
MIPSpro 7 Fortran 90 Commands
and Directives Reference Manual

SR–3907 3.0.1

Copyright © 1997 Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Cray Research, Inc.

Portions of this product may still be in development. The existence of those portions still in development is not a commitment of
actual release or support by Cray Research, Inc. Cray Research, Inc. assumes no liability for any damages resulting from attempts
to use any functionality or documentation not officially released and supported. If it is released, the final form and the time of
official release and start of support is at the discretion of Cray Research, Inc.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS,
CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

ProDev and Silicon Graphics are trademarks of Silicon Graphics, Inc. DynaWeb is a trademark of Electronic Book Technologies,
Inc. MIPSpro is a trademark of MIPS Technologies, Inc. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited. X/Open is a registered trademark, and the X device is a trademark, of
X/Open Company Ltd.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

Record of Revision

Version Description

3.0 August 1997.
Original Printing. This printing supports the MIPSpro 7 Fortran 90 compiler, release
7.2, running on IRIX systems.

SR–3907 3.0.1 i

Contents

Page

Preface xvii

Related MIPSpro 7 Fortran 90 publications xvii

MIPSpro 7 Fortran 90 messages . xviii

MIPSpro 7 Fortran 90 man pages xviii

Related Fortran publications . xviii

Related publications . xix

Ordering publications . xix

Conventions . xx

Reader comments . xx

Introduction [1] 1

The f90 (1) command . 1

The MIPSpro 7 Fortran 90 programming environment 3

Invoking MIPSpro 7 Fortran 90 [2] 5

-64 , -n32 . 6

-align n . 8

-ansi . 9

-avoid_gp_overflow . 9

-C . 9

-c . 9

-chunk= integer . 10

-cif . 10

-col n . 10

-cord . 10

-cpp . 10

SR–3907 3.0.1 iii

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

-cray_mp (deferred implementation) 10

-d n . 11

-D var[=def][, var[=def]] ... 11

-default64 . 11

-dsm . 11

-E . 12

-extend_source . 12

-fb file.cfb . 12

-feedback file . 12

-fixedform . 12

-freeform . 12

-ftpp . 13

-g debug_lvl . 13

-help . 13

-I dir . 13

-INLINE:… . 14

-IPA [:…] . 14

-i n . 14

-ignore_suffix . 14

-KPIC . 15

-keep . 15

-L directory . 15

-LIST:... 15

-LIST:= setting . 15

-LIST:all_options= setting 16

-LIST:notes= setting . 16

-LIST:options= setting . 16

-LIST:symbols= setting . 16

-LNO:… . 16

iv SR–3907 3.0.1

Contents

Page

General options . 17

-LNO:auto_dist= setting (Origin series only) 17

-LNO:fission= n . 17

-LNO:fusion= n . 18

-LNO:fusion_peeling_limit= n 19

-LNO:gather_scatter= n 19

-LNO:ignore_pragmas= setting 20

-LNO:oinvar= setting . 20

-LNO:opt= n . 20

-LNO:outer= setting . 20

-LNO:vintr= setting . 20

Transformation options . 20

-LNO:blocking= setting . 21

-LNO:blocking_size= n1[, n2] 21

-LNO:interchange= setting 21

-LNO:ou= n, ou_max=n, and ou_prod_max= n 22

-LNO:ou_further= n . 22

-LNO:ou_deep= setting . 23

Cache memory management options 23

-LNO:assoc1= n, assoc2= n, assoc3= n, assoc4= n 23

-LNO:cmp1= n, cmp2=n, cmp3=n, cmp4=n and dmp1=n, dmp2=n, dmp3=n, dmp4=n . . 23

-LNO:cs1 =n, cs2 =n, cs3 =n, cs4 =n 24

-LNO:is_mem1 =setting, is_mem2 =setting, is_mem3 =setting, is_mem4 =setting 24

-LNO:ls1 =n, ls2 =n, ls3 =n, ls4 =n 24

TLB options . 24

-LNO:ps1= n, ps2= n, ps3= n, ps4= n 24

-LNO:tlb1= n, tlb2= n, tlb3= n, tlb4= n 24

-LNO:tlbcmp1= n, tlbcmp2= n, tlbcmp3= n, tlbcmp4= n and tlbdmp1= n, tlbdmp2= n,
tlbdmp3= n, tlbdmp4= n . 25

SR–3907 3.0.1 v

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

Prefetch options . 25

-LNO:pf n=setting . 25

-LNO:prefetch= n . 25

-LNO:prefetch_ahead= n 25

-LNO:prefetch_manual= setting 26

-l library . 26

-listing . 27

-MDupdate [file] . 27

-macro_expand . 28

-mips n . 28

-MP:… . 28

-MP:check_reshape= setting 28

-MP:clone= setting . 29

-MP:dsm= setting (Origin series systems only) 29

-mp . 29

-mp_schedtype= mode . 29

-nocpp . 30

-noextend_source . 30

-nostdinc . 30

-OPT:… . 31

-OPT:alias= name . 31

-OPT:cis= setting . 31

-OPT:cray_ivdep= setting . 31

-OPT:div_split= setting . 32

-OPT:fast_bit_intrinsics= setting 32

-OPT:fast_complex= setting 32

-OPT:fast_exp= setting . 32

-OPT:fast_nint= setting . 33

-OPT:fast_sqrt= setting . 33

vi SR–3907 3.0.1

Contents

Page

-OPT:fast_trunc= setting . 33

-OPT:fold_reassociate= setting 33

-OPT:fold_unsafe_relops= setting 34

-OPT:fold_unsigned_relops= setting 34

-OPT:got_call_conversion= setting 34

-OPT:IEEE_arithmetic= n . 34

-OPT:IEEE_comparisons= setting 35

-OPT:inline_intrinsics= setting 35

-OPT:liberal_ivdep= setting 35

-OPT:Olimit= n . 35

-OPT:pad_common= setting . 35

-OPT:recip= setting . 36

-OPT:reorg_common= setting 36

-OPT:roundoff= n . 36

-OPT:rsqrt= setting . 37

-OPT:space= setting . 37

-OPT:swp= setting . 37

-OPT:unroll_analysis= setting 37

-OPT:unroll_size= n . 38

-OPT:unroll_times_max= n 38

-OPT:wrap_around_unsafe_opt= setting 38

-o out_file . 38

-O level . 39

-P . 40

-pfa , -pfalist . 40

-r real_spec . 40

-r processor . 41

-S . 41

SR–3907 3.0.1 vii

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

-static . 41

-TARG:… . 42

-TARG:fp_precise= setting . 42

-TARG:madd= setting . 42

-TARG:platform= ipxx . 43

-TARG:processor= processor . 43

-TARG:r4krev22= setting . 43

CPU targeting (cross compiling) using the compiler.defaults file 43

-TENV:… . 44

-TENV:align_aggregate= bytes 44

-TENV:check_div= n . 44

-TENV:large_GOT= setting . 44

-TENV:small_GOT= setting . 44

-TENV:trapuv= setting . 45

-TENV:X= n . 45

-trapuv . 46

-U var . 46

-version . 46

-w [arg] . 46

-woff num . 46

-x dirlist . 47

-xgot . 47

-- . 47

file.suffix[90][file.suffix[90]…] . 48

Directives [3] 49

Using directives . 49

Directives and command line options 50

Directive range . 51

viii SR–3907 3.0.1

Contents

Page

Directive continuation and other considerations 51

LNO directives . 51

AGGRESSIVEINNERLOOPFISSION 52

BLOCKABLE . 52

BLOCKINGSIZE, NOBLOCKING 53

FISSION , FISSIONABLE, NOFISSION 54

FUSE, FUSABLE, NOFUSION . 55

INTERCHANGE, NOINTERCHANGE 56

PREFETCH . 57

PREFETCH_MANUAL . 58

PREFETCH_REF . 58

PREFETCH_REF_DISABLE . 59

UNROLL . 59

Argument aliasing directives . 60

Symbol storage directives . 61

Inlining and IPA directives . 63

Multiprocessing Directives [4] 65

Using directives . 65

Directive range . 65

Directive continuation . 66

Loop-level multiprocessing directives: DOACROSS, CHUNK, MP_SCHEDTYPE, and !$ 66

DOACROSSdirective . 67

AFFINITY clause . 68

BLOCKEDclause . 69

CHUNKclause . 69

IF clause . 69

LASTLOCAL, LOCAL, and SHAREDclauses 70

MP_SCHEDTYPEclause . 71

NESTclause . 72

SR–3907 3.0.1 ix

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

REDUCTIONclause . 72

CHUNKdirective . 73

MP_SCHEDTYPEdirective . 74

!$ directive . 74

DOACROSSdirective examples . 75

Analyzing data dependencies for multiprocessing 77

Dependency analysis examples 78

Rewriting data dependencies . 81

Work quantum . 86

Cache effects and optimization . 88

Performing a matrix multiply . 88

Optimization costs . 89

Load balancing . 90

Local common blocks . 92

PCF directives . 93

BARRIERdirective . 94

CRITICALSECTION and ENDCRITICALSECTIONdirectives 94

PARALLELand ENDPARALLELdirectives 95

PARALLELDOdirective . 96

PDOand ENDPDOdirectives . 96

PSECTION[S], SECTION, and ENDPSECTION[S] directives 98

SINGLEPROCESSand ENDSINGLEPROCESSdirectives 100

Restrictions on the PCF directives 102

Parallel Programming on Origin series systems [5] 105

Performance tuning on Origin series systems 105

Improving program performance 106

Choosing a tuning method . 109

Directives for performance tuning 110

DISTRIBUTE, DISTRIBUTE_RESHAPE, and REDISTRIBUTE 111

x SR–3907 3.0.1

Contents

Page

DOACROSS . 112

AFFINITY clause . 112

NESTclause . 114

DYNAMIC . 116

PAGE_PLACE . 117

Using the data distribution directives 118

Regular data distribution . 119

Data distribution with reshaping 120

Restrictions on Reshaped Arrays 120

Error detection for reshaped arrays 121

Implementation of reshaped arrays 121

Regular versus reshaped data distribution 124

Examples . 125

Distributing columns of a matrix 125

Using data distribution and data affinity scheduling 126

Argument passing . 127

Redistributed arrays . 128

Irregular distributions and thread affinity 129

CF90 Directives [6] 131

Using directives . 131

Directive continuation . 132

Directive range and placement 132

Interaction of directives with the -x command line option 133

Optimization directives . 133

Local use of compiler features . 133

Check array bounds: BOUNDSand NOBOUNDS 133

Specify source form: FREEand FIXED 135

Autotasking directives (deferred implementation) 135

SR–3907 3.0.1 xi

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

Mark parallel loop: DOALL(deferred implementation) 136

Mark parallel loop: DOPARALLELand ENDDO(deferred implementation) 138

Critical region: GUARDand ENDGUARD(deferred implementation) 139

Mark parallel region: PARALLELand ENDPARALLEL(deferred implementation) 140

Examples (deferred implementation) 140

Read-only variables . 140

Array indexed by loop index 141

Read-then-write variables . 141

Write-then-read variables and arrays 141

Miscellaneous directives . 142

Create identification string: ID 142

Ignore dependencies: IVDEP . 144

External name mapping directive: NAME 144

Source Preprocessing [7] 147

General rules . 147

Directives . 148

#include directive . 148

#define directive . 149

#undef directive . 151

(null) directive . 151

Conditional directives . 151

#if directive . 152

#ifdef directive . 153

#ifndef directive . 153

#elif directive . 153

#else directive . 154

#endif directive . 154

Predefined macros . 154

Command line options . 155

xii SR–3907 3.0.1

Contents

Page

Interlanguage Calling [8] 157

External and public names . 157

How Fortran 90 handles external and public names 158

Calling a Fortran 90 subprogram from C 158

Calling a C function from Fortran 90 159

Correspondence of Fortran 90 and C data types 159

Corresponding scalar types . 159

Corresponding character types 160

Corresponding array elements 161

Unsupported array arguments 162

How Fortran 90 passes arguments 162

Calling Fortran 90 from C . 164

Calling a Fortran 90 subroutine from C 164

Calling a Fortran 90 function from C 166

Calling C from Fortran 90 . 167

Calls to C functions . 168

Using Fortran 90 common blocks in C code 169

Using Fortran 90 arrays in C code 170

Calls to C using %LOCand %VAL 171

Using %VAL . 171

Using %LOC . 172

Making C wrappers with mkf2c (1) 172

mkf2c (1) argument assumptions 172

mkf2c (1) character string treatment 173

mkf2c (1) restrictions . 175

Using mkf2c (1) and extcentry (1) 175

Makefile considerations . 176

Calling assembly language from Fortran 90 177

SR–3907 3.0.1 xiii

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

Appendix A Library Usage 179

The assign command . 179

Options to the assign command 179

Supported FFIO layers . 182

FFIO and asynchronous I/O . 182

Intrinsic procedures . 183

Library routines . 183

Library functions . 188

Compatibility with sproc . 195

Communicating between threads 195

Appendix B Debugging 199

Compiling and running parallel Fortran 199

Using the -static option . 199

Profiling a parallel Fortran program 200

Debugging parallel Fortran . 201

Other debugging tips for multiprocessed loops 202

Appendix C Differences 205

Model differences . 205

Fortran 90 statement differences . 205

Functions and procedures . 206

Modules . 206

I/O library . 206

Library functions and procedures 207

Math library . 207

Index 209

xiv SR–3907 3.0.1

Contents

Page

Figures
Figure 1. f90 (1) command example 2

Figure 2. Origin series memory hierarchy 106

Figure 3. Cache behavior and solutions 108

Figure 4. Block distribution . 118

Figure 5. Cyclic distribution . 119

Figure 6. Implementation of BLOCKdistribution 122

Figure 7. Implementation of CYCLIC(1) distribution 123

Figure 8. Implementation of BLOCK-CYCLIC Distribution 124

Figure 9. Correspondence between C and Fortran 90 subscripts 162

Tables
Table 1. Directives . 131

Table 2. Autotasking directive parameter 137

Table 3. Corresponding Fortran 90 and C Data Types 160

Table 4. How mkf2c (1) treats function arguments 173

Table 5. Summary of System Interface Library Routines 188

SR–3907 3.0.1 xv

Preface

This manual describes the commands and directives for using the MIPSpro 7
Fortran 90 compiler, which is invoked through the f90 (1) command. The f90 (1)
command can also invoke a source preprocessor, a source lister, and the loader.

The MIPSpro 7 Fortran 90 compiler runs under the IRIX operating system,
version 6.2 and later, on Silicon Graphics and Cray Research computer systems.

The MIPSpro 7 Fortran 90 compiler was developed to support the Fortran
standards adopted by the American National Standards Institute (ANSI) and
the International Standards Organization (ISO). These standards, commonly
referred to as the Fortran 90 standard, are ANSI X3.198–1992 and ISO/IEC
1539:1991–1. Because the ANSI Fortran 90 standard is a superset of the
FORTRAN 77 standard, the MIPSpro 7 Fortran 90 compiler will compile code
written to the FORTRAN 77 standard.

Note: The Fortran 90 standard is a substantial revision to the FORTRAN 77
language standard. Because of the number and complexity of the features,
the standards organizations are continuing to interpret the Fortran 90
standard for Silicon Graphics, Cray Research, and for other vendors. To
maintain conformance to the Fortran 90 standard, Silicon Graphics and Cray
Research may need to change the behavior of certain MIPSpro 7 Fortran 90
features in future releases based upon the outcome of the outstanding
interpretations to the standard.

Related MIPSpro 7 Fortran 90 publications

This manual is one of a set of manuals that describes the MIPSpro 7 Fortran 90
compiler. The other manuals in the set are as follows:

• Intrinsic Procedures Reference Manual, publication SR–2138 (Cray Research
publication)

• Fortran Language Reference Manual, Volume 1, publication SR–3902 (Cray
Research publication)

• Fortran Language Reference Manual, Volume 2, publication SR–3903 (Cray
Research publication)

• Fortran Language Reference Manual, Volume 3, publication SR–3905 (Cray
Research publication)

SR–3907 3.0.1 xvii

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

MIPSpro 7 Fortran 90 messages

You can obtain explanations for MIPSpro 7 Fortran 90 compiler messages by
using the online explain (1) command.

MIPSpro 7 Fortran 90 man pages

In addition to printed and online prose documentation, several online man
pages describe aspects of the MIPSpro 7 Fortran 90 compiler. Man pages exist
for the library routines, the intrinsic procedures, and several programming
environment tools.

You can print copies of online man pages by using the pipe symbol with the
man(1), col (1), and lpr (1) commands. In the following example, these
commands are used to print a copy of the explain (1) man page:

% man explain | col -b | lpr

Each man page includes a general description of one or more commands,
routines, system calls, or other topics, and provides details of their usage
(command syntax, routine parameters, system call arguments, and so on). If
more than one topic appears on a page, the entry in the printed manual is
alphabetized under its primary name; online, secondary entry names are linked
to these primary names. For example, egrep is a secondary entry on the page
with a primary entry name of grep . To access grep online, you can type man
grep . To access egrep online, you can type either man grep or man egrep .
Both commands display the grep man page on your terminal.

Related Fortran publications

The following commercially available reference books are among those that you
should consult for more information on the history of Fortran and the
Fortran 90 language itself:

• Adams, J., W. Brainerd, J. Martin, B. Smith, and J. Wagener. Fortran 90
Handbook — Complete ANSI/ISO Reference. New York, NY: Intertext
Publications/Multiscience Press, Inc., 1990.

• Metcalf, M. and J. Reid. Fortran 90 Explained. Oxford, UK: Oxford University
Press, 1990.

• American National Standards Institute. American National Standard
Programming Language Fortran, ANSI X3.198–1992. New York, 1992.

xviii SR–3907 3.0.1

Preface

• International Standards Organization. ISO/IEC 1539:1991, Information
technology — Programming languages — Fortran. Geneva, 1991.

Related publications

The following documents contain information that may be useful when using
the MIPSpro 7 Fortran 90 compiler:

• Application Programmer’s I/O Guide, publication SG–2168 (Cray Research
publication)

• MIPSpro Assembly Language Programmer’s Guide, SGI publication 007-2418-003

• MIPSpro Automatic Parallelizer Programmer’s Guide, SGI publication
007–3572–001

• MIPSpro Compiling and Performance Tuning Guide, SGI publication
007-2360-007

• MIPSpro Fortran 77 Programmer’s Guide, SGI publication 007-2361-005

• MIPSpro 64-bit Porting and Transition Guide, SGI publication 007-2391-004

• Performance Tuning Optimization for Origin2000 and Onyx2, SGI publication
007-3430-001

• SpeedShop User’s Guide, SGI publication 007–3311–002

Ordering publications

Silicon Graphics maintains publications information at the following URL:

http://techpubs.sgi.com/library

The preceding website contains information that allows you to browse
documents online, order documents, and send feedback to Silicon Graphics.

The User Publications Catalog, publication CP–0099, describes the availability and
content of all Cray Research hardware and software documents that are
available to customers. Cray Research customers who subscribe to the Cray
Inform (CRInform) program can access this information on the CRInform
system.

Cray Research also has documents available online at the following URL:

SR–3907 3.0.1 xix

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

http://www.cray.com/swpubs

To order a Cray Research or Silicon Graphics document, either call the
Distribution Center in Mendota Heights, Minnesota, at +1–612–683–5907, or
send a facsimile of your request to fax number +1–612–452–0141.

Cray Research employees may send their orders via electronic mail to
orderdsk (UNIX system users).

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

publications@cray.com

xx SR–3907 3.0.1

Preface

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBSfor the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–612–683–5599.

We value your comments and will respond to them promptly.

SR–3907 3.0.1 xxi

Introduction [1]

This manual is organized into the following chapters:

• Chapter 1 introduces the content of the manual and provides a general
description of the compiler.

• Chapter 2, page 5, describes the f90 (1) command, which you use to invoke
the compiler. This chapter includes information about using the f90 (1)
command line options, CPU targeting, obtaining a listing, and other aspects
of compiling with the MIPSpro 7 Fortran 90 compiler.

• Chapter 3, page 49, introduces the compiler directives and describes the
general compiler directives that the MIPSpro 7 Fortran 90 compiler
recognizes.

• Chapter 4, page 65, describes the multiprocessing directives.

• Chapter 5, page 105, describes the directives that are available to you if you
are running the MIPSpro 7 Fortran 90 compiler on an Origin 2000, Origin
200, or Cray Origin 2000 system.

• Chapter 6, page 131, describes Cray Research CF90 compiler directives that
are also supported by the MIPSpro 7 Fortran 90 compiler.

• Chapter 7, page 147, describes the source preprocessor.

• Chapter 8, page 157, describes the interlanguage calling conventions used
when calling a C/C++ function from a Fortran 90 procedure and a
Fortran 90 procedure from a C function.

• Appendix A, page 179, describes library routines available to you from
Fortran 90 programs.

• Appendix B, page 199, describes debugging Fortran 90 programs.

• Appendix C, page 205, describes differences between the CF90 compiler,
which runs on Cray Research’s UNICOS and UNICOS/mk systems, and the
MIPSpro 7 Fortran 90 compiler, which runs on IRIX systems.

1.1 The f90 (1) command

In the following example, the f90 (1) command is used to invoke the compiler.
The -listing option is specified to generate a source listing and a cross

SR–3907 3.0.1 1

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

reference. File pgm.f is the input file. After compilation, you can run this
program by entering the output file name as a command. In this example, the
default output file name, a.out , is used. Figure 1 illustrates this example:

% f90 -listing pgm.f

% ./a.out

f90

Command

MIPSpro 7
Fortran 90
compiler

pgm.f
Source
code

pgm.T
Lister

pgm.L

Listing

pgm.o

ld

IRIX

stdin
Input
data

a.out

Executable
program

stdout

Output data

a11351

-listing generates a listing

Figure 1. f90 (1) command example

You can use the options on the f90 (1) command line to modify the default
actions; for example, you can disable the load step. For more information on
f90 (1) command line options, see Chapter 2, page 5.

2 SR–3907 3.0.1

Introduction [1]

1.2 The MIPSpro 7 Fortran 90 programming environment

The MIPSpro 7 Fortran 90 compiler is one of many products that form the IRIX
programming environment. This environment allows you to develop, debug,
and run Fortran 90 codes on your computer system. It includes the following
products:

• A loader. By default, the IRIX loader, ld (1), is invoked and your program is
automatically loaded.

• A preprocessor. You can use the -ftpp or -cpp options on the f90 (1)
command line to invoke a preprocessor.

• A lister. You can specify the -listing option on the f90 (1) command line
to obtain a source listing and a cross reference. You can also invoke a
separate lister, ftnlist (1).

• The ftnlint (1) utility, which checks Fortran 90 programs for possible
errors.

• The compiler information file (CIF) tools, which include the cifconv (1)
command and the libraries. For more information on these see the Compiler
Information File (CIF) Reference Manual, publication SR–2401. SR–2401 is a
Cray Research publication.

• The libraries, which include functions optimized for use on IRIX systems.
Information on the individual library routines can be found in the online
man pages for each routine. In addition to online man pages, the Application
Programmer’s Library Reference Manual, publication SR–2165, contains printed
copies of the library routine man pages and other library information.
SR-2165 is a Cray Research publication.

The intrinsic procedures are implemented within the math library (libm),
within libfortran , and within the compiler itself. The Intrinsic Procedures
Reference Manual, publication SR–2138, contains printed copies of the online
man pages for all the intrinsic procedures. SR–2138 is a Cray Research
publication.

• The performance tools contained in SpeedShop. For more information, see
the SpeedShop User’s Guide, a Silicon Graphics publication.

• The archiving tool. An archive library is a file that contains one or more
routines in object file format (file.o). When a program calls an object file
that is not explicitly included in the program, the loader, ld (1), looks for
that object file in an archive library. The loader then loads only that object
file, not the whole library, and loads it with the calling program.

SR–3907 3.0.1 3

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The archiver creates and maintains archive libraries. It allows you to copy
new objects into the library, replace existing objects in the library, move
objects within the library, and copy individual objects from the library into
individual object files. For more information on the archive library, see the
ar (1) man page.

• Object file tools, which allow you to disassemble object files into machine
instructions, print information about archive files, and perform other tasks.
For more information on these tools, see the following man pages: dis (1),
elfdump (1), file (1), nm(1), size (1), and strip (1).

• ftnchop (1), ftnmgen (1) and ftnsplit (1). These commands invoke a
program unit problem isolator, a Fortran makefile utility, and a split utility,
respectively. For more information on these commands, see the man pages
for each.

• Online documentation utilities. The man(1) command allows you to retrieve
online man pages. Prose reference text, such as this manual, can be retrieved
through the WWW browser supported at your site. Contact your support
staff for specific information on retrieving information in this manner.

4 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

The f90 (1) command invokes the MIPSpro 7 Fortran 90 compiler. The
following syntax boxes show the f90 (1) command syntax:

f90 [-64 | -n32][-mips n] file.suffix[90] [file.suffix[90]]…

f90 [-64 | -n32] [-align n] [-ansi] [-avoid_gp_overflow] [-C]
[-c] [-chunk= integer] [-cif] [-col n] [-cord] [-cpp] [-cray_mp]
[-D var[=def][, var[=def]] …] [-d n] [-default64] [-E]
[-extend_source] [-fb file.cfb] [-fe] [-feedback] [-fixedform]
[-freeform] [-ftpp] [-g [debug_lvl]] [-help] [-I [dir]] [-INLINE:…]
[-IPA [:…]] [-i n] [-ignore_suffix] [-KPIC] [-keep] [-L directory]
[-LIST:…] [-LNO:…] [-l library] [-listing] [-MDupdate [file]]
[-macro_expand] [-mips n] [-MP:…] [-mp] [-mp_keep]
[-mp_schedtype= mode] [-nocpp] [-noextend_source] [-nostdinc]
[-O level] [-OPT:…] [-o out_file] [-P] [-pfa [list]] [-r real_spec]
[-r processor] [-S] [-static] [-TARG:…] [-TENV:…] [-trapuv] [-U var]
[-version] [-w [arg]] [-woff num] [-x dirlist] [-xgot] [--] file.suffix[90]
[file.suffix[90]…]

In some cases, multiple options can have an effect on a compiler feature. The
following list shows some of the compiler features and the options that affect
them:

• Listing control: -listing , -LIST: .

• Source preprocessing: -cpp , -E , -ftpp , -macro_expand , -nocpp .

• Setting the compilation environment: -n32 , -64 , -mips n, -r processor,
-TARG: .

• Optimization: -LNO: , -OPT: , -O level.

Note: The MIPSpro Automatic Parallelization Option is invoked when you
specify the -pfa command line option. You must be licensed for the
MIPSpro Automatic Parallelization Option in order to be able to use this
command line option.

Various environment variable settings can affect your compilation. For more
information on the environment variables, see the pe_environ (5) man page.

SR–3907 3.0.1 5

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The following sections describe the options for the f90 (1) command. The last
section in this chapter describes CPU targeting.

Note: Some f90 (1) command options, for example, -LNO:... , -LIST:... ,
-MP:... , -OPT:... , -TARG:... , and -TENV:... accept several
arguments and allow you to specify a setting for each argument. To specify
multiple arguments, either use colons to separate each argument or specify
multiple options on the command line. For example, the following command
lines are equivalent:

f90 -LIST:notes=ON:options=OFF b.f

f90 -LIST:notes=ON -LIST:options=OFF b.f

Some argument to options of this type are specified with a setting that will
either enable or disable the feature. To enable a feature, specify the argument
either alone or with =1, =ON, or =TRUE. To disable a feature, specify the
argument with either =0, =OFF, or =FALSE. For example, the following
command lines are equivalent:

f90 -LNO:auto_dist:blocking=OFF:oinvar=FALSE a.f

f90 -LNO:auto_dist=1:blocking=0:oinvar=OFF a.f

For brevity, this manual shows only the ONor OFF settings to arguments, but
the compiler also accepts 0, 1, TRUE, and FALSE as settings.

2.1 -64 , -n32

Specifies the Application Binary Interface (ABI). Enter either -n32 or -64 to
specify an ABI. Specifying -n32 generates 32–bit objects. Specifying -64
generates 64–bit objects.

Note: Certain predefined system defaults can greatly affect your compilation.
These include system defaults for your ABI, Instruction Set Architecture
(ISA), and processor type. To determine the default ABI for your system,
look in file /etc/compiler.defaults . To determine your system’s
processor, use the hinv (1) command. The -64 and -n32 options can affect
the Instruction Set Architecture (ISA) used during compilation. For more
information on this interaction, see the -mips n option.

When -n32 is specified, the total memory allocation for a program and
individual arrays cannot exceed 2 gigabytes (2 GB, or 2,048 MB).

When -64 is specified, the compiler supports arrays that are larger than 2 GB.

6 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

As the following example shows, the arrays can be local, global, or dynamically
created when compiling with the following command line:

f90 -64 -i8 whale.f

MODULE DEFS
INTEGER, PARAMETER :: ARRAY_SIZE = 4294967304 ! 0X100000008

INTEGER :: I(ARRAY_SIZE)

END MODULE

PROGRAM MAIN
USE DEFS

INTEGER, ALLOCATABLE :: J(:)

INTEGER :: STATUS

ALLOCATE(K(ARRAY_SIZE), STAT=STATUS)

IF (STATUS == 0) THEN

I(ARRAY_SIZE) = 7;

J(ARRAY_SIZE) = 8;

PRINT *, ’I(ARRAY_SIZE) = ’, I(ARRAY_SIZE)
PRINT *, ’J(ARRAY_SIZE) = ’, J(ARRAY_SIZE)

CALL SUB

END IF

END PROGRAM

SUBROUTINE SUB

USE DEFS

INTEGER :: K(ARRAY_SIZE)

K(ARRAY_SIZE) = 9;

PRINT *, ’K(ARRAY_SIZE) = ’, K(ARRAY_SIZE)

END SUBROUTINE

You must have enough swap space to support the working set size and you
must have your shell limit datasize, stack size, and vmemoryuse variables set
to values large enough to support the sizes of the arrays. For information on
these settings, see the sh (1) man page.

SR–3907 3.0.1 7

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The following example compiles and runs the preceding code after setting the
stack size to a correct value:

$uname -a
IRIX64 cydrome 6.2 03131016 IP19

$f90 -64 -mips3 a2.f

$limit

cputime unlimited

filesize unlimited

datasize unlimited
stacksize 65536 kbytes

coredumpsize unlimited

memoryuse

descriptors 200

vmemoryuse unlimited
$limit stacksize unlimited

$limit

cputime unlimited

filesize unlimited

datasize unlimited
stacksize unlimited

coredumpsize unlimited

memoryuse 754544 kbytes

descriptors 200

vmemoryuse unlimited

$a.out
7

8

9

2.2 -align n

Aligns object on specified boundaries. The -align n specifications are as
follows:

Option Action

-align32 Aligns objects larger than 32 bits long on 32-bit
boundaries.

8 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

-align64 Aligns objects larger than 64 bits long on 64-bit
boundaries. Default.

When an alignment is specified, objects smaller than the specification are
aligned on boundaries that correspond to their sizes. For example, when
align64 is specified, 32-bit and larger objects are aligned on 32-bit boundaries;
16-bit and larger objects are aligned on 16-bit boundaries; and 8-bit and larger
objects are aligned on 8-bit boundaries.

2.3 -ansi

Causes the compiler to generate messages when it encounters source code that
does not conform to the Fortran 90 standard.

2.4 -avoid_gp_overflow

Adjusts internal settings with the intent of avoiding global symbol table (GOT)
overflow. For more information on the GOT, see the -xgot option, the
gp_overflow (5) man page, and the What should I do about a GOT overflow?
question in the FAQ section of the dso (5) man page.

2.5 -C

Performs run-time subscript range checking. This functionality can also be
obtained by specifying -check_bounds . Subscripts that are out of range cause
fatal run–time errors.

2.6 -c

Disables the load step and writes the binary object file to file.o .

For example, the following command line produces file more.o :

% f90 -c more.f

SR–3907 3.0.1 9

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.7 -chunk= integer

Specifies the number of loop iterations per chunk. For scheduling purposes, the
iterations of a loop are broken up into pieces.

Enter a nonzero, unsigned, positive integer for integer.

2.8 -cif

Specifies that the compiler should write a compiler information file.

2.9 -col n

Specifies the line width for fixed-format source lines. Enter 72 or 80 for n. By
default, fixed-format lines are 72 characters wide. For more information on
specifying line length, see the -extend_source and -noextend_source
options.

2.10 -cord

Runs the procedure rearranger, cord (1), on the resulting file after loading. The
rearrangement is done to reduce virtual memory paging and/or instruction
cache misses.

For more information on procedure rearranging, see the cord (1), pixie (1), and
prof (1) man pages.

2.11 -cpp

Runs the cpp source preprocessor on all input source files before compiling.
For more information on controlling preprocessing, see the -ftpp , -E , and
-nocpp options. For information on enabling macro expansion, see the
-macro_expand option. By default, no preprocessing is performed.

2.12 -cray_mp (deferred implementation)

Specifies that the Autotasking directives (with the !MIC prefix) should be
honored. These directives are also implemented in the Cray Research CF90

10 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

compiler on UNICOS systems. For more information on these directives, see
Chapter 6.

2.13 -d n

Specifies the KIND specification used for objects declared DOUBLE COMPLEX
and DOUBLE PRECISION, as follows:

Option KI ND value

-d8 Uses REAL(KIND=8) for objects declared as DOUBLE
PRECISION. Uses COMPLEX(KIND=8) for objects declared
DOUBLE COMPLEX. Default.

-d16 Uses REAL(KIND=16) for objects declared as DOUBLE
PRECISION. Uses COMPLEX(KIND=16) for objects declared
DOUBLE COMPLEX.

2.14 -D var[=def][, var[=def]] ...

Defines variables used for source preprocessing as if they had been defined by a
#define directive. If no def is specified, 1 is used. For information on
undefining variables, see the -U var option.

2.15 -default64

Sets the sizes of default integer, real, logical, and double precision objects to be
the same as if the program were executing on a Cray Research UNICOS system.
This option causes the following options to go into effect: -r8 , -i8 , -d16 , and
-64 .

2.16 -dsm

Specifies that directives specific to Origin series systems should be honored. For
more information on these directives, see Chapter 5, page 105.

SR–3907 3.0.1 11

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.17 -E

Runs the ftpp source preprocessor on all input Fortran source files, before
compiling, and writes the preprocessed output to stdout . The output file
contains line directives. This option overrides the -nocpp option. For more
information on controlling source preprocessing, see the -cpp , -ftpp ,
-macro_expand , and -nocpp options.

2.18 -extend_source

Specifies 132-character line length for fixed-format source lines. By default,
fixed-format lines are 72 characters wide. For more information on controlling
line length, see the -col n option

2.19 -fb file.cfb

Specifies the feedback file to be used. The file suffix must be .cfb . For more
information on procedure rearranging and on producing feedback files, see
cord (1), pixie (1), and prof (1).

2.20 -feedback file

Specifies the name of a feedback file. This option is used with the -cord
option. For more information on procedure rearranging and on producing
feedback files, see cord (1), pixie (1), and prof (1).

2.21 -fixedform

Treats all input source files, regardless of suffix, as if they were written in fixed
source form. By default, only input files suffixed with .f or .F are assumed to
be written in fixed source form.

2.22 -freeform

Treats all input source files, regardless of suffix, as if they were written in free
source form. By default, only input files suffixed with .f90 or .F90 are
assumed to be written in free source form.

12 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

2.23 -ftpp

Runs the ftpp source preprocessor on input Fortran source files that are
suffixed with .F or .F90 before compiling. For more information on
controlling preprocessing, see the -cpp , -E , and -nocpp options. For
information on enabling macro expansion, see the -macro_expand option.

2.24 -g debug_lvl

Generates debugging information and establishes a debugging level. Enter one
of the following:

Option Support

-g0 No debugging information produced. Default.

-g2 , -g Information for symbolic debugging is produced, and
optimization is disabled.

-g3 Information for symbolic debugging of fully optimized code is
produced. The debugging information produced may be
inaccurate. This option can be used in conjunction with the -O ,
-O1 , -O2 , and -O3 options.

2.25 -help

Lists all available options. The compiler is not invoked.

2.26 -I dir

Specifies a directory to be searched for files named in INCLUDE lines in the
Fortran source file, for files named in #include source preprocessing
directives, and file.mod files whose names do not begin with a slash (/)
character. Files are searched in the following order: first, in the directory that
contains the input file; second, in the directories specified by dir; and third, in
the standard directory, /usr/include .

SR–3907 3.0.1 13

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.27 -INLINE:…

Specifies actions for the standalone inliner. These options control the
application of intrafile subprogram inlining when interprocedural analysis (IPA)
is not enabled.

If you have included inlining directives in your source code, the -INLINE
option must be specified in order for those directives to be honored.

For more information on the individual options in this group, see ipa (5).

2.28 -IPA [:…]

Specifies actions for the interprocedural analyzer (IPA). These options control
the application of interprocedural analysis and optimization, including inlining,
common block array padding, constant propagation, dead function elimination,
alias analysis, and other features. Specify -IPA with no arguments to invoke
the interprocedural analysis phase with default options.

If you have included IPA directives in your source code, the -IPA option must
be specified in order for those directives to be honored.

If you compile and load in distinct steps, you must use at least -IPA for the
compile step, and you must specify -IPA and the individual options in the
group for the load step. For more information on the individual options in this
group, see ipa (5).

2.29 -i n

Specifies the length of default integer constants, default integer variables, and
logical quantities. Specify one of the following:

Option Action

-i4 Specifies 32-bit (4 byte) objects. Default.

-i8 Specifies 64-bit (8 byte) objects.

2.30 -ignore_suffix

Compiles all files as if they were Fortran source files. By default, the f90 (1)
command determines the type of processing necessary for an input file based in
its suffix. Files that end in .c , for example, are compiled by cc (1). When

14 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

-ignore_suffix is specified, the compiler processes all files named as if they
were all Fortran source files, regardless of suffix.

2.31 -KPIC

Generates position-independent code (PIC), which is necessary for programs
loaded with dynamic shared libraries. Enabled by default.

To disable the generation of PIC, specify the -nonshared option.

2.32 -keep

Writes intermediate compilation files to file.B and file.s and retains them after
compilation is finished.

2.33 -L directory

Changes the library search algorithm. For directory, specify the path name to a
directory that should be searched before using the default system libraries. You
can specify multiple -L options on the command line. The library search
algorithm searches these directories in the order given.

2.34 -LIST:...

Specifies the information that is written to the listing file, file.l . This
information is also written to the assembly listing file if the -S option is also in
effect.

For an alternative method of obtaining a listing, see the -listing option.

The following sections describe the individual -LIST: options.

2.34.1 -LIST:= setting

Writes or suppresses the listing file. Enter ONor OFF for setting.

If one or more -LIST options are enabled, the listing file is written. By default,
the listing file contains a list of options in effect during compilation.

SR–3907 3.0.1 15

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.34.2 -LIST:all_options= setting

Writes or suppresses the list of supported options in the listing file. Enter ONor
OFF for setting. The default is OFF.

2.34.3 -LIST:notes= setting

Writes or suppresses notes regarding various optimization phases to the
assembly listing file. Must be specified in conjunction with -S . Enter ONor OFF
for setting. The default is ON.

2.34.4 -LIST:options= setting

Writes or suppresses a listing of the options in effect during compilation to the
listing file. Enter ONor OFF for setting. The default is OFF.

2.34.5 -LIST:symbols= setting

Writes or suppresses a listing of the symbols (variables) used in the compilation
to the listing file. Enter ONor OFF for setting. The default is OFF.

2.35 -LNO:…

Specifies options and transformation performed on loop nests. The -LNO
options are performed only if -O3 is also specified on the f90 (1) command line.

The arguments to -LNO are divided into the following groups:

• General options

• Transformation options

• Cache memory management options

• TLB options

• Prefetch options

For information on the LNO options that are in effect during a compilation, use
the -LIST option.

The following sections describe the individual LNO options.

16 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

2.35.1 General options

The general options are as follows:

2.35.1.1 -LNO:auto_dist= setting (Origin series only)

Distributes local arrays and arrays in common blocks that are accessed in
parallel. Enter ONor OFF for setting. The default is OFF.

When -LNO:auto_dist=ON , the compiler uses a heuristic to distribute local
and COMMONarrays that are accessed in parallel. The heuristic is based on
access patterns inside the routines that define the arrays; access patterns of
arrays used as dummy arguments are ignored. This optimization works with
either automatic parallelism or parallelism expressed through directives. This
optimization is always safe, does not affect the layout of arrays in virtual space
and does not incur addressing overhead.

Example:

PROGRAM FRED

REAL A(1000,100)

COMMON A

!$DOACROSS LOCAL(J)

DO I=1,N
DO J=1,N

A(J,I) = 0.0

END DO

END DO

END

In the preceding code fragment, every processor accesses a block of iterations of
parallel loop I . This implies that every processor will zero a block of columns
of array A. When this option is enabled, the compiler distributes the array using
the !$DISTRIBUTE A(*,BLOCK) directive so that each processor accesses data
local to its own memory. The algorithm uses a heuristic that might not pick the
best distribution. In particular, if arrays are accessed differently in different
subroutines, a majority rules algorithm applies. This option is useful for
programs that are not written with data distribution in mind. For more
information on the DISTRIBUTE directive, see Section 5.2.1, page 111.

2.35.1.2 -LNO:fission= n

Controls loop fission. Enter 0, 1, or 2 for n. The default is 1.

SR–3907 3.0.1 17

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Loop fission is an optimization process by which a loop is divided into smaller,
independent loops. This can improve register use for large inner loops. It also
enables other optimizations, such as loop interchange and blocking, to execute
more efficiently. Consider the following loop:

DO I ...

DO J1 ...

...

ENDDO

DO J2 ...
...

ENDDO

ENDDO

With loop fission, the preceding loop is transformed into the following two
loops:

DO I1 ...

DO J1 ...
...

ENDDO

ENDDO

DO I2 ...

DO J2 ...

...
ENDDO

ENDDO

fission=0 disables loop fission. fission=1 performs normal fission as
necessary. fission=2 specifies that fission be tried before fusion.

If -LNO:fission= n and -LNO:fusion= n are both set to 1 or to 2, fusion is
performed.

2.35.1.3 -LNO:fusion= n

Controls loop fusion. Loop fusion is an optimization process by which two small
loops are transformed into one big loop. Loop fusion can lower the number of
memory references and improve cache behavior. It also enables other
optimizations, such as loop interchange and cache blocking, to execute more
efficiently. Enter 0, 1, or 2 for n. The default is 1. The loops to be fused need
not have identical iteration counts, but the iteration counts should be
approximately the same.

Consider the following loop:

18 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

DO I = 1,N

DO J = 1,N
A(I,J) = B(I,J) + B(I,J-1) + B(I,J+1)

END DO

END DO

DO I = 1,N

DO J = 1,N

B(I,J) = A(I,J) + A(I,J-1) + A(I,J+1)
END DO

END DO

With loop fusion, the preceding loops are transformed into the following loop:

DO I=1,N

A(I,1) = B(I,0) + B(I,1) + B(I,2)

DO J = 2,N

A(I,J) = B(I,J) + B(I,J-1) + B(I,J+1)
B(I,J-1) = A(I,J-2) + A(I,J-1) + A(I,J)

END DO

B(I,N) = A(I,N-1) + A(I,N) + A(I,N+1)

END DO

fusion=0 disables loop fusion. fusion=1 performs standard outer loop
fusion. fusion=2 specifies that outer loops should be fused, even if it means
partial fusion. The compiler attempts fusion before fission. The compiler
performs partial fusion if not all levels can be fused in the multiple-level fusion.

If -LNO:fission= n and -LNO:fusion= n are both set to 1 or to 2, fusion is
performed.

The fusion= options affect the singly nested loops produced by the compiler.

2.35.1.4 -LNO:fusion_peeling_limit= n

Sets the limit for the number of iterations allowed to be peeled in fusion, where
n ≥ 0. By default, n=5.

2.35.1.5 -LNO:gather_scatter= n

Performs gather-scatter optimizations. Enter 0, 1, or 2 for n. The default is 1.

gather_scatter=0 disables all gather-scatter optimization.
gather_scatter=1 performs gather-scatter optimizations on non-nested IF
statements. gather_scatter=2 performs multi-level gather-scatter
optimizations.

SR–3907 3.0.1 19

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.35.1.6 -LNO:ignore_pragmas= setting

Specifies that the command line options override directives in the source file.
Specify either ONor OFF for setting. The default is ignore_pragmas=OFF .

By default, directives within a file override command line options.

2.35.1.7 -LNO:oinvar= setting

Controls outer loop hoisting. Hoisting is the process by which invariant
statements or expressions are taken out of a loop. The compiler looks for
expressions that vary in the inner loop but are invariant in an outer loop. The
compiler precomputes all the invariant expressions and stores them in a
temporary vector. All references to the expression in the inner loop are replaced
by loads from the vector. Enter ONor OFFfor setting. The default is oinvar=ON .

2.35.1.8 -LNO:opt= n

Controls the LNO optimization level. Enter either 0 or 1 for n. The default is 1.

opt=0 disables nearly all loop nest optimization. opt=1 performs full LNO
transformations.

2.35.1.9 -LNO:outer= setting

Enables or disables outer loop fusion. Enter ONor OFF for setting. The default is
outer=ON .

2.35.1.10 -LNO:vintr= setting

Specifies that vectorizable versions of the math intrinsic functions should be
used. Enter ONor OFF for setting. The default is vintr=ON .

For information on the math intrinsic functions, see man(3M).

2.35.2 Transformation options

The loop transformation options allow you to control cache blocking, loop
unrolling, and loop interchange.

20 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

2.35.2.1 -LNO:blocking= setting

Specify blocking=OFF to disable cache blocking. Enter ONor OFF for setting.
The default is blocking=ON .

2.35.2.2 -LNO:blocking_size= n1[, n2]

Specifies a blocking size that the compiler must use when performing any
blocking. Specify a value for n2 when using a 2-level cache. For n1 or n2, enter
an integer number that represents the number of iterations.

2.35.2.3 -LNO:interchange= setting

Specifies whether or not loop interchange optimizations are performed.

Loop nests such as the following benefit from loop interchange optimizations:

DO I ...

DO J ...
DO K ...

A(J,K) = A(J, K) + B(I,K)

END DO

END DO

END DO

In the preceding loop, each iteration of loop K requires two loads and one store.
Also, if the loop bounds are large, every memory reference results in a cache
miss.

With -LNO:interchange=ON , the loop is transformed into the following loop:

DO K ...

DO J ...

DO I ...

A(J,K) = A(J,K) + B(I,K)

END DO
END DO

END DO

In the new loop, note that A(J,K) is a loop invariant entity; only one load is
needed per iteration. The new loop is also more efficient with regard to cache
management.

Specifying -LNO:interchange=OFF disables loop interchange optimizations.
Enter ONor OFF for setting. The default is interchange=ON .

SR–3907 3.0.1 21

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.35.2.4 -LNO:ou= n, ou_max=n, and ou_prod_max= n

Specifies aspects of loop unrolling. When a loop is unrolled, the compiler makes
copies of the loop body and executes them in sequence. The compiler performs
some loop unrolling by default, but this option let you override default system
assumptions.

Specifying ou=n indicates that all outer loops for which unrolling is legal
should be unrolled by n, where n is an integer. The compiler unrolls loops by
this amount or not at all.

Specifying ou_max=n indicates that the compiler can unroll as many as n copies
per loop, but no more.

Specifying ou_prod_max= n indicates that the product of unrolling of the
various outer loops in a given loop nest is not to exceed n.

Example. The following loop is compiled with -LNO:ou=2 :

DO I = 1,N
DO J = 1,N

A(J,I) = A(J,I) + B(J)

END DO

END DO

After unrolling, the loop is as follows:

DO I = 1,N-1,2

DO J = 1,N

A(J,I) = A(J,I) + B(J)
A(J,I+1) = A(J,I+1) + B(J)

END DO

END DO

DO I = I,N

DO J = 1,N
A(J,I) = A(J,I) + B(J)

END DO

END DO

The advantage of unrolling, in the example, is that there is no need to load
B(J) N times but instead N/2 times.

2.35.2.5 -LNO:ou_further= n

Specifies whether or not the compiler performs outer loop unrolling on
wind-down loops. When unrolling a loop with n iterations u times, the

22 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

compiler must generate a wind–down loop to handle cases in which n is not a
multiple of u. The wind-down loop handles the extra iterations at the end. The
wind-down loop will have at most u-1 iterations. When the unrolling factor, u,
is large, it may be beneficial to unroll the wind-down loop itself. When this
option is set to n, the compiler unrolls a wind-down loop only if the original
loop was unrolled by at least a factor of n.

You can disable additional unrolling by specifying
-LNO:ou_further=999999 . Unrolling is enabled as much as is sensible by
specifying -LNO:ou_further=3 .

2.35.2.6 -LNO:ou_deep= setting

Specifies that for loops with 3-deep, or deeper, loop nests, the compiler should
outer unroll the wind-down loops that result from outer unrolling loops further
out. This results in a large executable file, but it generates much better code
whenever wind down loop execution costs are important. The default is
ou_deep=ON.

2.35.3 Cache memory management options

LNO does several transformations, such as blocking and loop interchange, to
improve the cache behavior of programs. When performing these
transformations, LNO assumes that the target platform has certain cache
characteristics. The following options allow advanced users to change the
default cache characteristics, thereby giving finer control over the optimizations
that LNO performs.

The numbering in these arguments starts with the cache level closest to the
processor and works outward.

2.35.3.1 -LNO:assoc1= n, assoc2= n, assoc3= n, assoc4= n

Specifies cache set associativity. For a fully associative cache, such as main
memory, set n to any sufficiently large number, such as 128. Specifying n=0
indicates that there is no cache at that level.

2.35.3.2 -LNO:cmp1= n, cmp2=n, cmp3=n, cmp4=n and dmp1=n, dmp2=n, dmp3=n, dmp4=n

Specifies, in processor cycles, the time for a clean or dirty miss to the next outer
level of the memory hierarchy. This number is approximate because it depends
upon a clean or dirty line, read or write miss, etc. Specifying n=0 indicates that
there is no cache at that level.

SR–3907 3.0.1 23

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.35.3.3 -LNO:cs1 =n, cs2 =n, cs3 =n, cs4 =n

Specifies the cache size. The value n can be 0, or it can be a positive integer
followed by one of the following letters: k , K, m, or M. This specifies the cache
size in kilobytes or megabytes. Specifying n=0 indicates that there is no cache at
that level. The default cache size depends on your system. You can use the
-LIST: option to see the default cache sizes used during compilation.

2.35.3.4 -LNO:is_mem1 =setting, is_mem2 =setting, is_mem3 =setting, is_mem4 =setting

Specifies that certain memory hierarchies should be modeled as memory, not
cache. Enter ONor OFF for setting. The default is OFF for each option.

If an is_memn=setting setting is specified, the corresponding assoc n=n
specification is ignored. Blocking can be attempted for this memory hierarchy
level, and blocking appropriate for memory, rather than cache, is applied. No
prefetching is performed, and any prefetching options are ignored. Any
cmpn=n and dmpn=n options on the command line are ignored.

2.35.3.5 -LNO:ls1 =n, ls2 =n, ls3 =n, ls4 =n

Specifies the line size, in bytes. This is the number of bytes, specified in the
form of an integer number, n, that are moved from the memory hierarchy level
further out to this level on a miss. Specifying n=0 indicates that there is no
cache at that level.

2.35.4 TLB options

The following options control the TLB. The TLB is a cache for the page table.
Blocking for the TLB can improve cache performance. The following options
control how the loop nest optimizer models the TLB when performing
transformations. The TLB hardware is assumed to be fully associative.

2.35.4.1 -LNO:ps1= n, ps2= n, ps3= n, ps4= n

Specifies the number of bytes in a page. Enter an integer for n. The default n
depends on your system hardware.

2.35.4.2 -LNO:tlb1= n, tlb2= n, tlb3= n, tlb4= n

Specifies the number of entries in the TLB for this cache level. Enter an integer
for n. The default n depends on your system hardware.

24 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

2.35.4.3 -LNO:tlbcmp1= n, tlbcmp2= n, tlbcmp3= n, tlbcmp4= n and tlbdmp1= n, tlbdmp2= n,
tlbdmp3= n, tlbdmp4= n

Specifies the number of processor cycles it takes to service a clean or dirty TLB
miss. Enter an integer for n. The default n depends on your system hardware.

2.35.5 Prefetch options

The following options control use of the prefetch operation. When an LNO
prefetch option is enabled, the compiler examines the source code for memory
references that may cause cache misses. It then inserts prefetches into the
generated code so that the prefetches are performed ahead of the corresponding
memory references.

The -mips4 and -r10000 options must be in effect in order for the LNO
prefetch options to be honored.

2.35.5.1 -LNO:pf n=setting

Selectively disables and enables prefetching for cache level n, where 1 ≤ n ≤ 4.
Enter ONor OFF for setting.

When -r10000 is in effect, pf1=ON and pf2=ON by default. At any other -r n
setting, OFF is in effect for all cache levels.

2.35.5.2 -LNO:prefetch= n

Specifies levels of prefetching.

prefetch=0 disables all prefetching. This is the default when -r4000 ,
-r5000 , or -r8000 is in effect.

prefetch=1 enables conservative prefetching. This is the default when
-r10000 is in effect.

prefetch=2 enables aggressive prefetching.

2.35.5.3 -LNO:prefetch_ahead= n

Prefetches the specified number of cache lines ahead of the reference. The
default is 2.

SR–3907 3.0.1 25

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.35.5.4 -LNO:prefetch_manual= setting

Specifies whether manual prefetches (through directives) should be respected or
ignored. Enter ONor OFF for setting.

prefetch_manual=OFF ignores manual prefetches. This is the default for
R8000 and earlier processors.

prefetch_manual=ON respects manual prefetches. This is the default for
R10000 and later processors.

2.36 -l library

Searches the library named lib library.a or lib library.so . Libraries are
searched in the order given on the command line.

If you are using another compiler, for example the C compiler, to load
Fortran 90 object files, you need to explicitly specify to the C compiler that the
Fortran libraries be loaded.

The following table shows the Fortran libraries that the f90 (1) command loads
by default:

-l option Link library Content

-l fortran /usr/lib*/libfortran.so Intrinsic procedure,
I/O,
multiprocessing,
IRIX interface, and
indexed sequential
access method
library for shared
loading and
compiling.

-l m /usr/lib*/libm.so Mathematics library.

Example 1. In the following example, the cc (1) command loads Fortran 90
object files. The -l option loads the Fortran library files:

cc -o myprog main.o rest.o -lfortran -lm

See the ld (1) man page for information on specifying the -l option.

26 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

Example 2. You may need to specify libraries when you use IRIX system
packages that are not part of a particular language. Most of the man pages for
these packages list the required libraries. For example, the getwd (3C)
subroutine requires the BSD compatibility library libbsd.a . Specify this
library as follows:

% f90 main.o more.o rest.o -lbsd

Example 3. To load the SGI/Cray Scientific Library (SCSL), specify one of the
following command lines:

% f90 -lscs sci.f

% f90 -lscs_mp mpsci.f

The -lscs_mp option used in the preceding command line loads the
multiprocessed version of SCSL, which is supported on Origin series systems.

Example 4. To specify a library created with the archiver, type in the path name
of the library as follows:

% f90 main.o more.o rest.o libfft.a

Note: The loader searches libraries in the order you specify. Therefore, if you
have a library, for example, libfft.a that uses data or procedures from
-lfourier , you must specify libfft.a first.

2.37 -listing

Writes a source code listing and a cross reference listing to file.L .

For an alternative method of obtaining a listing, see the -LIST: option.

2.38 -MDupdate [file]

Updates makefile dependencies in file. The file can be included by smake(1)
and pmake(1) to get dependencies. Files named on INCLUDE statements and
modules named on USEstatements are updated.

When file is not specified, the lines updated are those that begin with the name
of the output file followed by a colon and end with a distinctive make(1)
comment.

When file is specified, file is updated during compilation to contain header,
library, and run-time make(1) dependencies for the output file.

SR–3907 3.0.1 27

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

For example, assume that file foo.f90 contains the following two lines:

INCLUDE "bar.h"
USE mod

The updated file will contain a line similar to the following:

foo.o : bar.h MOD.mod

2.39 -macro_expand

Enables macro expansion in preprocessed Fortran source files throughout each
file.

When -macro_expand is specified, macro expansion occurs throughout the
source file. When -macro_expand is not specified, macro expansion is limited
to preprocessor (#) directives in files processed by FTPP.

2.40 -mips n

Specifies the Instruction Set Architecture (ISA). Enter -mips3 to specify the
MIPS III instruction set. Enter -mips4 to specify the MIPS IV instruction set.
For information on the default setting for your system, see file
/etc/compiler.defaults .

The -mips n option interacts with the -64 and -n32 options.

2.41 -MP:…

Specifies individual multiprocessing options that provide fine control over
certain optimizations.

To specify all the -MP:… options, specify the -mp option on the command line.

The following sections describe the -MP: options.

2.41.1 -MP:check_reshape= setting

Enables or disables run time consistency checks across procedure boundaries
when passing reshaped arrays (or portions thereof) as actual arguments. Enter
ONor OFF for setting. The default is check_reshape=OFF .

28 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

2.41.2 -MP:clone= setting

Enables or disables autocloning. Enter ONor OFF for setting. The compiler
automatically duplicates procedures that are called with reshaped arrays as
actual arguments for the incoming distribution. If you have explicitly specified
the distribution on all relevant dummy arguments, you can disable autocloning.
The consistency checking of the distribution between actual and dummy
arguments is not affected by this option and is always enabled. The default is
clone=ON .

2.41.3 -MP:dsm= setting (Origin series systems only)

Enables or disables recognition of the distributed shared memory directives
described in Chapter 5, page 105. Enter ONor OFF for setting. When the -mp
option is also in effect, the default is dsm=ON. When the -mp option is not in
effect, the default is dsm=OFF.

When the -mp option is specified on the f90 (1) command line, the compiler
silently generates bookkeeping information in the rii_files directory. This
information is used to implement data distribution directives, as well as
perform consistency checks of these directives across multiple source files. To
disable the processing of the data distribution directives and not generate the
rii_files , compile the program with the -MP:dsm=off option.

2.42 -mp

Enables all the distributed shared memory directives described in Chapter 5,
page 105, and all multiprocessing options described for the -MP: option.

2.43 -mp_schedtype= mode

Specifies a mode for scheduling work among the participating tasks in loops.

Specifying this option has the same effect as putting a !$MP_SCHEDTYPE=mode
directive at the beginning of the file. Enter one of the following for mode:

mode Action

DYNAMIC Breaks the iterations into pieces; the size is
specified by the -chunk= integer option. As each
process finishes a piece, it enters a critical section

SR–3907 3.0.1 29

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

and obtains the next available piece. For more
information, see the -chunk= integer option.

GSS Schedules pieces according to the sizes of the
pieces awaiting to execution.

INTERLEAVE Breaks the iterations into pieces; the size is
specified by the -chunk= integer option.
Execution of the pieces is interleaved among the
processes. For more information, see the
-chunk= integer option.

RUNTIME Schedules pieces according to information
contained in the MP_SCHEDTYPEand CHUNK
environment variables.

SIMPLE Divides the iterations among processes by
dividing them into contiguous pieces and
assigning one piece to each process.

For more information on environment variables, these modes, and their effects,
see pe_environ (5).

2.44 -nocpp

Disables the source preprocessor. See the -cpp , -E , and -ftpp options for
more information on controlling preprocessing.

2.45 -noextend_source

Restricts Fortran source code lines to columns 1 through 72. See the -col n and
-extend_source options for more information on controlling line length.

2.46 -nostdinc

Directs the system to skip the standard directory, /usr/include , when
searching for #include files.

30 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

2.47 -OPT:…

Controls miscellaneous optimizations. These options override defaults based on
the main optimization level.

To enable any of these options that accept ONor OFFas arguments, you only
need to specify the option name itself. The =ONis not needed. For example, the
following specifications are equivalent:

-OPT:div_split=ON and -OPT:div_split

For information on inlining, see the -INLINE:… option. For information on
loop nest optimization, see the -LNO:… option. For information on
interprocedural optimization, see the -IPA:… option.

2.47.1 -OPT:alias= name

Specifies the pointer aliasing model to be used. By specifying one of the
following for name, the compiler is able to make assumptions throughout the
compilation:

name Assumption

ANY Any two memory references can be aliased unless
the compiler can determine otherwise. This is the
default.

COMMON_SCALAR Scalar variables that are defined in a common
block along with array variables are not
referenced or modified by any accesses of the
array variables.

2.47.2 -OPT:cis= setting

Converts SIN/COS pairs with the same argument to a single call that calculates
both values at once. Enter ONor OFF for setting. The default is cis=ON .

2.47.3 -OPT:cray_ivdep= setting

Specifies that the compiler should use Cray Research semantics when a !DIR$
IVDEP directive is encountered. The compiler ignores all loop iteration
dependencies. Enter ONor OFF for setting. The default is cray_ivdep=OFF ,
which directs the compiler to use Silicon Graphics semantics when a !DIR$
IVDEP directive is encountered.

SR–3907 3.0.1 31

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

For more information on the !DIR$ IVDEP directive, see Section 6.5.2, page 144.

2.47.4 -OPT:div_split= setting

Enables or disables the calculation of x/y as x � (1.0/y). Enter ONor OFF for
setting. The default is div_split=OFF .

This is typically enabled by the -OPT:IEEE_arithmetic=3 option. Also see
the -OPT:recip option. This option should be used with caution because it
produces less accurate results.

2.47.5 -OPT:fast_bit_intrinsics= setting

fast_bit_intrinsics=ON turns off the check for the bit count being within
range for Fortran bit intrinsics (for example, BTESTand ISHFT). Enter ONor
OFF for setting. The default is fast_bit_intrinsics=OFF .

2.47.6 -OPT:fast_complex= setting

fast_complex=ON enables fast calculations for values declared as type
complex. When set to ON, complex absolute value (norm) and complex
division calculations use fast algorithms that can cause overflow for an operand
(divisor in the case of division) that has an absolute value larger than the
square root of the largest representable floating-point number (or underflow for
a value which is smaller than the square root of the smallest representable
floating point number).

Enter ONor OFF for setting. The default is fast_complex=OFF .
fast_complex=ON is enabled if -OPT:roundoff=3 is in effect.

2.47.7 -OPT:fast_exp= setting

fast_exp=ON optimizes exponentiation by replacing the run-time call for
exponentiation by multiplication and/or square root operations for certain
compile-time constant exponents (integers and halves). This can produce
differently rounded results than the run-time routine. fast_exp=ON is in effect
unless -OPT:roundoff=1 is in effect.

Enter ONor OFF for setting. The default is fast_exp=ON .

32 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

2.47.8 -OPT:fast_nint= setting

fast_nint=ON uses hardware features to implement NINT and ANINT (both
single- and double-precision versions). Enter ONor OFF for setting. The default
is fast_nint=OFF , but fast_nint=ON is enabled by default if
-OPT:roundoff=3 is in effect. fast_nint=ON is also enabled when
fast_trunc=ON is in effect.

When fast_nint=ON is in effect, rounding is performed according to the IEEE
standard rather than the Fortran 90 standard. For example, the Fortran 90
standard requires that NINT(1.5)=2 and NINT(2.5)=3 . The IEEE standard,
however, rounds both of these to 2.

2.47.9 -OPT:fast_sqrt= setting

fast_sqrt=ON calculates square roots using the identity
sqrt(x)=x*rsqrt(x) , where rsqrt is the reciprocal square root operation.
Enter ONor OFF for setting. The default is OFF.

This option is ignored unless the -mips4 option is in effect.

Warning: This option results in sqrt(0.0) producing a NaN result. Use it
only when zero sqrt operands are not valid.

2.47.10 -OPT:fast_trunc= setting

fast_trunc=ON inlines the NINT, ANINT, AINT , and AMODFortran intrinsics,
both single- and double-precision versions. Enter ONor OFF for setting. The
default is fast_trunc=OFF . fast_trunc=ON is enabled automatically if
-OPT:roundoff=1 (or greater) is in effect.

Although fully compliant with the Fortran 90 standard, fast_trunc=ON
reduces the valid argument range somewhat.

If fast_trunc=ON is in effect, fast_nint=ON is also enabled.

2.47.11 -OPT:fold_reassociate= setting

fold_reassociate=ON allows optimizations involving reassociation of
floating-point quantities. Enter ONor OFF for setting. The default is
fold_reassociate=OFF . fold_reassociate=ON is enabled automatically
when -O3 is in effect or when -OPT:roundoff=2 or greater is in effect.

SR–3907 3.0.1 33

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.47.12 -OPT:fold_unsafe_relops= setting

fold_unsafe_relops=ON folds relational operators in the presence of
possible integer overflow. Enter ONor OFF for setting. The default is
fold_unsafe_relops=ON .

2.47.13 -OPT:fold_unsigned_relops= setting

fold_unsigned_relops=ON folds unsigned relational operators in the
presence of possible integer overflow. Enter ONor OFFfor setting. The default is
fold_unsigned_relops=OFF .

2.47.14 -OPT:got_call_conversion= setting

got_call_conversion=ON loads function addresses to be moved out of
loops. The load is set up with the proper relocation so that the address is
resolved at program start-up time. Enter ONor OFF for setting.
got_call_conversion=OFF is the default when -O2 or lower is in effect.
got_call_conversion=ON when -O3 is in effect.

Note: This option should be disabled when compiling shared objects that
contain function addresses that may be preempted by rld (1). For more
information, see dso (5).

2.47.15 -OPT:IEEE_arithmetic= n

These options specify the level of conformance to ANSI/IEEE 754-1985, the
IEEE Standard for Binary Floating-point Arithmetic, which describes a standard
for NaN and inf operands, arithmetic roundoff, and overflow. Enter 1, 2, or 3
for n. The default is IEEE_arithmetic=1 .

IEEE_arithmetic=1 inhibits optimizations that produce less accurate results
than required by ANSI/IEEE 754-1985, the IEEE Standard for Binary
Floating-point Arithmetic.

IEEE_arithmetic=2 performs operations that can produce less accurate
inexact results (but accurate exact results) on the target hardware. Examples are
the recip and rsqrt operators for a MIPS IV target.

IEEE_arithmetic=3 performs arbitrary, mathematically valid
transformations, even if they can produce inaccurate results for operations
specified in ANSI/IEEE 754-1985, the IEEE Standard for Binary Floating-point
Arithmetic. These transformations can cause overflow or underflow for a valid

34 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

operand range. An example is the conversion of x/y to x*recip(y) for
MIPS IV targets. See also roundoff= n in this list.

2.47.16 -OPT:IEEE_comparisons= setting

Forces all comparisons to yield results that conform to ANSI/IEEE 754-1985, the
IEEE Standard for Binary Floating-point Arithmetic, which describes a standard
for NaN and inf operands. Enter ONor OFF for setting. The default is
IEEE_comparisons=OFF .

IEEE_comparisons=OFF produces non-IEEE results for comparisons. For
example, x=x is treated as TRUE without executing a test.

2.47.17 -OPT:inline_intrinsics= setting

inline_intrinsics=OFF turns all Fortran intrinsics that have a library
function into a call to that function. Enter ONor OFF for setting. The default is
inline_intrinsics=ON .

2.47.18 -OPT:liberal_ivdep= setting

Instruct the compiler to ignore all vector dependencies when encountering
!DIR$ IVDEP statements. Enter ONor OFF for setting. The default is
liberal_ivdep=OFF .

2.47.19 -OPT:Olimit= n

Specifies that any routine bigger than n should not be optimized. If -O2 or
greater is in effect and a routine is so big that the compile speed may be slow,
the compiler generates a message indicating the Olimit value that is needed to
optimize. You can recompile with that value of n or you can recompile with
-OPT:Olimit=0 and avoid having any Olimit cutoff.

2.47.20 -OPT:pad_common= setting

pad_common=ONreorganizes common blocks to improve the cache behavior of
accesses to members of the common block. This may involve adding padding
between members and/or breaking a common block into a collection of
common blocks. Enter ONor OFF for setting. The default is pad_common=OFF.

SR–3907 3.0.1 35

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

This option should not be used unless the common block definitions (including
EQUIVALENCE) are consistent among all sources comprising a program. In
addition, pad_common=ONshould not be specified if common blocks are
initialized with DATAstatements. If specified, pad_common=ONmust be used
for all source files in the program.

pad_common=ONis supported for Fortran only. It should not be used if a
common block is referenced from C code.

2.47.21 -OPT:recip= setting

recip=ON specifies that faster, but potentially less accurate, reciprocal
operations should be performed. Enter ONor OFF for setting. The default is
recip=OFF . If -O3 or -OPT:IEEE_arithmetic=2 or above are in effect,
recip=ON is enabled. recip=ON is effective only if -r8000 is in effect.

2.47.22 -OPT:reorg_common= setting

reorg_common=ON reorganizes common blocks to improve the cache behavior
of accesses to members of the common block. The reorganization is performed
only if the compiler detects that it is safe to do so. Enter ONor OFF for setting.

This option produces consistent results for programs that conform to the
Fortran 90 standard. The optimizations performed are safe even if common
blocks are declared differently in different subroutines or if elements in the
common block are equivalenced. The optimizations performed with
reorg_common=ON can lead to unexpected results if references to arrays in the
common block are made outside the declared array bounds.

reorg_common=ON is enabled when -O3 is in effect and when all files that
reference the common block are compiled at -O3 . reorg_common=OFF is set
when the file that contains the common block is compiled at -O2 (or below).

2.47.23 -OPT:roundoff= n

Specifies the level of acceptable departure from source language floating-point,
round-off, and overflow semantics. Enter 0, 1, 2, or 3 for n.

roundoff=0 is the default when optimization levels -O0 , -O1 , and -O2 are in
effect. This inhibits optimizations that might affect the floating-point behavior.

36 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

roundoff=1 allows simple transformations that might cause limited round-off
or overflow differences. Compounding such transformations could have more
extensive effects.

roundoff=2 is the default level when -O3 is in effect. This level allows more
extensive transformations, such as the reordering of reduction loops.

roundoff=3 enables any mathematically valid transformation.

To obtain best performance in conjunction with software pipelining, specify
roundoff=2 or roundoff=3 . This is because reassociation is required for
many transformations to break recurrences in loops. Also see the descriptions
for -OPT:IEEE_arithmetic , -OPT:fast_complex , -OPT:fast_trunc ,
and -OPT:fast_nint .

2.47.24 -OPT:rsqrt= setting

rsqrt=ON specifies that faster, but potentially less accurate, square root
operations should be performed. Enter ONor OFF for setting. The default is
rsqrt=OFF .

If -OPT:IEEE_arithmetic=2 or above or -O3 are in effect, rsqrt=ON is
enabled.

2.47.25 -OPT:space= setting

space=ON specifies that code space is to be given priority in tradeoffs with
execution time in optimization choices. For instance, this forces all exits from a
function to go through a single exit block. Enter ONor OFF for setting. The
default is space=OFF .

2.47.26 -OPT:swp= setting

swp=ONenables software pipelining. Enter ONor OFF for setting. swp=ONis
enabled when -O3 is in effect. The default is swp=OFF.

2.47.27 -OPT:unroll_analysis= setting

unroll_analysis=ON analyzes resource usage and recurrences in bodies of
innermost loops that do not qualify for being fully unrolled. Such loops are
unrolled only to the extent for which there is a potential benefit in doing so. A
loop could be unrolled, for example, to decrease the shortest possible schedule

SR–3907 3.0.1 37

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

length per iteration. Enter ONor OFF for setting. The default is
unroll_analysis=ON .

unroll_analysis=OFF can have the negative effect of unrolling loops less
than the upper limit dictated by the OPT:unroll_times_max and
OPT:unroll_size specifications.

2.47.28 -OPT:unroll_size= n

Specifies the maximum size (in instructions) of an unrolled loop. Enter an
integer for n. The default is unroll_size=320 .

This option indirectly determines which loops can be fully unrolled. See also
-OPT:unroll_times_max in this list.

2.47.29 -OPT:unroll_times_max= n

Specifies the maximum number of times a loop will be unrolled if it is not
going to be fully unrolled. Enter an integer for n. The default is
unroll_times_max=2 when -mips4 is in effect. The default is
unroll_times_max=4 when -mips3 is in effect. See also
-OPT:unroll_size in this list.

2.47.30 -OPT:wrap_around_unsafe_opt= setting

wrap_around_unsafe_opt=OFF disables both the induction variable
replacement and linear function test replacement optimizations. Enter ONor
OFF for setting. By default, these optimizations are enabled at -O2 and -O3 .
These optimization are disabled by default at -O0 .

This options’s optimizations are unsafe because they can generate incorrect
code when, for example, there are multiple induction variables in loops and
their combined initial values overflow or wrap around in memory.

Using this option can degrade performance. It is provided as a diagnostic tool
to identify the situation described previously.

2.48 -o out_file

Writes the executable file to out_file rather than to a.out . By default, the
executable output file is written to a.out .

38 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

For example, the following command line loads object module myprog.o and
produces an executable object named myprog:

% f90 -o myprog myprog.o

2.49 -Olevel

Specifies the basic optimization level, as follows:

Option Action

-O0 No optimization. Default.

-O1 Local optimization.

-O2, -O Extensive optimization. Optimizations performed
at this level are almost always beneficial. The
execution time is shortened, but compile time
may be lengthened.

-O3 Aggressive optimization. Optimizations
performed at this level may generate results that
differ from those obtained when -O2 is specified.

-Ofast [=ipxx] Use optimizations selected to maximize
performance for target platform ipxx processor
type. To determine a platform ipxx designation,
use the hinv (1) command.

The optimizations performed may differ from
release to release and among the supported
platforms. The optimizations always enable the
full instruction set of the target platform (for
example, -mips4 for an R10000). Although the
optimizations are generally safe, they may affect
floating-point accuracy due to operator
reassociation. Typical optimizations selected
include those performed at -O3 . See the
-TARG:platform= ipxx option for more

SR–3907 3.0.1 39

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

information on the ipxx argument. The default is
an R10000 Power Challenge, IP25.

2.50 -P

Performs source preprocessing on file.f[90] or file.F[90] and puts the results
in file.i . The file.i that is generated does not contain # lines.

2.51 -pfa , -pfalist

The -pfa option automatically converts sequential code into parallel code by
inserting parallel directives where it it safe and beneficial to do so. Specifying
this option also sets the -mp option to recognize parallel directives that you
have already inserted into your code.

Note: This option is ignored unless you are licensed for the MIPSpro
Automatic Parallelization Option. For more information on this product
contact your sales representative.

When the -pfalist option is specified, the compiler produces file.l , which is
a listing file. The listing file indicates the loops that were executed in parallel
and explains why others were not executed in parallel.

For more information on parallel processing, see auto_p (5), or the MIPSpro
Automatic Parallelizer Programmer’s Guide, SGI publication 007–3572–001.

2.52 -r real_spec

Specifies the default kind specification for real values.

The -r option accepts 4 and 8 as arguments, as follows:

Option Kind value

-r4 Uses REAL(KIND=4) and COMPLEX(KIND=4) for real and
complex variables, respectively. Default.

-r8 Uses REAL(KIND=8) and COMPLEX(KIND=8) for real and
complex variables, respectively. You can specify -r8 when
porting programs from 64-bit machines to avoid convergence

40 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

problems and long execution times if the floating-point accuracy
is inadequate.

2.53 -r processor

Specifies the code scheduler. The -r option accepts 4000 , 5000 , 8000 , and
10000 as arguments, as follows:

Option Action

-r4000 Schedules code for the R4000 processor.

-r5000 Schedules code for the R5000 processor.

-r8000 Schedules code for the R8000 processor.

-r10000 Schedules code for the R10000 processor.

This option adds one of the following to the head of the library search path,
where processor is as you specified:

• -L/usr/lib32/mips3/ processor

• -L/usr/lib32/mips4/ processor

• -L/usr/lib64/mips3/ processor

• -L/usr/lib64/mips4/ processor

The actual library search path that is added depends on the ABI that is specified
or implied. See the -64 and -n32 options for information on specifying an ABI.

2.54 -S

Generates an assembly file, file.s , rather than an object file (file.o).

2.55 -static

Statically allocates all local variables. Statically allocated local variables are
initialized to zero and exist for the life of the program. This option can be
useful when porting programs from older systems in which all variables are
statically allocated.

SR–3907 3.0.1 41

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

When compiling with the -static option, global data is allocated as part of the
compiled object (file.o) file. The total size of any file.o file cannot exceed 2 GB,
but the total size of a program loaded from multiple .o files can exceed 2 GB.

An individual common block may not exceed 2 GB, but you can declare
multiple common blocks each having that size.

For more information on compiling with large files, see Section 2.1, page 6.

2.56 -TARG:…

Cross compiling is compiling a program on one system and executing it on
another. To cross compile, you can either use the -TARG: command line
options to control the target architecture and machine for which code is
generated or you can set the COMPILER_DEFAULTS_PATHenvironment
variable to specify the file that contains the default processor information
needed to generate executable code for the target system.

The following subsections describe cross compiling using both the -TARG:
options and the COMPILER_DEFAULTS_PATHenvironment variable.

2.56.1 -TARG:fp_precise= setting

Forces the target processor into precise floating-point mode at execution time.
Using this option to compile any component source files of a program invokes
this feature in the resulting program. Enter ONor OFF for setting. The default is
OFF.

This option is only meaningful for R8000 target processors, and can cause
significant performance degradation for programs with heavy floating-point
usage. For more information on floating-point mode, see fpmode (1).

2.56.2 -TARG:madd=setting

Enables or prevents transformations from using multiply and add instructions.
Enter ONor OFF for setting. The default is ON. This option is ignored unless
-mips4 is in effect.

These instructions perform a multiply/add with a single round off. They are
more accurate than the usual discrete operations, and may cause results not to
match baselines from other targets. Use this option to determine whether
observed differences are due to multiply/add instructions.

42 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

2.56.3 -TARG:platform= ipxx

Specifies the target platform for compilation, choosing various internal
parameters (such as cache sizes) appropriately. Supported values are as follows:
ip19 , ip20 , ip21 , ip22_4k , ip22_5k , ip24 , ip25 , ip26 , ip27 , ip28 ,
ip30 , ip32_5k , and ip32_10k . The appropriate selection for your platform
can be determined by entering the following command:

hinv -c processor

The first line of output identifies the proper IP number. If a processor suffix (for
example, _4k) is required, the next line identifies the processor (for example,
R4000).

2.56.4 -TARG:processor= processor

Selects the processor for which to schedule code. The chosen processor must
support the ISA specified (or implied by the ABI). Enter one of the following
for processor: r4000 , r5000 , r8000 , or r10000 .

2.56.5 -TARG:r4krev22= setting

Generates code to work around bugs in the R4000 rev 2.2 chip. This currently
means simulating 64-bit variable shifts in the software. Enter ONor OFF for
setting. The default is OFF.

2.56.6 CPU targeting (cross compiling) using the compiler.defaults file

The MIPSpro 7 Fortran 90 compiler retrieves default information for the
Application Binary Interface (ABI), instruction set architecture (ISA), and
processor type from /etc/compiler.defaults . To compile for a different
system, set the COMPILER_DEFAULTS_PATHenvironment variable to a path or
to a colon-separated list of paths designating where the compiler is to look for
the compiler.defaults file.

The target compiler.defaults file must contain a -DEFAULT: option specifier
that specifies the default ABI, ISA, and processor in the following format:

-DEFAULT:[abi=n32|64] [:isa=mips n] [:proc=r4000|r5000|r8000|r10000] [:opt=0|1|2|3] [:arith=1|2|3]

Note that command line settings override any settings in the system-supplied
compiler.defaults file or in the compiler.defaults file that you create.

SR–3907 3.0.1 43

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.57 -TENV:…

Specifies the target environment option group. These options control the target
environment assumed and/or produced by the compiler.

The following sections describe the -TENV:… options.

2.57.1 -TENV:align_aggregate= bytes

Controls alignment of allocated aggregates (that is, arrays and derived types).
The value specified for bytes specifies that any aggregate object at least that
large is to be given at least that alignment. By default, or if bytes is not
specified, aggregates are aligned to the integer register size, which, for example,
is 8 bytes for 64-bit programs and 4 bytes for 32-bit programs.

If align_aggregate=0 is specified, the value specifies that the minimum
alignment consistent with the ABI is to be used. Otherwise, the value specified
must be 1, 2, 4, 8, or 16.

2.57.2 -TENV:check_div= n

Inserts checks for divide by zero operations and overflow conditions on integer
divide operations. Enter 0, 1, 2, or 3 for n. The default is check_div=0 .

check_div=0 inhibits checking. check_div=1 checks for division by zero.
check_div=2 checks for overflow. check_div=3 checks for both division by
zero and overflow.

2.57.3 -TENV:large_GOT= setting

Generates code to accommodate a larger Global Offset Table (GOT) than is
standard. Enter ONor OFF for setting. The default is large_GOT=OFF .

The standard GOT is 64K bytes. For more information on controlling the GOT,
see the -TENV:small_GOT option.

2.57.4 -TENV:small_GOT= setting

Assumes that the GOT for shared code is smaller than 64K bytes, that is,
assume small offsets for references to it. Enter ONor OFF for setting. The default
is small_GOT=ON.

44 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

For more information on controlling the GOT, see the -TENV:large_GOT
option.

2.57.5 -TENV:trapuv= setting

Forces all uninitialized stack, automatic, and dynamically allocated variables to
be initialized with 0xFFFA5A5A. If this value is used as a floating-point
variable, it is treated as a floating-point NaN and causes a floating-point trap. If
it is used as a pointer, an address or segmentation violation may occur. Enter
ONor OFF for setting. The default is OFF.

You can obtain the functionality of a -TENV:trapuv=ON specification by
specifying -trapuv . For more information on the -trapuv option, see Section
2.58, page 46.

2.57.6 -TENV:X= n

Specifies the level of enabled exceptions that will be assumed for purposes of
performing speculative code motion The default is X=2 when -O3 is in effect.
The default is X=1 when other -O optimization levels are in effect. Enter 0, 1, 2,
3, or 4 for n. The default is X=1.

Generally, an instruction is not speculated (moved above a branch by the
optimizer) unless any exceptions it might cause are disabled by this option.
X=0 inhibits speculative code motion.

X=1 specifies that safe speculative code motion be performed and disables all
underflow and inexact exceptions according to ANSI/IEEE 754-1985, the IEEE
Standard for Binary Floating-point Arithmetic.

X=2 disables all exceptions described in ANSI/IEEE 754-1985, the IEEE
Standard for Binary Floating-point Arithmetic, except divide by zero.

X=3 disables all exceptions described in ANSI/IEEE 754-1985, the IEEE
Standard for Binary Floating-point Arithmetic, including divide by zero.

X=4 disables or ignores memory exceptions.

At levels higher than the X=1 default level, various hardware exceptions, which
are normally useful for debugging, or which are trapped and repaired by the
hardware, may be disabled or ignored. This can hide obscure bugs. The
program should not explicitly manipulate the IEEE floating-point trap-enable
flags in the hardware if this option is used.

SR–3907 3.0.1 45

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.58 -trapuv

Initializes all uninitialized stack, automatic and dynamically allocated variables
to 0xFFFA5A5A. When this value is used as a floating-point variable, it is
treated as a floating-point NaN and it causes a floating-point trap. When it is
used as a pointer, an address or segmentation violation is likely to occur.

You can obtain the functionality of a -trapuv specification by specifying
-TENV:trapuv=ON .

2.59 -U var

Undefines a variable for the source preprocessor. See the -D var option for
information on defining variables.

2.60 -version

Writes compiler release version information to stdout . No input file needs to
be specified when this option is used.

2.61 -w [arg]

Specifies messages. This option can take one of the following forms:

Option Action

-w Suppresses warning messages.

-w2 Shows warning messages. Default.

2.62 -woff num

Specifies message numbers to suppress. Examples:

• Specifying -woff2026 suppresses message number 2026.

• Specifying -woff2026-2352 suppresses messages 2026 through 2352.

• Specifying -woff2026-2352,2400-2500 suppresses messages 2026
through 2353 and messages 2400-2500.

46 SR–3907 3.0.1

Invoking MIPSpro 7 Fortran 90 [2]

In the message level indicator, the message numbers appear after the dash. This
option applies to warning messages only.

2.63 -x dirlist

Disables specified directives or specified classes of directives. If specifying a
multiword directive, either enclose the directive name in quotation marks or
remove the spaces between the words in the directive’s name.

For dirlist, enter one of the following:

dirlist Directives disabled

mipspro All directives.

directive One or more directives. If specifying more than one, separate
them with commas, as follows:
-x DOACROSS,"ASSERT NOARGUMENTALIASING".

2.64 -xgot

Uses a larger, nondefault Global Symbol Table (GOT). Specify this option if you
receive a GOT overflow message. When this option if specified, the resulting
executable is somewhat larger and slower. Specifying -xgot has the same
effect as specifying -TENV:large_GOT .

A better solution for GOT overflow problems is to compile the object files
without the -xgot option and to load using ld -multigot option. For more
information, see the ld (1) man page.

For more information about the GOT, see the -avoid_gp_overflow option,
the gp_overflow (5) man page, and the What should I do about a GOT overflow?
question in the FAQ section of the dso (5) man page.

2.65 --

Signifies the end of options. After this symbol, you can specify the files to be
processed.

SR–3907 3.0.1 47

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.66 file.suffix[90][file.suffix[90]…]

File or files to be processed, where suffix is either an uppercase F or a lowercase
f for source files. Files ending in .i , .o , and .s are also accepted. The Fortran
source files are compiled, and an executable object file is produced.

The default name of the executable object file is a.out . For example, the
following command line produces a.out :

% f90 myprog.f

By default, several files are created during processing. The MIPSpro 7 Fortran
90 compiler adds a suffix to the file portion of the file name and places the files
it creates into your working directory. The following is a file summary:

File Content

file.B Intermediate file written by the front end of the
compiler.

file.i File generated by the source preprocessor.

file.L Listing file

file.s Assembly language file

48 SR–3907 3.0.1

Directives [3]

A directive is a line inserted into Fortran source code that specifies actions to be
performed by the compiler. Directive lines are not Fortran 90 statements.

Many MIPSpro 7 Fortran 90 compiler features are implemented as either
command line options or directives. The features implemented as command
line options are set at compile time and applied to all files in the compilation.
The features implemented through directives are set within your Fortran 90
source code, and they apply to portions of your source code.

This chapter introduces the MIPSpro 7 Fortran 90 directive set and describes the
general directives. The following other chapters also describe directives:

• Chapter 4, page 65, Multiprocessing Directives.

• Chapter 5, page 105, Origin Series Directives. This chapter describes the
directives that are available to you if you are running the MIPSpro 7 Fortran
90 compiler on an Origin 2000, Origin 200, or Cray Origin 2000 system.

• Chapter 6, page 131, CF90 Directives. This chapter describes the Cray
Research CF90 compiler directives that the MIPSpro 7 Fortran 90 compiler
supports.

The sections in this chapter are as follows:

• Using directives

• Loop nest optimization (LNO) directives

• Argument aliasing directives

• Symbol storage directives

• Inlining and IPA directives

3.1 Using directives

All directives are of the following form:

prefix directive

SR–3907 3.0.1 49

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

prefix Each directive begins with a prefix. The prefix needed for each
directive is shown in the directive’s description. The following
directive prefixes are used by the MIPSpro 7 Fortran 90 compiler:

• !*$* , C*$*

• !PAR , CPAR

• !$, C$

• !DIR$, CDIR$

• !MIC$, CMIC$

The prefix used also depends on which Fortran 90 source form
you are using, as follows:

• If you are using fixed source form, begin a directive line with
the characters Cprefix or ! prefix. The ! or C character should
appear in column 1. Beginning the directive with a ! or C
character ensures that compilers other than the MIPSpro 7
Fortran 90 compiler will treat compiler directive lines as
comment lines.

• If you are using free source form, begin a directive line with
the characters ! prefix, followed by a space, and then one or
more directives. The ! prefix need not start in column 1, but it
must be the first text on a line.

Because both fixed source form and free source form accept
directives that start with the exclamation point (!), that is the
initial character used in all directive syntax descriptions in this
manual.

directive This is the specific directive’s syntax. The syntax usually consists
of the directive name. Some directives accept arguments. A
directive’s arguments, if any, are shown in the description for the
directive itself.

The following sections describe the general format for directives and explain
how directives are continued across source code lines.

3.1.1 Directives and command line options

Some compiler features can be activated on the command line or through
compiler directives. The difference is that a command line setting applies to all

50 SR–3907 3.0.1

Directives [3]

files in the compilation, but a directive applies to only a program unit or to
another specific part of a source file.

Generally, and by default, directives override command line options. There are
exceptions to this rule, however. The exceptions, if any, are noted in the
introductory text to each directive group.

3.1.2 Directive range

The range of a particular directive depends on the directive itself, as follows:

• If a directive appears within a program unit, it applies only to that program
unit.

• If a directive appears outside a program unit, for example, at the top of a
file, it applies to the entire file.

The descriptions for the individual directives indicate the range of the directive.

3.1.3 Directive continuation and other considerations

It is sometimes necessary to continue a directive across one or more source code
lines. The continuation character used and its placement within the directive
line depends on the type of directive you are using. The introductory text for
each directive group indicates the continuation character that is appropriate for
that group. For all directives in this chapter, the prefix for a directive line that is
a continuation line is !*$*& .

Do not use source preprocessor (#) directives within multiline compiler
directives.

3.2 LNO directives

The loop nest optimization (LNO) directives control loop nest optimizations. By
default, directives override command line options. To reverse this, and have
command line options override the LNO directives, specify
-LNO:ignore_pragmas .

To continue a directive, the continuation line must begin with !*$*& .

The following directives control loop nest optimizations:

• AGGRESSIVEINNERLOOPFISSION

SR–3907 3.0.1 51

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• BLOCKABLE

• BLOCKINGSIZE, NOBLOCKING

• FISSION , FISSIONABLE, NOFISSION

• FUSE, FUSABLE, NOFUSION

• INTERCHANGE, NOINTERCHANGE

• PREFETCH

• PREFETCH_MANUAL

• PREFETCH_REF

• PREFETCH_REF_DISABLE

• UNROLL

The following sections describe the LNO directives.

3.2.1 AGGRESSIVEINNERLOOPFISSION

The AGGRESSIVEINNERLOOPFISSIONdirective specifies that the following
loop should be split into as many loops as possible. In a loop nest, this
directive must precede an inner loop.

The format of this directive is as follows:

!*$* AGGRESSIVEINNERLOOPFISSION

3.2.2 BLOCKABLE

The BLOCKABLEdirective specifies that it is legal to cache block the subsequent
loops. For more information on controlling cache blocking, see Section 2.35.2.1,
page 21, and Section 2.35.2.2, page 21.

The format of this directive is as follows:

!*$* BLOCKABLE (do_variable, do_variable [, do_variable]...)

52 SR–3907 3.0.1

Directives [3]

do_variable Specify the do_variable names of two or more loops. The loops
identified by the do_variable names must be adjacent and nested
within each other, although they need not be perfectly nested.

This directive informs the compiler that these loops may legally be involved in
a blocking situation with each other, even if the compiler would consider such a
transformation illegal. The loops must also be interchangeable and unrollable.
This directive does not instruct the compiler on which of these transformations
to apply.

3.2.3 BLOCKINGSIZE, NOBLOCKING

The BLOCKINGSIZE and NOBLOCKINGdirectives assert that the loop following
the directive either is (or is not) involved in a cache blocking for the primary or
secondary cache.

The formats of these directives are as follows:

!*$* BLOCKINGSIZE(n1[, n2])

!*$* NOBLOCKING

n1,n2 An integer number that indicates the block size. If the loop is
involved in a blocking, it will have a block size of n1 for the
primary cache and n2 for the secondary cache. The compiler
attempts to include this loop within such a block, but it cannot
guarantee this.

If n1 or n2 are 0, the loop is not blocked, but the entire loop is
inside the block.

Example:

SUBROUTINE AMAT(X,Y,Z,N,M,MM)

REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)

DO K = 1, N
!*$* BLOCKING SIZE (20)

DO J = 1, M

!*$* BLOCKING SIZE (20)

DO I = 1, MM

Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)

END DO
END DO

SR–3907 3.0.1 53

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

END DO

END

For the preceding code, the compiler makes 20 X 20 blocks when blocking, but
it could block the loop nest such that loop K is not included in the tile. If it did
not, add a BLOCKINGSIZE(0) directive just before loop K to specify that the
compiler should generate a loop such as the following:

SUBROUTINE AMAT(X,Y,Z,N,M,MM)

REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)

DO JJ = 1, M, 20

DO II = 1, MM, 20
DO K = 1, N

DO J = JJ, MIN(M, JJ+19)

DO I = II, MIN(MM, II+19)

Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)

END DO
END DO

END DO

END DO

END DO

END

Note that an INTERCHANGEdirective can be applied to the same loop nest as a
BLOCKINGSIZE directive. The BLOCKINGSIZEdirective applies to the loop it
directly precedes; it moves with that loop when an interchange is applied.

The NOBLOCKINGdirective prevents the compiler from involving the
subsequent loop in a cache blocking situation.

3.2.4 FISSION , FISSIONABLE, NOFISSION

The fission control directives specify whether the compiler should perform loop
fission on the loops that immediately follow these directives.

The formats of these directives are as follows:

!*$* FISSION [(level)]

!*$* FISSIONABLE

!*$* NOFISSION

54 SR–3907 3.0.1

Directives [3]

level Specify an integer number that indicates the number of loop
levels that should undergo loop fission.

The FISSION directive specifies that loop fission should be attempted. The
compiler performs a validity test on the subsequent loops unless you have also
specified a FISSIONABLE directive. The NOFISSION directive specifies that the
following loop should not undergo fission, but its inner loops, if any, may
undergo fission.

These directives do not cause statements to be reordered.

3.2.5 FUSE, FUSABLE, NOFUSION

The fusion control directives specify whether the compiler should perform loop
fusion on the loops that immediately follow these directives.

The formats of these directives are as follows:

!*$* FUSE [(n, [level])]

!*$* FUSABLE

!*$* NOFUSION

n Specify an integer number that indicates the number of
subsequent loops that should undergo loop fusion. The default is
2.

level Specify an integer that indicates how deeply the loops should be
fused.

The level of loop fusion is determined by the maximal perfectly
nested loop levels of the fused loops, although partial fusion is
allowed.

Loop iterations may be peeled as needed during loop fusion. The limit of this
peeling is 5, or the number specified by the -LNO:fusion_peeling_limit
command line option.

The FUSEdirective specifies that loop fusion should be attempted. The
compiler performs a validity test on the subsequent loops unless you have also
specified a FUSABLEdirective. When the FUSABLEdirective is specified, the
fusion is done for loops with identical iteration counts. The NOFUSIONdirective
specifies that the following loop should not be fused with any other loop.

SR–3907 3.0.1 55

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Example. Consider the following code:

DO I = 1,N

DO J = 1,N
S1

END DO

END DO

DO I = 1,N

DO J = 1,N

S2
END DO

END DO

Fusing the loops with a level of 1 results in the following loop nest:

DO I = 1,N

DO J = 1,N

S1

END DO
DO J = 1,N

S2

END DO

END DO

Fusing the loops with a level of 2 results in the following loop nest:

DO I = 1,N

DO J = 1,N

S1
S2

END DO

END DO

3.2.6 INTERCHANGE, NOINTERCHANGE

The loop interchange control directives specify whether or not the order of the
following two or more loops should be interchanged. These directives apply to
the loops that they immediately precede.

The formats of these directives are as follows:

!*$* INTERCHANGE (do_variable1, do_variable2 [, do_variable3]...)

!*$* NOINTERCHANGE

56 SR–3907 3.0.1

Directives [3]

do_variable Specifies two or more do_variable names. The do_variable names
can be specified in any order, and the compiler reorders the loops.
The loops must be perfectly nested. If the loops are not perfectly
nested, you may receive unexpected results.

The compiler reorders the loops such that the loop with do_variable1 is
outermost, then loop do_variable2, then loop do_variable3.

The NOINTERCHANGEdirective inhibits loop interchange on the loop that
immediately follows the directive.

3.2.7 PREFETCH

The PREFETCHdirective controls the MIPS IV prefetch instruction. Using this
directive can increase performance in program units that are likely to encounter
cache misses during execution. This directive applies only to the program unit
in which it appears.

When the directive is specified, the compiler estimates the memory references
that will be cache misses, inserts prefetches for the misses, and schedules the
prefetches ahead of their corresponding references. You can specify different
levels of prefetching aggressiveness for the primary and secondary cache.

The format of this directive is as follows:

!*$* PREFETCH (primary_cache [, secondary_cache])

primary_cache,
secondary_cache

For each of these, specify 0, 1, or 2. The number
specified indicates the level of prefetching
requested for the primary and secondary cache
levels, respectively.

A 0 disables all prefetching. 1 requests
conservative prefetching. 2 requests aggressive
prefetching. By default, primary_cache and
secondary_cache are both set to 1 when the
-r10000 command line option is in effect, and
they are set to 0 for all other processor settings.

This directive is honored only if the -mips4 and -r10000 command line
options are in effect.

SR–3907 3.0.1 57

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

3.2.8 PREFETCH_MANUAL

The PREFETCH_MANUALdirective specifies whether the PREFETCH_REFand
the PREFETCH_REF_DISABLEdirectives, which perform manual prefetches,
should be respected or ignored within a subprogram. This directive applies
only to the program unit in which it appears.

The format of this directive is as follows:

!*$* PREFETCH_MANUAL (n)

n Specify either 0 or 1 for n. 0 indicates that the compiler should
ignore all prefetch directive. 1 indicates that all prefetch directives
should be honored. By default, all prefetch directives are honored.

This directive is honored only if the -mips4 and -r10000 command line
options are in effect.

3.2.9 PREFETCH_REF

The PREFETCH_REFdirective requests prefetching for a specific memory
reference. This directive applies only to the loop nest that includes references to
array, and the directive must immediately precede this loop nest.

When this directive is specified, all references to array in the subsequent loop
nest are ignored by the automatic prefetcher (if enabled).

The format of this directive is as follows:

!*$* PREFETCH_REF=array [,stride= stride[, stride]] [,level= level[, level]]
[,kind= rw] [,size= size]

array For array, specify identification information for the array. For
example: A(I,J) .

stride Specifies prefetching for every stride iterations of the loop. The
default is 1.

level Specifies the level in the memory hierarchy to prefetch. Specify 1
or 2. The default is 2. 1 specifies a prefetch from secondary cache
to primary cache. 2 specifies a prefetch from memory to primary
cache.

rw Specify rd or wr . The default is wr .

58 SR–3907 3.0.1

Directives [3]

size Specifies the size, in Kbytes, of array. Must be a constant.

If size is specified, the automatic prefetcher (if enabled) reduces
the effective cache size by that amount in its calculations. The
compiler tries to issue one prefetch per stride iterations, but this
cannot be guaranteed.

This directive generates a single prefetch instruction to a specified memory
reference. It searches for array references that match the supplied reference in
the current loop nest and takes the following actions:

• If the reference is found, the reference is scheduled relative to the prefetch
node, based on the miss latency for the specified level of the cache.

• If no such reference is found, the prefetch is generated at the start of the
loop body.

This directive is honored only if the -mips4 and -r10000 command line
options are in effect.

3.2.10 PREFETCH_REF_DISABLE

The PREFETCH_REF_DISABLEdirective disables prefetching for all references to
an array. This directive applies to all array references within the program unit.

If the automatic prefetcher is enabled, it ignores the specified array. The size is
used for volume analysis.

The format of this directive is as follows:

!*$* PREFETCH_REF_DISABLE=array [, size= size]

array For array, specify identification information for the array. For
example: A(I,J) .

size Specifies the size, in Kbytes, of array. Must be a constant.

This directive is honored only if the -mips4 and -r10000 command line
options are in effect.

3.2.11 UNROLL

The UNROLLdirective specifies loop unrolling. This directive applies to the loop
that immediately follows the directive.

SR–3907 3.0.1 59

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The format of this directive is as follows:

!*$* UNROLL (n)

n Specifies the number of copies of the loop body to be generated,
as follows:

• When this directive precedes an inner loop, the compiler
generates n — 1 copies of the loop body. This is standard loop
unrolling.

• When this directive precedes an outer loop, the compiler
performs an unroll and jam operation on the loop.

The value of n must be at least 1 in order for unrolling to occur.
If n = 1, no unrolling is performed.

Even with this directive specified, unrolling is not performed if the compiler
determines that unrolling would be unsafe. To specify that the compiler unroll
the loop regardless of its analysis, you must also specify a BLOCKABLEdirective.
For information on the BLOCKABLEdirective, see Section 3.2.2, page 52.

3.3 Argument aliasing directives

The ASSERT ARGUMENTALIASINGand ASSERT NOARGUMENTALIASING
directives allow the compiler to make assumptions about procedure dummy
arguments when performing optimizations.

It is possible to call a procedure and specify the same variable or array element
in two or more positions of the argument list. Within the procedure, two or
more dummy argument names, which appear to refer to different memory
locations, actually refer to the same location. This practice violates the Fortran
standard. You can use the ASSERT ARGUMENTALIASINGdirective to allow the
compiler to be more conservative.

By default, ASSERT NOARGUMENTALIASINGis in effect.

The formats for these directives are as follows:

!*$* ASSERT ARGUMENTALIASING

!*$* ASSERT NOARGUMENTALIASING

60 SR–3907 3.0.1

Directives [3]

If these directives appear outside of a program unit, they are applied to all
program units in the source file. If they appear in a program unit, they are
applied to that program unit only. If one of these directives is encountered, it
remains in effect until reset by the opposing directive.

3.4 Symbol storage directives

The ALIGN_SYMBOLand FILL_SYMBOL directives control the way symbols are
stored.

The ALIGN_SYMBOLdirective aligns the start of symbol at a specified alignment
boundary.

The FILL_SYMBOL directive pads symbol with additional storage so that the
symbol is assured not to overlap with any other data item within the storage of
the specified size. The additional padding required is divided between each
end of the specified variable. For example, a FILL_SYMBOL(X,L1CACHELINE)
directive guarantees that X does not suffer from false sharing for the primary
cache line.

The formats for these directives are as follows:

!*$* ALIGN_SYMBOL (symbol [, storage])

!*$* FILL_SYMBOL (symbol [, storage])

symbol Specify the name of a symbol. symbol can be a common block
name, common block variable, or automatic variable. symbol
cannot be a component of a derived type or an array element.

storage Specifies the storage size. Specify one of the following values for
storage:

storage Action

L1CACHELINE Specifies the machine-specific
first-level cache line size, typically
32 bytes.

L2CACHELINE Specifies the machine-specific
secondary cache line size, typically
128 bytes.

SR–3907 3.0.1 61

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

PAGE Specifies a machine-specific page.
Typically 16 Kbytes.

power-of-two An integer value that is a power of
2.

For common block variables, these directives are required at each declaration of
the common block. Because the directives modify the allocated storage and its
alignment for the named symbol, inconsistent directives can lead to undefined
results.

The ALIGN_SYMBOLdirective has no effect on local variables of fixed-size
symbols, such as simple scalars or arrays of known size. The directive continues
to be effective for stack-allocated arrays of dynamically determined size.

You cannot specify an ALIGN_SYMBOLdirective and a FILL_SYMBOL directive
for the same symbol.

Example:

! X IS A COMMON BLOCK VARIABLE

!

INTEGER(KIND=4) X
!*$* ALIGN_SYMBOL (X, 32)

! X WILL START AT A 32-BYTE BOUNDARY.

! WARNING: THE LAYOUT OF THE COMMON BLOCK WILL BE AFFECTED

!*$* ALIGN_SYMBOL (X, 2)

! ERROR: CANNOT REQUEST AN ALIGNMENT LOWER THAN THE NATURAL

! ALIGNMENT OF THE SYMBOL.

REAL(KIND=8) Y
! Y IS A COMMON BLOCK OR LOCAL VARIABLE

!*$* FILL_SYMBOL (Y, L2CACHELINE)

! ALLOCATE EXTRA STORAGE BOTH BEFORE AND AFTER Y SO THAT

! Y IS WITHIN AN L2CACHELINE (128 BYTES) ALL BY ITSELF.
! THIS CAN BE USEFUL TO AVOID FALSE-SHARING BETWEEN MULTIPLE

! PROCESSORS FOR THE CACHELINE CONTAINING Y.

62 SR–3907 3.0.1

Directives [3]

3.5 Inlining and IPA directives

The following are the inlining and interprocedural analysis (IPA) directives:

• INLINE , NOINLINE

• IPA , NOIPA

Note: Neither inlining nor IPA are enabled by default. By default, the
directives in this section, if present in your source code, are ignored. To enable
the directives and turn on inlining and IPA, specify an -INLINING: option
or an -IPA: option on your f90 (1) command line. For more information on
the command line interaction with these features, see f90 (1) or ipa (1).

Inlining is the process of replacing a procedure reference with a copy of the
procedure’s code. This eliminates procedure call overhead and exposes the
relationships between the procedure code, the return value, and the
surrounding code. The INLINE and NOINLINE directives allow you to specify
procedures that should be inlined.

Interprocedural analysis (IPA) is a MIPSpro compiler feature that includes
inlining, common block array padding, constant propagation, dead procedure
elimination, dead variable elimination, and global name optimizations. For
detailed information on the IPA feature, see ipa (5). The IPA and NOIPA
directives allow you to control IPA.

The formats of these directives are as follows:

!*$* INLINE [(name [, name] ...)] location

!*$* NOINLINE [(name [, name] ...)] location

!*$* IPA [name [, name] ...] location

!*$* NOIPA [name [, name] ...] location

name For the inlining directives, each name specification represents one
or more routines to be inlined. If no routines are named, all
routines in the program are inlined.

For the IPA directives, each name specification represents one or
more routines to undergo IPA. If no routines are named, all
routines in the program undergo IPA.

SR–3907 3.0.1 63

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

location Specify one of the following for location:

location Action

HERE Specifies that routines named on the
subsequent source code line should
be inlined or should undergo IPA.
This is the default location.

ROUTINE Specifies that the named function
should be inlined or should
undergo IPA everywhere it appears
within the current routine.

GLOBAL Specifies that the named function
should be inlined or should
undergo IPA throughout the source
file.

Example. Consider the following code fragment:

DO I = 1,N

!*$* INLINE (BETA) HERE

CALL BETA(I,1)

ENDDO
CALL BETA(N,2)

Using the specifier ROUTINErather than HEREin this example would inline
both calls to BETA. Note that -INLINE:=ON must be specified on the f90 (1)
command line when this code is compiled in order for the inlining directive to
be honored.

64 SR–3907 3.0.1

Multiprocessing Directives [4]

The MIPSpro 7 Fortran 90 multiprocessing directives let you optimize your
code by helping you to split your program into concurrently executing pieces.
This chapter describes techniques for analyzing your code and preparing it for
execution on multiple CPUs.

This chapter describes two sets of directives to use for multiprocessing. The
first set consists of the loop-level multiprocessing directives. The second set
consists of directives based on the work of the Parallel Computing Forum
(PCF). The PCF directives allow you to specify multiprocessing based on the
model of a parallel region. The following sections describe the multiprocessing
directives and how to use them.

The -mp option must be specified on the f90 (1) command line in order for the
compiler to honor the directives in this chapter. For more information on
multiprocessing, see mp(3F) and sync (3F).

4.1 Using directives

Certain multiprocessing features are available to you either through the
command line or through directives. For command line options and directives
that accept either ONor OFF as arguments, the compiler turns the feature OFF
when conflicting settings are present. If a feature accepts a numeric setting as
an argument, the compiler compares the command line setting and the directive
setting and uses the minimum setting.

Some command line options act like global directives. Other command line
options override directives. Many directives have corresponding command line
options. If you specify conflicting settings in the command line and a directive,
the compiler chooses the most restrictive setting.

The following sections contain general information that applies to both the
loop-level and the PCF directives.

4.1.1 Directive range

Directives placed on the first line of an input file are called global directives. The
compiler interprets them as if they appeared at the top of each program unit in
the file.

SR–3907 3.0.1 65

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Directives appearing anywhere else in the file apply only until the end of the
current program unit. The compiler resets the value of the directive to the
global value at the start of the next program unit.

4.1.2 Directive continuation

To continue the loop-level multiprocessing directives onto another line, use !$&
as the first characters in the continued line(s). For example:

!$DOACROSS share(ALPHA, BETA, GAMMA, DELTA,
!$& EPSILON, OMEGA), LASTLOCAL(I, J, K, L, M, N),

!$& LOCAL(XXX1, XXX2, XXX3, XXX4, XXX5, XXX6, XXX7,

!$& XXX8, XXX9)

To continue the PCF directives onto another line, begin the continued line with
the characters !$PAR&.

4.2 Loop-level multiprocessing directives: DOACROSS, CHUNK, MP_SCHEDTYPE, and !$

It is possible for the compiler to execute different iterations of a DOloop on
multiple processors. For example, suppose a DOloop consisting of 200 iterations
will run on a machine with four processors using the simplest scheduling
method. The first 50 iterations run on one processor, the next 50 on another,
and so on.

A multiprocessing code adjusts itself at run time to the number of processors
actually available to it on the machine. By default, the multiprocessing code
does not use more than 8 processors. If you want to use more processors, set
the MP_SET_NUMTHREADSenvironment variable to a different value. If the
200-iteration loop was moved to a machine with only two processors, it would
be divided into two blocks of 100 iterations each, without any need to recompile
or reload. In fact, multiprocessing code can be run on single-processor
machines. The loop is divided into one block of 200 iterations. This allows code
to be developed on a single-processor system and later run on a multiprocessor.

The processes that participate in the parallel execution of a task are arranged in
a master/slave organization. The original process is the master. It creates zero
or more slaves to assist. When a parallel DOloop is encountered, the master
contacts the slaves for help. When the loop is complete, the slaves wait for the
master, and the master resumes normal execution. The master process and each
of the slave processes are called a thread of execution or simply a thread. By
default, the number of threads is set to the number of processors on the

66 SR–3907 3.0.1

Multiprocessing Directives [4]

machine or is set to 8, whichever is smaller. You can override the default and
explicitly control the number of threads of execution used by a parallel job.

For multiprocessing to work correctly, the iterations of the loop must not
depend on each other; each iteration must stand alone and produce the same
answer regardless of when any other iteration of the loop is executed. Not all
DOloops have this property, and loops without it cannot be correctly executed
in parallel. However, many of the loops encountered in practice fit this model.
Further, many loops that cannot be run in parallel in their original form can be
rewritten to run wholly or partially in parallel. For information about
determining data dependencies in loops, see Section 4.3, page 77.

The loop-level multiprocessing directives are as follows:

• DOACROSS

• CHUNK

• MP_SCHEDTYPE

The following sections describe the loop-level multiprocessing directives.

4.2.1 DOACROSSdirective

The basis for the loop-level multiprocessing directives is the DOACROSS
directive. This directive indicates to the compiler that it should run iterations of
the subsequent DO loop in parallel. This directive must appear directly before
the loop that is to be operated on, and it remains in effect for that loop only.

The format of this directive is as follows:

!$DOACROSS[clause [, clause] ...]

clause This directive accepts one or more of the following clauses:

• AFFINITY

• BLOCKED

• CHUNK

• IF

• LASTLOCAL

• LOCAL

SR–3907 3.0.1 67

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• MP_SCHEDTYPE

• NEST

• PRIVATE

• REDUCTION

• SHARED

The sections that follow describe the DOACROSSdirective clauses.

Appendix B, page 199, contains information on debugging when DOACROSS
directives are used.

Note: The Fortran compiler does not support direct nesting of DOACROSS
loops.

For example, the following is illegal and generates a compilation error:

!$DOACROSS LOCAL(I)

DO I = 1, N

!$DOACROSS LOCAL(J)

DO J = 1, N

A(I,J) = B(I,J)
END DO

END DO

However, to simplify separate compilation, a different form of nesting is
allowed. A routine that uses !$DOACROSScan be called from within a
multiprocessed region. This can be useful if a single routine is called from
several different places: sometimes from within a multiprocessed region,
sometimes not. Nesting does not increase the parallelism. When the first
!$DOACROSSloop is encountered, that loop is run in parallel. While in the
parallel loop, if a call is made to a routine that itself has a !$DOACROSS, the
subsequent loop is executed serially.

4.2.1.1 AFFINITY clause

Affinity scheduling allows you to map parallel loop iterations onto underlying
threads. This clause is used most often on Origin series systems.

For more information on using this DOACROSSclause, see Section 5.2.2.1, page
112.

68 SR–3907 3.0.1

Multiprocessing Directives [4]

4.2.1.2 BLOCKEDclause

The BLOCKEDclause has the following format:

BLOCKED (int_expr)

int_expr Specify an integer expression.

4.2.1.3 CHUNKclause

The CHUNKclause affects work scheduling among the participating tasks in a
loop. It breaks the work up into pieces specified by int_expr. This clause is
valid only when the MP_SCHEDTYPE=DYNAMICor
MP_SCHEDTYPE=INTERLEAVEclauses have also been specified.

This clause has the following format:

CHUNK =int_expr

int_expr Specify an integer expression that represents the
size of the chunk (that is, the number of iterations
per chunk).

The CHUNKdirective also affects the division of work. For more information on
the CHUNKdirective, see Section 4.2.2, page 73.

If CHUNKis specified, and MP_SCHEDTYPEis not, MP_SCHEDTYPEdefaults to
DYNAMIC. For more information on how this clause interacts with the
MP_SCHEDTYPEclause, see Section 4.2.1.6, page 71.

4.2.1.4 IF clause

The IF clause determines whether the loop is actually executed in parallel. This
clause has the following format:

IF (logical_expr)

logical_expr Specify a logical expression. If logical_expr
evaluates to TRUE, the loop is executed in
parallel. If logical_expr evaluates to FALSE, the
loop is executed serially.

SR–3907 3.0.1 69

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The expression tests the number of times the loop
will execute to verify whether or not there is
enough work in the loop to justify the overhead
of parallel execution. Currently, the break-even
point is approximately 4000 CPU clocks of work,
which normally translates to almost 1000 floating
point operations.

4.2.1.5 LASTLOCAL, LOCAL, and SHAREDclauses

The LASTLOCAL, LOCAL, and SHAREDclauses specify lists of variables used
within parallel loops. A variable can appear in only one of these lists. The
effect of these clauses is as follows:

• The LASTLOCALclause specifies variables that are local to each process.
Unlike with the LOCALclause, the compiler saves only the value of the
logically last iteration of the loop when it exits. The name LASTLOCALis
preferred over LAST LOCAL.

• The LOCALclause specifies variables that are local to each process. If a
variable is declared as LOCAL, each iteration of the loop is given its own
uninitialized copy of the variable. You can declare a variable as LOCALif its
value does not depend on any other iteration of the loop and if its value is
used only within a single iteration. In effect, the LOCALvariable is just
temporary; a new copy can be created in each loop iteration without
changing the final answer. The name LOCALis preferred over PRIVATE.

• The SHAREDclause specifies variables that are shared across all processes. If
a variable is declared as SHARED, all iterations of the loop use the same copy
of the variable. You can declare a variable as SHAREDif it is only read (not
written) within the loop or if it is an array in which each iteration of the
loop uses a different element of the array. The name SHAREDis preferred
over SHARE.

By default, the DOvariable is LASTLOCALand all other variables are SHARED.

These clauses have the following formats:

LASTLOCAL var [, var ...]

LOCAL var [, var ...]

SHAREDvar [, var ...]

70 SR–3907 3.0.1

Multiprocessing Directives [4]

var Specify the name of a variable. If any var is an array, it is listed
without any subscripts.

Common blocks, allocatable arrays, and Fortran 90 pointers
cannot appear as var arguments in a LOCALlist.

LOCALis a little faster than LASTLOCAL, so if you do not need the final value, it
is good practice to put the DOindex variable into the LOCALlist, although this
is not required.

4.2.1.6 MP_SCHEDTYPEclause

The MP_SCHEDTYPEclause affects the way the compiler schedules work among
the participating tasks in a loop.

This clause has the following format:

MP_SCHEDTYPE =mode

mode Specify one of the following for mode:

• DYNAMIC. Specifying MP_SCHEDTYPE=DYNAMICbreaks the
iterations into pieces the size of which is specified with the
CHUNKclause. As each process finishes a piece, it enters a
critical section to grab the next available piece. This gives
good load balancing at the price of higher overhead. The
CHUNKclause is valid with this mode.

• GSS. Specifying MP_SCHEDTYPE=GSSresults in a variation of
the guided self-scheduling algorithm. The piece size is varied
depending on the number of iterations remaining. By
parceling out relatively large pieces to start with and relatively
small pieces toward the end, the system can achieve good load
balancing while reducing the number of entries into the
critical section. Specifying GUIDEDfor mode performs the
same function as specifying GSS, but GSSis preferred.

• INTERLEAVE. Specifying MP_SCHEDTYPE=INTERLEAVE
breaks the iterations into pieces of the size specified by the
CHUNKclause, and execution of those pieces is interleaved
among the processes. For example, if there are four processes
and CHUNK=2, the first process executes iterations 1–2, 9–10,
17–18, …; the second process executes iterations 3–4, 11–12,
19–20,…; and so on. Although this is more complex than the

SR–3907 3.0.1 71

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

simple method, it is still a fixed schedule with only a single
scheduling decision. The CHUNKclause is valid with this mode.
Specifying INTERLEAVEDfor mode performs the same function
as specifying INTERLEAVE, but INTERLEAVE is preferred.

• RUNTIME. Specifying MP_SCHEDTYPE=RUNTIMEdirects the
scheduling routine to examine environment variables to select
a mode. For the list of valid environment variables, see
pe_environ (5).

• SIMPLE. Specifying MP_SCHEDTYPE=SIMPLEdivides the
iterations among processes by dividing them into contiguous
pieces and assigning one piece to each process. Specifying
STATIC for mode performs the same function as specifying
SIMPLE, but SIMPLE is preferred.

The MP_SCHEDTYPEclause interacts with the CHUNKclause as follows:

• If both the MP_SCHEDTYPEand CHUNKclauses are omitted, SIMPLE
scheduling is assumed.

• If MP_SCHEDTYPE=INTERLEAVEor MP_SCHEDTYPE=DYNAMICand the
CHUNKclause is omitted, CHUNK=1is assumed.

• If MP_SCHEDTYPEis set to one of the other values, CHUNKis ignored.

• If the MP_SCHEDTYPEclause is omitted, but CHUNKis set,
MP_SCHEDTYPE=DYNAMICis assumed.

4.2.1.7 NESTclause

The NESTclause allows you to exploit nested concurrency. This DOACROSS
clause is used most often on Origin series systems. For more information on
this clause, see Section 5.2.2, page 112.

4.2.1.8 REDUCTIONclause

The REDUCTIONclause specifies variables involved in a reduction operation. In
a reduction operation, the compiler keeps local copies of the variables and
combines them when it exits the loop.

This clause has the following format:

REDUCTIONvar [, var]...

72 SR–3907 3.0.1

Multiprocessing Directives [4]

var Specify one or more variable names for var. Each var must be a
scalar individual variable, not an array. A var can be an array
element (for example REDUCTION(A(I,J))).

One element of an array can be used in a reduction operation while other
elements of the array are used in other ways. To allow for this, if an element of
an array appears in the REDUCTIONlist, the entire array can also appear in the
SHAREDlist.

The four types of reductions supported are sum(+), product (*), min (), and
max(). Note that min and max reductions must use the MIN(3I) and MAX(3I)
intrinsic functions to be recognized correctly.

The compiler confirms that the reduction expression is legal by making some
simple checks. The compiler does not, however, check all statements in the DO
loop for illegal reductions. You must ensure that the reduction variable is used
correctly in a reduction operation.

Example:

!$DOACROSS LOCAL(I), REDUCTION(A(1))

DO I = 2,N

A(1) = A(1) + A(I)
END DO

4.2.2 CHUNKdirective

The CHUNKdirective breaks work up into pieces. Like the MP_SCHEDTYPE
directive, the CHUNKdirective acts as an implicit clause, in this case a CHUNK
clause, for all DOACROSSdirectives in the scope. The CHUNKdirective is in
effect from the place it occurs in the source until another corresponding
directive is encountered or the end of the procedure is reached.

The format of this directive is as follows:

CHUNK=int_expr

int_expr Specify an integer expression that represents the size of the chunk
(that is, the number of iterations per chunk).

The CHUNKclause to the DOACROSSdirective also divides work. For more
information, see Section 4.2.1.3, page 69.

SR–3907 3.0.1 73

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

4.2.3 MP_SCHEDTYPEdirective

The MP_SCHEDTYPEdirective affects the way the compiler schedules work
among the participating tasks in a loop. Like the CHUNKdirective, the
MP_SCHEDTYPEdirective acts as an implicit clause, in this case an
MP_SCHEDTYPEclause, for all DOACROSSdirectives in the scope. The
MP_SCHEDTYPEdirective is in effect from the place it occurs in the source until
another corresponding directive is encountered or the end of the procedure is
reached.

The MP_SCHEDTYPEdirective specifies the scheduling type to be used for
subsequent !$DOACROSSdirectives that are specified without an explicit
scheduling type.

The format of this directive is as follows:

!$MP_SCHEDTYPEmode

mode This directive accepts a mode argument as described in Section
4.2.1.6, page 71.

The MP_SCHEDTYPEclause to the DOACROSSdirective also divides work. For
more information, see Section 4.2.1.6, page 71.

4.2.4 !$ directive

The !$ directive, which is really only a prefix, precedes code that should be
honored only when multiprocessing is enabled. These directive lines are
considered comment lines except when multiprocessing. A line beginning with
!$ is treated as a conditionally compiled Fortran statement.

The format of this directive is as follows:

!$ statement

statement For statement, specify a standard Fortran statement. This feature
can be used to insert debugging statements or other arbitrary
code.

The following code demonstrates the use of the !$ directive:

!$ PRINT 10
!$ 10 FORMAT(’BEGIN MULTIPROCESSED LOOP’)

74 SR–3907 3.0.1

Multiprocessing Directives [4]

!$DOACROSS LOCAL(I), SHARED(A,B)

DO I = 1, 100
CALL COMPUTE(A, B, I)

END DO

4.2.5 DOACROSSdirective examples

Simple DOACROSSdirective. Consider the following code fragment:

DO 10 I = 1, 100
A(I) = B(I)

10 CONTINUE

By inserting a directive, it can be multiprocessed:

!$DOACROSS LOCAL(I), SHARED(A, B)
DO 10 I = 1, 100

A(I) = B(I)

10 CONTINUE

Here, the defaults are sufficient provided that A and B are mentioned in a
nonparallel region or in another SHAREDlist. The following code will then work:

!$DOACROSS

DO 10 I = 1, 100

A(I) = B(I)

10 CONTINUE

A DOACROSSdirective with a LOCALclause. Consider the following code
fragment:

DO 10 I = 1, N

X = SQRT(A(I))
B(I) = X*C(I) + X*D(I)

10 CONTINUE

The following shows this fragment rewritten for multiprocessing using explicit
clauses:

!$DOACROSS LOCAL(I, X), SHARED(A, B, C, D, N)

DO 10 I = 1, N

X = SQRT(A(I))

B(I) = X*C(I) + X*D(I)

10 CONTINUE

SR–3907 3.0.1 75

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The following shows the fragment rewritten for multiprocessing using the
default settings:

!$DOACROSS LOCAL(X)

DO 10 I = 1, N

X = SQRT(A(I))

B(I) = X*C(I) + X*D(I)

10 CONTINUE

A DOACROSSdirective with a LASTLOCALclause. Consider the following code
fragment:

DO 10 I = M, K, N

X = D(I)**2
Y = X + X

DO 20 J = I, MAX

A(I,J) = A(I,J) + B(I,J) * C(I,J) * X + Y

20 CONTINUE

10 CONTINUE
PRINT*, I, X

In this example, the final values of I and X are needed after the loop completes.
A correct directive is shown in the following:

!$DOACROSS LOCAL(Y,J), LASTLOCAL(I,X),
!$& SHARED(M,K,N,ITOP,A,B,C,D)

DO 10 I = M, K, N

X = D(I)**2

Y = X + X

DO 20 J = I, ITOP
A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y

20 CONTINUE

10 CONTINUE

PRINT*, I, X

You can also use the defaults:

!$DOACROSS LOCAL(Y,J), LASTLOCAL(X)

DO 10 I = M, K, N

X = D(I)**2

Y = X + X

DO 20 J = I, MAX
A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y

20 CONTINUE

10 CONTINUE

76 SR–3907 3.0.1

Multiprocessing Directives [4]

PRINT*, I, X

In the preceding code example, I is a loop index variable for the DOACROSS
loop, so it is LASTLOCALby default. Even though J is a loop index variable, it
is not the loop index of the loop being multiprocessed and has no special status.
If it is not declared, it is assigned the default value of SHARED, which produces
an incorrect answer.

4.3 Analyzing data dependencies for multiprocessing

The essential condition required to parallelize a loop correctly is that each
iteration of the loop must be independent of all other iterations. If a loop meets
this condition, then the order in which the iterations of the loop execute is not
important. They can be executed backward or at the same time, and the answer
is still the same. This property is captured by the notion of data independence.

For a loop to be data-independent, no iterations of the loop can write a value
into a memory location that is read or written by any other iteration of that
loop. It is all right if the same iteration reads and/or writes a memory location
repeatedly as long as no others do; it is all right if many iterations read the
same location, as long as none of them write to it.

In a Fortran program, memory locations are represented by variable names. So,
to determine if a particular loop can be run in parallel, examine the way
variables are used in the loop. Because data dependence occurs only when
memory locations are modified, pay particular attention to variables that appear
on the left-hand side of assignment statements. If a variable is not modified or
if it is passed to a function or subroutine, there is no data dependence
associated with it.

The Fortran compiler supports four kinds of variable usage within a parallel
loop: SHARED, LOCAL, LASTLOCAL, and REDUCTION. If a variable is declared as
SHARED, all iterations of the loop use the same copy. If a variable is declared as
LOCAL, each iteration is given its own uninitialized copy. A variable is declared
SHAREDif it is only read (not written) within the loop or if it is an array where
each iteration of the loop uses a different element of the array. A variable can
be LOCALif its value does not depend on any other iteration and if its value is
used only within a single iteration. The LOCALvariable is essentially
temporary; a new copy can be created in each loop iteration without changing
the final answer. As a special case, if only the last value of a variable computed
on the last iteration is used outside the loop (but would otherwise qualify as a
LOCALvariable), the loop can be multiprocessed by declaring the variable to be
LASTLOCAL.

SR–3907 3.0.1 77

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

It is often difficult to analyze loops for data dependence information. Each use
of each variable must be examined to determine if it fulfills the criteria for
LOCAL, LASTLOCAL, SHARED, or REDUCTION. If all of the uses conform, the
loop can be parallelized. If not, the loop cannot be parallelized as written, but
can possibly be rewritten into an equivalent parallel form.

An alternative to manually analyzing variable usage is to use the MIPSpro
Automatic Parallelization Option. This optional software package is a Fortran
preprocessor that analyzes loops for data dependence. If the MIPSpro
Automatic Parallelization Option software determines that a loop is
data-independent, it automatically inserts the required compiler directives. If it
cannot determine if the loop is independent, it produces a listing file detailing
where the problems lie.

4.3.1 Dependency analysis examples

Example 1: Simple independence. In this example, each iteration writes to a
different location in A, and none of the variables appearing on the right-hand
side are ever written to; they are only read from. This loop can be correctly run
in parallel. All the variables are SHAREDexcept for I , which is either LOCALor
LASTLOCAL, depending on whether the last value of I is used later in the code.

DO 10 I = 1,N
10 A(I) = X + B(I)*C(I)

Example 2: Data dependence. The following code fragment contains A(I) on
the left-hand side and A(I-1) on the right. This means that one iteration of the
loop writes to a location in A and the next iteration reads from that same
location. Because different iterations of the loop read and write the same
memory location, this loop cannot be run in parallel.

DO 20 I = 2,N

20 A(I) = B(I) - A(I-1)

Example 3: Stride not 1. This example is similar to the previous example. The
difference is that the stride of the DOloop is now 2 rather than 1. A(I) now
references every other element of A, and A(I-1) references exactly those
elements of A that are not referenced by A(I) . None of the data locations on
the right-hand side is ever the same as any of the data locations written to on
the left-hand side. The data are disjoint, so there is no dependence. The loop
can be run in parallel. Arrays A and B can be declared SHARED, while variable
I should be declared LOCALor LASTLOCAL.

78 SR–3907 3.0.1

Multiprocessing Directives [4]

DO 20 I = 2,N,2

20 A(I) = B(I) - A(I-1)

Example 4: Local variable. In the following loop, each iteration of the loop
reads and writes the variable X. However, no loop iteration ever needs the
value of X from any other iteration. X is used as a temporary variable; its value
does not survive from one iteration to the next.

This loop can be parallelized by declaring X to be a LOCALvariable within the
loop. Note that B(I) is both read and written by the loop. This is not a
problem because each iteration has a different value for I , so each iteration uses
a different B(I) . The same B(I) is allowed to be read and written as long as it
is done by the same iteration of the loop. The loop can be run in parallel.
Arrays A and B can be declared SHARED, while variable I should be declared
LOCALor LASTLOCAL.

DO I = 1, N

X = A(I)*A(I) + B(I)

B(I) = X + B(I)*X

END DO

Example 5: Function call. The value of X in any iteration of the following loop
is independent of the value of X in any other iteration, so X can be made a
LOCALvariable. The loop can be run in parallel. Arrays A, B, C, and D can be
declared SHARED, while variable I should be declared LOCALor LASTLOCAL.

DO 10 I = 1, N
X = SQRT(A(I))

B(I) = X*C(I) + X*D(I)

10 CONTINUE

This loop invokes an intrinsic function, SQRT. It is possible to use functions
and/or subroutines (intrinsic or user defined) within a parallel loop. However,
verify that the parallel invocations of the routine do not interfere with one
another. In particular, SQRTreturns a value that depends only on its input
argument, does not modify global data, and does not use static storage (it has
no side effects).

The Fortran 90 intrinsic functions have no side effects. The intrinsic functions
can be used safely within a parallel loop. The intrinsic subroutines, however,
can have side effects. Most Fortran library functions cannot be included in a
parallel loop. In particular, rand is not safe for multiprocessing. For
user-written routines, it is the your responsibility to ensure that the routines can
be correctly multiprocessed.

SR–3907 3.0.1 79

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!
Caution: Do not use the -static option on the f90 (1) command line when
compiling routines called within a parallel loop.

Example 6. Rewritable data dependence. Here, the value of INDX survives the
loop iteration and is carried into the next iteration. This loop cannot be
parallelized as it is written. Making INDX a LOCALvariable does not work; you
need the value of INDX computed in the previous iteration. It is possible to
rewrite this loop to make it parallel. See Section 4.3.2, page 81, for an example.

INDX = 0

DO I = 1, N

INDX = INDX + I

A(I) = B(I) + C(INDX)
END DO

Example 7: Exit branch. The following loop contains an exit branch; that is,
under certain conditions the flow of control suddenly exits the loop. The
compiler cannot parallelize loops containing exit branches.

DO I = 1, N

IF (A(I) .LT. EPSILON) GOTO 320

A(I) = A(I) * B(I)

END DO

320 CONTINUE

Example 8: Complicated independence. Initially, it appears that the following
loop cannot be run in parallel because it uses both W(I) and W(I-K) .
However, because the value of I varies between K+1 and 2*K , then I-K goes
from 1 to K. This means that the W(I-K) term varies from W(1) to W(K) , while
the W(I) term varies from W(K+1) to W(2*K) . Therefore, W(I-K) in any
iteration of the loop is never the same memory location as W(I) in any other
iterations. Because there is no data overlap, there are no data dependencies.
This loop can be run in parallel. Elements W, B, and K can be declared SHARED,
while variable I should be declared LOCALor LASTLOCAL.

DO I = K+1, 2*K

W(I) = W(I) + B(I,K) * W(I-K)

END DO

The preceding code illustrates a general rule: the more complex the expression
used to index an array, the harder it is to analyze. If the arrays in a loop are
indexed only by the loop index variable, the analysis is usually straightforward.

80 SR–3907 3.0.1

Multiprocessing Directives [4]

Example 9: Inconsequential data dependence. The data dependence in the
following loop is present because it is possible that at some point that I will be
the same as INDEX, so there will be a data location that is being read and
written by different iterations of the loop. In this special case, you can simply
ignore it. You know that when I and INDEX are equal, the value written into
A(I) is exactly the same as the value that is already there. The fact that some
iterations of the loop read the value before it is written and some after it is
written is not important because they all get the same value. Therefore, this
loop can be parallelized. Array A can be declared SHARED, but variable I
should be declared LOCALor LASTLOCAL.

INDEX = SELECT(N)

DO I = 1, N
A(I) = A(INDEX)

END DO

Example 10: Local array. In the following code fragment, each iteration of the
loop uses the same locations in the D array. However, closer inspection reveals
that the entire D array is being used as a temporary. This can be multiprocessed
by declaring D to be LOCAL. The Fortran compiler allows arrays (even
multidimensional arrays) to be LOCALvariables with one restriction: the size of
the array must be known at compile time. The dimension bounds must be
constants; the LOCALarray cannot have been declared using a variable or the
asterisk syntax.

DO I = 1, N

D(1) = A(I,1) - A(J,1)

D(2) = A(I,2) - A(J,2)

D(3) = A(I,3) - A(J,3)

TOTAL_DISTANCE(I,J) = SQRT(D(1)**2 + D(2)**2 + D(3)**2)
END DO

The preceding loop can be parallelized. Arrays TOTAL_DISTANCEand A can be
declared SHARED, and array D and variable I can be declared LOCALor
LASTLOCAL.

4.3.2 Rewriting data dependencies

Many loops that have data dependencies can be rewritten so that some or all of
the loop can be run in parallel. You must first locate the statement(s) in the
loop that cannot be made parallel and try to find another way to express it that
does not depend on any other iteration of the loop. If this fails, try to pull the

SR–3907 3.0.1 81

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

statements out of the loop and into a separate loop, allowing the remainder of
the original loop to be run in parallel.

After you identify data dependencies, you can use various techniques to rewrite
the code to break the dependence. Sometimes the dependencies in a loop
cannot be broken, and you must either accept the serial execution rate or try to
find a new parallel method of solving the problem. The following examples
show how to deal with commonly occurring situations. These are by no means
exhaustive but cover many situations that happen in practice.

Example 1: Loop-carried value. The following code segment is the same as the
rewritable data dependence example in the previous section. INDX has its value
carried from iteration to iteration. However, you can compute the appropriate
value for INDX without making reference to any previous value.

INDX = 0

DO I = 1, N

INDX = INDX + I
A(I) = B(I) + C(INDX)

END DO

For example, consider the following code:

!$DOACROSS LOCAL (I, INDX)

DO I = 1, N
INDX = (I*(I+1))/2

A(I) = B(I) + C(INDX)

END DO

In this loop, the value of INDX is computed without using any values computed
on any other iteration. INDX can correctly be made a LOCALvariable, and the
loop can now be multiprocessed.

Example 2: Indirect indexing. Consider the following code:

DO 100 I = 1, N

IX = INDEXX(I)
IY = INDEXY(I)

XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)

YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)

IXX = IXOFFSET(IX)

IYY = IYOFFSET(IY)
TOTAL(IXX, IYY) = TOTAL(IXX, IYY) + EPSILON

100 CONTINUE

82 SR–3907 3.0.1

Multiprocessing Directives [4]

It is the final statement that causes problems. The indexes IXX and IYY are
computed in a complex way and depend on the values from the IXOFFSET and
IYOFFSET arrays. It is not known if TOTAL(IXX,IYY) in one iteration of the
loop will always be different from TOTAL(IXX,IYY) in every other iteration of
the loop.

You can pull the statement out into its own separate loop by expanding IXX
and IYY into arrays to hold intermediate values, as follows:

!$DOACROSS LOCAL(IX, IY, I)

DO I = 1, N

IX = INDEXX(I)
IY = INDEXY(I)

XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)

YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)

IXX(I) = IXOFFSET(IX)

IYY(I) = IYOFFSET(IY)
END DO

DO 100 I = 1, N

TOTAL(IXX(I),IYY(I)) = TOTAL(IXX(I), IYY(I)) + EPSILON

100 CONTINUE

Here, IXX and IYY have been turned into arrays to hold all the values
computed by the first loop. The first loop (containing most of the work) can
now be run in parallel. Only the second loop must still be run serially. This is
true if IXOFFSET or IYOFFSET are permutation vectors.

If you were certain that the value for IXX was always different in every
iteration of the loop, then the original loop could be run in parallel. It could
also be run in parallel if IYY was always different. If IXX (or IYY) is always
different in every iteration, then TOTAL(IXX,IYY) is never the same location
in any iteration of the loop, and so there is no data conflict.

This sort of knowledge is program-specific and should always be used with
great care. It may be true for a particular data set, but to run the original code
in parallel as it stands, you need to be sure it will always be true for all possible
input data sets.

Example 3: Recurrence. The following example shows a recurrence, which exists
when a value computed in one iteration is immediately used by another
iteration. There is no good way of running this loop in parallel. If this type of
construct appears in a critical loop, try pulling the statement(s) out of the loop
as in the previous example. Sometimes another loop encloses the recurrence; in
that case, try to parallelize the outer loop.

SR–3907 3.0.1 83

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

DO I = 1,N

X(I) = X(I-1) + Y(I)
END DO

Example 4: Sum reduction. The following example shows an operation known
as a reduction. Reductions occur when an array of values is combined and
reduced into a single value.

SUM = 0.0

DO I = 1,N

SUM = SUM + A(I)

END DO

This example is a sum reduction because the combining operation is addition.
Here, the value of SUMis carried from one loop iteration to the next, so this
loop cannot be multiprocessed. However, because this loop simply sums the
elements of A(I) , you can rewrite the loop to accumulate multiple,
independent subtotals and do much of the work in parallel, as follows:

NUM_THREADS = MP_NUMTHREADS()

!
! IPIECE_SIZE = N/NUM_THREADS ROUNDED UP

!

IPIECE_SIZE = (N + (NUM_THREADS-1)) / NUM_THREADS

DO K = 1, NUM_THREADS

PARTIAL_SUM(K) = 0.0

!
! THE FIRST THREAD DOES 1 THROUGH IPIECE_SIZE, THE

! SECOND DOES IPIECE_SIZE + 1 THROUGH 2*IPIECE_SIZE,

! ETC. IF N IS NOT EVENLY DIVISIBLE BY NUM_THREADS,

! THE LAST PIECE NEEDS TO TAKE THIS INTO ACCOUNT,

! HENCE THE "MIN" EXPRESSION.
!

DO I = K*IPIECE_SIZE - IPIECE_SIZE + 1, MIN(K*IPIECE_SIZE,N)

PARTIAL_SUM(K) = PARTIAL_SUM(K) + A(I)

END DO

END DO
!

! NOW ADD UP THE PARTIAL SUMS

SUM = 0.0

DO I = 1, NUM_THREADS

SUM = SUM + PARTIAL_SUM(I)

END DO

84 SR–3907 3.0.1

Multiprocessing Directives [4]

The outer loop K can be run in parallel. In this method, the array pieces for the
partial sums are contiguous, resulting in good cache utilization and
performance.

Because this is an important and common transformation, automatic support is
provided by the REDUCTIONclause:

SUM = 0.0

!$DOACROSS LOCAL (I), REDUCTION (SUM)

DO 10 I = 1, N

SUM = SUM + A(I)

10 CONTINUE

The previous code has essentially the same meaning as the much longer and
more confusing code above. Adding an extra dimension to an array to permit
parallel computation and then combining the partial results is an important
technique for trying to break data dependencies. This technique is often useful.

Reduction transformations such as this do not produce the same results as the
original code. Because computer arithmetic has limited precision, when you
sum the values together in a different order, as was done here, the round-off
errors accumulate slightly differently. It is probable that the final answer will be
slightly different from the original loop. Both answers are equally correct. The
difference is usually irrelevant, but sometimes it can be significant. If the
difference is significant, neither answer is really trustworthy.

This example is a sum reduction because the operator is plus (+). The Fortran
compiler supports the following types of reduction operations:

• sum: p = p+a(i)

• product: p = p*a(i)

• min: m = MIN(m,a(i))

• max: m = MAX(m,a(i))

For example,

!$DOACROSS LOCAL(I),REDUCTION(BG_SUM,BG_PROD,BG_MIN,BG_MAX)

DO I = 1,N

BG_SUM = BG_SUM + A(I)
BG_PROD = BG_PROD * A(I)

BG_MIN = MIN(BG_MIN, A(I))

BG_MAX = MAX(BG_MAX, A(I))

END DO

SR–3907 3.0.1 85

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The following is another example of a reduction transformation:

DO I = 1, N

TOTAL = 0.0
DO J = 1, M

TOTAL = TOTAL + A(J)

END DO

B(I) = C(I) * TOTAL

END DO

Initially, it might look as if the inner loop should be parallelized with a
REDUCTIONclause. However, consider the outer I loop. Although TOTAL
cannot be made a LOCALvariable in the inner loop, it fulfills the criteria for a
LOCALvariable in the outer loop: the value of TOTAL in each iteration of the
outer loop does not depend on the value of TOTAL in any other iteration of the
outer loop. Thus, you do not have to rewrite the loop; you can parallelize this
reduction on the outer I loop, making TOTALand J local variables.

4.4 Work quantum

A certain amount of overhead is associated with multiprocessing a loop. If the
work occurring in the loop is small, the loop can actually run slower by
multiprocessing than by single processing. To avoid this, make the amount of
work inside the multiprocessed region as large as possible, as is shown in the
following examples.

Example 1: Loop interchange. Consider the following code:

DO K = 1, N

DO I = 1, N
DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO

END DO

END DO

For the preceding code fragment, you can parallelize the J loop or the I loop.
You cannot parallelize the K loop because different iterations of the K loop read
and write the same values of A(I,J) . Try to parallelize the outermost DOloop
if possible, because it encloses the most work. In this example, that is the I
loop. For this example, use the technique called loop interchange. Although the
parallelizable loops are not the outermost ones, you can reorder the loops to
make one of them outermost.

86 SR–3907 3.0.1

Multiprocessing Directives [4]

Thus, loop interchange would produce the following code fragment:

!$DOACROSS LOCAL(I, J, K)
DO I = 1, N

DO K = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

Now the parallelizable loop encloses more work and shows better performance.
In practice, relatively few loops can be reordered in this way. However, it does
occasionally happen that several loops in a nest of loops are candidates for
parallelization. In such a case, it is usually best to parallelize the outermost one.

Occasionally, the only loop available to be parallelized has a fairly small
amount of work. It may be worthwhile to force certain loops to run without
parallelism or to select between a parallel version and a serial version, on the
basis of the length of the loop.

Example 2: Conditional parallelism. Consider the following code:

J = (N/4) * 4

DO I = J+1, N

A(I) = A(I) + X*B(I)

END DO

DO I = 1, J, 4

A(I) = A(I) + X*B(I)
A(I+1) = A(I+1) + X*B(I+1)

A(I+2) = A(I+2) + X*B(I+2)

A(I+3) = A(I+3) + X*B(I+3)

END DO

Loop unrolling of order four is used here to improve speed. For the first loop,
the number of iterations is always fewer than four, so this loop does not do
enough work to justify running it in parallel. The second loop is worthwhile to
parallelize if N is big enough. To overcome the parallel loop overhead, N needs
to be around 500.

An optimized version would use the IF clause on the DOACROSSdirective:

J = (N/4) * 4

DO I = J+1, N

A(I) = A(I) + X*B(I)

SR–3907 3.0.1 87

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

END DO

!$DOACROSS IF (J .GE. 500), LOCAL(I)
DO I = 1, J, 4

A(I) = A(I) + X*B(I)

A(I+1) = A(I+1) + X*B(I+1)

A(I+2) = A(I+2) + X*B(I+2)

A(I+3) = A(I+3) + X*B(I+3)

END DO
ENDIF

4.5 Cache effects and optimization

It is best to try to write loops that take the cache into account, with or without
parallelism. The technique for attaining the best cache performance is quite
simple: make the loop step through the array in the same way that the array is
laid out in memory. For Fortran, this means stepping through the array without
any gaps and with the leftmost subscript varying the fastest. This does not
depend on multiprocessing, nor is it required in order for multiprocessing to
work correctly. However, multiprocessing can affect how the cache is used.

4.5.1 Performing a matrix multiply

Consider the following code segment:

DO I = 1, N

DO K = 1, N
DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO

END DO

END DO

To get the best cache performance, the I loop should be innermost. At the same
time, to get the best multiprocessing performance, the outermost loop should be
parallelized.

For this example, you can interchange the I and J loops, and get the best of
both optimizations:

!$DOACROSS LOCAL(I, J, K)

DO J = 1, N

DO K = 1, N

DO I = 1, N

88 SR–3907 3.0.1

Multiprocessing Directives [4]

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

4.5.2 Optimization costs

Sometimes you must choose between the possible optimizations and their costs.
Look at the following code segment:

DO J = 1, N

DO I = 1, M

A(I) = A(I) + B(J)*C(I,J)

END DO

END DO

This loop can be parallelized on I but not on J . You could interchange the
loops to put I on the outside, thus getting a bigger work quantum.

!$DOACROSS LOCAL(I,J)

DO I = 1, M

DO J = 1, N
A(I) = A(I) + B(J)*C(I,J)

END DO

END DO

However, putting J on the inside means that you will step through the C array
in the wrong direction; the leftmost subscript should be the one that varies the
fastest. It is possible to parallelize the I loop where it stands:

DO J = 1, N

!$DOACROSS LOCAL(I)

DO I = 1, M
A(I) = A(I) + B(J)*C(I,J)

END DO

END DO

However, Mneeds to be large for the work quantum to show any improvement.
In this example, A(I) is used to do a sum reduction, and it is possible to use
reduction techniques to rewrite this in a parallel form. However, that involves
converting array A from a one-dimensional array to a two-dimensional array to
hold the partial sums; this is analogous to the way the scalar summation
variable was converted into an array of partial sums.

SR–3907 3.0.1 89

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

If A is large, however, the conversion can take too much memory. It can also
take extra time to initialize the expanded array and increase the memory
bandwidth requirements.

NUM = MP_NUMTHREADS()

IPIECE = (N + (NUM-1)) / NUM

!$DOACROSS LOCAL(K,J,I)

DO K = 1, NUM
DO J = K*IPIECE - IPIECE + 1, MIN(N, K*IPIECE)

DO I = 1, M

PARTIAL_A(I,K) = PARTIAL_A(I,K) + B(J)*C(I,J)

END DO

END DO
END DO

!$DOACROSS LOCAL (I,K)

DO I = 1, M

DO K = 1, NUM

A(I) = A(I) + PARTIAL_A(I,K)

END DO
END DO

You must analyze the various possible optimizations to find the combination
that is right for the particular job.

4.5.3 Load balancing

When the Fortran compiler divides a loop into pieces, by default it uses the
simple method of separating the iterations into contiguous blocks of equal size
for each process. It can happen that some iterations take significantly longer to
complete than other iterations. At the end of a parallel region, the program
waits for all processes to complete their tasks. If the work is not divided evenly,
time is wasted waiting for the slowest process to finish.

Consider the following code:

DO I = 1, N

DO J = 1, I

A(J, I) = A(J, I) + B(J)*C(I)

END DO

END DO

The previous code segment can be parallelized on the I loop. Because the inner
loop goes from 1 to I , the first block of iterations of the outer loop will end
long before the last block of iterations of the outer loop.

90 SR–3907 3.0.1

Multiprocessing Directives [4]

In this example, this is easy to see and predictable, so you can change the
program:

NUM_THREADS = MP_NUMTHREADS()

!$DOACROSS LOCAL(I, J, K)

DO K = 1, NUM_THREADS

DO I = K, N, NUM_THREADS

DO J = 1, I
A(J, I) = A(J, I) + B(J)*C(I)

END DO

END DO

END DO

In this rewritten version, instead of breaking up the I loop into contiguous
blocks, break it into interleaved blocks. Thus, each execution thread receives
some small values of I and some large values of I , giving a better balance of
work between the threads. Interleaving usually, but not always, cures a load
balancing problem.

You can use the MP_SCHEDTYPEclause to automatically perform this desirable
transformation, as in this example:

!$DOACROSS LOCAL(I,J), MP_SCHEDTYPE=INTERLEAVE
DO 20 I = 1, N

DO 10 J = 1, I

A (J,I) = A(J,I) + B(J)*C(J)

10 CONTINUE

20 CONTINUE

The previous code has the same meaning as the rewritten form above.

Interleaving can cause poor cache performance because the array is no longer
stepped through at stride 1. You can improve performance somewhat by
adding a CHUNK=int_expr clause. Usually 4 or 8 is a good value for int_expr.
Each small chunk will have stride 1 to improve cache performance, while the
chunks are interleaved to improve load balancing.

The way that iterations are assigned to processes is known as scheduling.
Interleaving is one possible schedule. Both interleaving and the simple
scheduling methods are examples of fixed schedules; the iterations are assigned
to processes by a single decision made when the loop is entered. For more
complex loops, it may be desirable to use DYNAMICor GSSschedules.

SR–3907 3.0.1 91

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Comparing the output from SpeedShop allows you to see how well the load is
being balanced so you can compare the different methods of dividing the load.
For more information on SpeedShop, see ssrun (1).

Even when the load is perfectly balanced, iterations may still take varying
amounts of time to finish because of random factors. One process may take a
page fault, another may be interrupted to let a different program run, and so on.
Because of these unpredictable events, the time spent waiting for all processes
to complete can be several hundred cycles, even with near perfect balance.

4.5.4 Local common blocks

The -Xlocal option to the ld (1) command allows named common blocks to
be local to a process. Each process in the parallel job gets its own private copy
of the common block. This can be helpful in converting certain types of Fortran
programs into a parallel form.

The common block must be a named common block (blank common cannot be
made local), and it must not be initialized by DATAstatements.

To create a local common block, use the special loader option -Xlocal
followed by a list of common block names. The external name of a common
block known to the loader has a trailing underscore and is not surrounded by
slashes. For example, the following command makes the common block /foo/
a local common block in the resulting a.out file. You can specify multiple
-Xlocal options if necessary.

% f90 -mp a.o -Xlocal,foo_

You can use the !$COPYIN directive to copy values from the master thread’s
version of the common block into the slave thread’s version. This directive has
the following format:

!$COPYIN item [, item] ...

item Specify one or more members of a local common block. Each item
can be a variable, an array, an individual element of an array, or
the entire common block.

Note: The !$COPYIN directive cannot be executed from inside a parallel
region.

92 SR–3907 3.0.1

Multiprocessing Directives [4]

The following example propagates the values for x and y , all the values in the
common block foo , and the i th element of array a:

!$COPYIN X,Y, /FOO/, A(I)

This directive is translated into executable code, so in this example I is
evaluated at the time this statement is executed.

4.6 PCF directives

In addition to the simple loop-level parallelism offered by the DOACROSS
directive, the compiler supports a set of directives that allows you to specify a
more general model of parallelism. This model is based on the work done by
the Parallel Computing Forum (PCF), which itself formed the basis for the
proposed ANSI-X3H5 standard.

The main concept in this model is the parallel region, which can be any arbitrary
section of code (not just a DO loop). Within the parallel region, there are special
work-sharing constructs that can be used to divide the work among separate
processes or threads. All master and slave threads synchronize at the bottom of
a work-sharing construct. None of the threads continue past the end of a
construct until they all have completed execution within that construct.

The parallel region can also contain a critical section construct, where exactly one
process executes at a time. Within a critical section, only one thread executes at
a time, and threads do not synchronize at the bottom of a critical section.

The master thread executes the user program until it reaches a parallel region.
It then spawns one or more slave threads that begin executing code at the
beginning of a parallel region. Each thread executes all the code in the region
until a work sharing construct is encountered. Each thread then executes some
portion of the work sharing construct, and then resumes executing the parallel
region code. At the end of the parallel region, all the threads synchronize, and
the master thread continues execution of the user program.

For information on interthread communication with library routines, see
Appendix A, page 179.

The compiler recognizes the PCF directives when multiprocessing is enabled
with either the -mp or the -pfa option to the f90 (1) command. The PCF
directives are as follows:

• BARRIER

• CRITICALSECTION, ENDCRITICALSECTION

SR–3907 3.0.1 93

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• PARALLEL, ENDPARALLEL

• PARALLELDO

• PDO, ENDPDO

• PSECTION[S], SECTION, and ENDPSECTION[S]

• SINGLEPROCESS, ENDSINGLEPROCESS

The following sections describe the syntax of the PCF directives.

Note: Generated code from the PCF directives is sometimes slower than the
generated code from the special case parallelism offered by the DOACROSS
directive. PCF directive code is slower because of the extra synchronization
required. When a DOACROSSloop executes, there is a synchronization point
at entry and another at exit. When a parallel region executes, there is a
synchronization point at entry to the region, another at each entry to a
work-sharing construct, another at each exit from a work-sharing construct,
and one at exit from the region. Thus, several separate DOACROSSloops
typically execute faster than a single parallel region with several PDO
directives. Limit your use of the parallel region construct to those few cases
that actually need it.

4.6.1 BARRIERdirective

The BARRIERdirective ensures that each process waits until all processes reach
the barrier before proceeding.

This directive has the following format:

!$PAR BARRIER

4.6.2 CRITICALSECTION and ENDCRITICALSECTIONdirectives

The CRITICALSECTION and ENDCRITICALSECTIONdirectives ensure that the
enclosed block of code is executed by only one process (thread) at a time.
Another process attempting to gain entry to the critical section must wait until
the previous process has exited. Threads do not synchronize at the bottom of a
critical section.

The critical section construct can appear anywhere in a program, including
inside and outside a parallel region and within a DOACROSSloop.

94 SR–3907 3.0.1

Multiprocessing Directives [4]

These directives have the following format:

!$PAR CRITICALSECTION [(lock_variable)]

!$PAR ENDCRITICALSECTION

lock_variable Specify an integer variable that is initialized to zero. The
parentheses are required. If you do not specify lock_variable, the
compiler automatically supplies a global lock. Multiple critical
section constructs inside the same parallel region are considered
to be independent of each other unless they use the same explicit
lock_variable.

4.6.3 PARALLELand ENDPARALLELdirectives

The PARALLELand ENDPARALLELdirectives enclose a parallel region that
includes work-sharing constructs and critical sections. It signifies the boundary
within which slave threads execute. A user program can contain any number of
parallel regions.

These directives have the following format:

!$PAR PARALLEL [clause [, clause]...]

!$PAR ENDPARALLEL

clause Specify one of the following clauses:

• IF (logical_expression)

• LOCAL var[, var] ...

• SHAREDvar[, var] ...

The IF , LOCAL, and SHAREDclauses have the same meaning as
for the DOACROSSdirective. Also as with the DOACROSS
directive, the keyword LOCALis preferred to PRIVATE and the
keyword SHAREDis preferred to SHARE. For more information on
these clauses and their syntax, see Section 4.2.1, page 67.

The preferred form of the directive has no commas between the clauses.

In the following code, all threads enter the parallel region and call routine FOO:

SR–3907 3.0.1 95

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

SUBROUTINE EX1(INDEX)

INTEGER I
!$PAR PARALLEL LOCAL(I)

I = MP_MY_THREADNUM()

CALL FOO(I)

!$PAR END PARALLEL

END

4.6.4 PARALLELDOdirective

The PARALLELDOdirective indicates that the iterations of the subsequent DO
loop should be executed by different processes. This directive produces the
same effect as the DOACROSSdirective, and it is conceptually the same as a
parallel region containing exactly one PDOconstruct and no other code. Each
thread inside the enclosing parallel region executes separate iterations of the
loop within the parallel DOconstruct. This directive must not appear within a
parallel region.

This directive has the following format:

!$PAR PARALLELDO [clause [, clause] ...]

clause For clause, enter one or more of the DOACROSSclauses described
in Section 4.2.1, page 67.

4.6.5 PDOand ENDPDOdirectives

The PDOand ENDPDOdirectives surround a loop and indicate that the iterations
of the enclosed loop should be executed by different processes. These directives
must be enclosed within a parallel region delimited by PARALLELand
ENDPARALLELdirectives.

Within a parallel region, each thread inside the region executes a separate
iteration of a loop within a PDOconstruct.

These directives have the following format:

!$PAR PDO [clause [, clause]...]

[!$PAR ENDPDO[NOWAIT]]

96 SR–3907 3.0.1

Multiprocessing Directives [4]

clause Specify one of the following clauses:

• AFFINITY

• CHUNK=int_expr

• LASTLOCAL var

• LOCAL var [, var] ...

• MP_SCHEDTYPE=mode

• (ORDERED). Specifying the (ORDERED)clause is equivalent to
specifying MP_SCHEDTYPE=DYNAMICand CHUNK=1. The
parentheses are required.

Each clause has the same meaning as for the DOACROSSdirective.
Also as with the DOACROSSdirective, the keyword LASTLOCALis
preferred to LAST LOCALand the keyword LOCALis preferred to
PRIVATE.

The (ORDERED)clause is not a supported DOACROSSclause.

For more information on the AFFINITY clause and its syntax, see
Section 5.2.2.1, page 112. For more information on the other
clauses and their syntax, see Section 4.2.1, page 67.

It is legal to declare a data item as LOCALin a PDOdirective even if it was
declared as SHAREDin the enclosing parallel region.

The ENDPDOdirective is optional. If specified, this directive must appear
immediately after the end of the DOloop. The optional NOWAITclause specifies
that each process should proceed directly to the code immediately following the
directive. If you do not specify NOWAIT, the processes wait until all have
reached the directive before proceeding.

The code in the following example is equivalent to a DOACROSSloop. In fact,
the compiler recognizes this as a special case and generates the same (more
efficient) code as for a DOACROSSdirective.

SUBROUTINE EX2(A,N)

REAL A(N)

!$PAR PARALLEL LOCAL(I) SHARED(A)

!$PAR PDO
DO I = 1, N

A(I) = A(I) + 1.0

END DO

SR–3907 3.0.1 97

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!$PAR END PARALLEL

END

4.6.6 PSECTION[S], SECTION, and ENDPSECTION[S] directives

The PSECTION[S] and ENDPSECTION[S] directives delimit a parallel section
construct and distribute code blocks to processes. These directives have an
effect that is similar to the Fortran 90 SELECTconstruct. Each block of code is
parceled out in turn to a separate thread.

The SECTIONdirective indicates a starting line for an individual section within
a parallel section.

These directives must be enclosed within a parallel region delimited by
PARALLELand ENDPARALLELdirectives.

These directives have the following format:

!$PAR PSECTION[S] [LOCAL var[, var] ...]

[!$PAR SECTION]

!$PAR ENDPSECTION[S] [NOWAIT]

var Specify a variable name for var. The LOCALkeyword has the
same meaning as it does on the DOACROSSdirective. The LOCAL
keyword is preferred to PRIVATE. For more information on
LOCAL, see Section 4.2.1, page 67.

It is legal to declare a data item as LOCALin a parallel sections
construct even if it was declared as SHAREDin the enclosing
parallel region.

The optional NOWAITclause specifies that each process should proceed directly
to the code immediately following the directive. If you do not specify NOWAIT,
the processes wait until all have reached the ENDPSECTIONdirective before
proceeding.

Parallel sections can contain critical section constructs, but they cannot contain
any of the following types of constructs:

• A DOloop that is preceded by a PDOdirective

• A DOloop that is preceded by a PARALLELDOor a DOACROSSdirective

98 SR–3907 3.0.1

Multiprocessing Directives [4]

• Code delimited by SINGLEPROCESSand ENDSINGLEPROCESSdirectives

Each code block is executed in parallel (depending on the number of processes
available). The code blocks are assigned to threads one at a time, in the order
specified. Each code block is executed by only one thread.

For example, consider the following code:

SUBROUTINE EX3(A,N1,B,N2,C,N3)

REAL A(N1), B(N2), C(N3)

!$PAR PARALLEL LOCAL(I) SHARED(A,B,C)

!$PAR PSECTIONS
!$PAR SECTION

DO I = 1, N1

A(I) = 0.0

END DO

!$PAR SECTION

DO I = 1, N2
B(I) = 0.5

END DO

!$PAR SECTION

CALL NORMALIZE(C,N3)

DO I = 1, N3
C(I) = C(I) + 1.0

END DO

!$PAR END PSECTION

!$PAR END PARALLEL

END

The first thread to enter the parallel section construct executes the first block,
the second thread executes the second block, and so on. This example has only
three sections, so if more than three threads are in the parallel region, the fourth
and higher threads wait at the !$PAR ENDPSECTIONdirective until all threads
are finished. If the parallel region is being executed by only two threads,
whichever thread finishes its block first continues and executes the remaining
block.

This example uses DOloops, but a parallel section can be any arbitrary block of
code. Parallel constructs have significant overhead. Make sure the amount of
work performed is enough to outweigh the extra overhead.

The sections within a parallel section construct are assigned to threads one at a
time, from the top down. There is no other implied ordering to the operations
within the sections. In particular, a later section cannot depend on the results of
an earlier section, unless some form of explicit synchronization is used. If there

SR–3907 3.0.1 99

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

is such explicit synchronization, you must be sure that the lexical ordering of
the blocks is a legal order of execution.

4.6.7 SINGLEPROCESSand ENDSINGLEPROCESSdirectives

The SINGLEPROCESSand ENDSINGLEPROCESSdirectives enclose a block of
code that should be executed by only one process. These directives must be
enclosed within a parallel region delimited by PARALLELand ENDPARALLEL
directives.

These directives have the following format:

!$PAR SINGLEPROCESS [LOCAL var [, var] ...]

!$PAR ENDSINGLEPROCESS[NOWAIT]

var Specify a variable name for var. The LOCALkeyword has the
same meaning as it does on the DOACROSSdirective. The LOCAL
keyword is preferred to PRIVATE. For more information on
LOCAL, see Section 4.2.1, page 67.

It is legal to declare a data item as LOCALin a single process
construct even if it was declared as SHAREDin the enclosing
parallel region.

The optional NOWAITclause specifies that each process should proceed directly
to the code immediately following the directive. If you do not specify NOWAIT,
the processes waits until all have reached the ENDSINGLEPROCESSdirective
before proceeding.

This construct is semantically equivalent to a parallel section construct with only
one section. The single process construct provides a more descriptive syntax.

The first thread to reach a single process section executes the code in that block.
All other threads wait at the end of the block until the code has been executed.

Notice the use of the repetition of the IF test in the first parallel loop:

IF (A(I,J) .GT. CUR_MAX) THEN

!$PAR CRITICAL SECTION
IF (A(I,J) .GT. CUR_MAX) THEN

This practice is called test&test&set. It is a multiprocessing optimization. The
following straightforward code segment is incorrect:

100 SR–3907 3.0.1

Multiprocessing Directives [4]

DO I = 1, N

IF (A(I,J) .GT. CUR_MAX) THEN
!$PAR CRITICAL SECTION

INDEX_X = I

INDEX_Y = J

CUR_MAX = A(I,J)

!$PAR END CRITICAL SECTION

ENDIF
ENDDO

Because many threads execute the loop in parallel, there is no guarantee that
once inside the critical section, CUR_MAXstill has the same value it did in the
IF test outside the critical section (some other thread may have updated it). In
particular, CUR_MAXmay now have a value that is larger than A(I,J) .
Therefore, the critical section must be locked before testing the value of
CUR_MAX. Changing the previous code into the following code works correctly,
but suffers from a serious performance penalty: the critical section lock must be
acquired and released (an expensive operation) for each element of the array:

DO I = 1, N

!$PAR CRITICAL SECTION

IF (A(I,J) .GT. CUR_MAX) THEN

INDEX_X = I

INDEX_Y = J
CUR_MAX = A(I,J)

ENDIF

!$PAR END CRITICAL SECTION

ENDDO

Because the values are rarely updated, this process involves a lot of wasted
effort. It is almost certainly slower than just executing the loop serially.

Combining the two methods, as in the original example, produces code that is
both fast and correct. If the IF test outside of the critical section fails, you can
be certain that the values will not be updated, and can proceed. You can expect
that the outside IF test will account for the majority of cases. If the outer IF
test passes, then the values might be updated, but you cannot always be
certain. To ensure correctness, you must perform the test again after acquiring
the critical section lock.

You can prefix one of the two identical IF tests with !$ to reduce overhead in
the non-multiprocessed case.

SR–3907 3.0.1 101

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Lastly, note the difference between the single process and critical section
constructs. If several processes arrive at a critical section construct, they execute
the code one at a time. However, they will all execute the code. If several
processes arrive at a single process construct, only one process executes the
code. The other processes bypass the code and wait at the end of the construct
for the chosen process to finish.

4.6.8 Restrictions on the PCF directives

The three work-sharing constructs, PDO, PSECTION, and SINGLEPROCESS,
must be executed by all the threads executing in the parallel region or by none
of the threads. The following is illegal:

.

.

.

!$PAR PARALLEL
IF (MP_MY_THREADNUM() .GT. 5) THEN

!$PAR SINGLE PROCESS

MANY_PROCESSES = .TRUE.

!$PAR END SINGLE PROCESS

ENDIF

.

.

.

.

The preceding code cannot run successfully when more than 6 processors are
used. One or more processes will be stuck at the !$PAR ENDSINGLEPROCESS
directive waiting for all the threads to arrive. Because some of the threads
never took the appropriate branch, they will never encounter the construct.
However, the following kind of simple looping is supported:

...

!$PAR PARALLEL LOCAL(I,J) SHARED(A)

DO I= 1,N

!$PAR PDO

DO J = 2,N
...

The distinction here is that all of the threads encounter the work-sharing
construct. They all complete it, and they all loop around and encounter it again.

102 SR–3907 3.0.1

Multiprocessing Directives [4]

This restriction does not apply to the critical section construct, which operates
on one thread at a time without regard to any other threads.

Parallel regions cannot be nested inside of other parallel regions, nor can
work-sharing constructs be nested. However, as an aid to writing library code,
you can call an external routine that contains a parallel region even from within
a parallel region. In this case, only the first region is actually run in parallel.
Therefore, you can create a parallelized routine without accounting for whether
it will be called from within an already parallelized routine.

SR–3907 3.0.1 103

Parallel Programming on Origin series
systems [5]

This chapter describes the support provided for parallel programs on Origin
series systems.

For information on environment variables that can control run-time features,
see the pe_environ (5) man page.

The multiprocessing features described in this chapter require support from the
MP run-time library. IRIX operating system versions 6.3 and later are
automatically shipped with this library. If you need to access these features on
a machine running a different IRIX version, contact your sales representative.

5.1 Performance tuning on Origin series systems

Origin series systems provide cache-coherent, shared memory in the hardware.
Memory is physically distributed across processors. Processors can read data
only from the primary cache. If the required data is not present in the primary
cache, a cache miss is said to have occured. Therefore, references to locations in
the remote memory of another processor take substantially longer to complete
than references to locations in local memory. Cache misses adversely affect
program performance.

Figure 2 shows a simplified version of the Origin series memory hierarchy.

SR–3907 3.0.1 105

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

a11354

Processor

Cache

MemoryHub

Processor

Cache

Processor

Cache

MemoryHub

Processor

Cache

Interconnection network

Figure 2. Origin series memory hierarchy

5.1.1 Improving program performance

To obtain good performance in parallel programs it is important to schedule
computation and to distribute the data across the underlying processors and
memory modules, ensuring that most cache misses are satisfied from local
rather than from remote memory. The primary goal of programming support is
to enable user control over data placement and user control over computation
scheduling.

Cache behavior is the largest single factor affecting performance, and programs
with infrequent cache misses usually have little need for explicit data
placement. These programs write data to memory and reuse it as many times
as possible before overwriting it. Depending on your system’s processor, you
may also be able to use perfex (1) to find information on your program’s cache
misses. For more information on perfex , see perfex (1).

In programs with many cache misses, if the misses correspond to true data
communication between processors, data placement is unlikely to help. In these
cases, it may be necessary to redesign your program to reduce interprocessor
communication. When redesigning your program to reduce interprocessor
communication, keep the following in mind:

• Make sure the data needed by a processor is at least local to the processor’s
memory.

• Make sure that each processor is working independently and not relying on
the changing data of other processors.

106 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

• Minimize cache misses.

If the misses are to data that is referenced primarily by a single processor, then
data placement may be able to convert remote references to local references,
thereby reducing the latency of the miss. The possible methods for data
placement are automatic page migration or explicit data distribution, either regular
or reshaped, described in detail in Section 5.3.1, page 119, and Section 5.3.2,
page 120. The differences between these methods are shown in Figure 3. Some
criteria for choosing between these methods are discussed in Section 5.1.2, page
109.

Automatic page migration requires no user intervention and is based on the
run-time cache miss behavior of the program. It can, therefore, adjust to
dynamic changes in the reference patterns. However, page migration is very
conservative, and the compiler may be slow to react to changes in the reference
patterns. It is also limited to performing page-level data allocation.

Regular data distribution (performing only page-level placement of the array) is
also limited to page-level allocation, but is useful when the page migration
heuristics are slow and the desired distribution is known to the programmer.

Finally, reshaped data distribution changes the layout of the array. This
overcomes the page-level allocation constraints, but it is useful only if a data
structure has the same (static) distribution for the duration of the program.
Given these differences, it may be necessary to use each of these methods for
different data structures in the same program.

SR–3907 3.0.1 107

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

a11355

Done
Yes

Good
cache

behavior?

No

Are
misses true

communication
?

Data placement
unlikely to help.

May need to
redesign algorithm.

Yes

Positive
effects

Negative
effects or

restrictions

Automatic Page Migration

Automatic, no
user-intervention

Can adjust to
dynamic changes

Deliberately slow
to react

Limited to
page-level
allocation

Deliberately slow
to react

Explicit Data Distribution (regular)

Useful if
placement
known
statically

Limited to
page-level
allocation

Explicit Data Distribution (reshaped)

Overcome
page-level
constraints

Useful for static
distributions only
Restrictions on
usage

Increased U
ser C

ontrol

•

•

•

•

•

• •

• •

•

No

Figure 3. Cache behavior and solutions

108 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

5.1.2 Choosing a tuning method

For a given data structure in the program, you can choose between the
automatic page migration method or the data distribution method. Your choice
will be based on the following criteria:

• If the program repeatedly references the data structure and benefits from
reuse in the cache, data placement is not needed.

• If the program incurs a large number of cache misses on the data structure,
then you should identify the desired distribution in the array dimensions
(such as BLOCKor CYCLIC) based on the desired parallelism in the program.

The following example suggests a A(BLOCK, *) distribution:

!$DOACROSS

DO I = 2, N

DO J = 2, N
A(I,J) = 3*I + 4*J + A(I, J-1)

END DO

END DO

However, the following example suggests a A(*, BLOCK) distribution:

DO I = 2, N

!$DOACROSS

DO J = 2, N

A(I,J) = 3*I + 4*J + A(I-1, J)
END DO

END DO

After identifying the desired distribution, you can select either regular or
reshaped distribution based on the size of an individual processor’s portion of the
distributed array. Regular distribution is useful only if each processor’s portion
is substantially larger than the page size in the underlying system (16 Kbytes on
the Origin series systems). Otherwise, regular distribution is probably not
useful, and you should use the DISTRIBUTE_RESHAPEdirective, where the
compiler changes the layout of the array to overcome page-level constraints.

For example, consider the following code:

REAL(KIND=8) A(M, N)

!$DISTRIBUTE A(BLOCK, *)

In this example, the size of each processor’s portion is approximately m/P
elements (8 � (m/P) bytes), where P is the number of processors. If m is

SR–3907 3.0.1 109

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

1,000,000 then each processor’s portion is likely to exceed a page and regular
distribution is sufficient. However, if m is 10,000 then DISTRIBUTE_RESHAPE
is required to obtain the desired distribution.

In contrast, consider the following distribution:

!$DISTRIBUTE A(*, BLOCK)

In this example, the size of each processor’s portion is approximately (m � n)/P
elements (8 � (m � n)/P bytes). Therefore, if n is 100, for example, regular
distribution may be sufficient even if m is only 10,000.

Distributing the outer dimensions of an array increases the size of an individual
processor’s portion (favoring regular distribution), but distributing the inner
dimensions is more likely to require reshaped distribution.

The IRIX operating system on Origin series systems follows a default
“first-touch” page-allocation policy. This means that each page is allocated from
the local memory of the processor that incurs a page-fault on that page.
Therefore, in programs where the array is initialized and is consequently first
referenced in parallel, even a regular distribution directive may not be
necessary, because the underlying pages are allocated from the desired memory
location automatically due to the first-touch policy.

5.2 Directives for performance tuning

The MIPSpro 7 Fortran 90 compiler supports directives for performance tuning
on Origin series systems. You must be licensed for the MIPSpro Automatic
Parallelization Option in order for these directives to be honored. In addition,
the -MP, -mp , or -pfa options must be in effect.

The directives supported are as follows:

• DISTRIBUTE

• DISTRIBUTE_RESHAPE

• DOACROSS

• DYNAMIC

• PAGE_PLACE

• REDISTRIBUTE

The following sections describe the syntax of these directives.

110 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

5.2.1 DISTRIBUTE, DISTRIBUTE_RESHAPE, and REDISTRIBUTE

The DISTRIBUTE directive determines the data distribution for an array. The
DISTRIBUTE_RESHAPEdirective dynamically redistributes an array. The
REDISTRIBUTE directive performs data distribution with reshaping.

The format of this directive is as follows:

!$DISTRIBUTE array (dist1, dist2) [ONTO (target1, target2 [, targetN]
...)]

!$DISTRIBUTE_RESHAPE array (dist1, dist2) [ONTO (target1, target2 [,
targetN] ...)]

!$REDISTRIBUTE array (dist1, dist2) [ONTO (target1, target2 [, targetN]
...)]

array Specify the name of an array.

dist Specify the type of distribution for the named array. The number
of dist arguments specified must be equal to the number of array
dimensions. dist can be one of the following:

• BLOCK. Indicates that BLOCKdistribution should be used.

• CYCLIC [expr]. If expr is not specified, a chunk size of 1 is
assumed. For performance reasons, do not specify an expr that
is 3 or evaluates to 3; this may be incompatible when passing
a reshaped array as a parameter to another routine.

• An asterisk (*). Indicates that the axis is not distributed.

target Specify the target processor topology. This argument to the ONTO
clause specifies how to partition the processors across the
distributed dimensions. There must be one target argument
specified for each BLOCKand CYCLIC distribution specified.

The data distribution directives and DOACROSS NESTclause have an optional
ONTOclause. The ONTOclause allows you to specify the processor topology
when two (or more) dimensions of processors are required.

The following example array is distributed in two dimensions, so you can use
the ONTOclause to specify how to partition the processors across the distributed
dimensions:

SR–3907 3.0.1 111

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

! ASSIGN PROCESSOR IN THE RATIO 1:2 TO THE TWO DIMENSION

REAL(KIND=8) A(100, 200)
!$DISTRIBUTE A (BLOCK, BLOCK) ONTO (1, 2)

You can supply a DISTRIBUTE directive on a formal parameter, thereby
specifying the distribution on the incoming actual parameter. If different calls
to the subroutine have parameters with different distributions, you can omit the
DISTRIBUTE directive on the formal parameter. Data affinity loops in that
subroutine are automatically implemented through a run-time lookup of the
distribution. This is allowed only for regular data distribution. For reshaped
array parameters, the distribution must be fully specified on the formal
parameter.

For more information on using the data distribution directives, see Section 5.3,
page 118.

5.2.2 DOACROSS

The DOACROSSdirective indicates to the compiler that it should run iterations
of the subsequent DO loop in parallel. This directive must appear directly
before the loop that is to be operated on, and it remains in effect for that loop
only. The format of this directive is as follows:

!$DOACROSS[clause [, clause] ...]

clause This directive accepts one or more standard clause arguments.
The AFFINITY clause allows you to specify either data affinity
scheduling or thread affinity scheduling. The NESTclause allows
you to specify nested DOACROSSstatements.

For information on all the standard accepted clause arguments,
see Section 4.2.1, page 67.

For information on the AFFINITY clause, see Section 5.2.2.1, page
112. For information on the NESTclause, see Section 5.2.2.2, page
114.

5.2.2.1 AFFINITY clause

Affinity scheduling controls the mapping of iterations of a parallel loop for
execution onto the underlying threads. The DOACROSSdirective with the

112 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

AFFINITY clause must immediately precede the loop to which it applies, and it
is in effect only for that loop.

You can specify affinity scheduling with an additional clause to a DOACROSS
directive. An AFFINITY clause, if supplied, overrides an MP_SCHEDTYPE
clause.

There are two type of affinity scheduling: data affinity and thread affinity.

The AFFINITY clause to the DOACROSSdirective has the following format:

!$DOACROSS AFFINITY (int_expr, expr)

!$DOACROSS AFFINITY(do_variable) = DATA(array_element)

!$DOACROSS AFFINITY(do_variable) = THREAD(expr)

int_expr Specify an integer expression.

do_variable Specify the DO loop identifier.

array_element Enter an array element.

expr Specify a thread number. do_variable is executed on the thread
number specified, modulo the number of threads.

Because the threads may need to evaluate expr in each iteration of
the loop, the variables used in the expr (other than the do_variable)
must be declared SHAREDand must not be modified during the
execution of the loop. Violating these rules can lead to incorrect
results. For information on declaring shared variables, see Section
4.2.1.5, page 70.

If the expr does not depend on the DOvariable, all iterations
execute on the same thread and do not benefit from parallel
execution.

The default MP_SCHEDTYPEfor parallel loops is SIMPLE. However, when -O3
is in effect, loops that reference reshaped arrays default to data affinity
scheduling for the most frequently accessed reshaped array in the loop (chosen
by the compiler). To obtain SIMPLE scheduling even at -O3 , you can explicitly
specify the MP_SCHEDTYPEclause on the DOACROSSdirective.

SR–3907 3.0.1 113

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Data affinity for loops with nonunit stride can sometimes result in nonlinear
affinity expressions. In such situations the compiler issues a warning, ignores
the affinity clause, and defaults to SIMPLE scheduling.

Example 1. The following code shows an example of data affinity:

!$DISTRIBUTE A(BLOCK)

!$DOACROSS AFFINITY(I) = DATA(A(A*I+B))

DO I = 1, N

A(A*I+B) = 0

END DO

The multiplier for A and the constant term B must both be literal constants,
with A greater than zero.

This example distributes the iterations of the parallel loop to match the data
distribution specified for array A, such that iteration I is executed on the
processor that owns element A(A*I+B) based on the distribution for A. The
iterations are scheduled based on the specified distribution, and are not affected
by the actual underlying data distribution, which may, for example, differ at
page boundaries.

Example 2. In case of a multidimensional array, affinity is provided for the
dimension that contains the loop index variable. The loop index variable cannot
appear in more than one dimension in an AFFINITY directive. In the following
example, the loop is scheduled based on the block distribution of the first
dimension:

!$DISTRIBUTE A (BLOCK, CYCLIC(1))

!$DOACROSS AFFINITY(I) = DATA(A(I+3, J))

DO I = 1, N
DO J = 1, N

A(I+3, J) = A(I+3,J-1)

END DO

END DO

Example 3. The following directive executes iteration I on the thread number
given by the user-supplied expression (modulo the number of threads):

!$DOACROSS AFFINITY (I) = THREAD(expr)

5.2.2.2 NESTclause

The NESTclause on the DOACROSSdirective allows you to exploit nested
concurrency in a limited manner. Although true nested parallelism is not

114 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

supported, you can exploit parallelism across iterations of a perfectly nested
loop nest.

The NESTclause to the DOACROSSdirective has the following format:

!$DOACROSS NEST (do_variable , do_variable [, do_variable] ...)
[ONTO (target1, target2 [, targetn] ...)]

index Specify a do_variable name that identifies a subsequent loop. At
least two do_variable names must be specified. The loops
identified must be perfectly nested.

target Specify the target processor topology. The ONTOclause allows
you to specify the processor topology when two (or more)
dimensions of processors are required. This argument specifies
how to partition the processors across the distributed dimensions.
target can be either an integer expression or an asterisk (*).

Example 1. In a nested DOACROSSwith two or more nested loops, you can use
the ONTOclause to specify the partitioning of processors across the multiple
parallel loops, as follows:

! USE 2 PROCESSORS IN THE OUTER LOOP,

! AND THE REMAINING IN THE INNER LOOP

!$DOACROSS NEST(I, J) ONTO(2, *)

DO I = 1, N
DO J = 1, M

A(J,I) = ...

END DO

END DO

Example 2. The following directive specifies that the entire set of iterations
across both loops can be executed concurrently:

!$DOACROSS NEST(I, J)
DO I = 1, N

DO J = 1, M

A(I,J) = 0

END DO

END DO

It is restricted, however, in that loops I and J must be perfectly nested. No
code is allowed between either the DO I ... and DO J ... statements or

SR–3907 3.0.1 115

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

between the END DOstatements. You can also supply the nest clause with a PDO
directive. For more information on the PDOdirective, see Section 4.6.5, page 96.

You can combine a nested DOACROSSwith an AFFINITY clause or with an
MP_SCHEDTYPEclause specified as SIMPLE or INTERLEAVED(DYNAMICand
GSSare not currently supported). The default is SIMPLE scheduling, except
when accessing reshaped arrays. For more information on the AFFINITY
clause, see Section 5.2.2.1, page 112. For more information on the
MP_SCHEDTYPEclause see Section 4.2.1.6, page 71.

The following code uses an AFFINITY clause:

!$DOACROSS NEST(I, J) AFFINITY(I,J) = DATA(A(I,J))

DO I = 2, N-1
DO J = 2, M-1

A(I,J) = A(I,J) + I*J

END DO

END DO

5.2.3 DYNAMIC

The DYNAMICdirective informs the compiler that a particular array can be
dynamically redistributed. This directive is required for arrays in procedures
that contain DOACROSSloops with data affinity for arrays in the loops.

By default, the compiler assumes that a distributed array is not dynamically
redistributed, and it directly schedules a parallel loop for the specified data
affinity. In contrast, a redistributed array can have multiple possible
distributions, and data affinity for a redistributed array must be implemented in
the run-time system based on the particular distribution.

However, the compiler does not know if an array is redistributed because the
array may be redistributed in another procedure or in another file. Therefore,
you must explicitly specify the DYNAMICdeclaration for redistributed arrays.
The DYNAMICdirective implements data affinity for that array at run time
rather than at compile time. If you know an array has a specified distribution
throughout the duration of a procedure, you do not have to supply the
DYNAMICdirective. The result is more efficient compile time affinity scheduling.
This directive is required only in those procedures that contain a DOACROSS
loop with data affinity for that array. This tells the compiler that the array can
be dynamically redistributed. Data affinity for such arrays is implemented
through a run-time lookup.

The format of this directive is as follows:

116 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

!$DYNAMIC (array)

array Specify the name of an array.

The run-time lookup incurs some extra overhead compared to a direct
compile-time implementation. Because the compiler assumes that a distributed
array is not redistributed at run time, the distribution is known at compile time,
and data affinity for the array can be implemented directly by the compiler. In
contrast, because a redistributed array can have multiple possible distributions
at run time, data affinity for a redistributed array is implemented in the run-time
system based on the distribution at run time, incurring extra run-time overhead.

You can avoid this overhead when a procedure contains data affinity for a
redistributed array and the distribution of the array for the entire duration of
that procedure is known. In this situation, you can supply the DISTRIBUTE
directive with the particular distribution and omit the DYNAMICdirective.

Because reshaped arrays cannot be dynamically redistributed, this is an issue
only for regular data distribution.

5.2.4 PAGE_PLACE

The PAGE_PLACEdirective allows you to explicitly place irregular data
structures in the physical memory of a particular processor.

The format of this directive is as follows:

!$PAGE_PLACE (object, size, threadnum)

object Specify the name of the object.

size Specify the size of object, in bytes.

threadnum Specify the processor number upon which object
is to be placed.

This directive causes all the pages spanned by the virtual address range (address
to address+size) to be allocated from the local memory of processor number
threadnum. It is an executable statement; therefore, you can use it to place either
statically or dynamically allocated data.

An example of this directive is as follows:

SR–3907 3.0.1 117

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

REAL(KIND=8) A(100)

!$PAGE_PLACE (A, 800, 3)

5.3 Using the data distribution directives

The data distribution directives, DISTRIBUTE, REDISTRIBUTE, and
DISTRIBUTE_RESHAPE, allow you to specify distributions for array data
structures. For irregular data structures, the directives can explicitly place data
directly on a specific processor.

The DISTRIBUTE, DYNAMIC, and DISTRIBUTE_RESHAPEdirectives are
declarations that must be specified in the declaration part of the program, along
with the array declaration. The REDISTRIBUTE directive is an executable
statement and can appear in any executable portion of the program.

You can specify a data distribution directive for any local, global, or common
block array. Each dimension of a multidimensional array can be independently
distributed. The possible distribution types for an array dimension are BLOCK,
CYCLIC[(expr)], and * , as follows:

• A BLOCKdistribution is one that partitions the elements of the dimension of
size N into P blocks (one per processor), with each block of size B =
ceiling (N/ P).

P0 P1 P2

a11356

Pp-1

B• • •B B B

Figure 4. Block distribution

• A CYCLIC distribution can include an expr to indicate the chunk size. A
chunk size that is either greater than 1 or is determined at run time is
sometimes also called BLOCK-CYCLIC.

• The * distribution indicates that the array is not distributed.

A BLOCKdistribution

A CYCLIC[(expr)] distribution partitions the elements of the dimension into
pieces of size expr each and distributes them sequentially across the processors:

118 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

P0 P1

a11357

Pp-1

k • • •k k k

P0

• • •

Figure 5. Cyclic distribution

A distributed array is distributed across all of the processors being used in that
particular execution of the program, as determined by the
MP_SET_NUMTHREADSenvironment variable. If a distributed array is
distributed in more than one dimension, then by default the processors are
apportioned as equally as possible across each distributed dimension. For
example, if an array has two distributed dimensions, then an execution with 16
processors assigns 4 processors to each dimension (4 x 4=16), whereas an
execution with 8 processors assigns 4 processors to the first dimension and 2
processors to the second dimension. You can override this default and explicitly
control the number of processors in each dimension using the ONTOclause with
a data distribution directive.

5.3.1 Regular data distribution

The regular data distribution directives try to achieve the desired distribution
solely by influencing the mapping of virtual addresses to physical pages
without affecting the layout of the data structure. Because the granularity of
data allocation is a physical page (at least 16 Kbytes), the achieved distribution
is limited by the underlying page granularity. However, the advantages are that
regular data distribution directives can be added to an existing program
without any restrictions, and can be used for affinity scheduling.

For example, the following directive dynamically redistributes array A:

!$REDISTRIBUTE A (BLOCK, CYCLIC(K))

The REDISTRIBUTE directive is an executable statement that changes the
distribution permanently (or until another REDISTRIBUTE statement). It also
affects subsequent affinity scheduling.

The DYNAMICdirective specifies that the named array is redistributed in the
program, and is useful in controlling affinity scheduling for dynamically
redistributed arrays.

SR–3907 3.0.1 119

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

5.3.2 Data distribution with reshaping

Similar to regular data distribution, the RESHAPEdirective specifies the desired
distribution of an array. In addition, however, the RESHAPEdirective declares
that the program makes no assumptions about the storage layout of that array.
The compiler performs aggressive optimizations for reshaped arrays that violate
standard Fortran layout assumptions, but it guarantees the desired data
distribution for that array.

As shown in the following example, the RESHAPEdirective accepts the same
distributions as the regular data distribution directive:

!$DISTRIBUTE_RESHAPE (BLOCK, CYCLIC(1))

5.3.2.1 Restrictions on Reshaped Arrays

Because the DISTRIBUTE_RESHAPEdirective specifies that the program does
not depend on the storage layout of the reshaped array, restrictions on the
arrays that can be reshaped include the following:

• The distribution of a reshaped array cannot be changed dynamically (that is,
there is no REDISTRIBUTE_RESHAPEdirective).

• Initialized data cannot be reshaped.

• Arrays that are explicitly allocated through the alloca (3C) or MALLOC(3F)
routines and accessed through Cray pointers cannot be reshaped.

• An array that is equivalenced to another array cannot be reshaped.

• I/O for a reshaped array cannot be mixed with namelist I/O or a function
call in the same I/O statement.

• A common block containing a reshaped array cannot be loaded with the
-Xlocal option on ld (1).

!
Caution: This user error is not detected by the compiler or loader.

There are two possible outcomes if a reshaped array is passed as an actual
parameter to a subroutine:

• The array is passed in its entirety; that is, CALL FUNC(A) passes the entire
array A, whereas CALL FUNC(A(I,J)) passes a portion of A. The compiler
automatically clones a copy of the called subroutine and compiles it for the
incoming distribution. The actual and formal parameters must match in the
number of dimensions, and the size of each dimension.

120 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

You can restrict a subroutine to accept a particular reshaped distribution on
a parameter by specifying a DISTRIBUTE_RESHAPEdirective on the formal
parameter within the subroutine. All calls to this subroutine with a
mismatched distribution will lead to compile time or load time.

• A portion of the array can be passed as a parameter, but the callee must
access only a single processor’s portion. If the callee exceeds a single
processor’s portion, the results are undefined. You can use intrinsics to
access details about the array distribution.

5.3.2.2 Error detection for reshaped arrays

Most errors in accessing reshaped arrays are detected either at compile time or
at load time. These errors include:

• Inconsistencies in reshaped arrays across common blocks (including across
files).

• Using the EQUIVALENCEstatement to declare a reshaped array as
equivalent to another array.

• Inconsistencies in reshaped distributions on actual and dummy arguments.

• Other errors such as disallowed I/O statements involving reshaped arrays,
reshaping initialized data, or reshaping dynamically allocated data.

Errors such as matching the declared size of an array dimension typically can
be caught only at run time. You can use the -MP:CHECK_RESHAPE=ONoption
on the f90 (1) command to perform these tests at run time. These run-time
checks are not generated by default because they incur overhead, but they are
useful during program development.

The types of run-time checks performed can detect the following:

• Inconsistencies in array bounds declarations on each actual and dummy
argument

• Inconsistencies in declared bounds of a dummy argument that corresponds
to a portion of a reshaped actual argument

5.3.2.3 Implementation of reshaped arrays

The compiler transforms a reshaped array into a pointer to a processor array.
The processor array has one element per processor, with the element pointing to
the portion of the array local to the corresponding processor.

SR–3907 3.0.1 121

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Figure 6 shows the effect of a DISTRIBUTE_RESHAPEdirective with a BLOCK
distribution on a one-dimensional array. N is the size of the array dimension, P
is the number of processors, and B is the block-size on each processor,
CEILING=(N/ P) .

Before

After

A

A

B

P0 P1 P2 • • •

P0

P1

P2

B

• • •

• • •

a11358

Figure 6. Implementation of BLOCKdistribution

With this implementation, an array reference A(I) is transformed into a
two-dimensional reference A[I/B][I%B] (in C syntax with C dimension
order), where B is the size of each block, and given by CEILING(N/ P) . Thus
A[I/B] points to a processor’s local portion of the array, and A[I/B][I%B]
refers to a specific element within the local processor’s portion.

A CYCLIC distribution with a chunk size of 1 is implemented as shown in
Figure 7.

122 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

Before

After

A

A

P0 P1 P2

P0

P1

P2

0

• • •

a11359

(Chunks of size 1)

P 2P 3P

Figure 7. Implementation of CYCLIC(1) distribution

An array reference, A(I) , is transformed to A[I%P][I/P] , where P is the
number of threads in that distributed dimension.

Finally, a CYCLIC distribution with a chunk size that is either a constant greater
than 1 or a run-time value (also called BLOCK-CYCLIC) is implemented as
Figure 8 shows.

SR–3907 3.0.1 123

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Before

After

A

A

P0 P1 P2

P0

P1

P2

N

• • •

a11360

(Chunks of size k)

Pk

k

Figure 8. Implementation of BLOCK-CYCLICDistribution

An array reference, A(I) , is transformed to the three-dimensional reference
A[(I/K)%P][I/(PK)][I%K] , where P is the total number of threads in that
dimension, and K is the chunk size.

The compiler tries to optimize these divide/modulo operations out of inner
loops through aggressive loop transformations such as blocking and peeling.

5.3.3 Regular versus reshaped data distribution

Regular distributions have an advantage in that they do not impose any
restrictions on the distributed arrays and can be freely applied in existing codes.
Furthermore, they work well for distributions where page granularity is not a
problem. For example, consider a BLOCKdistribution of the columns of a
two-dimensional Fortran array of size A(R,C) (column-major layout) and
distribution (*, BLOCK) . If the size of each processor’s portion,
CEILING=(C/ P)(R)(element_size) is significantly greater than the page size
(16KB on Origin2000 systems), then regular data distribution should be effective
in placing the data in the desired fashion.

However, regular data distribution is limited by page-granularity considerations.
For instance, consider a (BLOCK,BLOCK) distribution of a two-dimensional
array in which the size of a column is much smaller than a page. Each physical

124 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

page is likely to contain data belonging to multiple processors, making the data
distribution quite ineffective. However, data distribution may still be useful
from the standpoint of affinity scheduling considerations.

Reshaped data distribution addresses the problems of regular distributions by
changing the layout of the array in memory to guarantee the desired
distribution. However, because the array no longer conforms to standard
Fortran storage layout, there are restrictions on the usage of reshaped arrays.

Given both types of data distribution, you can choose between the two based
on the characteristics of the particular array in an application.

5.4 Examples

The following sections provide several examples of data distribution and
affinity scheduling.

5.4.1 Distributing columns of a matrix

Example 1. This example distributes the columns of a matrix sequentially. Such
a distribution places data effectively only if the size of an individual column
exceeds that of a page.

REAL(KIND=8) A(N, N)

! DISTRIBUTE COLUMNS IN CYCLIC FASHION
!$DISTRIBUTE A (*, CYCLIC(1))

! PERFORM GAUSSIAN ELIMINATION ACROSS COLUMNS

! THE AFFINITY CLAUSE DISTRIBUTES THE LOOP ITERATIONS BASED

! ON THE COLUMN DISTRIBUTION OF A
DO I = 1, N

!$DOACROSS AFFINITY(J) = DATA(A(I,J))

DO J = I+1, N

! ... REDUCE COLUMN J BY COLUMN I ...

END DO
END DO

If the columns are smaller than a page, it may be beneficial to reshape the array.
This is easily specified by using a DISTRIBUTE_RESHAPEdirective in place of
the DISTRIBUTE directive.

SR–3907 3.0.1 125

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

In addition to overcoming size constraints as shown in the preceding example,
the DISTRIBUTE_RESHAPEdirective is useful when the desired distribution is
contrary to the layout of the array.

Example 2. If you want to distribute the rows of a two-dimensional matrix, this
example uses the DISTRIBUTE_RESHAPEdirectiveto overcome the storage
layout constraints to provide the desired distribution.

REAL(KIND=8) A(N, N)

! DISTRIBUTE ROWS IN BLOCK FASHION

!$DISTRIBUTE_RESHAPE A (BLOCK, *)

REAL(KIND=8) SUM(N)
!$DISTRIBUTE SUM(BLOCK)

! PERFORM SUM-REDUCTION ON THE ELEMENTS OF EACH ROW

!$DOACROSS LOCAL(J) AFFINITY(I) = DATA(A(I,J))

DO I = 1,N
DO J = 1,N

SUM(I) = SUM(I) + A(I,J)

ENDDO

ENDDO

5.4.2 Using data distribution and data affinity scheduling

The following example demonstrates regular data distribution and data affinity.
This example, run on a 4-processor Origin2000 server, uses simple block
scheduling. Processor 0 calculates the values of the first 25,000 elements of A,
processor 1 calculates the second 25,000 values of A, and so on. Arrays B and C
are initialized using one processor. Therefore, all of the memory pages are
touched by the master processor (processor 0) and are placed in processor 0’s
local memory.

Using data distribution changes the placement of memory pages for arrays A, B,
and C to match the data reference pattern.

Without data distribution:

REAL(KIND=8) A(1000000), B(1000000)

REAL(KIND=8) C(1000000)

INTEGER I

!$PAR PARALLEL SHARED(A, B, C) LOCAL(I)
!$PAR PDO

DO I = 1, 100000

126 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

A(I) = B(I) + C(I)

END DO
!$PAR END PARALLEL

With data distribution:

REAL(KIND=8) A(1000000), B(1000000)

REAL(KIND=8) C(1000000)

INTEGER I

!$DISTRIBUTE A(BLOCK), B(BLOCK), C(BLOCK)

!$PAR PARALLEL SHARED(A, B, C) LOCAL(I)
!$PAR PDO AFFINITY(I) = DATA(A(I))

DO I = 1, 100000

A(I) = B(I) + C(I)

END DO

!$PAR END PARALLEL

5.4.3 Argument passing

Example 1. The following code shows how a distributed array can be passed as
an argumentr to a subroutine that has a matching declaration for the dummy
argument:

REAL(KIND=8) A(M, N)

!$DISTRIBUTE_RESHAPE A (BLOCK, *)

CALL FOO(A, M, N)
END

SUBROUTINE FOO(A, P, Q)

REAL(KIND=8) A(P, Q)

!$DISTRIBUTE_RESHAPE A (BLOCK, *)
!$DOACROSS AFFINITY(I) = DATA(A(I, J))

DO I = 1, P

END DO

END

Because the array is reshaped, it is required that the DISTRIBUTE_RESHAPE
directive in the caller and the callee match exactly. Furthermore, all calls to
subroutine FOOmust pass in an array with the exact same distribution.

If the array was only distributed (not reshaped) in the preceding example, then
subroutine FOOcould be called from different places with different incoming
distributions. In that case, you could omit the distribution directive on the

SR–3907 3.0.1 127

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

dummy argument, thereby ensuring that any data affinity within the loop is
based on the distribution (at run time) of the incoming actual argument, as
shown in this example:

REAL(KIND=8) A(M, N), B(P, Q)

REAL(KIND=8) A (BLOCK, *)

REAL(KIND=8) B (CYCLIC(1), *)

CALL FOO(A, M, N)

CALL FOO(B, P, Q)

SUBROUTINE FOO(X, S, T)

REAL(KIND=8) X(S, T)

!$DOACROSS AFFINITY(I) = DATA(X(I+2, J))

DO I =
...

END DO

5.4.4 Redistributed arrays

Example 1. The following example shows how an array is redistributed at run
time:

SUBROUTINE BAR(X, N)

REAL(KIND=8) X(N, N)
...

!$REDISTRIBUTE X (*, CYCLIC(expr))
...

END

SUBROUTINE FOO

REAL(KIND=8) LOCALARRAY(1000, 1000)

!$DISTRIBUTE LOCALARRAY (*, BLOCK)

! THE CALL TO SUBROUTINE BAR MAY REDISTRIBUTE LOCALARRAY

!$DYNAMIC LOCALARRAY
...

CALL BAR(LOCALARRAY, 100)

! THE DISTRIBUTION FOR THE FOLLOWING DOACROSS

! IS NOT KNOWN STATICALLY

!$DOACROSS AFFINITY(I) = DATA(A(I, J))

END

128 SR–3907 3.0.1

Parallel Programming on Origin series systems [5]

Example 2. The following example illustrates a situation in which the DYNAMIC
directive can be optimized away. The main routine contains local array A that is
both distributed and dynamically redistributed. This array is passed as an
argument to FOObefore being redistributed and to FOOafter being (possibly)
redistributed. The incoming distribution for FOOis statically known; you can
specify a DISTRIBUTE directive on the dummy argument, thereby obtaining
more efficient static scheduling for the DOACROSSdirective with data affinity.
The subroutine BAR, however, can be called with multiple distributions,
requiring run-time scheduling of the DOACROSSloop.

PROGRAM MAIN

!$DISTRIBUTE A (BLOCK, *)

!$DYNAMIC A

CALL FOO(A)

IF (X .NE. 17) THEN
!$REDISTRIBUTE A (CYCLIC(X), *)

END IF

CALL BAR(A)

END

SUBROUTINE FOO (A)

! Incoming distribution is known to the user

!$DISTRIBUTE A(BLOCK, *)

!$DOACROSS AFFINITY(I) = DATA(A(I, J))

...

END

SUBROUTINE BAR(A)

! Incoming distribution is not known statically

!$DYNAMIC A

!$DOACROSS AFFINITY(I) = DATA(A(I, J))
...

END

5.4.5 Irregular distributions and thread affinity

This example consists of a large array that is conceptually partitioned into
unequal portions, one for each processor. This array is indexed through index
array IDX , which stores the starting index value and the size of each processor’s
portion.

REAL(KIND=8) A(N)

! IDX ---> INDEX ARRAY CONTAINING START INDEX INTO A (IDX(P, 0))

SR–3907 3.0.1 129

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

! AND SIZE (IDX(P, 1)) FOR EACH PROCESSOR

REAL(KIND=4) IDX (P, 2)
!$PAGE_PLACE (A(IDX(0, 0)), IDX(0, 1)*8, 0)

!$PAGE_PLACE (A(IDX(1, 0)), IDX(1, 1)*8, 1)

!$PAGE_PLACE (A(IDX(2, 0)), IDX(2, 1)*8, 2)

...

!$DOACROSS AFFINITY(I) = THREAD(I)

DO I = 0, P-1
! ... PROCESS ELEMENTS ON PROCESSOR I

! ... A(IDX(I, 0)) TO A(IDX(I,0)+IDX(I,1))

END DO

130 SR–3907 3.0.1

CF90 Directives [6]

The MIPSpro 7 Fortran 90 compiler, running on IRIX systems, recognizes some
of the directives that are supported by the Cray Research CF90 compiler on
UNICOS and UNICOS/mk systems. This chapter describes these directives.

Table 1 categorizes the directives according to purpose. It also indicates the
pages that contain the main descriptions of the individual directives.

Table 1. Directives

Purpose and Name Description

Local use of compiler features:

BOUNDS, NOBOUNDS Section 6.3.1, page 133

FREE, FIXED Section 6.3.2, page 135

Autotasking:

DOALL Section 6.4.1, page 136

DOPARALLEL, ENDDO Section 6.4.2, page 138

GUARD, ENDGUARD Section 6.4.3, page 139

PARALLEL, ENDPARALLEL Section 6.4.4, page 140

Miscellaneous:

ID Section 6.5.1, page 142

IVDEP Section 6.5.2, page 144

NAME Section 6.5.3, page 144

Note: The implementation of the following directives is deferred: DOALL,
DOPARALLEL, ENDDO, GUARD, ENDGUARD, PARALLEL, and ENDPARALLEL.

6.1 Using directives

The following sections describe how to use the CF90 directives and the effects
they have on programs.

SR–3907 3.0.1 131

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

6.1.1 Directive continuation

In the following example, an asterisk (*) appears in column 6 to indicate that
the second line is a continuation of the preceding line:

!DIR$ NA

!DIR$*ME

The FIXED and FREEdirectives must appear alone on a directive line and
cannot be continued.

If you want to specify more than one directive on a line, separate each directive
with a comma. Some directives require that you specify one or more
arguments; when specifying a directive of this type, no other directive can
appear on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of
source form.

Do not use source preprocessor (#) directives within multiline compiler
directives (CDIR$ or !DIR$).

6.1.2 Directive range and placement

The range and placement of directives is as follows:

• The FIXED and FREEdirectives can appear anywhere in your source code.
All other directives must appear within a program unit.

• The BOUNDSand NOBOUNDSdirectives take effect at the point at which they
appear in the source code.

• The ID directive does not apply to any particular range of code. It adds
information to the file.o generated from the input program.

• The ENDDOdirective must appear after the loop body of a DOPARALLELloop,
if it appears. The corresponding DOPARALLELdirective must be present.

• The following directives apply only to the next loop encountered lexically:

– DOALL

– DOPARALLEL

– IVDEP

132 SR–3907 3.0.1

CF90 Directives [6]

• The NAMEdirective does not apply to particular ranges of code. It is a
declarative directive that alters the status of entities in ways that affect
compilation.

• The following Autotasking directives must appear as pairs within a program
unit:

– GUARD, ENDGUARD

– PARALLEL, ENDPARALLEL

6.1.3 Interaction of directives with the -x command line option

The -x option on the f90 (1) accepts one or more directives as arguments.
When your input is compiled, the compiler ignores directives named as
arguments to the -x option. If you specify -x mipspro , all directives are
ignored. If you specify -x dirname, a particular directive is ignored. For more
information on this command line option, see Section 2.63, page 47.

6.2 Optimization directives

The following sections describe the directives used to control vectorization and
tasking, which are as follows:

6.3 Local use of compiler features

Certain directives provide local control over specific compiler features. They are
as follows:

• BOUNDSand NOBOUNDS

• FREEand FIXED

The following sections describe these directives.

6.3.1 Check array bounds: BOUNDSand NOBOUNDS

Array bounds checking provides a check of most array references at both
compile time and run time to ensure that each subscript is within the array’s
declared size.

SR–3907 3.0.1 133

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The -C option on the f90 (1) command line controls bounds checking for a
whole compilation. The BOUNDSand NOBOUNDSdirectives toggle the feature on
and off within a program unit. Either directive can specify particular arrays or
can apply to all arrays. The formats of these directives are as follows:

!DIR$ BOUNDS [array [, array] ...]

!DIR$ NOBOUNDS[array [, array] ...]

array The name of an array. The name cannot be a subobject of a
derived type. When no array name is specified, the directive
applies to all arrays.

BOUNDSremains in effect for a given array until the appearance of a NOBOUNDS
directive that applies to that array, or until the end of the program unit. Bounds
checking can be enabled and disabled many times in a single program unit.

Note: To be effective, these directives must follow the declarations for all
affected arrays. It is suggested that they be placed at the end of a program
unit’s specification statements unless they are meant to control particular
ranges of code.

The bounds checking feature detects any reference to an array element whose
subscript exceeds the array’s declared size. For example:

REAL A(10)

! DETECTED AT COMPILE TIME:

A(11) = X

! DETECTED AT RUN TIME IF IFUN(M) EXCEEDS 10:
A(IFUN(M)) = W

The compiler generates a message when it detects an out-of-bounds subscript.
If the compiler cannot detect the out-of-bounds subscript (for example, if the
subscript includes a function reference), a message is issued for out-of-bound
subscripts when your program runs.

Bounds checking increases program run time. If an array’s last dimension
declarator is * , checking is not performed on the last dimension’s upper bound.
Arrays in formatted WRITEand READstatements are not checked.

If bounds checking detects an out-of-bounds array reference, a message is
issued and the program halts.

134 SR–3907 3.0.1

CF90 Directives [6]

6.3.2 Specify source form: FREEand FIXED

The FREEand FIXED directives specify whether the source code in the program
unit is written in free source form or fixed source form. The FREEand FIXED
directives override the -fixedform and -freeform options, if specified, on
the command line. The formats of these directives are as follows:

!DIR$ FREE

!DIR$ FIXED

These directives apply to the source file in which they appear, and they allow
you to switch source forms within a source file.

You can change source form within an INCLUDE file. After the INCLUDE file
has been processed, the source form reverts back to the source form that was
being used prior to processing of the INCLUDE file.

Note: The source preprocessor does not recognize the FREEand FIXED
directives. These directives must not be specified in a file that is submitted to
the source preprocessor.

6.4 Autotasking directives (deferred implementation)

If your system includes multiple central processing units (CPUs), your program
may be able to make use of multitasking, or running simultaneously on more
than one CPU. This technology speeds up program execution by decreasing
elapsed time. You can determine the number of CPUs on your system by
entering the hinv (1) command.

The compiler automatically recognizes many parallel coding constructs, and it
compiles them for multitasking without requiring additional user input; this
capability is called Autotasking.

Autotasking directives let you specify the level of parallelism desired. You can
start and end parallel processing at any number of suitable points within a
subprogram. These directives are useful when the compiler fails to recognize
parallelism that you know exists. This can occur, for example, when you have
subroutine calls that can be executed in parallel.

This section provides an overview of the Autotasking directives recognized by
the compiler.

SR–3907 3.0.1 135

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!
Caution: The ability to use Autotasking directives in a subprogram that host
associates a variable can result in undefined behavior. This applies only to
Autotasking directives; it does not apply to parallelism detected by the
compiler.

A branch out of a parallel region is not permitted and can produce incorrect
results.

Autotasking directives control the way the compiler multitasks your program.
You can insert tasking directive lines directly into your source code. The
compiler supports the following Autotasking directives:

• DOALL

• DOPARALLEL, ENDDO

• GUARD, ENDGUARD

• PARALLEL, ENDPARALLEL

The following sections describe the Autotasking directives.

6.4.1 Mark parallel loop: DOALL(deferred implementation)

The !MIC$ DOALL directive indicates that the DOloop beginning on the next
line may be executed in parallel by multiple processors. No directive is needed
to end a DOALLloop, (that is, the DOALLinitiates a parallel region that contains
only a DOloop with independent iterations). The loop index variable for a
DOALLmust be specified as a PRIVATE variable.

When the compiler generates code for a !MIC$ DOALL, all the variables and
arrays in the region must be defined in a SHAREDor PRIVATE parameter.

The format of this directive is as follows:

!MIC$ DOALL parameter [[,] parameter] ...

parameter Table 2 describes parameters for the DOALL
directive. More than one parameter can appear

136 SR–3907 3.0.1

CF90 Directives [6]

on the directive, but they must be separated by
commas or blanks.

Table 2. Autotasking directive parameter

parameter Description

IF(expr) Performs a run-time test to choose between uniprocessing and
multiprocessing. When not specified, multiprocessing is chosen if the
loop is not in a routine that was called from within a parallel region. The
logical expression (expr) determines (at run time) whether
multiprocessing will occur. When expr is true, multiprocessing is enabled.

MAXCPUS(n) Specifies the maximum number of CPUs that the parallel region can use
effectively. Does not ensure that n processors will be assigned. This is the
optimal maximum. The n argument must be of type integer. Argument n
can be a constant, a variable, or an expression. Both of the following are
valid specifications:

MAXCPUS (2)

MAXCPUS (NUM)

PRIVATE(var [, var] ...) Specifies that the variables listed will have private scope; that is, each task
(original or helper) will have its own private copy of these variables. The
PRIVATE clause identifies those variables that are not shared between
parallel processes. A variable cannot be declared both PRIVATE and
SHARED. The loop control variable of the DOALLloop cannot be specified
as SHARED; it must be specified as PRIVATE. Variables cannot be
subobjects (that is, array elements or components of derived types).

SAVELAST Specifies that the values of private variables, from the final iteration of a
DOALLdirective, will continue in the original task after execution of the
iterations of the DOALL. By default, private variables are not guaranteed
to retain the last iteration values. SAVELASTcan be used only with
DOALL, and if the full iteration set is not completed (for example, if the
loop is exited early), the values of private variables are indeterminate.

SHARED(var [, var] ...) Specifies that the variables listed will have shared scope; that is, they are
accessible to both the original task and all helper tasks. The SHARED
clause identifies those variables that are shared between parallel
processes. A variable cannot be declared both PRIVATE and SHARED. The
loop control variable of the DOALLloop cannot be specified as SHARED; it
must be specified as PRIVATE. Variables cannot be subobjects (that is,
array elements or components of derived types).

SR–3907 3.0.1 137

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

6.4.2 Mark parallel loop: DOPARALLELand ENDDO(deferred implementation)

The !MIC$ DOPARALLELdirective indicates that the DOloop beginning on the
next line may be executed in parallel by multiple processors. No directive is
needed to end a DOPARALLELloop.

The !MIC$ ENDDOdirective extends a control structure beyond the DOloop.
Without a !MIC$ ENDDOdirective, all CPUs synchronize immediately after the
loop, so that no processors can continue executing until all of the iterations are
done. A !MIC$ ENDDOdirective moves this point of synchronization from the
end of the loop to the line of the !MIC$ ENDDOdirective.

This lets the compiler use parallelism in loops containing some forms of
reduction computations. These directives can be used only within a parallel
region bounded by the PARALLELand ENDPARALLELdirectives.

Every variable in a parallel region must be declared as PRIVATE or SHARED.

The formats for these directives are as follows:

!MIC$ DOPARALLEL [parameter]

!MIC$ ENDDO

The parameters are described in Table 2, page 137. Only one parameter can be
used for a given DOloop.

In the following example, a parallel region is defined by PARALLELand
ENDPARALLEL. A reduction computation is implemented by a
DOPARALLEL/ENDDOpair, which ensures that all contributions to SUMand BIG
are included, and GUARD/ENDGUARD, which protects the updating of shared
variables SUMand BIG .

SUM = 0.0

BIG = -1.0

!MIC$ PARALLEL PRIVATE(XSUM,XBIG,I)
!MIC$* SHARED(SUM,BIG,AA,BB,CC)

XSUM = 0.0

XBIG = -1.0

!MIC$ DOPARALLEL

DO I = 1, 2000
:

XSUM = XSUM + (AA(I)*(BB(I)-CC(AA(I))))

XBIG = MAX(ABS(AA(I)*BB(I)), XBIG)

138 SR–3907 3.0.1

CF90 Directives [6]

:

END DO
!MIC$ GUARD

SUM = SUM + XSUM

BIG = MAX(XBIG,BIG)

!MIC$ ENDGUARD

!MIC$ ENDDO

!MIC$ ENDPARALLEL

6.4.3 Critical region: GUARDand ENDGUARD(deferred implementation)

The !MIC$ GUARDand !MIC$ ENDGUARDdirectives delimit a critical region,
providing the necessary synchronization to protect or guard the code inside the
critical region. A critical region is a code block that is to be executed by only one
processor at a time, although all processors that enter a parallel region will
execute it.

The formats for these directives are as follows:

!MIC$ GUARD [n]

!MIC$ ENDGUARD[n]

n Mutual exclusion flag; two regions with the same flag cannot be
active concurrently. n must be of type integer and can be a
variable or an expression, from which the low-order 6 bits are
used. For example, GUARD 1and GUARD 2can be active
concurrently, but two GUARD 7directives cannot.

For optimal performance, no n should be specified. Otherwise, n should be an
integer constant; a general expression can be used for the unusual case that the
critical region number must be passed to a lower-level routine. When n is not
provided, the critical region blocks only other instances of itself, but no other
critical regions. Critical regions may appear anywhere in a program. That is,
they are not limited to parallel regions.

Numbered GUARDdirectives are not supported. They are implemented as
unnamed GUARDdirectives. This can lead to deadlock if the user has nested
GUARDdirectives.

SR–3907 3.0.1 139

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

6.4.4 Mark parallel region: PARALLELand ENDPARALLEL(deferred implementation)

The !MIC$ PARALLEL and !MIC$ ENDPARALLELdirectives mark,
respectively, the beginning and end of a parallel region. Parallel regions are
combinations of redundant code blocks and partitioned code blocks. The
formats for these directives are as follows:

!MIC$ PARALLEL [parameter [[,] parameter] ...]

!MIC$ ENDPARALLEL

The parameters are described in Table 2, page 137.

The PARALLELdirective indicates where multiple processors enter execution.
The portion of code that all processors execute until reaching a DOPARALLEL
directive is called a redundant code block. Because the iterations of the DOloop
within a DOPARALLELdirective are distributed across available processors, this
portion of code is called the partitioned code block. The scope of a variable in a
parallel region is either shared or private. Shared variables are used by all
processors; private variables are unique to a processor.

When the compiler generates code for a !MIC$ PARALLEL directive, all the
variables and arrays in the region must be defined in a SHAREDor PRIVATE
parameter.

6.4.5 Examples (deferred implementation)

The following examples show shared and private variables and arrays.

6.4.5.1 Read-only variables

The following examples show read-only variables:

!MIC$ DOALL PRIVATE(I) SHARED(N1,N2,A)
DO I = N1, N2

...= A

END DO

A is a shared variable because it is a read-only variable. All processors share the
same location for A.

!MIC$ DOALL SHARED(N1,N2,M1,M2,V) PRIVATE(I,J)

DO 10 I = N1, N2

140 SR–3907 3.0.1

CF90 Directives [6]

DO 10 J = M1, M2

... = V(J)
END DO

V is shared because it is a read-only array. N1, N2, M1, and M2 are also shared
because they are read-only variables. I and J are written and then read, so they
are private variables.

6.4.5.2 Array indexed by loop index

The following example shows an array indexed by the loop index:

!MIC$ DOALL SHARED(N1,N2,V,U,J) PRIVATE(I,T)

DO I = N1, N2

T = V(I)

U(I,J) = T
END DO

U and V are shared arrays because they are indexed by the loop index. All
processors share the same location for V and U. T is written and then read, so it
is a private variable. J is shared because it is a read-only variable.

6.4.5.3 Read-then-write variables

The following example shows read-then-write variables:

SUM = 0.0

!MIC$ DOALL SHARED(N1,N2,V,SUM) PRIVATE(I,T)

DO I = N1, N2
T = V(I)

!MIC$ GUARD

SUM = SUM + T

!MIC$ ENDGUARD

END DO

SUMis a shared variable because it is read before it is written. Special care is
needed in writing into a shared variable that is not indexed by the loop control
variable.

6.4.5.4 Write-then-read variables and arrays

The following example shows write-then-read variables and arrays:

SR–3907 3.0.1 141

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!MIC$ DOALL SHARED(N1,N2,M1,M2) PRIVATE(I,J,V)

DO 10 I = N1, N2
DO 10 J = M1, M2

V(J) = ...

... = V(J)

END DO

V is written to and then read. It must be a private array.

6.5 Miscellaneous directives

The following directives allow you to use several different compiler features:

• ID

• IVDEP

• NAME

6.5.1 Create identification string: ID

The ID directive inserts a character string into the file.o produced for a Fortran
source file. The format of this directive is as follows:

!DIR$ ID " character_string"

character_ string The character string to be inserted into file.o . The
syntax box shows quotation marks as the
character_string delimiter, but you can use either
apostrophes (’ ’) or quotation marks (" ").

The character_string can be obtained from file.o in one of the following ways:

• Method 1 — Using the what (1) command. To use the what (1) command to
retrieve the character string, begin the character string with the characters
@(#) . For example, assume that id.f contains the following source code:

!DIR$ ID "File: id.f Date: 1 July 1997"

PRINT *, ’hello’

END

The next step is to use file id.o as the argument to the what (1) command,
as follows:

142 SR–3907 3.0.1

CF90 Directives [6]

% what id.o

% id.o:
% file.f 03 February 1997

Note that what (1) does not include the special sentinel characters in the
output.

In the following example, character_string does not begin with the characters
@(#) . The output shows that what (1) does not recognize the string.

Input file id2.o contains the following:

!DIR$ ID ’file.f 03 February 1997’

PRINT *, ’Hello, world’

END

The what (1) command generates the following output:

% what id2.o

% id2.o:

• Method 2 — Using strings (1) or od(1). The following example shows how
to obtain output using the strings (1) command.

Input file id.f contains the following:

!DIR$ ID "File: id.f Date: 1 July 1997"

PRINT *, ’hello’

END

The strings (1) command generates the following output:

% f90 -c id.o

% strings id.o

File: id.f Date: 1 July 1997

% od -c id.o

... portion of dump deleted

0002300 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

0002320 F i l e : i d . f D a t

0002340 e : 1 J u l y 1 9 9 7 001 \0

0002360 \0 \0 \0 \0 024 003 240 031 \0 \0 203 031 \0 \0 205 005

... portion of dump deleted

SR–3907 3.0.1 143

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

6.5.2 Ignore dependencies: IVDEP

When the IVDEP directive appears before a loop, the compiler ignores vector
dependencies, including explicit dependencies, in any attempts to vectorize the
loop. IVDEP applies to the first DOloop or DO WHILEloop that follows the
directive. The directive applies to only the first loop that appears after the
directive within the same program unit. Whether or not IVDEP is used,
conditions other than vector dependencies can inhibit vectorization. The format
of this directive is as follows:

!DIR$ IVDEP

If a loop with an IVDEP directive is enclosed within another loop with an
IVDEP directive, the IVDEP directive on the outer loop is ignored.

When the compiler vectorizes a loop, it may reorder the statements in the
source code to remove vector dependencies. When IVDEP is specified, the
statements in the loop are assumed to contain no dependencies as written, and
the compiler does not reorder loop statements.

Note: The description for this directive describes how this directive works
when the -OPT:cray_ivdep=ON command line option is in effect. When
-OPT:cray_ivdep=OFF is in effect, you may notice different behavior. For
more information on controlling this directive, see Section 2.47.3, page 31.

6.5.3 External name mapping directive: NAME

The NAMEdirective allows you to specify a case-sensitive external name, or a
name that contains characters outside of the Fortran character set, in a Fortran
program. This directive must appear inside a program unit. The case-sensitive
external name is specified on the NAMEdirective, in the following format:

!DIR$ NAME (fortran_name=" external_name"
[, fortran_name=" external_name"] ...)

fortran_name The name used for the object throughout the
Fortran program.

144 SR–3907 3.0.1

CF90 Directives [6]

external_name The external form of the name.

Rules for Fortran naming do not apply to the external_name string; any character
sequence is valid. You can use this directive, for example, when writing calls to
C routines.

Example:

PROGRAM MAIN

!DIR$ NAME (FOO="XyZ")

CALL FOO ! XyZ IS REALLY BEING CALLED

END PROGRAM

SR–3907 3.0.1 145

Source Preprocessing [7]

Source preprocessing can help you port a program from one platform to
another by allowing you to specify source text that is platform-specific.

For a source file to be preprocessed automatically, it must have an uppercase
extension, either .F (for a file in fixed source form) or .F90 (for a file in free
source form). To specify preprocessing of source files with other extensions,
including lowercase ones, use the -cpp , -E , or -ftpp options described in
Chapter 2, page 5.

7.1 General rules

You can alter the source code through source preprocessing directives. These
directives are fully explained in Section 7.2, page 148. The directives must be
used according to the following rules:

• Do not use source preprocessor (#) directives within multiline compiler
directives.

• You cannot include a source file that contains an #if directive without a
balancing #endif directive within the same file.

The #if directive includes the #ifdef and #ifndef directives.

• If a directive is too long for one source line, the backslash character (\) is
used to continue the directive on successive lines. Successive lines of the
directive can begin in any column (up to the column limit of 132).

The backslash character (\) can appear in any location within a directive in
which whitespace can occur. A backslash character (\) in a comment is
treated as a comment character. It is not recognized as signaling
continuation.

• Every directive begins with the pound character (#), and the pound
character (#) must be in column 1.

• Blank and tab (HT) characters can appear between the pound character (#)
and the directive keyword.

• You cannot write form feed (FF) or vertical tab (VT) characters to separate
tokens on a directive line. That is, if a source preprocessing line spans lines,
it must be continued by using a backslash character (\).

SR–3907 3.0.1 147

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• Blanks are significant, so the use of spaces within a source preprocessing
directive is independent of the source form of the file. The fields of a source
preprocessing directive must be separated by blank or tab (HT) characters.

• Because source preprocessing directives are independent of source form, a
directive can be up to 132 columns on a single source line.

Any directive text that extends past column 132 is ignored. The directive
text is truncated, which is likely to produce parsing errors or unexpected
results. If a directive is too long to fit on a single line, you can continue the
line by using the backslash character (\). It cannot be continued using
standard Fortran 90 continuation methods.

• Any user-specified identifier that is used in a directive must follow
Fortran 90 rules for identifier formation. The exception to this rule is that
the first character in the name can be an underscore character (_).

• Source preprocessing identifier names are case sensitive.

• Numeric literal constants must be integer literal constants or real literal
constants, as defined for Fortran 90.

• Comments written in the style of the C language, beginning with /* and
ending with */ , can appear anywhere within a source preprocessing
directive in which blanks or tabs can appear. The comment, however, must
begin and end on a single source line.

• The blanks shown in the syntax descriptions of the source preprocessing
directives are significant. The tab character (HT) can be used in place of a
blank. Multiple blanks can appear wherever a single blank appears in a
syntax description.

7.2 Directives

The following sections describe the source preprocessing directives.

7.2.1 #include directive

The #include directive directs the system to use the content of a file or
directory. Just as with the INCLUDE line processing defined by the Fortran 90
standard, an #include directive effectively replaces that directive line with the
content of filename. This directive has the following formats:

148 SR–3907 3.0.1

Source Preprocessing [7]

#include " filename"

#include < filename>

filename A file or directory to be used.

In the first form, if filename does not begin with a slash (/)
character, the system searches for the named file, first in the
directory of the file containing the #include directive, then in
the sequence of directories specified by the -I option(s) on the
f90 (1) command line, and then the standard (default) sequence.
If filename begins with a slash (/) character, it is used as is and is
assumed to be the full path to the file.

The second form directs the search to begin in the sequence of
directories specified by the -I option(s) on the f90 (1) command
line and then search the standard (default) sequence.

The Fortran 90 standard prohibits recursion in INCLUDE files, so recursion is
also prohibited in the #include form.

The #include directives can be nested.

When the compiler is invoked to do only source preprocessing, not compilation,
text will be included by #include directives but not by Fortran 90 INCLUDE
lines. For information on the source preprocessing command line options, see
Section 7.4, page 155.

7.2.2 #define directive

The #define directive lets you declare a source preprocessing variable and
associate a token string with the variable. It also allows you to define a
function-like macro. This directive has the following formats:

#define identifier value

#define identifier(dummy_arg_list) value

The first format defines an object-like macro (also called a source preprocessing
variable), and the second defines a function-like macro. In the second format,
the left parenthesis that begins the dummy_arg_list must immediately follow the
identifier, with no intervening white space.

SR–3907 3.0.1 149

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

identifier Specifies the name of the variable or macro being
defined.

dummy_arg_list Specifies a list of dummy argument identifiers.

value Specifies the value as a sequence of tokens. The
value can be continued onto more than one line
using backslash (\) characters.

If a preprocessor identifier appears in a subsequent #define directive without
being the subject of an intervening #undef directive, and the value in the
second #define directive is different from the value in the first #define
directive, then the preprocessor issues a warning message about the redefinition.
For more information on the #undef directive, see Section 7.2.3, page 151.

When an object-like macro’s identifier is encountered as a token in the source
file, it is replaced with the value specified in the macro’s definition. This is
referred to as an invocation of the macro. By default, tokens are not processed in
Fortran source code. They are recognized only when used in other source
preprocessing directives.

The invocation of a function-like macro is more complicated. It consists of the
macro’s identifier, immediately followed by a left parenthesis with no
intervening white space, then a list of actual arguments separated by commas,
and finally a terminating right parenthesis. There must be the same number of
actual arguments in the invocation as there are dummy arguments in the
#define directive. Each actual argument must be balanced in terms of any
internal parentheses. The invocation is replaced with the value given in the
macro’s definition, with each occurrence of any dummy argument in the
definition replaced with the corresponding actual argument in the invocation.

The following two examples must be compiled with -macro_expand specified
on the f90 (1) command line.

• The following program prints Hello, world. when compiled and run:

PROGRAM P

#define GREETING ’Hello, world.’

PRINT *, GREETING

END PROGRAM P

• The following program prints Hello, Hello, world. when compiled
and run:

PROGRAM P

#define GREETING(str1, str2) str1, str1, str2

150 SR–3907 3.0.1

Source Preprocessing [7]

PRINT *, GREETING(’Hello, ’, ’world.’)

END PROGRAM P

7.2.3 #undef directive

The #undef directive sets the definition state of identifier to an undefined value.
If identifier is not currently defined, the #undef directive has no effect. This
directive has the following format:

#undef identifier

identifier Specifies the name of the source preprocessing variable or macro
being undefined.

7.2.4 # (null) directive

The null directive simply consists of the pound character (#) in column 1 with
no significant characters following it. That is, the remainder of the line is
typically blank or is a source preprocessing comment. This directive is
generally used for spacing out other directive lines.

7.2.5 Conditional directives

Conditional directives cause lines of code to either be produced by the source
preprocessor or to be skipped. The conditional directives within a source file
form if-groups. An if-group begins with an #if , #ifdef , or #ifndef directive,
followed by lines of source code that you may or may not want skipped.
Several similarities exist between the Fortran 90 IF construct and if-groups:

• The #elif directive corresponds to the ELSE IF statement.

• The #else directive corresponds to the ELSE statement.

• Just as an IF construct must be terminated with an END IF statement, an
if-group must be terminated with an #endif directive.

• Just as with an IF construct, any of the blocks of source statements in an
if-group can be empty.

For example, you can write the following directives:

#if MIN_VALUE == 1

#else
...

SR–3907 3.0.1 151

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

#endif

Determining which group of source lines (if any) to compile in an if-group is
essentially the same as the Fortran 90 determination of which block of an IF
construct should be executed.

7.2.5.1 #if directive

The #if directive has the following format:

#if expression

expression An expression. The values in expression must be integer literal
constants or previously defined preprocessor variables. The
expression is an integer constant expression as defined by the C
language standard. All the operators in the expression are C
operators, not Fortran 90 operators. The expression is evaluated
according to C language rules, not Fortran 90 expression
evaluation rules.

Note that unlike the Fortran 90 IF construct and IF statement
logical expressions, expression in an #if directive need not be
enclosed in parentheses.

The #if expression can also contain the unary defined operator, which can be
used in either of the following formats:

defined identifier

defined(identifier)

When the defined subexpression is evaluated, the value is 1 if identifier is
currently defined, and 0 if it is not.

All currently defined source preprocessing variables in expression, except those
that are operands of defined unary operators, are replaced with their values.
During this evaluation, all source preprocessing variables that are undefined
evaluate to 0.

Note that the following two directive forms are not equivalent:

• #if X

152 SR–3907 3.0.1

Source Preprocessing [7]

• #if defined(X)

In the first case, the condition is true if X has a nonzero value. In the second
case, the condition is true only if X has been defined (has been given a value
that could be 0).

7.2.5.2 #ifdef directive

The #ifdef directive is used to determine if identifier is predefined by the
source preprocessor, has been named in a #define directive, or has been
named in a f90 -D command line option. For more information on the -D
option, see Section 7.4, page 155. This directive has the following format:

#ifdef identifier

The #ifdef directive is equivalent to either of the following two directives:

• #if defined identifier

• #if defined(identifier)

7.2.5.3 #ifndef directive

The #ifndef directive tests for the presence of an identifier that is not defined.
This directive has the following format:

#ifndef identifier

This directive is equivalent to either of the following two directives:

• #if ! defined identifier

• #if ! defined(identifier)

7.2.5.4 #elif directive

The #elif directive serves the same purpose in an if-group as does the ELSE
IF statement of a Fortran 90 IF construct. This directive has the following
format:

#elif expression

SR–3907 3.0.1 153

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

expression The expression follows all the rules of the integer constant
expression in an #if directive.

7.2.5.5 #else directive

The #else directive serves the same purpose in an if-group as does the ELSE
statement of a Fortran 90 IF construct. This directive has the following format:

#else

7.2.5.6 #endif directive

The #endif directive serves the same purpose in an if-group as does the
END IF statement of a Fortran 90 IF construct. This directive has the following
format:

#endif

7.3 Predefined macros

The MIPSpro 7 Fortran 90 source preprocessor supports a number of predefined
macros. They are divided into groups as follows:

• Macros that are based on the host machine

• Macros that are based on IRIX system targets

The following predefined macros are based on the host system (the system
upon which the compilation is being done):

Macro Notes

unix , ___unix Always defined. (The leading characters in the
second form consist of 2 consecutive underscores.)

The following predefined macros are based on an IRIX system target:

154 SR–3907 3.0.1

Source Preprocessing [7]

Macro Notes

D_LANGUAGE_FORTRAN90,
DLANGUAGE_FORTRAN90

host_mips ,
__host_mips

(The leading characters in the second form consist
of 2 consecutive underscores.)

LANGUAGE_FORTRAN,
_LANGUAGE_FORTRAN

MIPSEB, _MIPSEB

mips

sgi , __sgi (The leading characters in the second form consist
of 2 consecutive underscores.)

_SGI_SOURCE

_SVR4_SOURCE

_SYSTYPE_SVR4

7.4 Command line options

Several f90 (1) command line options affect source preprocessing. For more
information on these options, see Chapter 2, page 5. They are as follows:

• The -cpp option

• The -D identifier[=value] [, identifier[=value]] ... option

• The -E option

• The -F option

• The -ftpp option

• The -U identifier [, identifier] ... option

The -D identifier[=value] [, identifier[=value]] ... , -F , and
-U identifier [, identifier] ... options are ignored unless the Fortran input
source file is specified as either file.F or file.F90 .

SR–3907 3.0.1 155

Interlanguage Calling [8]

You may want to call external procedures written in C, C++, or some other
language, or you may need to call a Fortran 90 procedure from one of those
languages. This chapter focuses on the interface between Fortran 90 and C/C++.

If your application has source programs written in different languages, you
should compile each file separately, with the appropriate compiler, and then
load them in a separate step. You can create object files suitable for loading by
specifying the -c option on the f90 (1) command, which disables the load step
and writes the binary file to file.o .

In the following example, the C/C++ compiler and the MIPSpro 7 Fortran 90
compilers produce object files that can be loaded. These files are named
main.o and rest.o :

% cc -c main.c

% f90 -c rest.f

This chapter provides more details on compiling and loading application
programs that are written in Fortran 90, C, and C++.

8.1 External and public names

When your Fortran 90 program defines the body of a procedure, the compiler
places the name of the procedure, as a character string, in the object file it
generates. This is a public name, which is accessible to other object files.

When your Fortran 90 program uses a procedure, the compiler places the name
of the procedure in the generated object file. This is an external name, which is
used by the object file but not defined in it. Names of common blocks and
names of data and procedures declared within object files are also external
names. You can use the nm(1) utility to display the public and external names
defined in a file. For more information on this utility, see the MIPS Compiling
and Performance Tuning Guide.

It is up to the IRIX loader, ld (1), to resolve each reference to an external name
by finding that same name as a public name in some other module. This is the
main job of the loader.

SR–3907 3.0.1 157

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

8.1.1 How Fortran 90 handles external and public names

The Fortran 90 compiler converts input source text (other than the contents of
character literals) to uppercase as the first step of compilation. As a result, it
may change the case of the names of procedures and named common blocks
while it translates the source file. The names recorded in the object file, these
names are changed in the following two ways from the way you may have
written them:

• They are converted to all uppercase letters.

• They are normally extended with a final underscore (_) character.

Procedure names and common block names are translated, too.

The following declarations produce the identifiers matrix_ , mixedcase_, and
cblk_ in the object file:

SUBROUTINE MATRIX

external function MixedCase()
COMMON /CBLK/a,b,c

These changes cause no problems when loading program units compiled by
Fortran 90 or FORTRAN 77. The same convention is used for both the public
and external names, so the names match.

Note: Some IRIX-based FORTRAN 77 compilers support the -U command
line option, which prevents the compiler from forcing all uppercase input to
lowercase. As a byproduct, it becomes possible to put mixed-case public
names in the object file. This option is not supported by the MIPSpro 7
Fortran 90 compiler.

In addition, some IRIX-based FORTRAN 77 compilers take the use of the $
character as the final letter of a procedure name as a signal to suppress the
underscore in the public name. The $ is not permitted to appear in a name if
the program is to be compiled by the MIPSpro 7 Fortran 90 compiler. There
is no way to suppress the final underscore in an external name.

8.1.2 Calling a Fortran 90 subprogram from C

To call a Fortran 90 subprogram from a C procedure, spell the name the way
the Fortran 90 compiler spells it, using all uppercase letters and a trailing
underscore.

For example, consider the following Fortran 90 declaration:

158 SR–3907 3.0.1

Interlanguage Calling [8]

SUBROUTINE HYPOT()

This must be declared in a C function as follows (note the use of uppercase
with a trailing underscore):

extern int HYPOT_()

8.1.3 Calling a C function from Fortran 90

The public name of a C function can be in uppercase or mixed case, and they
have terminal underscores only when you write them that way. To call a C
function from a Fortran 90 program, ensure that the C function’s name is
spelled the way the Fortran 90 compiler expects it to be. When you control the
name of the C function, the simplest solution is to give it a name that consists
of uppercase letters with a terminal underscore. For example, the following C
function:

int FROMFORT_() {...}

could be declared in a Fortran 90 program as follows:

external FROMFORT

When you do not control the name of a C function, you must supply a function
name that Fortran 90 can call. The only solution is to write a C function that
takes the same arguments, but that has a name composed of uppercase letters
and ending in an underscore. This C function can then call the function whose
name contains mixed-case letters. You can write such a wrapper function
manually, or you can use the mkf2c (1) utility to do it automatically. For more
information on using mkf2c (1), see Section 8.6, page 172.

8.2 Correspondence of Fortran 90 and C data types

When you exchange data between Fortran 90 and C, either as arguments, as
function results, or as members of common blocks, you must make sure that the
two languages agree on the size, alignment, and subscript of each data object.

8.2.1 Corresponding scalar types

The correspondence between Fortran 90 and C scalar data types is shown in
Table 3. This table assumes that the default command line options that affect
precision are in effect. Use of compiler options such as -i2 or -r8 affects
storage sizes for integer, logical, real, and double precision data types.

SR–3907 3.0.1 159

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Table 3. Corresponding Fortran 90 and C Data Types

Fortran Data Type Declaration C Data Type

INTEGER(KIND=1) ,
LOGICAL(KIND=1)

signed char

CHARACTER unsigned char

INTEGER(KIND=2) ,
LOGICAL(KIND=2)

short

INTEGER, INTEGER(KIND=4) ,
LOGICAL, LOGICAL(KIND=4)

int

INTEGER(KIND=8) ,
LOGICAL(KIND=8)

long long

REAL, REAL(KIND=4) float

DOUBLE PRECISION,
REAL(KIND=8)

double

REAL(KIND=16) long double

COMPLEX, COMPLEX(KIND=4) typedef struct{float real, imag; } cpxk4;

DOUBLE COMPLEX,
COMPLEX(KIND=8)

typedef struct{double real, imag;} cpxk8;

COMPLEX(KIND=16) typedef struct{long double re, im;} cpxk16;

CHARACTER(n) typedef char fstr_ n[n]

For type character, Fortran 90 declarations with a length designator, such as
CHARACTER(LEN=N) :: X, are equivalent to a C declaration of unsigned
char X[N] .

To set a NULL character in a Fortran string, use CHAR(0) . Examples:

character*4 aaa

aaa(1:3) = ’abc’

aaa(4:4) = CHAR(0)

8.2.2 Corresponding character types

The Fortran 90 CHARACTERdata type declaration corresponds to the C type
unsigned char . However, the two languages differ in the treatment of strings
of characters.

160 SR–3907 3.0.1

Interlanguage Calling [8]

A Fortran 90 variable can be declared as CHARACTER(n) , where n>1, contains
exactly n characters at all times. When a shorter character expression is
assigned to it, it is padded on the right with spaces to reach n characters.

A C vector of characters is normally sized 1 greater than the longest string
assigned to it. It may contain fewer meaningful characters than its size allows,
and the end of meaningful data is marked by a null byte. There is no null byte
at the end of a Fortran 90 string (except by chance memory alignment).

There is no terminal null byte, so most of the string library functions familiar to
C programmers (strcpy() (3C), strcat() (3C), strcmp() (3C), and so on)
cannot be used with Fortran 90 string values. The strncpy() (3C),
strncmp() (3C), bcopy() (3C), and bcmp() (3C) functions can be used because
they depend on a count rather than a delimiter.

8.2.3 Corresponding array elements

Fortran 90 and C use different arrangements for the elements of an array in
memory. Fortran 90 uses column-major order (when iterating sequentially
through memory, the leftmost subscript varies fastest), whereas C uses
row-major order (the rightmost subscript varies fastest to generate sequential
storage locations). In addition, Fortran 90 array indexes are by default origin-1,
and can be declared as any origin, while C indexes are always origin-0.

To use a Fortran 90 array in C, perform the following steps:

1. Reverse the order of dimension limits when declaring the array.

2. Reverse the sequence of subscript variables in a subscript expression.

3. Adjust the subscripts to origin-0 (usually, decrement by 1).

The correspondence between Fortran 90 and C subscript values is depicted in
Figure 9. You derive the C subscripts for a given element by decrementing the
Fortran 90 subscripts and using them in reverse order; for example, Fortran 90
(99,9) corresponds to C [8][98].

SR–3907 3.0.1 161

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

C

Fortran 90

or

y+1, x+1

x,y

x,y

y-1, x-1

a11350

Figure 9. Correspondence between C and Fortran 90 subscripts

Note: A Fortran 90 array can be declared with some other lower bound than
the default of 1. If the Fortran 90 subscript is origin-0, no adjustment is
needed. If the Fortran 90 lower bound is greater than 1, the C subscript is
adjusted by that amount.

8.2.4 Unsupported array arguments

Fortran 90 supports assumed-shape arrays, deferred-shape arrays, and array
sections. You cannot pass any of these types of array to a non-Fortran 90
procedure because Fortran 90 represents such arrays in memory using a
descriptor containing indirect pointers and other data. The format of this
descriptor is not part of the published programming interface to MIPSpro 7
Fortran 90, as it is subject to change.

If you attempt to pass an assumed-shape array, deferred-shape array, or an
array section to a non-Fortran 90 function, the function does not receive the
address of array elements in memory as it would when an array is passed.
Instead it receives the address of a descriptor with undocumented contents,
resulting in unpredictable behavior.

8.3 How Fortran 90 passes arguments

When calling non-Fortran 90 functions, you must know how arguments are
passed. When calling Fortran 90 subprograms from other languages, you must
cause the other language to pass arguments correctly.

162 SR–3907 3.0.1

Interlanguage Calling [8]

Note: You should be aware that all compilers for a given version of IRIX use
identical conventions for passing arguments. These conventions are
documented at the machine instruction level in the MIPSpro Assembly
Language Programmer’s Guide, which also describes the differences in the
conventions used in different releases.

An argument passed to a subprogram, regardless of its data type, is passed as
the address of the actual in memory. This rule is extended for two special cases:

• The length of each CHARACTER(n) declaration is passed as an implicit
additional INTEGER(KIND=4) value, following the explicit arguments.

• When a function returns type CHARACTER(n) the address of the space to
receive the result is passed as the first argument to the function, and the
length of the result space is passed as the second implicit argument,
preceding all explicit arguments.

Example 1. Consider the following code:

COMPLEX(KIND=8) :: CP8

CHARACTER*(16) :: CSTR1, CSTR2

EXTERNAL CPXASC

CALL CPXASC(CSTR1,CSTR2,CP8)

The code generated from the subroutine call in this example passes the
following arguments:

• The address of CSTR1

• The address of CSTR2

• The address of CP8

• The length of CSTR1, an integer value of 16

• The length of CSTR2, an integer value of 16

Example 2. Consider the following code:

CHARACTER*(8) :: SYMBL,PICKSYM
CHARACTER*(100) :: SENTENCE

INTEGER NSYM

SYMBL = PICKSYM(SENTENCE,NSYM)

The code generated from the function call in the preceding example passes the
following arguments:

• The address of SYMBL, the result variable.

SR–3907 3.0.1 163

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• The length of SYMBL, an integer value of 8

• The address of SENTENCE, the first explicit argument

• The address of NSYM, the second explicit argument

• The length of SENTENCE, an integer value of 100

8.4 Calling Fortran 90 from C

There are two types of callable Fortran 90 subprograms: subroutines and
functions. In C terminology, both types of subprograms are external functions.
The difference is the use of the function return value from each.

8.4.1 Calling a Fortran 90 subroutine from C

From the standpoint of a C module, a Fortran 90 subroutine is an external
function returning int . The integer return value is normally ignored by a C
caller (it is the alternate return statement number, if any).

Example 1. The following example shows a simple Fortran 90 subroutine that
adds arrays of complex numbers:

SUBROUTINE ADDC32(Z, A, B, N)

COMPLEX(KIND=16) Z(1),A(1),B(1)

INTEGER :: N, I

DO 10 I = 1, N

Z(I) = A(I) + B(I)

END DO
RETURN

END SUBROUTINE ADDC32

The Fortran 90 subroutine could be called from C using the following code
fragment:

typedef struct{long double real, imag;} cpx32;

extern void

ADDC32_(cpx32 *,cpx32 *,cpx32 *,int *);
cpx32 z[MAXARRAY], a[MAXARRAY], b[MAXARRAY];

...

int n = MAXARRAY;

addc32_(&z, &a, &b, &n);

164 SR–3907 3.0.1

Interlanguage Calling [8]

The preceding code fragments show how the Fortran 90 subroutine is named in
the C code using uppercase letters and a terminal underscore. This is the way
the Fortran 90 compiler spells the public name in the object file.

Example 2. The following subroutine takes assumed-length character
arguments:

SUBROUTINE PRT(BEF, VAL, AFT)

CHARACTER*(*) :: BEF, AFT

REAL :: VAL

PRINT *, BEF, VAL, AFT

RETURN
END SUBROUTINE PRT

The following C code prepares CHARACTER(16)values and passes them to the
Fortran 90 subroutine:

typedef char fstr_16[16];

extern int

prt_(fstr_16 *, float *, fstr_16 *,

int, int);
main()

{

float val = 2.1828e0;

fstr_16 bef,aft;

strncpy(bef,"Before..........",sizeof(bef));

strncpy(aft,"...........After",sizeof(aft));
(void)PRT_(bef, &val, aft, sizeof(bef), sizeof(aft));

}

Note that the subroutine call requires five actual arguments: the addresses of
the three explicit arguments and the lengths of the two string arguments. In the
C code, the string length arguments are generated using sizeof() , which
returns the memory size of the typedef fstr_16 .

When the Fortran 90 code does not require a specific string length, the C code
that calls it can pass an ordinary C character vector, as shown in the following
code fragment:

extern int

prt_(char *, float *, char *, int, int);

main()

{

float val = 2.1828e0;
char *bef = "Start:";

SR–3907 3.0.1 165

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

char *aft = ":End";

(void)PRT_(bef, &val, aft, strlen(bef), strlen(aft));
}

In this example, the string length implicit argument values are calculated
dynamically using strlen() .

8.4.2 Calling a Fortran 90 function from C

A Fortran 90 function that returns a scalar value as its result corresponds
exactly to the C concept of a function with an explicit return value. When a
Fortran 90 function returns any type shown in Table 3, page 160, other than
CHARACTER(n) , where (n>1), you can call the function from C and handle its
return value exactly as if it were a C function returning that data type.

Example 1. The following function accepts and returns COMPLEX(KIND=8)
values.

FUNCTION FSUB8(INP)

COMPLEX(KIND=8) :: INP

FSUB8 = INP

END FUNCTION FSUB8

Although a complex value is declared as a structure in C, it can be used as the
return type of a function. The following C code shows how the preceding
Fortran 90 function is declared and called:

typedef struct{ double real, imag; } cpx8;

extern cpx8 FSUB8_(cpx8 *);

main()

{
cpx8 inp = { -3.333, -5.555 };

cpx8 oup = { 0.0, 0.0 };

printf("testing fsub8...");

oup = FSUB8_(&inp);

if (inp.real == oup.real && inp.imag == oup.imag)
printf("Ok\n");

else

printf("Nope\n");

}

The arguments to a function, like the arguments to a subroutine, are passed as
pointers, but the value returned is a value, not a pointer to a value.

Example 2. The following function has a CHARACTER(16) return value.

166 SR–3907 3.0.1

Interlanguage Calling [8]

FUNCTION FS16(J, K, S)

CHARACTER*(16) :: FS16, S
INTEGER J, K

FS16 = S(J:K)

RETURN

END FUNCTION FS16

When a Fortran 90 function returns CHARACTER(n) , where n>1, value, the
returned value is not the explicit result of the function. Instead, you must pass
the address and length of the result area as the first two arguments of the
function, preceding the explicit arguments. This is demonstrated in the
following C code:

typedef char fstr_16[16];

extern void

fs16_ (fstr_16 *, int, int *, int *, fstr_16 *, int);

main()
{

char work[64];

fstr_16 inp, oup;

int j = 7;

int k = 11;
strncpy(inp,"0123456789abcdef", sizeof(inp));

fs16_ (oup, sizeof(oup), &j, &k, inp, sizeof(inp));

strncpy(work, oup, sizeof(oup));

work[sizeof(oup)] = ’\0’;

printf("FS16 returns <%s>\n", work);

}

In this example, the address and length of the function result are the first two
arguments of the function. Because type fstr_16 is an array, its name, oup ,
evaluates to the address of its first element. The next three arguments are the
addresses of the three named arguments. The final argument is the length of
the string argument.

8.5 Calling C from Fortran 90

You can call units of C code from Fortran 90 as if they were written in
Fortran 90, provided that the C modules follow the Fortran 90 conventions for
passing arguments. For more information on this, see Section 8.3, page 162.

SR–3907 3.0.1 167

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

When the C function expects arguments passed using other conventions, you
normally need to build a wrapper for the C function using the mkf2c (1)
command.

8.5.1 Calls to C functions

The following C function is written to use the Fortran 90 conventions for its
name (uppercase with final underscore) and for argument passing:

/*

|| C functions to export the facilities of strtoll()

|| to Fortran 90 programs. Effective Fortran declaration:
||

|| FUNCTION ISCAN(S,J)

|| INTEGER(KIND=8) :: ISCAN

|| CHARACTER*(*) S

|| INTEGER J
||

|| String S(J:) is scanned for the next signed long value

|| as specified by strtoll(3c) for a "base" argument of 0

|| (meaning that octal and hex literals are accepted).

||

|| The converted long long is the function value, and J is
|| updated to the nonspace character following the last

|| converted character, or to 1+LEN(S).

||

|| Note: if this routine is called when S(J:J) is neither

|| whitespace nor the initial of a valid numeric literal,
|| it returns 0 and does not advance J.

*/

#include <ctype.h> /* for isspace() */

long long iscan_(char *ps, int *pj, int ls)

{
int scanPos, scanLen;

long long ret = 0;

char wrk[1024];

char *endpt;

/* when J>LEN(S), do nothing, return 0 */

if (ls >= *pj)
{

/* convert J to origin-0, permit J=0 */

scanPos = (0 < *pj)? *pj-1 : 0 ;

168 SR–3907 3.0.1

Interlanguage Calling [8]

/* calculate effective length of S(J:) */

scanLen = ls - scanPos;

/* copy S(J:) and append a null for strtoll() */

strncpy(wrk,(ps+scanPos),scanLen);

wrk[scanLen] = ‘\0’;

/* scan for the integer */
ret = strtoll(wrk, &endpt, 0);

/*

|| Advance over any whitespace following the number.

|| Trailing spaces are common at the end of Fortran
|| fixed-length char vars.

*/

while(isspace(*endpt)) { ++endpt; }

*pj = (endpt - wrk)+scanPos+1;

}
return ret;

}

The following Fortran 90 code fragment demonstrates a call to the preceding C
function:

EXTERNAL ISCAN

INTEGER(KIND=8) ISCAN

INTEGER(KIND=8) RET

INTEGER J,K
CHARACTER*(50) INP

INP = ’1 -99 3141592 0xfff 033 ’

J = 0

DO WHILE (J .LT. LEN(INP))

K = J
RET = ISCAN(INP,J)

PRINT *, K,’: ’,RET,’ -->’,J

END DO

END

8.5.2 Using Fortran 90 common blocks in C code

A C function can refer to the contents of a common block defined in a
Fortran 90 program. The name of the block as given in the COMMONstatement is
altered as described in Section 8.1.1, page 158. (The name is converted to

SR–3907 3.0.1 169

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

uppercase and extended with an underscore). The name of the blank common
is _BLNK__, with one leading underscore and two trailing ones.

To refer to the contents of a common block, take these steps:

1. Declare a C structure with fields that have the appropriate data types to
match the successive elements of the Fortran 90 common block. For
information on corresponding data types, see Table 3, page 160.

2. Declare the common block name as an external structure of that type.

The following example employs this method:

INTEGER STKTOP, STKLEN, STACK(100)

COMMON /WITHC/ STKTOP, STKLEN, STACK

struct fstack {

int stktop, stklen;
int stack[100];

}

extern fstack WITHC_;

int peektop_()

{
if (withc_.stktop) /* stack not empty */

return WITHC_.stack[WITHC_.stktop-1];

else...

}

The restrictions on this capability are as follows:

• You cannot map a common block that contains Fortran 90 pointer-based
variables.

• If the common block contains a variable of Fortran 90 derived type (a
structure), ensure that the derived type is declared with the SEQUENCE
attribute. Otherwise, its fields may not appear in the expected sequence in
memory.

• When -O3 is in effect, the compiler may split up common blocks.

8.5.3 Using Fortran 90 arrays in C code

As described in Section 8.2.3, page 161, a C program must take special steps to
access arrays created in Fortran 90. The following examples illustrate this.

170 SR–3907 3.0.1

Interlanguage Calling [8]

Example 1. The following Fortran 90 code fragment declares a matrix in a
common block and then calls a C subroutine to modify the array:

INTEGER IMAT(10,100), R, C
COMMON /WITHC/ IMAT

R = 74

C = 6

CALL CSUB(C, R, 746)

PRINT *, IMAT(6,74)

END

Example 2. The following C function stores its third argument in the common
array using the subscripts passed in the first two arguments. In the C function,
the order of the dimensions of the array are reversed, so the subscript values
are reversed to match, and decremented by 1 to provide 0-origin indexing:

extern struct { int imat[100][10]; } WITHC_;

int csub_(int *, int *, int *)

{
WITHC_.imat[*pr-1][*pc-1] = *pval;

return 0; /* All Fortran subroutines return int */

}

8.5.4 Calls to C using %LOCand %VAL

You can use the nonstandard intrinsic functions %VALand %LOCto pass
arguments in ways other than the standard Fortran 90 conventions described in
Section 8.3, page 162.

8.5.4.1 Using %VAL

The %VALfunction is used in an argument list to cause an argument to be
passed by value rather than by reference. Suppose that you need to call a C
function having the following prototype:

int TAKESINT_ (int, char *, int)

The first argument to this function is an integer value, not the address of an
integer value in memory. You could call this function from Fortran 90 code
similar to the following:

CHARACTER(80) SENTENCE
INTEGER(4) J

CALL TAKESINT(%VAL(J), SENTENCE)

SR–3907 3.0.1 171

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The use of %VAL(j) causes the contents of j to be passed, rather than the
address of j.

8.5.4.2 Using %LOC

The %LOCfunction returns the address of its argument. It can be used with
%VALto prevent passing the length of a character value as a hidden argument.
In other words, the argument %VAL(LOC(char_var)) passes only the address of
char_var. It does not pass the implicit length argument.

8.6 Making C wrappers with mkf2c (1)

The mkf2c (1) utility provides an alternate interface for C routines called by
Fortran 90.

The mkf2c (1) utility reads a file of C function prototype declarations and
generates an assembly language module. This module contains one callable
entry point for each C function. The entry point, or wrapper, accepts arguments
in the Fortran 90 calling convention and passes the same values to the C
function using the C conventions.

The following shows a simple case of using a function as input to mkf2c (1):

simplefunc (int a, double df)

{ /* function body ignored */ }

For this function, using mkf2c (1), with no options, generates a wrapper function
named simple_ . This is truncated to 6 characters, made lowercase, and
appended with an underscore. The wrapper function expects two arguments:
one must be a default integer and one must be a REAL(KIND=8) value. These
must be passed according to Fortran 90 conventions; that is, by reference. The
code of the wrapper loads the values of the arguments into registers using C
conventions for passing arguments by value, and calls simplefunc() .

8.6.1 mkf2c (1) argument assumptions

The mkf2c (1) utility processes only the C source, not the Fortran 90 source, so
it treats the Fortran 90 arguments based on the data types specified in the C
function header. These treatments are summarized in Table 4, page 173.

172 SR–3907 3.0.1

Interlanguage Calling [8]

Table 4. How mkf2c (1) treats function arguments

Data type in C prototype Treatment by generated wrapper code

unsigned char Load CHARACTERfrom memory to register, no sign extension.

char Load CHARACTERfrom memory to register; sign extension
only when -signed is specified.

unsigned short , unsigned int Load INTEGER(KIND=2) or INTEGER(KIND=4) from
memory to register, no sign extension.

short Load INTEGER(KIND=2) from memory to register with sign
extension.

int , long Load INTEGER(KIND=4) from memory to register with sign
extension.

long long Load INTEGER(KIND=8) from memory to register with sign
extension.

float Load REAL(KIND=4) from memory to register, extending to
double unless -f is specified.

double Load REAL(KIND=8) from memory to register.

long double Load REAL(KIND=16) from memory to register.

char name[], name[n] Pass address of CHARACTER(n) and pass length as integer
argument as Fortran does.

char * Copy CHARACTER(n) value into allocated space, append null
byte, pass address of copy.

8.6.2 mkf2c (1) character string treatment

In Table 4, page 173, notice the different treatments for an argument declared as
a character array and one declared as a character address, even though these
two declarations are semantically the same in C.

When the C function expects a character address, mkf2c (1) generates the code
to dynamically allocate memory and to copy the Fortran 90 character value, for
its specified length, to memory. This creates a null-terminated string and has
the following other outcomes:

• The address passed to C points to allocated memory.

• The length of the value is not passed as an implicit argument.

SR–3907 3.0.1 173

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• There is a terminating null byte in the value.

• Changes in the string are not reflected back to Fortran 90.

A character array is passed by mkf2c (1) as a Fortran 90 CHARACTER*(n)
value. This has the following outcomes:

• The address prepared by Fortran 90 is passed to the C function.

• The length of the value is passed as an implicit argument (see Section 8.3,
page 162).

• The character array contains no terminating null byte.

• Changes in the array by the C function are visible to Fortran 90.

The C function cannot declare the extra string-length argument because if it
declares the argument, mkf2c processes it as an explicit argument. The two
ways to access the string length are as follows:

• If the Fortran 90 program always passes character values of the same size,
the length argument can simply be ignored.

• If its value is needed, the varargs macro can be used to retrieve it.

Suppose the C function prototype is specified as follows:

void func1 (char carr1[], int i, char *str, char carr2[]);

In this case, mkf2c (1) passes a total of six arguments to C. The fifth argument is
the length of the Fortran 90 value corresponding to carr1 . The sixth is the
length of carr2 . The C function can use the varargs macros to retrieve these
hidden arguments. mkf2c (1) ignores the varargs macro va_alist that
appears at the end of the argument name list.

When func1 is changed to use varargs , the C source file is as follows:

#include "varargs.h"

void

func1 (char carr1[], int i, char *str, char carr2[], va_alist);

{}

The C routine would retrieve the lengths of carr1 and carr2 , placing them in
the local variables carr1_len and carr2_len , using code like the following
fragment:

va_list ap;
int carr1_len, carr2_len;

174 SR–3907 3.0.1

Interlanguage Calling [8]

va_start(ap);

carr1_len = va_arg (ap, int)
carr2_len = va_arg (ap, int)

8.6.3 mkf2c (1) restrictions

When it does not recognize the data type specified in the C function, mkf2c (1)
issues a warning message and generates code to simply pass the pointer set up
by Fortran 90. It does this for the following cases:

• Any nonstandard data type name, for example a data type that might be
declared using typedef or a data type defined as a macro

• Any structure argument

• Any argument with multiple indirection (two or more asterisks, for example
char**)

The mkf2c (1) utility does not support structure-valued arguments, so it does
not support passing COMPLEX(KIND=n) values or derived types. Nor does
mkf2c (1) have any means of passing assumed-shape or deferred-shape arrays.

8.6.4 Using mkf2c (1) and extcentry (1)

The mkf2c (1) utility accepts only a limited subset of the C grammar. This
subset includes common C syntax for function entry point, C-style comments,
and function bodies. However, it does not include constructs such as
typedefs , external function declarations, or C preprocessor directives. You
may receive unexpected results from mkf2c (1) if these types of constructs are
provided as input.

To ensure that only the constructs understood by mkf2c (1) are included in
wrapper input, you need to place special comments around each function for
which Fortran 90-to-C wrappers are to be generated.

After the special comments, /* CENTRY */ and /* ENDCENTRY */ , are
placed around the code, you can use the extcentry (1) utility to generate the
input file for mkf2c (1).

The following example uses extcentry (1). It shows C file foo.c containing
function foo , which is to be made Fortran 90 callable:

typedef unsigned short grunt[4];

struct {

long 1,11;

SR–3907 3.0.1 175

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

char *str;

} bar;
main ()

{

int kappa =7;

foo (kappa,bar.str);

}

/* CENTRY */
foo (integer, cstring)

int integer;

char *cstring;

{

if (integer==1) printf("%s",cstring);
} /* ENDCENTRY */

The special comments /* CENTRY */ and /* ENDCENTRY */ surround the
section that is to be made Fortran 90 callable. To generate the assembly language
wrapper, foowrp.s , from the file foo.c , use the following set of commands:

% extcentry foo.c foowrp.fc

% mkf2c foowrp.fc foowrp.s

8.7 Makefile considerations

The make(1) utility contains default rules to help automate wrapper generation.
The following example of a makefile illustrates the use of these rules.

In the following sample makefile, an executable object file is created from files
main.f , a Fortran 90 main program, and callc.c :

test: main.o callc.o

f90 -o test main.o callc.o

callc.o: callc.fc

clean:

rm -f *.o test *.fc

In the preceding makefile, main.f calls a C routine in callc.c . The extension
.fc has been adopted for Fortran 90-to-call-C wrapper source files. The
wrappers created from callc.fc are assembled and combined with the binary
created from callc.c . Also, the dependency of callc.o on callc.fc causes
callc.fc to be recreated from callc.c whenever the C source file changes.
You must put special comments for extcentry (1) in the C source code as
required.

176 SR–3907 3.0.1

Interlanguage Calling [8]

Note: Options to mkf2c (1) can be specified when make(1) is invoked by
setting the make(1) variable F2CFLAGS.

Do not create a .fc file for the modules that need to have wrappers created.
These files are both created and removed by make(1) in response to the
file.o:file.fc dependency.

The makefile generates the wrappers and Fortran 90 objects. You can add
modules to the executable object file in one of the following ways:

• If the file is a native C file with routines that are not to be called from
Fortran 90 using a wrapper interface, or if it is a native Fortran 90 file, add
the .o suffix to the final make(1) target and dependencies.

• If the file is a C file containing routines to be called from Fortran 90 using a
wrapper interface, the comments for extcentry (1) must be placed in the C
source code, and the .o file placed in the target list. In addition, the
dependency of the .o file on the .fc file must be placed in the makefile.
This dependency is illustrated in the example makefile above, where
callc.o depends on callc.fc .

8.8 Calling assembly language from Fortran 90

You can write modules in MIPS assembly language, following the guidelines in
the MIPSpro Assembly Language Programmer’s Guide. Procedures in these
modules can be called from Fortran 90. There is only one special consideration.

Operating in assembly language, you can change the operating mode and the
rounding mode of the CPU. When running Fortran 90 programs that contain
quad precision operations, you must run the compiler in round-to-nearest
mode. This mode is in effect by default, so you usually do not need to set it.
You usually need to set this mode when writing programs that call your own
assembly routines. For more information, see swapRM(3C).

SR–3907 3.0.1 177

Library Usage [A]

The MIPSpro 7 Fortran 90 compiler can use many intrinsic procedures and
library routines to aid in quicker compiling time. This chapter discusses many
of the commonly used procedures and routines that can be used with the
compiler.

A.1 The assign command

The assign (1) command can be used to alter the details of a Fortran file
connection, such as device residency, alternative file names, or file space
allocations. The assign options are associated with file names, file name
patterns, or unit numbers. When associated with file names or file name
patterns, the options are applied whenever a matching file name is opened from
a Fortran program. When associated with a unit number, the options are
applied whenever that unit becomes connected.

For complete details about the assign command, see the assign (1) man page
or the Cray publication, the Application Programmer’s I/O Guide, publication
SG–2168.

A.1.1 Options to the assign command

The assign command has the following syntax:

assign [-a actualfile] [-b bs] [-f fortstd] [-s ft] [-t] [-y setting] [-B
setting] [-D fildes] [-F spec [, specs]] [-I] [-O] [-R] [-S setting]
[-T setting] [-U setting] [-V] [-W setting] [-Y setting] assign_object

The assign -R and assign -V commands cannot be used with any other
options.

The following list describes the assign command options.

-a actualfile Specifies the actual file or the FILE= specifier.

-b bs Specifies ibrary buffer size in 4096–byte blocks.

-f fortstd Specifies the Fortran standard.

SR–3907 3.0.1 179

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Use irixf90 for fortstd to be compatible with the
MIPSpro 7 Fortran 90 compiler.

Use irixf77 for fortstd to be compatible with
Silicon Graphic’s FORTRAN 77 compiling system
which runs on IRIX systems.

Use 77 for fortstd to be compatible with the
FORTRAN 77 standard and Cray Research’s CF77
compiling system.

Use 90 for fortstd to be compatible with the
Fortran 90 standard and Cray Research’s CF90
compiling system.

-s ft Specifies the ile type. Enter text , cos , blocked ,
unblocked , u, sbin , or bin for ft.

-t Specifies temporary file use.

-y setting Produces repeat counts in list-directed output.
setting can be either on or off . The default
setting on UNICOS and UNICOS/mk systems is
on . The default setting on IRIX systems is off .

-B setting Activates or suppresses the passing of the
O_DIRECTflag to the open (2) system call. Enter
either on or off for setting.

-D fildes Specifies a connection to a standard file. Enter
stdin , stdout , or stderr for fildes.

-F spec [, specs] Specifies use of Flexible file I/O (FFIO). See the
assign (1) man page for complete details about
allowed values for spec and for details about
hardware platform support. See the
INTRO_FFIO(3F) man page for details about the
individual FFIO layers.

See Section A.1.2 for a list of supported FFIO
layers.

-I Specifies an incremental assign. All attributes are
added to the attributes already assigned to the
current assign_object.

180 SR–3907 3.0.1

Library Usage [A]

-O Specifies a replacement assign (default control
option). All currently existing assign attributes
for the current assign_object are replaced.

-R Specifies removal of all assign attributes for
assign_object.

-T setting Activates or suppresses truncation after write for
sequential Fortran files. Enter either on or off
for setting.

-U setting Produces a UNICOS form of list-directed output.
This is a global setting which sets the value for
the -y , -S , and -W options. Enter either on or
off for setting. The default setting on UNICOS
and UNICOS/mk systems is on . The default
setting on IRIX systems is off .

-V Views attributes for assign_object.

-W setting Produces compressed width in list-directed
output. Enter either on or off for setting. The
default setting on UNICOS and UNICOS/mk
systems is on . The default setting on IRIX
systems is off .

-Y setting Skips unmatched namelist groups in a namelist
input record. Enter either on or off for setting.
The default setting on UNICOS and UNICOS/mk
systems is on . The default setting on IRIX
systems is off .

assign_object Specifies either a file name or a unit number for
assign_object. The assign command associates
the attributes with the file or unit specified. These
attributes are used during the processing of
Fortran OPENstatements or during implicit file
opens.

Use one of the following formats for assign_object:

• f: file_name (for example, f:file1)

• g: io_type; io_type can be su , sf , du , df , ff , or aq (for example, g:ff)

• p: pattern (for example, p:file%)

• u: unit_number (for example, u:9)

SR–3907 3.0.1 181

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• file_name (for example, myfile)

A.1.2 Supported FFIO layers

The Flexible File I/O (FFIO) system lets the user specify a comma-separated list
of layers through which I/O data will be passed. This is done by providing a
value for the spec argument to the -F option on the assign command. The
FFIO layers act as “filters” that are used to manipulate the data file as it is
being read or written. The layers include performance options and the
capability to read and write files in different vendors’ blocking formats.

The following layers are available for IRIX systems:

Layer Definition

bufa Library-managed asynchronous buffering

cache cache layer

cachea cachea layer

cos COS blocking

f77 UNIX record blocking

fd File descriptor

null The null layer

syscall System call I/O

system Generic system layer

text Newline separated record formats

user and site User-supplied or site-supplied layer

A.1.3 FFIO and asynchronous I/O

The FFIO library on IRIX systems calls aio_sgi_init library call the first time
the library issues an asynchronous I/O call. It passes the following parameters
to aio_sgi_init :

aio_numusers=MAX(64,sysconf(_SC_NPROC_CONF))
aio_threads=5

aio_locks=3

If a program is using multiple threads and asynchronous I/O, it is important
that the value in aio_numusers be at least as large as the number of sprocs or

182 SR–3907 3.0.1

Library Usage [A]

pthreads that the application contains. See the aio_sgi_init man page on
your IRIX system for more details.

Users can change these values by setting environment variables to the desired
value or users can supersede the FFIO library’s call to aio_sgi_init by
calling it themselves, before the first I/O statement in their programs. See the
Cray Research publication, the Application Programmer’s I/O Guide, publication
SG–2168 or the INTRO_FFIO(3F) man page for more details.

The following FFIO layers may issue asynchronous I/O calls on IRIX systems:

• cos : see the description of cos on the INTRO_FFIO(3F) man page for a
description of the circumstances when the cos layer uses asynchronous I/O.

• cachea and bufa : users should assume that these layers may issue
asynchronous I/O calls.

• system or syscall : these layers may issue asynchronous I/O calls if
called from a BUFFER INor BUFFER OUTFortran statement, or if called
from one of the listed layers.

A.2 Intrinsic procedures

Intrinsic procedures are predefined by the computer programming language.
They are invoked in the same way that other procedures are invoked. The
Fortran 90 standard defines intrinsic procedures, and the MIPSpro 7 Fortran 90
compiler includes other intrinsics as extensions to the standard.

For details about the available intrinsic procedures, see the Cray Research
publications, the Intrinsic Procedures Reference Manual, publication SR–2138 and
Fortran Language Reference Manual, Volume 2, publication SR–3903.

A.3 Library routines

A library is a collection of subprograms, usually grouped around a specific
subject, such as input and output (I/O). You can call library routines explicitly
in your program, or they can be called by the compiler.

The following list describes the library routines that are available with the
MIPSpro 7 Fortran 90 compiler. See the individual man pages for more details.

• FFIO routines: C routines used with the FFIO layers

SR–3907 3.0.1 183

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

– fffcntl (3C)

– ffopen (3C)

– ffpos (3C)

– ffread (3C)

– ffseek (3C)

• Interface routines: job control routines that control program terminations or
execute a shell command

– ABORT(3F)

– EXIT (3F)

– ISHELL (3F)

• I/O routines: routines to control input and output

– ASNCTL(3F)

– ASNQFILE(3F)

– ASSIGN(3F)

– FLUSH(3F)

– NUMBLKS(3F)

– RNL(3F)

– RNLECHO(3F)

– RNLSKIP(3F)

– RNLTYPE(3F)

– WNL(3F)

– WNLLINE(3F)

– WNLLONG(3F)

• Programming aids: routines for time and dates, packing and unpacking,
and character argument counters

– SECOND(3F)

– SECONDR(3F)

184 SR–3907 3.0.1

Library Usage [A]

– SYSCLOCK(3F)

– TIMEF(3F)

• POSIX routines: routines to access constructs not directly accessible with
the Fortran standard

– IPXFARGC(3F)

– PXFACCESS(3F)

– PXFCHDIR(3F)

– PXFCHMOD(3F)

– PXFCHOWN(3F)

– PXFCHROOT(3F)

– PXFCLEARENV(3F)

– PXFCONST(3F)

– PXFCREAT(3F)

– PXFCTERMID(3F)

– PXFDIRECTORY(3F)

– PXFESTRGET(3F)

– PXFEXECV(3F)

– PXFFCNTL(3F)

– PXFFILENO(3F)

– PXFFORK(3F)

– PXFGETARG(3F)

– PXFGETARG(3F)

– PXFGETEGID(3F)

– PXFGETENV(3F)

– PXFGETEUID(3F)

– PXFGETGID(3F)

SR–3907 3.0.1 185

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

– PXFGETGRGID(3F)

– PXFGETGRNAM(3F)

– PXFGETGROUPS(3F)

– PXFGETLOGIN(3F)

– PXFGETPGRP(3F)

– PXFGETPID(3F)

– PXFGETPPID(3F)

– PXFGETPWNAM(3F)

– PXFGETPWUID(3F)

– PXFGETUID(3F)

– PXFINTGET(3F)

– PXFINTSET(3F)

– PXFISATTY(3F)

– PXFISBLK(3F)

– PXFISCHR(3F)

– PXFISDIR (3F)

– PXFISFIFO (3F)

– PXFISREG(3F)

– PXFLINK(3F)

– PXFLOCALTIME(3F)

– PXFOPEN(3F)

– PXFRENAME(3F)

– PXFRMDIR(3F)

– PXFSETENV(3F)

– PXFSETGID(3F)

– PXFSETPGID(3F)

186 SR–3907 3.0.1

Library Usage [A]

– PXFSETSID(3F)

– PXFSETUID(3F)

– PXFSTAT(3F)

– PXFSTRGET(3F)

– PXFSTRUCTCOPY(3F)

– PXFSTRSET(3F)

– PXFSTRUCTCREATE(3F)

– PXFSTRUCTFREE(3F)

– PXFSYSCONF(3F)

– PXFTIME(3F)

– PXFTIMES(3F)

– PXFUCOMPARE(3F)

– PXFUMASK(3F)

– PXFUNAME(3F)

– PXFUNLINK(3F)

– PXFUTIME(3F)

– PXFWAIT(3F)

• Multiprocessing routines: Fortran multiprocessing routines

– mp_block

– mp_blocktime

– mp_create

– mp_destroy

– mp_my_threadnum

– mp_numthreads

– mp_set_numthreads

– mp_setup

SR–3907 3.0.1 187

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

– mp_unblock

– mp_setlock

– mp_suggested_numthreads

– mp_unsetlock

– mp_barrier

– mp_in_doacross_loop

– mp_set_slave_stacksize

A.4 Library functions

The Fortran library routines provide an interface from Fortran programs to the
IRIX system functions. System functions are facilities that are provided by the
IRIX system kernel directly, as opposed to functions that are supplied by library
code loaded with your program.

Table 5 summarizes the routines in the Fortran run-time library that can be used
with the compiler. See the individual man pages for details about each routine.

Table 5. Summary of System Interface Library Routines

Function Purpose

abort abnormal termination

access determine accessibility of a file

acct enable/disable process accounting

alarm execute a subroutine after a specified time

barrier perform barrier operations

blockproc block processes

brk change data segment space allocation

chdir change default directory

chmod change mode of a file

chown change owner

188 SR–3907 3.0.1

Library Usage [A]

Function Purpose

chroot change root directory for a command

close close a file descriptor

creat create or rewrite a file

ctime return system time

dtime return elapsed execution time

dup duplicate an open file descriptor

etime return elapsed execution time

exit terminate process with status

fcntl file control

fdate return date and time in an ASCII string

fgetc get a character from a logical unit

fork create a copy of this process

fputc write a character to a Fortran logical unit

free_barrier free barrier

fseek reposition a file on a logical unit

fseek64 reposition a file on a logical unit for 64-bit
architecture

fstat get file status

ftell reposition a file on a logical unit

ftell64 reposition a file on a logical unit for 64-bit
architecture

gerror get system error messages

getarg return command line arguments

getc get a character from a logical unit

getcwd get pathname of current working directory

getdents read directory entries

getegid get effective group ID

gethostid get unique identifier of current host

getenv get value of environment variables

SR–3907 3.0.1 189

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Function Purpose

geteuid get effective user ID

getgid get user or group ID of the caller

gethostname get current host ID

getlog get user’s login name

getpgrp get process group ID

getpid get process ID

getppid get parent process ID

getsockopt get options on sockets

getuid get user or group ID of caller

gmtime return system time

iargc return command line arguments

idate return date or time in numerical form

ierrno get system error messages

ioctl control device

isatty determine if unit is associated with tty

itime return date or time in numerical form

kill send a signal to a process

link make a link to an existing file

loc return the address of an object

lseek move read/write file pointer

lseek64 move read/write file pointer for 64-bit architecture

lstat get file status

ltime return system time

m_fork create parallel processes

m_get_myid get task ID

m_get_numprocs get number of subtasks

m_kill_procs kill process

m_lock set global lock

190 SR–3907 3.0.1

Library Usage [A]

Function Purpose

m_next return value of counter

m_park_procs suspend child processes

m_rele_procs resume child processes

m_set_procs set number of subtasks

m_sync synchronize all threads

m_unlock unset a global lock

mkdir make a directory

mknod make a directory/file

mount mount a filesystem

new_barrier initialize a barrier structure

nice lower priority of a process

open open a file

oserror get/set system error

pause suspend process until signal

perror get system error messages

pipe create an interprocess channel

plock lock process, test, or data in memory

prctl control processes

profil execution-time profile

ptrace process trace

putc write a character to a Fortran logical unit

putenv set environment variable

qsort quick sort

read read from a file descriptor

readlink read value of symbolic link

rename change the name of a file

rmdir remove a directory

sbrk change data segment space allocation

SR–3907 3.0.1 191

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Function Purpose

schedctl call to scheduler control

send send a message to a socket

setblockproccnt set semaphore count

setgid set group ID

sethostid set current host ID

setoserror set system error

setpgrp set process group ID

setsockopt set options on sockets

setuid set user ID

sginap put process to sleep

sginap64 put process to sleep in 64-bit environment

shmat attach shared memory

shmdt detach shared memory

sighold raise priority and hold signal

sigignore ignore signal

signal change the action for a signal

sigpause suspend until receive signal

sigrelse release signal and lower priority

sigset specify system signal handling

sleep suspend execution for an interval

socket create an endpoint for communication TCP

sproc create a new share group process

stat get file status

stime set time

symlink make symbolic link

sync update superblock

sysmp control multiprocessing

sysmp64 control multiprocessing in 64-bit environment

192 SR–3907 3.0.1

Library Usage [A]

Function Purpose

system issue a shell command

taskblock block tasks

taskcreate create a new task

taskctl control task

taskdestroy kill task

tasksetblockcnt set task semaphore count

taskunblock unblock task

time return system time (must be declared EXTERNAL)

ttynam find name of terminal port

uadmin administrative control

ulimit get and set user limits

ulimit64 get and set user limits in 64-bit architecture

umask get and set file creation mask

umount dismount a file system

unblockproc unblock processes

unlink remove a directory entry

uscalloc shared memory allocator

uscalloc64 shared memory allocator in 64-bit environment

uscas compare and swap operator

usclosepollsema detach file descriptor from a pollable semaphore

usconfig semaphore and lock configuration operations

uscpsema acquire a semaphore

uscsetlock unconditionally set lock

usctlsema semaphore control operations

usdumplock dump lock information

usdumpsema dump semaphore information

usfree user shared memory allocation

usfreelock free a lock

SR–3907 3.0.1 193

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Function Purpose

usfreepollsema free a pollable semaphore

usfreesema free a semaphore

usgetinfo exchange information through an arena

usinit semaphore and lock initialize routine

usinitlock initialize a lock

usinitsema initialize a semaphore

usmalloc allocate shared memory

usmalloc64 allocate shared memory in 64-bit environment

usmallopt control allocation algorithm

usnewlock allocate and initialize a lock

usnewpollsema allocate and initialize a pollable semaphore

usnewsema allocate and initialize a semaphore

usopenpollsema attach a file descriptor to a pollable semaphore

uspsema acquire a semaphore

usputinfo exchange information through an arena

usrealloc user share memory allocation

usrealloc64 user share memory allocation in 64-bit environment

ussetlock set lock

ustestlock test lock

ustestsema return value of semaphore

usunsetlock unset lock

usvsema free a resource to a semaphore

uswsetlock set lock

wait wait for a process to terminate

write write to a file

194 SR–3907 3.0.1

Library Usage [A]

A.5 Compatibility with sproc

The parallelism used in Fortran is implemented using the sproc (2) system call.
It is recommended that programs not attempt to use both !$DOACROSSloops
and sproc calls. It is possible, but there are several restrictions:

• Any threads you create may not execute $DOACROSSloops; only the original
thread is allowed to do this.

• The calls to routines like mp_block and mp_destroy apply only to the
threads created by mp_create or to those automatically created when the
Fortran job starts; they have no effect on any user-defined threads.

• Calls to routines such as m_get_numprocs do not apply to the threads
created by the Fortran routines. However, the Fortran threads are ordinary
subprocesses; using the kill routine with the arguments 0 and sig (for
example, kill (0,sig)) to signal all members of the process group might kill
threads used to execute !$DOACROSS. If you choose to intercept the SIGCLD
signal, you must be prepared to receive this signal when the threads used
for the !$DOACROSSloops exit; this occurs when mp_destroy is called or
at program termination.

• The m_fork call is implemented using sproc , so it is not legal to run
m_fork on a family of processes that each subsequently executes
!$DOACROSSloops. Only the original thread can execute !$DOACROSS
loops.

A.6 Communicating between threads

The routines described in this section allow you to perform explicit
communication between threads within their multiprocessed Fortran program.
These communication mechanisms are similar to message-passing,
one-sided-communication, or shmem, and may be desirable for reasons of
performance or style.

The operations allow a thread to fetch from (get) or send to (put) data
belonging to other threads. Therefore these operations can be performed only
on data that has been declared to be -Xlocal (that is, each thread has its own
private copy of that data; see the ld (1) reference page for details on Xlocal),
the equivalent of the Cray TASKCOMMONdirective. A get operation requires that
source point to Xlocal data, while a put operation requires that target
point to Xlocal data.

SR–3907 3.0.1 195

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

These routines are similar to the original shmemroutines (see the shmem
reference page on your IRIX systems system), but are prefixed by mp_:

• mp_shmem_get32

• mp_shmem_put32

• mp_shmem_iget32

• mp_shmem_iput32

• mp_shmem_get64

• mp_shmem_put64

• mp_shmem_iget64

• mp_shmem_iput64

For the preceding routines:

• Both source and target are pointers to 32-bit quantities for the 32-bit
versions, and to 64-bit quantities for the 64-bit versions of these calls.

• length specifies the number of elements to be copied, in units of 32 or
64-bit elements, as appropriate.

• The source_thread and target_thread specify the thread-number of
the remote PE.

• A get copies from the remote PE, and put copies to the remote PE.

• target_inc and source_inc are specified for the strided iget /iput
operations. They specify the increment (in units of 32 or 64 bit elements)
along each of source and target when performing the data transfer. The
number of elements copied during a strided put or get operation is still
determined by length .

Call these routines only after the threads have been created (typically, the first
DOACROSS/PARALLELregion). Performing these operations while the program
is still serial leads to a run-time error because each thread’s copy has not yet
been created.

In the following example, compiling with -Wl, -Xlocal,mycommon_ ensures
that each thread has a private copy of x and y .

integer x

real*8 y(100)

196 SR–3907 3.0.1

Library Usage [A]

common /mycommon/ x, y

The following example copies the value of x on thread 3 into the private copy
of x for the current thread.

call mp_shmem_get32 (x, x, 1, 3)

The next example copies the value of localvar into the thread-5 copy of x .

call mp_shmem_put32 (x, localvar, 1, 5)

The following example below fetches values from the thread-7 copy of array y
into localarray .

call mp_shmem_get64 (localarray, y, 100, 7)

The next example copies the value of every other element of localarray into
the thread-9 copy of y .

call mp_shmem_iput64 (y, localarray, 2, 2, 50, 9)

SR–3907 3.0.1 197

Debugging [B]

This appendix describes some aspects of debugging Fortran 90 source code.
The recommended debugger for use with the MIPSpro 7 Fortran 90 compiler is
dbx (1). The dbx (1) debugger includes the following features to support the
Fortran 90 language: allocatable arrays, pointer-based variables, nonstandard
stride arrays, modules, and derived types. For more information on this
debugger, see the dbx (1) man page.

B.1 Compiling and running parallel Fortran

After you have written a program for parallel processing, it is best to debug
your program in a single-processor environment. After your program executes
successfully on a single processor, you can compile it for multiprocessing by
using the -mp option to the -f90 command. This option causes the Fortran
compiler to generate multiprocessing code for the files being compiled. At load
time, you can specify both object files produced with the -mp option and object
files produced without it. If any or all of the files are compiled with -mp , the
executable must be loaded with -mp so that the correct libraries are used.

B.1.1 Using the -static option

When multiprocessing is used, it creates a demand for stack use to allow
multiple threads of execution to execute the same code simultaneously.

If the parallel loop calls an external routine, that external routine cannot be
compiled with -static . You can mix static and multiprocessed object files in
the same executable; however, a static routine cannot be called from within a
parallel loop.

Example 1: Multiprocessor executable. The following command line compiles
and loads the Fortran program foo.f :

% f90 -mp foo.f

Example 2: Multiprocessor and optimizer. In the following example, the Fortran
routines in the file snark.f are compiled with multiprocessing code generation
(the -mp option) enabled. The optimizer is also used (the -O2 option):

% f90 -c -mp -O2 snark.f

SR–3907 3.0.1 199

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

A standard snark.o binary is produced, which must be loaded:

% f90 -mp -o boojum snark.o bellman.o

In this example, the -mp option signals the loader to use the Fortran
multiprocessing library. The bellman.o file did not have to be compiled with
the -mp option.

After loading, the resulting executable can be run like any executable file.
Creating multiple execution threads, running and synchronizing them, and task
termination are all handled automatically.

When an executable is loaded with -mp , the Fortran initialization routines
determine how many parallel threads of execution to create. This determination
occurs each time the task starts; the number of threads is not compiled into the
code. The default is to use either 4 or the number of processors that are on the
machine, whichever is less. The number of processors is determined by the
value returned by the sysmp(MP_NAPROCS)system call; see the sysmp (2) man
page for more information.

You can override the default by setting the MP_SET_NUMTHREADSenvironment
variable. If it is set, any Fortran tasks use the specified number of execution
threads regardless of the number of processors physically present on the
machine. The value for MP_SET_NUMTHREADScan be from 1 to 64.

B.2 Profiling a parallel Fortran program

After converting a program from use on one processor to one that can be
multiprocessed, you should examine execution profiles to judge the
effectiveness of the transformation. Good profiles of the program are crucial to
help you focus on the loops that use the most time. You can use SpeedShop to
obtain these profiles. For more information on SpeedShop, see the SpeedShop
User’s Guide or the ssrun (1) man page.

If your job uses multiple threads, you can use SpeedShop creates multiple
profile data files, one profile file for each thread. Use the prof (1) standard
profile analyzer to examine this output. You can also use timex (1); this
command indicates if the parallelized versions performed better overall than
the serial version.

The profile of a Fortran parallel job is different from a standard profile. To
produce a parallel program, the compiler pulls the parallel DOloops out into
separate subroutines, one routine for each loop. Each of these loops is shown as
a separate procedure in the profile. You can compare the amount of time spent

200 SR–3907 3.0.1

Debugging [B]

in each loop by the various threads to determine how well the workload is
balanced.

You can use par (1) to trace the activity of a single process, a related group of
processes, or the system as a whole. The par (1) utility is a process activity
reporter. For more information on par (1), see the par (1) man page.

In addition to the loops, the profile returned by the prof (1) command shows
the special routines that actually do the multiprocessing. The
__mp_parallel_do routine is the synchronizer and controller. Slave threads
wait for work in the routine __mp_slave_wait_for_work ; the less time they
wait, the more time they work. This gives a rough estimate of the extent of
parallelism in a program. For more information on these routines, see the
mp(3F) man page.

B.3 Debugging parallel Fortran

Debugging a multiprocessed program can be more difficult than debugging a
single-processor program. Therefore you should do as much debugging as
possible on the single-processor version. Try to isolate the problem and, if
possible, try to reduce the problem to a single DOACROSSloop.

To determine if a loop can be multiprocessed, change the order of the iterations
on the parallel DOloop on a single-processor version. If the loop can be
multiprocessed, the iterations can execute in any order and produce the same
answer. If the loop cannot be multiprocessed, changing the order usually causes
the single-processor version to fail. You can use single-process debugging
techniques to determine the problem.

Example. Erroneous !$DOACROSS. In this example, two references to A have
the indexes in reverse order. If the indexes were in the same order (if both were
A(I,J) or both were A(J,I)), the loop could be multiprocessed. As written,
there is a data dependency, so the DOACROSSis an error.

!$DOACROSS LOCAL(I,J)

DO I = 1, N

DO J = 1, N
A(I,J) = A(J,I) + X*B(I)

END DO

END DO

Because a (correct) multiprocessed loop can execute its iterations in any order,
you could rewrite this as:

SR–3907 3.0.1 201

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!$DOACROSS LOCAL(I,J)

DO I = N, 1, -1
DO J = 1, N

A(I,J) = A(J,I) + X*B(I)

END DO

END DO

This loop no longer gives the same answer as the original even when compiled
without the -mp option. This reduces the problem to a normal debugging
problem.

B.3.1 Other debugging tips for multiprocessed loops

If a multiprocessed loop produces the wrong answer, use the following
checklist to determine the cause:

Item to investigate Reasons

LOCALvariables Check the LOCALvariables when the code runs
correctly as a single process but fails when
multiprocessed. Check any scalar variables that
appear in the left-hand side of an assignment
statement in the loop to be sure they are all
declared as LOCAL. Be sure to include the DO
variable of any loop nested inside the parallel
loop.

LASTLOCAL A problem occurs when you need the final value
of a variable but the variable is declared LOCAL
rather than LASTLOCAL. If the use of the final
value happens several hundred lines farther
down, or if the variable is in a common block and
the final value is used in a completely separate
routine, a variable can look as if it is LOCALwhen
in fact it should be LASTLOCAL. To combat this
problem, simply declare all the LOCALvariables
LASTLOCALwhen debugging a loop.

EQUIVALENCE Check for EQUIVALENCEproblems. Two
variables of different names may in fact refer to
the same storage location if they are associated
through an EQUIVALENCE.

202 SR–3907 3.0.1

Debugging [B]

EQUIVALENCEstatements affect storage of local
variables and can cause data dependencies when
parallelizing code. EQUIVALENCEstatements
with local variables cause the storage location to
be initialized to zero and saved between calls to
the subroutine.

Uninitialized variables Some programs assume uninitialized variables
are set to 0. This works with the -static option
on the f90 (1) command, but without it,
uninitialized values assume the value that
remains on the stack. When compiling with the
-mp option on the f90 (1) command, the program
executes differently and the stack contents are
different. You should suspect this type of
problem when a program is compiled with -mp
and is run on a single processor and produces a
different result when it is compiled without -mp .

To discover this type of problem, compile
suspected routines with the -static option. If
an uninitialized variable is the problem, you
should initialize the variable rather than compile
the program with the -static option.

Ranges on arrays Perform array bounds checking analysis by
compiling with the -C option on the f90 (1)
command. If arrays are indexed out of bounds, a
memory location may be referenced in
unexpected ways. This is particularly true of
adjacent arrays in a common block.

Errors in choosing which arrays are SHAREDcan be detected only when
running on multiple processors. When stepping through the code in the
debugger, the program executes correctly.

The most likely candidates for this error are arrays with complicated subscripts.
If the array subscripts are simply the variables of a DOloop, the analysis is
probably correct. If the subscripts are more involved, examine those subscripts
first.

If you suspect this type of error, print out all the values of all the subscripts on
each iteration through the loop. Then use the uniq (1) command to look for
duplicates. If duplicates are found, there is a data dependency.

SR–3907 3.0.1 203

Differences [C]

This appendix describes the differences between the MIPSpro 7 Fortran 90
compiler and the Cray Research CF90 compiler.

C.1 Model differences

The model differences are as follows:

• The model for the CF90 REAL(KIND=16) data type on CRAY T90 systems
that support IEEE floating-point arithmetic is different from the model for
the MIPSpro 7 Fortran 90 compiler. This means that the results of math
functions, arithmetic calculations, I/O, and other library routines are
different for this particular data type.

• The internal size of INTEGER(KIND=1) , INTEGER(KIND=2) ,
LOGICAL(KIND=1) , and LOGICAL(KIND=2) on the MIPSpro 7 Fortran 90
compiler is actually one and two bytes, respectively. The CF90 compiler
treats these kind type parameters as INTEGER(KIND=4) and
LOGICAL(KIND=4) .

• The default sizes of the MIPSpro 7 Fortran 90 integer, real, and logical data
types are 32 bits. This differs from the CF90 default of 64 bits. The default
data type sizes for the MIPSpro 7 Fortran 90 compiler may be incorrect for
routines such as IRTC(3I) and SHMEM.

• The MIPSpro 7 Fortran 90 compiler does not support Cray character pointers.

• Pointer arithmetic is in default numeric storage units when using the CF90
compiler. Pointer arithmetic is in bytes when using the MIPSpro 7 Fortran
90 compiler.

For more information on the model, see the model (3I) man page.

C.2 Fortran 90 statement differences

The Fortran 90 statement differences are as follows:

• When using the MIPSpro 7 Fortran 90 compiler, the execution of the STOP
statement does not cause the word STOPto be written to stdout unless
there is an argument to the STOPstatement. The CF90 compiler always
writes STOPto stdout .

SR–3907 3.0.1 205

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• When using the MIPSpro 7 Fortran 90 compiler, the initialization of entities
in a common block in a DATAstatement mcan only be done in one program
unit. That is, if a common block contains two variables initialized in a DATA
statement, those DATAstatements must be in one program unit. The load
indicates the presence of multiple initializations, and only one initialization
is done.

With the CF90 compiler, each variable can be initialized in DATAstatements
in separate program units.

C.3 Functions and procedures

The CF90 typeless functions (such as MASK(3I), SHIFTL (3I), SHIFTR(3I),
SHIFT (3I), CVM(3I), and so on) are typed as integer functions by the MIPSpro 7
Fortran 90 compiler. Conversion occur in expressions involving a mixture of
floating point and integer functions. When called by the CF90 compiler, these
functions are typeless and no conversion occurs when there is a mixture of
floating point and these typeless functions.

C.4 Modules

When using the MIPSpro 7 Fortran 90 compiler, the compilation of Fortran 90
modules creates a file.mod for each module in the source file. When using the
CF90 compiler, compiling modules creates one file.o that contains all the
Fortran 90 modules in the source file.

C.5 I/O library

The I/O library differences are as follows:

• Direct access formatted output files cannot be read as sequential formatted
files by MIPSpro 7 Fortran 90 programs unless an assign (1) command with
-s unblocked or -F cachea is supplied for the particular file.

• The set of I/O library errors begins at 4000 for MIPSpro 7 Fortran 90
programs. The error numbers begin at 1000 for CF90 programs.

• The FILENV environment variable must be set for MIPSpro 7 Fortran 90
programs when using the assign (1) command. For CF90 uers, this
environment variable need not be set.

206 SR–3907 3.0.1

Differences [C]

C.6 Library functions and procedures

The library function and intrinsic procedure differences are as follows:

• The CRI_IEEE_DEFINITIONS module is available for the MIPSpro 7
Fortran 90 compiler, but the preferred name is FTN_IEEE_DEFINITIONS
for the IEEE module and the interface to the IEEE procedures.

• The MAXVAL(3I) intrinsic procedure returns negative infinity for a zero-sized
input array on when called from a MIPSpro 7 Fortran 90 program and
returns -HUGE(3I) when called from a CF90 program. A request for
interpretation has been submitted to the Fortran standards committee.

• The MINVAL(3I) intrinsic procedure returns positive infinity for a zero-sized
input array on when called from a MIPSpro 7 Fortran 90 program and
returns +HUGE(3I) when called from a CF90 program. A request for
interpretation has been submitted to the Fortran standards committee.

C.7 Math library

The math library differences are as follows:

• The math routines from the MIPSpro 7 Fortran 90 compiler are referenced
from the compiler. The results of the scalar math routines may differ from
the results of the vector math routines. The results of the math routines from
the MIPSpro 7 Fortran 90 compiler may differ from the results returned by
the math routines for the CF90 compiler.

• Signalling of errors during references to the MIPSpro 7 Fortran 90 compiler
math routines is not turned off. For the CF90 compiler, the math routines
turn off signaling of errors and detect input data errors through source code
checks.

SR–3907 3.0.1 207

Index

!$ directive, 74
(null) directive, 151
– option, 47
-32 option, 6
-64 option, 6

A

ABI, 6
Affinity clause, 112
Affinity scheduling, 112

data affinity, 113
examples, 125
thread affinity, 113

AGGRESSIVEINNERLOOPFISSION directive, 52
AINT, 33
ALIGN_SYMBOL directive, 61
-alignn option, 8
AMOD, 33
ANINT, 33
-ansi option, 9
Application Binary Interface (ABI)

(See ABI), 6
ar, 4
Archive library

definition, 3
Archiving tool

definition, 3
Argument aliasing directives

(See Directives), 60
Array slices, 162
Arrays

assumed-shape, 162
character, 174
deferred-shape, 162
elements

Fortran 90 and C correspondence, 161
example, 7
Fortran 90 arrays in C code, 170

processor, 121
reshaped, 120
slices, 162
unsupported array arguments, 162

Assembly language
calling from Fortran 90, 177

ASSERT ARGUMENTALIASING directive, 60
ASSERT NOARGUMENTALIASING directive, 60
assign, 179
Assumed-shape arrays, 162
Asynchronous I/O, 182
Autocloning

enable/disable, 29
Automatic page migration, 107
Autotasking

restrictions, 136
Autotasking directives

overview, 135, 136
-avoid_gp_overflow option, 9

B

BARRIER directive, 94
BLOCK distribution, 122
BLOCK-CYCLIC distribution, 123
BLOCKABLE directive, 52
BLOCKINGSIZE directive, 53
Blocks

common, 92
BOUNDS directive, 132, 133

C

-C option, 9
-c option, 9
C/C++, 157

calling C from Fortran 90, 167

SR–3907 3.0.1 209

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

calling Fortran 90, 164
calling Fortran 90 functions, 166
calling Fortran 90 subroutines, 164
external functions, 164
Fortran 90 and C correspondence, 159
Fortran 90 arrays in C code, 170
Fortran 90 blocks in C code, 169
makefile considerations, 176
making wrappers, 172
mkf2c argument assumptions, 172
mkf2c character string treatment, 173
mkf2c restrictions, 175
normal calls to C functions, 168
using %LOC, 171
using %VAL, 171

Cache
and optimization, 88
memory management, 23
performance, 88
prefetch options, 25
TLB, 24
transformation options, 20

CDIR$, 131, 132
Character address, 173
Character array, 174
Character types

Fortran 90 and C correspondence, 160
-check_bounds option, 9
CHUNK directive, 73
-chunk=integer option, 10
CIF, 3
cifconv, 3
Clauses

affinity, 112
NEST, 114

CMIC!, 132
CMIC$, 131
Code scheduler

specifying, 41
-coln option, 10
Common blocks

Fortran 90 in C code, 169
reorganizing, 35

common blocks, 92

Communication
between threads, 195

Compiler
invoking, 1

Compiler features, 49
Compiler information file (CIF)

(See CIF), 3
COMPILER_DEFAULTS_PATH, 42, 43
Conditional compilation

directives
(See Directives), 148

overview, 147
Conditional directives

(See Directives), 151
Consistency checks, 28
Constructs

critical section, 93, 101
parallel sections, 98, 100
PDO, 96
single process, 100
work-sharing, 93

Continuation character, 51
!$COPYIN directive, 92
cord, 10
-cord option, 10
Correspondence

between Fortran 90 and C data types, 159
cpp, 10
-cpp option, 10
CPU targeting

(See also Cross compiling), 42
Critical section, 93
CRITICALSECTION directive, 94
Cross compiling

definition, 42
CYCLIC distribution, 122

D

-D option, 11
Data dependence

examples, 78

210 SR–3907 3.0.1

Index

rewriting, 81
Data dependencies, 77

multiprocessing errors, 203
Data distribution

*, 118
BLOCK, 118
CYCLIC, 118
DISTRIBUTE directive, 111
DISTRIBUTE_RESHAPE, 111
examples, 125
REDISTRIBUTE, 111
regular, 109, 119
regular vs. reshaped, 124
RESHAPE directive, 120
reshaped, 109
restriction on reshaped arrays, 120
with reshaping, 120

Data placement
automatic page migration, 107
regular data distribution, 107

Data types
Fortran 90 and C correspondence, 159

Debugging
generating information, 13
parallel Fortran, 201
tips for multiprocessed loops, 202

-default64 option, 11
Deferred-shape arrays, 162
#define, 11
#define directive, 149
Dependency analysis

examples, 78
!DIR$, 131, 132
Directive

definition, 49
Directives

!$, 74
(null), 151
AGGRESSIVEINNERLOOPFISSION, 52
ALIGN_SYMBOL, 61

example, 62
and command line options, 50, 65
ASSERT ARGUMENTALIASING, 60
ASSERT NOARGUMENTALIASING, 60

BARRIER, 94
BLOCKABLE, 52
BLOCKINGSIZE, 53
CHUNK, 73
conditional, 151
continuation, 51, 66
continuing, 132
!$COPYIN, 92
CRITICALSECTION, 94
data distribution, 29
#define, 11, 149
DISTRIBUTE, 111
DISTRIBUTE_RESHAPE, 109, 111, 122
DOACROSS, 67, 112
DSM, 29
DYNAMIC, 116
#elif, 151, 153
#else, 151, 154
ENDCRITICALSECTION, 94
#endif, 151, 154
ENDPARALLEL, 95
ENDPDO, 96
ENDPSECTION, 98
ENDSINGLEPROCESS, 100
FILL_SYMBOL, 61

example, 62
FISSION, 54
FISSIONABLE, 54
fixed source form, 50
for Autotasking, 135
for local use of compiler features, 133
for optimization, 133
free source form, 50
FUSABLE, 55
FUSE, 55
global

definition, 65
#if, 152
#ifdef, 153
#ifndef, 153
#include, 148
INLINE, 63
Inlining and interprocedural analysis (IPA), 63

SR–3907 3.0.1 211

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

interaction with -x dirname option, 133
INTERCHANGE, 56
IPA, 63
IVDEP, 31
LNO, 51
MP_SCHEDTYPE, 74
multiprocessing, 65
NOBLOCKING, 53
NOFISSION, 54
NOFUSION, 55
NOINLINE directive, 63
NOINTERCHANGE, 56
NOIPA, 63
overview, 131
PAGE_PLACE, 117
PARALLEL, 95
PARALLELDO, 96
PCF, 93

restrictions, 102
PDO, 96
performance tuning, 110
PREFETCH, 57
PREFETCH_MANUAL, 58
PREFETCH_REF, 58
PREFETCH_REF_DISABLE, 59
PSECTION, 98
range, 51
range and placement, 132
REDISTRIBUTE, 111
regular data distribution, 119
RESHAPE, 120
SECTION, 98
SINGLEPROCESS, 100
source preprocessor, 51
symbol storage, 61
syntax, 49
#undef, 151
UNROLL, 59
using, 49

DISTRIBUTE directive, 111
DISTRIBUTE_RESHAPE directive, 109, 111, 122
-dn option, 11
DO loop, 66
DO PARALLEL directive, 138

DOACROSS, 201
example, 75

DOACROSS directive, 67, 112
!$DOACROSS

sproc compatibility, 195
!$DOACROSS loop, 68
DOALL directive, 132, 136
DOPARALLEL directive, 132
DYNAMIC directive, 116
DYNAMIC schedules, 92
Dynamic shared libraries, 15

E

-E option, 12
#elif directive, 151, 153
#else directive, 151, 154
ENDCRITICALSECTION directive, 94
ENDDO directive, 132, 138
ENDGUARD directive, 133, 139
#endif directive, 151, 154
ENDPARALLEL directive, 95, 133, 140
ENDPDO directive, 96
ENDPSECTION directive, 98
ENDSINGLEPROCESS directive, 100
Environment variables

affecting compilation, 5
COMPILER_DEFAULTS_PATH, 42, 43
MP_SET_NUMTHREADS, 66, 119, 200

Error detection, 3
Examples

arrays, 7
loading Fortran 90 object files, 26
setting stack size, 8
specifying libraries, 27

extcentry, 177
using with mkf2c, 175

-extend_source option, 12
External name, 157

212 SR–3907 3.0.1

Index

F

f90 command
example, 1
MIPSpro Automatic Parallelization Option, 5
options, 17

–, 47
-32, 6
-64, 6
-alignn, 8
-ansi, 9
-avoid_gp_overflow, 9
-C, 9
-c, 9
-check_bounds, 9
-chunk=integer, 10
-coln, 10
-cord, 10
-cpp, 10
-D, 11
-default64, 11
-dn, 11
-E, 12
-extend_source, 12
-fbfile.cfb, 12
-feedbackfile, 12
-fixedform, 12
-freeform, 12
-ftpp, 13
-gdebug_lvl, 13
-help, 13
-Idir, 13
-ignore_suffix, 14
-in, 14
-INLINE:…, 14
-INLINING, 63
-IPA, 63
-IPA:…, 14
-keep, 15
-KPIC, 15
-Ldirectory, 15
-LIST:..., 15
-listing, 27
-llibrary, 26

-LNO:…, 16
-macro_expand, 28
-MDupdate, 27
-mipsn, 6, 28
-mp, 199
-MP:, 28
-nocpp, 30
-noextend_source, 30
-nostdinc, 30
-o, 38
-Olevel, 39
-OPT:…, 31
-P, 40
-pfa, 40
-rprocessor, 41
-rreal_spec, 40
-S, 41
-static, 41, 80
-TARG:..., 42
-TENV:..., 44
-trapuv, 46
-Uvar, 46
-warg, 46
-woffnum, 46
-xgot, 47

syntax, 5
using multiple options, 5

-fbfile.cfb option, 12
Feedback files

naming, 12
specifying, 12

-feedbackfile option, 12
FFIO

and asynchronous I/O, 182
routines

(See Library routines), 183
supported layers for IRIX, 182

file.suffix90, 48
file.suffix90 option, 48
FILL_SYMBOL directive, 61
FISSION directive, 54
FISSIONABLE directive, 54
FIXED directive, 132, 135

SR–3907 3.0.1 213

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Fixed source form, 50
-fixedform option, 12
Flexible File I/O (FFIO)

(See FFIO), 182
Floating-point mode, 42
FORTRAN 77 compiler

$ character difference, 158
-U option, 158

Fortran 90
and C data types, 159
arrays in C code, 170
calling assembly language, 177
calling C, 167
calling from C, 164
calling function from C, 166
calling subroutines from C, 164
common blocks in C code, 169
compiling, 199
functions, 164
makefile considerations, 176
making C wrappers, 172
mkf2c argument assumptions, 172
mkf2c character string treatment, 173
mkf2c restrictions, 175
naming C functions, 159
naming subprogram from C, 158
normal calls to C functions, 168
passing subprogram arguments, 162
subroutines, 164
using %LOC, 171
using %VAL, 171

FREE directive, 132, 135
Free source form, 50
-freeform option, 12
ftnchop, 4
ftnlint, 3
ftnlist, 3
ftnmgen, 4
ftnsplit, 4
ftpp, 12, 13
-ftpp option, 13
Functions

calling Fortran 90 from C, 166
normal calls to C functions, 168

FUSABLE directive, 55
FUSE directive, 55

G

-gdebug_lvl option, 13
getwd, 27
Global directives, 65
Global Symbol Table (GOT)

(See GOT), 9
GOT, 9

accommodating larger, 44
overflow message, 47

GSS schedules, 92
GUARD directive, 133, 139

H

-help option, 13
hinv, 6, 39

I

I/O routines
(See Library routines), 184

ID directive, 132, 142
-Idir option, 13
IEEE Floating-point Arithmetic

level of conformance, 34
IF parameter, 137
#if directive, 152
#ifdef directive, 153
#ifndef directive, 153
-ignore_suffix option, 14
-in option, 14
#include directive, 148
#include files

searching for, 13
INLINE directive, 63
-INLINE:… option, 14

214 SR–3907 3.0.1

Index

Inlining
definition, 63
intrafile subprogram inlining, 14
standalone inliner, 14

Inlining and interprocedural analysis (IPA)
directives

(See Directives), 63
-INLINING option, 63
Instruction Set Architecture (ISA)

(See ISA), 6
INTERCHANGE directive, 56
Interface routines

(See Library routines), 184
Interlanguage calling, 157
Interleaving

cache performance, 91
load balancing, 91

Interprocedural analysis (IPA)
definition, 63
ipa, 63

Interprocedural analyzer (IPA)
(See IPA), 14

Interthread communication, 93
Intrinsic procedures, 3, 183

AINT, 33
AMOD, 33
ANINT, 33
libfortran, 3
libm, 3
NINT, 33
turning into a call, 35

IPA, 14
directives, 63

ipa, 63
IPA directive, 63
-IPA option, 63
-IPA:… option, 14
IRIX loader

ld, 3
Irregular data structures, 117
ISA

specifying, 28
IVDEP directive, 132, 144

K

-keep option, 15
KIND specification

values, 11
Kind specification

real values, 40
-KPIC option, 15

L

Language interface
C/C++, 157

LASTLOCAL variable, 77
ld, 3, 92, 157
-Ldirectory option, 15
libfortran, 3
libm, 3
Libraries, 3

changing search algorithm, 15
FFIO, 182
loaded by default, 26
searching lib.library.a, 26

Library options, 179
Library routines, 188, 183

communication between threads, 195
FFIO

fffcntl, 183
ffopen, 183
ffpos, 183
ffread, 183
ffseek, 183

I/O
ASNCTL, 184
ASNQFILE, 184
ASSIGN, 184
FLUSH, 184
NUMBLKS, 184
RNL, 184
RNLECHO, 184
RNLSKIP, 184
RNLTYPE, 184

SR–3907 3.0.1 215

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

WNL, 184
WNLLINE, 184
WNLLONG, 184

Interface
ABORT, 184
EXIT, 184
ISHELL, 184

POSIX
IPXFARGC, 185
PXFACCESS, 185
PXFCHDIR, 185
PXFCHMOD, 185
PXFCHOWN, 185
PXFCHROOT, 185
PXFCLEARENV, 185
PXFCONST, 185
PXFCREAT, 185
PXFCTERMID, 185
PXFDIRECTORY, 185
PXFESTRGET, 185
PXFEXECV, 185
PXFFCNTL, 185
PXFFILENO, 185
PXFFORK, 185
PXFGETARG, 185
PXFGETEGID, 185
PXFGETENV, 185
PXFGETEUID, 185
PXFGETGID, 185
PXFGETGRGID, 185
PXFGETGRNAM, 185
PXFGETGROUPS, 185
PXFGETLOGIN, 185
PXFGETPGRP, 185
PXFGETPID, 185
PXFGETPPID, 185
PXFGETPWNAM, 185
PXFGETPWUID, 185
PXFGETUID, 185
PXFINTGET, 185
PXFINTSET, 185
PXFISATTY, 185
PXFISBLK, 185
PXFISCHR, 185

PXFISDIR, 185
PXFISFIFO, 185
PXFISREG, 185
PXFLINK, 185
PXFLOCALTIME, 185
PXFOPEN, 185
PXFRENAME, 185
PXFRMDIR, 185
PXFSETENV, 185
PXFSETGID, 185
PXFSETPGID, 185
PXFSETSID, 185
*PXFSETUID, 185
PXFSTAT, 185
PXFSTRGET, 185
PXFSTRSET, 185
PXFSTRUCTCOPY, 185
PXFSTRUCTCREATE, 185
PXFSTRUCTFREE, 185
PXFSYSCONF, 185
PXFTIME, 185
PXFTIMES, 185
PXFUCOMPARE, 185
PXFUMASK, 185
PXFUNAME, 185
PXFUNLINK, 185
PXFUTIME, 185
PXFWAIT, 185

programming aids
SECOND, 184
SECONDR, 184
SYSCLOCK, 184
TIMEF, 184

Lines
restricting Fortran source code lines, 30
specifying length, 12
specifying width, 10

lint
(See ftnlint), 3

-LIST:... option
arguments, 15

Lister
ftnlist, 3

216 SR–3907 3.0.1

Index

using f90 command, 3
Listing file

writing to, 15
writing to assembly listing file, 15

-listing option, 27
-llibrary option, 26
LNO

directives
(See Directives), 51

-LNO option, 16
-LNO option arguments, 16

Load balancing, 90, 92
Loader

ld, 3
Loading compiler, 3
%LOC intrinsic function, 172
Local common blocks, 92
LOCAL variable, 77
Loop nest optimization, 51
Loop nest optimizer (LNO)

(See LNO), 16
Loop unrolling

UNROLL directive, 59
Loops

unrolled, 38

M

Macro expansion, 28
-macro_expand option, 28
Macros

based on host system, 154
based on IRIX system, 154
predefined, 154

D_LANGUAGE_FORTRAN90, 155
DLANGUAGE_FORTRAN90, 155
host_mips, 155
__host_mips, 155
LANGUAGE_FORTRAN, 155
_LANGUAGE_FORTRAN, 155
mips, 155
MIPSEB, 155
_MIPSEB, 155

sgi, 155
__sgi, 155
_SGI_SOURCE, 155
_SVR4_SOURCE, 155
_SYSTYPE_SVR4, 155
unix, 154
__unix, 154

make, 176
Makefile

considerations, 176
man, 4
Master/slave

Common block, 92
Master/slave organization, 66
Matrix multiply, 88
MAXCPUS parameter, 137
-MDupdate option, 27
Messages

generation of, 9
specifying, 46

!MIC$, 131, 132
-mipsn option, 6, 28
MIPSpro 7 Fortran 90 compiler

definition, 3
invoking, 5

MIPSpro assembly language
calling from Fortran 90, 177

MIPSpro Automatic Parallelization Option, 5
mkf2c, 172

argument assumptions, 172
character string treatment, 173
restrictions, 175
using with extcentry, 175

-mp option, 199
-MP: option

arguments, 28
MP_SCHEDTYPE directive, 74
MP_SET_NUMTHREADS, 119, 200
MP_SET_NUMTHREADS environment

variable, 66
Multiprocessing

analyzing data dependencies, 77
debugging program, 201

SR–3907 3.0.1 217

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

directives
(See Directives), 65

DO loop, 66
!$DOACROSS, 68
loop-level, 66
master/slave orgzniation, 66
Origin series, 105
parallel Fortran, 199
specifying options, 28
thread of execution, 66
work quantum, 86

multiprocessing routines, 187
Multitasking, 135

N

NAME directive, 133, 144
NEST clause, 114
Nested parallelism, 114
NINT, 33
nm, 157
NOBLOCKING directive, 53
NOBOUNDS directive, 132, 133
-nocpp option, 30
-noextend_source option, 30
NOFISSION directive, 54
NOFUSION directive, 55
NOINLINE directive, 63
NOINTERCHANGE directive, 56
NOIPA directive, 63
-nostdinc option, 30

O

-o option, 38
Object file tools

definition, 4
-Olevel option, 39
Online documentation utilities, 4
-OPT:… option, 31
Optimization

controlling, 31

costs, 89
specifying level, 39

Optimization directives, 133
option, 17
Options

help, 13
Origin series

improving program performance, 106
memory hierarchy, 106
parallel programming, 105
performance tuning, 105

P

-P option, 40
PAGE_PLACE directive, 117
Parallel Computing Forum (PCF)

(See PCF), 93
PARALLEL directive, 95, 133, 140
Parallel processing

analyzing source code, 40
Parallel programming

Origin series, 105
Parallel region

definition, 93
PARALLELDO directive, 96
Parallelism

cache performance, 88
conditional, 87
general model based on PCF, 93
implementation, 195
nested, 114
profiling, 200
sproc, 195

Passing arguments, 163
PCF

directives, 93
PDO directive, 96
pe_environ, 5
Performance tuning, 105
Performance tuning directives

(See Directives), 110

218 SR–3907 3.0.1

Index

-pfa option, 40
pixie, 10
pmake command, 27
Position-independent code (PIC)

(See PIC), 15
POSIX routines

(See Library routines), 185
Power Fortran, 78
Predefined macros

for conditional compilation, 154
PREFETCH directive, 57
PREFETCH_MANUAL directive, 58
PREFETCH_REF directive, 58
PREFETCH_REF_DISABLE directive, 59
Preprocessing, 147

f90 command line options, 155
Power Fortran, 78

Preprocessor
using f90 command, 3

PRIVATE parameter, 137
Procedure rearranging, 10
Processor array, 121
prof, 10, 200
Profiling

a parallel Fortran program, 200
Fortran parallel vs. standard, 200
__mp_parallel_do synchronizer and

controller, 201
__mp_slave_wait_for_work routine, 201
prof standard profile analyzer, 200
timex profile analyzer, 200

Programming aids
(See Library routines), 184

Proprocessing
source, 10

PSECTION directive, 98
Public name, 157

R

Reciprocal operations
specifying faster, 36

REDISTRIBUTE directive, 111

Redistribution
DYNAMIC directive, 116

Reduction operation
definition, 72

REDUCTION variable, 77
Regular data distribution directives

(See Directives), 119
Relational operators, 34

unsigned, 34
RESHAPE directive, 120
Reshaped arrays

error detection, 121
implementation of, 121
restrictions, 120

Restrictions
on PCF directives, 102
on reshaped arrays, 120

-rprocessor option, 41
-rreal_spec option, 40

S

-S option, 41
SAVELAST parameter, 137
Scalar types

Fortran 90 and C correspondence, 159
Scheduling, 29

affinity, 68, 112
DYNAMIC schedules, 91
fixed schedules, 91
GSS schedules, 91
interleaving, 91
work, 69

SECTION directive, 98
Semantics, 31
sh, 7
SHARED parameter, 137
SHARED variable, 77
shmem

thread communication, 195
SINGLEPROCESS directive, 100
smake command, 27

SR–3907 3.0.1 219

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Source preprocessing, 40, 147
Source preprocessor, 13

cpp, 10
disabling, 30
ftpp, 12

Speculative code motion, 45
SpeedShop, 92
sproc

compatibility with !$DOACROSS, 195
Square root

calculation, 33
Static analyzer

ftnlint utility, 3
-static option, 41, 199

Caution, 80
Subroutines

calling Fortran 90 from C, 164
Subscripts

Fortran 90 and C correspondence, 162
Symbol storage directives, 61
System defaults

predefined, 6

T

-TARG:... option
arguments, 42

Target environment
controlling alignment, 44
specifying, 44

TASKCOMMON directive
thread communication, 195

Tasking directives, 135
-TENV:... option, 44
Thread communication, 195

examples, 196
timex, 200

-trapuv option, 46
Tuning, 105

choosing a method, 109

U

#undef directive, 151
UNROLL directive, 59
-Uvar option, 46

V

%VAL intrinsic function, 171
Variables

allocating local, 41
Vector dependencies

ignoring, 35
VSEARCH directive, 132

W

-warg option, 46
-woffnum option, 46
Work quantum, 86
Work-sharing constructs, 93

X

-x dirname option, 133
-xgot option, 47
Xlocal

thread communication, 195

220 SR–3907 3.0.1

