
Message Passing Toolkit (MPT) User’s
Guide

007–3773–018

COPYRIGHT
©1996, 1998-2010, 2011, SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any
manner, in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
SGI, Altix, the SGI logo, Silicon Graphics, IRIX, and Origin are registered trademarks and CASEVision, NUMAlink, OpenMP,
OpenSHMEM, Performance Co-Pilot, ProDev, SHMEM, and SpeedShop are trademarks of Silicon Graphics International Corp. or its
subsidiaries in the United States and other countries.

InfiniBand is a trademark of the InfiniBand Trade Association. Intel, Itanium, and Xeon are registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries. Kerberos is a trademark of Massachusetts Institute of Technology. Linux is
a registered trademark of Linus Torvalds in several countries. MIPS is a registered trademark and MIPSpro is a trademark of MIPS
Technologies, Inc., used under license by SGI, in the United States and/or other countries worldwide. PBS Professional is a trademark
of Altair Engineering, Inc. Platform Computing is a trademark and Platform LSF is a registered trademark of Platform Computing
Corporation. PostScript is a trademark of Adobe Systems, Inc. TotalView and TotalView Technologies are registered trademarks and
TVD is a trademark of TotalView Technologies. UNIX is a registered trademark of the Open Group in the United States and other
countries.

New Features in This Manual

This update to the Message Passing Toolkit (MPT) User’s Guide supports the MPT 2.04
release.

Major Documentation Changes
Performed the following:

• Updated information about SHMEMTM and OpenSHEMEMTM in Chapter 1,
"Introduction" on page 1.

• Updated release information in "Configuring Array Services" on page 11.

• Updated compiling instructions in "Compiling and Linking MPI Programs" on
page 13.

• Removed outdated Intel compiler references (ecc, efc, and g77) in "Compiling
and Running SHMEM Applications" on page 18.

• Added information about using the Open64 compiler in combination with hybrid
MPI/OpenMP applications in "Compiling and Linking MPI Programs" on page 13.

• Added a troubleshooting note about using the Open64 compiler in combination
with hybrid MPI/OpenMP applications in Chapter 10, "Troubleshooting and
Frequently Asked Questions" on page 59.

007–3773–018 iii

Record of Revision

Version Description

001 March 2004
Original Printing. This manual documents the Message Passing
Toolkit implementation of the Message Passing Interface (MPI).

002 November 2004
Supports the MPT 1.11 release.

003 June 2005
Supports the MPT 1.12 release.

004 June 2007
Supports the MPT 1.13 release.

005 October 2007
Supports the MPT 1.17 release.

006 January 2008
Supports the MPT 1.18 release.

007 May 2008
Supports the MPT 1.19 release.

008 July 2008
Supports the MPT 1.20 release.

009 October 2008
Supports the MPT 1.21 release.

010 January 2009
Supports the MPT 1.22 release.

011 April 2009
Supports the MPT 1.23 release.

012 October 2009
Supports the MPT 1.25 release.

007–3773–018 v

Record of Revision

013 April 2010
Supports the MPT 2.0 release.

014 July 2010
Supports the MPT 2.01 release.

015 October 2010
Supports the MPT 2.02 release.

016 February 2011
Supports the MPT 2.03 release.

017 March 2011
Supports additional changes for the MPT 2.03 release.

018 September 2011
Supports changes for the MPT 2.04 release.

vi 007–3773–018

Contents

About This Manual . xv

Related Publications and Other Sources xv

Obtaining Publications . xvi

Conventions . xvi

Reader Comments . xvii

1. Introduction . 1

MPI Overview . 2

MPI 2.2 Standard Compliance 2

MPI Components . 2

SGI MPI Features . 2

2. Administrating MPT 5

Finding the MPT Release Notes 5

MPT Installation . 5

Disk Space Requirements . 6

Prerequisites . 6

SGI Performance Suite Components 6

InfiniBand Software Stack 6

Installing the MPT RPM . 6

Installing MPT Software in an Alternate Location 7

Using a cpio File for Installation 8

Using Dynamic Shared Libraries to Run MPI Jobs 9

Running MPI Jobs on a Cluster with MPT Alternate Installation 10

System Configuration . 10

007–3773–018 vii

Contents

Starting Prerequisite Services 10

Configuring Array Services 11

Adjusting File Descriptor Limits 11

Adjusting Locked Memory Limits 12

3. Getting Started . 13

Compiling and Linking MPI Programs 13

Using mpirun to Launch an MPI Application 14

Launching a Single Program on the Local Host 14

Launching a Multiple Program, Multiple Data (MPMD) Application on the Local Host . 15

Launching a Distributed Application 15

Using MPI-2 Spawn Functions to Launch an Application 16

Running MPI Jobs with a Work Load Manager 16

PBS Professional . 16

Torque . 18

Compiling and Running SHMEM Applications 18

4. Programming with SGI MPI 21

Job Termination and Error Handling 21

MPI_Abort . 21

Error Handling . 22

MPI_Finalize and Connect Processes 22

Signals . 22

Buffering . 23

Multithreaded Programming . 24

Interoperability with the SHMEM programming model 24

Miscellaneous Features of SGI MPI 25

stdin/stdout/stderr . 25

viii 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

MPI_Get_processor_name 25

Programming Optimizations . 25

Using MPI Point-to-Point Communication Routines 25

Using MPI Collective Communication Routines 26

Using MPI_Pack/MPI_Unpack 26

Avoiding Derived Data Types 26

Avoiding Wild Cards . 27

Avoiding Message Buffering — Single Copy Methods 27

Managing Memory Placement 27

Using Global Shared Memory 28

Additional Programming Model Considerations 28

5. Debugging MPI Applications 29

MPI Routine Argument Checking 29

Using the TotalView Debugger with MPI programs 29

Using idb and gdb with MPI programs 30

6. PerfBoost . 31

Using PerfBoost . 31

Environment Variables . 32

MPI Supported Functions . 32

7. Checkpoint/Restart 33

BLCR Installation . 33

Using BLCR with MPT . 34

8. Run-time Tuning . 35

Reducing Run-time Variability 35

Tuning MPI Buffer Resources . 36

007–3773–018 ix

Contents

Avoiding Message Buffering – Enabling Single Copy 37

Using the XPMEM Driver for Single Copy Optimization 38

Memory Placement and Policies 38

MPI_DSM_CPULIST . 39

MPI_DSM_DISTRIBUTE . 40

MPI_DSM_VERBOSE . 40

Using dplace for Memory Placement 40

Tuning MPI/OpenMP Hybrid Codes 41

Tuning for Running Applications Across Multiple Hosts 42

MPI_USE_IB . 43

MPI_IB_RAILS . 43

MPI_IB_SINGLE_COPY_BUFFER_MAX 44

Tuning for Running Applications over the InfiniBand Interconnect 44

MPI_NUM_QUICKS . 44

MPI_NUM_MEMORY_REGIONS 44

MPI_CONNECTIONS_THRESHOLD 44

MPI_IB_PAYLOAD . 45

MPI_IB_TIMEOUT . 45

MPI_IB_FAILOVER . 45

MPI on Altix UV 100 and Altix UV 1000 Systems 45

General Considerations . 46

Job Performance Types . 46

Other ccNUMA Performance Issues 47

Suspending MPI Jobs . 47

9. MPI Performance Profiling 49

Overview of perfcatch Utility 49

Using the perfcatch Utility . 49

x 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

MPI_PROFILING_STATS Results File Example 50

MPI Performance Profiling Environment Variables 53

MPI Supported Profiled Functions 54

Profiling MPI Applications . 55

Profiling Interface . 56

MPI Internal Statistics . 57

Third Party Products . 57

10. Troubleshooting and Frequently Asked Questions 59

What are some things I can try to figure out why mpirun is failing? 59

My code runs correctly until it reaches MPI_Finalize() and then it hangs. 61

My hybrid code (using OpenMP) stalls on the mpirun command. 61

I keep getting error messages about MPI_REQUEST_MAX being too small. 61

I am not seeing stdout and/or stderr output from my MPI application. 62

How can I get the MPT software to install on my machine? 62

Where can I find more information about the SHMEM programming model? 62

The ps(1) command says my memory use (SIZE) is higher than expected. 62

What does MPI: could not run executable mean? 63

How do I combine MPI with insert favorite tool here? 63

Why do I see “stack traceback” information when my MPI job aborts? 64

Index . 65

007–3773–018 xi

Tables

Table 4-1 Outline of Improper Dependence on Buffering 23

Table 8-1 Inquiry Order for Available Interconnects 42

007–3773–018 xiii

About This Manual

This publication documents the SGI implementation of the Message Passing Interface
(MPI).

MPI consists of a library, which contains both normal and profiling entry points, and
commands that support the MPI interface. MPI is a component of the SGI Message
Passing Toolkit (MPT).

MPT is a software package that supports parallel programming on large systems and
clusters of computer systems through a technique known as message passing. Systems
running MPI applications must also be running Array Services software version 3.1 or
later. For more information on Array Services, see Chapter 3, “Array Services” in the
Linux Resource Administration Guide.

Related Publications and Other Sources
Material about MPI is available from a variety of sources. Some of these, particularly
webpages, include pointers to other resources. Following is a grouped list of these
sources.

The MPI standard:

• As a technical report: University of Tennessee report (reference [24] from Using
MPI: Portable Parallel Programming with the Message-Passing Interface, by Gropp,
Lusk, and Skjellum).

• As online PostScript or hypertext on the Web:

http://www.mpi-forum.org/

• As a journal article in the International Journal of Supercomputer Applications, volume
8, number 3/4, 1994. See also International Journal of Supercomputer Applications,
volume 12, number 1/4, pages 1 to 299, 1998.

Book: Using MPI: Portable Parallel Programming with the Message-Passing Interface, by
Gropp, Lusk, and Skjellum, publication TPD–0011.

Newsgroup: comp.parallel.mpi

007–3773–018 xv

About This Manual

SGI manuals: Linux Resource Administration Guide provides information on Array
Services.

MPInside Reference Guide documents the SGI MPInside MPI profiling tool.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

xvi 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

SGI
Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.

007–3773–018 xvii

Chapter 1

Introduction

Message Passing Toolkit (MPT) is a software package that supports interprocess data
exchange for applications that use concurrent, cooperating processes on a single host
or on multiple hosts. Data exchange is done through message passing, which is the
use of library calls to request data delivery from one process to another or between
groups of processes.

The MPT package contains the following components and the appropriate
accompanying documentation:

• Message Passing Interface (MPI). MPI is a standard specification for a message
passing interface, allowing portable message passing programs in Fortran and C
languages. MPI is the dominant programming model on large scale HPC systems
and clusters today. MPT supports version 2.2 of the MPI standard specification.

• The SHMEMTM programming model. SHMEM is a partitioned global address
space (PGAS) programming model that presents distributed processes with
symmetric arrays that are accessible via PUT and GET operations from other
processes. The SGI SHMEM programming model is the basis for the
OpenSHMEMTM programming model specification which is being developed by
the Open Source Software Solutions multi-vendor working group.

SGI MPT is highly optimized for all SGI hardware platforms. The SGI Performance
Suite 1.x Start Here lists all current SGI software and hardware manuals and can be
found on the SGI Technical Publications Library at: http://docs.sgi.com.

This chapter provides an overview of the MPI software that is included in the toolkit.
It includes descriptions of the MPI standard compliance, the basic components of
MPI, and the basic features of MPI. Subsequent chapters address the following topics:

• Chapter 2, "Administrating MPT" on page 5

• Chapter 3, "Getting Started" on page 13

• Chapter 4, "Programming with SGI MPI" on page 21

• Chapter 5, "Debugging MPI Applications" on page 29

• Chapter 6, "PerfBoost" on page 31

• Chapter 7, "Checkpoint/Restart " on page 33

007–3773–018 1

1: Introduction

• Chapter 8, "Run-time Tuning" on page 35

• Chapter 9, "MPI Performance Profiling" on page 49

• Chapter 10, "Troubleshooting and Frequently Asked Questions" on page 59

MPI Overview
MPI was created by the Message Passing Interface Forum (MPIF). MPIF is not
sanctioned or supported by any official standards organization. Its goal was to
develop a widely used standard for writing message passing programs.

SGI supports implementations of MPI that are released as part of the Message Passing
Toolkit. The MPI Standard is documented online at the following
address:http://www.mcs.anl.gov/mpi

MPI 2.2 Standard Compliance

The SGI MPI implementation is compliant with the MPI 2.2 standard.

MPI Components

The MPI library is provided as a dynamic shared object (DSO) (a file with a name
that ends in .so). The basic components that are necessary for using MPI are the
libmpi.so library, the include files, and the mpirun command.

Profiling support is included in the libmpi.so library. Profiling support replaces all
MPI_Xxx prototypes and function names with PMPI_Xxx entry points.

SGI MPI Features

The SGI MPI implementation offers a number of significant features that make it the
preferred implementation to use on SGI hardware:

• Data transfer optimizations for NUMAlink where available, including single-copy
data transfer

• Multi-rail InfiniBand support to take full advantage of the multiple InfiniBand
fabrics available on SGI Altix ICE systems

2 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

• Use of hardware fetch operations (fetchops), where available, for fast
synchronization and lower latency for short messages

• Optimized MPI-2 one-sided commands

• Interoperability with the SHMEM (LIBSMA) programming model

• High performance communication support for partitioned systems via XPMEM

007–3773–018 3

Chapter 2

Administrating MPT

This chapter is provided for system administrators who install, configure, and
administer software on SGI Altix systems. It covers the following topics:

• "Finding the MPT Release Notes" on page 5

• "MPT Installation" on page 5

• "System Configuration" on page 10

Finding the MPT Release Notes
Find the latest MPT release notes on your system, as follows:

% rpm -qi sgi-mpt | grep README.relnotes

/opt/sgi/mpt/mpt-2.04/doc/README.relnotes

Next, change directory to the location found, and list the contents of the directory, as
follows:

% cd /opt/sgi/mpt/mpt-2.04/doc

% ls

MPT_UG README.relnotes sgi-mpt.2.04.template

The release notes are in a file called README.relnotes.

MPT Installation
This section describes requirements and procedures for MPT installation. After you
have installed the MPT and prerequisite software per the instructions in this section,
be sure to perform the steps described in "System Configuration" on page 10.

Note: The MPI installation and configuration information found in this chapter is also
available in the READ.relnotes file in the /opt/sgi/mpt/mpt-2.04/doc
directory.

007–3773–018 5

2: Administrating MPT

Disk Space Requirements

Disk space requirements for the MPT product are substantially less than 20 Mbytes.

Prerequisites

This section describes software prerequisites for MPT.

SGI Performance Suite Components

A default install SGI Accelerate is recommended. This provides a number of software
components required by MPT. The SGI Performance Suite RPMs required by MPT
include the following:

• sgi-arraysvcs or sgi-sarraysvcs

• sgi-procset

• libbitmask

• libcpuset

• cpuset-utils

• sgi-release

• xpmem

InfiniBand Software Stack

If you are using the InfiniBand interconnect, you must ensure that one of the
supported InfiniBand software stacks is installed.

Installing the MPT RPM

MPT is supplied as an RPM file. The name of the file contains the following
information:

• Product (sgi-mpt)

• MPT Version (2.04)

• SGI MPI 1.1 software bundle, part of SGI Performance Suite 1.1

6 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

• Architecture (SGI IA-64 or x86_64 based systems)

For example, if the name of the MPT RPM for the MPT 2.04 release is
sgi-mpt-2.04-sgi704.ia64.rpm. To install this RPM, log in as root and issue the
following command:

rpm -Uvh sgi-mpt-2.04-sgi704.ia64.rpm

Installing MPT Software in an Alternate Location

RPM provides a means for creating, installing, and managing relocatable packages.
That is, the MPT RPM can be installed in either a default or alternate location.

The default location for installing the MPT RPM is /opt/sgi/mpt/. To install the
MPT RPM in an alternate location, use the --relocate option, as shown in the
following example. The --relocate option specifies the alternate base directory for
the installation of the MPT software (in this case, /tmp).

rpm -i --relocate /opt/sgi/mpt/mpt-2.04=/tmp --excludepath /usr sgi-mpt-2.04-sgi704.ia64.rpm

Note: If the MPT software is installed in an alternate location, MPT users must set the
environment variables PATH and LD_LIBRARY_PATH to specify the search locations
for the mpirun command and the run-time libraries, assuming the alternate location
of /tmp, as follows:

setenv PATH /tmp/bin:${PATH}

export PATH=/tmp/bin:${PATH}

export LD_LIBRARY_PATH=/tmp/lib
export LD_LIBRARY_PATH=/tmp/lib

If the site is using environment modules to manage the user environment, then the
alternate location should be placed in the mpt modulefile. This approach is the most
convenient way to establish environment variable settings that enable MPT program
developers and users to access the MPT software when installed in an alternate
location. Sample modulefiles are located in /opt/sgi/mpt/mpt-2.04/doc and
/usr/share/modules/modulefiles/mpt/2.04 .

For more information, see "Using Dynamic Shared Libraries to Run MPI Jobs," later in
this chapter.

007–3773–018 7

2: Administrating MPT

Using a cpio File for Installation

The cpio file installation method described here is useful when the MPT software is
installed in an NFS filesystem shared by a number of hosts. In this case, it is not
important or desirable for the RPM database on only one of the machines to track the
versions of MPT that are installed. Another advantage of the approach is that you do
not need root permission to install the MPT software.

To install MPT using a cpio file, first convert the MPT RPM to a cpio file by
executing the rpm2cpio command, as follows:

% rpm2cpio sgi-mpt-2.04-1.ia64.rpm > /tmp/sgi-mpt.cpio

Once you have created the .cpio file, you are free to install the software beneath any
directory in which you have write permission. The following example demonstrates
the process.

% cd /tmp

% cpio -idmv < sgi-mpt.cpio

opt/sgi/mpt/mpt-2.04/bin/mpirun

opt/sgi/mpt/mpt-2.04/include/mpi++.h

opt/sgi/mpt/mpt-2.04/include/mpi.h
...

opt/sgi/mpt/mpt-2.04/lib/libmpi++.so

opt/sgi/mpt/mpt-2.04/lib/libmpi.so

opt/sgi/mpt/mpt-2.04/lib/libxmpi.so

...

% ls -R /tmp/opt/sgi/mpt/mpt-2.04
bin doc include lib man

/tmp/opt/sgi/mpt/mpt-2.04/bin:

mpirun

/tmp/opt/sgi/mpt/mpt-2.04/include:

MPI.mod mpi.h mpi_ext.h mpif.h mpio.h mpp

mpi++.h mpi.mod mpi_extf.h mpif_parameters.h mpiof.h

/tmp/opt/sgi/mpt/mpt-2.04/lib:
libmpi++.so* libmpi.so* libsma.so* libxmpi.so*

...

8 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

If the MPT software is installed in an alternate location, set up an environment
module to set environment variables which will be used by compilers, linkers, and
runtime loaders to reference the MPT software.

Using Dynamic Shared Libraries to Run MPI Jobs

After you have installed the MPT RPM as default, use the following command to
build an MPI-based application that uses the .so files:

For C programs, as follows:

% gcc simple1_mpi.c -lmpi

% mpirun -np 2 a.out

For Fortran programs:

% mpif90 simple1_mpi.f

% mpirun -np 2 a.out

The default locations for the include and .so files and the mpirun command are
referenced automatically.

Assuming that the MPT package has been installed in an alternate location (under the
/tmp directory), as described earlier in "Installing MPT Software in an Alternate
Location" on page 7, the commands to compile, load, and check are, as follows:

% gcc -I /tmp/usr/include simple1_mpi.c -L/tmp/usr/lib -lmpi

% ldd a.out

libmpi.so => /usr/lib/libmpi.so (0x40019000)

libc.so.6 => /lib/libc.so.6 (0x402ac000)

libdl.so.2 => /lib/libdl.so.2 (0x4039a000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

As shown above, compiling with alternate-location libraries does not mean that your
program will run with them. Note that libmpi.so is resolved to
/usr/lib/libmpi.so, which is the default-location library. If you are going to use
an alternate location for the .so files, it is important to set the LD_LIBRARY_PATH
environment variable. If the site is using environment modules, this can be done in
the mpt modulefile. Otherwise, the user must set LD_LIBRARY_PATH, as in the
following example:

% setenv LD_LIBRARY_PATH /tmp/usr/lib

% ldd a.out

007–3773–018 9

2: Administrating MPT

libmpi.so => /tmp/usr/lib/libmpi.so (0x40014000)
libc.so.6 => /lib/libc.so.6 (0x402ac000)

libdl.so.2 => /lib/libdl.so.2 (0x4039a000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

This example shows the library being resolved to the correct file.

Running MPI Jobs on a Cluster with MPT Alternate Installation

For MPI jobs to run correctly in a cluster environment in which MPT has been
installed in an alternate location, you must copy all of the pertinent pieces of MPT to
an NFS-mounted filesystem. This is the only way in which all of the nodes in the
cluster can access the software, short of installing the same MPT RPM on each node.
The following method is one way to accomplish this (assuming /data/nfs is an
NFS-mounted directory and MPT has been installed in the alternate location
/tmp/usr):

node1 # tar cf /tmp/mpt.2.04.tar /tmp/usr

node1 # cp /tmp/mpt.2.04.tar /data/nfs

node1 # cd /data/nfs

node1 # tar xf mpt.2.04.tar
node1 # setenv LD_LIBRARY_PATH /data/nfs/lib

node1 # /data/nfs/bin/mpirun -v -a <arrayname> host_A,host_B -np 1 a.out

Replace the <arrayname> in the above example with an array services array name that
contains both host_A and host_B.

System Configuration
This section describes additional system configuration issues that a system
administrator may need to address before running the SGI MPT software.

Starting Prerequisite Services

MPT requires that procset and array services be started and that the XPMEM kernel
module be loaded. These tasks are performed automatically by a reboot of the system

10 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

occurring after the system configuration tasks in this section have been performed. If a
reboot has not been performed, the following commands should be executed by root:

modprobe xpmem

/etc/init.d/procset restart

/etc/init.d/arrayd restart

If you will be running MPT on a clustered system, these steps (or a reboot) must be
performed for all hosts in the cluster.

Configuring Array Services

Array Services must be configured and running on your SGI system or cluster to
perform the launch of MPI jobs. For SGI Altix ICE systems, the unique root file
systems are best configured by the procedure outlined in the
arrayconfig_tempo(8) man page. For other SGI systems and clusters, you can
configure Array Services by executing the following command on one of the cluster
hosts, making sure to list all host names on the command line:

/usr/sbin/arrayconfig -m host1 host2 ...

The arrayconfig command will configure /etc/array/arrayd.conf and
/etc/array/arrayd.auth for your cluster. Copy these configuration files to every
cluster host and then restart Array Services on every cluster host, as follows:

/etc/init.d/array restart

For a more elaborate configuration, consult the arrayconfig(1) and
arrayd.conf(4) man pages and the "Installing and Configuring Array Services"
section of the Linux Resource Administration Guide.

Adjusting File Descriptor Limits

On large hosts with hundreds of processors, MPI jobs require a large number of file
descriptors. On these systems you might need to increase the system-wide limit on
the number of open files. The default value for the file-limit resource is 8192. The
following steps can increase this limit for all users:

1. Add the following line to /etc/pam.d/login:

session required /lib/security/pam_limits.so

007–3773–018 11

2: Administrating MPT

2. Add the following line to /etc/security/limits.conf:

* hard nofile DESC_LIMIT

Use the value of DESC_LIMIT that corresponds to the the desired maximum number
of MPI processes per host, as follows:

MPI Processes Per
Host

DESC_LIMIT Value

512 3000

1024 6000

4096 21000

For example, use " * hard nofile 3000 " to allow up to 512 MPI processes per
host.

If other login methods are used (ssh, rlogin, and so on), and the increased file
descriptor limits are desired, the corresponding files in /etc/pam.d should be
modified as well.

Adjusting Locked Memory Limits

The OFED-based InfiniBand software stacks require the resource limit for locked
memory to be set to a high value.

Increase the user hard limit by adding the following line to
/etc/security/limits.conf:

* hard memlock unlimited

If you are running on a system with an SGI ProPack software release prior to SGI
ProPack 5 Service Pack 1, you will also need to patch the Array Services startup script
/etc/init.d/array to ensure that arrayd is running with a high "memlock" hard
limit. This is done by the following sequence, executed as root:

sed -i.bak ’s/ulimit -n/ulimit -l unlimited ; ulimit -n/’ \

/etc/init.d/array
/etc/init.d/array restart

12 007–3773–018

Chapter 3

Getting Started

This chapter provides procedures for building MPI applications. It provides examples
of the use of the mpirun(1) command to launch MPI jobs. It also provides procedures
for building and running SHMEM applications. It covers the following topics:

• "Compiling and Linking MPI Programs" on page 13

• "Running MPI Jobs with a Work Load Manager" on page 16

• "Compiling and Running SHMEM Applications" on page 18

Compiling and Linking MPI Programs
The default locations for the include files, the .so files, the .a files, and the mpirun
command are pulled in automatically.

To ensure that the mpt software module is loaded, perform the following command:

% module load mpt

Once the MPT RPM is installed as default, the commands to build an MPI-based
application using the .so files are as follows:

• To compile using GNU compilers, choose one of the following commands:

% g++ -o myprog myprog.C -lmpi++ -lmpi

% gcc -o myprog myprog.c -lmpi

• To compile programs with the Intel compiler, choose one of the following
commands:

% ifort -o myprog myprog.f -lmpi (Fortran - version 8)
% icc -o myprog myprog.c -lmpi (C - version 8)
% mpif90 simple1_mpi.f (Fortan 90)
% mpicc -o myprog myprog.c (Open MPI C wrapper compiler)
% mpicxx -o myprog myprog.C (Open MPI C++ wrapper compiler)

The libmpi++.so library is compatible with code generated by g++ 3.0 or later
compilers, as well as Intel C++ 8.0 or later compilers. If compatibility with
previous g++ or C++ compilers is required, the libmpi++.so released with MPT
1.9 (or earlier) must be used.

007–3773–018 13

3: Getting Started

Note: You must use the Intel compiler to compile Fortran 90 programs.

• To compile Fortran programs with the Intel compiler, enabling compile-time
checking of MPI subroutine calls, insert a USE MPI statement near the beginning
of each subprogram to be checked and use one of the following commands:

% ifort -I/usr/include -o myprog myprog.f -lmpi (version 8)

Note: The above command line assumes a default installation; if you have
installed MPT into a non-default location, replace /usr/include with the name
of the relocated directory.

• The special case of using the Open64 compiler in combination with hybrid
MPI/OpenMP applications requires separate compilation and link command lines.
The Open64 version of the OpenMP library requires the use of the -openmp
option on the command line for compiling, but interferes with proper linking of
MPI libraries. Use the following sequence:

% opencc -o myprog.o -openmp -c myprog.c

% opencc -o myprog myprog.o -lopenmp -lmpi

Using mpirun to Launch an MPI Application
You must use the mpirun(1) command to start MPI applications. For complete
specification of the command line syntax, see the mpirun(1) man page. This section
summarizes the procedures for launching an MPI application.

Launching a Single Program on the Local Host

To run an application on the local host, enter the mpirun command with the -np
argument. Your entry must include the number of processes to run and the name of
the MPI executable file.

The following example starts three instances of the mtest application, which is
passed an argument list (arguments are optional):

% mpirun -np 3 mtest 1000 "arg2"

14 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

Launching a Multiple Program, Multiple Data (MPMD) Application on the Local Host

You are not required to use a different host in each entry that you specify on the
mpirun command. You can launch a job that has multiple executable files on the
same host. In the following example, one copy of prog1 and five copies of prog2 are
run on the local host. Both executable files use shared memory.

% mpirun -np 1 prog1 : 5 prog2

Launching a Distributed Application

You can use the mpirun command to launch a program that consists of any number
of executable files and processes and you can distribute the program to any number
of hosts. A host is usually a single machine, or it can be any accessible computer
running Array Services software. For available nodes on systems running Array
Services software, see the /usr/lib/array/arrayd.conf file.

You can list multiple entries on the mpirun command line. Each entry contains an
MPI executable file and a combination of hosts and process counts for running it.
This gives you the ability to start different executable files on the same or different
hosts as part of the same MPI application.

The examples in this section show various ways to launch an application that consists
of multiple MPI executable files on multiple hosts.

The following example runs ten instances of the a.out file on host_a:

% mpirun host_a -np 10 a.out

When specifying multiple hosts, you can omit the -np option and list the number of
processes directly. The following example launches ten instances of fred on three
hosts. fred has two input arguments.

% mpirun host_a, host_b, host_c 10 fred arg1 arg2

The following example launches an MPI application on different hosts with different
numbers of processes and executable files:

% mpirun host_a 6 a.out : host_b 26 b.out

007–3773–018 15

3: Getting Started

Using MPI-2 Spawn Functions to Launch an Application

To use the MPI-2 process creation functions MPI_Comm_spawn or
MPI_Comm_spawn_multiple, you must specify the universe size by specifying the
-up option on the mpirun command line. For example, the following command
starts three instances of the mtest MPI application in a universe of size 10:

% mpirun -up 10 -np 3 mtest

By using one of the above MPI spawn functions, mtest can start up to seven more
MPI processes.

When running MPI applications on partitioned Altix systems which use the MPI-2
MPI_Comm_spawn or MPI_Comm_spawn_multiple functions, it may be necessary to
explicitly specify the partitions on which additional MPI processes may be launched.
See the section "Launching Spawn Capable Jobs on Altix Partitioned Systems" on the
mpirun(1) man page.

Running MPI Jobs with a Work Load Manager
When an MPI job is run from a workload manager like PBS Professional, Torque, or
Load Sharing Facility (LSF), it needs to launch on the cluster nodes and CPUs that
have been allocated to the job. For multi-node MPI jobs, this type of launch requires
the use of an MPI launch command that interprets the node and CPU selection
information for the workload manager that is in use. One of these commands,
mpiexec_mpt(1), is provided with MPT, and another such command, mpiexec(1),
ships with the PBS Professional workload manager software. The following section
describes how to launch MPI jobs with specific workload managers and covers these
topics:

• "PBS Professional" on page 16

• "Torque" on page 18

PBS Professional

Often MPI applications are run from job scripts submitted through batch schedulers
like PBS Professional. This section provides some details about how to properly set
up PBS job scripts to run MPI applications.

16 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

PBS job scripts can specify needed resource allocations using the -l option on a
"#PBS" directive line. These lines will have the following form:

#PBS -l select=P:ncpus=T[:other options]

The value P should be set to the total number of MPI processes in the job, and the
value T should be set to the number of OpenMP threads per process. For purely MPI
jobs, T is 1. For more information on resource allocation options, see the
pbs_resources(7) man page from the PBS Professional software distribution.

Each MPI application is executed with the mpiexec command that is delivered with
the PBS Professional software packages. This is a wrapper script that assembles the
correct host list and corresponding mpirun command before executing the assembled
mpirun command. The basic syntax is, as follows:

mpiexec -n P ./a.out

where P is the total number of MPI processes in the application. This syntax applies
whether running on a single host or a clustered system. See the mpiexec(1) man
page for more details.

Process and thread pinning onto CPUs is especially important on cache coherent
non-uniform memory access (ccNUMA) systems like the SGI Altix 4700 or the SGI
Altix UV 1000. Process pinning is performed automatically if PBS Professional is set
up to run each application in a set of dedicated cpusets. In these cases, PBS
Professional will set the PBS_CPUSET_DEDICATED environment variable to the value
"YES". This has the same effect as setting MPI_DSM_DISTRIBUTE=ON. Process and
thread pinning are also performed in all cases where omplace(1) is used.

Example 3-1 Run an MPI application with 512 Processes

To run an application with 512 processes, perform the following:

#PBS -l select=512:ncpus=1

mpiexec -n 512 ./a.out

Example 3-2 Run an MPI application with 512 Processes and Four OpenMP Threads per
Process

To run an MPI application with 512 Processes and four OpenMP threads per process,
perform the following:

#PBS -l select=512:ncpus=4

mpiexec -n 512 omplace -nt 4 ./a.out

007–3773–018 17

3: Getting Started

The mpiexec_mpt(1) command is provided by the SGI Message Passing Toolkit
(MPT). The mpiexec_mpt command launches a MPT MPI program in a batch
scheduler-managed cluster environment. When running PBS Professional,
mpiexec_mpt is an alternative to the mpiexec(1) command. Unlike the PBS
Professional mpiexec command, mpiexec_mpt supports all MPT mpirun global
options. The mpiexec_mpt command has a -tv option for use by MPT with the
TotalView Debugger. For more information on using the mpiexec_mpt command
-tv option, see "Using the TotalView Debugger with MPI programs" on page 29.

Torque

When running Torque, SGI recommends the MPT mpiexec_mpt(1) command to
launch MPT MPI jobs.

The basic syntax is, as follows:

mpiexec_mpt -n P ./a.out

where P is the total number of MPI processes in the application. This syntax applies
whether running on a single host or a clustered system. See the mpiexec_mpt(1)
man page for more details.

The mpiexec_mpt command has a -tv option for use by MPT when running the
TotalView Debugger with a batch scheduler like Torque. For more information on
using the mpiexec_mpt command -tv option, see "Using the TotalView Debugger
with MPI programs" on page 29.

Compiling and Running SHMEM Applications
To compile SHMEM programs with a GNU compiler, choose one of the following
commands:

% g++ compute.C -lsma

% gcc compute.c -lsma

To compile SHMEM programs with the Intel compiler, use the following commands:

% icc compute.C -lsma (version 8)
% icc compute.c -lsma (version 8)
% ifort compute.f -lsma (version 8)

18 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

You must use mpirun to launch SHMEM applications. The NPES variable has no
effect on SHMEM programs. To request the desired number of processes to launch,
you must set the -np option on mpirun.

The SHMEM programming model supports single host SHMEM applications, as well
as SHMEM applications that span multiple partitions. To launch a SHMEM
application on more than one partition, use the multiple host mpirun syntax, such as
the following:

% mpirun hostA, hostB -np 16 ./shmem_app

For more information, see the intro_shmem(3) man page.

007–3773–018 19

Chapter 4

Programming with SGI MPI

Portability is one of the main advantages MPI has over vendor-specific message
passing software. Nonetheless, the MPI Standard offers sufficient flexibility for
general variations in vendor implementations. In addition, there are often vendor
specific programming recommendations for optimal use of the MPI library. This
chapter addresses topics that are of interest to those developing or porting MPI
applications to SGI systems. It covers the following topics:

• "Job Termination and Error Handling" on page 21

• "Signals" on page 22

• "Buffering" on page 23

• "Multithreaded Programming" on page 24

• "Interoperability with the SHMEM programming model" on page 24

• "Miscellaneous Features of SGI MPI" on page 25

• "Programming Optimizations" on page 25

• "Additional Programming Model Considerations" on page 28

Job Termination and Error Handling
This section describes the behavior of the SGI MPI implementation upon normal job
termination. Error handling and characteristics of abnormal job termination are also
described.

MPI_Abort

In the SGI MPI implementation, a call to MPI_Abort causes the termination of the
entire MPI job, regardless of the communicator argument used. The error code value
is returned as the exit status of the mpirun command. A stack traceback is displayed
that shows where the program called MPI_Abort.

007–3773–018 21

4: Programming with SGI MPI

Error Handling

Section 7.2 of the MPI Standard describes MPI error handling. Although almost all
MPI functions return an error status, an error handler is invoked before returning
from the function. If the function has an associated communicator, the error handler
associated with that communicator is invoked. Otherwise, the error handler
associated with MPI_COMM_WORLD is invoked.

The SGI MPI implementation provides the following predefined error handlers:

• MPI_ERRORS_ARE_FATAL. The handler, when called, causes the program to abort
on all executing processes. This has the same effect as if MPI_Abort were called
by the process that invoked the handler.

• MPI_ERRORS_RETURN. The handler has no effect.

By default, the MPI_ERRORS_ARE_FATAL error handler is associated with
MPI_COMM_WORLD and any communicators derived from it. Hence, to handle the
error statuses returned from MPI calls, it is necessary to associate either the
MPI_ERRORS_RETURN handler or another user defined handler with
MPI_COMM_WORLD near the beginning of the application.

MPI_Finalize and Connect Processes

In the SGI implementation of MPI, all pending communications involving an MPI
process must be complete before the process calls MPI_Finalize. If there are any
pending send or recv requests that are unmatched or not completed, the application
will hang in MPI_Finalize. For more details, see section 7.5 of the MPI Standard.

If the application uses the MPI-2 spawn functionality described in Chapter 5 of the
MPI-2 Standard, there are additional considerations. In the SGI implementation, all
MPI processes are connected. Section 5.5.4 of the MPI-2 Standard defines what is
meant by connected processes. When the MPI-2 spawn functionality is used,
MPI_Finalize is collective over all connected processes. Thus all MPI processes,
both launched on the command line, or subsequently spawned, synchronize in
MPI_Finalize.

Signals
In the SGI implementation, MPI processes are UNIX processes. As such, the general
rule regarding handling of signals applies as it would to ordinary UNIX processes.

22 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

In addition, the SIGURG and SIGUSR1 signals can be propagated from the mpirun
process to the other processes in the MPI job, whether they belong to the same process
group on a single host, or are running across multiple hosts in a cluster. To make use
of this feature, the MPI program must have a signal handler that catches SIGURG or
SIGUSR1. When the SIGURG or SIGUSR1 signals are sent to the mpirun process ID,
the mpirun process catches the signal and propagates it to all MPI processes.

Buffering
Most MPI implementations use buffering for overall performance reasons and some
programs depend on it. However, you should not assume that there is any message
buffering between processes because the MPI Standard does not mandate a buffering
strategy. Table 4-1 on page 23 illustrates a simple sequence of MPI operations that
cannot work unless messages are buffered. If sent messages were not buffered, each
process would hang in the initial call, waiting for an MPI_Recv call to take the
message.

Because most MPI implementations do buffer messages to some degree, a program
like this does not usually hang. The MPI_Send calls return after putting the messages
into buffer space, and the MPI_Recv calls get the messages. Nevertheless, program
logic like this is not valid by the MPI Standard. Programs that require this sequence
of MPI calls should employ one of the buffer MPI send calls, MPI_Bsend or
MPI_Ibsend.

Table 4-1 Outline of Improper Dependence on Buffering

Process 1 Process 2

MPI_Send(2,....) MPI_Send(1,....)

MPI_Recv(2,....) MPI_Recv(1,....)

By default, the SGI implementation of MPI uses buffering under most circumstances.
Short messages (64 or fewer bytes) are always buffered. Longer messages are also
buffered, although under certain circumstances buffering can be avoided. For
performance reasons, it is sometimes desirable to avoid buffering. For further
information on unbuffered message delivery, see "Programming Optimizations" on
page 25.

007–3773–018 23

4: Programming with SGI MPI

Multithreaded Programming
SGI MPI supports hybrid programming models, in which MPI is used to handle one
level of parallelism in an application, while POSIX threads or OpenMP processes are
used to handle another level. When mixing OpenMP with MPI, for performance
reasons it is better to consider invoking MPI functions only outside parallel regions,
or only from within master regions. When used in this manner, it is not necessary to
initialize MPI for thread safety. You can use MPI_Init to initialize MPI. However, to
safely invoke MPI functions from any OpenMP process or when using Posix threads,
MPI must be initialized with MPI_Init_thread.

When using MPI_Thread_init() with the threading level MPI_THREAD_MULTIPLE,
link your program with -lmpi_mt instead of -lmpi. See the mpi(1) man page for
more information about compiling and linking MPI programs.

Interoperability with the SHMEM programming model
You can mix SHMEM and MPI message passing in the same program. The
application must be linked with both the SHMEM and MPI libraries. Start with an
MPI program that calls MPI_Init and MPI_Finalize.

When you add SHMEM calls, the PE numbers are equal to the MPI rank numbers in
MPI_COMM_WORLD. Do not call start_pes() in a mixed MPI and SHMEM program.

When running the application across a cluster, some MPI processes may not be able
to communicate with certain other MPI processes when using SHMEM functions. You
can use the shmem_pe_accessible and shmem_addr_accessible functions to
determine whether a SHMEM call can be used to access data residing in another MPI
process. Because the SHMEM model functions only with respect to
MPI_COMM_WORLD, these functions cannot be used to exchange data between MPI
processes that are connected via MPI intercommunicators returned from MPI-2 spawn
related functions.

SHMEM get and put functions are thread safe. SHMEM collective and
synchronization functions are not thread safe unless different threads use different
pSync and pWork arrays.

For more information about the SHMEM programming model, see the intro_shmem
man page.

24 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

Miscellaneous Features of SGI MPI
This section describes other characteristics of the SGI MPI implementation that might
be of interest to application developers.

stdin/stdout/stderr

In this implementation, stdin is enabled for only those MPI processes with rank 0 in
the first MPI_COMM_WORLD (which does not need to be located on the same host as
mpirun). stdout and stderr results are enabled for all MPI processes in the job,
whether launched via mpirun, or via one of the MPI-2 spawn functions.

MPI_Get_processor_name

The MPI_Get_processor_name function returns the Internet host name of the
computer on which the MPI process invoking this subroutine is running.

Programming Optimizations
This section describes ways in which the MPI application developer can best make
use of optimized features of SGI’s MPI implementation. Following recommendations
in this section might require modifications to your MPI application.

Using MPI Point-to-Point Communication Routines

MPI provides for a number of different routines for point-to-point communication.
The most efficient ones in terms of latency and bandwidth are the blocking and
nonblocking send/receive functions (MPI_Send, MPI_Isend, MPI_Recv, and
MPI_Irecv).

Unless required for application semantics, the synchronous send calls (MPI_Ssend
and MPI_Issend) should be avoided. The buffered send calls (MPI_Bsend and
MPI_Ibsend) should also usually be avoided as these double the amount of memory
copying on the sender side. The ready send routines (MPI_Rsend and MPI_Irsend)
are treated as standard MPI_Send and MPI_Isend in this implementation. Persistent
requests do not offer any performance advantage over standard requests in this
implementation.

007–3773–018 25

4: Programming with SGI MPI

Using MPI Collective Communication Routines

The MPI collective calls are frequently layered on top of the point-to-point primitive
calls. For small process counts, this can be reasonably effective. However, for higher
process counts (32 processes or more) or for clusters, this approach can become less
efficient. For this reason, a number of the MPI library collective operations have been
optimized to use more complex algorithms.

Most collectives have been optimized for use with clusters. In these cases, steps are
taken to reduce the number of messages using the relatively slower interconnect
between hosts.

Some of the collective operations have been optimized for use with shared memory.
The barrier operation has also been optimized to use hardware fetch operations
(fetchops). The MPI_Alltoall routines also use special techniques to avoid
message buffering when using shared memory. For more details, see "Avoiding
Message Buffering — Single Copy Methods" on page 27.

Note: Collectives are optimized across partitions by using the XPMEM driver which
is explained in Chapter 8, "Run-time Tuning". The collectives (except MPI_Barrier)
will try to use single-copy by default for large transfers unless
MPI_DEFAULT_SINGLE_COPY_OFF is specified.

Using MPI_Pack/MPI_Unpack

While MPI_Pack and MPI_Unpack are useful for porting parallel virtual machine
(PVM) codes to MPI, they essentially double the amount of data to be copied by both
the sender and receiver. It is generally best to avoid the use of these functions by
either restructuring your data or using derived data types. Note, however, that use of
derived data types may lead to decreased performance in certain cases.

Avoiding Derived Data Types

In general, you should avoid derived data types when possible. In the SGI
implementation, use of derived data types does not generally lead to performance
gains. Use of derived data types might disable certain types of optimizations (for
example, unbuffered or single copy data transfer).

26 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

Avoiding Wild Cards

The use of wild cards (MPI_ANY_SOURCE, MPI_ANY_TAG) involves searching
multiple queues for messages. While this is not significant for small process counts,
for large process counts the cost increases quickly.

Avoiding Message Buffering — Single Copy Methods

One of the most significant optimizations for bandwidth sensitive applications in the
MPI library is single copy optimization, avoiding the use of shared memory buffers.
However, as discussed in "Buffering" on page 23, some incorrectly coded applications
might hang because of buffering assumptions. For this reason, this optimization is not
enabled by default for MPI_send, but can be turned on by the user at run time by
using the MPI_BUFFER_MAX environment variable. The following steps can be taken
by the application developer to increase the opportunities for use of this unbuffered
pathway:

• The MPI data type on the send side must be a contiguous type.

• The sender and receiver MPI processes must reside on the same host or, in the
case of a partitioned system, the processes may reside on any of the partitions.

• The sender data must be globally accessible by the receiver. The SGI MPI
implementation allows data allocated from the static region (common blocks), the
private heap, and the stack region to be globally accessible. In addition, memory
allocated via the MPI_Alloc_mem function or the SHMEM symmetric heap
accessed via the shpalloc or shmalloc functions is globally accessible.

Certain run-time environment variables must be set to enable the unbuffered, single
copy method. For more details on how to set the run-time environment, see
"Avoiding Message Buffering – Enabling Single Copy" on page 37.

Note: With the Intel 7.1 compiler, ALLOCATABLE arrays are not eligible for single
copy, since they do not reside in a globally accessible memory region. This restriction
does not apply when using the Intel 8.0/8.1 compilers.

Managing Memory Placement

SGI Altix 4000 and SGI Altix UV 1000 series systems have a ccNUMA memory
architecture. For single process and small multiprocess applications, this architecture

007–3773–018 27

4: Programming with SGI MPI

behaves similarly to flat memory architectures. For more highly parallel applications,
memory placement becomes important. MPI takes placement into consideration when
laying out shared memory data structures, and the individual MPI processes’ address
spaces. In general, it is not recommended that the application programmer try to
manage memory placement explicitly. There are a number of means to control the
placement of the application at run time, however. For more information, see Chapter
8, "Run-time Tuning" on page 35.

Using Global Shared Memory

The MPT software includes the Global Shared Memory (GSM) Feature. This feature
allows users to allocate globally accessible shared memory from within an MPI or
SHMEM program. The GSM feature can be used to provide shared memory access
across partitioned Altix systems and additional memory placement options within a
single host configuration.

User-callable functions are provided to allocate a global shared memory segment, free
that segment, and provide information about the segment. Once allocated, the
application can use this new global shared memory segment via standard loads and
stores, just as if it were a System V shared memory segment. For more information,
see the GSM_Intro or GSM_Alloc man pages.

Additional Programming Model Considerations
A number of additional programming options might be worth consideration when
developing MPI applications for SGI systems. For example, the SHMEM
programming model can provide a means to improve the performance of
latency-sensitive sections of an application. Usually, this requires replacing MPI
send/recv calls with shmem_put/shmem_get and shmem_barrier calls. The
SHMEM programming model can deliver significantly lower latencies for short
messages than traditional MPI calls. As an alternative to shmem_get/shmem_put
calls, you might consider the MPI-2 MPI_Put/ MPI_Get functions. These provide
almost the same performance as the SHMEM calls, while providing a greater degree
of portability.

Alternately, you might consider exploiting the shared memory architecture of SGI
systems by handling one or more levels of parallelism with OpenMP, with the coarser
grained levels of parallelism being handled by MPI. Also, there are special ccNUMA
placement considerations to be aware of when running hybrid MPI/OpenMP
applications. For further information, see Chapter 8, "Run-time Tuning" on page 35.

28 007–3773–018

Chapter 5

Debugging MPI Applications

Debugging MPI applications can be more challenging than debugging sequential
applications. This chapter presents methods for debugging MPI applications. It
covers the following topics:

• "MPI Routine Argument Checking" on page 29

• "Using the TotalView Debugger with MPI programs" on page 29

• "Using idb and gdb with MPI programs" on page 30

MPI Routine Argument Checking
By default, the SGI MPI implementation does not check the arguments to some
performance-critical MPI routines such as most of the point-to-point and collective
communication routines. You can force MPI to always check the input arguments to
MPI functions by setting the MPI_CHECK_ARGS environment variable. However,
setting this variable might result in some degradation in application performance, so
it is not recommended that it be set except when debugging.

Using the TotalView Debugger with MPI programs
The syntax for running SGI MPI with the TotalView Debugger (TVD) from TotalView
Technologies is, as follows:

% totalview mpirun -a -np 4 a.out

Note that TVD is not expected to operate with MPI processes started via the
MPI_Comm_spawn or MPI_Comm_spawn_multiple functions.

The MPT mpiexec_mpt(1) command has a -tv option for use by MPT with the
TotalView Debugger. Note that the PBS Professional mpiexec(1) command does not
support the -tv option.

To run an MPT MPI job with TotalView without a batch scheduler (same as the above
example), perform the following:

% totalview mpirun -a -np 4 a.out

007–3773–018 29

5: Debugging MPI Applications

To run an MPT MPI job with Total View Debugger with a batch schduler, such as,
PBS Professional or Torque, perform the following:

% mpiexec_mpt -tv -np 4 a.out

Using idb and gdb with MPI programs
Because the idb and gdb debuggers are designed for sequential, non-parallel
applications, they are generally not well suited for use in MPI program debugging
and development. However, the use of the MPI_SLAVE_DEBUG_ATTACH environment
variable makes these debuggers more usable.

If you set the MPI_SLAVE_DEBUG_ATTACH environment variable to a global rank
number, the MPI process sleeps briefly in startup while you use idb or gdb to attach
to the process. A message is printed to the screen, telling you how to use idb or gdb
to attach to the process.

Similarly, if you want to debug the MPI daemon, setting
MPI_DAEMON_DEBUG_ATTACH sleeps the daemon briefly while you attach to it.

30 007–3773–018

Chapter 6

PerfBoost

SGI PerfBoost uses a wrapper library to run applications compiled against other MPI
implementations under the SGI Message Passing Toolkit (MPT) product on SGI
platforms. This chapter describes how to use PerfBoost software.

Using PerfBoost
To use PerfBoost with an SGI MPT MPI program, first load the perfboost
environmental module (see Example 6-1 on page 31). Then insert the perfboost
command in front of the executable name along with the choice of MPI
implementation to emulate. Launch the application with the SGI MPT
mpiexec_mpt(1) or mpirun(1) command. Here is a list of MPI implementations and
corresponding command line options:

MPI
Implementation

Command Line Option

Platform MPI 7.1+ -pmpi

HP-MPI -pmpi

Intel MPI -impi

OpenMPI -ompi

MPICH1 -mpich

MPICH2 -impi

MVAPICH2 -impi

Example 6-1 Using the SGI perfboost Software

Here are some examples using perfboost:

% module load mpt

% module load perfboost

% mpirun -np 32 perfboost -impi a.out arg1
% mpiexec_mpt perfboost -pmpi b.out arg1

% mpirun host1 32, host2 64 perfboost -impi c.out arg1 arg2

007–3773–018 31

6: PerfBoost

Environment Variables
The MPI environment variables that are documented in the MPI(1) man page are
available to PerfBoost.

MPI environment variables that are not used by SGI MPT are currently not supported.

PERFBOOST_VERBOSE Setting the PERFBOOST_VERBOSE environment variable
will enable a message when PerfBoost activates and
also when the MPI application is completed through
the MPI_Finalize() function. This message merely
indicates that the PerfBoost library is active and also
when the MPI application completes through the
libperfboost. wrapper library.

Note: Some applications will re-direct stderr in which case the verbose messages
may not appear in the application output.

MPI Supported Functions
SGI PerfBoost supports the commonly used elements of the C & Fortran MPI APIs. If
a function is not supported, the job will be aborted and an error printed showing the
name of the missing function. Please contact SGI Customer Support Center at
https://support.sgi.com/caselist to get a missing function scheduled for addition to
PerfBoost.

32 007–3773–018

Chapter 7

Checkpoint/Restart

MPT 2.02 (or later) supports application checkpoint/restart by using the Berkeley Lab
Checkpoint/Restart (BLCR) implementation. This allows applications to periodically
save a copy of their state. They can then later resume from that point in time if the
application crashes or the job is aborted to free up resources for higher priority jobs.

There are some important limitations to keep in mind, as follows:

• BLCR does not checkpoint the state of any data files that the application may be
using.

• Certain MPI features including spawning and one-sided MPI are also not
supported when using CPR.

• InfiniBand XRC queue pairs are not supported.

• Checkpoint files are often very large and require significant disk bandwidth to
create in a timely manner.

For more information on BLCR, see
https://ftg.lbl.gov/CheckpointRestart/CheckpointRestart.shtml

BLCR Installation
To use checkpoint/restart with MPT, BLCR must first be installed. This requires
installing the blcr-, blcr-libs-, and blcr-kmp- RPMs. BLCR must then be
enabled by root, as follows:

% chkconfig blcr on

BLCR uses a kernel module which must be built against the specific kernel that the
operating system is running. In the case that the kernel module fails to load, it must
be rebuilt and installed. Install the blcr- SRPM. In the blcr.spec file, set the
kernel variable to the name of the current kernel, then rebuild and install the new set
of RPMs.

007–3773–018 33

7: Checkpoint/Restart

Using BLCR with MPT
To enable checkpoint/restart within MPT, mpirun or mpiexec_mpt must be passed
the -cpr option, for example:

% mpirun -cpr hostA, hostB -np 8 ./a.out

To checkpoint a job, use the mpt_checkpoint command on the same host where
mpirun is running. mpt_checkpoint needs to be passed the PID of mpirun and a
name with which you want to prefix all the checkpoint files. For example:

% mpt_checkpoint -p 12345 -f my_checkpoint

This will create a my_checkpoint.cps meta-data file and a number of
my_checkpoint.*.cpd files.

To restart the job, pass the name of the .cps file to mpirun, for example:

% mpirun -restart my_checkpoint.cps hostC, hostD -np 8 ./a.out

The job may be restarted on a different set of hosts but there must be the same
number of hosts and each host must have the same number of ranks as the
corresponding host in the original run of the job.

34 007–3773–018

Chapter 8

Run-time Tuning

This chapter discusses ways in which the user can tune the run-time environment to
improve the performance of an MPI message passing application on SGI computers.
None of these ways involve application code changes. This chapter covers the
following topics:

• "Reducing Run-time Variability" on page 35

• "Tuning MPI Buffer Resources" on page 36

• "Avoiding Message Buffering – Enabling Single Copy" on page 37

• "Memory Placement and Policies" on page 38

• "Tuning MPI/OpenMP Hybrid Codes" on page 41

• "Tuning for Running Applications Across Multiple Hosts" on page 42

• "Tuning for Running Applications over the InfiniBand Interconnect" on page 44

• "MPI on Altix UV 100 and Altix UV 1000 Systems" on page 45

• "Suspending MPI Jobs" on page 47

Reducing Run-time Variability
One of the most common problems with optimizing message passing codes on large
shared memory computers is achieving reproducible timings from run to run. To
reduce run-time variability, you can take the following precautions:

• Do not oversubscribe the system. In other words, do not request more CPUs than
are available and do not request more memory than is available. Oversubscribing
causes the system to wait unnecessarily for resources to become available and
leads to variations in the results and less than optimal performance.

• Avoid interference from other system activity. The Linux kernel uses more
memory on node 0 than on other nodes (node 0 is called the kernel node in the
following discussion). If your application uses almost all of the available memory
per processor, the memory for processes assigned to the kernel node can
unintentionally spill over to nonlocal memory. By keeping user applications off
the kernel node, you can avoid this effect.

007–3773–018 35

8: Run-time Tuning

Additionally, by restricting system daemons to run on the kernel node, you can
also deliver an additional percentage of each application CPU to the user.

• Avoid interference with other applications. You can use cpusets to address this
problem also. You can use cpusets to effectively partition a large, distributed
memory host in a fashion that minimizes interactions between jobs running
concurrently on the system. See the Linux Resource Administration Guide for
information about cpusets.

• On a quiet, dedicated system, you can use dplace or the MPI_DSM_CPULIST
shell variable to improve run-time performance repeatability. These approaches
are not as suitable for shared, nondedicated systems.

• Use a batch scheduler; for example, Platform LSF from Platform Computing
Corporation or PBS Professional from Altair Engineering, Inc. These batch
schedulers use cpusets to avoid oversubscribing the system and possible
interference between applications.

Tuning MPI Buffer Resources
By default, the SGI MPI implementation buffers messages whose lengths exceed 64
bytes. Longer messages are buffered in a shared memory region to allow for
exchange of data between MPI processes. In the SGI MPI implementation, these
buffers are divided into two basic pools.

• For messages exchanged between MPI processes within the same host or between
partitioned systems when using the XPMEM driver or when there are more than
MPI_BUFS_THRESHOLD hosts, buffers from the ”per process” pool (called the “per
proc” pool) are used. Each MPI process is allocated a fixed portion of this pool
when the application is launched. Each of these portions is logically partitioned
into 16-KB buffers.

• For MPI jobs running across multiple hosts, a second pool of shared memory is
available. Messages exchanged between MPI processes on different hosts use this
pool of shared memory, called the “per host” pool. The structure of this pool is
somewhat more complex than the “per proc” pool.

For an MPI job running on a single host, messages that exceed 64 bytes are handled
as follows. For messages with a length of 128k or less, the sender MPI process buffers
the entire message. It then delivers a message header (also called a control message)
to a mailbox, which is polled by the MPI receiver when an MPI call is made. Upon
finding a matching receive request for the sender’s control message, the receiver

36 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

copies the data out of the shared memory buffer into the application buffer indicated
in the receive request. The receiver then sends a message header back to the sender
process, indicating that the shared memory buffer is available for reuse. Messages
whose length exceeds 128k are broken down into 128k chunks, allowing the sender
and receiver to overlap the copying of data to and from shared memory in a pipeline
fashion.

Because there is a finite number of these shared memory buffers, this can be a
constraint on the overall application performance for certain communication patterns.
You can use the MPI_BUFS_PER_PROC shell variable to adjust the number of buffers
available for the “per proc” pool. Similarly, you can use the MPI_BUFS_PER_HOST
shell variable to adjust the “per host” pool. You can use the MPI statistics counters to
determine if retries for these shared memory buffers are occurring.

For information on the use of these counters, see "MPI Internal Statistics" on page 57.
In general, you can avoid excessive numbers of retries for buffers by increasing the
number of buffers for the “per proc” pool or “per host” pool. However, you should
keep in mind that increasing the number of buffers does consume more memory.
Also, increasing the number of “per proc” buffers does potentially increase the
probability for cache pollution (that is, the excessive filling of the cache with message
buffers). Cache pollution can result in degraded performance during the compute
phase of a message passing application.

There are additional buffering considerations to take into account when running an
MPI job across multiple hosts. For further discussion of multihost runs, see "Tuning
for Running Applications Across Multiple Hosts" on page 42.

For further discussion on programming implications concerning message buffering,
see "Buffering" on page 23.

Avoiding Message Buffering – Enabling Single Copy
For message transfers between MPI processes within the same host or transfers
between partitions, it is possible under certain conditions to avoid the need to buffer
messages. Because many MPI applications are written assuming infinite buffering, the
use of this unbuffered approach is not enabled by default for MPI_Send. This section
describes how to activate this mechanism by default for MPI_Send.

For MPI_Isend, MPI_Sendrecv, MPI_Alltoall, MPI_Bcast, MPI_Allreduce,
and MPI_Reduce, this optimization is enabled by default for large message sizes. To

007–3773–018 37

8: Run-time Tuning

disable this default single copy feature used for the collectives, use the
MPI_DEFAULT_SINGLE_COPY_OFF environment variable.

Using the XPMEM Driver for Single Copy Optimization

MPI takes advantage of the XPMEM driver to support single copy message transfers
between two processes within the same host or across partitions.

Enabling single copy transfers may result in better performance, since this technique
improves MPI’s bandwidth. However, single copy transfers may introduce additional
synchronization points, which can reduce application performance in some cases.

The threshold for message lengths beyond which MPI attempts to use this single copy
method is specified by the MPI_BUFFER_MAX shell variable. Its value should be set to
the message length in bytes beyond which the single copy method should be tried. In
general, a value of 2000 or higher is beneficial for many applications.

During job startup, MPI uses the XPMEM driver (via the xpmem kernel module) to
map memory from one MPI process to another. The mapped areas include the static
(BSS) region, the private heap, the stack region, and optionally the symmetric heap
region of each process.

Memory mapping allows each process to directly access memory from the address
space of another process. This technique allows MPI to support single copy transfers
for contiguous data types from any of these mapped regions. For these transfers,
whether between processes residing on the same host or across partitions, the data is
copied using a bcopy process. A bcopy process is also used to transfer data
between two different executable files on the same host or two different executable
files across partitions. For data residing outside of a mapped region (a /dev/zero
region, for example), MPI uses a buffering technique to transfer the data.

Memory mapping is enabled by default. To disable it, set the MPI_MEMMAP_OFF
environment variable. Memory mapping must be enabled to allow single-copy
transfers, MPI-2 one-sided communication, support for the SHMEM model, and
certain collective optimizations.

Memory Placement and Policies
The MPI library takes advantage of NUMA placement functions that are available.
Usually, the default placement is adequate. Under certain circumstances, however,
you might want to modify this default behavior. The easiest way to do this is by

38 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

setting one or more MPI placement shell variables. Several of the most commonly
used of these variables are discribed in the following sections. For a complete listing
of memory placement related shell variables, see the MPI(1) man page.

MPI_DSM_CPULIST

The MPI_DSM_CPULIST shell variable allows you to manually select processors to
use for an MPI application. At times, specifying a list of processors on which to run a
job can be the best means to insure highly reproducible timings, particularly when
running on a dedicated system.

This setting is treated as a comma and/or hyphen delineated ordered list that
specifies a mapping of MPI processes to CPUs. If running across multiple hosts, the
per host components of the CPU list are delineated by colons. Within hyphen
delineated lists CPU striding may be specified by placing "/#" after the list where "#"
is the stride distance.

Note: This feature should not be used with MPI applications that use either of the
MPI-2 spawn related functions.

Examples of settings are as follows:

Value CPU Assignment

8,16,32 Place three MPI processes on CPUs 8, 16, and 32.

32,16,8 Place the MPI process rank zero on CPU 32, one on 16,
and two on CPU 8.

8-15/2 Place the MPI processes 0 through 3 strided on CPUs 8,
10, 12, and 14

8-15,32-39 Place the MPI processes 0 through 7 on CPUs 8 to 15.
Place the MPI processes 8 through 15 on CPUs 32 to 39.

39-32,8-15 Place the MPI processes 0 through 7 on CPUs 39 to 32.
Place the MPI processes 8 through 15 on CPUs 8 to 15.

007–3773–018 39

8: Run-time Tuning

8-15:16-23 Place the MPI processes 0 through 7 on the first host on
CPUs 8 through 15. Place MPI processes 8 through 15
on CPUs 16 to 23 on the second host.

Note that the process rank is the MPI_COMM_WORLD rank. The interpretation of the
CPU values specified in the MPI_DSM_CPULIST depends on whether the MPI job is
being run within a cpuset. If the job is run outside of a cpuset, the CPUs specify
cpunum values beginning with 0 and up to the number of CPUs in the system minus
one. When running within a cpuset, the default behavior is to interpret the CPU
values as relative processor numbers within the cpuset.

The number of processors specified should equal the number of MPI processes that
will be used to run the application. The number of colon delineated parts of the list
must equal the number of hosts used for the MPI job. If an error occurs in processing
the CPU list, the default placement policy is used.

MPI_DSM_DISTRIBUTE

Use the MPI_DSM_DISTRIBUTE shell variable to ensure that each MPI process will
get a physical CPU and memory on the node to which it was assigned. If this
environment variable is used without specifying an MPI_DSM_CPULIST variable, it
will cause MPI to assign MPI ranks starting at logical CPU 0 and incrementing until
all ranks have been placed. Therefore, it is recommended that this variable be used
only if running within a cpuset on a dedicated system.

MPI_DSM_VERBOSE

Setting the MPI_DSM_VERBOSE shell variable directs MPI to display a synopsis of the
NUMA and host placement options being used at run time.

Using dplace for Memory Placement

The dplace tool offers another means of specifying the placement of MPI processes
within a distributed memory host. The dplace tool and MPI interoperate to allow
MPI to better manage placement of certain shared memory data structures when
dplace is used to place the MPI job.

For instructions on how to use dplace with MPI, see the dplace(1) man page and
the Linux Application Tuning Guide.

40 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

Tuning MPI/OpenMP Hybrid Codes
A hybrid MPI/OpenMP application is one in which each MPI process itself is a
parallel threaded program. These programs often exploit the OpenMP paralllelism at
the loop level while also implementing a higher level parallel algorithm using MPI.

Many parallel applications perform better if the MPI processes and the threads within
them are pinned to particular processors for the duration of their execution. For
ccNUMA systems, this ensures that all local, non-shared memory is allocated on the
same memory node as the processor referencing it. For all systems, it can ensure that
some or all of the OpenMP threads stay on processors that share a bus or perhaps a
processor cache, which can speed up thread synchronization.

MPT provides the omplace(1) command to help with the placement of OpenMP
threads within an MPI program. The omplace command causes the threads in a
hybrid MPI/OpenMP job to be placed on unique CPUs within the containing cpuset.
For example, the threads in a 2-process MPI program with 2 threads per process
would be placed as follows:

rank 0 thread 0 on CPU 0

rank 0 thread 1 on CPU 1

rank 1 thread 0 on CPU 2

rank 1 thread 1 on CPU 3

The CPU placement is performed by dynamically generating a dplace(1) placement
file and invoking dplace.

For detailed syntax and a number of examples, see the omplace(1) man page. For
more information on dplace, see the dplace(1) man page. For information on using
cpusets, see the Linux Resource Administration Guide. For more information on using
dplace, see the Linux Application Tuning Guide.

Example 8-1 How to Run a Hybrid MPI/OpenMP Application

Here is an example of how to run a hybrid MPI/OpenMP application with eight MPI
processes that are two-way threaded on two hosts:

mpirun host1,host2 -np 4 omplace -nt 2 ./a.out

When using the PBS batch scheduler to schedule the a hybrid MPI/OpenMP job as
shown in Example 8-1 on page 41, use the following resource allocation specification:

#PBS -l select=8:ncpus=2

007–3773–018 41

8: Run-time Tuning

And use the following mpiexec command with the above example:

mpiexec -n 8 omplace -nt 2 ./a.out

For more information about running MPT programs with PBS, see"Running MPI Jobs
with a Work Load Manager" on page 16 .

Tuning for Running Applications Across Multiple Hosts
When you are running an MPI application across a cluster of hosts, there are
additional run-time environment settings and configurations that you can consider
when trying to improve application performance.

Systems can use the XPMEM interconnect to cluster hosts as partitioned systems, or
use the Voltaire InfiniBand interconnect or TCP/IP as the multihost interconnect.

When launched as a distributed application, MPI probes for these interconnects at job
startup. For details of launching a distributed application, see "Launching a
Distributed Application" on page 15. When a high performance interconnect is
detected, MPI attempts to use this interconnect if it is available on every host being
used by the MPI job. If the interconnect is not available for use on every host, the
library attempts to use the next slower interconnect until this connectivity
requirement is met. Table 8-1 on page 42 specifies the order in which MPI probes for
available interconnects.

Table 8-1 Inquiry Order for Available Interconnects

Interconnect Default Order of Selection
Environment Variable to
Require Use

XPMEM 1 MPI_USE_XPMEM

InfiniBand 2 MPI_USE_IB

TCP/IP 3 MPI_USE_TCP

The third column of Table 8-1 on page 42 also indicates the environment variable you
can set to pick a particular interconnect other than the default.

42 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

In general, to insure the best performance of the application, you should allow MPI to
pick the fastest available interconnect.

In addition to the choice of interconnect, you should know that multihost jobs may
use different buffers from those used by jobs run on a single host. In the SGI
implementation of MPI, the XPMEM interconnect uses the “per proc” buffers while
the InfiniBand and TCP interconnects use the “per host” buffers. The default setting
for the number of buffers per proc or per host might be too low for many
applications. You can determine whether this setting is too low by using the MPI
statistics described earlier in this section.

When using the TCP/IP interconnect, unless specified otherwise, MPI uses the default
IP adapter for each host. To use a nondefault adapter, enter the adapter-specific host
name on the mpirun command line.

When using the InfiniBand interconnect, MPT applications may not execute a fork()
or system() call. The InfiniBand driver produces undefined results when an MPT
process using InfiniBand forks.

MPI_USE_IB

Requires the MPI library to use the InfiniBand driver as the interconnect when
running across multiple hosts or running with multiple binaries. MPT requires the
ibhost software stack from Voltaire when the InfiniBand interconnect is used. If
InfiniBand is used, the MPI_COREDUMP environment variable is forced to INHIBIT, to
comply with the InfiniBand driver restriction that no fork()s may occur after
InfiniBand resources have been allocated. Default: Not set

MPI_IB_RAILS

When this is set to 1 and the MPI library uses the InfiniBand driver as the inter-host
interconnect, MPT will send its InfiniBand traffic over the first fabric that it detects. If
this is set to 2, the library will try to make use of multiple available separate
InfiniBand fabrics and split its traffic across them. If the separate InfiniBand fabrics
do not have unique subnet IDs, then the rail-config utility is required. It must be
run by the system administrator to enable the library to correctly use the separate
fabrics. Default: 1 on all SGI Altix systems.

007–3773–018 43

8: Run-time Tuning

MPI_IB_SINGLE_COPY_BUFFER_MAX

When MPI transfers data over InfiniBand, if the size of the cumulative data is greater
than this value then MPI will attempt to send the data directly between the processes’s
buffers and not through intermediate buffers inside the MPI library. Default: 32767

For more information on these environment variables, see the “ENVIRONMENT
VARIABLES” section of the mpi(1) man page.

Tuning for Running Applications over the InfiniBand Interconnect
When running an MPI application across a cluster of hosts using the InfiniBand
interconnect, there are additional run-time environmental settings that you can
consider to improve application performance, as follows:

MPI_NUM_QUICKS

Controls the number of other ranks that a rank can receive from over InfiniBand using
a short message fast path. This is 8 by default and can be any value between 0 and 32.

MPI_NUM_MEMORY_REGIONS

For zero-copy sends over the InfiniBand interconnect, MPT keeps a cache of
application data buffers registered for these transfers. This environmental variable
controls the size of the cache. It is 8 by default and can be any value between 0 and
32. If the application rarely reuses data buffers, it may make sense to set this value to
0 to avoid cache trashing.

MPI_CONNECTIONS_THRESHOLD

For very large MPI jobs, the time and resource cost to create a connection between
every pair of ranks at job start time may be prodigious. When the number of ranks is
at least this value, the MPI library will create InfiniBand connections lazily on a
demand basis. The default is 2048 ranks.

44 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

MPI_IB_PAYLOAD

When the MPI library uses the InfiniBand fabric, it allocates some amount of memory
for each message header that it uses for InfiniBand. If the size of data to be sent is not
greater than this amount minus 64 bytes for the actual header, the data is inlined with
the header. If the size is greater than this value, then the message is sent through
remote direct memory access (RDMA) operations. The default is 16384 bytes.

MPI_IB_TIMEOUT

When an InfiniBand card sends a packet, it waits some amount of time for an ACK
packet to be returned by the receiving InfiniBand card. If it does not receive one, it
sends the packet again. This variable controls that wait period. The time spent is
equal to 4 * 2 ^ MPI_IB_TIMEOUT microseconds. By default, the variable is set to 18.

MPI_IB_FAILOVER

When the MPI library uses InfiniBand and this variable is set, and an InfiniBand
transmission error occurs, MPT will try to restart the connection to the other rank. It
will handle a number of errors of this type between any pair of ranks equal to the
value of this variable. By default, the variable is set to 4.

MPI on Altix UV 100 and Altix UV 1000 Systems
The SGI Altix UV 100 and Altix UV 1000 series systems are scalable nonuniform
memory access (NUMA) systems that support a single Linux image of thousands of
processors distributed over many sockets and SGI Altix UV Hub application-specific
integrated circuits (ASICs). The UV Hub is the heart of the SGI Altix UV 1000 or
Altix UV 100 system compute blade. Each "processor" is a hyperthread on a
particular core within a particular socket. Each Altix UV Hub normally connects to
two sockets. All communication between the sockets and the UV Hub uses Intel
QuickPath Interconnect (QPI) channels. The Altix UV Hub has four NUMAlink 5
ports that connect with the NUMAlink 5 interconnect fabric. The UV Hub acts as a
crossbar between the processors, local SDRAM memory, and the network interface.
The Hub ASIC enables any processor in the single-system image (SSI) to access the
memory of all processors in the SSI. For more information on the SGI Altix UV hub,
Altix UV compute blades, QPI, and NUMAlink 5, see the SGI Altix UV 1000 System
User’s Guide or the SGI Altix UV 100 System User’s Guide, respectively.

007–3773–018 45

8: Run-time Tuning

When MPI communicates between processes, two transfer methods are possible on an
Altix UV system:

• By use of shared memory

• By use of the global reference unit (GRU), part of the Altix UV Hub ASIC

MPI chooses the method depending on internal heuristics, the type of MPI
communication that is involved, and some user-tunable variables. When using the
GRU to transfer data and messages, the MPI library uses the GRU resources it
allocates via the GRU resource allocator, which divides up the available GRU
resources. It fairly allocates buffer space and control blocks between the logical
processors being used by the MPI job.

General Considerations

Running MPI jobs optimally on Altix UV systems is not very difficult. It is best to pin
MPI processes to CPUs and isolate multiple MPI jobs onto different sets of sockets
and Hubs, and this is usually achieved by configuring a batch scheduler to create a
cpuset for every MPI job. MPI pins its processes to the sequential list of logical
processors within the containing cpuset by default, but you can control and alter the
pinning pattern using MPI_DSM_CPULIST (see "MPI_DSM_CPULIST" on page 39),
omplace(1), and dplace(1).

Job Performance Types

The MPI library chooses buffer sizes and communication algorithms in an attempt to
deliver the best performance automatically to a wide variety of MPI applications.
However, applications have different performance profiles and bottlenecks, and so
user tuning may be of help in improving performance. Here are some application
performance types and ways that MPI performance may be improved for them:

• Odd HyperThreads are idle.

Most high performance computing MPI programs run best using only one
HyperThread per core. When an Altix UV system has multiple HyperThreads per
core, logical CPUs are numbered such that odd HyperThreads are the high half of
the logical CPU numbers. Therefore, the task of scheduling only on the even
HyperThreads may be accomplished by scheduling MPI jobs as if only half the
full number exist, leaving the high logical CPUs idle.You can use the cpumap(1)
command to determine if cores have multiple HyperThreads on your Altix UV

46 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

system. The output tells the number of physical and logical processors and if
Hyperthreading is ON or OFF and how shared processors are paired (towards the
bottom of the command’s output).

If an MPI job uses only half of the available logical CPUs, set
GRU_RESOURCE_FACTOR to 2 so that the MPI processes can utilize all the
available GRU resources on a Hub rather than reserving some of them for the idle
HyperThreads. For more information about GRU resource tuning, see the
gru_resource(3) man page.

• MPI large message bandwidth is important.

Some programs transfer large messages via the MPI_Send function. To switch on
the use of unbuffered, single copy transport in these cases you can set
MPI_BUFFER_MAX to 0. See the MPI(1) man page for more details.

• MPI small or near messages are very frequent.

For small fabric hop counts, shared memory message delivery is faster than GRU
messages. To deliver all messages within an Altix UV host via shared memory, set
MPI_SHARED_NEIGHBORHOOD to "host". See the MPI(1) man page for more
details.

Other ccNUMA Performance Issues

MPI application processes normally perform best if their local memory is allocated on
the socket assigned to execute it. This cannot happen if memory on that socket is
exhausted by the application or by other system consumption, for example, file buffer
cache. Use the nodeinfo(1) command to view memory consumption on the nodes
assigned to your job and use bcfree(1) to clear out excessive file buffer cache. PBS
Professional batch scheduler installations can be configured to issue
bcfreecommands in the job prologue. For more information, see PBS Professional
documentation and the bcfree(1) man page.

Suspending MPI Jobs
MPI software from SGI can internally use the XPMEM kernel module to provide
direct access to data on remote partitions and to provide single copy operations to
local data. Any pages used by these operations are prevented from paging by the
XPMEM kernel module. If an administrator needs to temporarily suspend a MPI

007–3773–018 47

8: Run-time Tuning

application to allow other applications to run, they can unpin these pages so they can
be swapped out and made available for other applications.

Each process of a MPI application which is using the XPMEM kernel module will
have a /proc/xpmem/pid file associated with it. The number of pages owned by this
process which are prevented from paging by XPMEM can be displayed by
concatenating the /proc/xpmem/pid file, for example:

cat /proc/xpmem/5562

pages pinned by XPMEM: 17

To unpin the pages for use by other processes, the administrator must first suspend
all the processes in the application. The pages can then be unpinned by echoing any
value into the /proc/xpmem/pid file, for example:

echo 1 > /proc/xpmem/5562

The echo command will not return until that process’s pages are unpinned.

When the MPI application is resumed, the XPMEM kernel module will prevent these
pages from paging as they are referenced by the application.

48 007–3773–018

Chapter 9

MPI Performance Profiling

This chapter describes the perfcatch utility used to profile the performance of an
MPI program and other tools that can be used for profiling MPI applications. It
covers the following topics:

• "Overview of perfcatch Utility" on page 49

• "Using the perfcatch Utility" on page 49

• " MPI_PROFILING_STATS Results File Example" on page 50

• "MPI Performance Profiling Environment Variables" on page 53

• "MPI Supported Profiled Functions"

• "Profiling MPI Applications" on page 55

Overview of perfcatch Utility
The perfcatch utility runs an MPI program with a wrapper profiling library that
prints MPI call profiling information to a summary file upon MPI program
completion. This MPI profiling result file is called MPI_PROFILING_STATS, by
default (see " MPI_PROFILING_STATS Results File Example" on page 50). It is
created in the current working directory of the MPI process with rank 0.

Using the perfcatch Utility
The syntax of the perfcatch utility is, as follows:

perfcatch [-v | -vofed | -i] cmd args

The perfcatch utility accepts the following options:

No option Supports MPT

-v Supports Voltaire MPI

-vofed Supports Voltaire OFED MPI

007–3773–018 49

9: MPI Performance Profiling

-i Supports Intel MPI

To use perfcatch with an SGI Message Passing Toolkit MPI program, insert the
perfcatch command in front of the executable name. Here are some examples:

mpirun -np 64 perfcatch a.out arg1

and

mpirun host1 32, host2 64 perfcatch a.out arg1

To use perfcatch with Intel MPI, add the -i options. An example is, as follows:

mpiexec -np 64 perfcatch -i a.out arg1

For more information, see the perfcatch(1) man page.

MPI_PROFILING_STATS Results File Example
The MPI profiling result file has a summary statistics section followed by a
rank-by-rank profiling information section. The summary statistics section reports
some overall statistics, including the percent time each rank spent in MPI functions,
and the MPI process that spent the least and the most time in MPI functions. Similar
reports are made about system time usage.

The rank-by-rank profiling information section lists every profiled MPI function called
by a particular MPI process. The number of calls and the total time consumed by
these calls is reported. Some functions report additional information such as average
data counts and communication peer lists.

An example MPI_PROFILING_STATS results file is, as follows:

50 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

==
PERFCATCHER version 22

(C) Copyright SGI. This library may only be used

on SGI hardware platforms. See LICENSE file for

details.

==
MPI program profiling information

Job profile recorded Wed Jan 17 13:05:24 2007

Program command line: /home/estes01/michel/sastest/mpi_hello_linux

Total MPI processes 2

Total MPI job time, avg per rank 0.0054768 sec
Profiled job time, avg per rank 0.0054768 sec

Percent job time profiled, avg per rank 100%

Total user time, avg per rank 0.001 sec

Percent user time, avg per rank 18.2588%
Total system time, avg per rank 0.0045 sec

Percent system time, avg per rank 82.1648%

Time in all profiled MPI routines, avg per rank 5.75004e-07 sec

Percent time in profiled MPI routines, avg per rank 0.0104989%

Rank-by-Rank Summary Statistics

Rank-by-Rank: Percent in Profiled MPI routines

Rank:Percent
0:0.0112245% 1:0.00968502%

Least: Rank 1 0.00968502%

Most: Rank 0 0.0112245%

Load Imbalance: 0.000771%

Rank-by-Rank: User Time

Rank:Percent

0:17.2683% 1:19.3699%

Least: Rank 0 17.2683%

Most: Rank 1 19.3699%

Rank-by-Rank: System Time

Rank:Percent

007–3773–018 51

9: MPI Performance Profiling

0:86.3416% 1:77.4796%
Least: Rank 1 77.4796%

Most: Rank 0 86.3416%

Notes

Wtime resolution is 5e-08 sec

Rank-by-Rank MPI Profiling Results

Activity on process rank 0

Single-copy checking was not enabled.

comm_rank calls: 1 time: 6.50005e-07 s 6.50005e-07 s/call

Activity on process rank 1

Single-copy checking was not enabled.

comm_rank calls: 1 time: 5.00004e-07 s 5.00004e-07 s/call

--

recv profile

cnt/sec for all remote ranks

local ANY_SOURCE 0 1
rank

--

recv wait for data profile

cnt/sec for all remote ranks

local 0 1

rank

--

recv wait for data profile

52 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

cnt/sec for all remote ranks
local 0 1

rank

--

send profile

cnt/sec for all destination ranks

src 0 1

rank

--

ssend profile

cnt/sec for all destination ranks
src 0 1

rank

--

ibsend profile

cnt/sec for all destination ranks

src 0 1

rank

MPI Performance Profiling Environment Variables
The MPI performance profiling environment variables are, as follows:

Variable Description

MPI_PROFILE_AT_INIT Activates MPI profiling
immediately, that is, at the start of
MPI program execution.

MPI_PROFILING_STATS_FILE Specifies the file where MPI
profiling results are written. If not

007–3773–018 53

9: MPI Performance Profiling

specified, the file
MPI_PROFILING_STATS is written.

MPI Supported Profiled Functions
The MPI supported profiled functions are, as follows:

Note: Some functions may not be implemented in all language as indicated below.

Languages Function

C Fortran mpi_allgather

C Fortran mpi_allgatherv

C Fortran mpi_allreduce

C Fortran mpi_alltoall

C Fortran mpi_alltoallv

C Fortran mpi_alltoallw

C Fortran mpi_barrier

C Fortran mpi_bcast

C Fortran mpi_comm_create

C Fortran mpi_comm_free

C Fortran mpi_comm_group

C Fortran mpi_comm_rank

C Fortran mpi_finalize

C Fortran mpi_gather

C Fortran mpi_gatherv

C mpi_get_count

C Fortran mpi_group_difference

C Fortran mpi_group_excl

C Fortran mpi_group_free

C Fortran mpi_group_incl

C Fortran mpi_group_intersection

54 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

C Fortran mpi_group_range_excl

C Fortran mpi_group_range_incl

C Fortran mpi_group_union

C mpi_ibsend

C Fortran mpi_init

C mpi_init_thread

C Fortran mpi_irecv

C Fortran mpi_isend

C mpi_probe

C Fortran mpi_recv

C Fortran mpi_reduce

C Fortran mpi_scatter

C Fortran mpi_scatterv

C Fortran mpi_send

C Fortran mpi_sendrecv

C Fortran mpi_ssend

C Fortran mpi_test

C Fortran mpi_testany

C Fortran mpi_wait

C Fortran mpi_wait

Profiling MPI Applications
This section describes the use of profiling tools to obtain performance information.
Compared to the performance analysis of sequential applications, characterizing the
performance of parallel applications can be challenging. Often it is most effective to
first focus on improving the performance of MPI applications at the single process
level.

It may also be important to understand the message traffic generated by an
application. A number of tools can be used to analyze this aspect of a message
passing application’s performance, including Performance Co-Pilot and various third

007–3773–018 55

9: MPI Performance Profiling

party products. In this section, you can learn how to use these various tools with MPI
applications. It covers the following topics:

• "Profiling Interface" on page 56

• "MPI Internal Statistics" on page 57

• "Third Party Products" on page 57

Profiling Interface

You can write your own profiling by using the MPI-1 standard PMPI_* calls. In
addition, either within your own profiling library or within the application itself you
can use the MPI_Wtime function call to time specific calls or sections of your code.

The following example is actual output for a single rank of a program that was run
on 128 processors, using a user-created profiling library that performs call counts and
timings of common MPI calls. Notice that for this rank most of the MPI time is being
spent in MPI_Waitall and MPI_Allreduce.

Total job time 2.203333e+02 sec

Total MPI processes 128
Wtime resolution is 8.000000e-07 sec

activity on process rank 0

comm_rank calls 1 time 8.800002e-06

get_count calls 0 time 0.000000e+00
ibsend calls 0 time 0.000000e+00

probe calls 0 time 0.000000e+00

recv calls 0 time 0.00000e+00 avg datacnt 0 waits 0 wait time 0.00000e+00

irecv calls 22039 time 9.76185e-01 datacnt 23474032 avg datacnt 1065

send calls 0 time 0.000000e+00

ssend calls 0 time 0.000000e+00
isend calls 22039 time 2.950286e+00

wait calls 0 time 0.00000e+00 avg datacnt 0

waitall calls 11045 time 7.73805e+01 # of Reqs 44078 avg data cnt 137944

barrier calls 680 time 5.133110e+00

alltoall calls 0 time 0.0e+00 avg datacnt 0
alltoallv calls 0 time 0.000000e+00

reduce calls 0 time 0.000000e+00

allreduce calls 4658 time 2.072872e+01

bcast calls 680 time 6.915840e-02

56 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

gather calls 0 time 0.000000e+00
gatherv calls 0 time 0.000000e+00

scatter calls 0 time 0.000000e+00

scatterv calls 0 time 0.000000e+00

activity on process rank 1
...

MPI Internal Statistics

MPI keeps track of certain resource utilization statistics. These can be used to
determine potential performance problems caused by lack of MPI message buffers
and other MPI internal resources.

To turn on the displaying of MPI internal statistics, use the MPI_STATS environment
variable or the -stats option on the mpirun command. MPI internal statistics are
always being gathered, so displaying them does not cause significant additional
overhead. In addition, one can sample the MPI statistics counters from within an
application, allowing for finer grain measurements. If the MPI_STATS_FILE variable
is set, when the program completes, the internal statistics will be written to the file
specified by this variable. For information about these MPI extensions, see the
mpi_stats man page.

These statistics can be very useful in optimizing codes in the following ways:

• To determine if there are enough internal buffers and if processes are waiting
(retries) to aquire them

• To determine if single copy optimization is being used for point-to-point or
collective calls

For additional information on how to use the MPI statistics counters to help tune the
run-time environment for an MPI application, see Chapter 8, "Run-time Tuning" on
page 35.

Third Party Products

Two third party tools that you can use with the SGI MPI implementation are Vampir
from Pallas (www.pallas.com) and Jumpshot, which is part of the MPICH
distribution. Both of these tools are effective for smaller, short duration MPI jobs.
However, the trace files these tools generate can be enormous for longer running or

007–3773–018 57

9: MPI Performance Profiling

highly parallel jobs. This causes a program to run more slowly, but even more
problematic is that the tools to analyze the data are often overwhelmed by the
amount of data.

58 007–3773–018

Chapter 10

Troubleshooting and Frequently Asked Questions

This chapter provides answers to some common problems users encounter when
starting to use SGI MPI, as well as answers to other frequently asked questions. It
covers the following topics:

• "What are some things I can try to figure out why mpirun is failing? " on page 59

• "My code runs correctly until it reaches MPI_Finalize() and then it hangs." on
page 61

• "My hybrid code (using OpenMP) stalls on the mpirun command." on page 61

• "I keep getting error messages about MPI_REQUEST_MAX being too small." on
page 61

• "I am not seeing stdout and/or stderr output from my MPI application." on
page 62

• "How can I get the MPT software to install on my machine?" on page 62

• "Where can I find more information about the SHMEM programming model? " on
page 62

• "The ps(1) command says my memory use (SIZE) is higher than expected. " on
page 62

• "What does MPI: could not run executable mean?" on page 63

• "How do I combine MPI with insert favorite tool here?" on page 63

• "Why do I see “stack traceback” information when my MPI job aborts?" on page 64

What are some things I can try to figure out why mpirun is failing?
Here are some things to investigate:

• Look in /var/log/messages for any suspicious errors or warnings. For
example, if your application tries to pull in a library that it cannot find, a message
should appear here. Only the root user can view this file.

• Be sure that you did not misspell the name of your application.

007–3773–018 59

10: Troubleshooting and Frequently Asked Questions

• To find dynamic link errors, try to run your program without mpirun. You will
get the “mpirun must be used to launch all MPI applications"
message, along with any dynamic link errors that might not be displayed when
the program is started with mpirun.

As a last resort, setting the environment variable LD_DEBUG to all will display a
set of messages for each symbol that rld resolves. This produces a lot of output,
but should help you find the cause of the link arror.

• Be sure that you are setting your remote directory properly. By default, mpirun
attempts to place your processes on all machines into the directory that has the
same name as $PWD. This should be the common case, but sometimes different
functionality is required. For more information, see the section on $MPI_DIR
and/or the -dir option in the mpirun man page.

• If you are using a relative pathname for your application, be sure that it appears
in $PATH. In particular, mpirun will not look in ’.’ for your application unless ’.’
appears in $PATH.

• Run /usr/sbin/ascheck to verify that your array is configured correctly.

• Use the mpirun -verbose option to verify that you are running the version of
MPI that you think you are running.

• Be very careful when setting MPI environment variables from within your
.cshrc or .login files, because these will override any settings that you might
later set from within your shell (due to the fact that MPI creates the equivalent of
a fresh login session for every job). The safe way to set things up is to test for the
existence of $MPI_ENVIRONMENT in your scripts and set the other MPI
environment variables only if it is undefined.

• If you are running under a Kerberos environment, you may experience
unpredictable results because currently, mpirun is unable to pass tokens. For
example, in some cases, if you use telnet to connect to a host and then try to
run mpirun on that host, it fails. But if you instead use rsh to connect to the
host, mpirun succeeds. (This might be because telnet is kerberized but rsh is
not.) At any rate, if you are running under such conditions, you will definitely
want to talk to the local administrators about the proper way to launch MPI jobs.

• Look in /tmp/.arraysvcs on all machines you are using. In some cases, you
might find an errlog file that may be helpful.

60 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

• You can increase the verbosity of the Array Services daemon (arrayd) using the
-v option to generate more debugging information. For more information, see the
arrayd(8) man page.

• Check error messages in /var/run/arraysvcs.

My code runs correctly until it reaches MPI_Finalize() and then it hangs.
This is almost always caused by send or recv requests that are either unmatched or
not completed. An unmatched request is any blocking send for which a
corresponding recv is never posted. An incomplete request is any nonblocking send
or recv request that was never freed by a call to MPI_Test(), MPI_Wait(), or
MPI_Request_free().

Common examples are applications that call MPI_Isend() and then use internal
means to determine when it is safe to reuse the send buffer. These applications never
call MPI_Wait(). You can fix such codes easily by inserting a call to
MPI_Request_free() immediately after all such isend operations, or by adding a
call to MPI_Wait() at a later place in the code, prior to the point at which the send
buffer must be reused.

My hybrid code (using OpenMP) stalls on the mpirun command.
If your application was compiled with the Open64 compiler, make sure you follow
the instructions about using the Open64 compiler in combination with MPI/OpenMP
applications descibed in "Compiling and Linking MPI Programs" on page 13.

I keep getting error messages about MPI_REQUEST_MAX being too small.
There are two types of cases in which the MPI library reports an error concerning
MPI_REQUEST_MAX. The error reported by the MPI library distinguishes these.

MPI has run out of unexpected request entries;
the current allocation level is: XXXXXX

The program is sending so many unexpected large messages (greater than 64 bytes) to
a process that internal limits in the MPI library have been exceeded. The options here

007–3773–018 61

10: Troubleshooting and Frequently Asked Questions

are to increase the number of allowable requests via the MPI_REQUEST_MAX shell
variable, or to modify the application.

MPI has run out of request entries;

the current allocation level is: MPI_REQUEST_MAX = XXXXX

You might have an application problem. You almost certainly are calling
MPI_Isend() or MPI_Irecv() and not completing or freeing your request objects.
You need to use MPI_Request_free(), as described in the previous section.

I am not seeing stdout and/or stderr output from my MPI application.
All stdout and stderr is line-buffered, which means that mpirun does not print
any partial lines of output. This sometimes causes problems for codes that prompt
the user for input parameters but do not end their prompts with a newline character.
The only solution for this is to append a newline character to each prompt.

You can set the MPI_UNBUFFERED_STDIO environment variable to disable
line-buffering. For more information, see the MPI(1) and mpirun(1) man pages.

How can I get the MPT software to install on my machine?
MPT RPMs are included in the SGI Performance Suite releases. In addition, you can
obtain MPT RPMs from the SGI Support website at

http://support.sgi.com

under "Downloads".

Where can I find more information about the SHMEM programming model?
See the intro_shmem(3) man page.

The ps(1) command says my memory use (SIZE) is higher than expected.
At MPI job start-up, MPI calls the SHMEM library to cross-map all user static memory
on all MPI processes to provide optimization opportunities. The result is large virtual
memory usage. The ps(1) command’s SIZE statistic is telling you the amount of

62 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

virtual address space being used, not the amount of memory being consumed. Even
if all of the pages that you could reference were faulted in, most of the virtual address
regions point to multiply-mapped (shared) data regions, and even in that case, actual
per-process memory usage would be far lower than that indicated by SIZE.

What does MPI: could not run executable mean?
This message means that something happened while mpirun was trying to launch
your application, which caused it to fail before all of the MPI processes were able to
handshake with it.

The mpirun command directs arrayd to launch a master process on each host and
listens on a socket for those masters to connect back to it. Since the masters are
children of arrayd, arrayd traps SIGCHLD and passes that signal back to mpirun
whenever one of the masters terminates. If mpirun receives a signal before it has
established connections with every host in the job, it knows that something has gone
wrong.

How do I combine MPI with insert favorite tool here?
In general, the rule to follow is to run mpirun on your tool and then the tool on your
application. Do not try to run the tool on mpirun. Also, because of the way that
mpirun sets up stdio, seeing the output from your tool might require a bit of effort.
The most ideal case is when the tool directly supports an option to redirect its output
to a file. In general, this is the recommended way to mix tools with mpirun. Of
course, not all tools (for example, dplace) support such an option. However, it is
usually possible to make it work by wrapping a shell script around the tool and
having the script do the redirection, as in the following example:

> cat myscript

#!/bin/sh
setenv MPI_DSM_OFF

dplace -verbose a.out 2> outfile

> mpirun -np 4 myscript

hello world from process 0

hello world from process 1

hello world from process 2
hello world from process 3

> cat outfile

007–3773–018 63

10: Troubleshooting and Frequently Asked Questions

there are now 1 threads
Setting up policies and initial thread.

Migration is off.

Data placement policy is PlacementDefault.

Creating data PM.

Data pagesize is 16k.
Setting data PM.

Creating stack PM.

Stack pagesize is 16k.

Stack placement policy is PlacementDefault.

Setting stack PM.

there are now 2 threads
there are now 3 threads

there are now 4 threads

there are now 5 threads

Why do I see “stack traceback” information when my MPI job aborts?
More information can be found in the MPI(1) man page in descriptions of the
MPI_COREDUMP and MPI_COREDUMP_DEBUGGER environment variables.

64 007–3773–018

Index

A

Administrating MPT
finding release notes, 5
installation, 5

disk space requirements, 6
MPT RPM, 6
prerequisites, 6

installation in an alternate location, 7
using a cpio file for installation, 8
using dynamic shared libraries to run MPI

jobs, 9
Altix UV Hub, 45
Argument checking, 29
Array Services

arrayconfig_tempo command, 11
configuring, 11

arrayconfig_tempo command, 11

B

Berkeley Lab Checkpoint/Restart (BLCR), 33
installation, 33
using with MPT, 34

C

Cache coherent non-uniform memory access
(ccNUMA) systems, 17, 47

ccNUMA
See also "cache coherent non-uniform memory

access", 17, 47
Checkpoint/restart, 33
Code hangs, 61
Combining MPI with tools, 63

Components, 2
Configuring Array Services, 11
Configuring MPT

adjusting file descriptor limits, 11
adjusting locked memory limits, 12
starting prerequisite Services, 10

D

Debuggers
idb and gdb, 30

Distributed applications, 15

F

Features, 2
Finding MPT release notes, 5
Frequently asked questions, 59

G

Getting started, 13
Global reference unit (GRU), 45

I

InfiniBand software stack, 6
Internal statistics, 57
Introduction, 1

007–3773–018 65

Index

M

Memory placement and policies, 38
Memory use size problems, 62
MPI 2.2 standard compliance, 2
MPI jobs, suspending, 47
MPI launching problems, 63
MPI on Altix UV systems, 45

general considerations, 46
job performance types, 46
other ccNUMA performance issues, 47

MPI overview, 2
MPI 2.2 standard compliance, 2
MPI components, 2
SGI MPI features, 2

MPI performance profiling, 49
environment variables, 53
results file, 50
supported functions, 54

MPI-2 spawn functions
to launch applications, 16

MPI_REQUEST_MAX too small, 61
mpirun command

to launch application, 14
mpirun failing, 59
MPMD applications, 15
MPT release notes, 5
MPT software installation, 62

P

PerfBoost, 31
environment variables, 32
MPI supported functions, 32
using, 31

Perfcatch utility
results file, 50
See also "MPI performance profiling", 49
using, 49

Profiling interface, 56
Profiling MPI applications, 55

MPI internal statistics, 57
profiling interface, 56
third party products, 57

Profiling tools
Jumpshot, 57
third party, 57
Vampir, 57

Programs
compiling and linking, 13

GNU compilers, 13
Intel compiler, 13
Open 64 compiler with hybrid

MPI/OpenMP applications, 14
debugging methods, 29
launching distributed, 15
launching multiple, 15
launching single, 14
launching with mpirun, 14
launching with PBS, 17
launching with Torque, 18
MPI-2 spawn functions, 16
SHMEM programming model, 18
with TotalView, 29

R

Running MPI Jobs with a workload manager, 16

S

SHMEM applications, 18
SHMEM information, 62
SHMEM programming model, 1
Single copy optimization

avoiding message buffering, 37
using the XPMEM driver, 38

Stack traceback information, 64
stdout and/or stderr not appearing, 62
System configuration

66 007–3773–018

Message Passing Toolkit (MPT) User’s Guide

Configuring Array Services, 11
configuring MPT, 10

adjusting file descriptor limits, 11

T

TotalView, 29
Troubleshooting, 59
Tuning

avoiding message buffering, 37
buffer resources, 36
enabling single copy, 37
for running applications across multiple

hosts, 42
for running applications over the InfiniBand

Interconnect, 44
memory placement and policies, 38

MPI/OpenMP hybrid codes, 42
reducing run-time variability, 35
using dplace, 40
using MPI_DSM_CPULIST, 39
using MPI_DSM_DISTRIBUTE, 40
using MPI_DSM_VERBOSE, 40
using the XPMEM driver, 38

U

Unpinning memory, 47
Using PBS Professional

to launch application, 17
Using Torque

to launch application, 18

007–3773–018 67

	New Features in This Manual
	Major Documentation Changes

	Table of Contents
	List of Tables

	About This Manual
	Related Publications and Other Sources
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction
	MPI Overview
	MPI 2.2 Standard Compliance
	MPI Components
	SGI MPI Features

	2. Administrating MPT
	Finding the MPT Release Notes
	MPT Installation
	Disk Space Requirements
	Prerequisites
	Installing the MPT RPM
	Installing MPT Software in an Alternate Location
	Using a cpio File for Installation
	Using Dynamic Shared Libraries to Run MPI Jobs
	Running MPI Jobs on a Cluster with MPT Alternate Installation

	System Configuration
	Starting Prerequisite Services
	Configuring Array Services
	Adjusting File Descriptor Limits
	Adjusting Locked Memory Limits

	3. Getting Started
	Compiling and Linking MPI Programs
	Using mpirun to Launch an MPI Application
	Launching a Single Program on the Local Host
	Launching a Multiple Program, Multiple Data (MPMD) Application on the Local Host
	Launching a Distributed Application
	Using MPI-2 Spawn Functions to Launch an Application

	Running MPI Jobs with a Work Load Manager
	PBS Professional
	Torque

	Compiling and Running SHMEM Applications

	4. Programming with SGI MPI
	Job Termination and Error Handling
	MPI_Abort
	Error Handling
	MPI_Finalize and Connect Processes

	Signals
	Buffering
	Multithreaded Programming
	Interoperability with the SHMEM programming model
	Miscellaneous Features of SGI MPI
	stdin /stdout/stderr
	MPI_Get_processor_name

	Programming Optimizations
	Using MPI Point-to-Point Communication Routines
	Using MPI Collective Communication Routines
	Using MPI_Pack/MPI_Unpack
	Avoiding Derived Data Types
	Avoiding Wild Cards
	Avoiding Message Buffering | Single Copy Methods
	Managing Memory Placement
	Using Global Shared Memory

	Additional Programming Model Considerations

	5. Debugging MPI Applications
	MPI Routine Argument Checking
	Using the TotalView Debugger with MPI programs
	Using idb and gdb with MPI programs

	6. PerfBoost
	Using PerfBoost
	Environment Variables
	MPI Supported Functions

	7. Checkpoint/Restart
	BLCR Installation
	Using BLCR with MPT

	8. Run-time Tuning
	Reducing Run-time Variability
	Tuning MPI Buffer Resources
	Avoiding Message Buffering { Enabling Single Copy
	Using the XPMEM Driver for Single Copy Optimization

	Memory Placement and Policies
	MPI_DSM_CPULIST
	MPI_DSM_DISTRIBUTE
	MPI_DSM_VERBOSE
	Using dplace for Memory Placement

	Tuning MPI/OpenMP Hybrid Codes
	Tuning for Running Applications Across Multiple Hosts
	MPI_USE_IB
	MPI_IB_RAILS
	MPI_IB_SINGLE_COPY_BUFFER_MAX

	Tuning for Running Applications over the InfiniBand Interconnect
	MPI_NUM_QUICKS
	MPI_NUM_MEMORY_REGIONS
	MPI_CONNECTIONS_THRESHOLD
	MPI_IB_PAYLOAD
	MPI_IB_TIMEOUT
	MPI_IB_FAILOVER

	MPI on Altix UV 100 and Altix UV 1000 Systems
	General Considerations
	Job Performance Types
	Other ccNUMA Performance Issues

	Suspending MPI Jobs

	9. MPI Performance Profiling
	Overview of perfcatch Utility
	Using the perfcatch Utility
	MPI_PROFILING_STATS Results File Example
	MPI Performance Profiling Environment Variables
	MPI Supported Profiled Functions
	Profiling MPI Applications
	Profiling Interface
	MPI Internal Statistics
	Third Party Products

	10. Troubleshooting and Frequently Asked Questions
	What are some things Ican try to figure out why mpirun is failing?
	My code runs correctly until it reaches MPI_Finalize() and then it hangs.
	My hybrid code (using OpenMP) stalls on the mpirun command.
	Ikeep getting error messages about MPI_REQUEST_MAX being too small.
	Iam not seeing stdout and/or stderr output from my MPI application.
	How can Iget the MPT software to install on my machine?
	Where can Ifind more information about the SHMEM programming model?
	The ps(1) command says my memory use (SIZE) is higher than expected.
	What does MPI: could not run executable mean?
	How do Icombine MPI with insert favorite tool here?
	Why do Isee "stack traceback" information when my MPI job aborts?

	Index

