
MIPSproTM C and C++ Pragmas

Document Number 007–3587–003

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

Copyright © 1998, 1999 Silicon Graphics, Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, X-MP EA, and UNICOS/mk are federally registered trademarks and Because no workstation is
an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP,
CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX are trademarks of
Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

DynaText and DynaWeb are registered trademarks of Inso Corporation. OpenMP is a trademark of the OpenMP Architecture
Review Board. Portions of this publication may have been derived from the OpenMP Language Application Program Interface
Specification. Silicon Graphics, MIPSpro, and the Silicon Graphics logo are registered trademarks of Silicon Graphics, Inc. UNIX
is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.
X/Open is a trademark of X/Open Company Ltd. The X device is a trademark of the Open Group.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

MIPSproTM C and C++ Pragmas 007–3587–003

This revision of MIPSpro C and C++ Pragmas supports the 7.3 release of the MIPSpro compiler. See the cc(1)
man page for changes or additions to command-line options for the MIPSpro C and MIPSpro C++ compiler.

The following changes have been made to this document:

• Information has been added about the support for OpenMP directives based on the OpenMP C/C++
Application Program Interface (API) standard (Chapter 10, page 89).

• A new #pragma directive has been added, #pragma unknown_control_flow (Section 14.4, page 131).

• A new #pragma directive has been added, #pragma pure (Section 9.12, page 85).

• A new chapter was added about the Auto-Parallelizing Option (APO) (Chapter 15, page 133). This
information was taken from the MIPSpro Auto-Parallelizing Option Programmer’s Guide, which will no
longer be revised.

Record of Revision

Version Description

7.3 March 1999
This revision supports the 7.3 version of the MIPSpro compiler.

007–3587–003 i

Contents

Page

About This Manual xiii

Related Publications . xiii

Obtaining Publications . xiii

Conventions . xiii

Reader Comments . xiv

Alphabetical Listing of Directives [1] 1

Automatic Parallelization #pragma Directives [2] 9

#pragma concurrent . 9

#pragma concurrent call . 10

Examples of #pragma concurrent call 11

Example 1 . 11

Example 2 . 11

#pragma concurrentize . 12

#pragma no concurrentize . 12

#pragma permutation . 12

#pragma prefer concurrent 13

#pragma prefer serial . 14

#pragma serial . 14

C++ Instantiation #pragma Directives [3] 15

#pragma instantiate . 15

#pragma can_instantiate . 16

#pragma do_not_instantiate 17

Data Layout #pragma Directives [4] 19

007–3587–003 iii

MIPSproTM C and C++ Pragmas

Page

#pragma align_symbol . 19

Example of #pragma align_symbol 20

#pragma fill_symbol . 21

Example of #pragma fill_symbol 21

#pragma pack . 22

DSM Optimization #pragma Directives [5] 23

#pragma distribute . 23

Example of #pragma distribute 25

onto Clause . 25

#pragma distribute_reshape 25

Example of #pragma distribute_reshape 28

#pragma dynamic . 28

#pragma page_place . 29

Example of #pragma page_place 30

#pragma redistribute . 30

onto Clause . 31

Example of #pragma redistribute 32

Inlining #pragma Directives [6] 33

#pragma inline and #pragma noinline 33

Keywords . 34

Examples of #pragma inline and #pragma noinline 35

Example 1: Using the here keyword with the #pragma noinline directive . . . 35

Example 2: Using the here keyword with the #pragma inline and
#pragma noinline directives 36

Example 3: Using the global keyword with the #pragma inline directive . . . 36

Example 4: Using the routine keyword with the #pragma inline directive . . . 37

Example 5: Using the routine keyword with the #pragma noinline directive . . 38

iv 007–3587–003

Contents

Page

Loader Information #pragma Directives [7] 39

#pragma hidden . 40

#pragma internal . 41

#pragma no_delete . 41

#pragma optional . 41

#pragma protected . 42

#pragma section_gp . 42

#pragma section_non_gp . 43

#pragma weak . 43

Loop Nest Optimization #pragma Directives [8] 47

#pragma aggressive inner loop fission 48

#pragma blocking size . 49

Example of #pragma blocking size 49

#pragma no blocking . 49

#pragma fission . 50

#pragma fissionable . 50

#pragma no fission . 50

#pragma fuse . 50

#pragma fusable . 51

#pragma no fusion . 51

#pragma no interchange . 51

#pragma ivdep . 52

Examples of #pragma ivdep 52

#pragma prefetch . 53

#pragma prefetch_manual . 54

#pragma prefetch_ref . 54

#pragma prefetch_ref_disable 56

#pragma unroll . 56

007–3587–003 v

MIPSproTM C and C++ Pragmas

Page

Examples of #pragma unroll 57

Multiprocessing #pragma Directives [9] 59

#pragma copyin . 60

Example of #pragma copyin 60

#pragma critical . 61

Diagram of #pragma critical 61

#pragma enter gate and #pragma exit gate 63

Diagram of #pragma enter gate and #pragma exit gate 63

Example of #pragma enter gate and #pragma exit gate 65

#pragma independent . 66

Diagram of #pragma independent 66

#pragma local . 67

#pragma no side effects . 68

#pragma one processor . 68

Diagram of #pragma one processor 68

#pragma parallel . 69

Example of #pragma parallel 70

#pragma parallel Clauses . 71

shared: Specifying Shared Variables 71

local: Specifying Local Variables 72

if: Specifying Conditional Parallelization 72

numthreads: Specifying the Number of Threads 72

#pragma pfor . 73

Diagram of #pragma pfor . 74

C++ Multiprocessing Considerations With #pragma pfor 75

#pragma pfor Clauses . 76

iterate: Specifying the for Loop 76

local and lastlocal: Specifying Local Variables 77

vi 007–3587–003

Contents

Page

reduction: Specifying Variables for Reduction 78

affinity: Thread Affinity . 78

affinity: Data Affinity . 79

Data Affinity for Redistributed Arrays 80

Data Affinity for a Formal Parameter 80

Data Affinity and the #pragma pfor nest Clause 81

nest: Exploiting Nested Concurrency 81

schedtype: Sharing Loop Iterations Among Processors 82

chunksize: Specifying the Number of Iterations in a Chunk 84

#pragma pure . 85

#pragma set chunksize . 85

#pragma set numthreads . 86

Using #pragma set numthreads 86

#pragma set schedtype . 86

#pragma shared . 87

#pragma synchronize . 87

Diagram of #pragma synchronize 87

OpenMP C/C++ API Multiprocessing Directives [10] 89

Using Directives . 90

Conditional Compilation . 90

parallel Construct . 91

Work–sharing Constructs . 92

for Construct . 93

sections Construct . 96

single Construct . 97

Combined Parallel Work-sharing Constructs 98

parallel for Construct . 98

parallel sections Construct 99

007–3587–003 vii

MIPSproTM C and C++ Pragmas

Page

Master and Synchronization Constructs 100

master Construct . 101

critical Construct . 101

barrier Directive . 102

atomic Construct . 102

flush Directive . 103

ordered Construct . 106

Data Environment . 107

threadprivate Directive . 107

Data Scope Attribute Clauses . 109

private Clause . 109

firstprivate Clause . 110

lastprivate Clause . 111

shared Clause . 112

default Clause . 112

reduction Clause . 113

copyin Clause . 116

Directive Binding . 116

Directive Nesting . 117

Precompiled Header #pragma Directives [11] 121

#pragma hdrstop . 121

#pragma no_pch . 122

#pragma once . 122

Scalar Optimization #pragma Directives [12] 123

#pragma mips_frequency_hint 123

Warning Suppression Control #pragma Directives [13] 125

#pragma set woff . 125

Example of #pragma set woff 126

viii 007–3587–003

Contents

Page

#pragma reset woff . 126

Example of #pragma reset woff 127

Miscellaneous #pragma Directives [14] 129

#pragma ident . 129

#pragma int_to_unsigned . 130

#pragma intrinsic . 130

#pragma unknown_control_flow 131

The Auto-Parallelizing Option (APO) [15] 133

C/C++ Command Line Options That Affect APO 133

-apo . 134

-apokeep and -apolist . 134

-CLIST:... 134

-IPA:... 135

-LNO:... 135

-O3 . 136

-OPT:... 136

-pca, -pcakeep, -pcalist . 137

file . 137

Files . 137

The file.list File . 138

The file.w2f.c File . 139

About the .m and .anl Files . 140

Running Your Program . 141

Compiler Directives . 141

#pragma concurrent call 143

#pragma concurrent . 144

#pragma serial . 145

#pragma prefer concurrent 145

007–3587–003 ix

MIPSproTM C and C++ Pragmas

Page

#pragma permutation . 146

#pragma no concurrentize, #pragma concurrentize 147

Troubleshooting Incomplete Optimizations 148

Constructs That Inhibit Parallelization 148

Loops Containing Data Dependencies 148

Loops Containing Function Calls 148

Loops Containing goto Statements 149

Loops Containing Problematic Array Constructs 149

Loops Containing Local Variables 150

Constructs That Reduce Performance of Parallelized Code 151

Parallelizing Nested Loops . 152

Parallelizing Loops With Small Or Indeterminate Trip Counts 153

Parallelizing Loops With Poor Data Locality 154

Index 157

Figures
Figure 1. Critical Segment Execution 62

Figure 2. Execution Using Gates 64

Figure 3. Independent Segment Execution 67

Figure 4. One Processor Segment 69

Figure 5. Parallel Code Segments Using #pragma pfor 75

Figure 6. Loop Scheduling Types 83

Figure 7. Synchronization . 88

Tables
Table 1. Silicon Graphics #pragma Directives 2

Table 2. IRIS Power C Analyzer #pragma Directives 9

Table 3. C++ Template Instantiation #pragma Directives 15

x 007–3587–003

Contents

Page

Table 4. Data Layout #pragma Directives 19

Table 5. Distributed Shared Memory #pragma Directives 23

Table 6. Inlining #pragma Directives 33

Table 7. Loader Information #pragma Directives 39

Table 8. Loop Nest Optimization #pragma Directives 47

Table 9. Clauses for #pragma prefetch_ref 55

Table 10. Multiprocessing #pragma Directives 59

Table 11. Components of the iterate Clause 77

Table 12. Schedtype Types . 82

Table 13. Choosing a schedtype 84

Table 14. Precompiled Header #pragma Directives 121

Table 15. Scalar Optimization #pragma Directives 123

Table 16. Warning Suppression Control #pragma Directives 125

Table 17. Miscellaneous #pragma Directives 129

007–3587–003 xi

About This Manual

This publication documents #pragma directives supported for the 7.3 release of
the MIPSpro C and C++ compilers.

Related Publications

The following documents contain additional information that may be helpful:

• C Language Reference Manual

• C++ Programmer’s Guide

Obtaining Publications

The User Publications Catalog describes the availability and content of all Cray
Research hardware and software documents that are available to customers.
Customers who subscribe to the Cray Inform (CRInform) program can access
this information on the CRInform system.

To order a document, call +1 651 683 5907. Silicon Graphics employees may
send electronic mail to orderdsk@sgi.com (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

007–3587–003 xiii

MIPSproTM C and C++ Pragmas

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send electronic mail to the following address:

techpubs@sgi.com

• Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

• Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

• Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

For Silicon Graphics IRIX based operating systems: 1 800 800 4SGI

For UNICOS or UNICOS/mk based operating systems or CRAY Origin2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

• Send mail to the following address:

Technical Publications
Silicon Graphics, Inc.
1600 Amphitheatre Pkwy.
Mountain View, California 94043–1351

We value your comments and will respond to them promptly.

xiv 007–3587–003

Alphabetical Listing of Directives [1]

#pragma directives are used within the source program to request certain kinds
of special processing. #pragma directives are part of the C and C++ languages,
but the meaning of any #pragma directive is defined by the implementation.
#pragma directives are expressed in the following form:

#pragma identifier [arguments]

Compiler directives can also be specified in the following form, which has the
advantage in that it can appear inside macro definitions:

_Pragma("identifier");

This form has the same effect as using the #pragma form, except that
everything that appeared on the line following the #pragma must now appear
inside the double quotation marks and parentheses. The expression inside the
parentheses must be a single string literal, but it cannot be a macro that
expands into a string literal. _Pragma is a Silicon Graphics extension to the C
and C++ standards.

The following is an example using the #pragma form:

#pragma ivdep

#pragma parallel local(i, j, k) \

shared(a, b, c)

The following is the same example using the alternative form:

_Pragma("ivdep")

_Pragma("parallel local(i, j, k) \

shared(a, b, c)")

Macro expansion occurs on the directive line after the directive name. (That is,
macro expansion is applied only to arguments.) For example, if NUM_CHUNKS is
a macro defined as the value 8, the original code is as follows:

#define NUM_CHUNKS 8

_Pragma("parallel numchunks(NUM_CHUNKS)")

Table 1, page 2, is an alphabetical list of Silicon Graphics supported #pragma
directives, with a short description of each and a link to the chapter where the
directive is discussed.

007–3587–003 1

MIPSproTM C and C++ Pragmas

Table 1. Silicon Graphics #pragma Directives

#pragma Short Description Functional Group

aggressive inner loop
fission

Fission inner loops into as many loops as
possible.

Chapter 8, page 47

align_symbol Specifies alignment of user variables,
typically at cache-line or page boundaries.

Chapter 4, page 19

blocking size Sets the blocksize of the specified loop
that is involved in a blocking for the
primary (secondary) cache.

Chapter 8, page 47

can_instantiate Indicates that the specified declaration
can be instantiated in the current
compilation, but need not be.

Chapter 3, page 15

concurrent Tells the compiler to ignore assumed
dependences in the following loop.

Chapter 2, page 9

concurrent call Tells the compiler that the function calls
in the following loop are safe to execute
in parallel.

Chapter 2, page 9

concurrentize Tells the compiler to parallelize the next
loop, overriding any #pragma no
concurrentize directive that may
apply to that loop.

Chapter 2, page 9

copyin Copies the value from the master thread’s
version of an -Xlocal-linked global
variable into the slave thread’s version.

Chapter 9, page 59

critical Protects access to critical statements. Chapter 9, page 59

distribute Specifies data distribution. Chapter 5, page 23

distribute_reshape Specifies data distribution with reshaping. Chapter 5, page 23

do_not_instantiate Prevents instantiation of the specific
declaration in this compilation unit, even
if that instance is used in the code.

Chapter 3, page 15

dynamic Tells the compiler that the specified array
may be redistributed in the program.

Chapter 5, page 23

2 007–3587–003

Alphabetical Listing of Directives [1]

#pragma Short Description Functional Group

enter gate Indicates the point that all threads must
clear before any threads are allowed to
pass the corresponding #pragma exit
gate.

Chapter 9, page 59

exit gate Stops threads from passing this point
until all threads have cleared the
corresponding #pragma enter gate.

Chapter 9, page 59

fill_symbol Tells the compiler to insert any necessary
padding to ensure that the user variable
does not share a cache-line with any
other symbol.

Chapter 4, page 19

fission Fission the enclosing specified levels of
loops after this directive.

Chapter 8, page 47

fissionable Disables validity testing. Chapter 8, page 47

fusable Disables validity testing. Chapter 8, page 47

fuse Fuse the following specified number of
loops, which must be immediately
adjacent.

Chapter 8, page 47

hdrstop Indicates the point at which the
precompiled header mechanism
snapshots the headers. If -pch is off,
#pragma hdrstop is ignored.

Chapter 11, page 121

hidden Tells the compiler that the specified
symbols are invisible to all executables or
DSOs except the current one.

Chapter 7, page 39

ident Adds a .comment section in the object
file and puts the revision string inside the
.comment section.

Chapter 14, page 129

independent Tells the compiler to run an independent
code section in parallel with the rest of
the code in the parallel region.

Chapter 9, page 59

007–3587–003 3

MIPSproTM C and C++ Pragmas

#pragma Short Description Functional Group

inline
{here|routine|global}]

Tells the compiler to inline the named
functions. Keywords: here (next
statement only), routine (rest of routine
or until corresponding noinline is
found), and global (entire file, or until
corresponding noinline is found).

Chapter 6, page 33

instantiate Causes a specified instance of a template
declaration to be immediately
instantiated at that spot.

Chapter 3, page 15

int_to_unsigned Identifies the specified function name as
a function whose type was int in a
previous release of the compilation
system, but whose type is unsigned
int in the MIPSpro compiler release.

Chapter 14, page 129

internal Tells the compiler that the specified
symbols are not referenced outside the
current executable or DSO.

Chapter 7, page 39

intrinsic Allows certain preselected functions from
math.h, stdio.h, and string.h to be
inlined at a callsite for execution
efficiency.

Chapter 14, page 129

ivdep Liberalizes dependence analysis. This
applies only to inner loops. Given two
memory references, where at least one is
loop variant, ignore any loop-carried
dependences between the two references.

Chapter 8, page 47

local Tells the compiler the names of all the
variables that must be local to each
thread.

Chapter 9, page 59

mips_frequency_hint
{NEVER|INIT}

Specifies the expected frequency of
execution so the compiler can move
exception code and initialization code
into separate pages to minimize working
set size.

Chapter 12, page 123

no blocking Prevents the compiler from involving this
loop in cache blocking.

Chapter 8, page 47

4 007–3587–003

Alphabetical Listing of Directives [1]

#pragma Short Description Functional Group

no concurrentize Varies with placement. Tells the compiler
to not parallelize any loops in a
subroutine or file.

Chapter 2, page 9

no_delete Inhibits deletion of functions that are
never referenced.

Chapter 8, page 47

no fission Keeps the following loop from being
fissioned. Its innermost loops, however,
are allowed to be fissioned.

Chapter 8, page 47

no fusion Keeps the following loop from being
fused with other loops.

Chapter 8, page 47

no interchange Prevents the compiler from involving the
loop directly following this directive (or
any loop nested within this loop) in an
interchange.

Chapter 8, page 47

no side effects Tells the compiler to assume that all of
the named functions are safe to execute
concurrently.

Chapter 9, page 59

no_pch Disables the precompiled header
mechanism.

Chapter 11, page 121

noinline
{here|routine|global}

Tells the compiler not to inline the named
functions. Keywords: here (next
statement only), routine (rest of routine
or until corresponding inline is found),
and global (entire file, or until
corresponding inline is found).

Chapter 6, page 33

once Ensures (in -n32 and -64 mode) that
each include file is included at most
one time in each compilation unit.

Chapter 11, page 121

one processor Causes next statement to be executed on
only one processor.

Chapter 9, page 59

optional Tells the linker that the specified symbols
are optional. This is the basic mechanism
used for adding extensions to a library
that can then be queried.

Chapter 7, page 39

007–3587–003 5

MIPSproTM C and C++ Pragmas

#pragma Short Description Functional Group

pack Controls the layout of structure offsets,
such that the strictest alignment for any
structure member will be n bytes, where
n is 0, 1, 2, 4, 8, or 16. When n is 0, the
compiler returns to default alignment for
any subsequent struct definitions.

Chapter 4, page 19

page_place Controls the placement of data on a DSM
(distributed shared memory) machine.

Chapter 5, page 23

permutation The specified array is a permutation array. Chapter 2, page 9

parallel Starts a parallel region. Chapter 9, page 59

pfor Marks a for loop to run in parallel. Chapter 9, page 59

prefer concurrent Tells the compiler to parallelize the
following loop if it is safe.

Chapter 2, page 9

prefer serial Tells the compiler not to parallelize the
following loop.

Chapter 2, page 9

prefetch Controls prefetching for each level of the
cache.

Chapter 8, page 47

prefetch_manual Specifies whether manual prefetches
(through #pragma directives) should be
respected or ignored.

Chapter 8, page 47

prefetch_ref Generates a prefetch and connects it to
the specified reference (if possible).

Chapter 8, page 47

prefetch_ref_disable Explicitly disables prefetching for the
specified reference.

Chapter 8, page 47

protected Tells the compiler that the specified
symbols are not preemptible.

Chapter 7, page 39

pure Tells the compiler that a call to named
functions has no side effects and its
return value depends on the values of its
arguments.

Chapter 9, page 59

redistribute Specifies dynamic data redistribution. Chapter 5, page 23

reset woff Resets listed warnings to the state
specified in the command line.

Chapter 13, page 125

6 007–3587–003

Alphabetical Listing of Directives [1]

#pragma Short Description Functional Group

section_gp Causes an object to be placed in a
gp_relative section.

Chapter 7, page 39

section_non_gp Keeps an object from being placed in a
gp_relative section.

Chapter 7, page 39

serial Forces the loop immediately following it
to be serial, and restricts optimization by
forcing all enclosing loops to be serial
also.

Chapter 2, page 9

set chunksize Tells the compiler which values to use for
chunksize.

Chapter 9, page 59

set numthreads Tells the compiler which values to use for
numthreads.

Chapter 9, page 59

set schedtype Tells the compiler which values to use for
schedtype.

Chapter 9, page 59

set woff Suppresses listed compiler warnings. Chapter 13, page 125

shared Tells the compiler the names of all the
variables that the threads must share.

Chapter 9, page 59

synchronize Stops threads until all threads reach this
point. This directive is a classic barrier
construct.

Chapter 9, page 59

unknown_control_flow Indicates which procedures have a
nonstandard control flow behavior.

Chapter 14, page 129

unroll Suggests to the compiler that n-1 copies
of the loop body be added to the inner
loop. If the loop following this directive
is an inner loop, then it indicates
standard unrolling (version 7.2 and later).
If the loop following this directive is not
innermost, then outer loop unrolling
(unroll and jam) is performed (version 7.0
and later).

Chapter 8, page 47

007–3587–003 7

MIPSproTM C and C++ Pragmas

#pragma Short Description Functional Group

weak weak_symbol =
strong_symbol

Sets weak_symbol to be an alias for the
function or data object denoted by
strong_symbol, unless a defining
declaration for weak_symbol is
encountered at static link time. If
encountered, the defining declaration
preempts the weak denotation.

Chapter 7, page 39

weak weak_symbol Tells the link editor not to issue a
warning if it does not find a defining
declaration of weak_symbol. Also allows
the overriding of a current definition by a
non-weak definition.

Chapter 7, page 39

8 007–3587–003

Automatic Parallelization #pragma
Directives [2]

Table 2, page 9, lists the #pragma directives discussed in this chapter, along
with a brief description of each and the compiler versions in which the directive
is supported.

Table 2. IRIS Power C Analyzer #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma concurrent Tells the compiler to ignore assumed dependences in
the next loop.

7.2 and later

#pragma concurrent call Tells the compiler that the function calls in the next
loop are safe to execute in parallel.

7.2 and later

#pragma concurrentize Tells the compiler to parallelize the next loop,
overriding any #pragma no concurrentize directive
that may apply to that loop.

7.2 and later

#pragma no concurrentize Varies with placement. Tells the compiler to not
parallelize any loops in a function or file.

7.2 and later

#pragma permutation The specified array is a permutation array. 7.2 and later

#pragma prefer concurrent Tells the compiler to parallelize the next loop if it is safe. 7.2 and later

#pragma prefer serial Tells the compiler to not parallelize the next loop. 7.2 and later

#pragma serial Forces the loop immediately following it to be serial,
and restricts optimization by forcing all enclosing loops
to be serial also.

7.2 and later

2.1 #pragma concurrent

The #pragma concurrent directive instructs the compiler, when analyzing
the loop immediately following this assertion, to ignore all dependences
between two references to the same array.

007–3587–003 9

MIPSproTM C and C++ Pragmas

The syntax of #pragma concurrent is as follows:

#pragma concurrent

When using this directive, be aware of the following:

• If multiple loops in a nest can be parallelized, #pragma concurrent
instructs the compiler to parallelize the loop immediately following the
directive.

• Applying this directive to an inner loop may cause the loop to be made
outermost by the compiler’s loop interchange operations.

• #pragma concurrent does not affect how the compiler analyzes function
calls. See Section 2.2, page 10.

• #pragma concurrent does not affect how the compiler analyzes
dependences between two potentially aliased pointers.

• If there are real dependences between array references,
#pragma concurrent may cause the compiler to generate incorrect code.

2.2 #pragma concurrent call

The #pragma concurrent call directive instructs the compiler to ignore the
dependences of any function calls contained in the loop that follows the
directive.

The syntax for #pragma concurrent call is as follows:

#pragma concurrent call

This directive applies to the loop that immediately follows it and to all loops
nested inside that loop.

To prevent incorrect parallelization, make sure the following conditions are met
when using #pragma concurrent call:

• A function inside the loop cannot read from a location that is written to
during another iteration. This rule does not apply to a location that is a local
variable declared inside the function.

• A function inside the loop cannot write to a location that is read from or
written to during another iteration. This rule does not apply to a location
that is a local variable declared inside the function.

10 007–3587–003

Automatic Parallelization #pragma Directives [2]

2.2.1 Examples of #pragma concurrent call

2.2.1.1 Example 1

In this example the compiler ignores the dependences in the function fred()
when it analyzes the following loop:

#pragma concurrent call

for (i = 0; i < N; i++0

{

fred(...)

...
}

void fred (...)

{

...
}

2.2.1.2 Example 2

The following code shows an illegal use of the assertion. Function fred()
writes to variable T, which is also read by wilma() during other iterations.

float A[M], B[M];
int i, T;

#pragma concurrent call
for (i = 0; i < M; i++)

{

fred(B, i, &T);

wilma(A, i, &T);

}

void fred(float B[], int i, int* T)

{

*T = B[i];
}

void wilma(float A[], int i, int* T)

{

A[i] = *T;

}

007–3587–003 11

MIPSproTM C and C++ Pragmas

By localizing the variable T, you can manually parallelize the preceding
example safely. But the compiler is not instructed to localize T, and the loop is
illegally parallelized because of the assertion.

2.3 #pragma concurrentize

The #pragma concurrentize directive instructs the compiler to parallelize
an entire file or function.

The syntax of #pragma concurrentize is as follows:

#pragma concurrentize

Placing the #pragma concurrentize directive inside a function overrides a
#pragma no concurrentize directive placed outside of it. In other words,
this directive allows you to selectively parallelize functions in a file that has
been made sequential with #pragma no concurrentize.

This directive works only with the MIPSpro Automatic Parallelizer.

2.4 #pragma no concurrentize

The #pragma no concurrentize directive prevents parallelization of a file
or function.

The syntax of #pragma no concurrentize is as follows:

#pragma no concurrentize

The effect of #pragma no concurrentize depends on its placement:

• When placed inside a function, the directive prevent its parallelization.

• When placed outside of a function, #pragma no concurrentize prevents
the parallelization of all functions in the file, even those that appear ahead
of it in the file.

This directive works only with the MIPSpro Automatic Parallelizer.

2.5 #pragma permutation

When placed inside a function, the #pragma permutation directive instructs
the compiler that the specified array is a permutation array.

12 007–3587–003

Automatic Parallelization #pragma Directives [2]

The syntax of #pragma permutation is as follows:

#pragma permutation (array)

array is the name of a permutation array. Every element of array has a distinct
value. The directive does not require the permutation array to be dense. In
other words, while every array[1] must have a distinct value, there can be gaps
between those values, such as array[1] = 1, array[2] = 4, array[3] = 9, and so on.

You can use this assertion to parallelize loops that use arrays for indirect
addressing. Without this directive, the compiler cannot determine that the array
elements used as indexes are distinct.

The #pragma permutation directive affects every loop in a function, even
those that precede it.

2.6 #pragma prefer concurrent

The #pragma prefer concurrent directive instructs the compiler to
parallelize the loop immediately following the directive, if it is safe to do so.

The syntax of the #pragma prefer concurrent directive is as follows:

#pragma prefer concurrent

This pragma is always safe to use. The compiler parallelizes the loop only
when it can determine that it is safe to do so.

When dealing with nested loops, the compiler follows these guidelines:

• If the loop specified by this directive is safe to parallelize, the compiler
chooses it to parallelize, even if other loops are also candidates for
parallelization.

• If the specified loop is not safe to parallelize, the compiler uses its heuristics
to choose among loops that are safe.

• If this directive is applied to an inner loop, the compiler may make it the
outermost loop.

• If this assertion is applied to more than one loop in a nest, the compiler uses
its heuristics to choose one of the specified loops.

This directive works only with the MIPSpro Automatic Parallelizer.

007–3587–003 13

MIPSproTM C and C++ Pragmas

2.7 #pragma prefer serial

The #pragma prefer serial directive instructs the compiler to not
parallelize the loop that immediately follows it. It performs in the same way as
the #pragma serial directive.

The syntax of #pragma prefer serial is as follows:

#pragma prefer serial

This directive works only with the MIPSpro Automatic Parallelizer.

2.8 #pragma serial

The #pragma serial directive instructs the compiler to not parallelize the
loop following the assertion. However, the compiler may parallelize another
loop in the same nest. The parallelized loop may be either inside or outside the
designated sequential loop.

The syntax for this directive is as follows:

#pragma serial

This directive works only with the MIPSpro Automatic Parallelizer.

14 007–3587–003

C++ Instantiation #pragma Directives [3]

Instantiation #pragma directives control the instantiation of specific template
entities or sets of template entities.

Table 3, page 15, lists the C++ instantiation #pragma directives discussed in
this chapter, along with a brief description of each and the compiler versions in
which the directive is supported.

Table 3. C++ Template Instantiation #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma instantiate Causes a specified instance of
a template declaration to be
immediately instantiated at
that spot.

7.1 and
later

#pragma can_instantiate Indicates that the specified
declaration can be instantiated
in the current compilation,
but need not be.

7.0 and
later

#pragma do_not_instantiate Prevents instantiation of the
specific declaration in this
compilation unit, even if that
instance is used in the code.

7.0 and
later

3.1 #pragma instantiate

The #pragma instantiate directive causes a specific instance of a template
declaration to be immediately instantiated.

The syntax of the #pragma instantiate directive is as follows:

#pragma instantiate entity

The entity argument can be any of the following:

A template class name A<int>

007–3587–003 15

MIPSproTM C and C++ Pragmas

A member function name A<int>::foo

A member function declaration void A<int>::foo(int,
char)

A static data member name A<int>::name

A template function declaration char* foo(int, float)

The template definition of entity must be present in the compilation for an
instantiation to occur. If you use #pragma instantiate to explicitly request
the instantiation of a class or function for which no template definition is
available, the compiler issues a warning.

The declaration needs to be a complete declaration of a function or a static data
member, exactly as if you had specified it for a specialization of the template.

The argument to an instantiation #pragma directive cannot be a
compiler-generated function, an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an
argument for a #pragma instantiate directive only if it refers to a single,
user-defined member function that is not an overloaded function.
Compiler-generated functions are not considered, so a name can refer to a
user-defined constructor even if a compiler-generated copy constructor of the
same name exists. Overloaded member functions can be instantiated by
providing the complete member function declaration, as the following example
shows:

char * A<int>::foo(int))

Note: Using the #pragma instantiate directive to instantiate a template
class is equivalent to repeating the directive for each member function and
static data member declared in the class. When instantiating an entire class,
you can exclude a given member function or static data member by using the
#pragma do_not_instantiate directive.

3.2 #pragma can_instantiate

The #pragma can_instantiate directive indicates that the specified entity
can be instantiated in the current compilation, but need not be. It is used in
conjunction with automatic instantiation to indicate potential sites for
instantiation if the template entity is deemed to be required by the compiler.

The syntax of the #pragma can_instantiate directive is as follows:

16 007–3587–003

C++ Instantiation #pragma Directives [3]

#pragma can_instantiate entity

The argument, entity, can be any of the following:

A template class name A<int>

A member function name A<int>::foo

A member function declaration void A<int>::foo(int,
char)

A static data member name A<int>::name

A template function declaration char* foo(int, float)

The template definition of entity must be present in the compilation for an
instantiation to occur. If you use #pragma can_instantiate to explicitly
request the instantiation of a class or function for which no template definition
is available, the compiler issues a warning.

The argument to a #pragma can_instantiate directive cannot be a
compiler-generated function, an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an
argument for a #pragma can_instantiate directive only if it refers to a
single, user-defined member function that is not an overloaded function.
Compiler-generated functions are not considered, so a name can refer to a
user-defined constructor even if a compiler-generated copy constructor of the
same name exists. Overloaded member functions can be instantiated by
providing the complete member function declaration, as shown in the following
example:

char * A<int>::foo(int)

3.3 #pragma do_not_instantiate

The #pragma do_not_instantiate directive suppresses the instantiation of
a specified entity. It is typically used to suppress the instantiation of an entity
for which a specific definition is supplied.

The syntax of the #pragma do_not_instantiate directive is as follows:

#pragma do_not_instantiate entity

The argument, entity, can be any of the following:

A template class name A<int>

007–3587–003 17

MIPSproTM C and C++ Pragmas

A member function name A<int>::foo

A member function declaration void A<int>::foo(int,
char)

A static data member name A<int>::name

A template function declaration char* foo(int, float)

The argument to a #pragma do_not_instantiate directive cannot be a
compiler-generated function, an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an
argument for the #pragma do_not_instantiate directive only if it refers to
a single, user-defined member function that is not overloaded.
Compiler-generated functions are not considered, so a name can refer to a
user-defined constructor even if a compiler-generated copy constructor of the
same name exists. Overloaded member functions can be specified by providing
the complete member function declaration, as the following example shows:

char * A<int>::foo(int)

18 007–3587–003

Data Layout #pragma Directives [4]

Table 4, page 19, lists the #pragma directives discussed in this chapter, along
with a short description of each and the compiler versions in which the
directive is supported.

Table 4. Data Layout #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma
align_symbol

Specifies alignment of user variables,
typically at cache-line or page
boundaries.

7.2 and
later

#pragma fill_symbol Tells the compiler to insert any
necessary padding to ensure that the
user variable does not share a
cache-line or page with any other
symbol.

7.2 and
later

#pragma pack Controls the layout of structure offsets,
such that the strictest alignment for
any structure member will be n bytes,
where n is 0, 1, 2, 4, 8, or 16. When n
is 0, the compiler returns to default
alignment for any subsequent struct
definitions.

7.0 and
later

4.1 #pragma align_symbol

The #pragma align_symbol directive specifies the alignment of user
variables, typically at cache-line or page boundaries.

The syntax of the #pragma align_symbol directive is as follows:

#pragma align_symbol (symbol, size)

The first argument to this directive is a symbol. The symbol can be a global or
automatic variable, but it cannot be a formal parameter to a function, or an
element of a structured type such as a structure or array.

007–3587–003 19

MIPSproTM C and C++ Pragmas

The second argument, size, can be any one of the following:

• L1cacheline, a machine-specific first-level cache-line size, typically 32 bytes

• L2cacheline, a machine-specific second-level cache-line size, typically 128
bytes

• page, a machine specific page size, typically 16 Kilobytes

• a user-specified value, which must be a power of two

The #pragma align_symbol directive aligns the start of symbol at the
specified alignment boundary.

For global variables, this directive must be specified where the variable is
defined. The directive is optional where the variable is declared.

!
Caution: When using the #pragma align_symbol directive, there are two
points to keep in mind:

• The #pragma align_symbol directive is ineffective for local variables
of fixed-size symbols, such as simple scalars or arrays of known size.
Theis directive is most effective for stack-allocated arrays of dynamically
determined size.

• A variable cannot have both #pragma fill_symbol and #pragma
align_symbol directives applied to it.

4.1.1 Example of #pragma align_symbol

The following code fragment illustrates the use of the #pragma
align_symbol directive:

int x; /* x is a global variable */

#pragma align_symbol (x, 32) /* x will start at a 32-byte boundary */

#pragma align_symbol (x, 2) /* Error: cannot request an alignment

lower than the natural alignment of the symbol. */

20 007–3587–003

Data Layout #pragma Directives [4]

4.2 #pragma fill_symbol

The #pragma fill_symbol directive instructs the compiler to insert any
necessary padding to ensure that the user variable does not share a cache-line,
page, or other specified block of memory with any other symbol.

The syntax of the fill_symbol pragma is as follows:

#pragma fill_symbol (symbol, size)

The first argument to this pragma is a symbol. The symbol can be a global or
automatic variable, but it cannot be a formal parameter to a function, or an
element of a structured type such as a structure or array.

The second argument can be any one of the following:

• L1cacheline, a machine-specific first-level cache-line size, typically 32 bytes

• L2cacheline, a machine-specific second-level cache-line size, typically 128
bytes

• page, a machine specific page size, typically 16 kilobytes

• a user-specified value that must be a power of two

The #pragma fill_symbol directive pads the named symbol with additional
storage so that the symbol is assured not to overlap with any other data item
within the storage of the specified size. The additional padding required is
heuristically divided between each end of the specified variable.

For instance, a #pragma fill_symbol directive for the L1cacheline
guarantees that the specified symbol will not suffer from false-sharing (multiple,
unrelated symbols sharing the same cache line) between multiple processors for
the L1 cache line.

For global variables, this directive must be specified where the variable is
defined. The directive is optional where the variable is declared.

A variable cannot have both #pragma fill_symbol and #pragma
align_symbol directives applied to it.

4.2.1 Example of #pragma fill_symbol

The following code fragment illustrates the use of #pragma fill_symbol:

double y; /* y is a global or local variable */
#pragma fill_symbol (y, L2cacheline) /* Allocates extra storage

007–3587–003 21

MIPSproTM C and C++ Pragmas

both before and after y so that

y is within an L2cacheline (128
bytes) all by itself. */

4.3 #pragma pack

The #pragma pack directive controls the layout of structure offsets. The
strictest alignment for any structure member is the specified number of bytes (1,
2, 4, 8, or 16).

The syntax of the #pragma pack directive is as follows:

#pragma pack (n)

The #pragma pack directive works according to the following rules:

• A struct type defined in the scope of a #pragma pack has up to n bytes of
alignment, where n is 0, 1, 2, 4, 8, or 16. When n is 0, the compiler returns to
default alignment for any subsequent structure definitions.

• The packed characteristics of the type apply wherever the type is used, even
outside the scope of the pragma in which the type was declared.

• The scope of a #pragma pack ends with the next #pragma pack, hence
this pragma does not nest. There is no way to “return” from one instance of
the directive to a lexically earlier instance of the directive.

!
Caution:

• Silicon Graphics strongly discourages the use of #pragma pack, because
it is a nonportable feature and the semantics of this directive may change
in future compiler releases.

• A structure declaration must be subjected to identical instances of a
#pragma pack directive in all files, or else misaligned memory accesses
and erroneous structure member dereferencing may ensue.

• References to fields in packed structures may be less efficient than
references to fields in unpacked structures.

• The #pragma pack directive is not supported for C++ in -n32 and -64
modes.

22 007–3587–003

DSM Optimization #pragma Directives [5]

Table 5, page 23, lists the #pragma directives discussed in this chapter, along
with a short description of each and the compiler versions in which the
directive is supported. These directives are useful primarily on systems with
distributed shared memory, such as Origin servers.

Table 5. Distributed Shared Memory #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma distribute Specifies data distribution. 7.2 and later

#pragma distribute_reshape Specifies data distribution with reshaping. 7.2 and later

#pragma dynamic Tells the compiler that the specified array may
be redistributed in the program.

7.2 and later

#pragma page_place Allows the explicit placement of data. 7.1 and later

#pragma pfor (Discussed in Chapter 9,
page 59)

affinity clause allows data-affinity or
thread-affinity scheduling; nest clause exploits
nested concurrency. See Section 9.11, page 76

6.0 and later

#pragma redistribute Specifies dynamic redistribution of data. 7.2 and later

5.1 #pragma distribute

The #pragma distribute directive specifies the distribution of data across
the processors. It functions by influencing the mapping of virtual addresses to
physical pages without affecting the layout of the data structure. Because the
granularity of data allocation is a physical page (at least 16 KB), the achieved
distribution is limited by the underlying page granularity. However, the
advantages to using this directive are that it can be added to an existing
program without any restrictions, and can be used for affinity scheduling. See
Section 9.11.4, page 78, for more information about data affinity.

The syntax of the #pragma distribute directive is as follows:

#pragma distribute array[dst1][[dst2]...] [onto (dim1, dim2[, dim3 ...])]

007–3587–003 23

MIPSproTM C and C++ Pragmas

array is the name of the array you want to have distributed.

dst is the distribution specification for each dimension of the array. It can be
any one of the following:

dst is the distribution specification for each dimension of the array. It can be
any one of the following:

Value Effect

* Not distributed.

block Partitions the elements of an array dimension into
blocks equal to the size of the dimension (N)
divided by the number of processors (P). The size
of each block will be equal to N/P, rounded up
to the nearest integer value (ceiling (N/P)).

cyclic [(size_expr)] Partitions the elements of an array dimension into
chunks and distributes the chunks sequentially
across the processors. The size of the pieces is
equal to the value of size_expr. If size_expr is not
specified, the chunk size defaults to 1. A cyclic
distribution with a chunk size that is either
greater than 1 or is determined at run time is
sometimes also called block-cyclic.

dim is the specification for partitioning the processors across the distributed
dimensions (see Section 5.5.1, page 31, for more information).

The following is some additional information about #pragma distribute:

• You must specify the #pragma distribute directive in the declaration
part of the program, along with the array declaration.

• You can specify a data distribution directive for any local or global array.

• Each dimension of a multi-dimensional array can be independently
distributed.

• A distributed array is distributed across all of the processors being used in
that particular execution of the program, as determined by the environment
variable MP_SET_NUMTHREADS.

24 007–3587–003

DSM Optimization #pragma Directives [5]

5.1.1 Example of #pragma distribute

The following code fragment demonstrates the use of #pragma distribute:

float A[200][300];
...
#pragma distribute A[cyclic][block];
...

On a machine with eight processors, the first dimension of array A is
distributed across the processors in chunks of 1, and the second dimension is
distributed in chunks of 25 for each processor.

5.1.2 onto Clause

If an array is distributed in more than one dimension, then by default the
processors are apportioned as equally as possible across each distributed
dimension. For instance, if an array has two distributed dimensions, then an
execution with 16 processors assigns 4 processors to each dimension
(4 � 4 = 16), whereas an execution with 8 processors assigns 4 processors to the
first dimension and 2 processors to the second dimension.

You can override this default and explicitly control the number of processors in
each dimension by using the onto clause. The onto clause allows you to
specify the processor topology when an array is being distributed in more than
one dimension. For instance, if an array is distributed in two dimensions, and
you want to assign more processors to the second dimension than to the first
dimension, you can use the onto clause as in the following code fragment:

float A[100][200];

/* Assign to the second dimension twice as many processors as to

the first dimension. */

#pragma distribute A[block][block] onto (1, 2)

5.2 #pragma distribute_reshape

The #pragma distribute_reshape directive, like #pragma distribute,
specifies the desired distribution of an array. In addition, however, the
#pragma distribute_reshape directive declares that the program makes
no assumptions about the storage layout of that array. The compiler performs

007–3587–003 25

MIPSproTM C and C++ Pragmas

aggressive optimizations for reshaped arrays that violate standard layout
assumptions but guarantee the desired data distribution for that array.

For information about using data affinity with
#pragma redistribute-reshape, see Section 9.11.4, page 78.

The syntax of the #pragma distribute_reshape directive is as follows:

#pragma distribute_reshape array[dst1][[dst2]...]

The #pragma distribute_reshape directive accepts the same distributions
as the #pragma distribute directive:

• array is the name of the array you want to have distributed.

• dst is the distribution specification for each dimension of the array. It can be
any one of the following:

Value Effect

* Not distributed.

block Partitions the elements of an array dimension
into blocks equal to the size of the dimension
(N) divided by the number of processors (P).
The size of each block will be equal to N/P,
rounded up to the nearest integer value
(ceiling (N/P)).

cyclic (size_expr) Partitions the elements of an array dimension
into chunks and distributes the chunks
sequentially across the processors. The size of
the pieces is equal to the value of size_expr. If
size_expr is not specified, the chunk size
defaults to 1. A cyclic distribution with a
chunk size that is either greater than 1 or is
determined at run time is sometimes also
called block-cyclic.

The following is some additional information about
#pragma distribute_reshape:

• You must specify the #pragma distribute_reshape directive in the
declaration part of the program, along with the array declaration.

• You can specify a data distribution directive for any local or global array.

26 007–3587–003

DSM Optimization #pragma Directives [5]

• Each dimension of a multi-dimensional array can be independently
distributed.

• A distributed array is distributed across all of the processors being used in
that particular execution of the program, as determined by the environment
variable MP_SET_NUMTHREADS.

• A reshaped array is passed as an actual parameter to a subroutine, in which
case two possible scenarios exist:

– The array is passed in its entirety (func(A) passes the entire array A,
whereas func(A([i][j]) passes a portion of A). The C compiler
automatically clones a copy of the called function and compiles it for the
incoming distribution. The actual and formal parameters must match in
the number of dimensions, and the size of each dimension.

The C++ compiler does not perform this cloning automatically, due to
interactions in the compiler with the C++ template instantiation
mechanism. For C++, therefore, the user has the following two options:

1. The first option is to specify #pragma distribute_reshape
directly on the formal parameter of the called function.

2. The second option is to compile with -MP:clone=on to enable
automatic cloning in C++.

!
Caution: This option may not work for some programs that use
templates.

– You can restrict a function to accept a particular reshaped distribution on
a parameter by specifying a #pragma distribute_reshape directive
on the formal parameter within the function. All calls to this function
with a mismatched distribution will lead to compile- or link-time errors.

– A portion of the array can be passed as a parameter, but the callee must
access only a single processor’s portion. If the callee exceeds a single
processor’s portion, then the results are undefined. You can use intrinsics
to access details about the array distribution (see the “Parallel
Programming on Origin Servers” chapter in the C Language Reference
Manual for more details).

007–3587–003 27

MIPSproTM C and C++ Pragmas

!
Caution: Because the #pragma distribute_reshape directive specifies
that the program does not depend on the storage layout of the reshaped
array, restrictions on reshaping arrays include the following (for more details
on reshaping arrays, see the C Language Reference Manual):

• The distribution of a reshaped array cannot be changed dynamically (that
is, there is no #pragma redistribute_reshape directive).

• Initialized data cannot be reshaped.

• Arrays that are explicitly allocated through alloca/malloc and accessed
through pointers cannot be reshaped. Use variable length arrays instead.

• An array that is equivalenced to another array cannot be reshaped.

• A global reshaped array cannot be linked -Xlocal. This user error is not
caught by the compiler or linker.

5.2.1 Example of #pragma distribute_reshape

The following code fragment demonstrates the use of
#pragma distribute_reshape:

float A[400][300];
...

#pragma distribute_reshape A[block][cyclic(3]);
...

On a machine with eight processors, the first dimension of array A is
distributed in chunks of 50 for each processor, and the second dimension is
distributed across the processors in chunks of 3.

5.3 #pragma dynamic

By default, the compiler assumes that a distributed array is not dynamically
redistributed, and directly schedules a parallel loop for the specified data
affinity. In contrast, a redistributed array can have multiple possible
distributions, and data affinity for a redistributed array must be implemented in
the run-time system based on the particular distribution.

The #pragma dynamic directive notifies the compiler that the named array
may be dynamically redistributed at some point in the run. This tells the
compiler that any data affinity for that array must be implemented at run time.

28 007–3587–003

DSM Optimization #pragma Directives [5]

For information about using data affinity with #pragma dynamic, see Section
9.11.4, page 78.

The syntax of the #pragma dynamic directive is as follows:

#pragma dynamic array

array is the name of the array in question.

The #pragma dynamic directive informs the compiler that array may be
dynamically redistributed. Data affinity for such arrays is implemented through
a run-time lookup. Implementing data affinity in this manner incurs some extra
overhead compared to a direct compile-time implementation, so you should use
the #pragma dynamic directive only if it is actually necessary.

You must explicitly specify the #pragma dynamic declaration for a
redistributed array under the following conditions:

• The function contains a pfor loop that specifies data affinity for the array.

• The distribution for the array is not known.

Under the following conditions, you can omit the #pragma dynamic directive
and just supply the #pragma distribute directive with the particular
distribution:

• The function contains data affinity for the redistributed array.

• The array has a specified distribution throughout the duration of the
function.

Because reshaped arrays cannot be dynamically redistributed, this is an issue
only for regular data distribution.

5.4 #pragma page_place

The #pragma page_place directive is useful for dealing with irregular data
structures. It allows you to explicitly place data in the physical memory of a
particular processor. This directive is often used in conjunction with thread
affinity (see Section 9.11.4, page 78, for more information).

The syntax of the #pragma page_place directive is as follows:

#pragma page_place (object, size, threadnum)

1. object is the object you want to place

007–3587–003 29

MIPSproTM C and C++ Pragmas

2. size is the size in bytes

3. threadnum is the number of the destination processor

On a system with physically distributed shared memory, you can explicitly
place all data pages spanned by the virtual address range [&object,
&object+ size-1] in the physical memory of the processor corresponding to
the specified thread. This directive is an executable statement; therefore, you
can use it to place either statically or dynamically allocated data.

The function getpagesize() can be invoked to determine the page size. On
the Origin2000

TM

server, the minimum page size is 16384 bytes.

5.4.1 Example of #pragma page_place

The following is an example of the use of #pragma page_place:

double A[8192];
#pragma page_place (A[0], 32768, 0)
#pragma page_place (A[4096], 16384, 1)

The first #pragma page_place directive causes the first half of the array to be
placed in the physical memory associated with thread 0. The second causes the
next quarter of the array to be placed in the physical memory associated with
thread 1. The remaining portion of A is allocated based on the operating
system’s allocation policy (default is “first-touch”).

5.5 #pragma redistribute

The #pragma redistribute directive allows you to dynamically redistribute
previously distributed arrays. For information about using data affinity with
#pragma redistribute, see Section 9.11.4, page 78.

The syntax of the redistribute pragma is as follows:

#pragma redistribute array[dst1][[dst2]...] [onto (dim1, dim2[, dim3 ...])]

• array is the name of the array you wish to have distributed.

• dst is the distribution specification for each dimension of the array. It can be
any one of the following:

30 007–3587–003

DSM Optimization #pragma Directives [5]

Value Effect

* Not distributed.

block Partitions the elements of an array dimension
into blocks equal to the size of the dimension
(N) divided by the number of processors (P).
The size of each block will be equal to N/P,
rounded up to the nearest integer value
(ceiling (N/P)).

cyclic (size_expr) Partitions the elements of an array dimension
into chunks and distributes the chunks
sequentially across the processors. The size of
the pieces is equal to the value of size_expr. If
size_expr is not specified, the chunk size
defaults to 1. A cyclic distribution with a
chunk size that is either greater than 1 or is
determined at run time is sometimes also
called block-cyclic.

• dim is the specification for partitioning the processors across the distributed
dimensions (see Section 5.5.1, page 31, for more information).

The following is some additional information about #pragma redistribute:

• It is an executable statement and can appear in any executable portion of the
program.

• It changes the distribution permanently (or until another redistribute
statement).

• It also affects subsequent affinity scheduling.

5.5.1 onto Clause

If an array is distributed in more than one dimension, then by default the
processors are apportioned as equally as possible across each distributed
dimension. For instance, if an array has two distributed dimensions, then an
execution with 16 processors assigns 4 processors to each dimension
(4 � 4 = 16), whereas an execution with 8 processors assigns 4 processors to the
first dimension and 2 processors to the second dimension.

You can override this default and explicitly control the number of processors in
each dimension by using the onto clause. The onto clause allows you to
specify the processor topology when an array is being distributed in more than

007–3587–003 31

MIPSproTM C and C++ Pragmas

one dimension. For instance, if an array is distributed in two dimensions, and
you want to assign more processors to the second dimension than to the first
dimension, you can use the onto clause as in the following code fragment:

float A[100][200];

/* Assign to the second dimension twice as many processors as to

the first dimension. */

#pragma redistribute A[block][block] onto (1, 2)

5.5.2 Example of #pragma redistribute

The following code fragment demonstrates the use of
#pragma redistribute:

float A[500][300];
...

#pragma redistribute A[cyclic(1)][cyclic (5)];
...

After the #pragma redistribute directive, the first dimension of array A is
distributed across the processors in chunks of 1, the second dimension in
chunks of 5.

32 007–3587–003

Inlining #pragma Directives [6]

Table 6, page 33, lists the #pragma directives discussed in this chapter, along
with a brief description of each and the compiler versions in which the directive
is supported.

Table 6. Inlining #pragma Directives

#pragmas Short Description
Compiler
Versions

#pragma inline (see
Section 6.1, page 33)

Tells the compiler to inline the named
functions.
Keywords:
- here (next statement only)
- routine (rest of routine or until
corresponding noinline or inline
is found)
- global (entire file, or until
corresponding noinline or inline
is found)

7.1 and
later

#pragma noinline (see
Section 6.1, page 33)

Tells the compiler not to inline the
named functions.
Keywords:
- here (next statement only)
- routine (rest of routine or until
corresponding noinline or inline
is found)
- global (entire file, or until
corresponding noinline or inline
is found)

7.1 and
later

6.1 #pragma inline and #pragma noinline

The #pragma inline and #pragma noinline directives instruct the
compiler whether or not to inline the named functions. These directives can
have next-line, entire routine, or global scope.

007–3587–003 33

MIPSproTM C and C++ Pragmas

The syntax of the #pragma inline and #pragma noinline directives is as
follows:

#pragma [no] inline {here|routine|global} [(name1[,name2 ...])]

here, routine, and global are keywords (see Section 6.1.1, page 34).

The optional name1 and name2 are function names. If they are present, they
follow these rules:

• If any functions are named in the directive, it applies only to them.

• If no function names are given, the pragma applies to all functions.

• If a specified function does not exist, a warning message is issued, and the
pragma is ignored.

If the list of function names is empty, the parentheses around the function
names are not required.

6.1.1 Keywords

The descriptions of the here, routine, and global keywords follow. These
keywords must appear in lowercase, because function names are case sensitive.

here The directive applies only to the next statement.

routine The directive applies to the rest of the routine, or
until a corresponding #pragma noinline
appears. (Or, if the first directive was a
#pragma noinline, until the corresponding
#pragma inline.)

global The directive applies to the entire file, or until
toggled with a #pragma noinline directive.
(Or, if the first directive was a
#pragma noinline, until the corresponding
#pragma inline directive.) Typically,
#pragma global directives appear only at the
top of the source file.

no keyword The #pragma inline and #pragma noinline
directives with no keyword have the same effect
as using the here keyword, unless the directives
appear at the top of the file, before any lines of
source code. In that case, the #pragma directives

34 007–3587–003

Inlining #pragma Directives [6]

apply to the entire file, as if the global keyword
had been used.

!
Caution: For C++ code, #pragma inline and #pragma noinline take
C++ style function names. If you use mangled names, the results are
undefined. The compiler gives a warning if it cannot find the supplied name.

6.1.2 Examples of #pragma inline and #pragma noinline

The following five examples illustrate different aspects of the
#pragma inline and #pragma noinline directives.

Example 1: Using the here keyword with the #pragma noinline directive

This example illustrates the use of the #pragma noinline directive with the
here keyword. All occurrences of f1(int) are marked for inlining, except the
one directly following #pragma noinline here.

int ig = 0;

double dg = 0.;

inline void f1(int) {ig++;}

void f1(double){dg++;}

void main ()

{
int i;

double d;

f1(i); // f1(int) is marked for inlining

f1(d);

#pragma noinline here (void f1(int))

f1(i); // f1(int) is not marked for inlining

f1(d);

f1(i); // f1(int) is marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);
}

007–3587–003 35

MIPSproTM C and C++ Pragmas

Example 2: Using the here keyword with the #pragma inline and
#pragma noinline directives

This example illustrates the use of the #pragma inline and
#pragma noinline directives with the here keyword. All occurrences of
f1(int) are marked for inlining, except the one directly following
#pragma noinline here. The only occurrence of f1(double) that is
marked for inlining is the one directly following #pragma inline here.

int ig = 0;

double dg = 0.;

inline void f1(int) {ig++;}

void f1(double){dg++;}

void main ()

{
int i;

double d;

f1(i); // f1(int) is marked for inlining

f1(d); // f1(double) is not marked for inlining

#pragma noinline here (void f1(int))

f1(i); // f1(int) is not marked for inlining

#pragma inline here (void f1(double))

f1(d); // f1(double) is marked for inlining
f1(i); // f1(int) is marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);

}

Example 3: Using the global keyword with the #pragma inline directive

This example illustrates the use of the #pragma inline directive with the
global keyword. All occurrences of f1(int) following the
#pragma inline global are marked for inlining, except the one following
the #pragma noinline here.

int ig = 0;
double dg = 0.;

void f1(int) {ig++;}

36 007–3587–003

Inlining #pragma Directives [6]

void f1(double){dg++;}

void main ()

{

#pragma inline global (void f1(int));

int i;

double d;

f1(i); // f1(int) is marked for inlining
f1(d); // f1(double) is not marked for inlining

#pragma noinline here (void f1(int))

f1(i); // f1(int) is not marked for inlining

#pragma inline here (void f1(double))

f1(d); // f1(double) is marked for inlining

f1(i); // f1(int) is marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);
}

Example 4: Using the routine keyword with the #pragma inline
directive

This example illustrates the use of the #pragma inline directive with the
routine keyword. All occurrences of f1(int) following
#pragma inline routine are marked for inlining, except the one following
#pragma noinline here.

int ig = 0;

double dg = 0.;

void f1(int) {ig++;}
void f1(double){dg++;}

void main ()

{

#pragma inline routine (void f1(int))
int i;

double d;

f1(i); // f1(int) is marked for inlining

f1(d); // f1(double) is not marked for inlining

#pragma noinline here (void f1(int))

f1(i); // f1(int) is not marked for inlining

007–3587–003 37

MIPSproTM C and C++ Pragmas

#pragma inline here (void f1(double))
f1(d); // f1(double) is marked for inlining

f1(i); // f1(int) is marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);

}

Example 5: Using the routine keyword with the #pragma noinline
directive

This example illustrates the use of the #pragma noinline directive with the
routine keyword. None of the occurrences of f1(int) following
#pragma noinline routine are marked for inlining, except the one
following #pragma inline here.

int ig = 0;

double dg = 0.;

inline void f1(int) {ig++;}

void f1(double){dg++;}

void main ()

{

int i;

double d;

#pragma noinline routine (void f1(int))

f1(i); // f1(int) is not marked for inlining

f1(d); // f1(double) is not marked for inlining

#pragma inline here (void f1(int))
f1(i); // f1(int) is marked for inlining

#pragma noinline here (void f1(double))

f1(d); // f1(double) is not marked for inlining

f1(i); // f1(int) is not marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);

}

38 007–3587–003

Loader Information #pragma Directives [7]

Table 7, page 39, lists the #pragma directives discussed in this chapter, along
with a brief description of each and the compiler versions in which the directive
is supported.

Table 7. Loader Information #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma hidden Tells the compiler that the specified
symbols are invisible to all
executables or DSOs except the
current one.

7.2 and
later

#pragma internal Tells the compiler that the specified
symbols are not referenced outside
the current executable or DSO.

7.2 and
later

#pragma no_delete Inhibits deletion of functions that
are never referenced.

7.1 and
later

#pragma optional Tells the linker that the specified
symbols are optional. This is the
basic mechanism used for adding
extensions to a library that can then
be queried.

7.2.1 and
later

#pragma protected Tells the compiler that the specified
symbols are not preemptible.

7.1 and
later

#pragma section_gp Causes an object to be placed in a
gp_relative section.

7.2 and
later

#pragma
section_non_gp

Keeps an object from being placed
in a gp_relative section.

7.2 and
later

007–3587–003 39

MIPSproTM C and C++ Pragmas

#pragma Short Description
Compiler
Versions

#pragma weak Tells the link editor not to issue a
warning if it does not find a defining
declaration of the weak_symbol. Also
allows the overriding of a current
definition by a non-weak definition.

7.0 and
later

#pragma weak
weak_symbol =
strong_symbol

Sets weak_symbol to be an alias for
the function or data object denoted
by strong_symbol, unless a defining
declaration for weak_symbol is
encountered at static link time. If
encountered, the defining
declaration preempts the weak
denotation.

7.0 and
later

7.1 #pragma hidden

The #pragma hidden directive tells the compiler that the specified symbols
are invisible to all executables or DSOs except the current one. This allows
hidden data objects to be placed in the small data area and accessed using the
(fast) gp-relative load/store. Hidden symbols need not be put into the hash
table of a DSO because they are not globally visible.

The syntax of the #pragma hidden directive is as follows:

#pragma hidden symbol1 [, symbol2 ...]

#pragma hidden is not currently supported in C++, except for symbols
marked extern ‘‘C’’.

All of the listed symbols are marked as STO_HIDDEN. This means that the
symbol definition can be referenced only within an object, not from outside.
Even though a hidden symbol cannot be directly referenced from outside a
DSO, its address may be taken and passed, so it is possible to call a hidden
function from another DSO.

40 007–3587–003

Loader Information #pragma Directives [7]

7.2 #pragma internal

The #pragma internal directive tells the compiler that the specified
functions are not referenced outside the current executable or DSO. Internal
symbols are the same as hidden symbols, except that they are guaranteed not to
be referenced from outside a DSO, even through pointers or weak bindings.

The syntax of the #pragma internal directive is as follows:

#pragma internal func1 [, func2 ...]

#pragma internal is not currently supported in C++, except for symbols
marked extern ‘‘C’’.

The specified functions are marked STO_INTERNAL. This means that this
function need not save, restore, or recalculate $gp (global pointer), because it is
callable only from a location that has the same $gp (global pointer) value.

7.3 #pragma no_delete

The #pragma no_delete directive inhibits deletion of functions that are
never referenced.

The syntax of the #pragma no_delete directive is as follows:

#pragma no_delete

7.4 #pragma optional

The #pragma optional directive tells the linker that the specified symbols
are optional.

The static linker (ld), converts references to optional definitions (in another
DSO) to optional references. Unresolved optional references are not reported as
errors.

The run-time linker (rld) resolves any unresolved optional references to a
special symbol in libc.so.1.

Programs can check for the existence of an optional symbol by use of macros
defined in the header file /usr/include/optional_sym.h.

This is the basic mechanism used for adding extensions to a library that you
can then query. For example, when new functions are added to the next

007–3587–003 41

MIPSproTM C and C++ Pragmas

revision of libfoo.so, they can be added as optional functions; then programs
can check for their existence and use them only when the new revision of the
library is available and avoid them on older systems, thus giving backwards
and forwards compatibility across a series of releases.

The syntax of the #pragma optional directive is as follows:

#pragma optional symbol1 [, symbol2 ...]

The following rules apply to #pragma optional:

• #pragma optional must come after the declaration or definition of symbol.

• #pragma optional is not currently supported in C++, except for symbols
marked extern ‘‘C’’.

7.5 #pragma protected

The #pragma protected directive tells the compiler that the specified
symbols are not preemptible, but are visible from outside of a DSO.

The syntax of the #pragma protected directive is as follows:

#pragma protected symbol1 [, symbol2 ...]

#pragma protected is not currently supported in C++, except for symbols
marked extern ‘‘C’’.

The specified symbols are marked STO_PROTECTED. This means that the
symbol definition cannot be preempted by another definition.

7.6 #pragma section_gp

MIPS binaries have a global pointer (gp) that can be used to reference global
data more efficiently (by using gp + offset) than constructing the entire address
when that variable is referenced. Only a limited set of elements can be
referenced in this fashion because the size of offset is limited to 16 bits. The
compiler heuristically places global data in either gp-relative or non-gp-relative
sections. However, it is sometimes useful to manually control which variables
go within the gp-relative section and which need to be addressed explicitly.

The #pragma section_gp directive causes an object to be placed in a
gp_relative section, while the #pragma section_non_gp directive causes an
object to be placed in a non-gp-relative section.

42 007–3587–003

Loader Information #pragma Directives [7]

The syntax of the #pragma section_gp directive is as follows:

#pragma section_gp (symbol1[, symbol2 ...])

symbol must be a static or global variable.

7.7 #pragma section_non_gp

MIPS binaries have a global pointer (gp) that can be used to reference global
data more efficiently (by using gp + offset) than constructing the entire address
when that variable is referenced. Only a limited set of elements can be
referenced in this fashion because the size of offset is limited to 16 bits. The
compiler heuristically places global data in either gp-relative or non-gp-relative
sections. However, it is sometimes useful to manually control which variables
go within the gp-relative section and which need to be addressed explicitly.

The #pragma section_gp directive causes an object to be placed in a
gp_relative section, while the #pragma section_non_gp directive causes an
object to be placed in a non-gp-relative section.

The syntax of the #pragma section_non_gp directive is as follows:

#pragma section_non_gp (symbol1[, symbol2 ...])

symbol must be a static or global variable.

7.8 #pragma weak

The #pragma weak directive can be used in two ways. It can instruct the link
editor to not issue a warning if it does not find a defining declaration of the
specified weak symbol, or it can allow the overriding of a current definition by
a non-weak definition.

Weak definitions behave as follows:

• A definition is weak if a symbol defined in an executable or DSO is marked
as weak at the point of definition.

• A weak definition is preemptible and will be preempted by any strong
global definition of the same name in the executable, the DSOs linked in at
static link time, or the DSOs linked in at run time. Multiple weak definitions
follow the same preemption rules as for global symbols except that they will
all be preempted by any strong definition of their name.

007–3587–003 43

MIPSproTM C and C++ Pragmas

• Multiple global weak definitions of a symbol may or may not result in an
error:

– At static link time, multiple global definitions of a weak symbol within a
DSO or executable result in an error. For example, linking a.o and b.o
when they both have definitions for the symbol x results in an error.

– At run time, multiple global weak definitions of a symbol across the
executable and its DSOs, result in the first definition preempting all
others. No error message is generated. For example, if your executable,
j, references the DSOs k.so and l.so that have weak definitions of the
symbol y, the first definition encountered is used, and the other is
ignored.

• Unresolved weak references do not cause a run-time error, even if the
environment variable LD_BIND_NOW is set. They have a value of 0 (that is,
the symbol address is taken as 0). Attempting a call of a weak undefined
function symbol gets either a core dump (if LD_BIND_NOW is 1) or a fatal
run-time linker error on an attempted address of an unresolved symbol (if
LD_BIND_NOW is not 1). Attempting a load or store of an undefined weak
symbol results in a core dump because the address is 0, and 0 is normally
not a legal virtual address.

• Weak references do not trigger the loading of delay-loaded libraries. This
implies that weak object references may go unresolved until some other
event triggers the loading of the delay-load library.

The syntax of the #pragma weak directive is as follows:

#pragma weak weak_symbol [= strong_symbol]

When #pragma weak applies to a C++ function, weak_symbol and strong_symbol
must be the mangled names.

The #pragma weak directive can be used in the following two ways:

• #pragma weakweak_symbol

Used in this way, the #pragma weak directive tells the link editor to not
issue a warning if it does not find a defining declaration of weak_symbol.
References to the symbol use the appropriate lvalue if the symbol is defined;
otherwise, it uses memory location zero (0).

• #pragma weak weak_symbol = strong_symbol

In this case, the weak_symbol is an alias that denotes the same function or
data object as that denoted by the strong_symbol, unless a defining

44 007–3587–003

Loader Information #pragma Directives [7]

declaration for the weak_symbol is encountered at static link time or in
dynamically linked libraries. If encountered, the defining declaration
preempts the weak denotation.

Observe the following conventions when using this form of the directive:

– Define the strong_symbol within the same compilation unit in which the
directive occurs.

– Declare the weak and strong symbols with compatible types. When the
strong symbol is a data object, its declaration must be initialized.

– Declare the weak_symbol with extern linkage in the same compilation
unit. The extern declaration of the weak symbol is not required, unless
the symbol is referenced within the compilation unit, but Silicon
Graphics recommends it for type-checking purposes.

Weak extern declarations are typically used to export non-ANSI C
symbols from a library without polluting the ANSI C name-space. As an
example, libc may export a weak symbol read(), which aliases a
strong symbol _read(), where _read() is used in the implementation
of the exported symbol fread(). You can either use the exported
(weak) version of read(), or define your own version of read(),
thereby preempting the weak denotation of this symbol. This will not
alter the definition of fread(), because it depends only on the (strong)
symbol _read(), which is outside of the ANSI C name-space.

For example, the following code defines a new version of read() (which
is a weak symbol in libc.so.1):

/* read() is a weak symbol in libc.so.1

This program omits error checking and makes no

attempt at good style!
*/

#include <stdio.h>

char *read(int);

int main(int argc, char **argv)
{

char *var;

int c;

c = getchar();

var = read(c);

007–3587–003 45

MIPSproTM C and C++ Pragmas

printf(‘‘%s\n’’,var);

return c;
}

char *read(int val)

{

static char buf[100];
sprintf(buf,’’%d’’,val);
return buf;

}

This program reads a single character from standard input and prints the
character’s decimal value. Even though getchar() uses the libc.so
version of fread(), the redefinition of read() has no effect on the
internal processing in libc.so because fread() uses the strong symbol
_read().

!
Caution: The #pragma weak directive is not supported in -o32 C++.

46 007–3587–003

Loop Nest Optimization #pragma
Directives [8]

Table 8, page 47, contains an alphabetical list of the #pragma directives
discussed in this chapter, along with a brief description of each and the
compiler versions in which the directive is supported.

Table 8. Loop Nest Optimization #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma aggressive inner
loopfission

Tells the compiler to fission inner loops into as many
loops as possible.

7.0 and later

#pragma blocking size Sets the blocksize of the specified loop, if it is
involved in a blocking for the primary (or secondary)
cache.

7.0 and later

#pragma fission Tells the compiler to fission the enclosing specified
levels of loops after this directive.

7.0 and later

#pragma fissionable Disables validity testing. 7.0 and later

#pragma fusable Disables validity testing. 7.0 and later

#pragma fuse Tells the compiler to fuse the following n loops,
which must be immediately adjacent.

7.0 and later

#pragma ivdep Liberalizes dependence analysis. This applies only to
inner loops. Given two memory references, where at
least one is loop variant, ignore any loop-carried
dependences between the two references.

6.0 and later

#pragma no blocking Prevents the compiler from involving this loop in
cache blocking.

7.0 and later

#pragma no fission Keeps the following loop from being fissioned. Its
innermost loops, however, are allowed to be fissioned.

7.0 and later

#pragma no fusion Keeps the following loop from being fused with other
loops.

7.0 and later

007–3587–003 47

MIPSproTM C and C++ Pragmas

#pragma Short Description
Compiler
Versions

#pragma no interchange Prevents the compiler from involving the loop
directly following this directive (or any loop nested
within this loop) in an interchange.

7.0 and later

#pragma prefetch Specifies prefetching for each level of the cache.
Scope: entire function containing the directive.

7.1 and later

#pragma prefetch_manua Specifies whether manual prefetches (through
#pragma directives) should be respected or ignored.
Scope: entire function containing the directive.

7.1 and later

#pragma prefetch_ref Generates a prefetch and connects it to the specified
reference (if possible).

7.0 and later

#pragma
prefetch_ref_disable

Disables prefetching for the specified reference in the
current loop nest.

7.1 and later

#pragma unroll Suggests to the compiler that a specified number of
copies of the loop body be added to the inner loop. If
the loop following this directive is an inner loop, then
it indicates standard unrolling (version 7.2 and later).
If the loop following this directive is not innermost,
then outer loop unrolling (unroll and jam) is
performed (version 7.0 and later).

7.0 and later

8.1 #pragma aggressive inner loop fission

The #pragma aggressive inner loop fission directive instructs the
compiler to fission inner loops into as many loops as possible.

The syntax of the #pragma aggressive inner loop fission directive is
as follows:

#pragma aggressive inner loop fission

The #pragma aggressive inner loop fission directive must be
followed by an inner loop and has no effect if that loop is no longer inner after
loop interchange.

48 007–3587–003

Loop Nest Optimization #pragma Directives [8]

8.2 #pragma blocking size

The #pragma blocking size directive sets the blocksize of the specified
loop.

The syntax of the #pragma blocking size directive is as follows:

#pragma blocking size (n1, n2)

The loop specified, if it is involved in a blocking for the primary (secondary)
cache, will have a blocksize of n1 (n2). The compiler tries to include this loop
within such a block. If a 0 blocking size is specified, then the loop is not
stripped, but the entire loop is inside the block.

8.2.1 Example of #pragma blocking size

In the following code, the compiler makes 20 � 20 blocks when blocking:

void amat (double x, double y, double z, int n, int m, int mm)

{

int i, j, k;

for (k = 0; k < n; k++)

{

#pragma blocking size (20)

for (j = 0; j < m; j++)
{

#pragma blocking size (20)

for (i = 0; i < mm; i++)

z(i,k) = z(i,k) + x(i,j) * y(j,k)

}

}
}

8.3 #pragma no blocking

The #pragma no blocking directive prevents the compiler from involving
this loop in cache blocking.

The syntax of the #pragma no blocking directive is as follows:

#pragma no blocking

007–3587–003 49

MIPSproTM C and C++ Pragmas

8.4 #pragma fission

The #pragma fission directive instructs the compiler to fission the enclosing
n levels of loops after this directive.

The syntax of the #pragma fission directive is as follows:

#pragma fission [(n)]

The default for n is 1. The compiler performs a validity test unless
#pragma fissionable is also specified. The compiler does not reorder
statements.

8.5 #pragma fissionable

The #pragma fissionable directive disables validity testing for loop
fissioning.

The syntax of the #pragma fissionable directive is as follows:

#pragma fissionable

8.6 #pragma no fission

The #pragma no fission instructs the compiler to not fission the loop
directly following this directive. Any inner loops, however, are allowed to be
fissioned.

The syntax of the #pragma no fission directive is as follows:

#pragma no fission

8.7 #pragma fuse

The #pragma fuse directive instructs the compiler to fuse the specified
number of immediately adjacent loops.

The syntax of the #pragma fuse directive is as follows:

#pragma fuse [(num, level)]

The loops to be fused must immediately follow the #pragma fusion directive.

50 007–3587–003

Loop Nest Optimization #pragma Directives [8]

The default value for num is 2. Fusion is attempted on each pair of adjacent
loops and the level, by default, is determined by the maximal perfectly nested
loop levels of the fused loops, although partial fusion is allowed. Iterations may
be peeled as needed during fusion; the limit of this peeling is 5 or the number
specified by the -LNO:fusion_peeling_limit option. No fusion is done for
non-adjacent outer loops.

When the #pragma fusable directive is present, no validity test is done and
the fusion is done up to the maximal common levels.

8.8 #pragma fusable

The #pragma fusable directive disables validity testing for loop fusing.

The syntax of the #pragma fusable directive is as follows:

#pragma fusable

8.9 #pragma no fusion

The #pragma no fusion directive instructs the compiler that the loop
following this directive should not be fused with other loops.

The syntax of the #pragma no fusion directive is as follows:

#pragma no fusion

8.10 #pragma no interchange

The #pragma no interchange directive prevents the compiler from
involving the next loop in an interchange. This directive also applies to any
loop nested within the indicated loop.

The syntax of the #pragma no interchange directive is as follows:

#pragma no interchange

The pragma directive statement must immediately precede the loop to which it
applies.

007–3587–003 51

MIPSproTM C and C++ Pragmas

8.11 #pragma ivdep

The #pragma ivdep directive instructs the compiler to liberalize dependence
analysis.

The syntax of the #pragma ivdep directive is as follows:

#pragma ivdep

Given two memory references, where at least one is loop variant, this directive
instructs the compiler to ignore any loop-carried dependences between the two
references. The #pragma ivdep directive applies only to inner loops. If
#pragma ivdep is used on a loop that has an inner loop, the compiler ignores
it.

8.11.1 Examples of #pragma ivdep

The following are some examples of the use of #pragma ivdep:

• ivdep does not break the dependence because b(k) is not loop variant:

#pragma ivdep
for (i = 0; i < n; i++)
b(k) = b(k) +a(i);

• ivdep breaks the dependence, but the compiler warns the user that it is
breaking an obvious dependence:

#pragma ivdep
for (i = 0; i < n; i++)
a(i) = a(i-1) + 3.0;

• ivdep breaks the dependence:

#pragma ivdep
for (i = 0; i < n; i++)
a(b(i)) = a(b(i)) + 3.0;

52 007–3587–003

Loop Nest Optimization #pragma Directives [8]

• ivdep does not break the dependence on a(i) because it is within an
iteration:

#pragma ivdep
for (i = 0; i < n; i++)
{
a(i) = b(i);
c(i) = a(i) + 3.0;
}

If -OPT:cray_ivdep=TRUE is specified, ivdep instructs the compiler to use
Cray semantics and break all backward dependences:

• ivdep breaks the dependence but the compiler warns the user that it is
breaking an obvious dependence:

#pragma ivdep
for (i = 0; i < n; i++)
{
a(i) = a(i - 1) + 3.0;
}

• ivdep does not break the dependence, because the it is from the load to the
store, and the load comes lexically before the store:

#pragma ivdep
for (i = 0; i < n; i++)
{
a(i) = a(i + 1) + 3.0;
}

To break all dependences, specify the following: -OPT:liberal_ivdep=TRUE.

8.12 #pragma prefetch

The #pragma prefetch directive specifies prefetching for each level of the
cache.

The syntax of the #pragma prefetch directive is as follows:

#pragma prefetch [(n1, n2)]

n1 controls the level 1 cache; n2 controls level 2. n1 and n2 can have the
following values:

007–3587–003 53

MIPSproTM C and C++ Pragmas

Value Effect

0 Prefetching is off (default for all processors except R10000)

1 Prefetching is on but conservative (default at -03 when prefetch
is on)

2 Prefetching on and aggressive

The scope of this directive is the entire function that contains it.

8.13 #pragma prefetch_manual

The #pragma prefetch_manual directive instructs the compiler as to
whether manual prefetches (through #pragma directives) should be respected
or ignored.

The syntax of the #pragma prefetch_manual directive is as follows:

#pragma prefetch_manual[(n)]

Value Effect

0 Compiler ignores manual prefetches (default for all processors
except R10000)

1 Compiler respects manual prefetches (default at -03 for R10000
and beyond)

The scope of this directive is the entire function that contains it.

8.14 #pragma prefetch_ref

The #pragma prefetch_ref directive generates a prefetch and connects it to
the specified reference (if possible).

The syntax of the #pragma prefetch_ref directive is as follows:

pragma prefetch_ref = ref [, stride = num1 [, num2]]
[, level = [lev1][, lev2]]
[, kind = {rd|wr}]
[, size = sz]

ref is the object you want prefetched.

54 007–3587–003

Loop Nest Optimization #pragma Directives [8]

Table 9, page 55 describes each of the possible #pragma prefetch_ref
clauses. These clauses are optional.

Table 9. Clauses for #pragma prefetch_ref

Clause Effect
Default
Value

stride Prefetches every num iteration(s) of this loop. 1

level Specifies the level in memory hierarchy to prefetch.
The possible values for level are
1: prefetch from L2 to L1 cache
2: prefetch from memory to L1 cache

2

kind Specifies read or write. write

size Specifies the size (in KB) of the object referenced in
this loop. Must be a constant.

N/A

The #pragma prefetch_ref directive instructs the compiler to take the
following actions:

• Generate a prefetch and connect to the specified object (if possible).

• Search for references in the current loop-nest that match the supplied object.

– If such a reference is found, then the prefetch for that object is scheduled
relative to the prefetch node, based on the miss latency for the specified
level of the cache.

– If no such reference is found, the prefetch is generated at the start of the
loop body.

• Ignore all references by the automatic prefetcher (if enabled) to this variable
in this loop-nest.

• Have the automatic prefetcher (if enabled) use the supplied size (if specified)
in its volume analysis for this object.

This directive has no scope; it just generates a prefetch.

007–3587–003 55

MIPSproTM C and C++ Pragmas

8.15 #pragma prefetch_ref_disable

The #pragma prefetch_ref_disable directive explicitly disables
prefetching for the specified reference (in the current loop nest).

The syntax of the #pragma prefetch_ref_disable directive is as follows:

#pragma prefetch_ref_disable = ref [, size = num]

ref is the object for which you want to disable prefetching.

num specifies the size (in KB) of the object referenced in this loop (optional).
The size must be a constant. This explicitly disables the prefetching of all
references to object ref in the current loop nest. If enabled, the auto-prefetcher
runs but ignores ref. The size is used for volume analysis.

The scope of this directive is the entire function containing it.

8.16 #pragma unroll

The #pragma unroll directive suggests to the compiler the type of unrolling
that should be done.

The syntax of the #pragma unroll directive is as follows:

#pragma unroll (n)

This directive instructs the compiler to add n-1 copies of the loop body to the
inner loop. If the loop that this directive immediately precedes is an inner loop,
then it indicates standard unrolling (version 7.2 and later). If the loop that this
directive immediately precedes is not innermost, then outer loop unrolling
(unroll and jam) is performed (version 7.0 and later).

The value of n must be at least 1. If it is 1, then unrolling is not performed.

!
Caution: The #pragma unroll directive works only on loops that are legal
to unroll. Loops are often not unrollable in C because of potential aliasing. In
these cases, you may want to use restrict pointers or the option
-OPT:alias=disjoint (see the C Language Reference Manual for more
information on restrict pointers). When -OPT:alias=disjoint is specified,
distinct pointer expressions are assumed to point to distinct, non-overlapping
objects.

-OPT:alias=disjoint is unsafe and may cause existing C programs to fail
in obscure ways, so it should be used with extreme care.

56 007–3587–003

Loop Nest Optimization #pragma Directives [8]

8.16.1 Examples of #pragma unroll

The following code samples show the effect of using #pragma unroll. The
code in Sample 1 becomes Sample 2, not Sample 3:

• Sample 1:

#pragma unroll (2)

for (i = 0; i < 10; i++)
{

for (j = 0; j < 10; j++)

{

a([i][j] = a[i][j] + b[i][j];
}
}

• Sample 2:

for (i = 0; i < 10; i + 2)

{

for (j = 0; j < 10; j++)

{

a[i][j] = a[i][j] + b[i][j];
a[i+1][j] = a[i+1][j] + b[i+1][j];
}

}

• Sample 3:

for (i = 0; i < 10; i + 2)

{

for (j = 0; j < 10; j++)

a[i][j] = a[i][j] + b[i][j];
for (j = 0; j < 10; j++)

a[i+1][j] = a[i+1][j] + b[i+1][j];
}

The #pragma unroll directive is attached to the given loop, so that if an
interchange is performed, the corresponding loop is still unrolled. That is,
Sample 1 is equivalent to the following:

007–3587–003 57

MIPSproTM C and C++ Pragmas

#pragma interchange

for (j = 0; j < 10; j++)
{

#pragma unroll (2)

for (i = 0; i < 10; i++)

a[i][j] = a[i][j] + b[i][j];
}

58 007–3587–003

Multiprocessing #pragma Directives [9]

Table 10, page 59, contains an alphabetical list of the #pragma directives
discussed in this chapter, along with a brief description of each and the
compiler versions in which the directive is supported.

Table 10. Multiprocessing #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma copyin Copies the value from the master thread’s version
of an -Xlocal-linked global variable into the
slave thread’s version.

6.0 and later

#pragma critical Protects access to critical statements. 6.0 and later

#pragma enter gate (see Section
9.3, page 63)

Indicates the point that all threads must clear
before any threads are allowed to pass the
corresponding exit gate.

6.0 and later

#pragma exit gate (see Section 9.3,
page 63)

Stops threads from passing this point until all
threads have cleared the corresponding enter
gate.

6.0 and later

#pragma independent Tells the compiler to run independent code section
in parallel with the rest of the code in the parallel
region.

6.0 and later

#pragma local Tells the compiler the names of all the variables
that must be local to each thread.

6.0 and later

#pragma no side effects Tells the compiler to assume that all of the named
functions are safe to execute concurrently.

7.1 and later

#pragma one processor Causes the next statement to be executed on only
one processor.

6.0 and later

#pragma parallel (see also Section
9.9, page 71)

Marks the start of a parallel region. 6.0 and later

#pragma pfor (see also Section 9.11,
page 76)

Marks a for loop to run in parallel. 6.0 and later

007–3587–003 59

MIPSproTM C and C++ Pragmas

#pragma Short Description
Compiler
Versions

#pragma pure Tells the compiler to use only values of named
functions to computer return value with no side
effects.

7.3 and later

#pragma set chunksize Tells the compiler which values to use for
chunksize.

6.0 and later

#pragma set numthreads Tells the compiler which values to use for
numthreads.

6.0 and later

#pragma set schedtype Tells the compiler which values to use for
schedtype.

6.0 and later

#pragma shared Tells the compiler the names of all the variables
that the threads must share.

6.0 and later

#pragma synchronize Stops threads until all threads reach this point. 6.0 and later

9.1 #pragma copyin

The #pragma copyin directive allows you to copy values from the master
thread’s version of an -Xlocal-linked global variable into the slave thread’s
version.

#pragma copyin has the following syntax:

#pragma copyin item1 [, item2 ...]

Each item must be a localized (that is, linked -Xlocal) global variable.

Do not place this directive inside a parallel region.

9.1.1 Example of #pragma copyin

The following line of code demonstrates the use of the #pragma copyin
directive:

#pragma copyin x,y, A[i]

This propagates the master thread’s values for x, y, and the ith element of array
A into each slave thread’s copy of the corresponding variable. All of these items
must be linked -Xlocal. This directive is translated into executable code, so in
this example i is evaluated at the time this statement is executed.

60 007–3587–003

Multiprocessing #pragma Directives [9]

9.2 #pragma critical

Sometimes the bulk of the work done by a loop can be done in parallel, but the
entire loop cannot run in parallel because of a single data-dependent statement.
Often, you can move such a statement out of the parallel region. When that is
not possible, you can use the #pragma critical directive to place a lock on
the statement to preserve the integrity of the data.

The syntax of the #pragma critical directive is as follows:

#pragma critical [(lock_variable)]
{ code }

The statement after the #pragma critical directive code is executed by all
threads, one at a time.

In the multiprocessing C/C++ compiler, you can use the #pragma critical
directive to put a lock on a critical statement (or compound statement using {}).
When you put a lock on a statement, only one thread at a time can execute that
statement. If one thread is already working on a #pragma critical
protected statement, any other thread that needs to execute that statement must
wait until the first thread has finished executing it.

The lock variable is an optional integer variable that must be initialized to zero.
The parentheses are required. If you do not specify a lock variable, the compiler
automatically uses a global lock variable. Multiple critical constructs inside the
same parallel region are considered to be dependent on each other unless they
use distinct explicit lock variables.

!
Caution: This #pragma directive works slightly differently in the IRIS
POWER C Analyzer (PCA) for compiler versions 7.1 and older. See theIRIS
POWER C User’s Guide for more information.

9.2.1 Diagram of #pragma critical

Figure 1, page 62, illustrates critical segment execution.

007–3587–003 61

MIPSproTM C and C++ Pragmas

A

A

A

A

...
#pragma parallel ...
{ ...
#pragma critical
 { ...
 }
} ...

} A

a12043

Figure 1. Critical Segment Execution

62 007–3587–003

Multiprocessing #pragma Directives [9]

9.3 #pragma enter gate and #pragma exit gate

The #pragma enter gate and #pragma exit gate directives provide an
additional tool for coordinating the processing of code within a parallel region.
These directives work as a matched set, by establishing a section of code
bounded by gates at the beginning and end. These gates form a special barrier.
No thread can exit a gated region until all threads have entered it. This
construct gives more flexibility when managing dependences between the
work-sharing constructs in a parallel region.

By using #pragma enter gate and #pragma exit gate pairs, you can
make subtle distinctions about which construct is dependent on which other
construct.

The syntax of the #pragma enter gate directive is as follows:

#pragma enter gate

Put this directive after the work-sharing construct that all threads must clear
before any can pass #pragma exit gate.

The syntax of the #pragma exit gate directive is as follows:

#pragma exit gate

Put this directive before the work-sharing construct that is dependent on the
preceding #pragma enter gate. No thread enters this work-sharing
construct until all threads have cleared the work-sharing construct controlled by
the corresponding #pragma enter gate.

Note: Nesting of the #pragma enter gate and #pragma exit gate
directives is not supported.

!
Caution: These directives work slightly differently in the IRIS POWER C
Analyzer (PCA) for compiler versions 7.1 and older. See the IRIS POWER C
User’s Guide for more information.

9.3.1 Diagram of #pragma enter gate and #pragma exit gate

Figure 2, page 64, is a “time-lapse” sequence showing execution using enter and
exit gates.

007–3587–003 63

MIPSproTM C and C++ Pragmas

1

enter gate
exit gate

2

3

4

...

#pragma parallel ...
{ ...
#pragma enter gate
 ...
#pragma exit gate
 ...
} ...

a12044

Figure 2. Execution Using Gates

64 007–3587–003

Multiprocessing #pragma Directives [9]

9.3.2 Example of #pragma enter gate and #pragma exit gate

This example shows how to use these two directives to work with parallelized
segments that have some dependences.

Suppose you have a parallel region consisting of the work-sharing constructs A,
B, C, D, E, and so forth. A dependence may exist between B and E such that you
cannot execute E until all the work on B has completed (see the following code).

#pragma parallel ...

{

..A..

..B..

..C..

..D..

..E.. (depends on B)

}

One option is to put a #pragma synchronize before E. But this #pragma
directive is wasteful if all the threads have cleared B and are already in C or D.
All the faster threads pause before E until the slowest thread completes C and D.

#pragma parallel ...
{

..A..

..B..

..C..

..D..

#pragma synchronize
..E..

}

To reflect this dependence, put #pragma enter gate after B and
#pragma exit gate before E. Putting #pragma enter gate after B tells
the system to note which threads have completed the B work-sharing construct.
Putting #pragma exit gate prior to the E work sharing construct tells the
system to allow no thread into E until all threads have cleared B. See the
following example:

#pragma parallel ...

{

..A..

..B..

#pragma enter gate
..C..

007–3587–003 65

MIPSproTM C and C++ Pragmas

..D..

#pragma exit gate
..E..

}

9.4 #pragma independent

Running a loop in parallel is a class of parallelism sometimes called
“fine-grained parallelism” or “homogeneous parallelism.” It is called
homogeneous because all the threads execute the same code on different data.
Another class of parallelism is called “coarse-grained parallelism” or
“heterogeneous parallelism.” As the name suggests, the code in each thread of
execution is different.

Ensuring data independence for heterogeneous code executed in parallel is not
always as easy as it is for homogeneous code executed in parallel. (Ensuring
data independence for homogeneous code is not a trivial task, either.)

The syntax of the #pragma independent directive is as follows:

#pragma independent

{ code }

The #pragma independent directive has no modifiers. Use this directive to
tell the multiprocessing C/C++ compiler to run code in parallel with the rest of
the code in the parallel region. Other threads can proceed past this code as
soon as it starts execution.

9.4.1 Diagram of #pragma independent

Figure 3, page 67, shows an independent segment with execution by only one
thread.

66 007–3587–003

Multiprocessing #pragma Directives [9]

A B

...
#pragma parallel ...
{ ...
#pragma independent
 { ...
 }
#pragma independent
 { ...
 }
} ...

} A

} B

a12045

Figure 3. Independent Segment Execution

9.5 #pragma local

The #pragma local directive tells the multiprocessing C/C++ compiler the
names of all the variables that must be local to each thread.

The syntax of the #pragma local directive is as follows:

#pragma local (variable1 [, variable2...])

Note: A variable in a local clause cannot have initializers and cannot be an
array element or a field within a class, structure, or union.

007–3587–003 67

MIPSproTM C and C++ Pragmas

9.6 #pragma no side effects

The #pragma no side effects directive tells the compiler that the only
observable effect of a call to any of the named functions is its return value. In
particular, the function does not modify an object or file that exists before it is
called, and does not create a new object or file that persists after the completion
of the call. This implies that if its return value is not used, the call may be
skipped.

The syntax of the #pragma no side effects directive is as follows:

#pragma no side effects (function1 [, function2...])

The functions named must be declared before the directive.

#pragma no side effects is not currently supported in C++, except for
symbols marked extern‘‘C’’.

9.7 #pragma one processor

The #pragma one processor directive causes the statement that follows it to
be executed by one thread.

The syntax of the #pragma one processor directive is as follows:

#pragma one processor

{ code }

If a thread is executing the statement enclosed by this directive, other threads
that encounter this statement must wait until the statement has been executed
by the first thread, then skip the statement and continue.

If a thread has completed execution of the statement enclosed by this directive,
then all threads encountering this statement skip the statement and continue
without pause.

9.7.1 Diagram of #pragma one processor

Figure 4, page 69, shows code executed by only one thread. No thread can
proceed past this code until it has been executed.

68 007–3587–003

Multiprocessing #pragma Directives [9]

Apause for A pause for A pause for A

...
#pragma parallel ...
{ ...
#pragma one processor
 { ...
 }
} ...

} A

a12046

Figure 4. One Processor Segment

9.8 #pragma parallel

The #pragma parallel directive indicates that the subsequent statement (or
compound statement) is to be run in parallel. #pragma parallel has four
clauses, shared, local, if, and numthreads, that provide the compiler with
more information on how to run the block of code (see Section 9.9, page 71).
These clauses can either be listed on the same line as the #pragma parallel
directive or broken out into separate #pragma directives(see Section 9.8.1, page
70).

The syntax of the #pragma parallel directive is as follows:

#pragma parallel [clause1[, clause2 ...]]

007–3587–003 69

MIPSproTM C and C++ Pragmas

Use the #pragma parallel directive to start a parallel region. This directive
has a number of clauses (see Section 9.9, page 71 for more details), but to run a
single loop in parallel, the only clauses you usually need are shared and
local. These options tell the multiprocessing C/C++ compiler which variables
to share between all threads of execution and which variables to treat as local.

The code that makes up the parallel region is usually delimited by curly braces
({ }) and immediately follows the #pragma parallel directives and its
modifiers.

Objects are shared by default unless declared within a parallel program region.
If they are declared within a parallel program region, they are local by default.
For example:

main() {

int x, s, l;

#pragma parallel shared (s) local (l)

{

int y;

/* within this parallel region, by the default rules

x and s are shared whereas l and y are local */

...

}
...

}

!
Caution: This directive works slightly differently in the IRIS POWER CTM

Analyzer (PCA) for compiler versions 7.1 and older. See the IRIS POWER C
User’s Guide for more information.

9.8.1 Example of #pragma parallel

For example, suppose you want to start a parallel region in which to run the
following code in parallel:

for (idx=n; idx; idx--) {

a[idx] = b[idx] + c[idx];
}

Enter the following code before the statement or compound statement (code in
curly braces, { }) that makes up the parallel region:

70 007–3587–003

Multiprocessing #pragma Directives [9]

#pragma parallel shared(a, b, c) shared(n) local(idx)

#pragma pfor

Or you can enter the following code:

#pragma parallel
#pragma shared(a, b, c)

#pragma shared(n)

#pragma local(idx)

#pragma pfor

Any code within a parallel region, but not within any of the explicit parallel
constructs (pfor, independent, one processor, and critical), is local code. Local
code typically modifies only local data and is run by all threads.

9.9 #pragma parallel Clauses

The #pragma parallel directive has four possible clauses; each clause may
also be written as a separate directive, following the #pragma parallel
directive:

• shared

• local

• if

• numthreads

9.9.1 shared: Specifying Shared Variables

The shared clause tells the multiprocessing C/C++ compiler the names of all
the variables that the threads must share.

The syntax of #pragma parallel with the shared clause is as follows:

#pragma parallel shared (var1 [, var2 ...])

Note: A variable in a shared clause cannot be an array element or a field
within a class, structure, or union.

007–3587–003 71

MIPSproTM C and C++ Pragmas

9.9.2 local: Specifying Local Variables

The local clause tells the multiprocessing C/C++ compiler the names of all
the variables that must be local to each thread.

The syntax of #pragma parallel with the local clause is as follows:

#pragma parallel local (var1 [, var2 ...])

A variable in a local clause cannot have initializers and cannot be any of the
following:

• An array element

• A field within a class, structure, or union

• An instance of a C++ class

9.9.3 if: Specifying Conditional Parallelization

The if clause lets you set up a condition that is evaluated at run time to
determine whether to run the statements serially or in parallel. At compile
time, it is not always possible to judge how much work a parallel region does
(for example, loop indices are often calculated from data supplied at run time).
The if clause lets you avoid running trivial amounts of code in parallel when
the possible speedup does not compensate for the overhead associated with
running code in parallel.

The syntax of #pragma parallel with the if clause is as follows:

#pragma parallel if (expr)

The if condition, expr, must evaluate to an integer. If expr is false (evaluates to
zero), then the subsequent statements run serially. Otherwise, the statements
run in parallel.

9.9.4 numthreads: Specifying the Number of Threads

The numthreads clause tells the multiprocessing C/C++ compiler how many
of the available threads to use when running this region in parallel. (The
default is all the available threads.)

In general, you should avoid having more threads of execution than you have
processors, and you should specify numthreads with the
MP_SET_NUMTHREADS environment variable at run time. If you want to run a

72 007–3587–003

Multiprocessing #pragma Directives [9]

loop in parallel while you run other code, you can use this option to tell the
compiler to use only some of the available threads.

The syntax of #pragma parallel with the numthreads clause is as follows:

#pragma parallel numthreads(expr)

The variable expr should evaluate to a positive integer.

9.10 #pragma pfor

The #pragma pfordirective marks a for loop to run in parallel. This directive
must follow a #pragma parallel directive and be contained within a parallel
region. #pragma pfor takes several clauses (see Section 9.9, page 71, for more
details), which control the following aspects:

• How the work load is partitioned over the available processors

• Which variables are local to each process

• Which variables are involved in a reduction operation

• Which iterations are assigned to which threads

• How the iterations are shared by the available processors

• How many iterations make up the “chunks” assigned to the threads

Use #pragma pfor to run a for loop in parallel only if the loop meets all of
the following conditions:

• The #pragma pfor is contained within a parallel region.

• All the values of the index variable can be computed independently of the
iterations.

• All iterations are independent of each other; that is, data used in one
iteration does not depend on data created by another iteration. If the loop
can be run backwards, the iterations are probably independent.

• The number of iterations is known (no infinite or data-dependent loops) at
execution time. The number of times the loop must be executed must be
determined once, upon entry to the loop, and based on the loop
initialization, loop test, and loop increment statements.

007–3587–003 73

MIPSproTM C and C++ Pragmas

Note: If the number of times the loop is actually executed is different
from what is computed above, the results are undefined. This can happen
if the loop test and increment change during the execution of the loop, or
if there is an early exit from within the for loop. An early exit or a change
to the loop test and increment during execution may have serious
performance implications.

• The chunksize, if specified, is computed before the loop is executed, and the
behavior is undefined if its value changes within the loop.

• The loop control variable cannot be an array element, or a field within a
class, structure, or union.

• The test or the increment should not contain expressions with side effects.

!
Caution: This directive works differently in the IRIS POWER CTM Analyzer
(PCA) for compiler versions 7.1 and older. See the IRIS POWER C User’s
Guide for more information.

9.10.1 Diagram of #pragma pfor

Figure 5, page 75, shows parallel code segments using #pragma pfor running
on four threads with simple scheduling.

74 007–3587–003

Multiprocessing #pragma Directives [9]

A(0-99) A(100-199) A(200-299) A(300-399)

...
#pragma parallel local (i)...
{
#pragma pfor
 for (i=0;i<400;i++) {
 ...
 }
} ...

} A(0-399)

a12047

Figure 5. Parallel Code Segments Using #pragma pfor

9.10.2 C++ Multiprocessing Considerations With #pragma pfor

If you are writing a #pragma pfor loop for the multiprocessing C++ compiler,
the index variable i can be declared within the for statement using the
following:

int i = 0;

The ANSI C++ Standard states that the scope of the index variable declared in a
for statement extends to the end of the for statement, as in the following
example:

#pragma pfor

for (int i = 0, ...) { ... }

The MIPSpro 7.2 C++ compiler does not enforce this rule. By default, the scope
extends to the end of the enclosing block. The default behavior can be changed

007–3587–003 75

MIPSproTM C and C++ Pragmas

by using the command line option -LANG:ansi-for-init-scope=on which
enforces the ANSI C++ standard.

To avoid future problems, write for loops in accordance with the ANSI
standard, so a subsequent change in the compiler implementation of the default
scope rules does not break your code.

9.11 #pragma pfor Clauses

The #pragma pfor directive accepts the following clauses:

iterate Tells the multiprocessing C compiler the
information it needs to partition the work load
over the available processors.

local Specifies the variables that are local to each
process.

lastlocal Specifies the variables that are local to each
process, saving only the value of the variables
from the logically last iteration of the loop.

reduction Specifies variables involved in a reduction
operation.

affinity Assigns certain iterations to specific threads (for
Origin200

TM

and Origin2000
TM

only).

nest Exploits nested concurrency.

schedtype Specifies how the loop iterations are to be shared
among the processors.

chunksize Specifies how many iterations make up a chunk.

9.11.1 iterate: Specifying the for Loop

The syntax of #pragma pfor with the iterate clause is as follows:

#pragma pfor iterate (index = expr1; expr2; expr3)

The iterate clause tells the multiprocessing C compiler the information it needs
to identify the unique iterations of the loop and partition them to particular
threads of execution. This clause is optional. The compiler automatically infers
the appropriate values from the subsequent for loop.

Table 11, page 77, describes the components of the iterate clause.

76 007–3587–003

Multiprocessing #pragma Directives [9]

Table 11. Components of the iterate Clause

Component Description

index The index variable of the for loop you want to run in
parallel.

expr1 The starting value for the index variable.

expr2 The number of iterations for the loop you want to run in
parallel.

expr3 The increment of the for loop you want to run in
parallel.

The following is an example using the iterate clause:

Consider this for loop:

for (idx=n; idx; idx--) {

a[idx] = b[idx] + c[idx];
}

The iterate clause to pfor should be as follows:

iterate(idx=n;n;-1)

This loop counts down from the value of n, so the starting value is the current
value of n. The number of trips through the loop is n, and the increment is -1.

9.11.2 local and lastlocal: Specifying Local Variables

The syntax of #pragma pfor with the local clause is as follows:

#pragma pfor local (var1[, var2,...])

The local clause specifies the variables that are local to each process. If a
variable is declared as local, each iteration of the loop is given its own
uninitialized copy of the variable. You can declare a variable as local if its value
does not depend on any other iteration of the loop and if its value is used only
within a single iteration. In effect the local variable is just temporary; a new
copy can be created in each loop iteration without changing the final answer.

The pfor local clause has the same restrictions as the parallel local
clause (see Section 9.9.2, page 72).

The syntax of #pragma pfor with the lastlocal clause is as follows:

007–3587–003 77

MIPSproTM C and C++ Pragmas

#pragma pfor lastlocal (var1[, var2,...])

The lastlocal clause specifies the variables that are local to each process.
Unlike with the local clause, the compiler saves the value from only the
logically last iteration of the loop when it completes.

9.11.3 reduction: Specifying Variables for Reduction

The syntax of #pragma pfor with the reduction clause is as follows:

#pragma pfor reduction (var1[, var2,...])

Specifies variables involved in a reduction operation. In a reduction operation,
the compiler keeps local copies of the variables and combines them when it
exits the loop. An element of the reduction list must be an individual variable
(also called a scalar variable) and cannot be an array or structure. However, it
can be an individual element of an array. When the reduction clause is used,
it appears in the list with the correct subscripts.

One element of an array can be used in a reduction operation, while other
elements of the array are used in other ways. To allow for this, if an element of
an array appears in the reduction list, the entire array can also appear in the
share list.

The two types of reductions supported are sum(+) and product(*). For more
information, see the C Language Reference Manual .

The compiler confirms that the reduction expression is legal by making some
simple checks. The compiler does not, however, check all statements in the for
loop for illegal reductions. You must ensure that the reduction variable is used
correctly in a reduction operation.

9.11.4 affinity: Thread Affinity

Thread affinity assigns particular iterations to a particular thread.

The syntax of #pragma pfor with the affinity clause for thread affinity is
as follows:

#pragma pfor affinity variable = thread (expr)

The effect of thread affinity is to execute iteration i on the thread number given
by the user-supplied expression (modulo the number of threads). Because the
threads may need to evaluate this expression in each iteration of the loop, the
variables used in the expression (other than the loop induction variable) must

78 007–3587–003

Multiprocessing #pragma Directives [9]

be declared shared and must not be modified during the execution of the loop.
Violating these rules may lead to incorrect results.

If the expression does not depend on the loop induction variable, then all
iterations will execute on the same thread and will not benefit from parallel
execution.

Thread affinity is often used in conjunction with the #pragma page-place
directive (Section 5.4, page 29).

Data affinity for loops with non-unit stride can sometimes result in non-linear
affinity expressions. In such situations the compiler issues a warning, ignores
the affinity clause, and defaults to simple scheduling.

9.11.5 affinity: Data Affinity

Data affinity applies only to distributed arrays and is supported only on Origin
systems. See Chapter 5, page 23 for more information about distributed arrays.

The syntax of #pragma pfor with the affinity clause for data affinity is as
follows:

#pragma pfor affinity(idx) = data(array(expr))

idx is the loop-index variable

array is the distributed array

expr indicates an element owned by the processor on which you want this
iteration to execute

The following code shows an example of data affinity:

#pragma distribute A[block]

#pragma parallel shared (A, a, b) local (i)

#pragma pfor affinity(i) = data(A[a*i + b])
for (i = 0; i < n; i++)

A[a*i + b] = 0;

The multiplier for the loop index variable (a) and the constant term (b) must
both be literal constants, with a greater than zero.

The effect of this clause is to distribute the iterations of the parallel loop to
match the data distribution specified for the array A, such that iteration i is
executed on the processor that owns element A[a*i + b], based on the
distribution for A. The iterations are scheduled based on the specified

007–3587–003 79

MIPSproTM C and C++ Pragmas

distribution, and are not affected by the actual underlying data-distribution
(which may differ at page boundaries, for example).

In the case of a multi-dimensional array, affinity is provided for the dimension
that contains the loop-index variable. The loop-index variable cannot appear in
more than one dimension in an affinity directive.

In the following example, the loop is scheduled based on the block distribution
of the first dimension. See Chapter 5, page 23, for more information about
distribution directives.

#pragma distribute A[block][cyclic(1)]

#pragma parallel shared (A, n) local (i, j)

#pragma pfor
#pragma affinity (i) = data(A[i + 3, j])

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

A[i + 3, j] = A[i + 3, j-1];

9.11.6 Data Affinity for Redistributed Arrays

By default, the compiler assumes that a distributed array is not dynamically
redistributed, and directly schedules a parallel loop for the specified data
affinity. In contrast, a redistributed array can have multiple possible
distributions, and data affinity for a redistributed array must be implemented in
the run-time system based on the particular distribution.

However, the compiler does not know whether or not an array is redistributed,
because the array may be redistributed in another function (possibly even in
another file). Therefore, you must explicitly specify the #pragma dynamic
declaration for redistributed arrays. This directive is required only in those
functions that contain a pfor loop with data affinity for that array (see Section
5.3, page 28, for additional information). This informs the compiler that the
array can be dynamically redistributed. Data affinity for such arrays is
implemented through a run-time lookup.

9.11.7 Data Affinity for a Formal Parameter

You can supply a distribute directive on a formal parameter, thereby
specifying the distribution on the incoming actual parameter. If different calls
to the subroutine have parameters with different distributions, then you can
omit the distribute directive on the formal parameter; data affinity loops in
that subroutine are automatically implemented through a run-time lookup of

80 007–3587–003

Multiprocessing #pragma Directives [9]

the distribution. (This is permissible only for regular data distribution. For
reshaped array parameters, the distribution must be fully specified on the
formal parameter.)

9.11.8 Data Affinity and the #pragma pfor nest Clause

The nest clause for #pragma pfor is described in Section 9.11.9, page 81.
This section discusses how the nest clause interacts with the affinity clause
when the program has reshaped arrays.

When you combine a nest clause and an affinity clause, the default
scheduling is simple, except when the program has reshaped arrays and is
compiled -O3. In that case, the default is to use data affinity scheduling for the
most frequently accessed reshaped array in the loop (chosen heuristically by the
compiler). To obtain simple scheduling even at -O3, you can explicitly specify
the schedtype on the parallel loop.

The following example illustrates a nested pfor with an affinity clause:

#pfor nest(i, j) affinity(i, j) = data(A[i][j])
for (i = 2; i < n; i++)

for (j = 2; j < m; j++)
A[i][j] = A[i][j] + i * j;

9.11.9 nest: Exploiting Nested Concurrency

The nest clause allows you to exploit nested concurrency in a limited manner.
Although true nested parallelism is not supported, you can exploit parallelism
across iterations of a perfectly nested loop-nest.

The syntax of #pragma pfor with the nest clause is as follows:

#pragma pfor nest(i, j[, ...])

This clause specifies that the entire set of iterations across the (i, j[, ...])
loops can be executed concurrently. The restriction is that the loops must be
perfectly nested; that is, no code is allowed between either the for statements
or the ends of the respective loops, as illustrated in the following example:

#pragma pfor nest(i, j)

for (i = 0; i < n; i++)

for (j = 0; j < m; j++)

A[i][j] = 0;

007–3587–003 81

MIPSproTM C and C++ Pragmas

The existing clauses, such as local and shared, behave as before. You can
combine a nested pfor with a schedtype of simple or interleaved
(dynamic and gss are not currently supported). The default is simple
scheduling.

Note: The nest clause requires support from the MP run-time library
(libmp). IRIX operating system versions 6.3 (and above) are automatically
shipped with this new library. If you want to access these features on a
system running IRIX 6.2, then contact your local Silicon Graphics service
provider or Silicon Graphics Customer Support (1-800-800-4744) for libmp.

9.11.10 schedtype: Sharing Loop Iterations Among Processors

The syntax of #pragma pfor with the schedtype clause is as follows:

#pragma pfor schedtype (type)

The schedtype clause tells the multiprocessing C compiler how to share the
loop iterations among the processors. The schedtype chosen depends on the
type of system you are using and the number of programs executing (see Table
13, page 84).

You can use the types in Table 12, page 82, to modify schedtype.

Table 12. Schedtype Types

Type Function

simple (the
default)

Tells the run-time scheduler to partition the iterations
evenly among all the available threads.

dynamic Tells the run-time scheduler to give each thread chunksize
iterations of the loop. chunksize should be smaller than
the number of total iterations divided by the number of
threads. The advantage of dynamic over simple is that
dynamic helps distribute the work more evenly than
simple.

interleave Tells the run-time scheduler to give each thread
chunksize iterations of the loop, which are then assigned
to the threads in an interleaved way.

82 007–3587–003

Multiprocessing #pragma Directives [9]

Type Function

gss(guided
self-scheduling)

Tells the run-time scheduler to give each processor a
varied number of iterations of the loop. This is like
dynamic, but instead of a fixed chunksize, the chunksize
iterations begin with big pieces and end with small
pieces.
If I iterations remain and P threads are working on them,
the piece size is roughly
I/(2P) + 1
Programs with triangular matrices should use gss.

runtime Tells the compiler that the real schedule type will be
specified at run time, based on environment variables (see
the C Language Reference Manual for more information).

Figure 6, page 83, shows how the iteration chunks are apportioned over the
various processors by the different types of loop scheduling.

T1 T2 T3 T4simple

T1 T1T2 T2T3 T3T4 T1 T4 T2 T3T4dynamic

gss

runtime Selected by MP_SCHEDTYPE environment variable

interleave

T2 T4 T1 T3

T1 T2T2 T1T3 T4T4 T1 T2 T3 T4T3 T1 T2 T3 T4

T1 T4 T3 T2T1 T4T3T2 T1 T4 T3 T2

a12048

Figure 6. Loop Scheduling Types

007–3587–003 83

MIPSproTM C and C++ Pragmas

The best schedtype to use for any given program depends on your system,
program, and data. For instance, with certain types of data, some iterations of a
loop can take longer to compute than others, so some threads may finish long
before the others. In this situation, if the iterations are distributed by simple,
then the thread waits for the others. But if the iterations are distributed by
dynamic, the thread does not wait, but goes back to get another chunksize
iteration until the threads of execution have run all the iterations of the loop.

The Table 13, page 84, describes how to choose a schedtype.

Table 13. Choosing a schedtype

For a... Where... Use...

Single-User System iterations take same amount of time simple

data-sensitive iterations vary slightly gss

data-sensitive iterations vary greatly dynamic

Multiuser System data-sensitive iterations vary slightly gss

data-sensitive iterations vary greatly dynamic

If you are on a single-user system but are executing multiple programs, select
the scheduling from the multiuser rows.

If you are on a multiuser system, you should also consider using the
environment variable, MP_SUGNUMTHD. Setting MP_SUGNUMTHD causes the
run-time library to automatically adjust the number of active threads based on
the overall system load. When idle processors exist, this process increases the
number of threads, up to a maximum of MP_SET_NUMTHREADS. When the
system load increases, it decreases the number of threads. For more details
about MP_SUGNUMTHD, see the “Run-time Environment Variables” section in the
“Multiprocessing Advanced Features” chapter of the C Language Reference
Manual.

9.11.11 chunksize: Specifying the Number of Iterations in a Chunk

The chunksize clause tells the multiprocessing C compiler how many
iterations to define as a chunk when using the dynamic or interleave clause
(see Section 9.11.10, page 82).

84 007–3587–003

Multiprocessing #pragma Directives [9]

The syntax of #pragma pfor with the chunksize clause is as follows:

#pragma pfor chunksize (expr)

expr should be a positive integer. Silicon Graphics recommends using the
following formula:

(number of iterations)/X

X should be between twice and ten times the number of threads. Select twice
the number of threads when iterations vary slightly. Reduce the chunk size to
reflect the increasing variance in the iterations. Performance gains may
diminish after increasing X to ten times the number of threads.

9.12 #pragma pure

The #pragma pure directive tells the compiler that a call to any of the named
functions has no side effects (see #pragma no side effects), and that its
return value depends only on the values of its arguments. In particular, it does
not access an existing object or file after its arguments have been evaluated. If
the arguments of such a call are loop-invariant, then the compiler may move
the call out of the loop.

The syntax of the #pragma pure directive is as follows:

#pragma pure (function1 [, function2...])

The functions named must be declared before the directive.

#pragma pure is not currently supported in C++, except for symbols marked
extern‘‘C’’.

9.13 #pragma set chunksize

The #pragma set chunksize directive sets the value of chunksize, which
tells the multiprocessing C compiler how many iterations to define as a chunk
when using the dynamic or interleave clause (see Section 9.15, page 86, and
Section 9.11, page 76, for more information).

The syntax of the #pragma set chunksize directive is as follows:

#pragma set chunksize (n)

Silicon Graphics recommends using the following formula:

007–3587–003 85

MIPSproTM C and C++ Pragmas

(number of iterations)/X

X should be between twice and ten times the number of threads. Select twice
the number of threads when iterations vary slightly. Reduce the chunk size to
reflect the increasing variance in the iterations. Performance gains may
diminish after increasing X to ten times the number of threads.

9.14 #pragma set numthreads

The #pragma set numthreads directive sets the value for numthreads,
which tells the multiprocessing C/C++ compiler how many of the available
threads to use when running this region in parallel. The default is all the
available threads.

If you want to run a loop in parallel while you run some other code, you can
use this option to tell the compiler to use only some of the available threads.

9.14.1 Using #pragma set numthreads

The syntax of the #pragma set numthreads directive is as follows:

#pragma set numthreads (n)

n can range from 1 to 255. If if n is greater than 255, the compiler assumes the
maximum and generates a warning message. If n is less than 1, the compiler
generates a warning message and ignores the directive.

In general, you should never have more threads of execution than you have
processors, and you should specify numthreads with the
MP_SET_NUMTHREADS environment variable at run time (see the C Language
Reference Manual for more information).

9.15 #pragma set schedtype

The #pragma set schedtype directive sets the value of schedtype, which
tells the multiprocessing C compiler how to share the loop iterations among the
processors. The schedtype chosen depends on the type of system you are
using and the number of programs executing (see Section 9.11, page 76, for
more information on schedtype).

The syntax of the #pragma set schedtype directive is as follows:

#pragma set schedtype (type)

86 007–3587–003

Multiprocessing #pragma Directives [9]

The schedtype types are

• simple

• dynamic

• interleave

• gss

• runtime

See Table 12, page 82, for a description of each type.

9.16 #pragma shared

The #pragma shared directive tells the multiprocessing C/C++ compiler the
names of all the variables that the threads must share. This directive must be
used in conjunction with the #pragma parallel directive. #pragma shared
can also be used as a clause for the #pragma parallel directive (see Section
9.9, page 71).

The syntax of #pragma shared is as follows:

#pragma shared (variable1, [, variable2...])

Note: A variable in a shared clause cannot be an array element or a field
within a class, structure, or union.

9.17 #pragma synchronize

The #pragma synchronize directive tells the multiprocessing C/C++
compiler that within a parallel region, no thread can execute the statement that
follows this directive until all threads have reached it. This directive is a classic
barrier construct.

The syntax of #pragma synchronize is as follows:

#pragma synchronize

9.17.1 Diagram of #pragma synchronize

Figure 7, page 88, is a time-lapse sequence showing the synchronization of all
threads.

007–3587–003 87

MIPSproTM C and C++ Pragmas

1

2

3

4

5

A

A

...

#pragma parallel ...
{ ...
#pragma synchronize
 ...
} ... } A

a12049

Figure 7. Synchronization

88 007–3587–003

OpenMP C/C++ API Multiprocessing
Directives [10]

This appendix discusses the multiprocessing directives that MIPSpro C and
C++ compilers support. These directives are based on the OpenMP C/C++
Application Program Interface (API) standard. Programs that use these
directives are portable and can be compiled by other compilers that support the
OpenMP standard.

To enable recognition of the OpenMP directives, specify -mp on the cc or CC
command line.

In addition to directives, the OpenMP C/C++ API describes several library
functions and environment variables. Information on the library functions can
be found on the omp_lock(3), omp_nested(3), and omp_threads(3) man
pages. Information on the environment variables can be found on the
pe_environ(5) man page.

This chapter contains the following sections:

• Section 10.1, page 90, describes using directives and the directive format.

• Section 10.2, page 90, describes conditional compilation.

• Section 10.3, page 91, describes the parallel region construct.

• Section 10.4, page 92, describes work-sharing constructs.

• Section 10.5, page 98, describes the combined parallel work-sharing
constructs.

• Section 10.6, page 100, describes the synchronization constructs.

• Section 10.7, page 107, describes the data environment, which includes
directives and clauses that affect the data environment.

• Section 10.8, page 116, describes directive binding.

• Section 10.9, page 117, describes directive nesting.

Note: The Silicon Graphics multiprocessing directives, including the Origin
series distributed shared memory directives, are outmoded. Their preferred
alternatives are the OpenMP C/C++ API directives described in this chapter.

007–3587–003 89

MIPSproTM C and C++ Pragmas

10.1 Using Directives

Each OpenMP directive starts with #pragma omp, to reduce the potential for
conflict with other #pragma directives with the same name. They have the
following form:

#pragma omp directive-name [clause[clause] ...] new-line

Except for starting with #pragma omp, the directive follows the conventions of
the C and C++ standards for compiler directives.

Directives are case-sensitive. The order in which clauses appear in directives is
not significant. Only one directive name can be specified per directive.

An OpenMP directive applies to at most one succeeding statement, which must
be a structured block.

10.2 Conditional Compilation

The _OPENMP macro name is defined by OpenMP-compliant implementations
as the decimal constant, yyyymm, which will be the year and month of the
approved specification. This macro must not be the subject of a #define or a
#undef preprocessing directive.

#ifdef _OPENMP

iam = omp_get_thread_num() + index;

#endif

If vendors define extensions to OpenMP, they may specify additional
predefined macros.

If an implementation is not OpenMP-compliant, or if its OpenMP mode is
disabled, it may ignore the OpenMP directives in a program. In effect, an
OpenMP directive behaves as if it were enclosed within #ifdef _OPENMP and
#endif. Thus, the following two examples are equivalent:

if(cond)

{

#pragma omp flush (x)

}
X++;

if(cond)
#ifdef)OPENMP

90 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

#pragma omp flush (x)

#endif
x++;

10.3 parallel Construct

The #pragma omp parallel directive defines a parallel region, which is a
region of the program that is to be executed by multiple threads in parallel.

The #pragma omp parallel directive has the following syntax:

#pragma omp parallel [clause[clause] ...] new-line structured-block

clause is one of the following:

if (scalar-expression)

private (list)

firstprivate (list)

default (shared | none)

shared (list)

copyin (list)

reduction (operator: list)

For information on these data scope attribute clauses, see Section 10.7.2, page
109.

When a thread encounters a parallel construct and no if clause is present, or the
if expression evaluates to a nonzero value, a team of threads is created. This
thread becomes the master thread with a thread number of 0. The number of
threads is controlled by environment variables and library calls. If the value of
the if expression is zero, the region is serialized.

The number of threads remains constant while that parallel region is being
executed. It can be changed either explicitly by the user or automatically by the
runtime system from one parallel region to another. The omp_set_dynamic(3)
library function and the OMP_DYNAMIC environment variable can be used to
enable and disable the automatic adjustment of the number of threads. For
more information on environment variables, see the pe_environ(5) man page.

007–3587–003 91

MIPSproTM C and C++ Pragmas

If a thread in a team executing a parallel region encounters another parallel
construct, it creates a new team, and it becomes the master of that new team.
Nested parallel regions are seialized by default. By default, a nested parallel
gregion is executed by a team composed of one threads. The default behavior
can be changed by using either the omp_set_nested runtime library function
or the OMP_NESTED environment variable.

The following restrictions apply to the #pragma omp parallel directive:

• Only one if clause can appear on the directive.

• It is unspecified whether any side-effects inside the if expression occur.

• A throw executed inside a parallel region must cause execution to resume
within the dynamic extent of the same structured block, and it must be
caught by the same thread that threw the exception.

The parallel directive can be used in coarse-grain parallel programs. In the
following example, each thread in the parallel region decides what part of the
global array x to work on, based on the thread number.

#pragma omp parallel shared(x, npoints) private(iam, np, ipoints)

{

iam = omp_get_thread_num();

np = omp_get_num_threads();

ipoints = npoints / np;
subdomain(x, iam, ipoints);

}

10.4 Work–sharing Constructs

A work-sharing construct distributes the execution of the associated statement
among the members of the team that encounter it. The work-sharing directives
do not launch new threads, and there is no implied barrier on entry to a
work-sharing construct.

The sequence of work-sharing constructs and barrier directives encountered
must be the same for every thread in a team.

OpenMP defines the following work-sharing constructs:

• for directive

• sections directive

• single directive

92 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

10.4.1 for Construct

The #pragma omp for directive identifies an iterative work-sharing construct
that specifies a region in which the iterations of the associated loop should be
executed in parallel. The iterations of the for loop are distributed across threads
that already exist. The #pragma omp for directive has the following syntax:

#pragma omp for [clause[clause] ...] new-line for-loop

clause is one of the following:

private (list)

firstprivate (list)

lastprivate (list)

reduction (operator: list)

ordered

schedule (kind[, chunk_size])

nowait

For information on the private, firstprivate, lastprivate, and
reduction clauses, see Section 10.7.2, page 109.

The #pragma omp for directive places restrictions on the structure of the
corresponding for loop, which must have the following canonical shape:

for (init-expr; var logical-op b; incr-expr)

init-expr One of the following:

var = lb

integer-type var = lb

incr-expr One of the following:

++var

var++

--var

var--

var += incr
var -= incr

007–3587–003 93

MIPSproTM C and C++ Pragmas

var = var + incr

var = incr + var
var = var - incr

var One of the following:

<

<=

>

>=

lb, b, and incr Loop invariant integer expressions. There is no
synchronization during the evaluation of these
expressions. Thus, any evaluated side effects
produce indeterminate results.

The schedule clause specifies how iterations of the for loop are divided
among threads of the team. The value of chunk_size, if specified, must be a log
invariant integer expression with a positive value. Synchronization does not
occur during the evaluation of this expression, therefore, any evaluated side
effects produce indeterminate results. The schedule kind can be one of the
following:

static When schedule(static,chunk_size) is specified,
iterations are divided into chunks specified by
chunk_size. The chunks are statically assigned to
threads in the team in a round-robin fashion in
the order of the thread number.

When chunk_size is not specified, the iteration
space is divided into chunks that are equal in
size, with one chunk assigned to each thread.

dynamic When schedule(dynamic,chunk_size) is
specified, chunk_size iterations are assigned to
each thread. When a thread finishes its chunk, it
is dynamically assigned another until none
remain. Default is 1.

guided When schedule(guided,chunk_size) is specified,
iterations are assigned to threads by decreasing
sizes. When a thread finishes, it is dynamically
assigned another chunk until none remain. Sizes
decrease exponentially to 1. Default is 1.

94 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

runtime When schedule(runtime) is specified,
scheduling is deferred until runtime. Schedule
kind and dize of chunks can be chosen by setting
the OMP_SCHEDULE environment variable . If not
set, the schedule is implementation-dependent.

The default schedule is implementation-dependent.

An OpenMP-compliant program should not rely on a particular schedule for
correct execution. It is possible to have variations in the implementations of the
same schedule kind across different compilers.

The ordered clause must be present when ordered directives are contained
in the dynamic extent of the for construct.

There is an implicit barrier at the end of a for construct unless a nowait
clause is specified.

The following restrictions apply to the #pragma omp for directive:

• The for loop iteration variable must have a signed integer type.

• The values of the loop control expressions of the for loop associated with a
for directive must be the same for all the threads in the team.

• The for loop iteration variable must have a signed integer type.

• Only one schedule clause can appear on a for directive.

• Only one ordered clause can appear on a for directive.

• Only one nowait clause can appear on a for directive.

• It is unspecified if or how often any side effects within the chunk_size, lb, b,
or incr expressions occur.

• The value of the chunk_size expression must be the same for all threads in
the team.

If there are multiple independent loops within a parallel region, you can use the
nowait clause to avoid the implied barrier at the end of the for directive,
as follows:

007–3587–003 95

MIPSproTM C and C++ Pragmas

#pragma omp parallel

{
#pragma omp for nowait

for (i=1; i<n; i++)

b[i] = (a[i] + a[i-1]) / 2.0;

10.4.2 sections Construct

The #pragma omp sections directive identifies a non-iterative work-sharing
construct that specifies a set of constructs that are to be divided among threads
in a team. Each section is executed once by a thread in the team. Each section
is preceded by a sections directive, although the sections directive is
optional for the first section.

The #pragma omp sections directive has the following syntax:

#pragma omp sections [clause[clause] ...] new-line
{
[#pragma omp section new-line] structured-block
[#pragma omp section new-line structured-block
.
.
.]
}

clause is one of the following:

firstprivate(list)

lastprivate(list)

reduction(operator: list)

nowait

For information on private, firstprivate, lastprivate, and
reduction, see Section 10.7.2, page 109.

There is an implicit barrier at the end of a sections construct, unless a
nowait is specified.

The following restrictions apply to the sections construct:

• A section directive must not be outside the lexical extent of the sections
directive.

96 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

• Only one nowait clause can appear on a sections directive.

10.4.3 single Construct

The #pragma omp single directive identifies a construct that specifies that
the associated structured block is executed by only one thread in the team (not
necessarily the master thread). The #pragma omp single directive has the
following syntax:

#pragma omp single [clause[clause] ...] new-line
structured-block

clause is one of the following:

private(list)

firstprivate(list)

nowait

For information on the private and firstprivate clauses, see Section
10.7.2, page 109.

There is an implicit barrier after the single construct unless a nowait clause
is specified.

The following restrictions apply to the #pragma omp single directive:

• Only one nowait clause can appear on a single directive.

In the following example, only one thread (usually the first thread that
encounters the single directive) prints the progress message. The user must
not make any assumptions as to which thread will execute the single section.
All other threads will skip the single section and stop at the barrier at the end
of the single construct. If other threads can proceed without waiting for the
thread executing the single section, a nowait clause can be specified on the
single directive.

#pragma omp parallel
{

#pragma omp single

printf("Beginning work1.\n");

work1();

#pragma omp single
printf("Finishing work1.\n");

007–3587–003 97

MIPSproTM C and C++ Pragmas

#pragma omp single nowait

printf("Finished work1 and beginning work2.\n");
work2();

}

10.5 Combined Parallel Work-sharing Constructs

Combined parallel work-sharing constructs are short cuts for specifying a
parallel region that contains only one work-sharing construct. The semantics of
these directives are identical to that of explicitly specifying a parallel
directive followed by a single work-sharing construct.

10.5.1 parallel for Construct

The parallel for directive is a shortcut for a parallel region that contains
one for directive. It has the following syntax:

#pragma omp parallel for [clause[clause] ...] new-line
for-loop

clause is one of the following:

if (scalar-expression)

private (list)

firstprivate (list)

lastprivate (list)

default (shared | none)

shared (list)

copyin (list)

reduction (operator: list)

ordered

schedule (kind[, chunk_size])

nowait

The following restrictions apply to the parallel for directive:

98 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

• Only one if clause can appear on the directive.

• It is unspecified whether any side-effects inside the if expression occur.

• A throw executed inside a parallel region must cause execution to resume
within the dynamic extent of the same structured block, and it must be
caught by the same thread that threw the exception.

• The for loop iteration variable must have a signed integer type.

• The values of the loop control expressions of the for loop associated with a
for directive must be the same for all the threads in the team.

• The for loop iteration variable must have a signed integer type.

• Only one schedule clause can appear on a for directive.

• Only one ordered clause can appear on a for directive.

• Only one nowait clause can appear on a for directive.

• It is unspecified if or how often any side effects within the chunk_size, lb, b,
or incr expressions occur.

• The value of the chunk_size expression must be the same for all threads in
the team.

10.5.2 parallel sections Construct

The #pragma omp parallel sections directive provides a shortcut form
for specifying a parallel region containing one sections directive. The parallel
sections directive has the following syntax:

#pragma omp parallel sections [clause[clause] ...] new-line
{
[#pragma omp section new-line] structured-block
[#pragma omp section new-line structured-block
.
.
.]
}

clause is one of the following:

if (scalar-expression)

007–3587–003 99

MIPSproTM C and C++ Pragmas

private (list)

firstprivate (list)

lastprivate(list)

default (shared | none)

shared (list)

copyin (list)

reduction (operator: list)

nowait

In the following example, functions xaxis, yaxis, and zaxis can be executed
concurrently. The first section directive is optional. Note that all section
directives must appear in the lexical extent of the parallel sections construct.

#pragma omp parallel sections

{
#pragma omp section

xaxis();

#pragma omp section

yaxis();

#pragma omp section

zaxis();
}

10.6 Master and Synchronization Constructs

The following sections describe the synchronization constructs:

• Section 10.6.1, page 101, describes the #pragma omp master directive.

• Section 10.6.2, page 101, describes the #pragma omp critical directive.

• Section 10.6.3, page 102, describes the #pragma omp barrier directive.

• Section 10.6.4, page 102, describes the #pragma omp atomic directive.

• Section 10.6.5, page 103, describes the #pragma omp flush directive.

• Section 10.6.6, page 106, describes the #pragma omp ordered directive.

100 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

10.6.1 master Construct

The #pragma omp master directive identifies a construct that specifies a
structured block that is executed by the master thread of the team. It has the
following syntax:

#pragma omp master new-line structured-block

Other threads in the team do not execute the associated statement. There is no
implied barrier either on entry to or exit from the master section.

10.6.2 critical Construct

The #pragma omp critical directive identifies a construct that restricts
execution of the associated structured block to one thread at a time. It has the
following syntax:

#pragma omp critical [(name)] new-line structured-block

An optional name that has external linkage may be used to identify the critical
region.

A thread waits at the beginning of a criical region until no other thread is
executing a critical region with the same name. All unnamed
#pragma omp critical directives map to the same unspecified name.

The following example includes several #pragma omp critical directives. It
illustrates a queuing model in which a task is dequeued and worked on. To
guard against multiple threads dequeuing the same task, the dequeuing
operation must be in a #pragma omp critical section. Because the two
queues in this example are independent, they are protected by
#pragma omp critical directives with different names, xaxis and yaxis.

#pragma omp parallel shared(x, y) private(x_next, y_next)

{

#pragma omp critical (xaxis)

x_next = dequeue(x);

work(x_next);
#pragma omp critical (yaxis)

y_next = dequeue(y);

work(y_next);

}

007–3587–003 101

MIPSproTM C and C++ Pragmas

10.6.3 barrier Directive

The #pragma omp barrier directive synchronizes all the threads in a team,
each thread waiting until all other threads have reached this point. After all
threads have been synchronized, they begin executing the statements after the
barrier directive in parallel. The barrier directive has the following syntax:

#pragma omp barrier new-line

10.6.4 atomic Construct

The #pragma omp atomic directive ensures that a specific memory location is
updated atomically. The atomic directive has the following syntax:

#pragma omp atomic new-line expression-stmt

The expression-stmt must have one of the following forms:

x binop = expr
x++
++x
x--
--x

Where:

x is an lvalue expression with scalar type.

expr is an expression with scalar type, and it does not reference the object
designated by x.

binop is not an overloaded operator and one of +, *, —, /, &, ^, |, <<, or >>.

Although a conforming implementation can replace all #pragma omp atomic
directives with critical directives that have the same unique name, the
#pragma omp atomic directive permits better optimization. Often hardware
instructions are available that can perform the atomic update with the least
overhead.

Only the load and store of the object designated by x are atomic. To avoid race
conditions, all updates of the location in parallel should be protected with the
atomic directive, unless they are known to be free of race conditions.

102 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

The following restrictions apply to the #pragma omp atomic directive:

• All atomic references to the storage location x throughout the program are
required to have a compatible type.

Examples:

extern float a[], *p = a, b;

/* Protect against races among multiple updates.*/
#pragma omp atomic

a[index[i] += b;

/* Protect against races with updates through a.*/

#pragma omp atomic

p[i] -= 1.0f;
extern union {int n; float x;} u;

/* ERROR - References through incompatible types.*/

#pragma omp atomic

u.n++;

#pragma omp atomic
u.x -= 1.0f;

10.6.5 flush Directive

The #pragma omp flush directive, explicit or implied, identifies precise
synchronization points at which the implementation is required to provide a
consistent view of certain objects in memory. This means that previous
evaluations of expressions that reference those objects are complete and
subsequent evaluations have not yet begun.

The flush directive has the following syntax:

#pragma omp flush [(list)] new-line

list Objects that require synchronization that can be
designated by variables. If a pointer is present in
the list, the pointer itself is flushed, not the object
to which the pointer refers.

If no list is specified, all shared objects except inaccessible objects with
automatic storage duration are synchronized. A flush directive without a list
is implied for the following directives:

• barrier

007–3587–003 103

MIPSproTM C and C++ Pragmas

• At entry to and exit from critical

• At entry to and exit from ordered

• At exit from parallel

• At exit from for

• At exit from sections

• At exit from single

The directive is not implied if a nowait clause is present.

A reference that accesses the value of an object with a volatile-qualified type
behaves as if there were a flush directive specifying that object at the previous
sequence point. A reference that modifies the value of an object with a
volatile-qualified type behaves as if there were a flush directive specifying
that object at the subsequent sequence point.

The following restriction applies to the flush directive:

• A variable specified in a flush directive must not have a reference type.

The following example uses the flush directive for point-to-point
synchronization of specific objects between pairs of threads:

#pragma omp parallel private(iam,neighbor) shared(work,sync)

{

iam = omp_get_thread_num();

sync[iam] = 0;

#pragma omp barrier

/*Do computation into my portion of work array */
work[iam] = ...;

/* Announce that I am done with my work

* The first flush ensures that my work is made visible before sync.

* The second flush ensures that sync is made visible.
*/

#pragma omp flush(work)

sync[iam] = 1;

#pragma omp flush(sync)

/*Wait for neighbor*/

neighbor = (iam>0 ? iam : omp_get_num_threads()) - 1;

104 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

while (sync[neighbor]==0) {

#pragma omp flush(sync)
}

/*Read neighbor’s values of work array */

... = work[neighbor];

}

The following example distinguishes the shared objects affected by a flush
directive with no list from the shared objects that are not affected:

int x, *p = &x;

void f1(int *q)

{

*q = 1;

#pragma omp flush

// x, p, and *q are flushed

// because they are shared and accessible
}

void f2(int *q)

{

*q = 2;
#pragma omp barrier

// a barrier implies a flush

// x, p, and *q are flushed

// because they are shared and accessible

}

int g(int n)

{

int i = 1, j, sum = 0;

*p = 1;

#pragma omp parallel reduction(+: sum)
{

f1(&j);

// i and n were not flushed

// because they were not accessible in f1

// j was flushed because it was accessible
sum += j;

f2(&j);

// i and n were not flushed

007–3587–003 105

MIPSproTM C and C++ Pragmas

// because they were not accessible in f2

// j was flushed because it was accessible
sum += i + j + *p + n;

}

return sum;

}

10.6.6 ordered Construct

A #pragma omp ordered directive must be within the dynamic extent of a
for or parallel for construct that has an ordered clause. The
structured-block following an ordered directive is executed in the same order as
iterations in a sequential loop. It has the following syntax:

#pragma omp ordered new-line structured-block

The following restrictions apply to an ordered directive:

• It must not be in the dynamic extent of a for directive that does not have the
ordered clause specified.

• An iteration of a loop with a for construct must not execute the same
ordered directive more than once, and it must not execute more than one
ordered directive.

Ordered sections are useful for sequentially ordering the output from work that
is done in parallel. The following program prints out the indexes in sequential
order:

#pragma omp for ordered schedule(dynamic)

for (i=lb; i<ub; i+=st)
work(i);

void work(int k)

{
#pragma omp ordered

printf(" %d", k);

}

106 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

10.7 Data Environment

The #pragma omp threadprivate directive and data scope attribute clauses
control the data environment during the execution of parallel regions.

10.7.1 threadprivate Directive

The #pragma omp threadprivate directive makes named common blocks
private to a thread but global within the thread. In other words, each thread
executing a threadprivate directive receives its own private copy of the
named common blocks, which are then available to it in any routine within the
scope of an application.

The threadprivate directive has the following syntax:

#pragma omp threadprivate(list) new-line

A thread must not reference another thread’s copy of a threadprivate object.
During serial regions and master regions of the program, references will be to
the master thread’s copy of the object.

On entry to the first parallel region, data in the threadprivate common
blocks should be assumed to be undefined unless a copyin clause is specified
on the parallel directive. When a common block that is initialized using data
statements appears in a threadprivate directive, each thread’s copy is
initialized once prior to its first use. For subsequent parallel regions, the data in
the threadprivate common blocks are guaranteed to persist only if the
dynamic threads mechanism has been disabled and if the number of threads are
the same for all the parallel regions. For more information on dynamic threads,
see the omp_set_dynamic(3) library function and the OMP_DYNAMIC
environment variable on the pe_environ(5) man page.

The following restrictions apply to the threadprivate directive:

• The threadprivate directive must appear at file scope or namespace
scope, must appear outside of any definition or declaration, and must
lexically precede all references to any of the variables in its list.

• Each variable in the list of a threadprivate directive must have a
file-scope or namespace-scope declaration that lexically precedes the
directive.

007–3587–003 107

MIPSproTM C and C++ Pragmas

• If a variable is specified in a threadprivate directive in one translation
unit, it must be specified in a threadprivate directive in every translation
unit in which it is declared.

• A threadprivate variable may appear only in the copyin, schedule, or
the if clause. It is not permitted in the private, firstprivate,
lastprivate, shared, or reduction clauses. They are not affected by
the default clause.

• The address of a threadprivate variable is not an address constant.

• A threadprivate variable must not have an incomplete type or a
reference type.

• A threadprivate variable with non-POD class type must have an
accessible, unambiguous copy constructor if it is declared with an explicit
initializer (in case the initialization is implemented using a temporary
shared object).

• The following example shows how modifying a variable that appears in an
initializer can cause unspecified behavior, and also how to avoid this
problem by using an auxiliary object and a copy-constructor:

int x = 1;

T a(x);

const T baux(x); /*Capture value of x = 1 */
T b(b_aux);

#pragma omp threadprivate(a, b)

void f(int n) {

x++;
#pragma omp parallel for

/* In each thread:

* Object a is constructed from x (with value 1 or 2?)

* Object b is copy-constructed from b_aux

*/
for (int i=0; i<n; i++) {

g(a, b); /* Value of a is unspecified. */

}

}

108 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

10.7.2 Data Scope Attribute Clauses

Several directives accept clauses that allow a user to control the scope attributes
of variables for the duration of the construct. Not all of the clauses in this
section are allowed on all directives, but the clauses that are valid on a
particular directive are included with the description of the directive. Usually, if
no data scope clauses are specified for a directive, the default scope for
variables affected by the directive is share.

The following sections describe the data scope attribute clauses:

• Section 10.7.2.1, page 109, describes the private clause.

• Section 10.7.2.2, page 110, describes the firstprivate clause.

• Section 10.7.2.3, page 111, describes the lastprivate clause.

• Section 10.7.2.4, page 112, describes the shared clause.

• Section 10.7.2.5, page 112, describes the default clause.

• Section 10.7.2.6, page 113, describes the reduction clause.

• Section 10.7.2.7, page 116, describes the copyin clause.

10.7.2.1 private Clause

The private clause declares the variables in list to be private to each thread in
a team.

This clause has the following syntax:

private(list)

The behavior of a variable declared in a private clause is as follows:

• A new object of the same type is declared once for each thread in the team.
The new object is no longer storage associated with the storage location of
the original object.

All references to the original object in the lexical extent of the directive
construct are replaced with references to the private object.

Variables defined as private are undefined for each thread on entering the
construct and the corresponding shared variable is undefined on exit from a
parallel construct.

007–3587–003 109

MIPSproTM C and C++ Pragmas

Contents, allocation state, and association status of variables defined as
private are undefined when they are referenced outside the lexical extent
(but inside the dynamic extent) of the construct, unless they are passed as
actual arguments to called functions.

The following restrictions apply to the private clause:

• A variable with a class type that is specified in a private clause must have
an accessible, unambiguous default constructor.

• Unless it has a class type with a mutable member, a variable specified in a
private clause must not have a const-qualified type.

• A variable specified in a private clause must not have an incomplete type
or a reference type.

• Variables that are private within a parallel region cannot be specified in a
private clause on an enclosed work-sharing or parallel directive. As a
result, variables that are specified private on a work-sharing or parallel
directive must be shared in the enclosing parallel region.

Example: The values of i and j in the following example are undefined on exit
from the parallel region:

int i, j;

i = 1;
j = 2;

#pragma omp parallel private(i) firstprivate(j)

{

i = 3;

j = j + 2;
}

printf("%d %d\n", i, j);

10.7.2.2 firstprivate Clause

The firstprivate clause provides a superset of the functionality provided by
the private clause.

This clause has the following syntax:

firstprivate(list)

110 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

In addition to the private clause semantics, each new private object is
initialized as if there were an implied declaration inside the structured block,
and the initializer is the value of the variable’s original object. A copy
constructor is invoked for a class object, if necessary.

The following restrictions apply to the firstprivate clause:

• All restrictions for private apply, except for the restrictions about default
constructors and about const-qualified types.

• A variable with a class type that is specified as firstprivate must have
an accessible, unambiguous copy constructor.

10.7.2.3 lastprivate Clause

The lastprivate clause provides a superset of the functionality provided by
the private clause.

This clause has the following syntax:

lastprivate(list)

When a lastprivate clause appears on the directive that identifies a
work-sharing construct, the value of each variable from the sequentially last
iteration of the associated loop, or the lexically last section directive, is
assigned to the variable’s original object. Variables that are not assigned a value
by the last iteration of the for or parallel for, or by the lexically last
section of the sections or parallel sections directive, have
indeterminate values after the construct. Unassigned subobjects also have an
indeterminate value after the construct.

The following restrictions apply to the lastprivate clause:

• All restrictions for private apply.

• A variable that is specified as lastprivate must have an accessible,
unambiguous copy assignment operator.

Example: Correct execution sometimes depends on the value that the last
iteration of a loop assigns to a variable. Such programs must list all such
variables as arguments to a lastprivate clause so that the values of the
variables are the same as when the loop is executed sequentially. In the
following example, the value of i at the end of the parallel region will equal
n-1, as in the sequential case.

007–3587–003 111

MIPSproTM C and C++ Pragmas

#pragma omp parallel

{
#pragma omp for lastprivate(i)

for (i=0; i<n; i++)

a[i] = b[i] + b[i+1];

}

a[i]=b[i];

10.7.2.4 shared Clause

This clause shares variables that appear in the list among all the threads in a
team. All threads within a team access the same storage area for shared
variables.

This clause has the following syntax:

shared(list)

10.7.2.5 default Clause

The default clause allows the user to specify a shared or none default scope
attribute for all variables in the lexical extent of any parallel region. Variables in
threadprivate common blocks are not affected by this clause.

This clause has the following syntax:

default(shared | none)

shared Specifying default(shared) is equivalent to
explicitly listing each currently visible variable in
a shared clause. It is the default.

none Specifying default(none) declares that there is no
implicit default as to whether variables are
shared. In this case, the private, shared,
firstprivate, lastprivate, or reduction
attribute of each variable used in the lexical
extent of the parallel region must be specified.

Only one default clause can be specified on a parallel directive.

112 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

The following example shows how variables can be exceptioned from a defined
default using the private, shared, firstprivate, lastprivate, or
reduction clauses:

#pragma omp parallel for default(shared) firstprivate(i) private(x)/private(r) lastprivate(i)

The following example distinguishes the variables that are affected by the
default(none) clause from those that are not:

int x, y, z[1000];

#pragma omp threadprivate(x)

void fun(int a) {

const int c = 1;

int i = 0;

#pragma omp parallel default(none) private(a) shared(z)

{
int j = omp_get_num_thread();

// O.K. - j is declared within parallel region

a = z[j]; // O.K. - a is listed in private clause

// - z is listed in shared clause

x = c; // O.K. - x is threadprivate
// - c has const-qualified type

z[i] = y; // Error - cannot reference i or y here

#pragma omp for firstprivate(y)

for (i=0; i<10 ; i++) {
z[i] = y; // O.K. - i is the loop control variable

// - y is listed in firstprivate clause

}

z[i] = y; // Error - cannot reference i or y here

}

}

10.7.2.6 reduction Clause

This clause performs a reduction on the variables specified, with the operator or
the intrinsic specified. This clause has the following syntax:

reduction(op:list)

A reduction is typically used in a statement with one of the following forms:

007–3587–003 113

MIPSproTM C and C++ Pragmas

x = x op expr
x <binop> = expr
x = expr op x (except for subtration)

x++

++x

x--

--x

Where:

x One of the reduction variables specified in the list.

list A comma-separated list of reduction variables.

expr An expression with scalar type that does not
reference x.

op One of +, *, —, &, ^, |, &&, or ||.

binop One of +, *, — &, ^, or |.

The following example shows how to use the reduction clause:

#pragma omp parallel for reduction(+: a, y) reduction(||: am) for (i=0; i<n; i++) {

a += b[i];
y = sun(y, c[i];

am = am || b[i] == c[i];

}

Because the operator may be hidden inside a function call, ensure that the
operator specified in the reduction clause matches the reduction operation.

The following table lists the operators and intrinsics that are valid and their
canonical initialization values. The actual initialization value will be consistent
with the data type of the reduction variable:

114 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

Operator Initialization

+ 0

* 1

- 0

& ~0

| 0

^ 0

&& 1

|| 0

Any number of reduction clauses can be specified on the directive, but a
variable can appear in at most one reduction clause for that directive.

The following example shows how variables that appear in the reduction
clause must be shared in the enclosing context:

#pragma omp parallel private(y)

{ /* ERROR - private variable y cannot be specified in a reduction clause */

#pragma omp for reduction(+: y)

for (i=0; i<n; i++)
y += b[i];

}

/* ERROR - variable x cannot be specified in both a shared and a reduction clause */

#pragma omp parallel for shared(x) reduction(+: x)

The following restrictions apply to the reduction clause:

• The type of the variables in the reduction clause must be valid for the
reduction operator except that pointer types and reference types are never
permitted.

• A variable that is specified in the reduction clause must not be
const-qualified.

• A variable that is specified in the reduction clause must be shared in the
enclosing context.

007–3587–003 115

MIPSproTM C and C++ Pragmas

10.7.2.7 copyin Clause

The copyin clause lets you assign the same value to threadprivate
variables for each thread in the team executing the parallel region. For each
variable specified, the value of the variable in the master thread of the team is
copied to the threadprivate copies at the beginning of the parallel region.

This clause has the following syntax:

copyin(list)

The following restrictions apply to the copyin clause:

• A variable that is specified in the copyin clause must have an accessible,
unambiguous copy assignment operator.

• A variable that is specified in the copyin clause must be a
threadprivate variable.

10.8 Directive Binding

Some directives are bound to other directives. A binding specifies the way in
which one directive is related to another. For instance, a directive is bound to a
second directive if it can appear in the dynamic extent of that second directive.
The following rules apply with respect to the dynamic binding of directives:

• The for, sections, single, master, and barrier directives bind to the
dynamically enclosing parallel directive, if one exists. If no parallel
region is currently being executed, the directives have no effect.

• The ordered directive binds to the dynamically enclosing for directive.

• The atomic directive enforces exclusive access with respect to atomic
directives in all threads, not just the current team.

• The critical directive enforces exclusive access with respect to critical
directives in all threads, not just the current team.

• A directive cannot bind to a directive outside the closest enclosing
parallel directive.

The directive binding rules call for a barrier directive to bind to the closest
enclosing parallel directive. In the following example, the calls in main, to
sub1 and sub2, are both valid, and the barrier in sub3 binds to the

116 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

parallel region in sub2 in both cases. The effect is different, however,
because in the call to sub1, the barrier affects only a subteam. The number
of threads in a subteam is implementation-dependent if nested parallelism is
enabled (with the OMP_NESTED environment variable), and otherwise is one (in
which case the barrier has no real effect).

int main()

{
sub1(2);

sub2(2);

}

void sub1(int n)
{

int i;

#pragma omp parallel private(i) shared(n)

{

#pragma omp for

for (i=0; i<n; i++)
sub2(i);

}

}

void sub2(int k)
{

#pragma omp parallel shared(k)

sub3(k);

}

void sub3(int n)

{

work1(n);

#pragma omp barrier

work2(n);

}

10.9 Directive Nesting

Dynamic nesting of directives must adhere to the following rules:

• A parallel directive dynamically inside another parallel directive
logically establishes a new team, which is composed of only the current
thread, unless nested parallelism is enabled.

007–3587–003 117

MIPSproTM C and C++ Pragmas

• for, sections, and single directives that bind to the same parallel
directive are not allowed to be nested inside each other.

• critical directives with the same name are not allowed to be nested
inside each other.

• for, sections, and single directives are not permitted in the dynamic
extent of critical, ordered, and master regions.

• barrier directives are not permitted in the dynamic extent of for,
ordered, sections, single, master, and critical regions.

• master directives are not permitted in the dynamic extent of for,
sections, and single directives.

• ordered directives are not allowed in the dynamic extent of critical
regions.

• Any directive that is permitted when executed dynamically inside a
parallel region is also permitted when executed outside a parallel
region. When executed dynamically outside a user-specified parallel region,
the directive is executed with respect to a team composed of only the master
thread.

The following program is correct because the inner and outer for directives
bind to different parallel regions:

#pragma omp parallel default(shared)
{

#pragma omp for

for (i=0; i<n; i++) {

#pragma omp parallel shared(i, n)

{

#pragma omp for
for (j=0; j<n; j++)

work(i, j);

}

}

}

A following variation of the preceding example is also correct:

#pragma omp parallel default(shared)

{

#pragma omp for
for (i=0; i<n; i++)

118 007–3587–003

OpenMP C/C++ API Multiprocessing Directives [10]

work1(i, n);

}

}

void work1(int i, int n)

{
int j;

#pragma omp parallel default(shared)

{

#pragma omp for

for (j=0; j<n; j++)
work2(i, j);

}

return;

}

007–3587–003 119

Precompiled Header #pragma
Directives [11]

Table 14, page 121, lists the precompiled header #pragmas directives, along
with a short description of each and the compiler versions in which the
directive is supported.

Table 14. Precompiled Header #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma hdrstop Indicates the point at which the precompiled header
mechanism snapshots the headers. If -pch is off, #pragma
hdrstop is ignored.

7.2 and later

#pragma no_pch Disables the precompiled header mechanism. 7.2 and later

#pragma once Ensures (in -n32 and -64 mode) that an include file is
included at most one time in each compilation unit.

7.0 and later

11.1 #pragma hdrstop

The #pragma hdrstop directive indicates the point at which the precompiled
header mechanism snapshots the headers.

The syntax of the #pragma hdrstop directive is as follows:

#pragma hdrstop

If -pch is on, #pragma hdrstop indicates the point at which the precompiled
header mechanism snapshots the headers.

If -pch is off, #pragma hdrstop is ignored.

See the MIPSpro Compiling and Performance Tuning Guide for details on the
precompiled header mechanism.

007–3587–003 121

MIPSproTM C and C++ Pragmas

11.2 #pragma no_pch

The #pragma no_pch directive disables the precompiled header mechanism.

The syntax of #pragma no_pch is as follows:

#pragma no_pch

11.3 #pragma once

The #pragma once directive ensures (in -n32 and -64 mode) that each
include file is included one time in each compilation unit.

The syntax of #pragma once is as follows:

#pragma once

This directive has no effect in -o32 mode, but will ensure idempotent include
files in -n32 and -64 mode (that is, that an include file is included at most
one time in each compilation unit).

Silicon Graphics recommends enclosing the contents of an afile.h include file
with an #ifdef directive similar to the following:

#ifndef afile_INCLUDED

#define afile_INCLUDED

<contents of afile.h>
#endif

122 007–3587–003

Scalar Optimization #pragma Directives [12]

Table 15, page 123, lists the #pragma directives discussed in this chapter, along
with a short description of each and the compiler versions in which the
directive is supported.

Table 15. Scalar Optimization #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma
mips_frequency_hint

Specifies the expected frequency
of execution so that cord2 can
move exception code and
initialization code into separate
pages to minimize working set
size.

7.2 and
later

#pragma section_gp (in
Chapter 7, page 39)

Causes an object to be placed in
a gp_relative section.

7.2 and
later

#pragma section_non_gp
(in Chapter 7, page 39)

Keeps an object from being
placed in a gp_relative section.

7.2 and
later

#pragma unroll (in Chapter
8, page 47)

Suggests to the compiler that a
specified number of copies of the
loop body be added to the inner
loop. If the loop following this
directive is an inner loop, then it
indicates standard unrolling. If
the loop following this directive
is not innermost, then outer loop
unrolling (unroll and jam) is
performed.

7.2 and
later

12.1 #pragma mips_frequency_hint

This directive allows you to specify the expected frequency of execution of the
named function so the compiler can move exception code and initialization
code into separate pages to minimize working-set size.

007–3587–003 123

MIPSproTM C and C++ Pragmas

The syntax of #pragma mips_frequency_hint is as follows:

#pragma mips_frequency_hint {NEVER|INIT} [function_name]

#pragma mips_frequency_hint is not currently supported in C++, except
for symbols marked extern ‘‘C’’.

This directive provides a mechanism for you to specify information about
execution frequency for certain regions in the code. You can provide the
following frequency specifications:

NEVER This region of code is never or rarely executed. The compiler
might move this region of the code away from the normal path.
This movement might either be at the end of the procedure or at
some point to an entirely separate section.

INIT This region of code is executed only during initialization or
startup of the program. The compiler might try to put all regions
under “INIT” together to provide better locality during startup of
a program.

You can use this directive in two ways:

1. You can specify it with a function declaration. The directive then applies
everywhere the function is called.

extern void Error_Routine();

#pragma mips_frequency_hint NEVER Error_Routine

Note: In this case, the directive must appear after the function
declaration.

2. You can specify it without a function declaration. In this case, you can place
the directive anywhere in the body of a procedure. It then applies to the
statement directly following the directive.

if (some_condition)

{

#pragma mips_frequency_hint NEVER

Error_Routine ();
...

}

!
Caution: This is directive is supported on compiler version 7.2 only, and it
does not work for -o32 because it requires an ELF object file with
.MIPS.content sections.

124 007–3587–003

Warning Suppression Control #pragma
Directives [13]

Table 16, page 125, lists the #pragma directives discussed in this chapter, along
with a brief description and the compiler versions in which the directive is
supported.

Table 16. Warning Suppression Control #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma set woff Suppresses compiler warnings (either all,
or by warning number).

7.2 and
later

#pragma reset
woff

Resets listed warnings to the state
specified in the command line.

7.2 and
later

13.1 #pragma set woff

The #pragma set woff directive suppresses compiler warnings individually
by warning number.

The syntax of #pragma set woff is as follows:

#pragma set woff (warning_list)

warning_list is a list of the warning numbers that you want suppressed. Ranges
are allowed. Only the specified compiler warnings are suppressed.

For example, the following directive turns off warnings 1, 2, 300 through 310,
and 8:

#pragma set woff 1,2,300-310,8

#pragma set woff does not nest. That is, any #pragma reset woff on a
given number resets the value to that implied by the command line.

007–3587–003 125

MIPSproTM C and C++ Pragmas

13.1.1 Example of #pragma set woff

The following code illustrates the use of #pragma set woff:

cc -woff 300,302

/* example.c */

#pragma set woff 400

/* warnings 300,302, and 400 are off in example.c */

#include ‘‘example.h’’

/* You would expect that warnings 300,302,and 400 would be off
in example.h. However, the #pragma set woff does not travel

into #includes properly. In MIPSpro7.2 300 and 302 are off, but

400 is on in example.h. In a future release 400 may be off in

example.h

*/

#pragma reset woff 400

/* 400 is reset to command line state; that is, 400 is on. */

#pragma reset woff 300
/* 300 is reset to command line state; that is, 300 is still off */

13.2 #pragma reset woff

The #pragma reset woff directive resets listed warnings to the state
specified in the command line.

The syntax of #pragma reset woff is as follows:

#pragma reset woff (warning_list)

warning_list consists of a list of the warning numbers that you want reset to the
state specified in the command line. Ranges are allowed. Only the specified
compiler warnings are reset.

For example, the following directive sets warnings 1, 2, 300 through 310, and 8
back to the command-line setting:

#pragma set woff 1,2,300-310,8

This directive does not nest.

126 007–3587–003

Warning Suppression Control #pragma Directives [13]

13.2.1 Example of #pragma reset woff

The following code illustrates the use of #pragma reset woff:

cc -woff 300,302

/* example.c */

#pragma set woff 400

/* warnings 300,302, and 400 are off in example.c */

#include ‘‘example.h’’

/* You would expect that warnings 300,302,and 400 would be off
in example.h. However, the #pragma set woff does not travel

into #includes properly. In MIPSpro7.2 300 and 302 are off,

but 400 is on in example.h. In a future release 400 may be off

in example.h

*/

#pragma reset woff 400

/* 400 is reset to command line state; that is, 400 is on. */

#pragma reset woff 300
/* 300 is reset to command line state; that is, 300 is still off */

007–3587–003 127

Miscellaneous #pragma Directives [14]

Table 17, page 129, lists the #pragma directives described in this chapter, along
with a brief description of each and the compiler version in which they are
supported.

Table 17. Miscellaneous #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma ident Adds a .comment section to the object file and
puts the supplied string inside the .comment
section.

6.0 and
later
(-o32
only)

#pragma int_to_unsigned Identifies identifier as a function whose type was
int in a previous release of the compilation
system, but whose type is unsigned int in
the MIPSpro compiler release.

7.0 and
later

#pragma intrinsic Allows certain preselected functions from
math.h, stdio.h, and string.h to be
inlined at a call site. Can also enable the
compiler to get additional information about
the function to improve execution efficiency.

7.0 and
later

#pragma unknown_control_flow Indicates user level functions that have
behavior similar to setjmp and getcontext.

7.3 and
later

14.1 #pragma ident

The #pragma ident directive adds a .comment section to the object file and
puts the supplied string inside the .comment section.

The syntax of #pragma ident is as follows:

#pragma ident ‘‘string’’

string is the string you want to add to the .comment section in the object file.
The string must be enclosed in double quotation marks.

007–3587–003 129

MIPSproTM C and C++ Pragmas

!
Caution: The #pragma ident directive is only available in -o32 mode.

14.2 #pragma int_to_unsigned

The #pragma int_to_unsigned directive tells the compiler that the named
function has a different type (unsigned int) in the MIPSpro compiler release
than it did in previous releases (int).

The syntax of #pragma int_to_unsigned is as follows:

#pragma int_to_unsigned function_name

#pragma int_to_unsigned is not currently supported in C++, except for
symbols marked extern ‘‘C’’.

This directive identifies function_name as a function whose type was int in a
previous release of the compilation system, but whose type is unsigned int
in the MIPSpro compiler release. The declaration of the identifier must precede
the directive:

unsigned int strlen(const char*);

#pragma int_to_unsigned strlen

This declaration makes it possible for the compiler to identify where the
changed type may affect the evaluation of expressions.

14.3 #pragma intrinsic

The #pragma intrinsic directive allows certain preselected functions from
math.h, stdio.h, and string.h to be inlined at a call site for execution
efficiency.

The syntax of #pragma intrinsic is as follows:

#pragma intrinsic (function_name)

130 007–3587–003

Miscellaneous #pragma Directives [14]

!
Caution:

• This directive has no effect on functions other than the preselected ones.

• Exactly which functions may be inlined, how they are inlined, and under
what circumstances inlining occurs is implementation-defined and may
vary from one release of the compilers to the next.

• The inlining of intrinsics may violate some aspect of the ANSI C standard
(for example, the errno setting for math.h functions).

• All intrinsics are activated through directives in the respective standard
header files and only when the preprocessor symbol
__INLINE_INTRINSICS is defined and the appropriate include files are
included. __INLINE_INTRINSICS is predefined by default only in
-cckr and -xansi mode.

14.4 #pragma unknown_control_flow

The #pragma unknown_control_flow directive indicates that the
procedures listed as func1, func2, etc. have a nonstandard control flow behavior,
such as setjmp or getcontext. This type of behavior interferes with
optimizations such as tail call optimization.

The syntax of #pragma unknown_control_flow is as follows:

#pragma unknown_control_flow (func1 [, func2 ...])

This directive should appear after the external declaration of the function(s).

007–3587–003 131

The Auto-Parallelizing Option (APO) [15]

Note: APO is licensed and sold separately from the MIPSpro C/C++
compilers. APO features in your code are ignored unless you are licensed for
this product. For sales and licensing information, contact your sales
representative.

The Auto-Parallelizing Option (APO) enables the MIPSpro C/C++ compilers to
optimize parallel codes and enhances performance on multiprocessor systems.
APO is controlled with command line options and source directives.

APO is integrated into the compiler; it is not a source-to-source preprocessor.
Although run-time performance suffers slightly on single-processor systems,
parallelized programs can be created and debugged with APO enabled.

Parallelization is the process of analyzing sequential programs for parallelism
and restructuring them to run efficiently on multiprocessor systems. The goal is
to minimize the overall computation time by distributing the computational
workload among the available processors. Parallelization can be automatic or
manual.

During automatic parallelization, the compiler analyzes and restructures the
program with little or no intervention by you. With APO, the compiler
automatically generates code that splits the processing of loops among multiple
processors. An alternative is manual parallelization, in which you perform the
parallelization using compiler directives and other programming techniques.

APO integrates automatic parallelization with other compiler optimizations,
such as interprocedural analysis (IPA), optimizations for single processors, and
loop nest optimization (LNO). In addition, run-time and compile-time
performance is improved.

15.1 C/C++ Command Line Options That Affect APO

Several cc(1) and CC(1) command line options control APO’s effect on your
program. For example, the following command line invokes APO and requests
aggressive optimization:

CC -apo -O3 zebra.c

007–3587–003 133

MIPSproTM C and C++ Pragmas

The following subsections describe the effects that various C/C++ command
line options have on APO.

Note: If you invoke the loader separately, you must specify the -apo option
on the ld(1) command line.

15.1.1 -apo

The -apo option invokes APO. When this option is enabled, the compiler
automatically converts sequential code into parallel code by inserting parallel
directives where it is safe and beneficial to do so. Specifying -apo also enables
the -mp option, which enables recognition of the parallel directives inserted into
your code.

15.1.2 -apokeep and -apolist

The -apokeep and -apolist options control output files. Both options
generate file.list, which is a listing file that contains information on the loops
that were parallelized and explains why others were not parallelized.

When -apokeep is specified, the compiler writes file.list, and in addition, it
retains file.anl and file.m. The ProMPF tools use file.anl. For more
information on ProMPF, see the ProDev ProMP User’s Guide. file.m is an
annotated version of your source code that shows the insertion of
multiprocessing directives.

When -IPA is specified with the -apokeep option, the default settings for IPA
suboptions are used with the exception of -IPA:inline, which is set to OFF.

For more information on the content of file.list, file.anl, and file.m, see
Section 15.2, page 137.

Note: Because of data conflicts, do not specify the -mplist or -CLIST
options when -apokeep is specified.

15.1.3 -CLIST:...

This option generates a C/C++ listing and directs the compiler to write an
equivalent parallelized program in file.w2c.c. For more information on the
content of file.w2c.c, see Section 15.2, page 137.

134 007–3587–003

The Auto-Parallelizing Option (APO) [15]

15.1.4 -IPA:...

Interprocedural analysis (IPA) is invoked by the -ipa or -IPA command line
option. It performs program optimizations that can only be done by examining
the whole program, not parts of a program.

When APO is invoked with IPA, only those loops whose function calls were
determined to be safe by the APO are optimized.

If IPA expands functions inline in a calling routine, the functions are compiled
with the options of the calling routine. If the calling routine is not compiled
with -apo, none of its inlined functions are parallelized. This is true even if the
functions are compiled separately with -apo because with IPA, automatic
parallelization is deferred until link time.

When -apokeep or -pcakeep are specified in conjunction with -ipa or -IPA,
the default settings for IPA suboptions are used with the exception of the
inline=setting suboption, which is set to OFF.

For more information on the effect of IPA, see Section 15.5.1.2, page 148. For
more information on IPA itself, see the ipa(5) man page.

15.1.5 -LNO:...

The -LNO options control the Loop Nest Optimizer (LNO). LNO performs loop
optimizations that better exploit caches and instruction-level parallelism. The
following LNO options are of particular interest to APO users:

• -LNO:auto_dist=on. This option requests that APO insert data
distribution directives to provide the best memory utilization on Origin2000
systems.

• -LNO:ignore_pragmas=setting. This option directs APO to ignore all of
the directives and assertions described in Section 15.4, page 141.

• -LNO:parallel_overhead=num_cycles. This option allows you to
override certain compiler assumptions regarding the efficiency to be gained
by executing certain loops in parallel rather than serially. Specifically,
changing this setting changes the default estimate of the cost to invoke a
parallel loop in your run-time environment. This estimate varies depending
on your particular run-time environment, but it is typically several thousand
machine cycles.

You can view the transformed code in the original source language after LNO
performs its transformations. Two translators, integrated into the compiler,

007–3587–003 135

MIPSproTM C and C++ Pragmas

convert the compiler’s internal representation into the original source language.
You can invoke the desired translator by using the CC -CLIST:=on option.
For example, the following command creates an a.out object file and the
C/C++ file test.w2c.c:

CC -O3 -CLIST:=on test.c

Because it is generated at a later stage of the compilation, this .w2c.c file
differs somewhat from the .w2c.c file generated by the -apokeep option (see
Section 15.1.2, page 134). You can read the .w2c.c file, which is a compilable
C/C++ representation of the original program after the LNO phase. Because
the LNO is not a preprocessor, recompiling the file.w2c.c can result in an
executable that differs from the original compilation of the .c file.

15.1.6 -O3

To obtain maximum performance, specify -O3 when compiling with APO
enabled. The optimization at this level maximizes code quality even if it
requires extensive compile time or relaxes the language rules. The -O3 option
uses transformations that are usually beneficial but can sometimes hurt
performance. This optimization may cause noticeable changes in floating-point
results due to the relaxation of operation-ordering rules. Floating-point
optimization is discussed further in Section 15.1.7, page 136.

15.1.7 -OPT:...

The -OPT command line option controls general optimizations that are not
associated with a distinct compiler phase.

The -OPT:roundoff=n option controls floating-point accuracy and the
behavior of overflow and underflow exceptions relative to the source language
rules.

When -O3 is in effect, the default rounding setting is -OPT:roundoff=2. This
setting allows transformations with extensive effects on floating-point results. It
allows associative rearrangement across loop iterations and the distribution of
multiplication over addition and subtraction. It disallows only transformations
known to cause overflow, underflow, or cumulative round-off errors for a wide
range of floating-point operands.

At -OPT:roundoff=2 or 3, APO can change the sequence of a loop’s
floating-point operations in order to parallelize it. Because floating-point
operations have finite precision, this change can cause slightly different results.

136 007–3587–003

The Auto-Parallelizing Option (APO) [15]

If you want to avoid these differences by not having such loops parallelized,
you must compile with -OPT:roundoff=0 or -OPT:roundoff=1.

Example. APO parallelizes the following loop when compiled with the default
settings of -OPT:roundoff=2 and -O3:

float a, b[100];

for(i=0; i<100; i++)

a = a + b[i];

At the start of the loop, each processor gets a private copy of a in which to hold
a partial sum. At the end of the loop, the partial sum in each processor’s copy
is added to the total in the original, global copy. This value of a can be different
from the value generated by a version of the loop that is not parallelized.

15.1.8 -pca, -pcakeep, -pcalist

The -pca option invokes APO. For the O32 ABI, the -pca option invokes
Power C. The -pcakeep and -pcalist options control output files.

When -IPA is specified with the -pcakeep option, the default settings for IPA
suboptions are used with the exception of -IPA:inline, which is set to OFF.

Note: These options are outmoded. The preferred way of invoking APO is
through the -apo option, and the preferred way to obtain a listing is through
the -apolist option. For more information on these options, see Section
15.1.1, page 134, and Section 15.1.2, page 134.

15.1.9 file

Your input file.

For information on files used and generated when APO is enabled, see Section
15.2.

15.2 Files

APO provides a number of options to generate listings that describe where
parallelization failed and where it succeeded. You can use these listings to
identify constructs that inhibit parallelization. When you remove these
constructs, you can often improve program performance dramatically.

007–3587–003 137

MIPSproTM C and C++ Pragmas

When looking for loops to run in parallel, focus on the areas of the code that
use most of the execution time. To determine where the program spends its
execution time, you can use tools such as SpeedShop and the WorkShop Pro
MPF Parallel Analyzer View described in ProDev ProMP User’s Guide.

The following sections describe the content of the files generated by APO.

15.2.1 The file.list File

The -apolist and -apokeep options generate files that list the original loops
in the program along with messages indicating if the loops were parallelized.
For loops that were not parallelized, an explanation is provided.

Example. The following function resides in file testl.c:

void sub(double arr[], int n)
{

extern void foo(double);

int i;

for(i=1; i<n; i++) {

arr[i] += arr[i-1];

}
for(i=0; i<n; i++) {

arr[i] += 7.0;

foo(arr[i]);

}

for(i=0; i<n; i++) {
arr[i] += 7.0;

}

}

File testl.c is compiled with the following command:

cc -O3 -n32 -mips4 -apolist -c testl.c

APO produces file testl.list:

Parallelization Log for Subprogram sub

5: Not Parallel

Array dependence from arr on line 6 to arr on line 6.

8: Not Parallel

Call foo on line 10.

12: PARALLEL (Auto) __mpdo_sub1

138 007–3587–003

The Auto-Parallelizing Option (APO) [15]

Note the message for line 12. Whenever a loop is run in parallel, the parallel
version of the loop is put in its own function. The MIPSpro profiling tools
attribute all the time spent in the loop to this function. The last line indicates
that the name of the function is __mpdo_sub1.

15.2.2 The file.w2f.c File

File file.w2c.c contains code that mimics the behavior of programs after they
undergo automatic parallelization. The representation is designed to be
readable so that you can see what portions of the original code were not
parallelized. You can use this information to change the original program.

The compiler creates file.w2c.c by invoking the appropriate translator to turn
the compiler’s internal representations into C/C++. In most cases, the files
contain valid code that can be recompiled, although compiling file.w2c.c
without APO enabled does not produce object code that is exactly the same as
that generated when APO is enabled on the original source.

The -apolist option generates file.w2c.c. Because it is generated at an
earlier stage of the compilation, file.w2c.c from -apolist is more easily
understood than file.w2c.c generated from -CLIST:=on option. On the other
hand, the -CLIST option shows more of the optimizations that were
performed. The parallelized program in file.w2c.c uses OpenMP directives.

Example. File testw2.c is compiled with the following command:

cc -O3 -n32 -mips4 -c -apo -apolist -c testw2.c

void trivial(float a[])

{

int i;
for(i=0; i<10000; i++) {

a[i] = 0.0;

}

}

Compiling testw2.c generates an object file, testw2.o, and listing file
testw2.w2c.c, which contains the following code:

/***

* C file translated from WHIRL Wed Oct 28 14:03:23 1998
***/

/* Include file-level type and variable decls */

007–3587–003 139

MIPSproTM C and C++ Pragmas

#include "testw2.w2c.h"

void trivial(

_IEEE32(*a0)[])

{

register _INT32 i0;

/* PARALLEL DO will be converted to SUBROUTINE __mpdo_trivial1 */;

#pragma parallel

{

#pragma pfor

#pragma local(i0)
#pragma shared(a0)

for(i0 = 0; i0 <= 9999; i0 = i0 + 1)

{

(*a0)[i0] = 0.0F;

}
}

return;

} /* trivial */

Note: WHIRL is the name for the compiler’s intermediate representation.

As explained in Section 15.2.1, page 138, parallel versions of loops are put in
their own functions. In this example, that function is __mpdo_trivial_1.
#pragma omp parallel is an OpenMP directive that specifies a parallel
region containing a single DO directive.

15.2.3 About the .m and .anl Files

The -apokeep option generates file.list. It also generates file.m and file.anl,
which are used by Workshop Pro MPF.

file.m is similar to the file.w2c.c file but is more like original source code; it is
based on OpenMP and mimics the behavior of the program after automatic
parallelization.

WorkShop Pro MPF is a Silicon Graphics product that provides a graphical
interface to aid in both automatic and manual parallelization for C/C++. The
WorkShop Pro MPF Parallel Analyzer View helps you understand the structure
and parallelization of multiprocessing applications by providing an interactive,
visual comparison of their original source with transformed, parallelized code.

140 007–3587–003

The Auto-Parallelizing Option (APO) [15]

For more information, see the ProDev ProMP User’s Guide and the Developer
Magic: Performance Analyzer User’s Guide.

SpeedShop, another Silicon Graphics product, allows you to run experiments
and generate reports to track down the sources of performance problems.
SpeedShop includes a set of commands and a number of libraries to support
the commands. For more information, see the SpeedShop User’s Guide.

15.3 Running Your Program

Running a parallelized version of your program is no different from running a
sequential one. The same binary output file can be executed on various
numbers of processors. The default is to have the run-time environment select
the number of processors to use based on how many are available.

You can change the default behavior by setting the OMP_NUM_THREADS
environment variable, which tells the system to use an explicit number of
processors. The following statement causes the program to create two threads
regardless of the number of processors available:

setenv OMP_NUM_THREADS 2

The OMP_DYNAMIC environment variable allows you to control whether the
run-time environment should dynamically adjust the number of threads
available for executing parallel regions to optimize system resources. The
default value is ON. If OMP_DYNAMIC is set to OFF, dynamic adjustment is
disabled.

For more information on these and other environment variables, see the
pe_environ(5) man page.

15.4 Compiler Directives

APO works in conjunction with the OpenMP C/C++ API directives and with
the Origin series directives. You can use these directives to manually parallelize
some loop nests, while leaving others to APO.This approach has the following
positive and negative aspects:

• As a positive aspect, the OpenMP and Origin series directives are well
defined and deterministic. If you use a directive, the specified loop is run in
parallel. This assumes that the trip count is greater than one and that the
specified loop is not nested in another parallel loop.

007–3587–003 141

MIPSproTM C and C++ Pragmas

• The negative side to this is that you must carefully analyze the code to
determine that parallelism is safe. In particular, you may need to specify
special attributes for some variables, such as private or reduction, or
specify explicit synchronizations, such as a barrier or a critical section.

In addition to the OpenMP and Origin series directives, you can also use the
APO-specific directives described in this section. These directives give APO
more information about your code.

Note: APO also recognizes the Silicon Graphics multiprocessing directives.
These directives are outmoded, and you must include the -mp option on the
CC(1) command line in order for the compiler to recognize them. The
OpenMP directive set is the preferred directive set for multiprocessing.

The APO directives can affect certain optimizations, such as loop interchange,
during the compiling process. To direct the compiler to disregard any of the
preceding directives, specify the -xdirlist option.

The APO directives are as follows:

• #pragma concurrent call. This directive directs APO to ignore
dependencies in function calls that would inhibit parallelization. For more
information on this directive, see Section 15.4.1, page 143.

• #pragma concurrent. This directive asserts that APO should not let
perceived dependencies between two references to the same array inhibit
parallelizing. For more information on this directive, see Section 15.4.2, page
144.

• #pragma serial. This directive requests that the following loop be
executed in serial mode. For more information on this directive, see Section
15.4.3, page 145.

• #pragma prefer concurrent. This directive parallelizes the following
loop if it is safe. For more information on this directive, see Section 15.4.4,
page 145.

• #pragma permutation (array_name). Asserts that array array_name is a
permutation array. For more information on this directive, see Section 15.4.5,
page 146.

• #pragma no concurrentize and #pragma concurrentize. The
#pragma no concurrentize directive inhibits either parallelization of all
loops in a function or parallelization of all loops in a file. The
#pragma concurrentize directive overrides the
#pragma no concurrentize directive, and its effect varies with its

142 007–3587–003

The Auto-Parallelizing Option (APO) [15]

placement. For more information on these directives, see Section 15.4.6, page
147.

Note: The compiler honors the following APO directives even if the -apo
option is not included on your command line:

• #pragma concurrent call

• #pragma prefer concurrent

• #pragma permutation (array_name)

15.4.1 #pragma concurrent call

The #pragma concurrent call directive instructs APO to ignore the
dependencies of function and function calls contained in the loop that follows
the assertion. The directive applies to the loop that immediately follows it and
to all loops nested inside that loop. Other points to be aware of are the
following:

Note: The directive affects the compilation even when -apo is not specified.

APO ignores potential dependencies in function fred() when it analyzes the
following loop:

#pragma concurrent call

for(i=0; i<n; i++) {

fred();

...

}

To prevent incorrect parallelization, make sure the following conditions are met
when using #pragma concurrent call:

• A function inside the loop cannot read from a location that is written to
during another iteration. This rule does not apply to a location that is a local
variable declared inside the function.

• A function inside the loop cannot write to a location that is read from or
written to during another iteration. This rule does not apply to a location
that is a local variable declared inside the function.

Example. The following code shows an illegal use of the directive. Function
fred() writes to variable x, which is also read from by wilma() during other
iterations, and the directive instructs APO to ignore this dependence.

007–3587–003 143

MIPSproTM C and C++ Pragmas

void fred(float *b, int i, float *t) {

*t = b[i];
}

void wilma(float *a, int i, float *t){

a[i] = *t;

}

#pragma concurrent call
for(i=0; i<m; i++) {

fred(b, i, &x);

wilma(a, i, &x);

}

The following example shows how you can manually parallelize the preceding
example safely by ‘localizing’ variable x with a declaration float x; at the
top of the loop body.

#pragma concurrent call

for (i=0, i<m, i++) {

float x;

fred(b, i, &x);

wilma(a,i, &x);
}

15.4.2 #pragma concurrent

The #pragma concurrent directive instructs APO, when analyzing the loop
immediately following this directive, to ignore all dependencies between two
references to the same array. If there are real dependencies between array
references, the #pragma concurrent directive can cause APO to generate
incorrect code.

Note: This directive affects the compilation even when -apo is not specified.

The following example shows correct use of this directive when m > n:

#pragma concurrent
for(i=0; i<n; i++)

a[i] = a[i+m];

Be aware of the following points when using this directive:

• If multiple loops in a nest can be parallelized, #pragma concurrent
causes APO to parallelize the loop immediately following the assertion.

144 007–3587–003

The Auto-Parallelizing Option (APO) [15]

• Applying this directive to an inner loop can cause the loop to be made
outermost by APO’s loop interchange operations.

• This directive does not affect how APO analyzes function calls. For more
information on APO’s interaction with function calls, see Section 15.4.1, page
143.

• This directive does not affect how APO analyzes dependencies between two
potentially aliased pointers.

• The compiler may find some obvious real dependencies. If it does so, it
ignores this directive.

15.4.3 #pragma serial

The #pragma serial instructs APO not to parallelize the loop following the
assertion; the loop is executed in serial mode. APO can, however, parallelize
another loop in the same nest. The parallelized loop can be either inside or
outside the designated sequential loop.

Example. The following code fragment contains a directive that requests that
loop j be run serially:

for(i=0; i<m; i++) {

#pragma serial

for(j=0; j<n; j++)
a[i][j] = b[i][j];

...

}

The directive applies only to the loop that immediately follows it. For example,
APO still tries to parallelize loop i. This directive is useful in cases like this
when the value of n is known to be very small.

15.4.4 #pragma prefer concurrent

The #pragma prefer concurrent directive instructs APO to parallelize the
loop immediately following the directive if it is safe to do so.

Example. The following code fragment encourages APO to run loop i in
parallel:

007–3587–003 145

MIPSproTM C and C++ Pragmas

#pragma prefer concurrent

for(i=0; i<m; i++) {
for(j=0; j<n; j++)

a[i][j] = b[i][j];

...

}

When dealing with nested loops, APO follows these guidelines:

• If the loop specified by the #pragma prefer concurrent directive is safe
to parallelize, APO parallelizes the specified loop even if other loops in the
nest are safe.

• If the specified loop is not safe to parallelize, APO parallelizes a different
loop that is safe.

• If this directive is applied to an inner loop, APO can interchange the loop
and make the specified loop the outermost loop.

• If this directive is applied to more than one loop in a nest, APO parallelizes
one of the specified loops.

15.4.5 #pragma permutation

When placed inside a function, the #pragma permutation (array_name)
directive informs APO that array_name is a permutation array. A permutation
array is one in which every element of the array has a distinct value.

The directive does not require the permutation array to be dense. That is, within
the array, every b[i] must have a distinct value, but there can be gaps between
the values, such as b[1] = 1, b[2] = 4, b[3] = 9, and so on.

Note: This directive affects compilation even when -apo is not specified.

Example. In the following code fragment, array b is declared to be a
permutation array for both loops in sub1():

void sub1(int n) {

int i;

extern int a[], b[];
for(i=0; i<n; i++) {

a[b[i]] = i;

}

#pragma permutation (b)

for(i=0; i<n; i++) {

146 007–3587–003

The Auto-Parallelizing Option (APO) [15]

a[b[i]] = i;

}
}

Note the following points about this directive:

• As shown in the example, you can use this directive to parallelize loops that
use arrays for indirect addressing. Without this directive, APO cannot
determine that the array elements used as indexes are distinct.

• #pragma permutation (array_name) affects every loop in a function,
even those that appear before it.

15.4.6 #pragma no concurrentize, #pragma concurrentize

The #pragma no concurrentize directive inhibits parallelization. Its effect
depends on its placement.

• When placed inside functions, this directive inhibits parallelization. In the
following example, no loops inside sub1() are parallelized:

void sub1() {

#pragma no concurrentize

...

}

• When placed outside of a function, #pragma no concurrentize prevents
the parallelization of all functions in the file, even those that appear ahead
of it in the file. Loops inside functions sub2() and sub3() are not
parallelized in the following example:

void sub2() {

...

}

#pragma no concurrentize

void sub3() {
...

}

The #pragma concurrentize directive, when placed inside a function,
overrides a #pragma no concurrentize directive that is placed outside of
it. Thus, this directive allows you to selectively parallelize functions in a file
that has been made sequential with a #pragma no concurrentize directive.

007–3587–003 147

MIPSproTM C and C++ Pragmas

15.5 Troubleshooting Incomplete Optimizations

Some loops cannot be safely parallelized and others are written in ways that
inhibit APO’s efficiency. The following subsections describe the steps you can
take to make APO more effective. The sections that follow, and the topics they
discuss, are as follows:

• Section 15.5.1, page 148, describes constructs that inhibit parallelization.

• Section 15.5.2, page 151, describes constructs that reduce performance of
parallelized code.

15.5.1 Constructs That Inhibit Parallelization

A program’s performance can be severely constrained if APO cannot recognize
that a loop is safe to parallelize. APO analyzes every loop in a program. If a
loop does not appear safe, it does not parallelize that loop. The following
sections describe constructs that can inhibit parallelization:

• Section 15.5.1.1, page 148, describes basic data dependencies.

• Section 15.5.1.2, page 148, describes function calls.

• Section 15.5.1.3, page 149, describes goto statements.

• Section 15.5.1.4, page 149, describes problematic array subscripts.

• Section 15.5.1.5, page 150, describes conditionally assigned local variables.

In many instances, loops containing the previous constructs can be parallelized
after minor changes. Reviewing the information generated in program
file.list, described in Section 15.2.1, page 138, can show you if any of these
constructs are in your code.

15.5.1.1 Loops Containing Data Dependencies

Generally, a loop is safe if there are no data dependencies, such as a variable
being assigned in one iteration of a loop and used in another. APO does not
parallelize loops for which it detects data dependencies.

15.5.1.2 Loops Containing Function Calls

By default, APO does not parallelize a loop that contains a function call because
the function in one iteration of the loop can modify or depend on data in other
iterations.

148 007–3587–003

The Auto-Parallelizing Option (APO) [15]

You can, however, use interprocedural analysis (IPA) to provide the MIPSpro
APO with enough information to parallelize some loops containing function
calls. IPA is specified by the -ipa command line option. For more information
on IPA, see ipa(5) and the MIPSpro Compiling and Performance Tuning Guide.

You can also direct APO to ignore function call dependencies when analyzing
the specified loops by using the #pragma concurrent call directive
described in Section 15.4.1, page 143.

15.5.1.3 Loops Containing goto Statements

goto statements are unstructured control flows. APO converts most
unstructured control flows in loops into structured flows that can be
parallelized. However, goto statements in loops can still cause the following
problems:

• Unstructured control flows. APO is unable to restructure all types of flow
control in loops. You must either restructure these control flows or manually
parallelize the loops containing them.

• Early exits from loops. Loops with early exits cannot be parallelized, either
automatically or manually.

For improved performance, remove goto statements from loops to be
considered candidates for parallelization.

15.5.1.4 Loops Containing Problematic Array Constructs

The following array constructs inhibit parallelization and should be removed
whenever APO is used:

• Arrays with subscripts that are indirect array references. APO cannot
analyze indirect array references. The following loop cannot be run safely in
parallel if the indirect reference b[i] is equal to the same value for different
iterations of i:

for(i=0; i<n; i++)

a[b[i]] = ...

If every element of array b is unique, the loop can safely be made parallel.
To achieve automatic parallelism in such cases, use the
#pragma permutation(b) directive, as discussed in Section 15.4.5, page
146.

007–3587–003 149

MIPSproTM C and C++ Pragmas

• Arrays with unanalyzable subscripts. APO cannot parallelize loops
containing arrays with unanalyzable subscripts. Allowable subscripts can
contain the following elements:

– Literal constants (1, 2, 3, …)

– Variables (i, j, k, …)

– The product of a literal constant and a variable, such as n*5 or k*32

– A sum or difference of any combination of the first three items, such as
n*21+k-251

In the following example, APO cannot analyze the division operator (/) in
the array subscript and cannot reorder the loop:

for(i=0; i<n; i+=2)

a[i/2] = ...;

• Unknown information. In the following example there may be hidden
knowledge about the relationship between variables m and n:

for(i=0; i<n; i++)

a[i] = a[i+m];

The loop can be run in parallel if m > n because the array reference does
not overlap. However, APO does not know the value of the variables and
therefore cannot make the loop parallel. You can use the
#pragma concurrent directive to have APO automatically parallelize this
loop. For more information on this directive, see Section 15.4.2, page 144.

15.5.1.5 Loops Containing Local Variables

When parallelizing a loop, APO often localizes (privatizes) temporary scalar
and array variables by giving each processor its own non-shared copy of them.
In the following example, array tmp is used for local scratch space:

for(i=0; i<n; i++) {

for(j=0; j<n; j++)

tmp[j] = i+j;

for(j=0; j<n; j++)

a[i][j] = a[i][j] + tmp[j];
}

150 007–3587–003

The Auto-Parallelizing Option (APO) [15]

To successfully parallelize the outer loop (i), APO must give each processor a
distinct, private copy of array tmp. In this example, it is able to localize tmp
and, thereby, to parallelize the loop.

APO cannot parallelize a loop when a conditionally assigned temporary
variable might be used outside of the loop, as in the following example:

extern int t;

for(i=0; i<n; i++) {

if(b[i]) {

t = ...;

a[i] += t;
}

}

s2();

If the loop were to be run in parallel, a problem would arise if the value of t
were used inside function s2() because it is not known which processor’s
private copy of t should be used by s2(). If t were not conditionally
assigned, the processor that executed iteration i == n-1 would be used.
Because t is conditionally assigned, APO cannot determine which copy to use.

The solution comes with the realization that the loop is inherently parallel if the
conditionally assigned variable t is localized. If the value of t is not used
outside the loop, replace t with a local variable. Unless t is a local variable,
APO assumes that s2() might use it.

15.5.2 Constructs That Reduce Performance of Parallelized Code

APO parallelizes a loop by distributing its iterations among the available
processors. Loop nesting, loops with low trip counts, and other program
characteristics can affect the efficiency of APO. The following subsections
describe the effect that these and other programming constructs can have on
APO’s ability to parallelize:

• Section 15.5.2.1, page 152, describes parallelizing nested loops.

• Section 15.5.2.2, page 153, describes parallelizing loops with small or
indeterminate trip counts.

• Section 15.5.2.3, page 154, describes parallelizing loops that exhibit poor data
locality.

007–3587–003 151

MIPSproTM C and C++ Pragmas

15.5.2.1 Parallelizing Nested Loops

APO can parallelize only one loop in a loop nest. In these cases, the most
effective optimization usually occurs when the outermost loop is parallelized.
The effectiveness derives from that fact that more processors end up processing
larger sections of the program. This saves synchronization and other overhead
costs.

Example 1. Consider the following simple loop nest:

for(i=0; i<n; i++)

for(j=0; j<m; j++)

for(k=0; k<l; k++)

...

When parallelizing nested loops i, j, and k, APO parallelizes only one of the
loops. Effective loop nest parallelization depends on the loop that APO chooses,
but it is possible for APO to choose an inferior loop to be parallelized. APO
may attempt to interchange loops to make a more promising one the outermost.
If the outermost loop attempt fails, APO attempts to parallelize an inner loop.

Section 15.2.1, page 138, describes file.list. This output file contains
information that tells you which loop in a nest was parallelized. Because of the
potential for improved performance, it is useful for you to modify your code so
that the outermost loop is the one parallelized.

For every loop that is parallelized, APO generates a test to determine whether
the loop is being called from within either another parallel loop or from within
a parallel region. In some cases, you can minimize the extra testing that APO
must perform by inserting directives into your code to inhibit parallelization
testing. The following example demonstrates this:

Example 2:

void sub(int i, int n) {
int j;

#pragma serial

for(j=0; j<n; j++) {

...

}

}
void caller(int n) {

int i;

#pragma concurrent call

for(i=0; i<n; i++) {

152 007–3587–003

The Auto-Parallelizing Option (APO) [15]

sub(i, n);

}
}

Assume that sub() is called only from within caller(). The loop in
caller() is parallelized, so the loop in sub() can never be run in parallel. In
this case, the test is avoided by using the #pragma serial directive, as
shown, to force the sequential execution of the loop.

For more information on this compiler directive, see Section 15.4.3, page 145.

15.5.2.2 Parallelizing Loops With Small Or Indeterminate Trip Counts

The trip count is the number of times a loop is executed. Loops with large trip
counts are the best candidates for parallelization. The following paragraphs
show how to modify your program if your program contains loops with small
trip counts or loops with indeterminate trip counts:

• Loops with small trip counts generally run faster when they are not
parallelized. Consider the following loop nest:

#pragma prefer serial

for(i=0; i<m; i++) {

for(j=0; j<n; j++) {
...

}

}

Without the directive, APO would attempt to parallelize loop i because it is
outermost. If m is very small, it would be better to interchange the loops and
make loop j outermost, so that it would be parallelized. If that is not
possible, and if APO cannot determine that m is small, you can use a
#pragma prefer serial directive, as shown, to indicate to APO that it is
better to parallelize loop j.

• Loops with large trip counts run faster if they are unconditionally
parallelized. Consider the following loop:

#pragma prefer concurrent

for(j=0; j<n; j++)

...

Without the directive, if the trip count is not known (and sometimes even if it
is), APO parallelizes the loop conditionally. It generates code for both a
parallel and a sequential version of the loop, plus code to select the version

007–3587–003 153

MIPSproTM C and C++ Pragmas

to use, based on the trip count, the code inside the loop’s body, the number
of processors available, and an estimate of the cost to invoke a parallel loop
in that run-time environment.

You can avoid the overhead of conditional parallelization by using the
#pragma prefer concurrent directive, as shown, to indicate to APO
that only the parallel version of the loop should be generated.

15.5.2.3 Parallelizing Loops With Poor Data Locality

Computer memory has a hierarchical organization. Higher up the hierarchy,
memory becomes closer to the CPU, faster, more expensive, and more limited in
size. Cache memory is at the top of the hierarchy, and main memory is further
down in the hierarchy. In multiprocessor systems, each processor has its own
cache memory. Because it is time consuming for one processor to access another
processor’s cache, a program’s performance is best when each processor has the
data it needs in its own cache.

Programs, especially those that include extensive looping, often exhibit locality
of reference, which means that if a memory location is referenced, it is probable
that it or a nearby location will be referenced in the near future. Loops
designed to take advantage of locality do a better job of concentrating data in
memory, increasing the probability that a processor will find the data it needs in
its own cache.

The following examples show the effect of locality on parallelization. Assume
that the loops are to be parallelized and that there are p processors.

Example 1. Distribution of Iterations.

for(i=0; i<n; i++) {
...a[i]...

}

for(i=n-1; i>=0; i--) {

...a[i]...

}

In the first loop, the first processor accesses the first n/p elements of a; the
second processor accesses the next n/p elements; and so on. In the second loop,
the distribution of iterations is reversed. That is, the first processor accesses the
last n/p elements of a, and so on. Most elements are not in the cache of the
processor needing them during the second loop. This code fragment would run
more efficiently, and be a better candidate for parallelization, if you reverse the
direction of one of the loops.

154 007–3587–003

The Auto-Parallelizing Option (APO) [15]

Example 2. Two Nests in Sequence.

for(i=0; i<n; i++)

for(j=0; j<n; j++)
a[i][j] = b[j][i] + ...;

for(i=0; i<n; i++)

for(j=0; j<n; j++)

b[i][j] = a[j][i] + ...;

In example 2, APO may parallelize the outer loop of each member of a
sequence of nests. If so, while processing the first nest, the first processor
accesses the first n/p rows of a and the first n/p columns of b. In the second
nest, the first processor accesses the first n/p columns of a and the first N/p
rows of B. This example runs much more efficiently if you parallelize the i loop
in one nest and the j loop in the other. You can instruct APO to do this by
inserting a #pragma prefer serial directive just prior to the i loop that
contains the j loop that you want to be parallelized.

007–3587–003 155

Index

A

ABI
N32 APO, 133
N64 APO, 133
O32, 137

affinity, 78, 79
aggressive inner loop fission, 48
align_symbol, 19
APO, 133

array constructs, 149
command line options, 133
data dependence, 148
data locality problems, 154
function calls in loops, 148
goto statements, 149
Ineffective constructs, 151
invoking loader, 134
licensing, 133
local variables, 150
optimization, 136
output files, 138, 140
parallelizing nested loops, 152
trip count, 153
troubleshooting, 148

Application Program Interface, 89
Auto-Parallelizing Option

See "APO", 133
Automatic parallelization

definition, 133
automatic parallelization, 9

B

blocking size, 49

C

C++ instatiation directives, 15
can_instantiate, 16
chunksize, 84
Clauses

affinity, 78, 79
chunksize, 84
for #pragma parallel, 71
for #pragma pfor, 76
for #pragma prefetch_ref, 55
if, 72
iterate, 76
lastlocal, 77
local, 72, 77
nest, 81
numthreads, 72
onto, 25, 31
reduction, 78
schedtype, 82
shared, 71

concurrent, 9
concurrent call, 10
concurrentize, 12
copyin, 60
critical, 61

D

Data layout directives, 19
Directives

multiprocessing, 134
OpenMP, 89
#pragma concurrent, 142
#pragma concurrent call, 142
#pragma concurrentize, 143
#pragma no concurrentize, 143

007–3587–003 157

MIPSproTM C and C++ Pragmas

#pragma permutation, 142
#pragma prefer concurrent, 142
#pragma serial, 142
See "#pragma", 9

Directives, list of, 1
distribute, 23
distribute_reshape, 25
Distributed shared memory optimization, 23
do_not_instantiate, 17
DSM optimization, 23
dynamic, 28

E

enter gate, 63
Examples

APO, 133, 137
inhibiting parallelization testing, 152
nested loops, 152

locality, 154
#pragma concurrent, 144
#pragma concurrent call, 143
#pragma no concurrentize, 147
#pragma permutation, 146
#pragma prefer concurrent, 145
#pragma serial, 145

exit gate, 63

F

fill_symbol, 21
fission, 50
fissionable, 50
Floating-point optimization, 136
fusable, 51
fuse, 50

G

Graphical interface, 140

H

hdrstop, 121
hidden, 40

I

ident, 129
if, 72
independent, 66
inline, 33
Inlining directives, 33
instantiate, 15
instantiation directives, 15
int_to_unsigned, 130
internal, 41
intrinsic, 130
IPA, 135

automatic parallelization, 133
iterate, 76
ivdep, 52

L

lastlocal, 77
ld, 134
LNO, 135

automatic parallelization, 133
Loader information directives, 39
local, 67, 72, 77
Locality of reference, 154
Loop nest optimization directives, 47

M

Manual parallelization, 133
Memory

data locality problems, 154
mips_frequency_hint, 123

158 007–3587–003

Index

Multiprocessing, 134
Multiprocessing c compiler directives, 1
Multiprocessing directives, 59

N

nest, 81
no blocking, 49
no fission, 50
no fusion, 51
no interchange, 51
no side effects, 68
no_delete, 41
no_pch, 122
noconcurrentize, 12
noinline, 33
numthreads, 72

O

OMP_DYNAMIC, 141
OMP_NUM_THREADS, 141
once, 122
one processor, 68
onto clause

#pragma distribute, 25
#pragma redistribute, 31

OpemMP
multiprocessing directives, 89

OpenMP directives, 141
Optimization

APO, 133
floating-point, 136
troubleshooting, 148

optional, 41
Origin series

directives, 141

P

pack, 22
page_place, 29
parallel, 69
Parallelization, 137

automatic, 133
definition, 133
manual, 133
troubleshooting, 148

pe_environ, 141
permutation, 12
pfor, 73
Power C, 137
#pragma

aggressive inner loop fission, 48
align_symbol, 19
blocking size, 49
can_instantiate, 16
concurrent, 9
concurrent call, 10
concurrentize, 12
copyin, 60
critical, 61
distribute, 23
distribute_reshape, 25
do_not_instantiate, 17
dynamic, 28
enter gate, 63
exit gate, 63
fill_symbol, 21
fission, 50
fissionable, 50
fusable, 51
fuse, 50
hdrstop, 121
hidden, 40
ident, 129
independent, 66
inline, 33
instantiate, 15
int_to_unsigned, 130

007–3587–003 159

MIPSproTM C and C++ Pragmas

internal, 41
intrinsic, 130
ivdep, 52
local, 67
mips_frequency_hint, 123
no blocking, 49
no fission, 50
no fusion, 51
no interchange, 51
no side effects, 68
no_delete, 41
no_pch, 122
noconcurrentize, 12
noinline, 33
once, 122
one processor, 68
optional, 41
pack, 22
page_place, 29
parallel, 69
permutation, 12
pfor, 73
prefer concurrent, 13
prefer serial, 14
prefetch, 53
prefetch_manual, 54
prefetch_ref, 54
prefetch_ref_disable, 56
protected, 42
pure, 85
redistribute, 30
reset woff, 126
section_gp, 42
section_non_gp, 43
serial, 14
set chunksize, 85
set numthreads, 86
set schedtype, 86
set woff, 125
shared, 87
synchronize, 87
unknown_control_flow, 131
unroll, 56

weak, 43
#pragma concurrent, 144
#pragma concurrent call, 143
#pragma concurrentize, 147
#pragma no concurrentize, 147
#pragma permutation, 146
#pragma prefer concurrent, 154
#pragma prefer serial, 155
#pragma serial, 145
Precompiled header directives, 121
prefer concurrent, 13
prefer serial, 14
prefetch, 53
prefetch_manual, 54
prefetch_ref, 54
prefetch_ref_disable, 56
prefetching, 53
ProMPF, 134
protected, 42
pure, 85

R

redistribute, 30
reduction, 78
reset woff, 126

S

Scalar optimization directives, 123
schedtype, 82
section_gp, 42
section_non_gp, 43
serial, 14
set chunksize, 85
set numthreads, 86
set schedtype, 86
set woff, 125
shared, 71, 87
SpeedShop, 141

160 007–3587–003

Index

synchronize, 87

T

Translator, 136
Trip count

definition, 153
Troubleshooting

APO, 148

U

unknown_control_flow, 131

unroll, 56

W

Warning suppression control directives, 125
weak, 43
WHIRL, 140
WorkShop Pro MPF, 140

007–3587–003 161

