
DMF Administrator’s Guide for IRIX®

Systems

007–3681–006

COPYRIGHT
© 1997, 1998, 2000, 2002 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, and IRIX are registered trademarks and OpenVault and XFS are trademarks of Silicon Graphics,
Inc. AMPEX is a trademark of Ampex Corporation. DLT is a trademark of Quantum Corporation. FLEXlm is a trademark of
GLOBEtrotter Software, Inc. IBM is a trademark and MVS is a product of International Business Machines Corporation. Raima and
Raima Data Manager are trademarks of Raima Corporation. RedWood, STK, and TimberLine are trademarks of Storage Technology
Corporation. UNIX is a registered trademark of the Open Group in the United States and other countries.

Cover Design by Sarah Bolles, Sarah Bolles Design, and Danny Galgani, SGI Technical Publications.

New Features

For information on changes in DMF functionality, including bugs fixed in recent
releases, refer to the files accessed by the Dependencies and News buttons on the
DMF installation interface (dmmaint(8)).

Major new features of release 2.7 are distributed commands and the Library Server.

007–3681–006 iii

Record of Revision

Version Description

2.6.1 October 1997
Original printing to support the Data Migration Facility (DMF)
release 2.6.1 running under SGI IRIX systems.

2.6.2 August 1998
Reprint with revision to support the Data Migration Facility (DMF)
release 2.6.2 running under SGI IRIX systems.

2.6.2.2 December 1998
Reprint with revision to support the Data Migration Facility (DMF)
update release 2.6.2.2 running under SGI IRIX systems.

004 May 2000
Reprint with revision to support the Data Migration Facility (DMF)
release 2.6.3 running under SGI IRIX systems.

005 October 2000
Reprint to support the Data Migration Facility (DMF) update
release 2.6.3.2 running under SGI IRIX systems. Only minor editing
changes are included.

006 May 2002
Reprint to support the Data Migration Facility (DMF) update
release 2.7 running under SGI IRIX systems.

007–3681–006 v

Contents

About This Guide . xxiii

Related Publications . xxiii

Conventions . xxiii

Reader Comments . xxiv

1. Introduction . 1

What Is DMF? . 1

How DMF Works . 4

Ensuring Data Integrity . 7

DMF Architecture . 8

Capacity and Overhead . 9

DMF Administration . 10

The User’s View of DMF . 13

DMF File Concepts and Terms 13

Migrating a File . 14

Recalling a Migrated File . 14

Command Overview . 15

Configuration Commands . 15

DMF Daemon and Related Commands 15

Space Management Commands 17

MSP/LS Commands . 17

Commands for Other Utilities 18

2. Configuring DMF . 21

Overview of the Configuration Steps 21

007–3681–006 vii

Contents

Installation Considerations . 22

Configuration File Requirements 22

Man Pages . 22

File System Mount Options 23

Mounting Service . 23

Inode Size Configuration . 24

Configuring Daemon Database Record Length 24

Interprocess Communication Parameters 26

Configuring Automated Maintenance Tasks 26

Setting PATH Environment Variables 28

Configuration Objects . 29

Configuring the Base Object 31

Configuring the DMF Daemon 34

Configuring Daemon Maintenance Tasks 36

Configuring File Systems . 42

DMF Policies . 43

Automated Space Management Parameters 44

File Weighting and MSP and/or VG Selection Parameters 45

Configuring Policies . 47

Setting Up Tape MSPs . 51

MSP Objects . 51

Device Objects . 55

Device Objects for OpenVault As Mounting Service 57

Device Objects for TMF as Mounting Service 58

Setting Up Library Servers . 59

Library Server Objects . 59

Drive Group Objects . 60

viii 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Volume Group Objects . 64

Resource Scheduler Objects 67

Resource Watcher Objects 69

Example . 69

Using OpenVault for Tape MSPs and Drive Groups 72

Using TMF tapes with Tape MSPs and Drive Groups 77

Configuring Tape Maintenance Tasks 77

Library Server and MSP Database Records 79

Setting up FTP MSPs . 82

Setting up Disk MSPs . 86

Verifying the Configuration . 89

Initializing DMF . 89

General Message Log File Format 89

Parameter Table . 91

3. Automated Space Management 97

Generating the Candidate List 98

Selection of Migration Candidates 98

Automated Space Management Log File 101

4. The DMF Daemon . 103

Daemon Processing . 103

DMF Daemon Database and dmdadm(blank) 104

dmdadm Directives . 105

dmdadm Field and Format Keywords 107

dmdadm(blank) Text Field Order 110

Daemon Logs and Journals . 111

007–3681–006 ix

Contents

5. The DMF Lock Manager 113

dmlockmgr Communication and Log Files 113

dmlockmgr Individual Transaction Log Files 115

6. Media Specific Processes and Library Servers 117

Tape MSP and LS Operations . 117

Tape MSP/LS Directories . 118

Media Concepts . 119

CAT Database Records . 121

VOL Database Records . 122

Tape MSP/LS Journals . 123

Tape MSP/LS Logs . 124

Volume Merging . 127

dmcatadm Command . 129

dmcatadm Directives . 129

dmcatadm Keywords . 132

dmcatadm Text Field Order 136

dmvoladm Command . 137

dmvoladm Directives . 137

dmvoladm Keywords . 140

dmvoladm Text Field Order 148

dmatread Command . 149

dmatsnf Command . 150

dmaudit verifymsp Command 150

FTP MSP . 150

Processing of Requests . 151

Activity Log . 152

Messages . 153

x 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Disk MSP . 153

Processing of Requests . 154

Activity Log . 155

Moving Migrated Data between MSPs and/or VGs 155

Converting from a Tape MSP to a Library Server 156

Library Server Error Analysis and Avoidance 159

Library Server Drive Scheduling 161

Library Server Status Monitoring 161

7. DMF Maintenance and Recovery 163

Retaining Old DMF Daemon Log Files 163

Retaining Old DMF Daemon Journal Files 163

Soft- and Hard-deletes . 164

Using xfsdump and xfsrestore with Migrated Files 165

Dumping and Restoring Files without the dump_tasks Object 166

File System Consistency with xfsrestore 167

Using dmfill . 167

Database Recovery . 168

Database Backups . 168

Database Recovery Procedures 168

Appendix A. Messages 173

Message Format . 173

Message Format for Catalog (CAT) Database and Daemon Database Comparisons . . 173

Message Format for Volume (VOL) Database and Catalog (CAT) Database and Daemon
Database Comparisons . 174

dmcatadm Message Interpretation 175

dmvoladm Message Interpretation 177

007–3681–006 xi

Contents

Appendix B. DMF User Library (libdmfusr.so) 179

Overview . 179

Data Types . 181

DmuAllErrors_t . 181

DmuByteRange_t . 181

DmuByteRanges_t . 182

DmuCompletion_t . 182

DmuCopyRange_t . 183

DmuCopyRanges_t . 183

DmuErrHandler_f . 183

DmuError_t . 184

DmuErrorInfo_t . 184

DmuFhandle_t . 184

DmuFullstat_t . 184

DmuReplyOrder_t . 184

DmuReplyType_t . 185

DmuReqid_t . 185

DmuRounding_t . 185

User-Accessible API Subroutines 186

Context Manipulation Routines 186

DmuCreateContext Subroutine 186

DmuDestroyContext Subroutine 187

DMF File Request Subroutines 187

Copy File Requests . 188

Fullstat Requests . 189

Put File Requests . 191

Get File Requests . 193

Request Completion Subroutines 195

xii 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

DmuAwaitReplies Subroutine 196

DmuGetNextReply Subroutine 196

DmuGetThisReply Subroutine 198

DmuFullstatCompletion Subroutine 199

Memory Management Subroutines 200

Glossary . 201

Index . 211

007–3681–006 xiii

Figures

Figure 1-1 Application Data Flow 2

Figure 1-2 DMF Network Environment 3

Figure 1-3 DMF library server architecture 5

Figure 1-4 DMF Architecture 9

Figure 3-1 Relationship of Automated Space Management Targets 100

Figure 6-1 Media Concepts 121

007–3681–006 xv

Tables

Table 2-1 Automated Maintenance Task Summary 27

Table 2-2 DMF Log File Message Types 90

Table 2-3 Parameters for dmf_config file 91

Table 5-1 dmlockmgr Token Files 114

007–3681–006 xvii

Examples

Example 6-1 Tape MSP Statistics Messages 125

Example 6-2 LS Statistics Messages 126

Example 6-3 dmcatadm list directive 135

Example 6-4 dmvoladm list directives 144

Example 6-5 Restoring Hard-deleted Files Using dmatread 149

Example 7-1 Database Recovery Example 169

007–3681–006 xix

Procedures

Procedure 2-1 Configuration Steps 21

Procedure 2-2 Daemon Database Record Length Configuration 25

Procedure 2-3 Base Object Configuration 32

Procedure 2-4 Daemon Configuration 35

Procedure 2-5 Configuring the daemon_tasks Object 37

Procedure 2-6 Configuring the dump_tasks Object 39

Procedure 2-7 Configuring filesystem Objects 43

Procedure 2-8 Configuring Objects for Automated Space Management 48

Procedure 2-9 Configuring Objects for MSP/VG Selection 50

Procedure 2-10 Configuring Tape MSPs 54

Procedure 2-11 Configuring Devices for TMF 58

Procedure 2-12 Configuring a Library Server and Its Components 70

Procedure 2-13 Configuring DMF to Use OpenVault 72

Procedure 2-14 Configuring the msp_tasks Object 78

Procedure 2-15 Creating MSP/LS Database Records 80

Procedure 2-16 Creating LS Database Records 81

Procedure 2-17 Configuring the ftp Object 85

Procedure 2-18 Configuring the dsk Object 88

Procedure 6-1 Tape MSP/LS Conversion 156

Procedure 7-1 Recovering the Databases 169

007–3681–006 xxi

About This Guide

This publication documents administration of the Data Migration Facility (DMF),
release 2.7, on SGI systems running the IRIX operating system 6.5 and later releases.

Related Publications
The following documents contain additional information about DMF that may be
helpful:

• DMF Release and Installation Guide for IRIX Systems, contains release-specific
information about features and describes how to install DMF.

• DMF Recovery and Troubleshooting Guide for IRIX Systems, describes how to solve
problems with DMF should you encounter them.

To order SGI documentation, go to the SGI Technical Publications Library at
http://techpubs.sgi.com. Find the title that you want and choose order to get
the ordering information page for that document.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage (x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

007–3681–006 xxiii

About This Guide

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xxiv 007–3681–006

Chapter 1

Introduction

This chapter provides an overview of the Data Migration Facility (DMF) and its
administration.

What Is DMF?
DMF is a hierarchical storage management system for Silicon Graphics environments.
Its primary purpose is to preserve the economic value of storage media and stored
data. The high I/O bandwidth of these machine environments is sufficient to overrun
online disk resources. Consequently, capacity scheduling, in the form of native file
system migration, has become an integral part of many computing environments and
is a requirement for effective use of Silicon Graphics systems.

In addition to ensuring that adequate disk space is always available, capacity
scheduling allows you to maintain a data space that is larger than your online disk
resource. Oversubscription requires that the value of stored data be recognized as the
same or higher than that of online data; DMF provides this capability. Figure 1-1
provides a conceptual overview of the data flow between applications and storage
media.

007–3681–006 1

1: Introduction

A
p
p
l
i
c
a
t
i
o
n
s

Data flow Memory

Disk

Tape/Optical

I/O
libraries

a11324

File
system

DMF

Figure 1-1 Application Data Flow

DMF supports a range of storage management applications. In some environments,
DMF is used strictly to manage highly stressed online disk resources. In other
environments, it is also used as an organizational tool for safely managing large
volumes of offline data. In all environments, DMF scales to the storage application
and to the characteristics of the available storage devices.

DMF interoperates with standard data export services such as Network File System
(NFS) and File Transfer Protocol (FTP). By combining these services with DMF, as
shown in Figure 1-2, you can configure a Silicon Graphics system as a
high-performance file server.

2 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

IRIX

a11325

Network

Exported data
(via NFS or FTP)

Migration path

Bulk
storage

CRAY
T90

Operating
system

Figure 1-2 DMF Network Environment

DMF transports large volumes of data on behalf of many users. Because system
interrupts and occasional storage device failures cannot be avoided, it is essential that
the safety and integrity of data be verifiable. Therefore, DMF also provides tools
necessary to validate your storage environment.

DMF has evolved around these customer requirements for scalability and the safety
of data. As a file system migrator, DMF manages the capacity of online disk resources
by transparently moving file data from disk to offline media. Most commonly, the
offline medium is tape, managed by OpenVault or the Tape Management Facility

007–3681–006 3

1: Introduction

(TMF). However, the offline medium can be any bulk-storage device accessible locally
through NFS or FTP.

DMF accomplishes this data migration transparently; this means that a user cannot
determine, by using POSIX-compliant commands for file system enquiry, whether a
file is online or offline. Only when special commands or command options are used
can a file’s actual residence be determined. This transparent migration is possible
because DMF leaves inodes and directories intact within the native file system.

How DMF Works
As a DMF administrator, you determine how disk space capacity is handled by
selecting which file systems DMF will manage and by specifying the volume of free
space that will be maintained on each file system. Space management begins with a
list of user files that are ranked according to criteria you define. File size and file age
are among the most common ranking criteria.

File migration occurs in two stages. First, a file is migrated to an offline medium.
Once the offline copy is secure, the file is eligible to have its data blocks released (this
usually occurs after a minimum space threshold is reached). A file with all offline
copies completed is called fully backed up. A file that is fully backed up but whose
data blocks have not yet been released is called a dual-state file; its data exists both
online and offline, simultaneously. After a file’s data blocks have been released, the
file is called an offline file.

You choose both the percentage of file system volume to migrate and the volume of
free space. You can trigger file migration, or file owners can issue manual migration
requests.

Offline media is the destination of all migrated data and is managed by daemon-like
DMF components called the media-specific process (MSP) and the library server (LS).

Three types of MSPs are supported: FTP, disk, and tape. The FTP MSP (dmftpmsp)
uses the FTP protocol to transfer to and from disks of another system on the network.
The disk MSP (dmdskmsp) is similar, but uses a file system mounted on the DMF
server itself. This can be a local file system or a remote one mounted through NFS or
similar filesharing protocol.

Most commonly, the offline media is magnetic tape, usually in a tape library (also
known as a robotic library or silo). DMF has two tape components: the tape MSP
(dmatmsp) and the library server (dmatls). The tape MSP has been available since
DMF was first released, but has some limitations in some environments. In time, it

4 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

will be superseded by the newer LS. Figure 1-3, page 5 shows the architecture of
these two alternatives; for simplicity, the FTP and disk MSPs have been omitted.

dmdaemon

RW

RS AG

RSA

DGDGDG

dmatwcdmatwcdmatwcdmatwcdmatwc

dmatwcdmatwcdmatwcdmatwcdmatls dmatmsp

dmatrc

DGDGVG

Figure 1-3 DMF library server architecture

There is one LS process (dmatls) per tape library, which maintains a pair of
databases that all of its components share. The entities in the shaded boxes in Figure
1-3, page 5 are not independent processes, but are internal components of the dmatls
process, whose functions are as follows:

Drive group (DG) The DG is responsible for the management of a group
of interchangeable tape drives located in the one tape
library. These drives can be used by multiple volume
groups (see volume groups below) and by non-LS
users, such as MSPs, and non-DMF processes, such as
backups and interactive users. However, In the latter
cases, the DG has no management involvement; the
mounting service (TMF or OpenVault) is responsible for
ensuring that these possibly competing uses of the tape
drives do not interfere with each other.

The main task of the DG is to monitor tape I/O for
errors, attempt to classify them as volume, drive, or

007–3681–006 5

1: Introduction

mounting service problems, and to take preventive
action.

Volume group (VG) The VG holds at most one copy of user files on a pool
of tape volumes, of which it has exclusive use. It can
use only the tape drives managed by a single DG.

Allocation group (AG) The AG is really a special type of VG, used to hold a
communal pool of empty tapes. These tapes can be
transferred to a VG as they are needed, and can be
returned when empty again. Use of an AG is optional,
being chosen by the DMF administrator.

Resource scheduler (RS) In a busy environment, it is common for the number of
drives requested by VGs to exceed the number
available. The purpose of the RS is to decide which
VGs should have first access to drives as they become
available, and which should wait, and to advise the DG
of the result. The DMF administrator can configure the
resource scheduler to meet site requirements.

Resource scheduler
algorithm (RSA)

Given the wide variety of site requirements, sites can
write their own scheduling routines in C++. These
routines are packaged in a dynamically-loadable
Dynamic Shared Object library (DSO or .so file).
When loaded, these routines are an internal component
of the dmatls process. This capability might not be
available in the first release of the LS. In the absense of
a site-supplied RSA, standard RSAs are provided with
DMF.

Resource watcher (RW) The RW monitors the activity of the other components,
and frequently updates files that contain data of use to
the administrator. The main format is HTML files
viewable by a web browser, but text files designed for
use by awk or perl scripts are also maintained.

In contrast to the LS process, each tape MSP has its own database of tape volumes it
controls and the user files (at most one copy of each) that they contain. It is
somewhat similar to the volume group previously described. Tape MSPs refer to a
"device object," which controls a group of tape drives in a similar, but less flexible,
way as the drive group previously described. A site can use any combination of the
various MSPs or LSs; they are not mutually exclusive.

6 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Also shown in Figure 1-3, page 5are processes called dmatrc and dmatwc. These
processes are called the read- and write-children, and are created byMSPs and VGs to
perform the actual reading and writing of tapes. Unlike most of the other DMF
processes that run indefinitely, these processes are created as needed, and are
terminated when their specific work has been completed.

Media transports and robotic automounters are also key components of all DMF
installations. Generally, DMF can be used with any transport and automounter that is
supported by either OpenVault or TMF. The most commonly used devices on IRIX
systems are DLT 4000/7000, SCSI versions of IBM 3590, and STK TimberLine and
RedWood drives. All STK robots, Grau, and IBM 3494 are supported. Additionally,
DMF supports absolute block positioning, a media transport capability that allows rapid
positioning to an absolute block address on the tape volume. When this capability is
provided by the transport, positioning speed is often three times faster than that
obtained when reading the volume to the specified position.

Ensuring Data Integrity
DMF provides several capabilities that enhance the safety of its operations and ensure
the integrity of offline data. For example, you can configure multiple instances of the
MSP, LS, or VG with each managing its own pool of media volumes. Therefore, DMF
can be configured so that file system data is migrated to multiple offline locations.

DMF stores data that originates in an XFS file system (you can also convert other file
servers to IRIX file servers running DMF). Each object stored corresponds to a file in
the native file system. When a user deletes a file, the inode for that file is removed
from the file system. Deleting a file that has been migrated begins the process of
invalidating the offline image of that file. In the tape MSP or LS, this eventually
creates a gap in the migration medium. To ensure effective use of media, the MSP/LS
provides a mechanism for reclaiming space lost to invalid data. This process is called
volume merging.

Much of the work done by DMF involves transaction processing that is recorded in
databases. DMF uses the Raima Data Manager (RDM) as its database engine. This
package provides for full transaction journaling and employs two-phase commit
technology. The combination of these two features ensures that DMF applies only
whole transactions to its database. Additionally, in the event of an unscheduled
system interrupt, it is always possible to replay the database journals in order to
restore consistency between the DMF databases and the file system. DMF utilities
also allow you to verify the general integrity of the DMF databases themselves.

007–3681–006 7

1: Introduction

DMF Architecture
DMF consists of the DMF daemon and one or more MSPs or LSs. The DMF daemon
accepts requests from the DMF administrator or from users to migrate file system
data, and communicates with the operating system kernel to maintain a file’s
migration state in that file’s inode.

The DMF daemon is responsible for dispensing a unique identifier (called a bit file
identifier, or bfid) for each file that is migrated. The daemon also determines the
destination of migration data and forms requests to the appropriate MSP/LS to make
offline copies.

The MSP/LS accepts requests from the DMF daemon. For outbound data, the
MSP/LS accrues requests until the volume of data justifies a volume mount. Requests
for data retrieval are satisfied as they arrive. When multiple retrieval requests involve
the same volume, all file data is retrieved in a single pass across the volume.

When running in the IRIX environment, DMF uses the Data Migration API (DMAPI)
kernel interface defined by the Data Management Interface Group (DMIG). DMIG is
also supported by X/Open, where it is evolving as the XDSM standard.

Figure 1-4 illustrates the DMF architecture.

8 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

DMF administration
interface

 Space management
 Audit

MSP/LS administration
interface

 Volume merge
 Volume entry

Control

Native
user data

Data

DMF daemon

Kernel

DMF
databases

DMF store-
MSP or LS

TMF or
OpenVault

Offline data
storage

Figure 1-4 DMF Architecture

Capacity and Overhead
DMF has evolved in production-oriented, customer environments. It is designed to
make full use of parallel and asynchronous operations, and to consume minimal
system overhead while it executes, even in busy environments in which files are
constantly moving online or offline. Exceptions to this rule will occasionally occur
during infrequent maintenance operations when a full scan of file systems or
databases is performed.

The capacity of DMF is measured in several ways, as follows:

• Total number of files. File identifiers used within DMF are 64-bit, thus providing a
capacity of 2**64 files. DMF has been tested on file systems with 20 million inodes.

007–3681–006 9

1: Introduction

The largest customer installation, on an inode-basis, is approximately 5 million.
The average DMF database size is approximately 1 million entries.

• Total volume of data. Capacity in data volume is limited only by the physical
environment and the density of media. The largest customer installation, on the
basis of data volume stored, is approximately 300 Tbytes. The average customer is
storing 5 to 10 Tbytes.

• Total volume of data moved between online and offline media. The number of
tape drives configured for DMF, the number of tape channels, and the number of
disk channels all figure highly in the effective bandwidth. In general, DMF
provides full-channel performance to both tape and disk. The largest data-velocity
customer is moving approximately 2.5 Tbytes per day.

• Storage capacity. On IRIX XFS, the largest file is 9 Tbytes.

DMF Administration
DMF can be configured for a variety of environments including dedicated file servers,
lights-out operations and, most frequently, for support of batch and interactive
processing in a general-purpose environment with limited disk space.

DMF manages two primary resources: pools of offline media and free space on native
file systems.

As a DMF administrator, you first need to characterize and determine the size of the
environment in which DMF will run. You will want to plan for a certain capacity,
both in the number of files and in the volume of data. You will also want to estimate
the rate at which you will be moving data between the DMF store and the native file
system. You will select autoloaders and media transports that are suitable for the data
volume and delivery rates you anticipate.

Beyond initial planning and setup, DMF requires that you perform recurring
administrative duties. DMF allows you to configure tasks that automate these duties.
A task is a cron-like process initiated on a time schedule you determine.
Configuration tasks are defined with configuration file parameters. The tasks are
described in detail in "Configuring Daemon Maintenance Tasks", page 36, and
"Configuring Tape Maintenance Tasks ", page 77.

DMF requires administrative duties to be performed in the following areas:

10 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

• File ranking. You must decide which files are most important as migration
candidates. When DMF migrates and frees files, it chooses files based on criteria
you chose. The ordered list of files is called the DMF candidate list. Whenever
DMF responds to a critical space threshold, it builds a new migration candidate
list for the file system that reached the threshold. "Generating the Candidate List",
page 98, describes candidate list generation.

• Automated space management. You must decide how much free space to
maintain on each managed file system. DMF has the ability to monitor file system
capacity and to initiate file migration and the freeing of space when free space
falls below the prescribed thresholds. Chapter 3, "Automated Space Management",
page 97, provides details about automated space management.

• Offline data management. DMF offers the ability to migrate data to multiple
offline locations. Each location is managed by a separate MSP or VG and is
usually constrained to a specific type of medium.

Complex strategies are possible when using multiple MSPs, LSs, or VGs. For
example, short files can be migrated to a device with rapid mount times, while
long files can be routed to a device with extremely high density.

You can describe criteria for MSP or VG selection. When setting up a tape MSP or
VG, you assign a pool of tapes for use by that MSP/VG. The dmvoladm(8) utility
provides management of the tape MSP/LS media pools.

You can configure DMF to automatically merge tapes that are becoming
sparse—that is, full of data that has been deleted by the owner. With this
configuration (the run_merge_tapes.sh task), the media pool is merged on a
regular basis in order to reclaim unusable space.

Recording media eventually becomes unreliable. Sometimes, media transports
become misaligned so that a volume written on one cannot be read from another.
Two utilities are provided that support management of failing media. The
dmatsnf(8) utility is used to scan a DMF volume for flaws, and dmatread(8) is
used for recovering data. Additionally, the volume merge process built into the
MSP/LS is capable of effectively recovering data from failed media.

Chapter 6, "Media Specific Processes and Library Servers", page 117, provides
more information on MSP administration.

• Integrity and reliability. Integrity of data is a central concern to the DMF
administrator. You will have to understand and monitor processes in order to
achieve the highest levels of data integrity, as described below:

007–3681–006 11

1: Introduction

– Even though you are running DMF, you will still have to run backups because
DMF moves only the data associated with files, not the file inodes or
directories. You can configure DMF to automatically run backups of your
DMF-managed file systems.

The dump utility for your file system (xfsdump and xfsrestore on IRIX
systems) works in concert with DMF in that it understands when a file is fully
backed up. The dump utilities have an option that allows for dumping only
files that are not fully backed up.

You can establish a policy of migrating 100% of DMF-managed file systems,
thereby leaving only a small volume of data that the dump utility must record.
This practice can greatly increase the availability of the machine on which
DMF is running because, generally, dump commands must be executed in a
quiet environment.

You can configure the run_full_dump.sh and run_partial_dump.sh
tasks to ensure that all files have been migrated. This can be configured to run
when the environment is quiet.

– DMF databases record all information about stored data. The DMF databases
must be synchronized with the file systems DMF manages. Much of the work
done by DMF ensures that the DMF databases remain aligned with the file
systems.

You can configure DMF to automatically examine the consistency and integrity
of the DMF daemon and MSP/LS databases. You can configure DMF to
periodically copy the databases to other devices on the system to protect them
from loss (using the run_copy_databases.sh task). This task also uses the
the dmdbcheck utility to ensure the integrity of the databases before saving
them.

DMF uses journal files to record database transactions. Journals can be
replayed in the event of an unscheduled system interrupt. You must ensure
that journals are retained in a safe place until a full backup of the DMF
databases can be performed.

You can configure the run_remove_logs.sh and
run_remove_journals.sh tasks to automatically remove old logs and
journals, which will prevent the DMF SPOOL_DIR directory from overflowing.

You can configure the run_hard_delete.sh task to automatically perform
hard-deletes, which are described in "Recalling a Migrated File", page 14.

12 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

The User’s View of DMF
While the administrator has access to a wide variety of commands for controlling
DMF, the end user sees very little. Migrated files remain cataloged in their original
directories and are accessed as if they were still on disk. The only difference users
might notice is a delay in access time.

Commands are provided for file owners to affect the manual storing and retrieval of
data. Users can do the following:

• Explicitly migrate files by using the dmput(1) command

• Explicitly recall files by using the dmget(1) command

• Copy all or part of the data from a migrated file to an online file by using the
dmcopy(1) command

• Determine whether a file is migrated by using the dmfind(1) and/or dmls(1)
commands

• Test in shell scripts whether a file is online or offline by using the dmattr(1)
command

DMF File Concepts and Terms
DMF regards files as being one of the following:

• Regular files are user files residing only on disk

• Migrating files are files whose offline copies are in progress

• Migrated files can be either of the following:

– Dual-state files are files whose data resides both online and offline

– Offline files are files whose data is no longer on disk

DMF does not migrate pipes, directories, or UNIX special files.

Like a regular file, a migrated file has an inode. Only an offline file requires the
intervention of the DMF daemon to access its data.

The operating system informs the DMF daemon when a migrated file is modified. If
anything is written to a migrated file, the offline copy is no longer valid, and the file
becomes a regular file until it is migrated again.

007–3681–006 13

1: Introduction

Migrating a File

A file is migrated when the automated space management controller dmfsmon(8)
selects the file or when an owner requests that the file be migrated by using the
dmput(1) command.

The DMF daemon keeps a record of all migrated files in its database. The key to each
file is its bfid. For each migrated file, the daemon assigns a bfid that is stored in the
file’s inode.

When the daemon receives a request to migrate a file, it adjusts the state of the file,
ensures that the necessary MSP(s)/VG(s) are active, and sends a request to the
MSP(s)/VG(s). MSPs/VGs copy data to the offline storage media.

When the MSP(s)/VG(s) have completed the offline copy (or copies), the daemon
marks the file as fully backed up in its database and changes the file to dual-state. If
the user specified the dmput -r option, or if dmfsmon requested that the file’s space
be released, the daemon releases the data blocks and changes the user file state to
offline.

Recalling a Migrated File

When a migrated file must be recalled, a request is made to the DMF daemon. The
daemon selects an MSP or VG from its internal list and sends that MSP/VG a request
to recall a copy of the file. If more than one MSP or VG has a copy, the first one in
the list is used. (The list is created from the configuration file.)

After a user has modified or removed a migrated file, its bfid is soft-deleted. A file is
soft-deleted when it is logically deleted from the daemon database. This is
accomplished by setting the delete date field in the database to the current date and
time for each entry referring to the modified or removed file.

A file is hard-deleted when its bfid is physically removed from the DMF database. You
can configure DMF to automatically perform hard-deletes. This is done using the
run_hard_delete.sh task, which uses the dmhdelete(8) utility.

The soft-delete state allows for the possibility that the file system might be restored
after the user has removed a file. When a file system is reloaded from a dump image,
it is restored to a state at an earlier point in time. A file that had been migrated and
then removed might become migrated again due to the restore operation. This can
create serious problems if the database entries for the file have been physically
deleted (hard-deleted). In this case, the user would receive an error when trying to
open the file because the file cannot be retrieved.

14 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Do not hard-delete a database entry until after you are sure that the corresponding
files will never be restored. Hard-delete requests are sent to the relevant MSPs and
VGs so that copies of the file can be removed from media. For a tape MSP/VG, this
involves compression (or merging).

Command Overview
The following section provides definitions for administrator commands grouped by
function.

Configuration Commands

The configuration file, /etc/dmf/dmbase/host/hostname/dmf_config, contains
configuration objects and associated configuration parameters that control the way DMF
operates. The hostname is the name of the host on which you installed DMF. By
changing the values associated with these objects and parameters, you can modify the
behavior of DMF.

For information about editing the configuration file, see Chapter 2, "Configuring
DMF", page 21. The following man pages are related to the configuration file:

Man page Description

dmf_config(5) Describes the DMF configuration objects and
parameters in detail

dmconfig(8) This command prints DMF configuration parameters to
standard output

DMF Daemon and Related Commands

The DMF daemon, dmdaemon(8), communicates with the kernel through a device
driver and receives backup and recall requests from users through a socket. The
daemon activates the appropriate MSPs and LSs for file migration and recall,
maintaining communication with them through unnamed pipes. It also changes the
state of inodes as they pass through each phase of the migration and recall process.
In addition, dmdaemon maintains a database containing entries for every migrated file
on the system. Updates to database entries are logged in a journal file for recovery.
See Chapter 4, "The DMF Daemon", page 103, for a detailed description of the DMF
daemon.

007–3681–006 15

1: Introduction

!
Caution: If used improperly, commands that make changes to the DMF database can
cause data to be lost.

The following administrator commands are related to dmdaemon and the daemon
database:

Command Description

dmaudit(8) Reports discrepancies between file systems and the
daemon database. This command is executed
automatically if you configure the run_audit.sh task.

dmcheck(8) Checks the DMF installation and configuration and
reports any problems.

dmdadm(8) Performs daemon database administrative functions,
such as viewing individual database records.

dmdaemon(8) Starts the DMF daemon.

dmdbcheck(8) Checks the consistency of a database by validating the
location and key values associated with each record
and key in the data and key files (also an MSP/LS
command). If you configure the
run_copy_database.sh task, this command is
executed automatically as part of the task. The
consistency check is completed before the DMF
databases are saved.

dmdbrecover(8) Updates the daemon and tape MSP/LS databases with
journal entries.

dmdidle(8) Causes files not yet copied to tape to be flushed to tape,
even if this means forcing only a small amount of data
to a volume.

dmdstat(8) Indicates to the caller the current status of dmdaemon.

dmdstop(8) Causes dmdaemon to shut down.

dmhdelete(8) Deletes unused daemon database entries and releases
corresponding MSP/VG space. This command is

16 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

executed automatically if you configure the
run_hard_delete.sh task.

dmmigrate(8) Migrates regular files that match specified criteria in the
specified file systems, leaving them as dual-state. This
utility is often used to migrate files before running
backups of a file system, hence minimizing the size of
the dump image.

dmsnap(8) Copies the DMF daemon and the MSP/LS databases to
a specified location. If you configure the
run_copy_database.sh task, this command is
executed automatically as part of the task.

dmversion(8) Reports the version of DMF that is currently executing.

Space Management Commands

The following commands are associated with automated space management, which
allows DMF to maintain a specified level of free space on a file system through
automatic file migration:

Command Description

dmfsfree(8) Attempts to bring the free space and migrated space of
a file system into compliance with configured values.

dmfsmon(8) Monitors the free space levels in file systems configured
as auto (that is, automated space management is
enabled) and lets you maintain a specified level of free
space.

dmscanfs(8) Scans DMF file systems and prints status information to
stdout.

See Chapter 3, "Automated Space Management", page 97, for a detailed description of
automated space management.

MSP/LS Commands

The DMF tape MSP and LS maintain a database that contains volume (VOL) records
and catalog (CAT) records. VOL records contain information about tape volumes, and
CAT records contain information about offline copies of migrated files.

007–3681–006 17

1: Introduction

The disk and FTP MSPs allow the use of local or remote disk storage for storing
migrated data. They use no special commands, utilities, or databases. For more
information, see "Disk MSP", page 153, and "FTP MSP", page 150.

Two commands manage the CAT and VOL records for the tape MSP/LS:

Command Description

dmcatadm(8) Provides maintenance and recovery services for the
CAT database.

dmvoladm(8) Provides maintenance and recovery services for the
VOL database, including the selection of volumes for
tape merge operations.

Most data transfers to and from tape media are performed by components internal to
the MSP/LS. However, there are also two utilities that can read tape MSP/LS
volumes directly:

Command Description

dmatread(8) Copies data directly from MSP/LS volumes to disk.

dmatsnf(8) Audits and verifies the format of MSP/LS volumes.

There are also tools that check for MSP database inconsistencies:

Command Description

dmatvfy(8) Verifies the MSP/LS database contents against the
dmdaemon(8) database. This command is executed
automatically if you configure the run_audit.sh task.

dmdbcheck(8) Checks the consistency of a database by validating the
location and key values associated with each record
and key in the data and key files.

Commands for Other Utilities

The following utilities are also available:

Command Description

dmclripc(8) Frees system interprocess communication (IPC)
resources and token files used by dmlockmgr and its

18 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

clients when abnormal termination prevents orderly
exit processing.

dmcollect(8) Collects relevant details before submitting a bug report
to DMF Support, should this ever be necessary.

dmdate(8) Performs calculations on dates for administrative
support scripts.

dmdump(8) Creates a text copy of an inactive database file or a text
copy of an inactive complete DMF daemon database.

dmdumpj(8) Creates a text copy of DMF journal transactions.

dmfill(8) Recalls migrated files to fill a percentage of a file
system. This command is mainly used in conjunction
with dump and restore commands to return a
corrupted file system to a previously known valid state.

dmlockmgr(8) Invokes the database lock manager. The lock manager
is an independent process that communicates with all
applications that use the DMF database, mediates
record lock requests, and facilitates the automatic
transaction recovery mechanism.

dmmove(8) Moves copies of a migrated file’s data to the specified
MSPs/VGs.

dmmaint(8) Calls the dmmaint utility, which performs DMF version
maintenance and provides interfaces for licensing and
initial configuration.

dmov_keyfile(8) Creates the file of DMF OpenVault keys, ensuring that
the contents of the file are semantically correct and have
the correct file permissions. This command removes
any DMF keys in the file for the OpenVault server
system and adds new keys at the front of the file.

dmov_loadtapes(8) Scans a tape library for volumes not imported into the
OpenVault database and allows the user to select a
portion of them to be used by an MSP/VG. The
selected tapes are imported into the OpenVault
database, assigned to the DMF application, and added
to the MSP’s/LS’s database.

007–3681–006 19

1: Introduction

dmov_makecarts(8) Makes the tapes in one or more MSP/LS databases
accessible through OpenVault by importing into the
OpenVault database any tapes unknown to it and by
registering all volumes to the DMF application not yet
so assigned.

dmselect(8) Selects migrated files based on given criteria. The
output of this command can be used as input to
dmmove(8).

dmsort(8) Sorts files of blocked records.

dmxfsrestore(8) Calls the xfsrestore(1M) command to restore files
dumped to tape volumes that were produced by DMF
administrative maintenance scripts.

20 007–3681–006

Chapter 2

Configuring DMF

This chapter describes how to configure DMF, verify the configuration, and perform
some periodic maintenance tasks.

Overview of the Configuration Steps
The steps outlined in the following procedure are required to configure DMF.

Procedure 2-1 Configuration Steps

1. Install DMF, ensuring that FLEXlm licensing is set up correctly. Installation is
described in the DMF Release and Installation Guide for IRIX Systems.

Note: For a description of special configuration issues regarding installation, you
must read "Installation Considerations".

2. Ensure that your PATH and MANPATH environment variables are set to include
DMF paths. See "Setting PATH Environment Variables", page 28.

3. Invoke dmmaint(8) so that you can create or modify your configuration file. Using
dmmaint is described in the DMF Release and Installation Guide for IRIX Systems.

4. Determine how you want to complete periodic maintenance tasks. See
"Configuring Automated Maintenance Tasks", page 26.

5. Edit the configuration file to define the base object, daemon object, the objects for
daemon maintenance tasks, and objects for automated space management. See
"Configuring the Base Object", page 31, through "DMF Policies", page 43.

6. Define the media-specific process (MSP) or library server (LS) objects. Also define
the object for MSP/LS maintenance tasks, set up the MSPs and/or LSs, and
configure your mounting service. See "Setting Up Tape MSPs ", page 51, through
"Setting up Disk MSPs", page 86.

7. Verify the configuration with the dmcheck(8) script. See "Verifying the
Configuration", page 89.

8. Start DMF. See "Initializing DMF", page 89.

007–3681–006 21

2: Configuring DMF

Installation Considerations
This section discusses installation considerations that will affect how your system is
configured.

Configuration File Requirements

The DMF server uses a set of path names in which it stores databases, log and journal
files, and temporary file directories. These file systems have the following
requirements:

• HOME_DIR, the base path name for DMF directories in which databases reside,
must be a separate file system.

• JOURNAL_DIR, the base path name for DMF directories in which the daemon and
tape MSP/LS database journal files reside, must be a separate file system on a
different disk from HOME_DIR.

• SPOOL_DIR, the base path name used to construct the directory names for DMF
directories in which DMF log files reside, must be a separate file system.

• TMP_DIR, the base path name used to construct the directory names for DMF
directories in which DMF puts temporary files such as pipes, should exist, but
does not necessarily need to be a separate file system.

• MOVE_FS, the base path name for the scratch file system used to move files
between MSPs or volume groups, has requirements only if you configure more
than one MSP or volume group. If you have more than one MSP or volume
group, MOVE_FS must be a separate file system, and it must be mounted to enable
the DMAPI interface.

All of these configuration requirements are checked by the dmcheck(8) command.

Man Pages

On the DMF server, DMF man pages are installed into the
/usr/dmf/dmbase/version/man directory. Ensure that you and all DMF users add
the correct path to the MANPATH environment variable as described in the DMF
Release and Installation Guide for IRIX Systems, in the chapter titled “Before You Start
DMF.” On the DMF client machines, man pages for the DMF distributed commands
are installed into the /usr/share/catman/u_man directory. On DMF server
machines, dmmaint also creates links to the DMF user commands in this directory.

22 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

File System Mount Options

The Data Management API (DMAPI) is the mechanism within IRIX and the XFS file
system for passing file management requests between the kernel and DMF. Ensure
that you have installed DMAPI and the appropriate patches as listed in the files
accessed by the News button on the DMF installation interface (dmmaint(8)).

!
Caution: For file systems to be managed by DMF, they must be mounted to enable
the DMAPI interface. You can do this by using the mount -o dmi command or by
declaring parameter 4 in the fstab entry to be dmi. For more information on the
mount or fstab commands, see the man pages. Failure to enable dmi for
DMF-managed file systems will result in a configuration error.

Mounting Service

Tape mounting services are available through OpenVault or the Tape Management
Facility (TMF). The MSP/LS checks mounting service availability when it is started
and after each occurrence in which an MSP/LS write child or read child was unable
to reserve its drive. If the mounting service is found to be unavailable, the tape
MSP/LS does not start any new child processes until the mounting service is once
again available.

If the unavailable mounting service is OpenVault, the MSP/LS sends an e-mail
message to the administrator, asking that OpenVault be started, and then periodically
polls OpenVault until it becomes available, at which time child processes are again
allowed to run. For LS, this is the default procedure. You can use
MAX_MS_RESTARTS to configure the number of automatic restarts.

If the unavailable mounting service is TMF, the tape MSP/LS not only attempts to
initiate tmdaemon if it is not up (based on the exit status of tmstat), but it waits
until a TMF device in the configuration pending state is configured up before it
resumes processing. If TMF cannot be started or if no devices are configured up, the
tape MSP/LS sends e-mail to the administrator and polls TMF until a drive becomes
available. For LS, this is the default procedure. You can use MAX_MS_RESTARTS to
configure the number of automatic restarts.

007–3681–006 23

2: Configuring DMF

Inode Size Configuration

DMF state information is kept within a file system structure called an extended
attribute. Extended attributes can be either inside the inode or in attribute blocks
associated with the inode. DMF runs much faster when the extended attribute is
inside the inode, because this minimizes the number of disk references that are
required to determine DMF information. In certain circumstances, there can be a large
performance difference between an inode-resident extended attribute and a
non-resident extended attribute.

You should configure your file systems to ensure that the extended attribute is always
inode-resident. This is done by using the mkfs_xfs command. Declare the inode
size to be 512 bytes using the -i size=512 option. File systems that already exist
will have to be dumped, recreated, and restored. This change is not mandatory.

Configuring Daemon Database Record Length

A daemon database entry is composed of one or more fixed length records: a base
record (dbrec) and zero or more path segment extension (pathseg) records. If the
path value that is returned to the daemon by the MSP/LS can fit into the path field
of the daemon’s dbrec record, DMF does not require pathseg records. If the
MSP/LS supplies a path value that is longer than the path field in the dbrec, DMF
creates one or more pathseg records.

The default size of the path field of the dbrec is 34 characters. This size allows the
default paths returned by the dmatmsp, dmatls, dmdskmsp, and dmftpmsp to fit in
the dbrec path field as long as the user name portion of the dmftpmsp or dmdskmsp
path (username/bit_file_identifier) is 8 characters or fewer. In almost all cases, you
should not need to reconfigure the daemon database record.

The default size of the path field in the pathseg record is 64. For MSP path values
which are just slightly over the size of the dbrec path field, this will result in a large
amount of wasted space for each record that overflows into the pathseg record. The
ideal situation would be to have as few pathseg records as possible.

The advantage of having very few pathseg records lies in increased efficiency for
retrieving daemon database records. There is no need to access the pathseg key and
data files to retrieve a complete daemon database record.

The disadvantage of using the default path size arises mainly in the tape MSP/LS
application in which there is a small amount of wasted space in the daemon’s dbrec
data file. By extending the default path field size to 34 (8 bytes more than the tape

24 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

MSP/LS requires), there is a resulting 5% wasted space in the daemon’s dbrec data
file. For a 10 MB dbrec file, this is 500 Kbytes of wasted space.

For installations that run only the tape MSP or LS and for which the 5% wasted disk
space is an important consideration, the size of the path field in the daemon dbrec
record can be configured at any time before or after installation. (The same holds true
for any installation that might be using the dmftpmsp or dmdskmsp with a different
path-generating algorithm or any other MSP that supplies a path longer than 34
characters to the daemon.)

Procedure 2-2 Daemon Database Record Length Configuration

The steps to configure the database entry length are as follows:

1. If the dmdaemon is running, use dmdstop(8) to halt processing.

2. If a daemon database already exists, perform the following steps:

a. cd HOME_DIR/daemon (HOME_DIR is the value of HOME_DIR returned by
the dmconfig base command)

b. dmdump -c . > textfile (textfile is the name of a file that will contain the
text representation of the current database)

c. cp dbrec* pathseg* dmd_db.dbd backup_dir (backup_dir is the name of
the directory that will hold the old version of the database)

d. rm dbrec* pathseg* dmd_db.dbd

3. cd /etc/dmf/dmbase/lib/rdm

4. Back up the dmd_db.dbd and dmd_db.ddl files that reside in
/etc/dmf/dmbase/lib/rdm. This will aid in disaster recovery should
something go wrong.

5. Edit dmd_db.ddl to set the new path field lengths for the dbrec and/or
pathseg records. For the most efficient use of disk space for the dmatmsp, set
the dbrec path size to 26.

6. Regenerate the new database definition:

/etc/dmf/dmbase/etc/dmddlp -drsx dmd_db.ddl

7. Backup the new versions of dmd_db.dbd and dmd_db.ddl for future reference
or disaster recovery.

007–3681–006 25

2: Configuring DMF

8. If the daemon database was dumped to text in step 2, complete the following
steps:

a. cd HOME_DIR/daemon

b. dmdadm -u -c "load textfile" (textfile was created in step 2)

9. If the daemon was running in step 1, restart it by executing dmdaemon(8).

Interprocess Communication Parameters

Ensure that, in the operating system configuration file, the following IPC kernel
configuration parameters are set equal to or greater than the default: MSGMAX,
MSGMNI, MSGSEG, and MSGSSZ. The parameters are described in Appendix A of IRIX
Admin: System Configuration and Operation, document number 007-2859.

Configuring Automated Maintenance Tasks

DMF lets you configure parameters for completing periodic maintenance tasks such
as the following:

• Making backups (full or partial) of user file systems to tape

• Making backups of DMF databases to disk

• Removing old log files and old journal files

• Monitoring DMF logs for errors

• Running hard deletes

• Running dmaudit(8)

• Monitoring the status of tapes in tape MSPs and LSs

• Merging tapes that have become sparse (and stopping this process at a specified
time)

Each of these tasks can be configured in the DMF configuration file through the use of
TASK_GROUPS parameters for the DMF daemon and the tape MSP/LS. The tasks are
then defined as objects.

26 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

For each task you configure, a time expression defines when the task should be done
and a script file is executed at that time. The tasks are provided for you in the
etc/admin directory in the configured DMF directory (/etc/dmf/dmbase).

The automated tasks are described in "Configuring Daemon Maintenance Tasks", page
36, for the daemon tasks and in "Configuring Tape Maintenance Tasks ", page 77, for
the tape MSP.

Table 2-1provides a summary of the automated maintenance tasks:

Table 2-1 Automated Maintenance Task Summary

Task Purpose Parameters

Related
Object
Type

run_audit Audit databases daemon

run_copy_databases Backup DMF databases DATABASE_COPIES daemon

run_remove_journals Remove old journal files JOURNAL_RETENTION daemon

run_remove_logs Remove old log files LOG_RETENTION daemon

run_full_dump Full backup of file system(s)
For restores, see
dmxfsrestore(8)

DUMP_DEVICE
DUMP_INVENTORY_COPY
DUMP_FILE_SYSTEMS
DUMP_MIGRATE_FIRST
DUMP_RETENTION
DUMP_VSNS_USED
DUMP_TAPES

daemon

run_hard_deletes Hard-delete files Uses DUMP_RETENTION daemon

run_merge_stop Stop tape merges msp/ls

run_partial_dump Partial backup of file
system(s)

Uses parameters set for
run_full_dump

daemon

run_scan_logs Scan log files for errors daemon

run_tape_merge Merge sparse tapes DATA_LIMIT
THRESHOLD
VOLUME_LIMIT

msp/ls

007–3681–006 27

2: Configuring DMF

Task Purpose Parameters

Related
Object
Type

run_tape_report Create tape reports msp/ls

run_compact_tape_report Create tape reports msp/ls

Setting PATH Environment Variables
To use DMF commands and DMF man pages, set your PATH and MANPATH
environment variables. When the software that allows a machine to run the DMF
daemon, MSPs, and LSs is installed, the DMF administrator commands and
executable files are installed in /etc/dmf/dmbase/etc. Man pages are installed in
/etc/dmf/dmbase/man. This type of installation is called a DMF server installation.
Beginning with DMF 2.7, links to the user commands are created in /usr/bin. Links
to the man pages for the user commands are also created in
/usr/share/catman/u_man/cat[1,8].

Also beginning with DMF 2.7, it is possible to configure a machine as a DMF client.
This configuration installs the software required so that users can execute the DMF
user commands on machines that have DMF-managed filesystems exported to them,
but never execute as the DMF server host. In this case, the user commands are
installed in /usr/bin, and the user man pages are installed in
/usr/share/catman/u_man/cat[1,8]. The remainder of this section deals with
DMF server installations.

Note: If you are not familiar with setting the MANPATH environment variable, you
should know that some paths are checked even though they are not listed by default.
In other words, even though the command echo $MANPATH appears to indicate that
no variable is defined (in ksh it returns no message or in csh it returns the message
MANPATH - Undefined variable), certain paths are still searched for man pages.
Setting the MANPATH environment variable as described below will supersede the fact
that these paths are searched.

If MANPATH has not been set, you should read the man(1) man page to determined the
paths that are checked and then include those paths in the commands below.

The following example uses sh syntax to set and display the DMF PATH environment
variables:

28 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

PATH=$PATH:/etc/dmf/dmbase/etc:/etc/dmf/dmbase/bin; export PATH

MANPATH=$MANPATH:/etc/dmf/dmbase/man; export MANPATH

env | grep PATH

MANPATH=/usr/man:/usr/share/catman:/usr/catman:/usr/local/man:/etc/dmf/dmbase/man

PATH=/usr/sbin:/usr/bsd:/sbin:/usr/bin:/bin:/etc:/usr/etc:/usr/bin/X11:/etc/dmf/dmbase/etc:

/etc/dmf/dmbase/bin

The following example uses csh syntax to set and display the DMF PATH
environment variables:

% setenv PATH ${PATH}:/etc/dmf/dmbase/etc:/etc/dmf/dmbase/bin

% setenv MANPATH ${MANPATH}:/etc/dmf/dmbase/man

% env |grep PATH

MANPATH=/usr/man:/usr/share/catman:/usr/catman:/usr/local/man:/etc/dmf/dmbase/man

PATH=/usr/sbin:/usr/bsd:/sbin:/usr/bin:/bin:/etc:/usr/etc:/usr/bin/X11:/etc/dmf/dmbase/etc:

/etc/dmf/dmbase/bin

You can set the user command and man path names in the file /etc/profile for all
ksh users and /etc/cshrc for all csh users, or provide a module for users.

Configuration Objects
The configuration file consists of configuration objects and parameters. The file uses
the following types of configuration objects:

• The base object, which defines path name and file size parameters necessary for
DMF operation

• The daemon object, which defines parameters necessary for dmdaemon(8) operation

• The file system object, which defines parameters necessary for migrating files in that
file system

• The policy objects, which specify parameters to determine MSP/VG selection,
automated space management policies, and/or file weight calculations in
automatic space management

• The MSP objects, which define parameters necessary for that MSP’s operation

• The device objects, which define parameters for the MSP’s use of tape devices

007–3681–006 29

2: Configuring DMF

• The taskgroup objects, which define parameters necessary for automatic completion
of specific maintenance tasks

• The library server object, which defines parameters relating to a tape library

• The drive group object, which defines parameters relating to a pool of tape devices
in a specific library

• The volume group object, which defines parameters relating to a pool of tape
volumes mountable on the drives of a specific DG, capable of holding, at most,
one copy of user files

• The resource scheduler object, which defines parameters relating to scheduling of tape
devices in a DG when requests from VGs exceed the number of devices available

• The resource watcher object, which defines parameters relating to the production of
files informing the administrator about the status of the library server and its
components

DMF configuration objects and parameters are also defined in the dmf_config(5)
man page and in Table 2-3, page 91.

Each object is configured by a sequence of lines called a configuration stanza. These
have the following general form:

define object_name
TYPE object_type
parameter-1 value(s)

...
parameter-n value(s)

enddef

For file systems, object_name is the mount point. Otherwise, it is chosen by the
administrator. object_type identifies the type (detailed in the following subsections).
The parameters and their values depend on the type of the object. These stanzas are
case-sensitive and can be indented for readability. The fields can be separated by
spaces and/or tabs. Blank lines and all commentary text between a hash character (#)
and the end of that line are ignored. Except for comments, any line ending in a
back-slash (\) continues onto the next line. Before placing a new configuration into
production, it is important to check it by running dmcheck(8).

30 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Configuring the Base Object

The base configuration parameters define path names and file sizes necessary for
DMF operation. It is expected that you will modify the path names, although those
provided will work without modification. All path names must be unique.

Parameter Description

TYPE base (type of object).

ADMIN_EMAIL E-mail address to which to send output from
administrative tasks. The mail can include errors,
warnings, and output from any configured tasks. You
can specify a list of addresses, separated by spaces.

HOME_DIR Base path name used to construct directory names for
DMF directories in which databases and related files
reside. Generally referred to as HOME_DIR.

JOURNAL_DIR Base path name used to construct directory names for
DMF directories in which the daemon and tape
MSP/LS database journal files will be written. To
provide the best chance for database recovery, this
directory should be a separate file system and a
different physical device from HOME_DIR. Generally
referred to as JOURNAL_DIR.

JOURNAL_SIZE Maximum size (in bytes) of the database journal file
before DMF closes it and starts a new file.

LICENSE_FILE Full path name of the file containing the FLEXlm
license used by DMF. The default is
/usr/dmf/dmbase/flexlm/license.dat. You
should have no need to edit this parameter.

OV_KEY_FILE File containing the OpenVault keys used by DMF. It is
usually located in HOME_DIR and called ovkeys.
There is no default. (Use this parameter only if you are
using OpenVault as your tape mounting service.)

OV_SERVER Name returned by the hostname(1) command on the
machine on which the OpenVault server is running.
This parameter only applies when OpenVault is used as
the mounting service. The default value is the host
name of the machine on which you are running.

007–3681–006 31

2: Configuring DMF

SPOOL_DIR Base path name used to construct the directory names
for DMF directories in which DMF log files are kept.
Generally referred to as SPOOL_DIR.

TMP_DIR Base path name used to construct the directory names
for DMF directories in which DMF puts temporary files
such as pipes. It is also used by scripts for temporary
files and is the directory used by default by the tape
MSP for caching files if the CACHE_DIR parameter is
not defined. Generally referred to as TMP_DIR.

Warning: Do not change the directory names while DMF is running.

If you intend to run the OpenVault library management facility as the mounting
service for DMF, you must configure the OV_KEY_FILE and OV_SERVER parameters.
If you are running a different mounting service, you do not need these parameters.
More configuration steps are necessary to configure DMF to use OpenVault; see
"Using OpenVault for Tape MSPs and Drive Groups", page 72.

Procedure 2-3 Base Object Configuration

The following example defines a base object:

define base
TYPE base

ADMIN_EMAIL root@dmfserver

HOME_DIR /dmf/home

TMP_DIR /tmp/dmf

SPOOL_DIR /dmf/spool/
JOURNAL_DIR /dmf/journals

JOURNAL_SIZE 10m

LICENSE_FILE /var/flexlm/dmf_license.dat

OV_KEY_FILE /dmf/home/ovkeys

OV_SERVER localhost

enddef

32 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Note: Do not use automated space management to manage the HOME_DIR,
SPOOL_DIR, or JOURNAL_DIR directories because DMF daemon processes will
deadlock if files that they are actively using within these directories are migrated.
dmcheck(8) reports an error if any of the HOME_DIR, SPOOL_DIR, or JOURNAL_DIR
parameters are also configured as DMF-managed file systems. Configure the
daemon_tasks object to manage old log files and journal files in these directories
(you can change the namedaemon_tasks to be anything you prefer). See
"Configuring Daemon Maintenance Tasks", page 36, for more information.

The following steps explain pertinent information for configuring the base object:

1. Ensure that TYPE is set to base.

2. Configure the e-mail address specified by the ADMIN_EMAIL parameter to be the
user to whom you want to send the output of the configured tasks described in
"Configuring Automated Maintenance Tasks", page 26.

3. Configure the file system specified by the HOME_DIR configuration parameter
(referred to as HOME_DIR) as a separate file system, and restrict its contents to
DMF databases and relatively static files such as DMF scripts.

DMF cannot run if HOME_DIR runs out of space, and such an event is more
likely to happen if it is simply another directory in /usr.

4. Set TMP_DIR to be any file system that can store temporary files. /tmp or a
directory below /tmp is a common choice.

5. Configure the log file directory (referred to as SPOOL_DIR) as a separate file
system so that log file growth does not impact the rest of the system.

6. Ensure that the journal file directory (referred to as JOURNAL_DIR) resides on a
physical device completely separate from the one on which HOME_DIR resides.
Backup copies of DMF databases should also be stored on the JOURNAL_DIR file
system.

7. Configure the JOURNAL_SIZE parameter to be the maximum size allowable for a
journal file before DMF closes it.

8. If you plan to run OpenVault, configure the OV_KEY_FILE parameter to be the
name of the key file that holds security information for OpenVault. For more
information, see Procedure 2-13, page 72.

007–3681–006 33

2: Configuring DMF

9. If you plan to run OpenVault, configure the OV_SERVER parameter to the name of
the server that runs OpenVault. For more information, see Procedure 2-13, page
72.

Configuring the DMF Daemon

The daemon object defines configuration parameters necessary for dmdaemon
operation. It is expected that you will modify the values for the path names and MSP
names.

Parameter Description

TYPE dmdaemon (type of object)

MESSAGE_LEVEL Specifies the highest message level number that will be
written to the daemon log. It must be an integer
between 0 and 6; the higher the number, the more
messages written to the log file. The default is 2. For
more information on message levels, see "General
Message Log File Format", page 89.

MIGRATION_LEVEL Sets the highest level of migration service allowed on
all DMF file systems (you can configure a lower service
level for a specific file system). The value can be none
(no migration), user (requests from dmput(1) or
dmmigrate(8) only), or auto (automated space
management). The default is auto.

MOVE_FS Names the scratch file system used by dmmove(8) to
move files between MSPs/VGs. There is no default.
Necessary only if you wish to use dmmove.

MSP_NAMES Names the MSPs and LSs used by the DMF daemon.
As a convenience, you can use LS_NAMES instead of
MSP_NAMES, but you can specify only one. You must
specify a value for MSP_NAMES (or LS_NAMES); there is
no default.

TASK_GROUPS Names the task groups that contain tasks the daemon
should run. They are configured as objects of TYPE
taskgroup. There is no default. For more information,
see "Configuring Daemon Maintenance Tasks", page 36.

34 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

SGI recommends that you use the task groups specified
in the sample configuration file, changing the
parameters as necessary for your site.

Procedure 2-4 Daemon Configuration

The following example defines a daemon object:

define daemon

TYPE dmdaemon

MOVE_FS /move_fs

MIGRATION_LEVEL auto

MSP_NAMES cart1 cart2
TASK_GROUPS daemon_tasks dump_tasks

enddef

The following steps explain pertinent information for configuring the daemon object:

1. Ensure that TYPE is set to dmdaemon. There is no default.

2. If you have more than one MSP/VG, ensure that the MOVE_FS parameter is set to
a file system that can accept temporary files. This must be the root of a DMAPI
file system. There is no default.

3. The MIGRATION_LEVEL parameter determines the level of service for migration
to offline media. Migration from offline media (either automatic or manual recall)
is not affected by the value of MIGRATION_LEVEL.

Configure MIGRATION_LEVEL to be none, user, or auto. This value is the
highest level you want to allow anywhere in your DMF environment. You can
configure a lower level for a specific file system. none means no migration will
take place on any DMF file system. user means that users/administrators can
perform dmput(1) or dmmigrate(8) commands and no other migration will take
place. auto means that you want automated space management on at least one
DMF file system. The default is auto. See "DMF Policies", page 43, for
information about configuring automated space management.

4. Configure MSP_NAMES to be the names of the MSPs and/or LSs to be used by
this daemon. You will use these names when defining the MSP/LS objects and,
for MSPs only, in SELECT_MSP parameters within policies. See Procedure 2-10,
page 54. As a convenience, you can use LS_NAMES instead of MSP_NAMES, but
you can specify only one. You must specify a value for MSP_NAMES (or
LS_NAMES; there is no default.

007–3681–006 35

2: Configuring DMF

5. Configure the TASK_GROUPS parameter to the name(s) of the object(s) used to
define how periodic maintenance tasks are completed. In the example,
daemon_tasks defines the tasks such as scanning and managing log files and
journal files. The dump_tasks object defines tasks that back up DMF-managed
file systems. You can change the object names themselves (dump_tasks and
daemon_tasks) to be any name you like. There is no default value for the
object. See "Configuring Daemon Maintenance Tasks" for more information.

Configuring Daemon Maintenance Tasks

You can configure daemon_tasks parameters to manage how the DMF daemon
performs the following maintenance tasks:

• Auditing databases (the run_audit.sh task)

• Scanning recent log files for errors (the run_scan_logs.sh task)

• Removing old log files (the run_remove_logs.sh task and the LOG_RETENTION
parameter)

• Removing old journal files (the run_remove_journals.sh task and the
JOURNAL_RETENTION parameter)

• Backing up DMF databases (the run_copy_databases.sh task and the
DATABASE_COPIES parameter)

For each of these tasks, you can configure when the task should be run. For some of
the tasks, you must provide more information such as destinations or retention times
for output.

You can configure dump_tasks parameters to manage how the daemon completes
the following tasks to back up the DMF-managed file systems:

• Fully backing up DMF-managed file systems (the run_full_dump.sh task)

• Partially backing up DMF-managed file systems (the run_partial_dump.sh
task)

• Hard-deleting files no longer on backup tape (the run_hard_deletes.sh task)

• Managing the data from the file system dumps (the DUMP_TAPES,
DUMP_RETENTION, DUMP_DEVICE, DUMP_MIGRATE_FIRST,
DUMP_INVENTORY_COPY, DUMP_FILE_SYSTEMS, and DUMP_VSNS_USED
parameters)

36 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

For each of these tasks, you can configure when the task is run. To manage the tapes,
you must provide information such as tape and device names, retention times for
output, whether to migrate files before dumping the file system, and locations for
inventory files. Table 2-1, page 27, provides a summary of automated maintenance
tasks.

Procedure 2-5 Configuring the daemon_tasks Object

The following steps explain how to define a daemon_tasks object. You can change
the object name itself (daemon_tasks) to be any name you like.

Do not change the script names.

You may comment out the RUN_TASK parameters for any tasks you do not want to
run.

The following example would configure a daemon_tasks object:

define daemon_tasks

TYPE taskgroup

RUN_TASK $ADMINDIR/run_audit.sh every day \

at 23:00

#

RUN_TASK $ADMINDIR/run_scan_logs.sh at 00:01
#

RUN_TASK $ADMINDIR/run_remove_logs.sh every \

day at 1:00

LOG_RETENTION 4w

#
RUN_TASK $ADMINDIR/run_remove_journals.sh every \

day at 1:00

JOURNAL_RETENTION 4w

#

RUN_TASK $ADMINDIR/run_copy_databases.sh \
every day at 3:00 12:00 21:00

DATABASE_COPIES /save/dmf_home /alt/dmf_home

enddef

1. Define the object to have the same name that you provided for the TASK_GROUPS
parameter of the daemon object. In the example it is daemon_tasks.

2. Ensure that TYPE is set to taskgroup. There is no default.

007–3681–006 37

2: Configuring DMF

3. Configure the RUN_TASK parameters. DMF substitutes $ADMINDIR in the path
with the actual etc/admin directory in the configured DMF directory
(/etc/dmf/dmbase). When the task is run, it is given the name of the object that
requested the task as the first parameter and the name of the task group (in this
case daemon_tasks) as the second parameter. The task itself may use the
dmconfig(8) command to obtain further parameters from either of these objects.

All of the RUN_TASK parameters require that you provide a time_expression.

The time_expression defines when a task should be done. It is a schedule
expression that has the following form:

[every n period] [at hh:mm[:ss] ...] [on day ...]

period is one of minute[s], hour[s], day[s], week[s], or month[s].

n is an integer.

day is a day of the month (1 through 31) or day of the week (sunday through
saturday).

The following are examples of valid time expressions:

at 2:00

every 5 minutes

at 1:00 on tuesday

Some of the tasks defined by the RUN_TASK parameters require more information.
The following steps specify what you must provide.

a. The run_audit.sh task runs dmaudit. For this task, provide a
time_expression. If it detects any errors, the run_audit.sh task mails the
errors to the e-mail address defined by the ADMIN_EMAIL parameter of the
base object (described in "Configuring the Base Object", page 31).

b. The run_scan_logs.sh task scans the DMF log files for errors. For this task,
provide a time_expression. If the task finds any errors, it sends e-mail to the
e-mail address defined by the ADMIN_EMAIL parameter of the base object.

c. The run_remove_logs.sh task removes logs that are older than the value
you provide by specifying the LOG_RETENTION parameter. You also provide
a time_expression to specify when you want the run_remove_logs.sh to
run. In the example, log files more than 4 weeks old are deleted each day at
1:00 A.M. Valid values for LOG_RETENTION are a number followed by
m[inutes], h[ours], d[ays], or w[eeks].

38 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

The run_remove_journals.sh task removes journals that are older than
the value you provide by specifying the JOURNAL_RETENTION parameter.
You also provide a time_expression to specify when you want the
run_remove_journal.sh to run. In the example, journal files more than 4
weeks old are deleted each day at 1:00 A.M. Valid values for
JOURNAL_RETENTION are a number followed by m[inutes], h[ours],
d[ays], or w[eeks].

Note: The run_remove_journals.sh and run_remove_logs.sh tasks are not
limited to the daemon logs and journals; they also clear the logs and journals for
MSP(s) and LS(s).

d. The run_copy_databases.sh task makes a copy of the DMF databases.
For this task, in addition to a value for time_expression, provide a value for the
DATABASE_COPIES parameter that specifies one or more directories. If you
specify multiple directories, breaking the directories among multiple disk
devices minimizes the chance of losing all the copies of the database.

The task copies a snapshot of the current DMF databases to the directory with
the oldest copy. Integrity checks are done on the databases before the copy is
saved. If the checks fail, the copy is not saved, and the task sends e-mail to the
e-mail address defined by the ADMIN_EMAIL parameter of the base object.

Procedure 2-6 Configuring the dump_tasks Object

The following steps explain how to define a dump_tasks object. You can change the
object name itself (dump_tasks) to be any name you like.

Do not change the script names.

You may comment out the RUN_TASK parameters for any tasks you do not want to
run.

The following example would configure a dump_tasks object:

define dump_tasks

TYPE taskgroup
RUN_TASK $ADMINDIR/run_full_dump.sh on \

sunday at 00:01

RUN_TASK $ADMINDIR/run_partial_dump.sh on \

monday tuesday wednesday thursday \

friday saturday at 00:01
RUN_TASK $ADMINDIR/run_hard_deletes.sh

007–3681–006 39

2: Configuring DMF

at 23:00
#

DUMP_TAPES HOME_DIR/tapes

DUMP_RETENTION 4w

DUMP_DEVICE SILO_2

DUMP_MIGRATE_FIRST yes
DUMP_INVENTORY_COPY /save/dump_inventory

enddef

1. Define the object to have the same name that you provided for the TASK_GROUPS
parameter of the daemon object. In the example it is dump_tasks.

2. Ensure that TYPE is set to taskgroup. There is no default.

3. Configure the RUN_TASK parameters. See step 3 in Procedure 2-5, page 37, for
information about $ADMINDIR and time_expression.

The following steps specify the information you must provide for the tasks to run
correctly.

a. The run_full_dump.sh task runs a full backup of DMF-managed file
systems at intervals specified by the time_expression. In the example, the full
backup is run each week on Sunday morning one minute after midnight.

b. The run_partial_dump.sh task backs up only those files in DMF-managed
file systems that have changed since the time a full backup was completed.
The backups are run at intervals specified by the time_expression. In the
example, it is run each day of the week except Sunday, at one minute after
midnight.

c. The run_hard_deletes.sh task removes from the database any files that
have been deleted but can no longer be restored because the backup tapes
have been recycled (that is, it hard-deletes the files). The backup tapes are
recycled at the time interval set by the DUMP_RETENTION parameter
described in the next step. For more information on hard-deleting files, see
"Soft- and Hard-deletes", page 164.

d. Manage the data from the file system dumps by configuring the following
parameters:

DUMP_TAPES

DUMP_RETENTION

DUMP_DEVICE

DUMP_MIGRATE_FIRST

40 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

DUMP_INVENTORY_COPY
DUMP_FILE_SYSTEMS

DUMP_VSNS_USED

The DUMP_TAPES parameter specifies the path of a file that contains tape
volume serial numbers (one per line) for the dump tasks to use.

The DUMP_RETENTION parameter specifies how long the backups of the file
system will be kept before the tapes are reused. This is also the value used by
the run_hard_deletes.sh task to determine how old soft-deleted database
entries must be before removing them from the database. Valid values for
DUMP_RETENTION are a number followed by m[inutes], h[ours],
d[ays], or w[eeks].

The DUMP_DEVICE parameter specifies the name of the device object in the
configuration file that defines how to mount the tapes that the dump tasks
will use. See "Device Objects", page 55, for information about device objects.

If you set DUMP_MIGRATE_FIRST to YES, the dmmigrate command is run
before the dumps are done to ensure that all migratable files are migrated,
thus reducing the tapes needed for the dump. The default is NO.

The DUMP_INVENTORY_COPY parameter specifies the path name of a
directory into which are copied the xfsdump(1M) inventory files for the
backed-up file systems.

The DUMP_FILE_SYSTEMS parameter specifies one or more file systems to
dump. If not specified, the task dumps all the file systems configured in the
configuration file. Use this parameter only if your site needs different dump
policies (such as different dump times) for different file systems. It is safest
not to specify a value for this parameter and therefore dump all file systems
configured.

The DUMP_VSNS_USED parameter is optional. It specifies the name of a file to
which the tasks that dump the file systems will append the VSN, one per line,
of each volume used by xfsdump. If you don’t specify this parameter, the
task uses /dev/null as the file name.

The dump_tasks object employs scripts that call the xfsdump(1m) command in
conjunction with the dmtape DMF support program. This mechanism gives you
flexible and efficient use of a predetermined set of backup volumes that are
automatically allocated to the xfsdump program as needed during the backup. In
order to allow you an equally flexible and efficient method for restoring files backed
up by the dump_tasks object, the dmxfsrestore(8) command should be used any

007–3681–006 41

2: Configuring DMF

time a restore is required for a dump_tasks-managed file system. Please see the
dmxfsrestore(8) man page for more information on running the command.

Configuring File Systems

You must have a filesystem object for each file system that can migrate files.

The filesystem object parameters are as follows:

Parameter Value

TYPE filesystem (type of object)

MESSAGE_LEVEL Specifies the highest message level number that will be
written to the automated space management log
(autolog). It must be an integer between 0 and 6; the
higher the number, the more messages written to the log
file. The default is 2. For more information on message
levels, see "General Message Log File Format", page 89.

MIGRATION_LEVEL Sets the level of migration service for the file system.
Valid values are none (no migration), user (only
user-initiated migration), or auto (automated space
management). The migration level actually used for the
file system is the lesser of the MIGRATION_LEVEL of
the daemon object and this value. The default is auto.

POLICIES Specifies the names of the configuration objects defining
policies for this file system.

TASK_GROUPS Names the task groups that contain tasks the daemon
should run. They are configured as objects of TYPE
taskgroup. There is no default. Currently there are no
defined tasks for file systems.

The following example defines a filesystem object:

define /c
TYPE filesystem

MIGRATION_LEVEL user

POLICIES fs_msp

enddef

42 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Procedure 2-7 Configuring filesystem Objects

The following steps explain pertinent information for configuring the above
filesystem object:

1. Ensure that define has a value that is the mount point of the file system you
want DMF to manage. Do not use the name of a symbolic link. There is no
default.

2. Ensure that TYPE is set to filesystem. There is no default.

3. The MIGRATION_LEVEL parameter determines the level of service for migration
to offline media. Migration from offline media (either automatic or manual recall)
is not affected by the value of MIGRATION_LEVEL.

Configure MIGRATION_LEVEL to be one of none , user, or auto. none means
no migration will take place on this file system. user means that
users/administrators can perform dmput(1) or dmmigrate(8) commands but no
other migration will take place. auto means that you want automated space
management on this file system.

The default is auto, which means that you do not need to include this line unless
you want to specify user or none. See "DMF Policies" and Procedure 2-8, page
48, for information about configuring automated space management policies.

Note: user is the highest migration level that can be associated with a real-time
partition.

4. Use the POLICIES parameter to declare one or more migration policies that will
be associated with this file system. Policies are defined with policy objects (see
"DMF Policies"). The POLICIES parameter is required; there is no default value.
A policy can be unique to each DMF-managed file system, or it can be reused
numerous times.

DMF Policies

A policy object is used to specify a migration policy. Three types of migration
policies can be defined: automated space management, file weighting, and MSP
selection.

The following rules govern the use of policy objects with the POLICIES parameter
of the filesystem object:

007–3681–006 43

2: Configuring DMF

• The POLICIES parameter for a file system must specify one and only one MSP
selection policy.

• If the MIGRATION_LEVEL for a file system is auto, the POLICIES parameter for
that file system must specify one and only one space management policy.

• You do not need to specify a weighting policy if the default values are acceptable.

• You can configure one policy that defines all three groups of policy parameters
(space management, file weight, and MSP/VG selection) and share that policy
among all the file systems. Alternatively, you might create an MSP/VG selection
policy for all file systems and a space management policy (including weighting
parameters) for all file systems.

The policy object parameters described below are grouped by function.

Automated Space Management Parameters

DMF lets you automatically monitor file systems and migrate data as needed to
prevent file systems from filling. This capability is implemented in DMF with a
daemon called dmfsmon(8). After the dmfsmon daemon has been initiated, it will
begin to monitor the DMF-managed file system to maintain the level of free space
configured (in the configuration file).

Chapter 3, "Automated Space Management", page 97, describes automated space
management in more detail.

The following are parameters that control automated space management on a file
system:

Parameter Description

TYPE policy (type of object)

FREE_DUALSTATE_FIRST When set to on, dmfsmon will free dual-state files
before freeing files it will have to migrate first. The
default is off.

FREE_SPACE_DECREMENT Percentage of file system space by which dmfsmon will
decrement FREE_SPACE_MINIMUM if it cannot find
enough files to migrate so that the value is reached.
The decrement is applied until a value is found that
dmfsmon can achieve. If space later frees up, the
FREE_SPACE_MINIMUM is reset to its original value.

44 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Valid values are between 1 and the value of
FREE_SPACE_TARGET. The default is 2.

FREE_SPACE_MINIMUM Minimum percentage of free file system space that
dmfsmon maintains. dmfsmon will begin to migrate
files when the available free space for the file system
falls below this percentage value. This parameter is
required; there is no default.

FREE_SPACE_TARGET Percentage of free file system space that dmfsmon will
try to achieve if free space reaches or falls below
FREE_SPACE_MINIMUM. This parameter is required;
there is no default.

MIGRATION_TARGET Percentage of file system capacity that DMF maintains
as a reserve of dual-state files whose online space can
be freed if free space reaches or falls below
FREE_SPACE_MINIMUM. dmfsmon tries to make sure
that this percentage of the file system is migrated,
migrating, or free after it runs to make space available.
This parameter is required; there is no default.

Note: Ideal values for these parameters are highly site-specific, based largely on file
system sizes and typical file sizes.

Note: The dump_tasks object employs scripts that call the xfsdump(1m) command
in conjunction with the dmtape DMF support program. This mechanism gives you
flexible and efficient use of a predetermined set of backup volumes that are
automatically allocated to the xfsdump program as needed during the backup. In
order to allow you an equally flexible and efficient method for restoring files backed
up by the dump_tasks object, the dmxfsrestore(8) command should be used any
time a restore is required for a dump_tasks-managed file system. Please see the
dmxfsrestore(8) man page for more information on running the command.

File Weighting and MSP and/or VG Selection Parameters

An important part of automatic space management is selecting files to migrate and
determining where to migrate them. When DMF is conducting automated space
management, it derives an ordered list of files, called a candidate list, and migrates or
frees files starting at the top of the list. The ordering of the candidate list is

007–3681–006 45

2: Configuring DMF

determined by weighting factors that are defined by using weighting-factor
parameters in the configuration file.

DMF can be configured to have many MSPs or VGs. Each MSP/VG manages its own
set of volumes. The MSP/VG selection parameters allow you to direct DMF to
migrate files with different characteristics to different MSPs/VGs.

The file weighting and MSP/VG selection parameters can be used more than once to
specify that different files should have different weighting or MSP/VG selection
values.

The policy parameters for file weighting are as follows:

Parameter Description

AGE_WEIGHT Specifies a floating point constant and floating point
multiplier to use to calculate the weight given to a file’s
age. AGE_WEIGHT is calculated as constant + (multiplier
* file_age_in_days). If DMF cannot locate values for this
parameter, it uses a floating point constant of 1 and a
floating point multiplier of 1.

SPACE_WEIGHT Specifies a floating point constant and floating point
multiplier to use to calculate the weight given to a file’s
size. SPACE_WEIGHT is calculated as constant +
(multiplier * file_disk_space_in_bytes). If DMF cannot
locate values for this parameter, it uses a floating point
constant of 0 and a floating point multiplier of 0.

The parameter for MSP/VG selection follows:

Parameter Description

SELECT_MSP Specifies the MSP(s)/VG(s) to use for a file. You can list
as many MSP/VG names as you have MSP/VG objects
defined. A copy of the file will be migrated to each
MSP/VG listed. The special MSP/VG name none
means that the file will not be migrated. If you define
more than one MSP/VG, separate the names with white
space. As a convenience, you can use SELECT_VG
instead of SELECT_MSP, and the object can contain a
mixture of both forms. If no SELECT_MSP(or
SELECT_VG)parameter applies to a file, it will not be

46 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

migrated. The parameters are processed in the order
they appear in the policy. There is no default.

The file weighting and MSP selection parameters accept an optional when clause to
restrict the set of files to which that parameter applies.

This clause has the form when expression.

expression can include any of the following simple expressions:

Expression Description

age Days since last modification or last access of the file,
whichever is more recent

space Number of bytes the file occupies on disk (always a
multiple of the blocksize, which may be larger or
smaller than the length of the file)

gid Group ID of one or more files

uid User ID of one or more files

Combine expressions by using and, or, and ().

Use the operators =, >, <, =>, =<, and in to specify values.

The following are examples of valid expressions:

space < 10m (space used is less than 10 million bytes)
uid <= 123 (file’s user ID is less than or equal to 123)
gid = 55 (file’s group ID is 55)
age >= 15 (file’s age is greater than or equal to 15 days)
space > 1g (space used is greater than 1 billion bytes)
uid in (10 82-110 200) (file’s user ID is 10, between 82 and 110, or 200)
(gid = 55 or uid <= 123) and age < 5

(file’s age is greater than 5 days and its
group ID is 55 or its user ID is higher than 123)

Configuring Policies

The following procedures explain how to create policies for automated space
management (including file weighting) and MSP/VG selection.

The following example defines a policy object for automated space management:

007–3681–006 47

2: Configuring DMF

define fs_space
TYPE policy

MIGRATION_TARGET 50

FREE_SPACE_TARGET 10

FREE_SPACE_MINIMUM 5

FREE_DUALSTATE_FIRST off

AGE_WEIGHT 0 0.00 when age < 10

AGE_WEIGHT 1 0.01 when age < 30

AGE_WEIGHT 10 0.05 when age < 120

AGE_WEIGHT 50 0.1

SPACE_WEIGHT 0 0

enddef

Procedure 2-8 Configuring Objects for Automated Space Management

The following steps explain pertinent information for configuring the above policy
object:

1. Ensure that define has a value you set previously in the POLICIES parameter
of a filesystem object. There is no default.

2. Ensure that TYPE is set to policy. There is no default.

3. Configure automated space management as follows:

a. Configure MIGRATION_TARGET to an integer percentage of total file system
space. DMF attempts to maintain this percentage as a reserve of space that is
free or occupied by dual-state files that can be deleted if the file system free
space reaches or falls below FREE_SPACE_MINIMUM. The default is 30.

b. Configure FREE_SPACE_TARGET to an integer percentage of total file system
space. DMF will try to achieve this level of free space when free space
reaches or falls below FREE_SPACE_MINIMUM. The default is 20.

c. Configure FREE_SPACE_MINIMUM to an integer percentage of the total file
system space that DMF must maintain as free. DMF will begin to migrate
files when the available free space for the configured file system reaches or
falls below this percentage value. The default is 10.

d. Configure FREE_DUALSTATE_FIRST to be on if you want DMF to free the
space used by dual-state files before it migrates and frees regular files. The
default is off.

48 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

4. Configure the age and size weighting factors associated with a file when it is
evaluated for migration as follows:

a. The syntax of the AGE_WEIGHT parameter is a floating-point constant followed
by a floating-point multiplier. The age weight is calculated as follows:

constant + (multiplier x age_in_days)

Add a when clause to select which files should use these values. DMF checks
each AGE_WEIGHT parameter in turn, in the order they occur in the
configuration file. If the when clause is present, DMF determines whether the
file matches the criteria in the clause. If no clause is present, a match is
assumed. If the file matches the criteria, the file weight is calculated from the
parameter values. If they do not match, the next instance of that parameter is
examined.

An AGE_WEIGHT of 1 1.0 is used if no AGE_WEIGHT applies for a file.

In the example policy, files that have been accessed or modified within the
last 10 days have a weight of zero. File migration likelihood increases with
the length of time since last access because the file will have a greater weight.
The final line specifies that files which have not been accessed or modified in
120 days or more have a far greater weight than all other files.

b. The syntax of SPACE_WEIGHT parameters is a floating-point constant
followed by a floating-point multiplier. Calculate the space weight as follows:

constant + (multiplier x file_disk_space_in_bytes)

In the example policy, the size of the file does not affect migration because all
files have SPACE_WEIGHT of zero.

A SPACE_WEIGHT of 0 0.0 is used if no SPACE_WEIGHT applies for a file.

c. Configure negative values to ensure that files are never automatically
migrated. For example, you might want to set a minimum age for migration.
The following parameter specifies that files that have been accessed or
modified within 1 day are never automatically migrated:

AGE_WEIGHT -1 0.0 when age <= 1

The following parameter specifies that small files are never automatically
migrated:

SPACE_WEIGHT -1 0 when space <= 4k

007–3681–006 49

2: Configuring DMF

Note: DMF calculates the size weight and age weight separately. If either value is less
than zero, the file is not automatically migrated or freed. Otherwise, the two values
are summed to form the file’s weight.

The following example defines a policy object for MSP/VG selection:

define fs_msp

TYPE policy

SELECT_MSP none when space < 65536

SELECT_MSP cart1 cart2 when gid = 22

SELECT_MSP cart1 when space >= 50m
SELECT_VG cart2

enddef

Procedure 2-9 Configuring Objects for MSP/VG Selection

The following steps explain pertinent information for configuring the above policy
object:

1. Ensure that define has a value that you set previously in the POLICIES
parameter of the filesystem object. There is no default.

2. Ensure that TYPE is set to policy. There is no default.

3. Ensure that the MSP/VG name (or names) you specify as the first value of the
SELECT_MSP (or SELECT_VG) parameter is either the name of an MSP you set
previously in the MSP_NAMES (or LS_NAMES) parameter of the daemon object, or
is the name of a VG that is a component of an LS named in that same parameter.
There is no default.

4. Configure MSP/VG selection criteria as follows:

a. If you want to select an MSP or VG based on file size, use parameters such as
the following, which send large files to cart1 and small files to cart2:

SELECT_MSP cart1 when space >= 50m
SELECT_MSP cart2 when space >= 65536

b. If you want certain files to be copied to more than one MSP/VG, use syntax
such as the following, which migrates all files that have a group ID of 22 to
both of the configured MSPs/VGs:

SELECT_MSP cart1 cart2 when gid = 22

50 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Separate multiple MSP/VG names with a blank space.

c. If you want to ensure that some files are never migrated, you can designate
the MSP/VG selection as none. The following line from the sample file
ensures that files smaller than 65,536 bytes are not migrated:

SELECT_MSP none when space < 65536

Note: The space expression references the number of bytes the file occupies on disk,
which may be larger or smaller than the length of the file. For example, you might
use the following line in a policy:

SELECT_VG none when space < 4096

Your intent would be to restrict files smaller than 4 Kbytes from migrating.

However, this line may actually allow files as small as 1 byte to be migrated, because
while the amount of data in the file is 1 byte, it will take 1 block to hold that 1 byte.
If your file system uses 4–Kbyte blocks, the space used by the file is 4096, and it does
not match the policy line.

To ensure that files smaller than 4 Kbytes do not migrate, use the following line:

SELECT_MSP none when space <= 4096

Setting Up Tape MSPs

Each MSP you create must have an object defined in the configuration file, which
refers to a device object describing the tape drives to be used. Normally, several
MSPs share a single device object.

MSP Objects

The tape MSP entry has the following options:

Option Description

TYPE msp (type of object)

CACHE_DIR Directory in which the MSP stores chunks while
merging them from sparse tapes. If you do not specify
this parameter, DMF uses the value of TMP_DIR from
the base object.

007–3681–006 51

2: Configuring DMF

CACHE_SPACE Amount of disk space (in bytes) that dmatmsp can use
when merging chunks from sparse tapes. During
merging, small chunks from sparse tapes are cached on
disk before being written to a tape. The default is 0,
which causes all files to be merged via sockets. For
more information, see Procedure 2-10, step 5, page 55.

CHILD_MAXIMUM Maximum number of child processes the MSP is
allowed to fork. The maximum value is 100; the default
is 4.

COMMAND Binary file to execute in order to initiate this MSP. For
the tape MSP, this value must be dmatmsp.

DISK_IO_SIZE Transfer size (in bytes) used when reading from or
writing to files within a DMF file system. The value
must be between 4096 and 16 million (16m). The
default is 65536.

HFREE_TIME Minimum number of seconds that a tape no longer
containing valid data must remain unused before the
MSP overwrites it. The default value is 172,800 seconds
(2 days), and the minimum allowed value is 0.

When an MSP removes all data from a tape, it sets the
hfree (hold free tape) flag bit in the tape’s volume
(VOL) database entry to prevent that tape from being
immediately reused. The next time the MSP scans the
database for volumes after HFREE_TIME seconds have
passed, the MSP clears the hfree flag, allowing the
tape to be rewritten. If HFREE_TIME is set to 0, the
MSP will never clear hfree, so an unused tape will not
be reused until you clear its hfree flag manually. For a
description of how to set and clear the hfree flag
manually, see the dmvoladm man page.

MAX_CACHE_FILE Largest chunk (in bytes) that will be merged using the
merge disk cache. Larger files are transferred directly
via a socket from the read child to the write child. The
default is 25% of the CACHE_SPACE value. Valid values
are 0 through the value of CACHE_SPACE.

MAX_CHUNK_SIZE Specifies that the MSP should break up large files into
chunks no larger than this value (specified in bytes) as

52 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

it writes data to tape. If a file is larger than this size, it
is broken up into pieces of the specified size, and,
depending on other activity, more than one write child
may be used to write the data to tape. If
MAX_CHUNK_SIZE is 0 (the default) the MSP only
breaks a file into chunks when an end of volume is
reached.

MAX_PUT_CHILDREN Maximum number of write child processes the MSP
will schedule. The default and the maximum are the
value of CHILD_MAXIMUM; the minimum is 1.

MERGE_CUTOFF Limit at which the MSP stops scheduling tapes for
merging. This number refers to the sum of the active
and queued children generated from gets, puts, and
merges. The default is CHILD_MAXIMUM, which means
that if sparse tapes are available, children will be
created until there are CHILD_MAXIMUM children, thus
using tape efficiently. However, if any recall requests
arrive, they will be started before new merges.

Setting this number below CHILD_MAXIMUM reserves
some tape units for recalls at the expense of merge
efficiency. Setting this number above CHILD_MAXIMUM
increases the priority of merges relative to recalls.

MESSAGE_LEVEL Highest message level number that will be written to
the MSP log. It must be an integer between 0 and 6; the
higher the number, the more messages written to the log
file. The default is 2. For more information on message
levels, see "General Message Log File Format", page 89.

MIN_TAPES Minimum number of unused tapes that can exist in the
MSP VOL database before operator notification. If the
number of unused tapes falls below MIN_TAPES, the
operator will be asked to add new tapes. The default is
10; the minimum is 0.

TAPE_TYPE Specifies the name of a device object that describes how
the tapes are accessed and used. There is no default.
The device object is described in "Device Objects",
page 55.

007–3681–006 53

2: Configuring DMF

TASK_GROUPS Names the task groups that contain tasks the MSP
should run. They are configured as objects of TYPE
taskgroup. There is no default. See "Configuring Tape
Maintenance Tasks ", page 77, for more information.

TIMEOUT_FLUSH Minutes after which the MSP will flush files to tape.
The default is 120 minutes.

The following example does not use all of the possible options for configuring a tape
MSP; it defines two tape MSPs named cart1 and cart2.

define cart1

TYPE msp

COMMAND dmatmsp

TAPE_TYPE SILO_1

CACHE_SPACE 110m

CHILD_MAXIMUM 3
MESSAGE_LEVEL 2

TASK_GROUP msp_tasks

enddef

#

define cart2
TYPE msp

COMMAND dmatmsp

TAPE_TYPE SILO_2

CACHE_SPACE 50m

CACHE_DIR /cache
MAX_CACHE_FILE 50m

CHILD_MAXIMUM 10

TASK_GROUP msp_tasks

enddef

Procedure 2-10 Configuring Tape MSPs

The following steps explain pertinent information for configuring the msp objects:

1. Ensure that define has a value that you set previously in the MSP_NAMES
parameter of the daemon object. There is no default.

2. Ensure that TYPE is set to msp. There is no default.

3. Ensure that COMMAND is set to dmatmsp. There is no default.

54 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

4. Define a TAPE_TYPE parameter that names the device type object for the MSP.
There is no default. Use the value you set here in defining device objects. See
"Device Objects", page 55.

5. Configure the CACHE_SPACE parameter to be at least twice the configured tape
zone size. If you do not set this parameter, DMF will merge tapes via sockets,
which means that the read and write children have to synchronize. Using
CACHE_SPACE is far more efficient, especially for small files.

The MSP is able to merge tapes more efficiently if it can stage most of the files to
disk. Setting the CACHE_SPACE parameter tells the MSP how much disk space it
can use. The MAX_CACHE_FILE parameter specifies the largest file it will place in
the CACHE_SPACE. The default for CACHE_SPACE is 0, which causes all data to be
transferred by sockets.

See "Media Concepts", page 119, for more information on tape zone sizes.

6. Configure the CHILD_MAXIMUM to be the number of tape drives this MSP can use.
The default is 4, and the maximum is 24.

7. Configure the MESSAGE_LEVEL of an MSP to be higher than 2 (the default) for
debugging purposes only. Valid values are 0 to 6.

8. Configure the MAX_CACHE_FILE to be the size (in bytes) of the largest chunk that
will be merged using the merge cache space (defined by CACHE_SPACE). Large
files are transferred directly via socket. The largest value you can use is the value
of CACHE_SPACE, and the default is 25% of CACHE_SPACE.

9. Configure the TASK_GROUPS parameter to the name(s) of the object(s) used to
define how periodic maintenance tasks are completed. There is no default. See
"Configuring Tape Maintenance Tasks ", page 77, for more information.

Device Objects

Each tape device type name you use in the MSP or in the dump_tasks object should
be defined as a device object in the configuration file. The parameters you define
are based on which mounting service you intend to use.

The following parameters are common to all device objects:

007–3681–006 55

2: Configuring DMF

Parameter Description

TYPE device (type of object)

BLOCK_SIZE Block size used when writing tapes from the beginning.
The default depends upon the device, with DMF setting
defaults as follows:

AMPEX DIS/DST 1199840

DLT 131072

STK 9840 126976

Other devices 65536

LABEL_TYPE Label type used when writing tapes from the beginning.
Possible values are nl (no label), sl (standard label, for
IBM tapes), and al (ANSI label). The default is al.

MOUNT_SERVICE Specifies the mounting service to use. Supported values
are openvault and tmf. This parameter is required;
there is no default.

MSG_DELAY Specifies the number of seconds that all devices in the
object can be down before an e-mail message is sent to
the administrator and an error message is logged. The
default is 0, which means that as soon as DMF notices
that the mounting service is up and all of the drives are
configured down, it will e-mail a message.

POSITIONING Specifies how the tape should be positioned to a zone;
either skip or direct. skip specifies the use of tape
mark skipping. direct specifies the use of block ID
seek capability if the block ID is known. The default is
direct.

POSITION_RETRY Level of retry in the event of a failure during zone
positioning; one of none, lazy, or aggressive. lazy
specifies that the MSP will retry if a reasonably fast
alternative method of positioning is available.
aggressive specifies that the MSP may try more
costly and time-consuming alternatives. If the MSP is
unable to position to a zone, the MSP aborts all recalls
for files with data in that zone (however, DMF does not
abort them if a copy exists in another MSP). The default
is lazy.

56 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

VERIFY_POSITION Specifies whether the tape MSP write child should
(prior to writing) verify that the tape is correctly
positioned and that the tape was properly terminated
by the last use. The default is to verify. Specifying no
or off turns verification off; anything else ensures
verification.

WRITE_CHECKSUM Specifies that tape block should be checksummed
before writing. If a tape block has a checksum, it is
verified when read. The default is on.

ZONE_SIZE Specifies approximately how much data the write child
should put in a zone. The write child adds files and
chunks to a zone until the data written equals or
exceeds this value, at which time it writes a tape mark
and updates the database. Smaller values allow faster
recalls and better recoverability but poorer write
performance. The MSP also uses zone size to determine
when to start write children. The default is 50 MB.

Device Objects for OpenVault As Mounting Service

The device object may have the following parameters when it is configured for
OpenVault:

Parameter Description

OV_ACCESS_MODES Specifies a list of access mode names that control how
data is written to tape. The default value is readwrite
when migrating and readonly when recalling. This
parameter is optional.

OV_INTERCHANGE_MODES Specifies a list of interchange mode names that control
how data is written to tape. This can be used to control
whether the device compresses data as it is written.
This optional parameter is applied when a tape is
mounted or rewritten.

Examples of the use of these parameters are provided in Procedure 2-13, page 72.

OpenVault requires several configuration steps in addition to configuring the device
object. They are described in "Using OpenVault for Tape MSPs and Drive Groups",
page 72.

007–3681–006 57

2: Configuring DMF

Device Objects for TMF as Mounting Service

Tape mounting can be accomplished by using the Tape Management Facility (TMF).
To use TMF as a mounting service, there are no required parameters that you must
specify, but the TMF_TMMNT_OPTIONS parameter allows you to specify some tmmnt
options:

Parameter Description

TMF_TMMNT_OPTIONS Specifies command options that should be added to the
tmmnt command when mounting a tape.

DMF uses the -Z option to tmmnt, so options
controlling block size and label parameters are ignored.
Use the BLOCK_SIZE and LABEL_TYPE device
parameters instead.

Use -g if the group name is different from the device
object’s name. Use -i to request compression.

The following example defines a device object for use with TMF:

define SILO_3

TYPE device

MOUNT_SERVICE tmf

BLOCK_SIZE 131072

LABEL_TYPE sl
TMF_TMMNT_OPTIONS -g DLT

enddef

Procedure 2-11 Configuring Devices for TMF

The following steps explain pertinent information for configuring the device object
for TMF:

1. Ensure that define has a value that you set previously in the TAPE_TYPE
parameter of the msp object. There is no default.

2. Ensure that TYPE is set to device. There is no default.

3. Configure the MOUNT_SERVICE to be tmf.

58 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Note: DMF uses the -Z option to tmmnt, so options controlling block size and label
parameters would be ignored if you were to specify them for the
TMF_TMMNT_OPTIONS parameter. Use the BLOCK_SIZE and LABEL_TYPE device
parameters instead.

4. Configure the BLOCK_SIZE parameter to be the block size used when writing
tapes from the beginning. In the example, 131072 is used because DLTs write
more efficiently with this blocksize.

5. Configure the LABEL_TYPE parameter to be the label type used when writing
tapes from the beginning. In the example, sl is used to specify standard label for
IBM tapes.

6. Configure the TMF_TMMNT_OPTIONS parameter to specify command options that
should be added to the tmmnt command when mounting a tape. In the example,
the -g option specifies that the TMF tape group is DLT. If this option on this
parameter had not been specified, DMF would have used the name of this device
object (in the example, SILO_3).

Setting Up Library Servers

Each object shown in Figure 1-3, page 5, must have an object defined in the
configuration file. The options shown in the following sections are only the most
common. For the complete set, see the dmf_config(5)man page. For a summary of
the parameters and the object to which they apply, see Table 2-3, page 91.

Library Server Objects

The entry for a library server, one for each tape library, has the following options:

Option Description

TYPE libraryserver (type of object)

CACHE_DIR Directory in which the VG stores chunks while merging
them from sparse tapes. If you do not specify this
parameter, DMF uses the value of TMP_DIR from the
base object.

CACHE_SPACE Amount of disk space (in bytes) that dmatls can use
when merging chunks from sparse tapes. During

007–3681–006 59

2: Configuring DMF

merging, small chunks from sparse tapes are cached on
disk before being written to a tape. The default is 0,
which causes all files to be merged via sockets.

COMMAND Binary file to execute to initiate the LS. This value must
be dmatls.

DRIVE_GROUPS Names one or more drive groups containing drives that
the LS can use for mounting and unmounting volumes.
They are configured as objects of type drivegroup. This
parameter must be configured. There is no default.

MAX_CACHE_FILE Largest chunk (in bytes) that will be merged using the
merge disk cache. Larger files are transferred directly
via a socket from the read child to the write child. The
default is 25% of the CACHE_SPACE value. Valid values
are 0 through the value of CACHE_SPACE.

MESSAGE_LEVEL Highest message level number that will be written to
the LS log, which includes messages from from the LS’s
components. It must be an integer between 0 and 6; the
higher the number, the more messages written to the
log file. The default is 2.

RUN_TASK See "Configuring Automated Maintenance Tasks", page
26.

TASK_GROUPS Names the task groups that contain tasks the LS should
run. They are configured as objects of TYPE
taskgroup. There is no default.

WATCHER Names the resource watcher that the LS should run.
They can be configured as objects of type
resourcewatcher, but if the default parameters are
acceptable, there is no need to do this. The default is no
watcher.

Drive Group Objects

The entry for a drive group, one for each pool of interchangeable drives in a single
library, has the following options:

Option Description

TYPE drivegroup (type of object)

60 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

BLOCK_SIZE Block size used when writing tapes from the beginning.
The default depends upon the device, with DMF setting
defaults as follows:

AMPEX DIS/DST 1199840

DLT 131072

STK 9840 126976

Other devices 65536

DISK_IO_SIZE Transfer size (in bytes) used when reading from or
writing to files within a DMF file system. The value
must be between 4096 and 16 million (16m). The
default is 65536.

DRIVE_MAXIMUM Maximum number of drives within this drive group
that the LS is allowed to attempt to use simultaneously.
This can be more or less than the number of drives the
LS can physically detect. The maximum is 100; the
default is 100 for Drive Groups.

DRIVE_SCHEDULER Names the resource scheduler that the DG should run
for the scheduling of tape drives. They are configured
as objects of type resourcescheduler. The default is
a resource scheduler of default type and parameters.
For the defaults, see "Resource Scheduler Objects", page
67.

DRIVES_TO_DOWN An integer value that controls the number of "bad"
drives the drive group is allowed to try to configure
down. When more than this number are down,
whether due to the DG or to external influences such as
the system administrator, the DG does not attempt to
disable any more. The default of 0 prevents the DG
from disabling any.

LABEL_TYPE Label type used when writing tapes from the beginning.
Possible values are nl (no label), sl (standard label, for
IBM tapes), and al (ANSI label). The default is al.

MAX_MS_RESTARTS Specifies the maximum number of times DMF can
attempt to restart the mounting service (TMF or
OpenVault) without requiring administrator
intervention. The default and recommended values are
1 for TMF and 0 for OpenVault.

007–3681–006 61

2: Configuring DMF

MOUNT_SERVICE Specifies the mounting service to use. Possible values
are openvault and tmf. The default is openvault.

MOUNT_SERVICE_GROUP Specifies the name by which the drive group’s devices
are known to the mounting service. In the case of TMF,
this is the device group name that would be used with
the -g option on the tmmnt command. For OpenVault,
this is the drive group name that is specified by the
ov_drivegroup command.

MSG_DELAY Specifies the number of seconds that all drives in the
drive group can be down before an e-mail message is
sent to the administrator and an error message is
logged. The default is 0, which means that as soon as
DMF notices that the mounting service is up and all of
the drives are configured down, it will e-mail a message.

OV_ACCESS_MODES Specifies a list of access mode names that control how
data is written to tape. The default value is readwrite
when migrating and readonly when recalling. This
parameter is optional.

OV_INTERCHANGE_MODES
(Open Vault
MOUNT_SERVICE only)

Specifies a list of names to be provided to OpenVault
for the firstmount clause when mounting a tape. Use
compression to request compression. By default, this
list is empty.

POSITIONING Specifies how the tape should be positioned. The
values can be skip, direct, or data. skip means to
use tape mark skipping to the zone. direct means to
use block ID seek capability to the zone if the block ID
is known. data means the same as direct when the
tape is being written. When the tape is being read,
data means that the read child will try to determine
the block ID of the data being read, and use the block
ID seek capability to position there. The default
depends on the type of drive, and is either direct or
data. If data positioning is specified for a drive whose
default is direct, the block ID is calculated by adding
an estimate of the number of blocks from the start of
the zone to the data being recalled and the block ID of
the start of the zone. Not all drives use this format for
block ID.

62 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

POSITION_RETRY Specifies the level of retry in the event of a failure
during zone positioning. The values can be none,
lazy, or aggressive. With lazy, the VG retries if a
reasonably fast alternative means of positioning is
available. With aggressive, the VG can try more
costly and time consuming alternatives. If the VG is
unable to position to a zone, all recalls for files with
data in that zone are aborted by the VG (though not by
DMF if a copy exists in another VG). The default is
lazy, to give the best overall recall time. If you are
having trouble getting data from tape, you might want
to try aggressive.

REINSTATE_DRIVE_DELAY Specifies the number of minutes after which a drive
that was configured down by the DG will be
automatically reinstated and made available for use
again. Zero means it should be left disabled
indefinitely. The default is 1440 (one day).

REINSTATE_VOLUME_DELAY Specifies the number of minutes after which a volume
that had its HLOCK flag set by DMF will be
automatically reinstated and made available for use
again. Zero means they should be left disabled
indefinitely. The default is 1440 (one day).

RUN_TASK See "Configuring Automated Maintenance Tasks", page
26.

TASK_GROUPS Names the task groups that contain tasks the DG
should run. They are configured as objects of TYPE
taskgroup. There is no default.

TMF_TMMNT_OPTIONS
(TMF MOUNT_SERVICE
only)

Specifies command options that should be added to the
tmmnt command when mounting a tape. DMF uses the
-Z option to tmmnt to ignore options controlling block
size and label parameters. Use the BLOCK_SIZE and
LABEL_TYPE device parameters instead. Unlike a tape
MSP, there is no need for a -g option here. If it is
provided, it must match the value of the
MOUNT_SERVICE_GROUP parameter. To request
compression, use -i. Options that are ignored are -a,
-b, -c, -D, -f, -F, -l, -L, -n, -o, -O, -p, -P, -q, -R,
-t, -T, -U, -v, -V, -w, -x , and -X.

007–3681–006 63

2: Configuring DMF

VERIFY_POSITION Specifies whether the LS write child should (prior to
writing) verify that the tape is correctly positioned and
that the tape was properly terminated by the last use.
The default is to verify. Specifying no or off turns
verification off; anything else ensures verification.

VOLUME_GROUPS Names the volume group(s) containing volumes that
can be mounted on any of the drives within this drive
group. They are configured as objects of type
volumegroup. This parameter must be configured.
There is no default.

WRITE_CHECKSUM Specifies that tape block should be checksummed
before writing. If a tape block has a checksum, it is
verified when read. The default is on.

Volume Group Objects

The entry for a volume group, one for each pool of tape volumes of the same type,
usable on the drives of the associated DG, and which is capable of holding at most
one copy of user files, has the following options:

Option Description

TYPE volumegroup (type of object)

ALLOCATION_GROUP Name of an allocation group that serves as a source of
additional volumes if a volume group runs out of
media. Normally, one allocation group is configured to
serve multiple volume groups. As a volume’s hfree
flag is cleared (see HFREE_TIME below) in a volume
group, it is immediately returned to the allocation
group subject to the restrictions imposed by the
configuration parameters ALLOCATION_MAXIMUM and
ALLOCATION_MINIMUM. The administrator must ensure
that volumes in the allocation group are mountable on
drives in the same drive group as any volume group
that references the allocation group. It is an error to
assign an ALLOCATION_GROUP name that is the same
as an existing volume group name. The
ALLOCATION_GROUP defines a logical pool of volumes
rather than an actual operational volume group.

64 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

As allocation groups have no configurable parameters,
they have no configuration stanzas of their own; a
reference to them in a volume group’s
ALLOCATION_GROUP parameter is all that is needed to
activate them. A volume group that does not define
ALLOCATION_GROUP will not use one.

ALLOCATION_MAXIMUM Maximum size in number of volumes to which a
volume group can grow by borrowing volumes from its
allocation group. The minimum value is zero, the
maximum is infinity, and the default is infinity. If the
volume group already contains ALLOCATION_MAXIMUM
or more volumes, no additional volumes are borrowed
from the allocation group. If no allocation group is
defined, this parameter is meaningless.

ALLOCATION_MINIMUM Minimum size in number of volumes to which a
volume group can shrink by returning volumes to its
allocation group. The minimum value is zero, which is
the default, and the maximum is the current value of
ALLOCATION_MAXIMUM. If the volume group already
contains ALLOCATION_MINIMUM or fewer volumes, no
additional volumes are returned to the allocation group.
If no allocation group is defined, this parameter is
meaningless.

DRIVE_MAXIMUM Maximum number of drives within this drive group
that this VG is allowed to use simultaneously. The value
actually used is the least of the DG’s DRIVE_MAXIMUM,
this VG’s DRIVE_MAXIMUM and the number of drives
the DG can physically detect. The maximum is 100; the
default is the drive group’s DRIVE_MAXIMUM.

HFREE_TIME Minimum number of seconds that a tape no longer
containing valid data must remain unused before the
VG overwrites it. The default value is 172,800 seconds
(2 days), and the minimum allowed value is 0.

When an LS removes all data from a tape, it sets the
hfree (hold free tape) flag bit in the tape’s volume
(VOL) database entry to prevent that tape from being
immediately reused. The next time the LS scans the
database for volumes after HFREE_TIME seconds have

007–3681–006 65

2: Configuring DMF

passed, the LS clears the hfree flag, allowing the tape
to be rewritten. If HFREE_TIME is set to 0, the LS will
never clear hfree, so an unused tape will not be
reused until you clear its hfree flag manually. For a
description of how to set and clear the hfree flag
manually, see the dmvoladm man page.

MAX_CHUNK_SIZE Specifies that the VG should break up large files into
chunks no larger than this value (specified in bytes) as
it writes data to tape. If a file is larger than this size, it
is broken up into pieces of the specified size, and,
depending on other activity, more than one write child
may be used to write the data to tape. If
MAX_CHUNK_SIZE is 0 (the default) the VG breaks a file
into chunks only when an end of volume is reached.

MAX_PUT_CHILDREN Specifies the maximum number of write child (dmatwc)
processes that will be simultaneously scheduled for the
volume group. The maximum value is the value of
DRIVE_MAXIMUM for the associated drive group. The
minimum value is 1. The default is the value that the
volume group uses for DRIVE_MAXIMUM.

MERGE_CUTOFF Specifies a limit at which the VG will stop scheduling
tapes for merging. This number refers to the sum of the
active and queued children generated from gets, puts,
and merges. The default value for this option is the
value used by the volume group for DRIVE_MAXIMUM.
This means that if sparse tapes are available, the
volume group will create DRIVE_MAXIMUM number of
children, thus using tape resources efficiently. However,
if any recall requests arrive for that volume group, they
will be started before new merges. Setting this number
below DRIVE_MAXIMUM, in effect, reserves some tape
units for recalls at the expense of merge efficiency.
Setting this number above DRIVE_MAXIMUM increases
the priority of merges relative to recalls.

MIN_VOLUMES Minimum number of unused volumes that can exist in
the library server’s volume database for this volume
group without operator notification. If the number of
unused volumes falls below MIN_VOLUMES, the
operator is asked to add new volumes. The default is

66 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

10; the minimum is zero. If a volume group has an
allocation group configured, MIN_VOLUMES is applied
to the sum of the number of unused volumes in the
volume group and in its allocation group subject to any
ALLOCATION_MAXIMUM restrictions.

PUTS_TIME Specifies the minimum number of seconds a volume
group waits after it has requested a drive for a write
child before it tells a lower priority child to go away.
The default is 3600 seconds.

READ_TIME Specifies the interval, in seconds, after which the
volume group will evaluate whether a read child
should be asked to go away (even if it is in the middle
of recalling a file) so that a higher priority child can be
started. If READ_TIME is 0, the volume group will not
do this evaluation. The default is 0.

RUN_TASK See "Configuring Automated Maintenance Tasks", page
26.

TASK_GROUP Names the task groups that contain tasks the VG
should run. They are configured as objects of TYPE
taskgroup. There is no default.

TIMEOUT_FLUSH Minutes after which the VG will flush files to tape. The
default is 120 minutes.

ZONE_SIZE Specifies approximately how much data the write child
should put in a zone. The write child adds files and
chunks to a zone until the data written equals or
exceeds this value, at which time it writes a tape mark
and updates the database. Smaller values allow faster
recalls and better recoverability but poorer write
performance. The VG also uses zone size to determine
when to start write children. The default is 50 MB.

Resource Scheduler Objects

The entry for a resource scheduler (RS), one for each drive group in a single library,
has the following options:

Option Description

TYPE resourcescheduler (type of object)

007–3681–006 67

2: Configuring DMF

ALGORITHM The resource scheduling algorithm (RSA) to be used.
Two are currently supplied: a simple one called fifo,
and a more flexible one called weighted_roundrobin
(default).

Note: Sites can write their own RSA to meet specialized
needs, but support for this feature might not be
included in the first release of the resource scheduler.
When available, instructions can be found in the
/etc/dmf/dmbase/info/sample/RSA.readme file.

MODULE_PATH The path name of a Dynamic Shared Object (library of
runtime-loadable routines) that contains an RSA whose
name was specified by the ALGORITHM parameter. The
default is to use the built-in RSAs.

Other parameters are specific to a particular RSA. There are no parameters for fifo.
For weighted_roundrobin, the following apply:

Option Description

PENALTY Used to reduce the priority of requests from a volume
group that is not the next one preferred by the round
robin algorithm. It is a multiplier in the range 0.0 - 1.0.
Low values result in the urgency assigned by the VG
being totally or partially ignored, and high values mean
that the urgency is more important than selecting one
whose turn ought to be next. The default is 0.7.

WEIGHT Used to assign a weighting to one or more volume
groups. The ratio of these weightings to each other
(within the one drive group) determines the number of
opportunities the VG has to obtain drives when they
are needed.

The weightings are integers in the range 1 - 99, and
need not be unique. For efficiency reasons, small
numbers are preferred, especially if large numbers of
VGs are defined. Usually, there are multiple WEIGHT
lines in the configuration, and a given VG might appear
on more than one of them. In such cases, the sum of
the weights is used as the effective weight for that VG.

68 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Any VGs that do not appear on a WEIGHT line are
assigned the default of 5. If there are no WEIGHT lines,
all VGs will use this default, resulting in a strict
round-robin behavior.

WEIGHT has the following format:

WEIGHT weight vg1 vg2 ...

Resource Watcher Objects

The entry for a resource watcher (RW) is needed only if you wish to change its
default parameters; a reference to an RW by the LS is sufficient to activate it. The RW
has the following options:

Option Description

TYPE resourcewatcher (type of object)

HTML_REFRESH The refresh rate (in seconds) of the generated HTML
pages. The default is 60.

Example

The following code example does not use all of the possible options for configuring
an LS. It defines an LS containing a default resource watcher (RW) and one drive
group (DG), which in turn contains two volume groups (VGs) sharing an allocation
group (AG), and a resource scheduler (RS) to give one VG twice the priority than the
other when competing for drives.

The VG objects are slightly different, reflecting that the first one handles all of the
recalls in normal circumstances as well as migrations, but the second is usually
write-only.

define ls1

TYPE libraryserver

COMMAND dmatls

DRIVE_GROUPS dg1

CACHE_SPACE 500m

TASK_GROUPS ls_tasks
WATCHER rw

enddef

define dg1

007–3681–006 69

2: Configuring DMF

TYPE drivegroup
VOLUME_GROUPS vg_prim vg_sec

MOUNT_SERVICE openvault

MOUNT_SERVICE_GROUP drives

OV_INTERCHANGE_MODES compression

DRIVE_SCHEDULER rs
DRIVES_TO_DOWN 2

REINSTATE_DRIVE_DELAY 60

enddef

define rs

TYPE resourcescheduler
WEIGHT 10 vg_prim

WEIGHT 5 vg_sec

enddef

define vg_prim
TYPE volumegroup

ALLOCATION_GROUP ag

enddef

define vg_sec

TYPE volumegroup
ALLOCATION_GROUP ag

DRIVE_MAXIMUM 2

enddef

The steps in Procedure 2-12, page 70 explain pertinent information for configuring
each of the LS objects in the previous example.

Procedure 2-12 Configuring a Library Server and Its Components

1. Ensure that define has a value that you set previously in the LS_NAMES or
MSP_NAMES parameter of the daemon object. There is no default.

2. Ensure that TYPE is set to libraryserver. There is no default.

3. Ensure that COMMAND is set to dmatls. There is no default.

4. Specify a DRIVE_GROUPS parameter that names a collection of interchangeable
tape drives. The assumption in this example is that there is only one such group.
There is no default.

70 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

5. To tell the LS how much disk space it can use, set the CACHE_SPACE parameter.
The LS can merge tapes more efficiently if it can stage most of the files to disk.
Configure the CACHE_SPACE parameter to be at least twice the configured tape
zone size. The default for CACHE_SPACE is 0, which causes all data to be
transferred by sockets. For more information on tape zone sizes, see "Media
Concepts", page 119.

6. Configure the TASK_GROUPS parameter to the name(s) of the object(s) used to
define how periodic maintenance tasks are completed. There is no default. For
more information, see "Configuring Tape Maintenance Tasks ", page 77.

7. To observe LS operation through a web browser, define a resource watcher (RW).
You need only a reference. Define an RW object only if you want to change its
default parameters.

Assuming that SPOOL_DIR was set in the base object to be /dmf/spool, the
URL to use in this example is file://dmf/spool/ls/_rw/ls.html. Text files
are generated in the same directory as the HTML files.

8. Define the drive group (DG) referenced in step 4. Note that there is no COMMAND
line; a DG is not an independent program, but a component of an LS.

9. Define the volume groups (VGs) using the drives managed by this DG with the
VOLUME_GROUPS parameter.

10. Specify the use of OpenVault. Because Open Vault is the default mounting
service, this line can be omitted.

11. Specify the name that the mounting service uses to refer to this group of drives.
When using OpenVault, the MOUNT_SERVICE_GROUP line specifies the OpenVault
Drive Group to be used. Note that OpenVault uses the same term as does DMF to
describe a group of interchangeable tape devices, but the two uses are separate.
Their names need not match, though it may be less confusing if they do.

If using TMF, the MOUNT_SERVICE_GROUP line names the TMF device group
name.

12. Use the OV_INTERCHANGE_MODES and TMF_TMMNT_OPTIONS lines to specify
that the drives (OpenVault and TMF, respectively) should be used in compression
mode.

13. Override the default resource scheduler (RS) behavior by referring to an object
called rs, to be defined later.

007–3681–006 71

2: Configuring DMF

14. Allow the DG to configure at most two drives down temporarily for 60 minutes
for recovery from I/O errors if the drives are faulty and if doing so will result in
a more reliable operation. When this happens, the administrator is e-mailed so
that maintenance can be performed.

15. In the rs object, specify that when there are more requests for tape drives than
there are drives in the DG, VG vg_prim is to be given access twice as often as
vg_sec. The ratio of the numbers is important, but the exact values are not.

16. Define the VGs. The VOLUME_GROUPS parameter of the DG object and the
SELECT_LS or SELECT_MSP lines in the filesystem object(s) refer to them.

17. Define a common allocation group (AG) called ag. AGs have no configurable
parameters, so they have no defining object; just a reference is sufficient. Note
that use of an AG is not mandatory.

18. Include any other VG parameters that you require. For example, one of the
previous steps specified that the secondary VG vg_sec can use, at most, two tape
drives, so that other drives in this DG are immediately available for use by
vg_prim when it needs them.

Using OpenVault for Tape MSPs and Drive Groups

This section describes the steps you must take to configure OpenVault for a tape MSP
or a drive group. You must execute OpenVault commands, create security key files,
and edit the DMF configuration file.

Procedure 2-13 Configuring DMF to Use OpenVault

The following procedure describes how to make OpenVault and DMF work together.
The OpenVault setup script can be used to enable the DMF application. See the
OpenVault Operator’s and Administrator’s Guide for a description of this script.

Note: The procedure that follows assumes that before you complete the steps
described, the OpenVault server is configured and all drives and libraries are
configured and OpenVault is running.

1. On the OpenVault server, add DMF as both a privileged and unprivileged
OpenVault application for this host. To do this, use the setup script, menu item
1, submenu 5.

72 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

2. Add the DMF application as a valid user to appropriate drive groups. It is
preferable that you use the OpenVault setup script, menu item 2, submenu 7. If
for some reason you cannot use the setup script, you can enter the command
manually, as follows:

ov_drivegroup -a drive_group -A dmf

3. Add DMF as a valid application to appropriate tape groups. It is preferable that
you use the OpenVault setup script, menu item 2, submenu 8. You can enter the
command manually, as follows:

ov_cartgroup -a tape_group -A dmf

4. Configure the base object for use with OpenVault:

define base

TYPE base

HOME_DIR /dmf/home

.

.

.
OV_KEY_FILE /dmf/home/ovkeys

OV_SERVER hostname
enddef

a. Configure the OV_KEY_FILE parameter name of the key file that holds
security information for OpenVault. It is usually located in HOME_DIR and
called ovkeys.

b. Configure the OV_SERVER parameter to the value returned by the
hostname(1) command on the machine on which the OpenVault server is
running. This parameter only applies when OpenVault is used as the
mounting service. The default value is the host name of the machine on
which you are running.

5. Use the dmov_keyfile(8) command to create the file defined by the
OV_KEY_FILE parameter. This command will prompt you for the privileged and
unprivileged keys that you defined in step 1.

6. (This step does not apply to library servers). Configure the MSP’s device object
for use with OpenVault, as follows:

define timber

TYPE device

007–3681–006 73

2: Configuring DMF

MOUNT_SERVICE openvault
OV_ACCESS_MODES readwrite

OV_INTERCHANGE_MODES compression

ZONE_SIZE 200m

enddef

a. Ensure that define has a value that you set previously in the TAPE_TYPE
parameter of the msp object. There is no default.

b. Configure TYPE to be device. There is no default.

c. Configure the MOUNT_SERVICE parameter to be openvault.

d. Configure the OV_ACCESS_MODES parameter to be a list of access mode
names that control how the tape is used. The parameter is optional. The
default value is readwrite when migrating and readonly when recalling.
Use this parameter to force readwrite.

The other possible values that OpenVault can use are not configurable in
DMF: for rewind/norewind, DMF uses rewind; for variable/fixed,
DMF uses variable.

e. Configure the OV_INTERCHANGE_MODES parameter to be a list of interchange
mode names that control how data is written to tape. This can be used to
control whether the device compresses data as it is written. This parameter is
optional.

To specify that you want data compressed, use
OV_INTERCHANGE_MODES compression

To force all tapes to be written as DLT4000, use
OV_INTERCHANGE_MODES DLT4000

This parameter is applied when a tape is first used or rewritten.

f. Configure other parameters relevant to your site. The example sets the
ZONE_SIZE parameter to 200 MB. The target zone size is a major factor in
determining how much data is written before writing a tape mark and
updating the MSP database. Here, the tapes used by the MSP will, in general,
have more data written in a zone than DMF uses as a default. Smaller values
allow faster recalls and better recovery, but they cause poorer write
performance than larger values. The default is 50 MB. See "Media Concepts",
page 119, for more information on how tape zone sizes are determined.

74 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

7. (This step does not apply to MSPs). Configure the library server’s drive group
object for use with OpenVault. In the drive group object, use the following steps:

a. Configure the MOUNT_SERVICE parameter to be openvault.

b. Configure the MOUNT_SERVICE_GROUP parameter to be the name of the
OpenVault drive group, as seen in the output from the ov_stat -d
command.

c. Configure the OV_ACCESS_MODES parameter to be a list of access mode
names that control how the tape is used. The parameter is optional. The
default value is readwrite when migrating and readonly when recalling.
Use this parameter to force readwrite.

The other possible values that OpenVault can use are not configurable in
DMF: for rewind/norewind, DMF uses rewind; for variable/fixed,
DMF uses variable.

d. Configure the OV_INTERCHANGE_MODES parameter to be a list of interchange
mode names that control how data is written to tape. This can be used to
control whether the device compresses data as it is written. This parameter is
optional.

To specify that you want data compressed, use
OV_INTERCHANGE_MODES compression

To force all tapes to be written as DLT4000, use
OV_INTERCHANGE_MODES DLT4000

This parameter is applied when a tape is first used or rewritten.

8. Make the appropriate cartridges accessible to the MSPs, AGs, or VGs by assigning
the cartridges to the DMF application in OpenVault. To do this, you must know
the following:

• Cartridge type name. To determine the cartridge types allowed by a given
drive, enter the following:

ov_stat -c -D drive | grep base

The fourth column shown in the output is the cartridge type.

• Cartridge group. To determine the possible cartridge groups, enter the
following:

ov_cartgroup -l -A dmf

007–3681–006 75

2: Configuring DMF

a. If you already have tapes defined in your MSP or LS database, tell OpenVault
about these tapes by entering one of the following:

dmov_makecarts -g cartgroup -t carttype mspname
dmov_makecarts -g cartgroup -t carttype lsname
dmov_makecarts -g cartgroup -t carttype -v vg1, vg2 lsname

You can replace any of the references to a VG previously mentioned with an
allocation group. If the -v parameter is omitted, all VGs and AGs in the
specified LS will be processed.

b. If there are unmanaged cartridges in an OpenVault managed library, you can
import the unmanaged cartridges, assign them to DMF, and add them to a
database by entering one of the following:

dmov_loadtapes -l library -g cartgroup -t carttype mspname
dmov_loadtapes -l library -g cartgroup -t carttype vgname
dmov_loadtapes -l library -g cartgroup -t carttype agname

This command will invoke a vi(1) session. In the vi(1) session, delete any
cartridges that you do not want added to the database.

c. If neither of the above cases are appropriate, you can manually configure the
cartridges. The following commands can be useful in this effort:

• To list cartridges in a library, enter the following:

ov_stat -s -L library

• To list information on cartridges known to OpenVault, enter the following:

ov_lscarts -f ’.*’

• To import cartridges into OpenVault and optionally assign them to DMF
use the ov_import command.

• To assign a cartridge known to OpenVault to an application, use the
ov_vol command with the -n option.

76 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Using TMF tapes with Tape MSPs and Drive Groups

Use one of the following dmvoladm(8) commands to add tapes to the MSP and/or LS
databases:

dmvoladm -m mspname -c ’create vsn001-vsn010’

dmvoladm -l lsname -c ’create vsn001-vsn010 vg vgname’

dmvoladm -l lsname -c ’create vsn001-vsn010 vg agname’

Note that an allocation group is specified by the vg option, just like a volume group.

There is no special procedure to inform TMF of the tapes’ existence. TMF assumes that
every tape it deals with is in the library or can be provided by an operator, as needed.

Configuring Tape Maintenance Tasks

You can configure parameters for how the tape MSP or LS daemon performs the
following maintenance tasks:

• Creating tape reports (the run_tape_report.sh and
run_compact_tape_report.sh tasks)

• Merging sparse tapes (the run_tape_merge.sh task and the THRESHOLD,
VOLUME_LIMIT, and DATA_LIMIT parameters)

• Stopping tape merges at a specified time (the run_merge_stop.sh task)

For each of these tasks, you can configure when the task is run. For the second task,
you must provide more information such as what determines that a tape is sparse
and how many tapes can be merged at one time.

Note: The run_remove_journals.sh and run_remove_logs.sh tasks are
configured as part of the daemon_tasks object, but these tasks also clear the
MSP/LS logs and journals. These tasks are described in "Configuring Daemon
Maintenance Tasks", page 36.

Table 2-1, page 27, provides a summary of automated maintenance tasks.

The following example explains how to define the msp_tasks object. You can
change the object name itself (msp_tasks) to be any name you like.

Do not change the path names or task names.

007–3681–006 77

2: Configuring DMF

You may comment out the RUN_TASK parameters for any tasks you do not want to
run.

define msp_tasks

TYPE taskgroup

RUN_TASK $ADMINDIR/run_tape_report.sh at 00:10

#
RUN_TASK $ADMINDIR/run_tape_merge.sh on \

monday wednesday friday at 2:00

THRESHOLD 50

#VOLUME_LIMIT 20

#DATA_LIMIT 5g
#

RUN_TASK $ADMINDIR/run_merge_stop.sh at 5:00

Procedure 2-14 Configuring the msp_tasks Object

1. Define the object to have the same name that you provided for the TASK_GROUPS
parameter of the tape msp object. In the example it is msp_tasks.

2. Ensure that TYPE is set to taskgroup. There is no default.

3. Configure the RUN_TASK parameters. DMF substitutes $ADMINDIR in the path
with the actual etc/admin directory in the configured DMF directory
(/etc/dmf/dmbase). When the task is run, it is given the name of the object that
requested the task as the first parameter and the name of the task group (in this
case msp_tasks) as the second parameter. The task itself may use the
dmconfig(8) command to obtain further parameters from either of these objects.

The RUN_TASK parameters require that you provide a time_expression.

The time_expression defines when a task should be done. It is a schedule
expression that has the following form:

[every n period] [at hh:mm[:ss] ...] [on day ...]

period is one of minute[s], hour[s], day[s], week[s], or month[s].

n is an integer.

day is a day of the month (1 through 31) or day of the week (sunday through
saturday).

78 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

The following are examples of valid time expressions:

at 2:00
every 5 minutes

at 1:00 on tuesday

The following steps specify the information you must provide for the tasks to run
correctly.

a. The run_tape_report.sh generates a report on the tapes in the MSP tape
pool and on MSP activity. In the example, it runs every day at 10 minutes
after midnight.

b. The run_tape_merge.sh task merges sparse tapes. Specify the criteria that
DMF uses to determine that a tape is sparse, as follows:

• Use the THRESHOLD parameter to set an integer percentage of active data
on a tape. DMF will consider a tape to be sparse when it has less than this
percentage of data that is still active.

• Use the VOLUME_LIMIT parameter to set the maximum number of tape
volumes that can be selected for merging at one time.

• Use the DATA_LIMIT parameter to set the maximum amount of data (in
bytes) that should be selected for merging at one time.

c. Use the run_merge_stop.sh task to shut down volume merging (tape
merging) at a time you specify by using a time_expression. This task is an
alternative to using the VOLUME_LIMIT and DATA_LIMIT parameters to stop
merging at specified points. In the example, the limit parameters are
commented out because run_merge_stop.sh is used to control volume
merging.

Library Server and MSP Database Records

After you have added the tape MSP/LS information to the configuration file, use the
dmvoladm(8) command with the -m option to create any missing directories with the
proper labels and to create the volume (VOL) and catalog (CAT) records in the
MSP/LS database.

You can follow the steps in Procedure 2-15, page 80 for all the tape MSPs/LSs you
have defined.

007–3681–006 79

2: Configuring DMF

!
Caution: Each tape MSP/LS must have a unique set of volume serial numbers.

Procedure 2-15 Creating MSP/LS Database Records

The following procedure is shown as an example that assumes you have an MSP
called cart1.

1. If you have not yet done so, set your PATH environment variable to include
/etc/dmf/dmbase/etc. (See "Setting PATH Environment Variables", page 28.)

2. Enter the following command and it will respond as shown:

% dmvoladm -m cart1
dmvoladm: at rdm_open - created database atmsp_db

adm: 1>

The response is an informational message indicating that dmvoladm could not
open an existing MSP database, so it is creating a new and empty one. You
should get this message the first time you use dmvoladm for an MSP, but never
again. The next line is the prompt for dmvoladm directives.

3. Assume that you will use 200 tapes of type CART with standard labels PA0001
through PA0200.

After the prompt, enter the following directive:

adm:1> create PA0001-PA0200

After entering this directive, you will receive 200 messages, one for each entry
created, beginning with the following:

VSN PA0001 created.

VSN PA0002 created.

4. Use the following dmvoladm directive to list all of the tape VSNs in the newly
created library:

adm:2> list all

80 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Note: The dmvoladm tapesize field is purely for site documentation and is not
used by the MSP. The blocksize field documents the value used when the tape is
first written or rewritten. It should not be changed in the database; however, if you
want another value, change the BLOCK_SIZE nnn configuration parameter of the
device object.

5. Issue the dmvoladm quit directive to complete setting up the MSP.

adm:3> quit

Procedure 2-16 Creating LS Database Records

The following procedure is shown as an example that assumes you have an LS called
ls1. This LS contains a volume group named vg_pri.

1. If you have not yet done so, set your PATH environment variable to include
/etc/dmf/dmbase/etc. (See "Setting PATH Environment Variables", page 28.)

2. Enter the following command and it will respond as shown:

% dmvoladm -m ls1

dmvoladm: at rdm_open - created database libsrv_db

adm: 1>

The response is an informational message indicating that dmvoladm could not
open an existing LS database, so it is creating a new and empty one. You should
get this message the first time you use dmvoladm for an LS, but never again. The
next line is the prompt for dmvoladm directives.

3. Assume that you will use 200 tapes with standard labels VA0001 through VA0200.

After the prompt, enter the following directive:

adm:1> create VA0001-VA0200 vg vg_pri

Note that you are specifying the volume group vg_pri for the tapes being
added. It is also valid to specify an allocation group name instead of a volume
group name.

007–3681–006 81

2: Configuring DMF

After entering this directive, you will receive 200 messages, one for each entry
created, beginning with the following:

VSN VA0001 created.

VSN VA0002 created.

4. Use the following dmvoladm directive to list all of the tape VSNs in the newly
created library:

adm:2> list all

5. Issue the dmvoladm quit directive to complete setting up the LS.

adm:3> quit

Setting up FTP MSPs

To enable a file transfer protocol (FTP) MSP, include a name for it on the MSP_NAMES
parameter in the daemon object and define an msp object for it in the DMF
configuration file.

DMF has the capability to use an FTP MSP to convert a non-DMF file server to DMF
with a minimal amount of down time for the switch over, and at site-determined
pace. Contact your customer service representative for information about technical
assistance with file server conversion.

An FTP MSP object has the following options (defaults are provided here or in
Procedure 2-18, page 88):

Parameter Description

TYPE msp (type of object)

CHILD_MAXIMUM Maximum number of child processes the MSP is
allowed to fork. The default is 4; the maximum is 100.

COMMAND Binary file to execute in order to initiate this MSP. For
the FTP MSP, this value must be dmftpmsp.

DISK_IO_SIZE Transfer size (in bytes) used when reading from or
writing to files within a DMF file system. The value
must be between 4096 and 16 million (16m). The
default is 65536.

82 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

FTP_ACCOUNT Account ID to use when migrating files to the remote
system.

FTP_COMMAND Additional commands to send to the remote system.
There may be more than one instance of this parameter.

FTP_DIRECTORY Directory to use on the remote system.

FTP_HOST Internet host name of the remote machine on which
files are to be stored.

FTP_PASSWORD File containing the password to use when migrating
files to the remote system. This file must be owned by
root and be only accessible by root.

FTP_PORT Port number of the FTP server on the remote system.
The default value is the value configured for ftp in the
services file.

FTP_USER User name to use when migrating files to the remote
system.

GUARANTEED_DELETES Number of child processes that are guaranteed to be
available for processing delete requests. If
CHILD_MAXIMUM is nonzero, its value must be greater
than the sum of GUARANTEED_DELETES and
GUARANTEED_GETS. The default is 1.

GUARANTEED_GETS Number of child processes that are guaranteed to be
available for processing dmget(1) requests. If
CHILD_MAXIMUM is nonzero, its value must be greater
than the sum of GUARANTEED_DELETES and
GUARANTEED_GETS. The default is 1.

IMPORT_DELETE Specifies if the MSP should honor hard-delete requests
from the DMF daemon. This parameter applies only if
IMPORT_ONLY is set to on. Set IMPORT_DELETE to on
if you wish files to be deleted on the destination system
when hard deletes are processed.

IMPORT_ONLY Specifies that the MSP is used for importing only. Set
this parameter ON when the data is stored as a
bit-for-bit copy of the file and needs to be available to
DMF as part of a conversion. The MSP will not accept
dmput(1) requests when this parameter is enabled. The

007–3681–006 83

2: Configuring DMF

MSP will, by default, ignore hard-delete requests when
this parameter is enabled.

When the DMF daemon recalls a file from an
IMPORT_ONLY MSP, it makes the file a regular file
rather than a dual-state file, and it soft-deletes the
MSP’s copy of the file.

MESSAGE_LEVEL Specifies the highest message level number that will be
written to the MSP log. It must be an integer between 0
and 6; the higher the number, the more messages
written to the log file. The default is 2. For more
information on message levels, see "General Message
Log File Format", page 89.

MVS_UNIT Defines the storage device type on an MVS system.
This must be specified when the destination is an MVS
system. Valid values are 3330, 3350, 3380, and 3390.

NAME_FORMAT Remote file name template that creates names for files
stored on remote machines. The default is username/bfid
(the bfid is the full bfid in hexadecimal).

TASK_GROUPS Names the task groups that contain tasks the MSP
should run. They are configured as objects of TYPE
taskgroup. There is no default. Currently there are
tasks defined only for the tape MSP.

The MSP checks the DMF configuration file just before it starts child processes. If the
DMF configuration file changed, it is reread.

If CHILD_MAXIMUM is non-zero, its value must be greater than the sum of
GUARANTEED_DELETES and GUARANTEED_GETS.

The parameters COMMAND, FTP_HOST, FTP_USER, FTP_PASSWORD, and
FTP_DIRECTORY must be present.

The MVS_UNIT parameter affects only IBM machines; they are further described in
the dmf_config(5) man page.

Note: The MSP will not operate if the FTP_PASSWORD file is readable by anyone
other than root.

84 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

The default value for NAME_FORMAT creates a unique file name and a subdirectory on
the remote machine. The subdirectory is named after the file’s owner at the time of
migration. This default works well if the remote machine runs an operating system
based on UNIX. The default may not work at all if the remote machine runs an
operating system that is not based on UNIX. The unique file name is the encoded
bit-file identifier (bfid) of the file.

Possible substitutes you may specify to create the NAME_FORMAT file name are as
follows:

%1 substitutes for the first 32 bits of the bfid in hexadecimal
%2 substitutes for the second 32 bits of the bfid in hexadecimal
%3 substitutes for the third 32 bits of the bfid in hexadecimal
%4 substitutes for the fourth 32 bits of the bfid in hexadecimal
%b substitutes for the full bfid in hexadecimal
%u substitutes for the user name of the file owner
%U substitutes for the user ID of the file owner
%g substitutes for the group name of the file
%G substitutes for the group ID of the file
%% substitutes for the literal % character

The %1, %2, %3, %4, and %b substitutions generate uppercase hexadecimal numbers.
The NAME_FORMAT must include either %b or %2, %3, %4 in some combination.

The following example defines an FTP MSP:

define ftp

TYPE msp

COMMAND dmftpmsp

FTP_HOST fileserver

FTP_USER dmf
FTP_ACCOUNT dmf.disk

FTP_PASSWORD /dmf/ftp/password

FTP_DIRECTORY ftpmsp

FTP_COMMAND umask 022

enddef

Procedure 2-17 Configuring the ftp Object

The following steps explain pertinent information for configuring the ftp object:

1. Ensure that define has a value that you set previously in the MSP_NAMES
parameter of the daemon object. There is no default.

007–3681–006 85

2: Configuring DMF

2. Ensure that TYPE is set to msp. There is no default.

3. Ensure that COMMAND is set to dmftpmsp. There is no default.

4. Set the FTP_USER parameter to the user name to use on the remote FTP server
during session initialization. There is no default.

5. Set the FTP_ACCOUNT parameter (if necessary) to the account to use on the
remote FTP server during session initialization. Most FTP servers do not need
account information. When account information is required, its nature and format
will be dictated by the remote machine and will vary from operating system to
operating system. There is no default.

6. Set the FTP_PASSWORD parameter to the name of the file containing the password
to be used on the remote FTP server during session initialization. This file must
be owned by root and only be accessible by root. In the example, the password
for the user dmf on fileserver is stored in the file /dmf/ftp/password.
There is no default.

7. Set the FTP_DIRECTORY parameter to the directory into which files will be
placed on the remote FTP server. There is no default.

8. If necessary, specify commands to the remote machine’s FTP daemon. In the
example, the umask for files created is set to 022 (removes write permission for
group and other). There is no default.

Setting up Disk MSPs

To enable a disk MSP, include a name for it on the MSP_NAMES parameter in the
daemon object and define an msp object for it in the DMF configuration file.

As with the FTP MSP, you can use a disk MSP to convert a non-DMF file server to
DMF with a minimal amount of down time for the switch over, and at a
site-determined pace. Contact your customer service representative for information
about technical assistance with file server conversion.

A disk MSP object has the following options:

Parameter Description

TYPE msp (type of object)

CHILD_MAXIMUM Maximum number of child processes the MSP is
allowed to fork. The default is 4; the maximum is 100.

86 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

COMMAND Binary file to execute in order to initiate this MSP. For
the disk MSP, this value must be dmdskmsp.

DISK_IO_SIZE Transfer size (in bytes) used when reading from or
writing to files within a DMF file system. The value
must be between 4096 and 16 million (16m). The
default is 65536.

GUARANTEED_DELETES Number of child processes that are guaranteed to be
available for processing delete requests. The default is 1.

GUARANTEED_GETS Number of child processes that are guaranteed to be
available for processing dmget(1) requests. The default
is 1.

IMPORT_DELETE Applies only if IMPORT_ONLY is set to on. Set
IMPORT_DELETE to on if you wish files to be deleted in
STORE_DIRECTORY when hard deletes are processed.

IMPORT_ONLY MSP is used for importing only. Set this parameter on
when the data is stored as a bit-for-bit copy of the file
and needs to be available to DMF as part of a
conversion. The MSP will not accept dmput(1) requests
when this parameter is enabled. The MSP will, by
default, ignore hard delete requests when this
parameter is enabled.

MESSAGE_LEVEL Specifies the highest message level number that will be
written to the MSP log. It must be an integer between 0
and 6; the higher the number, the more messages
written to the log file. The default is 2. For more
information on message levels, see "General Message
Log File Format", page 89.

NAME_FORMAT Template that creates names for files in
STORE_DIRECTORY. The default is username/bfid (the
bfid is the full bfid in hexadecimal).

STORE_DIRECTORY Specifies the directory used to store files for this MSP.

TASK_GROUPS Names the task groups that contain tasks the MSP
should run. They are configured as objects of TYPE

007–3681–006 87

2: Configuring DMF

taskgroup. There is no default. Currently there are
tasks defined only for the tape MSP.

The default value for NAME_FORMAT creates a unique file name and a subdirectory in
the STORE_DIRECTORY. The subdirectory is named after the file’s owner at the time
of migration. The unique file name is the encoded bit-file identifier of the file.

The following example describes setting up a disk MSP:

define dsk

TYPE msp
COMMAND dmdskmsp

CHILD_MAXIMUM 8

GUARANTEED_DELETES 3

GUARANTEED_GETS 3

STORE_DIRECTORY /remote/dir

enddef

Procedure 2-18 Configuring the dsk Object

The following steps explain pertinent information for configuring the dsk object:

1. Ensure that define has a value that you set previously in the MSP_NAMES
parameter of the daemon object. There is no default.

2. Ensure that TYPE is set to msp. There is no default.

3. Ensure that COMMAND is set to dmdskmsp. There is no default.

4. Set the CHILD_MAXIMUM parameter to the maximum number of child processes
you want this MSP to be able to fork. The default is 4. The example allows 8.

5. Set the GUARANTEED_DELETES parameter to the number of child processes that
are guaranteed to be available for processing delete requests. The default is 1.
The example allows 3.

6. Set the GUARANTEED_GETS parameter to the number of child processes that are
guaranteed to be available for processing dmget requests. The default is 1. The
example allows 3.

7. Set the STORE_DIRECTORY to the directory where files will be stored. This
parameter is required; there is no default.

88 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Verifying the Configuration
To verify the DMF configuration, run the dmcheck(8) script. This command checks
the configuration file object and parameters, and reports on inconsistencies.

Initializing DMF
The DMF daemon database is created in HOME_DIR/daemon_name as dbrec.dat,
dbrec.keys, pathseg.dat, and pathseg.keys. The database definition file (in
the same directory) that describes these files and their record structure is named
dmd_db.dbd. The database journal file is named dmd_db.yyyymmdd.[hhmmss]. It is
created in the directory JOURNAL_DIR/daemon_name (JOURNAL_DIR is specified by
the JOURNAL_DIR configuration parameter).

The dmmaint(8) utility sets up system startup and shutdown scripts to start and stop
DMF. You can start the DMF daemon manually by executing the dmdaemon
command and stop it by executing the dmdstop(8) command.

After dmdaemon is activated, the dmget(1) and dmput(1) user commands can be used
to manage file system space manually.

General Message Log File Format
The dmdaemon, dmlockmgr, dmfsmon, MSP, and LS processes all create message files
that are used to track various DMF events. These DMF message log files use the same
general naming convention and message format. The message log file names are
created using the extension .yyyymmdd, which represents the year, month, and day of
log file creation.

Each line in a message log file begins with the time the message was issued, an
optional message level, the process ID number, and the name of the program that
issued the message.

The optional message level is described below. The remainder of the line contains
informative or diagnostic information. The following sections provide details about
each of these log files:

• See "Daemon Logs and Journals", page 111, for information about dmdaemon and
dmdlog.yyyymmdd

007–3681–006 89

2: Configuring DMF

• See "dmlockmgr Communication and Log Files", page 113, for information about
dmlockmgr and dmlocklog.yyyymmdd

• See "Automated Space Management Log File", page 101, for information about
dmfsmon and autolog.yyyymmdd

• See "Tape MSP/LS Logs", page 124, and "Activity Log", page 152, for information
about dmatmsp, dmdskmsp, and dmftpmsp and msplog.yyyymmdd

• See Chapter 7, "DMF Maintenance and Recovery", page 163, for information about
log file maintenance.

Messages in the dmdlog, dmlocklog, and msplog files contain a 2–character field
immediately following the time field in each message that is issued. This feature
helps to categorize the messages and can be used to extract error messages
automatically from these logs. Because the only indication of DMF operational failure
may be messages written to the DMF logs, recurring problems can go undetected if
you do not check the logs daily.

Possible message types for autolog, dmdlog, msplog, and dmlocklog are defined
as follows; the corresponding message level in the configuration file is also provided:

Table 2-2 DMF Log File Message Types

Field Message type Message level

E Error 0

O Ordinary 0

I Informative 1

V Verbose 2

1 Debug level 1 3

2 Debug level 2 4

3 Debug level 3 5

4 Debug level 4 6

90 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Parameter Table
Table 2-3, page 91 lists the parameters that can be specified in the dmf_config file
and the objects to which they apply. The legend for the abbreviated column headings
appear at the end of the table. Please note that the most up-to-date list of parameters
is in the dmf_config(5) man page.

Table 2-3 Parameters for dmf_config file

Parameter BS DM DV DG DP FS FP LS PO RS RW TP TG VG

ADMIN_EMAIL X

AGE_WEIGHT X

ALGORITHM X

ALLOCATION_GROUP X

ALLOCATION_MAXIMUM X

ALLOCATION_MINIMUM X

BLOCK_SIZE X X

CACHE_DIR X X

CACHE_SPACE X X

CHILD_MAXIMUM X X X

COMMAND X X X X

DATABASE_COPIES X

DATA_LIMIT X

DISK_IO_SIZE X X X X

DRIVES_TO_DOWN X

DRIVE_GROUPS X

DRIVE_MAXIMUM X X

DRIVE_SCHEDULER X

DUMP_DEVICE X

DUMP_FILE_SYSTEMS X

007–3681–006 91

2: Configuring DMF

Parameter BS DM DV DG DP FS FP LS PO RS RW TP TG VG

DUMP_INVENTORY_COPY X

DUMP_MIGRATE_FIRST X

DUMP_RETENTION X

DUMP_TAPES X

FREE_DUALSTATE_FIRST X

FREE_SPACE_DECREMENT X

FREE_SPACE_MINIMUM X

FREE_SPACE_TARGET X

FTP_ACCOUNT X

FTP_COMMAND X

FTP_DIRECTORY X

FTP_HOST X

FTP_PASSWORD X

FTP_PORT X

FTP_USER X

GUARANTEED_DELETES X X

GUARANTEED_GETS X X

HFREE_TIME X X

HOME_DIR X

HTML_REFRESH X

IMPORT_DELETE X X

IMPORT_ONLY X X

JOURNAL_DIR X

JOURNAL_RETENTION X

JOURNAL_SIZE X

LABEL_TYPE X X

LICENSE_FILE X

92 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Parameter BS DM DV DG DP FS FP LS PO RS RW TP TG VG

LOG_RETENTION X

LS_NAMES X

MAX_CACHE_FILE X X

MAX_CHUNK_SIZE X X

MAX_MS_RESTARTS X

MAX_PUT_CHILDREN X X

MERGE_CUTOFF X X

MESSAGE_LEVEL X X X X X X

MIGRATION_LEVEL X X

MIGRATION_TARGET X

MIN_TAPES X

MIN_VOLUMES X

MOUNT_SERVICE X X

MOUNT_SERVICE_GROUP X

MOVE_FS X

MSG_DELAY X X

MSP_NAMES X

MVS_UNIT X

NAME_FORMAT X X

OV_ACCESS_MODES X X

OV_INTERCHANGE_MODES X X

OV_KEY_FILE X

OV_SERVER X

PENALTY X

POLICIES X

POSITIONING X X

POSITION_RETRY X X

007–3681–006 93

2: Configuring DMF

Parameter BS DM DV DG DP FS FP LS PO RS RW TP TG VG

PUTS_TIME X

READ_TIME X

REINSTATE_DRIVE_DELAY X

REINSTATE_VOLUME_DELAY X

RUN_TASK X *

SELECT_MSP X

SELECT_VG X

SPACE_WEIGHT X

SPOOL_DIR X

STORE_DIRECTORY X

TAPE_TYPE X

TASK_GROUPS X X X X X X X

THRESHOLD X

TIMEOUT_FLUSH X X

TMF_TMMNT_OPTIONS X X

TMP_DIR X

VERIFY_POSITION X X

VOLUME_GROUPS X

VOLUME_LIMIT X

WATCHER X

WEIGHT X

WRITE_CHECKSUM X X

ZONE_SIZE X X

* The run_tape_merge.sh and run_merge_stop.sh tasks and their associated
parameters can be specified in the VG object.

Legend:

BS: Base

94 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

DM: Daemon
DV: Device
DG: Device group
DP: Disk MSP
FS: File system
FP: FTP MSP
LS: Library server
PO: Policy
RS: Resource scheduler
RW: Resource watcher
TP: Tape MSP
TG: Task group
VG: Volume group

007–3681–006 95

Chapter 3

Automated Space Management

The DMF file system monitor, dmfsmon(8), is a daemon that monitors the free space
levels in file systems configured as auto (that is, automated space management is
enabled) and lets you maintain a specified level of free space. When the free space in
one of the file systems falls below the free-space minimum, dmfsmon invokes
dmfsfree(8).

The dmfsfree command attempts to bring the free space and migrated space of a
file system into compliance with configured values. The dmfsmon command uses
dmfsfree to bring the free space and migrated space into compliance with
configured values. dmfsfree may also be invoked by system administrators.

When the free space in one of the file systems falls below its free-space minimum, the
dmfsfree command performs the following steps:

• Scans the file system for files that can be migrated and freed. Each of these
candidates is assigned a file weight. This information is used to create a list, called
a candidate list, that contains an entry for each file and is ordered by file weight
(largest to smallest).

• Selects enough candidates to bring the free space back up to the desired level.
Files are selected in order from largest file weight to smallest.

• Selects enough non-migrated files from the candidate list to achieve the migration
target, which is the percentage of file system space you want to have as free space
and space occupied by migrated but online files. Files are selected from the
candidate list in order from largest file weight to smallest.

The dmfsmon daemon should be running whenever DMF is active. You control
automated space management by setting the file system and policy configuration
parameters in the DMF configuration file. The configuration parameters specify
targets for migration and free-space as well as one or more policies for file weighting.
Only file systems configured as MIGRATION_LEVEL auto in the configuration file
are included in the space-management process. "DMF Policies", page 43, describes
how to configure automated space management.

You can change the migration level of a file system by editing the configuration file.

The following sections describe space management and associated processes.

007–3681–006 97

3: Automated Space Management

Generating the Candidate List
The first step in the migration process occurs when dmfsmon determines it is time to
invoke dmfsfree, which scans the file system and generates the candidate list.
During candidate list generation, the inode of each online file in the specified file
system is audited, and a weight is computed for it.

A file system is associated with a file weighting policy in the DMF configuration file.
The applicable file weighting policy determines a file’s total weight. Total file weight
is the sum of the AGE_WEIGHT and SPACE_WEIGHT parameters. Defaults are
provided for these parameters, and you can configure either to make a change. You
do not need to configure a weighting policy if the defaults are acceptable, but you
should be aware that the default selects files based on age and not on size. If you
want to configure a policy based on size that ignores file age, you should overwrite
the default for AGE_WEIGHT.

The default weighting policy bases the weight of the file on the time that has passed
since the file was last accessed or modified. Usually, the more recent a file’s access,
the more likely it is to be accessed again.

The candidate list is ordered by total file weight (largest to smallest). You can
configure the weighting parameters to have a negative value and ensure that certain
files are never automatically migrated.

Note: If you use negative weights to exclude files from migration, you must ensure
that a file system does not fill with files that are never selected for automatic
migration.

You can use the dmscanfs(8) command to print file information to standard output
(stdout).

Selection of Migration Candidates
The dmfsfree(8) utility processes each ordered candidate list sequentially, seeking
candidates to migrate and possibly free. The extent of the selection process is
governed by values defined for the file system in the DMF configuration file as
described in "DMF Policies", page 43.

The most essential parameters are as follows:

98 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

• FREE_SPACE_MINIMUM specifies the minimum percentage of file system space
that must be free. When this value is reached, dmfsmon will take action to migrate
and free enough files to bring the file system into compliance. For example,
setting this parameter to 10 indicates that when less than 10% of the file system
space is free, dmfsmon will migrate and free files to achieve the percentage of free
space specified by FREE_SPACE_TARGET. For the information on how this
parameter is used when automated space management is not configured, see the
dmf_config(5) man page.

• FREE_SPACE_TARGET specifies the percentage of free file system space the
dmfsmon will try to achieve if free space falls below FREE_SPACE_MINIMUM. For
example, if this parameter is set to 15 and FREE_SPACE_MINIMUM is set to 10,
dmfsmon takes action when the file system is less than 10% free and migrates and
frees files until 15% of the file system is available.

• MIGRATION_TARGET specifies the percentage of file system capacity that is
maintained as a reserve of space that is free or occupied by dual-state files. DMF
attempts to maintain this reserve in the event that the file system free space
reaches or falls below FREE_SPACE_MINIMUM.

When dmfsmon detects that the free space on a file system has fallen below the level
you have set as FREE_SPACE_MINIMUM, it invokes dmfsfree to select a sufficient
number of candidates to meet the FREE_SPACE_TARGET. The dmfsfree utility
ensures that these files are fully migrated and releases their disk blocks. It then
selects additional candidates to meet the MIGRATION_TARGET and migrates them.

Figure 3-1 shows the relationship of automated space management migration targets
to each other. Migration events occur when file activity causes free file system space
to drop below FREE_SPACE_MINIMUM. dmfsmon generates a candidate list and
begins to migrate files and free the disk blocks until the FREE_SPACE_TARGET is
met, and then it migrates regular files (creating dual-state files) until the
MIGRATION_TARGET is met:

007–3681–006 99

3: Automated Space Management

Regular files

Dual-state files

Free space

100%

Migration
target

Free space
target

Free space
minimum

0%

File activity

F
ile

 s
ys

te
m

 s
pa

ce

Threshold-driven
migration events

a11389

O O OO

Figure 3-1 Relationship of Automated Space Management Targets

If dmfsmon does not find enough files to migrate (because all remaining files are
exempt from migration), it uses another configuration parameter to decrement
FREE_SPACE_MINIMUM.

FREE_SPACE_DECREMENT specifies the percentage of file system space by which
dmfsmon will decrement FREE_SPACE_MINIMUM if it cannot find enough files to
migrate to reach FREE_SPACE_MINIMUM. For example, suppose
FREE_SPACE_MINIMUM is set to 10 and FREE_SPACE_DECREMENT is set to 2. If
dmfsmon cannot find enough files to migrate to reach 10% free space, it will
decrement FREE_SPACE_MINIMUM to 8 and try to find enough files to migrate so that
8% of the file system is free. If dmfsmon cannot achieve this percentage, it will
decrement FREE_SPACE_MINIMUM to 6. dmfsmon will continue until it reaches a
value for FREE_SPACE_MINIMUM that it can achieve, and it will try to maintain that

100 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

new value. dmfsmon restores FREE_SPACE_MINIMUM to its configured value when it
can be achieved. The default value for FREE_SPACE_DECREMENT is 2.

Note: DMF manages real-time partitions differently than files in a normal partition.
The dmfsfree command can only migrate files in the non-real-time partition; it
ignores files in the real-time partition. Any configuration parameters you set will
apply only to the non-real-time partition. Files in the real-time partition can be
manually migrated with the commands dmget(1), dmput(1), and dmmigrate(8).
Files are retrieved automatically when they are read.

Automated Space Management Log File
All of the space-management commands record their activities in a common log file,
autolog.yyyymmdd (where yyyymmdd is the year, month, and day of log file
creation). The first space-management command to execute on a given day creates the
log file for that day. This log file resides in the directory SPOOL_DIR/daemon_name
(SPOOL_DIR is specified by the SPOOL_DIR configuration parameter; see
"Configuring the Base Object", page 31). The space-management commands create the
daemon_name subdirectory in SPOOL_DIR if it does not already exist. The full path
name of the common log file follows:

SPOOL_DIR/daemon_name/autolog.yyyymmdd

Each line in the autolog file begins with the time of message issue, followed by the
process number and program name of the message issuer. The remainder of the line
contains informative or diagnostic information such as the following:

• The name of the file system being processed

• The number of files selected for migration and freeing

• The number of disk blocks that were migrated and freed

• The names of any other DMF commands executed

• The command’s success or failure in meeting the migration and free-space targets

The following excerpt show the format of an autolog file:

11:44:55-V 26968-dmfsmon /dmi - free_space=5.44, minimum=5

11:46:55-V 26968-dmfsmon /dmi - free_space=5.12, minimum=5

11:47:35-I 26968-dmfsmon Started 15135 for execution on /dmi

007–3681–006 101

3: Automated Space Management

11:48:55-V 26968-dmfsmon /dmi - free_space=4.79, minimum=5

11:49:48-I 15135-dmfsmon Number of blocks in the filesystem = 17769424

11:49:48-I 15135-dmfsmon Number of blocks in the migration target = 8884712 (50%)

11:49:48-I 15135-dmfsmon Number of blocks currently migrated = 16428664 (92.5%)

11:49:48-I 15135-dmfsmon Number of blocks to migrate = 0 (0.0%)

11:49:48-I 15135-dmfsmon Number of blocks in the free space target = 1776942 (10%)

11:49:48-I 15135-dmfsmon Number of blocks currently free = 886824 (5.0%)

11:49:48-I 15135-dmfsmon Number of blocks to free = 890118 (5.0%)

11:49:48-I 15135-dmfsmon Summary of files: online = 93050, offline = 342836, unmigrating = 0.

11:49:48-I 15135-dmfsmon Number of candidates = 93050, rejected = 0

11:50:55-V 26968-dmfsmon /dmi - free_space=7.26, minimum=5

11:51:49-I 15135-dmfsmon Migrated 272 blocks in 1 files.

11:51:49-I 15135-dmfsmon Freed 890184 blocks in 4197 files

11:51:49-O 15135-dmfsmon Exiting: minimum reached - targets met by outstanding requests.

11:52:55-V 26968-dmfsmon /dmi - free_space=9.73, minimum=5

11:54:55-V 26968-dmfsmon /dmi - free_space=9.73, minimum=5

102 007–3681–006

Chapter 4

The DMF Daemon

The DMF daemon, dmdaemon(8), is the core component of DMF. The daemon passes
messages between commands, the MSPs and LSs, and the kernel. It also assigns bit
file identifiers (bfids) to migrated files and maintains the DMF database entries for
offline copies.

When DMF is started, the daemon database is automatically initialized. To start the
daemon manually, use the dmdaemon command, as follows (assuming your PATH
environment variable includes /etc/dmf/dmbase/etc):

dmdaemon

Typically, dmdaemon should be called as part of the normal system startup procedure
by using a direct call in a system startup script in the /etc/rc2.d directory.

After dmdaemon is activated, the dmget(1) and dmput(1) user commands can be used
to manage file system space manually.

You can restart the daemon by using the dmdaemon command.

The following sections provide additional information about the daemon database
and daemon processing.

Daemon Processing
After initialization, dmdaemon performs the following steps:

1. Isolates itself as a daemon process.

2. Checks for the existence of other dmdaemon processes. If another dmdaemon
exists, the newer one terminates immediately.

3. Initializes the dmdaemon log.

4. Opens the daemon database.

5. Initializes the daemon request socket.

6. Initiates the MSPs and LSs.

7. Enters its main request processing.

007–3681–006 103

4: The DMF Daemon

The daemon uses log files and journal files as described in "Daemon Logs and
Journals".

The main request processing section of the DMF daemon consists of the following
sequence:

• The select(2) system call, which is used to wait for requests or for a default
time-out interval

• A request dispatch switch to read and process requests detected by the select call

• A time processor, which checks activities (such as displaying statistics and running
the administrator tasks) done on a time-interval basis

This processing sequence is repeated until a stop request is received from the
dmdstop(8) command. When a normal termination is received, the MSPs and LSs are
terminated, the database is closed, and the logs are completed.

A typical request to the daemon starts with communication from the requester. The
requester is either the kernel (over the DMF device interface) or a user-level request
(from the command pipe). A user-level command can originate from the automated
space-management commands or from an individual user.

After receipt, the command is dispatched to the appropriate command processor
within the daemon. Usually, this processor must communicate with an MSP or LS
before completing the specified request. The commands are queued within the
daemon and are also queued to a specific group of database entries. All entries
referring to the same file share the same bfid. The command is dormant until the
reply from the MSP/LS is received or the MSP/LS terminates. When command
processing is completed, a final reply is sent to the issuing process, if it still exists.

A final reply usually indicates that the command has completed or an error has
occurred. Often, error responses require that you analyze the dmdaemon log to obtain
a full explanation of the error. An error response issued immediately usually results
from an invalid or incorrect request (for example, a request to migrate a file that has
no data blocks). A delayed error response usually indicates a database, daemon, MSP,
or LS problem.

DMF Daemon Database and dmdadm(blank)

The DMF daemon maintains a database that resides in the directory
HOME_DIR/daemon_name (HOME_DIR is specified by the HOME_DIR configuration
parameter). This database contains information about the offline copies of a given file,

104 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

as well as some information about the original file. The database also contains the bit
file identifier (bfid), which is assigned when the file is first migrated.

Other information maintained on a per-entry basis includes the following:

• File size (in bytes)

• MSP/VG name and recall path

• Date and time information, including the following:

– Time at which the database record was created

– Time at which the database record was last updated

– A check time for use by the administrator

– A soft-delete time, indicating when the entry was soft-deleted

• Original device and inode number

• Base portion of the original file name, if known

The dmdadm(8) command provides maintenance services for the daemon database.

dmdadm executes directives from stdin or from the command line when you use the
-c option. All directives start with a directive name followed by one or more
parameters. Parameters may be positional or keyword-value pairs, depending on the
command. White space separates the directive name, keywords, and values.

When you are inside the dmdadm interface (that is, when you see the adm
command_number > prompt), the command has a 30–minute timeout associated with
it. If you do not enter a response within 30 minutes of the prompt having been
displayed, the dmdadm session terminates with a descriptive message. This behavior
on all the database administrative commands limits the amount of time that an
administrator can lock the daemon and MSP/LS databases from updates.

dmdadm Directives

The dmdadm directives are as follows:

Directive Description

count Displays the number of records that match the
expression provided.

007–3681–006 105

4: The DMF Daemon

create Deletes an existing database record.

dump Prints the specified database records to standard out in
ASCII; each database field is separated by the pipe
character (|).

help Displays help.

list Shows the fields of selected database records. You may
specify which fields are shown.

load Applies records to the database obtained from running
the dump directive.

quit Stops program execution after flushing any changed
database records to disk. The abbreviation q and the
string exit produce the same effect.

set Specifies the fields to be shown in subsequent list
directives.

update Modifies an existing database record.

The syntax for the dmdadm directives is summarized as follows:

count selection [limit]
delete selection [limit]
dump selection [limit]
help

list selection [format]
load filename
quit (or q or exit)

set [format]
update selection [limit] to fields...

The value for selection can be one of the following:

• A bfid or range of bfids

• The keyword all

• A period (.), which recalls the previous selection

• An expression involving any of the above, field value comparisons, and, or, or
parentheses.

106 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

A field value comparison may use < (less than), > (greater than), = (equal to), <= (less
than or equal to), or >= (greater than or equal to) to compare a field keyword to an
appropriate value.

The syntax for selection is as follows:

selection ::= or-expr
or-expr ::= and-expr [or or-expr]
and-expr ::= nested-expr [and and-expr]
nested-expr ::= comparison | (expression)
comparison ::= bfid-range | field-keyword op field-value
op ::= < | > | = | >= | <=
bfid-range ::= bfid [- bfid] | [bfid - [bfid]] | key-macro
key-macro ::= all
field-keyword ::= name or abbreviation of the record field
field-value ::= appropriate value for the field
bfid ::= character representation of the bit file identifier

Thus valid selections could be any of the following:

305c74b200000010-305c74b200000029

7fffffff000f4411-

-305c74b2000004c8

all

origsize>1m

. and origage<7d
mspkey 456 to origuid 2570

dmdadm Field and Format Keywords

The field keywords listed below specify new values for fields. Some of the keywords
are valid only if you also specify the -u option.

Keyword Description

checkage (ca) The time at which the database record was last
checked; the same as checktime, except that it is
specified as age. Valid only in unsafe (-u) mode.

checktime (ct) The time at which the database record was last
checked; an integer that reflects raw UNIX time. Valid
only in unsafe (-u) mode.

007–3681–006 107

4: The DMF Daemon

deleteage (da) The time at which the database record was soft-deleted;
the same as deletetime, except that it is specified as
age. Valid only in unsafe (-u) mode.

deletetime (dt) The time at which the database record was soft-deleted;
an integer that reflects raw UNIX time. Valid only in
unsafe (-u) mode.

mspname (mn) The name of the MSP or VG with which the file is
associated; a string of up to 8 characters. Valid only in
unsafe (-u) mode.

mspkey (mk) The string that the MSP/VG can use to recall a
database record; a string of up to 50 characters. Valid
only in unsafe (-u) mode.

origage (oa) Time at which the database record was created; the
same as origtime, except that it is specified as age.

origdevice (od) Original device number of the file; an integer.

originode (oi) Original inode number of the file; an integer.

origname (on) Base portion of the original file name; a string of up to
14 characters.

origsize (os) Original size of the file; an integer.

origtime (ot) Time at which the database record was created; an
integer that reflects raw UNIX time.

origuid (ou) Original user ID of the database record; an integer.

updateage (ua) Time at which the database record was last updated; the
same as updatetime, except that it is specified as age.

updatetime (ut) Time at which the database record was last updated; an
integer that reflects raw UNIX time.

The time field keywords (checktime, deletetime, origtime, and updatetime)
have a value of either now or raw UNIX time (seconds since January 1, 1970). These
keywords display their value as raw UNIX time. The value comparison > used with
the date keywords means newer than the value given. For example, >36000 is newer
than 10AM on January 1, 1970, and >852081200 is newer than 10AM on January 1,
1997.

108 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

The age field keywords (checkage, deleteage, origage, and updateage) let you
express time as age. age is a string in a form such as 8w12d7h16m20s, meaning 8
weeks, 12 days, 7 hours, 16 minutes, and 20 seconds old. The age keywords display
their value as an integer followed by w, d, h, m, or s (weeks, days, hours, minutes,
and seconds, respectively). The comparison > used with the age keywords means
older than the value given (that is, >5d is older than 5 days).

The limit keywords restrict the records acted upon:

Keyword Description

recordlimit (rl) Limits the number of records acted upon to the value
that you specify; an integer.

recordorder (ro) Specifies the order that records are scanned; may be
either bfid or data. bfid specifies that the records
are scanned in bfid order. data specifies that the
records are scanned in the order in which they are
found in the database data file. data is more efficient
for large databases, although it is essentially unordered.

The format keyword selects a format to use for the display. If, for example, you want
to display fields in a different order than the default or want to include fields that are
not included in the default display, you specify them with the format keyword.
Values for format can be default, keyword, or a list of field keywords enclosed in
quotation marks.

For any field that takes a byte count, you may append the letter k, m, or g (in either
uppercase or lowercase) to the integer to indicate that the value is to be multiplied by
one thousand, one million, or one billion, respectively.

The following is sample output from the dmdadm list directive; recordlimit 20
specifies that you want to see only the first 20 records.

adm 3>list all recordlimit 20

BFID ORIG ORIG ORIG MSP MSP

UID SIZE AGE NAME KEY

--

305c74b200000010 20934 69140480 537d silo1 88b49f
305c74b200000013 26444 279290 537d silo1 88b4a2

305c74b200000014 10634 67000 537d silo1 88b4a3

305c74b200000016 10634 284356608 537d silo1 88b4a5

305c74b200000018 10634 1986560 537d silo1 88b4a7

007–3681–006 109

4: The DMF Daemon

305c74b20000001b 26444 232681 537d silo1 88b4aa
305c74b20000001c 10015 7533688 537d silo1 88b4ab

305c74b200000022 8964 23194990 537d silo1 88b4b1

305c74b200000023 1294 133562368 537d silo1 88b4b2

305c74b200000024 10634 67000 537d silo1 88b4b3

305c74b200000025 10634 284356608 537d silo1 88b4b4
305c74b200000026 10634 1986560 537d silo1 88b4b5

305c74b200000027 1294 1114112 537d silo1 88b4b6

305c74b200000028 10634 25270 537d silo1 88b4b7

305c74b200000029 1294 65077248 537d silo1 88b4b8

305c74b20000002b 9244 2740120 537d silo1 88b4ba

305c74b200000064 9335 9272 537d silo1 88b4f3
305c74b200000065 9335 10154 537d silo1 88b4f4

305c74b200000066 9335 4624 537d silo1 88b4f5

305c74b200000067 9335 10155 537d silo1 88b4f6

adm 4>

The following example displays the number of records in the database that are
associated with user ID 11789 and that were updated during the last five days:

adm 3>count origuid=11789 and updateage<5d

72 records found.

dmdadm(blank) Text Field Order

The text field order for daemon records generated by the dmdump(8), dmdumpj(8),
and the dump directive in dmdadm is listed below. This is the format expected by the
load directives in dmdadm:

1. bfid

2. origdevice

3. originode

4. origsize

5. origtime

6. updatetime

7. checktime

110 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

8. deletetime

9. origuid

10. origname

11. mspname

12. mspkey

To isolate the mspname and mspkey from the daemon records soft-deleted fewer than
three days ago, use the following command:

dmdadm -c "dump deleteage<3d and deletetime>0" | awk "-F|" ’(print $11,$12}’

Daemon Logs and Journals
The DMF daemon uses log files to track various types of activity. Journal files are
used to track DMF database transactions.

The ASCII log of daemon actions has the following format (SPOOL_DIR refers to the
directory specified by the SPOOL_DIR configuration parameter):

SPOOL_DIR/daemon_name/dmdlog.yyyymmdd

The file naming convention is that yyyy, mm, and dd correspond to the date on which
the log was created (representing year, month, and day, respectively). Logs are
created automatically by the DMF daemon.

Note: Because the DMF daemon will continue to create log files and journal files
without limit, you must remove obsolete files periodically by configuring the
run_remove_logs and run_remove_journals tasks in the configuration file, as
described in "Configuring Daemon Maintenance Tasks", page 36.

The DMF daemon automatically creates journal files that track database transactions.
They have the following path name format (JOURNAL_DIR refers to the directory
defined by the JOURNAL_DIR configuration parameter):

JOURNAL_DIR/daemon_name/dmd_db.yyyymmdd[.hhmmss]

Existing journal files are closed and new ones created in two circumstances:

• When the first transaction after midnight occurs

007–3681–006 111

4: The DMF Daemon

• When the journal file reaches size defined by the JOURNAL_SIZE configuration
parameter

When the first transaction after midnight occurs, the existing open journal file is
closed, and the suffix .235959 is appended to the current file name no matter what
the time (or date) of closing. The closed file represents the last (or only) transaction
log of the date yyyymmdd. A new journal file with the current date is then created.

When the journal file reaches JOURNAL_SIZE, the file is closed and the suffix .hhmmss
is added to the name; hh, mm, and ss represent the hour, minute, and second of file
closing. A new journal file with the same date but no time is then created.

For example, the following shows the contents of a JOURNAL_DIR/daemon_name
directory on 15 June 1998:

dmd_db.19980604.235959 dmd_db.19980612.235959

dmd_db.19980605.235959 dmd_db.19980613.145514

dmd_db.19980608.235959 dmd_db.19980613.214233

dmd_db.19980609.235959 dmd_db.19980613.235959

dmd_db.19980610.235959 dmd_db.19980614.235959
dmd_db.19980611.094745 dmd_db.19980615

dmd_db.19980611.101937

dmd_db.19980611.110429

dmd_db.19980611.235959

For every date on which database transactions occurred, there will exist a file with
that date and the suffix .235959, with the exception of an existing open journal file.
Some dates have additional files because the transaction log reached JOURNAL_SIZE
at a specified time and the file was closed.

You can configure daemon_tasks parameters to remove old journal files (using the
run_remove_journals.sh task and the JOURNAL_RETENTION parameter. For
more information, see "Configuring Daemon Maintenance Tasks", page 36.

Warning: If a daemon database becomes corrupt, recovery consists of applying
journals to a backup copy of the database. Database recovery procedures are
described in "Database Recovery", page 168.

112 007–3681–006

Chapter 5

The DMF Lock Manager

The dmlockmgr(8) process must be executing at all times for any DMF process to
safely access and update a DMF database. The dmlockmgr and its clients (DMF
processes such as dmatmsp, dmatls, dmdaemon(8), dmvoladm(8), dmcatadm(8) and
others) communicate through various methods. These methods include files,
semaphores, and message queues. There are times when abnormal process
terminations will result in non-orderly exit processing which will leave files and/or
interprocess communication (IPC) resources allocated. As a DMF administrator,
periodically you will want to look for these resources to remove them.

Note: In this chapter, SPOOL_DIR refers to the value of the SPOOL_DIR parameter in
the DMF configuration file.

The dmlockmgr files used by the database utilities are found in several different
places. There are 3 types of files:

• dmlockmgr communication and log files

• Individual transaction log files

dmlockmgr Communication and Log Files
The dmlockmgr communication and log files are all found in a directory formed by
SPOOL_DIR/RDM_LM. This directory contains the token files used to form the keys
that are used to create and access the IPC resources necessary for the dmlockmgr to
communicate with its clients, its standard output file, and the transaction file.

The token files in SPOOL_DIR/RDM_LM have the form shown in Table 5-1, page 114:

007–3681–006 113

5: The DMF Lock Manager

Table 5-1 dmlockmgr Token Files

File Description

dmlockmgr Used by the dmlockmgr and its clients to access
dmlockmgr’s semaphore and input message
queue

dmatmspmsp_or_ls_name Used by the MSP/LS msp_or_ls_name and
dmlockmgr to access the MSP’s or LS’s input
message queue

dmdaemondaemon Used by the DMF daemon and dmlockmgr to
access the daemon’s input message queue

dmatreadPID

dmatsnfPID

dmcatadmPID

dmdbrecoverPID

dmdbasePID

dmvoladmPID

Used by the process whose process ID is PID to
access the process’s input message queue

The dmlockmgr, dmatmsp, dmatls, and dmdaemon token files are limited in
number, and they change infrequently. If a dmlockmgr, dmatmsp, or dmdaemon
terminates without removing the file, an existing token file will be used on restart. If
a dmatmsp, dmatls, or dmdaemon fails to remove the file and MSP or LS name is
changed, the file will remain until it is manually removed.

The files of the PID versions listed in Table 5-1 are removed from the lockmgr
directory automatically when the command terminates or when the DMF daemon
initializes. Do not create files of this name format in this directory because the
daemon is likely to remove them.

The IPC resources used by DMF are always released during normal process exit
cleanup. If one of the dmlockmgr client processes dies without removing its message
queue, dmlockmgr will remove that queue when it detects the death of the client. It
will not remove the token file.

114 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Note: Normally, the dmlockmgr process is terminated as part of normal shutdown
procedures. However, if you wish to stop it manually, you must kill the process by
using kill(1). Killing the dmlockmgr process does not remove the dmlockmgr IPC
resources or token file. If the dmlockmgr is restarted automatically by a DMF
process, it will reuse the token file and IPC resources it left behind.

If the dmlockmgr process aborts, all DMF processes must be stopped and restarted in
order to relogin to a new dmlockmgr process. If the dmdaemon or dmatmsp/dmatls
processes abort during a period when the dmlockmgr has died, when they restart
they will attempt to restart the dmlockmgr. The new dmlockmgr process will detect
existing DMF processes that were communicating with the now-dead copy of
dmlockmgr, and it will send a termination message to those DMF processes.

The dmlockmgr maintains a log file that is named as follows, where yyyy, mm, and
dd are the year, month, and day:

SPOOL_DIR/RDM_LM/dmlocklog.yyyymmdd

The log file is closed and a new one opened at the first log request of a new day.
These files are not typically large files, but a new file will be created each day and
you should periodically remove older versions. You should maintain the dmlockmgr
log files for as long as you maintain the database transaction journal files.

dmlockmgr Individual Transaction Log Files
The individual transaction log files have the following form:

dmatmspmsp_or_ls_name.log
dmdaemonPID.log
dmvoladmPID.log
dmcatadmPID.log
dmdbasePID.log
dmdbrecoverPID.log
dmselectPID.log

Most of the transaction log files will reside in the database directory
(HOME_DIR/daemon_name for the dmdaemon, HOME_DIR/msp_name for the
dmatmsp, HOME_DIR/ls_name for the dmatls). In the case of the dmdaemon,
dmatmsp, and dmatls, each new transaction will reuse the same file generated by
the last transaction, and there is no need to remove these files.

007–3681–006 115

5: The DMF Lock Manager

In the case of the PID transaction log files, the commands that generate them will
generally remove them during their normal exit processing code. If there is an
abnormal termination, these files will not be removed, and they may be quite large.

!
Caution: Do not delete any orphaned transaction log files until you are sure the
database is not actively in use. If a process aborts during a committed but incomplete
transaction, the next process that contacts the dmlockmgr will use the information in
the transaction log file to recover the incomplete transaction.

After you are sure the transaction log file will not be needed, it can be removed.

It is wise to periodically check for these files. Several DMF commands allow
accessing of copies of database files in places other than the standard location, which
may result in unnecessary transaction log files consuming disk space.

The transaction activity file, SPOOL_DIR/RDM_LM/vista.taf, is the transaction log
file that contains information about active transactions in the system. It is used to
facilitate automatic database transaction processing.

!
Caution: Do not delete the SPOOL_DIR/RDM_LM/vista.taf file.

116 007–3681–006

Chapter 6

Media Specific Processes and Library Servers

Media-specfic processes (MSPs) and library servers (LSs) migrate files from one media
to another. There are three types of MSPs:

• Tape MSP, which copies files from a disk to tape, or copies files from tape to disk.

• File transfer protocol (FTP) MSP, which allows the DMF daemon to manage data
by moving it to a remote machine.

• Disk MSP, which migrates data to a directory that is accessed on the current
system.

LSs, like tape MSPs, copy files from a disk to a tape or from a tape to a disk.
However, although the tape MSP and the LS have many characteristics in common,
one of the primary differences is that while the tape MSP can manage at most one
active copy of a migrated file, the LS can manage more than one copy. A library
server is comprised of one or more volume groups (VGs). When a file is migrated
from disk to tape, the selection policy can specify that it be copied to more than one
VG. Each VG can manage at most one copy of a migrated file. Each VG has an
associated pool of tapes. Data from more than one VG is never mixed on a tape.

The following sections provide first a description of tape MSP and LS operations,
then descriptions of FTP and disk MSP.

Tape MSP and LS Operations
The tape MSP consists of the following programs: dmatmsp, dmatwc, and dmatrc.

The DMF daemon executes dmatmsp as a child process. The MSP communicates with
the daemon through a pair of unnamed pipes. In turn, dmatmsp executes dmatwc (the
write child) to write data to tape and dmatrc (the read child) to read data from tape.

The LS consists of the following programs: dmatls, dmatwc, and dmatrc.

The DMF daemon executes dmatls as a child process. In turn, dmatls executes
dmatwc (the write child) to write data to tape and dmatrc (the read child) to read
data from tape.

The dmatmsp or the dmatlsprogram maintains two types of records in its database:

007–3681–006 117

6: Media Specific Processes and Library Servers

• CAT records, which contain information about the files the MSP/LS maintains

• VOL records, which contain information about the media the MSP/LS uses

The database is not a text file and cannot be updated by standard utility programs.
Detailed information about the database and its associated utilities is provided in
"CAT Database Records", page 121, and "VOL Database Records", page 122.

The tape MSP/LS provides a mechanism for copying active data from volumes that
contain largely obsolete data to volumes that contain mostly active data. This process
is referred to as volume merging or compression. Data on MSP/LS volumes becomes
obsolete when users delete or modify their files. Volume merging can be configured to
occur automatically (see "Configuring Tape Maintenance Tasks ", page 77). It can also
be triggered by marking MSP/LS volumes as sparse with the dmvoladm(8) command.

The tape MSP/LS provides two utilities that read MSP/LS volumes directly:

• dmatread(8), which copies all or part of a migrated file to disk

• dmatsnf(8), which audits and verifies MSP/LS volumes

Tape MSP/LS Directories

Each instance of the tape MSP/LS needs three types of directories, one for each of the
following:

• Databases

• Database journal files

• Log files

Sites define the location of these directories by editing the base object configuration
file parameters HOME_DIR, JOURNAL_DIR, and SPOOL_DIR, whose values are
referred to as HOME_DIR, JOURNAL_DIR, and SPOOL_DIR in this document. A
given instance of the tape MSP/LS creates a subdirectory named after itself in each of
these three directories.

For example, if an instance of the tape MSP is called cart1, its database files reside
in directory HOME_DIR/cart1. If another instance of the tape MSP is called cart2,
its database files reside in HOME_DIR/cart2. If an instance of the LS is called
cart3, its database files reside in HOME_DIR/cart3.

118 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Similarly, MSP cart1 stores its journal files in directory JOURNAL_DIR/cart1 and
its log files and other working files in SPOOL_DIR/cart1.

Media Concepts

The tape MSP/LS takes full advantage of the capabilities of modern tape devices,
including data compression and fast media positioning. To accommodate these
capabilities and to provide recovery from surface or other media defects, dmatmsp
and dmatls use a number of structural concepts built on top of traditional tape
structure.

The components are as follows:

• The block is the basic structural component of most tape technologies. It is the
physical unit of I/O to and from the media. The optimal block size varies with the
device type. For example, the default block size for a 3480/3490 device is 65,536
bytes.

• A chunk is as much or as little of a user file as fits on the remainder of the tape
(see Figure 6-1, page 121). Thus, every migrated file has at least one, and
sometimes many, chunks. Such a concept is necessary because the capacity of a
volume is unknown until written, both because of natural variation in the medium
itself and because the effect of data compression varies with the data contents.

• A zone is a logical block containing several physical blocks ending with a tape
mark. A zone has a target size that is configurable by media type. The default
zone target size is 50 MB.

The MSP/VG writes chunks into the zone until one of three conditions occurs:

– The zone size is exceeded

– The MSP/VG exhausts chunks to write

– The end of tape is encountered

Thus, the actual zone size can vary from well below the target size to the entire
tape volume. A zone never spans physical volumes.

The zone plays several roles:

– The zone size is the amount of data that triggers dmatmsp/dmatls to start a
process to write files to tape.

007–3681–006 119

6: Media Specific Processes and Library Servers

– The MSP/LS records the position of the beginning of each zone in its database
so that it can use fast hardware positioning functions to return there to restore
the chunks in that zone.

– When a tape volume develops a defect, the data loss usually will be restricted
to the zone.

Because getting the tape position and writing a tape mark can be very costly, the
concept of a zone and the target size provides a way to control the trade offs
between write performance, safety, and recall speed.

Figure 6-1 illustrates the way files are distributed over chunks, zones, and volumes,
depending upon the file size. The tape with volume serial number (VSN) VOL001 has
two zones and contains six files and part of a seventh. The tapes with VSNs VOL002
and VOL003 contain the rest of file g. Notice that on VOL001 file g is associated with
chunk 7, while on the other two tapes it is associated with chunk 1. File g has three
VSNs associated with it, and each tape associates the file with a chunk and zone
unique to that tape.

120 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

VOL001

Tape mark

Zone 1 Zone 2

File a, chunk 1

File b, chunk 2

File c, chunk 3

File d, chunk 4

File g, chunk 7

File f, chunk 6

File e, chunk 5

VOL002

Zone 1

File g, chunk 1

Tape mark

Tape mark

VOL003

Zone 1

File g, chunk 1

Tape mark

EOT chunk

EOT zone

Tape mark

Tape mark

EOT zone

EOT zone

Tape mark

a10436

Figure 6-1 Media Concepts

CAT Database Records

Records in the tape catalog (CAT), tpcrdm, store the location of each file chunk in
terms of its volume, zone, and chunk number. The key for these records is the file’s
bit file identifier (bfid).

007–3681–006 121

6: Media Specific Processes and Library Servers

You do not explicitly create CAT records in the database. They are created when files
migrate.

The CAT portion of the MSP/LS database consists of the following files:

• tpcrdm.dat, which contains the data records themselves

• tpcrdm.key1.keys and tpcrdm.key2.keys, which contain the indexes to
those records

For MSPs, the database definition file (in the same directory) that describes these files
and their record structure is named atmsp_db.dbd. For LSs, it is named
libsrv_db.dbd.

All files are non-ASCII and cannot be maintained by standard utility programs. The
dmcatadm command provides facilities to create, query, and modify CAT database
records (see "dmcatadm Command", page 129).

Note: The ability to create or modify CAT database records with dmcatadm is
provided primarily for testing purposes. In the normal course of operations, you
would never use this capability.

VOL Database Records

Records in the tape volume (VOL) portion of the MSP/LS database, tpvrdb, contain
information about each volume that exists in the pool of tapes to be used by
dmatmsp or dmatls. These records are indexed by the volume serial number (VSN)
of each volume and contain such information as the volume’s type, estimated
capacity, label type, and a number of flags indicating the state of the volume. For LSs,
the record also contains the volume’s volume group or allocation group. Unlike the
CAT records, you must create the VOL records in the database before using dmatmsp
or dmatls for the first time.

The VOL portion of the MSP/LS database consists of two files:

• tpvrdm.dat, which contains the volume records themselves

• tpvrdm.vsn.keys, which contains the indexes to the records

For MSPs, the database definition file (in the same directory) that describes these files
and their record structure is named atmsp_db.dbd. For LSs, it is named
libsrv_db.dbd.

122 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Both files contain binary data and require special maintenance utilities. The dmvoladm
command, described in more detail in "dmvoladm Command", page 137, provides
facilities to create, query, and modify VOL records in the database. Additional
database maintenance utilities are described in "Database Recovery", page 168.

Note: If you have more than one instance of the tape MSP or VG, you must ensure
that the volume sets for each are mutually exclusive.

Tape MSP/LS Journals

Each instance of dmatmsp or dmatls protects its database by recording every
transaction in a journal file. For MSPs, journal file path names have the following
format:

JOURNAL_DIR/msp_name/atmsp_db.yyyymmdd[.hhmmss]

For LSs, journal file path names have the following format:

JOURNAL_DIR/ls_name/libsrv_db.yyyymmdd[.hhmmss]

The MSP/LS creates journal files automatically.

Existing journal files are closed and new ones created in two circumstances:

• When the first transaction after midnight occurs

• When the journal file reaches the size defined by the JOURNAL_SIZE
configuration parameter

When the first transaction after midnight occurs, the existing open journal file is
closed and the suffix .235959 is appended to the current file name no matter what
the time (or date) of closing. The closed file represents the last (or only) transaction
log of the date yyyymmdd. A new journal file with the current date is then created.

When the journal file reaches JOURNAL_SIZE, the file is closed and the suffix .hhmmss
is added to the name; hh, mm, and ss represent the hour, minute, and second of file
closing. A new journal file with the same date but no time is then created.

For example, the following shows the contents of a JOURNAL_DIR/msp_name
directory on 15 June 1998:

atmsp_db.19980527.235959 atmsp_db.19980606.235959

atmsp_db.19980528.235959 atmsp_db.19980607.235959

007–3681–006 123

6: Media Specific Processes and Library Servers

atmsp_db.19980529.235959 atmsp_db.19980608.235959
atmsp_db.19980530.235959 atmsp_db.19980609.235959

atmsp_db.19980531.235959 atmsp_db.19980610.235959

atmsp_db.19980601.235959 atmsp_db.19980611.235959

atmsp_db.19980602.235959 atmsp_db.19980612.235959

atmsp_db.19980603.235959 atmsp_db.19980613.235959
atmsp_db.19980604.235959 atmsp_db.19980614.235959

atmsp_db.19980605.235959 atmsp_db.19980615

For every date on which database transactions occurred, there will exist a file with
that date and the suffix .235959, with the exception of an existing open journal file.
Some dates may have additional files because the transaction log reached
JOURNAL_SIZE at a specified time and the file was closed.

You can configure daemon_tasks parameters to remove old journal files (using the
run_remove_journals.sh task and the JOURNAL_RETENTION parameter. For
more information, see "Configuring Daemon Maintenance Tasks", page 36.

If an MSP/LS database becomes corrupt, recovery consists of applying the journal
files to a backup copy of the database.

Tape MSP/LS Logs

All DMF MSPs and LSs maintain log files named msplog.yyyymmdd in the MSP/LS
spool directory which, by default, is SPOOL_DIR/mspname. SPOOL_DIR is configured
in the base object of the configuration file; mspname is the name of the MSP/LS in the
daemon object of the configuration file; yyyymmdd is the current year, month, and day.

These log files are distinct from the logs maintained by the DMF daemon; however,
some of the messages that occur in the daemon log are responses that the tape
MSP/LS generates. The content of the log is controlled by the MESSAGE_LEVEL
configuration parameter. For a description of the levels of logging available, see the
dmf_config(5) man page.

The msplog.yyyymmdd file is the primary log for the tape MSP/LS and contains
most of the messages. This file is written by dmatmsp, dmatls, dmatrc, and
dmatwc. A new msplog.yyyymmdd is created for each day.

This section describes informational statistics provided by the tape log files. These
messages appear in the SPOOL_DIR/msp_name/msplog.yymmdd files. Timing
information provided (such as MB transferred per second) should not be used as an
accurate benchmark of actual data transfer rates. This information is provided for

124 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

monitoring DMF and should only be used in comparison to similar data provided by
DMF. Text in all uppercase references a parameter defined in the DMF configuration
file. You can reference the comments in the sample configuration file or in the
dmf_config(5) man page for a more detailed definition of these parameters.

Note: Because the MSP/LS will continue to create log files and journal files without
limit, you must remove obsolete files periodically by configuring the
run_remove_logs.sh and run_remove_journals.sh tasks in the configuration
file, as described in "Configuring Daemon Maintenance Tasks", page 36.

Example 6-1 Tape MSP Statistics Messages

The following is an example of tape MSP statistics messages taken from an
msplog.yyyymmdd file. These messages are automatically and periodically issued by
the MSP.

09:06:00-I 18979429-dmatmsp stats: children=3/3/0/4, btp=92274688/130740224/250609687, wc=2/4, cwc=0

09:06:00-I 18979429-dmatmsp stats: data put=722.469 mb, data recalled= 45.089 mb

09:06:00-I 18979429-dmatmsp stats: Put_File - 6 33 0 6

09:06:00-I 18979429-dmatmsp stats: Get_File - 1 13 0 0

09:06:00-I 18979429-dmatmsp stats: Delete_File - 0 1 0 0

09:06:00-I 18979429-dmatmsp stats: Cancel_Req - 0 6 0 0

09:06:00-I 18979429-dmatmsp stats: Flushall - 0 8 3 0

09:06:00-I 18979429-dmatmsp stats: Merge - 20 14 0 0

09:06:00-I 18979429-dmatmsp stats: mc=4, ms=0, mu=0, sm=1

The information provided by these entries is defined as follows:

• children=3/3/0/4 represents the total child processes (3), the active child
processes (3), the clean processes running (0), and the configured value of
CHILD_MAXIMUM (4). Clean children are used when a dmatrc or dmatwc process
dies without cleaning up.

• btp=92274688/130740224/250609687 represents the bytes queued for putting
(92274688), the threshold at which to start the next put child (130740224), and the
bytes assigned to socket I/O (250609687)

• wc=2/4 represents the active write child processes (2) and the configured value of
MAX_PUT_CHILDREN (4)

• cwc=0 represents the process ID of the current write child (that is, the write child
that is accepting data to write). 0 represents none.

007–3681–006 125

6: Media Specific Processes and Library Servers

The next line gives the total amount of data put (722.469 megabytes) and recalled
(45.089 megabytes).

The next six lines provide statistics for each type of MSP request. Statistics
information is provided only for requests that have been issued since the MSP was
started. These lines have the following format:

request_name active successful errors canceled

active represents the number of requests not yet completed; successful represents the
number of successfully completed requests; error represents the number of requests
that completed with errors; canceled represents the number of canceled requests.

The last line provides the following information:

• mc is the configured value for MERGE_CUTOFF, the cutoff to stop scheduling tapes
for merging (4)

• ms is the configured value for CACHE_SPACE, the merge cache space available (0
bytes)

• mu is the merge cache space used (0 bytes)

• sm is the number of socket merge children (1)

Example 6-2 LS Statistics Messages

The following is an example of LS statistics messages taken from an
msplog.yyyymmdd file. These messages are automatically and periodically issued by
the LS.

00:02:00-I 13902144-dmatls vg9a16.stats: children=1/0/0/7, btp=28098297/0/0, wc=0/7, cwc=0

00:02:00-I 13902144-dmatls vg9a17.stats: children=1/0/0/7, btp=59032803/0/0, wc=0/7, cwc=0

00:02:00-I 13902144-dmatls vg9a16.stats: data put=608.607 mb, data recalled=114.270 mb

00:02:00-I 13902144-dmatls vg9a17.stats: data put=1068.423 mb, data recalled=210.575 mb

00:02:01-I 13902144-dmatls vg9a16.stats: Put_File - 10 172 0 12

00:02:01-I 13902144-dmatls vg9a16.stats: Delete_File - 0 130 0 0

00:02:01-I 13902144-dmatls vg9a16.stats: Cancel_Req - 0 12 0 0

00:02:01-I 13902144-dmatls vg9a16.stats: Flushall - 0 2 0 0

00:02:01-I 13902144-dmatls vg9a16.stats: Merge - 45 25 0 16

00:02:01-I 13902144-dmatls vg9a17.stats: Put_File - 14 210 0 8

00:02:01-I 13902144-dmatls vg9a17.stats: Get_File - 0 1 0 0

00:02:01-I 13902144-dmatls vg9a17.stats: Delete_File - 0 178 0 0

00:02:01-I 13902144-dmatls vg9a17.stats: Cancel_Req - 0 8 0 0

00:02:01-I 13902144-dmatls vg9a17.stats: Flushall - 0 2 0 0

126 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

00:02:01-I 13902144-dmatls vg9a17.stats: Merge - 18 28 0 22

00:02:01-I 13902144-dmatls vg9a16.stats: mc=7, ms=500000000, mu=133107712, sm=0

00:02:01-I 13902144-dmatls vg9a17.stats: mc=7, ms=500000000, mu=73105408, sm=0

The fields in each message have the same meanings as in the MSP statistics messages
(see Example 6-1, page 125), except that they are on a volume group basis.

The tape MSP/LS write child (dmatwc) and read child (dmatrc) also produce
statistics messages in the MSP/LS log file. These messages contain timing statistics
whose format changes from release to release, and they are not documented in this
manual.

Volume Merging

When users delete or modify their migrated files, the copy on tape becomes obsolete.
Over time, some volumes will become entirely empty and can be reused. However,
most volumes experience a gradual increase in the ratio of obsolete data to active data;
such volumes are said to be sparsely populated or simply sparse. To reclaim the unused
space on these volumes, DMF provides a volume merge facility, which copies the active
data from several sparse volumes to a new volume, thus freeing the sparse volumes
for reuse. Volume merging can be configured to occur automatically by using the
run_merge_tapes.sh task (see "Configuring Tape Maintenance Tasks ", page 77).

Volume merging can also be done manually. dmatmsp/dmatls perform merge
operations whenever sparse volumes and the necessary resources exist at the same
time. Use the dmvoladm select directive to mark MSP/VG volumes as sparse.
(The select directive is described in "dmvoladm Command", page 137.) Because the
merge processing occurs simultaneously with other DMF activities, it is easiest to
configure DMF to automatically perform merges at night or during other periods of
relatively low activity.

007–3681–006 127

6: Media Specific Processes and Library Servers

The dmatmsp/dmatls utilities can perform volume-to-volume merging.
Volume-to-volume merging is accomplished by moving data across a socket
connection between the MSP/LS tape read-child and the MSP/LS tape write-child.
The benefit of using a socket to transfer data between volumes is that you do not have
to reserve disk space. The drawback to using a socket for data transfer is the cost of
linking the process that performs the read with the process that performs the write.

In busy environments that have heavy contention for tape drives, the close coupling
between the socket’s tape reader and tape writer can be costly, especially when short
files are being transferred. For large files, the overhead and possible delays in waiting
for both tapes to be mounted is small compared to the benefit of rapid transfer and
zero impact on free disk space. For this reason, you can move small files through a
disk cache and big files through a socket. This process is mediated by the following
configuration parameters:

Parameter Description

CACHE_SPACE Specifies the amount of disk space that will be used to
temporarily store chunks during a merge operation.

CACHE_DIR Specifies the directory into which the MSP/LS will
store chunks while merging them from sparse tapes. If
CACHE_DIR is not specified, TMP_DIR is used.

MAX_CACHE_FILE Specifies the largest chunk that will be stored
temporarily on disk during a merge operation.

MERGE_CUTOFF Specifies the number of child processes after which the
MSP or VG will stop scheduling tapes for merging.
This number is the sum of the active and queued
children generated from gets, puts, and merges.

Using a small amount of disk space to hold small chunks can have a significant
impact on the total time required to perform merges. The default configuration
options are set to move 100% of merge data across sockets.

128 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Note: It is important to avoid volume merging on more than one MSP or VG
simultaneously if they share a tape device. If you initiate a merge process on more
than one MSP or VG on the same device at the same time (either by entering the same
time in the dmf_config configuration file or by triggering the process manually),
both processes will compete for tape transports. When a limited number of tape
transports are available, a deadlock can occur. If you chose not to configure DMF to
perform merges automatically by configuring the run_tape_merge.sh task, ensure
that your cron jobs that automatically initiate volume merging refrain from initiating
a second merge process until after all previously initiated merges are complete. You
can accomplish this by using the dmvoladm command within the cron job to check
for tapes that have the hsparse flag, as shown in the following example for MSPs:

tapes=$(dmvoladm -m msp1 -c "count hsparse")

if [[-z "$tapes"]]; then

start merge on msp2

dmvoladm -m msp2 -c "select hfull threshold<=30"
fi

dmcatadm Command

The dmcatadm(8) command provides maintenance services for CAT records in the
MSP/LS database.

When you are inside the dmcatadm interface (that is, when you see the adm
command_number > prompt), the command has a 30–minute timeout associated with
it. If you do not enter a response within 30 minutes of the prompt having been
displayed, the dmcatadm session terminates with a descriptive message. This
behavior on all the database administrative commands limits the amount of time that
an administrator can lock the daemon and MSP/LS databases from updates.

Note: Most of these facilities, especially the ability to create and modify CAT
database records, are intended primarily for testing purposes.

dmcatadm Directives

The dmcatadm command executes directives from stdin or from the command line
when you use the -c option. All directives start with a directive name followed by
one or more parameters. Parameters may be positional or keyword-value pairs,

007–3681–006 129

6: Media Specific Processes and Library Servers

depending on the command. White space separates the directive name, keywords,
and values.

The dmcatadm directives are as follows:

Directive Description

count Displays the number of records that match the
expression provided.

create Creates a CAT record.

delete Deletes an existing CAT record.

dump Prints the specified CAT records to standard out in
ASCII; each database field is separated by the pipe
character (|).

help Displays help.

list Shows the fields of selected CAT records. You may
specify which fields are shown.

load Applies records to the MSP/LS database obtained from
running the dump directive.

quit Stops program execution after flushing any changed
database records to disk. The abbreviation q and the
string exit produce the same effect.

set Specifies the fields to be displayed in subsequent list
directives.

update Modifies an existing CAT record.

verify Verifies the MSP/LS database against the dmdaemon
database.

The first parameter of most directives specifies the database records to manipulate,
and the remaining parameters are keyword-value pairs.

130 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

The syntax for the dmcatadm directives is summarized as follows:

count selection [limit]
create key field...
delete selection [limit]
dump selection [limit]
help

list selection [limit] [format]
load filename
quit (or q or exit)

set [format]
update selection [limit] to fields...

For MSPs:

verify selection [entries] [mspname] [limit]

For LSs:

verify selection [entries] [vgnames] [limit]

The value for key may be a bit file identifier (bfid) designator in the form of a
hexadecimal number.

The value for selection can be one of the following:

• A key or range of keys in the form key [-] [key]. key- specifies all records starting
with key, and -key specifies all records up to key.

• The keyword all

• A period (.), which recalls the previous selection

• An expression involving any of the above, field value comparisons, and, or, or
parentheses.

A field value comparison may use < (less than), > (greater than), = (equal to), <= (less
than or equal to), or >= (greater than or equal to) to compare a field keyword to an
appropriate value.

The syntax for selection is as follows:

007–3681–006 131

6: Media Specific Processes and Library Servers

selection ::= or-expr
or-expr ::= and-expr [or or-expr]

and-expr ::= nested-expr [and and-expr]

nested-expr ::= comparison | (expression)

comparison ::= key-range | field-keyword op field-value
op ::= < | > | = | >= | <=
key-range ::= key [- key] | [key - [key]] | key-macro
key-macro ::= all

field-keyword ::= name or abbreviation of the record field
field-value ::= appropriate value for the field
key ::= character representation of the record key

Thus valid selections could be any of the following:

1510-1514
10000000000-

-15138

all

chunkoffset>0

chunknumber>0 and writeage<5d
. recordorder data

vsn=S07638

dmcatadm Keywords

The field keywords listed below specify new values for fields. Some of the keywords
are valid only if you also specify the -u option.

Keyword Description

chunkdata (cd) Specifies the actual number of bytes written to tape by
the MSP/VG for the chunk. In the case of sparse files,
this field will be smaller than chunklength. This is
valid only in unsafe (-u) mode.

chunklength (cl) The size of the chunk in bytes; an integer. This is valid
only in unsafe (-u) mode.

chunknumber (cn) The ordinal of the chunk on its volume. For example, 1
if the chunk is the first chunk on the volume, 2 if it is
the second, and so on. Valid only as part of selection.

132 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

chunkoffset (co) The byte offset within the file where the chunk begins;
an integer. For example, the first chunk of a file has
chunkoffset 0. If that first chunk is 1,000,000 bytes
long, the second chunk would have chunkoffset
1000000. This is valid only in unsafe (-u) mode.

chunkpos (cp) The block offset within the zone where the chunk
begins — a hexinteger. For example, the first chunk in a
zone has chunkpos 1. A value of 0 means unknown.
Valid only in unsafe (-u) mode in LS databases.

filesize (fs) The original file size in bytes, an integer. This is valid
only in unsafe (-u) mode.

flags (fl) Not yet used by DMF.

readage (ra) The date and time when the chunk was last read; the
same as readdate, except specified as age.

readcount (rc) The number of times the chunk has been recalled to
disk; an integer.

readdate (rd) The date and time when the chunk was last read, an
integer that reflects raw UNIX time.

volgrp (vg) The volume group name. This keyword is valid for LSs
only.

vsn (v) The volume serial number(s); a list of one or more
6-character alphanumeric volume serial numbers
separated by colons (:).

writeage (wa) The date and time when the chunk was written; the
same as writedate, except specified as age. This is
valid only in unsafe (-u) mode.

writedate(wd) The date and time when the chunk was written, an
integer that reflects raw UNIX time. This is valid only
in unsafe (-u) mode.

zoneblockid (zb) Allows just the block ID portion of the zonepos to be
displayed, returned, or changed. This is valid only in
unsafe (-u) mode.

zonenumber (zn) Allows just the zone number portion of the zonepos to
be displayed, returned, or changed. This is valid only
in unsafe (-u) mode.

007–3681–006 133

6: Media Specific Processes and Library Servers

zonepos (zp) The physical address of the zone on the volume,
expressed in the form integer/hexinteger, designating a
zone number and block ID. A value of zero is used for
hexinteger if no block ID is known. integer is the same as
zonenumber, and hexinteger is the same as
zoneblockid. This is valid only in unsafe (-u) mode.

The date field keywords (readdate and writedate) have a value of either now or
raw UNIX time (seconds since January 1, 1970). These keywords display their value
as raw UNIX time. The value comparison > used with the date keywords means
newer than the value given. For example, >36000 is newer than 10AM on January 1,
1970, and >852081200 is newer than 10AM on January 1, 1997.

The age field keywords (readage and writeage) let you express time as age, a
string in a form such as 8w12d7h16m20s (meaning 8 weeks, 12 days, 7 hours, 16
minutes, and 20 seconds old). The age keywords display their value as an integer
followed by w, d, h, m, or s (weeks, days, hours, minutes, and seconds, respectively).
The comparison > used with the age keywords means older than the value given
(that is, >5d is older than 5 days).

The limit keywords limit the records acted upon:

Keyword Description

recordlimit (rl) Limits the number of records acted upon to the value
that you specify; an integer.

recordorder (ro) Specifies the order that records are scanned; may be
key, vsn, or data. key specifies that records are
scanned in ascending order of the chunk key. vsn
specifies that records are scanned in ascending order of
the chunk VSN. data specifies that records are scanned
in the order in which they are stored in the database,
which is fastest but essentially unordered.

The following keywords specify files of daemon database entries:

Keyword Description

entries (e) Specifies a file of daemon database entries; a string.

mspname (mn) Specifies the name of the MSP associated with the
record; a string.

134 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

vgnames (vn) Specifies the name(s) of the VG(s) associated with the
record; a quoted, space separated list of names.

The format keyword selects a format to use for the display. If, for example, you want
to display fields in a different order than the default or want to include fields that are
not included in the default display, you specify them with the format keyword.
Values for format can be default, keyword, or a list of field keywords enclosed in
quotation marks.

For any field that takes a byte count, you may append the letter k, m, or g (in either
uppercase or lowercase) to the integer to indicate that the value is to be multiplied by
one thousand, one million, or one billion, respectively.

For information about the role of the dmcatadm(8) command in database recovery,
see "Database Recovery", page 168.

Example 6-3 dmcatadm list directive

The following is sample output from the dmcatadm list directive. The file with key
3273d5420001e244 has two chunks because it spans two physical tape volumes; the
first chunk contains bytes 0 through 24821759, and the second chunk bytes 24821760
(the CHUNK OFFSET) to the end of the file.

adm 3>list 3273d5420001e242- recordlimit 10

WRITE CHUNK CHUNK CHUNK

KEY AGE OFFSET LENGTH NUM VSN

3273d5420001e242 61d 0 77863935 13 S12940

3273d5420001e244 61d 0 24821760 168 S12936

3273d5420001e244 61d 24821760 23543808 1 S12945

3273d5420001e245 61d 0 51019776 2 S12945

3273d5420001e246 61d 0 45629440 59 S12938

3273d5420001e247 61d 0 35586048 60 S12938

3273d5420001e248 61d 0 9568256 3 S12944

3273d5420001e249 61d 0 14221312 4 S12944

3273d5420001e24a 61d 0 458752 5 S12944

3273d5420001e24b 61d 0 14155776 6 S12944

The following is sample output from the dmcatadm list directive for an LS. The file
with key 3b4b28f2000000000000ae80 has 2 chunks because it was migrated to
two different VGs within this LS. The output from the dmvoladm list directive that

007–3681–006 135

6: Media Specific Processes and Library Servers

follows shows that VSN 000700 is assigned to the VG named vg8a15, and VSN
00727 is assigned to the VG named vg8a05.

dmcatadm -m ls1

adm 1>list 3b4b28f2000000000000ae80- recordlimit 4

WRITE CHUNK CHUNK CHUNK

KEY AGE OFFSET LENGTH NUM VSN

--

3b4b28f2000000000000ae80 1d 0 2305938 120 000700

3b4b28f2000000000000ae80 4d 0 2305938 32 000727

3b4b28f2000000000000ae82 1d 0 234277 247 003171

3b4b28f2000000000000ae82 1d 0 234277 186 003176

adm 2> quit

dmvoladm -m ls1

adm 1>list vsn=000700

DATA EOT EOT WR/FR

VSN VOLGRP LB DATA LEFT WRITTEN CHUNK ZONE HFLAGS AGE

000700 vg8a15 al 150.280473 233.786093 123 9 ------u-- 1d

adm 2>list vsn=000727

DATA EOT EOT WR/FR

VSN VOLGRP LB DATA LEFT WRITTEN CHUNK ZONE HFLAGS AGE

000727 vg8a05 al 159.107337 200.443980 102 6 --------- 1d

dmcatadm Text Field Order

The text field order for chunk records generated by the dmdump(8), dmdumpj(8), and
the dump directive in dmcatadm is listed below. This is the format expected by the
load directives in dmcatadm:

1. C (indicates the chunk record type)

2. bfid (hexadecimal digits)

3. filesize

4. writedata

136 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

5. readdate

6. readcount

7. chunkoffset

8. chunklength

9. chunkdata

10. chunknumber

11. flags (in octal)

12. zoneposition (zonenumber/zoneblockid) (in hexadecimal)

13. vsn

14. chunkpos (in hexadecimal; only for LS)

dmvoladm Command

The dmvoladm(8) command provides maintenance services for VOL records in the
MSP/LS database. In addition to the creation and modification of volume records,
dmvoladm has an important role in the recovery of VOL records from a database
checkpoint and is the mechanism that triggers volume merge activity.

When you are inside the dmvoladm interface (that is, when you see the adm
command_number > prompt), the command has a 30–minute timeout associated with
it. If you do not enter a response within 30 minutes of the prompt having been
displayed, the dmvoladm session terminates with a descriptive message. This
behavior on all the database administrative commands limits the amount of time that
an administrator can lock the daemon and MSP/LS databases from updates.

dmvoladm Directives

The dmvoladm command executes directives from stdin or from the command line
when you use the -c option. The syntax is the same as for dmcatadm: a directive
name followed by parameters or paired keywords and values, all separated by white
space. dmvoladm directives follow:

007–3681–006 137

6: Media Specific Processes and Library Servers

Directive Description

count Displays the number of records that match the
expression provided.

create Creates a VOL record.

delete Deletes an existing VOL record.

dump Prints the specified VOL records to standard output in
ASCII. Each database field is separated by the pipe
character (|).

help Displays help.

list Shows the fields of selected VOL records. You may
specify which fields are shown.

load Applies VOL records to the database obtained from
running the dump directive.

quit Stops program execution after flushing any changed
database records to disk. The abbreviation q and the
string exit produce the same effect.

repair Causes dmvoladm to adjust the usage information for
specified volumes based on CAT data in the database.
This directive is valid only in unsafe (-u) mode.

select Marks selected volumes as being sparse. Equivalent to
update expression to hsparse on.

set Specifies the fields to be shown in subsequent list
directives.

update Modifies an existing VOL record.

138 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

verify Verifies the MSP databases against the dmdaemon
databases.

The syntax for the dmvoladm directives is summarized as follows:

count selection
create vsnlist [field...]
delete selection [limit...]
dump selection [limit...]
help

list selection [limit...] [format]
load filename
quit (or q, or exit

repair selection
select selection [limit...]
set [format]
update selection [limit...] to field
verify selection

The value for vsnlist may be a single 6–character volume serial number (VSN) or a
range of VSNs separated by the hyphen (-) character. A VSN string may consists
entirely of letters, entirely of digits, or may be a series of letters followed by digits. In
a range of VSNs, the first must be lexically less than the second.

The value for selection may be one of the following:

• A vsnlist or range of VSNs in the form vsn[-vsn]. vsn- specifies all records
starting with vsn, and -vsn specifies all records up to vsn.

• A period (.), which recalls the previous selection

• The name of one of the flags in the keyword list that follows in this section.

• One of the words all, used, empty, or partial or any of the hflags, whose
meanings are as follows:

Flag Description

all Specifies all volumes in the database

empty Specifies all volumes in which data written is 0

partial Specifies used volumes in which hfull is off

007–3681–006 139

6: Media Specific Processes and Library Servers

used Specifies all volumes in which data written is not 0

The syntax for selection is as follows:

selection ::= or-expr
or-expr ::= and-expr [or or-expr]

and-expr ::= nested-expr [and and-expr]

nested-expr ::= comparison | (expression)

comparison ::= vsnlist | field-keyword op field-value
op ::= < | > | = | >= | <=

key-range ::= vsn [- vsn] | [vsn - [vsn]] | key-macro
key-macro ::= all | empty | used | partial | flag(s)
field-keyword ::= name or abbreviation of the record field
field-value ::= appropriate value for the field
vsnlist ::= character representation of the volume serial number

Thus valid selections could be any of the following:

tape01-tape02

tape50-
-vsn900

all

herr or hbadmnt

used and hfull=off

datawritten>0 and hfull=off

. and eotchunk>3000 and (eotchunk<3500 or hfree=on)
hfull and threshold<30

dmvoladm Keywords

The field keywords specify new values for fields:

Keyword Description

blocksize (bs) Specifies the data block size in bytes when the tape was
first written; an integer. The default is 65,536. This
keyword is used only when mounting tapes with
existing valid data. When an empty tape is first written,
the MSP/VG uses the default value for the tape type,
unless it is overridden by a value in the BLOCK_SIZE
parameter for the tape device in the DMF configuration
file. This is valid only in unsafe (-u) mode.

140 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

chunksleft (cl) Specifies the number of active chunks on the volume;
an integer. This is valid only in unsafe (-u) mode.

dataleft (dl) Specifies the number of bytes of active data on the
volume. You specify this number as an integer, but for
readability purposes it is displayed in megabytes (MB).
This is valid only in unsafe (-u) mode.

datawritten (dw) Specifies the maximum number of bytes ever written to
the volume. You specify this number as an integer, but
for readability purposes it is displayed in MB. This is
valid only in unsafe (-u) mode.

eotblockid (eb) Specifies the blockid of the chunk containing the
end-of-tape marker; a hexinteger. This is valid only in
unsafe (-u) mode.

eotchunk (ec) Specifies the number of the chunk containing the
end-of-tape marker; an integer. This is valid only in
unsafe (-u) mode.

eotpos (ep) Specifies the absolute position of the end-of-tape
marker zone in the form integer/hexinteger, designating
a zone number and block ID. A value of zero is used
for hexinteger if no block ID is known. integer the same
as eotzone, and hexinteger is the same as
eotblockid. This is valid only in unsafe (-u) mode.

eotzone (ez) Specifies the number of the zone containing the
end-of-tape marker; an integer. This is valid only in
unsafe (-u) mode.

label (lb) Specifies the label type: al for ANSI standard labels;
sl for IBM standard labels; or nl for nonlabeled
volumes. The default is al.

tapesize (ts) Specifies the estimated capacity in bytes; an integer.
The default is 215 MB.

threshold (th) Specifies the ratio of dataleft to datawritten as a
percentage. This field cannot be displayed or updated.

upage (ua) (Display only.) Specifies the date and time of the last
update to the volume’s database record. The same as
for update, except that it is expressed as age. This is
valid only in unsafe (-u) mode.

007–3681–006 141

6: Media Specific Processes and Library Servers

update (ud) (Display only.) Specifies the date and time of the last
update to the volume’s database record, expressed as
an integer that reflects raw UNIX time. This is valid
only in unsafe (-u) mode.

version (v) Specifies the DMF tape format version, an integer. This
is valid only in unsafe (-u) mode.

volgrp (vg) Specifies the volume group or allocation group. This
field is valid only for LS databases.

wfage (wa) Specifies the date and time that the volume was written
to or freed for reuse. The same as for wfdate, except
that it is expressed as age. This is valid only in unsafe
(-u) mode.

wfdate (wd) Specifies the date and time that the volume was written
to or freed for reuse, expressed as an integer that reflects
raw UNIX time. This is valid only in unsafe (-u) mode.

The date field keywords (update and wfdate) have a value of either now or raw
UNIX time (seconds since January 1, 1970). These keywords display their value as
raw UNIX time. The value comparison > used with the date keywords means newer
than the value given. For example, >36000 is newer than 10AM on January 1, 1970,
and >852081200 is newer than 10AM on January 1, 1997.

The age field keywords (upage and wfage) let you express time as age, a string in a
form such as 8w12d7h16m20s (meaning 8 weeks, 12 days, 7 hours, 16 minutes, and
20 seconds old). The age keywords display their value as an integer followed by w, d,
h, m, or s (weeks, days, hours, minutes, and seconds, respectively). The comparison >
used with the age keywords means older than the value given (that is, >5d is older
than 5 days).

The limit keywords restrict the volumes acted upon:

Keyword Description

datalimit (no
abbreviation)

Specifies a value in bytes. The directive stops when the
sum of dataleft of the volumes processed so far
exceeds this value.

recordlimit (rl) Specifies a number of records; an integer. The directive
stops when the number of volumes processed equals
this value.

142 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

recordorder (ro) Specifies the order that records are scanned; may be
either data or vsn. vsn specifies that the records are
scanned in ascending order of the chunk VSN. data
specifies that the records are scanned in the order in
which they are found in the database, which is fastest
but essentially unordered.

The format keyword selects a format to use for the display. If, for example, you want
to display fields in a different order than the default or want to include fields that are
not included in the default display, you specify them with the format keyword.
Values for format can be default, keyword, or a list of field keywords enclosed in
quotation marks.

The flag keywords change the settings of hold flags:

Keyword Description

hbadmnt (hb) Indicates that the volume could not be mounted. If the
problem causing the mount to fail is transient, the MSP
will clear the flag the next time it attempts to mount the
tape and succeeds. Typically this flag indicates a
permanent condition that should be investigated and
corrected. It is displayed as --------b. Currently, this
flag is used only by MSPs.

herr (he) Indicates that an I/O error has occurred on the volume;
displayed as e--------. Currently, this flag is used
only by MSPs.

hflags (no
abbreviation)

(Display only.) Shows the complete set of hold flags as
a 9–character string. Each flag has a specific position
and alphabetic value. If the flag is off, a dash (-) is
displayed in its position; if the flag is on, the alphabetic
character is displayed in that position.

hfree (no
abbreviation)

Indicates that the volume has no active data and is
available for reuse after HFREE_TIME has expired,
displayed as -f-------. See the dmf_config(5) man
page for information about the HFREE_TIME
configuration parameter. This is valid only in unsafe
(-u) mode.

hfull (hu) Indicates that the volume cannot hold any more data;
displayed as ------u--. For LSs, this flag can also be

007–3681–006 143

6: Media Specific Processes and Library Servers

set if error conditions indicate that no more data should
be written to it.

hlock (hl) Indicates that the tape cannot be used for either input
or output. This is a transient condition; the flag will be
cleared by the LS after a period of time has passed.
Currently used only by the LS. Displayed as
----l----.

hoa (ho) Indicates that the volume is not to be used for either
input or output, displayed as --o------.

hro (hr) Indicates that the volume is read-only, displayed as
---r-----; this inhibits the MSP from using the
volume for output.

hrsv (h*) Currently unused (reserved); displayed as ----*----.
This is valid only in unsafe (-u) mode.

hsparse (hs) Indicates that the volume is considered sparse and thus
a candidate for a volume merge operation, displayed as
-------s-.

For any field that takes a byte count, you may append the letter k, m, or g (in either
uppercase or lowercase) to the integer to indicate that the value is to be multiplied by
one thousand, one million, or one billion, respectively.

For information about the role of the dmvoladm command in database recovery, see
"Database Recovery", page 168. For details about dmvoladm syntax, see the man page.

Example 6-4 dmvoladm list directives

The following example illustrates the default format for the list directive when
using an MSP. The column marked HFLAGS uses a format similar to the ls -l
command in that each letter has an assigned position and its presence indicates that
the flag is “on”. The positions spell the string efor*lmusb, representing herr,
hfree, hoa, hro, hrsv, hlock, hfull, hsparse, and hbadmnt, respectively.

adm 1>list S03232-S03254

DATA EOT WR/FR

VSN LB DATA LEFT WRITTEN CHUNK HFLAGS AGE

--

S03232 sl 185.105446 400.000000 10 ------u-- 997d

S03233 sl 177.057792 400.000000 2 ------u-- 495d

144 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

S03234 sl 253.573185 400.000000 598 ------u-- 906d

S03235 sl 170.963133 400.000000 18 ------u-- 497d

S03236 sl 194.456616 400.000000 38 ------u-- 915d

S03237 sl 250.533926 400.000000 92 ------u-- 803d

S03238 sl 0.000000 0.000000 1 --------- 114d

S03239 sl 0.000000 0.000000 1 --------- 114d

S03240 sl 0.000000 0.000000 1 --------- 114d

S03241 sl 252.162452 400.000000 325 ------u-- 369d

S03242 sl 166.635861 400.000000 81 ------u-- 631d

S03243 sl 202.468129 400.000000 26 ------u-- 400d

S03244 sl 0.000000 0.000000 1 --------- 96d

S03245 sl 383.047890 400.000000 26 ------u-- 212d

S03246 sl 288.721920 400.000000 5 ------u-- 687d

S03247 sl 261.498716 400.000000 186 ------u-- 691d

S03248 sl 255.480486 400.000000 17 ------u-- 288d

S03249 sl 319.990661 400.000000 526 ------u-- 253d

S03250 sl 0.000000 0.000000 1 --------- 114d

S03251 sl 241.785669 400.000000 533 ------u-- 327d

S03252 sl 1223.947545 1223.947545 157 ------u-- 44d

S03253 sl 386.038988 400.000000 636 ------u-- 136d

S03254 sl 170.798521 400.000000 38 ------u-- 228d

The following example illustrates using the list command to show only volumes
meeting some criterion (in this case, those having their hfree flag set):

adm: 1>list hfree

DATA EOT WR/FR

VSN LB DATA LEFT WRITTEN CHUNK HFLAGS AGE

003249 sl 0.000000 115.000000 9 -f-r------ 3h

003250 sl 0.000000 115.000000 9 -f-r------ 3h

003251 sl 0.000000 115.000000 10 -f-r------ 3h

003252 sl 0.000000 115.000000 11 -f-r------ 3h

003255 sl 0.000000 115.000000 15 -f-r------ 3h

003258 sl 0.000000 115.000000 13 -f-r------ 3h

003263 sl 0.000000 115.000000 12 -f-r------ 3h

003264 sl 0.000000 0.000000 1 -f-------- 4h

003289 sl 0.000000 0.000000 1 -f-r------ 3h

003290 sl 0.000000 215.000000 29 -f-r------ 3h

003294 sl 0.000000 0.000000 1 -f-------- 4h

007–3681–006 145

6: Media Specific Processes and Library Servers

The following example shows one way you can customize the list format to show
only the fields that you want to see. The other way is to use the set format
command with the same keyword list.

adm 21>list S03232-S03254 format "eotchunk eotzone eotpos"

EOT EOT
VSN CHUNK ZONE EOTPOS

S03232 10 2 2/4294967295

S03233 2 2 2/4294967295

S03234 598 2 2/4294967295
S03235 18 2 2/4294967295

S03236 38 2 2/4294967295

S03237 92 2 2/4294967295

S03238 1 1 1/4294967295

S03239 1 1 1/4294967295

S03240 1 1 1/4294967295
S03241 325 2 2/4294967295

S03242 81 2 2/4294967295

S03243 26 2 2/4294967295

S03244 1 1 1/4294967295

S03245 26 2 2/4294967295
S03246 5 2 2/4294967295

S03247 186 2 2/4294967295

S03248 17 2 2/4294967295

S03249 526 2 2/4294967295

S03250 1 1 1/4294967295
S03251 533 2 2/4294967295

S03252 157 17 17/2147483648

S03253 636 2 2/4294967295

S03254 38 2 2/4294967295

146 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

The following example gives a convenient way to show the several flag bits in a way
different from their usual representation.

adm 23>list 003232-003254 format "herr hfree hfull hlock hoa hro"

herr hfree hfull hlock hoa hro

VSN

003232 off off on off off off

003233 off off off off off off

003234 off off off off off off

003235 off off off off off off
003236 off off on off off off

003237 off off on off off off

003238 off off on off off off

003239 off off on off off off

003240 off off off off off off

003241 off off on off off off
003242 off off on off off off

003243 off off off off off off

003244 off off off off off off

003245 off off on off off off

003246 off off off off off off
003247 off off on off off off

003248 off off on off off on

003249 off on off off off on

003250 off on off off off on

003251 off on off off off on
003252 off on off off off on

003253 off off on off off on

003254 off off on off off on

The following example shows how to display only those tapes assigned to the
volume group named vg9a00. This example is valid with library servers only.

adm 3>list vg=vg9a00

DATA EOT EOT WR/FR

VSN VOLGRP LB DATA LEFT WRITTEN CHUNK ZONE HFLAGS AGE

003210 vg9a00 al 1.048576 1.048576 3 2 --------- 11d

003282 vg9a00 al 11.534336 11.534336 13 2 --------- 7d

007–3681–006 147

6: Media Specific Processes and Library Servers

dmvoladm Text Field Order

The text field order for volume records generated by the dmdump(8), dmdumpj(8), and
the dump directive in dmvoladm is listed below. This is the format expected by the
load directives in dmvoladm.

For MSP:

1. V (indicates the volume record type)

2. vsn

3. lbtype

4. capacity

5. blocksize

6. hflags (in octal)

7. version

8. datawritten

9. eotchunk

10. eotposition (eotzone/eotblockid) (in hexadecimal)

11. dataleft

12. chunksleft

13. wfdate

14. update

15. id (in octal). This field indicates the type of process that last updated the record.

For LS:

1. V (indicates the volume record type)

2. vsn

3. volgrp

4. lbtype

5. capacity

148 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

6. blocksize

7. hflags (in octal)

8. version

9. datawritten

10. eotchunk

11. eotposition (eotzone/eotblockid) (in hexadecimal)

12. dataleft

13. chunksleft

14. wfdate

15. update

16. id (in octal). This field indicates the type of process that last updated the record.

dmatread Command

Use the dmatread(8) command to copy all or part of the data from a migrated file
back to disk. You might want to do this if, for example, a user accidentally deleted a
file and did not discover that the deletion had occurred until after the database
entries had been removed by the hard delete procedure. Using backup copies of the
databases from before the hard delete was performed, dmatread can restore the data
to disk, assuming that the tape volume has not been reused in the meantime.

Example 6-5 Restoring Hard-deleted Files Using dmatread

To copy migrated files back to disk, perform the following steps:

1. Determine the bfid of the file you want to restore. You can use backup copies of
dmdlog or your dbrec.dat files, or a restored dump copy of the deleted file’s
inode (and the dmattr command).

2. Using backup copies of the MSP/LS databases, use a dmatread(8) command
similar to the following:

dmatread -p /a/dmbackup -B 342984C50000000000084155

342984C50000000000084155 is the bfid of the file to be restored, and
/a/dmbackup is the directory containing the backup copies of the MSP

007–3681–006 149

6: Media Specific Processes and Library Servers

databases. Your file will be restored to the current directory as
B342984C50000000000084155

DMF does not know the original name of the file; you must manually move the
restored data to the appropriate file.

If you have access to chunk and VSN information for the file to be restored, you can
use the dmatread -c and -v options and avoid using backup copies of the MSP/LS
database. In this case, dmatread will issue messages indicating that the chunk is not
found in the current database, but it will continue with the request and restore the file
as described in this example.

dmatsnf Command

Use the dmatsnf(8) command to verify the readability of or to audit the contents of
MSP/LS volumes. You may also generate text database records that can be applied to
the MSP/LS databases (using the load directive in dmcatadm and dmvoladm,
respectively), in order to add the contents of a volume to the MSP/LS database
(although this is impractical for large numbers of volumes).

dmatsnf can be used to verify one or more tape volumes against the MSP/LS
databases. It also can be used to generate journal entries, which can be added to the
MSP/LS databases by using the load directive in dmvoladm and dmcatadm.

dmaudit verifymsp Command

Use the verifymsp option of the dmaudit(8) command to check the consistency of
the DMF daemon and MSP/LS databases after an MSP, LS, DMF, or system failure.
This command captures the database files and compares the contents of the daemon
database with each MSP/LS database. Any problems are reported to standard output,
but no attempt is made to repair them.

This function can also be done directly using dmatvfy(8) after a snapshot has been
taken.

FTP MSP
The FTP MSP allows the DMF daemon to manage data by moving it to a remote
machine. Data is moved to and from the remote machine with the protocol described
in RFC 959 (FTP). The remote machine must understand this specific protocol.

150 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Note: It is desirable that the remote machine run an operating system based on
UNIX, so that the MSP can create subdirectories to organize the offline data.
However, this is not a requirement.

The FTP MSP does not need a private database to operate; all information necessary to
retrieve offline files is kept in the daemon database, DMF configuration file, and login
information file. The login information file contains configuration information, such
as passwords, that must be kept private. As a safeguard, the MSP will not operate if
the login information file is readable by anyone other than the system administrator.

Processing of Requests

The FTP MSP is always waiting for requests to arrive from the DMF daemon, but, to
improve efficiency, it holds PUT and DELETE requests briefly and groups similar
requests together into a single FTP session. No PUT request will be held longer than
60 seconds. No DELETE request will be held longer than 5 seconds. GET requests are
not held. The MSP will stop holding requests if it has a large amount of work to do
(more than 1024 individual files or 8 MB of data). The FTP MSP also limits the
number of FTP sessions that can be active at once and the rate at which new sessions
can be initiated.

After a request has been held for the appropriate amount of time, it enters a ready
state. Processing usually begins immediately, but may be delayed if resources are not
available.

The following limits affect the maximum number of requests that can be processed:

• An administrator-controlled limit on the maximum number of concurrent FTP
sessions per MSP (CHILD_MAXIMUM).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing delete requests (GUARANTEED_DELETES).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing dmget(1) requests (GUARANTEED_GETS).

• A system-imposed limit of 85 FTP sessions in any 60-second period. This limit is
seldom a concern because of the MSP’s ability to transfer many files in one
session. Because requests are grouped into batches only when resources are

007–3681–006 151

6: Media Specific Processes and Library Servers

immediately available, GET requests (which are not normally held) are batched
when resources are in short supply.

Requests are processed by forking off a child process. The parent process immediately
resumes waiting for requests to arrive from the DMF daemon. The child process
attempts to initiate an FTP session on the remote FTP server. If the remote machine
has multiple Internet Protocol (IP) addresses, all of them are tried before giving up. If
the child process cannot connect, it waits 5 minutes and tries again until it succeeds.

Once a connection is established, the child process provides any required user name,
password, account, and default directory information to the remote FTP server. PUT,
GET, or DELETE operations are then performed as requested by the DMF daemon.
PUT, GET, or DELETE operations are not intermixed within a batch. If an individual
request does not complete successfully, it does not necessarily cause other requests in
the same batch to fail. Binary transfer mode is used for all data transfer.

The stored files are not verbatim copies of the user files. They are stored using the
same format used to write tapes, and you can use MSP utilities such as dmatread
and dmatsnf to access the data in them.

Activity Log

All DMF MSPs maintain log files named msplog.yyyymmdd in the MSP spool
directory which, by default, is SPOOL_DIR/mspname. SPOOL_DIR is configured in
the base object of the configuration file; mspname is the name of the MSP in the
daemon object of the configuration file; yyyymmdd is the current year, month, and day.

The activity log shows the arrival of new requests, the successful completion of
requests, failed requests, creation and deletion of child processes, and all FTP
transactions. Sensitive information (passwords and account information) does not
appear in the activity log. In addition, the MSP lists the contents of its internal
queues in its activity log if it is given an INTERRUPT signal.

Note: Because the MSP will continue to create log files and journal files without limit,
you must remove obsolete files periodically by configuring the run_remove_logs
and run_remove_journals tasks in the configuration file, as described in
"Configuring Daemon Maintenance Tasks", page 36.

152 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Messages

The MSP also recognizes and handles the following messages issued from the DMF
daemon:

Message Description

CANCEL Issued when a previously requested action is no longer
necessary, for example, when a file being migrated with
a PUT request is removed. The MSP is able to cancel a
request if it is being held or if it is waiting for
resources. A request that has begun processing cannot
be canceled and will run to normal completion.

FINISH Issued during normal shutdown. When the MSP
receives a FINISH message, it finishes all requested
operations as quickly as it can and then exits.

FLUSHALL Issued in response to the dmdidle(8) command. When
the MSP receives a FLUSHALL message, it finishes all
requested operations as quickly as it can.

!
Caution: If the remote file system must be restored to a previous state, inconsistencies
may arise: remote files that reappear after being deleted are never removed, and
remote files that disappear unexpectedly result in data loss. There is presently no way
to detect these inconsistencies. You should avoid situations that require the remote
file system to be restored to a previous state.

Disk MSP
The disk MSP (dmdskmsp) migrates data into a directory that is accessed on the
current system. It uses POSIX file interfaces to open, read, write, and close files. The
directory may be NFS-mounted. The data is read and written with root (uid 0)
privileges. By default, dmdskmsp stores the data in DMF-blocked format, which
allows the MSP to do the following:

• Keep meta-data with a file

• Keep sparse files sparse when they are recalled

007–3681–006 153

6: Media Specific Processes and Library Servers

• Verify that a file is intact on recall

The disk MSP does not need a private database to operate; all information necessary
to retrieve offline files is kept in the daemon database and DMF configuration file.

The disk MSP may also be used as an import MSP. In this case, it only permits recalls
and copies the data unchanged for a recall.

Processing of Requests

The disk MSP is always waiting for requests to arrive from the DMF daemon, but, to
improve efficiency, it holds PUT and DELETE requests briefly and groups similar
requests together into a single session. No PUT request will be held longer than 60
seconds. No DELETE request will be held longer than 5 seconds. GET requests are not
held. The MSP will stop holding requests if it has a large amount of work to do
(more than 1024 individual files or 8 MB of data).

After a request has been held for the appropriate amount of time, it enters a ready
state. Processing usually begins immediately, but may be delayed if resources are not
available.

The following limits affect the maximum number of requests that can be processed:

• An administrator-controlled limit on the maximum number of concurrent
operations per MSP (CHILD_MAXIMUM).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing delete requests (GUARANTEED_DELETES).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing dmget(1) requests (GUARANTEED_GETS).

Requests are processed by forking off a child process. The parent process
immediately resumes waiting for requests to arrive from the DMF daemon.

PUT, GET, or DELETE operations are performed as requested by the DMF daemon.
PUT, GET, or DELETE operations are not intermixed within a batch. If an individual
request does not complete successfully, it does not necessarily cause other requests in
the same batch to fail. Binary transfer mode is used for all data transfer.

The stored files are not verbatim copies of the user files. They are stored using the
same format used to write tapes, and you can use MSP utilities such as dmatread
and dmatsnf to access the data in them.

154 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Activity Log

All DMF MSPs maintain log files named msplog.yyyymmdd in the MSP spool
directory which, by default, is SPOOL_DIR/mspname. SPOOL_DIR is configured in the
base object of the configuration file; mspname is the name of the MSP in the daemon
object of the configuration file; yyyymmdd is the current year, month, and day).

The log file shows the arrival of new requests, the successful completion of requests,
failed requests, and creation and deletion of child processes. In addition, the MSP lists
the contents of its internal queues in its activity log if it is given an INTERRUPT signal.

Note: Because the MSP will continue to create log files and journal files without limit,
you must remove obsolete files periodically by configuring the run_remove_logs
and run_remove_journals tasks in the configuration file, as described in
"Configuring Daemon Maintenance Tasks", page 36.

Moving Migrated Data between MSPs and/or VGs
DMF provides a mechanism to move copies of offline or dual-state files from one
MSP or VG to another. The dmmove(8) command takes a list of such files and moves
them to a specified set of MSPs or VGs. The list of MSPs/VGs specified to the
dmmove command indicates which MSPs/VGs are to contain migrated copies of a file
after the move process is completed. All other migrated copies are hard-deleted.

Note: All migrated copies of files are hard-deleted, including those on MSPs and VGs
that are not indicated on the dmmove command.

If a file’s migrated state is offline, dmmove recalls the file to disk and then remigrates
it to the specified MSPs/VGs. When the migration process is complete, the online
copy is removed. The file is recalled to a scratch file system that is specified by the
MOVE_FS configuration parameter. If the file is dual-state, dmmove does not need to
recall the file first, but instead uses the existing online copy.

The dmselect(8) command can be used to determine which files you want to move.
dmselect selects files based on age, size, ownership, and MSP criteria. The output
from the dmselect command can be used with the dmmove command. The dmmove
command also accepts a list of path names as input.

007–3681–006 155

6: Media Specific Processes and Library Servers

See the man pages for dmselect and dmmove for all the possible options and further
information.

Converting from a Tape MSP to a Library Server
For an existing MSP-based configuration to take advantage of the additional features
of the library server, the existing databases must be converted. Several databases can
be converted at the same time, or the conversion can be done in stages over a period
of time. You can perform any of the following conversions:

• Convert just one MSP’s databases to a new VG in a new LS

• Convert an additional MSP to a new VG within an existing LS

• Convert all databases at once
You can run a mixture of MSPs and LSs, with multiple copies of user files being held
simultaneously by a VG and an MSP. Procedure 6-1, page 156 provides the steps for
conversion from tape MSP to library server databases.

Procedure 6-1 Tape MSP/LS Conversion

1. Run dmcheck(8)to check the existing configuration.

2. Copy the production configuration file
(/etc/dmf/dmbase/host/hostname/dmf_config) and replace the definition of
the MSP(s) to be converted with the stanzas defining the equivalent LS
components. You might find it useful to examine the sample configuration to be
found in /etc/dmf/dmbase/info/sample/dmf_config.ls. Over time, many
small changes have been made to benefit existing installations as well as new ones.

To replace the definition of the MSP(s), you must do the following:

a. Delete the stanza for the MSP object.

b. If there are no other references to the device object, remove it.

c. Create an LS stanza and include the following parameters if they were
specified in the MSP definition:

• CACHE_DIR

• CACHE_SPACE

• MAX_CACHE_FILE

156 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

• MESSAGE_LEVEL

• TASK_GROUPS

d. Replace the MSP’s name in the MSP_NAMES (or LS_NAMES) directive in the
daemon stanza with the name of this LS.

e. Create a DG stanza and include the following parameters if they were
specified in the possibly-deleted device object:

• BLOCK_SIZE

• LABEL_TYPE

• MOUNT_SERVICE

• MSG_DELAY

• OV_ACCESS_MODES

• OV_INTERCHANGE_MODES

• POSITIONING

• POSITION_RETRY

• TMF_TMMNT_OPTIONS

• VERIFY_POSITION

• WRITE_CHECKSUM

Add a MOUNT_SERVICE_GROUP parameter to specify the TMF device group
or OpenVault drive group. If TMF_TMMNT_OPTIONS contained a -g
specification to provide this information, remove that part of it.

The DRIVE_GROUPS parameter in the LS stanza should refer to this DG.

f. Create one VG stanza per MSP being converted, possibly with the same
names as the MSPs they are replacing, and include the following parameters
if they were specified in the MSP definitions:

• HFREE_TIME

• MAX_CHUNK_SIZE

• MAX_PUT_CHILDREN

007–3681–006 157

6: Media Specific Processes and Library Servers

• MERGE_CUTOFF

• TIMEOUT_FLUSH

Include the ZONE_SIZE parameter from the possibly-deleted device object.

The VOLUME_GROUPS parameter in the DG stanza should refer to these VGs.
If their names differ from those of the MSPs they are replacing, update the
SELECT_MSP/SELECT_VG policy parameters.

g. In the task-group that controls filesystem backups with run_full_dump.sh
and run_partial_dump.sh, change the DUMP_DEVICE parameter to refer
to the DG rather than to the possibly-deleted device object.

To check this new configuration before placing it into production, before running
dmcheck(8), set the DMF_CONFIG environment variable to the absolute path of
the file, as follows:

setenv DMF_CONFIG /tmp/dmf_config.new
dmcheck

3. Run dmaudit(8) and dmdbcheck(8) to confirm that there are no problems with
the current databases.

4. Stop DMF and put the new configuration in place. You can run dmcheck(8)
again, if you wish.

5. Run /etc/dmf/dmbase/etc/support/dmmsptols, as described in the man
page. This process might take some time (even several hours for a large
configuration). The selection of MSPs that must be converted at this point is
determined by the changes made to the configuration in the previous step.

If there are any problems, the dmmsptols process will instruct you how to back
out of the conversion by using the backups it created.

6. Start DMF and run dmaudit(8) and dmdbcheck(8).

7. At a later time, you can make additional changes to the configuration to enable or
configure new features, such as allocation groups, error recovery, or resource
schedulers and watchers. The parameters controlling these are described in
Chapter 2, "Configuring DMF", page 21or elsewhere in this chapter.

When this procedure is followed, the resulting configuration will schedule tape
merges for all VGs to be done at once. This does not cause problems for the LS as it

158 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

would for the MSP-based configuration, but you might wish to have finer control
over the process. You can do this by creating new task-group objects just to control
tape merging, and invoking them with a TASK_GROUPS parameter inside the VGs’
stanzas. The other parameters inside the original task-group should still be invoked
only from the LS’s stanza.

Alternatively, the RUN_TASK parameters can be placed directly in the VG stanza; they
can be specified outside a task-group’s stanza.

The improved tape positioning code specified by the DG’s POSITIONING parameter
to data will be activated only for data written by the VG (that is, newly migrated
files and files that have been merged from a tape written by the MSP to a new VG
one). The improvement in performance will become more noticeable over time, as a
greater proportion of data fits into these categories.

Library Server Error Analysis and Avoidance
Unlike the MSP, the drive group (DG) component of the library server monitors tape
use, analyzing any failures, and using this information to avoid future errors.

The DG component can react to some failures without looking for any patterns of
behavior. Among these are the following:

• Mounting service failure. If the mounting service is TMF, by default, DMF makes
one attempt to restart it. If this attempt does not succeed, DMF notifies the
administrator by e-mail and waits for the administrator’s intervention.When TMF
is back again, DMF resets the auto-restart flag so that if TMF fails again, it will
once again make one attempt to restart it.

If OpenVault is the mounting service, by default, no attempt is made to restart it.
Instead, an e-mail is sent to the administrator.

A site can set the number of automatic restart attempts by using the DG’s
MAX_MS_RESTARTS configuration parameter, but caution and thorough testing are
advised. There are many possible failure modes for a mounting service, and
automated restarts might not always be appropriate.

• Tape volume is not in the tape library. Obviously, this problem will not be fixed
by trying again. To prevent further access, the volume is locked by setting the
HLOCK flag, as described below, and the user requests that triggered the access
attempt are retried on another tape, if possible; otherwise, they are aborted. The
administrator is notified by e-mail.

007–3681–006 159

6: Media Specific Processes and Library Servers

• For TMF only, a tape mount was cancelled by an operator or administrator.
Although the user requests are retried or aborted, the volume is not disabled. If
the volume were disabled, it would be inaccessible for a period of time (default 24
hours) unless dmvoladm were used to preempt this delay. All operators do not
necessarily have access to the dmvoladm command.

Because the reason for the cancellation is unknown to DMF, repeated requests for
the same volume are quite possible, and the operator might have to cancel each
one.

The DG handles other types of failure by examining the recent history of the tape
volume and the tape drive that was used. The DG maintains records of past tape I/O
errors, and uses these to control the way it reacts to future errors.

For example, if a tape has been unusable several times in a row, even though different
tape drives were used, the DG concludes that the problem most likely involves the
tape volume rather than the drive. Therefore, it suspends use of that tape for a while,
forcing DMF to migrate to a different tape in that VG, or to recall the file from
another tape held by a different VG. This suspension is usually done by setting the
HLOCK flag in the tape’s entry in the volume database. This makes the tape
inaccessible to the VG for both reading and writing until it is automatically cleared
after REINSTATE_VOLUME_DELAY minutes.

If a variety of volumes fail on a specific drive but are usable on other drives, a drive
problem is likely, and the tape drive can be automatically configured down if
permitted by the administrator’s setting of DRIVES_TO_DOWN to a value higher than
its default of zero. When a drive is configured down in this way, it is configured up
again after REINSTATE_DRIVE_DELAY minutes.

The analyses of drive and volume errors are performed independently of each other;
it is possible for one additional error to result in both the drive and the volume being
disabled.

There are several reasons for reinstating drives and volumes after a delay. The most
important is that the analyses of previous failures might lead to a faulty conclusion in
some situations, such as when DMF is under a very light load, or when multiple
failures occur concurrently. A wrong diagnosis might impact DMF’s performance,
and should not be accepted indefinitely. Disabling a suspected drive or volume for a
while is usually enough to break any repetitive cycles of failure. If such patterns
re-establish themselves when the reinstatement occurs, the DG will again analyze the
behavior, possibly reaching a different conclusion, and again try to prevent it.

160 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

There are some variations from these general reactions. For example, if a tape volume
with existing data on it is diagnosed as faulty when appending new data, instead of
setting the HLOCK flag, the DG sets HFULL, which results in the tape being used in a
read-only mode until eventually emptied by merges or hard deletion of its files.
HFREE_TIME seconds after it becomes empty, it may be placed back into use unless
the administrator has decided, possibly as a result of testing it, that it should be
deleted or replaced.

In all of these situations, the administrator is notified by e-mail.

If it is considered desirable to return a volume or drive to service earlier than defined
in the DMF configuration, the appropriate command (dmvoladm, tmconfig, or
ov_drive) can be safely used.

Library Server Drive Scheduling
When multiple volume groups (VGs) are requesting the use of more tape drives than
exist in the drive group (DG), the resource scheduler (RS) is used to decide which
VGs should wait, and which should be assigned the use of the drives.

It should be noted that the RS is unaware of non-VG activity on the drives in its DG.
Such activity includes MSPs, xfsdumps, and any direct tape use by the system’s users,
and does not prevent the library server from working properly, though it might be
less than optimal.

By default, the RS uses a round-robin based algorithm, but a site can assign different
weightings to different VGs to meet local requirements. (For more information, see
"Resource Scheduler Objects", page 67).

Some sites will have requirements that cannot be met by a general purpose algorithm.
A future release of the RS will allow such sites to write their own resource scheduler
algorithms (RSAs) in C++, to be used in place of the supplied one. When available,
instructions will be found in the /etc/dmf/dmbase/info/sample/RSA.readme
file.

Library Server Status Monitoring
You can observe the performance of the LS in two ways. You can monitor its log file
with a tool like tail -f, which allows an experienced administrator to follow the
flow of events as they happen. You can also use the resource watcher (RW)

007–3681–006 161

6: Media Specific Processes and Library Servers

component, when enabled by use of the WATCHER parameter in the libraryserver
configuration stanza.

The RW is intended to give the administrator a view of the status of an LS and some
of its components. It maintains a set of text files on disk, which are rewritten as
events happen. These files can be found in the SPOOL_DIR/lsname/_rwname
directory, where SPOOL_DIR is defined in the dmf_config file, as are the names of
the LS and RW (lsname and rwname in the following example). The easiest way to
find the precise path is to look in the LS log file for messages like the following:

dmatls rwname.config_changed: Resource Watcher output files will be placed in /dmf/spool/lsname/_rwname
This message is issued at DMF startup or whenever the configuration file is altered or
its modification time changes (for example, by using the touch(1) command.

The SPOOL_DIR/lsname/_rwname directory contains files with names ending in
.html, which are automatically refreshing HTML files. You can access these files by
using a browser running on the same machine. The following example shows an LS
page that contains links to DG pages, and they in turn have links to VG pages, if the
VGs are active at the time.

netscape file:/dmf/spool/lsname/_rwname/lsname.html

If running the browser on the DMF machine is inconvenient, you can include the
directory in your HTTP server configuration to allow those same pages to be accessed
via the web.

This directory also contains files whose names end in .txt, designed to be parsed
with programs like awk. The data format is described by comments within those files
and can be compared with the equivalent HTML files. If the format of the text ever
changes, the version number will change. If the changes are incompatible with
previous usage, the number before the decimal point is altered. If they are compatible,
the number after the decimal point is altered. An example of compatibility is adding
extra fields to the end of existing lines or adding new lines. Programs using these files
should check the version number to ensure compatibility. Also, it might be useful to
check the DMF version shown by dmversion(1) and the IRIX version from uname(1).

162 007–3681–006

Chapter 7

DMF Maintenance and Recovery

This chapter contains information for the administrative maintenance of DMF.

Retaining Old DMF Daemon Log Files
The daemon generates the SPOOL_DIR/daemon_name/dmdlog.yyyymmdd log file,
which contains a record of DMF activity and can be useful for problem solving for
several months after creation. All MSPs and LSs generate a
SPOOL_DIR/msp_name/msplog.yyyymmdd log file, which also contains sometimes
useful information about its activity. These log files should be retained for a period of
some months. Log files more than a year old are probably not very useful.

Do not use DMF to manage the SPOOL_DIR file system.

The dmfsmon(8) automated space management daemon generates a log file in
SPOOL_DIR/daemon_name/autolog./yyyymmdd, which is useful for analyzing
problems related to space management.

To manage the log files, configure the run_remove_logs.sh task, which
automatically deletes old log files according to a policy you set. See "Configuring
Daemon Maintenance Tasks", page 36, for more information.

Retaining Old DMF Daemon Journal Files
The daemon, the tape MSP, and the LS all generate journal files that are needed to
recover databases in the event of file system damage or loss. You also configure DMF
to generate backup copies of those databases on a periodic basis. You need only
retain those journal files that contain records created since the oldest database backup
that you keep. In theory, you should need only one database backup copy, but most
sites probably feel safer with more than one generation of database backups.

For example, if you configure DMF to generate daily database backups and retain the
three most recent backup copies, then at the end of 18 July there would be backups
from the 18th, 17th, and 16th. Only the journal files for those dates need be kept for
recovery purposes.

007–3681–006 163

7: DMF Maintenance and Recovery

To manage the journal files and the backups, configure the
run_remove_journals.sh and run_copy_databases.sh tasks. These tasks
automatically delete old journal files and generate backups of the databases according
to a policy you set. See "Configuring Daemon Maintenance Tasks", page 36, for more
information.

Soft- and Hard-deletes
When a file is first migrated, a bit-file identifier, or bfid, (the key into the daemon
database) is placed in the inode. When a migrated file is removed, its bfid is no
longer needed in the daemon database.

Initially, it would seem that you could delete daemon database entries when their
files are modified or removed. However, if you actually delete the daemon database
entries and then the associated file system is damaged, the files will be irretrievable
after you restore the file system.

For example, assume that migrated files were located in the /x file system, and you
configured DMF to generate a full backup of /x on Sunday as part of your site’s
weekly administrative procedures (the run_full_dump.sh task). Next, suppose that
you removed the migrated files in /x on Monday morning and removed the
corresponding daemon database entries. If a disk hardware failure occurs on Monday
afternoon, you must restore the /x file system to as recent a state as possible. If you
restore the file system to its state as of Sunday, the migrated files are also returned to
their state as of Sunday. As migrated files, they contain the old bfid from Sunday in
their inodes, and, because you removed their bfids from the daemon database, you
cannot recall these files.

Because of the nature of the file system, a daemon database entry is not removed
when a migrated file is modified or removed. Instead, a deleted date and time field is
set in the database. This field indicates when you were finished with the database
entry, except for recovery purposes; it does not prohibit the daemon from using the
database entry to recall a file. When the /x file system is restored in the preceding
example, the migrated files have bfids in their inodes that point to valid database
entries. If the files are later modified or removed again, the delete field is updated
with this later date and time.

The term soft-deleted refers to a database entry that has the delete date and time set.
The term hard-deleted refers to a file that is removed completely from the daemon
database and the MSPs/LSs. You should hard-delete the older soft-deleted entries
periodically; otherwise, the daemon database continues to grow in size without limit

164 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

as old, unnecessary entries accumulate. Configure the run_hard_deletes.sh task
to perform hard-deletes automatically. See "Configuring Daemon Maintenance Tasks",
page 36, for more information.

If you look at all of the tapes before and after a hard-delete operation, you will see
that the amount of space used on some (or all) of the tapes has been reduced.

Using xfsdump and xfsrestore with Migrated Files
File system backup is a vital operational procedure and DMF-managed file systems
should be backed up regularly. Running DMF affords a high degree of protection for
user data. Because DMF only migrates user data and not inodes, directories, or other
file system structures, you must backup file systems that hold important data.

The xfsdump(1m) and xfsrestore(1m) commands back up file systems. These
utilities are designed to perform the backup function quickly and with minimal
system overhead. They operate with DMF in two ways:

• When xfsdump encounters an offline file, it does not cause the associated data to
be recalled. This distinguishes the utility from tar(1) and cpio(1), both of which
cause the file to be recalled when they reference an offline file.

• Because DMF provides safe, reliable management of offline data, it can be viewed
as a data backup service. The dmmigrate(8) command lets you implement a
100% migration policy that does not interfere with customary management of
space thresholds. The -a option of the xfsdump command causes xfsdump to
skip the data associated with any dual-state file. Whenever xfsdump detects a file
that is backed up by DMF, it retains only the inode for that file, since DMF already
has a copy of the data itself.

When you run xfsdump -a in concert with dmmigrate, the volume of backup
data produced by xfsdump can be significantly reduced, thereby reducing the
amount of time spent performing backups.

Most installations periodically do a full (level 0) dump of file systems. Incremental
dumps (levels 1 through 9) are done between full dumps; these may happen once per
day or several times per day. You can continue this practice after DMF is enabled.
When a file is migrated (or recalled), the inode change time is updated. The inode
change time ensures that the file gets dumped at the time of the next incremental
dump.

007–3681–006 165

7: DMF Maintenance and Recovery

You can configure tasks in the dump_tasks object to automatically do full and
incremental dumps of the DMF-managed file systems. See "Configuring Daemon
Maintenance Tasks", page 36, for more information.

The dump_tasks object employs scripts that call the xfsdump(1m) command in
conjunction with the dmtape DMF support program. This mechanism gives you
flexible and efficient use of a predetermined set of backup volumes that are
automatically allocated to the xfsdump program as needed during the backup. In
order to allow you an equally flexible and efficient method for restoring files backed
up by the dump_tasks object, the dmxfsrestore(8) command should be used any
time a restore is required for a dump_tasks-managed file system. Please see the
dmxfsrestore(8) man page for more information on running the command.

Dumping and Restoring Files without the dump_tasks Object

If you choose to dump and restore DMF file systems without using the provided
dump_tasks object, there are several items that you must remember:

• The dump_tasks object uses xfsdump with the -a option to dump only data not
backed up by DMF. You may also wish to consider using the -a option on
xfsdump when dumping DMF file systems manually.

• Do not use the -A option on either xfsdump or xfsrestore. The -A option
avoids dumping or restoring extended attribute information. DMF information is
stored within files as extended attributes, so if you do use -A, migrated files
restored from those dump tapes will not be recallable by DMF.

• When restoring migrated files using xfsrestore, you must specify the -D option
in order to guarantee that restored files will be recallable by DMF.

• If you use the Tape Management Facility (TMF) to mount tapes for use by
xfsdump, be aware that xfsdump will not detect the fact that the device is a tape,
and will behave as if the dump is instead being written to a regular disk file. This
means that xfsdump will not be able to append new dumps to the end of an
existing tape. It also means that if xfsdump encounters end-of-tape, it will abort
the backup rather than prompting for additional volumes. You must ensure that
you specify enough volumes using the tmmnt -v option before beginning the
dump in order to guarantee that xfsdump will not encounter end-of-tape.

166 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

File System Consistency with xfsrestore

When you restore files, you might be restoring some inodes containing bfids that
were soft-deleted since the time the dump was taken. (For information about
soft-deletes, see "Soft- and Hard-deletes", page 164.) dmaudit(8) will report this as an
inconsistency between the file system and the database, indicating that the database
entry should not be soft-deleted.

Another form of inconsistency occurs if you happen to duplicate offline or dual-state
files by restoring all or part of an existing directory into another directory. In this
case, dmaudit will report as an inconsistency that two files share the same bfid. If
one of the files is subsequently deleted causing the database entry to be soft-deleted,
the dmaudit-reported inconsistency will change to the type described in the previous
paragraph.

While these dmaudit-reported inconsistencies may seem serious, there is no risk of
any user data loss. The dmhdelete(8) program responsible for removing unused
database entries always first scans all DMF-managed file systems to make sure that
there are no remaining files which reference the database entries it is about to remove.
It is able to detect either of these inconsistencies and will not remove the database
entries in that case.

Sites should be aware that inconsistencies between a file system and the DMF
database can occur as a result of restoring migrated files, and that it is good practice
to run dmaudit after a restore to correct those inconsistencies.

Using dmfill

The dmfill(8) command allows you to fill a restored file system to a specified
capacity by recalling offline files. When you execute xfsdump -a, only inodes are
dumped for all files that have been migrated (including dual-state files). Therefore,
when the file system is restored, only the inodes are restored, not the data. You can
use dmfill in conjunction with xfsrestore to restore a corrupted file system to a
previously valid state. dmfill recalls migrated files in the reverse order of migration
until the requested fill percentage is reached or until there are no more migrated files
left to recall on this file system.

007–3681–006 167

7: DMF Maintenance and Recovery

Database Recovery
The basic strategy for recovering a lost or damaged DMF database is to recreate it by
applying journal records to a backup copy of the database. For this reason it is
essential that the database backup copies and journal files reside on a different
physical device from the production databases; it is also highly desirable that these
devices have different controllers and channels. The following sections discuss the
database recovery strategy in more detail.

Database Backups

You configure tasks in the run_copy_databases.sh task in the dump_tasks object
to automatically generate DMF database backups. See "Configuring Daemon
Maintenance Tasks", page 36, for more information.

There are several databases in the DMF package. The daemon database consists of
the following files:

• HOME_DIR/daemon_name/dbrec.dat

• HOME_DIR/daemon_name/dbrec.keys

• HOME_DIR/daemon_name/pathseg.dat

• HOME_DIR/daemon_name/pathseg.keys

The database definition file (in the same directory) that describes these files and their
record structure is named dmd_db.dbd.

Each tape MSP/LS has two databases in the HOME_DIR/msp_or_ls_name directory:

• The CAT database (files tpcrdm.dat, tpcrdm.key1.keys, and
tpcrdm.key2.keys)

• The VOL database (files tpvrdm.dat and tpvrdm.vsn.keys)

The database definition file (in the same directory) that describes these files and their
record structure is named atmsp_db.dbd (for MSPs) or libsrv.db.dbd (for LSs).

Database Recovery Procedures

The DMF daemon and the tape MSP/LS write journal file records for every database
transaction. These files contain binary records that cannot be edited by normal

168 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

methods and that must be applied to an existing database with the dmdbrecover(8)
command. The following procedure explains how to recover the daemon database.

Warning: If you are running multiple MSPs or LSs, always ensure that you have the
correct journals restored in the correct directories. Recovering a database with
incorrect journals can cause irrecoverable problems.

Procedure 7-1 Recovering the Databases

If you lose a database through disk spindle failure or through some form of external
corruption, use the following procedure to recover it:

1. Stop DMF.

2. If you have configured the run_copy_databases task, copy the files from the
directory with the most recent copy of the databases that were in HOME_DIR.

3. If you have not configured the run_copy_databases task, reload an old
version of the daemon or tape MSP/LS database. Typically, these will be from the
most recent dump tapes of your file system.

4. Ensure that the default JOURNAL_DIR/daemon_name (or
JOURNAL_DIR/msp_or_ls_name) directory contains all of the time-ordered journal
files since the last update of the older database.

For the daemon, the files are named dmd_db.yyyymmdd[.hhmmss].

For the tape MSP, the journal files are named atmsp_db.yyyymmdd[.hhmmss].

For the LS, the journal files are named libsrv_db.yyyymmdd[.hhmmss].

5. Note the time of the last database update from step 2.

6. Use dmdbrecover to update the old database with the journal entries from
journal files identified in step 3.

Example 7-1 Database Recovery Example

Suppose that the file system containing HOME_DIR was destroyed on February 1,
1997, and that your most recent backup copy of the daemon and tape MSP databases
is from January 28, 1997. To recover the database, you would do the following:

1. Stop DMF.

007–3681–006 169

7: DMF Maintenance and Recovery

2. Ensure that JOURNAL_DIR/daemon_name (or JOURNAL_DIR/msp_or_ls_name)
contains the following journal files (one or more for each day):

JOURNAL_DIR/daemon_name

dmd_db.19970128.235959

dmd_db.19970129.235959

dmd_db.19970130.235959

dmd_db.19970131.235959

dmd_db.19970201

JOURNAL_DIR/msp_name (If a tape MSP is configured)

atmsp_db.19970128.235959

atmsp_db.19970129.235959
atmsp_db.19970130.235959

atmsp_db.19970131.235959

atmsp_db.1997020

JOURNAL_DIR/ls_name (If an LS is configured)

libsrv_db.19970128.235959

libsrv_db.19970129.235959

libsrv_db_db.19970130.235959

libsrv_db_db.19970131.235959
libsrv_db_db.1997020

3. Restore databases from January 28, to HOME_DIR/daemon_name and/or
HOME_DIR/msp_or_ls_name. The following files should be present:

HOME_DIR/daemon_name

dbrec.dat

dbrec.keys

pathseg.dat

pathseg.keys

HOME_DIR/msp_or_ls_name

tpcrdm.dat
tpcrdm.key1.keys

tpcrdm.key2.keys

tpvrdm.dat

tpcrdm.vsn.keys

170 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

4. Update the database files created in step 3 by using the following commands:

dmdbrecover -n daemon_name dmd_db
dmdbrecover -n msp_name atmsp_db (If a tape MSP is configured)

dmdbrecover -n ls_name libsrv_db (If an LS is configured)

007–3681–006 171

Appendix A

Messages

This appendix describes the format and interpretation of messages reported by
dmcatadm(8) and dmvoladm(8). If you are uncertain about how to correct these
errors, contact your customer service representative.

Message Format
Messages in this section are divided into the format used for dmcatadm and
dmvoladm.

Message Format for Catalog (CAT) Database and Daemon Database Comparisons

Error messages generated when comparing the CAT database to the daemon database
will start with the following phrase:

Bfid bfid -

The bfid is the bit file ID associated with the message.

The preceding phrase will be completed by one or more of the following phrases:

missing from cat db

missing from daemon db

for vsn volume_serial_number chunk chunk_number msg1 msg2

In the above, msgn can be one of the following:

filesize < 0

chunkoffset < 0

chunklength < 0

zonenumber < 0
chunknumber <0

filesize < chunklength + chunkoffset

zonenumber

missing or improper vsn

filesize != file size in daemon entry (size)

no chunk for bytes msg1, msg2

007–3681–006 173

A: Messages

In the above, msgn gives the byte range as nnn - nnn

nnn bytes duplicated

Message Format for Volume (VOL) Database and Catalog (CAT) Database and Daemon
Database Comparisons

Error messages generated when comparing the VOL database to the CAT database
will start with the following phrase:

Vsn vsn

The vsn is the volume serial number associated with the message.

The preceding phrase will be completed by one or more of the following phrases:

missing

eotpos < largest position in cat (3746)

eotchunk < largest chunk in cat (443)
eotzone < largest zone in cat (77)

chunksleft != number of cat chunks (256)

dataleft !=sum of cat chunk lengths (4.562104mb)

tapesize is bad

version is bad
blocksize is bad

zonesize is bad

eotchunk < chunksleft

dataleft > datawritten

volume is empty but msg1, msg2

In the above, msgn can be one of the following:

hfull is on

hsparse is on

hrsv is on

datawritten != 0

eotpos != 1/0

eotchunk != 1

174 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

volume is not empty but msg1, msg2

In the above, msgn is one of the following:

hfree is on
version < 4 but msg1, msg2

In the above, msgn can be one of the following:

volume contains new chunks
hfull is off

eotpos !=2/0

dmcatadm Message Interpretation
The following lists the meaning of messages associated with the dmcatadm database.

nnn bytes duplicated Two or more chunks in the database
contain data from the same region of the
file (MSPs only).

nnn bytes duplicated in volume group name Two or more chunks in the database,
which belong to volume group name,
contain data from the same region of the
file (LSs only).

for vsn DMF001 chunk 77 chunkoffset < 0 The chunkoffset value for chunk 77 on
volume serial number (VSN) DMF001 is
obviously bad because it is less than 0.

for vsn DMF001 chunk 77 chunklength < 0 The chunklength value for chunk 77 on
VSN DMF001 is obviously bad because it
is less than 0.

for vsn DMF001 chunk 77 chunknumber < 0 The chunknumber value for chunk 77 on
VSN DMF001 is obviously bad because it
is less than 0.

for vsn DMF001 chunk 77 filesize < 0 The filesize value for chunk 77 on
DMF001 is obviously bad because it is less
than 0.

007–3681–006 175

A: Messages

for vsn DMF001 chunk 77 filesize < chunklength +
chunkoffset

The value of chunklength plus
chunkoffset should be less than or
equal to the filesize. Therefore, one or
more of these values is wrong.

for vsn DMF001 chunk 77 missing or improper vsn The list of volume serial numbers for the
chunk is improperly constructed. The list
should contain one or more 6-character
names separated by colons.

for vsn DMF001 chunk 77 zonenumber < 0 The zonenumber value for chunk 77 on
DMF001 is obviously bad because it is less
than 0.

for vsn DMF001 chunk 77 zonenumber > chunknumber Either the zonenumber value or the
chunknumber value for chunk 77 on
DMF001 is wrong, because the
zonenumber is larger than the
chunknumber value. (Each zone contains
at least two chunks, because the
end-of-zone header on the tape counts as a
chunk.)

for vsn DMF001 chunk 77 filesize != file size in
daemon entry (nnn)

The filesize value in the chunk entry is
different from the file size in the daemon
record. If no daemon record was
provided, this message indicates that more
than one chunk exists for the bfid and that
the filesize value is not the same for all
the chunks.

missing from cat db The daemon entry was not found in the
CAT database.

missing from daemon db No daemon entry was found for the entry
in the CAT database (MSP only).

entry for volume group name missing from daemon db No daemon entry was found for the entry
in the CAT database (LS only).

no chunk for bytes nnn - nnn There is no chunk that contains the
specified bytes of the file (MSP only).

for volgrp name; no chunk for bytes nnn - nnn There is no chunk that contains the
specified bytes of the file (LS only).

176 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

dmvoladm Message Interpretation
The following lists the meaning of messages associated with the dmvoladm database.

blocksize is bad The blocksize field for the tape is
<=0.

eotpos < largest position in cat (3746) The position for the EOT descriptor
on the tape is less than the largest
position of all the chunk entries for
the tape.

chunksleft != number of cat chunks (256) The number of chunks referencing the
tape in the CAT database does not
equal the number of chunks left
recorded in the VOL entry for the
tape.

dataleft != sum of cat chunk lengths (4.562104mb) The sum of the chunks length for
chunks referencing the tape in the
CAT database does not equal the
dataleft value recorded in the VOL
entry for the tape.

dataleft > datawritten The entry shows that more data
remains on the tape than was written.

eotchunk < chunksleft The entry shows that more chunks
remain on the tape than were written.

eotchunk < largest chunk in cat (443) The chunk number of the EOT
descriptor on the tape is less than the
largest chunk number of all the chunk
entries for the tape.

eotzone < largest zone in cat (77) The zone number of the EOT
descriptor on the tape is less than the
largest zone number of all the chunk
entries for the tape.

missing The volume was found in a chunk
entry from the CAT database but is
not in the VOL database.

007–3681–006 177

A: Messages

tapesize is bad The tapesize field for the tape is an
impossible number.

version is bad The version field for the tape is not
1 or 3 (for a tape still containing data
written by an old MSP) or 4 (for a
tape written by this MSP).

volume is empty but hfull is on

volume is empty but hsparse is on

volume is empty but hrsv is on

When a volume is empty, the hfull,
hsparse, and hrsv hold flags should
be off.

volume is empty but datawritten != 0
volume is empty but eotpos != 1/0

volume is empty but eotchunk != 1

When the hfree hold flag is cleared,
the datawritten field is set to 0, the
eotpos field is set to 1/0, and the
eotchunk is set to 1. The entry is
inconsistent and should be checked.

volume is not empty but hfree is on When a volume contains data, the
hfree hold flag must be off.

volume is not empty and version is n but volume contains
new chunks

One or more of the chunks associated
with this volume were written by the
advanced tape MSP, but the version
value does not match.

volume is not empty and version is n but hfull is off Tapes containing data with a version
value of less than 4 must have hfull
set, because the MSP/LS cannot
append to the tape.

volume is not empty and version is n but eotpos != 2/0 Tapes imported from the old MSP
only have one zone of data, so
eotpos must be 2/0.

zonesize is too small The zonesize field for the tape is an
impossible number.

178 007–3681–006

Appendix B

DMF User Library (libdmfusr.so)

The DMF distributed command feature is available with DMF version 2.7 and later.
This appendix presents an overview of the feature, a summary of data types, and a
summary of user-accessible API subroutines.

Overview
The distributed command feature allows DMF commands to execute on a host other
than the host on which the DMF daemon is running. A host that imports
DMF-managed file systems from the DMF daemon host machine can execute the
dmput, dmget, dmls, dmfind, dmattr, and dmcopy commands locally.

As part of the distributed command feature, the DMF user commands listed above
were radically re-designed to communicate with a process named dmusrcmd instead
of directly with the DMF daemon. The DMF user commands are no longer installed
as setuid root processes. Rather, the dmusrcmd process is executed as setuid
root and performs all of the validity checks and communicates, ultimately, with the
DMF daemon.

For the DMF user commands to communicate in an efficient and consistent manner
with the dmusrcmd process, the DMF user library, libdmfusr.so, must be accessed.
This is a shared object library (DSO) that is installed (on a DMF client) or accessed via
a link (on the DMF server) in /usr/{lib|lib32|lib64} and to which each of the
DMF user commands is linked for its protocol-based communications.

As a feature of this re-design, the subroutines that comprise the DMF user command
application program interface (API) are now available to user-written programs
simply by linking to libdmfusr.so. Sites can now design and write their own
custom DMF user commands, which eliminates the need to use wrapper scripts
around the DMF user commands.

The underlying design of the API calls for the user command to make contact with a
dmusrcmd process by creating an opaque ’context’ object via a call to the API. This
context is then used as a parameter on each function (put, get, fullstat, or copy) API
call. The context is used by each API routine to perform the requested operation and
to correctly return the results of the operation to the command.

In addition to the library, the libdmfusr.h and dmu_err.h header files are
provided, which are required for a site to effectively create their own commands.

007–3681–006 179

B: DMF User Library (libdmfusr.so)

Both header files are installed in /usr/include/dmf. The libdmfusr.h file
contains all of the object and function prototype definitions required by the API
subroutine calls. The dmu_err.h file contains all of the API error code definitions.
Along with each error code definitions is a text string that is associated with each of
the error codes. This text string is the same message that is generated automatically
when the error occurs as part of the DmuErrorInfo_t object described below (see
"DmuErrorInfo_t", page 184). The text string is included in the file as informational
only, and is not accessible by a program that includes dmu_err.h.

Each type of function request (put, get, fullstat, or copy) can be made via a
synchronous or an asynchronous API subroutine call. The synchronous subroutine
calls do not return to the caller until the request has completed, either successfully or
unsuccessfully. These synchronous subroutines return an error object to the caller that
can be processed to determine the success or failure of the call. If an application is
making more than one call, these calls are obviously going to perform less efficiently
than their asynchronous counterparts because of the serial nature of their activity.

The asynchronous subroutine calls return immediately to the caller. The return code
of these asynchronous routines indicate whether the request was successfully
forwarded to dmusrcmd for processing. A successful return allows the calling
program to continue its own processing in parallel with the processing being
performed by dmusrcmd (or the daemon) to complete the request. If the request was
successfully forwarded, a request ID that is unique within the scope of the opaque
context is returned to the caller. It is the responsibility of the caller to associate the
request id with the correct completion object (described in "DmuCompletion_t",
page 182) to determine the eventual result of the original request.

There are several different API subroutine calls for processing asynchronous request
completion objects. The user can choose to be simply notified when all requests have
completed, without doing any processing of the return status of each request. The
user can also choose to process the return status of each request, one at a time, in the
order in which they complete, or in the order in which they were sent (request ID
order), or the user can, by request ID, synchronously wait on an individual
asynchronous request’s completion.

The API includes well-defined protocols that it uses to communicate with the
dmusrcmd process. These protocols make use of the pthreads(5) mechanism and as
such, any user application program making use of the API via libdmfusr.so will
also need to link to the shared object library, libpthread.so, via the -lpthread
compiler option (cc(1)or CC(1)) or loader option (ld(1) or rld(1)) option.

The API can return different types of objects to the callers of many of the API
subroutines by passing the addresses of the objects in subroutine parameters. Many

180 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

of these objects have been created by allocating new memory for them through the
use of the malloc command. The API includes several subroutines that will free the
memory used by these objects when the caller is through with them, and they are
defined below in "Memory Management Subroutines", page 200. It is up to the caller
to make use of these subroutines, however, if memory leakage is a concern.

In many cases the API subroutines pass the address of an object back to the caller by
setting a ’**’ pointer accordingly. If errors occur and the subroutine is unable to
complete its task, the address returned may be NULL. It is up to the caller to check
the validity of an object’s address before using it to avoid causing a SIGSEGV fault in
the application program.

Data Types
The data types described in this section are defined in libdmfusr.h. For the most
up-to-date definitions of each of these types, see the libdmfusr.h file. The
following information is provided as a general description and overall usage outline.

DmuAllErrors_t

This object provides the caller with as much information regarding errors as is
practical. The complex nature of the API and its communications allows for many
types of errors, and several locations (processes) in which they can occur. For example,
a request might fail in the API, in the dmusrcmd process, or in the DMF daemon.

This object may contain 0 or more DmuErrorInfo_t objects (see
"DmuErrorInfo_t", page 184).

DmuByteRange_t

This object defines a range of bytes that are to be associated with a put or get request.
The fields and their definitions are as follows:

offset Starting offset in bytes of the range in the file.

size Size in bytes of the range.

Currently, only offset 0 and size 0 (indicating the whole file) are supported as valid
definitions.

007–3681–006 181

B: DMF User Library (libdmfusr.so)

DmuByteRanges_t

This object defines a set of DmuByteRange_t objects that are to be associated with a
put or get request. The fields and their definitions are as follows:

rounding Rounding method to be used to validate range
addresses. Only DMU_RND_NONE is currently defined.

num_ranges Number of DmuByteRange_t objects in the ranges
field. Currently, only a single range is allowed.

ranges A pointer to an array of DmuByteRange_t objects.
Currently, only a single element array is allowed.

Example: In the current API, define a DmuByteRanges_t as follows:

DmuByteRanges_t ranges = {DMU_RND_NONE, 0, NULL};

or

DmuByteRange_t range = {0, 0};
DmuByteRanges_t ranges = {DMU_RND_NONE, 1, &range);

DmuCompletion_t

This object is returned by one of the API request completion routines (see "Request
Completion Subroutines", page 195) with the results of an asynchronous request.

The request_id field can be used to associate the completion object with an
asynchronous request that was previously issued. This value coincides with the
request ID value that any of the asynchronous routines return to the user.

The ureq_data field is request-type specific, and API routines are defined below (see
"Fullstat Requests", page 189) to help the application process the object (that is, to
extract the DmuFullstat_t information from a fullstat completion). This field has
no meaning for put, get, or copy requests.

The reply_code field has the overall success or failure status of the request. If this
value is DmuNoError, the request was successful. If not, the allerrors field should
be checked for the appropriate error information.

The allerrors field (type DmuAllErrors_t, defined previously) contains the error
information for a failed request.

182 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

DmuCopyRange_t

This object defines a range of bytes that are to be associated with a copy request. The
fields and their definitions are as follows:

src_offset Starting offset in bytes of the range in the source file to
be copied.

src_length Length in bytes of the range to be copied.

dst_offset Starting offset in bytes in the destination file to which
the copy is sent.

DmuCopyRanges_t

This object defines a set of DmuCopyRange_t objects that are to be associated with a
put or get request. The fields and their definitions are as follows:

rounding Rounding method to be used to validate range
addresses. Only DMU_RND_NONE is currently defined.

num_ranges Number of DmuCopyRange_t objects in the ranges
field. Currently, only a single range is allowed.

ranges A pointer to an array of DmuCopyRange_t objects.
Currently, only a single element array is supported.

DmuErrHandler_f

This type defines a user-specified error handling subroutine. Many of the API
subroutines may result in the receipt of error information from the dmusrcmd process
or the DMF daemon in the processing of the request. As these errors are received,
they are formatted into a DmuErrorInfo_t object (see "DmuErrorInfo_t", page
184) and are generally returned to the caller either via a calling parameter or as part
of a DmuCompletion_t object.

In addition, however, if the error occurs in the course of processing internal protocol
messages, the DmuErrorInfo_t object can also be passed into the
DmuErrHandler_f, which the caller defined when the opaque context was created.

As part of the DmuCreateContext() API subroutine call, the caller can specify a
site-defined DmuErrHandler_f routine, or the caller can use one of the following
API-supplied routines:

007–3681–006 183

B: DMF User Library (libdmfusr.so)

DmuDefErrHandler Outputs the severity of error and the error message
associated with the error to stderr.

DmuNullErrHandler Does nothing with the error.

DmuError_t

This is the type that most of the API subroutines pass as a return code. The definition
DmuNoError is the general success return code.

DmuErrorInfo_t

This object contains the information about a single error occurrence. Included are the
error code, which might or might not be meaningful to an application, the originator
of the error (API, dmusrcmd, daemon), a severity code, and perhaps most
importantly, an ACSII message that can be displayed.

DmuFhandle_t

This object contains the ASCII representation of the file fhandle as it is known on
the host on which the file’s file system is native.

DmuFullstat_t

This rather lengthy object is a user-accessible version of the internal DMF fullstat
object. It contains all of the basic stat(2) information regarding the file, as well as all
of the DMAPI related fields.

DmuReplyOrder_t

This type is used to select the order in which asynchronous replies are to be returned
by the API reply processing subroutines defined in the following list.

DmuAnyOrder Return in the order the replies are received.

184 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

DmuReqOrder Return in the order the requests were issued.

DmuReplyType_t

This type is used to select the type of reply that an API can receive after sending a
request. All requests will receive a final reply when the dmusrcmd process has
completed processing the request whether it was successful or not.

The valid definitions are:

DmuIntermed Intermediate reply. An informational message to alert
the caller that the request is being processed and may
not complete for some time. An example of this is the
intermediate reply that is sent when a put request has
been forwarded to an MSP or library server for
processing and that the completion reply is deferred
until that operation is complete.

DmuFinal Final reply for the request.

This definition is used to specify the types of replies that some of the reply processing
routines defined below are to consider.

DmuReqid_t

This type is used to describe the request identifier returned to the caller for a
successful asynchronous function call.

DmuRounding_t

This is an enum that specifies the kind of address manipulation that the caller would
like performed on his DMF put/get/copy file access requests:

DMU_RND_NONE Do none.

DMU_RND_IN Not yet supported.

DMU_RND_OUT Not yet supported.

007–3681–006 185

B: DMF User Library (libdmfusr.so)

DMU_RND_MAX Not yet supported.

User-Accessible API Subroutines
This section describes the following types of user-accessible API subroutines:

• Context manipulation

• DMF daemon request

• Request completion

• Memory management

Context Manipulation Routines

This section describes context manupulation routines.

DmuCreateContext Subroutine

The DmuCreateContext subroutine creates an opaque context for the API to use to
correctly communicate with the dmusrcmd process. This routine should be the first
API subroutine called by a DMF user command. Not only is the context created, but
the communication channel to the dmusrcmd process is initialized. The code is as
follows:

extern DmuError_t

DmuCreateContext(

void **dmuctxt,

const DmuErrHandler_f err_handler,

pid_t *child_pid,

DmuAllErrors_t **errs)

The parameters of the DmuCreateContext() call are as follows:

dmuctxt This parameter is returned with the address of the
newly created API context. This parameter is passed to
the API on all subsequent subroutine calls that require
the program’s API context.

err_handler This parameter can be used to specify a user-defined
error handling routine. The DmuErrHandler_f type is

186 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

defined in libdmfusr.h. If the err_handler
parameter is NULL, the default error handler,
DmuDefErrHandler is used. For more information,
see "DmuErrHandler_f", page 183.

child_pid This parameter specifies the pid of the child that is
forked and executed to create the dmusrcmd process.
This value is returned to the caller so that the caller is
free to handle the termination of child signals as
desired.

errs This parameter is set with a pointer to a
DmuAllErrors_t object if errors occur.

If the DmuCreateContext call completes successfully, it returns DmuNoError.

DmuDestroyContext Subroutine

The DmuDestroyContext subroutine destroys the API context to which that
dmuctxt points. The memory that had been allocated for its use is freed. The code is
as follows:

extern DmuError_t

DmuDestroyContext(

void *dmuctxt,

DmuAllErrors_t **errs)

The parameters of the DmuDestroyContext() call are as follows:

dmuctxt This parameter is pointer to an API context that was
previously created via DmuCreateContext().

errs This parameter is set with a pointer to a
DmuAllErrors_t object if errors occur.

DMF File Request Subroutines

Each of the following subroutines makes a DMF file request. The context parameter
that is included in each of these calls must have been already initialized via
DmuCreateContext.

007–3681–006 187

B: DMF User Library (libdmfusr.so)

Copy File Requests

The DmuCopyAsync and DmuCopySync subroutines perform copy requests in the
manner of the dmcopy(1) command. The code is as follows:

extern DmuError_t

DmuCopyAsync(

void *dmuctxt,

const char *srcfile_path,

const char *dstfile_path,

const int copy_flags,
const DmuCopyRanges_t *copyranges,

DmuReqid_t *request_id,

DmuAllErrors_t **errs)

extern DmuError_t
DmuCopySync(

void *dmuctxt,

const char *srcfile_path,

const char *dstfile_path,

const int copy_flags,
const DmuCopyRanges_t *copyranges,

DmuAllErrors_t **errs)

The DmuCopyAsync subroutine returns immediately after the copy request has been
forwarded to the dmusrcmd process. If a reply is desired, the caller must process the
reply to this request.

The DmuCopySync subroutine does not return until the requested copy has either
completed successfully or been aborted due to an error condition.

This request manipulates the destination file in exactly the same manner as that of the
to_file argument of the dmcopy command.

The parameters of these routines are as follows:

dmuctxt This parameter is a pointer to an API context that was
previously created by DmuCreateContext().

srcfile_path This parameter specifies the path name of the source
(input) file for the copy operation. It must be an offline
or dual state DMF file.

dstfile_path This parameter specifies the path name of the
destination (output) file for the copy operation. This

188 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

path must point to a file that exists or can be created in
a DMF-managed file system that is native on the same
host as that of the source file’s filesystem.

copy_flags This parameter specifies the OR’d value of the following
copy operation flags as defined in libdmfusr.h:

COPY_PRESV_DFILE - Do not truncate the destination
file before the copy operation.

COPY_ADDR_ALIGN - Allow an address in the
destination file that is greater than the size of the file.

COPY_NOWAIT – If the daemon is not available to
process the request, do not wait. Return immediately.

copyranges This parameter specifies a pointer to a
DmuCopyRanges_t object, as defined in
"DmuCopyRanges_t", page 183 and in
libdmfusr.h. Currently, this object can have only one
DmuCopyRange_t as defined in "DmuCopyRange_t",
page 183 and in libdmfusr.h.

request_id This parameter specifies a unique request ID. This
value can be used when processing DmuCompletion_t
objects to find the completion status.

errs This parameter is set with a pointer to a
DmuAllErrors_t object if errors occur.

If the routine succeeds, it returns DmuNoError.

Fullstat Requests

The following routines send a fullstat request to the dmusrcmd process. The
ultimate result of this request is the transfer of a DmuFullstat_t object to the caller.
Code for the routines is as follows:

extern DmuError_t

DmuFullstatByPathAsync(

void *dmuctxt,
const char *path,

DmuReqid_t *request_id,

DmuAllErrors_t **errs)

007–3681–006 189

B: DMF User Library (libdmfusr.so)

extern DmuError_t

DmuFullstatByPathSync(

void *dmuctxt,

const char *path,

DmuFullstat_t **fullstatb,
DmuFhandle_t **fhandle,

DmuAllErrors_t **errs)

extern DmuError_t

DmuFullstatByFhandleAsync(

void *dmuctxt,
const DmuFhandle_t *client_fhandle,

DmuReqid_t *request_id,

DmuAllErrors_t **errs)

extern DmuError_t
DmuFullstatByFhandleSync(

void *dmuctxt,

const DmuFhandle_t *client_fhandle,

DmuFullstat_t **fullstatb,

DmuAllErrors_t **errs)

The ’Sync’ versions of these calls do not return until the DmuFullstat_t has been
received or the request has been aborted due to errors.

The ’Async’ versions of these routines return immediately after successfully
forwarding the fullstat request to the dmusrcmd process. If a reply is desired, the
caller must process the reply to this request . That is the only way to actually receive
the DmuFullstat_t object, however. The DmuFullstatCompletion subroutine
has been supplied to extract the fullstat information from a fullstat completion
object.

The ’ByPath’versions of these calls allow the target file to be defined by its path name.

The ’ByFhandle’ versions of these calls allow the target file to be defined by its file
system handle, the fhandle. These routines are valid only when the command
making the call is on the DMF server machine, and they are valid only when a user
has sufficient (root) privileges.

These routines can return a successful completion (DmuNoError), but might still not
return valid DmuFullstat_t information. The routines are designed to return the
normal stat type information regardless of whether a DMAPI fullstat could be

190 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

successfully completed. Upon return from these routines, the caller can use a macro
defined in the libdmfusr.h file named DMU_NO_FULLSTAT_INFO with the address
of the DmuFullstat_t block as the parameter and it will verify the validity of the
DMAPI information in the DmuFullstat_t block.

The parameters of these routines are as follows:

dmuctxt This parameter is a pointer to an API context that was
previously created by DmuCreateContext().

path This parameter specifies the relative or absolute path
name of the target file.

client_fhandle This parameter specifies the DMF file system fhandle
of the target file.

fullstatb This parameter specifies the pointer that will be
returned with the DmuFullstat_t fullstat block.

fhandle This parameter specifies a pointer that will be returned
with the DmuFhandle_t value.

request_id This parameter is set with the unique request ID of the
fullstat request. You can use this value when
processing DmuCompletion_t objects to find the
request’s completion status.

errs This parameter is set with a pointer to a
DmuAllErrors_t object if errors occur.

If the routine succeeds, it returns DmuNoError.

Put File Requests

The following routines perform the put DMF request.

extern DmuError_t

DmuPutByFhandleAsync(

void *dmuctxt,

const DmuFhandle_t *client_fhandle,
const int flags,

const DmuByteRanges_t *byteranges,

DmuReqid_t *request_id,

DmuAllErrors_t **errs)

007–3681–006 191

B: DMF User Library (libdmfusr.so)

extern DmuError_t
DmuPutByFhandleSync(

void *dmuctxt,

const DmuFhandle_t *client_fhandle,

const DmuMigFlags_t flags,

const DmuByteRanges_t *byteranges,
DmuAllErrors_t **errs)

extern DmuError_t

DmuPutByPathAsync(

void *dmuctxt,

const char *path,
const DmuMigFlags_t flags,

const DmuByteRanges_t *byteranges,

DmuReqid_t *request_id,

DmuAllErrors_t **errs)

extern DmuError_t

DmuPutByPathSync(

void *dmuctxt,

const char *path,

const DmuMigFlags_t flags,

const DmuByteRanges_t *byteranges,
DmuAllErrors_t **errs)

The ’Sync’ versions of these calls do not return until the put request has either
completed successfully, or been aborted due to errors.

The ’Async’ versions of these routines return immediately after successfully
forwarding the put request to the dmusrcmd process. If a reply is desired, the caller
must process the reply to this request.

The ’ByPath’versions of these calls allow the target file to be defined by its path name.

The ’ByFhandle’ versions of these calls allow the target file to be defined by its file
system handle, the fhandle. These routines are valid only when the command
making the call is on the DMF server machine, and they are valid only when a user
has sufficient (root) privileges.

The parameters of these routines are as follows:

dmuctxt This parameter is a pointer to an API context that was
previously created by DmuCreateContext().

192 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

client_fhandle This parameter specifies the DMF file system fhandle
of the target file. Valid for use only by a privileged
(root) user.

path This parameter specifies the relative or full path name
of the target file.

flags These parameters specify the following migration flags
as defined in libdmfusr.h:

• MIG_NONE – No flags specified.

• MIG_FREE – Free the space associated with the
file.

• MIG_NOWAIT – If the daemon is not available to
process the request, do not wait. Return
immediately.

byteranges This parameter specifies a pointer to a
DmuByteRanges_t object, as defined in
libdmfusr.h. Currently, this object can have only one
DmuByteRange_t as defined in libdmfusr.h.

request_id This parameter specifies a unique request ID of the put
request. This value can be used when processing
DmuCompletion_t objects to find the request’s
completion status.

errs This parameter is set with a pointer to a
DmuAllErrors_t object if errors occur.

If the routine succeeds, it returns DmuNoError.

Get File Requests

The following routines perform the get DMF request.

extern DmuError_t

DmuGetByFhandleAsync(

void *dmuctxt,
const DmuFhandle_t *client_fhandle,

const DmuRecallFlags_t flags,

const DmuByteRanges_t *byteranges,

DmuReqid_t *request_id,

007–3681–006 193

B: DMF User Library (libdmfusr.so)

DmuAllErrors_t **errs)

extern DmuError_t

DmuGetByFhandleSync(

void *dmuctxt,

const DmuFhandle_t *client_fhandle,
const DmuRecallFlags_t flags,

const DmuByteRanges_t *byteranges,

DmuAllErrors_t **errs)

extern DmuError_t

DmuGetByPathAsync(
void *dmuctxt,

const char *path,

const DmuRecallFlags_t flags,

const DmuByteRanges_t *byteranges,

DmuReqid_t *request_id,
DmuAllErrors_t **errs)

extern DmuError_t

DmuGetByPathSync(

void *dmuctxt,

const char *path,
const DmuRecallFlags_t flags,

const DmuByteRanges_t *byteranges,

DmuAllErrors_t **errs)

The ’Sync’ versions of these calls do not return until the get request has either
completed successfully, or has been aborted due to errors.

The ’Async’ versions of these routines return immediately after successfully
forwarding the get request to the dmusrcmd process. If a reply is desired, the caller
must process the reply to this request.

The ’ByPath’versions of these calls allow the target file to be defined by its path name.

The ’ByFhandle’ versions of these calls allow the target file to be defined by its file
system handle, the fhandle. These routines are valid only when the command
making the call is on the DMF server machine, and they are valid only when a user
has sufficient (root) privileges.

The parameters of these routines are as folows:

194 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

dmuctxt This parameter is a pointer to an API context that was
previously created by DmuCreateContext().

client_fhandle This parameter specifies the DMF file system fhandle
of the target file. Valid for use only by a privileged
(root) user.

path This parameter specifies the relative or full path name
of the target file.

flags These parameters specify the following recall flags as
defined in libdmfusr.h:

• RECALL_NONE – No flags specified.

• RECALL_NOWAIT – If the daemon is not available to
process the request, do not wait. Return
immediately.

byteranges This parameter specifies pointer to a
DmuByteRanges_t object, as defined in
libdmfusr.h. Currently, this object can have only one
DmuByteRange_t, as defined in libdmfusr.h.

request_id This parameter specifies a unique request ID of the get
request. This value can be used when processing
DmuCompletion_t objects to find the completion
status.

errs This parameter is set with a pointer to a
DmuAllErrors_t object if errors occur.

If the routine succeeds, it returns DmuNoError.

Request Completion Subroutines

The request completion subroutines are provided so that the application can process
the completion events of any asynchronous requests it might have issued. The caller
can choose to process each request’s completion object (DmuCompletion_t), or
simply be notified when each request has responded with either an intermediate or
final (completion) reply.

The asynchronous requests described previously along with the following completion
subroutines allow the user to achieve maximum parallelization of the processing of all
requests.

007–3681–006 195

B: DMF User Library (libdmfusr.so)

DmuAwaitReplies Subroutine

The DmuAwaitReplies subroutine performs a synchronous wait until the number of
outstanding request replies of type type is less than or equal to max_outstanding.
This subroutine is called by a user who does not want to perform individual
processing of each outstanding request, but wants to know when a reply
(intermediate or final) has been received for each request that has been sent to this
point. Code for the routine is as follows:

extern DmuError_t

DmuAwaitReplies(
void *dmuctxt,

DmuReplyType_t type,

int max_outstanding,

DmuAllErrors_t **errs)

The parameters of this routine are as follows:

dmuctxt This parameter is a pointer to an API context that was
previously created by DmuCreateContext().

type This parameter defines the type of reply to be received.
The caller can wait for an intermediate or final reply for
the outstanding requests.

See the definition of DmuReplyType_t in
"DmuReplyType_t", page 185 or in libdmfusr.h.

max_outstanding This parameter specifies the number of outstanding
requests allowed for which the type reply has not been
received before the subroutine returns. If this parameter
is 0, all type replies will have been received when the
routine returns.

errs This parameter is set with a pointer to a
DmuAllErrors_t object if errors occur. Note that this
error object refers to errors that occur while waiting and
receiving the next reply.

If no errors occurred getting the next reply, this routine returns DmuNoError.

DmuGetNextReply Subroutine

The DmuGetNextReply subroutine returns the completion object of the next reply
based on the order specified on the call.

196 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

The caller can specify DmuIntermed or DmuFinal for the type parameter. If
DmuIntermed is specified and an intermediate reply is the next reply received and
there are no completed replies available for processing, the comp parameter is not set
(will be NULL) when the routine returns. An intermediate reply has no completion
object associated with it, and a return of this type is informational only.

This subroutine performs a synchronous wait until a request reply of the type
specified on the call is received. At the time of the call, any reply that has already
been received and is queued for processing is returned immediately.

Code is as follows:

extern DmuError_t
DmuGetNextReply(

void *dmuctxt,

DmuReplyOrder_t order,

DmuReplyType_t type,

DmuCompletion_t **comp,
DmuAllErrors_t **errs)

The parameters of this routine are as follows:

dmuctxt This parameter is a pointer to an API context that was
previously created by DmuCreateContext().

order This parameter defines the order in which the request
replies should be returned. The caller can process the
replies in the order the replies are received
(DmuAnyOrder), or in the order the requests were
issued (DmuReqOrder).

See the definition of DmuReplyOrder_t in
"DmuReplyOrder_t", page 184 or in libdmfusr.h.

type This parameter defines the type of reply to be received.
The caller can wait for an intermediate or final reply for
the outstanding requests. The receipt of an intermediate
reply returns no data.

comp This parameter is set upon receipt of a final
(completion) reply to the address of a completion
object. The reply_code field of the comp parameter is
the ultimate status of the request. A successful comp
has a reply_code of DmuNoError.

007–3681–006 197

B: DMF User Library (libdmfusr.so)

If the reply_code of comp is not DmuNoError, the
comp->allerrors object will contain the error
information needed to determine the cause of the error.
Note that the errs parameter on the subroutine call
does not contain the error information for the failed
request.

errs This parameter is set with a pointer to a
DmuAllErrors_t object if errors occur. Note that this
error object refers to errors that occur while waiting and
receiving the next reply. It does not refer to the errors
that occurred during the request processing that is
referenced by comp.

If no errors occurred getting the next reply, this routine returns DmuNoError. If there
are no outstanding requests pending, a return code of DME_DMU_QUEUEEMPTY is
returned. You can use a check for DME_DMU_QUEUEEMPTY to terminate a while loop
based on this subroutine. Any other error return code indicates an error, and the
errs parameter can be processed for the error information.

DmuGetThisReply Subroutine

The DmuGetThisReply subroutine returns the completion object of the specified
request. This subroutine performs a synchronous wait until request reply specified on
the call is received.

Code for this routine is as follows:

extern DmuError_t

DmuGetThisReply(
void *dmuctxt,

DmuReqid_t request_id,

DmuCompletion_t **comp,

DmuAllErrors_t **errs)

The parameters of this routine are:

dmuctxt This parameter is a pointer to an API context that was
previously created by DmuCreateContext().

request_id This parameter is the unique request ID of the request
for which the caller wants to wait.

198 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

comp This parameter is set upon receipt of the final
(completion) reply to the address of a completion object.
The reply_code field of the comp parameter is the
ultimate status of the request. A successful comp has a
reply_code of DmuNoError. If the reply_code of
comp is not DmNoError, the comp->allerrors object
will contain the error information needed to determine
the cause of the error. Note that the errs parameter on
the subroutine call does not contain the error
information for the failed request.

errs This parameter is set with a pointer to a
DmuAllErrors_t object if errors occur. Note that this
error object refers to errors that occur while waiting and
receiving this reply. It does not refer to the errors that
occurred during the request processing that is
referenced by comp.

If no errors occurred getting the next reply, this routine returns DmuNoError. Any
other error return code indicates an error and the errs parameter can be processed
for the error information.

DmuFullstatCompletion Subroutine

The DmuFullstatCompletion subroutine is supplied in the API to allow a user to
make asynchronous fullstat requests and to ease the processing of the completion
objects of those requests. When a DmuCompletion_t is returned to the caller via
DmuGetNextReply() or DmuGetThisReply(), the user can extract the
DmuFullstat_t and DmuFhandle_t information by calling this subroutine.

Code for the routine is as follows:

extern DmuError_t

DmuFullstatCompletion(

DmuCompletion_t *comp;

DmuFullstat_t **fullstatb,
DmuFhandle_t **fhandle)

The parameters on this call are as follows:

comp This parameter specifies the DmuCompletion_t object
from an asynchronous fullstat request.

007–3681–006 199

B: DMF User Library (libdmfusr.so)

fullstatb This parameter is returned with the fullstat
information returned by the original request.

fhandle This parameter is returned with the fhandle returned
by the original request.

Memory Management Subroutines

Memory management subroutines are available so that API users can efficiently
manage their use of memory. Each subroutine defined in this section frees all of the
memory associated with the object being deleted. It is safe to call all of these
subroutines with a null object pointer.

The user should feel free to call any of these subroutines, using a parameter of the
appropriate type that was used as input to one of the function or completion
processing routines described previously.

• The following subroutine frees all memory associated with a DmuAllErrors_t
object:

extern void

DmuDeleteAllErrors(DmuAllErrors_t *errs)

• The following subroutine frees all memory associated with a DmuCompletion_t
object:

extern void

DmuDeleteCompletion(DmuCompletion_t *comp)

• The following subroutine frees all memory associated with a DmuFullstat_t
object:

extern void

DmuDeleteFullstat(DmuFullstat_t *fullstat)

• The following subroutine frees all memory associated with a DmuFhandle_t
object:

extern void

DmuDeleteFhandle(DmuFhandle_t *fhandle)

200 007–3681–006

Glossary

active database entry

A valid daemon database entry. See also soft-deleted database entry and hard-deleted
database entry.

allocation group

A source of additional volumes for a volume group that runs out of media. An
allocation group defines a logical pool of volumes, and is different from an actual
operational volume group. Normally, one allocation group is configured to serve
multiple volume groups. If a volume group has an associated allocation group, when
the volume group runs out of empty volumes, the library server assigns one from the
allocation group to it, subject to configuration restrictions. Similarly, when a volume’s
hfree flag is cleared in a volume group, it is returned to the allocation group, subject
to configuration restrictions. The use of allocation groups is optional. Allocation
groups are defined in the DMF configuration file (dmf_config).

alternate media

The media onto which migrated data blocks are stored, usually tapes.

automated space management

The combination of utilities that allows DMF to maintain a specified level of free
space on a file system through automatic file migration.

base object

The configuration object that defines path name and file size parameters necessary for
DMF operation.

bitfile ID

See bfid.

bfid

The bit file identifier, or bfid, is a unique identifier, assigned to each file during the
migration process, that links a migrated file to its data on alternate media.

007–3681–006 201

Glossary

bfid set

The collection of database entries and the user file associated with a particular bfid.

bfid-set state

The sum of the states of the components that comprise a bfid set: the file state of any
user file and the state of any database entries (incomplete, complete, soft-deleted, or
active).

block

Physical unit of I/O to and from media, usually tape. The size of a block is
determined by the type of device being written. A tape block is accompanied by a
header identifying the chunk number, zone number, and its position within the chunk.

candidate list

A list that contains an entry for each file in a file system eligible for migration,
ordered from largest file weight (first to be migrated) to smallest. This list is
generated and used internally by dmfsmon(8). The dmscanfs(8) command prints
similar file status information to standard output.

CAT records

The catalog (CAT) records in the tape MSP or LS database that track which migrated
files reside on which tape volumes.

chunk

That portion of a user file that fits on the current media (tape) volume. Most small
files are written as single chunks. When a migrated file cannot fit onto a single
volume, the file is split into chunks.

complete MSP/VG daemon-database entry

An entry in the daemon database whose path field contains a key returned by its
MSP/VG, indicating that the MSP/VG maintains a valid copy of the user file.

compression

The mechanism provided by the tape MSP/LS for copying active data from volumes
that contain largely obsolete data to volumes that contain mostly active data. This
process is also known as volume merging or tape merging.

202 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

configuration object

A series of parameter definitions in the DMF configuration file that controls the way
DMF operates. By changing the parameters associated with objects, you can modify
the behavior of DMF.

configuration parameter

A string in the DMF configuration file that defines a part of a configuration object. By
changing the values associated with these parameters, you can modify the behavior of
DMF. The parameter serves as the name of the line. Some parameters are reserved
words, some are supplied by the site.

daemon database

A database maintained by the DMF daemon. This database contains such information
as the bfid, the MSP/VG name, and MSP/VG key for each copy of a migrated file.

daemon object

The configuration object that defines parameters necessary for dmdaemon(8) operation

data-pointer area

The portion of the inode that points to the file’s data blocks.

device object

The configuration objects that define parameters for DMF’s use of tape devices.

direct-access storage device (DASD)

An IBM disk drive.

DMF state

See file state.

dual-state file

A file whose data resides both online and offline.

007–3681–006 203

Glossary

dual-state file systems

Those file systems that have the necessary inode space to support dual-state files.

fhandle

See file handle.

file

An inode and its associated data blocks; an empty file has an inode but no data blocks.

file handle

The DMAPI identification for a file. You can use the dmscanfs(8), dmattr(1), and
dmfind(1) commands to find file handles.

file state

The migration state of a file as indicated by the dmattr(1) command. A file can be
regular (not migrated), migrating, dual-state, offline, unmigrating, never-migrated, or
have an invalid DMF state.

freed file

A user file that has been migrated and whose data blocks have been released.

fully backed up file

A file that has one or more complete offline copies and no pending or incomplete
offline copies.

hard-deleted database entry

An MSP or VG database entry that has been removed from the daemon database and
whose MSP/VG copy has been discarded. See also active database entry and soft-deleted
database entry.

inode

The portion of a file that contains the bfid, the state field, and the data pointers.

204 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

incomplete MSP/VG daemon-database entry

An entry in the daemon database for an MSP or VG that has not finished copying the
data, and therefore has not yet returned a key. The path field in the database entry is
NULL.

incompletely migrated file

A file that has begun the migration process, but for which one or more copies on
alternate media have not yet been made.

library server (LS)

The daemon-like process that provides much of the same functionality as one or more
tape MSPs. Each LS has an associated catalog (CAT) and volume (VOL) database. An
LS can be configured to contain one or more drive groups (DGs). Each DG defines a
pool of volume groups (VGs). A volume group is responsible for copying data blocks
onto alternate media.

LS

See library server

media-specific process (MSP)

The daemon-like process by which data blocks are copied onto alternate media, and
which assigns keys to identify the location of the migrated data.

merging

The mechanism provided by the tape MSP/LS for copying active data from volumes
that contain largely obsolete data to volumes that contain mostly active data. This
process is also known as volume merging or tape merging.

migrated file

A file that has a bfid and whose offline copies (or copy) are completed. Migrated files
can be dual-state or offline.

migrating file

A file that has a bfid but whose offline copies (or copy) are in progress.

007–3681–006 205

Glossary

MSP

See media-specific process (MSP).

MSP/VG database entry

The daemon database entry for a file that contains the path or key that is used to
inform a particular MSP or VG where to locate the copy of the file’s data.

MSP objects

The configuration objects that define parameters necessary for that MSP’s operation

nonmigrated file

A file that does not have a bfid or any offline copies. See regular file.

offline file

A file whose inode contains a bfid but whose disk blocks have been removed. The
file’s data exists elsewhere in copies on alternate media.

offline pointer

In tape MSP/LS processing, a character string that the MSP/LS returns to the daemon
to indicate how a file is to be retrieved. For the tape MSP/LS , the offline pointer is
the character key into the MSP/LS catalog (CAT) records of the database.

orphan chunks

Unused chunks in the tape MSP/LS catalog (CAT) database entries resulting from the
removal of migrated files.

orphan database entries

Unused database entries resulting from the removal of migrated files during a period
in which the DMF daemon is not running.

parameter

See configuration parameter.

206 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

policy objects

The configuration objects that specify parameters to determine MSP/VG selection,
automated space management policies, and/or file weight calculations in automatic
space management.

recall

To request that a migrated file’s data be moved back (unmigrated) onto the file
system disk, either by explicitly entering the dmget(1) command or by executing
another command that will open the file, such as the vi(1) command.

regular file

DMF considers a regular file to be one with no bfid and no offline copies.

snapshot

The information about all bfid sets that is collected and analyzed by dmaudit(8). The
snapshot analysis is available from the report function.

soft-deleted database entry

A daemon database entry for which the MSP/VG copy of the data is no longer valid.
Data remains on the alternate media until the database entry is hard-deleted. See also
active database entry and hard-deleted database entry.

sparse tape

A tape containing only a small amount of active information.

special file

UNIX special files are never migrated by DMF.

state field

The field in the inode that shows the current migration state of a file.

tape block

See block.

007–3681–006 207

Glossary

tape chunk

See chunk.

task

A process initiated by the DMF event mechanism. Configuration tasks that allow
certain recurring administrative duties to be automated are defined with
configuration file parameters.

unmigratable file

A file that the daemon will never select as a migration candidate.

unmigrate

See recall.

VG

See volume group

voided bfid-set state

A bfid-set state that consists of one or more soft-deleted daemon database entries,
either incomplete or complete. There is no user file.

voiding the bfid

The process of removing the bfid from the user file inode and soft-deleting all
associated database entries.

VOL records

The volume (VOL) records in the tape MSP/LS database that contain information
about each tape volume that exists in the pool of tapes used by the tape MSP/LS.

volume group

One of the components of a library server. A volume group is responsible for copying
data blocks onto alternate media. Each volume group contains a pool of tapes, all of
the same media type, capable of managing single copies of user files. Multiple copies
of the same user files require the use of multiple volume groups. See also library server.

208 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

volume merging

The mechanism provided by the tape MSP/LS for copying active data from volumes
that contain largely obsolete data to volumes that contain mostly active data.

zone

A logical grouping of chunks. Zones are separated by file marks and are the smallest
block-addressable unit on the tape volume. The target size of a zone is configurable
by media type.

007–3681–006 209

Index

A

Absolute block positioning
definition, 7

ADMIN_EMAIL configuration parameter
base object

definition, 31
$ADMINDIR directory

daemon maintenance tasks, 38
MSP maintenance tasks, 78

Administration
overview, 10

Administrative tasks
daemon configuration, 36

TASK_GROUPS parameter, 34
file system backups, 11

configuring automated tasks, 39
overview, 10
overview of automated maintenance tasks, 26
tape management

configuring automation, 77
Administrative tips, 163
age expression

configuration file
definition, 47

AGE_WEIGHT configuration parameter
definition, 46

all keyword
dmvoladm command, 139

Allocation group, 6
Application data flow, 2
Architecture

overview, 8
atmsp_db journal file

dmatmsp, 123
atmsp_db.dbd

database definition file, 123, 168

atmsp_db.dbd database definition file, 122
autolog log file, 101

message format, 90
Automated maintenance tasks

daemon configuration, 36
TASK_GROUPS parameter, 34

overview, 26
Automated space management

candidate list generation, 98
configuration parameters

definitions, 42, 44
daemon configuration

MIGRATION_LEVEL parameter, 34
filesystem configuration

MIGRATION_LEVEL parameter, 42
log file, 101

message format, 90
relationship of targets, 100
selection of migration candidates

configuration parameters, 98
file exclusion, 98
FREE_SPACE_DECREMENT configuration

parameter, 100
FREE_SPACE_MINIMUM configuration

parameter, 99
FREE_SPACE_TARGET configuration

parameter, 99
MIGRATION_TARGET configuration

parameter, 99
Automated space management commands

overview, 17
Automounters

supported, 7

007–3681–006 211

Index

B

Backups
of daemon database

configuring automated task, 39
Bandwidth

I/O, 1
Base object

configuration, 31
configuration file

definition, 29
configuration parameters

definitions, 31
bfid

definition, 8
bfid record

dmcatadm text field order, 136
dmdadm text field order, 110

bit file identifier
See "bfid", 8

BLOCK_SIZE configuration parameter
device object

definition, 56
Blocks

DMF tape concepts, 119
blocksize keyword

dmvoladm command, 140
blocksize record

dmvoladm text field order, 148, 149

C

CACHE_DIR configuration parameter
dmatmsp, 128

definition, 51
CACHE_SPACE configuration parameter

dmatmsp, 128
definition, 52

CANCEL message
FTP MSP, 153

Candidate list

creation, 97
definition, 11
generation, 98

Candidates for migration
file exclusion, 98
file selection, 98

FREE_SPACE_DECREMENT configuration
parameter, 100

FREE_SPACE_MINIMUM configuration
parameter, 99

FREE_SPACE_TARGET configuration
parameter, 99

MIGRATION_TARGET configuration
parameter, 99

relationship of space management targets, 100
Capacity

of DMF, 9
scheduling, 1

capacity record
dmvoladm text field order, 148

CAT database
backup, 168
message format comparison, 173, 174
message interpretation, 175

CAT records
dmatmsp/dmatls database, 118
tape MSP/LS database directories, 121

checkage keyword
dmdadm command, 107

checktime keyword
dmdadm command, 107
dmdadm text field order, 110

CHILD_MAXIMUM configuration parameter
dmatmsp

definition, 52
dmdskmsp

definition, 86
dmftpmsp

definition, 82
chunkdata keyword

dmcatadm command, 132

212 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

chunkdata record
dmcatadm text field order, 137

chunklength keyword
dmcatadm command, 132

chunklength record
dmcatadm text field order, 137

chunknumber keyword
dmcatadm command, 132

chunknumber record
dmcatadm text field order, 137

chunkoffset keyword
dmcatadm command, 133

chunkoffset record
dmcatadm text field order, 137

chunkpos keyword
dmcatadm command, 133

Chunks
DMF tape concepts, 119

chunksleft keyword
dmvoladm command, 141

chunksleft record
dmvoladm text field order, 148, 149

COMMAND configuration parameter
dmatmsp

definition, 52
dmdskmsp

definition, 87
dmftpmsp

definition, 82
Configuration

command overview, 15
installing binary files, 22
overview, 21
tape MSPs/LSs

setting up, 79
verifying, 89

Configuration file
automated space management configuration, 44
base object configuration, 31
daemon object configuration, 34
daemon_tasks object, 37
device object configuration, 55

OpenVault mounting service, 57
TMF mounting service, 58

disk MSP configuration, 86
dump_tasks object, 39
file weighting parameters, 46
filesystem object configuration, 42
FREE_SPACE_DECREMENT configuration

parameter, 100
FREE_SPACE_MINIMUM configuration

parameter, 99
FREE_SPACE_TARGET configuration

parameter, 99
FTP MSP configuration, 82
MIGRATION_TARGET configuration

parameter, 99
MSP/VG selection parameters, 46
msp_tasks object, 77
OpenVault mounting service configuration, 72
policy object configuration, 43
space management parameters, 98
tape MSP configuration, 51

Configuration objects
configuration file, 29
definition, 15

Configuration parameters
automated space management

definitions, 44
base object

definitions, 31
daemon object

definitions, 34
definition, 15
device object

definitions, 55
OpenVault mounting service, 57
TMF mounting service, 58

disk MSP
definitions, 86

file weighting
definitions, 46
procedure for configuring, 47

007–3681–006 213

Index

filesystem object
definitions, 42

FTP MSP
definitions, 82

HOME_DIR, 118
JOURNAL_DIR, 118, 123

dmdaemon and, 111
JOURNAL_SIZE

dmdaemon and, 112
tape MSP/LS and, 124

MSP/VG selection
definitions, 46
procedure for configuring, 50

policy object
definitions, 43

SPOOL_DIR, 101, 111, 118
tape MSP

definitions, 51
procedure for configuring, 54

Configuration requirements, 22
Conversion

tape MSP to LS, 156
count directive

dmcatadm command, 130
dmdadm command, 105
dmvoladm command, 138

cpio command
file recall, 165

create directive
dmcatadm command, 130
dmvoladm command, 138

D

Daemon
commands

overview, 15
configuration parameters

definitions, 34
configuring automated maintenance tasks, 36
database, 104

automating copying for reliability, 39
backup, 168
configuring automated verification task, 38
directory location, 104
selection, 168

database record length, 24
procedure for configuring, 25

database recovery, 168
dmdadm command, 105
log file

message format, 90
logs and journals, 111
processing, 103
shutdown, 104

Daemon database
message format comparison, 173, 174
recovery example, 169

Daemon object
configuration, 34
configuration file

definition, 29
daemon_tasks object

configuration, 37
parameters

definitions, 36
Data integrity

administrative tasks and, 11
copying file system data

configuring automated tasks, 39
overview, 7

Data reliability
administrative tasks and, 11
copying daemon database

configuring automated task, 39
copying file system data

configuring automated tasks, 39
Data types

distributed commands, 181
DATA_LIMIT parameter

msp_tasks object
configuration, 79

214 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

Database definition file
atmsp_db.dbd, 122, 123, 168
dmd_db.dbd, 89, 168
libsrv_db.dbd, 123, 168

Database journal files
dmlockmgr process, 113

DATABASE_COPIES parameter
daemon_tasks object

configuration, 39
Databases

CAT
backup, 168

daemon, 104, 168
backup, 168
configuring record length, 25
database record length, 24
directory location, 104

dmcatadm message interpretation, 175
dmvoladm message interpretation, 177
example of recovery, 169
message format for comparisons, 173, 174
tape MSP/LS recovery, 168
VOL

backup, 168
dataleft keyword

dmvoladm command, 141
dataleft record

dmvoladm text field order, 148, 149
datalimit keyword

dmvoladm command, 142
datawritten keyword

dmvoladm command, 141
datawritten record

dmvoladm text field order, 148, 149
dbrec.dat file, 168
dbrec.keys file, 168
delete directive

dmcatadm command, 130
dmdadm command, 106
dmvoladm command, 138

deleteage keyword
dmdadm command, 108

deletetime keyword
dmdadm command, 108
dmdadm text field order, 111

Device object
configuration parameters

definitions, 55
device object

configuration parameters
OpenVault mounting service, 57
TMF mounting service, 58

Device objects
configuration file

definition, 29
Directories

daemon database, 104
Disk MSP, 153

configuration parameters
definitions, 86

log files, 155
request processing, 154

Disk resources
overruns, 1

Disk space capacity
handling, 4

DISK_IO_SIZE configuration parameter
dmatmsp

definition, 52
dmdskmsp

definition, 87
dmftpmsp

definition, 82
Distributed commands

data types, 181
overview, 179
user-accessible API routines, 186

dmatls, 117
journal files, 123
log files, 124

dmatmsp, 117
CAT database records, 121
configuration parameters

007–3681–006 215

Index

definitions, 51
procedure for configuring, 54

directories, 118
dmvoladm command, 137
journal files, 123
log files, 124
merging tape volumes, 127
setup, 79
VOL database records, 122

dmatread command, 149
definition, 18
reading MSP/LS volumes, 118

dmatsnf command, 150
definition, 18
reading MSP/LS volumes, 118

dmattr command
definition, 13

dmatvfy command
definition, 18

dmaudit command
definition, 16

dmaudit verifymsp command, 150
dmcatadm command, 129

chunkdata keyword, 132
chunklength keyword, 132
chunknumber keyword, 132
chunkoffset keyword, 133
chunkpos keyword, 133
count directive, 130
create directive, 130
definition, 18
delete directive, 130
directives

syntax, 131
dump directive, 130
entry keyword, 134
example of list directive, 135
filesize keyword, 133
flags keyword, 133
format keyword, 135
help directive, 130
limit keywords, 134

list directive, 130
load directive, 130
mspname keyword, 134, 135
quit directive, 130
readage keyword, 133
readcount keyword, 133
readdate keyword, 133
recordlimit keyword, 134
recordorder keyword, 134
set directive, 130
text field order, 136
update directive, 130
verify directive, 130
volgrp keyword, 133
vsn keyword, 133
writeage keyword, 133
writedate keyword, 133
zoneblockid keyword, 133
zonenumber keyword, 133
zonepos keyword, 134

dmcatadm directives, 129
field keywords, 132

dmcheck command
definition, 16

dmclripc command
definition, 18

dmconfig command
definition, 15

dmcopy command
definition, 13

dmd_db journal file, 111
dmd_db.dbd

database definition file, 89, 168
dmdadm command, 104

checkage keyword, 107
checktime keyword, 107
count directive, 105
create directive, 106
definition, 16
deleteage keyword, 108
deletetime keyword, 108

216 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

directives, 105
field keywords, 107
format keywords, 107
syntax, 106

dmdump
text field order, 110

dump directive, 106
example of list directive, 109
format keyword, 109
help directive, 106
limit keywords, 109
list directive, 106
load directive, 106
mspkey keyword, 108
mspname keyword, 108
origage keyword, 108
origdevice keyword, 108
originode keyword, 108
origname keyword, 108
origsize keyword, 108
origtime keyword, 108
origuid keyword, 108
quit directive, 106
recordlimit keyword, 109
recordorder keyword, 109
selection expression, 106
set directive, 106
text field order, 110
update directive, 106
updateage keyword, 108
updatetime keyword, 108

dmdaemon command, 103
daemon startup, 103
definition, 16

dmdbcheck command
definition, 16, 18

dmdbrecover command
database recovery, 169
definition, 16

dmdidle command
definition, 16

dmdlog log file, 103, 111

message format, 90
dmdskmsp, 153
dmdstat command

overview, 16
dmdstop command, 89

daemon shutdown, 104
definition, 16

dmdump command
definition, 19
text field order, 136

dmdump directive
text field order, 148

dmdumpj command
definition, 19

DMF
shutdown, 89

DMF initialization, 89
DMF state information

extended attribute structure, 24
DMF user library, 179
dmf_config man page

definition, 15
dmfill command

definition, 19
file restoration, 167

dmfind command
definition, 13

dmfsfree command
candidate list creation, 97
definition, 17
migration target and, 97

dmfsmon command, 44
candidate list creation, 97
candidate list generation, 98
candidate selection, 98
configuration parameters, 98
definition, 17
file exclusion, 98

dmftpmsp, 150
configuration parameters

definitions, 82

007–3681–006 217

Index

dmget command
definition, 13

dmhdelete command
definition, 16

dmlocklog log file
message format, 90

dmlockmgr command
definition, 19

dmlockmgr process, 113
abort, 115
communication and log files, 113
database journal files, 113
interprocess communication, 114
log file

message format, 90
shutdown, 115
token files, 114
transaction log files, 113, 115

dmls command
definition, 13

dmmaint command
definition, 19

dmmigrate command
definition, 17
file backup, 165

dmmove command
definition, 19
moving data between MSPs, 155
scratch file system location

MOVE_FS configuration parameter, 34
dmov_keyfile command, 73

definition, 19
dmov_loadtapes command, 76

definition, 19
dmov_makecarts command, 76

definition, 20
dmput command

definition, 13
dmscanfs command

definition, 17
uses, 98

dmselect command

definition, 20
moving data between MSPs, 155

dmsnap command
definition, 17

dmsort command
definition, 20

dmversion command
definition, 17

dmvoladm command, 137
all keyword, 139
blocksize keyword, 140
chunksleft keyword, 141
count directive, 138
create directive, 138
dataleft keyword, 141
datalimit keyword, 142
datawritten keyword, 141
definition, 18
delete directive, 138
directives, 137, 140

syntax, 139
dump directive, 138
empty keyword, 139
eotblockid keyword, 141
eotchunk keyword, 141
eotpos keyword, 141
eotzone keyword, 141
examples of list directive, 144
field keywords, 140
flag keywords, 143
format keyword, 143
hbadmnt flag, 143
help directive, 138
herr flag, 143
hflags flag, 143
hfree flag, 143
hfull flag, 143
hlock flag, 144
hoa flag, 144
hro flag, 144
hrsv flag, 144

218 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

hsparse flag, 144
label keyword, 141
limit keywords, 142
list directive, 138
load directive, 138
partial keyword, 139
quit directive, 138
recordlimit keyword, 142
recordorder keyword, 143
repair directive, 138
select directive, 127, 138
selection expression, 139
set directive, 138
tapesize keyword, 141
text field order, 148
threshold keyword, 141
upage keyword, 141
update directive, 138
update keyword, 142
used keyword, 140
verify directive, 139
version keyword, 142
volgrp keyword, 142
vsnlist expression, 139
wfage keyword, 142
wfdate keyword, 142

dmxfsrestore command
definition, 20

Drive group, 5
BLOCK_SIZE option, 61
DISK_IO_SIZE option, 61
DRIVE_MAXIMUM option, 61
DRIVE_SCHEDULER option, 61
DRIVES_TO_DOWN option, 61
LABEL_TYPE option, 61
MAX_MS_RESTARTS option, 61
MOUNT_SERVICE option, 62
MOUNT_SERVICE_GROUP option, 62
MSG_DELAY option, 62
OV_ACCESS_MODES option, 62
OV_INTERCHANGE_MODES option, 62
POSITION_RETRY option, 63

POSITIONING option, 62
REINSTATE_DRIVE_DELAY option, 63
REINSTATE_VOLUME_DELAY option, 63
RUN_TASK option, 63
TASK_GROUPS option, 63
TMF_TMMNT_OPTIONS option, 63
TYPE option, 60
VERIFY_POSITION option, 64
VOLUME_GROUPS option, 64
WRITE_CHECKSUM option, 64

Drive group object
configuration file

definition, 30
Drive groups

with OpenVault, 72
with TMF tapes, 77

Dual-state file
definition, 4, 13
xfsdump and, 165

dump and restore
migrated files, 165

dump directive
dmcatadm command, 130
dmdadm command, 106
dmvoladm command, 138

Dump utilities
administrative tasks and, 12

DUMP_DEVICE parameter
dump_tasks object

configuration, 41
DUMP_FILE_SYSTEMS parameter

dump_tasks object
configuration, 41

DUMP_INVENTORY_COPY parameter
dump_tasks object

configuration, 41
DUMP_MIGRATE_FIRST parameter

dump_tasks object
configuration, 41

DUMP_RETENTION parameter
dump_tasks object

007–3681–006 219

Index

configuration, 41
DUMP_TAPES parameter

dump_tasks object
configuration, 41

dump_tasks object
configuration, 39
parameters

definition, 36
DUMP_VSNS_USED parameter

dump_tasks object
configuration, 41

E

empty keyword
dmvoladm command, 139

entries keyword
dmcatadm command, 134

Environment variables
setting PATH and MANPATH, 28

eotblockid keyword
dmvoladm command, 141

eotchunk keyword
dmvoladm command, 141

eotchunk record
dmvoladm text field order, 148, 149

eotpos keyword
dmvoladm command, 141

eotposition record
dmvoladm text field order, 148, 149

eotzone keyword
dmvoladm command, 141

Error reports
tapes

configuring automated tasks, 77
Extended attribute structure

and DMF states, 24

F

Field keywords
dmcatadm command, 132
dmdadm command, 107
dmvoladm command, 140

File concepts
definition, 13

File migration
automated selection of candidates, 98

FREE_SPACE_DECREMENT configuration
parameter, 100

FREE_SPACE_MINIMUM configuration
parameter, 99

FREE_SPACE_TARGET configuration
parameter, 99

MIGRATION_TARGET configuration
parameter, 99

excluding files from, 98
MSP/VG selection for files

configuration parameter definition, 46
procedure for configuring, 50

overview, 4, 14
real-time partitions and, 101
relationship of space management targets, 100
weighting of files

configuration parameter definition, 46
procedure for configuring, 47

File recall
overview, 14

File system
backups

configuring automated tasks for retaining, 41
configuration parameters

definitions, 42
conversion

dmdskmsp configuration parameters, 87
dmftpmsp configuration parameters, 83

mount options, 23
File weighting configuration parameters

definitions, 46

220 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

procedure for configuring, 47
filesize keyword

dmcatadm command, 133
filesize record

dmcatadm text field order, 136
Filesystem object

configuration file
definition, 29

filesystem object
configuration, 42

FINISH message
FTP MSP, 153

Flag keywords
dmvoladm command, 143

flags keyword
dmcatadm command, 133

flags record
dmcatadm text field order, 137

FLEXlm license configuration
LICENSE_FILE base object parameter

definition, 31
FLUSHALL message

FTP MSP, 153
format keyword

dmcatadm command, 135
dmdadm command, 109
dmvoladm command, 143

Format keywords
dmdadm command, 107

Free space
managing

overview, 4
FREE_DUALSTATE_FIRST configuration

parameter
policy object

definition, 44
FREE_SPACE_DECREMENT configuration

parameter
and automated space management, 100
policy object

definition, 44

FREE_SPACE_MINIMUM configuration
parameter

and automated space management, 99
policy object

definition, 45
FREE_SPACE_TARGET configuration parameter

and automated space management, 99
policy object

definition, 45
FTP

DMF interoperability, 2
FTP MSP, 150

configuration parameters
definitions, 82

log files, 152
messages, 153
request processing, 151

FTP_ACCOUNT configuration parameter
dmftpmsp

definition, 83
FTP_COMMAND configuration parameter

dmftpmsp
definition, 83

FTP_DIRECTORY configuration parameter
dmftpmsp

definition, 83
FTP_HOST configuration parameter

dmftpmsp
definition, 83

FTP_PASSWORD configuration parameter
dmftpmsp

definition, 83
FTP_PORT configuration parameter

dmftpmsp
definition, 83

FTP_USER configuration parameter
dmftpmsp

definition, 83
Fully backed up file

definition, 4

007–3681–006 221

Index

G

gid expression
configuration file

definition, 47
GUARANTEED_DELETES configuration

parameter
dmdskmsp

definition, 87
dmftpmsp

definition, 83
GUARANTEED_GETS configuration parameter

dmdskmsp
definition, 87

dmftpmsp
definition, 83

H

Hard-deleted files
defined, 165
definition, 14
maintenance/recovery, 164

hbadmnt keyword
dmvoladm command, 143

help directive
dmcatadm command, 130
dmdadm command, 106
dmvoladm command, 138

herr keyword
dmvoladm command, 143

hflags keyword
dmvoladm command, 143

hflags record
dmvoladm text field order, 148, 149

hfree keyword
dmvoladm command, 143

HFREE_TIME configuration parameter
dmatmsp

definition, 52
hfull keyword

dmvoladm command, 143
hlock keyword

dmvoladm command, 144
hoa keyword

dmvoladm command, 144
HOME_DIR configuration parameter

definition, 31
dmatmsp and, 118

HOME_DIR directory
location of, 33

hro keyword
dmvoladm command, 144

hrsv keyword
dmvoladm command, 144

hsparse keyword
dmvoladm command, 144

I

id record
dmvoladm text field order, 148, 149

IMPORT_DELETE configuration parameter
dmdskmsp

definition, 87
dmftpmsp

definition, 83
IMPORT_ONLY configuration parameter

dmdskmsp
definition, 87

dmftpmsp
definition, 83

Initialization
of DMF, 89

Inode size
configuration, 24

Installation
binary files, 22

Interprocess communication (IPC)
configuring operating system parameters, 26
dmlockmgr process, 113, 114

222 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

exit cleanup, 114

J

Journal files
configuring automated task for retaining, 39
dmdaemon, 111
dmlockmgr process, 113
retaining, 163
tape MSP/LS, 123

JOURNAL_DIR configuration parameter
definition, 31
dmatls, 123
dmatmsp, 118, 123
dmdaemon and, 111

JOURNAL_DIR directory
location of, 33

JOURNAL_RETENTION parameter
daemon_tasks object

configuration, 39
JOURNAL_SIZE configuration parameter

definition, 31
dmdaemon and, 112
tape MSP/LS and, 124

L

label keyword
dmvoladm command, 141

LABEL_TYPE configuration parameter
device object

definition, 56
lbtype record

dmvoladm text field order, 148
Library server

CACHE_DIR option, 59
CACHE_SPACE option, 59
COMMAND option, 60
conversion from tape MSP, 156
drive scheduling, 161

DRIVE_GROUPS option, 60
error analysis and avoidance, 159
MAX_CACHE_FILE option, 60
MESSAGE_LEVEL option, 60
objects, 59
RUN_TASK option, 60
setup, 59
status monitoring, 161
TASK_GROUPS option, 60
TYPE option, 59
WATCHER option, 60

Library server object
configuration file

definition, 30
Library servers

See "LS", 4
libsrv_db journal file

dmatls, 123
libsrv_db.dbd

database definition file, 123, 168
LICENSE_FILE configuration parameter

definition, 31
Limit keywords

dmcatadm command, 134
dmdadm command, 109
dmvoladm command, 142

list directive
dmcatadm command, 130
dmdadm command, 106
dmvoladm command, 138

list keyword
dmdadm command

example, 109
load directive

dmcatadm command, 130
dmdadm command, 106
dmvoladm command, 138

Lock manager
aborts, 115
communication and log files, 113
database journal files, 113

007–3681–006 223

Index

interprocess communication, 114
RDM, 113
shutdown, 115
token files, 114
transaction log files, 113, 115

Log files
automated space management, 101
configuring automated task for retaining, 38
disk MSP, 155
dmdaemon, 111
dmlockmgr process, 113, 115
FTP MSP, 152
general format, 89
retaining, 163
tape MSP/LS, 124

LOG_RETENTION parameter
daemon_tasks object

configuration, 38
LS, 117

definition, 4
description, 117
operations, 117

LS configuration example, 69
LS process, 5

M

Maintenance and recovery
cleaning up journal files, 163
cleaning up log files, 163
database backup, 168, 169
dmfill command, 167
dumping migrated files, 165
example, 169
hard-deletes, 164
restoring migrated files, 165
soft-deletes, 164
tape MSP/LS database, 168, 169

Maintenance tasks
automated

overview, 26

daemon configuration, 36
Man pages

installation location, 22
setting environment variables for, 28

MANPATH environment variable
setting, 28

MAX_CACHE_FILE configuration parameter
dmatmsp, 128

definition, 52
MAX_CHUNK_SIZE configuration parameter

dmatmsp
definition, 52

MAX_PUT_CHILDREN configuration parameter
dmatmsp

definition, 53
Media concepts, 119
Media transports

supported, 7
Media-specific processes

See "MSP", 4
MERGE_CUTOFF configuration option

dmatmsp, 128
MERGE_CUTOFF configuration parameter

dmatmsp
definition, 53

Merging tapes
configuration of automated task, 79

stopping automatically, 79
MESSAGE_LEVEL configuration parameter

daemon object
definition, 34

dmatmsp
definition, 53

dmdskmsp
definition, 87

dmftpmsp
definition, 84

filesystem object
definition, 42

Messages
CAT database, 173, 174

224 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

daemon database, 173, 174
FTP MSP, 153
interpretation for dmcatadm, 175
interpretation for dmvoladm, 177
log file

general format, 89
VOL database, 174

Migrated data
moving between MSPs, 155

Migrated file
definition, 13
recalling, 14

Migrating file
definition, 13

Migration
MSP/VG selection for files

configuration parameter definition, 46
procedure for configuring, 50

weighting of files
configuration parameter definition, 46
procedure for configuring, 47

Migration candidates
file exclusion, 98
file selection, 98

FREE_SPACE_DECREMENT configuration
parameter, 100

FREE_SPACE_MINIMUM configuration
parameter, 99

FREE_SPACE_TARGET configuration
parameter, 99

MIGRATION_TARGET configuration
parameter, 99

relationship of space management targets, 100
Migration of files

overview, 14
Migration target

definition, 97
MIGRATION_LEVEL configuration parameter

daemon object
definition, 34

filesystem object
definition, 42

MIGRATION_TARGET configuration parameter
and automated space management, 99
policy object

definition, 45
MIN_TAPES configuration parameter

dmatmsp
definition, 53

mount command
DMF-managed file systems, 23

MOUNT_SERVICE configuration parameter
device object

definition, 56
Mounting services

support for, 23
MOVE_FS configuration parameter

daemon object
definition, 34

MSG_DELAY configuration parameter
device object

definition, 56
MSGMAX operating system parameter

configuring, 26
MSGSEG operating system parameter

configuring, 26
MSGSSZ operating system parameter

configuring, 26
MSP

commands, 17
definition, 4
description, 117
disk, 153
dmcatadm message interpretation, 175
dmdaemon, 117
dmvoladm message interpretation, 177
FTP, 150
log files

and automated maintenance tasks, 39
message format, 90

message format, 173, 174
moving migrated data between MSPs, 155
tape pool

007–3681–006 225

Index

configuring automated task to report
status, 79

MSP log files
and automated maintenance tasks, 77

MSP objects, 51
configuration file

definition, 29
MSP/LS

CAT database tape records, 121
dmatread command, 149
dmatsnf command, 150
dmaudit verifymsp command, 150
dmcatadm command, 129
journals, 123
tape

log files, 124
setup, 79

tape operations, 117
tape volume merging, 127
VOL database records for tape, 122

MSP/LS database
CAT records, 118, 121
VOL records, 118, 122

files, 122
MSP/VG

selection for migrating files
configuration parameter definition, 46
procedure for configuring, 50

MSP/VG selection configuration parameters
definitions, 46
procedure for configuring, 50

MSP_NAMES configuration parameter
daemon object

definition, 34
msp_tasks object

configuration, 77
parameters

definitions, 77
mspkey keyword

dmdadm command, 108
dmdadm text field order, 111

msplog file, 155

dmatls, 124, 126
dmatmsp, 124, 125
LS statistics messages, 126
message format, 90
MSP statistics messages, 125

mspname keyword
dmcatadm command, 134, 135
dmdadm command, 108
dmdadm text field order, 111

MVS_UNIT configuration parameter
dmftpmsp

definition, 84

N

NAME_FORMAT configuration parameter
dmdskmsp

definition, 87
dmftpmsp

definition, 84
Network environment, 3
NFS

DMF interoperability, 2

O

Objects
configuration file, 29

Offline data management
overview, 11

Offline file
definition, 4, 13

OpenVault
enhancements, 23

OpenVault for tape MSPs and drive groups, 72
OpenVault mounting service

configuration, 72
device object configuration parameters, 57
OV_ACCESS_MODES base object parameter

226 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

definition, 57
OV_INTERCHANGE_MODES base object

parameter
definition, 57

OV_KEY_FILE base object parameter
definition, 31

OV_SERVER base object parameter
definition, 31

origage keyword
dmdadm command, 108

origdevice field
dmdadm text field order, 110

origdevice keyword
dmdadm command, 108

originode keyword
dmdadm command, 108
dmdadm text field order, 110

origname keyword
dmdadm command, 108
dmdadm text field order, 111

origsize keyword
dmdadm command, 108
dmdadm text field order, 110

origtime keyword
dmdadm command, 108
dmdadm text field order, 110

origuid keyword
dmdadm command, 108
dmdadm text field order, 111

OV_ACCESS_MODES configuration parameter
device object

definition, 57
OV_INTERCHANGE_MODES configuration

parameter
device object

definition, 57
OV_KEY_FILE configuration parameter

definition, 31
OV_SERVER configuration parameter

definition, 31
Overhead

of DMF, 9

Oversubscription, 1

P

Parameter table, 91
partial keyword

dmvoladm command, 139
PATH environment variable

setting, 28
pathseg.dat file, 168
pathseg.keys file, 168
Periodic maintenance tasks

daemon configuration, 36
POLICIES configuration parameter

filesystem object
definition, 42

Policy configuration parameters
definitions, 43

Policy object
configuration file

definition, 29
policy object

configuration, 43
POSITION_RETRY configuration parameter

device object
definition, 56

POSITIONING configuration parameter
device object

definition, 56
Product overview, 1

Q

quit directive
dmcatadm command, 130
dmdadm command, 106
dmvoladm command, 138

007–3681–006 227

Index

R

Raima Data Manager
See "RDM", 113

RDM
lock manager, 113

aborts, 115
communication and log files, 113
database journal files, 113
interprocess communication, 114
shutdown, 115
token files, 114
transaction log files, 113, 115

readage keyword
dmcatadm command, 133

readcount keyword
dmcatadm command, 133

readcount record
dmcatadm text field order, 137

readdate keyword
dmcatadm command, 133

readdate record
dmcatadm text field order, 137

Recall
migrated files, 14

Record length
daemon database, 24

procedure for configuring, 25
recordlimit keyword

dmcatadm command, 134
dmdadm command, 109
dmvoladm command, 142

recordorder keyword
dmcatadm command, 134
dmdadm command, 109
dmvoladm command, 143

Recovery
daemon database, 168, 169
tape MSP/LS database, 168, 169

Regular file
definition, 13

Reliability

copying daemon database
configuring automated tasks, 39

repair directive
dmvoladm command, 138

Request processing
disk MSP, 154
FTP MSP, 151

Resource scheduler , 6
ALGORITHM option, 68
MODULE_PATH option, 68
PENALTY option, 68
TYPE option, 67
WEIGHT option, 68

Resource scheduler algorithm, 6
Resource scheduler object

configuration file
definition, 30

Resource watcher, 6
HTML_REFRESH option, 69
TYPE option, 69

Resource watcher object
configuration file

definition, 30
restore utilities

migrated files, 165
Retention of journal files

configuration of automated task, 39
Retention of log files

configuration of automated task, 38
run_audit.sh task

configuration, 38
definition, 36

run_copy_databases.sh task
configuration, 39
definition, 36

run_full_dump.sh task
configuration, 40
definition, 36

run_hard_deletes.sh task
configuration, 40
definition, 36

228 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

run_merge_stop.sh task
configuration, 79

run_partial_dump.sh task
configuration, 40
definition, 36

run_remove_journals.sh task
and MSP logs, 39, 77
configuration, 39
definition, 36

run_remove_logs.sh task
and MSP logs, 39, 77
configuration, 38
definition, 36

run_scan_logs.sh task
configuration, 38
definition, 36

run_tape_merge.sh task
configuration, 79
definition, 77

run_tape_report.sh task
configuration, 79
definition, 77

run_tape_stop.sh task
definition, 77

S

select directive
dmvoladm command, 138

select system call
dmdaemon, 104

SELECT_MSP configuration parameter
definition, 46

selection expression
dmvoladm command, 139

set directive
dmcatadm command, 130
dmdadm command, 106
dmvoladm command, 138

Shutdown
DMF, 89

dmlockmgr process, 115
Soft-deleted files

definition, 14, 165
maintenance/recovery, 164

space expression
configuration file

definition, 47
Space management

commands
overview, 17

SPACE_WEIGHT configuration parameter
definition, 46

Sparse tapes
configuration of automated merging, 79

stopping automatically, 79
definition, 11
merging, 127

configuring automated tasks, 77
SPOOL_DIR configuration parameter, 101

definition, 32
dmatmsp and, 118
dmdaemon and, 111

Startup
dmdaemon, 103

STORE_DIRECTORY configuration parameter
dmdskmsp

definition, 87
Support

mounting services, 23
System startup script

DMF daemon startup, 103

T

Tape activity
configuration of automated task, 79

Tape maintenance task configuration, 77
Tape management

error reports
configuring automated tasks, 77

007–3681–006 229

Index

merging sparse tapes, 127
configuring automated tasks, 77

msp_tasks object
configuration of automated tasks, 79

Tape merging
configuration of automated task, 79

stopping automatically, 79
tape MSP/LS, 127

Tape mounting, 23
Tape MSP, 117

configuration parameters
definitions, 51
procedure for configuring, 54

conversion to LS, 156
setup, 79

Tape MSP/LS
CAT database records, 121
database recovery, 168
database recovery example, 169
directories, 118
dmatread command, 149
dmatsnf command, 150
dmaudit command, 150
dmcatadm command, 129
dmvoladm command, 137
journals, 123
log files, 124
merging tape volumes, 127
VOL database records, 122

Tape MSPs
with OpenVault, 72
with TMF tapes, 77

Tape reports
configuration of automated task, 79

TAPE_TYPE configuration parameter
dmatmsp

definition, 53
tapesize keyword

dmvoladm command, 141
tar command

file recall, 165
Task

automated maintenance tasks
overview, 26

definition, 10
TASK_GROUPS configuration parameter

daemon object
definition, 34

dmatmsp object
definition, 54

dmdskmsp object
definition, 87

dmftpmsp object
definition, 84

filesystem object
definition, 42

Taskgroup objects
configuration file

definition, 30
Text field order

dmcatadm command, 136
dmdadm command, 110
dmvoladm command, 148

threshold keyword
dmvoladm command, 141

THRESHOLD parameter
msp_tasks object

configuration, 79
time_expression configuration

daemon maintenance tasks, 38
MSP maintenance tasks, 78

TIMEOUT_FLUSH configuration parameter
dmatmsp

definition, 54
TMF

enhancements, 23
TMF mounting service

device object configuration, 58
TMF tapes, 77
TMF_TMMNT_OPTIONS configuration

parameter
dmatmsp

definition, 58

230 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

TMP_DIR configuration parameter
definition, 32

Token files
dmlockmgr process, 114

tpcrdm.dat file, 168
definition, 122

tpcrdm.key1.keys file, 168
definition, 122

tpcrdm.key2.keys file, 168
definition, 122

tpvrdm.dat file, 168
definition, 122

tpvrdm.vsn.keys file, 168
definition, 122

Transaction processing, 7
Transparent data migration

definition, 4
Transports

supported, 7
TYPE configuration parameter

base object
definition, 31

daemon object
definition, 34

device object
definition, 56

filesystem object
definition, 42

msp object
definition, 51

policy object
definition, 44

U

uid expression
configuration file

definition, 47
upage keyword

dmvoladm command, 141
update directive

dmcatadm command, 130
dmdadm command, 106
dmvoladm command, 138

update keyword
dmvoladm command, 142

update record
dmvoladm text field order, 148, 149

updateage keyword
dmdadm command, 108

updatetime keyword
dmdadm command, 108
dmdadm text field order, 110

used keyword
dmvoladm command, 140

User interface
commands, 13

V

V record
dmvoladm text field order, 148

Verification
of configuration, 89
of daemon database integrity

configuration of automated task, 38
verify directive

dmcatadm command, 130
dmvoladm command, 139

VERIFY_POSITION configuration parameter
dmatmsp

definition, 57
version keyword

dmvoladm command, 142
version record

dmvoladm text field order, 148, 149
vista.taf file

dmlockmgr process, 116
VOL database

backup, 168
message format comparison, 174

007–3681–006 231

Index

message interpretation, 177
VOL database records, 118

tape MSP/LS, 122
files, 122

volgrp keyword
dmcatadm command, 133
dmvoladm command, 142

volgrp record
dmvoladm text field order, 148

Volume group, 6
ALLOCATION_GROUP option, 64
ALLOCATION_MAXIMUM option, 65
ALLOCATION_MINIMUM option, 65
DRIVE_MAXIMUM option, 65
HFREE_TIME option, 65
MAX_CHUNK_SIZE option, 66
MAX_PUT_CHILDREN option, 66
MERGE_CUTOFF option, 66
MIN_VOLUMES option, 66
PUTS_TIME option, 67
READ_TIME option, 67
RUN_TASK option, 67
TASK_GROUP option, 67
TIMEOUT_FLUSH option, 67
TYPE option, 64
ZONE_SIZE option, 67

Volume group object
configuration file

definition, 30
Volume merging

configuration of automated task, 79
stopping automatically, 79

definition, 7
tape MSP/LS, 127

Volume-to-volume merging
tape MSP/LS, 128

VOLUME_LIMIT parameter
msp_tasks object

configuration, 79
vsn keyword

dmcatadm command, 133
vsn record

dmvoladm text field order, 148
vsnlist expression

dmvoladm command, 139

W

Weighting
of files for migration

configuration parameter definition, 46
procedure for configuring, 47

wfage keyword
dmvoladm command, 142

wfdate keyword
dmvoladm command, 142

wfdate record
dmvoladm text field order, 148, 149

when clause
configuration file

definition, 47
WRITE_CHECKSUM configuration parameter

device object
definition, 57

writeage keyword
dmcatadm command, 133

writedata record
dmcatadm text field order, 136

writedate keyword
dmcatadm command, 133

X

xfsdump command, 165
xfsrestore command, 165

Z

ZONE_SIZE configuration parameter
dmatmsp

232 007–3681–006

DMF Administrator’s Guide for IRIX® Systems

definition, 57
zoneblockid keyword

dmcatadm command, 133
zonenumber keyword

dmcatadm command, 133
zonepos keyword

dmcatadm command, 134
zoneposition record

dmcatadm text field order, 137
Zones

DMF tape concepts, 119

007–3681–006 233

	New Features
	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	List of Procedures

	About This Guide
	Related Publications
	Conventions
	Reader Comments

	1. Introduction
	What Is DMF?
	How DMF Works
	Ensuring Data Integrity
	DMF Architecture
	Capacity and Overhead
	DMF Administration
	The User's View of DMF
	DMF File Concepts and Terms
	Migrating a File
	Recalling a Migrated File

	Command Overview
	Configuration Commands
	DMF Daemon and Related Commands
	Space Management Commands
	MSP/LS Commands
	Commands for Other Utilities

	2. Configuring DMF
	Overview of the Configuration Steps
	Installation Considerations
	Configuration File Requirements
	Man Pages
	File System Mount Options
	Mounting Service
	Inode Size Configuration
	Configuring Daemon Database Record Length
	Interprocess Communication Parameters
	Configuring Automated Maintenance Tasks

	Setting PATH Environment Variables
	Configuration Objects
	Configuring the Base Object
	Configuring the DMF Daemon
	Configuring File Systems
	DMF Policies
	Setting Up Tape MSPs
	Setting Up Library Servers
	Using OpenVault for Tape MSPs and Drive Groups
	Using TMF tapes with Tape MSPs and Drive Groups
	Configuring Tape Maintenance Tasks
	Library Server and MSP Database Records
	Setting up FTP MSPs
	Setting up Disk MSPs

	Verifying the Configuration
	Initializing DMF
	General Message Log File Format
	Parameter Table

	3. Automated Space Management
	Generating the Candidate List
	Selection of Migration Candidates
	Automated Space Management Log File

	4. The DMF Daemon
	Daemon Processing
	DMF Daemon Database and dmdadm(blank)
	dmdadm Directives
	dmdadm Field and Format Keywords
	dmdadm(blank) Text Field Order

	Daemon Logs and Journals

	5. The DMF Lock Manager
	dmlockmgr Communication and Log Files
	dmlockmgr Individual Transaction Log Files

	6. Media Specific Processes and Library Servers
	Tape MSP and LS Operations
	Tape MSP/LS Directories
	Media Concepts
	CA T Database Records
	VOL Database Records
	Tape MSP/LS Journals
	Tape MSP/LS Logs
	Volume Merging
	dmcatadm Command
	dmvoladm Command
	dmatread Command
	dmatsnf Command
	dmaudit verifymsp Command

	FTP MSP
	Processing of Requests
	Activity Log
	Messages

	Disk MSP
	Processing of Requests
	Activity Log

	Moving Migrated Data between MSPs and/or VGs
	Converting from a Tape MSP to a Library Server
	Library Server Error Analysis and Avoidance
	Library Server Drive Scheduling
	Library Server Status Monitoring

	7. DMF Maintenance and Recovery
	Retaining Old DMF Daemon Log Files
	Retaining Old DMF Daemon Journal Files
	Soft- and Hard-deletes
	Using xfsdump and xfsrestore with Migrated Files
	Dumping and Restoring Files without the dump_tasks Object
	File System Consistency with xfsrestore

	Using dmfill
	Database Recovery
	Database Backups
	Database Recovery Procedures

	A. Messages
	Message Format
	Message Format for Catalog (CA T) Database and Daemon Database Comparisons
	Message Format for Volume (VOL) Database and Catalog (CA T) Database and Daemon Database Comparisons

	dmcatadm Message Interpretation
	dmvoladm Message Interpretation

	B. DMF User Library (libdmfusr .so)
	Overview
	Data Types
	DmuAllErrors_t
	DmuByteRange_t
	DmuByteRanges_t
	DmuCompletion_t
	DmuCopyRange_t
	DmuCopyRanges_t
	DmuErrHandler_f
	DmuError_t
	DmuErrorInfo_t
	DmuFhandle_t
	DmuFullstat_t
	DmuReplyOrder_t
	DmuReplyType_t
	DmuReqid_t
	DmuRounding_t

	User-Accessible API Subroutines
	Context Manipulation Routines
	DMF File Request Subroutines
	Request Completion Subroutines
	Memory Management Subroutines

	Glossary
	Index

