
IRIS FailSafeTM Version 2 Programmer’s
Guide

007–3900–004

CONTRIBUTORS

Written by Lori Johnson
Illustrated by Dany Galgani and Chris Wengelski
Edited by Rick Thompson
Production by Diane Ciardelli
Engineering contributions by Vidula Iyer, Herb Lewis, Michael Nishimoto, Hugh Shannon Jr., Bill Sparks, Paddy Sreenivasan, Dan
Stekloff, Rebecca Underwood, and Manish Verma

COPYRIGHT
© 1999, 2001 Silicon Graphics, Inc. All Rights Reserved; provided portions may be copyright in third parties as indicated elsewhere
herein. The contents of this document may not be copied or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14
and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights reserved
under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain
View, CA 94043-1389.

TRADEMARKS AND ATTRIBUTIONS
IRIS, IRIX, and Silicon Graphics are registered trademarks and IRIS FailSafe and the Silicon Graphics logo are trademarks of Silicon
Graphics, Inc.

INFORMIX is a trademark of Informix Software, Inc. Netscape is a trademark of Netscape Communications Corporation. NFS is a
trademark of Sun Microsystems, Inc. Oracle is a trademark of Oracle Corporation. Sybase is a trademark of Sybase, Inc.

New Features in This Guide

This update includes the following changes:

• Support for server-side plugin properties file. See"Server-side Properties File",
page 78.

• New Node_Failures_Only failover policy attribute. See "Failover Attributes",
page 43.

• Availability of resource dependency information with ha_get_info. See "Get
Resource Information", page 110.

• Obtaining attributes and dependency information for a resource. See "Read
Resource Information", page 25.

• Instructions for using an existing resource type as a template for a new resource
type. See "Copying an Existing Resource Type to Create a New One", page 63.

007–3900–004 iii

Record of Revision

Version Description

002 December 1999
Published in conjunction with the latest IRIS FailSafe 2.0 rollup
patch. It supports IRIX 6.5.9 and later.

003 October 2000
Supports the IRIS FailSafe 2.1 release.

004 April 2001
Supports the IRIS FailSafe 2.1.1 release and IRIX 6.5.12 or later.

007–3900–004 v

Contents

About This Guide . xvii

Audience . xvii

Related Documentation . xvii

Conventions Used in This Guide xix

Reader Comments . xx

1. Introduction to IRIS FailSafe Programming 1

Concepts . 1

Node . 1

Pool . 2

Cluster . 2

FailSafe Membership . 2

fs2d Membership . 3

Process Membership . 3

Cluster Process Group . 3

Resource . 3

Resource Type . 4

Resource Name . 4

Resource Group . 4

Resource Dependency List . 5

Resource Type Dependency List 5

Failover . 6

Failover Policy . 6

Failover Domain . 6

Failover Attribute . 7

007–3900–004 vii

Contents

Failover Scripts . 7

Action Scripts . 7

Highly Available Services Included with the Release 8

Plug-Ins . 8

Characteristics that Permit an Application to be Highly Available 8

Overview of the Programming Steps 10

FailSafe Administrative Commands for Use in Scripts 11

2. Writing the Action Scripts and Adding Monitoring Agents 13

Set of Action Scripts . 13

Understanding the Execution of Action Scripts 14

When Action Scripts are Executed 15

Multiple Instances of Script Executed at the Same Time 15

Differences between the exclusive and monitor Scripts 16

Successful Execution of Action Scripts 17

Failure of Action Scripts . 17

Implementing Timeouts and Retrying a Command 18

Sending UNIX Signals . 18

Preparation . 19

Is Monitoring Necessary? . 20

Types of Monitoring . 21

What are the Symptoms of Monitoring Failure? 21

How Often Should Monitoring Occur? 21

Examples of Testing for Monitoring Failure 22

Script Format . 23

Header Information . 23

Set Local Variables . 24

viii 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Read Resource Information 25

Exit Status . 25

Basic Action . 26

Set Global Variables . 26

Verify Arguments . 27

Read Input File . 27

Complete the Action . 28

Steps in Writing a Script . 28

Examples of Action Scripts . 29

start Script . 29

stop Script . 31

monitor Script . 33

exclusive Script . 36

restart Script . 37

Monitoring Agents . 38

3. Creating a Failover Policy 41

Contents of a Failover Policy . 41

Failover Domain . 41

Failover Attributes . 43

Failover Scripts . 45

The ordered Failover Script 45

The round-robin Failover Script 48

Creating a New Failover Script 51

Failover Script Interface . 52

Example Failover Policies for FailSafe 53

N+1 Configuration . 53

N+2 Configuration . 55

007–3900–004 ix

Contents

N+M Configuration . 56

4. Defining a New Resource Type 59

Information You Must Gather 59

Copying an Existing Resource Type to Create a New One 63

Creating a New Resource Type from Scratch 64

Using the GUI . 64

Define a New Resource Type 65

Define Dependencies . 70

Using cmgr Interactively . 71

Using cmgr With a Script . 76

Server-side Properties File . 78

Property Formats . 79

Example Properties File . 79

Testing a New Resource Type 81

5. Testing Scripts . 83

General Testing and Debugging Techniques 83

Debugging Notes . 84

Testing an Action Script . 84

Special Testing Considerations for the monitor Script 87

Appendix A. Migrating From 1.2 to 2.x 89

Cautions . 89

Resource Types . 89

Reading Information . 91

Parameter Parsing . 91

Action Scripts . 92

x 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

1.2 giveback / 2.x stop . 93

1.2 takeover / 2.x start . 94

1.2 monitor/ 2.x monitor . 95

Ordering Script Actions . 96

Appendix B. Starting the FailSafe Manager 97

Appendix C. Using the Script Library 99

File Formats . 99

Set Global Definitions . 101

Global Variable . 101

HA_HOSTNAME . 101

Command Location Variables 101

HA_CMDSPATH . 101

HA_PRIVCMDSPATH . 101

HA_LOGCMD . 101

HA_RESOURCEQUERYCMD 102

HA_SCRIPTTMPDIR . 102

Database Location Variables 102

HA_CDB . 102

Script Log Level Variables . 102

HA_NORMLVL . 102

HA_DBGLVL . 102

Script Log Variables . 103

HA_SCRIPTGROUP . 103

HA_SCRIPTSUBSYS . 103

Script Logging Command Variables 103

HA_LOGQUERY_OUTPUT . 103

HA_DBGLOG . 103

007–3900–004 xi

Contents

HA_CURRENT_LOGLEVEL 103

HA_LOG . 104

Script Error Value Variables 104

HA_SUCCESS . 104

HA_NOT_RUNNING . 104

HA_INVAL_ARGS . 104

HA_CMD_FAILED . 104

HA_RUNNING . 104

HA_NOTSUPPORTED . 105

HA_NOCFGINFO . 105

Check Arguments . 105

Read an Input File . 106

Execute a Command . 107

Write Status for a Resource . 108

Get the Value for a Field . 108

Get the Value for Multiple Fields 109

Get Resource Information . 110

Print Exclusivity Check Messages 113

Glossary . 115

Index . 125

xii 007–3900–004

Figures

Figure 2-1 Monitoring Process 39

Figure 3-1 N+1 Configuration Concept 54

Figure 3-2 N+2 Configuration Concept 55

Figure 3-3 N+M Configuration Concept 57

Figure 4-1 Select Define a New Resource 66

Figure 4-2 Specify the Name of the New Resource Type 67

Figure 4-3 Specify Settings for Required Actions 68

Figure 4-4 Change Settings for Optional Actions 69

Figure 4-5 Set Type-specific Attributes 70

Figure 4-6 Add Dependencies 71

Figure B-1 FailSafe Manager 98

007–3900–004 xiii

Tables

Table 1-1 Example Resource Group 5

Table 1-2 FailSafe Administrative Commands for Use in Scripts 11

Table 2-1 Execution of Action Scripts 15

Table 2-2 Differences Between the monitor and exclusive Action Scripts 16

Table 2-3 Successful Action Script Results 17

Table 2-4 Failure of an Action Script 17

Table 3-1 Failover Attributes 44

Table 4-1 Order Ranges . 61

Table 4-2 Resource Type Order Numbers 61

Table A-1 Differences between 1.2 and 2.x Scripts 92

007–3900–004 xv

About This Guide

This guide explains how to write the set of scripts that are required to turn an
application into a highly available service in conjunction with IRIS FailSafe 2.1.1
software. It also tells you how to create a new resource type and provides instructions
for migrating script information from IRIS FailSafe Release 1.2 to Release 2.x.

This guide assumes that the IRIS FailSafe system has been configured as described in
the IRIS FailSafe Version 2 Administrator’s Guide.

This guide supports IRIX 6.5.12 and later.

This guide uses FailSafe as an abbreviation for IRIS FailSafe.

Audience
This guide is written for system programmers who are developing scripts for the IRIS
FailSafe system. These scripts allow the failover of applications that are not handled
by the base and optional products. Readers must be familiar with the operation and
administration of nodes running IRIS FailSafe, with the applications that are to be
failed over, and with the IRIS FailSafe Version 2 Administrator’s Guide.

Related Documentation
The following documentation is of interest:

• IRIS FailSafe Version 2 Administrator’s Guide

• CXFS Software Installation and Administration Guide

The reference pages are as follows:

• cdbBackup(1M)

• cdbRestore(1M)

• cluster_mgr(1M)

• crsd(1M)

007–3900–004 xvii

About This Guide

• failsafe(7M)

• fs2d(1M)

• ha_cilog(1M)

• ha_cmsd(1M)

• ha_exec2(1M)

• ha_fsd(1M)

• ha_gcd(1M)

• ha_ifd(1M)

• ha_ifdadmin(1M)

• ha_macconfig2(1M)

• ha_srmd(1M)

• ha_statd2(1M)

• haStatus(1M)

xviii 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Release notes are included with each IRIS FailSafe product. The names of the release
notes are as follows:

Release Note Product

cluster_admin Cluster administration services

cluster_control Cluster node control services

cluster_services Cluster services

failsafe2 IRIS 2.0 FailSafe release

failsafe2_informix FailSafe/INFORMIX

failsafe2_nfs FailSafe/NFS

failsafe2_oracle FailSafe/Oracle

failsafe2_samba FailSafe/Samba

failsafe2_web FailSafe/Netscape web

patch_number FailSafe patch release

Conventions Used in This Guide
These type conventions and symbols are used in this guide:

Bold Function names literal command-line arguments
(options/flags)

Bold fixed-width
type

Commands and text that you are to type literally in
response to shell and command prompts

Italics New terms, manual/book titles, commands, variable
command-line arguments, filenames, and variables to
be supplied by the user in examples, code, and syntax
statements

Fixed-width type Code examples, error messages, prompts, and screen
text

007–3900–004 xix

About This Guide

IRIX shell prompt for the superuser (root)

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xx 007–3900–004

Chapter 1

Introduction to IRIS FailSafe Programming

IRIS FailSafe 2.1.1 provides highly available services for a cluster that contains up to
8 nodes. These services are monitored by the IRIS FailSafe software. You can create
additional services that are highly available by using the instructions in this guide.

This chapter provides an introduction to IRIS FailSafe programming for application
scripts. The sections are as follows:

• "Concepts", page 1

• "Highly Available Services Included with the Release", page 8

• "Plug-Ins", page 8

• "Overview of the Programming Steps", page 10

• "Characteristics that Permit an Application to be Highly Available", page 8

For an overview of the components, software layers, communication paths, and order
of execution of action and failover scripts, see IRIS FailSafe Version 2 Administrator’s
Guide.

Note: This guide uses FailSafe as an abbreviation for IRIS FailSafe.

Concepts
In order to use FailSafe, you must understand the concepts in this section. For more
information, see IRIS FailSafe Version 2 Administrator’s Guide.

Node

A node is a single IRIX kernel image. Usually, a cluster node is an individual computer.

The nodes might be connected to a storage area network (SAN) consisting of a
number of disks.

The term node does not have the same meaning as a node in an Origin system.

007–3900–004 1

1: Introduction to IRIS FailSafe Programming

Pool

The pool is the entire set of nodes that are coupled to each other by networks and are
defined as nodes in the cluster database. The nodes are usually close together and
should always serve a common purpose. A replicated cluster configuration database
is stored on each node in the pool.

All nodes that can be added to a cluster are part of the pool, but not all nodes in the
pool must be part of the cluster. There is only one pool. (Other pools may exist, but
each is disjoint from the other. They share no node or cluster definitions.)

The cluster software uses the network to send the heartbeat and control messages
necessary for the cluster database to function. SGI recommends that all nodes be on
the same subnet.

If there are delays in receiving heartbeat messages, the cluster software may
determine that a node is not responding and cause that node to be reset.

!
Caution: To avoid unnecessary resets, SGI strongly recommends a private network
dedicated to cluster communication. (The rest of this document refers to the private
network.) For coexecution with CXFS, a private network is required.

Cluster

The cluster is the set of nodes in the pool that have been defined as a cluster. A
cluster is identified by a simple name; this name must be unique within the pool.

All nodes in the cluster are also in the pool. However, all nodes in the pool are not
necessarily in the cluster; that is, the cluster may consist of a subset of the nodes in
the pool. There is only one cluster per pool.

FailSafe Membership

The FailSafe membership is the list of FailSafe nodes in the cluster on which FailSafe
can make resource groups online. It differs from the CXFS membership and fs2d
membership. For more information about CXFS, see CXFS Software Installation and
Administration Guide.

2 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

fs2d Membership

fs2d membership (also known as user-space membership) is the group of nodes in the
pool that are accessible to fs2d and therefore can receive cluster configuration
database updates; this may be a subset of the nodes defined in the pool.

Process Membership

A process membership is the list of process instances in a cluster that form a cluster
process group. There can be multiple process groups per node.

Cluster Process Group

A cluster process group is a group of application instances in a distributed
application that cooperate to provide a service. Each application instance can consist
of one or more UNIX processes and spans only one node.

For example, distributed lock manager instances in each node would form a process
group. By forming a process group, they can obtain process membership and reliable,
ordered, atomic communication services.

Note: There is no relationship between UNIX process group and cluster process
group.

Resource

A resource is a single physical or logical entity that provides a service to clients or
other resources. For example, a resource can be a single disk volume, a particular
network address, or an application such as a web server. A resource is generally
available for use over time on two or more nodes in a cluster, although it can be
allocated to only one node at any given time.

Resources are identified by a resource name and a resource type. One resource can be
dependent on one or more other resources; if so, it will not be able to start (that is, be
made available for use) unless the dependent resources are also started. Dependent
resources must be part of the same resource group and are identified in a resource
dependency list. Resource dependencies are verified when resources are added to a
resource group, not when resourced are defined.

007–3900–004 3

1: Introduction to IRIS FailSafe Programming

Resource Type

A resource type is a particular class of resource. All of the resources in a particular
resource type can be handled in the same way for the purposes of failover. Every
resource is an instance of exactly one resource type.

A resource type is identified by a simple name; this name must be unique within the
cluster. A resource type can be defined for a specific node, or it can be defined for an
entire cluster. A resource type that is defined for a specific node overrides a
clusterwide resource type definition with the same name; this allows an individual
node to override global settings from a clusterwide resource type definition.

Like resources, a resource type can be dependent on one or more other resource
types. If such a dependency exists, at least one instance of each of the dependent
resource types must be defined. For example, a resource type named Netscape_web
might have resource type dependencies on resource types named IP_address and
volume. If a resource named web1 is defined with the Netscape_web resource type,
then the resource group containing web1 must also contain at least one resource of
the type IP_address and one resource of the type volume.

The FailSafe software includes many predefined resource types. If these types fit the
application you want to make highly available, you can reuse them. If none fit, you
can create additional resource types by using the instructions in this guide.

Resource Name

A resource name identifies a specific instance of a resource type. A resource name
must be unique for a given resource type.

Resource Group

A resource group is a collection of interdependent resources. A resource group is
identified by a simple name; this name must be unique within a cluster. Table 1-1
shows an example of the resources and their corresponding resource types for a
resource group named WebGroup.

4 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Table 1-1 Example Resource Group

Resource Resource Type

10.10.48.22 IP_address

/fs1 filesystem

vol1 volume

web1 Netscape_web

If any individual resource in a resource group becomes unavailable for its intended
use, then the entire resource group is considered unavailable. Therefore, a resource
group is the unit of failover.

Resource groups cannot overlap; that is, two resource groups cannot contain the same
resource.

For information about configuring resource groups, see the IRIS FailSafe Version 2
Administrator’s Guide.

Resource Dependency List

A resource dependency list is a list of resources upon which a resource depends. Each
resource instance must have resource dependencies that satisfy its resource type
dependencies before it can be added to a resource group.

Resource Type Dependency List

A resource type dependency list is a list of resource types upon which a resource type
depends. For example, the filesystem resource type depends upon the volume
resource type, and the Netscape_web resource type depends upon the filesystem
and IP_address resource types.

For example, suppose a file system instance fs1 is mounted on volume vol1. Before
fs1 can be added to a resource group, fs1 must be defined to depend on vol1.
FailSafe only knows that a file system instance must have one volume instance in its
dependency list. This requirement is inferred from the resource type dependency list.

007–3900–004 5

1: Introduction to IRIS FailSafe Programming

Failover

A failover is the process of allocating a resource group (or application) to another
node, according to a failover policy. A failover may be triggered by the failure of a
resource, a change in the FailSafe membership (such as when a node fails or starts), or
a manual request by the administrator.

Failover Policy

A failover policy is the method used by FailSafe to determine the destination node of
a failover. A failover policy consists of the following:

• Failover domain

• Failover attributes

• Failover script

FailSafe uses the failover domain output from a failover script along with failover
attributes to determine on which node a resource group should reside.

The administrator must configure a failover policy for each resource group. A failover
policy name must be unique within the pool.

Failover Domain

A failover domain is the ordered list of nodes on which a given resource group can
be allocated. The nodes listed in the failover domain must be within the same cluster;
however, the failover domain does not have to include every node in the cluster.

The administrator defines the initial failover domain when creating a failover policy.
This list is transformed into a run-time failover domain by the failover script; FailSafe
uses the run-time failover domain along with failover attributes and the FailSafe
membership to determine the node on which a resource group should reside. FailSafe
stores the run-time failover domain and uses it as input to the next failover script
invocation. Depending on the run-time conditions and contents of the failover script,
the initial and run-time failover domains may be identical.

In general, FailSafe allocates a given resource group to the first node listed in the
run-time failover domain that is also in the FailSafe membership; the point at which
this allocation takes place is affected by the failover attributes.

6 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Failover Attribute

A failover attribute is a string that affects the allocation of a resource group in a
cluster. The administrator must specify system attributes (such as Auto_Failback,
Controlled_Failback), and can optionally supply site-specific attributes.

Failover Scripts

A failover script is a shell script that generates a run-time failover domain and
returns it to the ha_fsd process. The (ha_fsd) process applies the failover attributes
and then selects the first node in the returned failover domain that is also in the
current FailSafe membership.

The following failover scripts are provided with the FailSafe release:

• ordered, which never changes the initial failover domain. When using this script,
the initial and run-time failover domains are equivalent.

• round-robin, which selects the resource group owner in a round-robin (circular)
fashion. This policy can be used for resource groups that can be run in any node
in the cluster.

If these scripts do not meet your needs, you can create a new failover script using the
information in this guide.

Action Scripts

The action scripts are the set of scripts that determine how a resource is started,
monitored, and stopped. There must be a set of action scripts specified for each
resource type. For an overview of the actions scripts, see "Set of Action Scripts", page
13.

The release includes action scripts for predefined resource types. If these scripts fit
the resource type that you want to make highly available, you can reuse them by
copying them and modifying them as needed. If none fits, you can create additional
action scripts by using the instructions in this guide.

007–3900–004 7

1: Introduction to IRIS FailSafe Programming

Highly Available Services Included with the Release
The base release includes the software required to make the following system
resources highly available:

• IP addresses (the IP_address resource type)

• XLV logical volumes (the volume resource type)

• XFS file systems (the filesystem resource type)

• MAC addresses (the MAC_address resource type)

Plug-Ins
Optional software packages, known as plug-ins, are available to make additional
applications highly available.

If you want to create new highly available services, or change the functionality of the
provided failover scripts and action scripts by writing new scripts, you will use the
instructions in this guide. However, not all resources can be made highly available;
see "Characteristics that Permit an Application to be Highly Available".

Characteristics that Permit an Application to be Highly Available
The characteristics of an application that can be made highly available are as follows:

• The application can be easily restarted and monitored.

It should be able to recover from failures as does most client/server software. The
failure could be a hardware failure, an operating system failure, or an application
failure. If a node crashed and reboots, client/server software should be able to
attach again automatically.

• The application must have a start and stop procedure.

When the application fails over, the instances of the application are stopped on
one node using the stop procedure and restarted on the other node using start
procedure.

Avoid applications that are started as a daemon from /etc/inetd.conf because
typically everything in /etc/inetd.conf is already running and trying to

8 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

automatically edit /etc/inetd.conf could cause errors for other daemons
started by this file.

Many applications will have a start and stop procedure that belongs in the
/etc/init.d directory. You can incorporate them into a custom
/var/ha/resources script to appropriately start and stop the application. If the
application also has a chkconfig(1m) flag, set it to off. The chkconfig flag
should be set to on in the /var/ha/resources start script

• The application does not depend on the hostname or any identifier that is specific
to a node.

• The application can be moved from one node to another after failures.

If the resource has failed, it must still be possible to run the resource stop
procedure. In addition, the resource must recover from the failed state when the
resource start procedure is executed in another node.

Ensure that there is no affinity for a specific node.

• The application does not depend on knowing the primary host name (as returned
by hostname); that is, those resources that can be configured to work with an IP
address.

• Other resources on which the application depends can be made highly available.
If they are not provided by FailSafe and its optional products (see "Highly
Available Services Included with the Release", page 8), you must make these
resources highly available, using the information in this guide.

Note: An application itself is not modified to make it highly available.

007–3900–004 9

1: Introduction to IRIS FailSafe Programming

Overview of the Programming Steps

Note: If you do not want to write the scripts yourself, you can establish a contract
with the Silicon Graphics Professional Services group to create customized scripts.
See: http://www.sgi.com/services/index.html.

To make an application highly available, follow these steps:

1. Understand the application and determine:

• The configuration required for the application, such as user names,
permissions, data location (volumes), and so on. For more information about
configuration, see the IRIS FailSafe Version 2 Administrator’s Guide.

• The other resources on which the application depends. All interdependent
resources must be part of the same resource group.

• The resource type that best suits this application.

• The number of instances of the resource type that will constitute the
application. (Each instance of a given application, or resource type, is a
separate resource.) For example, a web server may depend upon two
filesystem resources.

• The commands and arguments required to start, stop, and monitor this
application (that is, the resources in the resource group).

• The order in which all resources in the resource group must be started and
stopped.

2. Determine whether existing action scripts can be reused. If they cannot, write a
new set of action scripts, using existing scripts and the templates in
/var/cluster/ha/resource_types/template as a guide. See Chapter 2,
"Writing the Action Scripts and Adding Monitoring Agents", page 13.

3. Determine whether the existing ordered or round-robin failover scripts can be
reused for the resource group. If they cannot, write a new failover script. See
Chapter 4, "Defining a New Resource Type", page 59.

4. Determine whether an existing resource type can be reused. If none applies,
create a new resource type or modify an existing resource. See Chapter 4,
"Defining a New Resource Type", page 59.

10 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

5. Configure the following in the cluster configuration database (for more
information, see the IRIS FailSafe Version 2 Administrator’s Guide):

• Resource group

• Resource type

• Failover policy

6. Test the action scripts and failover script. See Chapter 5, "Testing Scripts", page
83, and "Debugging Notes", page 84.

Note: Do not modify the scripts included with the release. New or customized
scripts must have different names from the files included with the release.

FailSafe Administrative Commands for Use in Scripts
Table 1-2 shows the administrative commands available with FailSafe for use in
scripts.

Table 1-2 FailSafe Administrative Commands for Use in Scripts

Command Purpose

ha_cilog Logs messages to the script_ nodename log files.

ha_execute_lock Executes a command with a file lock which allows command execution to be
serialized. The lock file prevents multiple instances of the same command from
executing at the same time on a single node.

ha_exec2 Executes a command and retries the command on failure or timeout.

ha_filelock Locks a file.

ha_fileunlock Unlocks a file.

ha_ifdadmin Communicates with the ha_ifd network interface agent daemon.

ha_http_ping2 Checks if a web server is running.

ha_macconfig2 Displays or modifies MAC addresses of a network interface.

007–3900–004 11

Chapter 2

Writing the Action Scripts and Adding Monitoring
Agents

This chapter provides information about writing the action scripts required to make
an application highly available and how to add monitoring agents. It discusses the
following topics:

• "Set of Action Scripts"

• "Understanding the Execution of Action Scripts", page 14

• "Preparation", page 19

• "Script Format", page 23

• "Steps in Writing a Script", page 28

• "Examples of Action Scripts", page 29

• "Monitoring Agents", page 38

Set of Action Scripts

!
Caution: Multiple instances of scripts may be executed at the same time. For more
information, see "Understanding the Execution of Action Scripts", page 14.

The following set of action scripts can be provided for each resource:

• exclusive, which verifies that the resource is not already running

• start, which starts the resource

• stop, which stops the resource

• monitor, which monitors the resource

• restart, which restarts the resource on the same node when a monitoring failure
occurs

The start, stop, and exclusive scripts are required for every resource type.

007–3900–004 13

2: Writing the Action Scripts and Adding Monitoring Agents

Note: The start and stop scripts must be idempotent; that is, they have the
appearance of being run once but can in fact be run multiple times. For example, if
the start script is run for a resource that is already started, the script must not
return an error.

A monitor script is required, but if you wish it may contain only a return-success
function. A restart script is required if the application must have a restart ability
on the same node in case of failure. However, the restart script may contain only a
return-success function.

Understanding the Execution of Action Scripts
Before you can write a new action script, you must understand how action scripts are
executed. This section covers the following topics:

• "When Action Scripts are Executed", page 15

• "Multiple Instances of Script Executed at the Same Time", page 15

• "Differences between the exclusive and monitor Scripts", page 16

• "Successful Execution of Action Scripts", page 17

• "Failure of Action Scripts", page 17

• "Implementing Timeouts and Retrying a Command", page 18

• "Sending UNIX Signals", page 18

14 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

When Action Scripts are Executed

Table 2-1 shows when action scripts are executed.

Table 2-1 Execution of Action Scripts

Script Execution Conditions

exclusive A resource group is made online by the user

High-availability (HA) processes (ha_cmsd, ha_gcd, ha_fsd,
ha_srmd, ha_ifd) are started

start A resource group is made online by the user

HA processes are started

A resource group fails over

stop A resource group is made offline

HA processes are stopped

A resource group fails over

A node is shutdown or rebooted

monitor A resource groups is online

restart The monitor script fails

Multiple Instances of Script Executed at the Same Time

Multiple instances of the same script may be executed at the same time. To avoid this
problem, you can use the ha_filelock and ha_execute_lock commands to
achieve sequential execution of commands in different instances of the same script.

For example, multiple instances of xlv_assemble should not be executed in a node
at the same time. Therefore, the start script for volumes should execute
xlv_assemble under the control of ha_execute_lock as follows:

${HA_CMDSPATH}/ha_execute_lock 30

${HA_SCRIPTTMPDIR}/lock.volume_assemble \"/sbin/xlv_assemble -l

-s${VOLUME_NAME} \"

007–3900–004 15

2: Writing the Action Scripts and Adding Monitoring Agents

The ha_execute_lock command takes 3 arguments:

• Number of seconds before the command times out waiting for the file lock

• File to be used for locking

• Command to be executed

The ha_execute_lock command tries to obtain a lock on the file every second for
timeout seconds. After obtaining a lock on the file, it executes the command
argument. On command completion, it releases lock on the file.

Differences between the exclusive and monitor Scripts

Although same check can be used in monitor and exclusive action scripts, they are
used for different purposes. Table 2-2 summarizes the differences between the scripts.

Table 2-2 Differences Between the monitor and exclusive Action Scripts

exclusive monitor

Executed in all nodes in the cluster. Executed only on the node where the resource group
(which contains the resource) is online.

Executed before the resource is started in the cluster. Executed when the resource is online in the cluster.
(The monitor script could degrade the services
provided by the HA server. Therefore, the check
performed by the monitor script should be
lightweight and less time consuming than the check
performed by the exclusive script.)

Executed only once before the resource group is
made online in the cluster.

Executed periodically.

Failure will result in resource group not becoming
online in the cluster.

Failure will cause a resource group failover to another
node or a restart of the resource in the local node.

16 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Successful Execution of Action Scripts

Table 2-3 shows the state of a resource group after the successful execution of an
action script for every resource within a resource group. To view the state of a
resource group, use the Cluster Manager graphical user interface (GUI) or the
cluster_mgr command.

Table 2-3 Successful Action Script Results

Event Action Script to Execute Resource Group State

Resource group is made online on a node start online

Resource group is made offline on a node stop offline

Online status of the resource group exclusive (No effect)

Normal monitoring of online resource group monitor online

Resource group monitoring failure restart online

Failure of Action Scripts

Table 2-4 shows the state of the resource group and the error state when an action
script fails.

Table 2-4 Failure of an Action Script

Failing Script Resource Group State Error State

exclusive online exclusivity

monitor online monitoring failure

restart online monitoring failure

start online srmd executable error

stop online srmd executable error

007–3900–004 17

2: Writing the Action Scripts and Adding Monitoring Agents

Implementing Timeouts and Retrying a Command

You can use the ha_exec2(1m) command to execute action scripts using timeouts.
This allows the action script to be completed within the specified time, and permits
proper error messages to be logged on failure or timeout. The retry variable is
especially useful in monitor and exclusive action scripts.

To retry a command, use the following syntax:

/usr/cluster/bin/ha_exec2 timeout_in_seconds number_of_retries command

For example:

${HA_CMDSPATH}/ha_exec2 30 2 "umount /fs"

The above ha_exec2 command executes the umount /fs command line. If the
command does not complete within 30 seconds, it kills the umount(1m) command
and retries the command. The ha_exec2 command retries the umount command
twice if it times out or fails.

For more information, see the ha_exec2(1m) man page.

Sending UNIX Signals

You can use the ha_exec2(1m) command to send UNIX signals to specific process. A
process is identified by its name or its arguments.

For example:

${HA_CMDSPATH}/ha_exec2 -s 0 -t "SYBASE_DBSERVER"

The above command sends signal 0 (checks if the process exists) to all processes
whose name or arguments match the SYBASE_DBSERVER string. The command
returns 0 if it is a success.

You should use the ha_exec2 command to check for server processes in the
monitor script instead of using the ps -ef | grep command line.

For more information, see the ha_exec2(1m) man page.

18 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Preparation
Before you can write the action scripts, you must do the following:

• Understand the scriptlib functions described in Appendix C, "Using the Script
Library", page 99.

• Familiarize yourself with the script templates provided in the following directory:
/var/cluster/ha/resource_types/template

• Read the man pages for the following commands:

– cluster_mgr(1M)

– fs2d(1M)

– ha_cilog(1M)

– ha_cmsd(1M)

– ha_exec2(1M)

– ha_fsd(1M)

– ha_gcd(1M)

– ha_ifd(1M)

– ha_ifdadmin(1M)

– ha_macconfig2(1M)

– ha_srmd(1M)

– ha_statd2(1M)

– haStatus(1M)

• Familiarize yourself with the action scripts for other highly available services in
/var/cluster/ha/resource_types that are similar to the scripts you wish to
create.

• Understand how to do the following actions for your application:

– Verify that the resource is running

– Verify that the resource can be run

007–3900–004 19

2: Writing the Action Scripts and Adding Monitoring Agents

– Start the resource

– Stop the resource

– Check for the server processes

– Do a simple query as a client and understand the expected response

– Check for configuration file or directory existence (as needed)

• Determine whether or not monitoring is required (see "Is Monitoring Necessary?",
page 20). However, even if monitoring is not needed, a monitor script is still
required; in this case, it can contain only a return-success function.

• Determine if a resource type must be added to the cluster configuration database.

• Understand the vendor-supplied startup and shutdown procedures.

• Determine the configuration parameters for the application; these may be used in
the action script and should be stored in the cluster database. Action scripts may
read from the database.

• Determine whether the resource type can be restarted in the local node and
whether this action makes sense.

Is Monitoring Necessary?

In the following situations, you may not need to perform application monitoring:

• Heartbeat monitoring is sufficient; that is, simply verifying that the node is alive
(provided automatically by the base software) determines the health of the highly
available service.

• There is no process or resource that can be monitored. For example, the SGI
Gauntlet Internet Firewall software performs IP filtering on firewall nodes. Because
the filtering is done in the kernel, there is no process or resource to monitor.

• A resource on which the application depends is already monitored. For example,
monitoring some client-node resources might best be done by monitoring the file
systems, volumes, and network interfaces they use. Because this is already done
by the base software, additional monitoring is not required.

20 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

!
Caution: Beware that monitoring should be as lightweight as possible so that it
does not affect system performance. Also, security issues may make monitoring
difficult. If you are unable to provide a monitoring script with appropriate
performance and security, consider a monitoring agent; see "Monitoring Agents",
page 38.

Types of Monitoring

There are two types of monitoring that may be accomplished in a monitor script:

• Is the resource present?

• Is the resource responding?

You can define multiple levels of monitoring within the monitor script, and the
administrator can choose the desired level by configuring the resource definition in
the cluster configuration database. Ensure that the monitoring level chosen does not
affect system performance. For more information, see the IRIS FailSafe Version 2
Administrator’s Guide.

What are the Symptoms of Monitoring Failure?

Possible symptoms of failure include the following:

• The resource returns an error code

• The resource returns the wrong result

• The resource does not return quickly enough

How Often Should Monitoring Occur?

You must determine the monitoring interval time and time-out value for the monitor
script. The time-out must be long enough to guarantee that occasional anomalies do
not cause false failovers. It will be useful for you to determine the peak load that
resource may need to sustain.

007–3900–004 21

2: Writing the Action Scripts and Adding Monitoring Agents

You must also determine if the monitor test should execute multiple times so that an
application is not declared dead after a single failure. In general, testing more than
once before declaring failure is a good idea.

Examples of Testing for Monitoring Failure

The test should be simple and complete quickly, whether it succeeds or fails. Some
examples of tests are as follows:

• For a client/server resource that follows a well-defined protocol, the monitor
script can make a simple request and verify that the proper response is received.

• For a web server application, the monitor script can request a home page, verify
that the connection was made, and ignore the resulting home page.

• For a database, a simple request such as querying a table can be made.

• For NFS, more complicated end-to-end monitoring is required. The test might
consist of mounting an exported file system, checking access to the file system
with a stat() system call to the root of the file system, and undoing the mount.

• For a resource that writes to a log file, check that the size of the log file is
increasing or use the grep(1) command to check for a particular message.

• The following command can be used to determine quickly whether a process
exists:

/sbin/killall -0 process_name

You can also use the ha_exec2(1m) command to check if a process is running.

The ha_exec2 command differs from killall(1m) in that it performs a more
exhaustive check on the process name as well as process arguments. killall
searches for the process using the process name only. The command line is as
follows:

/usr/cluster/bin/ha_exec2 -s 0 -t process_name

Note: Do not use the ps command to check on a particular process because its
execution can be too slow.

22 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Script Format
Templates for the action scripts are provided in the following directory:

/var/cluster/ha/resource_types/template

The template scripts have the same general format. Following is the type of
information in the order in which it appears in the template scripts:

• Header information

• Set local variables

• Read resource information

• Exit status

• Perform the basic action of the script, which is the customized area you must
provide

• Set global variables

• Verify arguments

• Read input file

Note: Action “scripts” can be of any form – such as Bourne shell script, perl
script, or C language program. The rest of this chapter discusses Korn shell.

The following sections show an example from the NFS start script.

Header Information

The header information contains comments about the resource type, script type, and
resource configuration format. You must modify the code as needed.

Following is the header for the NFS start script:

007–3900–004 23

2: Writing the Action Scripts and Adding Monitoring Agents

#!/sbin/ksh

**

* *

* Copyright (C) 1998 Silicon Graphics, Inc. *

* *
* These coded instructions, statements, and computer programs contain *

* unpublished proprietary information of Silicon Graphics, Inc., and *

* are protected by Federal copyright law. They may not be disclosed *

* to third parties or copied or duplicated in any form, in whole or *

* in part, without the prior written consent of Silicon Graphics, Inc. *

* *
**

#ident "$Revision: 1.13 $"

Resource type: NFS

Start script NFS

#

Test resource configuration information is present in the database in

the following format

#

resource-type.NFS
#

Set Local Variables

The set_local_variables() section of the script defines all of the variables that
are local to the script, such as temporary file names or database keys. All local
variables should use the LOCAL_ prefix. You must modify the code as needed.

Following is the set_local_variables() section from the NFS start script:

set_local_variables()

{
LOCAL_TEST_KEY=NFS

}

24 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Read Resource Information

The get_xxx_info() function, such as get_nfs_info(), reads the resource
information from the cluster configuration database. $1 is the test resource name. If
the operation is successful, a value of 0 is returned; if the operation fails, 1 is returned.

The information is returned in the HA_STRING variable. For more information about
HA_STRING, see Appendix C, "Using the Script Library", page 99.

Following is the get_nfs_info() section from the NFS start script:

get_nfs_info ()

{
ha_get_info ${LOCAL_TEST_KEY} $1

if [$? -ne 0]; then

return 1;

else

return 0;

fi
}

Call ha_get_info with a third argument of any value to obtain all attributes and
dependency information for a resource from the configuration database. Use
ha_get_multi_fields to retrieve specific dependency information. The resource
dependency information is returned in the $HA_FIELD_VALUE variable.

Exit Status

In the exit_script() function, $1 contains the exit_status value. If cleanup
actions are required, such as the removal of temporary files that were created as part
of the process, place them before the exit line.

Following is the exit_script() section from the NFS start script:

exit_script()

{

${HA_DBGLOG} "Exit: exit_script()";
exit $1;

}

007–3900–004 25

2: Writing the Action Scripts and Adding Monitoring Agents

Note: If you call the exit_script function prior to normal termination, it should be
preceded by the ha_write_status_for_resource function and you should use
the same return code that is logged to the output file.

Basic Action

This area of the script is the portion you must customize. The templates provide a
minimal framework.

Following is the framework for the basic action from the start template:

start_template()

for all template resources passed as parameter
for TEMPLATE in $HA_RES_NAMES

do

#HA_CMD="command to start $TEMPLATE resource on the local machine";

#ha_execute_cmd "string to describe the command being executed";

ha_write_status_for_resource $TEMPLATE $HA_SUCCESS;

done

}

Note: When testing the script, you will add the set -x line to this area to obtain
debugging information.

For examples of this area, see "Examples of Action Scripts", page 29.

Set Global Variables

The following lines set all of the global and local variables and store the resource
names in $HA_RES_NAMES.

Following is the set_global_variables() function from the NFS start script:

set_global_variables()

{

26 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

HA_DIR=/var/cluster/ha
COMMON_LIB=${HA_DIR}/common_scripts/scriptlib

Execute the common library file

. $COMMON_LIB

ha_set_global_defs;

}

Verify Arguments

The ha_check_args() function verifies the arguments and stores them in the
$HA_INFILE and $HA_OUTFILE variables. It returns 1 on error and 0 on success.

Following is the ha_check_args() section from the NFS start script:

if [$? -ne 0]; then

exit $HA_INVAL_ARGS;

fi

Read Input File

The ha_read_infile() function reads the input file and stores the resource names
in the $HA_RES_NAMES variable. This function is defined in the scriptlib library.
See "Read an Input File", page 106.

Following is code from the NFS start script that calls the ha_read_infile()
function:

Read the input file and store the resource names in $HA_RES_NAMES

variable

ha_read_infile;

007–3900–004 27

2: Writing the Action Scripts and Adding Monitoring Agents

Complete the Action

Each action script ends with the following, which performs the action and writes the
output status to the $HA_OUTFILE:

action_resourcetype;

exit_script $HA_SUCCESS

Following is the completion from the NFS start script:

start_nfs;

exit_script $HA_SUCCESS;

Steps in Writing a Script

!
Caution: Multiple copies of actions scripts can execute at the same time. Therefore,
all temporary file names used by the scripts can be suffixed by script.$$ in order
to make them unique, or you can use the resource name because it must be unique to
the cluster.

For each script, you must do the following:

• Get the required variables

• Check the variables

• Perform the action

• Check the action

Note: The start and stop scripts are required to be idempotent; that is, they have
the appearance of being run once but can in fact be run multiple times. For
example, if the start script is run for a resource that is already started, the script
must not return an error.

All action scripts must return the status to the
/var/cluster/ha/log/script_nodename file.

28 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Examples of Action Scripts
The following sections use portions of the NFS scripts as examples.

Note: The examples in this guide may not exactly match the released system.

start Script

The NFS start script does the following:

1. Creates a resource-specific NFS status directory.

2. Exports the specified export-point with the specified export-options.

Following is a section from the NFS start script:

Start the resource on the local machine.
Return HA_SUCCESS if the resource has been successfully started on the local

machine and HA_CMD_FAILED otherwise.

#

start_nfs()

{
${HA_DBGLOG} "Entry: start_nfs()";

for all nfs resources passed as parameter

for resource in ${HA_RES_NAMES}

do
NFSFILEDIR=${HA_SCRIPTTMPDIR}/${LOCAL_TEST_KEY}$resource

HA_CMD="/sbin/mkdir -p $NFSFILEDIR";

ha_execute_cmd "creating nfs status file directory";

if [$? -ne 0]; then

${HA_LOG} "Failed to create ${NFSFILEDIR} directory";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script $HA_NOCFGINFO

fi

get_nfs_info $resource

if [$? -ne 0]; then
${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

007–3900–004 29

2: Writing the Action Scripts and Adding Monitoring Agents

fi

ha_get_field "${HA_STRING}" export-info

if [$? -ne 0]; then

${HA_LOG} "NFS: export-info not present in CDB for resource $resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

export_opts="$HA_FIELD_VALUE"

ha_get_field "${HA_STRING}" filesystem

if [$? -ne 0]; then
${HA_LOG} "NFS: filesystem-info not present in CDB for resource

$resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi
filesystem="$HA_FIELD_VALUE"

Make the script idempotent, check to see if the NFS resource

is already exported, if so return success. Remember that we

might not have any export options.

retstat=0;

Check to see if the NFS resource is already exported
(without options)

/usr/etc/exportfs | grep "$resource$" >/dev/null 2>&1

retstat=$?

if [$retstat -eq 1]; then

Check to see if the NFS resource is already exported
with options.

/usr/etc/exportfs | grep "$resource " | grep "$export_opts$" >/dev/null 2>&1

retstat=$?

fi

if [$retstat -eq 1]; then
Before we try and export the NFS resource, make sure

filesystem is mounted.

HA_CMD="/sbin/grep $filesystem /etc/mtab > /dev/null 2>&1";

ha_execute_cmd "check if the filesystem $filesystem is mounted";

if [$? -eq 0]; then

HA_CMD="/usr/etc/exportfs -i -o $export_opts $resource";
ha_execute_cmd "export $resource directories to NFS clients";

if [$? -ne 0]; then

30 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

else

${HA_LOG} "NFS: filesystem $filesystem not mounted"
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

fi

else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

done
}

stop Script

The NFS stop script does the following:

1. Unexports the specified export-point.

2. Removes the NFS status directory.

Following is an example from the NFS stop script:

Stop the nfs resource on the local machine.

Return HA_SUCCESS if the resource has been successfully stopped on the local

machine and HA_CMD_FAILED otherwise.

#

stop_nfs()
{

${HA_DBGLOG} "Entry: stop_nfs()";

for all nfs resources passed as parameter
for resource in ${HA_RES_NAMES}

do

get_nfs_info $resource

if [$? -ne 0]; then

NFS resource information not available.

${HA_LOG} "NFS: $resource parameters not present in CDB";
ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

007–3900–004 31

2: Writing the Action Scripts and Adding Monitoring Agents

fi

ha_get_field "${HA_STRING}" export-info

if [$? -ne 0]; then

${HA_LOG} "NFS: export-info not present in CDB for resource $resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

export_opts="$HA_FIELD_VALUE"

Make the script idempotent, check to see if the filesystem

is already exported, if so return success. Remember that we
might not have any export options.

retstat=0;

Check to see if the filesystem is already exported

(without options)
/usr/etc/exportfs | grep "$resource$" >/dev/null 2>&1

retstat=$?

if [$retstat -eq 1]; then

Check to see if the filesystem is already exported

with options.

/usr/etc/exportfs | grep "$resource " | grep "$export_opts$" >/dev/null 2>&1
retstat=$?

fi

if [$retstat -eq 0]; then

Before we unexport the filesystem, check that it exists

HA_CMD="/sbin/grep $resource /etc/mtab > /dev/null 2>&1";
ha_execute_cmd "check if the export-point exists";

if [$? -eq 0]; then

HA_CMD="/usr/etc/exportfs -u $resource";

ha_execute_cmd "unexport $resource directories to NFS clients";

if [$? -ne 0]; then
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

else

${HA_LOG} "NFS: filesystem $resource not found in export filesystem list, \
unexporting anyway";

HA_CMD="/usr/etc/exportfs -u $resource";

32 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

ha_execute_cmd "unexport $resource directories to NFS clients";
ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

remove the monitor nfs status file

NFSFILEDIR=${HA_SCRIPTTMPDIR}/${LOCAL_TEST_KEY}$resource

HA_CMD="/sbin/rm -rf $NFSFILEDIR";

ha_execute_cmd "removing nfs status file directory";

if [$? -ne 0]; then
${HA_LOG} "Failed to delete ${NFSFILEDIR} directory";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script $HA_NOCFGINFO

fi

done
}

monitor Script

The NFS monitor script does the following:

1. Verifies that the file system is mounted at the correct mount point.

2. Requests the status of the exported file system.

3. Checks the export-point.

4. Requests NFS statistics and (based on the results) make a Remote Procedure Call
(RPC) to NFS as needed.

Following is an example from the NFS monitor script:

Check if the nfs resource is allocated in the local node

This check must be light weight and less intrusive compared to

exclusive check. This check is done when the resource has been

allocated in the local node.
Return HA_SUCCESS if the resource is running in the local node

and HA_CMD_FAILED if the resource is not running in the local node

The list of the resources passed as input is in variable

$HA_RES_NAMES

#

007–3900–004 33

2: Writing the Action Scripts and Adding Monitoring Agents

monitor_nfs()
{

${HA_DBGLOG} "Entry: monitor_nfs()";

for resource in ${HA_RES_NAMES}

do
get_nfs_info $resource

if [$? -ne 0]; then

No resource information available.

${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};
fi

ha_get_field "${HA_STRING}" filesystem

if [$? -ne 0]; then

filesystem not available available.
${HA_LOG} "NFS: filesystem not present in CDB for resource $resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi

fs="$HA_FIELD_VALUE";

Check to see if the filesystem is mounted

HA_CMD="/sbin/mount | grep $fs >> /dev/null 2>&1"

ha_execute_cmd "check to see if $fs is mounted"

if [$? -ne 0]; then
${HA_LOG} "NFS: $fs not mounted";

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;

fi

stat the filesystem

HA_CMD="/sbin/stat $resource";

ha_execute_cmd "stat mount point $resource"

if [$? -ne 0]; then

${HA_LOG} "NFS: cannot stat $resource NFS export point";

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
exit_script $HA_CMD_FAILED;

fi

34 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

check the filesystem is exported

EXPORTFS="${HA_SCRIPTTMPDIR}/exportfs.$$"

/usr/etc/exportfs > $EXPORTFS 2>&1

HA_CMD="awk ’{print \$1}’ $EXPORTFS | grep $resource"

ha_execute_cmd " check the filesystem $resource is exported"
if [$? -ne 0]; then

${HA_LOG} "NFS: failed to find $resource in exported filesystem list:-"

${HA_LOG} "‘/sbin/cat ${EXPORTFS}‘"

rm -f $EXPORTFS;

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;
fi

rm -f $EXPORTFS

create a file to hold the nfs stats. This will will be
deleted in the stop script.

NFSFILE=${HA_SCRIPTTMPDIR}/${LOCAL_TEST_KEY}$resource/.nfsstat

NFS_STAT=‘/usr/etc/nfsstat -rs | /usr/bin/tail -1 | /usr/bin/awk ’{print $1}’‘

if [! -f $NFSFILE]; then

${HA_LOG} "NFS: creating stat file $NFSFILE";

echo $NFS_STAT > $NFSFILE;
if [$NFS_STAT -eq 0];then

do some rpcinfo’s

exec_rpcinfo;

if [$? -ne 0]; then

${HA_LOG} "NFS: exec_rpcinfo failed (1)";
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;

fi

fi

else
OLD_STAT=‘/sbin/cat $NFSFILE‘

if test "X${NFS_STAT}" = "X"; then

${HA_LOG} "NFS: NFS_STAT is not set, reset to zero";

NFS_STAT=0;

fi

if test "X${OLD_STAT}" = "X"; then
${HA_LOG} "NFS: OLD_STAT is not set, reset to zero";

OLD_STAT=0;

007–3900–004 35

2: Writing the Action Scripts and Adding Monitoring Agents

fi
if [$NFS_STAT -gt $OLD_STAT]; then

echo $NFS_STAT > $NFSFILE;

else

echo $NFS_STAT > $NFSFILE;

exec_rpcinfo;
if [$? -ne 0]; then

${HA_LOG} "NFS: exec_rpcinfo failed (2)";

ha_write_status_for_resource $resource ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;

fi

fi
fi

ha_write_status_for_resource $resource $HA_SUCCESS;

done

}

exclusive Script

The NFS exclusive script determines whether the file system is already exported.
The check made by an exclusive script can be more expensive than a monitor check.
IRIS FailSafe uses this script to determine if resources are running on a node in the
cluster, and to thereby prevent starting resources on multiple nodes in the cluster.

Following is an example from the NFS exclusive script:

Check if the nfs resource is running in the local node. This check can

more intrusive than the monitor check. This check is used to determine

if the resource has to be started on a machine in the cluster.

Return HA_NOT_RUNNING if the resource is not running in the local node
and HA_RUNNING if the resource is running in the local node

The list of nfs resources passed as input is in variable

$HA_RES_NAMES

#

exclusive_nfs()
{

${HA_DBGLOG} "Entry: exclusive_nfs()";

for all resources passed as parameter

for resource in ${HA_RES_NAMES}

36 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

do
get_nfs_info $resource

if [$? -ne 0]; then

No resource information available

${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

SMFILE=${HA_SCRIPTTMPDIR}/showmount.$$

/etc/showmount -x >> ${SMFILE};

HA_CMD="/sbin/grep $resource ${SMFILE} >> /dev/null 2>&1"
ha_execute_cmd "checking for $resource exported directory"

if [$? -eq 0];then

ha_write_status_for_resource ${resource} ${HA_RUNNING};

ha_print_exclusive_status ${resource} ${HA_RUNNING};

else
ha_write_status_for_resource ${resource} ${HA_NOT_RUNNING};

ha_print_exclusive_status ${resource} ${HA_NOT_RUNNING};

fi

rm -f ${SMFILE}

done

}

restart Script

The NFS restart script exports the specified export-point with the specified
export-options.

Following is an example from the restart script for NFS:

Restart nfs resource

Return HA_SUCCESS if nfs resource failed over successfully or

return HA_CMD_FAILED if nfs resource could not be failed over locally.

Return HA_NOT_SUPPORTED if local restart is not supported for nfs
resource type.

The list of nfs resources passed as input is in variable

$HA_RES_NAMES

#

restart_nfs()

{

007–3900–004 37

2: Writing the Action Scripts and Adding Monitoring Agents

${HA_DBGLOG} "Entry: restart_nfs()";

for all nfs resources passed as parameter

for resource in ${HA_RES_NAMES}

do

get_nfs_info $resource
if [$? -ne 0]; then

${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi

ha_get_field "${HA_STRING}" export-info

if [$? -ne 0]; then

${HA_LOG} "NFS: export-info not present in CDB for resource $resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};
fi

export_opts="$HA_FIELD_VALUE"

HA_CMD="/usr/etc/exportfs -i -o $export_opts $resource";

ha_execute_cmd "export $resource directories to NFS clients";

if [$? -ne 0]; then
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

done
}

Monitoring Agents
If resources cannot be monitored using a lightweight check, you should use a
monitoring agent. The monitor action script contacts the monitoring agent to
determine the status of the resource in the node. The monitoring agent in turn
periodically monitors the resource. Figure 2-1 shows the monitoring process.

38 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Action script
monito

r

Monitoring

agent

Resource

Figure 2-1 Monitoring Process

Monitoring agents are useful for monitoring database resources. In databases,
creating the database connection is costly and time consuming. The monitoring agent
maintains connections to the database and it queries the database using the
connection in response to the monitor action script request.

Monitoring agents are independent processes and can be started by cmond process,
although this is not required. For example, if a monitoring agent must be started
when activating highly available services on a node, information about that agent can
be added to the cmond configuration on that node. The cmond configuration is
located in the /var/cluster/cmon/process_groups directory. Information about
different agents should go into different files. The name of the file is not relevant to
the activate/deactivate procedure.

If a monitoring agent exits or aborts, cmond will automatically restart the monitoring
agent. This prevents monitor action script failures due to monitoring agent failures.

For example, the /var/cluster/cmon/process_groups/ip_addresses file
contains information about the ha_ifd process that monitors network interfaces. It
contains the following:

TYPE = cluster_agent
PROCS = ha_ifd

ACTIONS = start stop restart attach detach

AUTOACTION = attach

Note: The ACTIONS line above defines what cmond can do to the PROCS processes. It
is not the same as action scripts. These actions must be the same for every agent.

If you create a new monitoring agent, you must also create a corresponding file in the
/var/cluster/cmon/process_groups directory that contains similar information
about the new agent. To do this, you can copy the ip_addresses file and modify

007–3900–004 39

2: Writing the Action Scripts and Adding Monitoring Agents

the PROCS line to list the executables that constitute your new agent. These
executables must be located in the /usr/cluster/bin directory. You should not
modify the other configuration lines (TYPE, ACTIONS, and AUTOACTION).

Suppose you need to add a new agent called newagent that consists of processes
ha_x and ha_y. The configuration information for this agent will be located in the
/var/cluster/cmon/process_groups/newagent file, which will contain the
following:

TYPE = cluster_agent

PROCS = ha_x ha_y

ACTIONS = start stop restart attach detach

AUTOACTION = attach

In this case, the software will expect two executables (/usr/cluster/bin/ha_x
and /usr/cluster/bin/ha_y) to be present.

40 007–3900–004

Chapter 3

Creating a Failover Policy

This chapter tells you how to create a failover policy. It describes the following topics:

• "Contents of a Failover Policy", page 41

• "Failover Script Interface", page 52

• "Example Failover Policies for FailSafe", page 53

Contents of a Failover Policy
A failover policy is the method by which a resource group is failed over from one
node to another. A failover policy consists of the following:

• Failover domain

• Failover attribute

• Failover scripts

IRIS FailSafe uses the failover domain output from a failover script along with
failover attributes to determine on which node a resource group should reside.

The administrator must configure a failover policy for each resource group. The name
of the failover policy must be unique within the pool.

Failover Domain

A failover domain is the ordered list of nodes on which a given resource group can
be allocated. The nodes listed in the failover domain must be within the same cluster;
however, the failover domain does not have to include every node in the cluster. The
failover domain can also be used to statically load balance the resource groups in a
cluster.

Examples:

• In a four–node cluster, a set of two nodes that have access to a particular XLV
volume may be the failover domain of the resource group containing that XLV
volume.

007–3900–004 41

3: Creating a Failover Policy

• In a cluster of nodes named venus, mercury, and pluto, you could configure the
following initial failover domains for resource groups RG1 and RG2:

– mercury, venus, pluto for RG1

– pluto, mercury for RG2

The administrator defines the initial failover domain when configuring a failover
policy. The initial failover domain is used when a cluster is first booted. The ordered
list specified by the initial failover domain is transformed into a run-time failover
domain by the failover script. With each failure, the failover script takes the current
run-time failover domain and potentially modifies it (for the ordered failover script,
the order will not change); the initial failover domain is never used again. Depending
on the run-time conditions such as load and contents of the failover script, the initial
and run-time failover domains may be identical.

For example, suppose that the cluster contains three nodes named N1, N2, and N3;
that node failure is not the reason for failover; and that the initial failover domain is
as follows:

N1 N2 N3

The runtime failover domain will vary based on the failover script:

• If ordered:

N1 N2 N3

• If round-robin:

N2 N3 N1

• If a customized failover script, the order could be any permutation, based on the
contents of the script:

N1 N2 N3

N1 N3 N2
N2 N3 N1

N2 N1 N3

N3 N2 N1

N3 N1 N2

FailSafe stores the run-time failover domain and uses it as input to the next failover
script invocation.

42 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Failover Attributes

A failover attribute is a value that is passed to the failover script and used by IRIS
FailSafe for the purpose of modifying the run-time failover domain used for a specific
resource group.

You can specify the following classes of failover attributes:

• Required attributes: either Auto_Failback or Controlled_Failback
(mutually exclusive)

• Optional attributes:

– Auto_Recovery or InPlace_Recovery (mutually exclusive)

– Critical_RG

– Node_Failures_Only

Note: The starting conditions for the attributes differs by class:

• For required attributes, the starting condition is that a node joins the FailSafe
membership when the cluster is already providing highly available services.

• For optional attributes, the starting condition is that highly available services are
started and the resource group is running in only one node in the cluster.

007–3900–004 43

3: Creating a Failover Policy

Table 3-1 describes each attribute.

Table 3-1 Failover Attributes

Class Name Description

Required Auto_Failback Specifies that the resource group is made online based on the
failover policy when the node joins the cluster. This attribute is
best used when some type of load balancing is required. You
must specify either this attribute or the Controlled_Failback
attribute.

Controlled_Failback Specifies that the resource group remains on the same node when
a node joins the cluster. This attribute is best used when
client/server applications have expensive recovery mechanisms,
such as databases or any application that uses tcp to
communicate. You must specify either this attribute or the
Auto_Failback attribute.

Optional Auto_Recovery Specifies that the resource group is made online based on the
failover policy even when an exclusivity check shows that the
resource group is running on a node. This attribute is optional
and is mutually exclusive with the InPlace_Recovery
attribute. If you specify neither of these attributes, IRIS FailSafe
will use this attribute by default if you have specified the
Auto_Failback attribute.

InPlace_Recovery Specifies that the resource group is made online on the same
node where the resource group is running. This attribute is
optional and is mutually exclusive with the Auto_Recovery
attribute. If you specify neither of these attributes, IRIS FailSafe
will use this attribute by default if you have specified the
Controlled_Failback attribute.

44 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Class Name Description

Critical_RG Allows monitor failure recovery to succeed even when there are
resource group release failures. When resource monitoring fails,
FailSafe attempts to move the resource group to another node in
the application failover domain. If FailSafe fails to release the
resources in the resource group, FailSafe puts the Resource group
into srmd executable error status. If the Critical_RG
failover attribute is specified in the failover policy of the resource
group, FailSafe will reset the node where the release operation
failed and move the resource group to another node based on
failover policy.

Node_Failures_Only Allows failover only when there are node failures. This attribute
does not have an impact on resource restarts in the local node.
The failover does not occur when there is a resource monitoring
failure in the resource group.
This attribute is useful for customers who are using a hierarchical
storage management system such as DMF; in this situation, a
customer may want to have resource monitoring failures
reported without automatic recovery, allowing operators to
perform the recovery action manually if necessary.

Failover Scripts

A failover script generates the run-time failover domain and returns it to the FailSafe
process. The FailSafe process applies the failover attributes and then selects the first
node in the returned failover domain that is also in the current FailSafe membership.

Note: The run-time of the failover script must be capped to a system-definable
maximum. Hence, any external calls must be guaranteed to return quickly. If the
failover script takes too long to return, FailSafe will kill the script process and use the
previous run-time failover domain.

Failover scripts are stored in the /var/cluster/ha/policies directory.

The ordered Failover Script

The ordered failover script is provided with the release. The ordered script never
changes the initial domain; when using this script, the initial and run-time domains

007–3900–004 45

3: Creating a Failover Policy

are equivalent. The script reads six lines from the input file and in case of errors logs
the input parameters and/or the error to the script log.

The following example shows the contents of the ordered failover script:

#!/sbin/ksh

#

$1 - input file

$2 - output file
#

line 1 input file - version

line 2 input file - name

line 3 input file - owner field

line 4 input file - attributes
line 5 input file - list of possible owners

line 6 input file - application failover domain

DIR=/usr/cluster/bin

LOG=${DIR}/ha_cilog -g ha_script -s script

FILE=/var/cluster/ha/policies/ordered

input=$1

output=$2

cat ${input} | read version

head -2 ${input} | tail -1 | read name
head -3 ${input} | tail -1 | read owner

head -4 ${input} | tail -1 | read attr

head -5 ${input} | tail -1 | read mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8

head -6 ${input} | tail -1 | read afd1 afd2 afd3 afd4 afd5 afd6 afd7 afd8

${LOG} -l 1 "${FILE}:" ‘/bin/cat ${input}‘

if ["${version}" -ne 1] ; then

${LOG} -l 1 "ERROR: ${FILE}: Different version no. Should be (1) rather than

(${version})" ;

exit 1;
elif [-z "${name}"]; then

${LOG} -l 1 "ERROR: ${FILE}: Failover script not defined";

exit 1;

elif [-z "${attr}"]; then

${LOG} -l 1 "ERROR: ${FILE}: Attributes not defined";
exit 1;

46 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

elif [-z "${mem1}"]; then
${LOG} -l 1 "ERROR: ${FILE}: No node membership defined";

exit 1;

elif [-z "${afd1}"]; then

${LOG} -l 1 "ERROR: ${FILE}: No failover domain defined";

exit 1;
fi

found=0

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

for j in $mem1 $mem2 $mem3 $mem4 $mem5 $mem6 $mem7 $mem8; do

if ["X${j}" = "X${i}"]; then
found=1;

break;

fi

done

done

if [${found} -eq 0]; then

mem="("$mem1")"" ""("$mem2")"" ""("$mem3")"" ""("$mem4")"" ""("$mem5")""

""("$mem6")"" ""("$mem7")"" ""("$mem8")";

afd="("$afd1")"" ""("$afd2")"" ""("$afd3")"" ""("$afd4")"" ""("$afd5")""

""("$afd6")"" ""("$afd7")"" ""("$afd8")";
${LOG} -l 1 "ERROR: ${FILE}: Policy script failed"

${LOG} -l 1 "ERROR: ${FILE}: " ‘/bin/cat ${input}‘

${LOG} -l 1 "ERROR: ${FILE}: Nodes defined in membership do not match the

ones in failure domain"

${LOG} -l 1 "ERROR: ${FILE}: Parameters read from input file: version =
$version, name = $name, owner = $owner, attribute = $attr, nodes = $mem, afd = $afd"

exit 1;

fi

if [${found} -eq 1]; then
rm -f ${output}

echo $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8 > ${output}

exit 0

fi

exit 1

007–3900–004 47

3: Creating a Failover Policy

The round-robin Failover Script

The round-robin script selects the resource group owner in a round-robin (circular)
fashion. This policy can be used for resource groups that can be run in any node in
the cluster.

The following example shows the contents of the round-robin failover script:

#!/sbin/ksh

#

$1 - input file
$2 - output file

#

line 1 input file - version

line 2 input file - name

line 3 input file - owner field

line 4 input file - attributes
line 5 input file - Possible list of owners

line 6 input file - application failover domain

DIR=/usr/cluster/bin
LOG=${DIR}/ha_cilog -g ha_script -s script

FILE=/var/cluster/ha/policies/round-robin

Read input file

input=$1
output=$2

cat ${input} | read version

head -2 ${input} | tail -1 | read name

head -3 ${input} | tail -1 | read owner

head -4 ${input} | tail -1 | read attr

head -5 ${input} | tail -1 | read mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8
head -6 ${input} | tail -1 | read afd1 afd2 afd3 afd4 afd5 afd6 afd7 afd8

Validate input file

${LOG} -l 1 "${FILE}:" ‘/bin/cat ${input}‘

if ["${version}" -ne 1] ; then

${LOG} -l 1 "ERROR: ${FILE}: Different version no. Should be (1) rather than

(${version})" ;

exit 1;

48 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

elif [-z "${name}"]; then
${LOG} -l 1 "ERROR: ${FILE}: Failover script not defined";

exit 1;

elif [-z "${attr}"]; then

${LOG} -l 1 "ERROR: ${FILE}: Attributes not defined";

exit 1;
elif [-z "${mem1}"]; then

${LOG} -l 1 "ERROR: ${FILE}: No node membership defined";

exit 1;

elif [-z "${afd1}"]; then

${LOG} -l 1 "ERROR: ${FILE}: No failover domain defined";

exit 1;
fi

Return 0 if $1 is in the membership and return 1 otherwise.

check_in_mem()
{

for j in $mem1 $mem2 $mem3 $mem4 $mem5 $mem6 $mem7 $mem8; do

if ["X${j}" = "X$1"]; then

return 0;

fi

done
return 1;

}

Check if owner has to be changed. There is no need to change owner if

owner node is in the possible list of owners.
check_in_mem ${owner}

if [$? -eq 0]; then

nextowner=${owner};

fi

Search for the next owner

if ["X${nextowner}" = "X"]; then

next=0;

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

if ["X${i}" = "X${owner}"]; then

next=1;
continue;

fi

007–3900–004 49

3: Creating a Failover Policy

if ["X${owner}" = "XNO ONE"]; then

next=1;

fi

if [${next} -eq 1]; then
Check if ${i} is in membership

check_in_mem ${i};

if [$? -eq 0]; then

found next owner

nextowner=${i};

next=0;
break;

fi

fi

done

fi

if ["X${nextowner}" = "X"]; then

wrap round the afd list.

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

if ["X${i}" = "X${owner}"]; then

Search for next owner complete
break;

fi

Previous loop should have found new owner

if ["X${owner}" = "XNO ONE"]; then
break;

fi

if [${next} -eq 1]; then

check_in_mem ${i};
if [$? -eq 0]; then

found next owner

nextowner=${i};

next=0;

break;

fi
fi

done

50 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

fi

if ["X${nextowner}" = "X"]; then

${LOG} -l 1 "ERROR: ${FILE}: Policy script failed"

${LOG} -l 1 "ERROR: ${FILE}: " ‘/bin/cat ${input}‘

${LOG} -l 1 "ERROR: ${FILE}: Could not find new owner"
exit 1;

fi

nextowner is the new owner

print=0;
rm -f ${output};

Print the new afd to the output file

echo -n "${nextowner} " > ${output};

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8;
do

if ["X${nextowner}" = "X${i}"]; then

print=1;

elif [${print} -eq 1]; then

echo -n "${i} " >> ${output}

fi
done

print=1;

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

if ["X${nextowner}" = "X${i}"]; then
print=0;

elif [${print} -eq 1]; then

echo -n "${i} " >> ${output}

fi

done

echo >> ${output};

exit 0;

Creating a New Failover Script

If the ordered or round-robin scripts do not meet your needs, you can create a
new failover script and place it in the /var/clusters/ha/policies directory. You

007–3900–004 51

3: Creating a Failover Policy

can then configure the cluster configuration database to use your new failover script
for the required resource groups.

Failover Script Interface
The following is passed to the failover script:

function(version, name, owner, attributes, possibleowners, domain)

version IRIS FailSafe version. The IRIS FailSafe 2.x release uses
version number 1.

name Name of the failover script (used for error validations
and logging purposes).

owner Logical name of the node that has (or had) the resource
group online.

attributes Failover attributes (Auto_Failback or
Controlled_Failback must be included).

possibleowners List of possible owners for the resource group. This list
can be subset of the current FailSafe membership.

domain Ordered list of nodes used at the last failover. (At the
first failover, the initial failover domain is used.)

The failover script returns the newly generated run-time failover domain to FailSafe,
which then chooses the node on which the resource group should be allocated by
applying the failover attributes and FailSafe membership to the run-time failover
domain.

52 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Example Failover Policies for FailSafe
There are two general types of configuration, each of which can have from 2 through
8 nodes:

• N nodes that can potentially failover their applications to any of the other nodes
in the cluster.

• N primary nodes that can failover to M backup nodes. For example, you could
have 3 primary nodes and 1 backup node.

This section shows examples of failover policies for the following types of
configuration, each of which can have from 2 through 8 nodes:

• N primary nodes and one backup node (N+1)

• N primary nodes and two backup nodes (N+2)

• N primary nodes and M backup nodes (N+M)

Note: The diagrams in the following sections illustrate the configuration concepts
discussed here, but they do not address all required or supported elements, such
as reset hubs.

N+1 Configuration

Figure 3-1 shows a specific instance of an N+1 configuration in which there are three
primary nodes and one backup node. (This is also known as a star configuration.) The
disks shown could each be disk farms.

007–3900–004 53

3: Creating a Failover Policy

A

B

C

D

Prim
ary nodes

Backup node
Disks

Figure 3-1 N+1 Configuration Concept

You could configure the following failover policies for load balancing:

• Failover policy for RG1:

– Initial failover domain = A, D

– Failover attribute = Auto_Failback, Critical_RG

– Failover script = ordered

• Failover policy for RG2:

– Initial failover domain = B, D

– Failover attribute = Auto_Failback

– Failover script = ordered

• Failover policy for RG3:

– Initial failover domain = C, D

54 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

– Failover attribute = Auto_Failback

– Failover script = ordered

If node A fails, RG1 will fail over to node D. As soon as node A reboots, RG1 will be
moved back to node A.

If you change the failover attribute to Controlled_Failback for RG1 and node A
fails, RG1 will fail over to node D and will remain running on node D even if node A
reboots.

Suppose resource group RG1 is online on node A in the cluster. When the monitor of
one of the resources in RG1 fails, FailSafe attempts to move the resource group to
node D. If the release of RG1 from node A fails, FailSafe will reset the A and allocate
the resource group on the D. If Critical_RG failover attribute was not specified,
RG1 will have an srmd executable error.

N+2 Configuration

Figure 3-2 shows a specific instance of an N+2 configuration in which there are four
primary nodes and two backup nodes. The disks shown could each be disk farms.

Prim
ary

nodes

Backup

nodes

Disks

A

B

C

D

E

F

Figure 3-2 N+2 Configuration Concept

007–3900–004 55

3: Creating a Failover Policy

You could configure the following failover policy for resource groups RG7 and RG8:

• Failover policy for RG7:

– Initial failover domain = A, E, F

– Failover attribute = Controlled_Failback

– Failover script = ordered

• Failover policy for RG8:

– Initial failover domain = B, F, E

– Failover attribute = Auto_Failback

– Failover script = ordered

If node A fails, RG7 will fail over to node E. If node E also fails, RG7 will fail over to
node F. If A is rebooted, RG7 will remain on node F.

If node B fails, RG8 will fail over to node F. If B is rebooted, RG8 will return to node B.

N+M Configuration

Figure 3-3 shows a specific instance of an N+M configuration in which there are four
primary nodes and each can serve as a backup node. The disk shown could be a disk
farm.

56 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

A

B

C

D

Figure 3-3 N+M Configuration Concept

You could configure the following failover policy for resource groups RG5 and RG6:

• Failover policy for RG5:

– Initial failover domain = A, B, C, D

– Failover attribute = Controlled_Failback

– Failover script = ordered

• Failover policy for RG6:

– Initial failover domain = C, A, D

– Failover attribute = Controlled_Failback

– Failover script = ordered

If node C fails, RG6 will fail over to node A. When node C reboots, RG6 will remain
running on node A. If node A then fails, RG6 will return to node C and RG5 will
move to node B. If node B then fails, RG5 moves to node C.

007–3900–004 57

Chapter 4

Defining a New Resource Type

This chapter tells you how to define a new resource type. The following are examples
of candidates for resource types:

• Databases that support transactions

• Web servers

• Applications that use user datagram protocol (UDP) for communication with
clients

See also "Characteristics that Permit an Application to be Highly Available", page 8.

You will want to create a new resource type when creating something entirely new or
when you want to have multiple resource types that are similar except for one or two
attributes. For example, if you want to enable local restart for most IP addresses but
not for some, you could create a new resource type called IP_address2 using all of
the same information as for the default IP_address2 except changing the value of
the restart mode to 1 rather than the default 0.

This chapter contains the following sections:

• "Information You Must Gather", page 59

• "Copying an Existing Resource Type to Create a New One", page 63

• "Creating a New Resource Type from Scratch", page 64

• "Server-side Properties File", page 78

• "Testing a New Resource Type", page 81

Information You Must Gather
To define a new resource type, you must have the following information:

• Name of the resource type. The name can consist of alphanumeric characters and
any of the following:

- (hyphen)

_ (underscore)

007–3900–004 59

4: Defining a New Resource Type

/
.

:

"

=

@
,

The name cannot contain a space, an unprintable character, or any of the following
characters:

*

?

\

#

• Name of the cluster to which the resource type will apply.

• If the resource type is to be restricted to a specific node, you must know the node
name.

• Order of performing the action scripts for resources of this type in relation to
resources of other types:

– Resources are started in the increasing order of this value

– Resources are stopped in the decreasing order of this value

Ensure that the number you choose for a new resource type permits the resource
types on which it depends to be started before it is started, or stopped after it is
stopped, as appropriate.

Table 4-1 shows the conventions used for order ranges. The values available for
customer use are 201-400 and 701-999.

60 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Table 4-1 Order Ranges

Range Reservation

1-100 SGI-provided basic system resource types, such as MAC_address

101-200 SGI-provided system plug-ins that can be started before IP_address

201-400 User-defined resource types that can be started before IP_address

401-500 SGI-provided basic system resource types, such as IP_address

501-700 SGI-provided system plug-ins that must be started after IP_address

701-999 User-defined resource types that must be started after IP_address

Table 4-2 shows the order numbers of the resource types provided with the release.

Table 4-2 Resource Type Order Numbers

Order Number Resource Type

10 MAC_address

20 volume

30 filesystem

201 NFS

401 IP_address

411 statd

501 Netscape_web

502 Samba

511 Oracle_DB

521 INFORMIX_DB

007–3900–004 61

4: Defining a New Resource Type

• Restart mode, which can be one of the following values:

– 0 = Do not restart on monitoring failures

– 1 = Restart a fixed number of times

• Number of local restarts (when restart mode is 1).

• Location of the executable script. This is always
/var/cluster/ha/resource_types/resource_type_tname.

• Monitoring interval, which is the time period (in milliseconds) between successive
executions of the monitor action script; this is only valid for the monitor action
script.

• Starting time for monitoring. When the resource group is made online in a cluster
node, IRIS FailSafe will start monitoring the resources after the specified time
period (in milliseconds).

• Action scripts to be defined for this resource type. You must specify scripts for
start, stop, exclusive, and monitor, although the monitor script may
contain only a return-success function if you wish. If you specify 1 for the restart
mode, you must specify a restart script.

• Type-specific attributes to be defined for this resource type. The action scripts use
this information to start, stop, and monitor a resource of this resource type. For
example, NFS requires the following resource keys:

– export-point which takes a value that defines the export disk name. This
name is used as input to the exportfs(1M) command. For example:

export-point = /this_disk

– export-info which takes a value that defines the export options for the file
system. These options are used in the exportfs(1M) command. For example:

export-info = rw,wsync,anon=root

– filesystem which takes a value that defines the raw file system. This name
is used as input to the mount(1M) command. For example:

filesystem = /dev/xlv/xlv_object

62 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Copying an Existing Resource Type to Create a New One
If an existing resource type is similar to the type you want to create, you can use the
following procedure:

1. Log in as root.

2. Copy the directory for the existing resource type and give the new directory an
appropriate name. For example, to use the NFS as the basis for a new resource
type named NFS_CXFS, do the following:

cp -r /var/cluster/ha/resource_types/NFS /var/cluster/ha/resource_types/NFS_CXFS

3. Modify each script in the new NFS_CXFS directory so that it uses the name of the
new resource type. You must make this modification for the LOCAL_TEST_KEY=
variable definition; modifying log messages and comments is optional but
recommended.

For example, you would change the following line in the
/var/cluster/ha/resource_types/NFS_CXFS/start script:

• From:

LOCAL_TEST_KEY=NFS

• To:

LOCAL_TEST_KEY=NFS_CXFS

4. Eliminate any unneeded dependencies for the new resource type, using either the
GUI or the cmgr command.

For example, you would eliminate the filesystem dependency from the new
NFS_CXFS as follows:

cmgr

Welcome to SGI Cluster Manager Command-Line Interface

cmgr> modify resource_type NFS_CXFS in cluster "testcluster"
Enter commands, when finished enter either "done" or "cancel"

resource_type NFS_CXFS ? remove dependency filesystem

resource_type NFS_CXFS ? done

Successfully modified resource_type NFS_CXFS

5. Modify the monitor script for the new resource type as needed.

007–3900–004 63

4: Defining a New Resource Type

For example, the difference between the standard NFS monitor script and the
new NFS_CXFS monitor script is that when we export CXFS filesystems, we do
not want FailSafe to check if the filesystem is mounted and to exit with
HA_CMD_FAILED if it is not. The NFS_CXFS monitor script itself will determine
what action should take place if the filesystem becomes unmounted. To
accomplish this, you would modify the
/var/cluster/ha/resource_types/NFS_CXFS/monitor script to comment
out the exit_script line in the following section (line modified shown here in
bold)

Check to see if the filesystem is mounted

HA_CMD="/sbin/mount | grep $fs >> /dev/null 2>&1"

ha_execute_cmd "check to see if $fs is mounted"

if [$? -ne 0]; then
${HA_LOG} "NFS: $fs not mounted";

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;

fi

The result of this change is that the status of the commands will be written to the
log, but the script will not exit.

Creating a New Resource Type from Scratch
If none of the existing resource types are similar to the type you want to create, you
can create a resource type from scratch using the following methods:

• "Using the GUI ", page 64

• "Using cmgr Interactively ", page 71

• "Using cmgr With a Script", page 76

Using the GUI

You can use the FailSafe Manager graphical user interface (GUI) to define a new
resource type and to define the dependencies for a given type. For details about the
GUI, see the IRIS FailSafe Version 2 Administrator’s Guide. For convenience, Appendix
B, "Starting the FailSafe Manager", page 97, contains information about starting the
GUI.

64 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Define a New Resource Type

To define a new resource type using the GUI, select the following task:

Resources & Resource Types => Define a Resource Type

The GUI will prompt you for required and optional information. Online help is
provided for each item.

The following figures show this process for a new resource type called
newresourcetype.

007–3900–004 65

4: Defining a New Resource Type

Figure 4-1 Select Define a New Resource

66 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Figure 4-2 Specify the Name of the New Resource Type

007–3900–004 67

4: Defining a New Resource Type

Figure 4-3 Specify Settings for Required Actions

68 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Figure 4-4 Change Settings for Optional Actions

007–3900–004 69

4: Defining a New Resource Type

Figure 4-5 Set Type-specific Attributes

Define Dependencies

To define the dependencies for a given type use the following task:

Add/Remove Dependencies for a Resource Type

Figure 4-6 shows an example of adding two dependencies (filesystem and NFS) to
the newresourcetype resource type.

70 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Figure 4-6 Add Dependencies

Using cmgr Interactively

The following steps show the use of cmgr (which is the same command as
cluster_mgr(1m)) interactively to define a resource type called newresourcetype.

007–3900–004 71

4: Defining a New Resource Type

Note: A resource type name cannot contain a space, an unprintable character, or any
of the following characters:

*

?
\

#

1. Log in as root.

2. Execute the cmgr command. You can use the -p option to prompt you for
information (the command name can be abbreviated to cmgr):

/usr/cluster/bin/cmgr -p

Welcome to SGI Cluster Manager Command-Line Interface

cmgr>

3. Use the set subcommand to specify the default cluster used for cmgr operations.
In this example, we use a cluster named TEST:

cmgr> set cluster TEST

Note: If you prefer, you can specify the cluster name as needed with each
subcommand.

4. Use the define resource_type subcommand. By default, the resource type
will apply across the cluster; if you wish to limit the resource type to a specific
node, enter the node name when prompted. If you wish to enable restart mode,
enter 1 when prompted.

Note: The following example only shows the prompts and answers for two action
scripts (start and stop) for a new resource type named newresourcetype.

cmgr> define resource_type newresourcetype

(Enter "cancel" at any time to abort)

Node[optional]?

72 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Order ? 300
Restart Mode ? (0)

DEFINE RESOURCE TYPE OPTIONS

0) Modify Action Script.
1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.

5) Add Dependency.

6) Remove Dependency.
7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:1

No current resource type actions

Action name ? start

Executable timeout (in milliseconds) ? 40000

0) Modify Action Script.

1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.
5) Add Dependency.

6) Remove Dependency.

7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:1

Current resource type actions:

start

Action name stop

Executable timemout? (in milliseconds) 40000

007–3900–004 73

4: Defining a New Resource Type

0) Modify Action Script.

1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.
5) Add Dependency.

6) Remove Dependency.

7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:3

No current type specific attributes

Type Specific Attribute ? integer-att
Datatype ? integer

Default value[optional] ? 33

0) Modify Action Script.

1) Add Action Script.

2) Remove Action Script.
3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.

5) Add Dependency.

6) Remove Dependency.

7) Show Current Information.
8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:3

Current type specific attributes:

Type Specific Attribute - 1: integer-att

Type Specific Attribute ? string-att

Datatype ? string

Default value[optional] ? rw

0) Modify Action Script.

74 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

1) Add Action Script.
2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.

5) Add Dependency.

6) Remove Dependency.
7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:5

No current resource type dependencies

Dependency name ? filesystem

0) Modify Action Script.
1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.

5) Add Dependency.

6) Remove Dependency.
7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:7

Current resource type actions:

Action - 1: start

Action - 2: stop

Current type specific attributes:

Type Specific Attribute - 1: integer-att

Type Specific Attribute - 2: string-att

No current resource type dependencies

Resource dependencies to be added:

Resource dependency - 1: filesystem

007–3900–004 75

4: Defining a New Resource Type

0) Modify Action Script.

1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.
5) Add Dependency.

6) Remove Dependency.

7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:9

Successfully defined resource_type newresourcetype

cmgr> show resource_types

template

MAC_address

newresourcetype

IP_address

filesystem

volume

cmgr> exit

#

Using cmgr With a Script

You can write a script that contains all of the information required to define a
resource type and supply it to cmgr by using the -f option:

cmgr -f scriptname

Or, you could include the following as the first line of the script and then execute the
script itself:

#!/usr/cluster/bin/cmgr -f

76 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

If any line of the script fails, cmgr will exit. You can choose to ignore the failure and
continue the process by using the -i option, as follows:

#!/usr/cluster/bin/cmgr -if

Note: If you include -i when using a cmgr command line as the first line of the
script, you must use this exact syntax (that is, -if).

A template script for creating a new resource type is located in
/var/cluster/cmgr-templates/cmgr-create-resource_type. Each line of
the script must be a valid cmgr line, a comment line (starting with #), or a blank line.

Note: You must include a done command line to finish a multi-level command. If
you concatenate information from multiple template scripts to prepare your cluster
configuration, you must remove the quit at the end of each template script.

For example, you could use the following script to define the same
newresourcetype resource type defined interactively in the previous section:

Script to define the "newresourcetype" resource type

set cluster TEST

define resource_type newresourcetype

set order to 300

set restart_mode to 0

add action start

set exec_time to 40000

done

add action stop
set exec_time to 40000

done

add type_attribute integer-att

set data_type to integer
set default_value to 33

done

add type_attribute string-att

007–3900–004 77

4: Defining a New Resource Type

set data_type to string
set default_value to rw

done

add dependency filesystem

done

quit

When you execute the cmgr -f command line with this script, you will see the
following output:

/usr/cluster/bin/cmgr -f newresourcetype.script

Successfully defined resource_type newresourcetype

To verify that the resource type was defined, enter the following:

/usr/cluster/bin/cmgr -c "show resource_types in cluster TEST"

template
MAC_address

newresourcetype

IP_address

filesystem

volume

Server-side Properties File
Each resource type can have an optional properties file containing a formatted label for
each plugin attribute and strings of help text that will be displayed in the GUI. The
file has the following name:

/var/cluster/ha/resource_types/resource_type/resource_type

For example, the properties file for the IP_Address resource type would be as
follows:

/var/cluster/ha/resource_types/IP_Address/IP_Address

The contents of this file is not propagated by the cluster configuration database;
therefore, it should be installed on each node in the cluster along with the resource

78 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

type’s scripts. (If the properties file is not installed on a given node and that node is
used as the GUI server, the help text will not be displayed.)

Property Formats

In each resource type’s properties file, you can have the following property:

resource_type.properFormat = introductory text

For each type-specific attribute, you can have the following properties:

• Label that will be displayed in the GUI:

resource_type.Attribute.label = GUI_label

• Help (glossary) text that will be linked to from each attribute’s label:

resource_type.Attribute.glossary = glossary_key

• Information describing what the resource type is for and how it should be
configured:

glossary_key = help text

Example Properties File

Following is an example properties file for the IP_Address resource type.

IP_address

IP_address.properFormat = \
An IP address resource that belongs to a resource group can be \

used by clients to access the highly available resource group. \

As with any other type of resource, an IP address resource will \

be moved from one node to another when \

FailSafe detects a failure. \
The resource name for an IP address must follow standard dot \

notation. It should not be configured on any network interface. \

IP addresses that require name resolution are not valid IP_address \

resource names. \

For example, "192.0.2.22" could be the name of an IP_address \

resource.

007–3900–004 79

4: Defining a New Resource Type

IP_address.NetworkMask.label = \

Network Mask

IP_address.NetworkMask.glossary = \

glossary.IP_address.NetworkMask

glossary.IP_address.NetworkMask: \
IP address network mask<P>\

The network mask of the IP address \

(for example, "0xffffff00"). \

See the ifconfig(1M) reference page for more \

information.

IP_address.interfaces.label = \

Interfaces

IP_address.interfaces.glossary = \

glossary.IP_address.interfaces

glossary.IP_address.interfaces: \
IP address interfaces<P>\

A comma-separated list of interfaces on which the \

IP address can be configured \

(for example, "ec0,et0,ef0" or "hip0" or "lb0"). \

See the ifconfig(1M) reference page for more \

information.

IP_address.BroadcastAddress.label = \

Broadcast Address

IP_address.BroadcastAddress.glossary = \

glossary.IP_address.BroadcastAddress
glossary.IP_address.BroadcastAddress: \

IP address broadcast address<P>\

The broadcast address for the IP address \

(for example, "192.0.2.255"). \

See the ifconfig(1M) reference page for more \
information.

80 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Testing a New Resource Type
After adding a new resource type, you should test it as follows:

1. Define a resource group that contains resources of the new type. Ensure that the
group contains all of the resources on which the new resource type depends.

2. Bring the resource group online in the cluster using cmgr or the GUI.

For example, using cmgr:

cmgr> admin online resource_group new_rg in cluster TEST

3. Check the status of the resource group using cmgr or GUI after a few minutes.

For example:

cmgr> show status of resource_group new_rg in cluster TEST

4. If the resource group has been made online successfully, you will see output
similar to the following:

State: Online

Error: No error
Owner: node1

5. If there are resource group errors, do the following:

• Check the srmd logs (/var/cluster/ha/log/srmd_nodename) on the node
on which the resource group is online.

• Search for the string ERROR in the log file. There should be an error message
about a resource in the resource group. The message also provides
information about the action script that failed. For example:

Wed Nov 3 04:20:10.135 <E ha_srmd srm 12127:1 sa_process_tasks.c:627>

CI_FAILURE, ERROR: Action (exclusive) for resource (10.0.2.45) of type

(IP_address) failed with status (failed)
exclusive script failed for the resource 10.0.2.45 of resource type

IP_address. The status "failed"

indicates that the script returned an error.

• Check the script logs (/var/cluster/ha/log/script_nodename on the
same node) for IP_address exclusive script errors.

007–3900–004 81

4: Defining a New Resource Type

• After the fixing the problems in the action script, perform an offline_force
operation to clear the error. For example:

cmgr> admin offline_force resource_group new_rg in cluster TEST

82 007–3900–004

Chapter 5

Testing Scripts

This chapter describes how to test action scripts without running IRIS FailSafe. It also
provides tips on how to debug problems that you may encounter.

Note: Parameters are passed to the action scripts as both input files and output files.
Each line of the input file contains the resource name; the output file contains the
resource name and the script exit status.

General Testing and Debugging Techniques
Some general testing and debugging techniques you can use during testing are as
follows:

• To get debugging information, adding the following line to each of your scripts in
the main function of the script:

set -x

• To check that an application is running on a node, you may be able to use a
command provided by the application. For example, the FailSafe INFORMIX
option uses the INFORMIX command onstat.

• Another way to check that an application is running on a node, is to enter this
command on that node:

ps -ef | grep application

application is the name (or a portion of the name) of the executable for the
application.

• To show the status of a resource, use the following cluster_mgr command:

cmgr> set cluster clustername
cmgr> show status of resource resourcename of resource_type typename

• To show the status of a node, use the following cmgr command:

cmgr> show status of node nodename

007–3900–004 83

5: Testing Scripts

• To show the status of a resource group, use the following cluster_mgr
command:

cmgr> show status of resource_group rgname in cluster cname

Debugging Notes
• The exclusive script returns an error when the resource is running in the local

node. If the resource is actually running in the node, there is no exclusive
action script bug.

• If the resource group does not become online on the primary node, it can be
because of a start script error on the primary node or a monitor script error on
the primary node. The nature of the failure can be seen in the srmd logs of the
primary node.

• If the action script failure status is timeout, resource type timeouts for the action
should be increased. In the case of the monitor script, the check can be made
more lightweight.

• The resource type action script timeouts are for a resource. So, if an action is
performed on two resources, the script timeout is twice the configured resource
type action timeout.

• If the resource group has a configuration error, check the srmd logs on the
primary node for errors.

• The action scripts that use ${HA_LOG} and ${HA_DBGLOG} macros to log
messages can find the messages in /var/cluster/ha/log/script_nodename
file in each node in the cluster.

HA_LOG logs messages at log level 1 and HA_DBGLOG uses log level 11.

Testing an Action Script
To test an action script, do the following:

1. Create an input file, such as /tmp/input, that contains expected resource names.
For example, to create a file that contains the resource named disk1 do the
following:

echo "/disk1" > /tmp/input

84 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

2. Create an input parameter file, such as /tmp/ipparamfile, as follows:

echo "ClusterName web-cluster" > /tmp/ipparamfile

3. Execute the action script as follows:

./start /tmp/input /tmp/output /tmp/ipparamfile

Note: The use of the input parameter file is optional.

4. Change the log level from HA_NORMLVL to HA_DBGLVL to allow messages written
with HA_DBGLOG to be printed by adding the following line after the
set_global_variables statement in your script:

HA_CURRENT_LOGLEVEL=$HA_DBGLVL

The output file will contain one of the following return values for the start, stop,
monitor, and restart scripts:

HA_SUCCESS=0

HA_INVAL_ARGS=1

HA_CMD_FAILED=2

HA_NOTSUPPORTED=3
HA_NOCFGINFO=4

The output file will contain one of the following return values for the exclusive
script:

HA_NOT_RUNNING=0
HA_RUNNING=2

Note: If you call the exit_script function prior to normal termination, it should be
preceded by the ha_write_status_for_resource function and you should use
the same return code that is logged to the output file.

Suppose you have a resource named /disk1 and the following files:

• The syntax for the input file is: <resourcename>

• The syntax for the output file is: <resourcename> <status>

007–3900–004 85

5: Testing Scripts

The following example shows:

• The exit status of the action script is 1

• The exit status of the resource is 2

Note: The use of anonymous indicates that the script was run manually. When
the script is run by FailSafe, the full path to the script name is displayed.

echo "/disk1" > /tmp/ipfile

./monitor /tmp/ipfile /tmp/opfile /tmp/ipparamfile

echo $?

2

cat /tmp/opfile

/disk1 2
tail /var/cluster/ha/log/script_heb1

Tue Aug 25 11:32:57.437 <anonymous script 23787:0 Unknown:0> ./monitor:

./monitor called with /tmp/ipfile and /tmp/opfile

Tue Aug 25 11:32:58.118 <anonymous script 24556:0 Unknown:0> ./monitor:

check to see if /disk1 is mounted on /disk1
Tue Aug 25 11:32:58.433 <anonymous script 23811:0 Unknown:0> ./monitor:

/sbin/mount | grep /disk1 | grep /disk1 >> /dev/null 2>&1 exited with

status 0

Tue Aug 25 11:32:58.665 <anonymous script 24124:0 Unknown:0> ./monitor:

stat mount point /disk1
Tue Aug 25 11:32:58.969 <anonymous script 23525:0 Unknown:0> ./monitor:

/sbin/stat /disk1 exited with status 0

Tue Aug 25 11:32:59.258 <anonymous script 24431:0 Unknown:0> ./monitor:

check the filesystem /disk1 is exported

Tue Aug 25 11:32:59.610 <anonymous script 6982:0 Unknown:0> ./monitor:

Tue Aug 25 11:32:59.917 <anonymous script 24040:0 Unknown:0> ./monitor:
awk ’{print \$1}’ /var/cluster/ha/tmp/exportfs.23762 | grep /disk1 exited

with status 1

Tue Aug 25 11:33:00.131 <anonymous script 24418:0 Unknown:0> ./monitor:

echo failed to find /disk1 in exported filesystem list:-

Tue Aug 25 11:33:00.340 <anonymous script 24236:0 Unknown:0> ./monitor:
echo /disk2

For additional information about a script’s processing, see the
/var/cluster/ha/log/script_nodename.

86 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Special Testing Considerations for the monitor Script
The monitor script tests the liveliness of applications and resources. The best way to
test it is to induce a failure, run the script, and check if this failure is detected by the
script; then repeat the process for another failure.

Use this checklist for testing a monitor script:

• Verify that the script detects failure of the application successfully.

• Verify that the script always exits with a return value.

• Verify that the script does not contain commands that can hang (such as using
DNS for name resolution) or those that continue forever, such as ping.

• Verify that the script completes before the time-out value specified in the
configuration file.

• Verify that the script’s return codes are correct.

During testing, measure the time it takes for a script to complete and adjust the
monitoring times in your script accordingly. To get a good estimate of the time
required for the script to execute, run it under different system load conditions.

007–3900–004 87

Appendix A

Migrating From 1.2 to 2.x

This chapter provides guidelines for migrating your IRIS FailSafe 1.2 resources and
monitor script information to IRIS FailSafe 2.x action scripts. It assumes you are
already familiar with the migration information provided in the IRIS FailSafe Version 2
Administrator’s Guide.

Cautions
Multiple instances of action scripts may be executed at the same time. To avoid this,
you can use the ha_execute_lock command. For more information, see "Multiple
Instances of Script Executed at the Same Time", page 15.

The software for 2.x and 1.2 can coexist in the same node. However, 2.x and 1.2
cannot run at the same time.

There is no configuration checksum verification in scripts.

Resource Types
In 2.x, the ha.conf configuration file has been replaced by the cluster configuration
database. The cluster configuration database is automatically copied to all nodes in
the pool. See the IRIS FailSafe Version 2 Administrator’s Guide for information about
configuring a 2.x system.

If you require new resource types, you will create them using either the FailSafe
Cluster Manager GUI (graphical user interface) or the cmgr(1m) (cluster_mgr)
command. See Chapter 4, "Defining a New Resource Type".

You may be able to reuse the following monitoring information from the 1.2 ha.conf
file with regard to 2.x resource types:

• start-monitor-time

• lmon-probe-time

• lmon-timeout

007–3900–004 89

A: Migrating From 1.2 to 2.x

Note: All 2.x time-outs are in milliseconds.

The following examples show information (in bold) that is used in the 1.2 ha.conf
file and reused when creating a new resource type in 2.x.

Suppose a portion of the 1.2 ha.conf file had this:

action apache

{

local-monitor = /var/ha/actions/ha_apache_lmon
}

action-timer apache

{

start-monitor-time = 120
lmon-probe-time = 120

lmon-timeout = 60

}

You would reuse the information when creating a resource type in 2.x, as follows:

cmgr> create resource_type apache in cluster apache-cluster

Enter commands, when finished enter either "done", "cancel", "check"

Resource Type Name [apache]? apache

Cluster? apache-cluster

Node? node1

Order [0]? 500
Restart Mode [0]?0

Restart Count [0]?0

Number of Actions [0]? 4

Action? start

Executable? /var/cluster/ha/resource_types/apache/start
Executable Time? 20000

Monitoring Interval? 0

Start Monitoring Time? 0

Action? stop

Executable? /var/cluster/ha/resource_types/apache/stop
Executable Time? 20000

Monitoring Interval? 0

Start Monitoring Time? 0

Action? monitor

90 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Executable? /var/cluster/ha/resource_types/apache/monitor
Executable Time? 60000

Monitoring Interval? 120000

Start Monitoring Time? 120000

Action? exclusive

Executable? /var/cluster/ha/resource_types/apache/exclusive
Executable Time? 60000

Monitoring Interval? 0

Start Monitoring Time? 0?0

Number of Resource Keys [0]? 1

Name of resource key? search-string

Datatype? string
Default Key? httpd

Enter dependency commands,when finished enter either "done" or "cancel"

resource_type apache? add type IP_address

resource_type apache? done

Reading Information
In 2.x, configuration information is read using the ha_get_info() and
ha_get_field() shell functions. These functions are equivalent to the 1.2
ha_cfginfo command.

In 2.x, all common functions and variables are kept in
/var/cluster/ha/common_scripts/scriptlib file. This file is equivalent to
the 1.2 /var/ha/actions/common.vars file.

For more information, see Appendix C, "Using the Script Library", page 99.

Parameter Parsing
In 2.x, action script parameters are passed in a file and information is also returned in
a file. The script takes a list of resource names as parameters.

007–3900–004 91

A: Migrating From 1.2 to 2.x

Action Scripts
Table A-1, page 92, summarizes the differences in scripts between the releases.

Table A-1 Differences between 1.2 and 2.x Scripts

IRIS FailSafe 1.2 IRIS FailSafe 2.0

giveaway, giveback stop

takeover, takeback start

check monitor

(no equivalent) exclusive, restart

In 2.x, the action scripts are installed as
/var/cluster/ha/Resource_Type_Name/Action_Name directory, where
Resource_Type_Name is the name of the resource type (such as NFS and Action_Name is
the name of the action script (such as start).

Templates of the action scripts (start, stop, monitor, exclusive, restart) are
provided in the /var/cluster/ha/resource_types/template directory. For
more information about action scripts, see Chapter 2, "Writing the Action Scripts and
Adding Monitoring Agents".

The following sections provide example portions of 1.2 scripts and their 2.x
equivalents:

• giveback and stop

• takeover and start

• monitor and monitor

Note: There are no 1.2 equivalents for the 2.x exclusive and restart scripts.

In the following examples, only the relevant portions of the scripts are shown. Areas
in common between 1.2 and 2.x are in bold.

92 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

1.2 giveback / 2.x stop

For example, suppose you had the following in the giveback script in 1.2:

giveback()

{

for i in $` CFG_INFO ${T_APACHE}̀

do

SEARCH="$CFG_INFO ${T_APACHE}${CFG_SEP}${i}${CFG_SEP}${T_BACKUP}"
BACKUP=̀$SEARCH̀

if [$? -eq 1]; then

${LOGGER} "$0: Trouble finding backup-node for apache ($SEARCH)"

exit $INCORRECT_CONF_FILE;

fi
If I am the backup

if [${BACKUP} = ${HOST}]; then

${LOGGER} "$0: Stopping apache for backup server."

killall -9 /apache-fs/usr/local/apache_1.2.0/src/httpd

if [$? -ne "0"]; then

${LOGGER} "$0: halt of apache on backup server failed."
fi

fi

exit $SUCCESS

done
}

In 2.x, you would have the following in the stop script:

stop_apache()

{
for server in $HA_RES_NAMES

do

${HA_DBGLOG} "Stopping apache server $server"

killall -9 /apache-fs/usr/local/apache_1.2.0/src/httpd

if [$? -ne "0"]; then
${HA_LOG} "halt of apache server $server failed."

ha_write_status_for_resource $server $HA_CMD_FAILED;

else

${HA_DBGLOG} "halt of apache server $server successful"

ha_write_status_for_resource $server $HA_SUCCESS;

fi

007–3900–004 93

A: Migrating From 1.2 to 2.x

done
}

1.2 takeover / 2.x start

For example, suppose you had the following in the takeover script in 1.2:

takeover()

{

for i in $` CFG_INFO ${T_APACHE}̀

do

SEARCH="$CFG_INFO ${T_APACHE}${CFG_SEP}${i}${CFG_SEP}${T_BACKUP}"
BACKUP=̀$SEARCH̀

if [$? -eq 1]; then

${LOGGER} "$0: Trouble finding backup-node for apache ($SEARCH)"

exit $INCORRECT_CONF_FILE;

fi
If I am the backup

if [${BACKUP} = ${HOST}]; then

${LOGGER} "$0: Starting apache for backup server."

/apache-fs/usr/local/apache_1.2.0/src/httpd -d \

/apache-fs/usr/local/apache_1.2.0

if [$? -ne "0"]; then
${LOGGER} "$0: start of apache on backup server failed."

exit $FAILED

fi

fi

exit $SUCCESS
done

}

In 2.x, you would have the following in the start script:

start_apache()
{

for server in $HA_RES_NAMES

do

${HA_DBGLOG} "Starting apache server $server"

/apache-fs/usr/local/apache_1.2.0/src/httpd -d \
/apache-fs/usr/local/apache_1.2.0

if [$? -ne "0"]; then

94 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

${HA_LOG} "start of apache server $server failed."
ha_write_status_for_resource $server $HA_CMD_FAILED;

else

${HA_DBGLOG} "start of apache server $server successful"

ha_write_status_for_resource $server $HA_SUCCESS;

fi
done

}

1.2 monitor/ 2.x monitor

For example, suppose you had the following in the monitor script in 1.2:

monitor()

{

Read the search string entry
for i in $` CFG_INFO ${T_APACHE}̀

do

SEARCH="$CFG_INFO ${T_APACHE}${CFG_SEP}${i}${CFG_SEP}${T_SEARCH_STR}"

SEARCH_STR=̀$SEARCH̀

${SEARCH_STR:=httpd};

done

EXEC="${KILLALL} -0 ${SEARCH_STR}";

execute_cmd "check if apache server processes are running"

}

In 2.x, you would have the following in the monitor script:

monitor_apache()

{

for server in $HA_RES_NAMES
do

get_apache_info $server

if [$? -eq 0]; then

APACHE_FIELDS=${HA_STRING

ha_get_field "${APACHE_FIELDS}" search-string;
if [$? -eq 0]; then

SEARCH_STR=${HA_FIELD_VALUE};

007–3900–004 95

A: Migrating From 1.2 to 2.x

fi
fi

${SEARCH_STR:=httpd};

HA_CMD=${KILLALL} -0 ${SEARCH_STR}";

ha_execute_cmd "check if server $server processes are running"

if [$? -ne 0]; then
${HA_LOG} "monitor of apache server $server failed."

ha_write_status_for_resource $server $HA_CMD_FAILED;

else

${HA_DBGLOG} "monitor of apache server $server successful"

ha_write_status_for_resource $server $HA_SUCCESS;

fi
done

}

Ordering Script Actions
In 2.x, each resource type has a start/stop order, which is a nonnegative integer. In a
resource group, the start/stop orders of the component resource types determine the
order in which the resources will be started when FailSafe brings the group online
and will be stopped when FailSafe takes the group offline. The group’s resources are
started in increasing order, and stopped in decreasing order.

Note: Resources of the same type are started and stopped in indeterminate order.

For example, if resource type volume has order 10 and resource type filesystem
has order 20, then when FailSafe brings a resource group online, all volume resources
in the group will be started before all file system resources in the group.

There is no need to create software links similar to those used in 1.2.

96 007–3900–004

Appendix B

Starting the FailSafe Manager

To start the FailSafe Manager, use one of these methods:

• Choose FailSafe Manager from the FailSafe toolchest.

You must restart the toolchest after installing FailSafe to see the FailSafe entry on
the toolchest display. Enter the following commands to restart the toolchest:

% killall toolchest

% /usr/bin/X11/toolchest &

In order for this to take effect, sysadm_failsafe2.sw.desktop must be
installed on the client system.

• Enter the following command line:

% /usr/sbin/fstask

• In your Web browser, enter the following, where server is the name of the node in
the pool or cluster that you want to administer:

http://server/FailSafe Manager/

At the resulting Web page, click on the icon.

Figure B-1, page 98, shows the FailSafe Manager. For more information, see IRIS
FailSafe Version 2 Administrator’s Guide

007–3900–004 97

B: Starting the FailSafe Manager

Figure B-1 FailSafe Manager

98 007–3900–004

Appendix C

Using the Script Library

The purpose of the script library (scriptlib) is to simplify the IRIS FailSafe
application interface so that users can use scripts and need not be aware of input and
output file format. However, file format is described in "File Formats".

The /var/cluster/ha/common_scripts/scriptlib file contains the library of
environment variables (beginning with uppercase HA_) and functions (beginning with
lowercase ha_) available for use in your action scripts.

Note: Do not change the contents of the scriptlib file.

This chapter describes functions that perform the following tasks, using samples from
the scriptlib file:

• Set global definitions

• Check arguments

• Read an input file

• Execute a command

• Write status for a resource

• Get the value for a field

• Get resource information

• Print exclusivity check messages

File Formats
There are three file formats:

• Input file, which contains the list of resources that must be acted on by the
executable; each resource must be specified on a separate line in the file. The
FailSafe application interface can also pass action flags for each resource in the
input file.

007–3900–004 99

C: Using the Script Library

The format of a line in the input file is as follows:

resource_name action_flags

The resource_name and action_flags fields are separated by whitespace.

• (Optional) Output file, in which the executable writes the return the status of each
resource on a separate line, using the following format:

resource_name resource_status

There are corresponding lines for each line in the input file. The resource_name and
resource_status fields are separated by whitespace. The resource status may be one
of the following:

– HA_SUCCESS

– HA_RUNNING

– HA_NOT_RUNNING

– HA_INVAL_ARGS

– HA_CMD_FAILED

– HA_NOTSUPPORTED

– HA_NOCFGINFO (no configuration information)

If information about a resource is not present in the output file, SRMD assumes
that the action on the resource has timed out. A nonzero value for the
resource_status field is considered an error.

If the executable requires more information to perform the action on the resource,
the information must be stored in the CDB in the local machine. The executables
can use CDB commands to extract information about the resource.

• Input parameter file, which contains the cluster name in the following format:

ClusterName clustername

100 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Set Global Definitions
The ha_set_global_defs() function sets the global definitions for the
environment variables shown in the following subsections.

The HA_INFILE and HA_OUTFILE variables set the input and output files for a
script. These variables do not have global definitions, and are not set by the
ha_set_global_defs() function.

Global Variable

HA_HOSTNAME

The output of the uname command with the -n option, which is the host name or
nodename. The nodename is the name by which the system is known to
communications networks.

Default: ‘uname -n‘

Command Location Variables

HA_CMDSPATH

Path to user commands.

Default: /usr/cluster/bin

HA_PRIVCMDSPATH

Path to privileged commands (those that can only be run by root).

Default: /usr/sysadm/privbin

HA_LOGCMD

Command used to log information.

Default: ha_cilog

007–3900–004 101

C: Using the Script Library

HA_RESOURCEQUERYCMD

Resource query command. This is an internal command that is not meant for direct
use in scripts; use the ha_get_info() function of scriptlib instead.

Default: resourceQuery

HA_SCRIPTTMPDIR

Location of the script temporary directory.

Default: /tmp

Database Location Variables

HA_CDB

Location of the cluster configuration database.

Default: /var/cluster/cdb/cdb.db

Script Log Level Variables

HA_NORMLVL

Normal level of script logs.

Default: 0

HA_DBGLVL

Debug level of script logs.

10

102 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Script Log Variables

HA_SCRIPTGROUP

Log for the script group.

Default: script

HA_SCRIPTSUBSYS

Log for the script subsystem.

Default:script

Script Logging Command Variables

HA_LOGQUERY_OUTPUT

Determine the current logging level for scripts.

Default:

‘${HA_PRIVCMDSPATH}/loggroupQuery _NUM_LOG_GROUPS=1 \
_LOG_GROUP_0=ha_script‘

HA_DBGLOG

Command used to log debug messages from the scripts.

Default: ha_dbglog

HA_CURRENT_LOGLEVEL

Display the current log level. The default will be 0 (no script logging) if the
loggroupQuery command fails or does not find configuration information.

Default: ‘echo ${HA_LOGQUERY_OUTPUT} | /usr/bin/awk ’{print $2}’‘

007–3900–004 103

C: Using the Script Library

HA_LOG

Command used to log the scripts.

Default: ha_log

Script Error Value Variables

HA_SUCCESS

Successful execution of the script. This variable is used by the start, stop,
restart, and monitor scripts.

Default: 0

HA_NOT_RUNNING

The script is not running. This variable is used by exclusive scripts.

Default: 0

HA_INVAL_ARGS

An invalid argument was entered. This is used by all scripts.

Default: 1

HA_CMD_FAILED

A command called by the script has failed. This variable is used by the start, stop,
restart, and monitor, scripts.

Default: 2

HA_RUNNING

The script is running. This variable is used by exclusive scripts.

Default: 2

104 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

HA_NOTSUPPORTED

The specific action is not supported for this resource type. This is used by all scripts.

Default: 3

HA_NOCFGINFO

No configuration information was found. This is used by all scripts.

Default: 4

Check Arguments
An action script can have an input file ($1 HA_INFILE), an output file ($2
HA_OUTFILE), and a parameter file ($3 HA_PARAMFILE). The parameter file is
optional.

The ha_check_args() function checks the arguments specified for a script and sets
the $HA_INFILE and $HA_OUTFILE variables accordingly.

If a parameter file exists, the ha_check_args() function reads the list of parameters
from the file and sets the $HA_CLUSTERNAME variable.

In the following, long lines use the continuation character (\) for readability.

ha_check_args()

{
${HA_DBGLOG} "$HA_SCRIPTNAME called with $1, $2 and $3"

if ! [$# -eq 2 -o $# -eq 3]; then

${HA_LOG} "Incorrect number of arguments"

return 1;
fi

if [! -r $1]; then

${HA_LOG} "file $1 is not readable or does not exist"

return 1;
fi

if [! -s $1]; then

${HA_LOG} "file $1 is empty"

007–3900–004 105

C: Using the Script Library

return 1;
fi

if [$# -eq 3]; then

HA_PARAMFILE=$3

if [! -r $3]; then

${HA_LOG} "file $3 is not readable or does not exist"

return 1;

fi

HA_CLUSTERNAME=‘/usr/bin/awk ’{ if ($1 == "ClusterName") \
print $2 }’ ${HA_PARAMFILE}‘

fi

HA_INFILE=$1

HA_OUTFILE=$2

return 0;

}

Read an Input File
The ha_read_infile() function reads the $HA_INFILE input file into the
$HA_RES_NAMES variable, which specifies the list of resource names.

ha_read_infile()

{
HA_RES_NAMES="";

for HA_RESOURCE in c` at ${HA_INFILE}̀

do

HA_TMP="${HA_RES_NAMES} ${HA_RESOURCE}";
HA_RES_NAMES=${HA_TMP};

done

}

106 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

Execute a Command
The ha_execute_cmd() function executes the command specified by $HA_CMD,
which is set in the action script. $1 is the string to be logged. The function returns 1
on error and 0 on success. On errors, the standard output and standard error of the
command is redirected to the log file.

ha_execute_cmd()
{

OUTFILE=${HA_SCRIPTTMPDIR}/script.$$

${HA_DBGLOG} $1

eval ${HA_CMD} > ${OUTFILE} 2>&1;

ha_exit_code=$?;

if [$ha_exit_code -ne 0]; then

${HA_DBGLOG} c` at ${HA_SCRIPTTMPDIR}/script.$$‘
fi

${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";

/sbin/rm ${OUTFILE}

return $ha_exit_code;

}

The ha_execute_cmd_ret() function is similar to ha_execute_cmd, except that it
places the command output in the location specified by $HA_CMD_OUTPUT.

ha_execute_cmd_ret()

{

${HA_DBGLOG} $1

REVISIT: Is it possible to redirect the output to a log

HA_CMD_OUTPUT=‘${HA_CMD}‘;

ha_exit_code=$?;

${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";

007–3900–004 107

C: Using the Script Library

return $ha_exit_code;
}

Write Status for a Resource
The ha_write_status_for_resource() function writes the status for a resource
to the $HA_OUTFILE output file. $1 is the resource name, and $2 is the resource
status.

ha_write_status_for_resource()

{

echo $1 $2 >> $HA_OUTFILE;
}

Similarly, the ha_write_status_for_all_resources() function writes the
status for all resources. $HA_RES_NAMES is the list of resource names.

ha_write_status_for_all_resources()
{

for HA_RES in $HA_RES_NAMES

do

echo $HA_RES $1 >> $HA_OUTFILE;

done
}

Get the Value for a Field
The ha_get_field() function obtains the field value from a string, where $1 is the
string and $2 is the field name. The string format is as follows:

ha_get_field()

{

HA_STR=$1

HA_FIELD_NAME=$2

ha_found=0;

ha_field=1;

for ha_i in $HA_STR

do

if [$ha_field -eq 1]; then

108 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

ha_field=0;
if [$ha_i = $HA_FIELD_NAME]; then

ha_found=1;

fi

else

ha_field=1;
if [$ha_found -eq 1]; then

HA_FIELD_VALUE=$ha_i

return 0;

fi

fi

done

return 1;

}

Get the Value for Multiple Fields
The ha_get_multi_fields() function obtains the field values from a string, where
$1 is the string and $2 is the field name. The string format is a series of name-value
field pairs, where a name field is followed by the value of the name, separated by
whitespace.

This function is typically used to extract dependency information. There may be
multiple fields with the same name, so the string returned in HA_FIELD_VALUE may
contain multiple values separated by white space. This appears as follows:

ha_get_multi_fields()

{

HA_STR=$1

HA_FIELD_NAME=$2

ha_found=0;
ha_field=1;

for ha_i in $HA_STR

do

if [$ha_field -eq 1]; then
ha_field=0;

if [$ha_i = $HA_FIELD_NAME]; then

ha_found=1;

007–3900–004 109

C: Using the Script Library

fi
else

ha_field=1;

if [$ha_found -eq 1]; then

if [-z "$HA_FIELD_VALUE"]; then

HA_FIELD_VALUE=$ha_i;
else

HA_FIELD_VALUE="$HA_FIELD_VALUE $ha_i";

fi;

ha_found=0;

fi

fi
done

if [-z "$HA_FIELD_VALUE"]; then

return 1;

else
return 0;

fi

}

Get Resource Information
The ha_get_info() and ha_get_info_debug()functions read resource
information. $1 is the resource type, $2 is the resource name, and $3 is an optional
parameter of any value that specifies a request for resource dependency information.
Resource information is stored in the HA_STRING variable. If the resourceQuery
command fails, the HA_STRING is set to an invalid string, and future calls to
ha_get_info() or ha_get_info_debug() return errors.

You can use ha_get_info_debug() while developing scripts.

ha_get_info()

{

if [-f /var/cluster/ha/resourceQuery.debug]; then
ha_get_info_debug $1 $2 $3

return;

fi

if [-n "$3"]; then

ha_doall="_ALL=true"

110 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

else
ha_doall=""

fi

Retry resourceQuery command $HA_RETRY_CMD_MAX times if $HA_RETRY_CMD_ERR

is returned.
ha_retry_count=1

while [$ha_retry_count -le $HA_RETRY_CMD_MAX];

do

if [-n "${HA_CLUSTERNAME}"]; then

HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \
_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \

$ha_doall _NO_LOGGING=true _CLUSTER=${HA_CLUSTERNAME}‘

else

HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \

_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \
$ha_doall _NO_LOGGING=true‘

fi

ha_exit_code=$?

if [$ha_exit_code -ne 0]; then
${HA_LOG} "${HA_RESOURCEQUERYCMD}: resource name $2 resource type $1"

${HA_LOG} "Failed with error: ${HA_STRING}";

fi

if [$ha_exit_code -ne $HA_RETRY_CMD_ERR]; then
break;

fi

ha_retry_count=‘expr $ha_retry_count + 1‘

done

if [-n "$ha_doall"]; then

echo $HA_STRING \

| grep "No resource dependencies" > /dev/null 2>&1

if [$? -eq 0]; then
HA_STRING=

else

007–3900–004 111

C: Using the Script Library

HA_STRING=‘echo $HA_STRING | /bin/sed -e "s/^.*Resource dependencies //"‘
fi

fi

return ${ha_exit_code};

}

The ha_get_info is a faster version of ha_get_info_debug().

ha_get_info_debug()

{

if [-n "$3"]; then
ha_doall="_ALL=true"

else

ha_doall=""

fi

if [-n "${HA_CLUSTERNAME}"]; then
HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \

_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \

$ha_doall _CLUSTER=${HA_CLUSTERNAME}‘

else

HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \
_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 $ha_doall‘

fi

ha_exit_code=$?

if [$? -ne 0]; then
${HA_LOG} "${HA_RESOURCEQUERYCMD}: resource name $2 resource type $1"

${HA_LOG} "Failed with error: ${HA_STRING}";

fi

if [-n "$ha_doall"]; then

echo $HA_STRING \
| grep "No resource dependencies" > /dev/null 2>&1

if [$? -eq 0]; then

HA_STRING=

else

HA_STRING=‘echo $HA_STRING | /bin/sed -e "s/^.*Resource dependencies //"‘
fi

fi

112 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

return ${ha_exit_code};
}

Print Exclusivity Check Messages
The ha_print_exclusive_status() function prints exclusivity check messages to
the log file. $1 is the resource name and $2 is the exit status.

ha_print_exclusive_status()

{

if [$? -eq $HA_NOT_RUNNING]; then

${HA_LOG} "resource $1 exclusive status: NOT RUNNING"
else

${HA_LOG} "resource $1 exclusive status: RUNNING"

fi

}

The ha_print_exclusive_status_all_resources() function is similar, but it
prints exclusivity check messages for all resources. $HA_RES_NAMES is the list of
resource names.

ha_print_exclusive_status_all_resources()

{
for HA_RES in $HA_RES_NAMES

do

ha_print_exclusive_status ${HA_RES} $1

done

}

007–3900–004 113

Glossary

action scripts

The set of scripts that determine how a resource is started, monitored, and stopped.
There must be a set of action scripts specified for each resource type. The possible set
of action scripts is: exclusive, start, stop, monitor, and restart.

cluster

The set of nodes in the pool that have been defined as a cluster. A cluster is identified
by a simple name; this name must be unique within the pool. All nodes in the cluster
are also in the pool. However, all nodes in the pool are not necessarily in the cluster;
that is, the cluster may consist of a subset of the nodes in the pool. There is only one
cluster per pool.

cluster administrator

The person responsible for managing and maintaining a cluster.

cluster configuration database

Contains configuration information about all resources, resource types, resource
groups, failover policies, nodes, and the cluster.

cluster process group

A group of application instances in a distributed application that cooperate to provide
a service.

For example, distributed lock manager instances in each node would form a process
group. By forming a process group, they can obtain membership and reliable,
ordered, atomic communication services. There is no relationship between a UNIX
process group and a cluster process group.

cluster node

See node.

007–3900–004 115

Glossary

control messages

Messages that cluster software sends between the cluster nodes to request operations
on or distribute information about cluster nodes and resource groups. IRIS FailSafe
sends control messages for the purpose of ensuring that nodes and groups remain
highly available. Control messages and heartbeat messages are sent through a node’s
network interfaces that have been attached to a control network. A node can be
attached to multiple control networks.

control network

The network that connects nodes through their network interfaces (typically Ethernet)
such that FailSafe can maintain a cluster’s high availability by sending heartbeat
messages and control messages through the network to the attached nodes. FailSafe
uses the highest priority network interface on the control network; it uses a network
interface with lower priority when all higher-priority network interfaces on the
control network fail.
A node must have at least one control network interface for heartbeat messages and
one for control messages (both heartbeat and control messages can be configured to
use the same interface). A node can have no more than eight control network
interfaces.

database

See cluster configuration database.

dependency list

See resource dependency or resource type dependency.

failover

The process of allocating a resource group to another node according to a failover
policy. A failover may be triggered by the failure of a resource, a change in the
FailSafe membership (such as when a node fails or starts), or a manual request by the
administrator.

failover attribute

A string that affects the allocation of a resource group in a cluster. The administrator
must specify system-defined attributes (such as Auto_Failback or
Controlled_Failback), and can optionally supply site-specific attributes.

116 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

failover domain

The ordered list of nodes on which a particular resource group can be allocated. The
nodes listed in the failover domain must be within the same cluster; however, the
failover domain does not have to include every node in the cluster. The administrator
defines the initial failover domain when creating a failover policy. This list is
transformed into the run-time failover domain by the failover script the run-time
failover domain is what is actually used to select the failover node. FailSafe stores the
run-time failover domain and uses it as input to the next failover script invocation.
The initial and run-time failover domains may be identical, depending upon the
contents of the failover script. In general, FailSafe allocates a given resource group to
the first node listed in the run-time failover domain that is also in the FailSafe
membership; the point at which this allocation takes place is affected by the failover
attributes.

failover policy

The method used by FailSafe to determine the destination node of a failover. A
failover policy consists of a failover domain, failover attributes, and a failover script.
A failover policy name must be unique within the pool.

failover script

A failover policy component that generates a run-time failover domain and returns it
to the FailSafe process. The process applies the failover attributes and then selects the
first node in the returned failover domain that is also in the current FailSafe
membership.

FailSafe membership

The list of FailSafe nodes in a cluster on which FailSafe can make resource groups
online. It differs from the CXFS membership and fs2d membership. For more
information about CXFS, see CXFS Software Installation and Administration Guide.

FailSafe database

See cluster configuration database.

fs2d membership

The group of nodes in the pool that are accessible to fs2d and therefore can receive
cluster configuration database updates; this may be a subset of the nodes defined in
the pool. (Also known as user-space membership).

007–3900–004 117

Glossary

heartbeat messages

Messages that cluster software sends between the nodes that indicate a node is up
and running. Heartbeat messages and control messages are sent through a node’s
network interfaces that have been attached to a control network. A node can be
attached to multiple control networks.

heartbeat interval

Interval between heartbeat messages. The node timeout value must be at least 10
times the heartbeat interval for proper FailSafe operation (otherwise false failovers
may be triggered). The higher the number of heartbeats (smaller heartbeat interval),
the greater the potential for slowing down the network. Conversely, the fewer the
number of heartbeats (larger heartbeat interval), the greater the potential for reducing
availability of resources.

initial failover domain

The ordered list of nodes, defined by the administrator when a failover policy is first
created, that is used the first time a cluster is booted. The ordered list specified by the
initial failover domain is transformed into a run-time failover domain by the failover
script; the run-time failover domain is used along with failover attributes to
determine the node on which a resource group should reside. With each failure, the
failover script takes the current run-time failover domain and potentially modifies it;
the initial failover domain is never used again. Depending on the run-time conditions
and contents of the failover script, the initial and run-time failover domains may be
identical. See also run-time failover domain.

key/value attribute

A set of information that must be defined for a particular resource type. For example,
for the resource type filesystem one key/value pair might be mount_point=/fs1
where mount_point is the key and fs1 is the value specific to the particular resource
being defined. Depending on the value, you specify either a string or integer
data type. In the previous example, you would specify string as the data type for
the value fs1.

log configuration

A log configuration has two parts: a log level and a log file, both associated with a
log group. The cluster administrator can customize the location and amount of log
output, and can specify a log configuration for all nodes or for only one node. For
example, the crsd log group can be configured to log detailed level-10 messages to

118 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

the /var/cluster/ha/log/crsd-foo log only on the node foo and to write only
minimal level-1 messages to the crsd log on all other nodes.

log file

A file containing notifications for a particular log group. A log file is part of the log
configuration for a log group. By default, log files reside in the
/var/cluster/ha/log directory, but the cluster administrator can customize this.
Note: FailSafe logs both normal operations and critical errors to /var/adm/SYSLOG,
as well as to individual logs for specific log groups.

log group

A set of one or more FailSafe processes that use the same log configuration. A log
group usually corresponds to one daemon, such as gcd.

log level

A number controlling the number of log messages that FailSafe will write into an
associated log group’s log file. A log level is part of the log configuration for a log
group.

node

A single IRIX kernel image. Usually, a node is an individual computer. The term node
does not have the same meaning as a node in an Origin system.

node ID

A 16-bit positive integer that uniquely defines a cluster node. During node definition,
FailSafe will assign a node ID if one has not been assigned by the cluster
administrator. Once assigned, the node ID cannot be modified.

node membership

See FailSafe membership.

node timeout

If no heartbeat is received from a node in this period of time, the node is considered
to be dead. The node timeout value must be at least 10 times the heartbeat interval
for proper FailSafe operation (otherwise false failovers may be triggered).

007–3900–004 119

Glossary

notification command

The command used to notify the cluster administrator of changes or failures in the
cluster, nodes, and resource groups. The command must exist on every node in the
cluster.

offline resource group

A resource group that is not highly available in the cluster. To put a resource group
in offline state, FailSafe stops the group (if needed) and stops monitoring the group.
An offline resource group can be running on a node, yet not under FailSafe control. If
the cluster administrator specifies the detach only option while taking the group
offline, then FailSafe will not stop the group but will stop monitoring the group.

online resource group

A resource group that is highly available in the cluster. When FailSafe detects a
failure that degrades the resource group availability, it moves the resource group to
another node in the cluster. To put a resource group in online state, FailSafe starts the
group (if needed) and begins monitoring the group. If the cluster administrator
specifies the attach only option while bringing the group online, then FailSafe will not
start the group but will begin monitoring the group.

owner host

A system that can control a node remotely, such as power-cycling the node. At run
time, the owner host must be defined as a node in the pool.

owner TTY name

The device file name of the terminal port (TTY) on the owner host to which the
system controller serial cable is connected. The other end of the cable connects to the
node with the system controller port, so the node can be controlled remotely by the
owner host.

plug-ins

An optional software package used to make applications highly available.

pool

The entire set of nodes that are coupled to each other by networks and are defined as
nodes in FailSafe. The nodes are usually close together and should always serve a

120 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

common purpose. A replicated cluster configuration database is stored on each node
in the pool.

All nodes that can be added to a cluster are part of the pool, but not all nodes in the
pool must be part of the cluster. There is only one pool. (Other pools may exist, but
each is disjoint from the other. They share no node or cluster definitions.)

port password

The password for the system controller port, usually set once in firmware or by
setting jumper wires. (This is not the same as the node’s root password.)

powerfail mode

When powerfail mode is turned on, FailSafe tracks the response from a node’s system
controller as it makes reset requests to a cluster node. When these requests fail to
reset the node successfully, FailSafe uses heuristics to try to estimate whether the
machine has been powered down. If the heuristic algorithm returns with success,
FailSafe assumes the remote machine has been reset successfully. When powerfail
mode is turned off, the heuristics are not used and FailSafe may not be able to detect
node power failures.

process membership

A list of process instances in a cluster that form a process group. There can multiple
process groups per node.

properties file

An optional file that contains a formatted label for each plugin attribute and strings of
help text that will be displayed in the GUI. There can be a properties file for each
resource type.

resource

A single physical or logical entity that provides a service to clients or other resources.
For example, a resource can be a single disk volume, a particular network address, or
an application such as a web server. A resource is generally available for use over
time on two or more nodes in a cluster, although it can be allocated to only one node
at any given time. Resources are identified by a resource name and a resource type.
Dependent resources must be part of the same resource group and are identified in a
resource dependency list

007–3900–004 121

Glossary

resource dependency

The condition in which a resource requires the existence of other resources.

resource dependency list

A list of resources upon which a resource depends. Each resource instance must have
resource dependencies that satisfy its resource type dependencies before it can be
added to a resource group.

resource group

A collection of resources. A resource group is identified by a simple name; this name
must be unique within a cluster. Resource groups cannot overlap; that is, two
resource groups cannot contain the same resource. All interdependent resources must
be part of the same resource group. If any individual resource in a resource group
becomes unavailable for its intended use, then the entire resource group is considered
unavailable. Therefore, a resource group is the unit of failover.

resource keys

Variables that define a resource of a given resource type. The action scripts use this
information to start, stop, and monitor a resource of this resource type.

resource name

The simple name that identifies a specific instance of a resource type. A resource
name must be unique within a given resource type.

resource type

A particular class of resource. All of the resources in a particular resource type can be
handled in the same way for the purposes of failover. Every resource is an instance of
exactly one resource type. A resource type is identified by a simple name; this name
must be unique within a cluster. A resource type can be defined for a specific node or
for an entire cluster. A resource type that is defined for a node overrides a
cluster-wide resource type definition with the same name; this allows an individual
node to override global settings from a cluster-wide resource type definition.

122 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

resource type dependency

A set of resource types upon which a resource type depends. For example, the
filesystem resource type depends upon the volume resource type, and the Netscape_web
resource type depends upon the filesystem and IP_address resource types.

resource type dependency list

A list of resource types upon which a resource type depends.

run-time failover domain

The ordered set of nodes on which the resource group can execute upon failures, as
modified by the failover script. The run-time failover domain is used along with
failover attributes to determine the node on which a resource group should reside.
See also initial failover domain.

start/stop order

Each resource type has a start/stop order, which is a nonnegative integer. In a
resource group, the start/stop orders of the resource types determine the order in
which the resources will be started when FailSafe brings the group online and will be
stopped when FailSafe takes the group offline. The group’s resources are started in
increasing order, and stopped in decreasing order; resources of the same type are
started and stopped in indeterminate order. For example, if resource type volume has
order 10 and resource type filesystem has order 20, then when FailSafe brings a
resource group online, all volume resources in the group will be started before all file
system resources in the group.

system controller port

A port located on a node that provides a way to power-cycle the node remotely.
Enabling or disabling a system controller port in the cluster configuration database
(CDB) tells FailSafe whether it can perform operations on the system controller port.
(When the port is enabled, serial cables must attach the port to another node, the
owner host.) System controller port information is optional for a node in the pool, but
is required if the node will be added to a cluster; otherwise resources running on that
node never will be highly available.

tie-breaker node

A node identified as a tie-breaker for FailSafe to use in the process of computing
FailSafe cluster membership for the cluster, when exactly half the nodes in the cluster

007–3900–004 123

Glossary

are up and can communicate with each other. If a tie-breaker node is not specified,
FailSafe will use the node with the lowest node ID in the cluster as the tie-breaker
node.

type-specific attribute

Required information used to define a resource of a particular resource type. For
example, for a resource of type filesystem you must enter attributes for the resource’s
volume name (where the file system is located) and specify options for how to mount
the file system (for example, as readable and writable).

124 007–3900–004

Index

A

action scripts, 7
examples, 29
failure of, 17
format

basic action, 26
completion, 28
exit status, 25
header, 23
overview, 23
read input file, 27
read resource information, 24, 25
set global variables, 26
set local variables, 24
verify arguments, 27

monitoring
frequence, 21
necessity of, 20
testing examples, 22
types, 21

preparation for writing scripts, 19
resource types provided, 19
set of scripts, 13
successful execution results, 17
templates, 19
testing, 84
writing steps, 28

administrative commands, 11
agents, 39
application failover domain, 6
Auto_Failback failover attribute, 44
Auto_Recovery failover attribute, 44

C

check script replacement, 92
check arguments, 105
checksum verification, 89
cluster, 2
cluster membership, 2
cluster node, 1
cluster process group, 3
cluster_mgr/cmgr command, 71
cmond process

configuration, 39
command execution function, 107
command path, 101
commands, 11
common.vars file, 91
communicate with the network interface agent

daemon, 11
concepts, 1
configurations

N+1, 54
N+2, 55
N+M, 56

control network, 2
Controlled_Failback failover attribute, 44
Critical_RG failover attribute, 45
CXFS membership, 3

D

database location, 102
debug script messages, 103
debugging information in action scripts, 83
dependency list, 5
domain, 6, 42

007–3900–004 125

Index

E

environment variables, 101
exclusive script

definition, 13
example, 36

execute a command, 107
exit status in action scripts, 25
exit_script() function, 25
exit_script() function, 85
exit_status value, 25

F

failover, 6
failover attributes, 7, 43
failover domain, 6, 42
failover policy, 6

contents, 41
examples

N+1, 53
N+2, 55
N+M, 57

failover attributes, 43
failover domain, 42

failover script, 45
description, 7, 45
interface, 52

FailSafe membership, 2
field value, 108
file locking and unlocking, 11
filesystem resource type, 8
fs2d membership, 3

G

get_xxx_info() function, 25
giveaway/giveback script replacement, 92
global definition setting, 101
global variables, 26

H

ha.conf configuration file, 89
HA_CDB environment variable, 102
ha_check_args() function, 27, 105
ha_cilog command, 11
HA_CMD_FAILED environment variable, 104
HA_CMDSPATH environment variable, 101
HA_CURRENT_LOGLEVEL environment

variable, 103
HA_DBGLOG environment variable, 103
HA_DBGLVL environment variable, 102
ha_exec2 command, 11
ha_execute_cmd() function, 107
ha_execute_cmd_ret() function, 107
ha_execute_lock command, 11
ha_filelock command, 11
ha_fileunlock command, 11
ha_get_field() function, 108
ha_get_info() function, 110
ha_get_info() function, 25
ha_get_multi_fields() function, 25
HA_HOSTNAME environment variable, 101
ha_http_ping2 command, 11
ha_ifdadmin command, 11
HA_INVAL_ARGS environment variable, 104
HA_LOG environment variable, 104
HA_LOGCMD environment variable, 101
HA_LOGQUERY_OUTPUT environment

variable, 103
ha_macconfig2 command, 11
HA_NOCFGINFO environment variable, 105
HA_NORMLVL environment variable, 102
HA_NOT_RUNNING environment variable, 104
HA_NOTSUPPORTED environment variable, 105
ha_print_exclusive_status() function, 113
ha_print_exclusive_status_all_resources()

function, 113
HA_PRIVCMDSPATH environment variable, 101
ha_read_infile() function, 27, 106

126 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

HA_RESOURCEQUERYCMD environment
variable, 102

HA_RUNNING environment variable, 104
HA_SCRIPTGROUP environment variable, 103
HA_SCRIPTSUBSYS environment variable, 103
HA_SCRIPTTMPDIR environment variable, 102
HA_SUCCESS environment variable, 104
ha_write_status_for_all_resources() function, 108
ha_write_status_for_resource function, 26
ha_write_status_for_resource() function, 108
heartbeat network, 2
high availability characteristics, 8
highly available services, 8
hostname, 101

I

initial failover domain, 42
InPlace_Recovery failover attribute, 44
input file, 106
IP address service, 8

L

lock a file, 11
log messages, 11
logs, 103

M

MAC
address service, 8

MAC_address resource type, 8
membership, 2
message logging, 11
migrating to 2.x

action scripts, 92
cautions, 89
ordering actions, 96

reading information, 91
resource types, 89

monitor script
definition, 13
example, 33

monitoring
agents, 39
failure, 21
frequence, 22
necessity of, 20
processes, 11
script testing, 87
testing examples, 22
types, 20

N

Netscape node check, 11
networks, 2
node, 2
node membership, 2
node status, 83
Node_Failures_Only failover attribute, 45
nodename output, 101

O

order ranges for resource types, 61
ordered failover script, 45
overview of the programming steps, 10

P

path to user commands, 101
pool, 2
print exclusivity check messages, 113
privileged command path, 101
process

007–3900–004 127

Index

membership, 3
monitoring, 11

process group, 3
programming steps overview, 10
properties file, 78

R

read an input file, 106
resource

definition, 3
dependency list, 6
name, 4
query command, 102

resource group
definition, 5
states, 17

resource information
obtaining, 110
read into an action script, 25

resource type
cmgr use, 71
dependency list, 5
description, 4
GUI use, 65
information for a new resource type, 59
order ranges, 61
provided with FailSafe, 8
restart mode, 62
script templates, 77
script use, 76

restart mode, 62
restart script

definition, 13
example, 37

root command path, 101
run-time failover domain, 42

S

script group log, 103
script library, 99
script testing

action scripts, 84
monitoring script considerations, 87
techniques, 83

script.$$ suffix, 28
scriptlib file, 99
scripts. See action scripts or failover script, 23
set_global_variables() function, 26
set_local_variables() section of an action script, 24
start script

definition, 13
example, 29

status of a node, 83
stop script

definition, 13
example, 31

subnet, 2

T

takeover/takeback script replacement, 92
templates

action scripts, 19
resource type script definition, 77

testing scripts. See script testing, 83

U

uname command, 101
unlock a file, 11
upgrading. See migrating to 2.x, 89
user command path, 101
user-space membership, 3

128 007–3900–004

IRIS FailSafe
TM

Version 2 Programmer’s Guide

V

value for a field, 108
/var/cluster/cmgr-templates/

cmgr-create-resource_type directory, 77
/var/cluster/cmon/process_groups directory, 39
/var/cluster/ha/

resource_types directory, 62
resource_types/<resource_type>/<resource_type>, 78

/var/cluster/ha/policies directory, 45
/var/ha/actions/common.vars file, 91
volume resource type, 8

W

write status for a resource, 108

X

XFS file system service, 8
XLV logical volume service, 8

007–3900–004 129

