sgi

SGI[®] InfiniteStorage Cluster Manager for Linux[®] Administrator's Guide

CONTRIBUTORS

Written by Lori Johnson

Engineering contributions by Derek Guy Barnes, Dale Brantly, Jeff Cech, Susheel Gokhale, Ron Kerry, Tim Kirby, Edward Mascarenhas, LaNet Merrill, Nate Pearlstein, Kevan Rehm, Paddy Sreenivasan, Olaf Weber, Geoffrey Wehrman, James Yarbrough Illustrated by Chrystie Danzer

COPYRIGHT

© 2004–2006, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS

Silicon Graphics, SGI, Altix, FailSafe, IRIX, XFS, and the SGI logo are registered trademarks and SGI ProPack, CXFS, and Performance Co-Pilot are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide.

Linux is a registered trademark of Linus Torvalds in several countries. SUSE LINUX is a registered trademark of Novell, Inc. QLogic is a registered trademark of QLogic Corporation. RealVNC is a trademark of RealVNC Ltd. All other trademarks mentioned herein are the property of their respective owners.

New Features in this Guide

This release includes information about SGI Altix 330 and SGI Altix 4700 servers, as well as minor corrections. See "Hardware Requirements" on page 3.

Record of Revision

Version	Description
001	May 2004 Original publication to support SGI Cluster Manager 3.0 for Linux
002	August 2004 Supports SGI Cluster Manager 3.1 for Linux
003	April 2005 Supports SGI Cluster Manager 4.0 for Linux
004	December 2005 Supports SGI Cluster Manager 4.1 for Linux
005	May 2006 Supports SGI Cluster Manager 4.2 for Linux

Contents

About This Guide	•	•	•	•	•	xvii
Related Publications						xvii
Obtaining Publications	•		•			xix
Conventions						xix
Reader Comments	•		•	•		xx
1. Introduction	•	•	•	•	•	1
Base Product						2
Optional SGI Software Storage Plug-In Product						2
Highly Available Services			•			3
Hardware Requirements			•			3
Software Requirements						6
Failover Domains						6
Cluster Daemons	•		•	•		8
2. Hardware Installation	•	•	•	•	•	11
Shared Quorum Partitions			•			11
Heartbeat Network						12
Power Control						12
L2 Connections						13
12network Ethernet Connection						13
12 Serial Connection						15
Automatic Power						18
Connectivity Testing	•	•	•			18
Testing Ethernet Connectivity for the L2						18
Testing Serial Connectivity for the L2			•	•		19
007–3800–005						vii

Contents

3. Software Installation	23
Installing the Software	24
Upgrading from the Previous Release	26
Uninstalling the Software	27
4. Configuration	29
Cluster Configuration Tools	29
Displaying Configuration Status	29
Saving Changes	31
Configuration Steps	31
Step 1: Define the Shared Quorum Partitions	32
Step 2: Create the Cluster	34
Step 3: Define the Members	35
Step 4: Add Power Controller Configuration	35
Step 5: Change the Heartbeat Interval, Timeout, and Failover Speed	39
Failover Speed and the GUI	40
Failover Speed and the CLI	41
Step 6: Set the Tiebreakers	42
Step 7: Create the Failover Domain	44
Step 8: Configure the Service	45
Step 9: Add a Service IP Address	48
Step 10: Add the Disk and Filesystem Information to the Service (Optional)	49
Step 11: Add a Samba Share (Optional)	50
Step 12: Define the NFS Information (Optional)	50
Step 13: Save the Cluster Configuration (GUI only)	52
Step 14: Synchronize Configuration Changes Across the Cluster	52
Step 15: Verify that Configuration Changes are Synchronized	52

Step 16: Start the Cluster Daemons	•	•	•	53
Samba Druid Example		•		54
NFS Druid Example		•		59
Cluster Configuration Example		•	•	63
5. Administration	•	•	•	67
Monitoring Status		•		67
Displaying Service Information		•		68
Starting Cluster Processes		•		69
Stopping Cluster Processes				70
Service Administration				70
Cluster Service States		•		71
Message Logging		•	•	73
6. Creating a New Highly Available Application	•	•	•	75
The clusvcmgrd Daemon				75
The service Script				75
Adding a Service				76
Example of Failing Over Multiple User Applications				78
Sample User Application Script		•	•	78
7. Samba Plug-In	•	•	•	81
Samba Process ID, Locks, and Password File				81
Samba Share Configuration File				82
Samba Start/Stop Order				82
Defining NFS Exports and Samba Exports				82
Improving the Default smb.conf.sharename File				82
Service Monitoring Levels		•	•	85

Contents

8. CXFS Plug-In	87
Relocation Support	87
Members and I/O Fencing	88
Including a CXFS Filesystem in the Cluster Configuration	88
Members and Potential Metadata Servers	89
CXFS Start/Stop Order	90
9. Data Migration Facility (DMF) Plug-In	91
Adding the DMF User Script to an Existing Service	91
DMF Administrative Filesystems and Directories	92
Configuring DMF for Local XVM Filesystems	93
Configuring DMF for CXFS Filesystems that Use DMAPI	93
The /etc/dmf/sgicm_dmf.config File	94
DMF Start/Stop Order	95
Ensuring that Only SGI Cluster Manager Starts DMF	95
Using TMF with DMF	95
10. Tape Management Facility (TMF) Failover Script	97
The helper_tmf Script	97
TMF Stop/Start Order	98
Configuring a TMF Device Group	99
Optional Configuration Specifications	99
The /etc/tmf/sgicm_tmf.config File	100
The resource Directive	100
The loader Directive	101
The remote_devices Directive	102
Configuring Tapes and TMF	103
Using the TMF Failover Script from the User Application Script	104

Service Timeout	. 105
11. Local XVM Plug-In	. 107
Local XVM Device Configuration	. 107
Local XVM Start/Stop Order	. 109
12. Troubleshooting	. 111
Best Practices	. 111
Recovery from a clulockd Failure	. 111
Watchdog Errors	. 112
Shared Quorum Partitions	. 113
Verify Accessibility	. 113
Read the Configuration File	. 113
Verify Metadata Information is Consistent	. 114
Write the Configuration File	. 114
Displaying Metadata Remotely	. 115
Last Resort: Clear Information	. 115
Serial Cable or Reset issues	. 115
Failed State for a Service	. 116
Error Messages	. 117
Reporting Problems to SGI	. 118
Appendix A. FailSafe and SGI Cluster Manager	. 119
Appendix B. Setting the Partition Type to Linux	. 123
Glossary	. 125
Index	. 131

Figures

Figure 1-1	An Example CXFS and SGI Cluster Manager Configuration
Figure 2-1	Altix 3700 L2 with an Ethernet Connection
Figure 2-2	Altix 3700 Bx2 CR-brick Rear Panel .
Figure 2-3	Altix 350 Rear Panel .
Figure 2-4	Altix 3700 Rear Panel 16
Figure 2-5	Altix 3700 L2 with Serial Cable Connection .
Figure 4-1	Cluster Status GUI .
Figure 4-2	Power Controller Information for an L2 Using an Ethernet Network 37
Figure 4-3	Power Controller Information for an L2 Using Serial Cables
Figure 4-4	Adjusting Failover Speed .
Figure 4-5	Tiebreakers . <th< th=""></th<>
Figure 4-6	Failover Domain . . .
Figure 4-7	Configuring a High-Availability Service
Figure 4-8	Samba Druid
Figure 4-9	Samba Druid: Select Service for Share
Figure 4-10	Samba Druid: Select Device for Share
Figure 4-11	Samba Druid: Enter Share Name
Figure 4-12	Samba Druid: Samba Share Completion
Figure 4-13	NFS Druid
Figure 4-14	NFS Druid: Enter Directory to Export
Figure 4-15	NFS Druid: Select Service for Export
Figure 4-16	NFS Druid: Select Device for Export
Figure 4-17	NFS Druid: NFS Export Completion

Contents

Figure 5-1	Status	•		68
Figure 5-2	Service Information			69
Figure 5-3	Detached State			72
Figure 6-1	Creating a Service			77
Figure 8-1	Adding a CXFS Filesystem as a Device			88
Figure 11-1	Adding an XVM Device			109

Tables

Table 1-1	Failover Domain and Option Results	•	•	•	•	•	•	•	7
Table 4-1	Supported Failure Detection Times and Parameter Values				•				41
Table 9-1	DMF Administrative Filesystem and Directory Parameters				•				92
Table A-1	Differences Between FailSafe and SGI Cluster Manager .								119

About This Guide

This guide provides information about SGI Cluster Manager for Linux, which provides highly available services for SGI Altix servers. An optional product provides high-availability services for CXFS clustered filesystems, local XVM logical volumes, the Data Migration Facility (DMF), and the Tape Management Facility (TMF).

Related Publications

The following publications contain additional information that may be helpful:

- SGI ProPack for Linux and SGI Altix documentation:
 - NIS Administrator's Guide
 - Personal System Administration Guide
 - SGI ProPack for Linux Start Here
 - SUSE LINUX Enterprise Server for SGI Altix Systems
 - SGI Altix 330 System User's Guide
 - SGI Altix 350 System User's Guide
 - SGI Altix 3000 User's Guide
 - SGI Altix 3700 Bx2 User's Guide
 - SGI Altix 4700 System User's Guide
 - Performance Co-Pilot for IA-64 Linux User's and Administrator's Guide
 - SGI L1 and L2 Controller Software User's Guide
 - SGI Altix Systems Dual-Port Gigabit Ethernet Board User's Guide
- CXFS Administration Guide for SGI InfiniteStorage
- DMF Administrator's Guide for SGI InfiniteStorage
- TMF Administrator's Guide
- XVM Volume Manager Administrator's Guide

- TPM Installation Instructions and User's Guide for SGI TP9100
- SGI InfiniteStorage TP9300 and TP9300S RAID User's Guide
- SGI[®] InfiniteStorage TP9400 and SGI[®] InfiniteStorage TP9500 and TP9500S RAID User's Guide
- SGI InfiniteStorage TP9500 and TP9700 RAID User's Guide
- SGI TPSSM Administration Guide

SGI Cluster Manager man pages:

- clulockd(8)
- clumembd(8)
- cluquorumd(8)
- clurmtabd(8)
- clusvcmgrd(8)
- sgicm-config-cluster(8)
- sgicm-config-cluster-cmd(8)

Other man pages:

- kermit(1)
- minicom(1)
- exports(5)

For more information about Samba, see:

http://www.samba.org/samba/docs

Obtaining Publications

You can obtain SGI documentation as follows:

- See the SGI Technical Publications Library at http://docs.sgi.com. Various formats are available. This library contains the most recent and most comprehensive set of online books, release notes, man pages, and other information.
- View release notes on your system by accessing the README file(s) for the product. This is usually located in the /usr/share/doc/productname directory, although file locations may vary.
- View man pages by typing man *title* at a command line.

Conventions

The following conventions are used throughout this document:

Convention	Meaning
command	This fixed-space font denotes literal items such as commands, files, routines, path names, signals, messages, and programming language structures.
variable	Italic typeface denotes variable entries and words or concepts being defined.
user input	This bold, fixed-space font denotes literal items that the user enters in interactive sessions. (Output is shown in nonbold, fixed-space font.)
[]	Brackets enclose optional portions of a command or directive line.
	Ellipses indicate that a preceding element can be repeated.

This font denotes the names of graphical user interface (GUI) elements such as windows, screens, dialog boxes, menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments

GUI

If you have comments about the technical accuracy, content, or organization of this publication, contact SGI. Be sure to include the title and document number of the publication with your comments. (Online, the document number is located in the front matter of the publication. In printed publications, the document number is located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

- Contact your customer service representative and ask that an incident be filed in the SGI incident tracking system.
- Send mail to the following address:

Technical Publications SGI 1500 Crittenden Lane, M/S 535 Mountain View, California 94043–1351

SGI values your comments and will respond to them promptly.

Introduction

The SGI Cluster Manager for Linux provides *highly available services* that survive a single point of failure. It uses redundant components and special software to provide services for a cluster that contains two machines or system partitions, known as *members*.

All highly available services are owned by one member at a time. Highly available services are monitored by the SGI Cluster Manager software. If one member fails, the other member restarts the highly available applications of the failed member, known as the *failover process*.

To clients, the services on the backup member are indistinguishable from the original services before failure occurred. It appears as if the original member has crashed and rebooted quickly. Clients that use User Datagram Protocol (UDP) for communication with the server will notice a brief interruption in the highly available service. Clients that use Transmission Control Protocol (TCP) for communication may have to reconnect to the server in case of failure.

Although SGI Cluster Manager for Linux provides similar functionality to IRIX FailSafe, there are differences; see Appendix A, "FailSafe and SGI Cluster Manager" on page 119.

This chapter discusses the following:

- "Base Product" on page 2
- "Optional SGI Software Storage Plug-In Product" on page 2
- "Highly Available Services" on page 3
- "Hardware Requirements" on page 3
- "Software Requirements" on page 6
- "Failover Domains" on page 6
- "Cluster Daemons" on page 8

Base Product

The SGI Cluster Manager base product provides failover support for the following:

- Filesystems (including XFS)
- NFS
- Samba
- IP addresses
- User-defined applications (that is, applications that are not provided by the SGI Cluster Manager product)

Optional SGI Software Storage Plug-In Product

A *plug-in* is the set of software that allows a service to be highly available without modifying the application itself. An optional value-add product supplies plug-ins for the following:

- CXFS clustered filesystems
- Data Migration Facility (DMF)
- XVM volume manager in local mode

This optional product also provides a failover script for the Tape Management Facility (TMF). You can modify your application to use this script to provide highly available services for TMF.

Highly Available Services

A highly available service consists of the following:

- Disks (such as XVM volumes)
- IP address
- Filesystem (such as XFS or CXFS)
- NFS (if used)
- Samba (if used)
- User applications (if used)

Hardware Requirements

SGI Cluster manager requires a cluster of exactly two members. The following SGI Altix servers are supported:

- An Altix 330 server with a USB-to-Ethernet adapter connected to the L1 system controller so that the brick emulates an L2 controller and becomes an L1/L2 controller. (Separate physical L2 controllers are not used with the Altix 330 systems.) Access to the L2 functionality is made by way of an Ethernet connection to a PC or laptop. An Altix 330 server must use the L2 Ethernet reset configuration (l2network) for remote resets.
- An Altix 350 server with an IO10 PCI card, which may use either of the following for remote resets:
 - Network connection (l2network), which requires an additional PCI network interface card must be purchased. (Preferred method.)
 - Serial connection (12), which requires the following:
 - *Multiport serial adapter cable* (a device that provides four DB9 serial ports from a 36-pin connector), must be purchased (part number CBL-SATA-SERIAL)
 - Hardware L2 system controller (which must be purchased)

• An Altix 350 server with an IO9 PCI card, which must use the L2 Ethernet reset configuration (l2network) for remote resets. This requires a hardware L2 system controller that must be separately purchased.

Note: Customers cannot replace the IO9 PCI card in the Altix 350 with the IO10 PCI card. This procedure requires a new interface board and cables as well as a drive swap from SCSI to SATA. This procedure can only be done by SGI service personnel.

- An Altix 3700 server, which can use either the L2 Ethernet reset configuration (12network) or the L2 serial reset configuration (12). These servers may be partitioned; each system partition is an individual member.
- An Altix 3700 Bx2 server with a USB-to-Ethernet adapter connected to the L1 system controller so that the brick emulates an L2 controller and becomes an L1/L2 controller. (Separate physical L2 controllers are not used with the Altix 3700 Bx2 systems.) Access to the L2 functionality is made by way of an Ethernet connection to a PC or laptop. An Altix 3700 Bx2 server must use the L2 Ethernet reset configuration (12network). See "12network Ethernet Connection" on page 13.
- An Altix 4700 server with a USB-to-Ethernet adapter connected to the L1 system controller so that the brick emulates an L2 controller and becomes an L1/L2 controller. (Separate physical L2 controllers are not used with the Altix 4700 systems.) Access to the L2 functionality is made by way of an Ethernet connection to a PC or laptop. An Altix 4700 server must use the L2 Ethernet reset configuration (l2network) for remote resets.

SGI Cluster Manager also requires the following:

- Shared quorum partitions without filesystems where configuration, cluster, and service status information is kept by SGI Cluster Manager. For more information, see "Shared Quorum Partitions" on page 11.
- Network cabling: you can connect private network or cross-over cables between members. You have a choice between an Ethernet cable from server to hub or a 20-ft cross-over Ethernet cable.

Note: To use a private network, you must have a second NIC whether you use a cross-over cable or a switch/hub.

Figure 1-1 shows an example configuration using CXFS. A private network is recommended for SGI Cluster Manager. The SGI Cluster Manager members should be able to communicate with the SGI Cluster Manager tiebreaker via the network. The tiebreaker can be a machine or a router or any device that can be connected via the network. (For more information about tiebreakers, see "Step 6: Set the Tiebreakers" on page 42.)

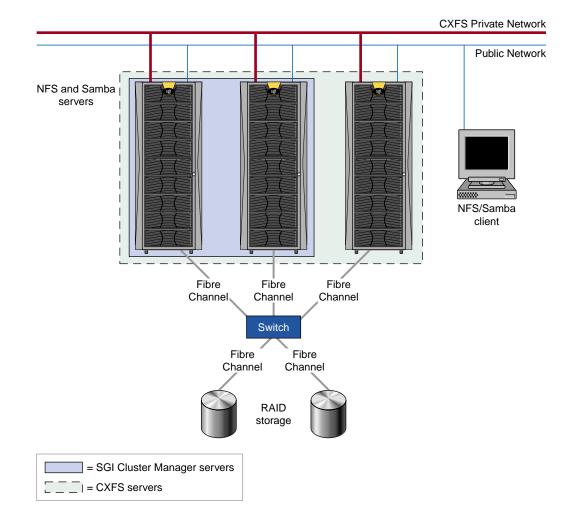


Figure 1-1 An Example CXFS and SGI Cluster Manager Configuration

Software Requirements

SGI Cluster Manager requires the following:

- SGI ProPack 4 Service Pack 3
- SUSE LINUX Enterprise Server 9 (SLES9) Service Pack 2

This release also supports the following releases:

- Samba 3.0.20b or later
- The CXFS 4.0 or later

Note: Use of clustered XVM volumes with SGI Cluster Manager requires the CXFS plug-in. The SGI Cluster Manager base product supports local XVM volumes.

- DMF 3.3 or later
- TMF 1.4.5 or later

See the README file for a list of the RPMs included on CDs.

Failover Domains

The *failover domain* is the list of members in the cluster where a service can be online.

Each failover domain has two *failover options* that are considered when a new membership is formed or a failure occurs and a new target member for the service must be determined:

• *Restricted failover* permits failover only to the members listed. If all of the members in the domain are unavailable, the service will stop.

If a domain is not restricted, a service can run on the member that is not in domain if there is a failure and the member that is in the domain is unavailable. (However, administrative commands cannot relocate the service to a member that is not in the domain, whether or not this option is used.)

• *Ordered failover* causes the service to start on the first member defined (the lowest-ordered) if it is available; if that member is unavailable, the other member will be used. If controlled failback is not set, the service will automatically failback

from the second member to the original member when the original member is rebooted after a failure or maintenance period.

Note: *Lowest-ordered* means a higher preference for a service to be started on that member.

Each failover domain also has a *failback option*, which is considered when a member rejoins the cluster. The *controlled failback* option says that a service will not be moved back to the original member when it rejoins the cluster even if it is the preferred member in the list (when ordered failover is used). The system administrator must manually relocate the service in order for it to run on the original member without an intervening failure. Only a new failure will cause a service to be automatically moved.

Suppose you have a cluster members A and B. Table 1-1 describes some of the possible results from using various options under different circumstances for the nfs service.

Failover Domain	Options	Circumstance	Results
(none)	(none)	Newly formed membership	The service will be started on either A or B, randomly chosen
В	(none)	Newly formed membership	The service will be started on B if it is available. If B is not available, the service will be started on A.
В, А	(none)	Newly formed membership	The service will be started on either A or B, randomly chosen. If that member is unavailable, the other will be used. This situation is similar to having no failover domain.
В	(none)	The service is running on B and then B fails	The service will be started on A. The service will remain on A even after B restarts.
В, А	Ordered	Newly formed membership	The service will be started on B if it is available. If B is not available, the service will be started on A.

Table 1-1 Failover Domain and Option Results

1: Introduction

Failover Domain	Options	Circumstance	Results
В, А	Restricted failover and controlled failback	Newly formed membership	The service will be started on either A or B, randomly chosen. If that member fails, the service will be restarted on the other member and will remain there until the system administrator manually intervenes.
В	Restricted	The service is running on B and then B fails	The service will stop.
В, А	Ordered	The service is running on B and then B fails	The service will be started on A. The service will be moved back to B as soon as it restarts.
В, А	Ordered failover and controlled failback	The service is running on B and then B fails	The service will be started on A. The service will remain on A even after B restarts. To go back to B, the system administrator must manually move the service.

Cluster Daemons

Following is an overview of the cluster daemons:

- clumembd(8) is the cluster membership daemon. It performs network heartbeats and checks the liveliness of other members in the cluster.
- cluquorumd(8) is the cluster quorum daemon. It computes new membership and implements quorum. It also implements I/O fencing by resetting members that are in failed state and reads/writes membership information to the shared quorum partitions.
- clurmtabd(8) is the cluster remote NFS mount table daemon. It synchronizes NFS mount point entries by polling the /var/lib/nfs/rmtab file.
- clusvcmgrd(8) is the cluster service manager daemon. It starts/stops and checks the status of services running in the cluster.
- clulockd(8) is the cluster global lock manager daemon. The locks are stored on the shared quorum partitions.

For more information, see the man pages.

Hardware Installation

This chapter discusses the following:

- "Shared Quorum Partitions" on page 11
- "Heartbeat Network" on page 12
- "Power Control" on page 12

For more information about storage configuration, see the following:

- TPM Installation Instructions and User's Guide for SGI TP9100
- SGI InfiniteStorage TP9300 and TP9300S RAID User's Guide
- SGI[®] InfiniteStorage TP9400 and SGI[®] InfiniteStorage TP9500 and TP9500S RAID User's Guide
- SGI InfiniteStorage TP9500 and TP9700 RAID User's Guide
- SGI TPSSM Administration Guide

Shared Quorum Partitions

SGI Cluster Manager for Linux **requires** two 10–MB disk partitions to keep membership quorum: the *primary partition* and the *shadow partition* (used for backup purposes). You should use the block device to access these partitions.

To provide maximum redundancy, the primary partition and the shadow partition should be in different storage devices connected to the members using different Fibre Channel (FC) cards. The two partitions should have independent I/O paths.

SGI Cluster Manager works on supported SGI RAID configurations. Each member in the cluster should be connected to storage using multiple paths so that service failovers are minimized. Ideally, the two shared quorum partitions should be on separate FC controllers at the front end, separate HBAs on the Altix, and on separate RAID logical units (LUNs) or RAID arrays if possible. They should be at least 10 MB in size and the partition type must be linux.

The device names for the shared quorum partitions must be identical on all cluster members. Use the /usr/lib/clumanager/create_device_links script to create the same device name on each member.

For more information, see the books listed at the beginning of this chapter.

Heartbeat Network

SGI Cluster Manager uses hostnames for sending heartbeat and control messages to indicate that a member is up and running and to request operations or distribute information. Ethernet cables are provided that will allow the members to be connected directly or connected using a network hub.

You can use 10/100baseT or 1–Gb ports in the system for heartbeat communication. For more information, see *SGI Altix Systems Dual-Port Gigabit Ethernet Board User's Guide*.

Heartbeats are either broadcast on all networks or multicast on the network interface that hostname configured.

You should use firewall software such as SuSEfirewall with care because it could make broadcast and multicast ineffectual.

Power Control

You must use SGI L2 system controllers for power control. An L2 controller is standard with each Altix 3700 rack. On some platforms, including the Altix 350, an L2 controller is a separate optional product that must be purchased in order to use SGI Cluster Manager.

You may connect to the L2 over an Ethernet network or (depending on your particular hardware) you may connect directly to the L2 through a serial port. The network connection method (l2network) is preferred because it is easier to set up and provides for greater flexibility while configuring a cluster.

Note: If you have a system with an emulated L2 controller (such as an Altix 330 or Altix 3700 Bx2), or if you run CXFS with SGI Cluster Manger, you must use the l2network connection type. See "l2network Ethernet Connection" on page 13.

For information about configuring the power controller, see "Step 4: Add Power Controller Configuration" on page 35.

Note: Third-party network-based and serial-based power controllers are not supported for SGI Cluster Manager on SGI Altix servers. (However, network-based power controllers should not be confused with the l2network Ethernet connection.)

L2 Connections

You can use one of the following methods:

- "12network Ethernet Connection" on page 13 (preferred)
- "12 Serial Connection" on page 15

12network Ethernet Connection

The l2network Ethernet connection is the preferred L2 connection method. It requires the following:

- An Ethernet port on each member.
- All members in the cluster and the L2 must be connected to the same network. SGI recommends using a private network for greater reliability. (If a private network is used, a PCI Ethernet card is required for each member.)
- The l2network designation in the cluster configuration
- The IP address of each member's L2 controller must be entered as the address of that member's power controller. For example, to specify the power controller for cluster member Machine-A, enter the IP address of the L2 of Machine-A.

Note: Multiple members within a partitioned system may share a single L2 as long as the system serial number on each L1 is the same.

Figure 2-1 shows the L2 Ethernet connection for an Altix 3700.

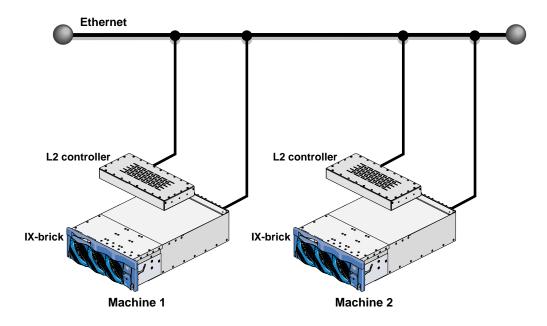


Figure 2-1 Altix 3700 L2 with an Ethernet Connection

Figure 2-2 shows the L1 USB port on an Altix 3700 Bx2 CR brick. Use a USB cable to connect the L1 USB port to the USB/network adapter mounted on the rack. The USB/network adapter should be connected to the network and must be accessible from the other SGI Cluster Manager member via the network.

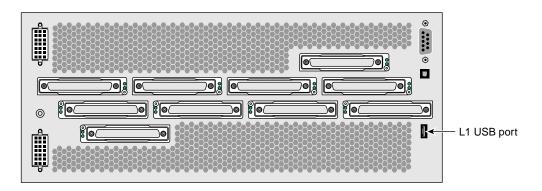
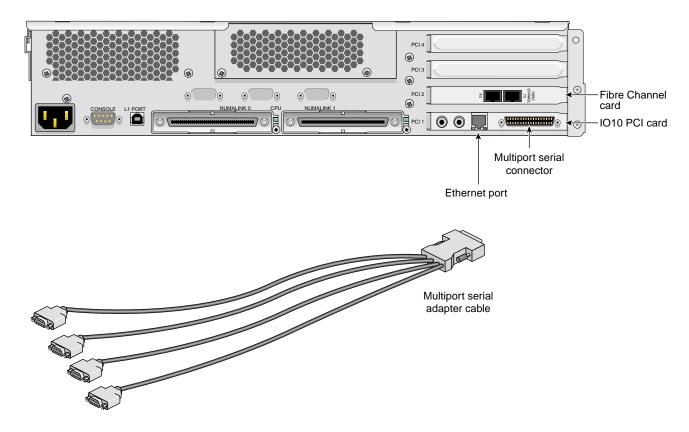
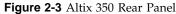


Figure 2-2 Altix 3700 Bx2 CR-brick Rear Panel


12 Serial Connection


Note: The l2network Ethernet connection is preferred.

A serial connection requires the following:

• Altix 350: serial ports on Altix 350 with IO10 and a IO10 CBL-SATA-SERIAL multiport serial adapter cable. You must also order the LS-BASE-IO serial ATA (SATA) drive option.

Figure 2-3 shows the rear panel for an Altix 350. For information about using an Altix 350 with an IO9 PCI card, see "Hardware Requirements" on page 3.

- Altix 3700: DB9 serial ports on an IX-brick.
- Serial cables should use the remote modem port on the L2 system controller. Connect the serial cable to the remote modem port on one end and the tty port on the other end.
- The 12 designation in the cluster configuration

Figure 2-4 and Figure 2-5 show the serial connections.

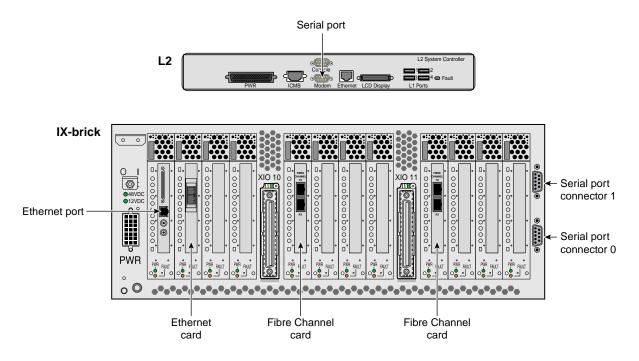


Figure 2-4 Altix 3700 Rear Panel

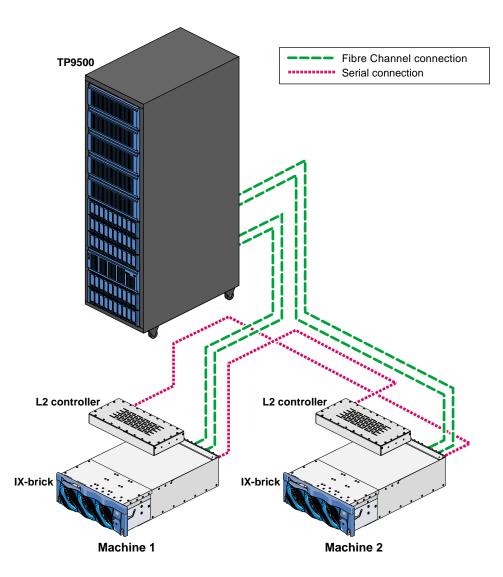


Figure 2-5 Altix 3700 L2 with Serial Cable Connection

Automatic Power

You must turn on the apwr automatic power variable on the L2. To show the current status, use the following command on the L2: L2> apwr To turn on automatic power, set the apwr value to on on the L2. For example: L2> apwr on

Connectivity Testing

Use the appropriate testing method:

- "Testing Ethernet Connectivity for the L2" on page 18
- "Testing Serial Connectivity for the L2" on page 19

Testing Ethernet Connectivity for the L2

To determine an L2's IP address or to configure an IP address for an L2, connect to the L2 using the serial port and use the L2 ip command.

For example, to show the current IP setting:

12-foo-001-L2>**ip** addr: 192.0.2.70 netmask: 255.255.255.0 broadcast addr: 192.0.2.255

Note: If you are using DHCP to assign the IP addresses of the L2s dynamically, you will see the following message:

l2-foo-001-L2>ip
static IP address not currently set

This is not an error, it just indicates that static IP addresses are not in use. To determine the IP address, use the cfg command from the L2 to show each brick and each L2 in the configuration.

To change the IP setting to 63.154.16.7:

12-foo-001-L2> ip 63.154.16.7 255.255.255.0 63.154.16.255

You can use the ping command to test connectivity to an L2. You can also use the L2 l2find command to find other L2s in the same subnet. For example:

```
[root@altix root]$ telnet l2-server.acme.com
Trying 192.0.1.98...
Connected to 12-server.acme.com.
Escape character is '^]'.
Linux 2.4.7-sgil2 (192.0.1.98) (ttyp2)
SGI SN1 L2 Controller
INFO: connection established to localhost, to quit enter <ctrl-]> <>
server-001-L2>help 12find
12find
       print list of L2's on the same subnet as this one
server-001-L2>12find
6 L2's discovered:
ΙP
            SSN NAME
                                   RACK FIRMWARE
[ L2's with different System Serial Numbers ]
 192.0.1.67 R2000016
                                     000 L3 controlle
 192.0.1.132 L1000487
                                     001 1.3.61
 192.0.1.96 N0000005 bar
                                     002 1.24.2
 192.0.1.100 N0000005 bar2
                                     003 1.24.2
 192.0.1.94 N0000005 bar3
                                     004 1.24.2
 192.0.1.105 N0000005 bar_12_2
                                     001 1.22.0
```

server-001-L2>

Testing Serial Connectivity for the L2

You can use the cu(1) command to test the serial reset lines if you have installed the uucp RPM.

The cu command requires that the device files be readable and writable by the user uucp. The command also requires that the /var/lock directory be writable by group uucp.

Perform the following steps:

1. Assure that the ioc4_serial module is loaded:

```
# lsmod | grep ioc4_serial
```

If you do not see ioc4_serial in the output from the lsmod command, install the module with modprobe:

```
# modprobe ioc4_serial
```

If you intend to use the L2 serial connection permanently, the ioc4_serial module must be loaded automatically when the system boots. Typically, this is done by editing /etc/sysconfig/kernel. See Chapter 3, "Software Installation" on page 23.

2. Change ownership of the serial devices so that they are in group uucp and owned by user uucp.

Note: The ownership change may not be persistent across reboots.

For example, suppose you have the following TTY devices on the IO10:

```
# 1s -1 /dev/ttyIOC*
crw-rw---- 1 root uucp 204, 50 Sep 15 16:20 /dev/ttyIOC0
crw-rw---- 1 root uucp 204, 51 Sep 15 16:20 /dev/ttyIOC1
crw-rw---- 1 root uucp 204, 52 Sep 15 16:20 /dev/ttyIOC2
crw-rw---- 1 root uucp 204, 53 Sep 15 16:20 /dev/ttyIOC3
```

To change ownership of them to uucp, you would enter the following:

chown uucp.uucp /dev/ttyIOC*

3. Determine if group uucp can write to the /var/lock directory and change permissions if necessary.

For example, the following shows that group uucp cannot write to the directory:

```
# ls -ld /var/lock
drwxr-xr-t 5 root uucp 88 Sep 19 08:21 /var/lock
```

The following adds write permission for group uucp:

chmod g+w /var/lock

4. Join the uucp group temporarily, if necessary, and use cu to test the line.

For example:

```
# newgrp uucp
# cu -l /dev/ttyIOC0 -s 38400
Connected
nodeA-001-L2>cfg
L2 192.168.0.1: - 001 (LOCAL)
L1 192.0.1.133:0:0 - 001c04.1
L1 192.0.1.133:0:1 - 001i13.1
L1 192.0.1.133:0:5 - 001c07.2
L1 192.0.1.133:0:6 - 001i02.2
```

For more information, see the cu(1) man page and the documentation that comes with the uucp RPM.

Other tools that may be useful when testing connectivity are minicom(1) kermit(1).

After you have configured the cluster software, (see Chapter 4, "Configuration" on page 29), you can also use the clufence(8) command to test serial connectivity. See the clufence(8) man page for more information.

Software Installation

This chapter describes how to install the SGI Cluster Manager for Linux software.

This chapter discusses the following:

- "Installing the Software" on page 24
- "Upgrading from the Previous Release" on page 26
- "Uninstalling the Software" on page 27

The following packages are required:

 Required GUI infrastructure packages from the SUSE LINUX Enterprise Server 9 (SLES9) CDs (some of these may be already installed depending on the installation options selected):

```
control-center2-2.4.0-166.1.ia64.rpm
eel-2.4.2-72.1.ia64.rpm
gdk-pixbuf-0.22.0-62.1.ia64.rpm
gnome-desktop-2.4.1.1-132.1.ia64.rpm
gnome-panel-2.4.2-63.1.ia64.rpm
libglade-0.17-230.1.ia64.rpm
libgnomeprint-2.5.3-43.1.ia64.rpm
libgnomeprintui-2.5.3-46.1.ia64.rpm
libwnck-2.4.0.1-125.1.ia64.rpm
libzvt-2.0.1-54.1.ia64.rpm
metacity-2.6.3-71.1.ia64.rpm
nautilus-2.4.2-50.1.ia64.rpm
python-gtk-2.0.0-215.1.ia64.rpm
python-xml-2.3.3-88.1.ia64.rpm
pyxml-0.8.3-185.1.ia64.rpm
startup-notification-0.5-319.1.ia64.rpm
```

 Required GUI infrastructure packages from the SGI Cluster Manager base product CD:

python-gnome-2.0.3-2.ia64.rpm
python-orbit-2.0.0-177.ia64.rpm

- Required base product packages from the SGI Cluster Manager base product CD:
 - clumanager-2.0.0-sles9sgi400r3.ia64.rpm
 - sgi-cluster-manager-docs-4.0-1.noarch.rpm

```
- sgicm-config-cluster-2.0.0-sles9sgi400r3.noarch.rpm
```

Note: The sgicm-config-cluster RPM is dependent upon the clumanager RPM. You must install the clumanager-2.0.0 RPM first.

• Optional high-availability plug-ins for CXFS, DMF, TMF, and local XVM from the SGI Cluster Manager storage software plug-ins CD:

clumanager-sgi-2.0.0-sles9sgi400r3.ia64.rpm

For additional information, see the README file.

Installing the Software

Do the following:

- 1. If necessary, upgrade to the supported level of SGI ProPack according to the directions in *SGI ProPack for Linux Start Here*. See "Software Requirements" on page 6.
- 2. Insert the *SGI Cluster Manager 4.2 for Linux Base Product* CD and do the following to mount the CD and see its contents:

```
# mount /dev/cdrom /mnt/cdrom
# cd /mnt/cdrom
# ls
COPYING README RPM_MD5_SUMS SGI TRANS.TBL
Prood the DEADME file to learn about
```

Read the README file to learn about any late-breaking changes in the installation procedure and exact RPM names.

3. Install the following additional GUI infrastructure RPMs by using the rpm(8) command:

```
# rpm -Uvh python-gnome-* python-orbit-*
```

```
4. Install the SGI Cluster Manager software from the base CD:
```

```
# rpm -Uvh clumanager-*.rpm sgi-cluster-manager-docs-*.rpm \
sgicm-config-cluster-*.rpm
```

For more information, see the rpm(8) man page.

5. If you have purchased the optional high-availability product for CXFS, DMF, TMF, and local XVM, insert the *SGI Cluster Manager 4.2 for Linux — Storage Software Plug-ins* CD. Do the following to mount the CD and see its contents:

```
# mount /dev/cdrom /mnt/cdrom
# cd /mnt/cdrom
# ls
COPYING README RPM_MD5_SUMS SGI TRANS.TBL
```

Read the README file to learn about any late-breaking changes in the installation procedure and exact RPM names.

6. Install the software from the CD:

rpm -Uvh clumanager-sgi-*.rpm

7. If you intend to use L2 serial port connections in your cluster (see "Power Control" on page 12), you must assure that the ioc4_serial module is loaded when the system boots. Edit the file /etc/sysconfig/kernel and find the line that starts with MODULES_LOADED_ON_BOOT. It may look something like this:

MODULES_LOADED_ON_BOOT="job numatools xpmem fetchop mmtimer csa mca_recovery"

Change this line to include ioc4_kernel:

MODULES_LOADED_ON_BOOT="job numatools xpmem fetchop mmtimer csa mca_recovery ioc4_serial"

Note: This change will take effect at the next reboot.

Upgrading from the Previous Release

To upgrade from the previous release, do the following:

1. Relocate all services to one member. For example:

```
# clusvcadm -r service -m member
```

For more information, see "Service Administration" on page 70.

2. Stop cluster daemons on the member to be upgraded. For example:

```
# /etc/init.d/clumanager stop
```

For more information, see "Stopping Cluster Processes" on page 70.

- 3. Install the new software as described in "Installing the Software" on page 24.
- 4. Start the cluster daemons on the member. For example:

```
# /etc/init.d/clumanager start
```

For more information, see "Starting Cluster Processes" on page 69.

5. Relocate the services to the upgraded member if needed. For example:

clusvcadm -r service -m member

For more information, see "Service Administration" on page 70.

6. If you modified /usr/lib/clumanager/create_device_links, restore your modifications by copying the backup file that is automatically made:

cp /usr/lib/clumanager/create_device_links.rpmsave /usr/lib/clumanager/create_device_links

Note: When you install the SGI Cluster Manager software, a new /usr/lib/clumanager/create_device_links file is installed. If the create_device_links file was modified, the changed file will be will be saved as /usr/lib/clumanager/create_device_links.rpmsave.

7. Repeat steps 1 through 6 for the other member.

Uninstalling the Software

To uninstall the software, use the following command:

rpm -e rpm_name

Uninstalling the clumanager RPM will attempt to stop cluster daemons in the local node.

For example:

```
# rpm -e clumanager-2.0.1-sles9sgi400r4.ia64.rpm \
clumanager-sgi-2.0.1-sles9sgi400r4.ia64.rpm \
sgi-cluster-manager-docs-4.2-1.noarch.rpm \
sgicm-config-cluster-2.0.1-sles9sgi400r4.noarch.rpm
```

Note: The above is an example. You must provide complete RPM names. Check the documentation and your system to determine the correct RPM names for your system.

For more information, see the rpm(8) man page.

Configuration

This chapter provides an overview of the cluster configuration tools and the basic configuration process. It discusses the following:

- "Cluster Configuration Tools" on page 29
- "Configuration Steps" on page 31
- "Samba Druid Example" on page 54
- "NFS Druid Example" on page 59
- "Cluster Configuration Example" on page 63

Cluster Configuration Tools

SGI Cluster Manager supports the following tools to configure the cluster:

- Graphical user interface (GUI): sgicm-config-cluster(8)
- Command-line interface (CLI): sgicm-config-cluster-cmd(8)

At any given time, you must use only one of these tools to perform configuration tasks. The GUI and the CLI supply similar functionality, although there are a few exceptions.

Note: If you are going to access the GUI remotely, SGI recommends that you use a virtual X server method such as Virtual Network Computing (VNC) for better performance. For more information, see the following RealVNC website:

http://www.realvnc.com/download.html

Displaying Configuration Status

The GUI displays the current status of the cluster. To display more details about an item, select the item and click **Properties**. Figure 4-1 shows an example of the GUI.

4: Configuration

	Cluster	· Status						•
<u>F</u> ile	<u>C</u> luste	r <u>H</u> elp						·····
Clust	ter Name:	SGI Hig	ıh Availab	ility cluster			6	🖌 Has Quorum
Mem		: Cluster	is running	On Mem	ber:	dahl.eng	ır.sgi.com	
	Name 👻	Status						
	dahl	Active						
	nygaard	Active						
Serv	ices							
	4	8	-	e		500		
E	nable	<u>D</u> isable	De <u>t</u> ach	<u>R</u> estart	<u>P</u>	roperties		
	Name 👻	State	Member	Last Transition		Monitor Interval	Service Timeout	Restarts
68	nfs	Running	dahl	08:47:06 Jun	28	40	40	0

Figure 4-1 Cluster Status GUI

In the CLI, enter an argument with *=value* to assign a value or alone (without a *=value*) to display the current setting. For example, the following displays the name of the cluster and the number of times the configuration has been changed:

```
# sgicm-config-cluster-cmd --cluster
```

```
cluster:
  name = SGI High Availability cluster
  config_viewnumber = 14
```

Saving Changes

Caution: After making modifications to the configuration using the GUI, you should save the information using the following selections:

File > Save

The information is written to a local /etc/cluster.xml file as well as to the shared quorum partitions. If the cluster is already configured and daemons are running on both nodes, the peer machine's /etc/cluster.xml is also updated.

Configuration Steps

This section discusses the configuration steps:

- "Step 1: Define the Shared Quorum Partitions" on page 32
- "Step 2: Create the Cluster" on page 34
- "Step 3: Define the Members" on page 35
- "Step 4: Add Power Controller Configuration" on page 35
- "Step 5: Change the Heartbeat Interval, Timeout, and Failover Speed" on page 39
- "Step 6: Set the Tiebreakers" on page 42
- "Step 7: Create the Failover Domain" on page 44
- "Step 8: Configure the Service" on page 45
- "Step 9: Add a Service IP Address" on page 48
- "Step 10: Add the Disk and Filesystem Information to the Service (*Optional*)" on page 49
- "Step 11: Add a Samba Share (Optional)" on page 50
- "Step 12: Define the NFS Information (Optional)" on page 50
- "Step 13: Save the Cluster Configuration (GUI only)" on page 52
- "Step 14: Synchronize Configuration Changes Across the Cluster" on page 52

007-3800-005

- "Step 15: Verify that Configuration Changes are Synchronized" on page 52
- "Step 16: Start the Cluster Daemons" on page 53

Step 1: Define the Shared Quorum Partitions

The names of the device files for filesystems to store quorum information must be the same on all cluster members. You must do the following:

- Ensure that the members have their disks attached identically.
- Create two unlabeled volumes of at least 10 MB in size on different physical devices. For example, you could use TPSSM on an SGI TP9500 RAID. For more information about TPSSM, see the *SGI TPSSM Administration Guide*.
- Run the parted(8) command to create two partitions of at least 10 MB in size with a 0x83 device type on the chosen volume. For more information, see the parted(8) man page.
- Create symbolic links (*symlinks*) so that the names of shared quorum partitions are the same on all cluster members. You must re-create the symlinks every time the machine reboots because /dev files are re-created. Therefore, you should modify the /usr/lib/clumanager/create_device_links script to add the device symlinks that are required.

For example:

```
#!/bin/sh
```

```
# Create device links for shared quorum partitions if it does not exist
# if [ ! -h <device link> ]; then
# ln -s /dev/.... /dev/shared ....
# fi
#
# Create device links for shared disks if the disks are not in the
# same I/O slot in all cluster members if it does not exist
#
if [ ! -h /dev/shared1 ]; then
ln
-s /dev/xscsi/pci02.02.0/node20000050cc00857a/port1/lun0/part1 /dev/shared1
```

007-3800-005

```
fi
```

```
if [ ! -h /dev/shared2 ]; then
    ln
-s /dev/xscsi/pci02.02.1/node20000050cc00857a/port4/lun1/part2 /dev/shared2
fi
```

SGI recommends that the two shared quorum partitions should be on different Fibre Channel controllers; ideally, they should be on separate Fibre Channel controllers at the front end, on separate HBAs on the Altix, and on separate RAID logical units (LUNs) or RAID arrays if possible. They should be at least 10 MB in size and the partition type must be Linux. For more information, see Appendix B, "Setting the Partition Type to Linux" on page 123.

You can use the lspci command to see the Fibre Channel cards and you can use the hwinfo --disk command to see information about the shared disks. For example:

lspci

```
...
0000:05:02.0 Fibre Channel: QLogic Corp. QLA2300 64-bit Fibre Channel Adapter (rev 01)
...
```

hwinfo --disk --short

disk:

/dev/sda	SGI	ST37330)7LC
/dev/sdb	SGI	TP9100	FFX2
/dev/sdc	SGI	TP9100	FFX2
/dev/sdd	SGI	TP9100	FFX2
/dev/sde	SGI	TP9100	FFX2
/dev/sdf	SGI	TP9100	FFX2
/dev/sdg	SGI	TP9100	FFX2
/dev/sdh	SGI	TP9100	FFX2

For more information, see the hwinfo(8) man page.

Partition 1 from the disk at Fibre Channel target 2 and partition 1 from the disk at Fibre Channel target 3 will be used for storing shared state. To assure that the devices

have the same name on both cluster members, you could create symlinks to the block device files:

```
# ln -s /dev/sdb1 /dev/shared1
```

ln -s /dev/sdc1 /dev/shared2

You should add these symlink commands to the /usr/lib/clumanager/create_device_links script on the cluster member. For more information, see the ln(1) man page.

The shared quorum partitions will then be referred to as /dev/shared1 and /dev/shared2. These partitions will be the primary and shadow, respectively, in the following examples.

To define the shared quorum partitions in the GUI configuration window, select the following from the **Cluster Configuration** window:

Cluster > Shared State

In the CLI:

```
sgicm-config-cluster-cmd --sharedstate \
```

```
--type=raw \
--rawprimary=path1 \
--rawshadow=path2
```

For example:

```
# sgicm-config-cluster-cmd --sharedstate --type=raw \
--rawprimary=/dev/shared1 --rawshadow=/dev/shared2
```

You should perform this step before defining the cluster ("Step 2: Create the Cluster" on page 34).

Do not modify the /etc/init.d/clumanager script.

Step 2: Create the Cluster

To create the cluster in the GUI, type the cluster name in the **Cluster Name** field in cluster configuration window. The default cluster name is SGI High Availability cluster.

In the CLI:

sgicm-config-cluster-cmd --cluster --name "clustername"

Step 3: Define the Members

To define a member in the GUI, do the following in the cluster configuration window:

- Click the **Members** tab.
- Click New.
- Enter the hostname of the new member. SGI recommends that member hostnames and addresses be present in /etc/hosts so that communication between cluster daemons does not rely on DNS or NIS being available.

In the CLI:

sgicm-config-cluster-cmd --add_member --name=membername

Step 4: Add Power Controller Configuration

For each member, you must provide information about its power controller. The SGI Cluster Manager supports the L2 system controller using either serial cables or Ethernet cables.

Note: The **Serial** and **Network** power controllers shown in the GUI refer to third-party products that are not supported by SGI Cluster Manager. (Although the other machine in the cluster will appear in the **Owner** field automatically, this value is not used.) Do not confuse network-based power controllers with the l2network L2 Ethernet connection.

In the GUI **Cluster Configuration** window, select the member and click **Add Child**. The fields for SGI controllers are as follows:

- **Type**: the power controller type of the member being defined (the local member):
 - 12 for using L2 serial cables.
 - l2network for using the L2 Ethernet connection. (This is the default in the GUI.)

Note: If you have a system with an emulated L2 controller (such as an Altix 3700 Bx2), or if you run CXFS with SGI Cluster Manger, you must use the l2network connection type. See "l2network Ethernet Connection" on page 13.

This is the type field in the CLI; in the CLI, there is no default value.

• **Peer's TTY device file name**: the tty device filename on the **peer member** to which the local system controller is connected.

This is the device field in the CLI.

• Altix partition: the local member's system partition ID. If there are no partitions, partition ID is 0. The default value in the GUI is 0.

This is the partion field in the CLI.

Figure 4-2 shows an example for an L2 using the Ethernet network and Figure 4-3 shows an example in the GUI for an L2 using serial cables.

- Power Controller •						
Power Contro	ller Type					
		Тур)e	l2network	•	
		Pee	er's TTY device file name			
 SGI contro 	 SGI controllers 		x partition	0		
		L2 IP address		192.168.0.100		
		L2 Password				
l			· · · · · · · · · · · · · · · · · · ·			
	Type				•	
	Device					
O Serial	Port				•	
	Owner		aard			
	Type				-	
	IP Addr	ess				
O Network	Port					
	User					
	Passwo	ord				
				🗶 <u>C</u> ancel	<i>ф</i> <u>о</u> к	

Figure 4-2 Power Controller Information for an L2 Using an Ethernet Network

Note: You can use a hostname in place of the IP address when configuring l2network reset provided that name resolution is in place; that is, the name is in /etc/hosts on all of the servers or is otherwise available via gethostbyname(2).

4: Configuration

Power C	ontroller	•			•
Power Controller Type					
			pe	12	
		Peer's TTY device file name		/dev/ttylOC0)
 SGI control 	lers	Altix partition		0	
		L2 IP address			
		L2 Password			
				,	
	Туре				•
	Device				
O Serial	Port				•
	Owner				
	Type				•
	IP Addr	ess			
O Network	Port				
	User				
	Passwo	ord			
-				🗶 <u>C</u> ancel	<i>ф</i> <u>О</u> К

Figure 4-3 Power Controller Information for an L2 Using Serial Cables

In the CLI:

```
sgicm-config-cluster-cmd --member=membername \
    --add_powercontroller \
    --type=l2|l2network \
    required only for l2network:
        --ipaddress=L2_IPaddress_or_hostname \
        --password=L2_password_(if_defined) \
        --partition=Altix_partition_ID \
        --device=/dev/ttyIOCx\
        --partition=n
```

You can optionally set a password for the L2 to prevent unauthorized access to L2 functions via Ethernet. If you choose to use this security feature, SGI Cluster Manager must know the password in order to access L2 functionality. For more information, see *SGI L1 and L2 Controller Software User's Guide*.

For example, the following defines an L2 using the Ethernet method (therefore there is no --device argument):

```
# sgicm-config-cluster-cmd --member=member1 --add_powercontroller \
--type=l2network --ipaddress=192.168.0.100 --partition=3 --password=foo
```

For example, the following defines an L2 using the serial cable method:

```
# sgicm-config-cluster-cmd --member=member1 --add_powercontroller \
--type=12 --device=/dev/ttyIOC0
```

For hardware information, see "Power Control" on page 12.

Step 5: Change the Heartbeat Interval, Timeout, and Failover Speed

You can modify the time it takes to detect a member failure, known as the *failover* speed.

Note: The default failover speed differs depending upon which tool (GUI or CLI) you use to define the cluster. You cannot change the value for failover speed while the cluster daemons are running.

Failover Speed and the GUI

In the GUI, you can supply the failover speed directly:

1. In the **Cluster Configuration** window, select the following:

Cluster

> Daemon properties

- 2. Select the **clumembd** tab
- 3. Use the sliding bar to adjust failover speed, as shown in Figure 4-4. The GUI provides 15 seconds as the default failover speed value.
- 4. You can choose to enable either broadcast heartbeating or multicast heartbeating.

Clust	ter Daemon	Propertie	<i>es</i>	•				
clumembd	cluquorumd	clurmtabd	clusvcmgrd	clulockd				
Log Level 🕴	Log Level NOTICE - normal but significant condition 😤							
Faster =	Failover Speed Faster Slower 15 second failover Cluster is running - cannot modify failover speed							
 Enable Broadcast Heartbeating Enable Multicast Heartbeating Multicast IP Address 225.0.0.11 								
X <u>C</u> ancel								

Figure 4-4 Adjusting Failover Speed

Failover Speed and the CLI

The clumembd daemon lets you specify the failover speed indirectly by defining the heartbeat interval and the timeout, from which the failover speed is automatically calculated:

- interval specifies the *heartbeat interval*, which is the number of microseconds before a heartbeat is sent to all other members in the cluster. The default value is 500000 (0.5 seconds).
- tko_count specifies the *heartbeat timeout*, which is the number of heartbeats missed before a member is declared as failed. The default value is 20.

Note: The GUI does not let you display or set the heartbeat interval or the heartbeat timeout individually.

The failover speed is calculated as follows:

interval_value * tko_count_value = failover_speed

Therefore, the default member failure detection time is 10 seconds (0.5 * 20 = 10).

Table 4-1 shows the failure detection times and parameter values that are supported.

Failover Speed (in seconds)	interval (in microseconds)	tko_count
30	1000000	30
25	1000000	25
20	100000	20
15	750000	20
10	500000	20
5	330000	15

Table 4-1 Supported Failure Detection Times and Parameter Values

For example, the following command displays the heartbeat interval and tko_count values:

```
# sgicm-config-cluster-cmd --clumembd
```

```
clumembd:
  loglevel = 5
  interval = 500000
  tko_count = 20
  thread = yes
  broadcast = no
  multicast = yes
  multicast_ipaddress = 225.0.0.11
```

The failover speed is therefore 10 seconds. The following command changes the failover speed 15 seconds:

```
# sgicm-config-cluster-cmd --clumembd --interval=750000 --tko_count=20
```

Note: You cannot change the values for interval and tko_count while the cluster daemons are running.

For more information about using the command-line interface, see sgicm-config-cluster-cmd man page.

Step 6: Set the Tiebreakers

There are two types of tiebreakers:

• *Network tiebreaker* is used to avoid a *split-brain scenario*, in which both members attempt to form individual clusters. The network tiebreaker ensures that only the member that can contact the tiebreaker IP address is able to form a cluster. The network tiebreaker is the IP address of a machine or a router that **does not participate** in the cluster. Usually, it is the IP address of a network router that connects the members to the external world (clients).

Note: You must verify that the network tiebreaker can be accessed by the ping(1) command. (Some sites like to disable internet control message protocols at routers so the router or machines more than one hop away do not answer; such a router or machine could not be used as a tiebreaker.)

• *Disk tiebreaker*: If two members cannot talk to each other, they look at the status on the shared quorum partition disk to decide which member should survive and be part of the cluster membership. If the disk cannot be accessed or membership on the disk does not include a given machine, all SGI Cluster Manager processes on the machine exit. You can specify the number of seconds between the updates to the on-disk status. In the GUI, the default is 2 seconds.

In the GUI:

1. Select the following in the **Cluster Configuration** window:

Cluster > Daemon properties

- 2. Select the **cluquorumd** tab.
- 3. Specify the desired values for the tiebreakers.

Figure 4-5 shows an example of the cluquorumd window.

-	Cluster Daemon Properties							
000000000000000000000000000000000000000	clumembd	cluquorumd	clurmtabd	clusvcmgrd	clulockd			
	Log Level NOTICE - normal but significant condition 😤							
	Oisk Tiebreaker - Disk Ping Interval Network Tiebreaker - IP Address							
	Cluster has 2 members - Network Tiebreaker IP Address is recommended							
	X Cancel							

Figure 4-5 Tiebreakers

In the CLI:

Step 7: Create the Failover Domain

The failover domain is optional; if a failover domain is not defined, the service will be started on any member. For more information, see "Failover Domains" on page 6.

In the GUI Cluster Configuration window:

- 1. Select the Failover Domains tab.
- 2. Click New.
- 3. Enter the domain name and choose the desired failover and failback options.
- 4. Click **OK** to create the domain.

For information about the failover and failback options, see "Failover Domains" on page 6.

Figure 4-6 shows an example.

Figure 4-6 Failover Domain

In the CLI:

The default for --restricted, --ordered, and --controlled is no.

Step 8: Configure the Service

You can specify the following for a service (the service must be disabled in order to configure it):

• Service name.

Note: If you are using the GUI, you cannot include white space within a service name.

- Failover domain name (see "Step 7: Create the Failover Domain" on page 44).
- Monitor interval (in seconds).
- Service timeout (in seconds), which is common for all actions (start, stop, and status check) that apply to the service. A service timeout of 0 means that there is no timeout (the service action will never timeout).

Note: You cannot specify individual timeouts for each resource within the service nor for each action (stop/start/monitor).

- Monitor level (for NFS and Samba only):
 - Check for processes

NFS checks for nfsd processes.

Samba checks for smb and nmb processes

- Check as client

NFS sends null RPCs to the NFS server.

Samba sends smb and nmb queries to the samba server.

- Restart count limit, which is the number of local restarts allowed for a service. When the limit is exceeded, the service is failed over to the other member. If there are no monitor failures for a day, the number of restart failures is reinitialized to 0. The maximum is 500.
- User application script or directory, if applicable. (If you are configuring NFS or Samba services, it is not necessary to put anything in this field.)

In this field, you can specify an individual script or a directory containing scripts. A script contains functions to implement service failover. The directory or script is specified as a service parameter.

Each function will be called with two parameters:

- An action: one of start, stop, or status
- A service ID

If successful, the function must return 0; if it fails, it must return a non-zero value.

For an example script, see "Sample User Application Script" on page 78.

In the GUI Cluster Configuration window:

- 1. Select the **Services** tab.
- 2. Click New.
- 3. Enter the desired values.
- 4. Click **OK** to create the service.

Figure 4-7 shows an example of configuring an NFS high-availability service.

📥 Service	•				
Service Name	NFS				
Failover Domain	test domain 1 🔹				
Monitor Interval (in seconds)	40				
Service Timeout (in seconds)	40				
Monitor Level	Check as client 💌				
Restart Count Limit	3				
User Application Script/Directory					
X Cancel	<u>.</u> ⊘K				

Figure 4-7 Configuring a High-Availability Service

In the CLI:

```
sgicm-config-cluster-cmd --add_service \
    --name=servicename \
    --failoverdomain=domainname \
    --checkinterval=seconds \
    --servicetimeout=seconds \
    --monitorlevel="level" \
    --restartcount=N \
    --userscript=pathname
```

Note: The monitoring-level string values are case-sensitive and should be either of the following:

"Check for processes" "Check as client"

Step 9: Add a Service IP Address

In the GUI Cluster Configuration window:

- 1. Select the **Services** tab.
- 2. Select the service name.
- 3. Click Add Child.
- 4. Choose Add service IP address and click OK.
- 5. Enter the IP address and optional netmask and broadcast address.
- 6. Click OK.

In the CLI:

```
sgicm-config-cluster-cmd --service=servicename \
```

- --add_service_ipaddress \
- --ipaddress=IPaddress \
- --netmask=netaddress $\$
- --broadcast=broadcastaddress

Step 10: Add the Disk and Filesystem Information to the Service (Optional)

In the GUI **Cluster Configuration** window:

- 1. Select the **Services** tab.
- 2. Select the service name.
- 3. Click Add Child.
- 4. Choose Add Device and click OK.
- 5. Enter information for the following, as appropriate:
 - Device special filename.
 - Samba share name.
 - Local XVM physical volumes (physvols). This must be a comma-separated list.
 - Mount point. If you are configuring a filesystem that requires the dmi mount option and are using local XVM, you must specify the mount point as follows:

mtpt=mountpoint

For example, if the mount point is /dmfs:

mtpt=/dmfs

When using CXFS, the mount point options are specified using CXFS tools.

• Filesystem type xfs or cxfs (if using the CXFS plug-in). Default is xfs.

Note: When configuring local XVM in the GUI, you must own the physvol for the XVM volume so that you may see the block device file for the volume in /dev/lxvm/.

• Mount options

Enable Force Unmount.

6. Click OK.

In the CLI:

Step 11: Add a Samba Share (Optional)

Samba share names must be unique within the cluster.

The **Samba Druid** is a configuration guide that lets you create a new Samba service or add Samba to an existing service. In the GUI **Cluster Configuration** window, start the **Samba Druid** by selecting the following:

Add Exports > Samba

For more information, see "Samba Druid Example" on page 54.

In the CLI:

Step 12: Define the NFS Information (Optional)

Define the NFS export point and NFS client information.

The **NFS Druid** is a configuration guide that lets you create a new NFS service or add NFS export points to an existing service. In the GUI **Cluster Configuration** window, start the **NFS Druid** by selecting the following:

Add Exports > NFS

For more information, see "NFS Druid Example" on page 59.

In the CLI:

```
sgicm-config-cluster-cmd --service=servicename \
          --device=path \
          --add_nfsexport \
          --name=exportdirectory
sgicm-config-cluster-cmd --service=servicename \
          --device=path \
          --device=path \
          --nfsexport=exportpath \
          --nfsexport=exportpath \
          --name=\* \
          --options=options
```

The value * for the NFS client name means "all NFS clients." For better security, supply a list of NFS client systems instead of the * character. For more information, see the exports(5) man page.

Note: In general, you must use the fsid option to set the fsid value for the export. Any number in the range 1 through 65535 will work. See the exports(5) man page for further details on the fsid option.

Step 13: Save the Cluster Configuration (GUI only)

If you are using the GUI, you must explicitly save the configuration information as noted in "Cluster Configuration Tools" on page 29. Select the following from the **Cluster Configuration** window:

File > Save

Step 14: Synchronize Configuration Changes Across the Cluster

During the initial configuration, you must manually copy the /etc/cluster.xml file to the other member in the cluster whether you use the GUI or the CLI.

Step 15: Verify that Configuration Changes are Synchronized

Each member has an /etc/cluster.xml file that contains cluster configuration information. If you make a change to this file on one member, you must copy the file to the other member using a command such as scp(1).

After making configuration changes, you must verify that the configuration files across the cluster are in synchronization. To do this, you can run the following command on each node and compare the config_viewnumber value on each, which lists the configuration file version number:

sgicm-config-cluster-cmd --cluster

The config_viewnumber value is updated each time a change is made to the configuration file.

For example, the following output from Machine1 and Machine2 shows that the configuration files are in synchronization for test-cluster because they both have the same config_viewnumber value (10):

• Machine1:

```
Machinel# sgicm-config-cluster-cmd --cluster
cluster:
   name = test-cluster
   config_viewnumber = 10
```

• Machine2:

```
Machine2# sgicm-config-cluster-cmd --cluster
cluster:
  name = test-cluster
  config_viewnumber = 10
```

In another example, the following output from Machine1 and Machine2 shows that the configuration files are out synchronization because they have differentconfig_viewnumber values (10 and 11):

• Machine1:

```
Machinel# sgicm-config-cluster-cmd --cluster
cluster:
   name = test-cluster
   config_viewnumber = 10
```

• Machine2:

```
Machine2# sgicm-config-cluster-cmd --cluster
cluster:
   name = test-cluster
   config_viewnumber = 11
```

If the config_viewnumber values are different, then configuration files are different. You should copy the configuration file with higher config_viewnumber number (which indicates the more recent configuration file) to the other member. In this case, you would copy the configuration file from Machine2 (which has the higher number of 11) to Machine1 (which has the lower number of 10).

Step 16: Start the Cluster Daemons

To automatically restart the SGI Cluster Manager daemons after a reboot, do the following in the CLI:

- 1. Enter the following command:
 - # chkconfig clumanager on

- 2. Start local cluster daemons on each member in the cluster by doing either of the following:
 - Enter /etc/init.d/clumanager start
 - In the GUI, select the following in the Cluster Status window:

Cluster

> Start Local Cluster Daemons

For more information, see Chapter 5, "Administration" on page 67.

Samba Druid Example

Figure 4-8 shows the **Samba Druid** initial window. Click **Forward** to configure the Samba service.

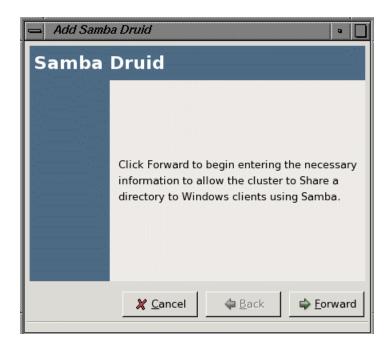


Figure 4-8 Samba Druid

You can choose to add Samba to an existing service or to create a new Samba service. In Figure 4-9, a new Samba service named samba with service IP address 192.168.0.3 is being created.

- Add Samba Druid
Select Service for Share
O Existing Services with IP Addresses
Ixvm-share
nfs-share
New Service
Service Name samba
Service IP Address 192.168.0.3
💥 <u>C</u> ancel 🗇 <u>B</u> ack 🖨 <u>F</u> orward

Figure 4-9 Samba Druid: Select Service for Share

You can choose the device and mount point of an existing service or add a new device and mount point. In Figure 4-10, a new device (/dev/sdd) and mount point (/samba) are being added. To change mount options, you must double-click on the device in the **Cluster Configuration** window after completing the **Samba Druid** configuration.

🛥 Add Samba Druid 🔹 🗌
Select Device for Share
New Service 'samba' was specified
O Existing Device and Mountpoint
New Device
Device Special File /dev/sdd
Device Mountpoint /samba
※ <u>C</u> ancel

Figure 4-10 Samba Druid: Select Device for Share

In Figure 4-11, the name of the share is specified as mysamba. Only one share is configured at a time.

	- Add Samba Druid •
	Enter Share Name
	Share Name mysamba
-	✗ Cancel ♀ Back ₽ Forward

Figure 4-11 Samba Druid: Enter Share Name

Click **Apply** to complete the configuration of the Samba service. You must copy the /etc/samba/smb.conf.mysamba configuration file to the other member in the cluster. See Chapter 7, "Samba Plug-In" on page 81 for information about the newly created Samba configuration file.

📥 Add Samb	oa Druid 🔹 🗌
Samba	Share Completion
	When you press 'Apply' below, and then File => Save on the menu, samba configuration file
	/etc/samba/smb.conf.mysamba
· · · · · · · · · · · · · · · · · · ·	will be created ***ON THIS MEMBER ONLY***. Remember to copy the samba configuration file
	to *ALL* other cluster members.
	<u>X C</u> ancel ↓ Back ↓ Apply

Figure 4-12 Samba Druid: Samba Share Completion

NFS Druid Example

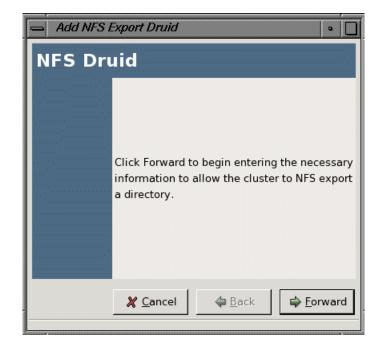


Figure 4-13 shows the NFS Druid initial window. Click Forward to proceed.

Figure 4-13 NFS Druid

Add NFS Exp	ort Druid
Enter Dir	ectory to Export
Export Directory	/lun2/exports
Client Name	nfsclient1, nfsclient2
Client Options	rw
	X Cancel ↓ Back ↓ Forward

Figure 4-14 shows the window that lets you enter the name of the export directory and its export options. You can add only one export directory at a time.

Figure 4-14 NFS Druid: Enter Directory to Export

You are given the choice of adding the export directory to an existing service or creating a new service for the export directory. In Figure 4-15, a new service nfs is being created with service IP address 192.168.0.4.

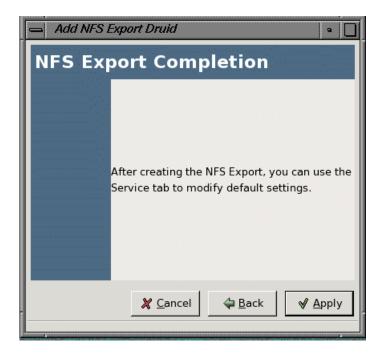

Add NFS Export	Druid a	C
elect Serv	vice for Export	
O Existing Service	es with IP Addresses	
lxvm-share		
nfs-share		
New Service		
Service Name	nfs	
Service IP Address	192.168.0.4	
<u>× (</u>	<u>Cancel</u> ↓ <u>B</u> ack ↓ <u>F</u> orward	d

Figure 4-15 NFS Druid: Select Service for Export

You can add devices (filesystems) to the service. If you had chosen an existing service in the **Select Service for Export** window (Figure 4-15), you could choose an existing device mount point in the **Select Device for Export**. In Figure 4-16, a new device (/dev/shared1) and mount point (/lun2) are specified. To add filesystem mount options, you must double-click the device entry in the **Cluster Configuration** window after completing the NFS service configuration.

Add NFS Export Druid
Select Device for Export
New Service 'nfs' was specified
C Existing Device and Mountpoint
New Device
Device Special File/dev/shared1
Device Mountpoint //un2
<u>X</u> <u>C</u> ancel ↓ <u>B</u> ack ↓ <u>F</u> orward

Figure 4-16 NFS Druid: Select Device for Export

Click **Apply** to complete the NFS configuration. If you want to modify service parameters, you must double-click the service in the **Cluster Configuration** window.

Figure 4-17 NFS Druid: NFS Export Completion

Cluster Configuration Example

The following example uses sgicm-config-cluster-cmd commands to create a two-member cluster with a service providing Samba shares and NFS service:

- member1 is an Altix 350 system with no partitions that is connected to an L2 power controller
- member2 is partition 3 of an Altix 3700 system that is connected to an L2 power controller using Ethernet, where 192.168.9.2 is the IP address of the L2 connected to member2
- The network tiebreaker is the IP address of a network router or another machine that determines which member should have connectivity to the public network

- service1 is the IP address that will be used by clients to access the Samba share and NFS export point
- The service is allowed to restart four times within one day before a failover occurs

Note: Commands that modify the configuration file do not print anything if they are successful. The command exit status is 0 when successful.

Do the following:

1. Define shared state:

```
# sgicm-config-cluster-cmd --sharedstate --type=raw --rawprimary=/dev/shared_1 \
--rawshadow=/dev/shared_2
```

2. Create the cluster:

sgicm-config-cluster-cmd --cluster --name "test-cluster"

3. Define the members:

```
# sgicm-config-cluster-cmd --add_member --name=member1 --watchdog=no
```

sgicm-config-cluster-cmd --add_member --name=member2 --watchdog=no

4. Add power controller information for the members (192.168.9.2 is the IP address of the L2):

```
# sgicm-config-cluster-cmd --member=member1 --add_powercontroller --type=l2 \
--device=/dev/ttyIOC0 --partition=0
```

```
# sgicm-config-cluster-cmd --member=member2 --add_powercontroller --type=l2network \
--ipaddress=192.168.9.2 --partition=3
```

5. Change the heartbeat timeout to 20 seconds with heartbeat interval of 1 second, resulting in a failover speed of 20 seconds:

sgicm-config-cluster-cmd --clumembd --interval=1000000 --tko_count=20

6. Set up a network tiebreaker for the cluster:

sgicm-config-cluster-cmd --cluquorumd --tiebreaker_ip=192.0.2.245

```
7. Create a failover domain with an ordered failover policy where the primary member is member1 and the backup member is member2:
```

```
# sgicm-config-cluster-cmd --add_failoverdomain --name=domain1 \
--restricted=yes --ordered=yes
# sgicm-config-cluster-cmd --failoverdomain=domain1 --add_failoverdomainnode \
--name=member1
# sgicm-config-cluster-cmd --failoverdomain=domain1 --add failoverdomainnode \
--name=member2
                       8. Create the service definition:
# sgicm-config-cluster-cmd --add_service --name=service1 --checkinterval=60 \
--servicetimeout=40 --monitorlevel="Check as client" \
--failoverdomain=domain1 --restartcount=4
                       9. Add a service IP address:
# sgicm-config-cluster-cmd --service=service1 --add_service_ipaddress \
--ipaddress=192.168.1.2 --netmask=255.255.255.0 \
--broadcast=192.168.1.255
                      10. Add the shared quorum partition and filesystem information to service1:
# sgicm-config-cluster-cmd --service=service1 --add_device --name=/dev/shared1
# sgicm-config-cluster-cmd --service=service1 --device=/dev/shared1 --mount \
--mountpoint=/mnt1 --fstype=xfs --options=rw,sync \
--forceunmount=yes
                      11. Add a Samba share name:
# sgicm-config-cluster-cmd --service=service1 --device=/dev/shared1 \
--sharename=share1
                      12. Define the NFS export point and NFS client information. The directory is
                          exported to all clients with read-only access:
# sgicm-config-cluster-cmd --service=service1 --device=/dev/shared1 \
--add_nfsexport --name=/shared1/export_dir
# sgicm-config-cluster-cmd --service=service1 --device=/dev/shared1 \
--nfsexport=/shared1/export_dir --add_client \
```

--name=* --options=ro Note: The value of * for the NFS client name means "all NFS clients." For better security, supply a list of NFS client systems instead of the * character. For more information, see the exports(5) man page. 13. (If you were using the GUI, you would have to save the configuration at this point.) 14. Synchronize the configuration changes. For example: # scp /etc/cluster.xml root@member2:/etc/cluster.xml root@member2's password:ENTER_ROOT_PASSWORD cluster.xml 100% 3297 57.1MB/s 00:00 15. Verify that the changes are synchronized by running the following command on each member: # sgicm-config-cluster-cmd --cluster 16. Start the SGI Cluster Manager daemons: a. Enter the following command: # chkconfig clumanager on b. Start local cluster daemons on each member in the cluster doing either of the following: # service clumanager start or # /etc/init.d/clumanager start For more information and additional examples, see the sgicm-config-cluster-cmd(8) man page.

Administration

This chapter discusses the following:

- "Monitoring Status" on page 67
- "Displaying Service Information" on page 68
- "Starting Cluster Processes" on page 69
- "Stopping Cluster Processes" on page 70
- "Service Administration" on page 70
- "Cluster Service States" on page 71
- "Message Logging" on page 73

Monitoring Status

To monitor status, use the following:

- The sgicm-config-cluster GUI to monitor the status of the cluster and the services
- clustat to monitor the cluster status

Figure 5-1 shows an example of the GUI.

5: Administration

	Cluster Status							
<u>F</u> ile	<u>F</u> ile <u>C</u> luster <u>H</u> elp							
Clus	ter Name:	SGI Hig	h Availabil	ity cluster] Has Quorum
Mon	Status 1bers	: Cluster is	s running	On Memb	oer:	nygaard.e	engr.sgi.co	om
IVIEII	Name 👻	Status						
	dahl	Active						
	nygaard	Active						
Serv	lices							
	N.	8	-	e		es s		
Ē	nable	<u>D</u> isable	De <u>t</u> ach	<u>R</u> estart	Pro	operties		
	Name 👻	State	Member	Last Transition		Monitor Interval	Service Timeout	Restarts
68	nfs	Running	nygaard	15:13:49 Jur	ı 18	40	40	0
L								

Figure 5-1 Status

Displaying Service Information

To display information about a service using the GUI, click on the service name in the **Cluster Status** window.

In the CLI:

sgicm-config-cluster-cmd --service=servicename

For example:

sgicm-config-cluster-cmd --service=nfs

Figure 5-2 shows an example of the status window.

📥 Service In	formation							•
Name: nfs		Member:	dahl	State:	Enable 🛎	·		
Script: None		Failover Domain:	dn	Monitor Level:		Check as client	Restart Count:	3
Ip Addresses			>					
Address	Netmask 👻 Bro	padcast						<u>*</u>
163.154.16.200	0xffffff00 16	3.154.16.255						4
								4
								*
4				111				
Transitions								
Last Time: 08:47	:06 Jun 28					Monitor Interval: 40	Restarts: 0	Service timeout: 40
Devices								
▷ ◯ /dev/sh	ared_lun Host	options						↓
/uct/si								
								14
	1							_
¢ ///	> (111			↓
<u></u>								
								<i>∳</i> <u>О</u> К

Figure 5-2 Service Information

Starting Cluster Processes

Use the following GUI selection in the **Cluster Status** window to start cluster daemons on the local member:

Cluster > Start Local Cluster Daemons

In the CLI:

/etc/init.d/clumanager start

To start the daemons on other members, you must run the GUI or CLI on those other machines.

Stopping Cluster Processes

Use the following GUI selection in the **Cluster Status** window to stop cluster daemons on the local member:

Cluster

> Stop Local Cluster Daemons

In the CLI:

/etc/init.d/clumanager stop

To stop the daemons on other members, you must run the GUI or CLI on those other machines.

Service Administration

In the GUI, use the **Cluster Status** window to enable, disable, detach, restart, or stop services or to view service properties. You can also restart and relocate a service by using drag and drop on the service icon to the target node icon.

When you *enable* a service, you start it for the first time. The service will start on any member in the cluster based on the failover domain. When you *restart* the service, it restarts the service that was already running on the local node.

In a successful *detach* operation, the service is no longer monitored and is not part of the cluster, but continues to run on the member. (The difference between *detach* and *disable* is that the services are not stopped with a detach.)

You can also use the clusvcadm command as follows:

• Enable the service on the local member:

clusvcadm -e service

• Enable the service on the specified member:

```
clusvcadm -e service -m member
```

Disable the service:

clusvcadm -d service

• Detach the service:

clusvcadm -t service

• Restart the service on the local member:

clusvcadm -R service

- Relocate the service: clusvcadm -r service -m member
- Stop the service:

clusvcadm -s service

To avoid seeing output, use the -q option.

Cluster Service States

A service can have one of the following states:

State	Description
Uninitialized	Transitioning when clusvcmgrd daemon starts
Pending	Transitioning to running or disabled
Running	Online and is being actively monitored
Disabled	Not online and service was stopped
Stopped	Disabled but will start when cluster processes are started again
Failed	Needs operator attention
Detached	Not online but the service was not stopped in the cluster

A detached service has no owner and last owner is the member where the service application is still running. The GUI and the clustat command display the last owner for services in the detached state, as shown in the Figure 5-3.

5: Administration

	😑 Cluster Status 🔹 🗌							
<u>F</u> ile	<u>F</u> ile <u>C</u> luster <u>H</u> elp							
Cluster	Name:	SGI High	Availabil	ity cluster				🖌 Has Quorum
Membe		: Cluster is	running	On Memb	er:	nygaard.	engr.sgi	.com
Na	ame 👻	Status						
💽 da	ahl	Active						
🗔 ny	/gaard	Active						
I								
Service	es							
4	>	8	-	P		8		
<u>E</u> na	ble	<u>D</u> isable	De <u>t</u> ach	<u>R</u> estart	Pr	operties		
Na	ame 👻	State	Member	Last Transition		Monitor Interval	Service Timeou	Restarts
区 nf	s	Detached	(dahl)	13:29:25 Jul	28	40	40	

Figure 5-3 Detached State

To recover from detached state, you must disable the service and then enable it. When a disable action is performed on the service, the service's stop scripts are executed on the last owner. If you try to perform an enable or restart action on a service in the detached state, it will fail with the following error message:

Service *servicename* is in detached state. Disable and then enable service.

If the last owner of a service in detached state leaves cluster membership, or if the cluster daemons are stopped on the last owner of the service, the service will move to disabled state.

Caution: Although the service is in disabled state, the service application is still running on the last owner and is not stopped by SGI Cluster Manager. If you attempt to enable the service at this point, it will cause data integrity problems.

Message Logging

SGI Cluster Manager logs messages to /var/log/messages using the syslog facility local4. You can use syslog.conf to redirect messages to another location. To rotate logs, use logrotate(8).

SGI Cluster Manager uses the following message levels:

Description
EMERG (emergency)
ALERT
CRIT (critical problem)
ERROR
WARNING (default)
NOTICE
INFO (informational)
DEBUG

Creating a New Highly Available Application

This chapter discusses the following:

- "The clusvcmgrd Daemon" on page 75
- "The service Script" on page 75
- "Adding a Service" on page 76
- "Example of Failing Over Multiple User Applications" on page 78
- "Sample User Application Script" on page 78

The clusvcmgrd Daemon

All services in SGI Cluster Manager for Linux are managed by the clusvcmgrd daemon. The clusvcmgrd daemon does the following:

- Determines the cluster member where a service must run
- Processes service events
- Executes service scripts in a sequential manner

The service Script

The service script starts, stops, or determines the status of given service. The functions within the service script take the following parameters:

- An action, which can be one of start, stop, or status
- A *service ID* which is a number that identifies the service (the ID is automatically determined and is not user-configurable)

The functions within the service script run application scripts in the following order:

start order:

device (including local XVM volumes)
filesystem (including CXFS)
nfs
ip address
samba
user-defined application (such as DMF and TMF applications)

• stop order:

user-defined application (such as DMF and TMF applications)
ip address
nfs
samba
filesystem (including CXFS)
device (including local XVM volumes)

You cannot change the order in which the application scripts are run.

The status of each application in a service is checked in a sequential manner. If the status of an application in the service fails, the status of other applications is not checked.

User application scripts are usually present in the /usr/lib/clumanager/services directory. These scripts return \$FAIL (value 1) on failure and \$SUCCESS (value 0) on success for each action.

Adding a Service

To add a new application, you must write a set of scripts that are specific to the user application. The user application script must be a bash shell script and should contain a shell function with a name that is the same as the application and should take an action (start, stop, or status) and a service ID as parameters. For example: a user application script for failing over an apache webserver could be called apache_webserver and it should have a shell function apache that takes an action and a service ID as parameters. The shell function will be called by the service script to execute appropriate action for a service. The newly written script is configured as a user application script parameter. You must add all devices and IP addresses that the application depends on to the service. NFS export points and Samba shares can also be part of the service.

For general information about creating a service, see "Step 8: Configure the Service" on page 45.

Figure 6-1 shows the GUI screen to create a service. To get to this window, select the **Services** tab from the **Cluster Configuration** window.

<u> </u>	•				
Service Name	userapp				
Failover Domain	None	*			
Monitor Interval (in seconds)	0	*			
Service Timeout (in seconds)	0	*			
Monitor Level	None	¥			
Restart Count Limit	2	*			
User Script	/usr/lib/clumanager/services/new_application				
<u>★ C</u> ancel					

Figure 6-1 Creating a Service

The following command creates a service named userapp with the newly defined user script new_application:

```
# sgicm-config-cluster-cmd --add_service --name=userapp \
--userscript=/usr/lib/clumanager/services/new_application \
--checkinterval=40 servicetimeout=60
```

You must copy the newly created script to the following location in all members in the cluster:

/usr/lib/clumanager/services/new_application

Example of Failing Over Multiple User Applications

To fail over an apache webserver and mySQL database as part of a service, you must do the following:

• Create a directory for the service application scripts. For example:

mkdir /usr/lib/clumanager/services/service1

- Create a script within the directory for each application. For example, they could be named apache_webserver and mySQL:
 - apache_webserver should contain a shell function that takes an action and service ID as parameter. This function should perform start/stop/status operation on the apache server for service1.
 - mySQL should contain a shell function that performs start/stop/status operation on the mySQL database server for service1.

Note: The directory can contain symlinks to actual scripts that are present in some other directory.

Sample User Application Script

The following is an example user application script named service_test. This example script contains a shell function test that takes an action (start, stop or status) and service ID as parameters. The shell function test can call shell functions (as in the example) to perform the actions or to execute other scripts or commands to perform the action passed as parameters.

```
#
# startTest serviceID
#
startTest()
{
    if [ $# -ne 1 ]; then
        logAndPrint $LOG_ERR "Usage: startTest serviceID"
        return $FAIL
        fi
```

```
typeset svcID=$1
        typeset svc_name=$(getSvcName $DB $svcID)
        logAndPrint $LOG_INFO "Running test start script for service $svc_name "
        return $SUCCESS
}
#
# stopTest serviceID
#
stopTest()
{
        if [ $# -ne 1 ]; then
          logAndPrint $LOG_ERR "Usage: stopTest serviceID"
          return $FAIL
        fi
        typeset svcID=$1
        typeset svc_name=$(getSvcName $DB $svcID)
        logAndPrint $LOG_INFO "Running test stop script for service $svc_name "
        return $SUCCESS
}
#
# statusTest serviceID
#
statusTest()
{
        if [ $# -ne 1 ]; then
          logAndPrint $LOG_ERR "Usage: statusTest serviceID"
          return $FAIL
        fi
        typeset svcID=$1
        typeset svc_name=$(getSvcName $DB $svcID)
        logAndPrint $LOG_INFO "Running test status script for service $svc_name "
```

```
return $SUCCESS
}
# Given an action and service ID number run that action for that service.
test()
{
        if [ $# -ne 2 ]; then
          logAndPrint $LOG_ERR "Usage: test [start, stop, status] serviceID"
          return $FAIL
        fi
        typeset action=$1
        typeset svcID=$2
        case "$action" in
        'start')
          startTest $svcID
          return $?
          ;;
        'stop')
          stopTest $svcID
          return $?
          ;;
        'status')
          statusTest $svcID
          return $?
          ;;
        esac
}
```

Samba Plug-In

SGI Cluster Manager supports Samba as shipped with SGI ProPack for Linux. See "Software Requirements" on page 6 for the supported levels.

This chapter discusses the following:

- "Samba Process ID, Locks, and Password File" on page 81
- "Samba Share Configuration File" on page 82
- "Samba Start/Stop Order" on page 82
- "Defining NFS Exports and Samba Exports" on page 82
- "Improving the Default smb.conf.sharename File" on page 82
- "Service Monitoring Levels" on page 85

For more information about Samba, see:

http://www.samba.org/samba/docs

Samba Process ID, Locks, and Password File

The Samba process ID (PID), locks, and password file are kept in the shared partitions and in the log file on the local disk. The lock directory is not removed during failover.

The locations are as follows:

- PID directory: mountpoint/.samba/sharename/pid
- Log directory: /var/log/samba
- Lock directory: mountpoint/.samba/sharename/locks
- Password file: mountpoint/.samba/sharename/private/smbpasswd

Samba Share Configuration File

When you create a Samba service in SGI Cluster Manger, the netbios name entry is automatically added to the /etc/samba/smb.conf.SambaShareName file with a value set to the IP name associated with highly available IP address configured for the Samba service. You can modify the netbios name value as long as it remains unique for the SGI Cluster Manager cluster.

When you create a Samba service in SGI Cluster Manger, the smb passwd file entry is automatically added to the /etc/samba/smb.conf.SambaShareName file. However, when you use the smbpasswd(8) command, that entry is commented out and the private dir entry is added. For example:

```
# smb passwd file = /lxvm2/.samba/samba_lxvm2/private/smbpasswd
private dir = /lxvm2/.samba/samba_lxvm2/private
```

Samba Start/Stop Order

For the order in which Samba is started/stopped, see Chapter 6, "Creating a New Highly Available Application" on page 75.

Defining NFS Exports and Samba Exports

You can edit the /etc/samba/smb.conf.SambaShareName Samba configuration file that is generated by SGI Cluster Manager to include additional Samba shares.

Whether or not you change this file, you must copy it to the other member in the cluster. For examples of using the Samba Druid and NFS Druid, see "Samba Druid Example" on page 54 and "NFS Druid Example" on page 59.

Improving the Default smb.conf.sharename File

If you name a share SMBXVM, the Samba Druid will create the following smb.conf.SMBXVM file:

[global]

workgroup = SGIHACLUSTER
pid directory = /mirror/.samba/SMBXVM/pid
lock directory = /mirror/.samba/SMBXVM/locks

```
log file = /var/log/samba/%m.log
netbios name = sauna
smb passwd file = /mirror/.samba/SMBXVM/private/smbpasswd
encrypt passwords = yes
bind interfaces only = yes
interfaces = 192.168.0.1/255.255.255.0
```

[SMBXVM]

```
comment = High Availability Samba Service
browsable = yes
writable = no
public = yes
path = /mirror
```

You should modify this file as follows:

- Change the value for workgroup. It should be 8 or fewer characters for compatibility with older CIFS clients.
- Change the default netbios name value (which is determined by resolving the IP alias in the share) to uppercase in order to maintain compatibility with older CIFS clients.
- Ensure that the smb passwd file is not commented out after running the smbpasswd(8) command.
- Add the private dir parameter.
- Change the writable value to yes so that the share can be written to.
- Change the log file value to be on shared storage if you want the log files in the same place. (Otherwise, you must look on both members to see all of the logs.)
- Modify the default value of max log size to suit your site.

Following is an improved smb.conf.SMBXVM file after making changes to the default file created by the Samba Druid (bold indicates changed or added lines):

[global]

```
workgroup = SGIHACL
pid directory = /mirror/.samba/SMBXVM/pid
lock directory = /mirror/.samba/SMBXVM/locks
log file = /var/log/samba/%m.log
netbios name = SAUNA
```

```
smb passwd file = /mirror/.samba/SMBXVM/private/smbpasswd
private dir = /mirror/.samba/SMBXVM/private
encrypt passwords = yes
bind interfaces only = yes
interfaces = 192.168.0.1/255.255.255.0
[SMBXVM]
Comment = High Availability Samba Service
browsable = yes
writable = yes
```

If you name an NT domain NT, the Samba Druid will create the standard default smb.conf.*sharename* file (assuming that a machine account has already been set up that has never been bound to the domain). After making the appropriate changes, the file would for example be as follows (bold indicated changed or added lines):

```
[global]
```

public = yes
path = /mirror

```
workgroup = MYDOMAIN
security = domain
wins server = 192.168.1.2
pid directory = /mirror/.samba/SMBXVM/pid
lock directory = /mirror/.samba/SMBXVM/locks
log file = /var/log/samba/%m.log
netbios name = SAUNA
smb passwd file = /mirror/.samba/SMBXVM/private/smbpasswd
private dir = /mirror/.samba/SMBXVM/private
encrypt passwords = yes
bind interfaces only = yes
max log size = 0
interfaces = 192.168.1.10/255.255.255.0
```

[SMBXVM]

```
comment = High Availability Samba Service
browsable = yes
writable = yes
public = yes
path = /mirror
```

After Samba is running with this configuration, you must ensure that the wins server is set properly. Run the following:

net join -s /etc/samba/smb.conf.SMBXVM

For more information, see the smb.conf man page.

Service Monitoring Levels

For information about service monitoring levels, see "Step 8: Configure the Service" on page 45.

CXFS Plug-In

Using the CXFS clustered filesystem product with SGI Cluster Manager for Linux requires the value-add SGI product on the *SGI Cluster Manager 4.2 for Linux - Storage Software Plug-ins* CD and the supported level of CXFS (see "Software Requirements" on page 6).

You should configure the CXFS cluster, nodes, and filesystems according to CXFS *Administration Guide for SGI InfiniteStorage*.

You must give careful consideration when choosing nodes used for the SGI Cluster Manager cluster and nodes capable of being the CXFS metadata server. Certain services, such as DMF, require that the CXFS metadata server and the SGI Cluster Manager service be provided by the same node (see "Configuring DMF for CXFS Filesystems that Use DMAPI" on page 93). Others, such as NFS and Samba, do not have this requirement, but it may be desirable to enforce it in order to ensure that these services provide the best performance possible. (Some NFS and Samba workloads can cause significant performance problems when the NFS or Samba service is provided from a node that is not also the CXFS metadata server.) Unless a service must run on the CXFS metadata server, you should configure SGI Cluster Manager so that it does not relocate the CXFS metadata server when it fails over a service.

This chapter discusses the following:

- "Relocation Support" on page 87
- "Members and I/O Fencing" on page 88
- "Including a CXFS Filesystem in the Cluster Configuration" on page 88
- "Members and Potential Metadata Servers" on page 89
- "CXFS Start/Stop Order" on page 90

Relocation Support

To use CXFS relocation and fail over the service from one member to another, you must set the relocation_ok parameter to 1 (enable) on all potential CXFS metadata servers. For more details, see the CXFS Administration Guide for SGI InfiniteStorage.

Members and I/O Fencing

For I/O fencing, SGI Cluster Manager members should use 12network power controllers in order to prevent conflicts with CXFS I/O fencing methods. For more information, see "L2 Connections" on page 13.

Including a CXFS Filesystem in the Cluster Configuration

To include CXFS filesystems in the SGI Cluster Manager configuration, add filesystems as devices used by a service, as shown in Figure 8-1.

📥 Device	<u></u>		•		
Device Special File		/dev/cxvm/lsan1			
Samba Share Name					
Mount Point	/lsan1				
FS Type	cxfs			~	
Options	relocate-mds=true				
Force Unmount					
X <u>C</u> ancel					

Figure 8-1 Adding a CXFS Filesystem as a Device

Enter the following:

- Device Special File: the block XVM device file
- Mount Point: the CXFS filesystem mount point
- FS Type: the filesystem type must be cxfs
- **Options**: one of the following:
 - relocate-mds=true, which allows the metadata server for the CXFS filesystem to be failed over when the service is failed over
 - relocate-mds=false (default)

Note: The Force Unmount item in the GUI and CLI is ignored for CXFS filesystems.

In the CLI, do the following:

```
sgicm-config-cluster-cmd --service=servicename \
          --add_device \
          --name=/dev/cxvm/volumename
sgicm-config-cluster-cmd --service=servicename \
          --device=/dev/cxvm/volumename \
          --device=/dev/cxvm/volumename \
          --device=/dev/cxvm/volumename \
          --mount \
          --mount point=mountpoint \
          --fstype=cxfs \
          --options=relocate-mds=true|false
```

You can specify multiple CXFS filesystems by adding multiple devices to the service.

Note: You will not define a --userscript value when defining a service to failover CXFS filesystems. User scripts are used for failing over user-written applications. For more information on user scripts, see Chapter 6, "Creating a New Highly Available Application" on page 75.

For more information, see "Step 10: Add the Disk and Filesystem Information to the Service (*Optional*)" on page 49.

Members and Potential Metadata Servers

The members in the failover domain for the service that has CXFS filesystems should be same as the list of potential metadata servers for the CXFS filesystem. For example: machines node1 and node2 can be metadata servers for CXFS filesystem /cxfs_san1. The SGI Cluster Manager service nfs1 that uses /cxfs_san1 should have a failover domain of node1 and node2.

CXFS Start/Stop Order

You should start CXFS cluster services and CXFS services before starting SGI Cluster Manager daemons. SGI Cluster Manager will wait for the CXFS filesystem to be mounted by CXFS before starting NFS, Samba, and other applications running on the CXFS filesystem. Therefore, service timeouts for all SGI Cluster Manager services that include CXFS filesystems should be carefully adjusted accordingly.

For the order in which CXFS is started/stopped, see Chapter 6, "Creating a New Highly Available Application" on page 75.

Data Migration Facility (DMF) Plug-In

Using the Data Migration Facility (DMF) with SGI Cluster Manager for Linux requires the value-add SGI product on the SGI Cluster Manager 4.2 for Linux — Storage Software Plug-ins CD and the supported level of DMF (see "Software Requirements" on page 6).

You should configure DMF according to DMF Administrator's Guide for SGI InfiniteStorage.

This chapter discusses the following:

- "Adding the DMF User Script to an Existing Service" on page 91
- "DMF Administrative Filesystems and Directories" on page 92
- "Configuring DMF for Local XVM Filesystems" on page 93
- "Configuring DMF for CXFS Filesystems that Use DMAPI" on page 93
- "The /etc/dmf/sgicm_dmf.config File" on page 94
- "DMF Start/Stop Order" on page 95
- "Ensuring that Only SGI Cluster Manager Starts DMF" on page 95
- "Using TMF with DMF" on page 95

Adding the DMF User Script to an Existing Service

The following command adds the DMF user script to an existing service. The script used is /usr/lib/clumanager/services/svclib_dmf:

```
# sgicm-config-cluster-cmd --service=service1 \
    --userscript=/usr/lib/clumanager/services/svclib_dmf
```

You could also add the script by modifying the service in the GUI. For more information, see "Step 8: Configure the Service" on page 45.

DMF Administrative Filesystems and Directories

To run DMF, you must configure the parameters shown in Table 9-1. A *required* parameter must be defined by all users of DMF. An *optional* parameter is needed only by users of certain MSPs or the library server. DMF cannot start unless the required filesystems and directories defined by these parameters are first mounted and available on shared disks.

Parameter	Status	Description
HOME_DIR	Required	Specifies the DMF databases
JOURNAL_DIR	Required	Specifies the DMF database journals
SPOOL_DIR	Required	Specifies the DMF log files
MOVE_FS	Optional	Moves files between MSPs
CACHE_DIR	Optional	Used by the library server as a cache for merging data from sparse tapes to new tapes
FTP_DIRECTORY	Optional	Used by the FTP MSP to store files
STORE_DIRECTORY	Optional	Used by the disk MSP to store files

Table 9-1 DMF Administrative Filesystem and Directory Parameters

In addition, the working directory used by the dmaudit(8) command must also be available when DMF starts. To configure the directory, run the dmaudit command and select the <workdir> item in the <config> menu.

You can configure the DMF administrative filesystems (also known as *support filesystems*) as local XVM filesystems. You must define them as instructed in "Configuring DMF for Local XVM Filesystems" on page 93. SGI Cluster Manager ensures that the DMF plug–in script is called after the necessary filesystems are mounted.

Note: You should only configure DMF administrative filesystems as CXFS filesystems if they are also using DMAPI.

To provide the best chance for database recovery, you should place the *JOURNAL_DIR* directory on a separate filesystem and a different physical device from the *HOME_DIR* directory.

If you use CXFS filesystems, you must define them as instructed in "Configuring DMF for CXFS Filesystems that Use DMAPI" on page 93.

Configuring DMF for Local XVM Filesystems

To configure the DMF administrative filesystems as local XVM filesystems, do the following:

- 1. Ensure that the DMF configuration is identical on all members.
- Create the DMF administrative filesystems on shared disks as local XVM filesystems (xvm type). See "Step 10: Add the Disk and Filesystem Information to the Service (*Optional*)" on page 49.
- 3. Configure the SGI Cluster Manager local XVM volumes using the local XVM plug-in. See Chapter 11, "Local XVM Plug-In" on page 107.

Configuring DMF for CXFS Filesystems that Use DMAPI

SGI recommends that you configure DMF administrative filesystems as local XVM filesystems, as discussed in "Configuring DMF for Local XVM Filesystems" on page 93. DMF cannot start until the DMF administrative filesystems are available. If they are CXFS filesystems, CXFS must recover them before they are accessible.

To configure DMF filesystems that use DMAPI as CXFS filesystems, do the following:

- 1. Ensure that the DMF configuration is identical on all members.
- Create the DMF administrative filesystems as CXFS filesystems (cxfs type). See "Step 10: Add the Disk and Filesystem Information to the Service (*Optional*)" on page 49.

Note: Although the optional MOVE_FS and CACHE_DIR DMF administrative filesystems require the dmapi mount option, they should not be CXFS filesystems because they are only required on the node running dmdaemon.

3. Configure the SGI Cluster Manager CXFS filesystems using the CXFS plug-in. For DMF-managed filesystems, configure relocate-mds=true (on) because DMF must run on the CXFS metadata server for that filesystem. See Chapter 8, "CXFS Plug-In" on page 87.

007-3800-005

The /etc/dmf/sgicm_dmf.config File

The /etc/dmf/sgicm_dmf.config file lets you configure other information required by SGI Cluster Manager. The sgicm_dmf.config file exists on all members in the cluster and should be edited as necessary on each member.

Note: You must maintain the sgicm_dmf.config file on each member; a change on one member is unknown to the other members.

You can specify the following directives in the sgicm_dmf.config file:

• The following directive lets you control how the DMF behaves when a monitor failure occurs:

email-only-on-monitor-failure true false

By setting email-only-on-monitor-failure to true, DMF will not return an error but will send a monitor failure mail message to the email address specified in email-addresses. The default is false. If

email-only-on-monitor-failure is false(explicitly or by default), no email is sent; the monitor script will return an error and the service will be failed over.

 The following directive specifies the email addresses to which a monitor failure message will be sent:

email-addresses email1[,email2[,email3...]]

The default address is root. If you specify multiple email addresses, you must separate them with commas. (An improperly formatted directive will be ignored.)

For example, the following sends email messages about monitor failures to chris and pat and does not return an error:

```
% cat /etc/dmf/sgicm_dmf.config
email-only-on-monitor-failure true
email-addresses chris@mycompany.com,pat@mycompany.com
```

If the /etc/dmf/sgicm_dmf.config does not exist, no email is sent; the monitor script will return an error and the service will be failed over.

DMF Start/Stop Order

For the order in which DMF is started/stopped, see Chapter 6, "Creating a New Highly Available Application" on page 75.

Ensuring that Only SGI Cluster Manager Starts DMF

When the DMF service is to be managed by SGI Cluster Manager, it is important that only the Cluster Manager starts DMF. Perform these commands on each member of the cluster to ensure that only the Cluster Manager can start DMF:

touch /etc/dmf_failsafe

chkconfig dmf off

Using TMF with DMF

To use the Tape Management Facility (TMF) with DMF in a SGI Cluster Manager environment, you must configure the appropriate TMF device groups in the /etc/tmf/sgicm_tmf.config file according to the instructions in Chapter 10, "Tape Management Facility (TMF) Failover Script" on page 97.

If TMF is configured as a mount service in the /etc/dmf/dmf.conf file, the DMF plug-in will automatically call the /usr/lib/clumanager/service/helper_tmf TMF failover script and pass along the appropriate TMF device group names.

The service timeout value should be at least 100 seconds if DMF is being used with TMF-managed tape devices. The following command will set the service timeout to 100 seconds for the SGI Cluster Manager service service1:

sgicm-config-cluster-cmd --service service1 --servicetimeout=100

To do this with the GUI, see "Step 8: Configure the Service" on page 45.

Tape Management Facility (TMF) Failover Script

Using the Tape Management Facility (TMF) with SGI Cluster Manager requires the value-add SGI product on the *SGI Cluster Manager 4.2 for Linux — Storage Software Plug-ins* CD and the supported level of TMF (see "Software Requirements" on page 6). Only Storage Technology Corporation (STK) hardware controlled by the Automated Cartridge System Library Software (ACSLS) software is supported.

For more information about TMF, see the TMF Administrator's Guide.

This chapter discusses the following:

- "The helper_tmf Script " on page 97
- "TMF Stop/Start Order" on page 98
- "Configuring a TMF Device Group" on page 99
- "Optional Configuration Specifications " on page 99
- "The /etc/tmf/sgicm_tmf.config File" on page 100
- "Configuring Tapes and TMF" on page 103
- "Using the TMF Failover Script from the User Application Script" on page 104
- "Service Timeout" on page 105

The helper_tmf Script

If your application requires tape support via TMF, then your user application script should call the /usr/lib/clumanager/service/helper_tmf TMF failover script, passing the appropriate parameters. See "Using the TMF Failover Script from the User Application Script" on page 104.

The DMF plug-in will automatically call the helper_tmf script if a Library Server Drive Group uses TMF as a mounting service.

The helper_tmf script lets you manage one or more *TMF device groups*, which are sets of tape devices defined in the /etc/tmf/tmf.config TMF configuration file.

The following example is part of a /etc/tmf.config that defines a TMF device group named EGLF:

```
DEVICE_GROUP
               name = EGLF
       AUTOCONFIG
{
               DEVICE
                       NAME = f9840f1 ,
                       device_group_name = EGLF ,
                       FILE = /hw/tape/500104f000417a18/lun0/c4p1 ,
                       status = down ,
                       access = EXCLUSIVE ,
                       vendor_address = (1,0,0,2),
                       LOADER = 1180
```

}

The helper_tmf script performs the following functions for the calling user service or userapp script:

- Starts TMF if it is not already running.
- Configures the associated loader up if it is not already up.
- Allows the monitoring of multiple TMF device groups and their associated tape devices.
- Monitors the number of tape devices that are available within each TMF device ٠ group. If the number of devices currently available is less than the minimum threshold level, a monitoring failure will occur.
- Releases previous reservations that are held by another member (if the tape device firmware supports this option).
- Lets you assign different TMF device groups to each instance of an SGI Cluster Manager service or userapp script.

TMF Stop/Start Order

For the order in which TMF is started/stopped, see Chapter 6, "Creating a New Highly Available Application" on page 75.

Configuring a TMF Device Group

The helper_tmf script lets you specify device groups to stop, start, and monitor. Each of these managed device groups must be defined in the following files:

- /etc/tmf/sgicm_tmf.config (SGI Cluster Manager configuration file for TMF)
- /etc/tmf/tmf.config (standard TMF configuration file)

The resource directive in the /etc/tmf/sgicm_tmf.config file specifies a TMF device group. This directive is required for each TMF device group that you plan to use within SGI Cluster Manager. See "The resource Directive" on page 100.

Optional Configuration Specifications

There are other optional configuration specifications associated with a TMF device group. These specifications provide information to the helper_tmf script that lets it communicate with the tape library. They also identify the tape devices within the library on which helper_tmf will force dismounts.

The helper_tmf script can force a dismount of tapes from devices within the library. There may be various reasons why you might want to do this when a failover occurs. In the case of DMF, you would want to ensure that any DMF tapes that were in use on a previous member are available to DMF on the new member after a failover. If these tapes were in tape devices assigned to the previous member, they must be ejected and returned to the library so that they are again accessible to DMF on the new member. You may want the helper_tmf script to dismount only tape devices associated with a particular TMF device group or you may not want the helper_tmf script to dismount any tapes at all.

Some of the functions of the helper_tmf script are performed through TMF; the script issues commands to the TMF daemon to use these functions. However, the helper_tmf script forces a dismount of a tape from a device by issuing a command to the library software controlling the loader/library. The helper_tmf script communicates its request to the ACSLS software that controls the loader. The helper_tmf script uses an expect script that issues commands to login to the loader and issue a dismount request to a tape device.

The /etc/tmf/sgicm_tmf.config File

The /etc/tmf/sgicm_tmf.config file lets you configure other information required by the helper_tmf script. The sgicm_tmf.config file exists on all members in the cluster and should be edited as necessary on each member.

The contents of the sgicm_tmf.config file are dependent on the tape devices assigned to each member in the cluster. If all members in the failover domain are configured through TMF to use exactly the same tape devices, this file would be the same on each member in the failover domain.

Note: You must maintain the sgicm_tmf.config file on each member; a change on one member is unknown to the other members.

You can specify the following directives in the sgicm_tmf.config file:

- "The resource Directive" on page 100
- "The loader Directive " on page 101
- "The remote_devices Directive" on page 102

The resource Directive

The resource directive defines the TMF device groups that can be managed by the helper_tmf script:

resource device-group devices-minimum devices-loaned email-addresses

where:

device-group	The TMF device group that is to be monitored. This is a device group that is defined in /etc/tmf/tmf.config.
devices-minimum	The minimum number of devices of the specified <i>device-group</i> that you must have available to you on a member before you fail over.
devices-loaned	Currently unused; should be set to 0.
email-addresses	List of addresses to send email when the monitor script detects that tape devices in the <i>device-group</i> have become unavailable. Corrective action can then be

007-3800-005

taken to repair the tape devices before the *devices-minimum* threshold is crossed. This may be a comma- or white-space-separated list of names.

The loader Directive

The loader directive provides information about a TMF loader, which controls one or more tape devices that are members of TMF device groups being managed by SGI Cluster Manager. There may be multiple loader directives in the sgicm_tmf.config file.

The loader information is used by the helper_tmf script to force a dismount of tapes from tape devices that cannot be made available (that is, that have tmstat states other than assn, free, conn, or idle) so that those tapes can be used via other tape devices in the same device group. The information is also used to force a dismount of tapes from devices that are only connected to the other member, not to this member (as described in "The remote_devices Directive" on page 102).

If the file does not contain a loader directive, the helper_tmf script will make no attempt to force a dismount of tapes from any devices.

The directive has the following format:

loader <i>lnan</i>	ie ltype lhost luser lpassword	
where:		
lname	Name of the loader as defined in /etc/tmf/tmf.config	
ltype	<i>type</i> Type of the loader as defined in /etc/tmf/tmf.config, which must be STKACS	
lhost	Server name of the loader as defined in /etc/tmf/tmf.config	
luser	User name of the loader's administrator account, which must be acssa	
lpassword	Password for the loader's administrator account	

The tmmls command shows the name of the loader and the server associated with it:

/usr/sbin/tmmls

e status m	server	old m_pnd	d_pnd	r_qd	comp	avg		
OPERATOR	UP A	IRIX	0	0	0	0	0	0(sec)
STKACS	DOWN A	wolfcree	0	0	0	0	0	0(sec)
STKACS	DOWN A	stk9710	0	0	0	0	0	0(sec)
STKACS	UP A	stk9710	0	0	0	0	0	0(sec)
	OPERATOR STKACS STKACS	OPERATOR UP A STKACS DOWN A STKACS DOWN A	OPERATOR UP A IRIX STKACS DOWN A wolfcree STKACS DOWN A stk9710	OPERATOR UP A IRIX 0 STKACS DOWN A wolfcree 0 STKACS DOWN A stk9710 0	OPERATORUP A IRIX00STKACSDOWN A wolfcree00STKACSDOWN A stk971000	OPERATORUP A IRIX000STKACSDOWN A wolfcree000STKACSDOWN A stk9710000	STKACSDOWN A wolfcree0000STKACSDOWN A stk97100000	OPERATORUP A IRIX00000STKACSDOWN A wolfcree00000STKACSDOWN A stk971000000

For example, suppose you want to have the helper_tmf script dismount tape devices that are in the 1180 loader/library listed above. That library has the stk9710 server associated with it. The loader directive in the sgicm_tmf.config file would look like the following:

loader 1180 STKACS stk9710 acssa acssapassword

If the initial attempt to configure the device up fails, the helper_tmf script would force a dismount for each tape device that is specified in the tmf.config file to be in the 1180 loader/library and in the TMF device group. If you do not want the script to dismount any tape devices associated with a particular TMF device group, you would not place a loader directive in the sgicm_tmf.config file.

The remote_devices Directive

The remote_devices directive provides information about one or more tape devices that are part of a TMF device group, but which are not visible on this member.

For example, suppose you have a library with four SCSI tape devices where two tape devices are connected to each of two cluster members. If member A should crash, member B must be able to force a dismount of any tapes in A's tape devices so that they can then be used from member B. Because the tape devices are not visible on member B, the remote_devices directive provides the information needed to force a dismount of unseen tape devices.

The directive has the following format:

remote_devices	device-group lname tape-device-ID
where:	
device-group	Name of the TMF device group with which the <i>tape-device-IDs</i> are associated.
lname	Name of the loader as defined in /etc/tmf/tmf.config. There must be a loader directive for <i>lname</i> elsewhere in this file, or the remote_devices directive will be ignored.
tape-device-ID	The vendor ID of the drive on which to force a dismount. This is the unique name by which the loader identifies the tape device. For STKACS, this will be a

comma-separated four-digit string listing the ACS, LSM, drive panel, and drive (for example, 0, 0, 1, 3).

Note: No blanks should exist within the ID.

You can specify multiple vendor IDs in the same remote_devices directive as long as they all pertain to the same loader. If all the vendor IDs will not fit on a single line, add additional remote_devices directives for the same loader. For example, to enable the helper_tmf script to force a dismount of the remote tape devices 0,0,1,0,0,0,1,1,0,0,1,2, and 0,0,1,3 in the 1180 loader/library for TMF device group tmf_eglf, the directive would be:

remote_devices tmf_eglfl 180 0,0,1,0 0,0,1,1 0,0,1,2 0,0,1,3

If multiple TMF device groups are defined, only the TMF device group named tmf_eglf will force a dismount of these tape devices.

Configuring Tapes and TMF

If tape devices that are managed by the helper_tmf script are configured on more than one member in the cluster, they should be configured consistently. The same tape driver (for example, ts) should be used on each member where the tape device is configured.

When configuring the helper_tmf script, you should be aware of several parameters in the /etc/tmf/tmf.config file. The helper_tmf script will try to start the loader associated with its device-group if it is not up. However, if the configuration file specifies status=UP for the loader, this step may not be necessary and the devices may become available sooner.

A tape device that is managed by the helper_tmf script will be configured in /etc/tmf/tmf.config on one or more members within the cluster. It should be configured with status=down.

If the tape devices being used do not support persistent reserve, then they should each be configured in /etc/tmf/tmf.config with access=shared. If the tape devices do support persistent reserve, it is recommended that you use this feature when using the helper_tmf script. To use persistent reserve, you should set access=exclusive in /etc/tmf/tmf.config for each tape device. The access option should be consistent across all members in the cluster where the tape devices are configured. The -g option of the tmconfig command reassigns a device to a different device group name. The helper_tmf script does not support reassigning a device into a device group. That is because, in case of failover, the helper_tmf script on the member we have failed over to would not have any knowledge of this reassigned tape device. It would not be able to dismount tapes that are in the tape device. If you use tmconfig -g to move devices out of a device group, that will decrease the number of available tape devices that the monitor function of the helper_tmf script can detect. Also, in the case of failover or stop, the tape device will be configured down.

Using the TMF Failover Script from the User Application Script

You must write a user application script in order to use the helper_tmf script. For information on how to write user application script, see Chapter 6, "Creating a New Highly Available Application" on page 75.

In order to manage TMF device groups in an SGI Cluster Manager environment, the user application script must pass the appropriate parameters to the TMF failover script. This script called via the following command line:

/usr/lib/clumanager/scripts/helper_tmf action device-groups

where:

action	One of start, stop, or status
device-groups	One or more TMF device groups upon which the action should be taken

Note: It is more efficient to invoke the helper_tmf script once with several *device-group* arguments rather than invoking it several times, each with a single *device-group* argument. For example, the following:

/usr/lib/clumanager/scripts/helper_tmf start 9840 9940 LTO2

is more efficient than the following:

#	/usr/lib/clumanager/scripts/helper_tmf	start	9840
#	/usr/lib/clumanager/scripts/helper_tmf	start	9940
#	/usr/lib/clumanager/scripts/helper_tmf	start	LTO2

For example, to start the 9840 device group:

.

```
To stop the 9840 device group:
```

fi

To check the status of the 9840 device group:

Service Timeout

The service timeout for the calling userapp or user script should be at least 100 seconds. The following command will set the service timeout to 100 seconds for the SGI Cluster Manager service service1:

```
sgicm-config-cluster-cmd --service service1 --servicetimeout=100
```

Chapter 11

Local XVM Plug-In

SGI Cluster Manager supports failover of XVM volumes in *local* mode. This support is available as part of the clumanager-sgi RPM in on the SGI Cluster Manager 4.2 for Linux — Storage Software Plug-ins CD.

Note: XVM in **cluster** mode is supported only with CXFS. See Chapter 8, "CXFS Plug-In" on page 87.

For more information about XVM, see XVM Volume Manager Administrator's Guide.

This chapter contains the following:

- "Local XVM Device Configuration" on page 107
- "Local XVM Start/Stop Order" on page 109

Local XVM Device Configuration

Local XVM devices are configured as a device for a service. You can specify multiple XVM devices for a service. For each local XVM volume device, specify the list of physical volumes that it contains, separating each element in the list by a comma (,) character.

Following is an example to fail over local XVM volume m0:

- 1. Install and configure XVM on both members in the cluster.
- 2. Find the physical volumes that are part of volume m0:

```
# xvm
xvm:local> show -topology -extend vol/m0
vol/m0
                                  0 online, open
    subvol/m0/data
                              497824768 online,open
        stripe/stripe0
                                 497824768 online, tempname, open (unit size: 128)
           mirror/mirror8
                                       35558944 online,tempname,open
                slice/dks5d1s0
                                           35558944 online, open (dks5d1:/dev/rdsk/dks5d1vol)
                slice/dks4d1s0
                                           35558944 online,open (dks4d1:/dev/rdsk/dks4d1vol)
            mirror/mirror4
                                       35558944 online,tempname,open
```

slice/dks11d1s0	35558944 online,ope	en (dks11d1:/dev/rdsk/dks11d1vol)
slice/dks7d1s0	35558944 online,ope	en (dks7d1:/dev/rdsk/dks7d1vol)

The list of physical volumes that belong to volume m0 are dks5d1, dks4d1, dks11d1, and dks7d1.

 Add the device to the service using the sgicm-config-cluster GUI or the sgicm-config-cluster-cmd command-line interface. The device name will be /dev/lxvm/m0 and the physical volumes will be dks5d1,dks4d1,dks11d1,dks7d1.

For example, the following output from the CLI after the device item shows the information that has been added to service nfs1:

```
# sgicm-config-cluster-cmd --service=nfs1 \
--device=/dev/lxvm/m0 \
--physvols=dks5d1,dks4d1,dks11d1,dks7d1
device:
 name = /dev/lxvm/m0
 sharename = physvols = dks5d1,dks4d1,dks11d1,dks7d1
mount:
 mountpoint = /mnt5
 fstype = xfs
 options = rw
 forceunmount = yes
nfsexport:
 name = /mnt5
client:
 name = challenger.engr.sgi.com
 options = rw
```

Note: SGI Cluster Manager uses the xvm subcommands give and steal during failover for local XVM volumes. However, the list of physical volumes can be specified or modified only if the clumanager-sgi RPM is installed on the member.

Figure 11-1 shows an example in the GUI.

Device	<u>ş</u>		•	
Device Speci	al File /dev/lxvm/m0			
Samba Share	e Name			
-Local XVM-				
Physical volu	umes (co	omma separated list)	dks5d1,dks4d1,dks11d1,d	
Mount				
Mount Point	/mnt5	/mnt5		
FS Type	xfs 🗸			
Options	rw			
	✓ Force Unmount			
	<u>× c</u>	ancel	<i>ф</i> <u>о</u> к	

Figure 11-1 Adding an XVM Device

For more information on configuration, see "Step 8: Configure the Service" on page 45.

Local XVM Start/Stop Order

For the order in which local XVM is started/stopped, see Chapter 6, "Creating a New Highly Available Application" on page 75.

Troubleshooting

This chapter provides information about the following:

- "Best Practices" on page 111
- "Recovery from a clulockd Failure" on page 111
- "Watchdog Errors" on page 112
- "Shared Quorum Partitions" on page 113
- "Serial Cable or Reset issues" on page 115
- "Failed State for a Service" on page 116
- "Error Messages" on page 117
- "Reporting Problems to SGI" on page 118

Best Practices

If you run into problems, do the following:

- Check the messages in /var/log/messages (see "Message Logging" on page 73)
- Use shutil(8) to see if shared quorum partitions are accessible
- Use clufence(8) to check the status of the reset cable
- Verify that the failover domain is defined correctly

Recovery from a clulockd Failure

If the clulockd daemon dies unexpectedly, it freezes all of the locks on the shared quorum partition. clulockd will write a message similar to the following in the logs:

Feb 6 17:25:14 3U:nygaard clulockd[6924]: Signal 11 received; freezing

007-3800-005

The clusvcmgrd daemon will not be able to monitor, start, or stop services. Logs on all members will have a message such as the following:

Feb 6 17:14:48 2U:dahl clusvcmgrd[3255]: Couldn't connect to member #0: Connection timed out Feb 6 17:14:48 3U:dahl clusvcmgrd[3255]: Unable to obtain cluster lock: No locks available

To recover from this situation, do the following:

- 1. Stop cluster daemons on both members.
- 2. Reinitialize the shared state from one member in the cluster:

shutil -i

- 3. Make sure that /etc/cluster.xml is same on both members.
- 4. Initialize the configuration on the shared quorum partition from one member in the cluster:

shutil -s /etc/cluster.xml

5. Verify that the configuration has been initialized correctly from one member in the cluster:

```
shutil -p /cluster/config.xml
```

For more information, see the shutil(8) man page.

Watchdog Errors

Software and hardware watchdog timers are not supported. If a watchdog has been enabled on a member, you may see the following errors when the cluster daemons are starting:

Creating /dev/watchdog: execvp: No such file or directory ^[[FAILED] Loading Watchdog Timer (softdog): modprobe: Can't locate module softdog ^[[FAILED]

You may also see a message similar to the following in the Cluster Manager log:

clumembd[21355]: clumembd_sw_watchdog_stop: watchdog is not running.

To disable the software watchdog on a member, enter the following:

sgicm-cluster-manager-cmd --member=member_name --watchdog=no
For example:

sgicm-cluster-manager-cmd --member=member1 --watchdog=no

Shared Quorum Partitions

This section discusses the following:

- "Verify Accessibility" on page 113
- "Read the Configuration File" on page 113
- "Verify Metadata Information is Consistent" on page 114
- "Write the Configuration File" on page 114
- "Displaying Metadata Remotely" on page 115
- "Last Resort: Clear Information" on page 115

For more information, see the shutil(8) man page.

Verify Accessibility

To see if shared quorum partitions are accessible, enter the following:

shutil

Read the Configuration File

To read the configuration file from the shared quorum partition, enter the following:

shutil -r -

You should use this command to compare the configuration files in the shared quorum partitions and the local copy.

Verify Metadata Information is Consistent

To verify that the service metadata information is the same on all members, run the following command at the same time on each member:

shutil -m /service/0/status

For example, the following output from member jackhammer and member jackhammer2 indicates a problem:

jackhammer output:

shutil -m /service/0/status
Metadata information for /service/0/status

Data Length: 40 bytes Data CRC: 0x2dae1205 Header CRC: 0x7c7185f1 Last modified: 12:34:58 Mar 31 2004

jackhammer2 output:

shutil -m /service/0/status
Metadata information for /service/0/status
Data Length: 40 bytes
Data CRC: 0x80711487
Header CRC: 0x9ba9e2cf

Last modified: 12:34:51 Mar 31 2004

In this case, the service metadata information from both members is inconsistent (the CRC information and the Last modified time stamps are different). The information must be identical from all the members.

Write the Configuration File

To write the configuration file, use the following command:

shutil -s /etc/cluster.xml

You should use this command if one of the following is true:

- The configuration file in the shared quorum partitions is not consistent with the /etc/cluster.xml file
- The shared quorum partition was cleared using the shutil -i command

Displaying Metadata Remotely

To display the metadata information from the shared quorum partition, use the following command:

shutil -p /service/0/status

Last Resort: Clear Information

Caution: Do not run this command while the cluster is enabled.

To clear all cluster information, use the following command:

shutil -i

Serial Cable or Reset issues

The clufence command will fail with a nonzero error code for any of the following reasons:

- The serial cable is not connected
- The cable is faulty
- The system controller is not responding
- The tty device is not available because the serial port driver (ioc4_serial) is not loaded

The messages shown in the following output are also logged to /var/log/messages:

clufence -s jackhammer2

```
[12314] info: STONITH: Power controller l2 connected to peer's /dev/ttyIOC1 controls jackhammer
[12314] info: STONITH: Power controller l2 connected to peer's /dev/ttyIOC1 controls jackhammer2
[12314] err: STONITH: Device at /dev/ttyIOC1 controlling jackhammer2 FAILED status check:
Timed out
```

Failed State for a Service

The following output indicates that the action to disable a service (in this case, nfs_samba) has failed, and the service is moved to failed state:

```
# clusvcadm -d nfs_samba
```

```
Member machinel disabling nfs_samba...failed
Service nfs_samba might be running in the cluster. Stop the service manually.
```

To recover, do the following:

- Fix the problem.
- Stop the resources in the service manually using the ifconfig(8), exportfs(8), and umount(8) commands .
- Disable the service using the clusvcadm(8) command or the SGI Cluster Manager GUI.

Note: SGI Cluster Manager does not verify that the service has been stopped before disabling.

For more information, see "Service Administration" on page 70 and "Cluster Service States" on page 71.

Error Messages

Following are common error messages.

[12314] err: STONITH: Device at /dev/ttyIOC1 controlling jackhammer2 FAILED status check: Timed out
There is a problem with the serial cable or system controller. See "Serial Cable or Reset issues" on page 115.
clumembd[8431]: No heartbeat channels available! clumembd[8431]: Heartbeat failed to initialize!
These messages (logged by the clumembd process when the local cluster manager daemons are started using GUI or command line) mean that the IP address for the hostname could not be determined or that the IP address assigned to the hostname is invalid. You can verify this by sending ping packets local machine's hostname. Fix the hostname IP address and restart the local cluster daemons.
Shared partition device file names must be defined.
An attempt was made to define the cluster before defining the shared state. Use thesharedstate command line option or shared state GUI menu to define devices. See "Step 1: Define the Shared Quorum Partitions" on page 32.
Shared partition device file names primary /dev/shared1 and shadow /dev/shared2 are not valid

Shared storage initialization failed. Fix shared storage and write configuration file to shared storage. Continuing ...

The shared quorum partitions are not accessible or not valid and a configuration change or query was made using the CLI.

```
Traceback (most recent call last):
    File "/usr/sbin/sgicm-config-cluster", line 47, in ?
    from clusterpkg.cluconfig_module import cluconfig
    File "/usr/share/sgicm-config-cluster/configure/clusterpkg/cluconfig_module.py", line 2, in ?
    from clusterpkg.cluster_module import cluster
    File "/usr/share/sgicm-config-cluster/configure/clusterpkg/cluster_module.py", line 2, in ?
    from xml.dom import minidom
ImportError: No module named xml.dom
```

These messages will occur if you try to run SGI Cluster Manager without first installing the appropriate packages from the SUSE LINUX Enterprise Server 9 CDs. See the README file for a list of the RPMs.

Reporting Problems to SGI

If you encounter problems, collect the following data from each member:

• Output from the following commands:

```
exportfs (in NFS configurations)
chkconfig --list
clufence -s other_members
clustat
cxfsdump (in CXFS configurations)
hwinfo
ls -l each_shared_quorum_partition
ls -lL each_shared_quorum_partition
mount
ps -ef | grep clu
rpm -qa --last
shutil -r -
uname -a
```

Contents of the following files:

```
/etc/cluster.xml
/usr/lib/clumanger/create_device_links
/var/log/messages
/etc/samba/smb.conf.SambaShareName (in Samba configurations)
```

007-3800-005

FailSafe and SGI Cluster Manager

Table A-1 summarizes the differences between IRIX FailSafe and SGI Cluster Manager for Linux for those readers who may be familiar with FailSafe.

Note: SGI Cluster Manager for Linux members and FailSafe nodes do not work together and cannot form a high-availability cluster.

Торіс	FailSafe	SGI Cluster Manager
Operating system	IRIX	SLES9 with SGI ProPack 4 for Linux
Terminology	node resource	member application
Size of cluster	8 nodes	2 members
Node/member name	Hostname or private network address	Hostname only
NFS lock failover	Supported	Not supported
Network tiebreaker	A node that is participating the cluster membership. FailSafe tries to include the tiebreaker node in the membership in case of split-brain scenarios.	The IP address of machine or a router that does not participate in the cluster membership. Usually it is the IP address of a network router that connects the SGI Cluster Manager members to the external world (clients). In a split-brain scenario, only those members that can contact the tiebreaker IP address can form a cluster. There is also a disk tiebreaker.
Rolling upgrade	Supported	Not supported

Table A-1 Differences Between FailSafe and SGI Cluster Manager

007-3800-005

A: FailSafe and SGI Cluster Manager

Торіс	FailSafe	SGI Cluster Manager
Configuration information storage	Information is stored in the cluster database. The cluster database is replicated on all nodes automatically and kept in synchronization.	Information is stored in the /etc/cluster.xml configuration file and in the shared partitions. For initial configuration, you must copy this file to all members, such as by using scp. After making configuration changes, you must verify that configuration files are in synchronization. See "Step 15: Verify that Configuration Changes are Synchronized" on page 52.
Making changes while the service is enabled	Device parameter, IP address parameters, and check interval can be changed.	Device parameter, IP address parameters, and check interval cannot be changed.
Script location for resources and resource types	/var/cluster/ha/resource_types	/usr/lib/clumanager/services/service
Heartbeat interval and timeout	You can specify cluster membership heartbeat interval and timeout (in milliseconds).	In the command line, you can specify the heartbeat interval (in microseconds) and the number of heartbeats that can be consecutively missed (tko_count). You can also specify the aggregate failover speed in the GUI.
Heartbeat networks	Allows multiple networks to be designated as heartbeat networks. You can choose a list of networks.	Allows heartbeat on all networks or as a multicast on the hostname network. However, you cannot choose a list of networks.
Action scripts	Separate scripts named start, stop, monitor, restart, exclusive.	A bash script that contains start, stop, and status parameters (see Chapter 6, "Creating a New Highly Available Application" on page 75). The equivalent for restart in SGI Cluster Manager is to perform a stop and then a start; there is no equivalent in SGI Cluster Manager for exclusive.
Resource timeouts	Timeouts can be specified for each action (start, stop, monitor, restart, exclusive) and for each resource type independently.	Timeout can be specified for each service irrespective of the action or the number of resources it contains.

Торіс	FailSafe	SGI Cluster Manager
Resource dependencies	Resource and resource type dependencies are supported and can be modified by the user.	Applications have fixed dependencies. The start and stop order of applications cannot be modified.
Failover policies	The ordered and round-robin failover policies are predefined. User-defined failover policies are supported.	Only the predefined ordered policy is supported. No user-defined failover policies are supported.

Setting the Partition Type to Linux

When you create a new disk partition using parted(8), the partition type is automatically set based on the type of filesystem chosen for the partition. For most filesystems, such as ext2 or XFS, the partition type will be hexadecimal 83 (0x83), or Linux.

You can also use parted to change the type of existing partitions. Use the set subcommand to change the type flag to 0x83.

Note: The parted command expects a decimal number for most inputs. When entering a hexadecimal number would be more convenient, such as when setting the partition type flag, you must precede the number with 0x to indicate hexadecimal input.

The following example shows the use of parted to change the type of partition 1 on disk /dev/sde from 0x82 (Linux swap) to 0x83 (Linux):

```
# parted /dev/sde
GNU Parted 1.6.21
Copyright (C) 1998 - 2004 Free Software Foundation, Inc.
This program is free software, covered by the GNU General Public License.
. . .
Using /dev/sde
(parted) print
Disk geometry for /dev/sde: 0.000-69424.000 megabytes
Disk label type: msdos
Minor Start End
                         Type Filesystem Flags
1
        0.031 69421.508 primary
                                                type=82
(parted) set
Partition number? 1
Flag to change? type
New type? [130]? 0x83
(parted) print
Disk geometry for /dev/sde: 0.000-69424.000 megabytes
Disk label type: msdos
Minor Start End
                          Туре
                                  Filesystem Flags
        0.031 69421.508 primary
1
                                                type=83
```

```
(parted) quit
Information: Don't forget to update /etc/fstab, if necessary.
#
```

Note: The type flag in the parted display of a partition table is equivalent to the Id field in the fdisk(8) display of a partition table.

Glossary

CLI

Command line interface (sgicm-config-cluster-cmd).

cluster global lock manager daemon

The clulockd daemon, which stores locks on the shared partition.

cluster membership daemon

The clumembd daemon, which performs network heartbeats and checks the liveliness of other members in the cluster.

cluster quorum daemon

The cluquorumd daemon, which computes new membership, implements quorum, enforces I/O fencing, and reads/writes membership information to the shared partition.

cluster remote NFS mount table daemon

The clurmtabd daemon, which synchronizes NFS mount point entries by polling the /var/lib/nfs/rmtab file.

cluster service manager daemon

The clusvcmgrd daemon, which starts/stops and checks the status of services running in the cluster.

control messages

Messages that SGI Cluster Manager software sends between the members to request operations or distribute information to ensure that services remain highly available.

controlled failback

The service will not be moved to a machine that has newly joined the cluster even if the new machine is the preferred member according to the failover domain. The system administrator must manually relocate the service in order to move it back to the preferred member.

disk tiebreaker

If two members cannot talk to each other, they look at the status on the shared partition disk to decide which member should survive and be part of the cluster membership. If the disk cannot be accessed or membership on the disk does not include a given machine, all SGI Cluster Manager processes on the machine exit.

failback option

A failover domain option that is considered when a member rejoins the cluster.

failover

The process by which one member restarts the highly available applications of a failed member.

failover domain

The list of members in the cluster where a service can be online.

failover option

A failover domain option that is considered when a failure occurs and a new target member for the service must be determined.

failover speed

The time it takes to detect a member failure.

GUI

Graphical user interface (sgicm-config-cluster).

heartbeat interval

The number of microseconds before a heartbeat is sent to all other members in the cluster.

heartbeat

Messages that SGI Cluster Manager software sends between the members that indicate a machine is up and running.

heartbeat timeout

The number of heartbeats missed before a member is declared as failed.

highly available services

Applications that are monitored by the SGI Cluster Manager software. If one member fails, the other member restarts the highly available applications of the failed member. To clients, the services on the replacement member are indistinguishable from the original services before failure occurred. It appears as if the original member has crashed and rebooted quickly. The clients notice only a brief interruption in the highly available service.

IO10

A full-size PCI expansion board that provides basic system I/O capabilities via the PCI bus.

IX brick

System component that provides the base I/O functionality for the system; it contains the electronics and hardware necessary to boot.

L2

SGI system controller used to monitor and manage the server.

local member

The machine being configured.

local XVM volumes

Logical volumes that are local to one member at a time and are not shared across the cluster. They may change ownership upon failover or moving a service.

lowest-ordered

A higher preference for a service to be started on that member.

member

A machine or system partition that is defined as part of a cluster.

multiport serial adapter cable

A device that provides four DB9 serial ports from a 36-pin connector.

network tiebreaker

Ensures that only the member that can contact the tiebreaker IP address can form a cluster. The tiebreaker is the IP address of a machine or a router that **does not participate** in the cluster. Usually, it is the IP address of a network router that connects the members to the external world (clients).

ordered failover

A failover domain option that causes the service to start on the first member defined if it is available.

partition

See shared partitions and system partition.

peer member

The other member in the cluster, to which the local system controller is connected.

plug-in

The set of software that allows a service to be highly available without modifying the application itself.

primary partition

One of the two disk partitions without filesystems where SGI Cluster Manager keeps configuration, cluster, and service status information. See also *shared partition* and *shadow partition*.

restricted failover

A failover domain option that permits failover only to the members listed.

SATA

Serial ATA disk.

service ID

A number that identifies the service (the ID is automatically determined and is not user-configurable).

shadow partition

One of the two disk partitions without filesystems where SGI Cluster Manager keeps configuration, cluster, and service status. The shadow partition is the backup partition. See also *primary partition* and *shared partitions*.

shared partitions

The two disk partitions without filesystems (primary partition and shadow partition) where SGI Cluster Manager keeps configuration, cluster, and service status information.

split-brain scenario

Network partition in which both members attempt to form individual clusters.

symlink

Symbolic link

system partition

A machine that is logically divided into multiple servers. Also referred to as an *Altix partition*.

Index

A

action scripts, 120 actions in a service script, 75 ALERT message level, 73 Altix 350, 4 Altix 3700, 4 Altix 3700 Bx2, 4, 12, 14 Altix servers, 3 application, 75, 119 application-specific scripts, 76

B

base product, 2 bash, 120 best practices, 111

С

cables, 4 CACHE_DIR, 92 CBL-SATA-SERIAL, 3 chkconfig, 53, 66, 95, 118 clear database, 115 CLI, 29 clufence, 111, 115, 118 clulockd, 9, 111 clumanager, 53, 66, 69, 70 clumembd, 8, 41 cluquorumd, 8 clurmtabd, 8 clustat, 118 cluster configuration See "configuration", 29

007-3800-005

cluster creation, 34, 64 cluster daemons, 8 cluster database, 120 cluster global lock manager daemon, 9 cluster membership daemon, 8 cluster process, 69, 70 cluster quorum daemon, 8 cluster remote NFS mount table daemon, 8 cluster service manager daemon, 8 cluster status GUI, 29 cluster.xml, 52, 66 clusvcadm, 70 clusvcmgrd, 8, 75, 112 command-line interface, 29 config_viewnumber, 52, 53, 66 configuration, 51, 65 cluster, 34, 64 disks and filesystems, 49, 65 example, 63 failover domain, 44, 65 failover speed, 39, 64 heartbeat interval, 39, 64 members, 35, 64 power controller, 35, 64 Samba share, 50, 65 save cluster configuration, 52 service, 45, 65 service IP address, 48, 65 shared quorum partitions, 32, 64 start cluster daemons, 53, 66 status, 30 steps, 31 synchronize changes, 52, 66 tiebreaker, 42, 64 timeout, 39, 64 tools, 29 configuration file, 114

Index

connectivity test Ethernet, 18 serial, 19 control messages, 12, 120 controlled failback, 7 CR-brick rear panel, 14 create_device_links, 12, 34 CRIT message level, 73 cross-over cabling, 4 CXFS, 87 optional product, 2 version requirements, 6 cxfsdump, 118

D

daemons, 8 data migration facility (DMF), 91 DB9 serial ports, 16 DEBUG message level, 73 dependencies, 77, 121 detached state, 71 /dev files and symlinks, 32 device driver, 11 device special file, 88 disabled state, 71 disk device naming, 32 disk tiebreaker, 43 disks, 49 dmaudit, 92 DMF, 91 configuration file, 94 CXFS and, 93 existing service, 91 local XVM and, 93 optional product, 2 parameters, 92 starting, 95 TMF and, 95 version requirements, 6 domain, 6, 44, 65

dual paths, 12

Ε

EMERG message level, 73 ERROR message level, 73 error messages, 117 /etc/cluster.xml, 31, 52, 66, 112, 114, 118, 120 /etc/dmf/sgicm_dmf.config, 94 /etc/init.d/clumanager, 34, 69, 70 /etc/samba/smb.conf*, 118 /etc/tmf/sgicm_tmf.config, 100 Ethernet connection, 13 exclusive, 120 exportfs, 118

F

failback option, 7 failed state, 71 failed state for a service, 116 failover, 1 failover domain, 6, 44, 65, 111 failover option, 6 failover speed, 39, 64 FailSafe differences, 119 failure detection times, 41 fencing, 88 filesystems, 49, 65 FS type, 88 FTP_DIRECTORY, 92

G

global lock manager daemon, 9 graphical user interface for configuration, 29 GUI, 29

Η

hardware diagrams, 15 installation, 11 supported, 4 heartbeat interval, 39, 64 heartbeat network, 12 heartbeats, 8 helper_tmp script, 97 highly available applications, 75 HOME_DIR, 92 hwinfo, 118

I

I/O fencing, 88 INFO message level, 73 installation hardware, 11 software, 23 interval parameter, 41 introduction, 1 IO10, 3 IO9, 4 ip, 18 IP address for service, 48, 65 IRIX FailSafe differences, 119

J

JOURNAL_DIR, 92

L

L1 USB port, 14 L2, 12, 13 l2, 3 L2 emulation, 12

007-3800-005

L2 power controller, 35, 64 l2network, 3, 13 loader directive, 101 local XVM, 107 DMF, 93 local4 facility, 73 lock manager daemon, 9 log levels, 73 logrotate, 73 lowest-ordered, 7 ls, 118

Μ

member, 119 member definition, 35, 64 members, 1 membership daemon, 8 message levels, 73 message logging, 73 messages, 117 metadata consistency among members, 114 metadata display, 115 monitor level, 46 monitor levels, 45, 65 monitoring status, 67 mount, 118 mount point and CXFS, 88 mount table daemon, 8 MOVE_FS, 92 multiple CXFS filesystems, 89 multiple user applications, 78 multiport serial adapter cable, 3

Ν

network cabling, 4 network connection, 13 network connection (l2network), 3

Index

network heartbeats, 8 network tiebreaker, 42 networks for heartbeat and control, 120 new applications, 75 NFS, 51, 65 NFS Druid, 59 NFS exports and samba, 82 NFS mount table daemon, 8 node, 119 NOTICE message level, 73

0

ordered failover, 7

Р

packages, 23 pending state, 71 plug-in, 2 power control, 12 primary partition, 11 private network, 5, 12 ps, 118

Q

quorum daemon, 8

R

RAIDs supported, 11 raw device filenames, 117 README, 6, 24 reinitialize the shared state, 112 relocate services, 26 relocate-mds, 88, 93 relocation support, 87

134

remote modem port, 16 remote NFS mount table daemon, 8 remote_devices directive, 102 removing software, 27 reporting problems to SGI, 118 requirements hardware, 4 software, 6 reset cable status, 111 reset daemon, 8 reset issues, 115 resource, 119 resource dependencies, 121 resource directive, 100 restart, 120 restricted failover, 6 rolling upgrade, 119 rpm, 25, 118 RPMs, 6, 23 running state, 71

S

Samba, 81 configuration, 50, 65 version requirements, 6 Samba Druid, 54 save cluster configuration, 52 scp, 52 script location, 120 script order, 76 serial cable, 115, 117 serial cable issues, 115 serial connection, 15 serial connection (l2), 3 serial control, 12 servers supported, 3 service failure, 116 service ID, 75 service IP address, 48, 65

007-3800-005

service manager, 75 service manager daemon, 8 service script, 75 service states, 71 service timeout, 105 service timeouts, 45, 65 service timeouts and CXFS, 90 SGI ProPack for Linux, 6 SGI ProPack version required, 6 sgicm-cluster-cmd, 29, 31 sgicm-config-cluster-cmd, 29 sgicm_dmf.config, 94 sgicm_tmf.config, 100 shadow partition, 11 share name, 50, 65 shared quorum partitions, 4, 11, 64, 111, 113, 118 shared state, 32, 64 shutil, 111-113 SLES9, 6 software installation, 23 software packages, 23 software requirements, 6 split-brain scenario, 42 SPOOL_DIR, 92 start order, 76 status, 67 status of configuration, 30 stop order, 76 stopped state, 71 STORE DIRECTORY, 92 SUSE LINUX Enterprise Server 9 (SLES9), 6 symlinks, 32 syslog, 73 system controller problem problem, 117

Т

tape management facility See "TMF", 97 tapes and TMP, 103

007-3800-005

TCP, 1 tiebreaker, 42, 64, 119 timeout, 39, 64, 120 tko_count parameter, 41 TMF configuration file, 100 device group, 99 failover script, 104 helper_tmf script, 97 loader directive, 101 optional configuration specifications, 99 optional product, 2 remote devices directive, 102 resource directive, 100 service timeout, 105 tape configuration, 103 version requirements, 6 TP9xxx RAID, 11 troubleshooting, 111 tty port, 16

U

UDP, 1 uname, 118 uninitialized state, 71 uninstalling the software, 27 upgrade, 119 upgrading the software, 26 USB-to-Ethernet adapter, 12 user application script parameter, 77 /usr/lib/clumanager/create_device_links, 12, 32, 34 /usr/lib/clumanager/services, 76 /usr/lib/clumanager/services/new_application, 77 /usr/lib/clumanager/services/service, 120 /usr/lib/clumanager/create_device_links, 118

V

watchdog errors, 112

/var/cluster/ha/resource_types, 120 /var/lib/nfs/rmtab, 8 /var/log/messages, 73, 111, 118 verify accessibility, 113

W

WARNING message level, 73

XVM, 6 XVM (local), 107

DMF, 93

Х