
OCTANE™ Personal Video
Programmer’s Guide

Document Number 007-3595-001

OCTANE™ Personal Video Programmer’s Guide
Document Number 007-3595-001

CONTRIBUTORS

Written by Carolyn Curtis
Illustrated by Dany Galgani, Carolyn Curtis, Cheri Brown, and Scott Pritchett
Edited by Christina Cary
Document Production by Max Anderson
Engineering contributions by Michael Minakami, Bruno Wolf, Farrell Wymore, Grant

Dorman, Chris Pirazzi, Scott Pritchett, and Ashok Yerneni
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, OpenGL, and IRIS are registered
trademarks and OCTANE, Origin, Origin2000, Onyx2, InfiniteReality, O2, O2Cam,
Indigo2, Indigo2 IMPACT, IRIX, Galileo Video, IRIS InSight, InPerson, Graphics
Library, and GL are trademarks of Silicon Graphics, Inc. R10000 is a trademark of
MIPS Technologies, Inc. UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company, Ltd. X Window
System is a trademark of Massachusetts Institute of Technology.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
Audience xiii
Structure of This Document xiii
Other Documents xiv
Conventions xv

1. Features of the OCTANE Personal Video Option 1
OCTANE Personal Video Board Capabilities 2

Board Features 2
Video Capture 6
Video Output 7
Adjustments and Conversions 9
Square-to-Nonsquare Pixel Filter 9
Timing 10

Video Library Capabilities 10
VL System Software Architecture 11

Video Daemon 12
Generic Video Tools 13
Library and Header Files 14

VL Architectural Model of Video Devices 14
Node 15
Path 15
OCTANE Personal Video Software Model 17

OCTANE Personal Video Formats 18

iv

Contents

2. Setting Up Your VL Application 19
The VL Programming Model 19
Performing Preliminary Steps 20
Opening a Connection to the Video Daemon 21
Specifying Nodes on the Data Path 21
Creating and Setting Up the Data Path 22

Creating the Path 22
Getting the Device ID 23
Adding a Node 23
Setting Up the Data Path 24
Specifying the Path-Related Events to Be Captured 25

3. Setting Parameters for Data Transfer 27
Device-Independent Controls for OCTANE Personal Video 28
VL_TIMING 30
VL_EVO_FILTER_TYPE 31
VL_FORMAT 32

Using VL_FORMAT to Specify Color Space 32
Selecting the Input Connector 33
Specifying the Video Drain Node 35

VL_PACKING 35
VL_ZOOM 37

VL_ZOOM on Memory Nodes 37
VL_ZOOM on Video Nodes 38
VL_ZOOM on Screen Nodes 39

VL_SIZE 41
VL_OFFSET 42
VL_CAP_TYPE and VL_RATE 44

VL_CAPTURE_NONINTERLEAVED 45
VL_CAPTURE_INTERLEAVED 46
VL_CAPTURE_EVEN_FIELDS 47
VL_CAPTURE_ODD_FIELDS 47
VL_CAPTURE_FIELDS 47

Contents

v

VL_COLORSPACE 48
Color Spaces 48
Determining the Color Space 49
Constant Hue 50
Color-Space Converter for Image Processing 52
Coefficients 53

Camera Controls 54

4. Synchronizing Data Streams and Signals 57
Using UST, MSC, and Buffered Media Streams for Synchronization 57
Media Library Interfaces for UST and MSC 59
Using the Internal Video Sync Signal 61

Internal Video Sync Producers and Consumers 61
Setting the Internal Video Sync Signal Producer 62

5. Transferring Video Data and Ending Data Transfer 65
Transferring Video Data to and From Devices 65

Using Buffers 65
Transferring Video Data Using DMbuffers 68
Transferring Video Data Using VL Buffers 73

Ending Data Transfer 79
Example Programs 81

6. Using VL Controls 83
VL Control Type and Values 84
VL Control Fraction Ranges 85
VL Control Classes 85
VL Control Groupings 86

7. Event Handling 89
OCTANE Personal Video VL Events 90
Querying VL Events 94
Creating a VL Event Loop 96
Creating a Main Loop With Callbacks 97

vi

Contents

8. Video Real-Time Capture and Playback 99
Video Library Buffers 99
Caching 100
Direct I/O to Disk 101
syssgi 102
Asynchronous I/O 102

A. Return Codes 105

B. OCTANE Personal Video Nodes and Their Controls 109
VL_DEVICE 110
VL_MEM 112

VL_MEM Source 112
VL_MEM Drain 119

VL_SCREEN 123
VL_VIDEO 125

VL_VIDEO Source 125
VL_VIDEO Drain 130

C. Pixel Packings and Color Spaces 135
Packings 135

Packings and Color Spaces 136
Packing Diagram Conventions 136
Packings and Library Tokens 138
Packing Naming Conventions (New-Style Tokens) 138
8-Bit Pixel Packings 140
16-Bit Pixel Packing 141
24-Bit Pixel Packings 142
32-Bit Pixel Packings 143

Sampling Patterns 146
4:4:4 and 4:4:4:4 Sampling 146
4:2:2 and 4:2:2:4 Sampling 147

Contents

vii

D. OCTANE Personal Video Color-Space Conversions 149
OCTANE Personal Video Color Spaces 150

RGB 150
YUV 150
CCIR 151

Mathematical Operations Performed During Conversions 151
Implications of Color-Space Conversions 152

Precision of Color Conversions Done by the OCTANE
Personal Video Option 152
Range Issues For Color Conversions Done by Any Means 153

Example Color Conversions 156
Example 1: 100% Color Bars 156
Example 2: Luminance Ramp 160
Example 3: Simultaneous Chroma/Luma Ramp 164

Index 169

viii

Contents

ix

List of Figures

Figure 1-1 OCTANE Personal Video Board 3
Figure 1-2 OCTANE Personal Video Connection to OCTANE Workstation 4
Figure 1-3 OCTANE Personal Video Option Board Connectors 5
Figure 1-4 Video Input Processing 7
Figure 1-5 Video Output Processing 8
Figure 1-6 Video Output via VOC Chip 8
Figure 1-7 VL System Components 11
Figure 1-8 Simple VL Path 15
Figure 1-9 Complex e VL Path 16
Figure 1-10 OCTANE Personal Video Software Model 17
Figure 3-1 Zoom (Scaling) 37
Figure 3-2 Clipping an Image 41
Figure 3-3 Zoom, Size, and Offset, and Origin 43
Figure 5-1 vlGetNextValid() and vlGetLatestValid() 77
Figure C-1 VL_PACKING_BGR_8_P and VL_PACKING_UYV_8_P 137
Figure C-2 VL_PACKING_Y_8_P 140
Figure C-3 VL_PACKING_RGB_332_P 140
Figure C-4 VL_PACKING_YVYU_422_8 141
Figure C-5 VL_PACKING_BGR_8_P and VL_PACKING_UYV_8_P 142
Figure C-6 VL_PACKING_ABGR_8 andVL_PACKING_AUYV_8 143
Figure C-7 VL_PACKING_RGBA_8 and VL_PACKING_YUVA_4444_8 144
Figure C-8 VL_PACKING_RGB_8 145
Figure C-9 VL_PACKING_YVYU_422_10 145
Figure C-10 4:4:4 Sampling 146
Figure C-11 4:2:2 Sampling 147

x

List of Figures

Figure D-1 RGB Cube in CCIR Space 154
Figure D-2 Color Cube With Luminance/Chrominance Ramp Vector 155
Figure D-3 100% Color Bars: Cr/R 157
Figure D-4 100% Color Bars: Y/G 158
Figure D-5 100% Color Bars: Cb/B 159
Figure D-6 Luminance Ramp: Cr/R 161
Figure D-7 Luminance Ramp: Y/G 162
Figure D-8 Luminance Ramp: Cb/B 163
Figure D-9 Chroma/Luma Ramp: Cr/R 165
Figure D-10 Chroma/Luma Ramp: Y/G 166
Figure D-11 Chroma/Luma Ramp: Cb/B 167

xi

List of Tables

Table 1-1 OCTANE Personal Video Connectors 6
Table 1-2 Video Formats for OCTANE Personal Video Memory Nodes 18
Table 2-1 VL Event Masks 25
Table 3-1 Nodes and Data Transfer Controls 28
Table 3-2 Dimensions for Timing Choices 30
Table 3-3 VL_FORMAT and VL_COLORSPACE Correspondence 32
Table 3-4 Using VL_FORMAT to Select Input Connector (Video Source Nodes)

33
Table 3-5 VL_VIDEO Source Nodes 34
Table 3-6 Using VL_FORMAT to Select Output Connector (Optional) 35
Table 3-7 Packing Types for Eight Bits per Component 35
Table 3-8 VL_PACKING_YVYU_422_10 Bits 36
Table 3-9 VL_ZOOM on Memory Nodes: Minimum Values With VL_ASPECT

38
Table 3-10 VL_RATE Values (Items per Second) 45
Table C-11 VL_COLORSPACE Options 50
Table 3-12 Image-Processing Controls 52
Table 3-13 Coefficient Formats 53
Table 3-14 O2Cam Digital Camera Controls 55
Table 4-1 Internal Video Sync Signal Producers and Consumers 61
Table 5-1 VL Buffer and DMBuffer API Functions 67
Table 5-2 Buffer Size Requirements 75
Table 5-3 Buffer-Related Calls 76
Table 5-4 Calls for Extracting Data From a Buffer 77
Table 6-1 VL Control Groupings 86
Table 7-1 VL Events for the OCTANE Personal Video Device 90
Table 7-2 VL Event Handling Routines 94

xii

List of Tables

Table B-1 Device Node Controls 110
Table B-2 Memory Source Node Controls 112
Table B-3 Memory Drain Node Controls 119
Table B-4 Screen Source Node Controls 124
Table B-5 Video Source Node Controls 126
Table B-6 Video Drain Node Controls 130
Table C-1 OCTANE Personal Video Packings 139

xiii

About This Guide

The OCTANE XIO Personal Video option board enables a Silicon Graphics OCTANE
workstation to input and output graphic and video images and record them to disk or
videotape.

The OCTANE Personal Video option utilizes calls and controls in the Silicon Graphics
Digital Media library, such as the Video Library. This guide explains features of the Video
Library (VL) that pertain to the OCTANE Personal Video option and gives step-by-step
instructions for creating VL programs that make use of OCTANE Personal Video
capabilities.

Audience

This guide is written for the sophisticated video user with a background in C
programming who wishes to develop video programs for the OCTANE Personal Video
option board.

Structure of This Document

This guide contains the following chapters and appendixes:

• Chapter 1, “Features of the OCTANE Personal Video Option,” introduces the
features and capabilities of the OCTANE Personal Video board. It explains VL
features and architecture, and presents the VL programming model.

• Chapter 2, “Setting Up Your VL Application,” explains how to open a connection to
the video daemon, specify nodes, and set up a data path. It also summarizes the VL
programming model.

• Chapter 3, “Setting Parameters for Data Transfer,” explains how to use controls for
defining frame data size, video format and timing, color space, scaling, and other
basic parameters.

xiv

About This Guide

• Chapter 4, “Synchronizing Data Streams and Signals,” gives instructions for using
special signals—unadjusted system time (UST), media stream count (MSC), and
Internal Video Sync signal—for refining synchronization in your application.

• Chapter 5, “Transferring Video Data and Ending Data Transfer,” explains using
buffers for transferring video data, gives the steps for ending data transfer, and
summarizes example programs that illustrate how to create simple video
applications included in the software.

• Chapter 6, “Using VL Controls,” explains the VL control type and values, VL
control fraction ranges, VL control classes, and VL control groupings.

• Chapter 7, “Event Handling,” presents the VL events for the OCTANE Personal
Video option and details querying VL events, creating a VL event loop, and creating
a main loop with callbacks.

• Chapter 8, “Video Real-Time Capture and Playback,” gives guidelines for
optimizing capture or playback to system memory or disk.

• Appendix A, “Return Codes,” lists and explains VL return messages for the
OCTANE Personal Video board.

• Appendix B, “OCTANE Personal Video Nodes and Their Controls,” summarizes
the OCTANE Personal Video nodes and their controls.

• Appendix C, “Pixel Packings and Color Spaces,” sets forth all packing formats used
by the OCTANE Personal Video option and includes information on sampling
patterns.

• Appendix D, “OCTANE Personal Video Color-Space Conversions,” explains color
spaces, mathematical operations performed during conversions, and implications
of color-space conversions.

An index completes this guide.

Other Documents

The Digital Media Programming Guide (007-1799-060; online only) is available with the
IRIX digital media development environment software (dmedia_dev). This guide is also
online in the following locations:

• IRIS InSight Library: from the Toolchest, choose Help > Online Books >
SGI EndUser or SGI Admin, and select the applicable owner’s or hardware guide.

About This Guide

xv

Once you are in the library, choose Catalogs > Hardware Catalog > and look under
the Owner’s Guides for the applicable owner’s guide.

• Technical Publications Library: if you have access to the Internet, enter the
following URL in your Web browser location window:
http://techpubs.sgi.com/library/

Conventions

These type conventions and symbols are used in this guide:

Helvetica Bold Hardware labels

Italics Executable names, filenames, IRIX commands, manual or book titles,
new terms, program variables, tools, utilities, variable command-line
arguments, variable coordinates, and variables to be supplied by the
user in examples, code, and syntax statements

Bold Function names

Fixed-width type

Error messages, prompts, and onscreen text

Bold fixed-width type

User input, including keyboard keys (printing and nonprinting); literals
supplied by the user in examples, code, and syntax statements

“” (Double quotation marks) Onscreen menu items and references in text
to document section titles

[] (Brackets) Surrounding optional syntax statement arguments

1

Chapter 1

1. Features of the OCTANE Personal Video Option

The OCTANE Personal Video board makes it possible to use your OCTANE workstation
for video-based operations, such as

• capturing the screen display: recording directly to disk any portion of the screen,
from the full 1280 x 1024 resolution down to 2 pixels by 2 lines, for editing with
bundled media editing tools or converting to standard NTSC- or PAL-encoded
video

• writing or using custom video applications

• using applications included with the OCTANE workstation:

– videoconferencing, using the O2Cam digital camera and the InPerson
videoconferencing software for real-time group collaboration

– Web authoring, using video compression algorithms implemented through
software and the Web-based authoring tool suite included with the OCTANE
system for distributing video via the World Wide Web

This chapter introduces

• “OCTANE Personal Video Board Capabilities” on page 2

• “Video Library Capabilities” on page 10

• “VL System Software Architecture” on page 11

• “VL Architectural Model of Video Devices” on page 14

• “OCTANE Personal Video Formats” on page 18

Note: For an introduction to video, see the latest version of the Digital Media
Programming Guide (007-1799-060 or later).

2

Chapter 1: Features of the OCTANE Personal Video Option

OCTANE Personal Video Board Capabilities

This section explains

• “Board Features” on page 2

• “Video Capture” on page 6

• “Video Output” on page 7

• “Adjustments and Conversions” on page 9

• “Square-to-Nonsquare Pixel Filter” on page 9

• “Timing” on page 10

Board Features

The OCTANE Personal Video option supports 1280 x 1024 at 50 Hz, 60 Hz, and 72 Hz.
Input speed is limited by the pixel clock and input to the video output controller (VOC).
The VOC receives the complete graphics stream as input; it can select all or a portion of
the screen to resize and fit into a standard video raster.

The section “OCTANE Personal Video Software Model” on page 17 explains how the
board looks to the software.

Figure 1-1 diagrams the OCTANE Personal Video board.

OCTANE Personal Video Board Capabilities

3

Figure 1-1 OCTANE Personal Video Board

XIO

Mux

Bridge

Decoder

VGI 1

VGI 1
CSC

Scaler

Crosspoint

switch

Crosspoint

switch

CSC

Scaler

Reference

Control

CSC

(pixel fix
)

Frame

store

Encoder

O2Cam in

S-VHS in

Composite in

O2Cam out

S-VHS out

Composite out

Reference in

Audio
out

VOC

Frame
buffer

RGB
format

GFX

4

Chapter 1: Features of the OCTANE Personal Video Option

Figure 1-2 shows OCTANE Personal Video option connections to OCTANE graphics and
connectors.

Figure 1-2 OCTANE Personal Video Connection to OCTANE Workstation

Note: In Figure 1-2, some I/O has been omitted for clarity.

Graphics board

OCTANE

Personal Video Board

XIO

Com
posite video in

S-VHS in
Com

posite video out

S-VHS out

O2Cam
 connector

Flex cables

OCTANE Personal Video Board Capabilities

5

All graphics data comes through three dedicated internal flex cables connected to
OCTANE graphics. Through connectors on the OCTANE Personal Video board itself,
you can

• send and receive live analog video, either S-Video or composite; you can
software-select between the 525/60 NTSC and 625/50 PAL television standards

• receive component digital video from any serial
CCIR-601/SMPTE-259M-compliant device

• send Silicon Graphics component digital video from any serial
CCIR-601/SMPTE-259M-compliant device

• receive live video from the O2Cam digital camera, which you can convert to
CCIR601 with a third-party adapter

• pass through audio from the O2Cam digital camera

Figure 1-3 shows the connectors.

Figure 1-3 OCTANE Personal Video Option Board Connectors

Digital Video (Camera)

Mic Thru
Video In

Video OutRef In

Composite

S-video

Composite

S-video

6

Chapter 1: Features of the OCTANE Personal Video Option

Table 1-1 summarizes board connectors.

The board can genlock to external reference, O2 video, or Internal Video Sync. The
sources for external reference are reference, composite video, and S-VHS video. The lock
is color-frame accurate with respect to reference or composite video. Other important
signals (reset, power rails, and so on) come from the board connection at the XIO slot.

For hardware details, including cabling information, see the OCTANE Personal Video
Installation Guide.

Video Capture

The OCTANE Personal Video board can capture video from four sources:

• composite video, digitized and decoded into the nonsquare pixel YUV format

• S-VHS video, digitized into standard YUV format

• O2Cam connector (digital): parallel input as YUV (D1)

The O2Cam connector can also be used for parallel D1 output.

• graphics signals encoded in 24-bit RGB

Video input processing captures input from one or more of these sources and transfers it
to memory. During capture, you can scale (reduce, or minify) the image horizontally and
vertically, such as for aspect ratio correction. The scaler is a YUV device only.

Table 1-1 OCTANE Personal Video Connectors

Input Output Format

Composite Composite (single-channel video out) BNC (75-ohm terminated)

S-Video (single-channel video
in)

S-Video (single-channel video out) 4-pin mini-DIN

Composite locking reference N/A BNC (75-ohm terminated)

N/A Audio: microphone through 3.5-mm jack

Silicon Graphics digital video
(O2Cam digital camera)

Silicon Graphics digital video, with
optional third-party devices connected

68-pin D connector

OCTANE Personal Video Board Capabilities

7

You can also color-space convert the image (CSC). The color-space converters allow
transformation from YUV to RGB or from RGB to YUV.

Finally, you can DMA the image into memory; the board supports two DMA channels.
Figure 1-4 diagrams the processing path.

Figure 1-4 Video Input Processing

Video Output

Video output takes an image from memory and converts it into video, or performs the
print-to-video process. Output video sources are memory, graphics (VOC), or video in
(analog or digital). From memory, the board can process 8-bit YUV 422 or 24-bit RGB.
(Although you can transfer 10- bit YUV, the processing path is only 8 bits wide.) If
required, you can color-space convert the signal into the YUV 422 format.

After color-space conversion, the signal can go into a sampling rate converter, which
scales a square-pixel image into a nonsquare-pixel image. The encoder is a nonsquare
encoder; it expects 720 pixels per line. This conversion might be necessary because the
video encoder operates on nonsquare pixels only; it does not directly accept square-pixel
data. This filter is explained further in “Square-to-Nonsquare Pixel Filter,” later in this
section.

Video

Scale

CSC

DMA

8

Chapter 1: Features of the OCTANE Personal Video Option

Figure 1-5 diagrams the processing path of the output block.

Figure 1-5 Video Output Processing

The scaler scales down horizontally and vertically only (no upscaling).

Figure 1-6 diagrams the processing path using graphics as the video source.

Figure 1-6 Video Output via VOC Chip

DMA

CSC

Scale

Video

CSC

Video

Graphics

VOC

OCTANE Personal Video Board Capabilities

9

Adjustments and Conversions

The OCTANE Personal Video option supports

• Internal Video Sync: a synchronization signal produced or consumed by some
audio and video devices

This signal is explained in Chapter 2, “Setting Up Your VL Application.”

• output subcarrier horizontal phase (SCH): subcarrier phase can be adjusted through
software

• coarse H: window-controlled coarse horizontal timing

• color-space conversion: RGB-to-YUV and YUV-to-RGB conversion

OCTANE Personal Video color-space conversion is explained in
“VL_COLORSPACE,” in Chapter 3, and Appendix D, “OCTANE Personal Video
Color-Space Conversions.”.

• digital dither filter to reduce artifacts (a bypassable filter)

• square-to-nonsquare pixel conversion

Square-to-Nonsquare Pixel Filter

Most applications native to the computing environment work in the square-pixel aspect
ratio. However, professional video applications require nonsquare pixels, which
preserve the correct aspect ratio.

The OCTANE Personal Video board can process video in square-pixel format. For
optimum video quality, however, it outputs only nonsquare pixels. To accommodate
both environments, the board includes a bypassable square-to-nonsquare pixel filter that
operates on video.

Square-pixel NTSC has 640 active pixels per line, based on a sample clock of
12.2727 MHz. Square pixel PAL has 768 pixels per line, based on a sample clock of 14.75
MHz. Nonsquare pixel NTSC and PAL both have 720 pixels per line, based on a sample
clock of 13.5 MHz. Thus, in the horizontal direction, the filter must decimate in PAL and
interpolate in NTSC. (For simplification, the vertical scale is not considered.)

10

Chapter 1: Features of the OCTANE Personal Video Option

Timing

The OCTANE Personal Video board utilizes timing signals from three kinds of sources:

• free run (default)

• Internal Video Sync, from another producer of this signal

• another external reference signal, such as from an analog reference, the O2Cam
digital camera, or input video

The board can produce the Internal Video Sync signal.

Video Library Capabilities

The Video Library provides a software interface to the OCTANE Personal Video board,
enabling applications to

• display live video in a window

• capture live video to system memory

• encode graphics to video in real time

• produce high-quality full-rate video output

The Video Library (VL) is a collection of device-independent and device-dependent C
language calls for Silicon Graphics workstations equipped with video options. The VL
provides generic video tools, including simple tools for importing and exporting digital
data to and from Silicon Graphics systems, as well as to and from third-party video
devices that adhere to the Silicon Graphics architectural model for video devices. Video
tools are described in the Media Control Panels User’s Guide; similar applications are
supplied in source-code form as examples in the directories /usr/share/src/dmedia/video/vl
and /usr/share/src/dmedia/video/vl/OpenGL.

The VL works with other Silicon Graphics libraries, such as OpenGL. The VL does not
depend on the X Window System, but you can use X Window System libraries or toolkits
to create a windowing interface.

The VL allows programs to get events 60 times per second on a quiescent system; it also
enables programs to share resources or to gain exclusive use of resources. It supports
input and output of video data to or from locked-down memory at the nominal frame

VL System Software Architecture

11

rate. The VL provides an API that enables applications to capture or play back video from
system memory.

The OCTANE Personal Video board software includes a graphical user interface,
/usr/sbin/vcp. See the OCTANE Personal Video Installation Guide for how to use this panel
with the OCTANE Personal Video option.

VL System Software Architecture

This section describes features of these VL system components and tools:

• “Video Daemon” on page 12

• “Generic Video Tools” on page 13

• “Library and Header Files” on page 14

Figure 1-7 diagrams the interaction between the VL, the video daemon, the kernel, the
hardware, and the X Window System server.

Figure 1-7 VL System Components

Video application

Video Library interface

Video daemon

IRIX kernel

X Window
OpenGL

12

Chapter 1: Features of the OCTANE Personal Video Option

The VL communicates with the IRIX kernel for device initialization, vertical retrace,
setup, and maintenance of any device-supported direct memory access (DMA). See
Chapter 1 of the Digital Media Programming Guide for more information on interfacing to
other libraries.

Besides these components, the VL includes a collection of applications that support
device configuration and control setting and retrieval, generic tools that display video on
a workstation, and video control panels.

Video Daemon

The video daemon /usr/etc/videod, which has device-dependent and device-independent
portions, handles video device management and status information.

Device Management

Management that the video daemon performs includes

• multiple client access to multiple devices

The library supports connections from multiple client applications and manages
their access to a limited number of video devices.

• dispatching events

As events are handled and noted by devices, the daemon notifies applications that
have expressed interest in those events.

• handling events

As events are generated by the various devices, the daemon initiates any action
required by an event before it hands the event off to interested applications.

• maintaining exclusive use

Types of data or control usage for video clients in a Video Library application are
Done Using, Read-only, Lock, and Shared. These usage levels apply only to write
access on controls, not read access. Any application can open and read the control’s
values at any time.

VL System Software Architecture

13

• client cleanup on exit

When a client exits or is terminated abnormally, its connection to the daemon is
broken; the daemon performs any cleanup required of the system. Any
exclusive-use modes that have been set are cleared; interested clients are notified
that the device is no longer in exclusive use. Controls set by the client might persist,
but are not guaranteed to remain after the client closes the connection.

Status Information

Status information for which the video daemon is responsible includes

• system status of video devices

The video devices installed in a system can be queried as to availability and control
status.

• video positioning (offset) information

• control setting and retrieval

Device-independent and device-dependent controls are set and retrieved through
the video daemon.

Generic Video Tools

The generic video tools include

videopanel (vcp) Use this graphical user interface to set controls, such as hue or contrast,
on devices. The panel resizes itself dynamically to reflect available video
devices.

vlcmd Use the Video Library command-line interface to enter Video Library
shell-level and other commands.

videoin Use the video input window tool to view input video in a window.

videoout Use the video output tool to output video from a rectangular area of the
screen on hardware that supports the screen-to-video path.

vlinfo Use the video info tool to display information about video devices
available through the VL, such as the name of the X server; number of
devices on the server; and the types and ID numbers of nodes, sources,
and drains on each device.

14

Chapter 1: Features of the OCTANE Personal Video Option

vintovout Use this tool to display video input on the device attached to video
output.

vidtomem Use this tool to capture a single frame (the current video input) or a
specified number of frames, depending on the hardware limits for burst
capture, and write the data to disk. Capture size can also be specified.
The data, which can be translated or left as raw data, can be used by the
memtovid tool.

memtovid Use this tool to output frames (images) to video out on hardware that
supports the memory-to-video path.

The vlinfo, vidtomem, and memtovid tools are command-line tools. In addition to their
reference pages, these tools have explanations in the Media Control Panels User’s Guide.
Similar applications are supplied in source-code form as examples in the directories
/usr/share/src/dmedia/video/vl and /usr/share/src/dmedia/video/vl/OpenGL.

Library and Header Files

The client library is /usr/lib/libvl.so. The header files for the VL are in /usr/include/dmedia.
The header file for the VL, vl.h, contains the main definition of the VL API and controls.
The header file for OCTANE Personal Video is /usr/include/dmedia/vl_evo.h (linked to
/usr/include/vl/dev_evo.h).

VL Architectural Model of Video Devices

The VL recognizes these classes of objects:

• devices, each including sets of nodes

A video device can be internal, such as the OCTANE Personal Video board, or
external, such as a videotape recorder connected to the board.

• nodes: sources, drains, and internal nodes

• paths, connecting sources and drains

• events, for monitoring video I/O status

• controls, or parameters, that modify how data flows through nodes; for example:

– video device parameters, such as blanking width, gamma value, horizontal
phase, sync source

VL Architectural Model of Video Devices

15

– video data capture parameters

• buffers: for sending video data to and receiving video data from host memory

These can be either VL buffers or DMbuffers

Central concepts for VL are node and path. This section explains

• “Node” on page 15

• “Path” on page 15

• “OCTANE Personal Video Software Model” on page 17

Node

The node is an endpoint or internal processing element of the path, such as a video source
like a VTR, video drain (such as to memory or a video output), or a device (video).

Path

The path is an abstraction for a way of moving data around. A path is a set of nodes with
video routes (connections) between the ports on the nodes. A path defines the useful
connections between video sources and video drains. Figure 1-8 shows a simple path in
which a frame from a videotape is captured to memory.

Figure 1-8 Simple VL Path

Source Drain

VTR

Picture in
memory

16

Chapter 1: Features of the OCTANE Personal Video Option

Figure 1-9 shows a more complex path with two video drains: a frame from a
workstation window is captured to memory and sent to video output simultaneously.
This path is set up in stages.

Figure 1-9 Complex VL Path

VTR

Source Drain

Source

Drain2

Drain1

/*Create the screen to video path */
vlPath = vlCreatePath(vlSvr, devicenum, src_scr, dm_vid);

/*Add the videosource node */
vlAddNode(vlSvr, vlPath, drn_mem);

Picture in
memory

VL Architectural Model of Video Devices

17

OCTANE Personal Video Software Model

Figure 1-10 diagrams how the OCTANE Personal Video board looks to software.

Figure 1-10 OCTANE Personal Video Software Model

Memory nodes appear as both source and drains. These nodes cannot be both at the same
time; source and drain modes are mutually exclusive.

The board’s crossbar switch allows any source to connect to any drain. Multiple
connections can be made simultaneously. For example, the board can capture video and
transfer it to memory simultaneously; it can capture video and transfer it to one memory
drain in YUV format and the other in RGB format, all simultaneously.

Video
drain

CSC

Memory1
source/drain

Memory2
source/drain

Scale

CSC

Scale

CSC

Crossbar switch

Analog in

O2Camconnector(digital)

Graphics(VOC)

18

Chapter 1: Features of the OCTANE Personal Video Option

OCTANE Personal Video Formats

The OCTANE Personal Video board translates video signals into a form usable by the
OCTANE workstation. It also does the reverse, translating graphics from the OCTANE
display into video signals. Table 1-2 summarizes the formats that the OCTANE Personal
Video board supports.

These formats apply to memory source and drain nodes only.

Table 1-2 Video Formats for OCTANE Personal Video Memory Nodes

Format Signal

Digital component YCrCb serial
(VL_FORMAT_DIGITAL_COMPONENT_SERIAL)

YCrCb 4:2:2 serial digital signal with 8-bit words. Component
ranges are 16 to 235. Conforms to the CCIR-601 specification.

SMPTE YUV (VL_FORMAT_SMPTE_YUV) Contains YUV components in the range 1-254; superblack and
superwhite values can be present.

Digital component RGB serial
(VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL)

Dual-link RGBA signal with GBR 4:2:2 (b0, g0, r0, g1, b2, g2, r2...)
on the first link and ABR 4:2:2 (b1, a0, r1, a1, b3, a2, r3...) on the
second link. Component ranges are 16 to 235 (8-bit) or 64-940
(10-bit).

Conforms to the RP175 specification.

RGB (VL_FORMAT_RGB) Full-range 8-bit or 10-bit per component RGBA. Component range
is 0 to 255 (8-bit) and 0-1023 (10-bit).

19

Chapter 2

2. Setting Up Your VL Application

Used in conjunction with your OCTANE Personal Video option, Video Library (VL) calls
let you capture any part of the screen display and scale it down, output
computer-generated graphics to videotape or the O2Cam digital camera, and output the
input video source to the graphics monitor, to a video device such as a VCR, or both.

This chapter explains the first steps for creating video programs for OCTANE Personal
Video:

• “The VL Programming Model”

• “Performing Preliminary Steps”

• “Opening a Connection to the Video Daemon”

• “Specifying Nodes on the Data Path”

• “Creating and Setting Up the Data Path”

The VL Programming Model

Syntax elements are as follows:

• VL types and constants begin with uppercase VL; for example, VLServer

• VL functions begin with lowercase vl; for example, vlOpenVideo()

Data transfers fall into two categories:

• transfers involving memory (video to memory, memory to video), which require
setting up a buffer

• transfers not involving memory (such as video to screen and graphics to video),
which do not require a buffer

20

Chapter 2: Setting Up Your VL Application

For the two categories of data transfer, based on the VL programming model, the process
of creating a VL application consists of these steps:

1. Open a connection to the video daemon (vlOpenVideo()); if necessary, determine
which device the application will use (vlGetDevice(), vlGetDeviceList()).

2. Specify nodes on the data path (vlGetNode()).

3. Create the path (vlCreatePath()).

4. (Optional step) Add more connections to a path (vlAddNode()).

5. Set up the hardware for the path (vlSetupPaths()).

6. Specify path-related events to be captured (vlSelectEvents()).

7. Set input and output parameters (controls) for the nodes on the path
(vlSetControl()).

8. For transfers involving memory, create a VL buffer to hold data for memory
transfers (vlGetTransferSize(), dmBufferCreatePool() or vlCreateBuffer()).

9. For transfers involving memory, register the buffer (vlRegisterBuffer()) or
(video-to-memory only) vlDMBufferPoolRegister()

10. Start the data transfer (vlBeginTransfer()).

11. For transfers involving memory, get the data and manipulate it (DMbuffers:
vlDMBufferGetValid(), vlGetActiveRegion(), dmBufferFree(); VL buffers:
vlGetNextValid(), vlGetLatestValid(), vlGetActiveRegion(), vlPutFree()).

12. Clean up (vlEndTransfer(), vlDeregisterBuffer(), vlDestroyPath(), dmBuffer() or
vlDestroyBuffer(), vlCloseVideo()).

Performing Preliminary Steps

To build programs that run under VL, you must

• install the dmedia_dev option

• link with libvl.so

• include vl.h and dev_evo.h

The client library is /usr/lib/libvl.so. The header files for the VL are in /usr/include/dmedia.
The header file for the VL, vl.h, contains the main definition of the VL API and controls.

Opening a Connection to the Video Daemon

21

The header file for OCTANE Personal Video is /usr/include/dmedia/vl_evo.h (linked to
/usr/include/vl/dev_evo.h).

Note: When building a VL-based program, you must add -lvl to the linking command.

Opening a Connection to the Video Daemon

The first thing a VL application must do is open the device with vlOpenVideo(). Its
function prototype is

VLServer vlOpenVideo(const char *sName)

where sName is the name of the server to which to connect; set it to a NULL string for the
local server. For example:

vlSvr = vlOpenVideo("")

Specifying Nodes on the Data Path

Use vlGetNode() to specify nodes; this call returns the node’s handle. Its function
prototype is

VLNode vlGetNode(VLServer vlSvr, int type, int kind, int number)

where

VLNode is a handle for the node, used when setting controls or setting up paths

vlSvr names the server (as returned by vlOpenVideo())

type specifies the type of node:

• VL_SRC: source

• VL_DRN: drain

• VL_DEVICE: device for device-global controls

Note: If you are using VL_DEVICE, the kind should be set to 0.

kind specifies the kind of node:

• VL_MEM: region of workstation memory

• VL_SCREEN: workstation screen (source only)

22

Chapter 2: Setting Up Your VL Application

• VL_VIDEO: connection to a video device; for example, a video tape
deck or O2Cam digital camera

Note: Appendix B, “OCTANE Personal Video Nodes and Their
Controls,” gives full details of all OCTANE Personal Video nodes.

number is the number of the node in cases of two or more identical nodes, such
as three video source nodes

To discover which node the default is, use the control VL_DEFAULT_SOURCE after
getting the node handle the normal way. The default video source is maintained by the
VL. For example:

vlGetControl(vlSvr, path, VL_ANY, VL_DEFAULT_SOURCE, &ctrlval);
nodehandle = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, ctrlval.intVal);

In the first line above, the last argument is a struct that retrieves the value. Corresponding
to VL_DEFAULT_SOURCE, the control VL_DEFAULT_DRAIN gets the default VL_SRC
node.

Creating and Setting Up the Data Path

Once nodes are specified, use VL calls to

• create the path

• get the device ID

• add nodes (optional step)

• set up the data path

• specify the path-related events to be captured

Creating the Path

Use vlCreatePath() to create the data path. Its function prototype is

VLPath vlCreatePath(VLServer vlSvr, VLDev vlDev
 VLNode src, VLNode drn)

This code fragment creates a path if the device is unknown:

if ((path = vlCreatePath(vlSvr, VL_ANY, src, drn)) < 0) {

Creating and Setting Up the Data Path

23

 vlPerror(_progName);
 exit(1);
}

This code fragment creates a path that uses a device specified by parsing a devlist:

if ((path = vlCreatePath(vlSvr, devlist[devicenum].dev, src,
 drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

Note: If the path contains one or more invalid nodes, vlCreatePath() returns
VLBadNode.

Getting the Device ID

If you specify VL_ANY as the device when you create the path, use vlGetDevice() to
discover the device ID selected. Its function prototype is

VLDev vlGetDevice(VLServer vlSvr, VLPath path)

For example:

devicenum = vlGetDevice(vlSvr, path);
deviceName = devlist.devices[devicenum].name;
printf("Device is: %s/n", deviceName);

Adding a Node

For this optional step, use vlAddNode(). Its function prototype is

int vlAddNode(VLServer vlSvr, VLPath vlPath, VLNodeId node)

where

vlSvr names the server to which the path is connected

vlPath is the path as defined with vlCreatePath()

node is the node ID

24

Chapter 2: Setting Up Your VL Application

This example fragment adds a video source node and a device node:

vlAddNode(vlSvr, vlPath, src_vid);
vlAddNode(vlSvr, vlPath, dev_node);

Setting Up the Data Path

Use vlSetupPaths() to set up the data path. Its function prototype is

int vlSetupPaths(VLServer vlSvr, VLPathList paths,
 u_int count, VLUsageType ctrlusage,
 VLUsageType streamusage)

where

vlSvr names the server to which the path is connected

paths specifies a list of paths you are setting up

count specifies the number of paths in the path list

ctrlusage specifies usage for path controls:

• VL_SHARE: other paths can set controls on this node; this control is
the desired setting for other paths, including vcp, to work

Note: When using VL_SHARE, pay attention to events. If another
user has changed a control, a VLControlChanged event occurs.

• VL_READ_ONLY: controls cannot be set, only read; for example,
this control can be used to monitor controls

• VL_LOCK: prevents other paths from setting controls on this path;
controls cannot be used by another path

• VL_DONE_USING: the resources are no longer required; the
application releases this set of paths for other applications to
acquire

streamusage specifies usage for the data:

• VL_SHARE: transfers can be preempted by other users; paths
contend for ownership

Note: When using VL_SHARE, pay attention to events. If another
user has taken over the node, a VLStreamPreempted event occurs.

Creating and Setting Up the Data Path

25

• VL_READ_ONLY: the path cannot perform transfers, but other
resources are not locked; set this value to use the path for controls

• VL_LOCK: prevents other paths that share data transfer resources
with this path from transferring; existing paths that share resources
with this path will be preempted

• VL_DONE_USING: the resources are no longer required; the
application releases this set of paths for other applications to
acquire

This example fragment sets up a path with shared controls and a locked stream:

if (vlSetupPaths(vlSvr, (VLPathList)&path, 1, VL_SHARE,
 VL_LOCK) < 0)
{
 vlPerror(_progName);
 exit(1);
}

Specifying the Path-Related Events to Be Captured

Use vlSelectEvents() to specify the events you want to receive. Its function prototype is

int vlSelectEvents(VLServer vlSvr, VLPath path, VLEventMask eventmask)

where

vlSvr names the server to which the path is connected

path specifies the data path.

eventmask specifies the event mask; Table 2-1 lists the possibilities

Table 2-1 lists and describes the VL event masks.

Table 2-1 VL Event Masks

Symbol Meaning

VLStreamBusyMask Stream is locked

VLStreamPreemptedMask Stream was grabbed by another path

VLStreamChangedMask Video routing on this path has been changed by another path

26

Chapter 2: Setting Up Your VL Application

For example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask);

Event masks can be Or’ed; for example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask |
 VLTransferFailedMask);

For more details on VL event handling, see Chapter 7, “Event Handling.”

VLAdvanceMissedMask Time was already reached

VLSyncLostMask Irregular or interrupted signal

VLSequenceLostMask Field or frame dropped

VLControlChangedMask A control has changed

VLControlRangeChangedMask A control range has changed

VLControlPreemptedMask Control of a node has been preempted, typically by another
user setting VL_LOCK on a path that was previously set with
VL_SHARE

VLControlAvailableMask Access is now available

VLTransferCompleteMask Transfer of field or frame complete

VLTransferFailedMask Error; transfer terminated; perform cleanup at this point,
including vlEndTransfer()

VLEvenVerticalRetraceMask Vertical retrace event, even field

VLOddVerticalRetraceMask Vertical retrace event, odd field

VLFrameVerticalRetraceMask Frame vertical retrace event

VLDeviceEventMask Device-specific event, such as a trigger

VLDefaultSourceMask Default source changed

Table 2-1 (continued) VL Event Masks

Symbol Meaning

27

Chapter 3

3. Setting Parameters for Data Transfer

Transferring data to or from memory requires creating a DMbuffer or VL buffer, as
explained in “Transferring Video Data to and From Devices” in Chapter 5. This chapter
explains how to set node controls for data transfer and consists of these sections:

• “Device-Independent Controls for OCTANE Personal Video” on page 28

• “VL_TIMING” on page 30

• “VL_EVO_FILTER_TYPE” on page 31

• “VL_FORMAT” on page 32

• “VL_PACKING” on page 35

• “VL_ZOOM” on page 37

• “VL_SIZE” on page 41

• “VL_OFFSET” on page 42

• “VL_CAP_TYPE and VL_RATE” on page 44

• “VL_COLORSPACE” on page 48

• “Camera Controls” on page 54

28

Chapter 3: Setting Parameters for Data Transfer

Device-Independent Controls for OCTANE Personal Video

To set frame data size and to convert from one video format to another, apply controls to
the nodes.

Table 3-1 summarizes important data transfer controls for source and drain nodes. These
controls are highly interdependent, so the order in which they are set is important; set
them in the order in which they appear in the table. In most cases, the value being set
takes precedence over other values that were previously set.

Note: Changes in one parameter may change the values of other parameters set earlier;
for example, clipped size may change if VL_OFFSET is set after VL_SIZE.

Table 3-1 Nodes and Data Transfer Controls

Control Sets ... Memory Nodes Screen Node Video Nodes

VL_FORMAT Format Selects color space Not applicable Selects physical
connector

VL_TIMING Video timing Yes Yes Yes

VL_CAP_TYPE Type of field(s) or
frame(s) to capture

Yes Not applicable Not applicable

VL
_COLORSPACE

Color space of video data
in memory

Yes Not applicable Not applicable

VL_PACKING Pixel packing
(conversion) format

Changes pixel format of
captured data

Not applicable Not applicable

VL_ZOOM Scaling down to any size
between the full
field/frame size and a
certain number of pixels

Yes Scales a selected region of
the graphics display from
unity (1/1) to 2 pixels by
2 lines

Set only to 1/1

VL_ASPECT Horizontal scale factor;
used with VL_ZOOM to
correct aspect ratio

Effective horizontal scale
factor is VL_ZOOM *
VL_ASPECT

Effective horizontal scale
factor is VL_ZOOM *
VL_ASPECT

Not applicable

VL_SIZE Clipping size Yes Yes Full size of video, read
only

Device-Independent Controls for OCTANE Personal Video

29

To determine default values, use vlGetControl() to query the values on the video source
or drain node before setting controls. The initial offset of the video node is the first active
line of video.

Similarly, the initial size value on the video source or drain node is the full size of active
video being captured by the hardware, beginning at the default offset. Because some
hardware can capture more than the size given by the video node, this value should be
treated as a default size.

For all these controls, it pays to track return codes. If the value returned is
VLValueOutOfRange, the value set is not what you requested.

To specify the controls, use vlSetControl(), for which the function prototype is

int vlSetControl(VLServer vlSvr, VLPath vlPath, VLNode node,
 VLControlType type, VLControlValue * value)

VL_OFFSET Position within larger
area relative to
VL_ORIGIN

Offset relative to video
offset

Sets where the scaled
images produced by this
node are inserted into a
video frame, for centering
or other placement

Set only to (0,0)

VL_ORIGIN Position within video Not applicable Screen position of first
pixel displayed; works
with VL_SIZE

Not applicable

VL_RATE Field or frame transfer
speed

Yes Not applicable Not applicable

VL_FLICKER
_FILTER

Enables or disables flicker
reduction

Not applicable Yes Not applicable

VL_FREEZE Freezes the image Not applicable Graphic updates are not
reflected in the generated
video signal

Set only to FALSE for
source nodes because
device does not support
frozen inputs

Table 3-1 (continued) Nodes and Data Transfer Controls

Control Sets ... Memory Nodes Screen Node Video Nodes

30

Chapter 3: Setting Parameters for Data Transfer

VL_TIMING

Timing type expresses the timing of video presented to a source or drain. Table 3-2
summarizes dimensions for VL_TIMING.

VL_TIMING is applicable on all OCTANE Personal Video nodes. However, the timing
standard for the O2Cam digital camera input can be only NTSC square-pixel or CCIR
525-line nonsquare-pixel timing (VL_TIMING_525_SQ_PIX or
VL_TIMING_525_CCIR601).

The VL_TIMING control affects how the video signal is sampled. Internally, the
OCTANE Personal Video board represents all video signals as nonsquare (CCIR601
525-line or 625-line).

Use parameters VL_TIMING_525_SQ_PIX and VL_TIMING_625_SQ_PIX, which
convert nonsquare pixels to square pixels to avoid multiple filters being applied to video.

Table 3-2 Dimensions for Timing Choices

Timing
Maximum
Width

Maximum
Height

VL_TIMING_525_SQ_PIX (12.27 MHz) 640 486

VL_TIMING_625_SQ_PIX (14.75 MHz) 768 576

VL_TIMING_525_CCIR601 (13.50 MHz) 720 486

VL_TIMING_625_CCIR601 (13.50 MHz) 720 576

VL_EVO_FILTER_TYPE

31

VL_EVO_FILTER_TYPE

Once the aspect ratio is accounted for, square-pixel and nonsquare-pixel images have
differently sized active regions. In nonsquare modes, the active region is 720 pixels
across. In square modes, the active region is 640 pixels for NTSC and 768 pixels for PAL.
Correcting for the aspect ratio with a 11/10 filter, the result is 640 × 11/10 = 704, or 16
pixels short of the nonsquare sampling.

The OCTANE Personal Video option software includes a memory drain and video drain
control, VL_EVO_FILTER_TYPE, that selects between two methods of converting square
pixel images to nonsquare pixel images, or vice versa:

• VL_EVO_FILTER_TYPE_FREQ selects the frequency-preserving filter, which
preserves the aspect ratio of the image exactly.

For example, a circle displayed on a nonsquare video monitor looks the same as on
a square graphics display, with no distortion. However, the width of the active
region is not the same: a line of 720 nonsquare pixels does not map directly to a line
of 640 or 768 square pixels.

• VL_EVO_FILTER_TYPE_SPAT selects the spatially preserving filter, which
preserves the width of the active region.

This filter takes in 640 horizontal pixels and produces 720 horizontal pixels. In the
other direction, the 720-pixel line in nonsquare mode maps directly to the 640 or 768
pixels in square mode.

Although the spatially preserving filter preserves the contents of a line, it does not
preserve the frequency characteristics of the image. For example, a circle in square
pixel mode is slightly distorted in nonsquare pixel mode when displayed on a video
monitor; however, the entire active region in the nonsquare case is filled.

Note: When square-pixel data is sent to video out, the conversion can be either
frequency-preserving or spatially preserving. When video is captured to memory, only
frequency-preserving conversions are performed for NTSC square-to-nonsquare
conversion and PAL nonsquare-to-square conversions (regardless of the
VL_EVO_FILTER_TYPE setting).

32

Chapter 3: Setting Parameters for Data Transfer

VL_FORMAT

VL_FORMAT has two sets of parameters, depending on whether it is applied to a
memory node or a video node. (It is not applicable to the screen node.) For memory
nodes, VL_FORMAT specifies the color space; for video nodes, VL_FORMAT selects the
connector on the board.

This section discusses

• “Using VL_FORMAT to Specify Color Space” on page 32

• “Selecting the Input Connector” on page 33

• “Specifying the Video Drain Node” on page 35

Using VL_FORMAT to Specify Color Space

Generally, you set color space with VL_COLORSPACE. VL_FORMAT values are
provided for compatibility with existing applications. Table 3-3 shows the
correspondence.

Table 3-3 VL_FORMAT and VL_COLORSPACE Correspondence

VL_FORMAT Value VL_COLORSPACE Value

VL_FORMAT_DIGITAL_COMPONENT_SERIAL VL_COLORSPACE_CCIR601

VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL VL_COLORSPACE_RP175

VL_FORMAT_SMPTE_YUV VL_COLORSPACE_YUV

VL_FORMAT_RGB VL_COLORSPACE_RGB

VL_FORMAT

33

Selecting the Input Connector

VL_FORMAT works in conjunction with VL_VIDEO node parameters to select the input
connector on the OCTANE Personal Video option board. Applied to video source nodes,
VL_FORMAT has five parameters, as summarized in Table 3-4.

Note: The O2Cam connector can be a digital input when an appropriate third-party
serial digital converter is connected to it.

These control parameters must be used in conjunction with VL_VIDEO source node
parameters to select the connector:

• VL_EVO_NODE_NUMBER_VIDEO_1: digital video node, that is, the O2Cam input
used with a third-party serial converter

• VL_EVO_NODE_NUMBER_VIDEO_2: O2Cam digital camera connector

• VL_EVO_NODE_NUMBER_VIDEO_3: analog video node; the VL_FORMAT
control selects between composite, Y/C, or loopback

Table 3-4 Using VL_FORMAT to Select Input Connector (Video Source Nodes)

Control Parameter Connector

VL_FORMAT_SVIDEO S-Video (Y/C)

VL_FORMAT_COMPOSITE Composite (BNC)

VL_FORMAT_CAMERA O2Cam connector (68-pin D)

VL_EVO_FORMAT_LOOPBACK None; used for loopback from analog video out
to analog video in with no cable necessary

VL_FORMAT_DIGITAL_COMPONENT_SERIAL O2Cam connector used as digital input, with
appropriate third-party converter attached

34

Chapter 3: Setting Parameters for Data Transfer

Table 3-5 summarizes how the VL_VIDEO source node parameters and the
VL_FORMAT parameters work together.

To select a video input format, call vlGetNode() with the video source node number of
interest. After setting up a path, set the VL_FORMAT control on that node to the
appropriate value. For example, to select the composite video BNC, get a node by
passing node number VL_EVO_NODE_NUMBER_VIDEO_3 to vlGetNode(), set up a
path, and then set VL_FORMAT to VL_FORMAT_COMPOSITE, as illustrated in this
example:

src_node = vlGetNode(svr, VL_SRC, VL_VIDEO,VL_EVO_NODE_NUMBER_VIDEO_3);
path = vlCreatePath(svr, dev, src_node, drain_node);
vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE, VL_SHARE);
ctlVal.intVal = VL_FORMAT_COMPOSITE;
vlSetControl(svr, path, src_node, VL_FORMAT, &ctlVal);

Table 3-5 VL_VIDEO Source Nodes

To select ... For Connector ... Set VL_VIDEO Parameter ... And VL_FORMAT Parameter ...

4:2:2 YCrCb O2Cam connector with third-party
serial digital converter

VL_EVO_NODE_NUMBER
_VIDEO_1

VL_FORMAT_DIGITAL
_COMPONENT_SERIAL

O2Cam digital
camera

O2Cam connector with O2Cam
digital camera attached

VL_EVO_NODE_NUMBER
_VIDEO_2

VL_FORMAT_CAMERA

Composite Analog video BNC VL_EVO_NODE_NUMBER
_VIDEO_3

VL_FORMAT_COMPOSITE

Y/C (S-Video) Analog video 8-pin mini-DIN VL_EVO_NODE_NUMBER
_VIDEO_3

VL_FORMAT_SVIDEO

Loopback from
analog video out to
analog video in

None VL_EVO_NODE_NUMBER
_VIDEO_3

VL_EVO_FORMAT_LOOPBACK

VL_PACKING

35

Specifying the Video Drain Node

Because there is only one VL_VIDEO drain node, it has no number parameters and
drives all output connectors at once. Thus, it is not strictly necessary to set a
VL_FORMAT value to select the output connector. However, Table 3-6 shows
VL_FORMAT values for various connectors.

VL_PACKING

A video packing describes how a video signal is stored in memory, in contrast with a
video format, which describes the characteristics of the video signal. For example, the
memory source nodes accept packed video from a DMbuffer or VL buffer and output
video in a given format.

Packings are specified through the VL_PACKING control on the memory nodes. This
control also converts one video output format to another in memory, within the limits of
the nodes.

Table 3-7 summarizes packing types for eight bits per component.

Table 3-6 Using VL_FORMAT to Select Output Connector (Optional)

To select ... For Output Connector ... VL_FORMAT Value

Y/C (S-Video) Analog video 4-pin mini-DIN VL_FORMAT_SVIDEO

Composite BNC VL_FORMAT_COMPOSITE

4:2:2 YCrCb O2Cam connector with third-party
serial digital converter

VL_FORMAT_DIGITAL_COMPONENT
_SERIAL

Table 3-7 Packing Types for Eight Bits per Component

Type Use 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

VL_PACKING_YVYU_422_8 YUV 4:2:2 U0 Y0 V0 Y1 U2 Y2 V2 Y3

VL_PACKING_YUVA_4444_8 YUVA 4:4:4:4 A0 U0 Y0 V0 A1 U1 Y1 V1

VL_PACKING_AUYV_4444_8 AUYV 4:4:4:4 V0 Y0 U0 A0 V1 Y1 U1 A1

36

Chapter 3: Setting Parameters for Data Transfer

Note: All these packings are native to the OCTANE Personal Video option, except
VL_PACKING_RGB_332_P and VL_PACKING_Y_8_P, which are implemented
automatically in software.

The OCTANE Personal Video option also supports VL_PACKING_YVYU_422_10, a
YUV 4:2:2 packing type for ten bits per component. The ten data bits are left-aligned
within a 16-bit word; Table 3-7 summarizes this packing. The hardware sets the lower six
bits to zero before it writes them to memory. In reading from memory, it ignores the lower
six bits.

VL_PACKING_UYV_8_P YCrCb, 8 bits per
component packed into
24 bits (3 bytes) per pixel

V0 Y0 U0 V1 Y1 U1 V2 Y2

VL_PACKING_RGBA_8 RGBA A0 B0 G0 R0 A1 B1 G1 R1

VL_PACKING_ABGR_8 ABGR R0 G0 B0 A0 R1 G1 B1 A1

VL_PACKING_RGB_332_P RGB; each 8-bit pixel, Pn,
is shown as BBGGGRRR

P7 P6 P5 P4 P3 P2 P1 P0

VL_PACKING_Y_8_P Grayscale (luminance
only)

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

VL_PACKING_RGB_8 RGB, 24-bit word, Xn are
ignored

X0 B0 G0 R0 X1 B1 G1 R1

VL_PACKING_BGR_8_P RGB R0 G0 B0 R1 G1 B1 R2 G2

Table 3-8 VL_PACKING_YVYU_422_10 Bits

Bits Component

63-48 [U0]000000

47-32 [Y0]000000

31-16 [V0]000000

15-0 [Y1]000000

Table 3-7 (continued) Packing Types for Eight Bits per Component

Type Use 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

VL_ZOOM

37

Appendix C, “Pixel Packings and Color Spaces,” shows the layout of each packing for
the OCTANE Personal Video option. It also gives the corresponding names for these
packings that are used by other libraries.

For drain nodes, VL_PACKING must be set first. Note that changes in one parameter
may change the values of other parameters set earlier; for example, clipped size may
change if VL_PACKING is set after VL_SIZE. For example:

VLControlValue val;

val.intVal = VL_PACKING_RGBA_10;
vlSetControl(vlSvr, path, memdrn, VL_PACKING, &val);

VL_ZOOM

VL_ZOOM controls the scaling (decimation) of the video image, with values less than
one performing the scaling. Figure 3-1 illustrates scaling.

Figure 3-1 Zoom (Scaling)

This section explains

• “VL_ZOOM on Memory Nodes” on page 37

• “VL_ZOOM on Video Nodes” on page 38

• “VL_ZOOM on Screen Nodes” on page 39

VL_ZOOM on Memory Nodes

Applied to OCTANE Personal Video memory nodes, VL_ZOOM does not increase the
size of an image, but decimates only. VL_ZOOM changes the x and y scale factors by the
same amount. The effective scale size is determined by both VL_ZOOM and

Decimation factor: 1/2

Original
image

38

Chapter 3: Setting Parameters for Data Transfer

VL_ASPECT: the horizontal scale factor is VL_ZOOM * VL_ASPECT, and the vertical
scale factor is VL_ZOOM. An example using VL_ASPECT is given later in this section.

Besides the setting of VL_ASPECT, scaling with VL_ZOOM depends on the capture type
and the packing. Table 3-9 summarizes the minimum values achievable for VL_ZOOM
applied to memory source and drain nodes; for these minimum values, you must also
use VL_ASPECT.

VL_ZOOM takes a nonzero fraction as its argument; do not use negative values.

To correct the x scale, use VL_ASPECT. The following example sets the horizontal scale
to 1/2 and the vertical scale to 1/1:

val.fractVal.numerator=1;
val.fractVal.denominator=1;
vlSetControl(svr, path, memnode, VL_ZOOM, &val);
 val.fractVal.numeriator=1;
 val.fractVal.denominator=2;
vlSetControl(svr, path, memnode, VL_ASPECT, &val);

VL_ZOOM on Video Nodes

On video source and drain nodes, you can set VL_ZOOM to unity (1/1) only, because
OCTANE Personal Video device does not support scaling on a video node.

Table 3-9 VL_ZOOM on Memory Nodes: Minimum Values With VL_ASPECT

Minimum
Pixel Number VL_CAP_TYPE Value VL_PACKING Value

4 x 1 VL_CAPTURE_NONINTERLEAVED All but VL_PACKING_BGR_8_P or VL_PACKING_UYV_8_P

4 x 2 VL_CAPTURE_INTERLEAVED All butVL_PACKING_BGR_8_P or VL_PACKING_UYV_8_P

24 x 1 VL_CAPTURE_NONINTERLEAVED VL_PACKING_BGR_8_P or VL_PACKING_UYV_8_P only

24 x 2 VL_CAPTURE_INTERLEAVED VL_PACKING_BGR_8_P or VL_PACKING_UYV_8_P only

VL_ZOOM

39

VL_ZOOM on Screen Nodes

On screen source nodes, if the VL_ZOOM value makes the resulting size invalid (that is,
larger than a frame size), the size is constrained and a VLControlChanged event is
generated. If the scaled size of the selected graphics region is smaller than the video
frame size, use VL_OFFSET on the drain node to position the generated video.

Because the OCTANE Personal Video option can scale data coming from the screen
source node, the minimum size (2 x 2) is the size after zooming. However, user-specified
VL_SIZE numbers refer to the size before zooming. Thus, the minimum size the user can
specify is the size that, when zoomed, yields 2 x 2. For example:

/*
 Set the (unzoomed) size to 20 pixels by 20 lines
*/
val.xyVal.x = 20;
val.xyVal.y = 20;
if (vlSetControl(server, screeen_path, screen_source_node, VL_SIZE,
&val)) {
 vlPerror(“Unable to set size”);
 exit(1);
}
/*
 Set the scale factor to 1/10. This results in a scaled size of
 20*1/10 by 20*1/10, or 2 pixels by 2 lines
*/
val.fractVal.numerator = 1;
val.fractVal.denominator = 10;
if (vlSetControl(server, screen_path, screen_source_node, VL_ZOOM,
&val)) {
 vlPerror(“Unable to set zoom”);
 exit(1);
}

40

Chapter 3: Setting Parameters for Data Transfer

This fragment causes the screen source node to send xsize × ysize video with as much
scaling as possible, assuming the size is smaller than the video stream:

if (vlGetControl(server, screen_path, screen_source, VL_SIZE, &val))
{
 vlPerror("Unable to get size");
 exit(1);
}
if (val.xyVal.x/xsize < val.xyVal.y/ysize)
 zoom_denom = (val.xyVal.x + xsize - 1)/xsize;
else
 zoom_denom = (val.xyVal.y + ysize - 1)/ysize;
val.fractVal.numerator = 1;
val.fractVal.denominator = zoom_denom;
if (vlSetControl(server, screen_path, screen_source_node, VL_ZOOM,
&val))
{
 /* allow this error to fall through */
 vlPerror("Unable to set zoom");
}
val.xyVal.x = xsize;
val.xyVal.y = ysize;
if (vlSetControl(server, screen_path, screen_source_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);

}.

VL_SIZE

41

VL_SIZE

VL_SIZE controls how much of the image sent to the drain is used; that is, how much
clipping takes place. This control operates on the zoomed image; for example, when the
image is scaled to half size, the limits on the size control change by a factor of 2. Figure 3-2
illustrates clipping.

Figure 3-2 Clipping an Image

For example, to display PAL video in a 320 × 243 space, clip the image to that size, as
shown in the following fragment:

VLControlValue value;
value.xyVal.x=320;
value.xyVal.y=243;
vlSetControl(vlSvr, path, drn, VL_SIZE, &value);

Original
image

Clipping a
scaled image

Clipping an
unzoomed image

Image to fit
into this space

Placement of
clipping area
depends on
the value of
VL_OFFSET

42

Chapter 3: Setting Parameters for Data Transfer

On video source and drain nodes, VL_SIZE is fixed for each timing mode:

• CCIR 525: 720 x 486

• CCIR 625: 720 x 576

• NTSC square-pixel: 640 x 486

• PAL square-pixel: 768 x 576

Note: Because this control interacts with other controls, always check the error returns.
For example, if offset is set before size and an error is returned, set size before offset.

VL_OFFSET

VL_OFFSET puts the upper left corner of the video data at a specific position; it sets the
beginning position for the clipping performed by VL_SIZE. The values you enter are
relative to the origin.

This example places the data ten pixels down and ten pixels in from the left:

VLControlValue value;
value.xyVal.x=10;
value.xyVal.y=10;
vlSetControl(vlSvr, path, drn, VL_OFFSET, &value);

Note: To capture the blanking region, set offset to a negative value.

VL_OFFSET

43

Figure 3-3 shows the controls that you can apply before and after you set offset, clipping,
and scaling. Once the image is clipped, you can apply VL_ZOOM to scale it further.

Figure 3-3 Zoom, Size, and Offset, and Origin

For memory nodes, VL_OFFSET and VL_SIZE in combination define the active region of
video that is transferred to or from memory. On video source and drain nodes,
VL_OFFSET can be set only to (0,0).

VL_OFFSET (0,0)

VL_SIZE
/ VL_ZOOM

Clipped

Scaled

VL_SIZE
/ VL_ZOOM

VL_SIZE
/ VL_ZOOM

44

Chapter 3: Setting Parameters for Data Transfer

VL_CAP_TYPE and VL_RATE

An application can request that the OCTANE Personal Video option capture or play back
a video stream in a number of ways. For example, the application can request that each
field be placed in its own buffer, that each buffer contain an interleaved frame, or that
only odd or even fields be captured. This section enumerates the capture types that the
OCTANE Personal Video option supports.

A field mask is useful for identifying which fields will be captured and played back and
which fields will be dropped. A field mask is a bit mask of 60 bits for NTSC or 50 bits for
PAL (two fields per frame). A numeral 1 in the mask indicates that a field is captured or
played back; a zero indicates that no action occurs.

For example, the following field mask indicates that every other field will be captured or
played back:

10101010101010101010...

Capture types are as follows:

• VL_CAPTURE_NONINTERLEAVED

• VL_CAPTURE_INTERLEAVED

• VL_CAPTURE_EVEN_FIELDS

• VL_CAPTURE_ODD_FIELDS

• VL_CAPTURE_FIELDS

These capture types apply to both VL buffers and DMbuffers.

VL_CAP_TYPE and VL_RATE

45

VL_RATE determines the data transfer rate by field or frame, depending on the capture
type as specified by VL_CAP_TYPE, as shown in Table 3-10.

Note: All rates are supported on all memory nodes. The buffer size must be set in
accordance with the capture type.

VL_CAPTURE_NONINTERLEAVED

The VL_CAPTURE_NONINTERLEAVED capture type specifies that frame-size units
are captured noninterleaved. Each field is placed in its own buffer, with the dominant
field in the first buffer. If one of the fields of a frame is dropped, all fields are dropped.
Consequently, an application is guaranteed that the field order is maintained; no special
synchronization is necessary to ensure that fields from different frames are mixed.

The rate (VL_RATE) for noninterleaved capture is in terms of fields and must be even.
For NTSC, the capture rate may be from 2 to 60 fields per second, and for PAL 2 to 50
fields per second. Because a frame is always captured as a whole, a rate of 30 fields per
second results in the following field mask:

1100110011001100...

The first bit in the field mask corresponds to the dominant field of a frame. The OCTANE
Personal Video option waits for a dominant field before it starts the transfer.

If VL_CAPTURE_NONINTERLEAVED is specified for playback, similar guarantees
apply as for capture. If one field is lost during playback, it is not possible to “take back”
the field. The OCTANE Personal Video option resynchronizes on the next frame
boundary, although black or “garbage” video might be present between the erring field
and the frame boundary.

Table 3-10 VL_RATE Values (Items per Second)

VL_CAP_TYPE Value VL_RATE Value: NTSC VL_RATE Value: PAL

VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED

1-30 frames/second 1-25 frames/second

VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS

1-30 fields/second 1-25 frames/second

VL_CAPTURE_FIELDS 1-60 fields/second 1-50 frames/second

46

Chapter 3: Setting Parameters for Data Transfer

The rate during playback also follows the rules for capture. For each 1 in the mask above,
a field from the VL buffer is output. During the 0 fields, the previous frame is repeated.
Note that the previous frame is output, not just the last field. If there are a pair of buffers,
the dominant field is placed in the first buffer.

VL_CAPTURE_INTERLEAVED

Interleaved capture interleaves the two fields of a frame and places them in a single
buffer; the order of the frames depends on the value set for
VL_EVO_DOMINANCE_FIELD (see Table B-2 or Table B-3 in Appendix B for details).
The OCTANE Personal Video option guarantees that the interleaved fields are from the
same frame: if one field of a frame is dropped, then both are dropped.

The rate for interleaved frames is in frames per second: 1 to 30 frames per second for
NTSC and 1 to 25 frames per second for PAL. A rate of 15 frames per second results in
every other frame being captured. Expressed as a field mask, the following sequence is
captured:

1100110011001100....

As with VL_CAPTURE_NONINTERLEAVED, the OCTANE Personal Video option
begins processing the field mask when a dominant field is encountered.

During playback, a frame is deinterleaved and output as two consecutive fields, with the
dominant field output first. If one of the fields is lost, the OCTANE Personal Video option
resynchronizes to a frame boundary before playing the next frame. During the
resynchronization period, black or “garbage” data may be displayed.

Rate control follows similar rules as for capture. For each 1 in the mask above, a field
from the interleaved frame is output. During 0 periods, the previous frame is repeated.

VL_CAP_TYPE and VL_RATE

47

VL_CAPTURE_EVEN_FIELDS

In the VL_CAPTURE_EVEN_FIELDS capture type, only even (F2) fields are captured,
with each field placed in its own buffer. Expressed as a field mask, the captured fields are

1010101010101010...

The OCTANE Personal Video option begins processing this field mask when an even
field is encountered.

The rate for this capture type is expressed in even fields. For NTSC, the range is 1 to 30
fields per second, and for PAL 1 to 25 fields per second. A rate of 15 fields per second
(NTSC) indicates that every other even field is captured, yielding a field mask of

1000100010001000...

During playback, the even field is repeated as both the F1 and F2 fields, until it is time to
output the next buffer. If a field is lost during playback, black or “garbage” data might be
displayed until the next buffer is scheduled to be displayed.

VL_CAPTURE_ODD_FIELDS

The VL_CAPTURE_ODD_FIELDS capture type works the same way as
VL_CAPTURE_EVEN_FIELDS, except that only odd (F1) fields are captured, with each
field placed in its own buffer. The rate for this capture type is expressed in odd fields. A
rate of 15 fields per second (NTSC) indicates that every other odd field is captured. Field
masks are the same as for VL_CAPTURE_EVEN_FIELDS.

VL_CAPTURE_FIELDS

The VL_CAPTURE_FIELDS capture type captures both even and odd fields and places
each in its own buffer. Unlike VL_CAPTURE_NONINTERLEAVED, there is no
guarantee that fields are dropped in frame units. Field synchronization can be performed
by examining the UST (Unadjusted System Time), the MSC (Media Stream Count), or the
dmedia info sequence number associated with each field. These synchronization features
are explained in Chapter 4, “Synchronizing Data Streams and Signals.”

48

Chapter 3: Setting Parameters for Data Transfer

The rate for this capture type is expressed in fields. For NTSC, the range is 1 to 60 fields
per second, and for PAL 1 to 50 fields per second. A rate of 30 fields per second (NTSC)
indicates that every other field is captured, resulting in the following field mask:

101010101010101010...

Contrast this with the rate of 30 for VL_CAPTURE_NONINTERLEAVED, which
captures every other frame.

Field mask processing begins on the first field after the transfer is started; field
dominance, evenness, or oddness play no role in this capture type.

VL_COLORSPACE

A color space is a color component encoding format, for example, RGB and YUV. Because
various types of video equipment use different formats, conversion is sometimes
required. The on-board OCTANE Personal Video color-space conversion capability can
perform many types of image-processing operations on a video path.

This section explains

• “Color Spaces” on page 48

• “Determining the Color Space” on page 49

• “Constant Hue” on page 50

• “Color-Space Converter for Image Processing” on page 52

• “Coefficients” on page 53

Note: For background information on color-space conversion, see Appendix D,
“OCTANE Personal Video Color-Space Conversions,” later in this guide.

Color Spaces

Each component of an image has

• a color that it represents

• a canonical minimum value

• a canonical maximum value

VL_COLORSPACE

49

Normally, a component stays within the minimum and maximum values. For example,
for a luma signal such as Y, you can think of these limits as the black level and the peak
white level, respectively. For a component with n bits, there are two possibilities for
[minimum value, maximum value]:

• full range: [0, (2nbits)-1], which provides the maximum resolution for each
component

• headroom range (compressed range):

– Cr and Cb: [(2n) ÷ 16, 15 × (2n) ÷ 16]

– Y, A, R, G, B: [(2n) ÷ 16, 235 × (2n) ÷ 256]

This range is defined for 8 and 10 bits in ITU-R BT.601-4 (Rec. 601). For example,
for 8-bit components: Cr and Cb: [16, 240]. Y, A, R, G, B: [16, 235]; for 10-bit
components: Cr and Cb: [64, 960]. Y, A, R, G, and B: [64, 940].

Headroom range provides numerical headroom, which is often useful when
processing video images.

Two sets of colors are commonly used together, RGB (RGBA) and YCrCb/YUV (VYUA).
YCrCb (YUV), the most common representation of color from the video world,
represents each color by a luma component called Y and two components of chroma,
called Cr (or V), and Cb (or U). The luma component is loosely related to brightness or
luminance, and the chroma components make up a quantity loosely related to hue. These
components are defined rigorously in ITU-R BT.601-4 (also known as Rec. 601 and CCIR
601).

The alpha channel is not a color. For that channel, the canonical minimum value means
completely transparent, and the canonical maximum value means completely opaque.

For more information about color spaces, see A Technical Introduction to Digital Video, by
Charles A. Poynton (New York: Wiley, 1996).

Determining the Color Space

For OpenGL, IRIS GL, and DM:

• the library constant indicates whether the data is RGBA or VYUA

• RGBA data is full-range by default

50

Chapter 3: Setting Parameters for Data Transfer

• VYUA data in DM can be full-range or headroom-range; you must determine this
from context

In the VL_PACKING tokens from IRIX 6.2, the VL_PACKING constant indicates whether
the data is RGBA or VYUA (as in VL_PACKING_UYV_8_P). The VL for the OCTANE
Personal Video option (for IRIX 6.4) makes all of the parameters (packing, set of colors,
range of components) explicit:

• Use VL_PACKING to specify only the memory layout. The new memory-only
VL_PACKING tokens are disjoint from the old, and the old tokens are still honored,
so this change is backward-compatible.

• Use VL_COLORSPACE to specify the color space parameters, as shown in
Table C-11.

The OCTANE Personal Video option performs color-space conversion if the color space
implied by VL_FORMAT on the video node disagrees with that implied by
VL_COLORSPACE. VL_COLORSPACE applies to memory source and drain nodes only.

Constant Hue

In addition to the standard color-space conversion model, the OCTANE Personal Video
color-space feature provides a constant-hue algorithm. This algorithm allows illegal YUV
values to survive a YUV-to-RGB-to-YUV conversion. In normal conversion, YUV values
that cannot be represented in the RGB color space are clamped or otherwise forced into
the legal RGB range. Because the YUV (YCrCb) color space is a superset of the RGB color
space, illegal RGB values can be generated when YUV is converted to RGB. If the
constant-hue block is disabled, then the illegal RGB values are clipped by the output
lookup table (LUT). The lost (clipped) information can result in significantly degraded
quality when the image is subsequently transformed back to YUV for video output.

Table C-11 VL_COLORSPACE Options

Color Set Full-Range Components Headroom-Range (Compressed-Range) Components

RGBA VL_COLORSPACE_RGB VL_COLORSPACE_RP175

VYUA VL_COLORSPACE_YUV VL_COLORSPACE_CCIR601

VL_COLORSPACE

51

The constant-hue algorithm saves the normally lost information in a correction factor
that can be stored in the alpha channel. To restore the original YUV image, this correction
factor must be saved with the pixel data.

If the constant-hue algorithm is enabled, the illegal RGB values are converted into legal
R’G’B’ values. A constant-hue factor, used to restore R’G’B’ to the original YUV values,
can optionally be stored in the alpha channel. If the constant-hue factor is not saved, then
the R’G’B’ image appears as if it were range-compressed. A particular control
(VL_EVO_CSC_ALPHA_CORRECTION) determines whether the alpha channel is
replaced by the constant-hue factors, or if the alpha from the color-space converter’s
input is retained.

Note that because the correction factor computed by the algorithm is directly related to
the pixel value, the correction factor is invalidated if the pixel value is recalculated (for
example, during compositing).

The controls for constant hue are

• VL_EVO_CSC_CONST_HUE: boolean control to enable (TRUE) or disable (FALSE)
the constant-hue algorithm (memory source node only)

• VL_EVO_CSC_ALPHA_CORRECTION: boolean control to select the contents of
the alpha channel (memory source and drain nodes only)

If this value is set to TRUE, the constant-hue factor is saved in the alpha channel. If
it is set to FALSE, the alpha value from the input is retained.

Note: VL_EVO_CSC_ALPHA_CORRECTION has no effect if
VL_EVO_CSC_CONST_HUE is disabled. When both VL_EVO_CSC_CONST_HUE and
VL_EVO_CSC_ALPHA_CORRECTION are enabled, it is not advisable to load the alpha
LUT.

By default, the constant-hue processing block is enabled, but the constant-hue factor is
not stored in the alpha channel (the input alpha is retained).

If the constant-hue factor is not stored in the alpha channel, you might need to
range-limit or expand the input alpha value. For example, when full-range RGBA is
converted to YCrCbA, the range is limited from 0-255 to CCIRs (16-235). The range is
altered using the output alpha LUT. The default contents of this LUT are determined by
the input and output ranges.

52

Chapter 3: Setting Parameters for Data Transfer

Color-Space Converter for Image Processing

In addition to standard conversions, the color-space converter can be loaded with
user-defined input lookup tables, matrix multiplier coefficients, and output lookup
tables. Applications can manipulate the tables and coefficients to perform color
correction, colorization, or other image-processing functions. See Appendix D for a
description of the color-space converter model and the relationships between the various
internal processing blocks.

Table 3-12 summarizes image-processing controls. Access for all these controls is GST:

• G: The value can be retrieved through vlGetControl().

• S: The value can be set through vlSetControl() while the path is not transferring.

• T: The value can be set through vlSetControl() while the path is transferring.

Table 3-12 Image-Processing Controls

Control Default Type Use

VL_EVO_CSC_COEF Multiplier operates
in pass-through
mode

extendedVal;
data type EVO_CSC_COEF

Specifies the matrix
multiplier coefficients

VL_EVO_CSC_LUT_IN_PAGE
VL_EVO_CSC_LUT_ALPHA_PAGE

0
0

intVal

intVal

Selects the active LUT
Selects the active LUT
for the alpha channel

VL_EVO_CSC_LUT_IN_YG
VL_EVO_CSC_LUT_IN_UB
VL_EVO_CSC_LUT_IN_VR
VL_EVO_CSC_LUT_ALPHA

Pass-through
(1:1 mapping)

extendedVal;
data type EVO_CSC_LUT_INPUT
_AND_ALPHA

Specifies the contents
of the input or alpha
lookup tables

VL_EVO_CSC_LUT_OUT_YG
VL_EVO_CSC_LUT_OUT_UB
VL_EVO_CSC_LUT_OUT_VR

Pass-through
(1:1 mapping)

extendedVal
data type EVO_CSC_LUT_OUTPUT

Specifies the contents
of the output lookup
tables

VL_COLORSPACE

53

Coefficients

The control VL_EVO_CSC_COEF specifies the matrix multiplier coefficients. It has a data
pointer pointing to an array of nine integers. The coefficients are stored in the following
order:

• data[0] = Y/G 1 data[1] = Y/G 2 data[2] = Y/G 3

• data[3] = U/B 1 data[4] = U/B 2 data[5] = U/B 3

• data[6] = V/R 1 data[7] = V/R 2 data[8] = V/R 3

Each coefficient is a 32-bit fractional two’s complement value. The magnitude of each
coefficient is from -4 to 3.999. Table 3-13 shows values.

Table 3-13 Coefficient Formats

Bit Value

31 -22(signed bit)

30 21

29 20

28 2-1

27 2-2

26 2-3

25 2-4

24 2-5

23 2-6

... ...

4 2-25

3 2-26

2 2-27

1 2-28

0 2-29

54

Chapter 3: Setting Parameters for Data Transfer

For OCTANE Personal Video color-space conversion, the valid range for data[0], data[4],
and data[8] is from -4 to 3.999; for the other six coefficients, the valid range is from -2 to
1.999. The 31st and 30th bits of the other six coefficients must be either all 0’s or all 1’s for
the range from -2 to 1.999; otherwise they are clamped to the valid range.

Selecting the Active LUT

The OCTANE Personal Video color-space feature provides for up to four input LUTs
(each with YG, UB, and VR), and four alpha LUTs. Use the control
VL_EVO_CSC_LUT_IN_PAGE or VL_EVO_CSC_LUT_ALPHA_PAGE in the
application to select one of the four LUTs as active.

Using Input and Alpha LUTs

The controls for specifying the contents of the input or alpha lookup tables are
VL_EVO_CSC_LUT_IN_YG, VL_EVO_CSC_LUT_IN_UB, VL_EVO_CSC_LUT_IN_VR,
and VL_EVO_CSC_LUT_ALPHA.

The data pointer of the extended value points to a VL_EVOInAlphaLutValue structure,
as defined in dev_evo.h. This structure contains the page number for the LUT being
specified and a lookup table of 1024 integer entries (see VL_EVO_CSC_LUT_IN_PAGE
and VL_EVO_CSC_LUT_ALPHA_PAGE) for selecting the LUT active during
color-space conversion). The range for each entry in the lookup table is 0-1023 (10 bits).

Camera Controls

When the O2Cam digital camera is selected—VL_VIDEO is set to
VL_EVO_NODE_NUMBER_VIDEO_2—you can apply the O2Cam digital camera
controls to set O2Cam features.

Most of these controls are accessible in the Pro menu of vcp: select Pro > Camera In >
Coding Controls. For those controls accessible in vcp, the default value is Persistent, that
is, the value set in vcp.

Camera Controls

55

Table 3-14 summarizes O2Cam digital camera controls.

Table 3-14 O2Cam Digital Camera Controls

Control Type vcp Pro
menu

Range Use

VL_CAMERA_AUTO_GAIN
_CONTROL

boolVal Yes 0-1 Toggles automatic gain control on or off. When automatic
gain control is on, the camera continually adjusts to changing
lighting conditions to produce an even level of brightness.
When automatic gain control is off, the user or program sets
the proper gain level (VL_CAMERA_GAIN). If gain is too
low, the picture appears dark; when gain is too high, it
appears white or washed out. Factory default is 128.

VL_CAMERA_BLUE
_BALANCE

intVal Yes 0-255 Controls the proportion of blue in the image.

VL_CAMERA_BLUE
_SATURATION

intVal Yes 0-255 Sets overall blue color intensity in the image. A setting of 0
removes all blue from the image.

VL_CAMERA_BRIGHTNESS intVal No 0-255 Specifies the brightness level when
VL_CAMERA_AUTO_GAIN_CONTROL is FALSE;
read-only.

VL_CAMERA_BUTTON boolVal No 0-1 Indicates whether the button on the top of the camera is
pressed or not; read-only.

VL_CAMERA_GAIN intVal Yes 0-255 Allows manual adjustment of camera exposure when
automatic gain is off
(VL_CAMERA_AUTO_GAIN_CONTROL is set to FALSE).

VL_CAMERA_GAMMA intVal Yes 0-255 Controls brightness of the dark areas in the image. Increasing
the gamma value increases the brightness of dark areas.

VL_CAMERA_RATE intVal No 0-255 Specifies the frame rate of the camera; read-only.

VL_CAMERA_RED_BALANCE intVal Yes 0-255 Controls the proportion of red in the image.

VL_CAMERA_RED
_SATURATION

intVal Yes 0-255 Sets overall red color intensity in the image. A setting of 0
removes all red from the image.

56

Chapter 3: Setting Parameters for Data Transfer

VL_CAMERA_SHUTTER intVal Yes 0-8 Controls shutter speed: faster shutter speed lets in less light
and can be used when the amount of light is too high to be
compensated for by the gain control (VL_CAMERA_GAIN).
Values:
VL_CAMERA_SHUTTER_60
VL_CAMERA_SHUTTER_100
VL_CAMERA_SHUTTER_125
VL_CAMERA_SHUTTER_250
VL_CAMERA_SHUTTER_500
VL_CAMERA_SHUTTER_1000
VL_CAMERA_SHUTTER_2000
VL_CAMERA_SHUTTER_4000
VL_CAMERA_SHUTTER_10000

VL_CAMERA_VENDOR_ID stringVal No N/A Returns the value VL_CAMERA_VENDOR_ID_SGI to
identify the camera as a Silicon Graphics digital camera;
read-only.

VL_CAMERA_VERSION intVal No N/A Returns the value VL_CAMERA_VERSION_SGI_DVC1 to
identify the camera as the O2Cam digital camera; read-only.

Table 3-14 (continued) O2Cam Digital Camera Controls

Control Type vcp Pro
menu

Range Use

57

Chapter 4

4. Synchronizing Data Streams and Signals

You can use special signals recognized or generated by the OCTANE Personal Video
board—UST (unadjusted system time), MSC (media stream count)—to synchronize data
streams, and use the board-generated Internal Video Sync signal to synchronize video
and audio signals. This chapter explains

• “Using UST, MSC, and Buffered Media Streams for Synchronization” on page 57

• “Media Library Interfaces for UST and MSC” on page 59

• “Using the Internal Video Sync Signal” on page 61

Using UST, MSC, and Buffered Media Streams for Synchronization

Whenever a VL path is open in continuous mode, the OCTANE Personal Video board
and certain other Silicon Graphics video devices continuously try to dequeue media
stream samples from the path’s buffer for input, or to enqueue media stream samples
onto the path’s buffer for output. If the buffer between the application and each device
never underflows or overflows, then the application can measure and schedule the
timing of input and output signals to 100% of the accuracy of the underlying device.

Occasionally, the application is held off and audio, video, or both come out late. Buffer
underflow on output and overflow on input can result from the application not keeping
the buffer adequately filled for the following reasons:

• The application is busy with other tasks, allowing too much time between putting
fields into the buffer.

• Processes are subject to various interruptions (10 to 80 ms for some processes) under
IRIX because

– the process for filling the buffer is running at too low a priority

– the process cannot get a resource from IRIX that it needs, such as memory pages

58

Chapter 4: Synchronizing Data Streams and Signals

To get around this problem, a mechanism built into the VL helps keep track of data flow
into and out of buffers by providing accurate timing information for each frame of video
that enters or leaves the system. This mechanism, called UST/MSC, produces matched
pairs of two numbers:

• unadjusted system time (UST), a time value that is used to state timing
measurements to applications

• media stream count (MSC), a count value that identifies a particular media stream
sample (a video field or frame)

The device keeps a counter called the device media stream count (device MSC), which
increments by one every time the device attempts to enqueue or dequeue a media stream
sample, whether or not the enqueue or dequeue attempt is successful. UST/MSC was
designed to return timing information in a form that is valid whenever the buffer is not
underflowing or overflowing.

The UST/MSC capability and the buffering that goes with it are appropriate for
applications and devices such as movie players and digital video editing devices.

UST/MSC affords maximally accurate synchronization when scheduling cannot be
guaranteed and some buffering is acceptable. Also, if scheduling becomes reliable at
some later point, UST/MSC continues to function the same way with no code changes
required; the buffers can be made smaller, and the result is a low-latency application with
the same accurate synchronization.

Note that UST/MSC itself

• does not add any latency to an application

The buffer adds latency: it increases the time the application would take to respond
to some output event by changing its input (and vice versa). This solution to the
synchronization problem is useful for applications in which a small latency can be
sacrificed for more accuracy.

• does not require that an application trade off latency for accuracy

• does not require that an application use any particular size buffer

• delivers the full accuracy of the underlying hardware’s timing support regardless of
the scheduling characteristics of the application

• could be useful for graphics and texture even for low-latency applications

Media Library Interfaces for UST and MSC

59

The code below is a high-level algorithm to maintain synchronization of two buffered
media streams that send data from memory to hardware outputs; a corresponding one is
necessary for the other direction:

create video buffer between me and the audio output;
create audio buffer between me and the video output;
while (1)
{
 sleep until one of the buffers is getting empty;
 for (video buffer)
 {
 use UST/MSC to determine:
 “at what time (what UST) will the next video data I enqueue
 on the buffer actually go out the jack of the machine?”;
 }

 for (audio buffer)
 {
 (exact same thing as above, except for audio)
 }

 From the predicted video and audio USTs, determine
 “what is the synchronization error between the audio and video
 streams?”

 Enqueue more frames to fill up the audio and video buffer queues.
 If there is synchronization error, enqueue new frames to either skip
 frames on the stream that is behind or repeat frames on the stream
 that is ahead.
 }
}

The answers to the questions in the pseudocode above are obtained with three VL calls
that manipulate UST and MSC and are explained in the next section.

Media Library Interfaces for UST and MSC

UST/MSC calls allow you to associate a UST with a particular piece of data that just left
a buffer or is about to enter a buffer. The VL calls for determining the MSC and UST—
vlGetUSTMSCPair(3dm), vlGetFrontierMSC(3dm), and vlGetUSTPerMSC(3dm)—help
synchronize input and output of different data streams in cases where the application is

60

Chapter 4: Synchronizing Data Streams and Signals

getting data from or putting data into each device via a buffer. The application is at the
“frontier” end of this buffer and the devices are at the “device” end of the buffer.

• vlGetUSTMSCPair() gets the timing information for each frame or field as it enters
or leaves the physical jack of a device.

This call returns an atomic UST/MSC pair for the jack (specified with the
VL_NODE) for a given path that contains a VL_MEM node. The returned MSC is
not guaranteed to be the one currently at the jack, nor is it even guaranteed to be the
number of any media stream sample currently in the application’s buffer. To relate
the returned MSC to a particular item in the application’s buffer, you must use
vlGetFrontierMSC().

• vlGetFrontierMSC() gets the frontier MSC associated with a particular VL_MEM
node.

The frontier MSC, at the application end of the media stream, is the MSC of the next
item that the application removes from or puts into the buffer.

• vlGetUSTPerMSC() gets the time spacing of fields or frames in a path (the nominal
average UST time elapsed between media stream samples in a given VLPath that
includes a VL_MEM node).

These calls are used for extrapolating a UST/MSC pair as shown in vlGetFrontierMSC().
For other types of media streams, a similar mechanism extrapolates the UST/MSC pair;
for example, for audio, use equivalent AL calls.

Once you have calculated the extrapolated UST/MSC pairs for both media streams, you
can determine the synchronization error. The difference in the audio and video USTs for
matching frame numbers is the amount they are out of sync. To resynchronize them, you
must enqueue new frames to either skip frames on the stream that is behind or repeat
frames on the stream that is ahead. The number of frames to be skipped or repeated is
the difference in USTs divided by the frame rate.

To use UST/MSC, the application must have separate handles for each separate piece of
data coming in or going out of some kind of buffer. The application can use these handles
to specify, for example, a particular frame to output or pixels of a particular field to get.

Note: For complete details, including syntax, code examples, and caveats, see the
references pages for these calls.

Using the Internal Video Sync Signal

61

Using the Internal Video Sync Signal

Internal Video Sync refers to a synchronization signal produced or consumed by some
audio and video devices. The purpose of the signal is to ensure that simultaneous audio
and video signals are precisely synchronized.

This section explains

• “Internal Video Sync Producers and Consumers” on page 61

• “Setting the Internal Video Sync Signal Producer” on page 62

Internal Video Sync Producers and Consumers

While there may be multiple consumers of the Internal Video Sync signal, there can be
only one Internal Video Sync producer (master of the Internal Video Sync line) in a
system at any time. Table 4-1 lists Silicon Graphics options that produce or consume the
Internal Video Sync signal.

Table 4-1 Internal Video Sync Signal Producers and Consumers

Producer Consumer

OCTANE Personal Video board OCTANE Personal Video board

OCTANE Digital Video board OCTANE Digital Video board

Digital Audio Option board Digital Audio Option board

DIVO digital video option board
for Origin2000™/Onyx2™

DIVO option board

OCTANE Compression board

InfiniteReality™ graphics

OCTANE and Onyx2 built-in audio

62

Chapter 4: Synchronizing Data Streams and Signals

Setting the Internal Video Sync Signal Producer

Routines can use two Internal Video Sync calls, ksyncstat() and ksyncset(). ksyncstat()
returns a list of Internal Video Sync-capable devices in the system. The devices are given
as node names, not full pathnames; for example:

struct kstat_s ks_statbuf[64]
int i;

// Read system ksync configuration
ksyncstat(ks_statbuf, 64);

// Find current Master
for(i=0; ks_statbuf[i].kName[0] != 0; i++) {
 if (ks_statbuf[i].kFlags & KsyncIsProducer)

 // name of current master is in ks_statbuf[i].kName
}

// Search for potential producers..
for(i=0; ks_statbuf[i].kName[0] != 0; i++) {
 if(ks_statbuf[i].kFlags & KsyncProducerCapable) {
 // found a producer, name is
 // in ks_statbuf[i].kName
 }
 else if (ks_statbuf[i].kFlags & KsyncConsumerCapable) {
 // found a consumer, name is
 // in ks_statbuf[i].kName
 }
}

The structure for ksyncstat() is as follows:

/*
 ** ksync flag values
 */

 #define KsyncIsProducer 0x1
 #define KsyncProducerCapable 0x2
 #define KsyncConsumerCapable 0x4
 #define KsyncActive 0x8

typedef struct {
 char kName[64];
 int kFlags;

Using the Internal Video Sync Signal

63

 } kstat_t;

 int ksyncstat(
 kstat_t *buf,
 int bufSz); /* in bytes */

The buffer pointed to by buf is filled with as many kstat_t structures as there are Internal
Video Sync devices on the system, or as many as the buffer holds. The element kName is
the name of the device node on the hardware graph. Note that this name is the node
name and not the full pathname.

ksyncset() causes a device to begin producing the Internal Video Sync signal. This call
takes a string as an argument, for example:

ksyncset(“Personal Video”);

This example specifies a device. If another device is already producing the signal, that
device immediately stops producing it and the device specified in the call begins
producing it.

ksyncset(“None”);

Specifying None has the effect of turning off the Internal Video Sync signal. Also, if a
device is specified that is not active in the system, Internal Video Sync signal generation
is turned off and an error message is produced.

ksyncset(ks_statbuf[3].kName);

If the string corresponds to a string returned by ksyncstat(), and that name corresponds
to a potential producer, that device becomes the new Internal Video Sync master. If there
are no such correspondences, all producers are shut off. Using the string None (or any
string that does not correspond to a potential producer) also shuts off all producers.

The Internal Video Sync feature is also implemented as a panel. This feature is
incorporated into vcp and apanel as well, accessible in the Utilities menu.

65

Chapter 5

5. Transferring Video Data and Ending Data Transfer

This chapter explains how to use buffers for data transfer, set execution times, and end
data transfer, in these sections:

• “Transferring Video Data to and From Devices” on page 65

• “Ending Data Transfer” on page 79

• “Example Programs” on page 81

Transferring Video Data to and From Devices

This section explains

• “Using Buffers”

• “Transferring Video Data Using DMbuffers”

• “Transferring Video Data Using VL Buffers”

Using Buffers

The VL supports two buffering mechanisms for capturing or playing back video:

• VL buffers: the original buffering mechanism supported by the VL and specific to it

• Digital Media Buffers (DMbuffers): a buffering mechanism allowing video data to
be exchanged among video, compression, and graphics devices

For OCTANE, this buffering mechanism is supported by the Video, Image
Converter (dmIC), and Movie Libraries. It is available with IRIX 6.4 and subsequent
releases.

Note: For complete information on DMbuffers and digital media image converters, see
the Digital Media Programming Guide.

66

Chapter 5: Transferring Video Data and Ending Data Transfer

In general, VL buffers and DMbuffers differ in the following ways:

• buffer structure

VL buffers are modeled after a ring buffer. The order of segments (buffers) in the
ring is inflexible, and care must be taken to ensure that items are obtained and
returned in the same order. For example, buffers obtained with vlGetNextValid()
must be returned using vlPutFree() in the same order. Order and allocation of ring
segments are intricately related.

All operations on a VL buffer operate in FIFO order. That is, the first element
retrieved by vlGetNextValid() is the first returned by vlPutFree(). This function
does not take an element as a parameter and always puts back the oldest
outstanding element.

DMbuffers, in contrast, are contained in a DMbufferpool. The pool itself is
unordered; buffers can be obtained from and returned to the pool in any order.
Ordering is achieved by a first-in-first-out queue, and is maintained only while the
buffers are in the queue. The application or library is free to impose any processing
order on buffers, once they have been dequeued.

• buffer size and alignment

The Video Library is responsible for ensuring that VL buffers are of the appropriate
size and alignment for the video device, and for allocating the buffers in the
vlCreateBuffer() call. Except in rare cases, applications cannot modify these
attributes to suit the needs of another library or device.

Because DMbuffers can be used with libraries and devices besides video, the
application queries each library for its buffering requirements. The exact
DMbufferpool requirements are the union of all requested constraints and are
enforced when the pool is created. For example, if one library requests alignment on
4K boundaries and another requests alignment on 16K boundaries, the 16K
alignment is used. By specifying its own pool requirements list, the application can
set minimum buffer sizes (such as for in-place processing of video) or cache
policies.

• buffers and memory nodes

With VL buffers, a particular ring buffer is strictly tied to a particular memory node;
a DMbufferpool is not necessarily tied to a memory node. A memory source node
can receive DMbuffers allocated from any DMbufferpool that meets the memory
node’s pool requirements. Memory drain nodes obtain DMbuffers from a
DMbufferpool specified by the application; this pool is fixed for the duration of a
transfer.

Transferring Video Data to and From Devices

67

Each buffering mechanism has a set of API functions for creating, registering, and
manipulating buffers. A mismatch between a buffer mechanism and an API call, for
example, applying a VL buffer call to a DMbuffer, results in a VLAPIConflict error return.

Applications can use either VL buffers or DMbuffers, as long as a memory node is used
with only one buffering mechanism at a time. If an application uses multiple memory
paths, each path can use a different buffering mechanism. To switch buffering
mechanisms, the VL path should be torn down and reconstructed.

Table 5-1 shows correspondences between VL buffer and DMbuffer API functions.

Table 5-1 VL Buffer and DMBuffer API Functions

VL Buffer API dmBuffer API

vlCreateBuffer() dmBufferCreatePool()

vlPutValid() vlDMBufferPutValid()

vlRegisterBuffer() vlDMBufferPoolRegister()

vlDeregisterBuffer() No equivalent

vlPutFree() dmBufferFree()

vlGetNextValid() vlDMBufferGetValid()

vlGetLatestValid() No equivalent

vlGetFilled() vlGetFilledByNode()

vlDestroyBuffer() dmBufferDestroyPool()

vlBufferGetFd() dmBufferGetPoolFD()

dmBufferSetPoolSelectSize()

vlNodeGetFd()

vlBufferAdvise() dmSetPoolDefaults()

vlBufferReset() vlDMBufferNodeReset()

vlBufferDone() Not applicable

68

Chapter 5: Transferring Video Data and Ending Data Transfer

Transferring Video Data Using DMbuffers

The DMbuffer is created through the dmBufferCreatePool() routine and is associated
with a memory node by the dmPoolRegister() routine.

When the OCTANE Personal Video option transfers data from the Video Library to an
application, it places data in a buffer element and marks the element as valid. The
application can retrieve the element through the vlDMBufferGetValid() routine. When
the application is done, it uses the dmBufferFree() routine to alert the video device that
the buffer element can be reused. For complete details on using DMbuffers, see Chapter
5 of the Digital Media Programming Guide (007-1799-060 or later).

This section explains

• “Obtaining DMbufferpool Requirements”

• “Registering a DMBufferpool With the Video Library”

• “Creating a DMbufferpool”

• “Starting Data Transfer”

• “Receiving Buffers From the Video Library”

• “Sending DMbuffers to the Video Library”

Obtaining DMbufferpool Requirements

Before a DMbufferpool is created, you must obtain the pool requirements of any library
that will interact with the pool. Pool requirements are maintained in a DMparams list,
created using dmParamsCreate() and initialized by calling dmBufferSetPoolDefaults().
See Chapter 3 in the Digital Media Programming Guide for an overview of DMparams. The
function prototype for this call is

DMstatus dmBufferSetPoolDefaults(DMparams *poolParams, int
bufferCount, int bufferSize, DMboolean cacheable, DMboolean mapped)

where

poolParams specifies the DMparams list to use for gathering pool requirements

bufferCount specifies the number of buffers the pool should contain

bufferSize specifies the size of each buffer in the pool

Transferring Video Data to and From Devices

69

cacheable specifies whether buffers allocated from the pool can be cached
(DM_TRUE) or not (DM_FALSE).

For more information on caching, see “Caching” in Chapter 8.

mapped specifies whether the memory allocated for the pool should be mapped
as soon as the pool is created (TRUE), or only when
dmBufferMapData() is called (FALSE)

If an application requires a pointer to buffer contents, for example, to
process or store the contents to disk, then the pool should be created
mapped. This option improves the performance of the
dmBufferMapData() call.

The Video Library pool requirements are obtained by calling vlDMBufferGetParams()
on a memory node:

int vlDMBufferGetParams(VLServer svr, VLPath path, VLNode node,
DMparams *params)

where

svr names the server to which the path is connected

path specifies the data path containing the memory node

node specifies the memory node with which the DMbufferpool will be used

params specifies the pool requirements list

As with similar calls in other libraries, vlDMBufferGetParams takes as input a
DMparams list initialized by dmBufferSetPoolDefaults, and possibly other libraries’
pool requirements functions. On output, the Video Library’s requirements are merged
with the input requirements.

Creating a DMbufferpool

After all libraries that will use the pool have been queried for their requirements, the
application can create a DMbufferpool by calling dmBufferCreatePool. Its function
prototype is

DMstatus dmBufferCreatePool(const DMparams *poolParams, DMbufferpool
*returnPool)

70

Chapter 5: Transferring Video Data and Ending Data Transfer

where

poolParams specifies the requirements for the pool

returnPool points to a location where the DMbufferpool handle will be stored

Registering a DMBufferpool With the Video Library

If the application captures video data, it specifies the DMbufferpool the memory node
should use by calling vlDMBufferPoolRegister:

int vlDMBufferPoolRegister(VLServer svr, VLPath path, VLNode node,
DMbufferpool pool)

where

svr specifies the server that the path is attached to

path specifies the path containing the memory node

node specifies the memory node

pool specifies the pool that the memory node should use

When the video device is ready to capture a new frame or field, it will allocate a
DMbuffer from the specified pool, place the field or frame in it, then send the buffer to
the application.

Starting Data Transfer

To begin data transfer (for either type of buffer), use vlBeginTransfer(). Its function
prototype is

int vlBeginTransfer(VLServer vlSvr, VLPath path, int count,
 VLTransferDescriptor* xferDesc)

where

vlSvr names the server to which the path is connected

path specifies the data path

count specifies the number of transfer descriptors

xferDesc specifies an array of transfer descriptors

Transferring Video Data to and From Devices

71

Tailor the data transfer by means of transfer descriptors. Multiple transfer descriptors are
supplied; they are executed in order. The transfer descriptors are

xferDesc.mode Transfer method:

• VL_TRANSFER_MODE_DISCRETE: a specified number of frames
are transferred (burst mode)

• VL_TRANSFER_MODE_CONTINUOUS (default): frames are
transferred continuously, beginning immediately or after a trigger
event occurs (such as a frame coincidence pulse), and continues
until transfer is terminated with vlEndTransfer()

xferDesc.count Number of frames to transfer; if mode is
VL_TRANSFER_MODE_CONTINUOUS, this value is ignored.

xferDesc.delay Number of frames from the trigger at which data transfer begins.

xferDesc.trigger Set of events to trigger on; an event mask. This transfer descriptor is
always required. VLTriggerImmediate specifies that transfer begins
immediately, with no pause for a trigger event. VLDeviceEvent specifies
an external trigger.

If xferDesc is NULL, then VL_TRIGGER_IMMEDIATE and
VL_TRANSFER_CONTINUOUS_MODE are assumed and one transfer
is performed.

This example fragment transfers the entire contents of the buffer immediately.

xferDesc.mode = VL_TRANSFER_MODE_DISCRETE;
xferDesc.count = imageCount;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

This fragment shows the default descriptor, which is the same as passing in a null for the
descriptor pointer. Transfer begins immediately; count is ignored.

xferDesc.mode = VL_TRANSFER_MODE_CONTINUOUS;
xferDesc.count = 0;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

72

Chapter 5: Transferring Video Data and Ending Data Transfer

Receiving Buffers From the Video Library

After the transfer has been started, captured video may be retrieved using
vlDMBufferGetValid:

int vlDMBufferGetValid(VLServer svr, VLPath path, VLNode node,
DMbuffer* dmbuffer)

where

svr specifies the server the path is attached to

path specifies the path on which data is received from

node specifies the memory drain node data is received from

dmbuffer points to a location where a DMbuffer handle is stored

The DMbuffer handle returned by vlDMBufferGetValid is an opaque reference to the
captured video. dmBufferMapData can be used to obtain a pointer to the actual image
data so that it can be processed or written to disk. dmBufferMapData does not have to
be called if the buffer will be directly sent to another device or library.

Sending DMbuffers to the Video Library

Applications can use vlDMBufferPutValid to send buffers to a video device:

int vlDMBufferPutValid(VLServer svr, VLPath path, VLNode node,
DMbuffer dmbuffer)

where

svr specifies the server to which the path is attached

path specifies the path on which video is sent

node specifies the memory source node to send the buffer to

dmbuffer specifies the buffer to send

Transferring Video Data to and From Devices

73

The DMbuffer may have been obtained from another library, such as dmIC, or generated
by the application itself. See Chapter 5 in the Digital Media Programming Guide for an
explanation of how to allocate a DMbuffer from a DMbufferpool.

Freeing a DMbuffer

Once the application is done with a buffer, it should call dmBufferFree to indicate that it
no longer intends to use the buffer. After all users of a buffer have called dmBufferFree
on it, the buffer is considered free to be reallocated. The Video Library never implicitly
releases the application’s access to a buffer. Consequently, an application can send the
same buffer to a memory node multiple times, or hold a captured image for an indefinite
period.

Transferring Video Data Using VL Buffers

The processes for data transfer using VL buffers are as follows:

• “Creating a Buffer for Video Data”

• “Registering the VL Buffer”

• “Starting Data Transfer”

• “Reading Data From the VL Buffer”

Each process is explained separately.

Creating a Buffer for Video Data

Once you have specified frame parameters in a transfer involving memory (or have
determined to use the defaults), create a VL buffer for the video data. In this case, video
data is frames or fields, depending on the capture type:

• frames if the capture type is VL_CAPTURE_INTERLEAVED

• fields if the capture type is anything else

74

Chapter 5: Transferring Video Data and Ending Data Transfer

VL buffers provide a way to read and write varying sizes of video data. A frame of data
consists of the actual frame data and an information structure describing the underlying
data, including device-specific information.

When a VL buffer is created, constraints are specified that control the total size of the data
segment and the number of frame or field buffers (sectors) to allocate. A head and a tail
flag are automatically set in a VL buffer so that the latest frame can be accessed. A sector
is locked down if it is not called; that is, it remains locked until it is read. When the VL
buffer is written to and all sectors are occupied, data transfer stops. The sector last
written to remains locked down until it is released.

All sectors in a VL buffer must be of the same size, which is the value returned by
vlGetTransferSize(). Its function prototype is

long vlGetTransferSize(VLServer vlSvr, VLPath path)

For example:

transfersize = vlGetTransferSize(vlSvr, path);

where transfersize is the size of the data in bytes.

To create a VL buffer for the frame data, use vlCreateBuffer(). Its function prototype is

VLBuffer vlCreateBuffer(VLServer vlSvr, VLPath path, VLNode node,
 int numFrames)

where

VLBuffer is the handle of the buffer to be created

vlSvr names the server to which the path is connected

path specifies the data path

node specifies the memory node containing data to transfer to or from the VL
buffer

numFrames specifies the number of sectors in the buffer (fields or frames, depending
on the capture type)

For example:

buf = vlCreateBuffer(vlSvr, path, src, 1);

Transferring Video Data to and From Devices

75

Table 5-2 shows the relationship between capture type and minimum VL buffer size.

Note: For memory nodes, real-time memory or video transfer can be performed only
as long as buffer sectors are available to the OCTANE Personal Video device.

Registering the VL Buffer

Use vlRegisterBuffer() to register the VL buffer with the data path. Its function
prototype is

int vlRegisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer buffer)

where

vlSvr names the server to which the path is connected

path specifies the data path

memnodeid specifies the memory node ID

buffer specifies the VL buffer handle

For example:

vlRegisterBuffer(vlSvr, path, drn, Buffer);

Starting Data Transfer

Start data transfer the same way as for DMbuffers; see “Starting Data Transfer” in
“Transferring Video Data Using DMbuffers.”

Table 5-2 Buffer Size Requirements

Capture Type Minimum Sectors
for Capture

Minimum Sectors
for Playback

VL_CAPTURE_NONINTERLEAVED 2 4

VL_CAPTURE_INTERLEAVED 1 2

VL_CAPTURE_EVEN_FIELDS 1 2

VL_CAPTURE_ODD_FIELDS 1 2

VL_CAPTURE_FIELDS 1 2

76

Chapter 5: Transferring Video Data and Ending Data Transfer

Reading Data From the VL Buffer

If your application uses a VL buffer, use various VL calls for reading frames, getting
pointers to active buffers, freeing buffers, and other operations. Table 5-3 lists the
buffer-related calls.

Table 5-3 Buffer-Related Calls

Call Purpose

vlGetNextValid() Returns a handle on the next valid frame or field of data

vlGetLatestValid() Reads only the most current frame or field in the buffer, discarding the rest

vlPutValid() Puts a frame or field into the valid list (memory to video)

vlPutFree() Puts a valid frame or field back into the free list (video to memory)

vlGetNextFree() Gets a free buffer into which to write data (memory to video)

vlBufferDone() Informs you if the buffer has been vacated

vlBufferReset() Resets the buffer so that it can be used again

Transferring Video Data to and From Devices

77

Figure 5-1 illustrates the difference between vlGetNextValid() and vlGetLatestValid().

Figure 5-1 vlGetNextValid() and vlGetLatestValid()

Table 5-4 lists the calls that extract information from a buffer.

Caution: None of these calls has count or block arguments; appropriate calls in the
application must deal with a NULL return in cases of no data being returned.

Table 5-4 Calls for Extracting Data From a Buffer

Call Purpose

vlGetActiveRegion() Gets a pointer to the data region of the buffer (video to memory);
called after vlGetNextValid() and vlGetLatestValid()

vlGetDMediaInfo() Gets a pointer to the DMediaInfo structure associated with a frame;
this structure contains timestamp and field count information

vlGetImageInfo() Gets a pointer to the DMImageInfo structure associated with a
frame; this structure contains image size information

Starting buffer and
pointer status

Call

Result

vlGetNextValid()

vlGetLatestValid()

Get data from here

Get data from here

Clear sector

78

Chapter 5: Transferring Video Data and Ending Data Transfer

In summary, for video-to-memory transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
info = vlGetNextValid(vlSvr, buffer);
/* OR vlGetLatestValid(vlSvr, buffer); */
dataptr = vlGetActiveRegion(vlSvr, buffer, info);

/* use data for application */
…
vlPutFree(vlSvr, buffer);

For memory-to-video transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
buffer = vlGetNextFree(vlSvr, buffer, bufsize);
/* fill buffer with data */
…
vlPutValid(vlSvr, buffer);

To read the frames to memory from the buffer, use vlGetNextValid() to read all the
frames in the buffer or get a valid frame of data. Its function prototype is

VLInfoPtr vlGetNextValid(VLServer vlSvr, VLBuffer vlBuffer)

Use vlGetLatestValid() to read only the most current frame in the buffer, discarding the
rest. Its function prototype is

VLInfoPtr vlGetLatestValid(VLServer vlSvr, VLBuffer vlBuffer)

After removing interesting data, return the buffer for use with vlPutFree() (video to
memory). Its function prototype is

int vlPutFree(VLServer vlSvr, VLBuffer vlBuffer)

To send frames from memory to video, use vlGetNextFree() to get a free buffer to which
to write data. Its function prototype is

VLInfoPtr vlGetNextFree(VLServer vlSvr, VLBuffer vlBuffer,
 int size)

Ending Data Transfer

79

After filling the buffer with the data you want to send to video output, use vlPutValid()
to put a frame into the valid list for output to video (memory to video). Its function
prototype is

int vlPutValid(VLServer vlSvr, VLBuffer vlBuffer)

Caution: These calls do not have count or block arguments; appropriate calls in the
application must deal with a NULL return in cases of no data being returned.

To get DMediaInfo and Image Data from the buffer, use vlGetActiveRegion() to get a
pointer to the active buffer. Its function prototype is

void * vlGetActiveRegion(VLServer vlSvr, VLBuffer vlBuffer,
 VLInfoPtr ptr)

Use vlGetDMediaInfo() to get a pointer to the DMediaInfo structure associated with a
frame. This structure contains timestamp and field count information. The function
prototype for this call is

DMediaInfo * vlGetDMediaInfo(VLServer vlSvr, VLBuffer vlBuffer,
 VLInfoPtr ptr)

Use vlGetImageInfo() to get a pointer to the DMImageInfo structure associated with a
frame. This structure contains image size information. The function prototype for this
call is

DMImageInfo * vlGetImageInfo(VLServer vlSvr, VLBuffer vlBuffer,
 VLInfoPtr ptr)

Ending Data Transfer

To end data transfer for either VL buffers or DMbuffers, use vlEndTransfer(). Its function
prototype is

int vlEndTransfer(VLServer vlSvr, VLPath path)

A discrete transfer is finished when the last frame of the sequence is output. Memory
nodes emit black video output after a transfer (discrete or continuous) has been
completed.

80

Chapter 5: Transferring Video Data and Ending Data Transfer

To accomplish the necessary cleanup to exit gracefully, use the following functions:

• for transfers involving memory:

– DMbuffers: vlDMBufferPoolDeregister(), vlDestroyPath(), dmBuffer()

– VL buffers: vlDeregisterBuffer(), vlDestroyPath(), vlDestroyBuffer()

• for all transfers: vlCloseVideo()

The function prototype for vlDeregisterBuffer() is

int vlDeregisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer ringbufhandle)

where

vlSvr is the server handle

path is the path handle

memnodeid is the memory node ID

ringbufhandle is the VL buffer handle

The function prototypes for vlDestroyPath(), vlDestroyBuffer(), dmBuffer(), and
vlCloseVideo() are, respectively

int vlDestroyPath(VLServer vlSvr, VLPath path)

int vlDestroyBuffer(VLServer vlSvr, VLBuffer vlBuffer)

int vlGetFilledByNode(VLServer vlSvr, VLPath path, VLNode node);

int vlDMBufferNodeReset(VLServer vlSvr, VLPath path, VLNode node);

int vlCloseVideo(VLServer vlSvr)

where vlSvr specifies the server to which the application is attached, and path and node
identify the memory node on which information is requested.

This example ends a data transfer that used a buffer:

vlEndTransfer(vlSvr, path);
vlDeregisterBuffer(vlSvr, path, memnodeid, buffer);
vlDestroyPath(vlSvr, path);
vlDestroyBuffer(vlSvr, buffer);
vlCloseVideo(vlSvr);

Example Programs

81

For DMbuffers, vlDMBufferPoolDeregister disassociates a DMbufferpool from a
memory node. It should be called to clean up the memory node or allow a new
DMbufferpool to be used after a transfer has been stopped.

Once the application is done with a DMbufferpool, the pool should be destroyed using
the dmBufferDestroyPool call.

Example Programs

The directory /usr/share/src/dmedia/video/vl includes a number of example programs.
These programs illustrate how to create simple video applications; for example:

• a simple screen application: simplev2s.c

This program shows how to send live video to the screen.

• a video-to-memory frame grab: simplegrab.c

This program demonstrates video frame grabbing.

• a memory-to-video frame output simplem2v.c

This program sends a frame to the video output.

• a continuous frame capture: simpleccapt.c

This program demonstrates continuous frame capture.

Note: To simplify the code, these examples do not check returns. However, you should
always check returns.

See Chapter 7 for a description of eventex.c.

The directory /usr/share/src/dmedia/video/vl/OpenGL contains three example OpenGL
programs:

• contcapt.c: performs continuous capture using buffering and sproc

• mtov.c: uses the Silicon Graphics Movie Library to play a movie on the selected
video output

• vidtomem.c: captures an incoming video stream to memory

These programs are the OpenGL equivalents of the programs with the same names in
/usr/share/src/dmedia/video/vl.

83

Chapter 6

6. Using VL Controls

Video Library (VL) controls enable you to

• specify data transfer parameters, such as the frame rate or count

• specify the capture region and decimation, or output window

• specify video format and timing

• adjust signal parameters, such as hue, brightness, vertical sync, and horizontal sync

• specify sync source

This chapter explains

• “VL Control Type and Values”

• “VL Control Fraction Ranges”

• “VL Control Classes”

• “VL Control Groupings”

Device-independent controls are documented in /usr/include/dmedia/vl.h.
Device-dependent controls for the OCTANE Personal Video option are documented in
the header file /usr/include/dmedia/vl_evo.h (linked to /usr/include/vl/dev_evo.h).

Note: For information on the controls used for specific nodes, see Appendix B,
“OCTANE Personal Video Nodes and Their Controls.” For detailed information on using
controls such as VL_CAP_TYPE, VL_FORMAT, VL_TIMING, and so on, see Chapter 3,
“Setting Parameters for Data Transfer.”.

84

Chapter 6: Using VL Controls

VL Control Type and Values

The type of VL controls is

typedef long VLControlType;

Common types used by the VL to express the values returned by the controls are

typedef struct __vlControlInfo {
 char name[VL_NAME_SIZE]; /* name of control */
 VLControlType type; /* e.g. HUE, BRIGHTNESS */
 VLControlClass ctlClass; /* SLIDER, DETENT, KNOB, BUTTON */
 VLControlGroup group; /* VISUAL QUALITY, SIGNAL, SYNC */
 VLNode node; /* associated node */
 VLControlValueType valueType; /* what kind of data do we have */
 int valueCount; /* how many data items do we have */
 int numFractRanges; /* number of ranges to describe control */
 VLFractionRange *ranges; /* range of values of control */

 int numItems; /* number of enumerated items */
 VLControlItem *itemList; /* the actual enumerations */
} VLControlInfo;

To store the value of different controls, libvl.a uses this struct:

typedef union {
 VLFraction fractVal;
 VLBoolean boolVal;
 int intVal;
 VLXY xyVal;
 char stringVal[96]; /* beware of trailing NULLs! */
 float matrixVal[3][3];
 uint pad[24]; /* reserved */
} VLControlValue;

typedef struct {
 int numControls;
 VLControlInfo *controls;
} VLControlList;

The control info structure is returned by a vlGetControlInfo() call, and it contains many
of the items discussed above.

VL Control Fraction Ranges

85

VLControlInfo.number is the number of the VLControlInfo.node that the information
pertains to. There may be several controls of the same type on a particular node, but
usually there is just one.

VLControlInfo.numFractRanges is the number of fraction ranges for a particular control.
The names correspond 1-to-1 with the rangeNames, up to the number of range names,
numRangeNames. That is, there may be fewer names than ranges, but never more.

VL Control Fraction Ranges

The VL uses fraction ranges to represent the values possible for a control. A
VLFractionRange generated by the VL is guaranteed never to generate a fraction with a
zero denominator, or a fractional numerator or denominator.

For a range type of VL_LINEAR, numerator.increment and denominator.increment are
guaranteed to be greater than zero, and the limit is always guaranteed to be
{numerator,denominator}.base, plus some integral multiple of
{numerator,denominator}.increment.

The type definition for fraction types in the header file is

typedef struct {
 VLRange numerator;
 VLRange denominator;
} VLFractionRange;

VL Control Classes

The VL defines control classes for user-interface developers. The classes are hints only;
they are the VL developer’s idea of how the control is commonly represented in the real
world.

#define VL_CLASS_NO_UI 0
#define VL_CLASS_SLIDER 1
#define VL_CLASS_KNOB 2
#define VL_CLASS_BUTTON 3
#define VL_CLASS_TOGGLE 4
#define VL_CLASS_DETENT_KNOB 5
#define VL_CLASS_LIST 6

86

Chapter 6: Using VL Controls

In the list above, VL_CLASS_NO_UI is often used for controls that have no user-interface
metaphor and are not displayed in the video control panel or saved in the defaults file.

The VL controls can be read-only, write-only, or both. The VL includes these macros:

#define VL_CLASS_RDONLY 0x8000 /* control is read-only */
#define VL_CLASS_WRONLY 0x4000 /* control is write-only */
#define VL_CLASS_NO_DEFAULT 0x2000 /* don’t save in default files */

#define VL_IS_CTL_RDONLY(x) ((x)->ctlClass & VL_CLASS_RDONLY)
#define VL_IS_CTL_WRONLY(x) ((x)->ctlClass & VL_CLASS_WRONLY)
#define VL_IS_CTL_RW(x) (!(VL_IS_CTL_RDONLY(x) || VL_IS_CTL_WRONLY(x)))

The macros test these conditions:

#define VL_CLASS_MASK 0xfff

typedef unsigned long VLControlClass; /* from list above */

VL Control Groupings

Like control class, control grouping is an aid for the user-interface developer. The
groupings are the VL developer’s idea of how the controls would be grouped in the real
world. These groupings are implemented in the video control panel vcp.

The type definition for groupings is

typedef unsigned int VLControlGroup;

The maximum length of a control or range name is VL_NAME_SIZE.

Table 6-1 summarizes the VL control groupings.

Table 6-1 VL Control Groupings

Grouping Includes controls for...

VL_CTL_GROUP_VISUALQUALITY Visual quality of sources or drains; for example, VL_H_PHASE

VL_CTL_GROUP_SIGNAL Signal of sources or drains; for example, VL_HUE

VL_CTL_GROUP_CODING Encoding or decoding sources or drains; for example, VL_TIMING or
VL_FORMAT

VL Control Groupings

87

VL_CTL_GROUP_SYNC Synchronizing video sources or drains; for example, VL_SYNC

VL_CTL_GROUP_ORIENTATION Orientation or placement of video signals; for example, VL_ORIGIN

VL_CTL_GROUP_SIZING Setting the size of the video signal; for example, VL_SIZE

VL_CTL_GROUP_RATES Setting the rate of the video signal; for example, VL_RATE

VL_CTL_GROUP_PATH Specifying the data path through the system; these controls, often marked
with the VL_CLASS_NO_UI, are often internal to the VL, with no direct
access for the user

VL_CTL_GROUP_SIGNAL_ALL Specifying properties of all signals

VL_CTL_GROUP_SIGNAL_COMPOSITE Specifying properties of composite signals

VL_CTL_GROUP_SIGNAL_CLUT_COMPOSITE Specifying properties of composite color lookup table (CLUT) controls

VL_CTL_GROUP_PRO Specifying values not commonly found on the front panel of a real-world
video device; for example, filter quality selections

VL_CTL_GROUP_MASK Masking optional bits to extract only the control group

Table 6-1 (continued) VL Control Groupings

Grouping Includes controls for...

89

Chapter 7

7. Event Handling

The Video Library (VL) provides several ways of handling data stream events, such as
completion or failure of data transfer, vertical retrace event, loss of the path to another
client, lack of detectable sync, or dropped fields or frames. The method you use depends
on the kind of application you’re writing:

• For a strictly VL application, use

– vlSelectEvents() to choose the events to which you want the application to
respond

– vlAddCallback() to specify the function called when the event occurs

– your own event loop or a main loop (vlMainLoop()) to dispatch the events

• For an application that also accesses another program or device driver, or if you’re
adding video capability to an existing X or OpenGL application, set up an event
loop in the main part of the application and use the IRIX file descriptor (FD) of the
event(s) you want to add.

This chapter explains

• “OCTANE Personal Video VL Events”

• “Querying VL Events”

• “Creating a VL Event Loop”

• “Creating a Main Loop With Callbacks”

The chapter concludes with an example illustrating a main loop and event loops.

90

Chapter 7: Event Handling

OCTANE Personal Video VL Events

This section describes the events that the OCTANE Personal Video device generates.
Each event has a standard header, which can be followed by additional data. The
additional data can be accessed through the appropriate structure member of the
VLEvent union, specified for each of the events listed below.

The VLEvent union and its structures are found in /usr/include/dmedia/vl.h.

The standard header for a VL event contains

• int reason: the event ID, such as VLControlChanged

• VLServer server: the server from which the event originated

• VLDev device: the device from which the event originated

• VLPath path: the path on which the event originated

• uint serial: the serial number of the last request read from the server connection

• uint time: the time at which the event was generated

Note: Hardware-generated events, such as vertical retrace, are not available on pure
video source-to-video drain paths. To receive these events, a path must make use of
screen or memory nodes or the framebuffer. A path receives a VLBadPath error from
vlSelectEvents() if it attempts to register for events it cannot receive.

Table 7-1 summarizes the VL events for the OCTANE Personal Video device.

Table 7-1 VL Events for the OCTANE Personal Video Device

Event Structure Description

VLStreamAvailable vlstreamavailable Generated when all nodes required by a path become available for setup
with a stream usage of VL_SHARE or VL_LOCK. Typically, such a path
becomes available when another path that was using the nodes is set up
with stream usage VL_READ_ONLY or VL_DONE_USING, or is
destroyed. The path in question is indicated by the path member of the
vlstreamavailable structure.

VLStreamAvailable is delivered to all registered paths with a stream
usage of VL_READ_ONLY. Consequently, a rare condition can occur in
which several paths are set up when they receive this event, so that the
last path that was set up “wins.”

OCTANE Personal Video VL Events

91

VLStreamPreempted vlstreampreempted Generated when a path is preempted by another path that requires some
resource that the first path also requires. The paths may be contending
over a node (such as a video drain) or other resource (such as a connector
required to route a path).

The preempted path is indicated by the path member of the
vlstreampreempted structure. Once preempted, the path has a stream
usage of VL_READ_ONLY. When the stream becomes available again,
the path is downgraded to a control usage of VL_SHARE, unless control
usage was at VL_READ_ONLY before the stream was preempted. In this
case, the level remains at VL_READ_ONLY.

A VLStreamAvailable event is delivered when the path can be set up
again to a stream usage of VL_SHARE or VL_LOCK.

VLSyncLost vlsynclost Generated when a node on a path detects invalid timing. The path on
which the timing error occurred is specified by the path member of the
vlsynclost structure. Some memory nodes have controls to abort a
transfer when they detect invalid timing. In that case, a VLTransferFailed
event is generated in its place.

VLSequenceLost vlsequencelost Generated when a video unit (field or frame, depending on the capture
type) is dropped. The path on which the unit was dropped is specified by
the path member of the vlsequencelost structure. If a group of
contiguous units is dropped, only one VLSequenceLost event is
generated. The client can register for VLTransferComplete events to
determine when capture or playback resumes.

Note that VLSequenceLost represents a “soft” error and video transfer
continues on the path. This event is in contrast to VLTransferFailed,
which signals a “hard” error that causes the transfer to abort.

The event is delivered as soon as the missed unit is detected. Note that
for memory nodes; this event may not be generated until a valid unit is
transferred.

Table 7-1 (continued) VL Events for the OCTANE Personal Video Device

Event Structure Description

92

Chapter 7: Event Handling

VLControlChanged vlcontrolchanged Generated when a control’s value changes. In order for a path to receive
this event, it must contain the node on which the control resides. The
node is specified in the node member of the vlcontrolchanged structure,
and the control’s ID is specified by the type member. Use vlGetControl
to retrieve the new value of the control.

This event is never delivered to the path causing the event, that is, the
path on which vlSetControl was called.

Note that the vlcontrolchanged structure contains a value member. This
member is not currently used and does not contain the new value of the
control.

VLTransferComplete vltransfercomplete Generated each time a video unit is captured or played back on a path.
The video unit is a field or a frame, depending on the capture type. The
path on which the event occurred is specified in the path member of the
vltransfercomplete structure.

This event is generated by paths containing memory nodes only.
VLTransferComplete is not sent on “jack-to-jack” paths, for example, a
video input to video output path.

VLTransferFailed vltransferfailed Generated when a catastrophic error occurs while a path is capturing or
playing back a video unit. The memory transfer is halted. The path on
which the failure occurred is specified by the path member of the
vltransferfailed structure. Note that this event is in contrast to the
VLSyncLost or VLSequenceLost events, which are generated when
noncatastrophic errors are detected.

This event is generated by paths containing memory nodes only.
VLTransferFailed is not sent on “jack-to-jack” paths, for example, a video
input to video output path.

VLEvenVerticalRetrace vlevenverticalretrace Generated at the vertical retrace for each even field in the video stream.
The path on which the event occurred is specified by the path member of
the vlevenverticalretrace structure.

A path must contain a memory or screen node to receive
VLEvenVerticalRetrace events.

VLOddVerticalRetrace vloddverticalretrace Generated at the vertical retrace for each odd field in the video stream.
The path on which the event occurred is specified by the path member of
the vloddverticalretrace structure.

A path must contain a memory or screen node to receive
VLOddVerticalRetrace events.

Table 7-1 (continued) VL Events for the OCTANE Personal Video Device

Event Structure Description

OCTANE Personal Video VL Events

93

VLFrameVerticalRetrace vlframeverticalretrace Generated at the vertical retrace for each frame. The path to which the
event is delivered is specified by the path member of the
vlframeverticalretrace structure.

A path must contain a memory or screen node to receive
VLFrameVerticalRetrace events.

VLDeviceEvent vldeviceevent Generated when the external trigger fires. The event is delivered to all
paths registered for it. The path to which an event record is delivered is
specified by the path member of the vldeviceevent structure.

Trigger polarity, trigger line, and other parameters controlling the trigger
are specified by controls on the device node.

VLDefaultSource vldefaultsource Generated when a vlSetControl() on the VL_DEFAULT_SOURCE
control changes the default video source. The new source is specified by
the node member of the vldefaultsource structure.

In order for a path to receive this event, it must contain the new default
source node.

VLControlRangeChanged vlcontrolrangechanged Generated when the range for a control changes. In order for a path to
receive this event, it must contain the node on which the control resides.
The node is specified in the node member of the vlcontrolrangechanged
structure, and the control’s ID is specified by the type member.

VLControlPreempted vlcontrolpreempted Delivered to a path that has acquired a node with VL_SHARE control
usage (the preempted path) when a path with VL_LOCK control usage
(the preempting path) is set up. The preempted path retains VL_SHARE
control usage, but is prevented from changing any controls while the
preempting path is set up with control usage VL_LOCK. A
VLControlAvailable event is sent when the controls are unlocked.

The node whose controls have been locked is specified by the node
member of the vlcontrolpreempted structure. The path containing the
node is identified by the path member.

VLControlAvailable vlcontrolavailable Delivered to a path whose controls were previously preempted (see
VLControlPreempted), when controls are unlocked, that is, when the
control usage of the locking path is dropped to VL_SHARE,
VL_READ_ONLY, or VL_DONE_USING.

The node whose controls have been unlocked is specified by the node
member of the vlcontrolavailable structure. The path containing the
node is identified by the path member.

Table 7-1 (continued) VL Events for the OCTANE Personal Video Device

Event Structure Description

94

Chapter 7: Event Handling

Querying VL Events

General VL event handling routines are summarized in Table 7-2.

VLDefaultDrain vldefaultdrain Generated when a vlSetControl() changes the default video drain to
VL_DEFAULT_DRAIN control. The new drain is specified by the node
member of the vldefaultdrain structure.

In order to receive this event, the path must contain the new default
drain node.

Table 7-2 VL Event Handling Routines

Routine Use

vlGetFD() Retrieves a file descriptor for a VL server

vlNextEvent() Obtains the next event; blocks until the next event from the queue is
obtained

vlCheckEvent() Like a nonblocking vlNextEvent(), checks to see if you have an event
waiting of the type you specify and reads it off the queue without
blocking

vlPeekEvent() Copies the next event from the queue but, unlike vlNextEvent(), does
not update the queue, so that you can see the event without processing
it

vlSelectEvents() Selects video events of interest

vlPending() Queries whether there is an event waiting for the application

vlEventToName() Retrieves the character string with the name of the event; for example,
to use in messages

vlAddCallback() Adds a callback; use for VL events

vlRemoveCallback() Removes a callback for the events specified if the client data matches
that supplied when adding the callback

Table 7-1 (continued) VL Events for the OCTANE Personal Video Device

Event Structure Description

Querying VL Events

95

The event type is an integer. vlEventToName() allows you to get the character string with
the name of the event, so that you can use the event name, for example, in messages.

Table 2-1 in Chapter 2 summarizes VL event masks.

Call vlGetFD() to get a file descriptor usable from select(2) or poll(2).

Call vlSelectEvents() to express interest in one or more event. For example:

vlSelectEvents(svr, path, VLTransferCompleteMask);

The VLEvent structure returned by vlNextEvent or vlCheckEvent identifies the type of
event that occurred and provides additional information on the event; for example, the
VLControlChanged event, accompanied by the node on which the control resides and by
the new value of the control. These additional pieces of information can be obtained
through the members of the VLEvent union corresponding to each event.

Event masks can be Or’ed together. For example:

vlSelectEvents(svr, path, VLTransferCompleteMask |
 VLTransferFailedMask);

Depending on whether you want to block processing or not, use vlNextEvent()
(blocking) or vlCheckEvent() (nonblocking) to get the next event.

Use vlPeekEvent() to see what the next event in the queue is without removing it from
the queue. For example, the part of the code that actually gets the event from the event
loop uses vlNextEvent(), whereas another part of the code that just wants to know about
it, for example, for priority purposes, uses vlPeekEvent().

vlRemoveAllCallbacks() Removes all callbacks for the specified path and events

vlCallCallbacks() Creates a handler; used when creating a main loop or using a supplied,
non-VL main loop

vlRegisterHandler() Registers an event handler; use for non-VL events

vlRemoveHandler() Removes an event handler

Table 7-2 (continued) VL Event Handling Routines

Routine Use

96

Chapter 7: Event Handling

Creating a VL Event Loop

You can set an event loop to run until a specific condition is fulfilled. The routine
vlSelectEvents() allows you to specify which event the application will receive.

Using an event loop requires creating an event mask to specify the events you want. The
VL event mask symbols are combined with the bitwise OR operator. For example, to set
an event mask to express interest in either transfer complete or control changed events,
use

VLTransferCompleteMask | VLControlChangedMask

To create an event loop, follow these steps:

1. Define the event; for example:

VLEvent ev;

2. Set the event mask; for example:

vlSelectEvents(vlServer, path, VLTransferCompleteMask |
VLControlChangedMask)

3. Block on the transfer process until at least one event is waiting:

for(;;){
vlNextEvent(vlServer, &ev);

4. Create the loop and define the choices; for example:

switch(ev.reason){
 case VLTransferComplete:
 …
 break;
 case VLControlChanged:
 …
 break;
 }
}

Creating a Main Loop With Callbacks

97

Creating a Main Loop With Callbacks

vlMainLoop() is provided as a convenience routine and constitutes the main loop of VL
applications. This routine first reads the next incoming video event; it then dispatches the
event to the appropriate registered procedure. Note that the application does not return
from this call.

Applications are expected to exit in response to some user action. There is nothing special
about vlMainLoop(); it is simply an infinite loop that calls the next event and then
dispatches it. An application can provide its own version of this loop, for example, to test
a global termination flag or to test that the number of top-level widgets is larger than zero
before circling back to the call to the next event.

To specify callbacks, that is, routines that are called when a particular VL event arrives,
use vlAddCallback(). Its function prototype is

int vlAddCallback(VLServer vlServer, VLEvent * event,
 void * clientdata, VLEventMask events,
 VLCallbackProc callback, void *clientData)

Example 7-1 illustrates the use of vlAddCallback().

Example 7-1 Using VL Callbacks

main()
{
 …
 /* Set up the mask for control changed events and Stream preempted events */
 if (vlSelectEvents(vlSvr, vlPath, VLTransferComplete | VLStreamPreemptedMask))
 doErrorExit(“select events”);

 /* Set ProcessEvent() as the callback for VL events */
 vlAddCallback(vlSvr, vlPath, VLTransferCompleteMask | VLStreamPreemptedMask,
 ProcessEvent, NULL);

 /* Start the data transfer immediately (i.e. don’t wait for trigger) */
 if (vlBeginTransfer(vlSvr, vlPath, 0, NULL))
 doErrorExit(“begin transfer”);

 /* Get and dispatch events */
 vlMainLoop();
}

/* Handle VL events */

98

Chapter 7: Event Handling

void
ProcessEvent(VLServer svr, VLEvent *ev, void *data)
{
 switch (ev->reason)
 {
 case VLTransferComplete:
 /* Get the valid video data from that frame */
 dataPtr = vlGetActiveRegion(vlSvr, transferBuf, info);
 /* Done with that frame, free the memory used by it */
 vlPutFree(vlSvr, transferBuf);
 frameCount++;
 break;

 case VLStreamPreempted:
 fprintf(stderr, “%s: Stream was preempted by another Program\n”,
 _progname);
 docleanup(1);
 break;

 default:
 break;
 }
}

Delete a callback with vlRemoveCallback() or vlRemoveAllCallbacks(). Their function
prototypes are

int vlRemoveCallback(VLServer vlServer, VLPath * path,
 VLEventMask events, VLCallbackProc callback, void
 *clientData)

int vlRemoveAllCallbacks(VLServer vlServer, VLPath * path, VLEventMask events)

The functions vlAddHandler() and vlRemoveHandler() are analogous to
vlAddCallback() and vlRemoveCallback(), respectively. Use them for non-VL events.

In /usr/share/src/dmedia/video/vl, the example program eventex.c illustrates how to create a
main loop and event loops.

Caution: To simplify the code, this example does not check returns. You should,
however, always check returns.

99

Chapter 8

8. Video Real-Time Capture and Playback

The OCTANE Personal Video memory nodes are capable of full video-rate capture and
playback to the Video Library buffers. This chapter explains how to optimize capture or
playback to system memory or disk.

• “Video Library Buffers”

• “Caching”

• “Direct I/O to Disk”

• “syssgi”

• “Asynchronous I/O”

Video Library Buffers

Data transfer between the VL and an application takes place through a DMbuffer or VL
buffer. When the OCTANE Personal Video option transfers data from the application to
the Video Library, the application retrieves an empty buffer using vlGetNextFree(). After
placing data in the buffer, the application marks it as valid using the vlDMGetValid() or
vlPutValid() routine. When the video device is finished reading from the buffer, it marks
the buffer as free. For more details on the role of buffers in data transfer, see “Transferring
Video Data to and From Devices” in Chapter 5.

100

Chapter 8: Video Real-Time Capture and Playback

Caching

To mark a DMbuffer as cacheable or not, use dmBufferSetPoolDefaults(); for VL buffers,
use the vlBufferAdvise() routine to mark a VL buffer. They have the following
prototypes:

int vlBufferAdvise(VLBuffer buffer, int advice)

int vlBufferSetPoolDefaults(VLBuffer buffer, int advice)

where

buffer specifies the ring buffer to be advised

advice specifies the type of advisory being made:

• VL_BUFFER_ADVISE_NOACCESS marks the buffer as
non-cacheable

• VL_BUFFER_ADVISE_ACCESS marks the buffer as cacheable

Marking the buffer non-cacheable indicates that the CPU cache does not have to be
flushed or invalidated when data is read or written to system memory via DMA.
However, any access to the buffer through the CPU must then bypass the cache and must
always go to system memory. This arrangement can severely degrade the performance
of an application that directly manipulates the video data.

Consequently, marking a buffer cacheable or noncacheable is application-dependent. In
general:

• If the application manipulates the data, even if it is only to copy the data into or out
of another region of system memory, the buffer should be set cacheable. This setting
is the default for a VL buffer.

• If the application does not manipulate data, and all transfer is done strictly through
DMA, then performance is optimized by setting the buffer to noncacheable. This is
the case, for example, when video is read into a buffer and then written directly to
disk with raw or direct I/O.

Note: If raw or direct I/O is not used, the data is first copied into the filesystem
cache. In that case, the buffer should be kept cacheable.

Direct I/O to Disk

101

Direct I/O to Disk

Capture or playback from a disk subsystem can be greatly improved by using direct I/O.
Direct I/O bypasses the filesystem’s buffer cache, eliminating a data copy and other
overhead. The buffer can also be marked noncacheable, yielding further performance
gains.

Because the filesystem cache is bypassed, device buffer alignment and block size
restrictions fall onto the application. These restrictions can be obtained using

fcntl(int fd, F_DIOINFO, struct dioattr *dioattr)

The device can, for example, require that the buffer be page-aligned. Disk devices usually
require that the buffer’s size be a multiple of 512 bytes (the disk sector size), or a multiple
of the stripe size.

In addition, device performance can be improved with certain alignments or sizes. For
example, a device operating on a non-page-aligned VL buffer can internally break the
request into a nonaligned part and an aligned part, yielding the overhead of two requests
instead of one. In striped disk subsystems, performance is usually improved by reading
or writing entire stripes at a time.

VL buffer elements used with the OCTANE Personal Video device are always
page-aligned, which satisfies the alignment constraints of most devices. DMbuffer
alignment, on the other hand, is a union of all requested alignments; see “Using Buffers”
in Chapter 5.

The VL_EVO_BUFFER_QUANTUM control is provided so that an application can
specify the block size that should be applied to a video unit. (The video unit is a field or
frame, depending on the capture type.) For example, setting this control to 512 rounds
the frame or field size, as reported by vlGetTransferSize(), up to a multiple of 512. This
control should be set to a multiple of the block size returned by fcntl(fd, F_DIOINFO, ...),
or to the optimal block size for the device.

When VL_EVO_BUFFER_QUANTUM is set to a value other than 1, the video data is
padded at the end with random values. Consequently, it is important to use the same
value for VL_EVO_BUFFER_QUANTUM on capture and on playback. Making the value
the same can be a problem if a file is copied from one device to another with a different
allowable block size. It is recommended that the control be set to a common multiple of
the allowable sizes. For example, 4096 satisfies most devices. Otherwise, the file may
need to be reformatted.

102

Chapter 8: Video Real-Time Capture and Playback

syssgi

Some of the standard I/O routines support files sizes only up to 2 GB because file
position is expressed as a signed integer. lseek, for example, only operates up to a 2 GB
range. (Note that it is possible to use the read or write system calls to read or write past
the 2 GB mark, up to the filesystem size).

The syssgi system call can be used to read or write raw disk partitions greater than 2 GB
when used with the following parameters:

int syssgi(int request, int fd, char *data, int blockoffset, int numblocks)

where

request is SGI_READB for a read operation or SGI_WRITEB for a write
operation

fd is a file descriptor of a character special device, as obtained by the open
system call

data points to the buffer to be written from or read to

blockoffset is the block position where reading or writing should commence

numblocks is the number of blocks to read or write starting at blockoffset

Note that syssgi operates in units of device blocks as opposed to bytes. For disk
subsystems, a block is usually 512 bytes, allowing 240 bytes of disk space to be addressed.

As with direct I/O, the application is responsible for ensuring that the data buffer is
properly aligned and that block size constraints are followed.

Asynchronous I/O

Asynchronous I/O allows an application to process multiple read or write requests
simultaneously. On Silicon Graphics platforms, asynchronous I/O is available through
the aio facility. The aio64 facility additionally supports 64-bit file sizes and offsets.

Because multiple I/O requests might be outstanding when asynchronous I/O is used,
the round-trip delay between making a request, having it serviced, and issuing another
request is removed. Asynchronous I/O also eliminates any process-scheduling delay

Asynchronous I/O

103

between these steps. In addition, the device being read from or written to might be able
to optimize performance by carrying out the requests simultaneously.

For VL buffers only, keep the following points in mind when using asynchronous I/O:

• The VL buffer is a first-in first-out mechanism. When putting a buffer element back
into the buffer using vlPutValid(), the “oldest” element retrieved by
vlGetNextFree() is used. There is no way to specify that a different element should
be used.

• Because asynchronous I/O operations can complete out of order, the application
may need to keep a list of filled elements. When the oldest element is filled, the
application can then call vlPutValid() to place it back into the buffer, and check to
see if any other elements are also ready.

• The same restriction applies to vlPutFree() for elements obtained with
vlGetNextValid() or vlGetLatestValid().

Caution: Software conversion can severely degrade capture or playback performance.

105

Appendix A

A. Return Codes

This appendix explains the return codes that are used with the Video Library for the
OCTANE Personal Video option. The return code is accessible through the vlGetErrno()
routine; see also vlPerror() and vlStrError().

VLAPIConflict

You have called an API routine that is not supported on this platform.

VLSuccess

The Video Library routine completed without error.

VLBadAccess

The client attempted to perform an operation that is illegal given the state of the
client, the node, or the path. This error is returned, for example, if the client
attempts to add a node to a path that has been set up, or call vlSetControl() on a
path with control usage est to VL_READ_ONLY.

VLBadAlloc

The Video Library could not allocate the system resources required for the
requested operation, for example, memory and semaphores. If the source of the
error is not evident (that is, sufficient physical memory and paging space was
present), report this error to technical support.

VLBadAtom

The server does not recognize the value specified by the atom parameter in the
request as a valid atom ID.

VLBadBuffer

The value of the buffer parameter is not a DMbuffer ID recognized by the Video
Library.

106

Appendix A: Return Codes

VLBadControl

The value specified by the control parameter is not recognized by the node to
which the request was made.

VLBadDevice

The server does not recognize the value specified by the device parameter in the
request as a valid device ID. See also VLBadMatch.

VLBadIDChoice

The requested resource ID is not in range; report this error to Customer Support.

VLBadImplementation

An internal processing error occurred. Report the error and the context in which
it occurred to Customer Service.

VLBadIoctl

An error occurred between the video daemon and the device driver associated
with the video device. This error can result from an invalid parameter setting in
vlSetControl(), although it can also represent an internal processing error. This
error should be reported to technical support.

VLBadLength

The video daemon received a request with an invalid length. Report this internal
processing error to Customer Support.

VLBadMatch

The arguments specified for the node, path, or device parameters are not
consistent. The node may not reside on the path, or the path may not reside on
the device.

VLBadName

An error took place when the DMparams list was to be retrieved; see
VLDMGETPARAMS(3dm).

VLBadNode

The server does not recognize the value specified by the node parameter in the
request as a valid node ID. See also VLBadMatch.

107

VLBadPath

The server does not recognize the value specified by the path parameter in the
request as a valid path. See also VLBadMatch.

VLBadPort

The value specified by the port parameter is not a recognized port on the
associated node.

VLBadRequest

The daemon has received a bad request code. Report this internal processing
error to technical support.

VLBadServer

The value of the server parameter is not a server ID recognized by the Video
Library.

VLBadSize

The size of the DMbuffer elements associated with a memory node are not
compatible with the size of a video unit (field or frame), given the node’s control
settings.

VLBadValue

The value of a parameter is invalid. When generated by vlSetControl(),
VLBadValue can indicate that the incorrect control value type was used, that the
value is not within the range for the control, or that the node cannot accept the
specified value due to a conflict with other node settings.

VLBufferTooSmall

The size of the DMbuffer elements associated with a memory node are smaller
than the size of a video unit (field or frame) given the node’s control settings.

VLInputsNotLocked

The processing element associated with a node cannot lock to the input signal.
This code may indicate that no signal is present or that the supplied video signal
uses a different timing standard than that expected by the node (see VL_TIMING
on the input or device node).

108

Appendix A: Return Codes

VLNotEnoughSpace

The supplied data region did not contain enough space to hold the information
returned by the server.

VLNotSupported

vlSetConnection() or vlGetConnection() can return this code if the video device
does not support explicit connections. Note that the OCTANE Personal Video
device does not support these calls.

VLPathInUse

This error is generated by a call to (vlSetupPaths()) when a node cannot be
acquired because the path has requested VL_SHARE stream usage while
another path has the required nodes with a stream of VL_LOCK, or with a
control usage of VL_LOCK.

VLSetupFailed

A general failure occurred during a vlSetupPaths() request. If multiple paths
were specified for vlSetupPaths(), some or none of the paths may have been set
up. In addition, some paths may have been preempted in order to set up those
paths.

It is recommended that the application set up the paths again to stream usage
VL_READ_ONLY and control usage VL_READ_ONLY or VL_SHARE in order
to reset the state of all paths. This combination of control and stream usage is
guaranteed to succeed.

VLValueOutOfRange

The control value specified for a vlSetControl() operation is not within the range
accepted by the node. The value was adjusted before being set. (Compare with
VLBadValue, where the control’s value is not changed at all.) Use the
vlGetControlInfo() routine to retrieve the valid ranges for the control.

109

Appendix B

B. OCTANE Personal Video Nodes and Their Controls

This appendix describes the nodes available to the OCTANE Personal Video option. It
lists the controls associated with each node, as well as special considerations involved in
node usage.

In the tables that summarize the control set for a node, the columns are as follows:

Default The default value for the control. If the value is Dynamic, the default
value depends on the value of other controls. For example, frame size is
dependent on device timing. The default value is described in the
verbose description of the control.

If the value is Persistent, the default value is initially obtained from the
defaults file, but is never reset. Many controls available through the
video control panel vcp (for example, the default video input) fall into
this category. For this value, changes made by vlSetControl() are
persistent across paths, even if the node goes into an unused state.

If the default is a specific value or is Dynamic, the control is
reinitialized to the default value when the node is no longer in use, that
is, when all application paths have been destroyed and the only
applications remaining are supervisory. The vcp is the only supervisory
application.

Some controls have a default value of None. This value means that the
control must be set before a transfer can be started on a path containing
the node.

Type The member of the VLControlValue union used to set or get the value of
the control.

Access is indicated before the control table for the node; it is one or more of the following:

• G: The value can be retrieved through vlGetControl().

• S: The value can be set through vlSetControl() while the path is not transferring.

• T: The value can be set through vlSetControl() while the path is transferring.

110

Appendix B: OCTANE Personal Video Nodes and Their Controls

The nodes are described in the following sections:

• “VL_DEVICE” on page 110

• “VL_MEM” on page 112

• “VL_SCREEN” on page 123

• “VL_VIDEO” on page 125

Note: In the tables that summarize controls for a node, VL device-independent controls
(VL_) are listed first, in alphabetical order, followed by VL device-dependent controls
(VL_EVO_). For information on camera controls, see “Camera Controls” on page 54 in
Chapter 3.

VL_DEVICE

The device node (video source node) provides controls that affect the operation of the
OCTANE Personal Video device as a whole. These controls include global parameters
such as timing, as well as default information such as the default source or drain.

For device nodes:

• type is VL_DEVICE

• kind is 0

• number is 0

Table B-1 lists device node controls. For VL_DEFAULT_DRAIN and
VL_DEFAULT_SOURCE, access is GST; for all other controls, access is GS.

Table B-1 Device Node Controls

Control Default Type Use

VL_DEFAULT_DRAIN Persistent intVal The VL_DEFAULT_DRAIN control determines the drain node the Video
Library selects when a node is acquired with vlGetNode(VL_DRAIN,
VL_VIDEO, VL_ANY). The value of the control is a video drain node
number, as reported by vlGetDeviceList().

Once a path is set up, the node number is fixed for the lifetime of the path.
Consequently, changing this control does not change paths previously set
up using a default drain node. Paths can register for the VLDefaultDrain
event to be notified when this control’s value is changed.

VL_DEVICE

111

VL_DEFAULT_SOURCE Persistent intVal The VL_DEFAULT_SOURCE control determines the source node the
Video Library selects when a node is acquired with vlGetNode(VL_SRC,
VL_VIDEO, VL_ANY). The value of the control is a video source node
number, as reported by vlGetDeviceList().

Once a path is set up, the node number is fixed for the lifetime of the path.
Consequently, changing this control does not change paths previously set
up using a default source node. Paths can register for the
VLDefaultSource event to be notified when this control’s value is
changed using vlSelectEvents().

VL_SYNC Persistent intVal The OCTANE Personal Video device can derive timing from an external
source or use an internal free-running clock. If VL_SYNC is set to
VL_SYNC_INTERNAL, the internal timing source is used. When
VL_SYNC is set to VL_SYNC_GENLOCK, timing is derived from an
external clock selected by the VL_SYNC_SOURCE control.

VL_SYNC_SOURCE Persistent intVal When the VL_SYNC control is set to VL_SYNC_GENLOCK this control
selects the source of synchronization for the OCTANE Personal Video
device. Parameters are

GEN_PORT: genlock input on the board
GEN_DVIN: serial digital input
GEN_AVIN: composite input
GEN_YCIN: Y/C input
GEN_KSYNC: Internal Video Sync signal

VL_TIMING Persistent intVal Selects the device timing for the OCTANE Personal Video device and
affects the timing for the screen source node, the memory source nodes,
and the video drain node. The device supports the following modes:

VL_TIMING_525_SQ_PIX: NTSC, 525-line square pixel timing
VL_TIMING_525_CCIR601: CCIR 601, 525-line nonsquare pixel timing
VL_TIMING_625_SQ_PIX: PAL, 625-line square pixel timing
VL_TIMING_625_CCIR601: CCIR 601, 625-line nonsquare pixel timing

Table B-1 (continued) Device Node Controls

Control Default Type Use

112

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_MEM

This discussion divides the VL_MEM nodes into their manifestations as source and
drain.

VL_MEM Source

The OCTANE Personal Video option supports two memory source nodes, which provide
real-time paths from main memory to the OCTANE Personal Video option. For the
memory source node:

• type for both memory source nodes is VL_SRC

• kind for both memory source nodes is VL_MEM

• number is VL_EVO_NODE_NUMBER_MEM_1 and
VL_EVO_NODE_NUMBER_MEM_2

Table B-2 lists memory source node controls. For all these controls, access is GS.

Table B-2 Memory Source Node Controls

Control Default Type Use

VL_ASPECT 1/1 fractVal Affects the horizontal scale factor. The effective scale factor
is VL_ZOOM * VL_ASPECT.

VL_CAP_TYPE VL_CAPTURE
_INTERLEAVED

intVal Specifies the type of video units—fields or frames—that the
application obtains from the ring buffer. Valid capture types
are: VL_CAPTURE_NONINTERLEAVED
VL_CAPTURE_INTERLEAVED
VL_CAPTURE_EVEN_FIELDS
VL_CAPTURE_ODD_FIELDS
VL_CAPTURE_FIELDS

See “VL_CAP_TYPE and VL_RATE” in Chapter 3 for
information on capture types.

VL_COLORSPACE VL_COLORSPACE
_CCIR601

intVal Specifies color space of video data in memory:
VL_COLORSPACE_RGB
VL_COLORSPACE_CCIR601
VL_COLORSPACE_RP175
VL_COLORSPACE_YUV

VL_MEM

113

VL_FORMAT VL_FORMAT_DIGITAL
_COMPONENT_SERIAL

intVal Specifies the type of video format to be produced:
VL_FORMAT_DIGITAL_COMPONENT_SERIAL
VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL
VL_FORMAT_SMPTE_YUV
VL_FORMAT_RGB

See “VL_FORMAT” in Chapter 3.

VL_PACKING VL_PACKING_YVYU
_422_8

intVal Specifies the bit order in which the video components are
stored in memory. See “VL_PACKING” in Chapter 3 for the
specifications of each packing.

VL_OFFSET (0,0) xyVal Specifies the upper left corner of a video region to be output.
The coordinates are offsets of the upper left corner of the
active video and take precedence over the size. Therefore, in
order to accommodate the given offset, the size may be
changed. A VLControlChanged event is generated to
inform interested parties of any change in size.

VL_RATE Dynamic; depends on
timing and capture type

fractVal Specifies the rate at which the hardware extracts video units
(fields or frames, depending on the capture type) from the
ring buffer. The video unit is repeated, or black is output, to
achieve the video output rate of 60 fields per second (NTSC)
or 50 fields per second (PAL). The memory source nodes can
consume video units from system memory at any rate up to
the video standard rate.

For VL_CAPTURE_NONINTERLEAVED and
VL_CAPTURE FIELDS, valid ranges are as follows:

NTSC: 1 through 60 units per second (must be multiple of
fields per frame for noninterleaved)

PAL: 1 through 50 units per second (must be multiple of
fields per frame for noninterleaved)

For VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, or
VL_CAPTURE_ODD_FIELDS, valid ranges are 1 through
30 units per second for NTSC and 1 through 25 units per
second for PAL.

Table B-2 (continued) Memory Source Node Controls

Control Default Type Use

114

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_SIZE Dynamic; depends on
timing and capture type

xyVal Specifies the width (pixels) and height (lines) of the video
data contained within each ring buffer entry. These values,
along with VL_PACKING, determine the size in bytes of
each ring buffer entry and thus the transfer size. The width
must be a multiple of four pixels. The length must be a
minimum of one line for field capture types and two lines
for frames.

The specified size is constrained by the maximum allowable
(as dictated by the device timing) and by the current offset
position (VL_OFFSET). If the size is too large, it is reduced.
The offset is not changed. This control is applied before
VL_ZOOM. It is recommended that VL_OFFSET be set
before VL_SIZE.

VL_TIMING Dynamic; from device node intVal Retrieves the current video timing value for the path. See
“VL_SCREEN” and “VL_VIDEO” in this appendix for more
details. This control is read-only.

VL_ZOOM 1.0 fractVal Specifies the amount of scaling to be applied to the video
before it is transferred to memory. See “VL_ZOOM” in
Chapter 3.

Table B-2 (continued) Memory Source Node Controls

Control Default Type Use

VL_MEM

115

VL_FIELD
_DOMINANCE

VL_F1_IS_DOMINANT intVal Sets the field dominance mode, which determines the order
in which the fields are read from memory. This control
applies only to the frame-oriented capture types
(VL_CAPTURE_INTERLEAVED and
VL_CAPTURE_NONINTERLEAVED).

For VL_CAPTURE_INTERLEAVED, values are as follows:

VL_F1_IS_DOMINANT: For video timings
VL_TIMING_525_CCIR601 and VL_TIMING_525_SQ_PIX,
F1 (also known as odd) dominance dictates that data for the
F1 field resides in memory after that for F2. For
VL_TIMING_625_CCIR601 and VL_TIMING_625_SQ_PIX,
the data for F1 resides in memory before that of F2.

VL_F2_IS_DOMINANT: For VL_TIMING_525_CCIR601
and VL_TIMING_525_SQ_PIX, F2 (also known as even
timings), dominance dictates that data for the F1 field
resides in memory before that for F2. For
VL_TIMING_625_CCIR601 and VL_TIMING_625_SQ_PIX,
the data for F1 resides in memory after that of F2.

The meaning of before and after depends on the capture type.
For interleaved frames, before indicates that the data that
compose the first line of the designated field begins at the
first byte of the buffer. In this format, the lines of F1 and F2
are interleaved within the one ring buffer; thus the second
line of the buffer belongs to the other field, and so forth.

For noninterleaved frames, before indicates that the
dominant field is in a buffer preceding the buffer(s)
containing nondominant fields.

For VL_CAPTURE_NONINTERLEAVED, values are as
follows:

VL_F1_IS_DOMINANT: The F1 field is in the first buffer of
the pair, and the F2 field in the second.

VL_F2_IS_DOMINANT: The F2 field is in the first buffer of
the pair, the F1 field in the second.

Table B-2 (continued) Memory Source Node Controls

Control Default Type Use

116

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_EVO_BUFFER
_QUANTUM

1 intVal The granularity, or quantum, of data transfer required by
the application. The video data is padded at the end so that
the size of a field/frame is a multiple of
VL_EVO_BUFFER_QUANTUM. This control is intended
for applications that do I/O directly from the ring buffer,
and may consequently require the frame or field size to be a
multiple of the device block size. Direct I/O, for example,
usually requires that 512 bytes of data be transferred at a
time.

VL_EVO_CSC
_ALPHA
_CORRECTION

FALSE boolVal When VL_MGV_CSC_CONST_HUE is enabled, this
control saves the constant hue correction factor (TRUE) or
retains alpha input data (FALSE). See “Constant Hue” on
page 50 in Chapter 3.

VL_EVO_CSC
_COEF

Multiplier operates in
pass-through mode

extendedVal Specifies the matrix multiplier coefficients. See
“Color-Space Converter for Image Processing” on page 52
in Chapter 3.

VL_EVO_CSC
_CONST_HUE

TRUE boolVal Enables or disables constant-hue algorithm. See “Constant
Hue” on page 50 in Chapter 3.

VL_EVO_CSC_LUT
_IN_PAGE

VL_EVO_CSC_LUT
_ALPHA_PAGE

0

0

intVal Selects the active page for the input LUT. Valid page
numbers are 0 through 3.

Selects the active page for the alpha LUT; valid page
numbers are 0 through 3. See “Color-Space Converter for
Image Processing” on page 52 in Chapter 3.

VL_EVO_CSC_LUT
_IN_YG

VL_EVO_CSC_LUT
_IN_UB

VL_EVO_CSC_LUT
_IN_VR

VL_EVO_CSC_LUT
_ALPHA

Pass-through (1:1 mapping) extendedVal Specifies the contents of the input or alpha lookup tables.
See “Color-Space Converter for Image Processing” on
page 52 in Chapter 3.

Table B-2 (continued) Memory Source Node Controls

Control Default Type Use

VL_MEM

117

VL_EVO_CSC_LUT
_OUT_YG

VL_EVO_CSC_LUT
_OUT_UB

VL_EVO_CSC_LUT
_OUT_VR

Pass-through (1:1 mapping) extendedVal Specifies the contents of the output lookup tables. See
“Color-Space Converter for Image Processing” on page 52
in Chapter 3.

VL_EVO_DMA
_ERROR_RESTART

VL_EVO_DMA_RESTART_
ON

intVal If enabled (VL_EVO_DMA_RESTART_ON), a video
transfer continues when an error is encountered (the error is
reported). Otherwise (VL_EVO_DMA_RESTART_OFF), the
video transfer fails. This control covers three types of errors:

The reference video timing is not clean, resulting in
short/long lines, fields, or both. These errors are with
respect to the programmed size and offset.

The system GIO bus bandwidth was insufficient to transfer
video from system memory at video rates.

The video clock was interrupted.

VL_EVO_DMA
_VOUT_BLANK

VL_EVO_DMA_VO_BLK
_YUVA for YUV transfers;
VL_EVO_DMA_VO_BLK
_RGBA for RGB transfers

intVal Sets output blanking, overriding the default output
blanking set by VL_PACKING:

VL_EVO_DMA_VO_BLK_YUVA: Y = A = 16, U = V = 128
VL_EVO_DMA_VO_BLK_RGBA: R = G = B = A = 16

Set this control after VL_PACKING.

Table B-2 (continued) Memory Source Node Controls

Control Default Type Use

118

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_EVO_DMA
_VOUT
_STARVATION

VL_EVO_DMA_VO
_STARV_RPT

intVal Sets the video output policy to use when the memory node
underflows the ring buffer (that is, the application has not
filled the ring buffer at the rate that the memory node
consumes it). An application can choose between three
starvation policies. In each case, video output from system
memory resumes when the application places the next
field/frame in the ring buffer via vlPutValid().

VL_EVO_DMA_VO_STARV_BLK: Outputs black fields or
frames. This choice does not involve further access to
memory until a new buffer becomes available.

VL_EVO_DMA_VO_STARV_FLD: Causes the last field
output to be repeated.

VL_EVO_DMA_VO_STARV_RPT: Repeats the last unit
(field or frame) that was transferred from main memory.
The repetition is performed by continuing to transfer the
same field/frame from memory to video until a new buffer
becomes available or the transfer is ended. This results in
system bus bandwidth continuing to be consumed.

Caution: In order to maintain compatibility with the
behavior of the Galileo Video™ products, where a
framebuffer is incorporated, the default value for this
control is VL_EVO_DMA_VO_STARV_RPT. Therefore the
ring buffer used in the transfer must contain a minimum of
two buffer entries (four for
VL_CAPTURE_NONINTERLEAVED), so that one buffer
can be repeated by the system while the application is filling
the second. If only one buffer is used, then the first buffer
output is repeated indefinitely and vlGetNextFree() never
returns a free buffer.

Table B-2 (continued) Memory Source Node Controls

Control Default Type Use

VL_MEM

119

VL_MEM Drain

The OCTANE Personal Video option supports two memory drain nodes, which provide
real-time paths from the OCTANE Personal Video device to ring buffers. For the memory
drain:

• type for both memory drain nodes is VL_DRN

• kind for both memory drain nodes is VL_MEM

• number is VL_EVO_NODE_NUMBER_MEM_1 and
VL_EVO_NODE_NUMBER_MEM_2

Table B-3 lists memory drain node controls. For all these controls, access is GS.

Table B-3 Memory Drain Node Controls

Control Default Type Use

VL_ASPECT 1/1 fractVal Affects the horizontal scale factor. The effective scale factor is
VL_ZOOM * VL_ASPECT.

VL_CAP_TYPE VL_CAPTURE
_INTERLEAVED

intVal Specifies the type of video units—fields or frames—that the
application obtains from the ring buffer by the application.
Valid capture types are VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS, and VL_CAPTURE_FIELDS.
(See “VL_CAP_TYPE and VL_RATE” in Chapter 3 for
information on capture types.)

VL_COLORSPACE VL_COLORSPACE
_CCIR601

intVal Specifies color space of video data in memory:
VL_COLORSPACE_RGB
VL_COLORSPACE_CCIR601
VL_COLORSPACE_RP175
VL_COLORSPACE_YUV

VL_FORMAT Dynamic intVal Specifies the type of video format to be produced:
VL_FORMAT_DIGITAL_COMPONENT_SERIAL
VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL
VL_FORMAT_SMPTE_YUV
VL_FORMAT_RGB

See “VL_FORMAT” in Chapter 3.

120

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_PACKING VL_PACKING_YVYU
_422_8

intVal Specifies the bit order in which the video components are stored
in memory. See “VL_PACKING” in Chapter 3 for the
specifications of each packing.

VL_OFFSET (0,0) xyVal Specifies the upper left corner of a video region to be output.
The coordinates are offsets of the upper left corner of the active
video and take precedence over the size. Therefore, in order to
accommodate the given offset, the size may be changed. A
VLControlChanged event is generated to inform interested
parties of any change in size.

VL_RATE Dynamic; depends on
timing and capture type

fractVal Specifies the rate at which video units (fields or frames
depending on capture type) are extracted from the ring buffer.
The video unit is repeated, or black is output, to achieve the
video output rate of 60 fields per second (NTSC) or 50 fields per
second (PAL). The memory source nodes can consume video
units from system memory at any rate up to the video standard
rate.

For VL_CAPTURE_NONINTERLEAVED and VL_CAPTURE
FIELDS, valid rates are as follows:

NTSC: 1 through 60 units per second (must be multiple of fields
per frame for noninterleaved)

PAL: 1 through 50 units per second (must be multiple of fields
per frame for noninterleaved)

For VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, or
VL_CAPTURE_ODD_FIELDS, valid ranges are 1 through 30
units per second for NTSC and 1 through 25 units per second
for PAL.

Table B-3 (continued) Memory Drain Node Controls

Control Default Type Use

VL_MEM

121

VL_SIZE Dynamic; depends on
timing and capture type

xyVal Specifies the width (pixels) and height (lines) of the video data
contained within each ring buffer entry which—along with
VL_PACKING—determines the size in bytes of each ring buffer
entry and thus the transfer size. The width must be a multiple
of four pixels. The length must be a minimum of one line for
field capture types, and two lines for frames.

The specified size is constrained by both the maximum
allowable (as dictated by the device timing and capture type) as
well as the current offset position (VL_OFFSET). If the size is too
large, it is reduced. The offset is not changed. It is recommended
that VL_OFFSET be set before VL_SIZE.

VL_TIMING Dynamic; read only intVal Retrieves the current video timing value. See “VL_SCREEN”
and “VL_VIDEO” in this appendix for more details. This
control is read-only.

VL_ZOOM 1.0 fractVal Specifies the amount of scaling to be applied to the video before
it is transferred to memory. See “VL_ZOOM” in Chapter 3.

VL_EVO_BUFFER
_QUANTUM

1 intVal The granularity, or quantum, of data transfer required by the
application. The video data is padded at the end so that the size
of a field/frame is a multiple of
VL_EVO_BUFFER_QUANTUM. This control is intended for
applications that do I/O directly from the ring buffer, and may
consequently require the frame or field size to be a multiple of
the device block size. Direct I/O, for example, usually requires
that 512 bytes of data be transferred at a time.

VL_EVO_CSC
_ALPHA
_CORRECTION

FALSE boolVal When VL_MGV_CSC_CONST_HUE is enabled, this control
saves the constant hue correction factor (TRUE) or retains alpha
input data (FALSE). See “Constant Hue” on page 50 in
Chapter 3.

VL_EVO_CSC
_COEF

Multiplier operates in
pass-through mode

extended
Val

Specifies the matrix multiplier coefficients. See “Color-Space
Converter for Image Processing” on page 52 in Chapter 3.

VL_EVO_CSC
_CONST_HUE

TRUE boolVal Enables or disables constant-hue algorithm. See “Constant
Hue” on page 50 in Chapter 3.

Table B-3 (continued) Memory Drain Node Controls

Control Default Type Use

122

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_EVO_CSC_LUT
_IN_PAGE

VL_EVO_CSC_LUT
_ALPHA_PAGE

0

0

intVal Selects the active page for the input LUT. Valid page numbers
are 0 through 3.

Selects the active page for the alpha LUT; valid page numbers
are 0 through 3. See “Color-Space Converter for Image
Processing” on page 52 in Chapter 3.

VL_EVO_CSC_LUT
_IN_YG

VL_EVO_CSC_LUT
_IN_UB

VL_EVO_CSC_LUT
_IN_VR

VL_EVO_CSC_LUT
_ALPHA

Pass-through (1:1 mapping) extended
Val

Specifies the contents of the input or alpha lookup tables. See
“Color-Space Converter for Image Processing” on page 52 in
Chapter 3.

VL_EVO_CSC_LUT
_OUT_YG

VL_EVO_CSC_LUT
_OUT_UB

VL_EVO_CSC_LUT
_OUT_VR

Pass-through (1:1 mapping) extended
Val

Specifies the contents of the output lookup tables. See
“Color-Space Converter for Image Processing” on page 52 in
Chapter 3.

VL_EVO_DMA
_ERROR_RESTART

VL_EVO_DMA
_ERROR_RESTART_OFF

intVal If enabled (VL_EVO_DMA_RESTART_ON), a video transfer
continues when an error is encountered (the error is reported).
Otherwise (VL_EVO_DMA_RESTART_OFF), the video transfer
fails. This control covers three types of errors:

The reference video timing is not clean, resulting in short/long
lines, fields, or both. These errors are with respect to the
programmed size and offset.

The system GIO bus bandwidth was insufficient to transfer
video from system memory at video rates.

The video clock was interrupted.

VL_FIELD
_DOMINANCE

VL_F1_IS_DOMINANT intVal Sets the field dominance mode, determining the order in which
the fields are read from memory. This control applies only to the
frame-oriented capture types (VL_CAPTURE_INTERLEAVED
and VL_CAPTURE_NONINTERLEAVED). See the discussion
of VL_FIELD_DOMINANCE in Table B-2 earlier in this
appendix for more details.

Table B-3 (continued) Memory Drain Node Controls

Control Default Type Use

VL_SCREEN

123

VL_SCREEN

The OCTANE Personal Video option screen source node provides a means of using the
graphics screen as a source of video data. This node allows for extracting an area larger
than video size, which can be scaled to video size. The screen source node extracts
pregamma 8-bit RGB pixel values and inserts the data into a video signal. The RGB pixel
values can be

• captured to memory directly as RGB

• color-space converted and captured to memory

• sent to video out as YCbCr

For the screen node:

• type is VL_SRC

• kind is VL_SCREEN

VL_EVO_FILTER
_QUALITY

Persistent intVal Determines the quality of the filter employed, ranked by filter
quality:

VL_EVO_FILTER_QUALITY_LO: pixel replication

VL_EVO_FILTER_QUALITY_MED: linear interpolation

VL_EVO_FILTER_QUALITY_HI: four-tap filter

The CPU cost of the filters directly relates to their quality: the
low-quality filter consumes about 25% of an R10000™ 195 MHz
CPU; the high-quality filter consumes almost the entire CPU.

VL_EVO_FILTER
_TYPE

Persistent intVal OCTANE Personal Video supports square and nonsquare video
conversion to memory. This control selects how the conversion
between the two formats is performed. The values are

VL_EVO_FILTER_TYPE_FREQ (selects the
frequency-preserving filter)

VL_EVO_FILTER_TYPE_SPAT (selects the spatially preserving
filter)

See “VL_EVO_FILTER_TYPE” in Chapter 3.

Table B-3 (continued) Memory Drain Node Controls

Control Default Type Use

124

Appendix B: OCTANE Personal Video Nodes and Their Controls

Table B-4 lists screen source node controls. For all these controls, access is GST.

Table B-4 Screen Source Node Controls

Control Default Type Use

VL_ASPECT 1/1 fractVal Affects the horizontal scale factor. The effective scale factor is
VL_ZOOM * VL_ASPECT.

VL_FLICKER
_FILTER

TRUE boolVal Enables (TRUE) or disables flicker reduction. As the graphics display
is progressive scanned, each field of the generated signal corresponds
to one frame of the graphics display. Even and odd fields select
different scan lines from the graphics frame, which can result in an
undesirable flicker in the generated video if proper filtering is not
applied.

VL_FREEZE FALSE boolVal Freezes (TRUE) the image sent by the screen source node. If this
control is set, graphics updates are not reflected in the generated
video signal.

VL_OFFSET (0, 0) xyVal Sets where the scaled images produced by the screen source node are
inserted into a video frame, for centering or other placement of the
images. For this node, only a value of (0,0) is valid.

VL_ORIGIN (0, 0) xyVal Specifies the upper left corner (0,0) of a graphics display in unscaled
screen coordinates. With VL_SIZE, this control selects a region of the
graphics display to convert to video. If moving the origin causes the
region to be clipped, VL_SIZE is updated and a VLValueChanged
event is generated.

VL_SIZE Dynamic xyVal Selects, with VL_ORIGIN, the height and width of the region of the
graphics display that is converted to video. The value of VL_SIZE is
specified in unscaled coordinates. Specify timing with VL_TIMING
on the screen node.

This control is applied before VL_ZOOM.

VL_VIDEO

125

VL_VIDEO

This section discusses the VL_VIDEO source and drain nodes separately.

VL_VIDEO Source

The video source nodes correspond to the O2Cam connector converted to a digital input
with appropriate third-party hardware, the O2Cam connector with the digital camera
attached, and the analog connector.

For the video source:

• type for all three video source nodes is VL_SRC

• kind for all three video source nodes is VL_VIDEO

VL_TIMING Persistent intVal This control selects the device timing for the OCTANE Personal
Video device and affects the timing for the screen source node, the
memory source nodes, and the video drain node. The device
supports the following modes:

VL_TIMING_525_SQ_PIX: NTSC, 525-line square pixel timing

VL_TIMING_525_CCIR601: CCIR 601, 525-line nonsquare pixel
timing

VL_TIMING_625_SQ_PIX: PAL, 625-line square pixel timing

VL_TIMING_625_CCIR601: CCIR 601, 625-line nonsquare pixel
timing

VL_ZOOM 1.0 fractVal Sets the amount of scaling applied to the graphics area before it is
converted to video. VL_ZOOM sets both the horizontal and vertical
scale factors; use VL_ASPECT to modify the horizontal scale factor.
See “VL_ZOOM” in Chapter 3.

If the VL_ZOOM value makes the resulting size invalid (that is,
larger than a frame size), the size is constrained and a
VLControlChanged event is generated. If the scaled size of the
selected graphics region is smaller than the video frame size, use
VL_OFFSET on the drain node to position the generated video.

Table B-4 (continued) Screen Source Node Controls

Control Default Type Use

126

Appendix B: OCTANE Personal Video Nodes and Their Controls

• number is

– VL_EVO_NODE_NUMBER_VIDEO_1: digital video node, that is, the O2Cam
connector used with a third-party serial converter

– VL_EVO_NODE_NUMBER_VIDEO_2: O2Cam connector with O2Cam digital
camera attached

Note: Controls for the O2Cam digital camera are summarized in “Camera
Controls” on page 54 in Chapter 3.

– VL_EVO_NODE_NUMBER_VIDEO_3: analog video node; the VL_FORMAT
control selects between composite, Y/C, or loopback

Table B-5 lists video source node controls. For all these controls, access is GST, except
VL_FORMAT and VL_TIMING, which are GS.

Table B-5 Video Source Node Controls

Control Default Type Use

VL_FORMAT Persistent intVal Specifies the type of video format to be produced:
VL_FORMAT_SVIDEO
VL_FORMAT_COMPOSITE
VL_FORMAT_CAMERA
VL_EVO_FORMAT_LOOPBACK
VL_FORMAT_DIGITAL_COMPONENT_SERIAL

See “VL_FORMAT” in Chapter 3.

VL_FREEZE FALSE boolVal Since the OCTANE Personal Video device does not
support frozen inputs, this control can be set only to
FALSE.

VL_OFFSET (0, 0) xyVal Pans within the video. The OCTANE Personal Video
source nodes support an offset of (0, 0) only.

VL_SIZE Dynamic xyVal Reports the width and height of the active video
region. The values are fixed for each timing mode:

CCIR 525: 720 x 486
CCIR 625: 720 x 576
NTSC square pixel: 640 x 486
PAL square pixel: 768 x 576

Specify timing with VL_TIMING on the video source
node.

VL_VIDEO

127

VL_TIMING Persistent intVal Specifies timing standard of incoming video signal:

VL_TIMING_525_SQ_PIX: NTSC square pixel timing

VL_TIMING_625_SQ_PIX: PAL square pixel timing;
not applicable if video source is O2Cam digital
camera (VL_EVO_NODE_NUMBER_VIDEO_2)

VL_TIMING_525_CCIR601: CCIR 525-line
nonsquare pixel timing

VL_TIMING_625_CCIR601: CCIR 625-line
nonsquare pixel timing; not applicable if video source
is O2Cam digital camera
(VL_EVO_NODE_NUMBER_VIDEO_2)

VL_ZOOM 1/1 fractVal Sets scaling performed at video source. Since the
OCTANE Personal Video device does not support
scaling on a video node, this value can be set only to
unity (1/1). Use memory nodes for scaling.

VL_EVO_VIN_AGC_UPDATE
_INTERVAL

Persistent intVal Determines how often the automatic gain control
circuit can change the gain. The update rate can be
every line (VL_EVO_UPDT_INTVL_LINE) or every
field (VL_EVO_UPDT_INTVL_FIELD).

VL_EVO_VIN_ANALOG
_PROCESS

Persistent intVal Before analog-to-digital conversion, the analog signal
can be amplified and anti-alias filtered. This control
selects one of these actions:

VL_EVO_INPUT_PROCESS_BYPASS: no action
VL_EVO_INPUT_PROCESS_AMPLIFY: amplify
only
VL_EVO_INPUT_PROCESS_AMPLIFY_ALIAS
_FILTER: amplify and anti-alias filter

VL_EVO_VIN_APERTURE
_BAND_PASS

Persistent intVal You can peak the higher frequencies of the luminance
signal by running the signal through a bandpass
filter. The filtered signal is weighted by an aperture
factor (see VL_EVO_VIN_APTERTURE_FACTOR)
and added to the original unfiltered signal, boosting
the frequencies passed by the filter. This control
selects the center frequency of the bandpass filter. A
value of 0 selects 4.1 MHz, 1 selects 3.8 MHz,
2 selects 2.6 MHz, and 3 selects 2.9 MHz.

Table B-5 (continued) Video Source Node Controls

Control Default Type Use

128

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_EVO_VIN_APERTURE
_FACTOR

Persistent intVal Sets the aperture factor, which determines the
contribution of a bandpass-filtered signal to the
output luminance signal (see
VL_EVO_VIN_APTERTURE_BANDPASS). A value
of 0 selects 0.0 (no contribution), 1 selects 0.25,
2 selects 0.5, and 3 selects 1.0 (full contribution).

VL_EVO_VIN_CHROMA
_BANDWIDTH

Persistent intVal Selects the bandwidth of the chrominance difference
signals. Legal values are 0 (620 KHz), 1 (800 KHz), 2
(920 KHz) and 3 (1000 KHz). The color difference
signals are low-pass filtered to achieve the selected
bandwidth.

VL_EVO_VIN_CHROMA
_HUE

Persistent intVal Affects the hue of the chrominance signal within a
range of -180 degrees to 178.6 degrees.

VL_EVO_VIN_CHROMA
_SATURATION

Persistent fractVal Determines the saturation of the chrominance signal
with a gain of -2 (inverse chrominance) to 1.999. A
value of 1.0 selects the CCIR level.

VL_EVO_VIN_COLOR
_STANDARD

Persistent intVal Selects the color standard of the video input. The PAL
and NTSC color standards vary by region:
0 selects PAL BGHI or NTSC M
1 selects NTSC 4.43 or PAL 4.43
2 selects PAL N or NTSC 4.43
3 selects NTSC N or PAL M

VL_EVO_VIN_FAST_COLOR
_TIME_CNSTNT

Persistent boolVal Sets time constant: 0 selects nominal time constant, 1
selects fast time constant.

VL_EVO_VIN_GAIN_CH1

VL_EVO_VIN_GAIN_CH2

Persistent fractVal When AGC is not in use, these controls affect the gain
of a composite signal (CH1), or the luminance (CH1)
and chrominance (CH2) components of a Y/C signal.
The gain can be adjusted between -5.98 dB to 5.98 dB.

VL_EVO_VIN_GAIN
_CONTROL_FIX

Persistent boolVal Enables (TRUE) or disables the gain control circuit,
which limits the gain at signal overshoots. TRUE
enables the gain control circuit; FALSE disables it.

VL_EVO_VIN_GAIN_HOLD Persistent boolVal Determines whether the automatic gain control
(AGC) circuit is active or frozen (gain is held at a fixed
value). TRUE freezes the gain; FALSE indicates active
AGC.

Table B-5 (continued) Video Source Node Controls

Control Default Type Use

VL_VIDEO

129

VL_EVO_VIN_GAIN
_HYSTERESIS

Persistent intVal When automatic gain control (AGC) is active, this
control determines hysteresis of the gain circuit, or
the amount that the computed gain must change
before is actually used. Thus the AGC circuit need not
constantly adjust to small variations in brightness.
Set this control from 0 to 7, corresponding to 0 to 7
LSBs of a 9-bit gain value.

VL_EVO_VIN_HSYNC
_STOP

VL_EVO_VIN_HSYNC
_START

Persistent intVal Determine the range in which a horizontal sync pulse
is expected to be detected. Each control ranges from
-107 to +108.

VL_EVO_VIN_LUMA
_BRIGHTNESS

Persistent intVal Affects the brightness of the luminance signal. A
value of 128 selects the CCIR luminance level, with
255 the brightest and 0 the darkest.

VL_EVO_VIN_LUMA
_CONTRAST

Persistent fractVal Determines the contrast of the luminance signal.
Contrast gain can be adjusted up to 1.999 and down
to -2 (inverse luminance); 1.109 selects the CCIR level.

VL_EVO_VIN_LUMA
_DELAY_COMPENSATE

Persistent intVal Delays the luminance components with respect to
chrominance. The legal range is from -4 to 3 pixels.

VL_EVO_VIN_PREFILTER
_ACTIVE

Persistent boolVal Enables (TRUE) or bypasses the prefilter, which
emphasizes the high-frequency components of the
luminance signal, compensating for loss.

VL_EVO_VIN_VERT
_BLANK_SEL

Persistent boolVal Determines whether vertical blanking is long (0) or
short (1).

VL_EVO_VIN_VERT_NOISE
_REDUCT

Persistent intVal Determines how the video input responds to vertical
noise in the signal: 0 selects normal mode, 1 selects
searching mode, 2 selects free-running mode. A value
of 4 bypasses the noise reduction circuit.

VL_EVO_VIN_TV_VTR_SEL Persistent boolVal Affects how the video input locks (synchronizes) to a
video signal: 0 selects TV mode (recommended only
for poor-quality signals), 1 selects VTR mode.

Table B-5 (continued) Video Source Node Controls

Control Default Type Use

130

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_VIDEO Drain

The OCTANE Personal Video option supports one video drain node that corresponds to
the two analog video output connectors on the OCTANE Personal Video device,
composite and S-Video (Y/C), and to the O2Cam connector, when an optional
third-party converter provides SDI I/O at that port. This drain node drives all video
outputs simultaneously.

For the video drain:

• type is VL_DRN

• kind is VL_VIDEO

Table B-6 lists video drain node controls. For all these controls, access is GST, except
VL_FORMAT and VL_TIMING, which are GS.

VL_EVO_VIN_WHITE_PEAK Persistent boolVal The white peak, or signal peak, control is part of the
automatic gain control function; it limits the gain at
signal overshoots. To limit the gain, set this control to
TRUE; otherwise, set it to FALSE.

Table B-6 Video Drain Node Controls

Control Default Type Use

VL_DITHER_FILTER Persistent boolVal Determines whether the square-to-nonsquare converter
performs dithering (TRUE) at the video output.

VL_FORMAT Persistent intVal Specifies the type of video format to be produced:
VL_FORMAT_SVIDEO
VL_FORMAT_COMPOSITE
VL_FORMAT_DIGITAL_COMPONENT_SERIAL

See “VL_FORMAT” in Chapter 3.

VL_FREEZE TRUE boolVal Freezes (TRUE) the video sent to the video output
connector.

Table B-5 (continued) Video Source Node Controls

Control Default Type Use

VL_VIDEO

131

VL_H_PHASE Persistent fractVal Specifies the horizontal phase of the video output with
respect to the video input. It is a 12-bit unsigned integer that
increments in steps of the pixel clock (typically 74 nsec). The
output occurs later in time as the value of this control
increases.

This control has a range of -3071 to 1023, which can advance
the output by slightly more than three lines or delay the
output by slightly more than one line. The default value 0
makes the output match the timing of the video input.

VL_OFFSET (0, 0) xyVal Pans within the video. The OCTANE Personal Video drain
node supports an offset of (0, 0) only.

VL_SIZE Dynamic xyVal Reports the width and height of the active video region. The
values are fixed for each timing mode:

CCIR 525: 720 x 486
CCIR 625: 720 x 576
NTSC square pixel: 640 x 486
PAL square pixel: 768 x 576

Specify timing with VL_TIMING on the video drain node.

VL_TIMING Persistent intVal Specifies timing standard of incoming video signal and
affects the timing for the screen source node, the memory
source nodes, and the video drain node. Because the analog
video encoder operates in nonsquare mode only,
square-to-nonsquare conversion is performed when
VL_TIMING is set to one of the square pixel timings (that is,
square pixel video is sent to the video out node). Values are
as follows:

VL_TIMING_525_SQ_PIX: NTSC square pixel timing

VL_TIMING_625_SQ_PIX: PAL square pixel timing

VL_TIMING_525_CCIR601: CCIR 525-line nonsquare pixel
timing

VL_TIMING_625_CCIR601: CCIR 625-line nonsquare pixel
timing

VL_ZOOM 1/1 fractVal Sets scaling performed at video drain. Since the OCTANE
Personal Video device does not support scaling on a video
node, this value can be set only to unity (1/1). Use memory
nodes for scaling.

Table B-6 (continued) Video Drain Node Controls

Control Default Type Use

132

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_EVO_ALPHA_NOT
_PIXEL

FALSE boolVal If the node supplying the video drain node has both pixel
and alpha outputs (for example, RGBA or YUVA
4:2:2:4/4:4:4:4 sent from memory), this control selects
whether alpha (1: A) or pixel (0: YUV/RGB) is sent to the
video output.

VL_EVO_COLOR_BAR
_ENABLE

FALSE boolVal Enables (1) or disables (0) automatic color bar generation on
the video output, such as for test purposes. When enabled,
color bars supersede any other video sent to the video
output.

VL_EVO_COLOR_FRAME
_LOCK

Persistent boolVal Enables (TRUE) or disables (FALSE) color-frame locking.
The video output of Personal Video can be color-frame
locked to either the reference input or to composite analog
input. For frame locking to be enabled, genlock (VL_SYNC)
must be enabled and either the reference input or the
composite analog input must be selected as the genlock
source (VL_SYNC_SOURCE).

VL_EVO_COLOR_HPHASE Persistent intVal Adjusts the color subcarrier phase with respect to
horizontal sync from 0 to 360 degrees in 360/256 degree
steps. Normally, the color subcarrier is in phase with the
horizontal sync (0 degree separation).

VL_EVO_CSC_COEF Multiplier operates
in pass-through
mode

extended
Val

Specifies the matrix multiplier coefficients. See
“Color-Space Converter for Image Processing” on page 52
in Chapter 3.

VL_EVO_CSC_LUT_IN
_PAGE

VL_EVO_CSC_LUT_ALPHA
_PAGE

0

0

intVal Selects the active page for the input LUT. Valid page
numbers are 0 through 3.

Selects the active page for the alpha LUT; valid page
numbers are 0 through 3. See “Color-Space Converter for
Image Processing” on page 52 in Chapter 3.

VL_EVO_CSC_LUT_IN_YG

VL_EVO_CSC_LUT_IN_UB

VL_EVO_CSC_LUT_IN_VR

VL_EVO_CSC_LUT_ALPHA

Pass-through (1:1
mapping)

extended
Val

Specifies the contents of the input or alpha lookup tables.
See “Color-Space Converter for Image Processing” on
page 52 in Chapter 3.

Table B-6 (continued) Video Drain Node Controls

Control Default Type Use

VL_VIDEO

133

VL_EVO_CSC_LUT_OUT
_YG

VL_EVO_CSC_LUT_OUT
_UB

VL_EVO_CSC_LUT_OUT
_VR

Pass-through (1:1
mapping)

extended
Val

Specifies the contents of the output lookup tables. See
“Color-Space Converter for Image Processing” on page 52
in Chapter 3.

VL_EVO_FILTER
_TYPE

Persistent intVal OCTANE Personal Video supports square and nonsquare
conversions at the video drain. This control selects how the
conversion between the two formats is performed. The
values are

VL_EVO_FILTER_TYPE_FREQ (selects the
frequency-preserving filter)

VL_EVO_FILTER_TYPE_SPAT (selects the spatially
preserving filter)

See “VL_EVO_FILTER_TYPE” in Chapter 3.

VL_EVO_VOUT_BLACK
_LEVEL

Persistent fractVal Sets black level of video signal with respect to the sync level.
For a white-to-sync range of 140 IRE (NTSC), the
recommended black level is 47.5 IRE with respect to the
sync level. The black level can be set between 24 IRE and 49
IRE in steps of 25/63 IRE.

For a white-to-sync range of 143 IRE (PAL), the
recommended black level is 43 IRE with respect to sync. The
actual black level can range between 24 IRE and 50 IRE in
steps of 26/63 IRE.

Some video standards define a pedestal, or offset, of the
black level to separate active video from the blanking level.
NTSC does so; PAL and SECAM do not.

VL_EVO_VOUT_CAP_1ST
_BYTE_ODD

VL_EVO_VOUT_CAP_2ND
_BYTE_ODD

None intVal If closed caption encoding is enabled, these controls
determine the text of the closed captioning for the odd and
even fields. Each field can encode two bytes of closed
caption data.

VL_EVO_VOUT_COLOR
_BURST_AMP

Dynamic fractVal Sets colorburst amplitude with respect to its nominal value:
for NTSC, the nominal burst amplitude is 40 IRE (adjustable
from 0 to 1.25x nominal); for PAL, 43 IRE (adjustable from 0
to 1.67x nominal).

Table B-6 (continued) Video Drain Node Controls

Control Default Type Use

134

Appendix B: OCTANE Personal Video Nodes and Their Controls

VL_EVO_VOUT_CC
_ENCODING

VL_EVO
_ENCODING_OFF

intVal Enables or disables (0) closed caption encoding. A value of
1 enables encoding in field 1 (odd fields); 2 enables encoding
of field 2 (even fields); 3 enables encoding in both fields.
Use VL_EVO_VOUT_CAP* and VL_EVO_VOUT_XTN* to
specify the content of the captioning in each field.

VL_EVO_VOUT_ FIRST
_ACTIVE_LN

0 fractVal Specifies the first line of active video in each field. Lines
outside of the active video are blanked. A value of 0
represents line 17 in NTSC and line 22 in PAL.

VL_EVO_VOUT_LUMA_WT
_GN_92_5

Persistent boolVal Determines whether the white-to-black range for
luminance is 92.5 IRE (TRUE) or 100 IRE (FALSE). The 92.5
IRE setting typically includes a 7.5 IRE setup (pedestal) of
black. See also VL_EVO_VOUT_BLACK_LEVEL.

VL_EVO_VOUT_U_GAIN

VL_EVO_VOUT_V_GAIN

Persistent fractVal Set the amount of gain applied to the U and V color
difference signals. The U gain ranges from -2.17x to 2.16x for
NTSC and -2.05x to 2.04x for PAL. The V gain ranges from
-1.55x to 1.55x for NTSC and -1.46 to 1.46x for PAL.

VL_EVO_VOUT_XTN_1ST
_BYTE_EVN

VL_EVO_VOUT_XTN_2ND
_BYTE_EVN

None intVal If closed caption encoding is enabled, these controls
determine the text of the closed captioning for the odd and
even fields. Each field can encode two bytes of
closed-caption data.

Table B-6 (continued) Video Drain Node Controls

Control Default Type Use

135

Appendix C

C. Pixel Packings and Color Spaces

This appendix explains

• “Packings” on page 135

• “Sampling Patterns” on page 146

Packings

This section presents each packing used by the OCTANE Personal Video option, giving
a diagram and its tokens in the pertinent libraries. It explains

• “Packings and Color Spaces” on page 136

• “Packing Diagram Conventions” on page 136

• “Packings and Library Tokens” on page 138

• “Packing Naming Conventions (New-Style Tokens)” on page 138

• “8-Bit Pixel Packings” on page 140

• “16-Bit Pixel Packing” on page 141

• “24-Bit Pixel Packings” on page 142

• “32-Bit Pixel Packings” on page 143

136

Appendix C: Pixel Packings and Color Spaces

Packings and Color Spaces

A packing

• determines which of the four components are sampled, either RGBA or VYUA
(more correctly, CrYCbA)

• determines the sampling pattern (for example, 4:4:4 or 4:2:2), which specifies where
and how often each component of the image is sampled

• allocates a certain number of bits to represent the component samples, and
positions those samples along with possible padding in memory

Each sample is an unsigned number.

A color space

• determines the color in each component by specifying the color set

• specifies a canonical minimum and maximum value for each component, either
full-range or headroom-range

See “Color Spaces” on page 48 in Chapter 3 for an explanation.

In most Silicon Graphics libraries, a single token encodes both color space and packing.
For example, VL_PACKING_RGBA_8 is a 32-bit packing in the RGBA color space. In the
VL of the OCTANE Personal Video option and other advanced products, the two
parameters are specified separately with different controls: VL_PACKING and
VL_COLORSPACE. The color space must be defined with the VL_COLORSPACE
control.

Packing Diagram Conventions

In all illustrations, as you move from left to right:

• Each byte goes from the most significant bit to the least significant bit.

• The bytes increase in memory address by 1.

• Component samples go from most significant bit to least significant bit.

Packings

137

Each illustration shows the smallest repeating spatial pattern of component samples that
is a multiple of 8 bits wide. No additional padding or alignment is to be inferred. For
example, a 24-bit-per-pixel diagram, such as that for VL_PACKING_BGR_8_P and
VL_PACKING_UYV_8_P, indicates 3-byte quantities packed together in memory. The
values are not padded out to 32-bit boundaries; see Figure C-1.

Figure C-1 VL_PACKING_BGR_8_P and VL_PACKING_UYV_8_P

An x (“don’t care”) in a bit means

• Readers may get any garbage in the bit.

• Writers may leave the bit as garbage.

A 0 means

• Readers may assume the bit is zero.

• Writers must zero out the bit.

Note: Writers in a memory-to-video VL path may leave the bit as garbage.

The packing defines a bit layout, but for convenience, as shown in Figure C-1, the
component slots are filled with the RGBA or VYUA color set where appropriate. See
“Color Spaces” on page 48 in Chapter 3 for an explanation.

Note: For chroma components, Cr and Cb are more accurate terms than V and U,
because the analog NTSC video specification ANSI/SMPTE 170M uses V and U with a
slightly different meaning. However, this chapter uses the letters V and U in the
illustrations of packings for typographical convenience.

Packings that use 4:2:2 sampling also show the location of each component sample: left
and right for 4:2:2. The diagrams assume row-major, left-to-right ordering of pixels in
memory.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

r r r r r r r r g g g g g g g g b b b b b b b b

v v v v v v v v y y y y y y y y u u u u u u u u

138

Appendix C: Pixel Packings and Color Spaces

The OCTANE Personal Video device can natively transfer data of all the packings shown
in this appendix in real time except VL_PACKING_Y_8_P and
VL_PACKING_RGB_332_P.

Packings and Library Tokens

Accompanying each packing diagram are comments and library tokens for that packing.
For most packings, two indications are given for VL:

• The main reference uses the old-style token, for example, VL_PACKING_Y_8_P.
These packings encode both the bit layout (packing) and color space.

• New-style VL tokens are included for reference. The indication includes the
new-style packing control value and a color-space control value; for example,
VL_PACKING_4_8 + VL_COLORSPACE_{CCIR,YUV}.

For the OCTANE Personal Video option, you set packing and color space separately for
memory nodes. The new definitions provide a more flexible way to specify memory
layout of pixels and their color spaces.

DM refers to the tokens in /usr/lib/dmedia/dm_image.h, which are used by several libraries
(libdmedia (dmParams, dmIC, dmColor), libmoviefile, libmovieplay, and others). See “Color
Spaces” on page 48 in Chapter 3 for an explanation.

Packing Naming Conventions (New-Style Tokens)

In packing tokens, the following applies:

• _L and _R appended to the end of tokens with padding (0 bits) indicate that the 0
bits are at the left end or the right end of the pattern, respectively; for example,
VL_PACKING_4444_10_in_16_L and VL_PACKING_4444_10_in_16_R.

• R before the numerical part of the token indicates reverse order of the components;
for example, VL_PACKING_242_8 and VL_PACKING_R242_8 have the same
pattern of component bits, but the order is reversed in VL_PACKING_R242_8.

• Z at the end of the token name means that the packing is padded to the word
boundary; for example, the packing in VL_PACKING_2424_10_10_10_2Z is 30 bits
per pixel, but it is padded to 32 bits per pixel.

Packings

139

Table C-1 lists the OCTANE Personal Video packings in the order of the number of bits
in the pattern of component samples—the order in which they are described in the rest
of this section.

Table C-1 OCTANE Personal Video Packings

Old-Style Packing and Color-Space Token Bits Color Space New-Style Packing Name

VL_PACKING_Y_8_P 8 VYUA monochrome/luma only VL_PACKING_4_8

VL_PACKING_RGB_332_P 8 RGBA VL_PACKING_R444_332

VL_PACKING_YVYU_422_8 16 VYUA VL_PACKING_R242_8

VL_PACKING_BGR_8_P 24 RGBA VL_PACKING_444_8

VL_PACKING_UYV_8_P 24 VYUA VL_PACKING_444_8

VL_PACKING_ABGR_8 32 RGBA VL_PACKING_4444_8

VL_PACKING_AUYV_8 or
VL_PACKING_AUYV_4444_8

32 VYUA VL_PACKING_4444_8

VL_PACKING_RGBA_8 32 RGBA VL_PACKING_R4444_8

VL_PACKING_YUVA_4444_8 32 VYUA VL_PACKING_R4444_8

VL_PACKING_RGB_8 32 RGBA VL_PACKING_R0444_8

VL_PACKING_YVYU_422_10 32 VYUA VL_PACKING_R242_10_in_16_L

140

Appendix C: Pixel Packings and Color Spaces

8-Bit Pixel Packings

Figure C-2 shows the VL_PACKING_Y_8_P, an 8-bit packing useful for VYUA
monochrome (luma) only.

Figure C-2 VL_PACKING_Y_8_P

This packing is

• VL_PACKING_4_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

• GL_LUMINANCE GL_UNSIGNED_BYTE in OpenGL

• DM_IMAGE_PACKING_LUMINANCE in DM

This packing is not native to the OCTANE Personal Video option, but is implemented in
software.

Figure C-3 shows VL_PACKING_RGB_332_P, an 8-bit packing in the RGBA color space.

Figure C-3 VL_PACKING_RGB_332_P

This packing is

• VL_PACKING_R444_332 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

• VL_PACKING_RGB_332_P in the VL, old style

• DM_IMAGE_PACKING_BGR233 in DM

This packing is not native to the OCTANE Personal Video option, but is implemented in
software.

P i x e l 1

B y t e 1

y y y y y y y y

P i x e l 1

B y t e 1

b b g g g r r r

Packings

141

16-Bit Pixel Packing

Figure C-4 shows VL_PACKING_YVYU_422_8, a 16-bit 4:2:2 VYUA packing. The most
commonly used 4:2:2 packing, it is used by other Silicon Graphics video hardware as well
as the OCTANE Personal Video option.

Figure C-4 VL_PACKING_YVYU_422_8

This packing is

• VL_PACKING_R242_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

• GL_YCRCB_422_SGIX GL_UNSIGNED_BYTE in OpenGL

• DM_IMAGE_PACKING_CbYCrY in DM

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4

u u u u u u u u y y y y y y y y v v v v v v v v y y y y y y y y

l e f t r i g h t

142

Appendix C: Pixel Packings and Color Spaces

24-Bit Pixel Packings

Figure C-5 shows VL_PACKING_BGR_8_P and VL_PACKING_UYV_8_P, which are
24-bit RGBA/VYUA packings.

Figure C-5 VL_PACKING_BGR_8_P and VL_PACKING_UYV_8_P

VL_PACKING_BGR_8_P is

• GL_RGB GL_UNSIGNED_BYTE in OpenGL

• VL_PACKING_444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

• DM_IMAGE_PACKING_RGB in DM

VL_PACKING_UYV_8_P is VL_PACKING_444_8 + VL_COLORSPACE_{RGB,RP175} in
the VL, new style.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

r r r r r r r r g g g g g g g g b b b b b b b b

v v v v v v v v y y y y y y y y u u u u u u u u

Packings

143

32-Bit Pixel Packings

Figure C-6 shows VL_PACKING_ABGR_8 andVL_PACKING_AUYV_8. These packings
are supported by many Silicon Graphics video products.

Figure C-6 VL_PACKING_ABGR_8 andVL_PACKING_AUYV_8

VL_PACKING_ABGR_8 is

• VL_PACKING_4444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

• GL_RGBA GL_UNSIGNED_BYTE in OpenGL (most commonly used OpenGL
packing)

• DM_IMAGE_PACKING_RGBA in DM

VL_PACKING_AUYV_8 is

• VL_PACKING_4444_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

• also VL_PACKING_AUYV_4444_8 in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

r r r r r r r r g g g g g g g g b b b b b b b b a a a a a a a a

v v v v v v v v y y y y y y y y u u u u u u u u a a a a a a a a

144

Appendix C: Pixel Packings and Color Spaces

Figure C-7 shows VL_PACKING_RGBA_8 and VL_PACKING_YUVA_4444_8, which
are supported by many Silicon Graphics video products. VL_PACKING_RGBA_8 is the
default IRIS GL packing.

Figure C-7 VL_PACKING_RGBA_8 and VL_PACKING_YUVA_4444_8

VL_PACKING_RGBA_8 is

• VL_PACKING_R4444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

• PM_ABGR PM_UNSIGNED_BYTE in IRIS GL (the default)

• GL_ABGR_EXT GL_UNSIGNED_BYTE in OpenGL

• DM_IMAGE_PACKING_ABGR in DM

VL_PACKING_YUVA_4444_8 is VL_PACKING_R4444_8 +
VL_COLORSPACE_{CCIR,YUV} in the VL, new style.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

a a a a a a a a b b b b b b b b g g g g g g g g r r r r r r r r

a a a a a a a a u u u u u u u u y y y y y y y y v v v v v v v v

Packings

145

Figure C-8 shows VL_PACKING_RGB_8, an IRIS GL-like 32-bit packing. This packing is
supported by many Silicon Graphics video products.

Figure C-8 VL_PACKING_RGB_8

VL_PACKING_RGB_8 is

• VL_PACKING_R0444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

• DM_IMAGE_PACKING_XBGR

Use DM_IMAGE_PACKING_ABGR instead of this packing unless you specifically
want to inform a piece of software (such as dmColor) not to spend processing time
on the alpha channel.

Figure C-9 shows VL_PACKING_YVYU_422_10, a 4:2:2 10_in_16 32-bit VYUA packing.
This packing is supported by several recent Silicon Graphics video products.

Figure C-9 VL_PACKING_YVYU_422_10

This packing is

• 4:2:2 sampling (2 bits of A); see “Sampling Patterns,” later in this appendix

• VL_PACKING_R242_10_in_16_L + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

x x x x x x x x b b b b b b b b g g g g g g g g r r r r r r r r

x x x x x x x x u u u u u u u u y y y y y y y y v v v v v v v v

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

u u u u u u u u u u 0 0 0 0 0 0 y y y y y y y y y y 0 0 0 0 0 0 v v v v v v v v v v 0 0 0 0 0 0 y y y y y y y y y y 0 0 0 0 0 0

l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 r i g h t 0 0 0 0 0 0

146

Appendix C: Pixel Packings and Color Spaces

Sampling Patterns

Sampling patterns are

• “4:4:4 and 4:4:4:4 Sampling” on page 146

• “4:2:2 and 4:2:2:4 Sampling” on page 147

4:4:4 and 4:4:4:4 Sampling

Some of the packing diagrams earlier in this appendix indicate 4:4:4 or 4:4:4:4 sampling.
This video industry terminology means that each of the three or four components is
sampled at every pixel. Figure C-11 diagrams this sampling pattern.

Figure C-10 4:4:4 Sampling

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr
Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb

Luma:

Chroma:

Sampling Patterns

147

4:2:2 and 4:2:2:4 Sampling

The packings shown in diagrams that indicate 4:2:2 sampling make sense only in the
VYUA color spaces. For every two pixels, there are two luma samples (two Y’s) but only
one chroma sample (one sample of Cr and Cb, which together determine the chroma), as
shown in Figure C-11.

Figure C-11 4:2:2 Sampling

The chroma samples belong at the same instant in space as the left Y sample (the
chrominance samples and the left Y are co-sited). The diagrams for 4:2:2 packings in the
“Packings” section of this appendix show the spatial location of each Y, Cr, or Cb
component as left or right. The first pixel of each line is a left pixel.

Converting 4:4:4 video to 4:2:2 video is like converting 44.1 kHz audio into 22.05 kHz
audio: just dropping every other Cr,Cb sample yields extremely poor results. Video
devices that need to convert between 4:4:4 and 4:2:2 use carefully designed filters. The
characteristics of the required filter are specified in ITU-R BT.601-4 (Rec. 601).

4:2:2 sampled packings that also include alpha are called 4:2:2:4. This method has one
alpha value per pixel, like the Y value.

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr Cr Cr Cr
Cb Cb Cb Cb Cb Cb Cb

Luma:

Chroma:

149

Appendix D

D. OCTANE Personal Video Color-Space Conversions

The OCTANE Personal Video option supports three native color spaces—RGB, YUV, and
CCIR. The choice of color space is determined by the external equipment for video I/O
connections, by the system for connections to the graphics subsystem, and by application
software for transfers to and from system memory. Application software can avoid all
color-space conversions during video I/O. The OCTANE Personal Video option can
translate between YUV and RGB with high accuracy in real time.

Understanding the capabilities of the OCTANE Personal Video option to perform
color-space conversions and the results of these conversions allows developers and end
users to maximize the quality of their output. This appendix explains

• “OCTANE Personal Video Color Spaces” on page 150

• “Mathematical Operations Performed During Conversions” on page 151

• “Implications of Color-Space Conversions” on page 152

• “Example Color Conversions” on page 156

150

Appendix D: OCTANE Personal Video Color-Space Conversions

OCTANE Personal Video Color Spaces

The OCTANE Personal Video option uses a minimum of ten bits of precision for each
color component at all steps of its internal pipeline. Representations for the three native
internal color representations are explained separately in this section.

RGB

RGB is the color space used by the graphics subsystem; screen sources and drains and
some memory transfers use this color space. RGB has the most accurate representation
of visible colors, because all possible combinations are valid. This color space does not
support superblack or other nonvisible color values. Each component is represented by
a 10-bit value between 0 and 1023. Black has the value [0,0,0], and white is
[1023,1023,1023].

When converting to RGB, each resulting RGB component is clamped to the range
[0..1023]. It is possible to overflow the clamping mechanism when dramatically illegal
colors are input. Overflows occur only when the resulting red, green, or blue value is
greater than 2047 or less than -2048.

Note: Do not use 4:2:2 coding with RGB data.

YUV

The YUV color space is obtained from RGB by the matrix transformation in equation 1.

The V, Y, and U values range from [0..1023]. Black has the VYU value [512,0,512]. White
has the value [512,1023,512].

This color space is used by the Betacam, M-II, and YUV formats. With proper filtering,
4:2:2 coding can be used.

Equation 1 x + =
 0.500 -0.419 -0.081
 0.299 0.587 0.114
-0.169 -0.331 0.500

512
0

512

R
G
B

V
Y
U

Mathematical Operations Performed During Conversions

151

CCIR

The CCIR color space is obtained from RGB by the matrix transformation in equation 2.

The Cr, Y, and Cb 10-bit values are clamped to the range [4..1019]. Black has the CrYCb
value [512,64,512]. White has the value [512,940,512]. For 8 bits, the values are clamped
to the range [1..254]; black has the CrYCb value [128,16,128], and white has the value
[128,235,128].

This color space is used by the component digital formats. With proper filtering, 4:2:2
coding can be used.

Mathematical Operations Performed During Conversions

The OCTANE Personal Video option can process and store each color space explained in
the previous section. For best precision, the input color space should be maintained
through the processing path. For example, an application that implements DDR
functionality could choose to store data in the native representation of the input signal:
Betacam data could be stored as YUV, input from an RGB camera as RGB, and data from
a D1 deck as CCIR. If the application works in this way, no conversions are performed
and the data is passed directly through the system. In particular, CCIR601 data coming
from a D1 deck is bit-accurate in this case.

However, it might not be desirable for the application to work this way. If that is the case,
the application can use all of the conversion, decimation and interpolation capabilities of
the OCTANE Personal Video option to perform real-time color space and 4:2:2 ⇔ 4:4:4
conversions.

Equation 2 x x + =
 0.500 -0.419 -0.081
 0.299 0.587 0.114
-0.169 -0.331 0.500

512
64

512

896
1023

876
1023

896
1023

R
G
B

Cr
Y

Cb

152

Appendix D: OCTANE Personal Video Color-Space Conversions

Conversions are performed only when absolutely required. Each incoming stream can be
converted from its current color space to any other color space. Conversions can also be
performed when going to graphics and digital video outputs.

The output color space controls conversions. For example, if you blend a CCIR stream
from a digital video input with an RGB stream from graphics and send the result to the
digital video output, the RGB signal is converted to CCIR before the blend occurs. The
CCIR stream is not converted. If you sent the same blend to a Betacam output, both
streams are converted to YUV before the blend.

Implications of Color-Space Conversions

The two major concerns when performing conversions from one color space to another
are precision and range.

Precision of Color Conversions Done by the OCTANE
Personal Video Option

The OCTANE Personal Video option stores colors at all steps in its pipeline with a
minimum of 10 bits of precision. When performing color-space conversions, the data is
converted to 12-bit signed values before it is passed to the matrix multipliers. The matrix
multipliers have 15-bit coefficients and 26-bit accumulators. The most significant 16 bits
of the matrix-multiplication result are passed on to additional hardware, which applies
any needed offsets and then clamps to the proper range.

Silicon Graphics, Inc., has verified both through simulation and hardware testing that the
maximal error for two conversions (RGB to CCIR to RGB) is four units out of 1024. The
matrix coefficients have been biased to round slightly high rather than slightly low to
avoid the type of problems that can otherwise easily occur in the blue component.

Conversions between RGB and YUV are more accurate (a maximum error of 3 in 1024
after two conversions), since data is not as compressed in the YUV representation.

Implications of Color-Space Conversions

153

Range Issues For Color Conversions Done by Any Means

Different color spaces allocate the available bits of precision in different ways. The RGB
space is designed to maximize the accuracy of color representations. The YUV and CCIR
color spaces are designed to strongly uncouple chrominance and luminance information.

Since RGB represents visible colors, it is contained inside the YUV and CCIR spaces. The
CCIR color space also has a slight amount of additional headroom that was intended to
prevent aliasing artifacts when Finite Impulse Response filtering operations are
performed on the digital data.

Whenever a conversion operation is performed between CCIR and RGB or between
CCIR and YUV, the colors that are not representable in the destination color space must
be somehow mapped into colors that are representable. The usual way to do this is to
clamp each component to the available range in the destination color space. Other
methods, such as projecting towards the center of the representable space, might produce
results that appear to be better in some cases, but are not feasible to implement in
hardware.

When converting from CCIR to YUV, the axes of the two spaces are parallel, so the result
of this clamping operation is very predictable. Superblack and superwhite are clipped to
black and white, respectively, and oversaturated colors might also be clipped.

When converting from RGB to YUV or CCIR, clamping never occurs, because all RGB
colors are representable in those color spaces.

When converting from CCIR or YUV to RGB, the results of clamping are much less
intuitive, because these conversions involve rotation and scaling operations, with the
result that the component axes in one color space do not align with those in the other.

154

Appendix D: OCTANE Personal Video Color-Space Conversions

Figure D-1 shows the RGB color cube inside the CCIR color space. The volume contained
within the outer (CCIR) cube, but outside the inner (RGB) cube, represents “illegal”
colors that cannot be displayed.

Figure D-1 RGB Cube in CCIR Space

As shown in the figure, the CCIR color space allocates almost three quarters of its
available bit combinations to illegal colors. When any of these color values are converted
to RGB, the result is clamped to the edge of the RGB cube. Since the inner cube contains
the displayable colors, this clamping operation has no impact on them.

Cr

Y

Cb

Black

White

Red

Green

Blue

Yellow

Magenta

Cyan

Implications of Color-Space Conversions

155

If CCIR is converted to RGB and back to CCIR using certain types of test signals, the
output can appear to be vastly wrong. A common and extreme version of this is the
signal that simultaneously ramps Cr, Y, and Cb from the minimum to maximum possible
values.

In Figure D-2, the heavy diagonal line passing through the figure is the set of colors in
the luma/chroma ramp test signal. As shown in the figure, a large portion of this pattern
is outside the RGB cube. In fact, over two thirds of this pattern is outside the displayable
range.

Figure D-2 Color Cube With Luminance/Chrominance Ramp Vector

Cyan
Green

YellowWhite

Magenta Red

Blue
Black

Cb

Cr

Y

156

Appendix D: OCTANE Personal Video Color-Space Conversions

Example Color Conversions

This section includes example graphs that display the results of converting from CCIR to
RGB and back. They show the same type of result you would see if you brought a digital
signal into the OCTANE Personal Video option, passed it through a memory node using
RGB format, and sent it back out to the digital output.

These effects do not occur if you simply pass digital data through the OCTANE Personal
Video board using the CCIR format. In these cases, the output matches the input on a
bit-by-bit basis.

Note: These examples show conversion from CCIR to full-range RGB, without use of the
constant-hue algorithm.

Example 1: 100% Color Bars

This example, like the other two in this section, consists of three graphs. Each graph
displays the input CCIR pattern, intermediate RGB pattern, and output CCIR pattern for
a given color component. Figure D-3 shows the red and Cr components, Figure D-4 the
green and Y components, and Figure D-5 the blue and Cb components. In this example
and the others, if the input and output CCIR values are identical, only two lines are
shown.

In this example, conversion to RGB and back has no effect on the image. The 100%
amplitude color bar signal lies within the visible range and therefore is perfectly
represented in RGB.

Example Color Conversions

157

Figure D-3 100% Color Bars: Cr/R

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Cr

RGB R

Output Cr

158

Appendix D: OCTANE Personal Video Color-Space Conversions

Figure D-4 100% Color Bars: Y/G

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Y

RGB G

Output Y

Example Color Conversions

159

Figure D-5 100% Color Bars: Cb/B

0.60

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.80 1.00

X x 10 3

Input Cb

RGB B

Output Cb

160

Appendix D: OCTANE Personal Video Color-Space Conversions

Example 2: Luminance Ramp

In this example, the conversion to RGB and back affects only the superblack and
superwhite regions. All luminance values that are blacker than black are clamped to
black; all values whiter than white are clamped to white.

In the RGB color space, each component ramps from 0 to 1023 as the input luminance
ramps from 64 (black) to 940 (white). This test pattern lies along the Y axis of the color
cubes.

Example Color Conversions

161

Figure D-6 Luminance Ramp: Cr/R

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Cr

RGB R

Output Cr

162

Appendix D: OCTANE Personal Video Color-Space Conversions

Figure D-7 Luminance Ramp: Y/G

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Y

RGB G

Output Y

Example Color Conversions

163

Figure D-8 Luminance Ramp: Cb/B

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 103

Input Cb

RGB B

Output Cb

164

Appendix D: OCTANE Personal Video Color-Space Conversions

Example 3: Simultaneous Chroma/Luma Ramp

This example is the most extreme of the three, and shows how surprising the results of
color conversions can be when arbitrary synthetic CCIR inputs are used.

Each CCIR input signal ramps from 0 to 1023 simultaneously. As mentioned in the first
example, over two thirds of this pattern lies outside the legal range. The portion within
the legal range is represented exactly, but the region outside is clamped to the RGB cube
surface.

Example Color Conversions

165

Figure D-9 Chroma/Luma Ramp: Cr/R

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 103

Input Cr

RGB R

Output Cr

166

Appendix D: OCTANE Personal Video Color-Space Conversions

Figure D-10 Chroma/Luma Ramp: Y/G

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Y

RGB G

Output Y

Example Color Conversions

167

Figure D-11 Chroma/Luma Ramp: Cb/B

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Cb

RGB B

Output Cb

169

Index

Numbers

0 bit in packing, 137
4:2:2

sampling, 147
video, converting, 147

4:2:2:4 sampling, 147
4:4:4

sampling, 146
video, converting, 147

4:4:4:4 sampling, 146

A

application
creating, 19-80
sample, location, 10, 14

asynchronous I/O, 102

B

buffer, 15
and data transfer, 65-81, 99
creating for video data, 73-74
getting DMediaInfo and image data from, 79
reading data from, 76-79
reading frames to memory from, 78
registering, 75

C

caching, 100
camera controls, 54-56
capture, 99-103
client, 12
color space, 48-54

control, 50
conversion, 149-167

and image processing, 52-54
math operations, 151-152
precision, 152
range, 153-155

constant hue, 50-51
contcapt.c (OpenGL), 81
control, 14, 28-48, 83-87, 109-134

access, 109
and nodes, 109-134
classes, 85-86
default values explained, 109
fraction ranges, 85
groupings, 86-87
in header file, 83
type and values, 84-85
type explained, 109

conventions, xv
ctrlusage, 24

170

Index

D

daemon, video, 12-13
opening connection to, 21

data transfer, 19
ending, 79-80
starting, 70-71, 75

decimation, 37-40, 43
dev_evo.h, 14, 21, 83
device, 14

ID, getting, 23
management, 12-13
node, 110-111

controls, 110-111
video, transferring data, 65-81

direct I/O to disk, 101
DMbuffer, 65-73
DMediaInfo, getting from buffer, 79
drain, 15

control for default, 22, 110
node controls, setting, 28-48
See also memory node, screen node, video node.

Dynamic value, 109

E

error codes, 105-108
event

handling, 89-98
routines, 94

listed, 90-94
masks, 25-26
querying, 94-95
specifying path-related, 25-26
trigger, 71
type, 95

eventex.c, 98

F

field dominance
memory drain node control, 122
memory source node control, 115

field mask, 44

G

GST control access, 109

H

header file
OCTANE Personal Video, 14, 21
VL, 14, 20

I

image data, getting from buffer, 79
Internal Video Sync, 61-63
I/O, direct to disk, 101

K

ksyncset(), 63
ksyncstat(), 62-63

L

linking, 21
loopback, 33, 34
-lvl, 21

171

Index

M

media stream count. See MSC.
memory

node, 112-122
drain, 119-122

controls, 119-122
source, 112-118

controls, 112-118
reading from buffer to, 78
sending frames to video from, 78

memtovid, 14
MSC, 57-60
mtov.c (OpenGL), 81
multiple clients, 12

N

node, 14, 109-134
adding, 23
defined, 15-16
device, 110-111

controls, 110-111
memory, 112-122

drain, controls, 119-122
source, controls, 112-118

screen, 123-125
source, controls, 124

setting controls, 28-48
specifying, 21-22
video, 125-134

drain, controls, 130-134
source, controls, 126

O

OpenGL programs, 81

P

packing, 35-37, 135-145
0 bit, 137
24-bit, 142
32-bit, 143-145
8-bit, 140
and sampling pattern, 136
native, 36, 138
x bit, 137

path, 14
creating, 22
creating and setting up, 22-26
defined, 15-16
setting up, 24-25
specifying events, 25-26
specifying nodes on, 21-22

Persistent value, 109
playback, 99-103

R

restart policy, 117, 122
return codes, 105-108

S

sample programs, 10, 14, 98
sampling pattern, 146-147

and packing, 136
screen node, 123-125

source, controls, 124
simpleccapt.c, 81
simplegrab.c, 81
simplem2v.c, 81
simplev2s.c, 81
source, 15

172

Index

control for default, 22, 110, 111
node controls, setting, 28-48
See also memory node, screen node, video node.

starvation policy, 118
status information, 13
streamusage, 24
synchronizing data streams, 57-60
syntax, 19
syssgi, 102

T

tools, VL, 13-14
trigger, 71

U

unadjusted system time. See UST.
UST, 57-60

V

vcp, 13
and Persistent value, 109

video
daemon, 12-13

opening connection to, 21
data transfer, 65-81

ending, 79-80
starting, 70-71, 75

drain, 15
format, 18

converting, 35-37
node, 125-134

drain, 130-134
controls, 130-134

source, 125-130
controls, 126

sending frames from memory to, 78
source, 15
unit, defined, 112

videod, 12-13
videoin, 13
Video Library. See VL.
videoout, 13
videopanel, 13
vidtomem, 14
vidtomem.c (OpenGL), 81
vintovout, 14
VL

capabilities, 10-11
control, 28-48, 83-87

See also control.
device management, 12-13
header files, 14, 20
programming model, 19-20
requirements for running, 20
status information, 13
syntax, 19
system software architecture, 11
tools, 13-14

VL_ASPECT, 28, 38, 112, 119, 124
VL_CAP_TYPE, 28, 44-48, 112, 119

See also control and node.
VL_COLORSPACE, 28, 48-54, 112, 119
VL_DEFAULT_DRAIN, 110
VL_DEFAULT_SOURCE, 111
VL_DEVICE, 110-111

See also device node.
VL_DITHER_FILTER, 130
VL_EVO_ALPHA_NOT_PIXEL, 132
VL_EVO_BUFFER_QUANTUM, 116, 121
VL_EVO_COLOR_BAR_ENABLE, 132

173

Index

V (continued)

VL_EVO_COLOR_FRAME_LOCK, 132
VL_EVO_COLOR_HPHASE, 132
VL_EVO_CSC_ALPHA_CORRECTION, 51, 116, 121
VL_EVO_CSC_COEF, 52, 53, 116, 121, 132
VL_EVO_CSC_CONST_HUE, 51, 116, 121
VL_EVO_CSC_LUT_ALPHA, 52, 116, 122, 132
VL_EVO_CSC_LUT_ALPHA_PAGE, 52, 54, 116,

122, 132
VL_EVO_CSC_LUT_IN_PAGE, 52, 54, 116, 122, 132
VL_EVO_CSC_LUT_IN_UB, 52, 54, 116, 122, 132
VL_EVO_CSC_LUT_IN_VR, 52, 54, 116, 122, 132
VL_EVO_CSC_LUT_IN_YG, 52, 54, 116, 122, 132
VL_EVO_CSC_LUT_OUT_UB, 52, 117, 122, 133
VL_EVO_CSC_LUT_OUT_VR, 52, 117, 122, 133
VL_EVO_CSC_LUT_OUT_YG, 52, 117, 122, 133
VL_EVO_DMA_ERROR_RESTART, 117, 122
VL_EVO_DMA_VOUT_BLANK, 117
VL_EVO_DMA_VOUT_STARVATION, 118
VL_EVO_FILTER_QUALITY, 123
VL_EVO_FILTER_TYPE, 31, 123, 133
VL_EVO_FORMAT_LOOPBACK, 33, 34
VL_EVO_VIN_APERTURE_BAND_PASS, 127
VL_EVO_VIN_APERTURE_FACTOR, 128
VL_EVO_VIN_CHROMA_BANDWIDTH, 128
VL_EVO_VIN_CHROMA_HUE, 128
VL_EVO_VIN_CHROMA_SATURATION, 128
VL_EVO_VIN_COLOR_STANDARD, 128
VL_EVO_VIN_FAST_COLOR_TIME_CNSTNT, 128
VL_EVO_VIN_GAIN_CH1, 128
VL_EVO_VIN_GAIN_CH2, 128
VL_EVO_VIN_GAIN_HOLD, 128
VL_EVO_VIN_GAIN_HYSTERESIS, 129
VL_EVO_VIN_HSYNC_START, 129
VL_EVO_VIN_HSYNC_STOP, 129

VL_EVO_VIN_LUMA_BRIGHTNESS, 129
VL_EVO_VIN_LUMA_CONTRAST, 129
VL_EVO_VIN_LUMA_DELAY_COMPENSATE, 129
VL_EVO_VIN_PREFILTER_ACTIVE, 129
VL_EVO_VIN_TV_VTR_SEL, 129
VL_EVO_VIN_VERT_BLANK_SEL, 129
VL_EVO_VIN_VERT_NOISE_REDUCT, 129
VL_EVO_VIN_WHITE_PEAK, 130
VL_EVO_VOUT_ACTIVE_LINE, 134
VL_EVO_VOUT_BLACK_LEVEL, 133
VL_EVO_VOUT_CAP_1ST_BYTE_ODD, 133
VL_EVO_VOUT_CAP_2ND_BYTE_ODD, 133
VL_EVO_VOUT_CC_ENCODING, 134
VL_EVO_VOUT_COLOR_BURST_AMP, 133
VL_EVO_VOUT_LUMA_WT_GN_92_5, 134
VL_EVO_VOUT_U_GAIN, 134
VL_EVO_VOUT_V_GAIN, 134
VL_EVO_VOUT_XTN_1ST_BYTE_EVN, 134
VL_EVO_VOUT_XTN_2ND_BYTE_EVN, 134
vl_evo.h, 14, 83
VL_FIELD_DOMINANCE, 115, 122
VL_FLICKER_FILTER, 29, 124
VL_FORMAT, 28, 32-35, 113, 119, 126, 130

See also control and node.
VL_FREEZE, 29, 124, 126, 130
VL_H_PHASE, 131
VL_MEM, 112-119

See also memory node.
VL_OFFSET, 29, 42-43, 113, 120, 124, 126, 131

See also control and node.
VL_ORIGIN, 29, 124
VL_PACKING, 28, 35-37, 50, 113, 120

See also control and node.
VL_PACKING_4_8, 140
VL_PACKING_444_8, 137, 142
VL_PACKING_4444_8, 136, 143

174

Index

V (continued)

VL_PACKING_ABGR_8, 36, 143
VL_PACKING_AUYV_4444_8, 35
VL_PACKING_AUYV_8, 143
VL_PACKING_BGR_8_P, 36, 142
VL_PACKING_R0444_8, 145
VL_PACKING_R242_10_in_16_L, 145
VL_PACKING_R242_8, 141
VL_PACKING_R444_332, 140
VL_PACKING_R4444_8, 144
VL_PACKING_RGB_332_P, 36
VL_PACKING_RGB_8, 36, 145
VL_PACKING_RGBA_8, 36, 144
VL_PACKING_UYV_8_P, 36, 142
VL_PACKING_Y_8_P, 36
VL_PACKING_YUVA_4444_8, 35, 144
VL_PACKING_YVYU_422_10, 36, 145
VL_PACKING_YVYU_422_8, 35
VL_RATE, 29, 44-48, 113, 120

See also control and node.
VL_SCREEN, 123-125

See also screen node.
VL_SIZE, 28, 41-42, 43, 114, 121, 124, 126, 131

See also control and node.
VL_SYNC, 111
VL_SYNC_SOURCE, 111
VL_TIMING, 28, 30, 111, 114, 121, 125, 127, 131

See also control and node.
VL_VIDEO, 125-134

See also video node.
VL_ZOOM, 28, 37-40, 43, 114, 121, 125, 127, 131

See also control and node.
vlAddCallback(), 89
vlAddNode(), 23
vlBeginTransfer(), 70

VL buffer, 65-75
vlCheckEvent(), 95
vlCloseVideo(), 80
vlcmd, 13
vlCreateBuffer(), 74
vlCreatePath(), 22
vlDeregisterBuffer(), 80
vlDestroyBuffer(), 80
vlDestroyPath(), 80
vlEndTransfer(), 71, 79
vlEventToName(), 95
vlGetActiveRegion(), 79
vlGetControl(), 29
vlGetDevice(), 23
vlGetDMediaInfo(), 79
vlGetFD(), 95
vlGetFrontierMSC(), 60
vlGetImageInfo(), 79
vlGetLatestValid(), 77, 78
vlGetNextFree(), 78
vlGetNextValid(), 77, 78
vlGetNode(), 21
vlGetTransferSize(), 74
vlGetUSTMSCPair(), 60
vlGetUSTPerMSC(), 60
vl.h, 14, 20
vlinfo, 13
vlMainLoop(), 89
vlNextEvent(), 95
vlOpenVideo(), 21
vlPeekEvent(), 95
vlPutFree(), 77, 78
vlPutValid(), 79
vlRegisterBuffer(), 75
vlSelectEvents(), 25, 89, 95, 96

175

Index

V (continued)

vlSetControl(), 29
vlSetupPaths(), 24

X

x bit in packing, 137

Z

zoom, 37-40, 43

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3595-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

