
Message Passing Toolkit: MPI
Programmer’s Manual

SR–2197 1.2

Document Number 007–3687–001

Copyright © 1996, 1998 Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Cray Research, Inc.

Portions of this product may still be in development. The existence of those portions still in development is not a commitment of
actual release or support by Cray Research, Inc. Cray Research, Inc. assumes no liability for any damages resulting from attempts
to use any functionality or documentation not officially released and supported. If it is released, the final form and the time of
official release and start of support is at the discretion of Cray Research, Inc.

The MPI implementation for the CRAY T3E system is derived from the implementation of MPI for the CRAY T3D system
developed at Edinburgh Parallel Computing Centre. The software is supplied to Cray Research under license from The University
of Edinburgh.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS,
CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

DynaWeb is a trademark of Electronic Book Technologies, Inc. IRIS and Silicon Graphics are registered trademarks and IRIS
InSight, IRIX, and the Silicon Graphics logo are trademarks of Silicon Graphics, Inc. MIPS is a registered trademark of MIPS
Technologies, Inc. PostScript is a trademark of Adobe Systems, Inc. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited. X/Open is a registered trademark of X/Open Company Ltd.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Message Passing Toolkit: MPI Programmer’s Manual SR–2197 1.2

This rewrite of Message Passing Toolkit: MPI Programmer’s Manual, publication SR–2197, supports the 1.2
release of the Cray Message Passing Toolkit and the Message Passing Toolkit for IRIX (MPT), and documents
the integration of MPI with Silicon Graphics Array Services on UNICOS and UNICOS/mk systems.

Record of Revision

Version Description

1.0 January 1996
Original Printing. This manual documents the Message Passing Toolkit
implementation of the Message Passing Interface (MPI).

1.1 August 1996
This revision supports the Message Passing Toolkit (MPT) 1.1 release.

1.2 January 1998
This revision supports the Message Passing Toolkit (MPT) 1.2 release for UNICOS,
UNICOS/mk, and IRIX systems.

SR–2197 1.2 i

Contents

Page

Preface vii

Related Publications . vii

Other Sources . viii

Ordering Publications . viii

Conventions . ix

Reader Comments . xi

Overview [1] 1

MPI Overview . 1

MPI Components . 2

MPI Program Development . 2

Procedure 1: Steps for MPI program development 2

Building MPI Applications [2] 5

Building Applications on UNICOS Systems 5

Building Applications That Use Shared Memory MPI on UNICOS Systems 5

Shared Memory MPI Limitations 8

Building Files on UNICOS Systems When Using TCP 9

Building Applications on UNICOS/mk Systems 10

Building Applications on IRIX Systems 10

Using mpirun to Execute Applications [3] 11

Syntax of the mpirun Command 11

Using a File for mpirun Arguments (UNICOS Or IRIX) 15

Launching Programs on the Local Host Only 15

Using mpirun (1) to Run Programs in Shared Memory Mode (UNICOS Or IRIX) 16

SR–2197 1.2 iii

Message Passing Toolkit: MPI Programmer’s Manual

Page

Using the mpirun (1) Command on UNICOS/mk Systems 16

Executing UNICOS/mk Programs Directly 17

Launching a Distributed Program (UNICOS Or IRIX) 17

Setting Environment Variables [4] 19

Setting MPI Environment Variables on UNICOS and IRIX Systems 19

Setting MPI Environment Variables on UNICOS/mk Systems 22

Internal Message Buffering in MPI (IRIX Systems Only) 23

Debugging Programs on IRIX Systems [5] 25

Procedure 2: Using the ProDev WorkShop debugger, CVD 25

Procedure 3: Using the DBX debugger 26

Core File Contents . 27

Running Distributed Applications 27

Using XMPI . 27

Starting XMPI . 28

The Application Menu . 29

Procedure 4: Using the Build&Run... option 31

Procedure 5: Using the Browse&Run... option 35

The Trace Menu . 37

Procedure 6: Creating and viewing trace information 38

Procedure 7: Viewing a trace as an application runs 40

Help Menu . 41

Launching Programs with NQE [6] 43

Starting NQE . 43

Submitting a Job with NQE . 43

Checking Job Status with NQE . 45

Getting More Information . 46

iv SR–2197 1.2

Contents

Page

Index 49

Figures
Figure 1. XMPI main window . 28

Figure 2. Application menu . 30

Figure 3. Application Builder dialog box 32

Figure 4. XMPI display of a running application 34

Figure 5. Individual record of events for an MPI process 35

Figure 6. Application Browser dialog box 36

Figure 7. XMPI Trace menu . 37

Figure 8. Dialog box for displaying trace files 39

Figure 9. XMPI display of trace information 40

Figure 10. XMPI Help menu . 42

Figure 11. NQE button bar . 43

Figure 12. NQE NQE Job Submission window 44

Figure 13. NQE Status window 45

Figure 14. NQE Detailed Job Status window 46

Tables
Table 1. assign examples . 8

Table 2. MPI environment variables for IRIX systems only 19

Table 3. MPI environment variables for UNICOS and IRIX systems 21

Table 4. Environment variables for UNICOS/mk systems 23

Table 5. Outline of improper dependence on buffering 24

SR–2197 1.2 v

Preface

This publication documents the Cray Message Passing Toolkit and Message
Passing Toolkit for IRIX (MPT) 1.2 implementation of the Message Passing
Interface (MPI) supported on the following platforms:

• Cray PVP systems running UNICOS release 9.0.2.7 or later or UNICOS
release 10.0 or later. The MPT 1.2 release requires a bugfix package to be
installed on UNICOS systems running release 9.0.2.7 or 10.0. The bugfix
package, MPT12_OS_FIXES, is available through the getfix utility. It is
also available from the anonymous FTP site ftp.cray.com in directory
/pub/mpt/fixes/MPT12_OS_FIXES .

MPT 1.2 is not supported on systems running UNICOS release 9.3 or 9.3.0.1.

• CRAY T3E systems running UNICOS/mk release 1.5 or later

• Silicon Graphics MIPS based systems running IRIX release 6.2 or later

IRIX 6.2 systems running MPI require the kernel rollup patch 1650 or later.

IRIX 6.3 systems running MPI require the kernel rollup patch 2328 or later.

IRIX systems running MPI applications must also be running Array Services
software version 3.0 or later. MPI consists of a library, a profiling library, and
commands that support MPI. The MPT 1.2 release is a software package that
supports parallel programming across a network of computer systems through
a technique known as message passing.

Related Publications

The following documents contain additional information that might be helpful:

• Message Passing Toolkit: PVM Programmer’s Manual, publication SR–2196

• Application Programmer’s Library Reference Manual, publication SR–2165

• Installing Programming Environment Products, publication SG–5191

All of these are Cray Research publications and can be ordered from Cray
Research. For ordering information, see “Ordering Publications.”

SR–2197 1.2 vii

Message Passing Toolkit: MPI Programmer’s Manual

Other Sources

Material about MPI is available from a variety of other sources. Some of these,
particularly World Wide Web pages, include pointers to other resources.
Following is a grouped list of these sources:

The MPI standard:

• As a technical report: University of Tennessee report (reference [24] from
Using MPI: Portable Parallel Programming with the Message-Passing Interface, by
Gropp, Lusk, and Skjellum)

• As online PostScript or hypertext on the World Wide Web:

http://www.mpi-forum.org/

• As a journal article in the fall issue of the International Journal of
Supercomputer Applications, volume 8, number 3/4, 1994

• As text through the IRIS InSight library (for customers with access to this
tool)

Books:

• Using MPI: Portable Parallel Programming with the Message-Passing Interface, by
Gropp, Lusk, and Skjellum, publication TPD–0011

Newsgroup:

• comp.parallel.mpi

Ordering Publications

Silicon Graphics maintains publications information at the following URLs:

http://techpubs.sgi.com/library

http://techpubs.sgi.com/infosearch

These websites contain information that allows you to browse documents
online, order documents, and send feedback to Silicon Graphics.

Cray Research also has documents available online at the following URL:

http://www.cray.com/swpubs

The User Publications Catalog, publication CP–0099, describes the availability and
content of all Cray Research hardware and software documents for customers.

viii SR–2197 1.2

Preface

Silicon Graphics and Cray Research customers who subscribe to the Cray Inform
(CRInform) program can access this information on the CRInform system.

To order a Cray Research or Silicon Graphics document, either call the
Distribution Center in Mendota Heights, Minnesota, at +1–612–683–5907, or
send a facsimile of your request to fax number +1–612–452–0141. Cray Research
employees may send electronic mail to orderdsk (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

SR–2197 1.2 ix

Message Passing Toolkit: MPI Programmer’s Manual

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info () routine) do not have
man pages associated with them.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

In this manual, references to Cray PVP systems include the following machines:

• CRAY C90 series

• CRAY C90D series

• CRAY EL series (including CRAY Y-MP EL systems)

• CRAY J90 series

• CRAY Y-MP E series

• CRAY Y-MP M90 series

• CRAY T90 series

Silicon Graphics systems include all MIPS based systems running IRIX 6.2 or
later.

The following operating system terms are used throughout this document.

Term Definition

UNICOS Operating system for all configurations of Cray
PVP systems

UNICOS/mk Operating system for all configurations of
CRAY T3E systems

UNICOS MAX Operating system for all configurations of CRAY
T3D systems

x SR–2197 1.2

Preface

IRIX Operating system for all configurations of MIPS
based systems

The default shell in the UNICOS and UNICOS/mk operating systems, referred
to in Cray Research documentation as the standard shell, is a version of the Korn
shell that conforms to the following standards:

• Institute of Electrical and Electronics Engineers (IEEE) Portable Operating
System Interface (POSIX) Standard 1003.2–1992

• X/Open Portability Guide, Issue 4 (XPG4)

The UNICOS and UNICOS/mk operating systems also support the optional use
of the C shell.

Cray UNICOS version 10.0 is an X/Open Base 95 branded product.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

publications@cray.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBSfor the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–612–683–5599.

We value your comments and will respond to them promptly.

SR–2197 1.2 xi

Overview [1]

The Cray Message Passing Toolkit and Message Passing Toolkit for IRIX (MPT)
is a software package that supports parallel programming across a network of
computer systems through a technique known as message passing. This style of
parallel programming is an explicit method in which the application requests
that data be sent from one task to another or between groups of tasks. MPT
also provides support for shared parallel programming within a computer
system through a technique known as data passing.

The MPT 1.2 package contains the following components and the appropriate
accompanying documentation:

• Parallel Virtual Machine (PVM)

• Message Passing Interface (MPI)

• Logically shared, distributed memory (SHMEM) data-passing routines

The Message Passing Interface (MPI) is a standard specification for a
message-passing interface, allowing portable message-passing programs in
Fortran and C languages.

This chapter provides an overview of the MPI software that is included in the
toolkit, a description of the basic MPI components, and a list of general steps for
developing an MPI program. Subsequent chapters address the following topics:

• Building MPI applications

• Using mpirun to execute applications

• Setting environment variables

• Debugging programs on IRIX systems

• Launching programs with NQE

1.1 MPI Overview

MPI is a standard specification for a message-passing interface, allowing
portable message-passing programs in Fortran and C languages. MPI was
created by the Message Passing Interface Forum (MPIF). MPIF is not sanctioned
or supported by any official standards organization. Its goal was to develop a
widely used standard for writing message-passing programs. Silicon Graphics

SR–2197 1.2 1

Message Passing Toolkit: MPI Programmer’s Manual

and Cray Research support implementations of MPI that are released as part of
the Message Passing Toolkit. These implementations are available on IRIX,
UNICOS, and UNICOS/mk systems. The MPI standard is available from the
IRIS InSight library (for customers who have access to that tool), and is
documented online at the following address:

http://www.mcs.anl.gov/mpi

1.2 MPI Components

On UNICOS and UNICOS/mk systems, the MPI library is provided as a
statically linked set of objects (a file with a name that ends in .a). On IRIX
systems, the MPI library is provided as a dynamic shared object (DSO) (a file
with a name that ends in .so). The basic components that are necessary for
using MPI are the libmpi.a library (or libmpi.so for IRIX systems), the
include files, and the mpirun (1) command.

For UNICOS/mk systems, in addition to the libmpi.a library, the libpmpi.a
library is provided for profiling support. For UNICOS and IRIX systems,
profiling support is included in the libmpi.a and libmpi.so libraries,
respectively. Profiling support replaces all MPI_ Xxx prototypes and function
names with PMPI_Xxx entry points.

1.3 MPI Program Development

To develop a program that uses MPI, you must perform the following steps:

Procedure 1: Steps for MPI program development

1. Add MPI function calls to your application for MPI initiation,
communications, and synchronization. For descriptions of these functions,
see the online man pages or Using MPI: Portable Parallel Programming with
the Message-Passing Interface or the MPI standard specification.

2. Build programs for the systems that you will use, as described in Chapter 2,
page 5.

3. Execute your program by using one of the following methods:

• mpirun (1) (available on all systems (see Chapter 3, page 11))

• XMPI visualization tool (available on IRIX systems (see Chapter 5, page
25))

2 SR–2197 1.2

Overview [1]

• Execute directly (available on UNICOS/mk systems (see Section 3.3.3,
page 17))

Note: On IRIX systems, for information on how to execute MPI programs
across more than one host or how to execute MPI programs that consist
of more than one executable file, see Section 2.3, page 10.

SR–2197 1.2 3

Building MPI Applications [2]

This chapter provides procedures for building MPI applications on UNICOS,
UNICOS/mk, and IRIX systems.

2.1 Building Applications on UNICOS Systems

On UNICOS systems, the MPI library supports either a shared memory or a
Transmission Control Protocol (TCP) communications model.

The following section provides information about the shared memory model,
and information about compiling and linking shared memory MPI programs.

Note: Software included in the 1.2 release of the Message Passing Toolkit is
designed to be used with the Cray Programming Environment. When
building an application that uses the shared memory version of MPI, you
must be using the Programming Environment 3.0 release or later. Before you
can access the Programming Environment, the PrgEnv module must be
loaded. For more information on using modules, see Installing Programming
Environment Products, publication SG–5191, or, if the Programming
Environment has already been installed on your system, see the online ASCII
file /opt/ctl/doc/README .

Section 2.1.3, page 9, provides information that applies to MPI programs that
use TCP for communication.

2.1.1 Building Applications That Use Shared Memory MPI on UNICOS Systems

To build an executable file that makes use of shared memory, perform the
following steps:

1. Convert all global and static data to TASKCOMMONdata.

In a multitasking environment, all members of the multitasking group can
access all global or static data because they share one user address space.
An MPI process is described as a separate address space. To emulate an
MPI process in a multitasking environment, all global or static data that can
be modified during the course of execution of a program must be treated as
data local to each task. This is done by placing the data in TASKCOMMON
blocks. TASKCOMMONstorage is a mechanism that is used in multitasked
programs to provide a separate copy of data for each member of the
multitasking group. TASKCOMMONdata is still globally accessible across

SR–2197 1.2 5

Message Passing Toolkit: MPI Programmer’s Manual

functions within a multitasked program, but it is private to each specific
task. Fortran examples of global or static data that must be placed in
TASKCOMMONinclude data that resides in COMMONblocks and data that
appears in DATAor SAVEstatements. In C, you must place all data that is
declared static (either locally or globally) or data declared at a global level
(outside of any function) in TASKCOMMON.

Because changing your program so that all global and static data is private
is tedious and makes a program less portable, Cray Research provides
support in the form of compile-time command line options to do the
conversions. You can convert most global and static data to TASKCOMMON
data automatically by using the following command-line options:

• For C programs:

cc -h taskprivate

• For Fortran programs:

f90 -a taskcommon

When you are placing data in TASKCOMMON, there may be cases in which
the compiler cannot do the conversion because of insufficient information.
The compiler notes these cases by issuing a warning during compilation.
For such cases, you must convert the data by hand. Most of the time, these
cases are related to initialization that involves Fortran DATAor SAVE
statements or C initialized static variables, and you might need to change
only how or when the data is initialized for it to be successfully placed in
TASKCOMMON.

The following is an example of a case that the compiler cannot handle:

int a;
int b = &a

If variable a resides in TASKCOMMON, its address will not be known until
run time; therefore, the compiling system cannot initialize it. In this case,
the initialization must be handled within the user program.

2. Use the cc (1) or f90 (1) commands to build your shared memory MPI
program, as in the following examples:

C programs:

cc -htaskprivate -D_MULTIP_ -L$MPTDIR/lib/multi file.c

6 SR–2197 1.2

Building MPI Applications [2]

For C programs, the -D and -L options are needed to access the reentrant
version of libc . This version is required to provide safe access to libc
routines in a multitasking environment. When the mpt module is loaded,
the module software sets $MPTDIR automatically and points to the default
MPT software library. (For information on using modules, see Installing
Programming Environment Products, publication SG–5191.) To make
compiling in C easier, the environment variable $LIBCM is also set
automatically when the mpt module is loaded. You can use $LIBCM with
the cc (1) command to request the reentrant version of libc . $LIBCM is set
to the following value:

-D_MULTIP_ -L$MPTDIR/lib/multi

The following example uses $LIBCM:

cc -htaskprivate $LIBCM file.c

Fortran programs:

f90 -ataskcommon file.f

3. Select private I/O if private Fortran file unit numbers are desired.

In a multitasking environment, Fortran unit numbers are, by default, shared
by all members of the multitasking group. This behavior forces all files to
be shared among MPI processes. The user can request that files be private
to each MPI process by specifying the private I/O option on the assign (1)
command. The examples in Table 1, page 8, request private I/O.

SR–2197 1.2 7

Message Passing Toolkit: MPI Programmer’s Manual

Table 1. assign examples

Example Description

assign -P private u:10 Specifies that unit 10 should be private
to any MPI process that opens it.

assign -P private p:% Specifies that all named Fortran units
should be private to any MPI process
that opens them. This includes all units
connected to regular files and excludes
units such as 5 and 6, which are
connected to stdin , stdout , or
stderr by default.

assign -P global u:0
assign -P global u:5
assign -P global u:6
assign -P global u:100
assign -P global u:101
assign -P global u:102

This set of assign commands can be
used in conjunction with assign -P
private g:all to retain units
connected by default to stdin , stdout ,
and stderr as global units. A unit
connected to these standard files cannot
be a private unit.

For more information on private I/O functionality on Cray PVP systems,
see the assign (1) man page.

4. Run the application. To start or run an application that uses the shared
memory version of MPI, you must use the -nt option on the mpirun (1)
command (for example, mpirun -nt 4 compute).

You should also consider using Autotasking instead of message passing
whenever your application is run on a UNICOS system. The communications
overhead for Autotasking is orders of magnitude less than that for sockets, even
on the same system, so it might be better to have only one fully autotasked MPI
process on the UNICOS system. In many cases, you might be able to achieve
this simply by invoking the appropriate compiler options and sending a larger
file of input data to the MPI process on the UNICOS system.

2.1.2 Shared Memory MPI Limitations

Emulating a shared memory environment with the use of Cray Research
multitasking software might cause unexpected program behavior. The goal is to
preserve the original behavior as much as possible. However, it is not efficient
or productive to completely preserve the original MPI behavior in a multitasked

8 SR–2197 1.2

Building MPI Applications [2]

environment. The intent is to document possible changes in behavior. For
example, changes in behavior might occur with the use of signals; therefore, it is
not recommended that signals be used with the shared memory version of MPI.

The shared memory implementation of MPI supports the running of only 32
MPI processes within a multitasking group. Because MPI processes must share
CPU resources, running with more than the number of physical CPUs available
on the UNICOS system will begin to degrade performance.

2.1.3 Building Files on UNICOS Systems When Using TCP

On UNICOS systems, after you have added the MPI function calls described in
Procedure 1, step 1, page 2, a simple MPI program can be linked as follows:

cc -o compute compute.o

This command links the compute.o object code to produce the compute
executable file.

If you are using more than one host, the executable files should be installed on
the Cray Research systems that you will be using. By default, MPI uses the
path name of the user-initiated executable file on all systems. You can override
this file by using a process group file.

In some installations, certain hosts are connected in multiple ways. For
example, an Ethernet connection may be supplemented by a high-speed FDDI
ring. Usually, alternate host names are used to identify the high-speed
connection. You must put these alternate names in your machine file.

If your hosts are connected in multiple ways, you must not use local in your
machine file to identify the local host, but must use the name of the local host
instead. For example, if hosts host1 and host2 have Asynchronous Transfer
Mode (ATM) connected to host1-atm and host2-atm , respectively, the
correct machine file is as follows:

host1-atm

host2-atm

SR–2197 1.2 9

Message Passing Toolkit: MPI Programmer’s Manual

2.2 Building Applications on UNICOS/mk Systems

On UNICOS/mk systems, after you have added MPI function calls to your
program, as described in Procedure 1, step 1, page 2, you can compile and link
an MPI program, as in the following examples:

cc -o compute compute.c

or

f90 -o compute -X4 compute.f

If you have loaded the mpt module, the directory that contains the MPI include
files is automatically searched, and the MPI library is automatically loaded.

2.3 Building Applications on IRIX Systems

On IRIX systems, after you have added MPI function calls to your program, as
described in Procedure 1, step 1, page 2, you can compile and link the program,
as in the following examples:

To use the 64-bit MPI library:

cc -64 compute.c -lmpi

To use the 32-bit MPI library:

cc -n32 compute.c -lmpi

If you are using modules and have loaded the mpt module file, the directory
that contains the MPI include files is automatically searched and the MPI
library is automatically loaded; therefore, you do not need to specify the -lmpi
option, and you can compile as in the following example:

cc -64 compute.c

10 SR–2197 1.2

Using mpirun to Execute Applications [3]

The mpirun (1) command is the primary job launcher for the MPT
implementations of MPI. The mpirun command must be used whenever a user
wishes to run an MPI application on IRIX or UNICOS systems (on IRIX
systems, XMPI can be used in place of mpirun). On IRIX or UNICOS systems,
you can run an application on the local host only (the host from which you
issued mpirun) or distribute it to run on any number of hosts that you specify.
Use of the mpirun command is optional for UNICOS/mk systems and
currently supports only the -np option. Note that several MPI implementations
available today use a job launcher called mpirun , and because this command is
not part of the MPI standard, each implementation’s mpirun command differs
in both syntax and functionality.

3.1 Syntax of the mpirun Command

The format of the mpirun command for UNICOS and IRIX is as follows:

mpirun [global_options] entry [: entry ...]

The global_options operand applies to all MPI executable files on all specified
hosts. The following global options are supported:

Option Description

-a[rray] array_name Specifies the array to use when launching an MPI
application. By default, Array Services uses the
default array specified in the Array Services
configuration file, arrayd.conf .

-d[ir] path_name Specifies the working directory for all hosts. In
addition to normal path names, the following
special values are recognized:

. Translates into the absolute path
name of the user’s current working
directory on the local host. This is
the default.

~ Specifies the use of the value of
$HOMEas it is defined on each

SR–2197 1.2 11

Message Passing Toolkit: MPI Programmer’s Manual

machine. In general, this value can
be different on each machine.

-f[ile] file_name Specifies a text file that contains mpirun
arguments.

-h[elp] Displays a list of options supported by the
mpirun command.

-p[refix]
prefix_string

Specifies a string to prepend to each line of
output from stderr and stdout for each MPI
process. Some strings have special meaning and
are translated as follows:

• %gtranslates into the global rank of the
process producing the output. (This is
equivalent to the rank of the process in
MPI_COMM_WORLD.)

• %Gtranslates into the number of processes in
MPI_COMM_WORLD.

• %htranslates into the rank of the host on
which the process is running, relative to the
mpirun (1) command line.

• %Htranslates into the total number of hosts in
the job.

• %l translates into the rank of the process
relative to other processes running on the
same host.

• %L translates into the total number of
processes running on the host.

• %@ translates into the name of the host on
which the process is running.

For examples of the use of these strings, first
consider the following code fragment:

main(int argc, char **argv)

{

MPI_Init(&argc, &argv);

printf("Hello world\n");

12 SR–2197 1.2

Using mpirun to Execute Applications [3]

MPI_Finalize();
}

Depending on how this code is run, the results of
running the mpirun command will be similar to
those in the following examples:

mpirun -np 2 a.out

Hello world

Hello world

mpirun -prefix ">" -np 2 a.out
>Hello world

>Hello world

mpirun -prefix "%g" 2 a.out

0Hello world
1Hello world

mpirun -prefix "[%g] " 2 a.out

[0] Hello world

[1] Hello world

mpirun -prefix "<process %g out of %G> " 4 a.out

<process 1 out of 4> Hello world

<process 0 out of 4> Hello world

<process 3 out of 4> Hello world
<process 2 out of 4> Hello world

mpirun -prefix "%@: " hosta,hostb 1 a.out

hosta: Hello world
hostb: Hello world

SR–2197 1.2 13

Message Passing Toolkit: MPI Programmer’s Manual

mpirun -prefix "%@ (%l out of %L) %g: " hosta 2, hostb 3 a.out

hosta (0 out of 2) 0: Hello world
hosta (1 out of 2) 1: Hello world

hostb (0 out of 3) 2: Hello world

hostb (1 out of 3) 3: Hello world

hostb (2 out of 3) 4: Hello world

mpirun -prefix "%@ (%h out of %H): " hosta,hostb,hostc 2 a.out

hosta (0 out of 3): Hello world

hostb (1 out of 3): Hello world

hostc (2 out of 3): Hello world

hosta (0 out of 3): Hello world
hostc (2 out of 3): Hello world

hostb (1 out of 3): Hello world

-v[erbose] Displays comments on what mpirun is doing
when launching the MPI application.

The entry operand describes a host on which to run a program, and the local
options for that host. You can list any number of entries on the mpirun
command line.

In the common case (same program, multiple data (SPMD)), in which the same
program runs with identical arguments on each host, usually only one entry
needs to be specified.

Each entry has the following components:

• One or more host names (not needed if you run on the local host)

• Number of processes to start on each host

• Name of an executable program

• Arguments to the executable program (optional)

An entry has the following format:

host_list local_options program program_arguments

The host_list operand is either a single host (machine name) or a
comma-separated list of hosts on which to run an MPI program.

The local_options operand contains information that applies to a specific host
list. The following local options are supported:

14 SR–2197 1.2

Using mpirun to Execute Applications [3]

Option Description

-f[ile] file_name Specifies a text file that contains mpirun
arguments (same as global_options.) For more
details, see Section 3.2.

-np np Specifies the number of processes on which to
run. (UNICOS/mk systems support only this
option.)

-nt nt On UNICOS systems, specifies the number of
tasks on which to run in a multitasking or shared
memory environment. On IRIX systems, this
option behaves the same as -np .

The program program_arguments operand specifies the name of the program that
you are running and its accompanying options.

3.2 Using a File for mpirun Arguments (UNICOS Or IRIX)

Because the full specification of a complex job can be lengthy, you can enter
mpirun arguments in a file and use the -f option to specify the file on the
mpirun command line, as in the following example:

mpirun -f my_arguments

The arguments file is a text file that contains argument segments. White space is
ignored in the arguments file, so you can include spaces and newline characters
for readability. An arguments file can also contain additional -f options.

3.3 Launching Programs on the Local Host Only

For testing and debugging, it is often useful to run an MPI program on the local
host only without distributing it to other systems. To run the application
locally, enter mpirun with the -np or -nt argument. Your entry must include
the number of processes to run and the name of the MPI executable file.

The following command starts three instances of the application mtest , to
which is passed an arguments list (arguments are optional).

mpirun -np 3 mtest 1000 "arg2"

You are not required to use a different host in each entry that you specify on
the mpirun (1) command. You can launch a job that has two executable files on

SR–2197 1.2 15

Message Passing Toolkit: MPI Programmer’s Manual

the same host. On a UNICOS system, the following example uses a
combination of shared memory and TCP. On an IRIX system, both executable
files use shared memory:

mpirun host_a -np 6 a.out : host_a -nt 4 b.out

3.3.1 Using mpirun (1) to Run Programs in Shared Memory Mode (UNICOS Or IRIX)

For running programs in MPI shared memory mode on a single host, the
format of the mpirun (1) command is as follows:

mpirun -nt [nt] progname

The -nt option specifies the number of tasks for shared memory MPI, and can
be used on UNICOS systems only if you have compiled and linked your
program as described in Section 2.1.1, page 5. A single UNIX process is run
with multiple tasks representing MPI processes. The progname operand specifies
the name of the program that you are running and its accompanying options.

The -nt option to mpirun is supported on IRIX systems for consistency across
platforms. However, since the default mode of execution on a single IRIX
system is to use shared memory, the option behaves the same as if you
specified the -np option to mpirun . The following example runs ten instances
of a.out in shared memory mode on host_a :

mpirun -nt 10 a.out

3.3.2 Using the mpirun (1) Command on UNICOS/mk Systems

The mpirun (1) command has been provided for consistency of use among IRIX,
UNICOS, and UNICOS/mk systems. Use of this command is optional,
however, on UNICOS/mk systems. If your program was built for a specific
number of PEs, the number of PEs specified on the mpirun (1) command line
must match the number that was built into the program. If it does not,
mpirun (1) issues an error message.

The following example shows how to invoke the mpirun (1) command on a
program that was built for four PEs:

mpirun -np 4 a.out

16 SR–2197 1.2

Using mpirun to Execute Applications [3]

3.3.3 Executing UNICOS/mk Programs Directly

Instead of using the mpirun (1) command, you can choose to launch your MPI
programs on UNICOS/mk systems directly. If your UNICOS/mk program was
built for a specific number of PEs, you can execute it directly, as follows:

./a.out

If your program was built as a malleable executable file (the number of PEs was
not fixed at build time, and the -Xm option was used instead), you can execute
it with the mpprun (1) command. The following example runs a program on a
partition with four PEs:

mpprun -n 4 a.out

3.4 Launching a Distributed Program (UNICOS Or IRIX)

You can use mpirun (1) to launch a program that consists of any number of
executable files and processes and distribute it to any number of hosts. A host
is usually a single Origin, CRAY J90, or CRAY T3E system, or can be any
accessible computer running Array Services software. Array Services software
runs on IRIX and UNICOS systems and must be running to launch MPI
programs. For available nodes on systems running Array Services software, see
the /usr/lib/array/arrayd.conf file.

You can list multiple entries on the mpirun command line. Each entry contains
an MPI executable file and a combination of hosts and process counts for
running it. This gives you the ability to start different executable files on the
same or different hosts as part of the same MPI application.

The following examples show various ways to launch an application that
consists of multiple MPI executable files on multiple hosts.

The following example runs ten instances of the a.out file on host_a :

mpirun host_a -np 10 a.out

When specifying multiple hosts, the -np or -nt option can be omitted with the
number of processes listed directly. On UNICOS systems, if you omit the -np
or -nt option, mpirun assumes -np and defaults to TCP for communication.
The following example launches ten instances of fred on three hosts. fred has
two input arguments.

mpirun host_a, host_b, host_c 10 fred arg1 arg2

SR–2197 1.2 17

Message Passing Toolkit: MPI Programmer’s Manual

The following example launches an MPI application on different hosts with
different numbers of processes and executable files, using an array called test :

mpirun -array test host_a 6 a.out : host_b 26 b.out

The following example launches an MPI application on different hosts out of
the same directory on both hosts:

mpirun -d /tmp/mydir host_a 6 a.out : host_b 26 b.out

18 SR–2197 1.2

Setting Environment Variables [4]

This chapter describes the variables that specify the environment under which
your MPI programs will run. Environment variables have predefined values.
You can change some variables to achieve particular performance objectives;
others are required values for standard-compliant programs.

4.1 Setting MPI Environment Variables on UNICOS and IRIX Systems

This section provides a table of MPI environment variables you can set for IRIX
systems only, and a table of environment variables you can set for both
UNICOS and IRIX systems. For environment variables for UNICOS/mk
systems, see Section 4.2, page 22.

Table 2. MPI environment variables for IRIX systems only

Variable Description Default

MPI_BUFS_PER_HOST Determines the number of shared message buffers
(16 KB each) that MPI is to allocate for each host.
These buffers are used to send long messages.

16 pages (each
page is 16 KB)

MPI_BYPASS_DEVS Sets the order for opening HIPPI adapters. The list
of devices does not need to be space-delimited (0123
is also valid).

0 1 2 3

An array node usually has at least one HIPPI
adapter, the interface to the HIPPI network. The
HIPPI bypass is a lower software layer that
interfaces directly to this adapter. The bypass sends
MPI control and data messages that are 16 Kbytes or
shorter.

SR–2197 1.2 19

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

When you know that a system has multiple HIPPI
adapters, you can use the MPI_BYPASS_ DEVS
variable to specify the adapter that a program opens
first. This variable can be used to ensure that
multiple MPI programs distribute their traffic across
the available adapters. If you prefer not to use the
HIPPI bypass, you can turn it off by setting the
MPI_BYPASS_OFFvariable.

When a HIPPI adapter reaches its maximum capacity
of four MPI programs, it is not available to
additional MPI programs. If all HIPPI adapters are
busy, MPI sends internode messages by using TCP
over the adapter instead of the bypass.

MPI_BYPASS_OFF Disables the HIPPI bypass. Not enabled

MPI_DSM_OFF Turns off nonuniform memory access (NUMA)
optimization in the MPI library.

Not enabled

MPI_DSM_MUSTRUN Specifies the CPUs on which processes are to run.
For jobs running on IRIX systems, you can set the
MPI_DSM_VERBOSEvariable to request that the
mpirun command print information about where
processes are executing.

Not enabled

MPI_DSM_PPM Sets the number of MPI processes that can be run on
each node of an IRIX system.

2

MPI_DSM_VERBOSE Instructs mpirun to print information about process
placement for jobs running on NUMA systems.

Not enabled

MPI_MSGS_PER_HOST Sets the number of message headers to allocate for
MPI messages on each MPI host. Space for messages
that are destined for a process on a different host is
allocated as shared memory on the host on which the
sending processes are located. MPI locks these pages
in memory. Use the MPI_MSGS_PER_HOSTvariable
to allocate buffer space for interhost messages.

!
Caution: If you set the memory pool for interhost
packets to a large value, you can cause allocation
of so much locked memory that total system
performance is degraded.

128

20 SR–2197 1.2

Setting Environment Variables [4]

Table 3. MPI environment variables for UNICOS and IRIX systems

Variable Description Default

MPI_ARRAY Sets an alternative array name to be used for
communicating with Array Services when a job is
being launched.

The default
name set in the
arrayd.conf
file

MPI_BUFS_PER_PROC Determines the number of private message buffers
(16 KB each) that MPI is to allocate for each process.
These buffers are used to send long messages.

16 pages (each
page is 16 KB)

MPI_CHECK_ARGS Enables checking of MPI function arguments.
Segmentation faults might occur if bad arguments
are passed to MPI, so this is useful for debugging
purposes. Using argument checking adds several
microseconds to latency.

Not enabled

MPI_COMM_MAX Sets the maximum number of communicators that
can be used in an MPI program. Use this variable to
increase internal default limits. (May be required by
standard-compliant programs.)

256

MPI_DIR Sets the working directory on a host. When an
mpirun command is issued, the Array Services
daemon on the local or distributed node responds by
creating a user session and starting the required MPI
processes. The user ID for the session is that of the
user who invokes mpirun , so this user must be listed
in the .rhosts file on the responding nodes. By
default, the working directory for the session is the
user’s $HOMEdirectory on each node. You can direct
all nodes to a different directory (an NFS directory
that is available to all nodes, for example) by setting
the MPI_DIR variable to a different directory.

$HOMEon the
node. If using
-np or -nt , the
default is the
current
directory.

MPI_GROUP_MAX Sets the maximum number of groups that can be
used in an MPI program. Use this variable to
increase internal default limits. (May be required by
standard-compliant programs.)

256

SR–2197 1.2 21

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

MPI_MSGS_PER_PROC Sets the maximum number of buffers to be allocated
from sending process space for outbound messages
going to the same host. (May be required by
standard-compliant programs.) MPI allocates buffer
space for local messages based on the message
destination. Space for messages that are destined for
local processes is allocated as additional process
space for the sending process.

128

MPI_REQUEST_MAX Sets the maximum number of simultaneous
nonblocking sends and receives that can be active at
one time. Use this variable to increase internal
default limits. (May be required by
standard-compliant programs.)

1024

MPI_TYPE_DEPTH Sets the maximum number of nesting levels for
derived datatypes. (May be required by
standard-compliant programs.) The
MPI_TYPE_DEPTHvariable limits the maximum
depth of derived datatypes that an application can
create. MPI logs error messages if the limit specified
by MPI_TYPE_DEPTHis exceeded.

8 levels

MPI_TYPE_MAX Sets the maximum number of derived data types
that can be used in an MPI program. Use this
variable to increase internal default limits. (May be
required by standard-compliant programs.)

1024

4.2 Setting MPI Environment Variables on UNICOS/mk Systems

This section provides a table of MPI environment variables you can set for
UNICOS/mk systems.

22 SR–2197 1.2

Setting Environment Variables [4]

Table 4. Environment variables for UNICOS/mk systems

Variable Description Default

MPI_SM_POOL Specifies shared memory queue. When MPI is
started, it allocates a pool of shared memory for use
in message passing. This pool represents space used
to buffer message headers and small messages while
the receiving PE is doing computations or I/O. The
default of 1024 bytes is the number of bytes that can
be pending.

1024 bytes

MPI_SM_TRANSFER Specifies number of queue slots. Specifies the number
of slots in the shared memory queue that can be
occupied by a send operation at the receiver. A slot
consists of four UNICOS/mk words. By default, a
single send operation can occupy 128 slots (or buffer
512 words) while the receiving PE is doing
computations or I/O.

128

MPI_BUFFER_MAX Specifies maximum buffer size. Specifies a maximum
message size, in bytes, that will be buffered for MPI
standard, buffered, or ready send communication
modes.

No limit

MPI_BUFFER_TOTAL Specifies total buffer memory. Specifies a limit to the
amount of memory the MPI implementation can use
to buffer messages for MPI standard, buffered, or
ready send communication modes.

No limit

4.3 Internal Message Buffering in MPI (IRIX Systems Only)

An MPI implementation can copy data that is being sent to another process into
an internal temporary buffer so that the MPI library can return from the MPI
function, giving execution control back to the user. However, according to the
MPI standard, you should not assume any message buffering between
processes because the MPI standard does not mandate a buffering strategy.
Some implementations choose to buffer user data internally, while other
implementations block in the MPI routine until the data can be sent. These
different buffering strategies have performance and convenience implications.

Most MPI implementations do use buffering for performance reasons and some
programs depend on it. Table 5, page 24, illustrates a simple sequence of MPI

SR–2197 1.2 23

Message Passing Toolkit: MPI Programmer’s Manual

operations that cannot work unless messages are buffered. If sent messages
were not buffered, each process would hang in the initial MPI_Send call,
waiting for an MPI_Recv call to take the message. Because most MPI
implementations do buffer messages to some degree, often a program such as
this will not hang. The MPI_Send calls return after putting the messages into
buffer space, and the MPI_Recv calls get the messages. Nevertheless, program
logic such as this is not valid by the MPI standard. The Silicon Graphics
implementation of MPI for IRIX systems buffers messages of all sizes. For
buffering purposes, this implementation recognizes short message lengths (64
bytes or shorter) and long message lengths (longer than 64 bytes).

Table 5. Outline of improper dependence on buffering

Process 1 Process 2

MPI_Send(2,....) MPI_Send(1,....)

MPI_Recv(2,....) MPI_Recv(1,....)

24 SR–2197 1.2

Debugging Programs on IRIX Systems [5]

To debug MPI 3.1 programs on IRIX systems, you can use the XMPI graphical
interface or either of the Silicon Graphics debuggers, CVD (ProDev WorkShop)
and DBX. For information on using XMPI, see Section 5.3, page 27.

You cannot simply start an MPI program from the debuggers because MPI 3.1
uses Array Services to start an MPI application and the application is a
collection of IRIX processes. Instead, you must start the program with mpirun
or xmpi commands as you normally do, then attach to the running program
with the debugger.

This startup method is inconvenient, because you cannot initially start an MPI
application in a stopped state. If your program is long running, this may not be
a problem because there will be time to obtain the process IDs and attach the
debugger to them. If your program is short, or you need to debug it soon after
MPI initialization, code a call to a sleep routine to allow time to attach to the
program.

The debugging procedures in this chapter assume that you have added a sleep
routine to the beginning of your program.

Procedure 2: Using the ProDev WorkShop debugger, CVD

Use the following procedure to debug an MPI program with the ProDev
WorkShop debugger, CVD:

1. Modify the MPI application to call a sleep routine.

To modify the MPI process, begin with a preliminary call to SLEEPbefore
calling the MPI initialization routine. The following example illustrates a
modified Fortran program:

CALL SLEEP(60)

CALL MPI_Init ()

2. Start your MPI program after building it.

3. Obtain process IDs.

Be sure to obtain the processes with your program name, not the mpirun
process, from the output of the following command:

ps -u userid

SR–2197 1.2 25

Message Passing Toolkit: MPI Programmer’s Manual

4. Attach to your application by using the CVD debugger. Attaching by using
CVD, as follows, places you in the sleep library routine in a stopped state:

cvd -pid pid

Note: To find your program source, use the cvd up command to move
up the stack several times.

5. Instruct the CVD debugger to automatically attach to child processes of the
program as they are created (forked) by doing the following:

a. Select Admin ---> Multiprocess View .

b. Select Config ---> Preferences .

c. Select Attach to forked processes and Copy traps to
forked processes .

6. Use the CVD debugger to set a breakpoint, if you wish.

7. Instruct CVD to automatically attach to your application’s processes by
selecting Continue . After your selection, processes are listed in the
Multiprocess View . From this view, you can start CVD windows for
other processes to debug different MPI ranks.

The initial attached process remains running in MPI_Init for the duration
of your program. For example, if you specify four processes on the mpirun
command line, five processes will be listed in the Multiprocess View .

!
Caution: Do not stop the MPI_init process. Stopping MPI_init can
halt MPI communications.

Procedure 3: Using the DBX debugger

Use the following procedure to debug an MPI program by using the DBX
debugger:

1. Follow steps 1 through 3 in Procedure 2.

2. Attach to your running program by using the following dbx command:

dbx -p pid

3. Debug child processes as they are created.

26 SR–2197 1.2

Debugging Programs on IRIX Systems [5]

Use the following command to tell DBX that you want to debug child
processes as MPI creates them:

set $promptonfork = 2

4. Continue your program by entering the continue command.

5. As each process is created, set a breakpoint in it manually, then continue it.
The DBX debugger stops each child process separately. For more
information on debugging multiprocess programs with DBX, enter help
mp and help hint_mp_debug on the dbx command line.

5.1 Core File Contents

If an MPI program aborts, the core file contains only the aborting process. The
remaining processes in the application continue to run. You can inspect the
core file using either cvd or dbx, but with either debugger, you will see only
information for the failing process.

5.2 Running Distributed Applications

When an application is distributed across multiple nodes in an array, you must
run multiple copies of cvd to debug the process on each node. See Array
Services documentation for more information.

Use the following cvd command to attach to a particular process on a specific
node:

cvd -host hostname -pid pid

The Array Services commands ainfo , array , and aview also provide
information on MPI processes.

5.3 Using XMPI

The XMPI graphical interface starts MPI applications and allows you to view
message passing events that occur during program execution. It can also save a
file of these events if you want a permanent record. XMPI must be running on
any node on which it is used.

If you understand the concepts of MPI, you can probably master XMPI by
starting it, experimenting with its menus, and browsing its help displays. But

SR–2197 1.2 27

Message Passing Toolkit: MPI Programmer’s Manual

the information in this section acquaints you with XMPI menus and dialogs to
make your exploration of XMPI more focused and efficient. It also explains
how to use menus and dialog boxes to do several commonly performed tasks.

5.3.1 Starting XMPI

To start XMPI, type the xmpi command in a shell window. After your entry, the
XMPI main window is displayed as follows:

a11368

Figure 1. XMPI main window

28 SR–2197 1.2

Debugging Programs on IRIX Systems [5]

The XMPI menu bar offers the following menus:

• The Application menu contains options for running MPI applications and
managing other aspects of program execution. Section 5.3.2, page 29,
describes each of the options on this menu and contains procedures for
running MPI applications with XMPI.

• The Trace menu contains options for viewing and managing trace files.
Section 5.3.3, page 37, describes the options on this menu and contains
procedures for viewing traces.

• The Options menu contains implementation-specific functions that are not
relevant to the Silicon Graphics version of XMPI.

• The Help menu provides a list of topics that you can select to obtain
information about XMPI features and functions. Section 5.3.4, page 41,
explains how to access additional XMPI documentation.

The buttons below the menu bar duplicate selections on the Application
menu. When you are viewing a trace, it is often easier to use these buttons than
the menu selections.

5.3.2 The Application Menu

The Application menu, shown in Figure 2, contains options for running and
managing MPI applications. Notice that this menu contains two selections for
running MPI applications: Build&Run... and Browse&Run... . Choose the
one that best suits your needs.

SR–2197 1.2 29

Message Passing Toolkit: MPI Programmer’s Manual

a11369

Figure 2. Application menu

Use the Application menu options for the following tasks:

• Use the Build&Run... option to run a job on distributed hosts or to define
new execution parameters for the job. With this option, you can save the
execution parameters to a file and use the parameters when you run the
application later.

• Use the Browse&Run... option to run an application when a file of its
execution parameters was previously created with the Build&Run...
option.

• Use the Snapshot option on a running program to record information on
trace events at a given instant in time.

30 SR–2197 1.2

Debugging Programs on IRIX Systems [5]

• Use the Rerun option to clean any remnants left from a previous job and
run it again.

• Use the Clean option to cancel a running MPI application and remove
status information about its processes from collection tables.

After an application is launched, you can use the Snapshot option to collect
information on process events at any instant in time. Use the Clean option to
stop a process without stopping XMPI.

Procedure 4: Using the Build&Run... option

Use the following procedure to define parameters for MPI programs and launch
them from XMPI:

1. Select the Build&Run... option from the Application menu. When
you select this option, the Application Builder dialog box is displayed
(shown in Figure 3, page 32). This dialog box accepts MPI program
parameters, queues the programs, and launches them.

SR–2197 1.2 31

Message Passing Toolkit: MPI Programmer’s Manual

a11370

Figure 3. Application Builder dialog box

2. Specify program parameters in the left column of the dialog box.

Enter the name of the MPI application, the number of copies that you wish
to run, program arguments, and the node on which the application is to
run. (You can also select the program and node from the Browse
Programs and Select Nodes lists at the right.)

To change the directory or node parameters, go on to Procedure 4, step 3,
page 33. If directory and node parameters are satisfactory, go directly to
Procedure 4, step 4, page 33.

Note: The Transfer Program and Use Full Pathname buttons are
not implemented for this release.

32 SR–2197 1.2

Debugging Programs on IRIX Systems [5]

3. Change the program directory and MPI node, as necessary.

By default, XMPI assumes that you want to run a program located in the
directory in which you entered the xmpi command. If the Browse
Programs column does not contain the program that you want to run,
enter a different directory name at the top of this column, then select the
program that you want from the new list that is displayed after your entry.
If the program that you want to run is on a different node, use the Select
Nodes column.

The Select Nodes column contains a list of the available hosts on which
you can run an MPI application. You can select an individual node, all
nodes, or the just the local node from the available nodes list. You can also
add a node to the list by entering its name in the entry field at the top of
the column. The node that you add must be listed in the following file:

/usr/lib/array/arrayd.conf

4. Save the execution parameters, as necessary.

To store the execution parameters that you entered in a file, click the Save
button. When you select this button, you are prompted to enter the name of
the parameter file.

5. To queue the job, click the commit button (the widget containing a down
arrow).

The commit button queues the job for execution. The job remains in the
queue until you select the Run button.

6. Queue additional jobs, as necessary.

To specify various combinations of nodes and program parameters, and to
queue the additional jobs, repeat steps 1 through 5.

To remove a job from the queue, select the job by double-clicking its name
in the queue and then press the Delete key.

If you change your mind and decide not to run any applications, click the
Cancel button to close the Application Builder dialog box without
taking action on your entries.

7. To start the application, click the Run button.

The XMPI banner is replaced by a display of the running application,
shown in the following figure:

SR–2197 1.2 33

Message Passing Toolkit: MPI Programmer’s Manual

a11371

Figure 4. XMPI display of a running application

Each process in the job is represented by a hexagonal icon. The color of the
traffic light in the icon indicates the following process status:

• Green indicates that the process is running but it is not executing an MPI
routine.

• Yellow indicates that an MPI routine call is in progress and no blocking is
occurring.

• Red indicates that an executing MPI routine is blocking.

You can display a record of events for any process by clicking its icon. The
individual record for each process is shown in the following figure:

34 SR–2197 1.2

Debugging Programs on IRIX Systems [5]

a11372

Figure 5. Individual record of events for an MPI process

8. Perform the following functions as necessary:

• To refresh the information on the record and in the process icons, click the
snap button on the main window (or choose the Snapshot option from the
Application menu).

• To clear the information and remove records from the window, click the
clean button.

• To clear the information and restart the application, click the rerun button.

Procedure 5: Using the Browse&Run... option

When you select Browse&Run... , the Application Browser dialog box
(shown in Figure 6, page 36) is displayed. Notice from this figure that this
dialog box has no entry fields for execution parameters. With this option,
execution parameters are read from a file that was previously created by
selecting Build&Run... (see Procedure 4, step 4, page 33).

SR–2197 1.2 35

Message Passing Toolkit: MPI Programmer’s Manual

a11373

Figure 6. Application Browser dialog box

To run an MPI application with the Browse&Run... option, use the following
procedure:

1. Choose a directory and program name from the Directories and Files
lists in the Application Browser dialog box.

2. Change the directory, as necessary.

XMPI assumes that the program that you want to run is in the directory in
which you entered the xmpi command. If the Directories and Files
lists do not contain the directory that you want, enter a directory name in
the Filter field at the top of the dialog box. Then select the program from
the new ones displayed in the Files list.

3. Click the Run button to start the application.

After your selection, the XMPI banner is replaced by a display of the
running application. See Figure 4, page 34, and the discussion that follows
it for information on monitoring the application after it starts.

36 SR–2197 1.2

Debugging Programs on IRIX Systems [5]

5.3.3 The Trace Menu

Whenever you launch an MPI application with XMPI, it automatically gathers
trace information from the MPI daemons on the host nodes. The Trace menu
(shown in Figure 7, page 37) contains options for viewing information collected
from these daemons. Use the following Trace menu options to perform these
tasks:

• Dumpsaves trace information in a file.

• View displays information that was previously saved in a trace file.

• Express displays trace information while the application is executing.

• Kiviat displays a trace file in a Kiviat diagram.

a11374

Figure 7. XMPI Trace menu

SR–2197 1.2 37

Message Passing Toolkit: MPI Programmer’s Manual

Procedure 6: Creating and viewing trace information

Use the following procedure to create and view a trace file:

1. Run the MPI application.

To launch the MPI program, use the Build&Run... or the
Browse&Run... option from the Application menu. (For more
information, see Procedure 4, page 31, or Procedure 5, page 35.)

2. Dump the trace data to a file.

To create a file containing the trace information, choose the Dumpoption
from the Trace menu. When you choose this option, a dialog box is
displayed so that you can specify the name of the trace file. If you do not
include a directory in your specification, the trace file will be stored in the
directory in which you entered the xmpi command.

3. Choose the trace file that you want to display.

After a trace file is created, you can view it by choosing the View option on
the Trace menu. When you choose View , the Trace Selection dialog
box (shown in Figure 8, page 39) is displayed so that you can specify the
file to display.

If you want to display a trace file other than the one that was just created,
use the Directory and Files lists to select a different trace file.

38 SR–2197 1.2

Debugging Programs on IRIX Systems [5]

a11375

Figure 8. Dialog box for displaying trace files

4. View the trace file.

Click the View button to see a time line of the trace. Figure 9, page 40,
illustrates a portion of a time line on two processes.

SR–2197 1.2 39

Message Passing Toolkit: MPI Programmer’s Manual

a11376

Figure 9. XMPI display of trace information

The horizontal bars reflect the state of each host over time. Arrows between
bars represent messages that are being passed between hosts. To control the
level of detail that is shown, use the expand and compress buttons (icons
showing arrows pointing out and arrows pointing in above the display). To
control the time-lapse display, use the VCRbuttons; they start and stop,
fast-forward, and rewind the trace.

Note: To zoom in on an area of the time line to see it in greater detail,
position the cursor over the area of the time line that you want to
expand. Press the right mouse button and sweep over the area of interest
to frame it. Each time you create a new frame, the contents of the frame
are magnified.

Procedure 7: Viewing a trace as an application runs

Use the following procedure to view a trace file while an application is running:

1. Run the MPI application.

To launch the MPI program, use the Build&Run... or the
Browse&Run... option from the Application menu. (For more
information, see Procedure 4, page 31, or Procedure 5, page 35.)

2. Choose the Express option on the Trace menu.

When you choose the Express option, a time line of the trace is displayed.
For a description of the display, see Figure 9, page 40, and the information
following the figure.

40 SR–2197 1.2

Debugging Programs on IRIX Systems [5]

Note: To view a trace while an application is running, use the Trace
button on the main window instead of the Express option.

5.3.4 Help Menu

The Help menu (shown in Figure 10, page 42) contains the primary
documentation for XMPI. The About XMPI option gives the XMPI version
number and copyright information. This option also contains a World Wide
Web location at which you can find help on XMPI.

When you select the Help option from the Help menu, your Web browser
launches and connects you to the Web site containing XMPI help. To access this
Web page, the XMPI Web site must be accessible from the host from which you
are using XMPI.

SR–2197 1.2 41

Message Passing Toolkit: MPI Programmer’s Manual

a11377

Figure 10. XMPI Help menu

42 SR–2197 1.2

Launching Programs with NQE [6]

After an MPI program is debugged and ready to run in a production
environment, it is often useful to submit it to a queue to be scheduled for
execution. The Network Queuing Environment (NQE) provides this capability.
NQE selects a node appropriate for the resources that an MPI job needs, routes
the job to a node, and schedules it to run.

This chapter explains how to use the NQE graphical interface on IRIX systems
to submit an MPI program for execution. For information on using NQE to
submit UNICOS or UNICOS/mk programs, see the NQE User’s Guide,
publication SG–2148.

6.1 Starting NQE

Before you begin, set your DISPLAY variable so that the NQE screens appear
on your workstation. Then enter the nqe command, as shown in the following
example:

setenv DISPLAY myworkstation:0

<nqe

Figure 11 shows the NQE button bar, which appears after your entry.

a11378

Figure 11. NQE button bar

6.2 Submitting a Job with NQE

To submit a job, click the Submit button on the NQE Job Submission
window. Figure 12 shows the NQE Job Submission window with a sample
job script ready to be submitted.

SR–2197 1.2 43

Message Passing Toolkit: MPI Programmer’s Manual

a11379

Figure 12. NQE NQE Job Submission window

Notice in this figure that the difference between an NQE job request and a shell
script lies in the use of the #QSUBidentifiers. In this example, the directive
#QSUB -A nqearray tells NQE to run this job under the nqearray project
account. The directive #QSUB -a 8:05pm tells NQE to wait until 8:05 p.m. to
start the job.

Also notice in Figure 12 that the MPI program is already compiled and
distributed to the proper hosts. The file array/hostlist has the list of
parameters for this job, as you can see in the output from the following cat
command:

% cat array/hostlist

homegrown, disarray, dataarray

44 SR–2197 1.2

Launching Programs with NQE [6]

6.3 Checking Job Status with NQE

To see the status of jobs running under NQE, click the Status button to
display the NQE Status window.

Figure 13 shows an example of the NQE Status window. Notice in this figure
that the MPI job is queued and waiting to run.

a11380

Figure 13. NQE Status window

1. After the job starts, use XMPI as you do for any other MPI job.

2. To verify the scheduled starting time for the job, position the mouse cursor
on the line that shows the job and double-click it.

This displays the NQE Detailed Job Status window, shown in Figure
14. Notice that the job was created at 8:26 PDT and is to run at 20:05 PDT.

SR–2197 1.2 45

Message Passing Toolkit: MPI Programmer’s Manual

a11381

Figure 14. NQE Detailed Job Status window

6.4 Getting More Information

For more information on using NQE, see the following NQE publications:

• Introducing NQE, publication IN–2153

• NQE Release Overview, publication RO–5237

• NQE Installation, publication SG–5236

• NQE Administration, publication SG–2150

• NQE User’s Guide, publication SG–2148

The preceding publications are also available in the Cray Research Online
Software Publications Library at the following URL:

http://www.cray.com/products/software/publications

PostScript files of NQE publications are available through the Cray Research
Online Publications Software Library. To download a publication, select
Summary next to the book title you want on the Titles Web page, which is
located at the following URL:

46 SR–2197 1.2

Launching Programs with NQE [6]

http://www.cray.com/products/software/publications/dynaweb/docs/titles.html#N

The main Cray Research Online Software Library Web page is at the following
URL:

http://www.cray.com/products/software/publications/

For general information about NQE, see the following URLs:

http://www.cray.com/products/software/nqe

http://www.cray.com

(search for NQE)

SR–2197 1.2 47

Index

A

Application menu, 29
Application running, 8
assign command, 8
Autotasking, 8

B

Browse&Run... option, 35
Building files

shared memory MPI, 5
TCP devices, 9

Building MPI applications
for shared memory, 5
on IRIX systems, 10
on UNICOS systems, 5
on UNICOS/mk systems, 10
using TCP, 9

C

Core file contents, 27
CVD debugger, 25

D

DBX debugger, 26
Debugging on IRIX systems, 25
Distributed applications, 27
Distributed programs, 17

E

Environment variable setting

UNICOS and IRIX systems, 19
UNICOS/mk systems, 22

Environment variables
bufferieng for UNICOS/mk, 23

H

Help menu, 41
High-speed connections, 9

I

Internal message buffering, 23

M

MPI components, 2
MPI overview, 1
mpirun

argument file, 15
command, 11
for distributed programs, 17
for local host, 15
for shared memory, 16
on UNICOS/mk systems, 16

MPT
overview, 1

MPT components, 1

N

Network Queuing Environment (NQE), 43

SR–2197 1.2 49

Message Passing Toolkit: MPI Programmer’s Manual

P

Private files, 8
Program development, 2
program segments, 17

S

Shared memory
file building, 5
limitations, 8
using mpirun, 16

T

TASKCOMMON storage, 5

TCP file building, 9
Trace menu, 37

U

UNICOS/mk direct execution, 17

X

XMPI, 27

50 SR–2197 1.2

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3687-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

