xansi mode.



Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3587-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California  94043-1389


