
IRIS FailSafeTM Version 2
Programmer’s Guide

007–3900–005

CONTRIBUTORS

Written by Lori Johnson
Illustrated by Chrystie Danzer, Dany Galgani, and Chris Wengelski,
Edited by Susan Wilkening
Production by Glen Traefald
Engineering contributions by Scott Henry, Vidula Iyer, Herb Lewis, Michael Nishimoto, Kevan Rehm, Hugh Shannon Jr., Bill Sparks,
Paddy Sreenivasan, Dan Stekloff, Rebecca Underwood, and Manish Verma

COPYRIGHT
© 1999, 2001 Silicon Graphics, Inc. All Rights Reserved; provided portions may be copyright in third parties as indicated elsewhere
herein. The contents of this document may not be copied or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14
and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights reserved
under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain
View, CA 94043-1389.

TRADEMARKS AND ATTRIBUTIONS
IRIS, and IRIX are registered trademarks and FailSafe, IRIS FailSafe, SGI FailSafe, and the SGI logo are trademarks of Silicon Graphics,
Inc.

INFORMIX is a trademark of Informix Software, Inc. Netscape is a trademark of Netscape Communications Corporation. NFS is a
trademark of Sun Microsystems, Inc. Oracle is a trademark of Oracle Corporation. Sybase is a trademark of Sybase, Inc.

Cover design by Sarah Bolles, Sarah Bolles Design, and Danny Galgani, SGI Technical Publications

New Features in This Guide

This update includes the following changes:

• The graphical user interface (GUI) has been improved. The separate cluster view
(the fsdetail command) and task manager (the fstask command) have been
streamlined into one window, the FailSafe Manager. Both the fstask and
fsdetail commands are kept for historical purposes; this document refers to just
fstask for simplicity.

The new GUI provides the following features:

– Access to tasks through the menu bar or by clicking the right mouse button
within the tree view

– Faster status updates

– Access to the salog(4) file, which shows every command run from the GUI

– A Find textfield helps you find components within the displayed tree-view

• Clarification that any user can use the GUI to view database information;
therefore, you should not include any sensitive information in the cluster database.
See Chapter 4, "Defining a New Resource Type", page 61.

• Consistent use of the term plug-in. A plug-in is the set of software required to
make an application highly available, including a resource type and action scripts.
There are plug-ins provided with the base FailSafe release, optional plug-ins
available for purchase from SGI, and customized plug-ins you can write using the
instructions in this guide. "Plug-ins", page 10, lists the provided and optional
plug-ins currently available.

• New figures:

– Pool and Cluster Concepts, Figure 1-1, page 3

– Resource Type Dependencies, Figure 1-2, page 7

007–3900–005 iii

Record of Revision

Version Description

002 December 1999
Published in conjunction with the latest IRIS FailSafe 2.0 rollup
patch. It supports IRIX 6.5.9 and later.

003 October 2000
Supports the IRIS FailSafe 2.1 release.

004 April 2001
Supports the IRIS FailSafe 2.1.1 release and IRIX 6.5.12 or later.

005 November 2001
Supports the IRIS FailSafe 2.1.2 release and IRIX 6.5.14 or later.

007–3900–005 v

Contents

About This Guide . xvii

Audience . xvii

Related Documentation . xvii

Conventions Used in This Guide xix

Reader Comments . xix

1. Introduction . 1

Terminology . 1

Node . 1

Cluster Database . 2

Pool . 2

Cluster . 2

Membership . 3

Quorum . 4

Private Network . 4

Resource . 5

Resource Type . 5

Resource Name . 5

Resource Group . 5

Dependency . 6

Failover . 7

Failover Policy . 8

Failover Domain . 8

Failover Attribute . 8

Failover Scripts . 9

007–3900–005 vii

Contents

Action Scripts . 9

Plug-In . 10

Cluster Process Group . 10

Plug-ins . 10

Characteristics that Permit an Application to be Highly Available 11

Overview of the Programming Steps 12

Administrative Commands for Use in Scripts 14

2. Writing the Action Scripts and Adding Monitoring Agents 15

Set of Action Scripts . 15

Understanding the Execution of Action Scripts 16

When Action Scripts are Executed 17

Multiple Instances of a Script Executed at the Same Time 17

Differences between the exclusive and monitor Scripts 18

Successful Execution of Action Scripts 19

Failure of Action Scripts . 19

Implementing Timeouts and Retrying a Command 20

Sending UNIX Signals . 20

Preparation . 21

Is Monitoring Necessary? . 22

Types of Monitoring . 23

What are the Symptoms of Monitoring Failure? 23

How Often Should Monitoring Occur? 23

Examples of Testing for Monitoring Failure 24

Script Format . 25

Header Information . 25

Set Local Variables . 26

viii 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Read Resource Information 27

Exit Status . 27

Basic Action . 28

Set Global Variables . 29

Verify Arguments . 29

Read Input File . 29

Complete the Action . 30

Steps in Writing a Script . 30

Examples of Action Scripts . 31

start Script . 31

stop Script . 33

monitor Script . 35

exclusive Script . 38

restart Script . 39

Monitoring Agents . 41

3. Creating a Failover Policy 43

Contents of a Failover Policy . 43

Failover Domain . 43

Failover Attributes . 45

Failover Scripts . 47

ordered . 47

round-robin . 50

Creating a New Failover Script 54

Failover Script Interface . 54

Example Failover Policies . 55

N+1 Configuration . 55

N+2 Configuration . 57

007–3900–005 ix

Contents

N+M Configuration . 58

4. Defining a New Resource Type 61

Information You Must Gather 61

Copying an Existing Resource Type to Create a New One 65

Creating a New Resource Type from Scratch 66

Using the FailSafe Manager GUI 67

Define a New Resource Type 67

Define Dependencies . 71

Using cmgr Interactively . 72

Using cmgr With a Script . 77

Server-side Properties File . 79

Property Formats . 80

Example Properties File . 80

Testing a New Resource Type 82

5. Testing Scripts . 85

General Testing and Debugging Techniques 85

Debugging Notes . 86

Testing an Action Script . 87

Special Testing Considerations for the monitor Script 89

Appendix A. Migrating From 1.2 to 2.1.x 91

Cautions . 91

Resource Types . 91

Reading Information . 93

Parameter Parsing . 93

Action Scripts . 94

x 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

1.2 giveback / 2.1.x stop . 95

1.2 takeover / 2.1.x start . 96

1.2 monitor/ 2.1.x monitor 97

Ordering Script Actions . 98

Appendix B. Starting the FailSafe Manager 99

Appendix C. Using the Script Library 101

File Formats . 101

Set Global Definitions . 103

Global Variable . 103

HA_HOSTNAME . 103

Command Location Variables 103

HA_CMDSPATH . 103

HA_PRIVCMDSPATH . 103

HA_LOGCMD . 103

HA_RESOURCEQUERYCMD 104

HA_SCRIPTTMPDIR . 104

Database Location Variables 104

HA_CDB . 104

Script Log Level Variables . 104

HA_NORMLVL . 104

HA_DBGLVL . 104

Script Log Variables . 105

HA_SCRIPTGROUP . 105

HA_SCRIPTSUBSYS . 105

Script Logging Command Variables 105

HA_LOGQUERY_OUTPUT . 105

HA_DBGLOG . 105

007–3900–005 xi

Contents

HA_CURRENT_LOGLEVEL 105

HA_LOG . 106

Script Error Value Variables 106

HA_SUCCESS . 106

HA_NOT_RUNNING . 106

HA_INVAL_ARGS . 106

HA_CMD_FAILED . 106

HA_RUNNING . 106

HA_NOTSUPPORTED . 107

HA_NOCFGINFO . 107

Check Arguments . 107

Read an Input File . 108

Execute a Command . 109

Write Status for a Resource . 110

Get the Value for a Field . 110

Get the Value for Multiple Fields 111

Get Resource Information . 112

Print Exclusivity Check Messages 115

Glossary . 117

Index . 127

xii 007–3900–005

Figures

Figure 1-1 Pool and Cluster Concepts 3

Figure 1-2 Resource Type Dependencies 7

Figure 2-1 Monitoring Process 41

Figure 3-1 N+1 Configuration Concept 56

Figure 3-2 N+2 Configuration Concept 57

Figure 3-3 N+M Configuration Concept 59

Figure 4-1 Specify the Name of the New Resource Type 68

Figure 4-2 Specify Settings for Required Actions 69

Figure 4-3 Change Settings for Optional Actions 70

Figure 4-4 Set Type-specific Attributes 71

Figure 4-5 Add Dependencies 72

Figure B-1 FailSafe Manager 100

007–3900–005 xiii

Tables

Table 1-1 Example Resource Group 6

Table 1-2 Provided and Optional Plug-Ins 10

Table 1-3 FailSafe Administrative Commands for Use in Scripts 14

Table 2-1 Execution of Action Scripts 17

Table 2-2 Differences Between the monitor and exclusive Action Scripts 18

Table 2-3 Successful Action Script Results 19

Table 2-4 Failure of an Action Script 19

Table 3-1 Failover Attributes 46

Table 4-1 Order Ranges . 63

Table 4-2 Resource Type Order Numbers 63

Table A-1 Differences between 1.2 and 2.1.x Scripts 94

007–3900–005 xv

About This Guide

This guide explains how to write your own plug-in, the set of scripts that are required
to turn an application into a highly available service in conjunction with IRIS FailSafe
2.1.2 software. It also tells you how to create a new resource type and provides
instructions for migrating script information from IRIS FailSafe Release 1.2 to Release
2.x.

This guide assumes that the IRIS FailSafe system has been configured as described in
the IRIS FailSafe Version 2 Administrator’s Guide.

This guide supports IRIX 6.5.14 and later.

Audience
This guide is written for system programmers who are writing their own plug-ins for
the IRIS FailSafe system. These scripts allow the failover of applications that are not
handled by the base and optional plug-ins. Readers must be familiar with the
operation and administration of nodes running IRIS FailSafe, with the applications
that are to be failed over, and with the IRIS FailSafe Version 2 Administrator’s Guide.

Related Documentation
The following documentation is of interest:

• IRIS FailSafe Version 2 Administrator’s Guide

• CXFS Software Installation and Administration Guide

The reference pages are as follows:

• cdbBackup(1M)

• cdbRestore(1M)

• cmgr(1M)

• crsd(1M)

• failsafe(7M)

007–3900–005 xvii

About This Guide

• fs2d(1M)

• ha_cilog(1M)

• ha_cmsd(1M)

• ha_exec2(1M)

• ha_fsd(1M)

• ha_gcd(1M)

• ha_ifd(1M)

• ha_ifdadmin(1M)

• ha_macconfig2(1M)

• ha_srmd(1M)

• ha_statd2(1M)

• haStatus(1M)

Release notes are included with each IRIS FailSafe product. The names of the release
notes are as follows:

Release Note Product

cluster_admin Cluster administration services

cluster_control Cluster node control services

cluster_services Cluster services

failsafe2 IRIS 2.0 FailSafe release

failsafe2_informix FailSafe/INFORMIX

failsafe2_nfs FailSafe/NFS

failsafe2_oracle FailSafe/Oracle

failsafe2_samba FailSafe/Samba

failsafe2_web FailSafe/Netscape web

xviii 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Conventions Used in This Guide
This guide uses FailSafe as an abbreviation for IRIS FailSafe.

These type conventions and symbols are used in this guide:

Bold Function names literal command-line arguments
(options/flags)

Bold fixed-width
type

Commands and text that you are to type literally in
response to shell and command prompts, or
highlighting of differences between releases

Italics New terms, manual/book titles, commands, variable
command-line arguments, filenames, and variables to
be supplied by the user in examples, code, and syntax
statements

Fixed-width type Code examples, error messages, prompts, and screen
text

IRIX shell prompt for the superuser (root)

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

007–3900–005 xix

About This Guide

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xx 007–3900–005

Chapter 1

Introduction

IRIS FailSafe 2.1.2 provides highly available services for as many as eight nodes in a
cluster. These services are monitored by the IRIS FailSafe software. You can create
additional services that are highly available by using the instructions in this guide to
write your own plug-in, the set of scripts that are required to turn an application into
a highly available service in conjunction with IRIS FailSafe software.

This chapter contains the following:

• "Terminology"

• "Plug-ins", page 10

• "Characteristics that Permit an Application to be Highly Available", page 11

• "Overview of the Programming Steps", page 12

• "Administrative Commands for Use in Scripts", page 14

For an overview of the components, software layers, communication paths, and order
of execution of action and failover scripts, see IRIS FailSafe Version 2 Administrator’s
Guide.

Note: This guide uses FailSafe as an abbreviation for IRIS FailSafe.

Terminology
This section defines the terminology necessary to configure and monitor highly
available services with FailSafe.

Node

A node is an operating system (OS) image, usually an individual computer. The nodes
are connected to a storage area network (SAN) that connects the storage systems to
the nodes in the cluster. A node can belong to only one cluster.

This use of the term node does not have the same meaning as a node in an SGI 2000
or SGI Origin 3000 system.

007–3900–005 1

1: Introduction

Cluster Database

The cluster database (CDB) contains configuration information about all nodes and the
cluster. The fs2d daemon manages the distribution of the cluster database across the
nodes in the pool.

Pool

The pool is the entire set of nodes that are coupled to each other by networks and are
defined as nodes in the cluster database. The nodes are usually close together and
should always serve a common purpose. A replicated cluster database is stored on
each node in the pool.

All nodes that can be added to a cluster are part of the pool, but not all nodes in the
pool must be part of the cluster. There is only one pool. (Other pools may exist, but
each is disjoint from the other. They share no node or cluster definitions.)

Cluster

The cluster is the set of nodes in the pool that have been defined as a cluster. The
cluster is identified by a simple name; this name must be unique within the pool.
(For example, you cannot use the same name for the cluster and for a node.)

All nodes in the cluster are also in the pool. However, all nodes in the pool are not
necessarily in the cluster; that is, the cluster may consist of a subset of the nodes in
the pool. There is only one cluster per pool.

Figure 1-1 shows the concepts of pool and cluster.

2 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

node
name

= cluster

= pool

N4N3N2 N5 N6 N7 N8 N9N1 N10

Pool

Cluster

Figure 1-1 Pool and Cluster Concepts

Membership

There are the following types membership:

• FailSafe membership is the list of FailSafe nodes in the cluster on which FailSafe can
make resource groups online.

• fs2d database membership (also known as user-space membership) is the group of
nodes in the pool that are accessible to fs2d. The fs2d daemon manages the
distribution of the cluster database across the nodes in the pool. Nodes available
to fs2d are able to receive cluster configuration database updates, and are
therefore part of the fs2d database membership; this may be a subset of the
nodes defined in the pool.

• Process membership is the list of process instances in a cluster that form a cluster
process group. There can be multiple process groups per node.

With CXFS coexecution, there is also CXFS membership. For more information about
CXFS, see CXFS Software Installation and Administration Guide.

007–3900–005 3

1: Introduction

Quorum

The quorum is the number of nodes required to form a cluster, which differs according
to membership:

• For FailSafe membership, more than 50% of the nodes in the cluster must be in a
known state (successfully reset or talking to each other using heartbeat control
networks) and at least 50% of the nodes can talk to each other.

• For fs2d database membership, 50% of the nodes in the pool are required to
form and maintain a cluster.

No weighting is used, as opposed to CXFS membership.

Private Network

A private network is one that is dedicated to cluster communication and is accessible
by administrators but not by users:

• The cluster software uses the private network to send the heartbeat/control
messages necessary for the cluster configuration to function. If there are delays in
receiving heartbeat messages, the cluster software may determine that a node is not
responding and remove it from the FailSafe membership. The node will be reset.

• Rebooting network equipment can cause the nodes in a cluster to lose
communication; the cluster will move into a degraded state if communication
between nodes is lost. Using a private network limits the traffic on the network
and therefore will help avoid unnecessary resets or disconnects. Also, because the
messaging protocol does not prevent snooping or spoofing, a network with
restricted access is safer than one with user access.

Therefore, because the performance and security characteristics of a public network
could cause problems in the cluster and because heartbeat is very timing-dependent
(even small variations can cause problems), a private network is required.

In addition, SGI recommends that all nodes be on the same local network segment.

Note: If there are any network issues on the private network, fix them before trying
to use FailSafe.

4 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Resource

A resource is a single physical or logical entity that provides a service to clients or
other resources. For example, a resource can be a single disk volume, a particular
network address, or an application such as a web server. A resource is generally
available for use over time on two or more nodes in a cluster, although it can be
allocated to only one node at any given time.

Resources are identified by a resource name and a resource type.

Resource Type

A resource type is a particular class of resource. All of the resources in a particular
resource type can be handled in the same way for the purposes of failover. Every
resource is an instance of exactly one resource type.

A resource type is identified by a simple name; this name must be unique within the
cluster. A resource type can be defined for a specific node or it can be defined for an
entire cluster. A resource type that is defined for a specific node overrides a
clusterwide resource type definition with the same name; this allows an individual
node to override global settings from a clusterwide resource type definition.

The FailSafe software includes many predefined resource types. If these types fit the
application you want to make highly available, you can reuse them. If none fit, you
can create additional resource types by using the instructions in this guide.

Resource Name

A resource name identifies a specific instance of a resource type. A resource name must
be unique for a given resource type.

Resource Group

A resource group is a collection of interdependent resources. A resource group is
identified by a simple name; this name must be unique within a cluster. Table 1-1
shows an example of the resources and their corresponding resource types for a
resource group named WebGroup.

007–3900–005 5

1: Introduction

Table 1-1 Example Resource Group

Resource Resource Type

10.10.48.22 IP_address

/fs1 filesystem

vol1 volume

web1 Netscape_web

If any individual resource in a resource group becomes unavailable for its intended
use, then the entire resource group is considered unavailable. Therefore, a resource
group is the unit of failover.

Resource groups cannot overlap; that is, two resource groups cannot contain the same
resource.

Dependency

One resource can be dependent on one or more other resources; if so, it will not be
able to start (that is, be made available for use) unless the dependent resources are
also started. Dependent resources must be part of the same resource group and are
identified in a resource dependency list. Resource dependencies are verified when
resources are added to a resource group, not when resources are defined.

Like resources, a resource type can be dependent on one or more other resource
types. If such a dependency exists, at least one instance of each of the dependent
resource types must be defined. A resource type dependency list details the resource
types upon which a resource type depends.

For example, a resource type named Netscape_web might have resource type
dependencies on resource types named IP_address and volume. If a resource
named WS1 is defined with the Netscape_web resource type, then the resource
group containing WS1 must also contain at least one resource of the type
IP_address and one resource of the type volume. This is shown in Figure 1-2.

6 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Netscape_web

IP_address volume

Netscape_web

IP_address volume

=

If:

Then:

WS 1

192.26.50.1= = shared.vol

Webgroup1

= Resource group

= Resource type

= Resource

Figure 1-2 Resource Type Dependencies

Failover

A failover is the process of allocating a resource group (or application) to another
node, according to a failover policy. A failover may be triggered by the failure of a
resource, a change in the FailSafe membership (such as when a node fails or starts), or
a manual request by the administrator.

007–3900–005 7

1: Introduction

Failover Policy

A failover policy is the method used by FailSafe to determine the destination node of a
failover. A failover policy consists of the following:

• Failover domain

• Failover attributes

• Failover script

FailSafe uses the failover domain output from a failover script along with failover
attributes to determine on which node a resource group should reside.

The administrator must configure a failover policy for each resource group. A failover
policy name must be unique within the pool.

Failover Domain

A failover domain is the ordered list of nodes on which a given resource group can be
allocated. The nodes listed in the failover domain must be within the same cluster;
however, the failover domain does not have to include every node in the cluster.

The administrator defines the initial failover domain when creating a failover policy.
This list is transformed into a run-time failover domain by the failover script; FailSafe
uses the run-time failover domain along with failover attributes and the FailSafe
membership to determine the node on which a resource group should reside. FailSafe
stores the run-time failover domain and uses it as input to the next failover script
invocation. Depending on the run-time conditions and contents of the failover script,
the initial and run-time failover domains may be identical.

In general, FailSafe allocates a given resource group to the first node listed in the
run-time failover domain that is also in the FailSafe membership; the point at which
this allocation takes place is affected by the failover attributes.

Failover Attribute

A failover attribute is a string that affects the allocation of a resource group in a cluster.
The administrator must specify system attributes (such as Auto_Failback or
Controlled_Failback), and can optionally supply site-specific attributes.

8 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Failover Scripts

A failover script is a shell script that generates a run-time failover domain and returns
it to the ha_fsd process. The (ha_fsd) process applies the failover attributes and
then selects the first node in the returned failover domain that is also in the current
FailSafe membership.

The following failover scripts are provided with the FailSafe release:

• ordered, which never changes the initial failover domain. When using this script,
the initial and run-time failover domains are equivalent.

• round-robin, which selects the resource group owner in a round-robin (circular)
fashion. This policy can be used for resource groups that can be run in any node
in the cluster.

If these scripts do not meet your needs, you can create a new failover script using the
information provided in the IRIS FailSafe Version 2 Programmer’s Guide.

Action Scripts

The action scripts are the set of scripts that determine how a resource is started,
monitored, and stopped. There must be a set of action scripts specified for each
resource type.

The following is the complete set of action scripts that can be specified for each
resource type:

• exclusive, which verifies that a resource is not already running

• start, which starts a resource

• stop, which stops a resource

• monitor, which monitors a resource

• restart, which restarts a resource on the same server after a monitoring failure
occurs

The release includes action scripts for predefined resource types. If these scripts fit
the resource type that you want to make highly available, you can reuse them by
copying them and modifying them as needed. If none fits, you can create additional
action scripts by using the instructions provided in the IRIS FailSafe Version 2
Programmer’s Guide.

007–3900–005 9

1: Introduction

Plug-In

A plug-in is the set of software required to make an application highly available,
including a resource type and action scripts. There are plug-ins provided with the base
FailSafe release, optional plug-ins available for purchase from SGI, and customized
plug-ins you can write using the instructions in this guide. See "Plug-ins", page 10.

Cluster Process Group

A cluster process group is a group of application instances in a distributed application
that cooperate to provide a service. Each application instance can consist of one or
more UNIX processes and spans only one node.

For example, distributed lock manager instances in each node would form a process
group. By forming a process group, they can obtain process membership and reliable,
ordered, atomic communication services.

Note: There is no relationship between a UNIX process group and a cluster process
group.

Plug-ins
There are provided plug-ins, optional plugs-ins available for purchase, and
customized plug-ins you create according to the instructions in this book. Table 1-2
shows the provided and optional FailSafe plug-ins and their associated resource types.

Table 1-2 Provided and Optional Plug-Ins

Provided Plug-In Resource Type Optional Plug-In Resource Type

CXFS file system CXFS FailSafe/DMF DMF

IP addresses IP_address FailSafe/NFS NFS and
statd_unlimited

MAC addresses MAC_address FailSafe/Informix INFORMIX_DB

XFS file systems filesystem FailSafe/Oracle Oracle_DB

10 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Provided Plug-In Resource Type Optional Plug-In Resource Type

XLV logical volumes volume FailSafe/Samba Samba

FailSafe/TMF TMF

FailSafe/Web (Netscape) Netscape_web

See the release notes for information about the specific releases of these products that
are supported.

If you want to create your own plug-in, or change the functionality of the provided
failover scripts and action scripts by writing new scripts, you will use the instructions
in this guide. However, not all applications can be made highly available; see
"Characteristics that Permit an Application to be Highly Available", page 11.

Note: If you require a customized plug-in but do not want to write it yourself, you
can establish a contract with the Silicon Graphics Professional Services group to create
customized scripts. See: http://www.sgi.com/services/index.html.

Characteristics that Permit an Application to be Highly Available
The characteristics of an application that can be made highly available are as follows:

• The application can be easily restarted and monitored.

It should be able to recover from failures as does most client/server software. The
failure could be a hardware failure, an operating system failure, or an application
failure. If a node crashed and reboots, client/server software should be able to
attach again automatically.

• The application must have a start and stop procedure.

When the application fails over, the instances of the application are stopped on
one node using the stop procedure and restarted on the other node using start
procedure.

Avoid applications that are started as a daemon from /etc/inetd.conf because
typically everything in /etc/inetd.conf is already running. Trying to
automatically edit /etc/inetd.conf could cause errors for other daemons
started by this file.

007–3900–005 11

1: Introduction

Many applications will have a start and stop procedure that belongs in the
/etc/init.d directory. You can incorporate them into a custom
/var/ha/resources script to appropriately start and stop the application. If the
application also has a chkconfig(1m) flag, set it to off. The chkconfig flag
should be set to on in the /var/ha/resources start script.

• The application does not depend on the hostname or any identifier that is specific
to a node.

• The application can be moved from one node to another after failures.

If the resource has failed, it must still be possible to run the resource stop
procedure. In addition, the resource must recover from the failed state when the
resource start procedure is executed in another node.

Ensure that there is no affinity for a specific node.

• The application does not depend on knowing the primary host name (as returned
by hostname); that is, those resources that can be configured to work with an IP
address.

• Other resources on which the application depends can be made highly available.
If they are not provided by FailSafe and its optional products (see "Plug-ins", page
10), you must make these resources highly available, using the information in this
guide.

Note: An application itself is not modified to make it highly available.

Overview of the Programming Steps
To make an application highly available, follow these steps:

1. Understand the application and determine the following:

• The configuration required for the application, such as user names,
permissions, data location (volumes), and so on. For more information about
configuration, see the IRIS FailSafe Version 2 Administrator’s Guide.

• The other resources on which the application depends. All interdependent
resources must be part of the same resource group.

• The resource type that best suits this application.

12 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

• The number of instances of the resource type that will constitute the
application. (Each instance of a given application, or resource type, is a
separate resource.) For example, a web server may depend upon two
filesystem resources.

• The commands and arguments required to start, stop, and monitor this
application (that is, the resources in the resource group).

• The order in which all resources in the resource group must be started and
stopped.

2. Determine whether existing action scripts can be reused. If they cannot, write a
new set of action scripts, using existing scripts and the templates in
/var/cluster/ha/resource_types/template as a guide. See Chapter 2,
"Writing the Action Scripts and Adding Monitoring Agents", page 15.

3. Determine whether the existing ordered or round-robin failover scripts can be
reused for the resource group. If they cannot, write a new failover script. See
Chapter 4, "Defining a New Resource Type", page 61.

4. Determine whether an existing resource type can be reused. If none applies,
create a new resource type or modify an existing resource. See Chapter 4,
"Defining a New Resource Type", page 61.

5. Configure the following in the cluster configuration database (for more
information, see the IRIS FailSafe Version 2 Administrator’s Guide):

• Resource group

• Resource type

• Failover policy

6. Test the action scripts and failover script. See Chapter 5, "Testing Scripts", page
85, and "Debugging Notes", page 86.

Note: Do not modify the scripts included with the release. New or customized
scripts must have different names from the files included with the release.

007–3900–005 13

1: Introduction

Administrative Commands for Use in Scripts
Table 1-3 shows the administrative commands available with FailSafe for use in
scripts.

Table 1-3 FailSafe Administrative Commands for Use in Scripts

Command Purpose

ha_cilog Logs messages to the script_ nodename log files.

ha_execute_lock Executes a command with a file lock which allows
command execution to be serialized. The lock file prevents
multiple instances of the same command from executing at
the same time on a single node.

ha_exec2 Executes a command and retries the command on failure
or timeout.

ha_filelock Locks a file.

ha_fileunlock Unlocks a file.

ha_ifdadmin Communicates with the ha_ifd network interface agent
daemon.

ha_http_ping2 Checks if a web server is running.

ha_macconfig2 Displays or modifies MAC addresses of a network
interface.

14 007–3900–005

Chapter 2

Writing the Action Scripts and Adding Monitoring
Agents

This chapter describes how to write the action scripts required for a plug-in and how
to add monitoring agents. It discusses the following topics:

• "Set of Action Scripts"

• "Understanding the Execution of Action Scripts", page 16

• "Preparation", page 21

• "Script Format", page 25

• "Steps in Writing a Script", page 30

• "Examples of Action Scripts", page 31

• "Monitoring Agents", page 41

Set of Action Scripts

!
Caution: Multiple instances of scripts may be executed at the same time. For more
information, see "Understanding the Execution of Action Scripts", page 16.

The following set of action scripts can be provided for each resource type:

• exclusive, which verifies that the resource is not already running

• start, which starts the resource

• stop, which stops the resource

• monitor, which monitors the resource

• restart, which restarts the resource on the same node when a monitoring failure
occurs

The start, stop, and exclusive scripts are required for every resource type.

007–3900–005 15

2: Writing the Action Scripts and Adding Monitoring Agents

Note: The start and stop scripts must be idempotent; that is, they have the
appearance of being run once but can in fact be run multiple times. For example, if
the start script is run for a resource that is already started, the script must not
return an error.

A monitor script is required, but if you wish it may contain only a return-success
function. A restart script is required if the application must have a restart ability
on the same node in case of failure. However, the restart script may contain only a
return-success function.

Understanding the Execution of Action Scripts
Before you can write a new action script, you must understand how action scripts are
executed. This section covers the following topics:

• "When Action Scripts are Executed", page 17

• "Multiple Instances of a Script Executed at the Same Time", page 17

• "Differences between the exclusive and monitor Scripts", page 18

• "Successful Execution of Action Scripts", page 19

• "Failure of Action Scripts", page 19

• "Implementing Timeouts and Retrying a Command", page 20

• "Sending UNIX Signals", page 20

16 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

When Action Scripts are Executed

Table 2-1 shows when action scripts are executed.

Table 2-1 Execution of Action Scripts

Script Execution Conditions

exclusive A resource group is made online by the user

High-availability (HA) processes (ha_cmsd, ha_gcd, ha_fsd,
ha_srmd, ha_ifd) are started

start A resource group is made online by the user

HA processes are started

A resource group fails over

stop A resource group is made offline

HA processes are stopped

A resource group fails over

A node is shutdown or rebooted

monitor A resource groups is online

restart The monitor script fails

Multiple Instances of a Script Executed at the Same Time

Multiple instances of the same script may be executed at the same time. To avoid this
problem, you can use the ha_filelock and ha_execute_lock commands to
achieve sequential execution of commands in different instances of the same script.

For example, multiple instances of xlv_assemble should not be executed in a node
at the same time. Therefore, the start script for volumes should execute
xlv_assemble under the control of ha_execute_lock as follows:

${HA_CMDSPATH}/ha_execute_lock 30

${HA_SCRIPTTMPDIR}/lock.volume_assemble \"/sbin/xlv_assemble -l

-s${VOLUME_NAME} \"

007–3900–005 17

2: Writing the Action Scripts and Adding Monitoring Agents

The ha_execute_lock command takes the following arguments:

• Number of seconds before the command times out waiting for the file lock

• File to be used for locking

• Command to be executed

The ha_execute_lock command tries to obtain a lock on the file every second for
timeout seconds. After obtaining a lock on the file, it executes the command
argument. On command completion, it releases the lock on the file.

Differences between the exclusive and monitor Scripts

Although the same check can be used in monitor and exclusive action scripts,
they are used for different purposes. Table 2-2 summarizes the differences between
the scripts.

Table 2-2 Differences Between the monitor and exclusive Action Scripts

exclusive monitor

Executed in all nodes in the cluster. Executed only on the node where the resource group
(which contains the resource) is online.

Executed before the resource is started in the cluster. Executed when the resource is online in the cluster.
(The monitor script could degrade the services
provided by the HA server. Therefore, the check
performed by the monitor script should be
lightweight and less time consuming than the check
performed by the exclusive script.)

Executed only once before the resource group is
made online in the cluster.

Executed periodically.

Failure will result in resource group not becoming
online in the cluster.

Failure will cause a resource group failover to another
node or a restart of the resource in the local node.

18 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Successful Execution of Action Scripts

Table 2-3 shows the state of a resource group after the successful execution of an action
script for every resource within a resource group. To view the state of a resource
group, use the FailSafe Manager graphical user interface (GUI) or the cmgr command.

Table 2-3 Successful Action Script Results

Event
Resource Group
State Action Script to Execute

Resource group is made online on a node online start

Resource group is made offline on a node offline stop

Online status of the resource group (No effect) exclusive

Normal monitoring of online resource group online monitor

Resource group monitoring failure online restart

Failure of Action Scripts

Table 2-4 shows the state of the resource group and the error state when an action
script fails. (There are no offline states with errors.)

Table 2-4 Failure of an Action Script

Failing Script Resource Group State Error State

exclusive online exclusivity

monitor online monitoring failure

restart online monitoring failure

start online srmd executable error

stop online srmd executable error

007–3900–005 19

2: Writing the Action Scripts and Adding Monitoring Agents

Implementing Timeouts and Retrying a Command

You can use the ha_exec2(1m) command to execute action scripts using timeouts.
This allows the action script to be completed within the specified time, and permits
proper error messages to be logged on failure or timeout. The retry variable is
especially useful in monitor and exclusive action scripts.

To retry a command, use the following syntax:

/usr/cluster/bin/ha_exec2 timeout_in_seconds number_of_retries command

For example:

${HA_CMDSPATH}/ha_exec2 30 2 "umount /fs"

The above ha_exec2 command executes the umount /fs command line. If the
command does not complete within 30 seconds, it kills the umount(1m) command
and retries the command. The ha_exec2 command retries the umount command
twice if it times out or fails.

For more information, see the ha_exec2(1M) man page.

Sending UNIX Signals

You can use the ha_exec2(1M) command to send UNIX signals to specific process. A
process is identified by its name or its arguments.

For example:

${HA_CMDSPATH}/ha_exec2 -s 0 -t "SYBASE_DBSERVER"

The above command sends signal 0 (checks if the process exists) to all processes
whose name or arguments match the SYBASE_DBSERVER string. The command
returns 0 if it is a success.

You should use the ha_exec2 command to check for server processes in the
monitor script instead of using the ps -ef | grep command line.

For more information, see the ha_exec2(1m) man page.

20 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Preparation
Before you can write the action scripts, you must do the following:

• Understand the scriptlib functions described in Appendix C, "Using the Script
Library", page 101.

• Familiarize yourself with the script templates provided in the following directory:

/var/cluster/ha/resource_types/template

• Read the man pages for the following commands:

– cmgr(1M)

– fs2d(1M)

– ha_cilog(1M)

– ha_cmsd(1M)

– ha_exec2(1M)

– ha_fsd(1M)

– ha_gcd(1M)

– ha_ifd(1M)

– ha_ifdadmin(1M)

– ha_macconfig2(1M)

– ha_srmd(1M)

– ha_statd2(1M)

– haStatus(1M)

• Familiarize yourself with the action scripts for other highly available services in
/var/cluster/ha/resource_types that are similar to the scripts you wish to
create.

• Understand how to do the following actions for your application:

– Verify that the resource is running

– Verify that the resource can be run

007–3900–005 21

2: Writing the Action Scripts and Adding Monitoring Agents

– Start the resource

– Stop the resource

– Check for the server processes

– Do a simple query as a client and understand the expected response

– Check for configuration file or directory existence (as needed)

• Determine whether or not monitoring is required (see "Is Monitoring Necessary?",
page 22). However, even if monitoring is not needed, a monitor script is still
required; in this case, it can contain only a return-success function.

• Determine if a resource type must be added to the cluster configuration database.

• Understand the vendor-supplied startup and shutdown procedures.

• Determine the configuration parameters for the application; these may be used in
the action script and should be stored in the cluster database. Action scripts may
read from the database.

• Determine whether the resource type can be restarted in the local node and
whether this action makes sense.

Is Monitoring Necessary?

In the following situations, you may not need to perform application monitoring:

• Heartbeat monitoring is sufficient; that is, simply verifying that the node is alive
(provided automatically by the base software) determines the health of the highly
available service.

• There is no process or resource that can be monitored. For example, the SGI
Gauntlet Internet Firewall software performs IP filtering on firewall nodes. Because
the filtering is done in the kernel, there is no process or resource to monitor.

• A resource on which the application depends is already monitored. For example,
monitoring some client-node resources might best be done by monitoring the file
systems, volumes, and network interfaces they use. Because this is already done
by the base software, additional monitoring is not required.

22 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

!
Caution: Beware that monitoring should be as lightweight as possible so that it
does not affect system performance. Also, security issues may make monitoring
difficult. If you are unable to provide a monitoring script with appropriate
performance and security, consider a monitoring agent; see "Monitoring Agents",
page 41.

Types of Monitoring

There are two types of monitoring that may be accomplished in a monitor script:

• Is the resource present?

• Is the resource responding?

You can define multiple levels of monitoring within the monitor script, and the
administrator can choose the desired level by configuring the resource definition in
the cluster database. Ensure that the monitoring level chosen does not affect system
performance. For more information, see the IRIS FailSafe Version 2 Administrator’s
Guide.

What are the Symptoms of Monitoring Failure?

Possible symptoms of failure include the following:

• The resource returns an error code

• The resource returns the wrong result

• The resource does not return quickly enough

How Often Should Monitoring Occur?

You must determine the monitoring interval time and time-out value for the monitor
script. The time-out must be long enough to guarantee that occasional anomalies do
not cause false failovers. It will be useful for you to determine the peak load that
resource may need to sustain.

007–3900–005 23

2: Writing the Action Scripts and Adding Monitoring Agents

You must also determine if the monitor test should execute multiple times so that an
application is not declared dead after a single failure. In general, testing more than
once before declaring failure is a good idea.

Examples of Testing for Monitoring Failure

The test should be simple and complete quickly, whether it succeeds or fails. Some
examples of tests are as follows:

• For a client/server resource that follows a well-defined protocol, the monitor
script can make a simple request and verify that the proper response is received.

• For a web server application, the monitor script can request a home page, verify
that the connection was made, and ignore the resulting home page.

• For a database, a simple request such as querying a table can be made.

• For NFS, more complicated end-to-end monitoring is required. The test might
consist of mounting an exported file system, checking access to the file system
with a stat() system call to the root of the file system, and undoing the mount.

• For a resource that writes to a log file, check that the size of the log file is
increasing or use the grep(1) command to check for a particular message.

• The following command can be used to determine quickly whether a process
exists:

/sbin/killall -0 process_name

You can also use the ha_exec2(1m) command to check if a process is running.

The ha_exec2 command differs from killall(1m) in that it performs a more
exhaustive check on the process name as well as process arguments. killall
searches for the process using the process name only. The command line is as
follows:

/usr/cluster/bin/ha_exec2 -s 0 -t process_name

Note: Do not use the ps(1) command to check on a particular process because its
execution can be too slow.

24 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Script Format
Templates for the action scripts are provided in the following directory:

/var/cluster/ha/resource_types/template

The template scripts have the same general format. Following is the type of
information in the order in which it appears in the template scripts:

• Header information

• Set local variables

• Read resource information

• Exit status

• Perform the basic action of the script, which is the customized area you must
provide

• Set global variables

• Verify arguments

• Read input file

Note: Action “scripts” can be of any form – such as Bourne shell script, perl
script, or C language program. The rest of this chapter discusses Korn shell.

The following sections show an example from the NFS start script.

Header Information

The header information contains comments about the resource type, script type, and
resource configuration format. You must modify the code as needed.

007–3900–005 25

2: Writing the Action Scripts and Adding Monitoring Agents

Following is the header for the NFS start script:

#!/sbin/ksh

**

* *

* Copyright (C) 1998 Silicon Graphics, Inc. *

* *

* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *

* are protected by Federal copyright law. They may not be disclosed *

* to third parties or copied or duplicated in any form, in whole or *

* in part, without the prior written consent of Silicon Graphics, Inc. *

* *
**

#ident "$Revision: 1.17 $"

Resource type: NFS

Start script NFS

#

Test resource configuration information is present in the database in

the following format

#

resource-type.NFS
#

Set Local Variables

The set_local_variables() section of the script defines all of the variables that
are local to the script, such as temporary file names or database keys. All local
variables should use the LOCAL_ prefix. You must modify the code as needed.

Following is the set_local_variables() section from the NFS start script:

set_local_variables()

{
LOCAL_TEST_KEY=NFS

}

26 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Read Resource Information

The get_xxx_info() function, such as get_nfs_info(), reads the resource
information from the cluster database. $1 is the test resource name. If the operation
is successful, a value of 0 is returned; if the operation fails, 1 is returned.

The information is returned in the HA_STRING variable. For more information about
HA_STRING, see Appendix C, "Using the Script Library", page 101.

Following is the get_nfs_info() section from the NFS start script:

get_nfs_info ()

{
ha_get_info ${LOCAL_TEST_KEY} $1

if [$? -ne 0]; then

return 1;

else

return 0;

fi
}

Call ha_get_info with a third argument of any value to obtain all attributes and
dependency information for a resource from the configuration database. Use
ha_get_multi_fields to retrieve specific dependency information. The resource
dependency information is returned in the $HA_FIELD_VALUE variable.

Exit Status

In the exit_script() function, $1 contains the exit_status value. If cleanup
actions are required, such as the removal of temporary files that were created as part
of the process, place them before the exit line.

Following is the exit_script() section from the NFS start script:

exit_script()

{

${HA_DBGLOG} "Exit: exit_script()";
exit $1;

}

007–3900–005 27

2: Writing the Action Scripts and Adding Monitoring Agents

Note: If you call the exit_script function prior to normal termination, it should be
preceded by the ha_write_status_for_resource function and you should use
the same return code that is logged to the output file.

Basic Action

This area of the script is the portion you must customize. The templates provide a
minimal framework.

Following is the framework for the basic action from the start template:

start_template()

for all template resources passed as parameter
for TEMPLATE in $HA_RES_NAMES

do

#HA_CMD="command to start $TEMPLATE resource on the local machine";

#ha_execute_cmd "string to describe the command being executed";

ha_write_status_for_resource $TEMPLATE $HA_SUCCESS;

done

}

Note: When testing the script, you will add the following line to this area to obtain
debugging information:

set -x

For examples of this area, see "Examples of Action Scripts", page 31.

28 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Set Global Variables

The following lines set all of the global and local variables and store the resource
names in $HA_RES_NAMES.

Following is the set_global_variables() function from the NFS start script:

set_global_variables()

{

HA_DIR=/var/cluster/ha

COMMON_LIB=${HA_DIR}/common_scripts/scriptlib

Execute the common library file

. $COMMON_LIB

ha_set_global_defs;

}

Verify Arguments

The ha_check_args() function verifies the arguments and stores them in the
$HA_INFILE and $HA_OUTFILE variables. It returns 1 on error and 0 on success.

Following is the ha_check_args() section from the NFS start script:

ha_check_args $*;

if [$? -ne 0]; then

exit $HA_INVAL_ARGS;

fi

Read Input File

The ha_read_infile() function reads the input file and stores the resource names
in the $HA_RES_NAMES variable. This function is defined in the scriptlib library.
See "Read an Input File", page 108.

007–3900–005 29

2: Writing the Action Scripts and Adding Monitoring Agents

Following is code from the NFS start script that calls the ha_read_infile()
function:

Read the input file and store the resource names in $HA_RES_NAMES

variable

ha_read_infile;

Complete the Action

Each action script ends with the following, which performs the action and writes the
output status to the $HA_OUTFILE:

action_resourcetype;

exit_script $HA_SUCCESS

Following is the completion from the NFS start script:

start_nfs;

exit_script $HA_SUCCESS;

Steps in Writing a Script

!
Caution: Multiple copies of actions scripts can execute at the same time. Therefore,
all temporary file names used by the scripts can be suffixed by script.$$ in order
to make them unique, or you can use the resource name because it must be unique to
the cluster.

For each script, you must do the following:

• Get the required variables

• Check the variables

• Perform the action

• Check the action

30 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Note: The start and stop scripts are required to be idempotent; that is, they have
the appearance of being run once but can in fact be run multiple times. For
example, if the start script is run for a resource that is already started, the script
must not return an error.

All action scripts must return the status to the
/var/cluster/ha/log/script_nodename file.

Examples of Action Scripts
The following sections use portions of the NFS scripts as examples.

Note: The examples in this guide may not exactly match the released system.

start Script

The NFS start script does the following:

1. Creates a resource-specific NFS status directory.

2. Exports the specified export-point with the specified export-options.

Following is a section from the NFS start script:

Start the resource on the local machine.

Return HA_SUCCESS if the resource has been successfully started on the local

machine and HA_CMD_FAILED otherwise.
#

start_nfs()

{

${HA_DBGLOG} "Entry: start_nfs()";

for all nfs resources passed as parameter

for resource in ${HA_RES_NAMES}

do

NFSFILEDIR=${HA_SCRIPTTMPDIR}/${LOCAL_TEST_KEY}$resource

HA_CMD="/sbin/mkdir -p $NFSFILEDIR";

ha_execute_cmd "creating nfs status file directory";

007–3900–005 31

2: Writing the Action Scripts and Adding Monitoring Agents

if [$? -ne 0]; then
${HA_LOG} "Failed to create ${NFSFILEDIR} directory";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script $HA_NOCFGINFO

fi

get_nfs_info $resource

if [$? -ne 0]; then

${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi

ha_get_field "${HA_STRING}" export-info

if [$? -ne 0]; then

${HA_LOG} "NFS: export-info not present in CDB for resource $resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

export_opts="$HA_FIELD_VALUE"

ha_get_field "${HA_STRING}" filesystem

if [$? -ne 0]; then
${HA_LOG} "NFS: filesystem-info not present in CDB for resource

$resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi
filesystem="$HA_FIELD_VALUE"

Make the script idempotent, check to see if the NFS resource

is already exported, if so return success. Remember that we

might not have any export options.

retstat=0;
Check to see if the NFS resource is already exported

(without options)

/usr/etc/exportfs | grep "$resource$" >/dev/null 2>&1

retstat=$?

if [$retstat -eq 1]; then

Check to see if the NFS resource is already exported
with options.

/usr/etc/exportfs | grep "$resource " | grep "$export_opts$" >/dev/null 2>&1

32 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

retstat=$?
fi

if [$retstat -eq 1]; then

Before we try and export the NFS resource, make sure

filesystem is mounted.

HA_CMD="/sbin/grep $filesystem /etc/mtab > /dev/null 2>&1";
ha_execute_cmd "check if the filesystem $filesystem is mounted";

if [$? -eq 0]; then

HA_CMD="/usr/etc/exportfs -i -o $export_opts $resource";

ha_execute_cmd "export $resource directories to NFS clients";

if [$? -ne 0]; then

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

else

${HA_LOG} "NFS: filesystem $filesystem not mounted"
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

fi

else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

done
}

stop Script

The NFS stop script does the following:

1. Unexports the specified export-point.

2. Removes the NFS status directory.

Following is an example from the NFS stop script:

Stop the nfs resource on the local machine.

Return HA_SUCCESS if the resource has been successfully stopped on the local

machine and HA_CMD_FAILED otherwise.

#

stop_nfs()
{

007–3900–005 33

2: Writing the Action Scripts and Adding Monitoring Agents

${HA_DBGLOG} "Entry: stop_nfs()";

for all nfs resources passed as parameter

for resource in ${HA_RES_NAMES}

do

get_nfs_info $resource
if [$? -ne 0]; then

NFS resource information not available.

${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi

ha_get_field "${HA_STRING}" export-info

if [$? -ne 0]; then

${HA_LOG} "NFS: export-info not present in CDB for resource $resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

export_opts="$HA_FIELD_VALUE"

Make the script idempotent, check to see if the filesystem

is already exported, if so return success. Remember that we
might not have any export options.

retstat=0;

Check to see if the filesystem is already exported

(without options)
/usr/etc/exportfs | grep "$resource$" >/dev/null 2>&1

retstat=$?

if [$retstat -eq 1]; then

Check to see if the filesystem is already exported

with options.
/usr/etc/exportfs | grep "$resource " | grep "$export_opts$" >/dev/null 2>&1

retstat=$?

fi

if [$retstat -eq 0]; then

Before we unexport the filesystem, check that it exists

HA_CMD="/sbin/grep $resource /etc/mtab > /dev/null 2>&1";
ha_execute_cmd "check if the export-point exists";

if [$? -eq 0]; then

34 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

HA_CMD="/usr/etc/exportfs -u $resource";
ha_execute_cmd "unexport $resource directories to NFS clients";

if [$? -ne 0]; then

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};
fi

else

${HA_LOG} "NFS: filesystem $resource not found in export filesystem list, \

unexporting anyway";

HA_CMD="/usr/etc/exportfs -u $resource";

ha_execute_cmd "unexport $resource directories to NFS clients";
ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

remove the monitor nfs status file

NFSFILEDIR=${HA_SCRIPTTMPDIR}/${LOCAL_TEST_KEY}$resource

HA_CMD="/sbin/rm -rf $NFSFILEDIR";

ha_execute_cmd "removing nfs status file directory";

if [$? -ne 0]; then
${HA_LOG} "Failed to delete ${NFSFILEDIR} directory";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script $HA_NOCFGINFO

fi

done
}

monitor Script

The NFS monitor script does the following:

1. Verifies that the file system is mounted at the correct mount point.

2. Requests the status of the exported file system.

3. Checks the export-point.

4. Requests NFS statistics and (based on the results) make a Remote Procedure Call
(RPC) to NFS as needed.

007–3900–005 35

2: Writing the Action Scripts and Adding Monitoring Agents

Following is an example from the NFS monitor script:

Check if the nfs resource is allocated in the local node

This check must be light weight and less intrusive compared to

exclusive check. This check is done when the resource has been

allocated in the local node.

Return HA_SUCCESS if the resource is running in the local node
and HA_CMD_FAILED if the resource is not running in the local node

The list of the resources passed as input is in variable

$HA_RES_NAMES

#

monitor_nfs()
{

${HA_DBGLOG} "Entry: monitor_nfs()";

for resource in ${HA_RES_NAMES}

do

get_nfs_info $resource
if [$? -ne 0]; then

No resource information available.

${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};
fi

ha_get_field "${HA_STRING}" filesystem

if [$? -ne 0]; then

filesystem not available available.
${HA_LOG} "NFS: filesystem not present in CDB for resource $resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi

fs="$HA_FIELD_VALUE";

Check to see if the filesystem is mounted

HA_CMD="/sbin/mount | grep $fs >> /dev/null 2>&1"

ha_execute_cmd "check to see if $fs is mounted"

if [$? -ne 0]; then
${HA_LOG} "NFS: $fs not mounted";

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;

36 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

fi

stat the filesystem

HA_CMD="/sbin/stat $resource";

ha_execute_cmd "stat mount point $resource"

if [$? -ne 0]; then
${HA_LOG} "NFS: cannot stat $resource NFS export point";

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;

fi

check the filesystem is exported
EXPORTFS="${HA_SCRIPTTMPDIR}/exportfs.$$"

/usr/etc/exportfs > $EXPORTFS 2>&1

HA_CMD="awk ’{print \$1}’ $EXPORTFS | grep $resource"

ha_execute_cmd " check the filesystem $resource is exported"

if [$? -ne 0]; then
${HA_LOG} "NFS: failed to find $resource in exported filesystem list:-"

${HA_LOG} "‘/sbin/cat ${EXPORTFS}‘"

rm -f $EXPORTFS;

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;

fi

rm -f $EXPORTFS

create a file to hold the nfs stats. This will will be

deleted in the stop script.
NFSFILE=${HA_SCRIPTTMPDIR}/${LOCAL_TEST_KEY}$resource/.nfsstat

NFS_STAT=‘/usr/etc/nfsstat -rs | /usr/bin/tail -1 | /usr/bin/awk ’{print $1}’‘

if [! -f $NFSFILE]; then

${HA_LOG} "NFS: creating stat file $NFSFILE";

echo $NFS_STAT > $NFSFILE;
if [$NFS_STAT -eq 0];then

do some rpcinfo’s

exec_rpcinfo;

if [$? -ne 0]; then

${HA_LOG} "NFS: exec_rpcinfo failed (1)";

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
exit_script $HA_CMD_FAILED;

fi

007–3900–005 37

2: Writing the Action Scripts and Adding Monitoring Agents

fi
else

OLD_STAT=‘/sbin/cat $NFSFILE‘

if test "X${NFS_STAT}" = "X"; then

${HA_LOG} "NFS: NFS_STAT is not set, reset to zero";

NFS_STAT=0;
fi

if test "X${OLD_STAT}" = "X"; then

${HA_LOG} "NFS: OLD_STAT is not set, reset to zero";

OLD_STAT=0;

fi

if [$NFS_STAT -gt $OLD_STAT]; then
echo $NFS_STAT > $NFSFILE;

else

echo $NFS_STAT > $NFSFILE;

exec_rpcinfo;

if [$? -ne 0]; then
${HA_LOG} "NFS: exec_rpcinfo failed (2)";

ha_write_status_for_resource $resource ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;

fi

fi

fi
ha_write_status_for_resource $resource $HA_SUCCESS;

done

}

exclusive Script

The NFS exclusive script determines whether the file system is already exported.
The check made by an exclusive script can be more expensive than a monitor check.
IRIS FailSafe uses this script to determine if resources are running on a node in the
cluster, and to thereby prevent starting resources on multiple nodes in the cluster.

Following is an example from the NFS exclusive script:

Check if the nfs resource is running in the local node. This check can

more intrusive than the monitor check. This check is used to determine

if the resource has to be started on a machine in the cluster.

Return HA_NOT_RUNNING if the resource is not running in the local node

and HA_RUNNING if the resource is running in the local node

38 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

The list of nfs resources passed as input is in variable
$HA_RES_NAMES

#

exclusive_nfs()

{

${HA_DBGLOG} "Entry: exclusive_nfs()";

for all resources passed as parameter

for resource in ${HA_RES_NAMES}

do

get_nfs_info $resource
if [$? -ne 0]; then

No resource information available

${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};
fi

SMFILE=${HA_SCRIPTTMPDIR}/showmount.$$

/etc/showmount -x >> ${SMFILE};

HA_CMD="/sbin/grep $resource ${SMFILE} >> /dev/null 2>&1"

ha_execute_cmd "checking for $resource exported directory"
if [$? -eq 0];then

ha_write_status_for_resource ${resource} ${HA_RUNNING};

ha_print_exclusive_status ${resource} ${HA_RUNNING};

else

ha_write_status_for_resource ${resource} ${HA_NOT_RUNNING};
ha_print_exclusive_status ${resource} ${HA_NOT_RUNNING};

fi

rm -f ${SMFILE}

done

}

restart Script

The NFS restart script exports the specified export-point with the specified
export-options.

Following is an example from the restart script for NFS:

007–3900–005 39

2: Writing the Action Scripts and Adding Monitoring Agents

Restart nfs resource
Return HA_SUCCESS if nfs resource failed over successfully or

return HA_CMD_FAILED if nfs resource could not be failed over locally.

Return HA_NOT_SUPPORTED if local restart is not supported for nfs

resource type.

The list of nfs resources passed as input is in variable
$HA_RES_NAMES

#

restart_nfs()

{

${HA_DBGLOG} "Entry: restart_nfs()";

for all nfs resources passed as parameter

for resource in ${HA_RES_NAMES}

do

get_nfs_info $resource

if [$? -ne 0]; then
${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi

ha_get_field "${HA_STRING}" export-info
if [$? -ne 0]; then

${HA_LOG} "NFS: export-info not present in CDB for resource $resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi
export_opts="$HA_FIELD_VALUE"

HA_CMD="/usr/etc/exportfs -i -o $export_opts $resource";

ha_execute_cmd "export $resource directories to NFS clients";

if [$? -ne 0]; then
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

else

ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

done

}

40 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Monitoring Agents
If resources cannot be monitored using a lightweight check, you should use a
monitoring agent. The monitor action script contacts the monitoring agent to
determine the status of the resource in the node. The monitoring agent in turn
periodically monitors the resource. Figure 2-1 shows the monitoring process.

Action script
monito

r

Monitoring

agent

Resource

Figure 2-1 Monitoring Process

Monitoring agents are useful for monitoring database resources. In databases,
creating the database connection is costly and time consuming. The monitoring agent
maintains connections to the database and it queries the database using the
connection in response to the monitor action script request.

Monitoring agents are independent processes and can be started by the cmond
process, although this is not required. For example, if a monitoring agent must be
started when activating highly available services on a node, information about that
agent can be added to the cmond configuration on that node. The cmond
configuration is located in the /var/cluster/cmon/process_groups directory.
Information about different agents should go into different files. The name of the file
is not relevant to the activate/deactivate procedure.

If a monitoring agent exits or aborts, cmond will automatically restart the monitoring
agent. This prevents monitor action script failures due to monitoring agent failures.

For example, the /var/cluster/cmon/process_groups/ip_addresses file
contains information about the ha_ifd process that monitors network interfaces. It
contains the following:

TYPE = cluster_agent

PROCS = ha_ifd

ACTIONS = start stop restart attach detach

AUTOACTION = attach

007–3900–005 41

2: Writing the Action Scripts and Adding Monitoring Agents

Note: The ACTIONS line above defines what cmond can do to the PROCS processes.
These actions must be the same for every agent. (It does not refer to action scripts.)

If you create a new monitoring agent, you must also create a corresponding file in the
/var/cluster/cmon/process_groups directory that contains similar information
about the new agent. To do this, you can copy the ip_addresses file and modify
the PROCS line to list the executables that constitute your new agent. These
executables must be located in the /usr/cluster/bin directory. You should not
modify the other configuration lines (TYPE, ACTIONS, and AUTOACTION).

Suppose you need to add a new agent called newagent that consists of processes
ha_x and ha_y. The configuration information for this agent will be located in the
/var/cluster/cmon/process_groups/newagent file, which will contain the
following:

TYPE = cluster_agent

PROCS = ha_x ha_y

ACTIONS = start stop restart attach detach
AUTOACTION = attach

In this case, the software will expect two executables (/usr/cluster/bin/ha_x
and /usr/cluster/bin/ha_y) to be present.

42 007–3900–005

Chapter 3

Creating a Failover Policy

This chapter tells you how to create a failover policy. It describes the following topics:

• "Contents of a Failover Policy"

• "Failover Script Interface", page 54

• "Example Failover Policies", page 55

Contents of a Failover Policy
A failover policy is the method by which a resource group is failed over from one
node to another. A failover policy consists of the following:

• Failover domain

• Failover attribute

• Failover scripts

IRIS FailSafe uses the failover domain output from a failover script along with
failover attributes to determine on which node a resource group should reside.

The administrator must configure a failover policy for each resource group. The name
of the failover policy must be unique within the pool.

Failover Domain

A failover domain is the ordered list of nodes on which a given resource group can
be allocated. The nodes listed in the failover domain must be within the same cluster;
however, the failover domain does not have to include every node in the cluster. The
failover domain can also be used to statically load balance the resource groups in a
cluster.

Examples:

• In a four–node cluster, a set of two nodes that have access to a particular XLV
volume may be the failover domain of the resource group containing that XLV
volume.

007–3900–005 43

3: Creating a Failover Policy

• In a cluster of nodes named venus, mercury, and pluto, you could configure
the following initial failover domains for resource groups RG1 and RG2:

– mercury, venus, pluto for RG1

– pluto, mercury for RG2

The administrator defines the initial failover domain when configuring a failover
policy. The initial failover domain is used when a cluster is first booted. The ordered
list specified by the initial failover domain is transformed into a run-time failover
domain by the failover script. With each failure, the failover script takes the current
run-time failover domain and potentially modifies it (for the ordered failover script,
the order will not change); the initial failover domain is never used again. Depending
on the run-time conditions such as load and contents of the failover script, the initial
and run-time failover domains may be identical.

For example, suppose that the cluster contains three nodes named N1, N2, and N3;
that node failure is not the reason for failover; and that the initial failover domain is
as follows:

N1 N2 N3

The runtime failover domain will vary based on the failover script:

• If ordered:

N1 N2 N3

• If round-robin:

N2 N3 N1

• If a customized failover script, the order could be any permutation, based on the
contents of the script:

N1 N2 N3 N1 N3 N2

N2 N1 N3 N2 N3 N1
N3 N1 N2 N3 N2 N1

FailSafe stores the run-time failover domain and uses it as input to the next failover
script invocation.

44 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Failover Attributes

A failover attribute is a value that is passed to the failover script and used by IRIS
FailSafe for the purpose of modifying the run-time failover domain used for a specific
resource group.

You can specify the following classes of failover attributes:

• Required attributes: either Auto_Failback or Controlled_Failback
(mutually exclusive)

• Optional attributes:

– Auto_Recovery or InPlace_Recovery (mutually exclusive)

– Critical_RG

– Node_Failures_Only

Note: The starting conditions for the attributes differs by class:

• For required attributes, a node joins the FailSafe membership when the cluster is
already providing highly available services.

• For optional attributes, highly available services are started and the resource
group is running in only one node in the cluster.

Table 3-1 describes each attribute.

007–3900–005 45

3: Creating a Failover Policy

Table 3-1 Failover Attributes

Class Name Description

Required Auto_Failback Specifies that the resource group is made online based on the
failover policy when the node joins the cluster. This attribute is
best used when some type of load balancing is required. You
must specify either this attribute or the Controlled_Failback
attribute.

Controlled_Failback Specifies that the resource group remains on the same node when
a node joins the cluster. This attribute is best used when
client/server applications have expensive recovery mechanisms,
such as databases or any application that uses tcp to
communicate. You must specify either this attribute or the
Auto_Failback attribute.

Optional Auto_Recovery Specifies that the resource group is made online based on the
failover policy even when an exclusivity check shows that the
resource group is running on a node. This attribute is optional
and is mutually exclusive with the InPlace_Recovery
attribute. If you specify neither of these attributes, IRIS FailSafe
will use this attribute by default if you have specified the
Auto_Failback attribute.

InPlace_Recovery Specifies that the resource group is made online on the same
node where the resource group is running. This attribute is
optional and is mutually exclusive with the Auto_Recovery
attribute. If you specify neither of these attributes, IRIS FailSafe
will use this attribute by default if you have specified the
Controlled_Failback attribute.

46 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Class Name Description

Critical_RG Allows monitor failure recovery to succeed even when there are
resource group release failures. When resource monitoring fails,
FailSafe attempts to move the resource group to another node in
the application failover domain. If FailSafe fails to release the
resources in the resource group, FailSafe puts the Resource group
into srmd executable error status. If the Critical_RG
failover attribute is specified in the failover policy of the resource
group, FailSafe will reset the node where the release operation
failed and move the resource group to another node based on
failover policy.

Node_Failures_Only Allows failover only when there are node failures. This attribute
does not have an impact on resource restarts in the local node.
The failover does not occur when there is a resource monitoring
failure in the resource group. This attribute is useful for
customers who are using a hierarchical storage management
system such as DMF; in this situation, a customer may want to
have resource monitoring failures reported without automatic
recovery, allowing operators to perform the recovery action
manually if necessary.

Failover Scripts

A failover script generates the run-time failover domain and returns it to the FailSafe
process. The FailSafe process applies the failover attributes and then selects the first
node in the returned failover domain that is also in the current FailSafe membership.

Note: The run-time of the failover script must be capped to a system-definable
maximum. Therefore, any external calls must be guaranteed to return quickly. If the
failover script takes too long to return, FailSafe will kill the script process and use the
previous run-time failover domain.

Failover scripts are stored in the /var/cluster/ha/policies directory.

ordered

The ordered failover script is provided with the release. The ordered script never
changes the initial domain; when using this script, the initial and run-time domains

007–3900–005 47

3: Creating a Failover Policy

are equivalent. The script reads six lines from the input file and in case of errors logs
the input parameters and/or the error to the script log.

The following example shows the contents of the ordered failover script:

#!/sbin/ksh

#

$1 - input file

$2 - output file
#

line 1 input file - version

line 2 input file - name

line 3 input file - owner field

line 4 input file - attributes
line 5 input file - list of possible owners

line 6 input file - application failover domain

DIR=/usr/cluster/bin

LOG=${DIR}/ha_cilog -g ha_script -s script

FILE=/var/cluster/ha/policies/ordered

input=$1

output=$2

cat ${input} | read version

head -2 ${input} | tail -1 | read name
head -3 ${input} | tail -1 | read owner

head -4 ${input} | tail -1 | read attr

head -5 ${input} | tail -1 | read mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8

head -6 ${input} | tail -1 | read afd1 afd2 afd3 afd4 afd5 afd6 afd7 afd8

${LOG} -l 1 "${FILE}:" ‘/bin/cat ${input}‘

if ["${version}" -ne 1] ; then

${LOG} -l 1 "ERROR: ${FILE}: Different version no. Should be (1) rather than

(${version})" ;

exit 1;
elif [-z "${name}"]; then

${LOG} -l 1 "ERROR: ${FILE}: Failover script not defined";

exit 1;

elif [-z "${attr}"]; then

${LOG} -l 1 "ERROR: ${FILE}: Attributes not defined";
exit 1;

48 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

elif [-z "${mem1}"]; then
${LOG} -l 1 "ERROR: ${FILE}: No node membership defined";

exit 1;

elif [-z "${afd1}"]; then

${LOG} -l 1 "ERROR: ${FILE}: No failover domain defined";

exit 1;
fi

found=0

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

for j in $mem1 $mem2 $mem3 $mem4 $mem5 $mem6 $mem7 $mem8; do

if ["X${j}" = "X${i}"]; then
found=1;

break;

fi

done

done

if [${found} -eq 0]; then

mem="("$mem1")"" ""("$mem2")"" ""("$mem3")"" ""("$mem4")"" ""("$mem5")""

""("$mem6")"" ""("$mem7")"" ""("$mem8")";

afd="("$afd1")"" ""("$afd2")"" ""("$afd3")"" ""("$afd4")"" ""("$afd5")""

""("$afd6")"" ""("$afd7")"" ""("$afd8")";
${LOG} -l 1 "ERROR: ${FILE}: Policy script failed"

${LOG} -l 1 "ERROR: ${FILE}: " ‘/bin/cat ${input}‘

${LOG} -l 1 "ERROR: ${FILE}: Nodes defined in membership do not match the

ones in failure domain"

${LOG} -l 1 "ERROR: ${FILE}: Parameters read from input file: version =
$version, name = $name, owner = $owner, attribute = $attr, nodes = $mem, afd = $afd"

exit 1;

fi

if [${found} -eq 1]; then
rm -f ${output}

echo $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8 > ${output}

exit 0

fi

exit 1

007–3900–005 49

3: Creating a Failover Policy

round-robin

The round-robin failover script selects the resource group owner in a round-robin
(circular) fashion. This policy can be used for resource groups that can be run in any
node in the cluster.

The following example shows the contents of the round-robin failover script:

#!/sbin/ksh

#

$1 - input file
$2 - output file

#

line 1 input file - version

line 2 input file - name

line 3 input file - owner field

line 4 input file - attributes
line 5 input file - Possible list of owners

line 6 input file - application failover domain

DIR=/usr/cluster/bin
LOG=${DIR}/ha_cilog -g ha_script -s script

FILE=/var/cluster/ha/policies/round-robin

Read input file

input=$1
output=$2

cat ${input} | read version

head -2 ${input} | tail -1 | read name

head -3 ${input} | tail -1 | read owner

head -4 ${input} | tail -1 | read attr

head -5 ${input} | tail -1 | read mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8
head -6 ${input} | tail -1 | read afd1 afd2 afd3 afd4 afd5 afd6 afd7 afd8

Validate input file

${LOG} -l 1 "${FILE}:" ‘/bin/cat ${input}‘

if ["${version}" -ne 1] ; then

${LOG} -l 1 "ERROR: ${FILE}: Different version no. Should be (1) rather than

(${version})" ;

exit 1;

50 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

elif [-z "${name}"]; then
${LOG} -l 1 "ERROR: ${FILE}: Failover script not defined";

exit 1;

elif [-z "${attr}"]; then

${LOG} -l 1 "ERROR: ${FILE}: Attributes not defined";

exit 1;
elif [-z "${mem1}"]; then

${LOG} -l 1 "ERROR: ${FILE}: No node membership defined";

exit 1;

elif [-z "${afd1}"]; then

${LOG} -l 1 "ERROR: ${FILE}: No failover domain defined";

exit 1;
fi

Return 0 if $1 is in the membership and return 1 otherwise.

check_in_mem()
{

for j in $mem1 $mem2 $mem3 $mem4 $mem5 $mem6 $mem7 $mem8; do

if ["X${j}" = "X$1"]; then

return 0;

fi

done
return 1;

}

Check if owner has to be changed. There is no need to change owner if

owner node is in the possible list of owners.
check_in_mem ${owner}

if [$? -eq 0]; then

nextowner=${owner};

fi

Search for the next owner

if ["X${nextowner}" = "X"]; then

next=0;

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

if ["X${i}" = "X${owner}"]; then

next=1;
continue;

fi

007–3900–005 51

3: Creating a Failover Policy

if ["X${owner}" = "XNO ONE"]; then

next=1;

fi

if [${next} -eq 1]; then
Check if ${i} is in membership

check_in_mem ${i};

if [$? -eq 0]; then

found next owner

nextowner=${i};

next=0;
break;

fi

fi

done

fi

if ["X${nextowner}" = "X"]; then

wrap round the afd list.

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

if ["X${i}" = "X${owner}"]; then

Search for next owner complete
break;

fi

Previous loop should have found new owner

if ["X${owner}" = "XNO ONE"]; then
break;

fi

if [${next} -eq 1]; then

check_in_mem ${i};
if [$? -eq 0]; then

found next owner

nextowner=${i};

next=0;

break;

fi
fi

done

52 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

fi

if ["X${nextowner}" = "X"]; then

${LOG} -l 1 "ERROR: ${FILE}: Policy script failed"

${LOG} -l 1 "ERROR: ${FILE}: " ‘/bin/cat ${input}‘

${LOG} -l 1 "ERROR: ${FILE}: Could not find new owner"
exit 1;

fi

nextowner is the new owner

print=0;
rm -f ${output};

Print the new afd to the output file

echo -n "${nextowner} " > ${output};

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8;
do

if ["X${nextowner}" = "X${i}"]; then

print=1;

elif [${print} -eq 1]; then

echo -n "${i} " >> ${output}

fi
done

print=1;

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

if ["X${nextowner}" = "X${i}"]; then
print=0;

elif [${print} -eq 1]; then

echo -n "${i} " >> ${output}

fi

done

echo >> ${output};

exit 0;

007–3900–005 53

3: Creating a Failover Policy

Creating a New Failover Script

If the ordered or round-robin scripts do not meet your needs, you can create a
new failover script and place it in the /var/clusters/ha/policies directory. You
can then configure the cluster database to use your new failover script for the
required resource groups.

Failover Script Interface
The following is passed to the failover script:

function(version, name, owner, attributes, possibleowners, domain)

version IRIS FailSafe version. The IRIS FailSafe 2.1.x release
uses version number 1.

name Name of the failover script (used for error validations
and logging purposes).

owner Logical name of the node that has (or had) the resource
group online.

attributes Failover attributes (Auto_Failback or
Controlled_Failback must be included).

possibleowners List of possible owners for the resource group. This list
can be subset of the current FailSafe membership.

domain Ordered list of nodes used at the last failover. (At the
first failover, the initial failover domain is used.)

The failover script returns the newly generated run-time failover domain to FailSafe,
which then chooses the node on which the resource group should be allocated by
applying the failover attributes and FailSafe membership to the run-time failover
domain.

54 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Example Failover Policies
There are two general types of configuration, each of which can have from two
through eight nodes:

• N nodes that can potentially failover their applications to any of the other nodes
in the cluster.

• N primary nodes that can failover to M backup nodes. For example, you could
have three primary nodes and one backup node.

This section shows examples of failover policies for the following types of
configuration, each of which can have from two through eight nodes:

• N primary nodes and one backup node (N+1)

• N primary nodes and two backup nodes (N+2)

• N primary nodes and M backup nodes (N+M)

Note: The diagrams in the following sections illustrate the configuration concepts
discussed here, but they do not address all required or supported elements, such
as reset hubs.

N+1 Configuration

Figure 3-1 shows a specific instance of an N+1 configuration in which there are three
primary nodes and one backup node. (This is also known as a star configuration.) The
disks shown could each be disk farms.

007–3900–005 55

3: Creating a Failover Policy

A

B

C

D

Prim
ary nodes

Backup node
Disks

Figure 3-1 N+1 Configuration Concept

You could configure the following failover policies for load balancing:

• Failover policy for RG1:

– Initial failover domain = A, D

– Failover attribute = Auto_Failback, Critical_RG

– Failover script = ordered

• Failover policy for RG2:

– Initial failover domain = B, D

– Failover attribute = Auto_Failback

– Failover script = ordered

• Failover policy for RG3:

– Initial failover domain = C, D

56 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

– Failover attribute = Auto_Failback

– Failover script = ordered

If node A fails, RG1 will fail over to node D. As soon as node A reboots, RG1 will be
moved back to node A.

If you change the failover attribute to Controlled_Failback for RG1 and node A
fails, RG1 will fail over to node D and will remain running on node D even if node A
reboots.

Suppose resource group RG1 is online on node A in the cluster. When the monitor of
one of the resources in RG1 fails, FailSafe attempts to move the resource group to
node D. If the release of RG1 from node A fails, FailSafe will reset node A and allocate
the resource group on node D. If Critical_RG failover attribute was not specified,
RG1 will have an srmd executable error.

N+2 Configuration

Figure 3-2 shows a specific instance of an N+2 configuration in which there are four
primary nodes and two backup nodes. The disks shown could each be disk farms.

Prim
ary

nodes

Backup

nodes

Disks

A

B

C

D

E

F

Figure 3-2 N+2 Configuration Concept

007–3900–005 57

3: Creating a Failover Policy

You could configure the following failover policy for resource groups RG7 and RG8:

• Failover policy for RG7:

– Initial failover domain = A, E, F

– Failover attribute = Controlled_Failback

– Failover script = ordered

• Failover policy for RG8:

– Initial failover domain = B, F, E

– Failover attribute = Auto_Failback

– Failover script = ordered

If node A fails, RG7 will fail over to node E. If node E also fails, RG7 will fail over to
node F. If A is rebooted, RG7 will remain on node F.

If node B fails, RG8 will fail over to node F. If B is rebooted, RG8 will return to node B.

N+M Configuration

Figure 3-3 shows a specific instance of an N+M configuration in which there are four
primary nodes and each can serve as a backup node. The disk shown could be a disk
farm.

58 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

A

B

C

D

Figure 3-3 N+M Configuration Concept

You could configure the following failover policy for resource groups RG5 and RG6:

• Failover policy for RG5:

– Initial failover domain = A, B, C, D

– Failover attribute = Controlled_Failback

– Failover script = ordered

• Failover policy for RG6:

– Initial failover domain = C, A, D

– Failover attribute = Controlled_Failback

– Failover script = ordered

If node C fails, RG6 will fail over to node A. When node C reboots, RG6 will remain
running on node A. If node A then fails, RG6 will return to node C and RG5 will move
to node B. If node B then fails, RG5 moves to node C.

007–3900–005 59

Chapter 4

Defining a New Resource Type

This chapter describes how to define a new resource type. The following are
examples of candidates for resource types:

• Databases that support transactions

• Web servers

• Applications that use user datagram protocol (UDP) for communication with
clients

See also "Characteristics that Permit an Application to be Highly Available", page 11.

You will want to create a new resource type when creating something entirely new or
when you want to have multiple resource types that are similar except for one or two
attributes. For example, if you want to enable local restart for most IP addresses but
not for some, you could create a new resource type called IP_address2 using all of
the same information as for the default IP_address except changing the value of the
restart mode to 1 rather than the default 0.

This chapter contains the following sections:

• "Information You Must Gather"

• "Copying an Existing Resource Type to Create a New One", page 65

• "Creating a New Resource Type from Scratch", page 66

• "Server-side Properties File", page 79

• "Testing a New Resource Type", page 82

Information You Must Gather
To define a new resource type, you must have the following information:

• Name of the resource type. The name can consist of alphanumeric characters and
any of the following:

- (hyphen)

_ (underscore)

007–3900–005 61

4: Defining a New Resource Type

/
.

:

"

=

@
,

The name cannot contain a space, an unprintable character, or any of the following
characters:

*

?

\

#

• Name of the cluster to which the resource type will apply.

• If the resource type is to be restricted to a specific node, you must know the node
name.

• Order of performing the action scripts for resources of this type in relation to
resources of other types:

– Resources are started in the increasing order of this value

– Resources are stopped in the decreasing order of this value

Ensure that the number you choose for a new resource type permits the resource
types on which it depends to be started before it is started, or stopped after it is
stopped, as appropriate.

Table 4-1 shows the conventions used for order ranges. The values available for
customer use are 201-400 and 701-999.

62 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Table 4-1 Order Ranges

Range Reservation

1-100 SGI-provided basic system resource types, such as MAC_address

101-200 SGI-provided system plug-ins that can be started before IP_address

201-400 User-defined resource types that can be started before IP_address

401-500 SGI-provided basic system resource types, such as IP_address

501-700 SGI-provided system plug-ins that must be started after IP_address

701-999 User-defined resource types that must be started after IP_address

Table 4-2 shows the order numbers of the resource types provided with the release.

Table 4-2 Resource Type Order Numbers

Order Number Resource Type

10 MAC_address

20 volume

30 filesystem

201 NFS

401 IP_address

411 statd

501 Netscape_web

502 Samba

511 Oracle_DB

521 INFORMIX_DB

007–3900–005 63

4: Defining a New Resource Type

• Restart mode, which can be one of the following values:

– 0 = Do not restart on monitoring failures

– 1 = Restart a fixed number of times

• Number of local restarts (when restart mode is 1).

• Location of the executable script. This is always
/var/cluster/ha/resource_types/resource_type_tname.

• Monitoring interval, which is the time period (in milliseconds) between successive
executions of the monitor action script; this is only valid for the monitor action
script.

• Starting time for monitoring. When the resource group is made online in a cluster
node, IRIS FailSafe will start monitoring the resources after the specified time
period (in milliseconds).

• Action scripts to be defined for this resource type. You must specify scripts for
start, stop, exclusive, and monitor, although the monitor script may
contain only a return-success function if you wish. If you specify 1 for the restart
mode, you must specify a restart script.

• Type-specific attributes to be defined for this resource type. The action scripts use
this information to start, stop, and monitor a resource of this resource type. For
example, NFS requires the following resource keys:

– export-point which takes a value that defines the export disk name. This
name is used as input to the exportfs(1M) command. For example:

export-point = /this_disk

– export-info which takes a value that defines the export options for the file
system. These options are used in the exportfs(1M) command. For example:

export-info = rw,wsync,anon=root

– filesystem which takes a value that defines the raw file system. This name
is used as input to the mount(1M) command. For example:

filesystem = /dev/xlv/xlv_object

64 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Copying an Existing Resource Type to Create a New One

!
Caution: Only root can make changes to the cluster database. However, any user
can use the GUI to view database information; therefore, you should not include any
sensitive information in the cluster database. Users should keep this mind when
deciding the list of resource attributes for the resource type.

If an existing resource type is similar to the type you want to create, you can use the
following procedure:

1. Log in as root.

2. Copy the directory for the existing resource type and give the new directory an
appropriate name. For example, to use the NFS resource type as the basis for a
new resource type named NFS_CXFS, do the following:

cp -r /var/cluster/ha/resource_types/NFS /var/cluster/ha/resource_types/NFS_CXFS

3. Modify each script in the new NFS_CXFS directory so that it uses the name of the
new resource type. You must make this modification for the LOCAL_TEST_KEY=
variable definition; modifying log messages and comments is optional but
recommended.

For example, you would change the following line in the
/var/cluster/ha/resource_types/NFS_CXFS/start script:

• From:

LOCAL_TEST_KEY=NFS

• To:

LOCAL_TEST_KEY=NFS_CXFS

4. Eliminate any unneeded dependencies for the new resource type, using either the
GUI or the cmgr command.

For example, you would eliminate the filesystem dependency from the new
NFS_CXFS as follows:

cmgr

Welcome to SGI Cluster Manager Command-Line Interface

cmgr> modify resource_type NFS_CXFS in cluster "testcluster"
Enter commands, when finished enter either "done" or "cancel"

007–3900–005 65

4: Defining a New Resource Type

resource_type NFS_CXFS ? remove dependency filesystem
resource_type NFS_CXFS ? done

Successfully modified resource_type NFS_CXFS

5. Modify the monitor script for the new resource type as needed.

For example, the difference between the standard NFS monitor script and the
new NFS_CXFS monitor script is that when you export CXFS filesystems, you
do not want FailSafe to check if the filesystem is mounted and to exit with
HA_CMD_FAILED if it is not. The NFS_CXFS monitor script itself will determine
what action should take place if the filesystem becomes unmounted. To
accomplish this, you would modify the
/var/cluster/ha/resource_types/NFS_CXFS/monitor script to comment
out the exit_script line in the following section (line modified shown here in
bold)

Check to see if the filesystem is mounted

HA_CMD="/sbin/mount | grep $fs >> /dev/null 2>&1"
ha_execute_cmd "check to see if $fs is mounted"

if [$? -ne 0]; then

${HA_LOG} "NFS: $fs not mounted";

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;

fi

The result of this change is that the status of the commands will be written to the
log, but the script will not exit.

Creating a New Resource Type from Scratch

!
Caution: Only root can make changes to the database. However, any user can use
the GUI to view database information; therefore, you should not include any sensitive
information in the cluster database. Users should keep this mind when deciding the
list of resource attributes for the resource type.

If none of the existing resource types are similar to the type you want to create, you
can create a resource type from scratch using the following methods:

• "Using the FailSafe Manager GUI ", page 67

66 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

• "Using cmgr Interactively ", page 72

• "Using cmgr With a Script", page 77

Using the FailSafe Manager GUI

You can use the FailSafe Manager graphical user interface (GUI) to define a new
resource type and to define the dependencies for a given type. For details about the
GUI, see the IRIS FailSafe Version 2 Administrator’s Guide and Appendix B, "Starting
the FailSafe Manager", page 99.

Define a New Resource Type

To define a new resource type using the GUI, select the following menu:

Tasks
> Resource Types

> Define a Resource Type

The GUI will prompt you for required and optional information. Online help is
provided for each item.

The following figures show this process for a new resource type called
newresourcetype.

007–3900–005 67

4: Defining a New Resource Type

Figure 4-1 Specify the Name of the New Resource Type

68 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Figure 4-2 Specify Settings for Required Actions

007–3900–005 69

4: Defining a New Resource Type

Figure 4-3 Change Settings for Optional Actions

70 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Figure 4-4 Set Type-specific Attributes

Define Dependencies

To define the dependencies for a given type, select the following menu:

Tasks
> Resource Types

> Add/Remove Dependencies for a Resource Type

Figure 4-5 shows an example of adding a dependency (filesystem) to the
newresourcetype resource type.

007–3900–005 71

4: Defining a New Resource Type

Figure 4-5 Add Dependencies

Using cmgr Interactively

The following steps show the use of cmgr (which is the same command as
cluster_mgr(1m)) interactively to define a resource type called newresourcetype.

72 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Note: A resource type name cannot contain a space, an unprintable character, or any
of the following characters:

*

?
\

#

1. Log in as root.

2. Execute the cmgr command. You can use the -p option to prompt you for
information (the command name can be abbreviated to cmgr):

/usr/cluster/bin/cmgr -p

Welcome to SGI Cluster Manager Command-Line Interface

cmgr>

3. Use the set subcommand to specify the default cluster used for cmgr operations.
In this example, we use a cluster named TEST:

cmgr> set cluster TEST

Note: If you prefer, you can specify the cluster name as needed with each
subcommand.

4. Use the define resource_type subcommand. By default, the resource type
will apply across the cluster; if you wish to limit the resource type to a specific
node, enter the node name when prompted. If you wish to enable restart mode,
enter 1 when prompted.

Note: The following example only shows the prompts and answers for two action
scripts (start and stop) for a new resource type named newresourcetype.

cmgr> define resource_type newresourcetype

(Enter "cancel" at any time to abort)

Node[optional]?

007–3900–005 73

4: Defining a New Resource Type

Order ? 300
Restart Mode ? (0)

DEFINE RESOURCE TYPE OPTIONS

0) Modify Action Script.
1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.

5) Add Dependency.

6) Remove Dependency.
7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:1

No current resource type actions

Action name ? start

Executable timeout (in milliseconds) ? 40000

0) Modify Action Script.

1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.
5) Add Dependency.

6) Remove Dependency.

7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:1

Current resource type actions:

start

Action name stop

Executable timemout? (in milliseconds) 40000

74 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

0) Modify Action Script.

1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.
5) Add Dependency.

6) Remove Dependency.

7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:3

No current type specific attributes

Type Specific Attribute ? integer-att
Datatype ? integer

Default value[optional] ? 33

0) Modify Action Script.

1) Add Action Script.

2) Remove Action Script.
3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.

5) Add Dependency.

6) Remove Dependency.

7) Show Current Information.
8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:3

Current type specific attributes:

Type Specific Attribute - 1: integer-att

Type Specific Attribute ? string-att

Datatype ? string

Default value[optional] ? rw

0) Modify Action Script.

007–3900–005 75

4: Defining a New Resource Type

1) Add Action Script.
2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.

5) Add Dependency.

6) Remove Dependency.
7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:5

No current resource type dependencies

Dependency name ? filesystem

0) Modify Action Script.
1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.

5) Add Dependency.

6) Remove Dependency.
7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:7

Current resource type actions:

Action - 1: start

Action - 2: stop

Current type specific attributes:

Type Specific Attribute - 1: integer-att

Type Specific Attribute - 2: string-att

No current resource type dependencies

Resource dependencies to be added:

Resource dependency - 1: filesystem

76 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

0) Modify Action Script.

1) Add Action Script.

2) Remove Action Script.

3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.
5) Add Dependency.

6) Remove Dependency.

7) Show Current Information.

8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option:9

Successfully defined resource_type newresourcetype

cmgr> show resource_types

template

MAC_address

newresourcetype

IP_address

filesystem

volume

cmgr> exit

#

Using cmgr With a Script

You can write a script that contains all of the information required to define a
resource type and supply it to cmgr by using the -f option:

cmgr -f scriptname

Or, you could include the following as the first line of the script and then execute the
script itself:

#!/usr/cluster/bin/cmgr -f

007–3900–005 77

4: Defining a New Resource Type

If any line of the script fails, cmgr will exit. You can choose to ignore the failure and
continue the process by using the -i option, as follows:

#!/usr/cluster/bin/cmgr -if

Note: If you include -i when using a cmgr command line as the first line of the
script, you must use this exact syntax (that is, -if).

A template script for creating a new resource type is located in
/var/cluster/cmgr-templates/cmgr-create-resource_type. Each line of
the script must be a valid cmgr line, a comment line (starting with #), or a blank line.
You must include a done command line to finish a multi-level command. If you
concatenate information from multiple template scripts to prepare your cluster
configuration, you must remove the quit at the end of each template script.

For example, you could use the following script to define the same
newresourcetype resource type defined interactively in the previous section:

Script to define the "newresourcetype" resource type

set cluster TEST

define resource_type newresourcetype

set order to 300
set restart_mode to 0

add action start

set exec_time to 40000

done

add action stop

set exec_time to 40000

done

add type_attribute integer-att
set data_type to integer

set default_value to 33

done

add type_attribute string-att

78 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

set data_type to string
set default_value to rw

done

add dependency filesystem

done

quit

When you execute the cmgr -f command line with this script, you will see the
following output:

/usr/cluster/bin/cmgr -f newresourcetype.script

Successfully defined resource_type newresourcetype

To verify that the resource type was defined, enter the following:

/usr/cluster/bin/cmgr -c "show resource_types in cluster TEST"

template
MAC_address

newresourcetype

IP_address

filesystem

volume

Server-side Properties File
Each resource type can have an optional properties file containing a formatted label
for each plug-in attribute and strings of help text that will be displayed in the GUI.
The file has the following name:

/var/cluster/ha/resource_types/resource_type/resource_type

For example, the properties file for the IP_Address resource type would be as
follows:

/var/cluster/ha/resource_types/IP_Address/IP_Address

The contents of this file is not propagated by the cluster database; therefore, it should
be installed on each node in the cluster along with the resource type’s scripts. (If the

007–3900–005 79

4: Defining a New Resource Type

properties file is not installed on a given node and that node is used as the GUI
server, the help text will not be displayed.)

Property Formats

In each resource type’s properties file, you can have the following property:

resource_type.properFormat = introductory text

For each type-specific attribute, you can have the following properties:

• Label that will be displayed in the GUI:

resource_type.Attribute.label = GUI_label

• Help (glossary) text that will be linked to from each attribute’s label:

resource_type.Attribute.glossary = glossary_key

• Information describing what the resource type is for and how it should be
configured:

glossary_key = help text

Example Properties File

Following is an example properties file for the IP_Address resource type.

IP_address

IP_address.properFormat = \
An IP address resource that belongs to a resource group can be \

used by clients to access the highly available resource group. \

As with any other type of resource, an IP address resource will \

be moved from one node to another when \

FailSafe detects a failure. \
The resource name for an IP address must follow standard dot \

notation. It should not be configured on any network interface. \

IP addresses that require name resolution are not valid IP_address \

resource names. \

For example, "192.0.2.22" could be the name of an IP_address \

resource.

80 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

IP_address.NetworkMask.label = \

Network Mask

IP_address.NetworkMask.glossary = \

glossary.IP_address.NetworkMask

glossary.IP_address.NetworkMask: \
IP address network mask<P>\

The network mask of the IP address \

(for example, "0xffffff00"). \

See the ifconfig(1M) reference page for more \

information.

IP_address.interfaces.label = \

Interfaces

IP_address.interfaces.glossary = \

glossary.IP_address.interfaces

glossary.IP_address.interfaces: \
IP address interfaces<P>\

A comma-separated list of interfaces on which the \

IP address can be configured \

(for example, "ec0,et0,ef0" or "hip0" or "lb0"). \

See the ifconfig(1M) reference page for more \

information.

IP_address.BroadcastAddress.label = \

Broadcast Address

IP_address.BroadcastAddress.glossary = \

glossary.IP_address.BroadcastAddress
glossary.IP_address.BroadcastAddress: \

IP address broadcast address<P>\

The broadcast address for the IP address \

(for example, "192.0.2.255"). \

See the ifconfig(1M) reference page for more \
information.

007–3900–005 81

4: Defining a New Resource Type

Testing a New Resource Type
After adding a new resource type, you should test it as follows:

1. Define a resource group that contains resources of the new type. Ensure that the
group contains all of the resources on which the new resource type depends.

2. Bring the resource group online in the cluster using cmgr or the GUI.

For example, using cmgr:

cmgr> admin online resource_group new_rg in cluster TEST

3. Check the status of the resource group using cmgr or GUI after a few minutes.

For example:

cmgr> show status of resource_group new_rg in cluster TEST

4. If the resource group has been made online successfully, you will see output
similar to the following:

State: Online

Error: No error
Owner: node1

5. If there are resource group errors, do the following:

• Check the srmd logs (/var/cluster/ha/log/srmd_nodename) on the node
on which the resource group is online.

• Search for the string ERROR in the log file. There should be an error message
about a resource in the resource group. The message also provides
information about the action script that failed. For example:

Wed Nov 3 04:20:10.135 <E ha_srmd srm 12127:1 sa_process_tasks.c:627>

CI_FAILURE, ERROR: Action (exclusive) for resource (10.0.2.45) of type

(IP_address) failed with status (failed)
exclusive script failed for the resource 10.0.2.45 of resource type

IP_address. The status "failed"

indicates that the script returned an error.

• Check the script logs (/var/cluster/ha/log/script_nodename on the
same node) for IP_address exclusive script errors.

82 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

• After the fixing the problems in the action script, perform an offline_force
operation to clear the error. For example:

cmgr> admin offline_force resource_group new_rg in cluster TEST

007–3900–005 83

Chapter 5

Testing Scripts

This chapter describes how to test action scripts without running IRIS FailSafe. It also
provides tips on how to debug problems that you may encounter.

Note: Parameters are passed to the action scripts as both input files and output files.
Each line of the input file contains the resource name; the output file contains the
resource name and the script exit status.

General Testing and Debugging Techniques
Some general testing and debugging techniques you can use during testing are as
follows:

• To get debugging information, add the following line to each of your scripts in the
main function of the script:

set -x

• To check that an application is running on a node:

– Enter the following command on that node:

ps -ef | grep application

where application is the name (or a portion of the name) of the executable for
the application.

– Use appropriate commands provided by the application. For example, the
FailSafe INFORMIX option uses the INFORMIX command onstat.

• To show the status of a resource, use the following cmgr command:

show status of resource resourcename of resource_type typename [in cluster clustername]

For example:

cmgr> show status of resource /hafs1/subdir of resource_type NFS in cluster nfs-cluster

State: Online

007–3900–005 85

5: Testing Scripts

Error: None
Owner: hans2

Flags: Resource is monitored locally

• To show the status of a node, use the following cmgr command:

show status of node nodename

For example:

cmgr> show status of node hans2

FailSafe status of node is UP.

Machine (hans2) is not configured for CXFS.

• To show the status of a resource group, use the following cmgr command:

show status of resource_group RG_name in cluster clustername

For example:

cmgr> show status of resource_group nfs-group1 in cluster nfs-cluster

State: Online

Error: No error

Owner: hans2

Debugging Notes
• The exclusive script returns an error when the resource is running in the local

node. If the resource is actually running in the node, there is no exclusive
action script bug.

• If the resource group does not become online on the primary node, it can be
because of a start script error on the primary node or a monitor script error on
the primary node. The nature of the failure can be seen in the srmd logs of the
primary node.

• If the action script failure status is timeout, resource type timeouts for the action
should be increased. In the case of the monitor script, the check can be made
more lightweight.

86 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

• The resource type action script timeouts are for a resource. So, if an action is
performed on two resources, the script timeout is twice the configured resource
type action timeout.

• If the resource group has a configuration error, check the srmd logs on the
primary node for errors.

• The action scripts that use ${HA_LOG} and ${HA_DBGLOG} macros to log
messages can find the messages in /var/cluster/ha/log/script_nodename
file in each node in the cluster.

HA_LOG logs messages at log level 1 and HA_DBGLOG uses log level 11.

Testing an Action Script
To test an action script, do the following:

1. Create an input file, such as /tmp/input, that contains expected resource names.
For example, to create a file that contains the resource named disk1 do the
following:

echo "/disk1" > /tmp/input

2. Create an input parameter file, such as /tmp/ipparamfile, as follows:

echo "ClusterName web-cluster" > /tmp/ipparamfile

3. Execute the action script as follows:

./start /tmp/input /tmp/output /tmp/ipparamfile

Note: The use of the input parameter file is optional.

4. Change the log level from HA_NORMLVL to HA_DBGLVL to allow messages written
with HA_DBGLOG to be printed by adding the following line after the
set_global_variables statement in your script:

HA_CURRENT_LOGLEVEL=$HA_DBGLVL

The output file will contain one of the following return values for the start, stop,
monitor, and restart scripts:

007–3900–005 87

5: Testing Scripts

HA_SUCCESS=0
HA_INVAL_ARGS=1

HA_CMD_FAILED=2

HA_NOTSUPPORTED=3

HA_NOCFGINFO=4

The output file will contain one of the following return values for the exclusive
script:

HA_NOT_RUNNING=0

HA_RUNNING=2

Note: If you call the exit_script function prior to normal termination, it should be
preceded by the ha_write_status_for_resource function and you should use
the same return code that is logged to the output file.

Suppose you have a resource named /disk1. The syntax for the input and output
files would be as follows:

• Input file: <resourcename>

• Output file: <resourcename> <status>

The following example shows:

• The exit status of the action script is 1

• The exit status of the resource is 2

Note: The use of anonymous indicates that the script was run manually. When
the script is run by FailSafe, the full path to the script name is displayed.

echo "/disk1" > /tmp/ipfile
./monitor /tmp/ipfile /tmp/opfile /tmp/ipparamfile

echo $?

2

cat /tmp/opfile

/disk1 2
tail /var/cluster/ha/log/script_heb1

Tue Aug 25 11:32:57.437 <anonymous script 23787:0 Unknown:0> ./monitor:

./monitor called with /tmp/ipfile and /tmp/opfile

88 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Tue Aug 25 11:32:58.118 <anonymous script 24556:0 Unknown:0> ./monitor:
check to see if /disk1 is mounted on /disk1

Tue Aug 25 11:32:58.433 <anonymous script 23811:0 Unknown:0> ./monitor:

/sbin/mount | grep /disk1 | grep /disk1 >> /dev/null 2>&1 exited with

status 0

Tue Aug 25 11:32:58.665 <anonymous script 24124:0 Unknown:0> ./monitor:
stat mount point /disk1

Tue Aug 25 11:32:58.969 <anonymous script 23525:0 Unknown:0> ./monitor:

/sbin/stat /disk1 exited with status 0

Tue Aug 25 11:32:59.258 <anonymous script 24431:0 Unknown:0> ./monitor:

check the filesystem /disk1 is exported

Tue Aug 25 11:32:59.610 <anonymous script 6982:0 Unknown:0> ./monitor:
Tue Aug 25 11:32:59.917 <anonymous script 24040:0 Unknown:0> ./monitor:

awk ’{print \$1}’ /var/cluster/ha/tmp/exportfs.23762 | grep /disk1 exited

with status 1

Tue Aug 25 11:33:00.131 <anonymous script 24418:0 Unknown:0> ./monitor:

echo failed to find /disk1 in exported filesystem list:-
Tue Aug 25 11:33:00.340 <anonymous script 24236:0 Unknown:0> ./monitor:

echo /disk2

For additional information about a script’s processing, see the
/var/cluster/ha/log/script_nodename.

Special Testing Considerations for the monitor Script
The monitor script tests the liveliness of applications and resources. The best way to
test it is to induce a failure, run the script, and check if this failure is detected by the
script; then repeat the process for another failure.

Use this checklist for testing a monitor script:

• Verify that the script detects failure of the application successfully

• Verify that the script always exits with a return value

• Verify that the script does not contain commands that can hang, such as using
DNS for name resolution, or those that continue forever, such as ping(1)

• Verify that the script completes before the time-out value specified in the
configuration file

• Verify that the script’s return codes are correct

007–3900–005 89

5: Testing Scripts

During testing, measure the time it takes for a script to complete and adjust the
monitoring times in your script accordingly. To get a good estimate of the time
required for the script to execute, run it under different system load conditions.

90 007–3900–005

Appendix A

Migrating From 1.2 to 2.1.x

This chapter provides guidelines for migrating your IRIS FailSafe 1.2 resources and
monitor script information to IRIS FailSafe 2.1.x action scripts. It assumes you are
already familiar with the migration information provided in the IRIS FailSafe Version 2
Administrator’s Guide.

Cautions
Multiple instances of action scripts may be executed at the same time. To avoid this,
you can use the ha_execute_lock command. For more information, see "Multiple
Instances of a Script Executed at the Same Time", page 17.

The software for 2.1.x and 1.2 can coexist in the same node. However, 2.1.x and 1.2
cannot run at the same time.

There is no configuration checksum verification in scripts.

Resource Types
In 2.1.x, the ha.conf configuration file has been replaced by the cluster database. The
cluster database is automatically copied to all nodes in the pool. See the IRIS FailSafe
Version 2 Administrator’s Guide for information about configuring a 2.1x system.

If you require new resource types, you will create them using either the FailSafe
Cluster Manager GUI (graphical user interface) or the cmgr(1M) command. See
Chapter 4, "Defining a New Resource Type".

You may be able to reuse the following monitoring information from the 1.2 ha.conf
file with regard to 2.1.x resource types:

• start-monitor-time

• lmon-probe-time (equivalent in 2.1 to the monitor script’s interval parameter)

• lmon-timeout

Note: All 2.1.x time-outs are in milliseconds.

007–3900–005 91

A: Migrating From 1.2 to 2.1.x

The following examples show information (in bold) that is used in the 1.2 ha.conf
file and reused when creating a new resource type in 2.1.x.

Suppose a portion of the 1.2 ha.conf file had this:

action apache

{

local-monitor = /var/ha/actions/ha_apache_lmon

}

action-timer apache

{

start-monitor-time = 120

lmon-probe-time = 120
lmon-timeout = 60

}

You would reuse the information when creating a resource type in 2.1x, as follows:

cmgr> create resource_type apache in cluster apache-cluster
Enter commands, when finished enter either "done", "cancel", "check"

Resource Type Name [apache]? apache

Cluster? apache-cluster

Node? node1

Order [0]? 500

Restart Mode [0]?0
Restart Count [0]?0

Number of Actions [0]? 4

Action? start

Executable? /var/cluster/ha/resource_types/apache/start

Executable Time? 20000
Monitoring Interval? 0

Start Monitoring Time? 0

Action? stop

Executable? /var/cluster/ha/resource_types/apache/stop

Executable Time? 20000
Monitoring Interval? 0

Start Monitoring Time? 0

Action? monitor

Executable? /var/cluster/ha/resource_types/apache/monitor

Executable Time? 60000

Monitoring Interval? 120000

92 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Start Monitoring Time? 120000
Action? exclusive

Executable? /var/cluster/ha/resource_types/apache/exclusive

Executable Time? 60000

Monitoring Interval? 0

Start Monitoring Time? 0?0
Number of Resource Keys [0]? 1

Name of resource key? search-string

Datatype? string

Default Key? httpd

Enter dependency commands,when finished enter either "done" or "cancel"

resource_type apache? add type IP_address

resource_type apache? done

Reading Information
In 2.1x, configuration information is read using the ha_get_info() and
ha_get_field() shell functions. These functions are equivalent to the 1.2
ha_cfginfo command.

In 2.1x, all common functions and variables are kept in
/var/cluster/ha/common_scripts/scriptlib file. This file is equivalent to
the 1.2 /var/ha/actions/common.vars file.

For more information, see Appendix C, "Using the Script Library", page 101.

Parameter Parsing
In 2.1x, action script parameters are passed in a file and information is also returned
in a file. The script takes a list of resource names as parameters.

007–3900–005 93

A: Migrating From 1.2 to 2.1.x

Action Scripts
Table A-1, page 94, summarizes the differences in scripts between the releases.

Table A-1 Differences between 1.2 and 2.1.x Scripts

IRIS FailSafe 1.2 IRIS FailSafe 2.1.x

giveaway, giveback stop

takeover, takeback start

check monitor

(no equivalent) exclusive, restart

In 2.1.x, the action scripts are installed as
/var/cluster/ha/Resource_Type_Name/Action_Name directory, where
Resource_Type_Name is the name of the resource type (such as NFS and Action_Name is
the name of the action script (such as start).

Templates of the action scripts (start, stop, monitor, exclusive, restart) are
provided in the /var/cluster/ha/resource_types/template directory. For
more information about action scripts, see Chapter 2, "Writing the Action Scripts and
Adding Monitoring Agents".

The following sections provide example portions of 1.2 scripts and their 2.1.x
equivalents:

• giveback and stop

• takeover and start

• monitor and monitor

Note: There are no 1.2 equivalents for the 2.1.x exclusive and restart scripts.

In the following examples, only the relevant portions of the scripts are shown. Areas
in common between 1.2 and 2.1.x are in bold.

94 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

1.2 giveback / 2.1.x stop

For example, suppose you had the following in the giveback script in 1.2:

giveback()

{

for i in $` CFG_INFO ${T_APACHE}̀

do

SEARCH="$CFG_INFO ${T_APACHE}${CFG_SEP}${i}${CFG_SEP}${T_BACKUP}"
BACKUP=̀$SEARCH̀

if [$? -eq 1]; then

${LOGGER} "$0: Trouble finding backup-node for apache ($SEARCH)"

exit $INCORRECT_CONF_FILE;

fi
If I am the backup

if [${BACKUP} = ${HOST}]; then

${LOGGER} "$0: Stopping apache for backup server."

killall -9 /apache-fs/usr/local/apache_1.2.0/src/httpd

if [$? -ne "0"]; then

${LOGGER} "$0: halt of apache on backup server failed."
fi

fi

exit $SUCCESS

done
}

In 2.1.x, you would have the following in the stop script:

stop_apache()

{
for server in $HA_RES_NAMES

do

${HA_DBGLOG} "Stopping apache server $server"

killall -9 /apache-fs/usr/local/apache_1.2.0/src/httpd

if [$? -ne "0"]; then
${HA_LOG} "halt of apache server $server failed."

ha_write_status_for_resource $server $HA_CMD_FAILED;

else

${HA_DBGLOG} "halt of apache server $server successful"

ha_write_status_for_resource $server $HA_SUCCESS;

fi

007–3900–005 95

A: Migrating From 1.2 to 2.1.x

done
}

1.2 takeover / 2.1.x start

For example, suppose you had the following in the takeover script in 1.2:

takeover()

{

for i in $` CFG_INFO ${T_APACHE}̀

do

SEARCH="$CFG_INFO ${T_APACHE}${CFG_SEP}${i}${CFG_SEP}${T_BACKUP}"
BACKUP=̀$SEARCH̀

if [$? -eq 1]; then

${LOGGER} "$0: Trouble finding backup-node for apache ($SEARCH)"

exit $INCORRECT_CONF_FILE;

fi
If I am the backup

if [${BACKUP} = ${HOST}]; then

${LOGGER} "$0: Starting apache for backup server."

/apache-fs/usr/local/apache_1.2.0/src/httpd -d \

/apache-fs/usr/local/apache_1.2.0

if [$? -ne "0"]; then
${LOGGER} "$0: start of apache on backup server failed."

exit $FAILED

fi

fi

exit $SUCCESS
done

}

In 2.1.x, you would have the following in the start script:

start_apache()
{

for server in $HA_RES_NAMES

do

${HA_DBGLOG} "Starting apache server $server"

/apache-fs/usr/local/apache_1.2.0/src/httpd -d \
/apache-fs/usr/local/apache_1.2.0

if [$? -ne "0"]; then

96 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

${HA_LOG} "start of apache server $server failed."
ha_write_status_for_resource $server $HA_CMD_FAILED;

else

${HA_DBGLOG} "start of apache server $server successful"

ha_write_status_for_resource $server $HA_SUCCESS;

fi
done

}

1.2 monitor/ 2.1.x monitor

For example, suppose you had the following in the monitor script in 1.2:

monitor()

{

Read the search string entry
for i in $` CFG_INFO ${T_APACHE}̀

do

SEARCH="$CFG_INFO ${T_APACHE}${CFG_SEP}${i}${CFG_SEP}${T_SEARCH_STR}"

SEARCH_STR=̀$SEARCH̀

${SEARCH_STR:=httpd};

done

EXEC="${KILLALL} -0 ${SEARCH_STR}";

execute_cmd "check if apache server processes are running"

}

In 2.1.x, you would have the following in the monitor script:

monitor_apache()

{

for server in $HA_RES_NAMES
do

get_apache_info $server

if [$? -eq 0]; then

APACHE_FIELDS=${HA_STRING

ha_get_field "${APACHE_FIELDS}" search-string;
if [$? -eq 0]; then

SEARCH_STR=${HA_FIELD_VALUE};

007–3900–005 97

A: Migrating From 1.2 to 2.1.x

fi
fi

${SEARCH_STR:=httpd};

HA_CMD=${KILLALL} -0 ${SEARCH_STR}";

ha_execute_cmd "check if server $server processes are running"

if [$? -ne 0]; then
${HA_LOG} "monitor of apache server $server failed."

ha_write_status_for_resource $server $HA_CMD_FAILED;

else

${HA_DBGLOG} "monitor of apache server $server successful"

ha_write_status_for_resource $server $HA_SUCCESS;

fi
done

}

Ordering Script Actions
In 2.1.x, each resource type has a start/stop order, which is a nonnegative integer. In
a resource group, the start/stop orders of the component resource types determine
the order in which the resources will be started when FailSafe brings the group online
and will be stopped when FailSafe takes the group offline. The group’s resources are
started in increasing order, and stopped in decreasing order.

Note: Resources of the same type are started and stopped in indeterminate order.

For example, if resource type volume has order 10 and resource type filesystem
has order 20, then when FailSafe brings a resource group online, all volume resources
in the group will be started before all file system resources in the group.

There is no need to create software links similar to those used in 1.2.

98 007–3900–005

Appendix B

Starting the FailSafe Manager

To start the FailSafe Manager, use one of these methods:

• Enter the following command line:

/usr/sbin/fstask

• Choose FailSafe Manager from the FailSafe toolchest.

You must restart the toolchest after installing FailSafe to see the FailSafe entry on
the toolchest display. Enter the following commands to restart the toolchest:

killall toolchest

/usr/bin/X11/toolchest &

In order for this to take effect, sysadm_failsafe2.sw.desktop must be
installed on the client system.

• In your Web browser, enter the following, where server is the name of the node in
the pool or cluster that you want to administer:

http://server/FailSafe Manager/

At the resulting Web page, click on the icon.

Figure B-1, page 100, shows an example of the FailSafe Manager. For more
information, see IRIS FailSafe Version 2 Administrator’s Guide.

007–3900–005 99

B: Starting the FailSafe Manager

Figure B-1 FailSafe Manager

100 007–3900–005

Appendix C

Using the Script Library

The purpose of the script library (scriptlib) is to simplify the IRIS FailSafe
application interface so that users can use scripts and need not be aware of input and
output file format. However, file format is described in "File Formats".

The /var/cluster/ha/common_scripts/scriptlib file contains the library of
environment variables (beginning with uppercase HA_) and functions (beginning with
lowercase ha_) available for use in your action scripts.

Note: Do not change the contents of the scriptlib file.

This chapter describes functions that perform the following tasks, using samples from
the scriptlib file:

• Set global definitions

• Check arguments

• Read an input file

• Execute a command

• Write status for a resource

• Get the value for a field

• Get resource information

• Print exclusivity check messages

File Formats
There are three file formats:

• Input file, which contains the list of resources that must be acted on by the
executable; each resource must be specified on a separate line in the file. The
FailSafe application interface can also pass action flags for each resource in the
input file.

007–3900–005 101

C: Using the Script Library

The format of a line in the input file is as follows:

resource_name action_flags

The resource_name and action_flags fields are separated by whitespace.

• (Optional) Output file, in which the executable writes the return the status of each
resource on a separate line, using the following format:

resource_name resource_status

There are corresponding lines for each line in the input file. The resource_name and
resource_status fields are separated by whitespace. The resource status may be one
of the following:

– HA_SUCCESS

– HA_RUNNING

– HA_NOT_RUNNING

– HA_INVAL_ARGS

– HA_CMD_FAILED

– HA_NOTSUPPORTED

– HA_NOCFGINFO (no configuration information)

If information about a resource is not present in the output file, SRMD assumes
that the action on the resource has timed out. A nonzero value for the
resource_status field is considered an error.

If the executable requires more information to perform the action on the resource,
the information must be stored in the cluster database (CDB) in the local machine.
The executables can use cluster database commands to extract information about
the resource.

• Input parameter file, which contains the cluster name in the following format:

ClusterName clustername

102 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Set Global Definitions
The ha_set_global_defs() function sets the global definitions for the
environment variables shown in the following subsections.

The HA_INFILE and HA_OUTFILE variables set the input and output files for a
script. These variables do not have global definitions, and are not set by the
ha_set_global_defs() function.

Global Variable

HA_HOSTNAME

The output of the uname command with the -n option, which is the host name or
node name. The node name is the name by which the system is known to
communications networks.

Default: ‘uname -n‘

Command Location Variables

HA_CMDSPATH

Path to user commands.

Default: /usr/cluster/bin

HA_PRIVCMDSPATH

Path to privileged commands (those that can only be run by root).

Default: /usr/sysadm/privbin

HA_LOGCMD

Command used to log information.

Default: ha_cilog

007–3900–005 103

C: Using the Script Library

HA_RESOURCEQUERYCMD

Resource query command. This is an internal command that is not meant for direct
use in scripts; use the ha_get_info() function of scriptlib instead.

Default: resourceQuery

HA_SCRIPTTMPDIR

Location of the script temporary directory.

Default: /tmp

Database Location Variables

HA_CDB

Location of the cluster database.

Default: /var/cluster/cdb/cdb.db

Script Log Level Variables

HA_NORMLVL

Normal level of script logs.

Default: 0

HA_DBGLVL

Debug level of script logs.

Default: 10

104 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Script Log Variables

HA_SCRIPTGROUP

Log for the script group.

Default: script

HA_SCRIPTSUBSYS

Log for the script subsystem.

Default: script

Script Logging Command Variables

HA_LOGQUERY_OUTPUT

Determine the current logging level for scripts.

Default:

‘${HA_PRIVCMDSPATH}/loggroupQuery _NUM_LOG_GROUPS=1 \
_LOG_GROUP_0=ha_script‘

HA_DBGLOG

Command used to log debug messages from the scripts.

Default: ha_dbglog

HA_CURRENT_LOGLEVEL

Display the current log level. The default will be 0 (no script logging) if the
loggroupQuery command fails or does not find configuration information.

Default: ‘echo ${HA_LOGQUERY_OUTPUT} | /usr/bin/awk ’{print $2}’‘

007–3900–005 105

C: Using the Script Library

HA_LOG

Command used to log the scripts.

Default: ha_log

Script Error Value Variables

HA_SUCCESS

Successful execution of the script. This variable is used by the start, stop,
restart, and monitor scripts.

Default: 0

HA_NOT_RUNNING

The script is not running. This variable is used by exclusive scripts.

Default: 0

HA_INVAL_ARGS

An invalid argument was entered. This is used by all scripts.

Default: 1

HA_CMD_FAILED

A command called by the script has failed. This variable is used by the start, stop,
restart, and monitor, scripts.

Default: 2

HA_RUNNING

The script is running. This variable is used by exclusive scripts.

Default: 2

106 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

HA_NOTSUPPORTED

The specific action is not supported for this resource type. This is used by all scripts.

Default: 3

HA_NOCFGINFO

No configuration information was found. This is used by all scripts.

Default: 4

Check Arguments
An action script can have an input file ($1 HA_INFILE), an output file
($2 HA_OUTFILE), and a parameter file ($3 HA_PARAMFILE). The parameter file is
optional.

The ha_check_args() function checks the arguments specified for a script and sets
the $HA_INFILE and $HA_OUTFILE variables accordingly.

If a parameter file exists, the ha_check_args() function reads the list of parameters
from the file and sets the $HA_CLUSTERNAME variable.

In the following, long lines use the continuation character (\) for readability.

ha_check_args()

{
${HA_DBGLOG} "$HA_SCRIPTNAME called with $1, $2 and $3"

if ! [$# -eq 2 -o $# -eq 3]; then

${HA_LOG} "Incorrect number of arguments"

return 1;
fi

if [! -r $1]; then

${HA_LOG} "file $1 is not readable or does not exist"

return 1;
fi

if [! -s $1]; then

${HA_LOG} "file $1 is empty"

007–3900–005 107

C: Using the Script Library

return 1;
fi

if [$# -eq 3]; then

HA_PARAMFILE=$3

if [! -r $3]; then

${HA_LOG} "file $3 is not readable or does not exist"

return 1;

fi

HA_CLUSTERNAME=‘/usr/bin/awk ’{ if ($1 == "ClusterName") \
print $2 }’ ${HA_PARAMFILE}‘

fi

HA_INFILE=$1

HA_OUTFILE=$2

return 0;

}

Read an Input File
The ha_read_infile() function reads the $HA_INFILE input file into the
$HA_RES_NAMES variable, which specifies the list of resource names.

ha_read_infile()

{
HA_RES_NAMES="";

for HA_RESOURCE in c` at ${HA_INFILE}̀

do

HA_TMP="${HA_RES_NAMES} ${HA_RESOURCE}";
HA_RES_NAMES=${HA_TMP};

done

}

108 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

Execute a Command
The ha_execute_cmd() function executes the command specified by $HA_CMD,
which is set in the action script. $1 is the string to be logged. The function returns 1
on error and 0 on success. On errors, the standard output and standard error of the
command is redirected to the log file.

ha_execute_cmd()
{

OUTFILE=${HA_SCRIPTTMPDIR}/script.$$

${HA_DBGLOG} $1

eval ${HA_CMD} > ${OUTFILE} 2>&1;

ha_exit_code=$?;

if [$ha_exit_code -ne 0]; then

${HA_DBGLOG} c` at ${HA_SCRIPTTMPDIR}/script.$$‘
fi

${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";

/sbin/rm ${OUTFILE}

return $ha_exit_code;

}

The ha_execute_cmd_ret() function is similar to ha_execute_cmd, except that it
places the command output in the location specified by $HA_CMD_OUTPUT.

ha_execute_cmd_ret()

{

${HA_DBGLOG} $1

REVISIT: Is it possible to redirect the output to a log

HA_CMD_OUTPUT=‘${HA_CMD}‘;

ha_exit_code=$?;

${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";

007–3900–005 109

C: Using the Script Library

return $ha_exit_code;
}

Write Status for a Resource
The ha_write_status_for_resource() function writes the status for a resource
to the $HA_OUTFILE output file. $1 is the resource name, and $2 is the resource
status.

ha_write_status_for_resource()

{

echo $1 $2 >> $HA_OUTFILE;
}

Similarly, the ha_write_status_for_all_resources() function writes the
status for all resources. $HA_RES_NAMES is the list of resource names.

ha_write_status_for_all_resources()
{

for HA_RES in $HA_RES_NAMES

do

echo $HA_RES $1 >> $HA_OUTFILE;

done
}

Get the Value for a Field
The ha_get_field() function obtains the field value from a string, where $1 is the
string and $2 is the field name. The string format is as follows:

ha_get_field()

{

HA_STR=$1

HA_FIELD_NAME=$2

ha_found=0;

ha_field=1;

for ha_i in $HA_STR

do

if [$ha_field -eq 1]; then

110 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

ha_field=0;
if [$ha_i = $HA_FIELD_NAME]; then

ha_found=1;

fi

else

ha_field=1;
if [$ha_found -eq 1]; then

HA_FIELD_VALUE=$ha_i

return 0;

fi

fi

done

return 1;

}

Get the Value for Multiple Fields
The ha_get_multi_fields() function obtains the field values from a string, where
$1 is the string and $2 is the field name. The string format is a series of name-value
field pairs, where a name field is followed by the value of the name, separated by
whitespace.

This function is typically used to extract dependency information. There may be
multiple fields with the same name, so the string returned in HA_FIELD_VALUE may
contain multiple values separated by white space. This appears as follows:

ha_get_multi_fields()

{

HA_STR=$1

HA_FIELD_NAME=$2

ha_found=0;
ha_field=1;

for ha_i in $HA_STR

do

if [$ha_field -eq 1]; then
ha_field=0;

if [$ha_i = $HA_FIELD_NAME]; then

ha_found=1;

007–3900–005 111

C: Using the Script Library

fi
else

ha_field=1;

if [$ha_found -eq 1]; then

if [-z "$HA_FIELD_VALUE"]; then

HA_FIELD_VALUE=$ha_i;
else

HA_FIELD_VALUE="$HA_FIELD_VALUE $ha_i";

fi;

ha_found=0;

fi

fi
done

if [-z "$HA_FIELD_VALUE"]; then

return 1;

else
return 0;

fi

}

Get Resource Information
The ha_get_info() and ha_get_info_debug()functions read resource
information. $1 is the resource type, $2 is the resource name, and $3 is an optional
parameter of any value that specifies a request for resource dependency information.
Resource information is stored in the HA_STRING variable. If the resourceQuery
command fails, the HA_STRING is set to an invalid string, and future calls to
ha_get_info() or ha_get_info_debug() return errors.

You can use ha_get_info_debug() while developing scripts.

ha_get_info()

{

if [-f /var/cluster/ha/resourceQuery.debug]; then
ha_get_info_debug $1 $2 $3

return;

fi

if [-n "$3"]; then

ha_doall="_ALL=true"

112 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

else
ha_doall=""

fi

Retry resourceQuery command $HA_RETRY_CMD_MAX times if $HA_RETRY_CMD_ERR

is returned.
ha_retry_count=1

while [$ha_retry_count -le $HA_RETRY_CMD_MAX];

do

if [-n "${HA_CLUSTERNAME}"]; then

HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \
_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \

$ha_doall _NO_LOGGING=true _CLUSTER=${HA_CLUSTERNAME}‘

else

HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \

_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \
$ha_doall _NO_LOGGING=true‘

fi

ha_exit_code=$?

if [$ha_exit_code -ne 0]; then
${HA_LOG} "${HA_RESOURCEQUERYCMD}: resource name $2 resource type $1"

${HA_LOG} "Failed with error: ${HA_STRING}";

fi

if [$ha_exit_code -ne $HA_RETRY_CMD_ERR]; then
break;

fi

ha_retry_count=‘expr $ha_retry_count + 1‘

done

if [-n "$ha_doall"]; then

echo $HA_STRING \

| grep "No resource dependencies" > /dev/null 2>&1

if [$? -eq 0]; then
HA_STRING=

else

007–3900–005 113

C: Using the Script Library

HA_STRING=‘echo $HA_STRING | /bin/sed -e "s/^.*Resource dependencies //"‘
fi

fi

return ${ha_exit_code};

}

The ha_get_info is a faster version of ha_get_info_debug().

ha_get_info_debug()

{

if [-n "$3"]; then
ha_doall="_ALL=true"

else

ha_doall=""

fi

if [-n "${HA_CLUSTERNAME}"]; then
HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \

_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \

$ha_doall _CLUSTER=${HA_CLUSTERNAME}‘

else

HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \
_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 $ha_doall‘

fi

ha_exit_code=$?

if [$? -ne 0]; then
${HA_LOG} "${HA_RESOURCEQUERYCMD}: resource name $2 resource type $1"

${HA_LOG} "Failed with error: ${HA_STRING}";

fi

if [-n "$ha_doall"]; then

echo $HA_STRING \
| grep "No resource dependencies" > /dev/null 2>&1

if [$? -eq 0]; then

HA_STRING=

else

HA_STRING=‘echo $HA_STRING | /bin/sed -e "s/^.*Resource dependencies //"‘
fi

fi

114 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

return ${ha_exit_code};
}

Print Exclusivity Check Messages
The ha_print_exclusive_status() function prints exclusivity check messages to
the log file. $1 is the resource name and $2 is the exit status.

ha_print_exclusive_status()

{

if [$? -eq $HA_NOT_RUNNING]; then

${HA_LOG} "resource $1 exclusive status: NOT RUNNING"
else

${HA_LOG} "resource $1 exclusive status: RUNNING"

fi

}

The ha_print_exclusive_status_all_resources() function is similar, but it
prints exclusivity check messages for all resources. $HA_RES_NAMES is the list of
resource names.

ha_print_exclusive_status_all_resources()

{
for HA_RES in $HA_RES_NAMES

do

ha_print_exclusive_status ${HA_RES} $1

done

}

007–3900–005 115

Glossary

action scripts

The set of scripts that determine how a resource is started, monitored, and stopped.
There must be a set of action scripts specified for each resource type. The possible set
of action scripts is: exclusive, start, stop, monitor, and restart.

cluster

The set of nodes in the pool that have been defined as a cluster. A cluster is identified
by a simple name; this name must be unique within the pool. All nodes in the cluster
are also in the pool. However, all nodes in the pool are not necessarily in the cluster;
that is, the cluster may consist of a subset of the nodes in the pool. There is only one
cluster per pool.

cluster administrator

The person responsible for managing and maintaining a cluster.

cluster database

Contains configuration information about all resources, resource types, resource
groups, failover policies, nodes, and the cluster.

cluster node

See node.

cluster process group

A group of application instances in a distributed application that cooperate to provide
a service.
For example, distributed lock manager instances in each node would form a process
group. By forming a process group, they can obtain membership and reliable,
ordered, atomic communication services. There is no relationship between a UNIX
process group and a cluster process group.

007–3900–005 117

Glossary

control messages

Messages that cluster software sends between the cluster nodes to request operations
on or distribute information about cluster nodes and resource groups. IRIS FailSafe
sends control messages for the purpose of ensuring that nodes and groups remain
highly available. Control messages and heartbeat messages are sent through a node’s
network interfaces that have been attached to a control network. A node can be
attached to multiple control networks.

control network

The network that connects nodes through their network interfaces (typically Ethernet)
such that FailSafe can maintain a cluster’s high availability by sending heartbeat
messages and control messages through the network to the attached nodes. FailSafe
uses the highest priority network interface on the control network; it uses a network
interface with lower priority when all higher-priority network interfaces on the
control network fail.
A node must have at least one control network interface for heartbeat messages and
one for control messages (both heartbeat and control messages can be configured to
use the same interface). A node can have no more than eight control network
interfaces.

database

See cluster database.

dependency list

See resource dependency or resource type dependency.

failover

The process of allocating a resource group to another node according to a failover
policy. A failover may be triggered by the failure of a resource, a change in the
FailSafe membership (such as when a node fails or starts), or a manual request by the
administrator.

failover attribute

A string that affects the allocation of a resource group in a cluster. The administrator
must specify system-defined attributes (such as Auto_Failback or
Controlled_Failback), and can optionally supply site-specific attributes.

118 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

failover domain

The ordered list of nodes on which a particular resource group can be allocated. The
nodes listed in the failover domain must be within the same cluster; however, the
failover domain does not have to include every node in the cluster. The administrator
defines the initial failover domain when creating a failover policy. This list is
transformed into the run-time failover domain by the failover script the run-time
failover domain is what is actually used to select the failover node. FailSafe stores the
run-time failover domain and uses it as input to the next failover script invocation.
The initial and run-time failover domains may be identical, depending upon the
contents of the failover script. In general, FailSafe allocates a given resource group to
the first node listed in the run-time failover domain that is also in the FailSafe
membership; the point at which this allocation takes place is affected by the failover
attributes.

failover policy

The method used by FailSafe to determine the destination node of a failover. A
failover policy consists of a failover domain, failover attributes, and a failover script.
A failover policy name must be unique within the pool.

failover script

A failover policy component that generates a run-time failover domain and returns it
to the FailSafe process. The process applies the failover attributes and then selects the
first node in the returned failover domain that is also in the current FailSafe
membership.

FailSafe membership

The list of FailSafe nodes in a cluster on which FailSafe can make resource groups
online. It differs from fs2d database membership and CXFS membership. For more
information about CXFS, see CXFS Software Installation and Administration Guide.

FailSafe database

See cluster database.

fs2d database membership

The group of nodes in the pool that are accessible to fs2d and therefore can receive
cluster database updates; this may be a subset of the nodes defined in the pool. (Also
known as user-space membership).

007–3900–005 119

Glossary

heartbeat messages

Messages that cluster software sends between the nodes to indicate that a node is up
and running. Heartbeat messages and control messages are sent through a node’s
network interfaces that have been attached to a control network. A node can be
attached to multiple control networks.

heartbeat interval

Interval between heartbeat messages. The node timeout value must be at least 10
times the heartbeat interval for proper FailSafe operation (otherwise false failovers
may be triggered). The higher the number of heartbeats (smaller heartbeat interval),
the greater the potential for slowing down the network. Conversely, the fewer the
number of heartbeats (larger heartbeat interval), the greater the potential for reducing
availability of resources.

initial failover domain

The ordered list of nodes, defined by the administrator when a failover policy is first
created, that is used the first time a cluster is booted. The ordered list specified by the
initial failover domain is transformed into a run-time failover domain by the failover
script; the run-time failover domain is used along with failover attributes to
determine the node on which a resource group should reside. With each failure, the
failover script takes the current run-time failover domain and potentially modifies it;
the initial failover domain is never used again. Depending on the run-time conditions
and contents of the failover script, the initial and run-time failover domains may be
identical. See also run-time failover domain.

key/value attribute

A set of information that must be defined for a particular resource type. For example,
for the resource type filesystem one key/value pair might be mount_point=/fs1
where mount_point is the key and fs1 is the value specific to the particular resource
being defined. Depending on the value, you specify either a string or integer
data type. In the previous example, you would specify string as the data type for
the value fs1.

log configuration

A log configuration has two parts: a log level and a log file, both associated with a
log group. The cluster administrator can customize the location and amount of log
output, and can specify a log configuration for all nodes or for only one node. For
example, the crsd log group can be configured to log detailed level-10 messages to

120 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

the /var/cluster/ha/log/crsd-foo log only on the node foo and to write only
minimal level-1 messages to the crsd log on all other nodes.

log file

A file containing notifications for a particular log group. A log file is part of the log
configuration for a log group. By default, log files reside in the
/var/cluster/ha/log directory, but the cluster administrator can customize this.
(FailSafe logs both normal operations and critical errors to /var/adm/SYSLOG, as
well as to individual logs for specific log groups.)

log group

A set of one or more FailSafe processes that use the same log configuration. A log
group usually corresponds to one daemon, such as gcd.

log level

A number controlling the number of log messages that FailSafe will write into an
associated log group’s log file. A log level is part of the log configuration for a log
group.

node

A single IRIX kernel image. Usually, a node is an individual computer. The term node
does not have the same meaning as a node in an Origin system.

node ID

A 16-bit positive integer that uniquely defines a cluster node. During node definition,
FailSafe will assign a node ID if one has not been assigned by the cluster
administrator. Once assigned, the node ID cannot be modified.

node membership

See FailSafe membership.

node timeout

If no heartbeat is received from a node in this period of time, the node is considered
to be dead. The node timeout value must be at least 10 times the heartbeat interval
for proper FailSafe operation (otherwise false failovers may be triggered).

007–3900–005 121

Glossary

notification command

The command used to notify the cluster administrator of changes or failures in the
cluster, nodes, and resource groups. The command must exist on every node in the
cluster.

offline resource group

A resource group that is not highly available in the cluster. To put a resource group
in offline state, FailSafe stops the group (if needed) and stops monitoring the group.
An offline resource group can be running on a node, yet not under FailSafe control. If
the cluster administrator specifies the detach-only option while taking the group
offline, then FailSafe will not stop the group but will stop monitoring the group.

online resource group

A resource group that is highly available in the cluster. When FailSafe detects a
failure that degrades the resource group availability, it moves the resource group to
another node in the cluster. To put a resource group in online state, FailSafe starts the
group (if needed) and begins monitoring the group. If the cluster administrator
specifies the attach only option while bringing the group online, then FailSafe will not
start the group but will begin monitoring the group.

owner host

A system that can control a node remotely, such as power-cycling the node. At run
time, the owner host must be defined as a node in the pool.

owner TTY name

The device file name of the terminal port (TTY) on the owner host to which the
system controller serial cable is connected. The other end of the cable connects to the
node with the system controller port, so the node can be controlled remotely by the
owner host.

plug-ins

Software used to make applications highly available. There are provided, optional,
and customized plug-ins.

122 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

pool

The entire set of nodes that are coupled to each other by networks and are defined as
nodes in FailSafe. The nodes are usually close together and should always serve a
common purpose. A replicated cluster database is stored on each node in the pool.

All nodes that can be added to a cluster are part of the pool, but not all nodes in the
pool must be part of the cluster. There is only one pool. (Other pools may exist, but
each is disjoint from the other. They share no node or cluster definitions.)

plug-in

The set of software required to make an application highly available, including a
resource type and action scripts. There are plug-ins provided with the base FailSafe
release, optional plug-ins available for purchase from SGI, and customized plug-ins
you can write using the instructions in this guide.

port password

The system controller password for privileged commands, usually set once in
firmware or by setting jumper wires. (This is not the same as the node’s root
password.)

powerfail mode

When powerfail mode is turned on, FailSafe tracks the response from a node’s system
controller as it makes reset requests to a cluster node. When these requests fail to
reset the node successfully, FailSafe uses heuristics to try to estimate whether the
machine has been powered down. If the heuristic algorithm returns with success,
FailSafe assumes the remote machine has been reset successfully. When powerfail
mode is turned off, the heuristics are not used and FailSafe may not be able to detect
node power failures.

process membership

A list of process instances in a cluster that form a process group. There can multiple
process groups per node.

properties file

An optional file that contains a formatted label for each plug-in attribute and strings
of help text that will be displayed in the GUI. There can be a properties file for each
resource type.

007–3900–005 123

Glossary

resource

A single physical or logical entity that provides a service to clients or other resources.
For example, a resource can be a single disk volume, a particular network address, or
an application such as a web server. A resource is generally available for use over
time on two or more nodes in a cluster, although it can be allocated to only one node
at any given time. Resources are identified by a resource name and a resource type.
Dependent resources must be part of the same resource group and are identified in a
resource dependency list.

resource dependency

The condition in which a resource requires the existence of other resources.

resource dependency list

A list of resources upon which a resource depends. Each resource instance must have
resource dependencies that satisfy its resource type dependencies before it can be
added to a resource group.

resource group

A collection of resources. A resource group is identified by a simple name; this name
must be unique within a cluster. Resource groups cannot overlap; that is, two
resource groups cannot contain the same resource. All interdependent resources must
be part of the same resource group. If any individual resource in a resource group
becomes unavailable for its intended use, then the entire resource group is considered
unavailable. Therefore, a resource group is the unit of failover.

resource keys

Variables that define a resource of a given resource type. The action scripts use this
information to start, stop, and monitor a resource of this resource type.

resource name

The simple name that identifies a specific instance of a resource type. A resource
name must be unique within a given resource type.

resource type

A particular class of resource. All of the resources in a particular resource type can be
handled in the same way for the purposes of failover. Every resource is an instance of

124 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

exactly one resource type. A resource type is identified by a simple name; this name
must be unique within a cluster. A resource type can be defined for a specific node or
for an entire cluster. A resource type that is defined for a node overrides a
clusterwide resource type definition with the same name; this allows an individual
node to override global settings from a clusterwide resource type definition.

resource type dependency

A set of resource types upon which a resource type depends. For example, the
filesystem resource type depends upon the volume resource type, and the
Netscape_web resource type depends upon the filesystem and IP_address
resource types.

resource type dependency list

A list of resource types upon which a resource type depends.

run-time failover domain

The ordered set of nodes on which the resource group can execute upon failures, as
modified by the failover script. The run-time failover domain is used along with
failover attributes to determine the node on which a resource group should reside.
See also initial failover domain.

start/stop order

Each resource type has a start/stop order, which is a nonnegative integer. In a
resource group, the start/stop orders of the resource types determine the order in
which the resources will be started when FailSafe brings the group online and will be
stopped when FailSafe takes the group offline. The group’s resources are started in
increasing order and stopped in decreasing order; resources of the same type are
started and stopped in indeterminate order. For example, if resource type volume has
order 10 and resource type filesystem has order 20, then when FailSafe brings a
resource group online, all volume resources in the group will be started before all
filesystem resources in the group.

system controller port

A port located on a node that provides a way to power-cycle the node remotely.
Enabling or disabling a system controller port in the cluster database tells FailSafe
whether it can perform operations on the system controller port. (When the port is
enabled, serial cables must attach the port to another node, the owner host.) System

007–3900–005 125

Glossary

controller port information is optional for a node in the pool, but is required if the
node will be added to a cluster; otherwise resources running on that node never will
be highly available.

tie-breaker node

A node identified as a tie-breaker for FailSafe to use in the process of computing
FailSafe cluster membership for the cluster, when exactly half the nodes in the cluster
are up and can communicate with each other. If a tie-breaker node is not specified,
FailSafe will use the node with the lowest node ID in the cluster as the tie-breaker
node.

type-specific attribute

Required information used to define a resource of a particular resource type. For
example, for a resource of type filesystem you must enter attributes for the
resource’s volume name (where the file system is located) and specify options for
how to mount the file system (for example, as readable and writable).

126 007–3900–005

Index

A

action scripts
definition of the term, 9
examples, 31
failure of, 19
format

basic action, 28
completion, 30
exit status, 27
header, 25
overview, 25
read input file, 29
read resource information, 26, 27
set global variables, 29
set local variables, 26
verify arguments, 29

monitoring
frequence, 23
necessity of, 22
testing examples, 24
types, 23

preparation for writing scripts, 21
resource types provided, 21
set of scripts, 15
successful execution results, 19
templates, 21
testing, 87
writing steps, 30

administrative commands, 14
agents, 41
application failover domain, 8
Auto_Failback failover attribute, 46
Auto_Recovery failover attribute, 46

C

check script replacement, 94
check arguments, 107
checksum verification, 91
cluster database security, 65
cluster membership, 3
cluster process group, 10
cluster terminology, 2
cluster_mgr/cmgr command, 72
cmond process configuration, 41
command execution, 109
command path, 103
commands, 14
common.vars file, 93
communicate with the network interface agent

daemon, 14
configurations

N+1, 56
N+2, 57
N+M, 58

control network, 4
Controlled_Failback failover attribute, 46
Critical_RG failover attribute, 47
CXFS resource type, 10

D

database location, 104
database membership, 3
database security, 65
debug script messages, 105
debugging information in action scripts, 85
dependency list, 6
DMF resource type, 10
domain, 8, 44

007–3900–005 127

Index

E

environment variables, 103
exclusive script

definition, 15
example, 38

execute a command, 109
exit status in action scripts, 27
exit_script(), 27, 88
exit_status value, 27

F

failover, 8
failover attributes, 9, 45
failover domain, 8, 44
failover policy, 8

contents, 43
examples

N+1, 55
N+2, 57
N+M, 59

failover attributes, 45
failover domain, 44

failover script, 47
description, 9, 47
interface, 54

FailSafe membership, 3, 4
field value, 110
file locking and unlocking, 14
filesystem resource type, 10
fs2d database membership, 3

G

get_xxx_info(), 27
giveaway/giveback script replacement, 94
global definition setting, 103
global variables, 29

H

ha.conf configuration file, 91
HA_CDB, 104
ha_check_args(), 29, 107
ha_cilog command, 14
HA_CMD_FAILED, 106
HA_CMDSPATH, 103
HA_CURRENT_LOGLEVEL, 105
HA_DBGLOG, 105
HA_DBGLVL, 104
ha_exec2 command, 14
ha_execute_cmd(), 109
ha_execute_cmd_ret(), 109
ha_execute_lock command, 14
ha_filelock command, 14
ha_fileunlock command, 14
ha_get_field(), 110
ha_get_info(), 27, 112
ha_get_multi_fields(), 27
HA_HOSTNAME, 103
ha_http_ping2 command, 14
ha_ifdadmin command, 14
HA_INVAL_ARGS, 106
HA_LOG, 106
HA_LOGCMD, 103
HA_LOGQUERY_OUTPUT, 105
ha_macconfig2 command, 14
HA_NOCFGINFO, 107
HA_NORMLVL, 104
HA_NOT_RUNNING, 106
HA_NOTSUPPORTED, 107
ha_print_exclusive_status(), 115
ha_print_exclusive_status_all_resources(), 115
HA_PRIVCMDSPATH, 103
ha_read_infile(), 29, 108
HA_RESOURCEQUERYCMD, 104
HA_RUNNING, 106
HA_SCRIPTGROUP, 105
HA_SCRIPTSUBSYS, 105
HA_SCRIPTTMPDIR, 104

128 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

HA_SUCCESS, 106
ha_write_status_for_all_resources(), 110
ha_write_status_for_resource, 28
ha_write_status_for_resource(), 110
heartbeat network, 4
high availability characteristics, 11
hostname, 103

I

Informix resource type, 10
initial failover domain, 44
InPlace_Recovery failover attribute, 46
input file, 108
IP address resource type, 10

L

lock a file, 14
log messages, 14
logs, 105

M

MAC_address resource type, 10
membership, 3

See "cluster membership", 3
message logging, 14
migrating to 2.x

action scripts, 94
cautions, 91
ordering actions, 98
reading information, 93
resource types, 91

monitor script
definition, 15
example, 35

monitoring
agents, 41

failure, 23
frequence, 24
necessity of, 22
processes, 14
script testing, 89
testing examples, 24
types, 22

N

Netscape node check, 14
Netscape resource type, 11
network segment, 4
networks, 4
NFS resource type, 10
node status, 86
node terminology, 2
Node_Failures_Only failover attribute, 47
nodename output, 103

O

Oracle resource type, 11
order ranges for resource types, 63
ordered failover script, 47
overview of the programming steps, 11

P

path to user commands, 103
plug-ins, 10
pool, 2
pool terminology, 2
print exclusivity check messages, 115
private network, 4
privileged command path, 103
process

membership, 3

007–3900–005 129

Index

monitoring, 14
process group, 10
programming steps overview, 11
properties file, 79

R

read an input file, 108
resource

definition, 5
dependency list, 6
name, 5
query command, 104

resource group
definition, 6
states, 19

resource information
obtaining, 112
read into an action script, 27

resource type
cmgr use, 72
dependency list, 6
description, 5
GUI use, 67
information for a new resource type, 61
order ranges, 63
restart mode, 64
script templates, 78
script use, 77

restart mode, 64
restart script

definition, 15
example, 39

root command path, 103
run-time failover domain, 44

S

Samba resource type, 11
script group log, 105

script library, 101
script testing

action scripts, 87
monitoring script considerations, 89
techniques, 85

script.$$ suffix, 30
scriptlib file, 101
scripts.

See "action scripts or failover script", 25
security of the cluster database, 65
set_global_variables(), 29
set_local_variables() section of an action script, 26
start script

definition, 15
example, 31

statd_unlimited resource type, 10
status of a node, 86
stop script

definition, 15
example, 33

T

takeover/takeback script replacement, 94
templates

action scripts, 21
resource type script definition, 78

testing scripts
See "script testing", 85

TMF resource type, 11

U

uname, 103
unlock a file, 14
upgrading. See migrating to 2.x, 91
user command path, 103
user privileges, 65
user-space membership, 3

130 007–3900–005

IRIS FailSafeTM Version 2 Programmer’s Guide

V

value for a field, 110
/var/cluster/cmgr-templates/

cmgr-create-resource_type directory, 78
/var/cluster/cmon/process_groups directory, 41
/var/cluster/ha/

resource_types directory, 64
resource_types/<resource_type>/<resource_type>, 79

/var/cluster/ha/policies directory, 47
/var/ha/actions/common.vars file, 93
volume resource type, 11

W

write status for a resource, 110

X

XFS resource type, 11
XLV logical volume resource type, 11

007–3900–005 131

