
IRIX® Admin: Resource Administration

007–3700–009

CONTRIBUTORS

Written by Terry Schultz
Edited by Susan Wilkening
Illustrated by Chris Wengelski
Production by Glen Traefald
Engineering contributions by Tom Goozen, Sharif Islam, Marlys Kohnke, Tina Liang, Dennis Parker, Michael Sanford, Dan Stekloff, and
Sam Watters

COPYRIGHT
© 2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any
manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics is a registered trademark and CXFS, IRIS, IRIS FailSafe, IRIS InSight, IRIX, Origin, SGI, and the SGI logo are
trademarks of Silicon Graphics, Inc.

LSF is a trademark of Platform Computing Corporation. Netscape is a trademark of Netscape Communications Corporation. Sun is a
trademark of Sun Microsystems, Inc. PBS is a trademark of Veridian Corporation. UNIX is a registered trademark in the United States
and other countries, licensed exclusively through X/Open Company Limited. Windows is a trademark of Microsoft Corporation.

Cover Design By Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in This Manual

This rewrite of IRIX Admin: Resource Administration supports the 6.5.14 release of IRIX.

New Features Documented
This release describes how to use the a -q cpuset_name -p option to the cpuset(1)
command that allows you to see the properties of particular cpuset, such as, the
number of processes and CPUs associated with the specified cpuset.

This release adds the cpusetGetProperties() and cpusetFreeProperties()
functions to the Cpuset System library. The cpusetGetProperties() function
allows you to retrieve various properties associated with a cpuset. The
cpusetFreeProperties() functions allows you to release the memory used by a
cpuset_Properties_t structure. For more information, see "Obtaining the
Properties Associated with a Cpuset", page 64, and the cpusetGetProperties(3x)
and cpusetFreeProperties(3x) man pages.

Major Documentation Changes
Changes to this document for the IRIX 6.5.14 release include a new section called
"Writing a User Exit", page 113 and a minor correction to the waitjob(2) man page
information in "waitjob", page 136.

007–3700–009 iii

Record of Revision

Version Description

001 July 1999
Draft version.

002 January 2000
Supports the IRIX 6.5.7 release.

003 April 2000
Supports the IRIX 6.5.8 release.

004 August 2000
Supports the IRIX 6.5.9 release.

005 November 2000
Supports the IRIX 6.5.10 release.

006 February 2001
Supports the IRIX 6.5.11 release.

007 May 2001
Supports the IRIX 6.5.12 release.

008 August 2001
Supports the IRIX 6.5.13 release.

009 November 2001
Supports the IRIX 6.5.14 release.

007–3700–009 v

Contents

About This Manual . xxi

Related Publications . xxi

Obtaining Publications . xxii

Conventions . xxiii

Reader Comments . xxiii

1. Process Limits . 1

Process Limits Overview . 1

Using csh and sh to Limit Resource Consumption 1

Using systune to Display and Set Process Limits 2

Additional Process Limits Parameters 4

2. Job Limits . 5

Read Me First . 5

Job Limits Overview . 6

Job Limits Supported . 9

getjlimit and setjlimit 10

waitjob . 11

systune . 11

cpulimit_gracetime . 11

User Limits Database . 11

Creating the User Limits Database 12

Creating the User Limits Directives Input File 13

Comments . 13

Numeric Limit Values . 14

007–3700–009 vii

Contents

Domain Directives . 14

User Directives . 15

Setting Up a User Limits Directive Input File Example 16

Using systune to Display and Set Job Limits 17

User Commands for Viewing and Setting Job Limits 18

showlimits . 19

jlimit . 21

jstat . 22

Job Limits and Existing IRIX software 24

Running Job Limits with Message Passing Interface (MPI) Jobs 25

Installing Job Limits . 26

Troubleshooting Job Limits . 26

Job Limits Man Pages . 26

User-Level Man Pages . 27

Administrator Man Pages . 27

Application Interface Man Pages 27

Error Messages . 28

3. Miser Batch Processing System 29

Read Me First . 29

Miser Overview . 30

About Logical Number of CPUs 31

The Effect of Reservation of CPUs on Interactive Processes 31

About Miser Memory Management 32

How Miser Management Affects Users 32

Miser Configuration . 33

Setting Up the Miser System Queue Definition File 33

Setting Up the Miser User Queue Definition FIle 35

viii 007–3700–009

IRIX® Admin: Resource Administration

Setting Up the Miser Configuration FIle 37

Setting Up the Miser CommandLine Options File 37

Configuration Recommendations 38

Miser Configuration Examples 39

Enabling or Disabling Miser . 42

Submitting Miser Jobs . 43

Querying Miser About Job Schedule/Description 44

Querying Miser About Queues 44

Moving a Block of Resources 45

Resetting Miser . 45

Terminating a Miser Job . 45

Miser and Batch Management Systems 46

Miser Man Pages . 46

User-Level Man Pages . 46

File Format Man Pages . 47

Miscellaneous Man Pages . 47

4. Cpuset System . 49

Using Cpusets . 50

Restrictions on CPUs within Cpusets 52

Cpuset System Tutorial . 53

Boot Cpuset . 57

Cpuset Command and Configuration File 59

cpuset Command . 59

Cpuset Configuration File . 59

Installing the Cpuset System . 63

Obtaining the Properties Associated with a Cpuset 64

007–3700–009 ix

Contents

Cpuset System and Trusted IRIX 64

Using the Cpuset Library . 66

cpusetAttachPID and cpusetDetachPID 66

Using the cpusetAttachPID and cpusetDetachPID Functions 66

Cpuset System Man Pages . 68

User-Level Man Pages . 68

Cpuset Library Man Pages . 68

File Format Man Pages . 69

Miscellaneous Man Pages . 69

5. Comprehensive System Accounting 71

Read Me First . 72

CSA Overview . 73

Concepts and Terminology . 74

Enabling or Disabling CSA . 76

CSA Files and Directories . 77

Files in the /var/adm/acct Directory 77

Files in the /var/adm/acct/ Directory 78

Files in the /var/adm/acct/day Directory 79

Files in the /var/adm/acct/work Directory 79

Files in the /var/adm/acct/sum/csa Directory 80

Files in the /var/adm/acct/fiscal/csa Directory 80

Files in the /var/adm/acct/nite/csa Directory 81

/usr/lib/acct Directory 83

/etc Directory . 84

/etc/config Directory 84

Comprehensive System Accounting Expanded Description 84

x 007–3700–009

IRIX® Admin: Resource Administration

Daily Operation Overview . 85

Setting Up CSA . 86

The csarun Command . 90

Daily Invocation . 90

Error and Status Messages 91

States . 91

Restarting csarun . 93

Verifying and Editing Data Files 94

CSA Data Processing . 95

Data Recycling . 98

How Jobs Are Terminated 98

Why Recycled Sessions Should Be Scrutinized 99

How to Remove Recycled Data 100

Adverse Effects of Removing Recycled Data 101

NQS or Workload Management Requests and Recycled Data 103

Tailoring CSA . 104

System Billing Units (SBUs) 105

Process SBUs . 106

NQS SBUs . 108

Workload Management SBUs 109

Tape SBUs . 109

Example SBU Settings 110

Daemon Accounting . 111

Setting up User Exits . 112

Writing a User Exit . 113

Charging for NQS Jobs . 115

Charging for Workload Management Jobs 116

007–3700–009 xi

Contents

Tailoring CSA Shell Scripts and Commands 116

Using at to Execute csarun 117

Allowing Non Superusers to Execute CSA 117

Using an Alternate Configuration File 119

CSA Reports . 119

CSA Daily Report . 119

Consolidated Information Report 120

Unfinished Job Information Report 120

Disk Usage Report . 121

Command Summary Report 121

Last Login Report . 122

Daemon Usage Report . 122

Periodic Report . 123

Consolidated accounting report 124

Command summary report 124

CSA and Existing IRIX Software 125

acct(1M) Man Page . 125

acctsh(1M) Man Page . 125

dodisk(1M) Man Page . 126

explain(1) Man Page . 126

capabilities(4) Man Page 126

Migrating Accounting Data . 126

CSA Man Pages . 127

User-Level Man Pages . 127

Administrator Man Pages . 127

6. IRIX Memory Usage 129

xii 007–3700–009

IRIX® Admin: Resource Administration

Memory Usage Commands . 129

Shared Memory . 131

Physical Memory . 132

Virtual Memory . 132

Appendix A. Programming Guide for Resource Management 133

Application Programming Interface for Job Limits 133

Data Types . 133

Function Calls . 134

getjlimit and setjlimit 134

getjusage . 134

getjid . 134

killjob . 135

jlimit_startjob . 135

makenewjob . 135

setwaitjobpid . 135

waitjob . 136

Error Messages . 136

Application Programming Interface for the ULDB 136

Data Types . 136

uldb_namelist_t . 136

uldb_limitlist_t . 137

Function Calls . 137

uldb_get_limit_values 137

uldb_get_value_units 138

uldb_get_limit_names 138

uldb_get_domain_names 139

uldb_free_namelist . 139

007–3700–009 xiii

Contents

uldb_free_limit_list 139

Error Messages . 140

Application Programming Interface for the Cpuset System 140

Management functions . 142

Retrieval Functions . 156

Clean-up Functions . 174

Using the Cpuset Library . 180

Index . 183

xiv 007–3700–009

Figures

Figure 2-1 Point of Entry Processes 7

Figure 2-2 Limit Domains . 8

Figure 4-1 Dividing a System Using Cpusets 54

Figure 4-2 Using the cpusetAttachPID and cpusetDetachPID Functions 67

Figure 5-1 The /var/adm/acct Directory 78

Figure 5-2 CSA Data Processing 95

007–3700–009 xv

Tables

Table 1-1 Process Limits . 2

Table 2-1 Job Limits . 9

Table 5-1 Possible Effects of Removing Recycled Data 103

007–3700–009 xvii

Examples

Example 5-1 Save a sorted pacct File During a Daily Accounting Run 113

Example 5-2 Consolidated Information Report by Project Rather than by User 113

Example 6-1 Example of Creating a Cpuset 180

Example 6-2 Example of Creating a Replacement Library 182

007–3700–009 xix

About This Manual

This publication documents the IRIX 6.5.14 operating system running on SGI server
systems.

This guide is a reference document for people who manage the operation of SGI
computer systems running the IRIX operating system. It contains information needed
in the administration of various system resource management features.

This manual contains the following chapters:

• Chapter 1, "Process Limits", page 1

• Chapter 2, "Job Limits", page 5

• Chapter 3, "Miser Batch Processing System", page 29

• Chapter 4, "Cpuset System", page 49

• Chapter 5, "Comprehensive System Accounting", page 71

• Chapter 6, "IRIX Memory Usage", page 129

• Appendix A, "Programming Guide for Resource Management", page 133

Related Publications
This guide is part of the IRIX Admin manual set, which is intended for administrators:
those who are responsible for servers, multiple systems, and file structures outside the
user’s home directory and immediate working directories. If you maintain systems
for others or if you require more information about IRIX than is in the end-user
manuals, these guides are for you. The IRIX Admin guides are available through the
IRIS InSight online viewing system. The set consists of these volumes:

• IRIX Admin: Software Installation and Licensing - Explains how to install and license
software that runs under IRIX, the SGI implementation of the UNIX operating
system. Contains instructions for performing miniroot and live installations using
inst(1M), the command line interface to the IRIX installation utility. Identifies the
licensing products that control access to restricted applications running under IRIX
and refers readers to licensing product documentation.

007–3700–009 xxi

About This Manual

• IRIX Admin: System Configuration and Operation - Lists good general system
administration practices and describes system administration tasks, including
configuring the operating system; managing user accounts, user processes, and
disk resources; interacting with the system while in the PROM monitor; and
tuning system performance.

• IRIX Admin: Disks and Filesystems - Explains disk, filesystem, and logical volume
concepts. Provides system administration procedures for SCSI disks, XFS and
Extent File System (EFS) filesystems, XLV logical volumes, and guaranteed-rate
I/O.

• IRIX Admin Networking and Mail - Describes how to plan, set up, use, and maintain
the networking and mail systems, including discussions of sendmail, UUCP, SLIP,
and PPP.

• IRIX Admin: Backup, Security and Accounting - Describes how to back up and
restore files, how to protect your system’s and network’s security, and how to
track system usage on a per-user basis.

• IRIX Admin: Resource Administration - Provides an introduction to system resource
administration and describes how to use and administer various IRIX resource
management features, such as IRIX job limits, the Miser Batch Processing System,
the Cpuset System, and Comprehensive System Accounting (CSA).

• IRIX Admin: Peripheral Devices - Describes how to set up and maintain the
software for peripheral devices such as terminals, modems, printers, and CD-ROM
and tape drives.

• IRIX Admin: Selected Reference Pages – (not available in InSight) – Provides concise
man page information on the use of commands that may be needed while the
system is down. Generally, each man page covers one command, although some
man pages cover closely related commands. Man pages are available online
through the man(1) command.

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://techpubs.sgi.com

xxii 007–3700–009

IRIX® Admin: Resource Administration

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

007–3700–009 xxiii

About This Manual

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xxiv 007–3700–009

Chapter 1

Process Limits

Standard system resource limits are applied so that each login process receives the
same process-based limits at the time the process is created. This chapter describes
process limits and contains the following sections:

• "Process Limits Overview", page 1

• "Using csh and sh to Limit Resource Consumption", page 1

• "Using systune to Display and Set Process Limits", page 2

• "Additional Process Limits Parameters", page 4

Process Limits Overview
The IRIX operating system supports limits on individual processes. Limits on the
consumption of a variety of system resources by a process and each process it creates
may be obtained with the getrlimit(2) system call and set with the setrlimit(2)
system call.

Each call to either getrlimit or setrlimit identifies a specific resource to be
operated upon as well as a resource limit. A resource limit is a pair of values: one
specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits may
be changed by a process to any value that is less than or equal to the hard limit. A
process may (irreversibly) lower its hard limit to any value that is greater than or
equal to the soft limit.

Using csh and sh to Limit Resource Consumption
The csh or sh limit -h resource max-use commands can be used to limit the
resource consumption by the current process or any process it spawns.

These commands limit the consumption by the current process and each process it
creates to not individually exceed maximum-use on the specified resource. If no
maximum-use is given, then the current limit is printed; if no resource is given, then
all limitations are given. If the -h flag is given, the hard (maximum) limits are used
instead of the current limits. The hard limits impose a ceiling on the values of the

007–3700–009 1

1: Process Limits

current limits. To raise maximum (hard) limits, you must have the CAP_PROC_MGT
capability.

For additional information, see the csh(1) and sh(1) man pages. For more
information on the capability mechanism that provides fine grained control over the
privileges of a process, see the capability(4) and capabilities(4) man pages.

Using systune to Display and Set Process Limits
Table 1-1 shows the process limits supported by the IRIX operating system.

Table 1-1 Process Limits

Limit Name Symbolic ID Units Description Enforcement

rlimit_cpu_cur
rlimit_cpu_max

RLIMIT_CPU seconds Maximum number
of CPU seconds the
process is allowed

Process
termination via
SIGXCPU signal

rlimit_fsize_cur
rlimit_fsize_max

RLIMIT_FSIZE bytes Maximum size of
file that can be
created by process

Write/expansion
attempt fails with
errno set to
EFBIG

rlimit_data_cur
rlimit_data_max

RLIMIT_DATA bytes Maximum process
heap size

brk(2) calls fail
with errno set to
ENOMEM

rlimit_stack_cur
rlimit_stack_max

RLIMIT_STACK bytes Maximum process
stack size

Process
termination via
SIGSEGV signal

rlimit_ core_cur
rlimit_core_max

RLIMIT_CORE bytes Maximum size of a
core file that can be
created by process

Writing of core
file terminated at
limit

rlimit_nofile_cur
rlimit_nofile_max

RLIMIT_NOFILE file descriptors Maximum number
of open file
descriptors process
can have

open(2) attempts
file with errno
set to EMFILE

2 007–3700–009

IRIX® Admin: Resource Administration

Limit Name Symbolic ID Units Description Enforcement

rlimit_vmem_cur
rlimit_vmem_max

RLIMIT_VMEM bytes Maximum process
address space

brk(2) and
mmap(2) calls fail
with errno set to
ENOMEM

rlimit_rss_cur
rlimit_rss_max

RLIMIT_RSS bytes Maximum size of
resident set size of
the process

Resident pages
above limit
become prime
swap candidates

rlimit_pthread_cur
rlimit_pthread_max

RLIMIT_PTHREAD threads Maximum number
of threads that
process can create

Thread creation
fails with errno
set to EAGAIN

You can use the systune resource command to view and set systemwide default
values for process limits. The resource group contains the following variables:

rlimit_cpu_cur

rlimit_cpu_max

rlimit_fsize_cur

rlimit_fsize_max
rlimit_data_cur

rlimit_data_max

rlimit_stack_cur

rlimit_stack_max

rlimit_core_cur
rlimit_core_max

rlimit_nofile_cur

rlimit_nofile_max

rlimit_vmem_cur

rlimit_vmem_max
rlimit_rss_cur

rlimit_rss_max

rlimit_pthread_cur

rlimit_pthread_max

For additional information, see the systune(1M) man page.

If job limits software is installed and running on the system, you can choose to set
user-based process limits values in the user limits database (ULDB). Both current and

007–3700–009 3

1: Process Limits

maximum values, such as rlimit_cpu_cur and rlimit_cpu_max can be specified.
Values in the ULDB override the system defaults set by the systune(1M) command.

For additional information on the ULDB, see "User Limits Database", page 11.

Additional Process Limits Parameters
IRIX has configurable parameters for certain system limits. For example, you can set
maximum values for each process (its core or file size), the number of groups per user,
the number of resident pages, and so forth. The maxup and cpulimit_gracetime
are described below. All parameters are set and defined in /var/sysgen/mtune.

maxup Maximum number of processes per user

cpulimit_gracetime Process and job limit grace period

For additional information on the maxup parameter and other “System Limits
Parameters”, see IRIX Admin: System Configuration and Operation.

The cpulimit_gracetime parameter establishes a grace period for processes that
exceed the CPU time limit. You should set it to the number of seconds that a process
will be allowed to run after exceeding the limit. When cputlimit_gracetime is
not set (that is, when it is zero), any process that exceeds either the process or job
CPU limit will be sent a SIGXCPU signal. The kernel will periodically send a
SIGXCPU signal to that process as long as it continues to execute. Since a process can
register to handle a SIGXCPU signal, the process can effectively ignore the CPU limit.

If you use the systune(1M) command to set the cpulimit_gracetime parameter
to a nonzero value, its behavior changes. When a process exceeds the CPU limit, the
kernel sends a SIGXCPU signal to a process only once. The process can register for
this signal and then perform any cleanup and shutdown operations it wants to
perform. If the process is still running after accruing cpulimit_gracetime more
seconds of CPU time, the kernel terminates the process with a SIGKILL signal.

4 007–3700–009

Chapter 2

Job Limits

Standard system resource limits are set up so that each process receives the same
process-based limits at the time the process is created. While limits on individual
processes are useful, they do not restrict individual users to a given share of the
system. With the IRIX kernel job limits feature, all processes associated with a
particular login session or batch submission are encapsulated as a single logical unit
called a job. The job is the container used to group processes by login session. Limits
on resource usage are applied on a per user basis for a particular job and these limits
are enforced by the kernel. All processes are associated with a particular job and are
identified by a unique job identifier (job ID). The processes belonging to a particular
job can be limited, controlled, queried, and accounted for as a unit. This allows a
system administrator to set job-specific limits on CPU time, memory, file space, and
other system resources. The user limits database (ULDB) allows user-specific limits
for jobs. If no ULDB is defined, job limits are the same for all jobs. Job limits software
can help maximize utilization of larger systems in a multiuser environment.

This chapter contains the following sections:

• "Read Me First", page 5

• "Job Limits Overview", page 6

• "Job Limits Supported", page 9

• "User Limits Database", page 11

• "Running Job Limits with Message Passing Interface (MPI) Jobs", page 25

• "Installing Job Limits", page 26

• "Job Limits Man Pages", page 26

• "Error Messages", page 28

Read Me First
The sections in this chapter contain information about installing job limits software on
your system. You should reference them in the order they are listed here:

007–3700–009 5

2: Job Limits

1. For a general description of jobs and job limits, see "Job Limits Overview", page 6,
and "Job Limits Supported", page 9.

2. To install the job limits package, see "Installing Job Limits", page 26.

3. For information about writing a user limits directives input file infile and creating
the user limits database (ULDB), see "Creating the User Limits Directives Input
File", page 13, and "Creating the User Limits Database", page 12, respectively.

For a list of man pages related to job limits, see "Job Limits Man Pages", page 26.

4. For information on how to use the systune joblimits command to set
systemwide default values for job limits, see "Using systune to Display and Set
Job Limits", page 17.

5. For information on how to view job limits on a system, see "User Commands for
Viewing and Setting Job Limits", page 18.

6. For information on troubleshooting your job limits installation, see
"Troubleshooting Job Limits", page 26.

7. For information on application programming interfaces, see "Application
Programming Interface for Job Limits", page 133, and "Application Programming
Interface for the ULDB", page 136.

Job Limits Overview
Job limits software helps ensure that each user has access to the appropriate amount
of system resources such as CPU time and memory and makes sure that users do not
exceed their allotted amount. Job limits software can improve system throughput and
utilization by restricting how much of a machine each user can use. For information
on user-based job limits supported in IRIX, see "Job Limits Supported", page 9.

Work on a machine is submitted in a variety of ways, such as an interactive login, a
submission from a workload management system, a cron job, or a remote access
such as rsh, rcp, or array services. Each of these points of entry create an original
shell process and multiple processes flow from that original point of entry. The kernel
job provides a means to limit the resource usage of all the processes resulting from a
point of entry. A job is a group of related processes all descended from a point of
entry process and identified by a unique job ID. A job can contain multiple process
groups, sessions, or array sessions and all processes in one of these subgroups are

6 007–3700–009

IRIX® Admin: Resource Administration

always contained within one job. Figure 2-1, page 7, shows the point of entry
processes that initiate the creation of jobs.

log
in

cro
n

su

rsh
, r

log
in

Miser

arr
ayd

Irix
job

jlimit-startjob()

Figure 2-1 Point of Entry Processes

IRIX job limits have the following characteristics:

• A job is an inescapable container. A process cannot leave the job nor can a new
process be created outside the job without explicit action, that is, a system call
with root privilege.

• Each new process inherits the job ID and limits from its parent process.

• All point of entry processes (job initiators) create a new job and set the job limits
appropriately.

• Users can raise and lower their own job limits within maximum values specified
by the system administrator.

• The job initiator performs authentication and security checks.

007–3700–009 7

2: Job Limits

The process control initialization process (init(1M)) and startup scripts called by
init are not part of a job and have a job ID of zero.

Note: The upper bits of the job ID are used to indicate the machine ID. The job ID
contains the array services machine ID (asmchid). Array services are started by the
init process and large job IDs are created. To the administrator, this may seem like
large job ID values appear without explanation because they have not set the machine
ID. For more information on the asmchid parameter, see Appendix A, “IRIX Kernel
Tunable Parameters”, in the IRIX Admin: System Configuration and Operation and the
arsctl(2) and newarraysess(2) man pages.

Note: The existing IRIX commands jobs(1), fg(1), and bg(1) man pages apply to
shell “jobs” and are not related to IRIX kernel job limits.

Note: Job initiators like secure shell that are not developed by SGI might not initiate
an IRIX kernel job.

Figure 2-2 shows two limit domains. Limit domains are a way to categorize work.
The job initiators shown in Figure 2-1, page 7, can be categorized as either interactive
or batch processes. Limit domain names are defined by the system administrator
when the user limits database (ULDB) is created. Applications that use the ULDB to
retrieve job limits information expect to find limit information with specific names.
These names are defined by convention. For additional information on limit domains
and the ULDB, see "User Limits Database", page 11.

Unscheduled

On demand

cron,
 login

, rsh,

rlogi
n, su

Interactive

Scheduled

Miser

Batch

Figure 2-2 Limit Domains

The IRIX operating system provides a number of commands that provide information
about the memory usage on a system. The job limits jstat(1) command reports the

8 007–3700–009

IRIX® Admin: Resource Administration

current usage and highwater memory values of all concurrently running processes
within a job. For more information on memory usage in IRIX, see Chapter 6, "IRIX
Memory Usage", page 129. For more information on the jstat(1) command, see
"jstat", page 22.

Job Limits Supported
Table 2-1 shows job limits supported by the IRIX operating system. Each limit
restricts the use of a particular system resource for all the processes contained within
a job. Job limits software also introduces a limit unique to jobs called
JLIMIT_NUMPROC that controls the number of processes in a job.

Table 2-1 Job Limits

Limit Name Symbolic ID Units Description Enforcement

jlimit_nproc_cur
jlimit_nproc_max

JLIMIT_NUMPROC processes Maximum number of
processes within the
job

Process creation by
any job fails with
errno set to
EAGAIN

jlimit_nofile_cur
jlimit_nofile_max

JLIMIT_NOFILE file
descriptors

Maximum total
number of open file
descriptors all
processes in job can
have

open(2) calls by any
job fail with errno
set to EMFILE

jlimit_rss_cur
jlimit_rss_max

JLIMIT_RSS bytes Maximum total
resident set size for all
processes in a job

Resident pages
above limit become
prime swap
candidates

jlimit_vmem_cur
jlimit_vmem_max

JLIMIT_VMEM bytes Maximum total
address space for all
processes in a job

The brk(2) and
mmap(2) calls in any
job fail with errno
set to ENOMEM

007–3700–009 9

2: Job Limits

Limit Name Symbolic ID Units Description Enforcement

jlimit_data_cur
jlimit_data_max

JLIMIT_DATA bytes Maximum total heap
size for all processes
in job

The brk(2) calls in
any job fail with
errno set to
ENOMEM

jlimit_cpu_cur
jlimit_cpu_max

JLIMIT_CPU seconds Maximum number of
CPU seconds allowed
for all processes in a
job

Termination of all
processes in job via
SIGXCPU signal.
You can also use the
cpulimit_gracetime
parameter to alter
signalling behavior,
see
"cpulimit_gracetime",
page 11.

jlimit_pmem_cur
jlimit_pmem_max

JLIMIT_PMEM bytes Maximum total
resident set size for all
processes in a job

Termination of all
processes in job via
SIGKILL signal

getjlimit and setjlimit

Limits on the consumption of system resources by a job, shown in Table 2-1, page 9,
may be obtained with the getjlimit(2) function and set by the setjlimit(2)
function. The getjlimit function gets the current and maximum job limits values
for the specified job. The CAP_MAC_READ capability is needed to retrieve values from
jobs belonging to other users.

The setjlimit(2) function sets the current and maximum job limits values for the
specified job. If the current job is different from the job being requested, the
setjlimit function checks for the CAP_MAC_WRITE capability. If the maximum
(hard) limits are being raised, the setjlimit function checks for the CAP_PROC_MGT
capability.

For additional information, see the getjlimit(2) man page. For more information
on the capability mechanism that provides fine grained control over the privileges of
a process, see the capability(4) and capabilities(4) man pages.

10 007–3700–009

IRIX® Admin: Resource Administration

waitjob

The waitjob mechanism allows a batch processing system to find out job limit
information for jobs that exit abnormally. The waitjob function obtains information
about a terminated job that has been set with setwaitjobpid argument to wait. For
more information on the waitjob(2) and setwaitjobpid(2) calls, see "Application
Programming Interface for Job Limits", page 133 and "Application Programming
Interface for the ULDB", page 136, respectively, and the waitjob(2) and
setwaitjobpid(2) man pages.

systune

You can use the systune joblimits command to set system-wide defaults. For
additional information, see "Using systune to Display and Set Job Limits", page 17
and the systune(1M) man page.

cpulimit_gracetime

The cpulimit_gracetime parameter establishes a grace period for processes that
exceed the CPU time limit. The cpulimit_gracetime parameter controls the
signalling behavior associated with the CPU limit. For additional information on the
cpulimit_gracetime parameter, see "Additional Process Limits Parameters", page
4.

Job limits software works in a manner similar to process limits when dealing with the
cpulimit_gracetime. As a process executes, the CPU usage increases. When the
limit is reached, the SIGXCPU signal is sent individually to each process when it
executes. When the SIGXCPU is sent to a process, the grace period goes into effect for
that process. If the process is still executing when the grace period expires, it is
terminated with the SIGKILL signal. Only the processes in a job that are executing,
are sent a SIGXCPU signal. Each process in a job gets an individual grace period.
Therefore, the SIGXCPU signal is not sent en masse to all processes in a job.

User Limits Database
The User Limits Database (ULDB) contains job limits information which allows a
system administrator to control access to a machine on a per user basis. Job initiators,
the applications that initiate new jobs on the system like login, rsh, rlogin, cron,

007–3700–009 11

2: Job Limits

and workload management systems like Miser, retrieve job limits values from the
ULDB for a particular user and use the information to set limits, appropriately.

For more information on job initiators, see "Job Limits Overview", page 6.

The ULDB is used to set job limit and process limit values for jobs when the job limits
package is installed. If job limits are not installed, process limits are handled by the
current resource limits functionality.

Domain defaults apply to all users unless there is a "user" entry that describes values
for that user. User specific values override the domain defaults. Values in the ULDB
override the system default values for both job limits and process limits.

This section describes the commands used to create, maintain, and display the
contents of the ULDB and the library application programming interface (API), which
allows applications access to the ULDB information.

Note: The ULDB configuration file contained in the /etc/jlimits.in file contains
a template you can follow when setting up the ULDB on your system.

The /etc directory also contains the jlimits and jlimits.m files. The
jlimits.in file is parsed into the colon delimited jlimits file, which is used to
load job limits into the local ULDB jlimits.m file or into the NIS master map. The
jlimits file is automatically generated by the genlimits(1M) command. The
jlimits.m file is the local ULDB mdbm file.

Creating the User Limits Database

The command to create the ULDB is as follows:

genlimits [-i infile] [-l] [-m] [-L local_database] [-N nisfile] [-v]

The genlimits command parses the formatted ASCII user limits directives input file
(infile) into a colon-delimited ASCII file, which can be used to create one of the
following output formats:

• Network Information Service (NIS) master server map (-m option)

• Local database for NIS or direct (non-NIS) use (-l option)

The genlimits command accepts the following options:

12 007–3700–009

IRIX® Admin: Resource Administration

-i infile Identifies the location of the user limits directives input
file. If you do not specify the -i option, the default file
is /etc/jlimits.in.

-l Creates a local database for Network Information
Service (NIS) or direct (non-NIS) use. When NIS is
enabled, the local database contains local entries which
override or supplement entries from the NIS server.
When NIS is not enabled, the local database contains
information to set limits on the system. By default, this
database is in the /etc/jlimits.m file. You cannot
use the -l option with the -m option.

-m Creates the NIS master server map. It generates and
stores the map in the standard NIS map location. You
cannot override this location. You cannot use the -m
option with the -l option.

-L local_database Specifies an alternate location for the local database.
The -L option works in conjunction with the -l
option.

-N nisfile Specifies a different location for the created NIS
database source input file. The default location is the
/etc/jlimits file. You can use the -N nisfile option
to create a new database without overwriting the
existing /etc/jlimits file.

-v Specifies verbose mode, which prints out messages
describing actions of the genlimits command.

For additional information, see the genlimits(1M) man page.

Creating the User Limits Directives Input File

The user limits directive file contains the input to the genlimits(1M) command,
defining the information on domains, limits, and users that will be used to generate
the ULDB. This section describes how to write a user limits directives input file.

Comments

Any text following the # character is treated as a comment.

007–3700–009 13

2: Job Limits

Numeric Limit Values

Numeric values can have a letter appended that indicate a multiplier that is applied
to the numeric value provided to determine the limit value as follows:

Letter Multiplier Value

k (kilo) 1024 (2**10)

m (mega) 1,048,576 (2**20)

g (giga) 1,073,741,824 (2**30)

t (tera) 1,099,511,627,776 (2**40)

H (hours) 3600

M (minutes) 60

• Use the k, m, g, and t multipliers when defining memory limits or other large
values.

• Use the H and M multipliers when defining time values.

Multiplier values are defined in the /usr/include/uldb.h system include file.

There are no requirements that multipliers be use in the above manner.

Numeric limit values can also be specified as “unlimited” which indicates there is no
upper limit for this particular limit type.

For additional information about creating the ULDB, see the genlimits(1M) man
page.

Domain Directives

Each limit domain that is referenced in the ULDB must first be identified using the
"domain" directive. The directive provides the ASCII domain name and a list of the
default limit values for the domain. An example domain directive follows:

domain domain_name {

limit_name = value
limit_name:machname = value

...

}

14 007–3700–009

IRIX® Admin: Resource Administration

Certain domain names are reserved for user job limits. Other domain names may be
created and used for special purposes. The following list contains reserved domain
names:

Reserved Domain Name Description

interactive Used by interactive job initiators such as telnet and
login

batch A generic batch domain used as secondary choice for
all workload management software

miser The domain used when submitting work to Miser

nqe The domain used when submitting work to NQE

lsf The domain used when submitting work to LSF

User Directives

The "user" directive specifies a set of limits for an individual user. The user name
must identify a valid login account. The uid value is optional. If uid is specified, the
genlimits command verifies that the uid provided matches the uid defined for the
user on the machine where genlimits executes. Domain clauses identify each
domain for which the user will have unique limit values. The domain listed in the
user directive must already be defined in a prior domain directive. The syntax and
semantics of the domain clause is the same as the domain directive. It is not
necessary to provide user directives for all users on the system. If there is no user
directive for a queried user or there are no values for a queried domain, the default
values for that domain are returned. An example user directive follows:

user user_name[:uid] {

domain_name {

limit_name = value

limit_name:machname = value

...

}
domain_name {

...

}

...

}

The limit specifications for both the domain and user directives may include an
optional machine name. Limit values specified with a machine name apply only to

007–3700–009 15

2: Job Limits

that machine. Limits without a machine name apply to all machines in the cluster.
The directives input file can contain several occurrences of the same limit, each with a
different name, as well as an occurrence without a machine name specified.

The genlimits command processes limit values with associated machine names
differently depending on the type of database (see "Creating the User Limits
Database", page 12) being generated:

• If the -m option is used to generate a NIS master map, limit values with associated
machine names are ignored. Only clusterwide values without machine names are
included in the database.

• If the -l option is used to generate a local database, the genlimits command
selects the limit value with the name of the local machine if present. If there is no
limit value with the local machine name, the genlimits command selects the
clusterwide value with no machine name. You can determine the local machine
name by running the uname -n command. For additional information on the
uname command, see the uname(1) man page.

Setting Up a User Limits Directive Input File Example

Because the ULDB is completely rebuilt whenever the genlimits command is
invoked, the input directive file must contain a complete representation of the
database. When changes are needed, the system administrator must edit the user
limits directives input file and then rebuild the database. Because domain defaults are
used if there is no user entry for a particular user, the administrator only needs to
provide user entries for named users to overwrite default values. The following
example shows a user limits directives input file that specifies three limit types, two
domains, and one user with individual limits. The ULDB only stores the limit values.
The meaning of a value and the units it expresses are up to the application that uses
the limit.

Note: If you are updating entries in the ULDB and they do not change the job limit
values on your system, make sure that limit names used in the ULDB and limit
names used in the systune joblimits group are exactly the same. For additional
information, see "Troubleshooting Job Limits", page 26.

domain interactive { # domain for interactive logins

jlimit_cpu_cur = 60

jlimit_cpu_max = 120 # limit interactive jobs to 120 CPU seconds

jlimit_vmem_cur = 2m

16 007–3700–009

IRIX® Admin: Resource Administration

jlimit_vmem_max = 4m # limit interactive jobs to 4 megabytes of virtual memory
jlimit_numproc_cur =10

jlimit_numproc_max = 20 # limit interactive jobs to 20 concurrent processes

}

domain batch { # domain for batch submissions

jlimit_cpu_cur = 3600
jlimit_cpu_max = 7200 # limit batch jobs to two hours of CPU time

jlimit_vmem_cur = 128m

jlimit_vmem_max = 256m # limit batch jobs to 256 megabytes of memory

jlimit_numproc_cur = unlimited

jlimit_numproc_max = unlimited # no limit on processes in a batch job

}

user fred:123 { # User "fred" gets his own interactive CPU limits

interactive { #

jlimit_cpu_cur = 300

jlimit_cpu_max = 600 # "fred" needs to run longer jobs in interactive mode
}

}

Using systune to Display and Set Job Limits

You can use the systune joblimits command to view and set systemwide default
values for user job limits. The ULDB will override these values if it exists. The
joblimits group contains the following variables:

jlimit_cpu_cur

jlimit_cpu_max

jlimit_data_cur
jlimit_data_max

jlimit_vmem_cur

jlimit_vmem_max

jlimit_rss_cur

jlimit_rss_max

jlimit_nofile_cur
jlimit_nofile_max

jlimit_numproc_cur

jlimit_numproc_max

jlimit_pmem_cur

jlimit_pmem_max

007–3700–009 17

2: Job Limits

Output from the systune joblimits command follows:

$ systune joblimits
group: joblimits (statically changeable)

jlimit_numproc_max = 1024 (0x400) ll

jlimit_numproc_cur = 1024 (0x400) ll

jlimit_nofile_max = 5000 (0x1388) ll

jlimit_nofile_cur = 400 (0x190) ll

jlimit_rss_max = 9223372036854775807 (0x7fffffffffffffff) ll
jlimit_rss_cur = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_vmem_max = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_vmem_cur = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_data_max = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_data_cur = 9223372036854775807 (0x7fffffffffffffff) ll
jlimit_cpu_max = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_cpu_cur = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_pmem_max = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_pmem_cur = 9223372036854775807 (0x7fffffffffffffff) ll

The display information is described below:

• jlimit_numproc - Number of processes limit

• jlimit_nofile - Number of files limit

• jlimit_rss - Resident set size, default is in bytes

• jlimit_vmem - Virtual memory limit, default is in bytes

• jlimit_data - Data size, default is in bytes

• jlimit_cpu - CPU time, default in seconds.

• jlimit_pmem - Maximum resident set size for all processes in a job, default in
bytes

For additional information, see the systune(1M) and jlimit(1) man pages.

User Commands for Viewing and Setting Job Limits

This section describes the following user commands which can be used to view and
set job limits:

18 007–3700–009

IRIX® Admin: Resource Administration

• "showlimits", page 19

• "jlimit", page 21

• "jstat", page 22

showlimits

The command to view limit information from the ULDB is as follows:

showlimits [-D] [-d] [-u user_name] [domain_name]

The showlimits command displays limits information from the user limits database
(ULDB).

The showlimits command accepts the following options:

-D Displays the names of all the domains defined in the
ULDB. When you specify the -D option, the domain
name and other options are ignored.

-d Displays the domain default limits. When no options
are specified, the showlimits command displays the
default limits for all domains.

-u user_name Displays the limits values for the specified user rather
than the current user.

domain_name Displays the limits values for the specified domain
rather than all domains.

If no options are specified, the showlimits command displays the current limits
information for the current user for all domains as shown below:

% showlimits

Domain interactive:

jlimit_cpu_cur: unlimited

jlimit_cpu_max: unlimited
jlimit_data_cur: unlimited

jlimit_data_max: unlimited

jlimit_nofile_cur: 400

jlimit_nofile_max: unlimited

jlimit_vmem_cur: unlimited
jlimit_vmem_max: unlimited

007–3700–009 19

2: Job Limits

jlimit_rss_cur: unlimited
jlimit_rss_max: unlimited

jlimit_pthread_cur: 2k

jlimit_pthread_max: 65535

jlimit_numproc_cur: 1k

jlimit_numproc_max: 65535
rlimit_cpu_cur: unlimited

rlimit_cpu_max: unlimited

rlimit_fsize_cur: unlimited

rlimit_fsize_max: unlimited

rlimit_data_max: unlimited

rlimit_stack_cur: 64m
rlimit_stack_max: unlimited

rlimit_core_cur: unlimited

rlimit_core_max: unlimited

rlimit_nofile_cur: 200

rlimit_nofile_max: unlimited
rlimit_vmem_max: unlimited

rlimit_rss_max: unlimited

Domain batch:

jlimit_cpu_cur: unlimited

jlimit_cpu_max: unlimited
jlimit_data_cur: unlimited

jlimit_data_max: unlimited

jlimit_nofile_cur: 400

jlimit_nofile_max: unlimited

jlimit_vmem_cur: unlimited
jlimit_vmem_max: unlimited

jlimit_rss_cur: unlimited

jlimit_rss_max: unlimited

jlimit_pthread_cur: 2k

jlimit_pthread_max: 65535
jlimit_numproc_cur: 1k

jlimit_numproc_max: 65535

rlimit_cpu_cur: unlimited

rlimit_cpu_max: unlimited

rlimit_fsize_cur: unlimited

rlimit_fsize_max: unlimited
rlimit_data_max: unlimited

rlimit_stack_cur: 64m

20 007–3700–009

IRIX® Admin: Resource Administration

rlimit_stack_max: unlimited
rlimit_core_cur: unlimited

rlimit_core_max: unlimited

rlimit_nofile_cur: 200

rlimit_nofile_max: unlimited

rlimit_vmem_max: unlimited
rlimit_rss_max: unlimited

Note: If the ULDB has changed after the user logged in, the current limits will not be
effective. Current limits will be effective for any new users that login.

For a description of the job limit values, see Table 2-1, page 9. For a description of the
process limit values, see Table 1-1, page 2.

For additional information, see the showlimits(1) man page.

jlimit

The command to display and set job limits is as follows:

jlimit [-j job_id] [-h] [limit_name [value]]

The jlimit command displays and changes limits on job resource usage. The
current and maximum (hard) limits are set when a job starts from values that are
contained in the user limits database (ULDB) information for the user. You can raise
and lower your current limits within the range not to exceed your maximum limit.
You can irrevocably lower your maximum limit. You must have the CAP_PROC_MGT
capability to raise your maximum limit. Limit enforcement always occurs at the
current limit regardless of your maximum limit value. See the capability(4) and
capabilities(4) man pages for additional information on the capability mechanism
that provides fine grained control over the privileges of a process.

The jlimit command accepts the following options:

-j job_id Specifies a particular job ID for a job where limits are
going to be changed. You must have the
CAP_MAC_WRITE and CAP_PROC_MGT capabilities to
change job limits for jobs that belong to other users.
The job ID is printed out in hexadecimal. When the job
ID is specified, the "0x" prefix is optional.

007–3700–009 21

2: Job Limits

-h Specifies that the maximum (hard) limit values for a job
are displayed or modified. If you do not specify the -h
option, the jlimit command displays or modifies
current limit values.

limit_name [value] Displays or sets the value for the specified limit:

• If no limit name is specified, jlimit displays the
values for all limits.

• If the limit name is specified without a value,
jlimit displays the value for the limit.

• If both a limit name and a value are specified,
jlimit sets the appropriate value for the limit.

If the -j option with a job_id argument is specified, the jlimit command prints out
the following information:

% jlimit -j 0x14
cputime: unlimited

datasize: unlimited

files: unlimited

vmemory: unlimited

ressetsize: unlimited

processes: 65535

For an explanation of the limit values, see Table 2-1, page 9.

For additional information, see the jlimit(1) man page.

jstat

The command to display job status information for active jobs is as follows:

jstat [-a] [-l] [-p]

jstat [-j job_id] [-l] [-p]

The jstat command accepts the following options:

-a Displays information about all jobs.

-j job_id Displays information only for the specified job ID
(job_id).

22 007–3700–009

IRIX® Admin: Resource Administration

-l Displays limit information about the current or
specified job including the current usage, current limit,
and maximum limit.

-p Displays information about each process that belongs to
the current or specified job including the process ID,
state, and executing command.

-P Displays the memory limits information in pages rather
than in bytes. This option is used with the -l option.

If neither the -a or -j job_id are used, the jstat command displays information on
the current job.

If the -l option is specified, the jstat command prints out the current usage, high
usage, current limit, and maximum limit information for the current job as shown
below:

% jstat -l

JID OWNER COMMAND
--------------- -------------- --------------

0x5eac0000001bd terry -csh

LIMIT NAME USAGE HIGH USAGE CURRENT LIMIT MAX LIMIT

--------------- -------------- -------------- -------------- --------------

cputime 1:05 1:05 unlimited unlimited
datasize 400k 400k unlimited unlimited

files 10 35 400 5000

vmemory 44 201 unlimited unlimited

ressetsize 340 357 unlimited unlimited

processes 2 4 1024 1024

If the -l and -P options are specified, the jstat command will print out the same
information that the -l option displays with the exception that memory values are
shown in pages. SGI systems support multiple page sizes. For more information on
pages sizes, see the "Multiple Page Sizes" section, chapter 10, "System Performance
Tuning" in the IRIX Admin: System Configuration and Operation manual.

Summary information is always printed. For an explanation of the limit values, see
Table 2-1, page 9.

For additional information, see the jstat(1) man page.

007–3700–009 23

2: Job Limits

Job Limits and Existing IRIX software
The ps -j command prints out the process ID, process group ID, session ID, and job
ID in hexadecimal:

% ps -j

PID PGID SID JID TTY TIME CMD
253430 253430 253430 0x5eac001bd ttyq12 0:00 csh

254563 254563 253430 0x5eac001bd ttyq12 0:00 ps

For additional information, see the ps(1) man page.

The array services daemon, arrayd(1M), propagates the job ID from the originating
machine to any other machines when starting new processes for the job on other
machines in a cluster.

For additional information, see the arrayd(1M) man page.

The cpr(1) command allows you to include job information in the system restart
statefile. A JID checkpoint type has been added to the cpr -p option. This JID type
allows you to checkpoint and restart an entire job. See the example as follows:

% cpr -c ckpt02 -p 0x8000000000001234:JID

This example checkpoints all the processes contained within a job with the job ID
0x8000000000001234 to the statefile directory ./ckpt02.

For additional information, see the cpr(1) man page.

If you have job limits software installed on your system and want jobs started via the
remote shell server (rshd(1M)) and remote execution server (rexecd(1M)) to
recognize the SIGXCPU signal, you must update the /etc/default/rshd and
/etc/default/rexecd files, respectively. You must set the SVR4_SIGNALS
parameter to NO. This allows the rshd and rexecd servers to recognize the SIGXCPU
signal.

For additional information, see the rsh(1M) and rexecd(1M) man pages.

24 007–3700–009

IRIX® Admin: Resource Administration

Running Job Limits with Message Passing Interface (MPI) Jobs
Message Passing Interface (MPI) jobs requires a great number of file descriptors. By
default, a job’s current limit for the files limit is set to 400 as shown by the jstat
command with the -l option:

% jstat -l

JID OWNER COMMAND

------------------ -------------- --------------

0x23fc000000000035 user -csh

LIMIT NAME USAGE HIGH USAGE CURRENT LIMIT MAX LIMIT

------------------ -------------- -------------- -------------- --------------

cputime 0 0 unlimited unlimited

datasize 80k 208k unlimited unlimited

files 8 28 400 5000

vmemory 2384k 9824k unlimited unlimited
ressetsize 608k 2320k unlimited unlimited

threads 1 1 2048 2048

processes 2 6 1024 1024

physmem 608k 2320k unlimited unlimited

If you run MPI jobs on systems with 16 or more CPUs, the default current limit for
files set at 400 is easily encountered and an error message similar to the following
is issued:

MPI jobs fail with the error MPI: fork_slaves/fork: Resource temporarily unavailable

MPI: daemon terminated: mice1 - job aborting

To avoid this error, set the default current limit for the files limit higher when you
are running MPI jobs. For information on setting system job limits, see "User Limits
Database", page 11 and "Using systune to Display and Set Job Limits", page 17.

The following table contains the recommended default current limit for the files
limit when you are running large MPI jobs depending upon the number of CPUs in
your system. The recommended settings are approximate values.

Number of CPUs Default Current Limit or Higher

16 351

17 380

18 410

007–3700–009 25

2: Job Limits

20 472

25 648

30 848

50 4448

Installing Job Limits
Use the inst(1M) software installation tool or the swmgr(1M) software management
tool to install kernel job limits software. For more information on inst(1M) and
swmgr(1M), see IRIX Admin: Software Installation and Licensing in the IRIX Admin
manual set and their respective man pages.

To install the kernel job limits software on IRIX systems, install this subsystem:
eoe.sw.jlimits.

Once the job limits software is installed, run the autoconfig(1M) command and
reboot the system.

Job limits software is only available in the IRIX feature stream.

To turn off job limits, you must deinstall the eoe.sw.jlimits software module and
then reboot the system.

Troubleshooting Job Limits
If you are updating entries in the ULDB and they do not change the job limit values
on your system, make sure that limit names used in the ULDB and limit names used
in the systune joblimits group are exactly the same. The ULDB cannot determine
which job limit variables are valid and which are not. If the symbolic names in the
ULDB are entered incorrectly, values from the systune joblimits group will be
applied. For information on limit names, see Table 2-1, page 9.

Job Limits Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type mancommandname.

26 007–3700–009

IRIX® Admin: Resource Administration

User-Level Man Pages

The following user-level man pages are provided with job limits software:

User-level man page Description

jlimit(1) Displays and sets resource limits

jstat(1) Displays job status information

showlimits(1) Displays limits information from
the user limits database

Administrator Man Pages

The following administrator man page is provided with job limits software:

Administrator man page Description

genlimits(1M) Creates the user limits data base

Application Interface Man Pages

The following online man pages are provided with job limits software to help those
who develop applications that use job limits software:

Application interface man page Description

getjid(2) Get job ID

getjlimit(2) Control a job’s maximum system
resource consumption

getjusage(2) Get job usage information

killjob(2) Terminates all processes for the
specified job

jlimit_startjob(3c) Creates a new job

makenewjob(2) Creates a new job container

setwaitjobpid(2) Sets a job to wait for a specified
process ID (PID) to call the
waitjob(2) function

007–3700–009 27

2: Job Limits

waitjob(2) Obtains information about a
terminated job

uldb_get_limit_values(3c) Collection of functions that all
interact with the user limits
database (ULDB) to retrieve or set
limit values for a domain or user.

Error Messages
The following job limits related error messages are returned:

EBUSY The requested job ID value is in use.

EINVAL Invalid parameters encountered.

ENOATTR The domain name or namelist are not specified.

ENOEXIST The jlimits file does not exit.

ENOJOB A job with the specified job ID cannot be found.

ENOMEM Sufficient memory is not available.

ENOPKG The job limits software is not installed.

28 007–3700–009

Chapter 3

Miser Batch Processing System

Miser is a resource management facility that provides deterministic batch scheduling
of applications with known time and space requirements without requiring static
partitioning of system resources. When Miser is given a job, it searches through the
time/space pool that it manages to find an allocation that best fits the job’s resource
requirements.

Miser has an extensive administrative interface that allows most parameters to be
modified without requiring a restart. Miser runs as a separate trusted process. All
communication to Miser, either from the kernel or the user, is done through a series
of Miser commands. Miser accepts requests for process scheduling, process state
changes, and batch system configuration control, and returns values and status
information for those requests.

This chapter contains the following sections:

• "Miser Overview", page 30

• "Miser Configuration", page 33

• "Miser Configuration Examples", page 39

• "Enabling or Disabling Miser", page 42

• "Submitting Miser Jobs", page 43

Read Me First
The sections in this chapter contain information about installing Miser software on
your system. You should reference them in the order they are listed here:

1. For a general description of Miser, see "Miser Overview", page 30.

2. To install the Miser package, see "Enabling or Disabling Miser", page 42.

3. For information on how to configure the Miser queues, see "Miser Configuration",
page 33.

4. For information on submitting Miser jobs, see "Submitting Miser Jobs", page 43.

5. For information on Miser man pages, see "Miser Man Pages", page 46.

007–3700–009 29

3: Miser Batch Processing System

Miser Overview
Miser manages a set of time/space pools. The time component of the pool defines
how far into the future Miser can schedule jobs. The space component of the pool is
the set of resources against which a job can be scheduled. This component can vary
with time.

A system pool represents the set of resources (number of CPUs and physical memory)
that is available to Miser. A set of user-defined pools represents resources against
which jobs can be scheduled. The resources owned by the user pools cannot exceed
the total resources available to Miser. Resources managed by Miser are available to
non-Miser applications when they are unused by a scheduled job.

Associated with each pool is a definition of the pool resources, a set of jobs allocating
resources from the pool, and a policy that controls the scheduling of jobs. The
collection of the resource pool, jobs scheduled, and policy is called a queue.

The queues allow for fine-grained resource management of the batch system. The
resources allotted to a queue can vary with time. For example, a queue can be
configured to manage 5 CPUs during the day and 20 during the night. The use of
multiple queues allows the resources to be partitioned among different users of a
batch system. For example, on a 24 CPU system, it is possible to define two queues:
one that has 16 CPUs and another that has 6 CPUs (assuming that 2 CPUs have been
kept outside the control of Miser). It is possible to restrict access to queues to
particular users or groups of users on a system to enforce this resource partition.

The policy defines the way a block of time/space is searched to satisfy the resource
request made by the application. Miser has two policies: “default” and “repack.”
Default is the first fit policy. Once a job is scheduled, its start and end time remain
constant. If an earlier job finishes ahead of schedule, it does not have an effect on the
start/end time of future scheduled jobs. On the other hand, in addition to using the
first fit policy, repack maintains the order of the scheduled jobs and attempts to
reschedule the jobs to pull them ahead in time in the event of a job’s early termination.

Users submit jobs to the queue using the miser_submit command, which specifies
the queue to which the job should be attached and a resource request to be made
against the queue. Each Miser job is an IRIX process group. The resource request is a
tuple of time and space. The time is the total CPU wall-clock time if run on a single
CPU. The space is the logical number of CPUs and the physical memory required.
The request is passed to Miser, and Miser schedules the job against the queue’s
resources using the policy attached to the queue. Miser returns a start and end time
for the job to the user.

30 007–3700–009

IRIX® Admin: Resource Administration

When a job’s start time has not yet arrived, the job is in batch state. A job in batch
state has lower priority than any non-weightless process. A job in batch state may
execute if the system has idle resources; it is said to run opportunistically. When the
specified execution time arrives, the job state is changed to batch critical, and the job
then has priority over any non-realtime process. The time spent executing in batch
state does not count against the time that has been requested and scheduled. While
the process is in batch critical state, it is guaranteed the physical memory and CPUs
that it requested. The process is terminated if it exceeds its time allotment or uses
more physical memory than it had requested.

A job with the static flag specified that was scheduled with the default policy will only
run when the segment is scheduled to run. It will not run earlier even if idle resources
are available to the job. If a job is scheduled with the repack policy, it may run earlier.

About Logical Number of CPUs

When a job is scheduled by Miser, it requests that a number of CPUs and some
amount of memory be reserved for use by the job. When the time period during
which these resources were reserved for the job arrives, Miser reserves specific CPUs
and some amount of logical swap space for the job.

There are a number of issues that affect CPU allocation for a job. When a job becomes
batch critical, Miser will try to find a dense cluster of nodes. If it fails to find such a
cluster, it will assign the threads of the job to any free CPUs that are available. These
CPUs may be located at distant parts of the system.

The Effect of Reservation of CPUs on Interactive Processes

The way in which Miser handles the reservation of CPUs is one of its strengths.
Miser controls and reserves CPUs based on a logical number, not on physical CPUs.
This provides Miser with flexibility in how it controls CPU resources.

Interactive and batch processes that run opportunistically are allowed to use all CPUs
in a system that have not been reserved for Miser jobs. If new jobs are submitted,
Miser attempts to schedule the jobs based on the amount of logical resources still
available to Miser. As a result, CPUs could become reserved by Miser, and the
interactive processes would no longer be able to execute on the newly reserved CPUs.
However, if a resource is not being used by Miser, the resource is free to be used by
any other application. Miser will claim the resource when it needs it.

007–3700–009 31

3: Miser Batch Processing System

About Miser Memory Management

While Miser only reserves CPUs when they are needed, memory must be reserved
before it is needed.

When Miser is started, it is told the number of CPUs and amount of memory that it
will be able to reserve for use by jobs. The number of CPUs is a logical number.
When a Miser job becomes batch critical, it is assigned a set of CPUs. Until a Miser
job requires a CPU (in other words, until a process or thread is ready to run), the
CPU is available to the rest of the system. When a Miser job’s thread begins
executing, the currently non-Miser thread is preempted and resumes on a CPU where
no Miser thread is currently running.

Memory resources are quite different than CPU resources. The memory that Miser
uses to reserve for jobs is called logical swap space. Logical swap space is defined as
the sum total of physical memory (less space occupied by the kernel) and all the
swap devices.

When Miser begins, it needs to reserve memory for its jobs. However, it does not
need to reserve physical memory; it simply needs to make sure that there is enough
physical memory plus swap to move non-Miser jobs memory to. Miser does this by
reserving logical swap equal to the memory that it requires.

Only jobs that are submitted to Miser are able to use allocations of the logical swap
space that was reserved for Miser. However, any physical memory that is not being
used by Miser is free to be used by any other application. Miser will claim the
physical memory when it needs it.

How Miser Management Affects Users

If a user submits a job to Miser, that job will have an allocation of resources reserved
for the requested time period. The job will not have to compete for system resources.
As a result, the job should complete more quickly and have more stable run-times
than it would if run as an interactive job. However, there is a cost. Because Miser is
space sharing the resources, the job must wait until its scheduled reservation period
before the requested resources will be reserved. Prior to that time, the non-static job
may run opportunistically, competing with the interactive workload, but at a lower
priority than the interactive workload.

If a user is working interactively, the user will not have full access to all of the system
resources. The user’s interactive processes will have access to all of the unreserved
CPUs on the system, but the processes will only have a limited amount of logical

32 007–3700–009

IRIX® Admin: Resource Administration

swap space available for memory allocation. The amount of logical swap space
available for non-Miser jobs is the amount not reserved by Miser when it was started.

Miser Configuration
The central configurable aspect of Miser is the set of queues. The Miser queues define
the resources allocated to Miser.

The configuration of Miser consists of the following:

• Set up the Miser system queue definition file. Every Miser system must have a
Miser system queue definition file. This file’s vector definition specifies the
maximum resources available to any other queue’s vector definition.

• Define the queues by setting up the Miser user queue definition file.

• Enumerate all the queues that will be part of the Miser system by setting up the
Miser configuration file.

• Set up the Miser commandline options file to define the maximum CPUs and
memory that can be managed by Miser.

Setting Up the Miser System Queue Definition File

The Miser system queue definition file (/etc/miser_system.conf) defines the
resources managed by the system pool. This file defines the maximum duration of the
pool. All other queues must be less than or equal to the system queue. The system
queue identifies the maximum limit for resources that a job can request. It is required
that a Miser system queue be configured.

Valid tokens are as follows:

POLICY name The policy is always “none” as the system queue has
no policy.

QUANTUM time The size of the quantum. A quantum is the Miser term
for an arbitrary number of seconds. The quantum is
used to specify how you want to break up the
time/space pool. It is specified in both the system
queue definition file and in the user queue definition
file and must be the same in both files.

NSEG number The number of resource segments.

007–3700–009 33

3: Miser Batch Processing System

SEGMENT Defines the beginning of a new segment of the vector
definition. Each new segment must begin with the
SEGMENT token. Each segment must contain at a
minimum the number of CPUs, memory, and wall-clock
time.

START number The number of quanta from 0 that the segment begins
at. The origin for time is 00:00 Thursday, January 1st
1970 local time.

Miser maps the start and end times to the current time
by repeating the queue forward until the current day.
For example, a 24-hour queue always begins at
midnight of the current day.

END number The number of quanta from 0 that the segment ends at.

NCPUS number The number of CPUs.

MEMORY amount The amount of memory, specified by an integer
followed by an optional unit of k for kilobytes, m for
megabytes, or g for gigabytes. If no unit is specified,
the default is bytes.

The following system queue definition file defines a queue that has a quantum of 20
seconds and 1 element in the vector definition. The start and end times of each
multiple are specified in quanta, not in seconds.

The segment defines a resource multiple beginning at 00:00 and ending at 00:20, with
1 CPU and 5 megabytes of memory.

POLICY none # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds

NSEG 1

SEGMENT
START 0

END 60# Number of quanta (20min*60sec) / 20

NCPUS 1

MEMORY 5m

34 007–3700–009

IRIX® Admin: Resource Administration

Setting Up the Miser User Queue Definition FIle

The Miser user queue definition file (/etc/miser_default.conf) defines the
CPUs, the physical memory, the policy name, and the resource pool of the queue. The
file consists of a header that specifies the policy of the queue, the number of resource
segments, and the quantum used by the queue.

Access to a queue is controlled by the file permissions of the queue definition file.
Read permission allows a user to examine the contents of the queue using the
miser_qinfo command. Execute permission allows a user to schedule a job on a
queue using the miser_submit command. Write permission allows a user to modify
the resources of a queue using the miser_move and miser_reset commands.

The default user queue definition file can be used as a template for other user queue
definition files. Each Miser queue has a separate queue definition file, which is named
in the overall Miser configuration file (/etc/miser.conf).

Users schedule against the resources managed by the user queues, not against the
system queue. If the duration specified by a user queue is less than that specified by
the system queue, the user queue will be repeated again and again (for example, the
system queue specifies one week and the user queue specifies 24 hours). If the user
queue does not divide into the system queue (for example, the system queue is 6 and
the user queue is 5), the user queue will repeat evenly.

Valid tokens are as follows:

POLICY name The name of the policy that will be used to schedule
applications submitted to the queue. The two valid
policies are “default” and repack.” Default is the first fit
policy; it specifies that once a job is scheduled, its start
and end time remain constant. Repack maintains the
order of the scheduled jobs and attempts to reschedule
the jobs to pull them ahead in time in the event of a
job’s early termination. Note that both policies initially
use the first fit method when scheduling a job.

QUANTUM time The size of the quantum. A quantum is the Miser term
for an arbitrary number of seconds. The quantum is
used to specify how you want to break up the
time/space pool. It is specified in both the system
queue definition file and in the user queue definition
file and must be the same in both files.

NSEG number The number of resource segments.

007–3700–009 35

3: Miser Batch Processing System

SEGMENT Defines the beginning of a new segment of the vector
definition. Each new segment must begin with the
SEGMENT token. Each segment must contain at a
minimum the number of CPUs, memory, and wall-clock
time.

START number The number of quanta from 0 that the segment begins
at. The origin for time is 00:00 Thursday, January 1st
1970 local time.

Miser maps the start and end times to the current time
by repeating the queue forward until the current day.
For example, a 24-hour queue always begins at
midnight of the current day.

END number The number of quanta from 0 that the segment ends at.

NCPUS number The number of CPUs.

MEMORY amount The amount of memory, specified by an integer
followed by an optional unit of k for kilobytes, m for
megabytes, or g for gigabytes. If no unit is specified,
the default is bytes.

The following user queue definition file defines a queue using the policy named
“default”. It has a quantum of 20 seconds and 3 elements to the vector definition.
The start and end times of each multiple are specified in quanta, not in seconds.

• The first segment defines a resource multiple beginning at 00:00 and ending at
00:50, with 50 CPUs and 100 MB of memory.

• The second segment defines a resource multiple beginning at 00:51.67 and ending
at 01:00, with 50 CPUs and 100 MB.

• The third segment defines a resource multiple beginning at 01:02.00 and ending at
01:03.33, also with 50 CPUs and 100 MB of memory.

POLICY default

QUANTUM 20

NSEG 3

SEGMENT

START 0

END 150 (50min*60sec) / 20

NCPUS 50

MEMORY 100m

36 007–3700–009

IRIX® Admin: Resource Administration

SEGMENT

START 155 ((51min*60sec)+67) / 20

END 185 (1h*60min*60sec) / 20

NCPUS 50

MEMORY 100m

SEGMENT

START 186 ((1h*60min*60sec)+(2min*60sec)) / 20

END 190 ((1h*60min*60sec)+(3min*60sec)+33sec) / 20

NCPUS 50

MEMORY 100m

Setting Up the Miser Configuration FIle

The Miser configuration file (/etc/miser.conf) lists the names of all Miser queues
and the path name of the queue definition file for each queue. This file enumerates all
the queue names and their queue definition files.

Every Miser configuration file must include as one of the queues the Miser system
queue that defines the resources of the system pool. The Miser system queue is
identified by the queue name “system.”

Valid tokens are as follows:

QUEUE queue_name queue_definition_file_path

The queue_name identifies the queue when using any interface to
Miser. The queue name must be between 1 and 8 characters long. The
queue name “system” is used to designate the Miser system queue.

The following is a sample Miser configuration file:

Miser config file

QUEUE system /hosts/foobar/usr/local/data/system.conf
QUEUE user /hosts/foobar/usr/local/data/usr.conf

Setting Up the Miser CommandLine Options File

The Miser commandline options file (/etc/config/miser.options) defines the
maximum CPUs and memory that can be managed by Miser.

007–3700–009 37

3: Miser Batch Processing System

The -c flag defines the maximum number of CPUs that Miser can use. This value is
the maximum number of CPUs that any resource segment of the system queue can
reserve.

The -m flag defines the maximum memory that Miser can use. This value is the
maximum memory that any resource segment of the system queue can reserve. The
memory reserved for Miser comes from physical memory. The amount of memory
that Miser uses should be less than the total physical memory, leaving enough
memory for kernel use. Also, the system should have at least the amount of swap
space configured for Miser so that if Miser memory is in full use, the system will have
enough swap space to move previous non Miser submitted processes out of the way.

The following example sets the -c and -m values in the commandline options file to 1
and 5 megabytes, respectively:

-f/etc/miser.conf -v -d -c 1 -m 5m

The -v flag specifies verbose mode, which results in additional output.

The -d flag specifies debug mode. When this mode is specified, the application does
not relinquish control of the tty (that is, it does not become a daemon). This mode is
useful in conjunction with the -v flag to figure out why Miser may not be starting up
correctly.

Note: The -C flag can be used to release any Miser reserved resources after the Miser
daemon is killed and before it is restarted. For additional information, see the
miser(1) man page.

Configuration Recommendations

The configuration of Miser is site dependent. The following guidelines may be helpful:

• The system must be balanced for interactive/batch use. One suggestion is to keep
at least one or two processors outside the control of Miser at all times. These two
processors will act as the interactive portion of the system when all of the Miser
managed CPUs are reserved. For an interactive load, you typically want the load
average for the CPUs to be less than 2.0. Keep this in mind as you adjust for the
optimal number of free CPUs.

• The amount of free logical swap should be balanced against the number of free
CPUs. When you have a system with N CPUs, you should also have an
appropriate amount of memory to be used by processes running on those N CPUs.

38 007–3700–009

IRIX® Admin: Resource Administration

Also, many system administrators like to back up this memory with swap space.
If you think of the free CPUs as a separate system and provide memory and swap
space accordingly, interactive work should perform well. Remember that the free
memory not reserved by Miser is logical swap space (the combination of physical
memory and the swap devices).

• Be careful when using virtual swap. When no Miser application is running,
time-share processes can consume all of physical memory. When Miser runs, it
begins to reclaim physical memory and swaps out time-share processes. If the
system is using virtual swap, there may be no physical swap to move the process
to, and at that point the time-share process may be terminated.

Miser Configuration Examples
In the examples used in this section, the system has 12 CPUs and 160 MB available to
user programs.

Example 1:

In this example, the system is dedicated to batch scheduling with one queue, 24 hours
a day.

The first step is to define a system queue. You must decide how long you want the
system queue to be. The length of the system queue defines the maximum duration
of any job submitted to the system. For this system, you have determined that the
maximum duration for any one job can be 48 hours, so you define the system vector
to have a duration of 48 hours.

The system queue /usr/local/miser/system.conf

POLICY none # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds
NSEG 1

SEGMENT

NCPUS 12

MEMORY 160m
START 0

END 8640 # Number of quanta (48h*60 min*60 sec) / 20

The next step is to define a user queue.

007–3700–009 39

3: Miser Batch Processing System

The user queue /usr/local/miser/physics.conf
POLICY default # First fit, once scheduled maintains start/end time

QUANTUM 20 # Default quantum set to 20 seconds

NSEG 1

SEGMENT
NCPUS 12

MEMORY 160m

START 0

END 8640 # Number of quanta (48h*60 min*60 sec) / 20

The last step is to define a Miser configuration file:

Miser config file

QUEUE system /usr/local/miser/system.conf

QUEUE physics /usr/local/miser/physics.conf

Example 2:

In the following example, the system is dedicated to batch scheduling, 24 hours a day,
and split between two user groups: chemistry and physics. The system must be
divided between them with a ratio of 75% for physics and 25% for chemistry.

The system queue is identical to the one given in Example 1.

The physics user queue appears as follows:

The physics queue /usr/local/miser/physics

POLICY default # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds
NSEG 1

SEGMENT

NCPUS 8

MEMORY 120m
START 0

END 8640 # Number of quanta (48h*60min*60sec) / 20

Next, you define the chemistry queue:

The chemistry queue /usr/local/miser/chemistry.conf
POLICY default # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds

NSEG 1

40 007–3700–009

IRIX® Admin: Resource Administration

SEGMENT

NCPUS 4

MEMORY 40m

START 0

END 8640 # Number of quanta (48h*60min*60sec) / 20

To restrict access to each queue, you create the user group physics and the user group
chemistry. You then set the permissions on the physics queue definition file to execute
only for group physics and similarly for the chemistry queue.

Having defined the physics and chemistry queue, you can now define the Miser
configuration file:

Miser configuration file

QUEUE system /usr/local/miser/system.conf

QUEUE physics /usr/local/miser/physics.conf

QUEUE chem /usr/local/miser/chemistry.conf

Example 3:

In this example, the system is dedicated to time-sharing in the morning and to batch
use in the evening. The evening is 8:00 P.M. to 4:00 A.M., and the morning is 4:00
A.M. to 8:00 P.M.

First you define the system queue.

The system queue /hosts/foobar/usr/local/data/system.conf

POLICY none # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds
NSEG 2

SEGMENT

NCPUS 12

MEMORY 160m
START 0

END 720 # (4h*60min*60sec) / 20

SEGMENT

NCPUS 12

MEMORY 160m
START 3600 # (8pm is 20 hours from UTC, so 20h*60min*60sec) / 20

END 4320

007–3700–009 41

3: Miser Batch Processing System

Next, you define the batch queue:

User queue

POLICY repack # Repacks jobs (FIFO) if a job finishes early

QUANTUM 20 # Default quantum set to 20 seconds

NSEG 2

SEGMENT

NCPUS 12

MEMORY 160m

START 0

END 720 # (4h*60min*60sec) / 20

SEGMENT

NCPUS 12

MEMORY 160m

START 3600 # (8pm is 20 hours from 0, so 20h*60min*60sec) / 20

END 4320

The last step is to define a Miser configuration file:

Miser config file

QUEUE system /usr/local/miser/system.conf

QUEUE user /usr/local/miser/usr.conf

Enabling or Disabling Miser
The following steps are required to set up the Miser batch processing system:

1. Use the inst(1M) utility to install the eoe.sw.miser subsystem from your IRIX
distribution media.

2. Modify the Miser configuration files as appropriate for your site. For information
on the Miser configuration files, see "Miser Configuration Examples", page 39.

After the Miser configuration files are modified appropriately, Miser can be
selected for boot-time startup with the chkconfig(1) command and the system
can be rebooted, or Miser can be started directly by root with the command
/etc/init.d/miser start. When starting Miser manually without rebooting,
the chkconfig command must be issued first or Miser will not start up.

42 007–3700–009

IRIX® Admin: Resource Administration

3. To enable Miser manually, use the following command sequence:

chkconfig miser on
/etc/init.d/miser start

4. Miser can be stopped at any time by root. To disable Miser, use the following
command sequence:

/etc/init.d/miser stop

/etc/init.d/miser cleanup

Running Miser jobs are not stopped, and the current committed resources cannot be
reclaimed until the jobs are terminated. If you are going to restart Miser after
stopping it, you do not need to run the miser cleanup command.

Note: The Miser -C flag can be used to release any Miser reserved resources after the
Miser daemon is killed and before it is restarted.

Submitting Miser Jobs
The command to submit a job so that it is managed by Miser is as follows:

miser_submit -q queue -o c=cpus,m=memory, t=time[,static] command
miser_submit -q queue -f file command

-q queue Specifies the name of the queue against which to
schedule the application.

-o c=cpus,m=memory,
t=time[,static]

Specifies a block of resources. The CPUs must be an
integer up to the maximum number of CPUs available
to the queue being scheduled against. The memory
consists of an integer followed by a unit of k for
kilobyte, m for megabyte, or g for gigabyte. If no unit
is specified, the default is bytes. Time can be specified
either as an integer followed by a unit specifier of h for
hours, m for minutes, or s for seconds, or by a string in
the format hh:mm:ss.

A job with the static flag specified that was
scheduled with the default policy will only run when
the segment is scheduled to run. It will not run earlier

007–3700–009 43

3: Miser Batch Processing System

even if idle resources are available to the job. If a job is
scheduled with the repack policy, it may run earlier.

-f file File that specifies a list of resource segments. This flag
allows greater control over the scheduling parameters
of a job.

command Specifies a script or program name.

For additional information, see the miser_submit(1) and miser_submit(4) man
pages.

Querying Miser About Job Schedule/Description

The command to query Miser about the schedule/description of a submitted job is as
follows:

miser_jinfo -j bid [-d]

The bid is the ID of the Miser job and is the process group ID of the job. The -d flag
prints the job description including job owner and command.

Note that when the system is being used heavily, Miser swapping can take some time.
Therefore, the Miser job may not begin processing immediately after it is submitted.

For additional information, see the miser_jinfo(1) man page.

Querying Miser About Queues

The command to query Miser for information on Miser queues, queue resource status,
and a list of jobs scheduled against a queue is as follows:

miser_qinfo -Q|-q queue [-j]|-a

The -Q flag returns a list of currently configured Miser queue names. The -q flag
returns the free resources associated with the specified queue name. The -j flag
returns the list of jobs currently scheduled against the queue. The -a flag returns a
list of all scheduled jobs, ordered by job ID, in all configured Miser queues and also
produces a brief description of the job.

For additional information, see the miser_qinfo(1) man page.

44 007–3700–009

IRIX® Admin: Resource Administration

Moving a Block of Resources

The command to move a block of resources from one queue to another is as follows:

miser_move -s srcq -d destq -f file
miser_move -s srcq -d destq -o s=start,e=end,c=CPUs,m=memory

This command removes a tuple of space from the source queue’s vector and adds it
to the destination queue’s vector, beginning at the start time and ending at the end
time. The resources added or removed do not change the vector definition, and are,
therefore, temporary. The command returns a table that lists the start and end times
of each resource transfer and the amount of resources transferred.

The -s and -d flags specify the names of any valid Miser queues. The -f flag
contains a resource block specification. The -o flag specifies a block of resources to be
moved. The start and end times are relative to the current time. The CPUs are an
integer up to the maximum free CPUs associated with a queue. The memory is an
integer with an identifier of k for kilobyte, m for megabyte, or g for gigabyte.

Note: The resource transfer is temporary. If Miser is killed or crashes, the resources
transferred are lost, and Miser will be unable to restart.

For additional information, see the miser_move(1) and miser_move(4) man pages.

Resetting Miser

The command to reset Miser with a new configuration file is as follows:

miser_reset -f file

This command forces a running version of Miser to use a new configuration file
(specified by -f file). The new configuration will succeed only if all scheduled jobs
can be successfully scheduled against the new configuration.

For additional information, see the miser_reset(1) man page.

Terminating a Miser Job

The miser_kill command is used to terminate a job submitted to Miser. This
command both terminates the process and contacts the Miser daemon to free any

007–3700–009 45

3: Miser Batch Processing System

resources currently committed to the submitted process. For additional information,
see the miser_kill(1) man page.

Miser and Batch Management Systems

This section discusses the differences between a Miser job and a batch job from a
batch management system such as the Network Queuing Environment (NQE) or
Load Share Facility (LSF).

Miser and batch management systems such as NQE each lack certain key
characteristics. For Miser, these characteristics are features to protect and manage the
Miser session. For batch management systems, the ability to guarantee resources is
lacking. However, these two systems used together provide a much more capable
solution, provided the batch management system supports the Miser scheduler.

If your site does not need the job management and protection provided by a batch
management system, then Miser alone may be an adequate batch system. However,
most production-quality environments require the support and protection provided
by batch systems such as NQE or LSF. These sites should run a batch management
system in cooperation with the Miser scheduler.

Miser Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type mancommandname.

User-Level Man Pages

The following user-level man pages are provided with Miser software:

User-level man page Description

miser(1) Miser resource manager; starts the
miser daemon.

miser_jinfo(1) Queries Miser about the schedule
and description of a submitted job.

miser_kill(1) Kills a Miser job.

46 007–3700–009

IRIX® Admin: Resource Administration

miser_move(1) Moves a block of resources from
one queue to another.

miser_qinfo(1) Queries information on miser
queues, queue resource status, and
list of jobs scheduled against a
queue.

miser_reset(1) Resets miser with a new
configuration file.

miser_submit(1) Submits a job to a miser queue.

File Format Man Pages

The following file format descriptions man pages are provided with Miser software:

File Format man page Description

miser(4) Miser configuration files

miser_move(4) Miser resource transfer list

miser_submit(4) Miser resource schedule list

Miscellaneous Man Pages

The following miscellaneous man pages are provided with Miser software:

Miscellaneous man page Description

miser(5) Miser Resource Manager overview

007–3700–009 47

Chapter 4

Cpuset System

A cpuset is a named set of CPUs, which may be defined to be restricted or open. A
restricted cpuset allows only processes that are members of the cpuset to run on the
set of CPUs. An open cpuset allows any process to run on its CPUs, but a process
that is a member of the cpuset can run only on the CPUs belonging to the cpuset. A
cpuset is defined by a cpuset configuration file and a name.

The Cpuset System is primarily a workload manager tool permitting a system
administrator to restrict the number of processors that a process or set of processes
may use. Cpusets may optionally restrict both kernel and user memory.

When the memory restriction feature is enabled, a set of nodes each containing a set
of CPUs is computed from the list of CPUs supplied and memory allocations can be
limited to the CPUs assigned to the nodes. Allocation limits can be restricted to the
available physical memory or overflow can be swapped to the swap file.

A system administrator can use cpusets to create a division of CPUs within a larger
system. Such a divided system allows a set of processes to be contained to specific
CPUs, reducing the amount of interaction and contention those processes have with
other work on the system. In the case of a restricted cpuset, the processes that are
attached to that cpuset will not be affected by other work on the system; only those
processes attached to the cpuset can be scheduled to run on the CPUs assigned to the
cpuset. An open cpuset can be used to restrict processes to a set of CPUs so that the
affect these processes have on the rest of the system is minimized.

A system administrator might want to restrict normal system usage of a large system
to part of the machine and use the rest of the system for special purposes. The
boot_cpuset(4) tool provides a method to restrict all normal start-up processes
(including init, inetd, and so on) to some portion of the machine and allow
specific users to use the other portion of the machine for their special purpose
applications. The kernel maintains strict processor and memory separation between
the two system portions. An administrator, for example, might choose to divide a
system into two halves with one half supporting normal system usage and the other
half dedicated to a particular application. The advantage this mechanism has over
physical reconfiguration is that the configuration may be changed with a simple robot
and does not need to be aligned on a hardware module boundary.

The cpuset -q cpuset_name -p command allows you to see the properties of
particular cpuset, such as, the number of processes and CPUs associated with the

007–3700–009 49

4: Cpuset System

specified cpuset. For more information on cpuset properties, see "Obtaining the
Properties Associated with a Cpuset", page 64 and the cpuset(1) man page.

Cpusets can be used in conjunction with a batch processing system, like the Load
Sharing Facility (LSF) or Portable Batch System (PBS), for data center resource
management to improve the performance of large applications.

For more information on dividing a system, see Chapter 4, “Configuring the IRIX
Operating System” in the IRIX Admin: System Configuration and Operation manual.

The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain the properties associated
with a cpuset, and to attach a process and all of its children to a cpuset.

This chapter contains the following sections:

• "Using Cpusets", page 50

• "Restrictions on CPUs within Cpusets", page 52

• "Cpuset System Tutorial", page 53

• "Boot Cpuset", page 57

• "Cpuset Command and Configuration File", page 59

• "Installing the Cpuset System", page 63

• "Obtaining the Properties Associated with a Cpuset", page 64

• "Cpuset System and Trusted IRIX", page 64

• "Using the Cpuset Library", page 66

• "Cpuset System Man Pages", page 68

Using Cpusets
This section describes the basic steps for using cpusets and the cpuset(1) command.
For a detailed example, see "Cpuset System Tutorial", page 53.

To install the Cpuset System software, see "Installing the Cpuset System", page 63.

To use cpusets, perform the following steps:

50 007–3700–009

IRIX® Admin: Resource Administration

1. Create a cpuset configuration file and give it a name. For the format of this file,
see "Cpuset Configuration File", page 59. For restrictions that apply to CPUs
belonging to cpusets, see "Restrictions on CPUs within Cpusets", page 52.

2. Create the cpuset with the configuration file specified by the -f parameter and
the name specified by the -q parameter.

The cpuset(1) command is used to create and destroy cpusets, to retrieve
information about existing cpusets, and to attach a process and all of its children to a
cpuset. The syntax of the cpuset command is as follows:

cpuset [-q cpuset_name [-A command]|[-c -f filename]|[-d]|[-l][-m]|[-Q]|[-p]] | -C | -Q | -h

The cpuset command accepts the following options:

-q cpuset_name [-A command] Runs the specified command on the
cpuset identified by the -q
parameter. If the user does not have
access permissions or the cpuset
does not exist, an error is returned.

-q cpuset_name [-c -f filename] Creates a cpuset with the
configuration file specified by the
-f parameter and the name
specified by the -q parameter. The
operation fails if the cpuset name
already exists, a CPU specified in
the cpuset configuration file is
already a member of a cpuset, or
the user does not have the requisite
permissions.

-q cpuset_name -d Destroys the specified cpuset. A
cpuset can only be destroyed if
there are no processes currently
attached to it.

-q cpuset_name -l Lists all the processes in the cpuset.

-q cpuset_name -m Moves all the attached processes
out of the cpuset.

-q cpuset_name -Q Prints a list of the CPUs that belong
to the cpuset.

007–3700–009 51

4: Cpuset System

-q cpuset_name -p Prints out the permissions, ACLs,
MAC labels, flags, number of
processes, and the CPUs associated
with the specified cpuset.

-C Prints the name of the cpuset to
which the process is currently
attached.

-Q Lists the names of all the cpusets
currently defined.

-h Print the command’s usage
message.

3. Execute the cpuset command to run a command on the cpuset you created as
follows:

cpuset -q cpuset_name -A command

For more information on using cpusets, see the cpuset(1) man page, "Restrictions on
CPUs within Cpusets", page 52, and "Cpuset System Tutorial", page 53.

Restrictions on CPUs within Cpusets
The following restrictions apply to CPUs belonging to cpusets:

• A CPU can belong to only one cpuset.

• CPU 0 cannot belong to an EXCLUSIVE cpuset.

• A CPU cannot be both restricted or isolated (see mpadmin(1) and sysmp(2)) and
also be a member of a cpuset.

• Only the superuser can create or destroy cpusets.

• The runon(1) command cannot run a command on a CPU that is part of a cpuset
unless the user has write or group write permission to access the configuration file
of the cpuset.

For a description of cpuset command arguments and additional information, see the
cpuset(1), cpuset(4), and cpuset(5) man pages.

52 007–3700–009

IRIX® Admin: Resource Administration

Cpuset System Tutorial
This section gives a detailed example of how to divide a system using cpusets. It
contains a simple procedure to follow to divide the example system into cpusets with
references to additional explanatory information.

Figure 4-1, page 54, shows a block diagram of a system with 16 processors with three
cpusets. This section provides examples of configuration files and the commands used
to create a boot cpuset containing half of the system’s CPUs for normal system usage,
and two cpusets named Green and Blue, respectively, for specified purposes. The
Green cpuset specifies a closed cpuset restricted to a specific application to be executed
by members of group artists. The Blue cpuset specifies a second closed cpuset
restricted to a specific application to be executed my members of group writers.

007–3700–009 53

4: Cpuset System

CPU 0 CPU 1

CPU 2 CPU 3

CPU 4 CPU 5

CPU 6 CPU 7

CPU 8 CPU 9

CPU 10 CPU 11

CPU 12 CPU 13

CPU 14 CPU 15

CPUSET = Boot

CPUSET = Green CPUSET = Blue

Figure 4-1 Dividing a System Using Cpusets

Perform the following steps to divide a system with 16 processors into 3 cpusets as
shown in Figure 4-1, page 54:

1. Create a file named boot_cpuset.config to create a boot cpuset and divide
half of a 16 CPU system dedicated to normal system usage. The boot cpuset

54 007–3700–009

IRIX® Admin: Resource Administration

contains all standard processes on the system such as daemons, interactive or
background processing, scripts, and so on. The contents of this file are as follows:

boot

MEMORY_LOCAL

MEMORY_MANDATORY

CPU 0

CPU 1
CPU 2

CPU 3

CPU 4

CPU 5

CPU 6
CPU 7

For information on the boot_cpuset.config file, see "Boot Cpuset", page 57.

2. Use the chkconfig(1M) command with the -f option to create the
/etc/config/boot_cpuset file that contains the following:

chkconfig boot_cpuset on

For information on the /etc/config/boot_cpuset file, see "Boot Cpuset",
page 57.

For an explanation of the MEMORY_LOCAL and MEMORY_MANDATORY flags, see
"Cpuset Configuration File", page 59.

When the system is rebooted, the boot cpuset will be created.

3. Create a dedicated cpuset called Green and assign a specific application, in this
case, MovieMaker to run on it. Perform the following steps to accomplish this:

a. Create a cpuset configuration file called cpuset_1 with the following
contents:

the cpuset configuration file called cpuset_1 that shows

a cpuset dedicated to a specific application
EXCLUSIVE

MEMORY_LOCAL

MEMORY_MANDATORY

CPU 8

007–3700–009 55

4: Cpuset System

CPU 9
CPU 10

CPU 11

For an explanation of the EXCLUSIVE, MEMORY_LOCAL, and
MEMORY_MANDATORY flags, see "Cpuset Configuration File", page 59.

b. Use the chmod(1) command to set the file permissions on the cpuset_1
configuration file so that only members of group artists can execute the
application moviemaker on the Green cpuset.

c. Use the cpuset(1) command to create the Green cpuset with the
configuration file cpuset_1 specified by the -f parameter and the name
Green specified by the -q parameter.

cpuset -q Green -f cpuset_1

d. Execute the cpuset command as follows to run MovieMaker on a dedicated
cpuset:

cpuset -q Green -A moviemaker

For more information on the cpuset(1) command, see "cpuset Command",
page 59.

The moviemaker job threads will only run on CPUs in this cpuset.
MovieMaker jobs will use memory from system nodes containing the CPUs in
the cpuset. Jobs running on other cpusets will not use memory from these
nodes. You could use the cpuset command to run additional applications on
the same cpuset using the syntax shown in this example.

4. Create a third cpuset file called Blue and specify an application that will run only
on the cpuset. Perform the following steps to accomplish this:

a. Create a cpuset configuration file called cpuset_2 with the following
contents:

the cpuset configuration file called cpuset_2 that shows

a cpuset dedicated to a specific application

EXCLUSIVE
MEMORY_LOCAL

MEMORY_MANDATORY

CPU 12

CPU 13

56 007–3700–009

IRIX® Admin: Resource Administration

CPU 14
CPU 15

b. Use the chmod(1) command to set the file permissions on the cpuset_2
configuration file so that only members of group writers can execute the
application bookmaker on the Blue cpuset.

c. Create the cpuset with the configuration file specified by the -f parameter
and the name specified by the -q parameter.

cpuset -q Blue -f cpuset_2

d. Execute the cpuset(1) command as follows to run bookmaker on CPUs in
the Green cpuset.

cpuset -q Blue -A bookmaker

The bookmaker job threads will only run on this cpuset. BookMaker jobs
will use memory from system nodes containing the CPUs in the cpuset. Jobs
running on other cpusets will not use memory from these nodes.

Boot Cpuset
The boot_cpuset.so(4) library provides a method for containing the init(1M)
process and all of its descendents within a cpuset. Because all standard processes are
descendents of the init process, this means that all standard processes on the system
such as daemons, interactive or background processing, scripts, and so on, are
confined to this cpuset. This cpuset is named boot.

Note: The boot_cpuset.so library is provided only on SGI 2000 and SGI 3000
series of systems, that is, systems that are based on ccNUMA architecture.

The boot_cpuset.so library is located in the /lib32 directory and its behavior is
controlled by the following files:

• /etc/config/boot_cpuset

• /etc/config/boot_cpuset.config

007–3700–009 57

4: Cpuset System

The /etc/config/boot_cpuset file follows the chkconfig(1M) command
convention and contains a line similar to the following:

chkconfig boot_cpuset on

You can use the chkconfig(1M) command to configure the boot_cpuset.so(4)
library on or off. If the library is configured on by init during system start up, the
boot_cpuset.so library is loaded and executed and the cpuset is created. If the
library is configured off, the library will exit and init will resume normal processing.

The /etc/config/boot_cpuset.config file is the configuration file specifying
the cpuset. It follows the same conventions as the cpuset(4) configuration file.

The following example shows a boot_cpuset.config file that would divide half of
an eight CPU system for normal system usage:

the boot_cpuset
MEMORY_LOCAL

MEMORY_MANDATORY

CPU 0

CPU 1
CPU 2

CPU 3

Note: CPU 0 cannot belong to an EXCLUSIVE cpuset. For restrictions that apply to
CPUs belonging to cpusets, see "Restrictions on CPUs within Cpusets", page 52.

The second configuration file shows a cpuset that could be dedicated to a specific
application:

the cpuset dedicated to a specific application

EXCLUSIVE
MEMORY_LOCAL

MEMORY_MANDATORY

CPU 4

CPU 5
CPU 6

CPU 7

For more information see "Cpuset Command and Configuration File", page 59 and the
cpuset(4) man page.

58 007–3700–009

IRIX® Admin: Resource Administration

Cpuset Command and Configuration File
This section describes the cpuset(1) command and the cpuset configuration file.

cpuset Command

The cpuset(1) command is used to define and manage a set of CPUs called a cpuset.
A cpuset is a named set of CPUs, which may be defined as restricted or open. The
cpuset command creates and destroys cpusets, retrieves information about existing
cpusets, and attaches a process to a cpuset. Attachment to a cpuset is inherited across
the fork(2) system call. Consequently, all processes that are children of an attached
process will also be attached to the same cpuset.

Note: The cpuset command does not require the use of the Miser batch processing
system.

A restricted cpuset allows only processes that are attached to the cpuset to run on the
set of CPUs. An open cpuset allows any process to run on its CPUs, but a process
that is a attached to the cpuset can only run on the CPUs belonging to the cpuset.

For the SGI 2000 and SGI 3000 series of systems, that is, systems that are based on
ccNUMA architecture, the administrator can restrict memory allocation to the nodes
that contain the CPUs defined in the cpuset. For more information, see
MEMORY_MANDATORY flag description that follows and the cpuset(4) man page.

Cpuset Configuration File

A cpuset is defined by a cpuset configuration file and a name. See the cpuset(4)
man page for a definition of the file format. The cpuset configuration file is used to
list the CPUs that are members of the cpuset. It also contains any additional
arguments required to define the cpuset. A cpuset name is between three and eight
characters long; names of two or fewer characters are reserved. Each cpuset on your
system must have a separate cpuset configuration file.

Note: In a cluster environment, the cpuset configuration file should reside on the root
file system. If the cpuset configuration file resides on a file system other than the root
file system and you attempt to unmount the file system, the vnode for the cpuset
remains active and the unmount (see mount(1M) command fails.

007–3700–009 59

4: Cpuset System

The file permissions of the configuration file define access to the cpuset. When
permissions need to be checked, the current permissions of the file are used. It is
therefore possible to change access to a particular cpuset without having to tear it
down and recreate it, simply by changing the access permission. Read access allows a
user to retrieve information about a cpuset, while execute permission allows a user to
attach a process to the cpuset.

By convention, CPU numbering on SGI systems vary between zero and the number of
processors on the system minus one. The mpadmin -n command reports which
processors are physically configured on a system. You can also use the hinv -vm
command to show the hardware configuration of your system. For more information
on the CPU naming convention and system hardware configuration, see Chapter 4,
“Configuring the IRIX Operating System”, in the IRIX Admin: System Configuration
and Operation manual and the mpadmin(1) and hinv(1) man pages.

The following is a sample configuration file that describes an exclusive cpuset
containing 3 CPUs:

cpuset configuration file

EXCLUSIVE

MEMORY_LOCAL

MEMORY_EXCLUSIVE

CPU 1

CPU 5

CPU 10

This specification will create a cpuset containing 3 CPUs. When the EXCLUSIVE flag
is set, it restricts those CPUs to running threads that have been explicitly assigned to
the cpuset. When the MEMORY_LOCAL flag is set, the jobs running on the cpuset will
use memory from the nodes containing the CPUs in the cpuset. When the
MEMORY_EXCLUSIVE flag is set, jobs running on other cpusets or on the global cpuset
will normally not use memory from these nodes.

When the MEMORY_MANDATORY flag is set, the jobs running on the cpuset can only
use memory from nodes containing the CPUs in this cpuset. The MEMORY_LOCAL flag
is only an advisory while the MEMORY_MANDATORY flag is enforced by the kernel.

Note: On a system with both Miser and cpuset configured, conflicts may occur
between a CPU that a Miser queue is using and a CPU assigned to a cpuset. Miser
does not have access to CPUs that belong to a cpuset configured with the EXCLUSIVE
flag set. Avoid running Miser and cpusets on the same system.

60 007–3700–009

IRIX® Admin: Resource Administration

Commands are newline terminated; characters following the comment delimiter, #,
are ignored; case matters and tokens are separated by whitespace, which is ignored.

The valid tokens are as follows:

Valid tokens Description

EXCLUSIVE Defines the CPUs in the cpuset to
be restricted. It can occur anywhere
in the file. Anything else on the
line is ignored.

MEMORY_LOCAL Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. No restrictions
are made on memory assignment to
threads running outside the cpuset.

MEMORY_EXCLUSIVE Threads not assigned to the cpuset
will not use memory from within
the cpuset unless no memory
outside the cpuset is available.

When a cpuset is created and
memory is occupied by threads that
are already running on the cpuset
nodes, no attempt is made to
explicitly move this memory. If
page migration is enabled, the
pages will be migrated when the
system detects the most references
to the pages that are nonlocal.

MEMORY_KERNEL_AVOID The kernel avoids allocating
memory from nodes contained in
this cpuset. If kernel memory
requests cannot be satisfied from
outside this cpuset, this option is
ignored and allocations occur from
within the cpuset. Currently, this

007–3700–009 61

4: Cpuset System

option prevents only the system
buffer cache from being placed on
the specified nodes.

Warning: Most sites running
cpusets should not use this option.
The use of this option can degrade
system performance because kernel
memory allocations become
concentrated on the remaining
system nodes. This option is
effective only for certain workload
patterns and can cause severe
performance penalties in other
situations. Do not use this option
unless it is indicated by SGI
support staff.

This option was introduced in the
IRIX 6.5.7 release.

MEMORY_MANDATORY The kernel will limit all memory
allocations to nodes that are
contained in this cpuset. If memory
requests cannot be satisfied, the
allocating process will sleep until
memory is available. The process
will be killed if no more memory
can be allocated.

POLICY_PAGE Requires the MEMORY_MANDATORY
token. This is the default policy if
no policy is specified. This policy
will cause the kernel to page user
pages to the swap file (see
swap(1M)) to free physical memory
on the nodes contained in this
cpuset. If swap space is exhausted,
the process will be killed.

62 007–3700–009

IRIX® Admin: Resource Administration

POLICY_KILL Requires the MEMORY_MANDATORY
token. The kernel will attempt to
free as much space as possible from
kernel heaps, but will not page user
pages to the swap file. If all
physical memory on the nodes
contained in this cpuset are
exhausted, the process will be
killed.

CPU Specifies that a CPU will be part of
the cpuset.

Installing the Cpuset System
Although the Cpuset System is functionally separate from the Miser batch processing
system, the current Cpuset System was developed in conjunction with the software
development of Miser. The Cpuset System software is contained within the Miser
subsystem software. To install the Cpuset System software, see "Enabling or Disabling
Miser", page 42.

007–3700–009 63

4: Cpuset System

Obtaining the Properties Associated with a Cpuset
The cpuset -q cpuset_name -p command allows you to see the various properties
associated with a particular cpuset as follows:

• Permissions on the configuration file that define access to the cpuset

• Access Control Lists (ACLs)

• Mandatory Access Control (MAC) labels

• Flags such as MEMORY_EXCLUSIVE

For more information on flags associated with a cpuset, see "Cpuset Configuration
File", page 59 and the cpuset(4) man page.

• Number of processes

• CPUs

The cpusetGetProperties(3x) function in the cpuset library is used retrieve
various properties of the specified cpuset. The cpusetFreeProperties(3x) function
is used to release memory used by cpuset_Properties_t structure. For more
information, see "Retrieval Functions", page 156, and "Clean-up Functions", page 174,
and the cpusetGetProperties(3x) and cpusetFreeProperties(3x) man pages.

Cpuset System and Trusted IRIX
This section describes how to run cpusets in a Trusted IRIX environment.

The file permissions of the configuration file define access to the cpuset. When
permissions need to be checked, the current permissions of the file are used.

Read access allows a user to retrieve information about a cpuset while execute
permission allows the user to attach a process to the cpuset.

Cpusets on IRIX requires two user classes: root and user. The root class creates,
destroys, moves a process, and adds a process to the cpuset. The user class is
governed by the file permissions of the configuration file for the given cpuset.

Given a configuration file with the following characteristics:

64 007–3700–009

IRIX® Admin: Resource Administration

Permissions Owner Group Size Filename

-rwxr----- root cpuset 512 cpuset.test

Group read permission allows a user belonging to the group cpuset to list all cpusets
in the cpuset defined by the cpuset.test file and get a listing of all processes in
this cpuset. In order for the user to add processes to the cpuset governed by the
cpuset.test file, you would need to change the permissions as follows:

Permissions Owner Group Size Filename

-rwxr-x--- root cpuset 512 cpuset.test

In a Trusted IRIX environment, permissions are governed by the /etc/capability
file. See the capability(4) and capabilities(4) man pages for more information
on the capability mechanism that provides fine grained control over the privileges of
a process. Each user in the capability file has a set of minimum and maximum
permissions. Consequently, root does not have any special abilities except to be able
to use the suattr(1M) call so that it may assume any capabilities and permissions.
Capabilities and permissions are also narrowed by the use of mandatory access
control (MAC) labels and access control lists (ACLs).

In Trusted IRIX, to allow a user belonging to the group cpuset to list all cpusets in
the cpuset defined by the cpuset.test file and get a listing of all processes in this
cpuset, you must perform the following:

• Assign the user with a MAC label of userlow.

• Make the following entry in the /etc/capability file: cpuuser1:all=:all=

You can not assign a user all capabilities with effective, inherited, and permissive
rights (+eip) added. If you add +eip, the user will gain more privileges than
allowed by the Cpuset system.

A Trusted IRIX user with a cpuuser1:all=:all= entry in the /etc/capability
file, has the same permissions as the user class in IRIX.

The root class in Trusted IRIX must have the CAP_SCHED_MGT+eip capability to
create and destroy cpusets and to move process out of the cpuset.

In Trusted IRIX, you can use ACLs to control group permissions. With ACLs, you can
easily select which users in the group can add a process to the cpuset. You can use

007–3700–009 65

4: Cpuset System

ACLs to control a user’s access to a cpuset without that user belonging to the group
owner of the configuration file.

Using the Cpuset Library
The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain the properties associated
with and existing cpuset, and to attach a process and all of its children to a cpuset.

For information on using the Cpuset Library, see "Application Programming Interface
for the Cpuset System", page 140.

cpusetAttachPID and cpusetDetachPID

The new cpusetAttachPID(3x) function in the cpuset library allows a specific
process, identified by its PID value, to be attached to a cpuset. The new
cpusetDetachPID function allows a specific process, identified by its PID value, to
be detached from a cpuset. The ability to attach and detach specific processes to or
from a cpuset is controlled by the permissions of the cpuset configuration file and the
ownership of the processes involved. For more information on the cpuset
configuration file, see "Cpuset Configuration File", page 59.

Using the cpusetAttachPID and cpusetDetachPID Functions

The cpusetAttachPID and cpusetDetachPID functions should not be used with
the MEMORY_MANDATORY flag set to avoid memory latency problems. Because a
cpuset will only use memory from the original compute nodes, use the
cpusetAttachPID and cpusetDetachPID functions as follows:

Figure 4-2, page 67, shows several jobs running in two cpusets each containing four
CPUs. A prime job requires a new cpuset using all eight CPUs. To create the new
cpuset, perform the following steps:

1. Use the cpusetDetachPID function to move all jobs out of cpuset A and cpuset
B.

2. Suspend the jobs running on cpuset A and B.

3. Use the cpusetDestroy(3x) function to destroy cpuset A and cpuset B.

66 007–3700–009

IRIX® Admin: Resource Administration

4. Use the cpusetCreate(3x) function to create the new cpuset for the prime job.

5. Run the prime job in the new cpuset.

6. Destroy the new cpuset when the prime job has completed running.

7. Recreate cpuset A and B as exactly before.

8. Restart the suspended jobs.

9. Use the cpusetAttachPID function to reattach each job to its respective cpuset.

CPUSET A CPUSET B

NEW CPUSET

Prime Job

Job 1 Job 2

Job 2Job 1

CPUSET A CPUSET B

Figure 4-2 Using the cpusetAttachPID and cpusetDetachPID Functions

007–3700–009 67

4: Cpuset System

Cpuset System Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type man commandname. For printed versions of the cpuset
library man pages, see "Application Programming Interface for the Cpuset System",
page 140 in Appendix A.

User-Level Man Pages

The following user-level man pages are provided with Cpuset System software:

User-level man page Description

cpuset(1) Defines and manages a set of CPUs.

Cpuset Library Man Pages

The following Cpuset Library man pages are provided with Cpuset System software:

Cpuset Library man page Description

cpusetAllocQueueDef(3x) Allocates a cpuset_QueueDef_t
structure.

cpusetAttach(3x) Attaches the current process to a
cpuset.

cpusetAttachPID(3x) Attaches a specific process to a
cpuset.

cpusetCreate(3x) Creates a cpuset.

cpusetDestroy(3x) Destroys a cpuset.

cpusetDetachAll(3x) Detaches all threads from a cpuset.

cpusetDetachPID(3x) Detaches a specific process from a
cpuset.

cpusetFreeCPUList(3x) Releases memory used by a
cpuset_CPUList_t structure.

cpusetFreeNameList(3x) Releases memory used by a
cpuset_NameList_t structure.

68 007–3700–009

IRIX® Admin: Resource Administration

cpusetFreePIDList(3x) Releases memory used by a
cpuset_PIDList_t structure.

cpusetFreeProperties(3x) Releases memory used by a
cpuset_Properties_t structure.

cpusetFreeQueueDef(3x) Releases memory used by a
cpuset_QueueDef_t structure.

cpusetGetCPUCount(3x) Obtains the number of CPUs
configured on the system.

cpusetGetCPUList(3x) Gets the list of all CPUs assigned to
a cpuset.

cpusetGetName(3x) Gets the name of the cpuset to
which a process is attached.

cpusetGetNameList(3x) Gets a list of names for all defined
cpusets.

cpusetGetPIDList(3x) Gets a list of all PIDs attached to a
cpuset.

cpusetGetProperties(3x) Retrieves various properties
associated with a cpuset.

File Format Man Pages

The following file format descriptions man pages are provided with Cpuset System
software:

File Format man page Description

cpuset(4) cpuset configuration files

Miscellaneous Man Pages

The following miscellaneous man pages are provided with Cpuset System software:

Miscellaneous man page Description

cpuset(5) Overview of the Cpuset System.

007–3700–009 69

Chapter 5

Comprehensive System Accounting

The IRIX system has three types of accounting: basic accounting, extended
accounting, and Comprehensive System Accounting (CSA). You can use either one
type of accounting or a combination of them, depending on your site’s accounting
needs. This chapter contains detailed information about CSA.

You can use the three types of IRIX accounting to log and charge for certain types of
system activity. Using accounting data, you can determine how system resources
were used and if a particular user has used more than a reasonable share; trace
significant system events, such as security breaches, by examining the list of all
processes invoked by a particular user at a particular time; and set up billing systems
to charge login accounts for using system resources.

Basic accounting consists of standard UNIX accounting features. Basic accounting is
process oriented; a new accounting record is produced for each process that has been
run, containing statistics about the resources used by that individual process. The
runacct(1M) command is the main daily accounting shell script usually initiated by
cron(1M). The runacct(1M) command processes accounting records written into the
process accounting data file.

Extended accounting is an IRIX feature that has extended process accounting
capabilities, along with project and array session accounting features. Unlike basic
processing accounting and CSA which write accounting data directly to an accounting
data file, extended accounting writes data files using the system audit trail (SAT)
facility. Audit data is collected directly from the kernel by the satd(1M) program.
The extended accounting data is a superset of the data collected and reported by
basic accounting.

CSA provides additional capabilities that provide more detailed, accurate accounting
data per job. It also contains data from some daemons. The csarun(1M) command,
usually initiated by the cron(1M) command, directs the processing of the CSA daily
accounting files. The csarun(1M) command processes accounting records written
into the CSA accounting data file.

For more detailed information on basic accounting and extended accounting, see
“About the Process Accounting System” and “IRIX Extended Accounting”,
respectively, in Chapter 7, “System Accounting” IRIX Admin: Backup, Security and
Accounting manual.

007–3700–009 71

5: Comprehensive System Accounting

This chapter contains the following sections:

• "Read Me First", page 72

• "CSA Overview", page 73

• "Concepts and Terminology", page 74

• "Enabling or Disabling CSA", page 76

• "CSA Files and Directories", page 77

• "Comprehensive System Accounting Expanded Description", page 84

• "CSA Reports", page 119

• "CSA and Existing IRIX Software", page 125

• "Migrating Accounting Data", page 126

• "CSA Man Pages", page 127

Read Me First
The sections in this chapter contain information about installing CSA software on
your system. You should reference them in the order they are listed here:

1. For a general description of CSA, see "CSA Overview", page 73.

2. To install the CSA package and job limits package used by CSA, see "Enabling or
Disabling CSA", page 76.

3. For information about CSA directories and files, see "CSA Files and Directories",
page 77.

4. For detailed information about CSA, such as, setting CSA up on your system,
daily operation, tailoring CSA to your system, see "Comprehensive System
Accounting Expanded Description", page 84.

5. For a list of CSA man pages, see "CSA Man Pages", page 127.

6. For information about the types of reports you can generate using CSA, see "CSA
Reports", page 119.

72 007–3700–009

IRIX® Admin: Resource Administration

CSA Overview
Comprehensive System Accounting (CSA) is a set of C programs and shell scripts
that, like the other accounting packages, provide methods for collecting per-process
resource usage data, monitoring disk usage, and charging fees to specific login
accounts. CSA provides:

• Per-job accounting

• Daemon accounting (tape, NQS and workload management systems)

• Flexible accounting periods (daily and periodic (monthly) accounting reports can
be generated as often as desired and are not restricted to once per day or once per
month)

• Flexible system billing units (SBUs)

• Offline archiving of accounting data

• User exits for site specific customizing of daily and periodic (monthly) accounting

• Configurable parameters within the /etc/csa.conf file

• User job accounting (ja(1) command)

CSA takes this per-process accounting information and combines it by job identifier
(jid) within system boot uptime periods. CSA accounting for a job consists of all
accounting data for a given job identifier during a single system boot period.
However, since NQS jobs or workload management jobs may span multiple reboots
and thereby consist of multiple job identifiers, CSA accounting for these jobs includes
the accounting data associated with the NQS identifier or the workload management
identifier.

Daemon accounting records are written at the completion of daemon specific events.
These records are combined with per-process accounting records associated with the
same job.

By default, CSA only reports accounting data for terminated jobs. Interactive jobs,
cron jobs and at jobs terminate when the last process in the job exits, which is
normally the login shell. An NQS or workload management job is recognized as
terminated by CSA based upon daemon accounting records and an end-of-job record
for that job. Jobs which are still active are recycled into the next accounting period.
This behavior can be changed through use of the csarun command -A option.

007–3700–009 73

5: Comprehensive System Accounting

A system billing unit (SBU) is a unit of measure that reflects use of machine
resources. SBUs are defined in the CSA configuration file /etc/csa.conf and are
set to 0.0 by default. The weighting factor associated with each field in the CSA
accounting records can be altered to obtain an SBU value suitable for your site. For
more information on SBUs, see "System Billing Units (SBUs)", page 105.

The CSA accounting records are not written into the basic accounting pacct file but
are written into a separate CSA /var/adm/acct/day/pacct file. The CSA
commands can only be used with CSA generated accounting records. Similarly, the
basic accounting commands can only be used with the records generated by basic
accounting.

There are four user exits available with the csarun(1M) daily accounting script.
There is one user exit available with the csaperiod(1M) monthly accounting script.
These user exits allow sites to tailor the daily and monthly run of accounting to their
specific needs by creating user exit scripts to perform any additional processing and
to allow archiving of accounting data. See the csarun(1M) and csaperiod(1M) man
pages for further information.

CSA provides two user accounting commands, csacom(1) and ja(1). The csacom
command reads the CSA pacct file and writes selected accounting records to
standard output. The csacom command is very similar to the basic accounting
acctcom(1) command. The ja command provides job accounting information for the
current job of the caller. This information is obtained from a separate user job
accounting file to which the kernel writes. See the csacom(1) and ja(1) man pages
for further information.

The /etc/csa.conf file contains CSA configuration variables. These variables are
used by the CSA commands.

Like any accounting or monitoring package, the CSA features do contribute to overall
system overhead. For this reason, CSA is disabled in the kernel by default. To enable
CSA, see "Enabling or Disabling CSA", page 76.

Concepts and Terminology
The following concepts and terms are important to understand when using the
accounting features:

74 007–3700–009

IRIX® Admin: Resource Administration

Term Description

Daily accounting Daily accounting is the processing, organizing, and
reporting of the raw accounting data, generally
performed once per day.

In basic accounting, daily accounting can only be run
once a day. With CSA, it can be run as many times as
necessary during a day; however, this feature is still
referred to as daily accounting.

Job A job is a grouping of processes that the system treats
as a single entity and is identified by a unique job
identifier (job ID).

CSA is the only accounting type to organize accounting
data by jobs and boot times and then place the data
into a sorted pacct file.

For non-NQS or non-workload management jobs, a job
consists of all accounting data for a given job ID during
a single boot period.

An NQS job consists of the accounting data for all job
IDs associated with the job’s NQS sequence number,
and a workload management job consists of the
accounting data for all job IDs associated with the
workload management request ID. NQS or workload
management jobs may span multiple boot periods. If a
job is restarted, it has the same job ID associated with it
during all boot periods in which it runs. Rerun NQS or
workload management jobs have multiple job IDs. CSA
treats all phases of an NQS job or workload
management job as being in the same job.

Periodic accounting Periodic (monthly) accounting further processes,
reports, and summarizes the daily accounting reports to
give a higher level view of how the system is being
used.

In basic accounting, this refers to accounting that is run
on a monthly basis. CSA, however, lets system
administrators specify the time periods for which
monthly or cumulative accounting is to be run. Thus,

007–3700–009 75

5: Comprehensive System Accounting

periodic accounting can be run more than once a month,
but sometimes is still referred to as monthly accounting.

Daemon accounting Daemon accounting is the processing, organizing, and
reporting of the raw accounting data, performed at the
completion of daemon specific events.

Recycled data Recycled data is data left in the raw accounting data
file, saved for the next accounting report run.

By default, accounting data for active jobs is recycled
until the job terminates. CSA reports only data for
terminated jobs unless csarun is invoked with the -A
option. csarun places recycled data into the
/var/adm/acct/day/pacct0 data file.

The following abbreviations and definitions are used throughout this chapter:

Abbreviation Definition

MMDD Month, day

hhmm Hour, minute

Enabling or Disabling CSA
The following steps are required to set up CSA job accounting:

1. Use the inst(1M) utility to install the eoe.sw.csaacct subsystem from your
IRIX distribution media. Installing CSA also requires that the eoe.sw.acct and
eoe.sw.jlimits subsystems are installed.

2. Enable CSA within the kernel by using the systune(1M) utility to set
do_csaacct to a nonzero value. It will be necessary to reboot the system after
completing this step.

3. Configure CSA on across system reboots by using the chkconfig(1M) utility as
follows:

chkconfig csaacct on

4. Modify the CSA configuration variables in /etc/csa.conf as desired.

76 007–3700–009

IRIX® Admin: Resource Administration

5. Use the csaswitch(1M) command to configure on the accounting record types
and thresholds defined in /etc/csa.conf as follows:

csaswitch -c on

This step will be done automatically for subsequent system reboots when CSA is
configured on via the chkconfig(1M) utility.

For information on adding entries to the crontabs file so that the cron(1M)
command automatically runs daily accounting, see "Setting Up CSA", page 86.

The following steps are required to disable CSA job accounting:

1. To turn off CSA, use the csaswitch(1M) command:

csaswitch -c halt

2. To stop CSA from initiating after a system reboot, use the chkconfig(1M)
command:

chkconfig csaacct off

3. Disable CSA within the kernel by using the systune(1M) utility to set
do_csaacct to a zero value. It will be necessary to reboot the system after
completing this step.

CSA Files and Directories
The following sections describe the CSA files and directories.

Files in the /var/adm/acct Directory

The /var/adm/acct directory contains CSA data and report files within various
subdirectories. /var/adm/acct contains data collection files used by CSA. CSA and
IRIX basic accounting access separate pacct files. The following diagram shows the
directory and file layout for CSA:

007–3700–009 77

5: Comprehensive System Accounting

/var/adm

acct

workday sum fiscal nite

Raw data files
pacct (CSA)

Temporary
files

csa csa csa

cacct.MMDDhhmm
dacct.MMDDhhmm
cms.MMDDhhmm
rprt.MMDDhhmm
login log

pdacct.MMDDhhmm
cms.MMDDhhmm
rprt.MMDDhhmm

Logs
pdact
Misc files
Error files

spacct

Figure 5-1 The /var/adm/acct Directory

Each data and report file for CSA has a month-day-hour-minute suffix.

Warning: On a IRIX security-enhanced system, the csacom(1) command is
considered to be a covert channel. You may want to consider restricting access to this
command to the adm group.

Files in the /var/adm/acct/ Directory

The /var/adm/acct directory contains the following directories:

Directory Description

day Contains the current raw accounting data files in pacct format.

work Used by CSA as a temporary work area. Contains raw files that were
moved from /var/adm/acct/day at the start of an CSA daily
accounting run and the spacct file.

78 007–3700–009

IRIX® Admin: Resource Administration

sum/csa Contains the cumulative daily accounting summary files and reports
created by csarun(1M). The ASCII format is in
/var/adm/acct/sum/csa/rprt.MMDDhhmm.

The binary data is in
/var/adm/acct/sum/csa/cacct.MMDDhhmm,
/var/adm/acct/sum/csa/cms.MMDDhhmm, and
/var/adm/acct/sum/csa/dacct.MMDDhhmm.

fiscal/csa Contains periodic accounting summary files and reports created by
csaperiod(1M). The ASCII format is in
/var/adm/acct/fiscal/csa/rprt.MMDDhhmm.

The binary data is in
/usr/adm/acct/fiscal/csa/cms.MMDDhhmm and
/usr/adm/acct/fiscal/csa/pdacct.MMDDhhmm.

nite/csa Contains log files, csarun state, and execution times files.

Files in the /var/adm/acct/day Directory

The following files are located in the /var/adm/acct/day directory:

File Description

dodiskerr Disk accounting error file.

pacct Process and daemon accounting data.

pacct0 Recycled process and daemon accounting data.

dtmp Disk accounting data (ASCII) created by dodisk.

Files in the /var/adm/acct/work Directory

The following files are located in the /var/adm/acct/work/MMDD/hhmm directory:

File Description

BAD.Wpacct* Unprocessed accounting data containing invalid records
(verified by csaverify(1M)).

Ever.tmp1 Data verification work file.

Ever.tmp2 Data verification work file.

007–3700–009 79

5: Comprehensive System Accounting

Rpacct0 Process and daemon accounting data to be recycled in
the next accounting run.

Wdiskcacct Disk accounting data (cacct.h format) created by
dodisk(1M) (See the dodisk(1M) man page).

Wdtmp Disk accounting data (ASCII) created by dodisk(1M).

Wpacct* Raw process and daemon accounting data.

spacct sorted pacct file.

Files in the /var/adm/acct/sum/csa Directory

The following data files are located in the /var/adm/acct/sum/csa directory:

File Description

cacct.MMDDhhmm Consolidated daily data in cacct.h format. This file is
deleted by csaperiod if the -r option is specified.

cms.MMDDhhmm Daily command usage data in command summary
(cms) record format. This file is deleted by csaperiod
if the -r option is specified.

dacct.MMDDhhmm Daily disk usage data in cacct.h format. This file is
deleted by csaperiod if the -r option is specified.

loginlog Login record file created by lastlogin.

rprt.MMDDhhmm Daily accounting report.

Files in the /var/adm/acct/fiscal/csa Directory

The following files are located in the /var/adm/acct/fiscal/csa directory:

File Description

cms.MMDDhhmm Periodic command usage data in command summary
(cms) record format.

pdacct.MMDDhhmm Consolidated periodic data.

80 007–3700–009

IRIX® Admin: Resource Administration

rprt.MMDDhhmm Periodic accounting report.

Files in the /var/adm/acct/nite/csa Directory

The following files are located in the /var/adm/acct/nite/csa directory:

File Description

active Used by the csarun(1M) command to record progress
and print warning and error messages.
activeMMDDhhmm is the same as active after
csarun detects an error.

clastdate Last two times csarun was executed; in MMDDhhmm
format.

dk2log Diagnostic output created during execution of dodisk
(see the cron entry for dodisk in "Setting Up CSA",
page 86).

diskcacct Disk accounting records in cacct.h format, created by
dodisk.

EaddcMMDDhhmm Error/warning messages from the csaaddc(1M)
command for an accounting run done on MMDD at
hhmm.

Earc1MMDDhhmm Error/warning messages from the csa.archive1(1M)
command for an accounting run done on MMDD at
hhmm.

Earc2MMDDhhmm Error/warning messages from the csa.archive2(1M)
command for an accounting run done on MMDD at
hhmm.

Ebld.MMDDhhmm Error/warning messages from the csabuild(1M)
command for an accounting run done on MMDD at
hhmm.

Ecmd.MMDDhhmm Error/warning messages from the csacms(1M)
command when generating an ASCII report for an
accounting run done on MMDD at hhmm.

Ecms.MMDDhhmm Error/warning messages from the csacms(1M)
command when generating binary data for an
accounting run done on MMDD at hhmm.

007–3700–009 81

5: Comprehensive System Accounting

Econ.MMDDhhmm Error/warning messages from the csacon(1M)
command for an accounting run done on MMDD at
hhmm.

Ecrep.MMDDhhmm Error/warning messages from the csacrep(1M)
command for an accounting run done on MMDD at
hhmm.

Ecrpt.MMDDhhmm Error/warning messages from the csacrep(1M)
command for an accounting run done on MMDD at
hhmm.

Edrpt.MMDDhhmm Error/warning messages from the csadrep(1M)
command for an accounting run done on MMDD at
hhmm.

Erec.MMDDhhmm Error/warning messages from the csarecy(1M)
command for an accounting run done on MMDD at
hhmm.

Euser.MMDDhhmm Error/warning messages from the csa.user(1M) user
exit for an accounting run done on MMDD at hhmm.

Epuser.MMDDhhmm Error/warning messages from the csa.puser(1M) user
exit for an accounting run done on MMDD at hhmm.

Ever.tmp1MMDDhhmm Output file from invalid record offsets from the
csaverify(1M) command for an accounting run done
on MMDD at hhmm.

Ever.tmp2MMDDhhmm Error/warning messages from the csaverify(1M)
command for an accounting run done on MMDD at
hhmm.

Ever.MMDDhhmm Error/warning messages from the csaedit(1M) and
csaverify(1M) command (from the Ever.tmp2 file)
for an accounting run done on MMDD at hhmm.

fd2log Diagnostic output created during execution of csarun
(see cron entry for csarun in "Setting Up CSA", page
86).

lock lock1 Used to control serial use of the csarun(1M) comand.

pd2log Diagnostic output created during execution of
csaperiod (see cron entry for csaperiod in "Setting
Up CSA", page 86).

82 007–3700–009

IRIX® Admin: Resource Administration

pdact Progress and status of csaperiod.
pdact.MMDDhhmm is the same as pdact after
csaperiod detects an error.

statefile Used to record current state during execution of the
csarun command.

/usr/lib/acct Directory

The /usr/lib/acct directory contains the following commands and shell scripts
used by CSA:

Command Description

csaaddc Combines cacct records.

csabuild Organizes accounting records into job records.

csachargefee Charges a fee to a user.

csackpacct Checks the size of the CSA process accounting file.

csacms Summarizes command usage from per-process
accounting records.

csacon Condenses records from the sorted pacct file.

csacrep Reports on consolidated accounting data.

csadrep Reports daemon usage.

csaedit Displays and edits the accounting information.

csagetconfig Searches the accounting configuration file for the
specified argument.

csajrep Prints a job report from the sorted pacct file.

csaperiod Runs periodic accounting.

csarecy Recycles unfinished job records into next accounting
run.

csarun Processes the daily accounting files and generates
reports.

csaswitch Checks the status of, enables or disables the different
types of Comprehensive System Accounting (CSA), and
switches accounting files for maintainability.

007–3700–009 83

5: Comprehensive System Accounting

csaverify Verifies that the accounting records are valid.

The /usr/bin directory contains user commands associated with CSA:

Command Description

ja Starts and stops user job accounting information.

csacom Searches and prints the CSA process accounting files.

The /usr/lib/acct directory may also contain the following scripts if your site
uses the accounting user exits:

Script Description

csa.archive1 Site-generated user exit for csarun.

csa.archive2 Site-generated user exit for csarun.

csa.fef Site-generated user exit for csarun.

csa.user Site-generated user exit for csarun.

csa.puser Site-generated user exit for csaperiod.

/etc Directory

The /etc directory is the location of the csa.conf file that contains the parameter
labels and values used by CSA software.

/etc/config Directory

The /etc/config directory is the location of the csaacct file used by the
chkconfig(1M) command. The csaacct.options contains options passed to the
csaswitch(1M) command. Use a text editor to add any csaswitch(1M) options to
be passed to csaswitch during system startup only.

Comprehensive System Accounting Expanded Description
This section contains detailed information about CSA and covers the following topics:

• "Daily Operation Overview", page 85

• "Setting Up CSA", page 86

• "The csarun Command", page 90

84 007–3700–009

IRIX® Admin: Resource Administration

• "Verifying and Editing Data Files", page 94

• "CSA Data Processing", page 95

• "Data Recycling", page 98

• "Tailoring CSA", page 104

Daily Operation Overview

When the IRIX operating system is run in multiuser mode, accounting behaves in a
manner similar to the following process. However, because sites may customize CSA,
the following may not reflect the actual process at a particular site:

1. When CSA accounting is enabled and the system is switched to multiuser mode,
the /usr/lib/acct/csaswitch (see the csaswitch(1M) man page) command
is called by /etc/rc2.

2. By default, csa, memory, and I/O record types are enabled in /etc/csa.conf.
However, to run NQS, workload management, or tape daemon accounting you
must modify the /etc/csa.conf file and the appropriate subsystem. For more
information, see "Setting Up CSA", page 86.

3. The amount of disk space used by each user is determined periodically. The
/usr/lib/acct/dodisk command (see dodisk(1M)) is run periodically by the
cron command to generate a snapshot of the amount of disk space being used by
each user. The dodisk command should be run at most once for each time
/usr/lib/acct/csarun is run (see csarun(1M)). Multiple invocations of
dodisk during the same accounting period write over previous dodisk output.

4. A fee file is created. Sites desiring to charge fees to certain users can do so by
invoking /usr/lib/acct/csachargefee (see csachargefee(1M)). Each
accounting period’s fee file (/var/adm/acct/day/fee) is merged into the
consolidated accounting records by /usr/lib/acct/csaperiod (see
csaperiod(1M)).

5. Daily accounting is run. At specified times during the day, csarun is executed
by the cron command to process the current accounting data. The output from
csarun is daily accounting files and an ASCII report.

6. Periodic (monthly) accounting is run. At a specific time during the day, or on
certain days of the month, /usr/lib/acct/csaperiod (see csaperiod) is
executed by the cron command to process consolidated accounting data from

007–3700–009 85

5: Comprehensive System Accounting

previous accounting periods. The output from csaperiod is periodic (monthly)
accounting files and an ASCII report.

7. Accounting is disabled. When the system is shut down gracefully, the
csaswitch(1M) command is executed to halt all CSA process and daemon
accounting.

Setting Up CSA

The following is a brief description of setting up CSA. Site-specific modifications are
discussed in detail in "Tailoring CSA", page 104. As described in this section, CSA is
run by a person with superuser permissions. CSA also can be run by users who are
in the adm group and have the CAP_ACCT_MGT capability. See the capability(4)
and capabilities(4) man pages for more information on the capability mechanism
that provides fine grained control over the privileges of a process. See "Allowing Non
Superusers to Execute CSA", page 117, for the necessary modifications.

1. Change the default system billing unit (SBU) weighting factors, if necessary. By
default, no SBUs are calculated. If your site wants to report SBUs, you must
modify the configuration file /etc/csa.conf.

2. Modify any necessary parameters in the /etc/csa.conf file, which contains
configurable parameters for the accounting system.

3. If you want daemon accounting, you must enable daemon accounting at system
startup time by performing the following steps:

a. Ensure that the variables in /etc/csa.conf for the subsystems for which
you want to enable daemon accounting are set to on. Set NQS_START to on
to enable NQS accounting. Set WKMG_START to on to enable workload
management accounting. Set TAPE_START to on to enable tape accounting.

b. If necessary, enable accounting from the daemon’s side. Specifically, NQS,
workload management, and tape accounting must also be enabled by the
associated daemon. Use the qmgr set accounting on command to turn
on NQS accounting. To enable tape daemon accounting, execute tmdaemon
with the -c option. For more information on the tmdaemon command, see
the TMF Administrator’s Guide. To enable the workload management
accounting, see the appropriate workload management guide for your system.

4. As root, use the crontab(1) command with the - e option to add entries similar
to the following:

86 007–3700–009

IRIX® Admin: Resource Administration

Note: If you do not use the crontab(1) command to update the crontab file
(for example, using the vi(1) editor to update the file), you must signal cron(1M)
after updating the file. The crontab command automatically updates the
crontab file and signals cron(1M) when you save the file and exit the editor.
For more information on the crontab command, see the crontab(1) man page.

0 4 * * 1-6 if /etc/chkconfig csaacct; then /usr/lib/acct/csarun 2> /var/adm/acct/nite/csa/fd2log; fi

0 2 * * 4 if /etc/chkconfig csaacct; then /usr/lib/acct/dodisk -c > /var/adm/acct/nite/csa/dk2log; fi

5 * * * 1-6 if /etc/chkconfig csaacct; then /usr/lib/acct/csackpacct; fi

0 5 1 * * if /etc/chkconfig csaacct; then /usr/lib/acct/csaperiod -r \

2> /var/adm/acct/nite/csa/pd2log; fi

These entries are described in the following steps:

a. For most installations, entries similar to the following should be made in
/var/spool/cron/crontabs/root so that cron(1M) automatically runs daily
accounting:

0 4 * * 1-6 if /etc/chkconfig csaacct; then /usr/lib/acct/csarun 2> /var/adm/acct/nite/csa/fd2log; fi

0 2 * * 4 if /etc/chkconfig csaacct; then /usr/lib/acct/dodisk -c > /var/adm/acct/nite/csa/dk2log; fi

The csarun(1m) command should be executed at such a time that dodisk
has sufficient time to complete. If dodisk does not complete before csarun
executes, disk accounting information may be missing or incomplete.

The dodisk command must be invoked with the -c option. For more
information, see the dodisk(1M) man page.

b. Periodically check the size of the pacct files. An entry similar to the
following should be made in /var/spool/cron/crontabs/root:

5 * * * 1-6 if /etc/chkconfig csaacct; then /usr/lib/acct/csackpacct; fi

The cron command should periodically execute the csackpacct(1m) shell
script. If the pacct file grows larger than 4000 1K blocks (default),
csackpacct calls the command /usr/lib/acct/csaswitch -c switch
to start a new pacct file. The csackpacct command also makes sure that

007–3700–009 87

5: Comprehensive System Accounting

there are at least 2000 1K blocks free on the file system containing
/var/adm/acct (located in the /var directory by default). If there are not
enough blocks, CSA accounting is turned off. The next time csackpacct is
executed, it turns CSA accounting back on if there are enough free blocks.

Ensure that the ACCT_FS and MIN_BLKS variables have been set correctly in
the /etc/csa.conf configuration file. ACCT_FS is the file system containing
/var/adm/acct; the default directory is /var. MIN_BLKS is the minimum
number of free 1K blocks needed in the ACCT_FS file system. The default is
2000.

It is very important that csackpacct be run periodically so that an
administrator is notified when the accounting file system (located in the /var
directory by default) runs out of disk space. After the file system is cleaned
up, the next invocation of csackpacct enables process and daemon
accounting. You can manually re-enable accounting by invoking csaswitch
-c on.

If csackpacct is not run periodically, and the accounting file system runs
out of space, an error message is written to the console stating that a write
error occurred and that accounting is disabled. If you do not free disk space
as soon as possible, a vast amount of accounting data can be lost
unnecessarily. Additionally, lost accounting data can cause csarun to abort
or report erroneous information.

c. To run monthly accounting, an entry similar to the command shown below
should be made in /var/spool/cron/crontabs/root. This command
generates a monthly report on all consolidated data files found in
/var/adm/acct/sum/csa/* and then deletes those data files:

0 5 1 * * if /etc/chkconfig csaacct; then /usr/lib/acct/csaperiod -r \

2> /var/adm/acct/nite/csa/pd2log; fi

This entry is executed at such a time that csarun has sufficient time to
complete. This example results in the creation of a periodic accounting file
and report on the first day of each month. These files contain information
about the previous month’s accounting.

5. On Trusted IRIX systems, perform the following steps::

a. Ensure that user adm has the CAP_ACCT_MGT capability.

b. Ensure that the following user exits (if they exist) are both readable and
executable by user adm:

88 007–3700–009

IRIX® Admin: Resource Administration

• /usr/lib/acct/csa.archive1

• /usr/lib/acct/csa.archive2

• /usr/lib/acct/csa.fef

• /usr/lib/acct/csa.puser

c. Include an entry similar to the one shown below in
/var/spool/cron/crontabs/root:

2 * * 4 suattr -M dbadmin -C CAP_DAC_READ_SEARCH,CAP_DAC_WRITE,
CAP_FOWNER,CAP_MAC_READ+eip -c "if /etc/chkconfig csaacct;

then /usr/lib/acct/dodisk -c 2> /var/adm/acct/nite/csa/dk2log; fi"

d. Include entries similar to the ones shown below in
/var/spool/cron/crontabs/adm:

0 4 * * 1-6 su adm -C CAP_ACCT_MGT+pi -c "if /etc/chkconfig csaacct;

then /usr/lib/acct/csarun 2> /var/adm/acct/nite/csa/fd2log; fi"

5 * * * 1-6 su adm -C CAP_ACCT_MGT+pi -c "if /etc/chkconfig csaacct;
then /usr/lib/acct/csackpacct; fi"

0 5 1 * * if /etc/chkconfig csaacct;

then /usr/lib/acct/csaperiod -r 2> /var/adm/acct/nite/csa/pd2log; fi

6. Update the holidays file. The file /usr/lib/acct/holidays contains the
prime/nonprime table for the accounting system. The table should be edited to
reflect your location’s holiday schedule for the year. The format is composed of
three types of entries:

• Comment Lines, which may appear anywhere in the file as long as the first
character in the line is an asterisk.

• Year Designation Line, which should be the first data line (noncomment line)
in the file and must appear only once. The line consists of three fields of four
digits each (leading white space is ignored). For example, to specify the year
as 1992, prime time at 9:00 a.m., and nonprime time at 4:30 p.m., the following
entry is appropriate:

1992 0900 1630

A special condition allowed for in the time field is that the time 2400 is
automatically converted to 0000

007–3700–009 89

5: Comprehensive System Accounting

• Company Holidays Lines, which follow the year designation line and have the
following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is a number in the range of 1 through 366, indicating the
day for the corresponding holiday (leading white space is ignored). The other
three fields are actually commentary and are not currently used by other
programs.

The csarun Command

The /usr/lib/acct/csarun command, usually initiated by cron(1), directs the
processing of the daily accounting files. csarun processes accounting records written
into the pacct file. It is normally initiated by cron during nonprime hours.

The csarun command also contains four user-exit points, allowing sites to tailor the
daily run of accounting to their specific needs.

The csarun command does not damage files in the event of errors. It contains a
series of protection mechanisms that attempt to recognize an error, provide intelligent
diagnostics, and terminate processing in such a way that csarun can be restarted
with minimal intervention.

Daily Invocation

The csarun command is invoked periodically by cron. It is very important that you
ensure that the previous invocation of csarun completed successfully before
invoking csarun for a new accounting period. If this is not done, information about
unfinished jobs will be inaccurate.

Data for a new accounting period can also be interactively processed by executing the
following:

nohup csarun 2> /var/adm/acct/nite/csa/fd2log &

Before executing csarun in this manner, ensure that the previous invocation
completed successfully. To do this, look at the files active and statefile in
/var/adm/acct/nite/csa. Both files should specify that the last invocation
completed successfully. See "Restarting csarun", page 93.

90 007–3700–009

IRIX® Admin: Resource Administration

Error and Status Messages

The csarun error and status messages are placed in the /var/adm/acct/nite/csa
directory. The progress of a run is tracked by writing descriptive messages to the file
active. Diagnostic output during the execution of csarun is written to fd2log.
The lock and lock1 files prevent concurrent invocations of csarun; csarun will
abort if these two files exist when it is invoked. The clastdate file contains the
month, day, and time of the last two executions of csarun.

Errors and warning messages from programs called by csarun are written to files
that have names beginning with E and ending with the current date and time. For
example, Ebld.11121400 is an error file from csabuild for a csarun invocation
on November 12, at 14:00.

If csarun detects an error, it writes a message to the SYSLOG file, removes the locks,
saves the diagnostic files, and terminates execution. When csarun detects an error, it
will send mail either to MAIL_LIST if it is a fatal error, or to WMAIL_LIST if it is a
warning message, as defined in the configuration file /etc/csa.conf.

States

Processing is broken down into separate reentrant states so that csarun can be
restarted. As each state completes, /var/adm/acct/nite/csa/statefile is
updated to reflect the next state. When csarun reaches the CLEANUP state, it
removes various data files and the locks, and then terminates.

The following describes the events that occur in each state. MMDD refers to the
month and day csarun was invoked. hhmm refers to the hour and minute of
invocation.

State Description

SETUP The current accounting file is switched via csaswitch. The accounting
file is then moved to the /var/adm/acct/work/MMDD/hhmm
directory. File names are prefaced with W.
/var/adm/acct/nite/csa/diskcacct is also moved to this
directory.

VERIFY The accounting files are checked for valid data. Records with invalid
data are removed. Names of bad data files are prefixed with BAD. in
the /var/adm/acct/work/MMDD/hhmm directory. The corrected files
do not have this prefix.

007–3700–009 91

5: Comprehensive System Accounting

ARCHIVE1 First user exit of the csarun script. If a script named
/usr/lib/acct/csa.archive1 exists, it will be executed through
the shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. You might use this user
exit to archive the accounting files in ${WORK}.

BUILD The pacct accounting data is organized into a sorted pacct file.

ARCHIVE2 Second user exit of the csarun script. If a script named
/usr/lib/acct/csa.archive2 exists, it will be executed through
the shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. You might use this exit
to archive the sorted pacct file.

CMS Produces a command summary file in cms.h format. The cms file is
written to /var/adm/acct/sum/csa/cms.MMDDhhmm for use by
csaperiod.

REPORT Generates the daily accounting report and puts it into
/var/adm/acct/sum/csa/rprt.MMDDhhmm. A consolidated data
file, /var/adm/acct/sum/csa/cacct.MMDDhhmm, is also
produced from the sorted pacct file. In addition, accounting data
for unfinished jobs is recycled.

DREP Generates a daemon usage report based on the sorted pacct file.
This report is appended to the daily accounting report,
/var/adm/acct/sum/csa/rprt.MMDDhhmm.

FEF Third user exit of the csarun script. If a script named
/var/lib/acct/csa.fef exists, it will be executed through the shell
. (dot) command. The . (dot) command will not execute a compiled
program, but the user exit script can. The csarun variables are
available, without being exported, to the user exit script. You might use
this exit to convert the sorted pacct file to a format suitable for a
front-end system.

USEREXIT Fourth user exit of the csarun script. If a script named
/usr/lib/acct/csa.user exists, it will be executed through the
shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. The csarun variables
are available, without being exported, to the user exit script. You might
use this exit to run local accounting programs.

92 007–3700–009

IRIX® Admin: Resource Administration

CLEANUP Cleans up temporary files, removes the locks, and then exits.

Restarting csarun

If csarun is executed without arguments, the previous invocation is assumed to have
completed successfully.

The following operands are required with csarun if it is being restarted:

csarun [MMDD [hhmm [state]]]

MMDD is month and day, hhmm is hour and minute, and state is the csarun entry
state.

To restart csarun, follow these steps:

1. Remove all lock files, by using the following command line:

rm -f /var/adm/acct/nite/csa/lock*

2. Execute the appropriate csarun restart command, using the following examples
as guides:

a. To restart csarun using the time and the state specified in clastdate and
statefile, execute the following command:

nohup csarun 0601 2> /var/adm/acct/nite/csa/fd2log &

In this example, csarun will be rerun for June 1, using the time and state
specified in clastdate and statefile.

b. To restart csarun using the state specified in statefile, execute the
following command:

nohup csarun 0601 0400 2> /var/adm/acct/nite/csa/fd2log &

In this example, csarun will be rerun for the June 1 invocation that started at
4:00 A.M., using the state found in statefile.

c. To restart csarun using the specified date, time, and state, execute the
following command:

nohup csarun 0601 0400 BUILD 2> /var/adm/acct/nite/csa/fd2log &

In this example, csarun will be restarted for the June 1 invocation that
started at 4:00 A.M., beginning with state BUILD.

007–3700–009 93

5: Comprehensive System Accounting

Before csarun is restarted, the appropriate directories must be restored. If the
directories are not restored, further processing is impossible. These directories are as
follows:

/var/adm/acct/work/MMDD/hhmm
/var/adm/acct/sum/csa

If you are restarting at state ARCHIVE2, CMS, REPORT, DREP, or FEF, the sorted
pacct file must be in /var/adm/acct/work/MMDD/hhmm. If the file does not
exist, csarun automatically will restart at the BUILD state. Depending on the tasks
performed during the site-specific USEREXIT state, [the sorted pacct file may or
may not need to exist.] This may or may not be acceptable.

Verifying and Editing Data Files

This section describes how to remove bad data from various accounting files.

The csaverify(1M) command verifies that the accounting records are valid and
identifies invalid records. The accounting file can be a pacct or sorted pacct file.
When csaverify finds an invalid record, it reports the starting byte offset and
length of the record. This information can be written to a file in addition to standard
output. A length of -1 indicates the end of file. The resulting output file can be used
as input to csaedit(1M) to delete pacct or sorted pacct records.

1. The pacct file is verified with the following command line, and the following
output is received:

$ /usr/lib/acct/csaverify -P pacct -o offsetfile

acct.cat-330 /usr/lib/acct/csaverify: CAUTION

readacctent(): An error was returned from the ’readpacct()’ routine.

2. The file offsetfile from csaverify is used as input to csaedit to delete the
invalid records as follows (remaining valid records are written to pacct.NEW):

/usr/lib/acct/csaedit -b offsetfile -P pacct -o pacct.NEW

3. The new pacct file is reverified as follows to ensure that all the bad records have
been deleted:

/usr/lib/acct/csaverify -P pacct.NEW

94 007–3700–009

IRIX® Admin: Resource Administration

You can use the csaedit -A option to produce an abbreviated ASCII version of
pacct or sorted pacct files.

CSA Data Processing

The flow of data among the various CSA programs is explained in this section and is
illustrated in Figure 5-2.

a11927

CSA system diagram

Job
report

Daily
report

Daemon
usage
report

Periodic
report

1
4

8

7

12

13

11

3

2

10 6

5

9

csarun pacct

csachargefee

diskusg

fee

dtmp acctdisk dacct

pdacct
csacrep

csaaddc

cacct cacct

csacrep
cacct

csacon
cms

cms cms

csacms cms

csacms

csadrep

csarecyspacct

csabuild

csajrep

6

14

Figure 5-2 CSA Data Processing

007–3700–009 95

5: Comprehensive System Accounting

1. Generate raw accounting files. Various daemons and system processes write to
the raw pacct accounting files.

2. Create a fee file. Sites that want to charge fees to certain users can do so with the
csachargefee(1m) command. The csachargefee command creates a fee file
that is processed by csaaddc(1m).

3. Produce disk usage statistics. The dodisk(1m) shell script allows sites to take
snapshots of disk usage. dodisk does not report dynamic usage; it only reports
the disk usage at the time the command was run. Disk usage is processed by
csaaddc.

4. Organize accounting records into job records. The csabuild(1M) command
reads accounting records from the CSA pacct file and organizes them into job
records by job ID and boot times. It writes these job records into the sorted
pacct file. This sorted pacct file contains all of the accounting data available
for each job. The configuration records in the pacct files are associated with the
job ID 0 job record within each boot period. The information in the sorted
pacct file is used by other commands to generate reports and for billing.

5. Recycle information about unfinished jobs. The csarecy(1M) command retrieves
job information from the sorted pacct file of the current accounting period
and writes the records for unfinished jobs into a pacct0 file for recycling into the
next accounting period. csabuild(1M) marks unfinished accounting jobs (those
are jobs without an end-of-job record). csarecy takes these records from the
sorted pacct file and puts them into the next period’s accounting files
directory. This process is repeated until the job finishes.

Sometimes data for terminated jobs are continually recycled. This can occur when
accounting data is lost. To prevent data from recycling forever, edit csarun so
that csabuild is executed with the -o nday option, which causes all jobs older
than nday days to terminate. Select an appropriate nday value (see the csabuild
man page for more information and "Data Recycling", page 98).

6. Generate the daemon usage report, which is appended to the daily report.
csadrep(1m) reports usage of the NQS, workload management, and tape
daemons. Input is either from a sorted pacct file created by csabuild(1M) or
from a binary file created by csadrep with the -o option. The files operand
specifies the binary files.

7. Summarize command usage from per-process accounting records. The
csacms(1m) command reads the sorted pacct files. It adds all records for
processes that executed identically named commands, and it sorts and writes

96 007–3700–009

IRIX® Admin: Resource Administration

them to var/adm/acct/sum/csa/cms.MMDDhhmm, using the cms format.
The csacms(1m) command can also create an ASCII file.

8. Condense records from the sorted pacct file. The csacon(1M) command
condenses records from the sorted pacct file and writes consolidated records
in cacct format to var/adm/acct/sum/csa/cacct.MMDDhhmm.

9. Generate an accounting report based on the consolidated data. The csacrep(1m)
command generates reports from data in cacct format, such as output from the
csacon(1M) command. The report format is determined by the value of
CSACREP in the /etc/csa.conf file. Unless modified, it will report the CPU
time, total KCORE minutes total KVIRTUAL minutes, block I/O wait time, and raw
I/O wait time. The report will be sorted first by user ID and then by the
secondary key of project ID and the headers will be printed.

10. Create the daily accounting report. The daily accounting report includes the
following:

• Consolidated information report (step 11)

• Unfinished recycled jobs (step 5)

• Disk usage report (step 3)

• Daily command summary (step 7)

• Last login information

• Daemon usage report (step 6)

11. Combine cacct records. The csaaddc(1M) command combines cacct records
by specified consolidation options and writes out a consolidated record in cacct
format.

12. Summarize command usage from per-process accounting records. The
csacms(1m) command reads the cms files created in step 7. Both an ASCII and a
binary file are created.

13. Produce a consolidated accounting report. csacrep(1m) is used to generate a
report based on a periodic accounting file.

14. The periodic accounting report layout is as follows:

• Consolidated information report

• Command summary report

007–3700–009 97

5: Comprehensive System Accounting

Steps 4 through 11 are performed during each accounting period by csarun(1m).
Periodic (monthly) accounting (steps 12 through 14) is initiated by the
csaperiod(1m) command. Daily and periodic accounting, as well as fee and disk
usage generation (steps 2 through 3), can be scheduled by cron(1m) to execute
regularly. See "Setting Up CSA", page 86, for more information.

Data Recycling

A system administrator must correctly maintain recycled data to ensure accurate
accounting reports. The following sections discuss data recycling and describe how
an administrator can purge unwanted recycled accounting data.

Data recycling allows CSA to properly bill jobs that are active during multiple
accounting periods. By default, csarun reports data only for jobs that terminate
during the current accounting period. Through data recycling, CSA preserves data for
active jobs until the jobs terminate.

In the sorted pacct file, csabuild flags each job as being either active or
terminated. csarecy reads the sorted pacct file and recycles data for the active
jobs. csacon consolidates the data for the terminated jobs, which csaperiod uses
later. csabuild, csarecy, and csacon are all invoked by csarun.

csarun puts recycled data in the /var/adm/acct/day/pacct0 file.

Normally, an administrator should not have to manually purge the recycled
accounting data. This purge should only be necessary if accounting data is missing.
Missing data can cause jobs to recycle forever and consume valuable CPU cycles and
disk space.

How Jobs Are Terminated

Interactive jobs, cron jobs, and at jobs terminate when the last process in the job
exits. Normally, the last process to terminate is the login shell. The kernel writes an
end-of-job (EOJ) record to the pacct file when the job terminates.

When the NQS daemon or workload management daemon delivers an NQS or
workload management request’s output, the request terminates. The daemon then
writes an NQ_DISP record type for NQS or WM_TERM record type for workload
management to the pacct accounting file, while the kernel writes an EOJ record to
the pacct file.

98 007–3700–009

IRIX® Admin: Resource Administration

Unlike interactive jobs, NQS or workload management requests can have multiple
EOJ records associated with them. In addition to the request’s EOJ record, there can
be EOJ records for pipe clients (NQS only), net clients, and checkpointed portions of
the request. The pipe client and net client perform NQS or workload management
processing on behalf of the request. The Load Sharing Facility (LSF) system currently
does not support net clients.

The csabuild command flags jobs in the sorted pacct file as being terminated if
they meet one of the following conditions:

• The job is an interactive, cron, or at job, and there is an EOJ record for the job in
the pacct file.

• The job is an NQS request, and there is both an EOJ record for the request and an
NQ_DISP record type in the pacct file.

• The job is a workload management request, and there is both an EOJ record for
the request and an WM_TERM record type in the pacct file.

• The job is an interactive, cron, or at job and is active at the time of a system crash.

• The job is manually terminated by the administrator using one of the methods
described in "How to Remove Recycled Data", page 100.

Why Recycled Sessions Should Be Scrutinized

Recycling unnecessary data can consume large amounts of disk space and CPU time.
The sorted pacct file and recycled data can occupy a vast amount of disk space on
the file system containing /var/adm/acct/day. Sites that archive data also require
additional offline media. Wasted CPU cycles are used by csarun to reexamine and
recycle the data. Therefore, to conserve disk space and CPU cycles, unnecessary
recycled data should be purged from the accounting system.

Any of the following situations can cause CSA erroneously to recycle terminated jobs:

• Kernel or daemon accounting is turned off.

The kernel or csackpacct(1m) command can turn off accounting when there is
not enough space on the file system containing /var/adm/acct/day.

• Accounting files are corrupt. Accounting data can be lost or corrupted during a
system or disk crash.

• Recycled data is erroneously deleted in a previous accounting period.

007–3700–009 99

5: Comprehensive System Accounting

How to Remove Recycled Data

Before choosing to delete recycled data, you should understand the repercussions, as
described in "Adverse Effects of Removing Recycled Data", page 101. Data removal
can affect billing and can alter the contents of the consolidated data file, which is used
by csaperiod.

You can remove recycled data from CSA in the following ways:

• Interactively execute the csarecy -A command. Administrators can select the
active jobs that are to be recycled by running csarecy with the -A option. Users
are not billed for the resources used in the jobs terminated in this manner. Deleted
data is also not included in the consolidated data file.

The following example is one way to execute csarecy -A (which generates two
accounting reports and two consolidated files):

1. Run csarun at the regularly scheduled time.

2. Edit a copy of /usr/lib/acct/csarun. Change the -r option on the
csarecy invocation line to -A. Also, do not redirect standard output to
${SUM_DIR}/recyrpt. The result should be similar to the following:

csarecy -A -s ${SPACCT} -P ${WTIME_DIR}/Rpacct \ 2> ${NITE_DIR}/Erec.${DTIME}

Since both the -A and -r options write output to stdout, the -r option is not
invoked and stdout is not redirected to a file. As a result, the recycled job
report is not generated.

3. Execute the jstat command, as follows, to display a list of currently active
jobs:

jstat -a > jstat.out

4. Execute the qstat command to display a list of NQS requests. The qstat
command is used for seeing whether there are requests that are not currently
running. This includes requests that are checkpointed, held, queued, or
waiting.

To list all NQS requests, execute the qstat command, as follows, using a
login that has either NQS manager or NQS operator privilege:

qstat -a > qstat.out

100 007–3700–009

IRIX® Admin: Resource Administration

5. Interactively run the modified version of csarun. If you execute the modified
csarun soon after the first step is complete, little data is lost because not very
much data exists.

For each active job, csarecy asks you if you want to preserve the job.
Preserve the active and nonrunning NQS jobs found in the third and fourth
steps. All other jobs are candidates for removal.

• Execute csabuild with the -o ndays option, which terminates all active jobs
older than the specified number of days. Resource usage for these terminated jobs
is reported by csarun, and users are billed for the jobs. The consolidated data file
also includes this resource usage.

To execute csabuild with the -o option, edit a copy of
/usr/lib/acct/csarun. Add the -o ndays option to the csabuild invocation
line. Specify for ndays an appropriate value for your site.

Recycled data for currently active jobs will be removed if you specify an
inappropriate value for ndays.

• Execute csarun with the -A option. It reports resource usage for both active and
terminated jobs, so users are billed for recycled sessions. This data is also included
in the consolidated data file.

None of the data for the active jobs, including the currently active jobs, is recycled.
No recycled data file is generated in the /var/adm/acct/day directory.

• Remove the recycled data file from the /var/adm/acct/day directory. You can
delete data for all of the recycled jobs, both terminated and active, by executing
the following command:

rm /var/adm/acct/day/pacct0

The next time csarun is executed, it will not find data for any recycled jobs.
Thus, users are not billed for the resources used in the recycled jobs, and this data
is not included in the consolidated data file. csarun recycles the data for
currently active jobs.

Adverse Effects of Removing Recycled Data

CSA assumes that all necessary accounting information is available to it, which means
that CSA expects kernel and daemon accounting to be enabled and recycled data not
to have been mistakenly removed. If some data is unavailable, CSA may provide

007–3700–009 101

5: Comprehensive System Accounting

erroneous billing information. Sites should be aware of the following facts before
removing data:

• Users may or may not be billed for terminated recycled jobs. Administrators must
understand which of the previously described methods cause the user to be billed
for the terminated recycled jobs. It is up to the site to decide whether or not it is
valid for the user to be billed for these jobs.

For those methods that cause the user to be billed, both csarun and csaperiod
report the resource usage.

• It may be impossible to reconstruct a terminated recycled job. If a recycled job is
terminated by the administrator, but the job actually terminates in a later
accounting period, information about the job is lost. If a user questions the
resource billing, it may be extremely difficult or impossible for the administrator
to correctly reassemble all accounting information for the job in question.

• Manually terminated recycled jobs may be improperly billed in a future billing
period. If the accounting data for the first portion of a job has been deleted, CSA
may be unable to correctly identify the remaining portion of the job. Errors may
occur, such as NQS or workload management requests being flagged as interactive
jobs, or NQS or workload management requests being billed at the wrong queue
rate. This is explained in detail in "NQS or Workload Management Requests and
Recycled Data", page 103.

• CSA programs may detect data inconsistencies. When accounting data is missing,
CSA programs may detect errors and abort.

The following table summarizes the effects of using the methods described in "How
to Remove Recycled Data", page 100.

102 007–3700–009

IRIX® Admin: Resource Administration

Table 5-1 Possible Effects of Removing Recycled Data

Method Underbilling? Incorrect billing? Consolidated data file

csarecy -A Yes. Users are not billed for
the portion of the job that was
terminated by csarecy -A.

Possible. Manually
terminated recycled jobs
may be billed improperly
in a future billing period.

Does not include data for
jobs terminated by
csarecy -A.

csabuild -o No. Users are billed for the
portion of the job that was
terminated by csabuild -o.

Possible. Manually
terminated recycled jobs
may be billed improperly
in a future billing period.

Includes data for jobs
terminated by
csabuild -o.

csarun -A No. All active and recycled
jobs are billed.

Possible. All active and
recycled jobs that
eventually terminate may
be billed improperly in a
future billing period,
because no data is recycled.

Includes data for all active
and recycled jobs.

rm Yes. All users are not billed
for the portion of the job that
was recycled.

Possible. All recycled jobs
that eventually terminate
may be billed improperly
in a future billing period.

Does not include data for
any recycled job.

By default, the consolidated data file contains data only for terminated jobs. Manual
termination of recycled data may cause some of the recycled data to be included in
the consolidated file.

NQS or Workload Management Requests and Recycled Data

For CSA to identify all NQS or workload management requests, data must be
properly recycled. When an administrator manually purges recycled data for an NQS
or workload management request, errors such as the following can occur:

• CSA fails to flag the job as an NQS or workload management job. This causes the
request to be billed at standard rates instead of an NQS or workload management
queue rate (see "NQS SBUs", page 108 or "Workload Management SBUs", page 109).

• The request is billed at the wrong queue rate.

• The wrong queue wait time is associated with the request.

007–3700–009 103

5: Comprehensive System Accounting

These errors occur because valuable NQS or workload management accounting
information was purged by the administrator. Only a few NQS or workload
management accounting records are written by the NQS or workload management
daemon, and all of the records are needed for CSA to properly bill NQS or workload
management requests.

NQS or workload management accounting records are only written under the
following circumstances:

• The NQS or workload management daemon receives a request.

• A request is routed to a queue. (NQS only)

• A request executes. This includes executing a request for the first time, restarting,
and rerunning a request.

• A request terminates. An NQS request can terminate because it is completed,
requeued, preempted, held, or rerun. A workload management request can
terminate because it is completed, requeued, held, rerun, or migrated.

• Output is delivered.

Thus, for long running requests that span days, there can be days when no NQS or
workload management data is written. Consequently, it is extremely important that
accounting data be recycled. If the site administrator manually terminates recycled
jobs, care must be taken to be sure that only nonexistent NQS or workload
management requests are terminated.

Tailoring CSA

This section describes the following actions in CSA:

• Setting up SBUs

• Setting up daemon accounting

• Setting up user exits

• Writing a user exit

• Modifying the charging of NQS or workload management jobs based on NQS or
workload management termination status

• Tailoring CSA shell scripts

104 007–3700–009

IRIX® Admin: Resource Administration

• Using at(1) instead of cron(1m) to periodically execute csarun

• Allowing users without superuser permissions to run CSA

• Using an alternate configuration file

System Billing Units (SBUs)

A system billing unit (SBU) is a unit of measure that reflects use of machine resources.
You can alter the weighting factors associated with each field in each accounting
record to obtain an SBU value suitable for your site. SBUs are defined in the
accounting configuration file, /etc/csa.conf. By default, all SBUs are set to 0.0.

Accounting allows different periods of time to be designated either prime or
nonprime time (the time periods are specified in /usr/lib/acct/holidays).

Following is an example of how the prime/nonprime algorithm works:

Assume a user uses 10 seconds of CPU time, and executes for 100 seconds of prime
wall-clock time, and pauses for 100 seconds of nonprime wall-clock time. Therefore,
elapsed time is 200 seconds (100+100). If

prime = prime time / elapsed time
nonprime = nonprime time / elapsed time
cputime[PRIME] = prime * CPU time
cputime[NONPRIME] = nonprime * CPU time

then

cputime[PRIME] == 5 seconds

cputime[NONPRIME] == 5 seconds

Under CSA, an SBU value is associated with each record in the sorted pacct file
when that file is assembled by csabuild. Final summation of the SBU values is
done by csacon during the creation of the cacct record file.

The following examples show how a site can bill different NQS or workload
management queues at differing rates.

Total SBU = (NQS queue SBU value) * (sum of all process record SBUs
+ sum of all tape record SBUs)

or

007–3700–009 105

5: Comprehensive System Accounting

Total SBU = (Workload management queue SBU value) * (sum of all process record SBUs
+ sum of all tape record SBUs)

Process SBUs

The SBUs for process data are separated into prime and nonprime values. Prime and
nonprime use is calculated by a ratio of elapsed time. If you do not want to make a
distinction between prime and nonprime time, set the nonprime time SBUs and the
prime time SBUs to the same value. Prime time is defined in
/usr/lib/acct/holidays. By default, Saturday and Sunday are considered
nonprime time.

The following is a list of prime time process SBU weights. Descriptions and factor
units for the nonprime time SBU weights are similar to those listed here. SBU weights
are defined in /etc/csa.conf.

Value Description

P_BASIC Prime-time weight factor. P_BASIC is multiplied by the
sum of prime time SBU values to get the final SBU
factor for the process record.

P_TIME General-time weight factor. P_TIME is multiplied by
the time SBUs (made up of P_STIME, P_UTIME,
P_QTIME, P_BWTIME, and P_RWTIME) to get the time
contribution to the process record SBU value.

P_STIME System CPU-time weight factor. The unit used for this
weight is billing units per second. P_STIME is
multiplied by the system CPU time.

P_UTIME User CPU-time weight factor. The unit used for this
weight is billing units per second. P_UTIME is
multiplied by the user CPU time.

P_QTIME Run queue wait time weight factor. The unit used for
this weight is billing units per second. P_QTIME is
multiplied by the run queue wait time.

P_BWTIME Block I/O wait time weight factor. The unit used for
this weight is billing units per second. P_BWTIME is
multiplied by the block I/O wait time.

106 007–3700–009

IRIX® Admin: Resource Administration

P_RWTIME Raw I/O wait time weight factor. The unit used for this
weight is billing units per second. P_RWTIME is
multiplied by the raw I/O wait time.

P_MEM General-memory-integral weight factor. P_MEM is
multiplied by the memory SBUs (made up of P_XMEM
and P_VMEM) to get the memory contribution to the
process record SBU value.

P_XMEM CPU-time-core-physical memory-integral weight factor.
The unit used for this weight is billing units per
Mbyte-minute P_XMEM is multiplied by the
core-memory integral.

P_VMEM CPU-time-virtual-memory-integral weight factor. The
unit used for this weight is billing units per
Mbyte-minute. P_VMEM is multiplied by the virtual
memory integral.

P_IO General-I/O weight factor. P_IO is multiplied by the
I/O SBUs (made up of P_BIO, P_CIO, and P_LIO) to
get the I/O contribution to the process record SBU
value.

P_BIO Blocks-transferred weight factor. The unit used for this
weight is billing units per block transferred. P_BIO is
multiplied by the number of I/O blocks transferred.

P_CIO Characters-transferred weight factor. The unit used for
this weight is billing units per character transferred.
P_CIO is multiplied by the number of I/O characters
transferred.

P_LIO Logical-I/O-request weight factor. The unit used for
this weight is billing units per logical I/O request.
P_LIO is multiplied by the number of logical I/O
requests made. The number of logical I/O requests is
total number of read and write system calls.

The formula for calculating the whole process record SBU is as follows:

PSBU = (P_TIME * (P_STIME * stime + P_UTIME * utime + P_QTIME * qwtime +

P_BWTIME * bwtime + P_RWTIME * rwtime)) + (P_MEM * (P_XMEM * coremem + P_VMEM

* virtmem)) + (P_IO * (P_BIO * bio + P_CIO * cio + P_LIO * lio));

007–3700–009 107

5: Comprehensive System Accounting

NSBU = (NP_TIME * (NP_STIME * stime + NP_UTIME * utime + NP_QTIME * qwtime +

NP_BWTIME * bwtime + NP_RWTIME * rwtime)) + (NP_MEM * (NP_XMEM * coremem +

NP_VMEM * virtmem)) + (NP_IO * (NP_BIO * bio + NP_CIO * cio + NP_LIO * lio));

SBU = P_BASIC * PSBU + NP_BASIC * NSBU;

The variables in this formula are described as follows:

Variable Description

stime System CPU time in seconds

utime User CPU time in seconds

bwtime Block I/O wait time in seconds

rwtime Raw I/O wait time in seconds

coremem Core (physical) memory integral in Mbyte-minutes

virtmem Virtual memory integral in Mbyte-minutes

bio Number of blocks of data transferred

cio Number of characters of data transferred

lio Number of logical I/O requests

NQS SBUs

The /etc/csa.conf file contains the configurable parameters that pertain to NQS
SBUs.

The NQS_NUM_QUEUES parameter sets the number of queues for which you want to
set SBUs (the value must be set to at least 1). Each NQS_QUEUE x variable in the
configuration file has a queue name and an SBU pair associated with it (the total
number of queue/SBU pairs must equal NQS_NUM_QUEUES). The queue/SBU pairs
define weights for the queues. If an SBU value is less than 1.0, there is an incentive to
run jobs in the associated queue; if the value is 1.0, jobs are charged as though they
are non-NQS jobs; and if the SBU is 0.0, there is no charge for jobs running in the
associated queue. SBUs for queues not found in the configuration file are
automatically set to 1.0.

The NQS_NUM_MACHINES parameter sets the number of originating machines for
which you want to set SBUs (the value must be at least 1). Each NQS_MACHINE x
variable in the configuration file has an originating machine and an SBU pair
associated with it (the total number of machine/SBU pairs must equal

108 007–3700–009

IRIX® Admin: Resource Administration

NQS_NUM_MACHINES). SBUs for originating machines not specified in
/etc/csa.conf are automatically set to 1.0.

The queue and machine SBUs are multiplied together to give an NQS multiplier. If
the SBUs are set to less than 1.0, there is an incentive to run jobs in these queues or
from these machines. SBUs of 1.0 indicate that jobs in the queues or from associated
hosts are billed normally.

Workload Management SBUs

The /etc/csa.conf file contains the configurable parameters that pertain to
workload management SBUs.

The WKMG_NUM_QUEUES parameter sets the number of queues for which you want to
set SBUs (the value must be set to at least 1). Each WKMG_QUEUE x variable in the
configuration file has a queue name and an SBU pair associated with it (the total
number of queue/SBU pairs must equal WKMG_NUM_QUEUES). The queue/SBU pairs
define weights for the queues. If an SBU value is less than 1.0, there is an incentive to
run jobs in the associated queue; if the value is 1.0, jobs are charged as though they
are non-workload management jobs; and if the SBU is 0.0, there is no charge for jobs
running in the associated queue. SBUs for queues not found in the configuration file
are automatically set to 1.0.

The WKMG_NUM_MACHINES parameter sets the number of originating machines for
which you want to set SBUs (the value must be at least 1). Each WKMG_MACHINE x
variable in the configuration file has an originating machine and an SBU pair
associated with it (the total number of machine/SBU pairs must equal
WKMG_NUM_MACHINES). SBUs for originating machines not specified in
/etc/csa.conf are automatically set to 1.0.

Tape SBUs

There is a set of weighting factors for each group of tape devices. By default, there
are only two groups, tape and cart. The TAPE_SBU i parameters in
/etc/csa.conf define the weighting factors for each group. There are SBUs
associated with the following:

• Number of mounts

• Device reservation time (seconds)

007–3700–009 109

5: Comprehensive System Accounting

• Number of bytes read

• Number of bytes written

Example SBU Settings

The following shows how you could set up the SBU system. This example is
restricted to the process records.

All time is considered prime time. Therefore, the nonprime time SBUs should be set
to the same values as their prime time counterparts.

Users are charged $10 per hour of user CPU time. This is equal to $10 per 3600
seconds, which is $0.002777777777777 per second (P_UTIME).

Therefore, the charges are as follows (the nonprime time SBUs are set to the same
values as their prime time counterparts):

Weight Factor Charge

P_BASIC 1.0

P_TIME 1.0

P_STIME 0.0

P_UTIME 0.002777777777777

P_QTIME 0.0

P_BWTIME 0.0

P_RWTIME 0.0

P_MEM 0.0

P_XMEM 0.0

P_VMEM 0.0

P_IO 0.0

P_BIO 0.0

P_CIO 0.0

P_LIO 0.0

110 007–3700–009

IRIX® Admin: Resource Administration

Daemon Accounting

Accounting information is available from the NQS, workload management, and
online tape daemons. Data is written to the pacct file in the /var/adm/acct/day
directory.

In most cases, daemon accounting must be enabled by both the CSA subsystem and
the daemon. "Setting Up CSA", page 86, describes how to enable daemon accounting
at system startup time. You can also enable daemon accounting after the system has
booted.

You can enable accounting for a specified daemon by using the csaswitch
command. For example, to start tape accounting, you should do the following:

/usr/lib/acct/csaswitch -c on -n tape

The NQS or workload management, and online tape daemon, also, must enable
accounting. Use the qmgr set accounting on command to turn on NQS
accounting. Tape daemon accounting is enabled when tmdaemon(1m) is executed
with the -c option.See the appropriate workload management guide for information
on how to enable workload management accounting.

Note: If you are running the Load Sharing Facility (LSF) system and want to enable
workload management accounting, you must set two LSF configuration variables in
the lsf.conf file as follows:

LSF_ENABLE_CSA=y
LSF_ULDB_DOMAIN = <ULDB_domain_name>

If LSF_ENABLE_CSA is defined in the lsf.conf file, LSF writes LSF batch job events
to the pacct file for processing through CSA. For LSF job accounting, records are
written to pacct at the start and end of each LSF job.

If a ULDB domain for LSF is defined in the lsf.conf file, LSF creates an IRIX job
and applies the configured resource limits to it. LSF resource limits defined in
lsb.queues or at job submission override IRIX job limits defined in the ULDB.

For more information on the Load Sharing Facility (LSF) system and workload
management accounting, see the appropriate LSF documentation.

007–3700–009 111

5: Comprehensive System Accounting

Daemon accounting is disabled at system shutdown (see "Setting Up CSA", page 86).
It can also be disabled at any time by the csaswitch command when used with the
off operand. For example, to disable NQS accounting, execute the following
command:

/usr/lib/acct/csaswitch -c off -n nqs

These dynamic changes using csaswitch are not saved across a system reboot.

Setting up User Exits

CSA accommodates the following user exits, which can be called from certain
csarun states:

csarun state User exit

ARCHIVE1 /usr/lib/acct/csa.archive1

ARCHIVE2 /usr/lib/acct/csa.archive2

FEF /var/lib/acct/csa.fef

USEREXIT /usr/lib/acct/csa.user

CSA accommodates the following user exit, which can be called from certain
csaperiod states:

csaperiod state User exit

USEREXIT /usr/lib/acct/csa.puser

These exits allow an administrator to tailor the csarun procedure (or csaperiod
procedure) to the individual site’s needs by creating scripts to perform additional
site-specific processing during daily accounting. (Note that the following comments
also apply to csaperiod).

While executing, csarun checks in the ARCHIVE1, ARCHIVE2, FEF and USEREXIT
states for a shell script with the appropriate name.

If the script exists, it is executed via the shell . (dot) command. If the script does not
exist, the user exit is ignored. The . (dot) command will not execute a compiled
program, but the user exit script can. csarun variables are available, without being
exported, to the user exit script. csarun checks the return status from the user exit
and if it is nonzero, the execution of csarun is terminated.

112 007–3700–009

IRIX® Admin: Resource Administration

If CSA is run by a user without superuser permissions, the user exits must be both
readable and executable by this user (see "Allowing Non Superusers to Execute CSA",
page 117).

Writing a User Exit

This section provides information about writing a user exit. The first example shows
a user exit that saves the sorted pacct file after a daily accounting run. The second
example shows a user exit that consolidates information for a daily report by project
rather than by user.

Example 5-1 Save a sorted pacct File During a Daily Accounting Run

The csarun(1M) and csaperiod(1M) scripts use shell variables that are available
for use within a user exit script. For example, the sorted pacct file is deleted after
a successful daily accounting run. However, if you want to save that file, you could
use any of the user exits that are executed after the sorted pacct file is created (see
the csarun(1M) man page). Here is a simple user exit script to do just that:

#! /bin/sh

echo "Copying spacct file to /tmp/spacct"

cp ${SPACCT} /tmp/spacct

Example 5-2 Consolidated Information Report by Project Rather than by User

The default output for consolidated information from a daily report is as follows:

CONSOLIDATED INFORMATION REPORT BETWEEN 08/09 04:00 AND 08/09 14:48

PROJECT USER LOGIN CPU-TIM KCORE * KVIRT * IOWAIT [SECS]
NAME ID NAME [SECS] CPU-MIN CPU-MIN BLOCK RAW

======== ======== ======== ======== ======== ======== ======== ========

sysadm 0 root 30 536 1177 48 0

root 4 sys 0 5 11 0 0

csa 5 adm 5 24 194 1 0
root 1461 security 1 2 16 0 0

nqe 10320 user12 2 5 68 1 0

To show consolidated information for a daily report by project rather than by user,
use the csacon(1M) and csacrep(1M) commands with the project option as follows:

/usr/lib/acct/csacon -Ap -s /tmp/spacct > /tmp/cacct_p

/usr/lib/acct/csacrep -hpcw < /tmp/cacct_p > /tmp/csacrep.out.p

007–3700–009 113

5: Comprehensive System Accounting

The output is as follows:

PROJECT USER LOGIN CPU-TIM KCORE * KVIRT * IOWAIT [SECS]
NAME ID NAME [SECS] CPU-MIN CPU-MIN BLOCK RAW

======== ======== ======== ======== ======== ======== ======== ========

root Unknown Unknown 1 8 28 0 0

sysadm Unknown Unknown 31 537 1187 49 0

csa Unknown Unknown 5 24 194 1 0

nqe Unknown Unknown 2 7 83 1 0

The example /usr/lib/acct/csa.user script below performs the same operation
as the csacon(1M) and csacrep(1M) commands example above to include a
consolidated information by project report within the daily report:

#!/sbin/sh

#

csacon ${ALLJOBS} -p -s ${SPACCT} > ${SUM_DIR}/cacct_p.${DTIME} \

2> ${NITE_DIR}/Econ.${DTIME}
if [${?} -ne 0]

then

CSAERRMSG="REPORT - csacon errors \

\n\tSee ${NITE_DIR}/Econ.${DTIME} and/or ${NITE_DIR}/fd2log"

ERROR_EXIT

fi
chgrp ${CHGRP} ${SUM_DIR}/cacct_p.${DTIME}

#

csacrep -hpcw < ${SUM_DIR}/cacct_p.${DTIME} \

> ${SUM_DIR}/conrpt_p.${DTIME} 2> ${NITE_DIR}/Ecrpt_p.${DTIME}

if [${?} -ne 0]
then

CSAERRMSG="REPORT - csacrep errors \

\n\tSee ${NITE_DIR}/Ecrep_p.${DTIME} and/or ${NITE_DIR}/fd2log"

ERROR_EXIT

fi
#

cd ${SUM_DIR}

echo "${RPTHDR}\n" > tmprprt

echo "Put some header message here\n" >> tmprprt

cat conrpt_p.${DTIME} >> tmprprt

pr -h "${DAYHDR} ${SYSNAME} ${RELMSG}" tmprprt >> rprt.${DTIME}
#

114 007–3700–009

IRIX® Admin: Resource Administration

If you want the new binary data files (cacct_p in the user exit example, above) to be
used with the periodic report, you need to create a user exit for
/usr/lib/acct/csaperiod.

Charging for NQS Jobs

By default, SBUs are calculated for all NQS jobs regardless of the job’s NQS
termination code. If you do not want to bill portions of an NQS request, set the
appropriate NQS_TERM_xxxx variable (termination code) in the /etc/csa.conf file
to 0, which sets the SBU for this portion to 0.0. By default, all portions of a request
are billed.

The following table describes the termination codes:

Code Description

NQS_TERM_EXIT Generated when the request finishes running and is no
longer in a queued state. At NQS shutdown time,
requests that specified both the -nc (no checkpoint)
and -nr (no rerun) options for qsub also have
NQS_TERM_EXIT records written. In addition, this
record is written for requests that specified the -nr
option for qsub and were running at the time of a
system crash.

NQS_TERM_REQUEUE Written for running requests that are checkpointed and
then requeued when NQS shuts down.

NQS_TERM_PREEMPT Written when a request is preempted with the qmgr
preempt request command.

NQS_TERM_HOLD Written for a request that is checkpointed with the
qmgr hold request command. The hold request
command differs from the checkpoint done at daemon
shutdown time because a "hold" keeps the job from
being scheduled until a qmgr release command is
executed.

NQS_TERM_OPRERUN Written when a request is rerun with the qmgr rerun
request command.

At NQS shutdown time, jobs that cannot be
checkpointed and do not have the -nr (no rerun) option

007–3700–009 115

5: Comprehensive System Accounting

for qsub specified have this type of termination record
written. The requests are requeued with this status.

NQS_TERM_RERUN Written when a request is a non-operator rerun request.

Charging for Workload Management Jobs

By default, SBUs are calculated for all workload management jobs regardless of the
workload management termination code of the job. If you do not want to bill
portions of a workload management request, set the appropriate WKMG_TERM_xxxx
variable (termination code) in the /etc/csa.conf file to 0, which sets the SBU for
this portion to 0.0. By default, all portions of a request are billed.

The following table describes the termination codes:

Code Description

WKMG_TERM_EXIT Generated when the request finishes running and is no
longer in a queued state.

WKMG_TERM_REQUEUE Written for a request that is requeued.

WKMG_TERM_HOLD Written for a request that is checkpointed and held.

WKMG_TERM_RERUN Written when a request is rerun.

WKMG_TERM_MIGRATE Written when a request is migrated.

Note: The above descriptions of the termination codes are very generic. Different
workload managers will tailor the meaning of these codes to suit their products. LSF
currently only uses the WKMG_TERM_EXIT termination code.

Tailoring CSA Shell Scripts and Commands

Modify the following variables in /etc/csa.conf if necessary:

Variable Description

ACCT_FS File system on which /var/adm/acct resides. The
default is /var.

MAIL_LIST List of users to whom mail is sent if fatal errors are
detected in the accounting shell scripts. The default is
root and adm.

116 007–3700–009

IRIX® Admin: Resource Administration

WMAIL_LIST List of users to whom mail is sent if warning errors are
detected by the accounting scripts at cleanup time. The
default is root and adm.

MIN_BLKS Minimum number of free blocks needed in
${ACCT_FS} to run csarun or csaperiod. The
default is 2000 free blocks. Block size is 1024 bytes.

Using at to Execute csarun

You can use the at command instead of cron to execute csarun periodically. If your
system is down when csarun is scheduled to run via cron, csarun will not be
executed until the next scheduled time. On the other hand, at jobs execute when the
machine reboots if their scheduled execution time was during a down period.

You can execute csarun by using at in several ways. For example, a separate script
can be written to execute csarun and then resubmit the job at a specified time. Also,
an at invocation of csarun could be placed in a user exit script,
/usr/lib/acct/csa.user, that is executed from the USEREXIT section of csarun.
For more information, see "Setting up User Exits", page 112.

Allowing Non Superusers to Execute CSA

Your site may want to allow users without superuser permissions to run CSA
accounting. CSA can be run by users who are in the group adm and have the
CAP_ACCT_MGT capability. See the capability(4) and capabilities(4) man
pages for more information on the capability mechanism that provides fine grained
control over the privileges of a process.

The following steps describe the process of setting up CSA so it is executed
automatically on a daily and periodic basis by a user without superuser permissions.
In this example, the user without superuser permissions is adm:

1. Ensure that user adm is a member of group adm and has the CAP_ACCT_MGT
capability.

2. Ensure that the following user exits (if they exist) are both readable and
executable by user adm:

• /usr/lib/acct/csa.archive1

• /usr/lib/acct/csa.archive2

• /usr/lib/acct/csa.fef

007–3700–009 117

5: Comprehensive System Accounting

• /usr/lib/acct/csa.user

• /usr/lib/acct/csa.puser

3. Follow steps 1 through 5 of "Setting Up CSA", page 86, to set up system billing
units, record system boot times, and turn off accounting before system shutdown.

4. Include an entry similar to the one shown below in
/var/spool/cron/crontabs/root so that cron automatically runs
dodisk(1m):

0 2 * * 4 if /etc/chkconfig csaacct; then /usr/lib/acct/dodisk -c 2> /var/adm/acct/nite/csa/dk2log; fi

The dodisk command must be executed by root, because no other user has the
correct permissions to read /dev/dsk/*. For more information on the
dodisk(1M) command, see the dodisk(1M) man page.

5. Include entries similar to the ones shown below in
/var/spool/cron/crontabs/adm so that user adm automatically runs daily
accounting by using cron:

0 4 * * 1-6 su adm -C CAP_ACCT_MGT+pi -c "if /etc/chkconfig csaacct;

then /usr/lib/acct/csarun 2> /var/adm/acct/nite/csa/fd2log; fi"

5 * * * 1-6 su adm -C CAP_ACCT_MGT+pi -c "if /etc/chkconfig csaacct;

then /usr/lib/acct/csackpacct; fi"

The csarun command should be executed at a time that allows dodisk to
complete. If dodisk does not complete before csarun executes, disk accounting
information may be missing or incomplete.

6. To run monthly accounting, place an entry similar to the one below in
/var/spool/cron/crontabs/adm (this command generates a monthly report
on all consolidated data files found in /var/adm/acct/sum/csa and then
deletes those data files):

Change the crontab entry for #6 to the following:

0 5 1 * * if /etc/chkconfig csaacct;

then /usr/lib/acct/csaperiod -r 2> /var/adm/acct/nite/csa/pd2log; fi

7. Update the holidays file as described in "Setting Up CSA", page 86.

Note: The cron entries listed above only work when the login shell of user adm is sh
or ksh.

118 007–3700–009

IRIX® Admin: Resource Administration

Using an Alternate Configuration File

By default, the /etc/csa.conf configuration file is used when any of the CSA
commands are executed. You can specify a different file by setting the shell variable
CSACONFIG to another configuration file, and then executing the CSA commands.

For example, you would execute the following commands to use the configuration file
/tmp/myconfig while executing csarun:

CSACONFIG=/tmp/myconfig

/usr/lib/acct/csarun 2> /var/adm/acct/nite/fd2log

CSA Reports
You can use CSA to create accounting reports. The reports can be used to help track
system usage, monitor performance, and charge users for their time on the system.

The CSA daily reports are located in the /var/adm/acct/sum/csa directory;
periodic reports are located in the /var/adm/acct/fiscal/csa directory. To view
the reports, go to the ASCII file rprt.MMDDhhmm in the report directories.

The CSA reports contain more detailed data than the other accounting reports. For
CSA accounting, daily reports are generated by the csarun command. The daily
report includes the following:

• disk usage statistics

• unfinished job information

• command summary data

• consolidated accounting report

• last login information

• daemon usage report

Periodic reports are generated by the csaperiod command. You can also create a
disk usage report using the diskusg command.

CSA Daily Report

This section describes the following reports:

007–3700–009 119

5: Comprehensive System Accounting

• "Consolidated Information Report", page 120

• "Unfinished Job Information Report", page 120

• "Disk Usage Report", page 121

• "Command Summary Report", page 121

• "Last Login Report", page 122

• "Daemon Usage Report", page 122

Consolidated Information Report

The Consolidated Information Report is sorted by user ID and then project ID. The
following usage values are the total amount of resources used by all processes for the
specified user and project during the reporting period.

Heading Description

PROJECT NAME Project associated with this resource usage information

USER ID User identifier

LOGIN NAME Login name for the user identifier

CPU_TIME Total accumulated CPU time in seconds

KCORE * CPU-MIN Total accumulated amount of Kbytes of core (physical)
memory used per minute of CPU time

KVIRT * CPU-MIN Total accumulated amount of Kbytes of virtual memory
used per minute of CPU time

IOWAIT BLOCK Total accumulated block I/O wait time in seconds

IOWAIT RAW Total accumulated raw I/O wait time in seconds

Unfinished Job Information Report

The Unfinished Job Information Report describes jobs which have not terminated and
are recycled into the next accounting period.

Heading Description

JOB ID Job identifier

USERS Login name of the owner of this job

120 007–3700–009

IRIX® Admin: Resource Administration

PROJECT ID Project identifier associated with this job

STARTED Beginning time of this job

Disk Usage Report

The Disk Usage Report describes the amount of disk resource consumption by login
name.

There are no column headings for this report. The first column gives the user
identifier. The second column gives the login name associated with the user identifier.
The third column gives the number of disk blocks used by this user.

Command Summary Report

The Command Summary Report summarizes command usage during this reporting
period. The usage values are the total amount of resources used by all invocations of
the specified command. Commands which were run only once are combined together
in the "***other" entry. Only the first 44 command entries are displayed in the daily
report. The periodic report displays all command entries.

Heading Description

COMMAND NAME Name of the command (program)

NUMBER OF
COMMANDS

Number of times this command was executed

TOTAL
KCORE-MINUTES

Total amount of Kbytes of core (physical) memory used
per minute of CPU time

TOTAL
KVIRT-MINUTES

Total amount of Kbytes of virtual memory used per
minute of CPU time

TOTAL CPU Total amount of CPU time used in minutes

TOTAL REAL Total amount of real (wall clock) time used in minutes

MEAN SIZE KCORE Average amount of core (physical) memory used in
Kbytes

MEAN SIZE KVIRT Average amount of virtual memory used in Kbytes

MEAN CPU Average amount of CPU time used in minutes

HOG FACTOR Total CPU time used divided by the total real time
(elapsed time)

K-CHARS READ Total number of characters read in Kbytes

007–3700–009 121

5: Comprehensive System Accounting

K-CHARS WRITTEN Total number of characters written in Kbytes

BLOCKS READ Total number of blocks read

BLOCKS WRITTEN Total number of blocks written

Last Login Report

The Last Login Report shows the last login date for each login account listed.

There are no column headings for this report. The first column is the last login date.
The second column is the login account name.

Daemon Usage Report

Daemon Usage Report shows reports usage of the NQS or workload management, and
tape daemons. This report has several individual reports depending upon if there was
NQS, workload management, or tape daemon activity within this reporting period.

The Job Type Report gives the NQS and interactive job usage count.

Heading Description

Job Type Type of job (interactive or NQS or workload
management)

Total Job Count Number and percentage of jobs per job type

Tape Jobs Number and percentage of tape jobs associated with
these interactive and NQS or workload management
jobs

The CPU Usage Report gives the NQS or workload management and interactive job
usage related to CPU usage.

Heading Description

Job Type Type of job (interactive or NQS or workload
management)

Total CPU Time Total amount of CPU time used in seconds and
percentage of CPU time

System CPU Time Amount of system CPU time used of the total and the
percentage of the total time which was system CPU
time usage

122 007–3700–009

IRIX® Admin: Resource Administration

User CPU Time Amount of user CPU time used of the total and the
percentage of the total time which was user CPU time
usage

The Tape Usage Report gives the NQS or workload management and interactive job
usage related to tape activity for these jobs.

Heading Description

Job Type Type of job (interactive or NQS or workload
management)

Device Group Tape device group name

Rsv Time Tape reservation time in seconds

Mounts Number of tape mounts

KBytes Read Tape amount read in Kbytes

KBytes Written Tape amount written in Kbytes

User CPU Amount of user CPU time used in seconds

Sys CPU Amount of system CPU time used in seconds

The Batch Queue Report gives the following information for each NQS or workload
management queue.

Queue Name Name of the NQS or workload management queue

Number of Jobs Number of jobs initiated from this queue

CPU Time Amount of system and user CPU times used by jobs
from this queue and percentage of CPU time used

Used Tapes How many jobs from this queue used tapes

Ave Queue Wait Average queue wait time before initiation in seconds

Periodic Report

This section describes two periodic reports as follows:

• "Consolidated accounting report", page 124

• "Command summary report", page 124

007–3700–009 123

5: Comprehensive System Accounting

Consolidated accounting report

The following usage values for the Consolidated accounting report are the total
amount of resources used by all processes for the specified user and project during
the reporting period.

Heading Description

PROJECT NAME Project associated with this resource usage information

USER ID User identifier

LOGIN NAME Login name for the user identifier

CPU_TIME Total accumulated CPU time in seconds

KCORE * CPU-MIN Total accumulated amount of Kbytes of core (physical)
memory used per minute of CPU time of processes

KVIRT * CPU-MIN Total accumulated amount of Kbytes of virtual memory
used per minute of CPU time

IOWAIT BLOCK Total accumulated block I/O wait time in seconds

IOWAIT RAW Total accumulated raw I/O wait time in seconds

DISK BLOCKS Total number of disk blocks used

DISK SAMPLES Number of times disk accounting was run to obtain the
disk blocks used value

FEE Total fees charged to this user from csachargefee(1M)

SBUs System billing units charged to this user and project

Command summary report

The following information summarizes command usage during the defined reporting
period. The usage values are the total amount of resources used by all invocations of
the specified command. Unlike the daily command summary report, the periodic
command summary report displays all command entries. Commands executed only
once are not combined together into an "***other" entry but are listed individually in
the periodic command summary report.

Heading Description

COMMAND NAME Name of the command (program)

NUMBER OF
COMMANDS

Number of times this command was executed

124 007–3700–009

IRIX® Admin: Resource Administration

TOTAL
KCORE-MINUTES

Total amount of Kbytes of core (physical) memory used
per minute of CPU time

TOTAL
KVIRT-MINUTES

Total amount of Kbytes of virtual memory used per
minute of CPU time

TOTAL CPU Total amount of CPU time used in minutes

TOTAL REAL Total amount of real (wall clock) time used in minutes

MEAN SIZE KCORE Average amount of core (physical) memory used in
Kbytes

MEAN SIZE KVIRT Average amount of virtual memory used in Kbytes

MEAN CPU Average amount of CPU time used in minutes

HOG FACTOR Total CPU time used divided by the total real time
(elapsed time)

K-CHARS READ Total number of characters read in Kbytes

K-CHARS WRITTEN Total number of characters written in Kbytes

BLOCKS READ Total number of blocks read

BLOCKS WRITTEN Total number of blocks written

CSA and Existing IRIX Software
This section describes some changes and additions to existing documentation for the
IRIX operating system.

acct(1M) Man Page

The acctdisk command contains a -c option that reads standard input and
converts records to cacct format, which it writes to standard output.

acctsh(1M) Man Page

The lastlogin(1M) command contains a -c option with an infile argument that
specifies that lastlogin should process infile, which is a consolidated accounting file
in cacct format.

The dodisk command information is now contained in a new dodisk(1M) man page.

007–3700–009 125

5: Comprehensive System Accounting

dodisk(1M) Man Page

The IRIX 6.5.8 release introduced a new dodisk(1M) man page. The dodisk
command information was previously in the acctsh(1M) man page.

explain(1) Man Page

CSA uses the message catalog system. There are two files that CSA uses for the
message catalog:

• /usr/lib/locale/C/LC_MESSAGES/acct.cat

• /usr/lib/locale/C/LC_MESSAGES/acct.exp

The group code acct for the CSA Software Product has been added to the
explain(1) page in the 6.5.8f release of the IRIX operating system.

capabilities(4) Man Page

Basic accounting and CSA require the same capability. CAP_ACCT_MGT is the
privilege required to use accounting setup system calls, acct(2). The same privilege
is required to use the new acctctl(3c) call. acctctl(3c) has been added to the
capabilities(4) man page in the 6.5.8f release of the IRIX operating system.

Migrating Accounting Data
No changes have been made to basic accounting or extended accounting records.
There is no migration of accounting data between these two IRIX accounting methods
and CSA. That is, basic accounting commands should continue to be used with basic
accounting, and third party packages should continue to be used with extended
accounting data.

CSA accounting commands can only be used with CSA accounting data. CSA
commands cannot process basic accounting or extended accounting records. Basic
accounting commands cannot process CSA generated accounting data.

126 007–3700–009

IRIX® Admin: Resource Administration

CSA Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type man commandname.

User-Level Man Pages
The following user-level man pages are provided with CSA software:

User-level man page Description

csacom(1) Searches and prints the CSA process accounting files.

ja(1) Starts and stops user job accounting information.

Administrator Man Pages
The following administrator man pages are provided with CSA software:

Administrator man page Description

csaaddc(1m) Combines cacct records.

csabuild(1m) Organizes accounting records into
job records.

csachargefee(1m) Charges a fee to a user.

csackpacct(1m) Checks the size of the CSA process
accounting file.

csacms(1m) Summarizes command usage from
per-process accounting records.

csacon(1m) Condenses records from the
sorted pacct file.

csacrep(1m) Reports on consolidated accounting
data.

csadrep(1m) Reports daemon usage.

csaedit(1m) Displays and edits the accounting
information.

007–3700–009 127

5: Comprehensive System Accounting

csagetconfig(1m) Searches the accounting
configuration file for the specified
argument.

csajrep(1m) Prints a job report from the sorted
pacct file.

csarecy(1m) Recycles unfinished jobs into the
next accounting run.

csaswitch(1m) Checks the status of, enables or
disables the different types of CSA,
and switches accounting files for
maintainability.

csaverify(1m) Verifies that the accounting records
are valid.

128 007–3700–009

Chapter 6

IRIX Memory Usage

This section describes commands that provide information about physical and virtual
memory usage on the IRIX operating system.

This chapter contains the following sections:

• "Memory Usage Commands", page 129

• "Shared Memory", page 131

• "Physical Memory", page 132

• "Virtual Memory", page 132

Memory Usage Commands
Most of the memory usage commands provide a snapshot view of the current
memory usage either on a per process basis or a per job basis.

Examples of per process commands are as follows:

• gmemusage(1)

• pmem(1)

• top(1)

• ps(1)

For more information on these commands, see the appropriate man page.

Per job commands include the following:

• jstat(1)

The Comprehensive System Accounting (CSA) commands, such as, csacom(1) and
ja(1), provide historical memory usage information after a process or job terminates.

The jstat(1) command reports the current usage and highwater memory values of
all concurrently running processes within a job.

007–3700–009 129

6: IRIX Memory Usage

If the -l option is specified, the jstat command will print out the current usage,
high usage, current limit, and maximum limit information for the current job. (Note
that vmemory is virtual memory and ressetsize is resident set size).

The following example shows the output of the jstat -l option:

% jstat -l

JID OWNER COMMAND

------------------ -------------- --------------
0x106f user1 -tcsh

LIMIT NAME USAGE HIGH USAGE CURRENT LIMIT MAX LIMIT
------------------ -------------- -------------- -------------- --------------

cputime 0 0 unlimited unlimited

datasize 272k 544k unlimited unlimited

files 8 32 400 5000

vmemory 4224k 14112k unlimited unlimited
ressetsize 3520k 6384k unlimited unlimited

threads 1 1 unlimited unlimited

processes 2 7 1024 1024

physmem 3520k 6384k unlimited unlimited

The -s option of the ja(1) command reports the highwater memory value of the
single largest process memory within a job.

It is not a cumulative highwater mark of all processes within the job since this value
is gathered from the accounting records of terminated processes.

The following example shows the output of the ja -s option:

% ja -s

Job CSA Accounting - Summary Report

====================================

Job Accounting File Name : /tmp/ja.username

Operating System : IRIX64 snow 6.5 10120733 IP27
User Name (ID) : username (10320)

Group Name (ID) : resmgmt (16061)

130 007–3700–009

IRIX® Admin: Resource Administration

Project Name (ID) : CSA(40)
Array Session Handle : 0x000000000000034b

Job ID : 0x310

Report Starts : 01/23/00 18:13:38

Report Ends : 01/23/00 18:17:05

Elapsed Time : 207 Seconds
User CPU Time : 0.9340 Seconds

System CPU Time : 0.0643 Seconds

Run Queue Wait Time : 0.6463 Seconds

Block I/O Wait Time : 0.1888 Seconds

Raw I/O Wait Time : 0.1323 Seconds

CPU Time Core Memory Integral : 0.4305 Mbyte-seconds
CPU Time Virtual Memory Integral : 4.3298 Mbyte-seconds

Maximum Core Memory Used : 0.1094 Mbytes

Maximum Virtual Memory Used : 38.0000 Mbytes

Characters Read : 0.0603 Mbytes

Characters Written : 0.0023 Mbytes
Blocks Read : 7

Blocks Written : 0

Logical I/O Read Requests : 35

Logical I/O Write Requests : 42

Number of Commands : 7

System Billing Units : 0.0000

The CSA memory integrals report the amount of memory used over CPU time,
measured at clock intervals.

CSA, extended accounting, and the jstat(1) command all access the same kernel
counters for per process memory size. Additional kernel counters accumulate these
per process memory size values into job memory size values as reported by the
jstat command. CSA does its accumulation into job values outside of the kernel.

Shared Memory
Both job limits and CSA report memory usage values for all processes in a job.
Processes in the job can access shared memory segments. Those segments can be
shared between processes in the job or with processes outside the job, depending on
the type of shared memory segment involved. When determining the memory usage
for the job as a whole, shared memory segments are counted once for each process
that accesses the segment. This can result in a usage value that is much larger than

007–3700–009 131

6: IRIX Memory Usage

expected. This is particularly true for parallel applications where a large number of
processes share one or more memory segments.

Shared memory between processes is not prorated by CSA or the jstat command.
The shared memory pages, both physical and virtual, are counted in the memory size
for each process accessing the pages.

Physical Memory
The kernel calculates the physical highwater memory value, current usage value, and
memory integral value at periodic intervals. These values are the resident set size for
the process or job, but do not include pages associated with mapped devices (for
example, a graphics device).

Virtual Memory
Unlike physical memory usage values, the kernel keeps virtual memory values
continuously current in kernel counters. The kernel increments the CSA highwater
value when the process virtual memory size increases. The jstat current usage and
highwater value are set, as applicable, at periodic intervals in the kernel. The kernel
also calculates the CSA virtual memory integral at periodic intervals.

These values include the virtual memory size (text, data, stack, shared memory,
mapped files, shared libraries) for the process or job, but do not include pages
associated with mapped devices (for example, a graphics device).

132 007–3700–009

Appendix A

Programming Guide for Resource Management

This appendix contains information for job limits, the User Limits DataBase (ULDB),
and cpusets system programming.

This appendix contains the following sections:

• "Application Programming Interface for Job Limits", page 133

• "Application Programming Interface for the ULDB", page 136

• "Application Programming Interface for the Cpuset System", page 140

Application Programming Interface for Job Limits
This section describes the data types and function calls used by the library interface
to the application programming interface (API) functions.

Data Types

This section describes the specific data types that are used in the library interface to
the API functions.

All limit values are specified by the rlimit structure defined for process limits in the
/usr/include/sys/resource.h system include file:

typedef unsigned long rlim_t;

struct rlimit_t {

rlim_t rlim_cur;

rlim_t rlim_max;
};

The job ID is defined as a signed 64 bit value. It is treated opaquely by applications.
The definition of jid_t resides in the sys/types.h system include file.

typedef int64_t jid_t;

007–3700–009 133

A: Programming Guide for Resource Management

Function Calls

The API for job limits is defined by a set of functions defined in the libc.a library.
Each of the functions invokes the syssgi(2) system interface to perform the
necessary operations. The function prototypes reside in the
/usr/include/sys/resource.h system include file.

getjlimit and setjlimit

The getjlimit function retrieves limits on the consumption of a variety of system
resources by a job and the setjlimit function sets these limits:

#include <sys/resource.h>

int getjlimit(jid_t jid, int resource, struct rlimit *rlp)
int setjlimit(jid_t jid, int resource, struct rlimit *rlp)

For additional information, see the getjlimit(2) man page.

getjusage

The getjusage function retrieves the resource usage values for the specified job ID:

#include <sys/resource.h>

int getjusage(jid_t jid, int resource, struct jobrusage *up)

If the jid parameter is zero, usage values for the current job will be returned. If jid is
non-zero, it represents the job ID of the job for which usages values are retrieved. The
resource parameter specifies the resource for which the usage values are returned.
Allowable values are taken from the JLIMIT_xxx macros found in the
sys/resource.h file. For example, the JLIMIT_CPU macro is for CPU time. The
up parameter points to a rusage structure in the user program where the usage
values will be returned.

For additional information, see the getjusage(2) man page.

getjid

The getjid function returns the job ID associated with the current process:

#include <sys/resource.h>

jid_t getjid(void);

For additional information, see the getjid(2) man page.

134 007–3700–009

IRIX® Admin: Resource Administration

killjob

The killjob function sends a signal to all processes of the specified job ID:

#include <sys/resource.h>
int killjob(jid_t jid, int signal)

For additional information, see the killjob(2) man page.

jlimit_startjob

The jlimit_startjob function creates a new job and sets the job limits to the limit
values in the ULDB.

The jlimit_startjob function follows:

#include <sys/resource.h>

jid_t jlimit_startjob(char *username, uid_t uid, char *domainname);

For additional information, see the jlimit_startjob(2) man page.

makenewjob

The makenewjob function creates a new job container:

#include <sys/resource.h>

jid_t makenewjob(uid_t user, jid_t rjid)

For additional information, see the makenewjob(2) man page.

setwaitjobpid

The setwaitjobpid function sets a job to wait for a specified pid to call the
waitjob function.

The setwaitjobpid function follows:

#include <sys/resource.h>

int setwaitjobpid(jid_t rjid, pid_t wpid)

For additional information, see the setwaitjobpid(2) man page.

007–3700–009 135

A: Programming Guide for Resource Management

waitjob

The waitjob function obtains information about a terminated job that has been set
with setwaitjobpid argument to wait.

The waitjob function follows:

#include <sys/resource.h>

jid_t waitjob(job_info_t *jobinfo)

For additional information, see the waitjob(2) man page.

Error Messages

For error message information, see the appropriate man pages and "Error Messages",
page 28.

Application Programming Interface for the ULDB
This section describes the data types and function calls used by the library interface
to the ULDB.

Data Types

This section defines the specific data types that are used by the library interface to the
user limits information. All ULDB definitions are in the /usr/include/uldb.h
include file.

Binary limit values are held as unsigned 64 bit values as follows:

typedef rlim_t uldb_limit_t;

uldb_namelist_t

The uldb_namelist_t data type is used to contain name lists such as limit names,
domain names, and so on. The namelist structure contains a count of the items and

136 007–3700–009

IRIX® Admin: Resource Administration

a pointer to a list of pointers to the names. The uldb_namelist_t data type is as
follows:

typedef struct uldb_namelist_s {

int uldb_nitems, # number of names in the list

char **uldb_names # list of name pointers

} uldb_namelist_t;

uldb_limitlist_t

The uldb_limitlist_t data type is used to contain a list of binary limit values.
The limit list structure contains a count of the items and a pointer to an array of limit
values. The uldb_limitlist_t data type follows:

typedef struct uldb_limitlist_s {

int uldb_nitems, # number of limit values in the list

uldb_limit_t *uldb_limits # list of limit pointers

} uldb_limitlist_t;

Function Calls

This section defines the function calls that are used by the library interface to the user
limits information.

The functions that retrieve limit values are as follows:

• uldb_get_limit_values

• uldb_get_value_units

• uldb_get_limit_names

• uldb_get_domain_names

uldb_get_limit_values

The uldb_get_limit_values function retrieves a set of limit values for a domain
or user. If there is no explicit entry for the specified user, the domain defaults are
returned. The set of limits requested is provided using the uldb_namelist_t
structure. The returned limit list pointer references a new uldb_limitlist_t
structure created by a call to the malloc routine that the application is responsible
for freeing when the structure is no longer needed. The order of limit values in the

007–3700–009 137

A: Programming Guide for Resource Management

returned uldb_limitlist_t structure corresponds to the order of limit names in
the input uldb_namelist_t structure. If the user name is NULL, the list of limits
for the domain are retrieved instead of the user limits.

An example of uldb_get_limit_values follows:

#include include/uldb.h

uldb_limitlist_t * # returns pointer to limit list or NULL if error

uldb_get_limit_values (#

char *domain_name, # pointer to domain name

char *user_name, # name of user
uldb_namelist_t *limits); # namelist containing limit names

uldb_get_value_units

The uldb_get_value_units function returns a limit list structure containing the
modifier values or units for the specified list of limits. The accepted modifier values
are defined in the uldb.h header file. The returned list of names is provided by the
uldb_namelist_t structure created by a call to the malloc function. The
application is responsible for freeing this structure when it is no longer needed.

An example of uldb_get_value_units follows:

#include <include/uldb.h>

uldb_limitlist_t * # returns pointer to limit list or NULL if error

uldb_get_value_units (#

char *domain_name, # pointer to domain name

char *user_name, # name of user

uldb_namelist_t *limits); # namelist containing limit names

uldb_get_limit_names

The uldb_get_limit_names function retrieves the complete list of limit names
defined for a domain. The returned list of names is provided by the
uldb_namelist_t structure created by a call to the malloc function. The
application is responsible for freeing this structure when it is no longer needed.

An example of uldb_get_limit_names follows:

#include <include/uldb.h>

uldb_namelist_t * # returns pointer to name list or NULL if error
uldb_get_limit_names (

char *domain_name); # pointer to domain name

138 007–3700–009

IRIX® Admin: Resource Administration

uldb_get_domain_names

The uldb_get_domain_names function retrieves the complete list of domain names
defined in the ULDB. The returned list of names is provided the uldb_namelist_t
structure created by a call to the malloc function. The application is responsible for
freeing this structure when it is no longer needed.

#include <include/uldb.h>

uldb_namelist_t * # returns pointer to name list or NULL if error

uldb_get_domain_names (

void);

The functions that manage memory are as follows:

• uldb_free_namelist

• uldb_free_limit_list

uldb_free_namelist

The uldb_free_namelist function deletes a namelist structure and all its
components.

An example of uldb_free_namelist follows:

#include <include/uldb.h>

void # returns 0 if okay, -1 on error

uldb_free_namelist (#

uldb_namelist_t *names); # pointer to namelist to be freed

uldb_free_limit_list

The uldb_free_limit_list function deletes a limitlist structure and all its
components.

An example of uldb_free_limit_list follows:

#include <include/uldb.h>

void # returns 0 if okay, -1 on error

uldb_free_limit_list (#

uldb_limit_list_t *limits); # pointer to limit list to be freed

007–3700–009 139

A: Programming Guide for Resource Management

Error Messages

For error message information, see the uldb_get_limit_values(3c) and
jlimit_startjob(3c) man pages or "Error Messages", page 28.

Application Programming Interface for the Cpuset System
The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain information about the
properties associated with existing cpusets, and to attach a process and all of its
children to a cpuset.

The cpuset library requires that a permission file be defined for a cpuset that is
created. The permissions file may be an empty file, since it is only the file permissions
for the file that define access to the cpuset. When permissions need to be checked, the
current permissions of the file are used. It is therefore possible to change access to
particular cpuset without having to tear it down and recreate it, simply by changing
the access permissions. Read access allows a user to retrieve information about a
cpuset while execute permission allows the user to attach a process to the cpuset.

The cpuset library is provided as a N32 Dynamic Shared Object (DSO) library. The
library file is libcpuset.so, and it is normally located in the directory /lib32.
Users of the library must include the cpuset.h header file which is located in
/usr/include. The function interfaces provided in the cpuset library are declared as
optional interfaces to allow for backwards compatibility as new interfaces are added
to the library.

Note: The Cpuset library is only available on IRIX 6.5.8 and later releases.

It is possible to compile and run a program that uses this DSO and its interfaces if
they are available, but continues to execute if they are missing. To do this, a
replacement library for libcpuset.so must be made available. For an example of
how to create a replacement library, see the cpuset(5) man page. For more
information on DSO, see the DSO(5) man page.

The function interfaces within the cpuset library include:

Function interface Description

cpusetCreate(3x) Creates a cpuset

140 007–3700–009

IRIX® Admin: Resource Administration

cpusetAttach(3x) Attaches the current process to a
cpuset

cpusetAttachPID(3x) Attaches a specific process to a
cpuset

cpusetDetachAll(3x) Detaches all threads from a cpuset

cpusetDetachPID(3x) Detaches a specific process from a
cpuset

cpusetDestroy(3x) Destroys a cpuset

cpusetGetCPUCount(3x) Obtains the number of CPUs
configured on the system

cpusetGetCPUList(3x) Gets the list of all CPUs assigned to
a cpuset

cpusetGetName(3x) Gets the name of the cpuset to
which a process is attached

cpusetGetNameList(3x) Gets a list of names for all defined
cpusets

cpusetGetPIDList(3x) Gets a list of all PIDs attached to a
cpuset

cpusetGetProperties(3x) Retrieve various properties
associated with a cpuset

cpusetAllocQueueDef(3x) Allocates a cpuset_QueueDef_t
structure

cpusetFreeQueueDef(3x) Releases memory used by a
cpuset_QueueDef_t structure

cpusetFreeCPUList(3x) Releases memory used by a
cpuset_CPUList_t structure

cpusetFreeNameList(3x) Releases memory used by a
cpuset_NameList_t structure

cpusetFreePIDList(3x) Releases memory used by a
cpuset_PIDList_t structure

007–3700–009 141

A: Programming Guide for Resource Management

cpusetFreeProperties(3x) Release memory used by a
cpuset_Properties_t structure

Management functions

This section contains the man pages for the following Cpuset System library functions:

cpusetCreate(3x) Creates a cpuset

cpusetAttach(3x) Attaches the current process to a cpuset

cpusetAttachPID(3x) Attaches a specific process to a cpuset

cpusetDetachPID(3x) Detaches a specific process from a cpuset

cpusetDetachAll(3x) Detaches all threads from a cpuset

cpusetDestroy(3x) Destroys a cpuset

142 007–3700–009

IRIX® Admin: Resource Administration

cpusetCreate(3x)

NAME

cpusetCreate - creates a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetCreate(char *qname, cpuset_QueueDef_t *qdef);

DESCRIPTION

The cpusetCreate function is used to create a cpuset queue. Only processes
running root user ID are allowed to create cpuset queues.

The qname argument is the name that will be assigned to the new cpuset. The name
of the cpuset must be a three to eight character string. Queue names having one or
two characters are reserved for use by the IRIX operating system.

The qdef argument is a pointer to a cpuset_QueueDef_t structure (defined in the
cpuset.h include file) that defines the attributes of the queue to be created. The
memory for cpuset_QueueDef_t is allocated using cpusetAllocQueueDef(3x)
and it is released using cpusetFreeQueueDef(3x). The cpuset_QueueDef_t
structure is defined as follows:

typedef struct {

int flags;

char *permfile;

cpuset_CPUList_t *cpu;

} cpuset_QueueDef_t;

The flags member is used to specify various control options for the cpuset queue. It
is formed by applying the bitwise Exclusive-OR operator to zero or more of the
following values:

CPUSET_CPU_EXCLUSIVE Defines a cpuset to be restricted.
Only threads attached to the cpuset
queue (descendents of an attached
thread inherit the attachment) may
execute on the CPUs contained in
the cpuset.

CPUSET_MEMORY_LOCAL Threads assigned to the cpuset will
attempt to assign memory only

007–3700–009 143

A: Programming Guide for Resource Management

from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. No restrictions
are made on memory assignment to
threads running outside the cpuset.

CPUSET_MEMORY_EXCLUSIVE Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. Threads not
assigned to the cpuset will not use
memory from within the cpuset
unless no memory outside the
cpuset is available. If, at the time a
cpuset is created, memory is
already assigned to threads that are
already running, no attempt will be
made to explicitly move this
memory. If page migration is
enabled, the pages will be migrated
when the system detects that most
references to the pages are nonlocal.

CPUSET_MEMORY_KERNEL_AVOID The kernel should attempt to avoid
allocating memory from nodes
contained in this cpuset. If kernel
memory requests cannot be satisfied
from outside this cpuset, this option
will be ignored and allocations will
occur from within the cpuset. (This
avoidance currently extends only to
keeping buffer cache away from the
protected nodes.)

CPUSET_MEMORY_MANDATORY The kernel will limit all memory
allocations to nodes that are
contained in this cpuset. If memory

144 007–3700–009

IRIX® Admin: Resource Administration

requests cannot be satisfied, the
allocating process will sleep until
memory is available. The process
will be killed if no more memory
can be allocated. See policies below.

CPUSET_POLICY_PAGE Requires MEMORY_MANDATORY.
This is the default policy if no
policy is specified. This policy will
cause the kernel to page user pages
to the swap file (see swap(1M)) to
free physical memory on the nodes
contained in this cpuset. If swap
space is exhausted, the process will
be killed.

CPUSET_POLICY_KIL Requires MEMORY_MANDATORY. The
kernel will attempt to free as much
space as possible from kernel
heaps, but will not page user pages
to the swap file. If all physical
memory on the nodes contained in
this cpuset are exhausted, the
process will be killed.

The permfile member is the name of the file that defines the access permissions for
the cpuset queue. The file permissions of filename referenced by permfile define
access to the cpuset. Every time permissions need to be checked, the current
permissions of this file are used. Thus, it is possible to change the access to a
particular cpuset without having to tear it down and recreate it, simply by changing
the access permissions. Read access to the permfile allows a user to retrieve
information about a cpuset, while execute permission allows the user to attach a
process to the cpuset.

The cpu member is a pointer to a cpuset_CPUList_t structure. The memory for
the cpuset_CPUList_t structure is allocated and released when the
cpuset_QueueDef_t structure is allocated and released (see
cpusetAllocQueueDef(3x)). The cpuset_CPUList_t structure contains the list of
CPUs assigned to the cpuset. The cpuset_CPUList_t structure (defined in the
cpuset.h include file) is defined as follows:

typedef struct {

int count;

007–3700–009 145

A: Programming Guide for Resource Management

int *list;
} cpuset_CPUList_t;

The count member defines the number of CPUs contained in the list.

The list member is pointer to the list (an allocated array) of the CPU IDs. The
memory for the list array is allocated and released when the cpuset_CPUList_t
structure is allocated and released.

EXAMPLES

This example creates a cpuset queue that has access controlled by the file
/usr/tmp/mypermfile; contains CPU IDs 4, 8, and 12; and is CPU exclusive and
memory exclusive:

cpuset_QueueDef_t *qdef;

char *qname = "myqueue";

/* Alloc queue def for 3 CPU IDs */

qdef = cpusetAllocQueueDef(3);

if (!qdef) {

perror("cpusetAllocQueueDef");
exit(1);

}

/* Define attributes of the cpuset */

qdef->flags = CPUSET_CPU_EXCLUSIVE

| CPUSET_MEMORY_EXCLUSIVE;
qdef->permfile = "/usr/tmp/mypermfile"

qdef->cpu->count = 3;

qdef->cpu->list[0] = 4;

qdef->cpu->list[1] = 8;

qdef->cpu->list[2] = 12;

/* Request that the cpuset be created */

if (!cpusetCreate(qname, qdef)) {

perror("cpusetCreate");

exit(1);
}

cpusetFreeQueueDef(qdef);

146 007–3700–009

IRIX® Admin: Resource Administration

NOTES

The cpusetCreate function is found in the libcpuset.so library and is loaded if
the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), cpusetFreeQueueDef(3x), and
cpuset(5).

DIAGNOSTICS

If successful, the cpusetCreate function returns a value of 1. If the cpusetCreate
function fails, it returns the value 0 and errno is set to indicate the error. The possible
values for errno include those values set by fopen(3S), sysmp(2), and the following:

ENODEV Request for CPU IDs that do not exist on the system.

EPERM Request for CPU 0 as part of an exclusive cpuset is not
permitted.

007–3700–009 147

A: Programming Guide for Resource Management

cpusetAttach(3x)

NAME

cpusetAttach - attaches the current process to a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetDetachAll(char *qname);

DESCRIPTION

The cpusetAttach function is used to attach the current process to the cpuset
identified by qname. Every cpuset queue has a file that defines access permissions to
the queue. The execute permissions for that file will determine if a process owned by
a specific user can attach a process to the cpuset queue.

The qname argument is the name of the cpuset to which the current process should
be attached.

EXAMPLES

This example attaches the current process to a cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Attach to cpuset, if error - print error & exit */
if (!cpusetAttach(qname)) {

perror("cpusetAttach");

exit(1);

}

NOTES

The cpusetAttach function is found in the libcpuset.so library and is loaded if
the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetCreate(3x), and cpuset(5).

148 007–3700–009

IRIX® Admin: Resource Administration

DIAGNOSTICS

If successful, the cpusetAttach function returns a value of 1. If the cpusetAttach
function fails, it returns the value 0 and errno is set to indicate the error. The
possible values for errno are the same as those used by sysmp(2).

007–3700–009 149

A: Programming Guide for Resource Management

cpusetAttachPID(3x)

NAME

cpusetAttachPID - attach a specific process to a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetAttachPID(qname, pid);

char *qname;

pid_t pid;

DESCRIPTION

The cpusetAttachPID function is used to attach a specific process identified by its
PID to the cpuset identified by qname. Every cpuset queue has a file that defines
access permissions to the queue. The execute permissions for that file will determine
if a process owned by a specific user can attach a process to the cpuset queue.

The qname argument is the name of the cpuset to which the specified process should
be attached.

EXAMPLES

This example attaches the current process to a cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Attach to cpuset, if error - print error & exit */
if (!cpusetAttachPID(qname, pid)) {

perror("cpusetAttachPID");

exit(1); }

NOTES

cpusetAttachPID is found in the library libcpuset.so, and will be loaded if the
option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1) cpusetCreate(3x)cpusetDetachPID(3x), and cpuset(5).

150 007–3700–009

IRIX® Admin: Resource Administration

DIAGNOSTICS

If successful, cpusetAttachPID returns a 1. If cpusetAttachPID fails, it returns
the value 0 and errno is set to indicate the error. The possible values for errno are
the same as those used by sysmp(2).

007–3700–009 151

A: Programming Guide for Resource Management

cpusetDetachPID(3x)

NAME

cpusetDetachPID - detach a specific process to a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetDetachPID(qname, pid);

char *qname;

pid_t pid;

DESCRIPTION

The cpusetDetachPID function is used to detach a specific process identified by its
PID to the cpuset identified by qname. Every cpuset queue has a file that defines
access permissions to the queue. The execute permissions for that file will determine
if a process owned by a specific user can attach a process to the cpuset queue.

The qname argument is the name of the cpuset to which the specified process should
be detached.

EXAMPLES

This example detaches the current process to a cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Detach from cpuset, if error - print error & exit */
if (!cpusetDetachPID(qname, pid)) {

perror("cpusetDetachPID");

exit(1); }

NOTES

cpusetDetachPID is found in the library libcpuset.so, and will be loaded if the
option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1) cpusetCreate(3x)cpusetAttachPID(3x), and cpuset(5).

152 007–3700–009

IRIX® Admin: Resource Administration

DIAGNOSTICS

If successful, cpusetDetachPID returns a 1. If cpusetAttachPID fails, it returns
the value 0 and errno is set to indicate the error. The possible values for errno are
the same as those used by sysmp(2).

007–3700–009 153

A: Programming Guide for Resource Management

cpusetDetachAll(3x)

NAME

cpusetDetachAll - detaches all threads from a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetDetachAll(char *qname);

DESCRIPTION

The cpusetDetachAll function is used to detach all threads currently attached to
the specified cpuset. Only a process running with root user ID can successfully
execute cpusetDetachAll.

The qname argument is the name of the cpuset that the operation will be performed
upon.

EXAMPLES

This example detaches the current process to a cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Attach to cpuset, if error - print error & exit */

if (!cpusetDetachAll(qname)) {
perror("cpusetDetachAll");

exit(1);

}

NOTES

The cpusetDetachAll function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetAttach(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetDetachAll function returns a value of 1. If the
cpusetDetachAll function fails, it returns the value 0 and errno is set to indicate
the error. The possible values for errno are the same as those used by sysmp(2).

154 007–3700–009

IRIX® Admin: Resource Administration

cpusetDestroy(3x)

NAME

cpusetDestroy - destroys a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetDestroy(char *qname);

DESCRIPTION

The cpusetDestroy function is used to destroy the specified cpuset. The qname
argument is the name of the cpuset that will be destroyed. Only processes running
with root user ID are allowed to destroy cpuset queues. A cpuset can only be
destroyed if there are no threads currently attached to it.

EXAMPLES

This example destroys the cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Destroy, if error - print error & exit */

if (!cpusetDestroy(qname)) {
perror("cpusetDestroy");

exit(1);

}

NOTES

The cpusetDestroy function is found in the libcpuset.so library and is loaded
if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetCreate(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetDestroy function returns a value of 1. If the
cpusetDestroy function fails, it returns the value 0 and errno is set to indicate the
error. The possible values for errno are the same as those used by sysmp(2).

007–3700–009 155

A: Programming Guide for Resource Management

Retrieval Functions

This section contains the man pages for the following Cpuset System library retrieval
functions:

cpusetGetCPUCount(3x) Obtains the number of CPUs configured on the system

cpusetGetCPUList(3x) Gets the list of all CPUs assigned to a cpuset

cpusetGetName(3x) Gets the name of the cpuset to which a process is
attached

cpusetGetNameList(3x) Gets a list of names for all defined cpusets

cpusetGetPIDList(3x) Gets a list of all PIDs attached to a cpuset

cpusetGetProperties(3x) Retrieve various properties associated with a cpuset

cpusetAllocQueueDef(3x) Allocates a cpuset_QueueDef_t structure

156 007–3700–009

IRIX® Admin: Resource Administration

cpusetGetCPUCount(3x)

NAME

cpusetGetCPUCount - obtains the number of CPUs configured on the system

SYNOPSIS

#include <cpuset.h>

int cpusetGetCPUCount(void);

DESCRIPTION

The cpusetGetCPUCount function returns the number of CPUs that are configured
on the system.

EXAMPLES

This example obtains the number of CPUs configured on the system and then prints
out the result.

int ncpus;

if (!(ncpus = cpusetGetCPUCount())) {

perror("cpusetGetCPUCount");

exit(1);
}

printf("The systems is configured for %d CPUs\n",

ncpus);

NOTES

The cpusetGetCPUCount function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1) and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetCPUCount function returns a value greater than or equal
to the value of 1. If the cpusetGetCPUCount function fails, it returns the value 0
and errno is set to indicate the error. The possible values for errno are the same as
those used by sysmp(2) and the following:

ERANGE Number of CPUs configured on the system is not a
value greater than or equal to 1.

007–3700–009 157

A: Programming Guide for Resource Management

cpusetGetCPUList(3x)

NAME

cpusetGetCPUList - gets the list of all CPUs assigned to a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_CPUList_t *cpusetGetCPUList(char *qname);

DESCRIPTION

The cpusetGetCPUList function is used to obtain the list of the CPUs assigned to
the specified cpuset. Only processes running with a user ID or group ID that has read
access permissions on the permissions file can successfully execute this function. The
qname argument is the name of the specified cpuset.

The function returns a pointer to a structure of type cpuset_CPUList_t (defined in
the cpuset.h include file). The function cpusetGetCPUList allocates the memory
for the structure and the user is responsible for freeing the memory using the
cpusetFreeCPUList(3x) function. The cpuset_CPUList_t structure looks similar
to this:

typedef struct {

int count;

pid_t *list;

} cpuset_CPUList_t;

The count member is the number of CPU IDs in the list. The list member
references the memory array that holds the list of CPU IDs. The memory for list is
allocated when the cpuset_CPUList_t structure is allocated and it is released when
the cpuset_CPUList_t structure is released.

EXAMPLES

This example obtains the list of CPUs assigned to the cpuset mpi_set and prints out
the CPU ID values.

char *qname = "mpi_set";

cpuset_CPUList_t *cpus;

/* Get the list of CPUs else print error & exit */
if (!(cpus = cpusetGetCPUList(qname))) {

perror("cpusetGetCPUList");

158 007–3700–009

IRIX® Admin: Resource Administration

exit(1);
}

if (cpus->count == 0) {

printf("CPUSET[%s] has 0 assigned CPUs\n",

qname);

} else {
int i;

printf("CPUSET[%s] assigned CPUs:\n",

qname);

NOTES

The cpusetGetCPUList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetFreeCPUList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetCPUList function returns a pointer to a
cpuset_CPUList_t structure. If the cpusetGetCPUList function fails, it returns
NULL and errno is set to indicate the error. The possible values for errno include
those values as set by sysmp(2) and sbrk(2).

007–3700–009 159

A: Programming Guide for Resource Management

cpusetGetName(3x)

NAME

cpusetGetName - gets the name of the cpuset to which a process is attached

SYNOPSIS

#include <cpuset.h>

cpuset_NameList_t *cpusetGetName(pid_t pid);

DESCRIPTION

The cpusetGetName function is used to obtain the name of the cpuset to which the
specified process has been attached. The pid argument specifies the process ID.
Currently, the only valid value for pid is 0, which returns the name of the cpuset to
which the current process is attached.

The function returns a pointer to a structure of type cpuset_NameList_t (defined
in the cpuset.h include file). The cpusetGetName function allocates the memory
for the structure and all of its associated data. The user is responsible for freeing the
memory using the cpusetFreeNameList(3x) function. The cpuset_NameList_t
structure is defined as follows:

typedef struct {

int count;

char **list;

int *status;

} cpuset_NameList_t;

The count member is the number of cpuset names in the list. In the case of
cpusetGetName function, this member should only contain the values of 0 and 1.

The list member references the list of names.

The status member is a list of status flags that indicate the status of the
corresponding cpuset name in list. The following flag values may be used:

CPUSET_QUEUE_NAME Indicates that the corresponding name in list is the
name of a cpuset queue

160 007–3700–009

IRIX® Admin: Resource Administration

CPUSET_CPU_NAME Indicates that the corresponding name in list is the
CPU ID for a restricted CPU

The memory for list and status is allocated when the cpuset_NameList_t
structure is allocated and it is released when the cpuset_NameList_t structure is
released.

EXAMPLES

This example obtains the cpuset name or CPU ID to which the current process is
attached:

cpuset_NameList_t *name;

/* Get the list of names else print error & exit */
if (!(name = cpusetGetName(0))) {

perror("cpusetGetName");

exit(1);

}

if (name->count == 0) {
printf("Current process not attached\n");

} else {

if (name->status[0] == CPUSET_CPU_NAME) {

printf("Current process attached to"

" CPU_ID[%s]\n",

name->list[0]);
} else {

printf("Current process attached to"

" CPUSET[%s]\n",

name->list[0]);

}
}

cpusetFreeNameList(name);

NOTES

The cpusetGetName function is found in the libcpuset.so library and is loaded
if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetFreeNameList(3x), cpusetGetNameList(3x), and cpuset(5).

007–3700–009 161

A: Programming Guide for Resource Management

DIAGNOSTICS

If successful, the cpusetGetName function returns a pointer to a
cpuset_NameList_t structure. If the cpusetGetName function fails, it returns
NULL and errno is set to indicate the error. The possible values for errno include
those values as set by sysmp(2), sbrk(2), and the following:

EINVAL Invalid value for pid was supplied. Currently, only 0 is
accepted to obtain the cpuset name that the current
process is attached to.

ERANGE Number of CPUs configured on the system is not a
value greater than or equal to 1.

162 007–3700–009

IRIX® Admin: Resource Administration

cpusetGetNameList(3x)

NAME

cpusetGetNameList - gets the list of names for all defined cpusets

SYNOPSIS

#include <cpuset.h>

cpuset_NameList_t *cpusetGetNameList(void);

DESCRIPTION

The cpusetGetNameList function is used to obtain a list of the names for all the
cpusets on the system.

The function returns a pointer to a structure of type cpuset_NameList_t (defined
in the cpuset.h include file). The cpusetGetNameList function allocates the
memory for the structure and all of its associated data. The user is responsible for
freeing the memory using the cpusetFreeNameList(3x) function. The
cpuset_NameList_t structure is defined as follows:

typedef struct {
int count;

char **list;

int *status;

} cpuset_NameList_t;

The count member is the number of cpuset names in the list.

The list member references the list of names.

The status member is a list of status flags that indicate the status of the
corresponding cpuset name in list. The following flag values may be used:

CPUSET_QUEUE_NAME Indicates that the corresponding name in list is the
name of a cpuset queue.

CPUSET_CPU_NAME Indicates that the corresponding name in list is the
CPU ID for a restricted CPU.

The memory for list and status is allocated when the cpuset_NameList_t
structure is allocated and it is released when the cpuset_NameList_t structure is
released.

007–3700–009 163

A: Programming Guide for Resource Management

EXAMPLES

This example obtains the list of names for all cpuset queues configured on the system.
The list of cpusets or restricted CPU IDs is then printed.

cpuset_NameList_t *names;

/* Get the list of names else print error & exit */

if (!(names = cpusetGetNameList())) {

perror("cpusetGetNameList");

exit(1);
}

if (names->count == 0) {

printf("No defined CPUSETs or restricted CPUs\n");

} else {

int i;

printf("CPUSET and restricted CPU names:\n");

for (i = 0; i < names->count; i++) {

if (names->status[i] == CPUSET_CPU_NAME) {

printf("CPU_ID[%s]\n", names->list[i]);
} else {

printf("CPUSET[%s]\n", names->list[i]);

}

}

}

cpusetFreeNameList(names);

NOTES

The cpusetGetNameList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetFreeNameList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetNameList function returns a pointer to a
cpuset_NameList_t structure. If the cpusetGetNameList function fails, it
returns NULL and errno is set to indicate the error. The possible values for errno
include those values set by sysmp(2) and sbrk(2).

164 007–3700–009

IRIX® Admin: Resource Administration

cpusetGetPIDList(3x)

NAME

cpusetGetPIDList - gets a list of all PIDs attached to a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_PIDList_t *cpusetGetPIDList(char *qname);

DESCRIPTION

The cpusetGetPIDList function is used to obtain a list of the PIDs for all processes
currently attached to the specified cpuset. Only processes with a user ID or group ID
that has read permissions on the permissions file can successfully execute this
function.

The qname argument is the name of the cpuset to which the current process should
be attached.

The function returns a pointer to a structure of type cpuset_PIDList_t (defined in
the cpuset.h) include file. The cpusetGetPIDList function allocates the memory
for the structure and the user is responsible for freeing the memory using the
cpusetFreePIDList(3x) function. The cpuset_PIDList_t structure looks similar
to this:

typedef struct {

int count;

pid_t *list;

} cpuset_PIDList_t;

The count member is the number of PID values in the list. The list member
references the memory array that hold the list of PID values. The memory for list is
allocated when the cpuset_PIDList_t structure is allocated and it is released when
the cpuset_PIDList_t structure is released.

EXAMPLES

This example obtains the list of PIDs attached to the cpuset mpi_set and prints out
the PID values.

(char *qname = "mpi_set";)

cpuset_PIDList_t *pids;

007–3700–009 165

A: Programming Guide for Resource Management

/* Get the list of PIDs else print error & exit */
if (!(pids = cpusetGetPIDList(qname))) {

perror("cpusetGetPIDList");

exit(1);

}

if (pids->count == 0) {
printf("CPUSET[%s] has 0 processes attached\n",

qname);

} else {

int i;

printf("CPUSET[%s] attached PIDs:\n",

qname);
for (i=o; i<pids->count; i++)

printf("PID[%d]\n", pids->list[i]);

}

cpusetFreePIDList(pids);

NOTES

The cpusetGetPIDList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetFreePIDList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetPIDList function returns a pointer to a
cpuset_PIDList_t structure. If the cpusetGetPIDList function fails, it returns
NULL and errno is set to indicate the error. The possible values for errno are the
same as the values set by sysmp(2) and sbrk(2).

166 007–3700–009

IRIX® Admin: Resource Administration

cpusetGetProperties(3x)

NAME

cpusetGetProperties - retrieves various properties associated with a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_Properties_t * cpusetGetProperties(char *qname);

DESCRIPTION

The cpusetGetProperties function is used retrieve various properties identified
by qname and returns a pointer to a cpuset_Properties_t structure. Every cpuset
queue has a file that defines access permissions to the queue. The read permissions
for that file will determine if a process owned by a specific user can retrieve the
properties from the cpuset.

The qname argument is the name of the cpuset to which the properties should be
retrieved.

EXAMPLES

This example retrieves the properties of a cpuset queue named mpi_set.

char *qname = "mpi_set";

cpuset_Properties_t *csp;

/* Get properties, if error - print error & exit */

csp=cpusetGetProperties(qname);

if (!csp) {
perror("cpusetGetProperties");

exit(1);

}

.

.

.

cpusetFreeProperties(csp);

Once a valid pointer is returned, a check against the extFlags member of the
cpuset_Properties_t structure must be made with the flags
CPUSET_ACCESS_ACL, CPUSET_DEFAULT_ACL, and CPUSET_MAC_LABEL to see if

007–3700–009 167

A: Programming Guide for Resource Management

any valid ACLs or a valid MAC label was returned. The check flags can be found in
the <sys\cpuset.h> file.

NOTES

The cpusetGetProperties function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetFreeProperties(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetProperties function returns a pointer to a
cpuset_Properties_t structure. If the cpusetGetProperties function fails, it
returns NULL and errno is set to indicate the error. The possible values for errno
include those values set by sysmp(2).

168 007–3700–009

IRIX® Admin: Resource Administration

cpusetAllocQueueDef(3x)

NAME

cpusetAllocQueueDef - allocates a cpuset_QueueDef_t structure

SYNOPSIS

#include <cpuset.h>

cpuset_QueueDef_t *cpusetAllocQueueDef(int count)

DESCRIPTION

The cpusetAllocQueueDef function is used to allocate memory for a
cpuset_QueueDef_t structure. This memory can then be released using the
cpusetFreeQueueDef(3x) function.

The count argument indicates the number of CPUs that will be assigned to the
cpuset definition structure. The cpuset_QueueDef_t structure is defined as follows:

typedef struct {

int flags;

char *permfile;
cpuset_CPUList_t *cpu;

} cpuset_QueueDef_t;

The flags member is used to specify various control options for the cpuset queue. It
is formed by applying the bitwise exclusive-OR operator to zero or more of the
following values:

CPUSET_CPU_EXCLUSIVE Defines a cpuset to be restricted.
Only threads attached to the cpuset
queue (descendents of an attached
thread inherit the attachement) may
execute on the CPUs contained in
the cpuset.

CPUSET_MEMORY_LOCAL Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. No restrictions

007–3700–009 169

A: Programming Guide for Resource Management

are made on memory assignment to
threads running outside the cpuset.

CPUSET_MEMORY_EXCLUSIVE Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. Threads not
assigned to the cpuset will not use
memory from within the cpuset
unless no memory outside the
cpuset is available. If, at the time a
cpuset is created, memory is
already assigned to threads that are
already running, no attempt will be
made to explicitly move this
memory. If page migration is
enabled, the pages will be migrated
when the system detects that most
references to the pages are nonlocal.

CPUSET_MEMORY_KERNEL_AVOID The kernel should attempt to avoid
allocating memory from nodes
contained in this cpuset. If kernel
memory requests cannot be satisfied
from outside this cpuset, this option
will be ignored and allocations will
occur from within the cpuset. (This
avoidance currently extends only to
keeping buffer cache away from the
protected nodes.)

CPUSET_MEMORY_MANDATORY The kernel will limit all memory
allocations to nodes that are
contained in this cpuset. If memory
requests cannot be satisfied, the
allocating process will sleep until
memory is available. The process
will be killed if no more memory
can be allocated. See policies below.

170 007–3700–009

IRIX® Admin: Resource Administration

CPUSET_POLICY_PAGE Requires MEMORY_MANDATORY.
This is the default policy if no
policy is specified. This policy will
cause the kernel to page user pages
to the swap file (see swap(1M)) to
free physical memory on the nodes
contained in this cpuset. If swap
space is exhausted, the process will
be killed.

CPUSET_POLICY_KILL Requires MEMORY_MANDATORY. The
kernel will attempt to free as much
space as possible from kernel
heaps, but will not page user pages
to the swap file. If all physical
memory on the nodes contained in
this cpuset are exhausted, the
process will be killed.

The permfile member is the name of the file that defines the access permissions for
the cpuset queue. The file permissions of filename referenced by permfile
define access to the cpuset. Every time permissions need to be checked, the current
permissions of this file are used. Thus, it is possible to change the access to a
particular cpuset without having to tear it down and recreate it, simply by changing
the access permissions. Read access to the permfile allows a user to retrieve
information about a cpuset, while execute permission allows the user to attach a
process to the cpuset.

The cpu member is a pointer to a cpuset_CPUList_t structure. The memory for
the cpuset_CPUList_t structure is allocated and released when the
cpuset_QueueDef_t structure is allocated and released (see
cpusetFreeQueueDef(3x)). The cpuset_CPUList_t structure contains the list of
CPUs assigned to the cpuset. The cpuset_CPUList_t structure (defind in the
cpuset.h include file) is defined as follows:

typedef struct {

int count;

int *list;
} cpuset_CPUList_t;

The count member defines the number of CPUs contained in the list.

007–3700–009 171

A: Programming Guide for Resource Management

The list member is the pointer to the list (an allocated array) of the CPU IDs. The
memory for the list array is allocated and released when the cpuset_CPUList_t
structure is allocated and released. The size of the list is determined by the count
argument passed into the function cpusetAllocQueueDef.

EXAMPLES

This example creates a cpuset queue using the cpusetCreate(3x) function and
provides an example of how the cpusetAllocQueueDef function might be used.
The cpuset created will have access controlled by the file /usr/tmp/mypermfile; it
will contain CPU IDs 4, 8, and 12; and it will be CPU exclusive and memory exclusive:

cpuset_QueueDef_t *qdef;
char *qname = "myqueue";

/* Alloc queue def for 3 CPU IDs */

qdef = cpusetAllocQueueDef(3);

if (!qdef) {
perror("cpusetAllocQueueDef");

exit(1);

}

/* Define attributes of the cpuset */

qdef->flags = CPUSET_CPU_EXCLUSIVE
| CPUSET_MEMORY_EXCLUSIVE;

qdef->permfile = "/usr/tmp/mypermfile"

qdef->cpu->count = 3;

qdef->cpu->list[0] = 4;

qdef->cpu->list[1] = 8;
qdef->cpu->list[2] = 12;

/* Request that the cpuset be created */

if (!cpusetCreate(qname, qdef)) {

perror("cpusetCreate");
exit(1);

}

cpusetFreeQueueDef(qdef);

NOTES

The cpusetAllocQueueDef function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

172 007–3700–009

IRIX® Admin: Resource Administration

SEE ALSO

cpuset(1), cpusetFreeQueueDef(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetAllocQueueDef function returns a pointer to a
cpuset_QueueDef_t structure. If the cpusetAllocQueueDef function fails, it
returns NULL and errno is set to indicate the error. The possible values for errno
values include those returned by sbrk(2) and the following:

EINVAL Invalid argument was supplied. The user must supply
a value greater than or equal to 0.

007–3700–009 173

A: Programming Guide for Resource Management

Clean-up Functions

This section contains the man pages for Cpuset System library clean-up functions:

cpusetFreeQueueDef(3x) Releases memory used by a
cpuset_QueueDef_t structure

cpusetFreeCPUList(3x) Releases memory used by a
cpuset_CPUList_t structure

cpusetFreeNameList(3x) Releases memory used by a
cpuset_NameList_t structure

cpusetFreePIDList(3x) Releases memory used by a
cpuset_PIDList_t structure

cpusetFreeProperties(3x) Release memory used by a
cpuset_Properties_t structure

174 007–3700–009

IRIX® Admin: Resource Administration

cpusetFreeQueueDef(3x)

NAME

cpusetFreeQueueDef - releases memory used by a cpuset_QueueDef_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeQueueDef(cpuset_QueueDef_t *qdef);

DESCRIPTION

The cpusetFreeQueueDef function is used to release memory used by a
cpuset_QueueDef_t structure. This function releases all memory associated with
the cpuset_QueueDef_t structure.

The qdef argument is the pointer to the cpuset_QueueDef_t structure that will
have its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetAllocQueueDef(3x)) function.

NOTES

The cpusetFreeQueueDef function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), and cpuset(5).

007–3700–009 175

A: Programming Guide for Resource Management

cpusetFreeCPUList(3x)

NAME

cpusetFreeCPUList - releases memory used by a cpuset_CPUList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeCPUList(cpuset_CPUList_t *cpu);

DESCRIPTION

The cpusetFreeCPUList function is used to release memory used by a
cpuset_CPUList_t structure. This function releases all memory associated with the
cpuset_CPUList_t structure.

The cpu argument is the pointer to the cpuset_CPUList_t structure that will have
it’s memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetCPUList(3x) function.

NOTES

The cpusetFreeCPUList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetGetCPUList(3x), and cpuset(5).

176 007–3700–009

IRIX® Admin: Resource Administration

cpusetFreeNameList(3x)

NAME

cpusetFreeNameList - releases memory used by a cpuset_NameList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeNameList(cpuset_NameList_t *name);

DESCRIPTION

The cpusetFreeNameList function is used to release memory used by a
cpuset_NameList_t structure. This function releases all memory associated with
the cpuset_NameList_t structure.

The name argument is the pointer to the cpuset_NameList_t structure that will
have its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetNameList(3x) function or cpusetGetName(3x) function.

NOTES

The cpusetFreeNameList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetGetName(3x), cpusetGetNameList(3x), and cpuset(5).

007–3700–009 177

A: Programming Guide for Resource Management

cpusetFreePIDList(3x)

NAME

cpusetFreePIDList - releases memory used by a cpuset_PIDList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreePIDList(cpuset_PIDList_t *pid);

DESCRIPTION

The cpusetFreePIDList function is used to release memory used by a
cpuset_PIDList_t structure. This function releases all memory associated with the
cpuset_PIDList_t structure.

The pid argument is the pointer to the cpuset_PIDList_t structure that will have
its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetPIDList(3x) function.

NOTES

The cpusetFreePIDList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetGetPIDList(3x), and cpuset(5).

178 007–3700–009

IRIX® Admin: Resource Administration

cpusetFreeProperties(3x)

NAME

cpusetFreeProperties - releases memory used by a cpuset_Properties_t
structure

SYNOPSIS

#include <cpuset.h>
void cpusetFreeProperties(cpuset_Properties_t *csp);

DESCRIPTION

The cpusetFreeProperties function is used to release memory used by a
cpuset_Properties_t structure. This function releases all memory associated with
the cpuset_Properties_t structure.

The csp argument is the pointer to the cpuset_Properties_t structure that will
have its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetProperties(3x)) function.

NOTES

The cpusetFreeProperties function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetGetProperties(3x), and cpuset(5).

007–3700–009 179

A: Programming Guide for Resource Management

Using the Cpuset Library

This section provides an example of how to use the Cpuset library functions to create a
cpuset and an example of creating a replacement library for /lib32/libcpuset.so.

Example 6-1 Example of Creating a Cpuset

This example creates a cpuset named myqueue containing CPUs 4, 8, and 12. The
example uses the interfaces in the cpuset library, /lib32/libcpuset.so, if they are
present. If the interfaces are not present, it attempts to use the cpuset(1) command
to create the cpuset.

#include <cpuset.h>

#include <stdio.h>

#include <errno.h>

#define PERMFILE "/usr/tmp/permfile"

int

main(int argc, char **argv)
{

cpuset_QueueDef_t *qdef;

char *qname = "myqueue";

FILE *fp;

/* Alloc queue def for 3 CPU IDs */
if (_MIPS_SYMBOL_PRESENT(cpusetAllocQueueDef)) {

printf("Creating cpuset definition\n");

qdef = cpusetAllocQueueDef(3);

if (!qdef) {

perror("cpusetAllocQueueDef");
exit(1);

}

/* Define attributes of the cpuset */

qdef->flags = CPUSET_CPU_EXCLUSIVE

| CPUSET_MEMORY_LOCAL
| CPUSET_MEMORY_EXCLUSIVE;

qdef->permfile = PERMFILE;

qdef->cpu->count = 3;

qdef->cpu->list[0] = 4;

qdef->cpu->list[1] = 8;

qdef->cpu->list[2] = 12;

180 007–3700–009

IRIX® Admin: Resource Administration

} else {
printf("Writing cpuset command config"

" info into %s\n", PERMFILE);

fp = fopen(PERMFILE, "a");

if (!fp) {

perror("fopen");
exit(1);

}

fprintf(fp, "EXCLUSIVE\n");

fprintf(fp, "MEMORY_LOCAL\n");

fprintf(fp, "MEMORY_EXCLUSIVE\n\n");

fprintf(fp, "CPU 4\n");
fprintf(fp, "CPU 8\n");

fprintf(fp, "CPU 12\n");

fclose(fp);

}

/* Request that the cpuset be created */

if (_MIPS_SYMBOL_PRESENT(cpusetCreate)) {

printf("Creating cpuset = %s\n", qname);

if (!cpusetCreate(qname, qdef)) {

perror("cpusetCreate");

exit(1);
}

} else {

char command[256];

fprintf(command, "/usr/sbin/cpuset -q %s -c"
"-f %s", qname,

[PERMFILE];

if (system(command) < 0) {

perror("system");

exit(1);
}

}

/* Free memory for queue def */

if (_MIPS_SYMBOL_PRESENT(cpusetFreeQueueDef)) {

printf("Finished with cpuset definition,"
" releasing memory\n");

cpusetFreeQueueDef(qdef);

007–3700–009 181

A: Programming Guide for Resource Management

}
return 0;

}

Example 6-2 Example of Creating a Replacement Library

This example shows how to create a replacement library for /lib32/libcpuset.so
so that a program built to use the cpuset library interfaces will execute if the library is
not present.

1. Create the replace.c file that contains the following line of code:

static void cpusetNULL(void) { }

2. Compile the replace.c file:

cc -mips3 -n32 -c replace.c

3. Place the replace.o object created in the previous step in a library:

ar ccrl libcpuset.a replace.o

4. Convert the library into a DSO:

ld -mips3 -n32 -quickstart_info -nostdlib \

-elf -shared -all -soname libcpuset.so \

-no_unresolved -quickstart_info -set_version \

sgi1.0 libcpuset.a -o libcpuset.so

5. Install the DSO on the system:

install -F /opt/lib32 -m 444 -src libcpuset.so \
libcpuset.so

The replacement library can be installed in a directory defined by the
LD_LIBRARYN32_PATH environment variable (see rld(1)). If the replacement library
must be installed in a directory that is in the default search path for shared libraries,
it should be installed in /opt/lib32.

182 007–3700–009

Index

A

accounting, 71
basic accounting, 71
concepts, 74
CSA, 71
csarun, 71
daily accounting, 75
extended accounting, 71
job, 75
jobs, 75
runacct, 71
terminology, 74

C

Comprehensive System Accounting
accounting commands, 127
administrator commands, 83
capabilities required

CAP_ACCT_MGT, 86
charging for workload management jobs, 116
charging for NQS jobs, 115
commands

csaaddc, 96
csachargefee, 85, 96
csackpacct, 88
csacms, 97
csacom, 74
csacon, 97
csadrep, 96
csaedit, 94, 96
csaperiod, 74, 86
csarecy, 96
csarun, 74, 85, 90
csaswitch, 85, 86

csaverify, 94
dodisk, 85
ja, 74

configuration file
See also "/etc/csa.conf", 74, 86

configuration variables
See also "/etc/csa.conf", 74

daemon accounting, 111
daily operation overview, 85
data processing, 95
data recycling, 98
enabling or disabling, 76
/etc/csa.conf

See also "configuration file", 74
files and directories, 77
migrating accounting data, 126
overview, 73
read me first, 72
recycled data

NQS or workload management requests, 103
recycled sessions, 99
removing recycled data, 100
reports

daily, 119
periodic, 123

SBUs
NQS

See also "system billing units", 108
process

See also "system billing units", 106
See "system billing units", 105
tape

See also "system billing units", 109
workload management

See also "system billing units", 109
setting up CSA, 86
system billing units, 105

007–3700–009 183

Index

tailoring CSA, 104
commands, 116
shell scripts, 116

terminating jobs, 98
user commands, 84
user exits, 112
verifying and editing data files, 94

Cpuset System
boot cpuset, 57
commands

cpuset, 51, 59
configuration flags

CPU, 63
EXCLUSIVE, 61
MEMORY_EXCLUSIVE, 61
MEMORY_KERNEL_AVOID, 62
MEMORY_LOCAL, 61
MEMORY_MANDATORY, 62
POLICY_KILL, 63
POLICY_PAGE, 63

CPU restrictions, 52
cpuset configuration file, 59

flags
See also "valid tokens", 61

Cpuset library, 66, 140
Cpuset library functions

cpusetAllocQueueDef, 140
cpusetCreate, 140
cpusetDestroy, 140
cpusetDetachAll, 140
cpusetFreeCPUList, 140
cpusetFreeNameList, 140
cpusetFreePIDList, 140
cpusetFreeProperties, 140
cpusetFreeQueueDef, 140
cpusetGetCPUCount, 140
cpusetGetCPUList, 140
cpusetGetName, 140
cpusetGetNameList, 140
cpusetGetPIDList, 140
cpusetGetProperties, 140

enabling or disabling, 63

library
overview, 50

Obtaining the properties associated with a
cpuset, 64

restricting memory allocation, 59
system division, 49

J

Job Limits
applications programming interface, 133

data types, 133
function calls, 134

applications programming interface for the
ULDB, 136

data types, 136
function calls, 137

commands
cpr, 24
genlimits, 12
jlimit, 21
jstat, 22
ps, 24
showlimits, 19
systune, 17

definition, 6
domain

definition, 8
error messages, 136
function calls

getjid, 134
getjlimit, 134
getjusage, 134
jlimit_startjob, 135
killjob, 135
makenewjob, 135
setjlimit, 134
setwaitjobpid, 135
waitjob, 136

introduction, 5

184 007–3700–009

IRIX® Admin: Resource Administration

job characteristics, 7
job initiators

See also "point of entry processes", 7
limits supported, 9
overview, 6
point of entry processes

See also "job initiators", 6
read me first, 5
software

how to install, 26
troubleshooting, 26

ULDB
how to create, 12
See also "user limits database", 11

user limits database
See also "ULDB", 11

user limits directives input file
domain directives, 14
example, 16
how to create, 13
numeric limit values, 14
user directives, 15

jobs
accounting, in, 75

M

Memory
physical, 129
shared, 129
usage commands, 129
virtual, 129

Memory usage
commands

csacom, 129
gmemusage, 129
ja, 129
jstat, 129
pmem, 129
ps, 129
top, 129

Memory usage overview, 129
Miser

checking job status, 44
checking queue status, 44, 45
command-line options file setup, 37
configuration, 33
configuration examples, 39
configuration file setup, 37
configuration recommendations, 38
CPU allocation, 31
Cpuset library functions

cpusetAttach, 140
differences between Miser and batch

management systems, 46
enabling or disabling, 42
logical number of CPUs, 31
logical swap space, 32
memory management, 32
overview, 29
pools, 30
queue, 30
read me first, 29
starting, 43
stopping, 43
submitting jobs, 43
system pool, 30
system queue definition file setup, 33
terminating a job, 45
user queue definition file setup, 35

N

Network Queuing Environment, 46
NQE, 46

P

Physical memory
CSA and job limits, 132

007–3700–009 185

Index

Process Limits
commands

limit -h, 1
systune resource, 3

limits supported, 2
parameters

grace period, 4
number of processes, 4

resource limits
currrent (soft) limits, 1
maximum (hard) limits, 1

system calls
getrlimit, 1
setrlimit, 1

S

Shared memory
CSA and job limits, 131

V

Virtual memory
CSA and job limits, 132

186 007–3700–009

