Performance Co-Pilot™ IRIX® Base
Software Administrator's Guide

007-3964-002

CONTRIBUTORS
Production by Diane Ciardelli

Engineering and written contributions by David Chatterton, Michael Gigante, Mark Goodwin, Tony Kavadias, Seppo Keronen,
Johnathon Knispel, Ken McDonell, Max Matveev, Ania Milewska, Daniel Moore, Heidi Muehlebach, Ivan Rayner, Nathan Scott,
Timothy Shimmin, and Bill Tuthill

COPYRIGHT

© 1999, 2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere
herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in
any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND

The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Challenge, IRIS, and IRIX are registered trademarks and IRIS Insight, MineSet, NUMAIlink, Open Inventor, Origin, Performance
Co-Pilot, SGI, and the SGI logo are trademarks of Silicon Graphics, Inc.

Cisco is a trademark of Cisco Systems, Inc. FLEXIm is a trademark of GLOBEtrotter Software. PostScript is a trademark of Adobe
Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company,
Ltd.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

007-3964-002

New Features in This Guide

Support of the ovi ew program on the SGI 3000 series servers has been added in
Chapter 4 of this guide.

Miscellaneous technical and editing changes were also made throughout the
document.

Record of Revision

Version Description

001 July 1999
Original printing. This guide supports the IRIX release 6.5.5.

002 March 2001
Revised to support the IRIX release 6.5.12 and later.

007-3964-002

Contents

About This Guide
What This Guide Contains
Audience for This Guide
Related Resources

Man Pages

Release Notes
SGI Web Sites
Obtaining Publications

Conventions

Reader Comments

1. Introduction to Performance Co-Pilot
Objectives

PCP Target Usage
Empowering the PCP User

Unification of Performance Metric Domains

Uniform Naming and Access to Performance Metrics
PCP Distributed Operation

Dynamic Adaptation to Change

Logging and Retrospective Analysis

Automated Operational Support

PCP Extensibility

Metric Coverage

Overview of Component Software

007-3964-002

xxi
XXi
Xxii
Xxii
Xxii
Xxiii
Xxiii
Xxiii
XXiv

XXV

O = . W W W N NN PR = e

vii

Contents

Performance Monitoring and Visualization 5
Collecting, Transporting, and Archiving Performance Information 6
Operational and Infrastructure Support 7
Conceptual Foundations 8
Performance Metrics 8
Performance Metric Instances 8
Current Metric Context 8
Sources of Performance Metrics and Their Domains 9
Distributed Collection 11
Performance Metrics Name Space 12
Performance Metrics Name Space Diagram 12
Distributed PMNS 14
Descriptions for Performance Metrics 14
Values for Performance Metrics 15
Single-Valued Performance Metrics 15
Set-Valued Performance Metrics 15
Collector and Monitor Roles 17
Performance Metrics Collection System 17
Retrospective Sources of Performance Metrics 17

2. Installing and Configuring Performance Co-Pilot 19

Product Structure)
Performance Metrics Collection Daemon (PMCD) Ce e 20
Starting and Stopping the PMCD 2
Restarting an Unresponsive PMCD 21
PMCD Diagnostics and Error Messages 21
PMCD Options and Configuration Files 21
The pntd. opti ons File C e 22

viii 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator's Guide

The pntd. conf File
Controlling Access to PMCD with prcd. conf
Troubleshooting
Performance Metrics Name Space
Missing and Incomplete Values for Performance Metrics

Metric Values Not Available
IRIX Metrics and the PMCD
No IRIX Metrics Available
Cannot Connect to Remote PMCD
PMCD Not Reconfiguring after SI GHUP

PMCD Does Not Start

3. Common Conventions and Arguments
PerfTools Icon Catalog
Alternate Metrics Source Options
Fetching Metrics from Another Host
Fetching Metrics from an Archive Log
General PCP Tool Options

Common Directories and File Locations

Alternate Performance Metric Name Spaces

Time Duration and Control

Performance Monitor Reporting Frequency and Duration
Time Window Options
Timezone Options

PCP Live Time Control
Creating a PCP Archive

PCP Archive Time Control
File Menu

007-3964-002

23
25
27
27
27

27
28
28
29
30

30

33
33
34
34
35
35

36
37

37
37

38
40
41
42
42
44

Contents

Options Menu

Transient Problems with Performance Metric Values

Performance Metric Wraparound

Time Dilation and Time Skew

4. Monitoring System Performance
The pnkst at Command

The prnval Command

The pmremCommand

The pni nf 0 Command

The prst or e Command

The ovi ew Origin Visualization Tool

5. Performance Metrics Inference Engine
Introduction to pmi e
Basic pmi e Usage
pmi e and the Performance Metrics Collection Subsystem
Simple pmi e Usage
Complex pri e Examples
Specification Language for pm e
Basic pmi e Syntax
Lexical Elements
Comments
Macros

Units

Setting Evaluation Frequency
pmi e Metric Expressions
pni e Rate Conversion

pmi e Arithmetic Expressions

44

45
46

46

47
47
49
51
52
56
57

61
61
64
64
66
67
68
69

69
70
70
71
71
72
74
75

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator's Guide

pmi e Logical Expressions
Logical Constants
Relational Expressions
Boolean Expressions
Quantification Operators
pmi e Rule Expressions
pmi e Intrinsic Operators
Arithmetic Aggregation
The r at e Operator
Transitional Operators
pm e Examples
Developing and Debugging pm e Rules
Caveats and Notes on pni e
Performance Metrics Wraparound
pm e Sample Intervals
pmni e Instance Names
pmni e Error Detection
Creating pmi e Rules with pmi econf
Management of pm e Processes

Global Files and Directories

pmi e Instances and Their Progress

6. Archive Logging

Introduction to Archive Logging
Archive Logs and the PMAPI
Retrospective Analysis Using Archive Logs
Using Archive Logs for Capacity Planning

007-3964-002

75
75
76
77
77
79
82
82
83
83
83
86
86
86
87
87
87
88
91

93
94

95
95
96
96
97

Xi

Contents

Using Archive Logs with Performance Visualization Tools 97
Coordination between pm ogger and PCP tools 97
Archive Log File Management 2]

Basename Conventions L ... 98
Log Volumes . 98
Configuration of pni ogger Ce e 99
PCP Archive Contents T (00

Other Archive Logging Features and Services 100
PCP Archive Folios . 100
Using pnm ¢ N L

Archive Logging Troubleshooting e (0]
pm ogger Cannot WriteLog 103
Cannot FindLog . 103
Identifying an Active pm ogger Process 10
Illegal Label Record . 105
Empty Archive Log Files or pm ogger Exits Immediately 105

Appendix A. Acronyms oo oo 107

Index e e ey e e e e e ey 109

Xii 007-3964-002

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 4-1
Figure 4-2
Figure 5-1
Figure 5-2

007-3964-002

Figures

Performance Metric Domains as Autonomous Collections of Data
Process Structure for Distributed Operation
Small Performance Metrics Name Space (PMNS)
Architecture for Retrospective Analysis
PerfTools Icon Catalog Group

pnti me PCP Live Time Control Dialog

pnti me PCP Archive Time Control Dialog
pnti me Archive Time Bounds Dialog

ovi ew View of an SGI 2000 Series System

ovi ew View of an SGI 3000 Series System
Sampling Time Line

Three-Dimensional Parameter Space

11
13
18
34
41
43
45
58
59
72
73

Xiii

Tables

Table 1-1 Sample Instance Identifiers for Disk Statistics 16
Table 3-1 Physical Filenames for Components of a PCP Archivelog 35
Table 6-1 Filenames for PCP Archive Log Components (archive.*) 98
Table A-1 Performance Co-Pilot Acronyms and Their Meanings e (174

007-3964-002 XV

Examples

Example 5-1 pm e with the-f Option 64
Example 5-2 pmi e with the - d and - h Options Ce e 65
Example 5-3 pm e with the-v Option 66
Example 5-4 pm e Output Printed Ce s 67
Example 5-5 Relational Expressions 76
Example 5-6 Rule Expression Options 1
Example 5-7 /var/adnl SYSLOG Text e 81
Example 5-8 Standard Output 8
Example 5-9 Monitoring CPU Utilization Ce e 84
Example 5-10 Monitoring Disk Activity 8
Example 6-1 Using pmi nf o to Obtain Archive Information 100
Example 6-2 Listing Available Commands 101

007-3964-002 XVii

Procedures

Procedure 5-1 Display pmi econf Rules -
Procedure 5-2 Modify pri econf Rules and Generate a pri e File e 90
Procedure 5-3 Add a New pnmi e Instance to the pmi € Daemon Management Framework 91
Procedure 5-4 Add a pni e cront ab Entry e e 922

007-3964-002 XiX

About This Guide

This guide describes the Performance Co-Pilot (PCP) software package of advanced
performance tools for the SGI family of graphical workstations and servers.

The Performance Co-Pilot IRIX Base Software Administrator’s Guide documents the PCP
features that are embedded in the IRIX operating system. This manual is a subset of
the Performance Co-Pilot User’s and Administrator’s Guide.

PCP provides a systems-level suite of tools that cooperate to deliver integrated
performance monitoring and performance management services spanning the
hardware platforms, operating systems, service layers, Database Management Systems
(DBMSs), and user applications.

“About This Guide” includes short descriptions of the chapters in this book, directs
you to additional sources of information, and explains typographical conventions.

What This Guide Contains

007-3964-002

This guide contains the following chapters:

¢ Chapter 1, "Introduction to Performance Co-Pilot", page 1, provides an
introduction and conceptual foundations of the PCP product.

¢ Chapter 2, "Installing and Configuring Performance Co-Pilot", page 19, describes
the basic installation and configuration steps necessary to get PCP running on
your systems.

¢ Chapter 3, "Common Conventions and Arguments", page 33, summarizes user
interface components that are common to most of the graphical tools and
text-based utilities that constitute the PCP monitor software.

¢ Chapter 4, "Monitoring System Performance", page 47, describes the basic
interactive performance monitoring tools available in PCP, including prkst at,
prmval , prem pm nf o, prst or e, and ovi ew.

* Chapter 5, "Performance Metrics Inference Engine", page 61, introduces the
automated reasoning facilities of PCP that provide both real-time and retrospective
filtering of performance data to identify adverse performance scenarios and raise
alarms.

XXi

About This Guide

* Chapter 6, "Archive Logging", page 95, covers the PCP services and utilities that
support archive logging for capturing accurate historical performance records.

¢ Appendix A, "Acronyms", page 107, provides a comprehensive list of the
acronyms used in this guide, in the man pages, and in the release notes for
Performance Co-Pilot.

Audience for This Guide

This guide is written for the system administrator or performance analyst who is
directly using and administering PCP applications. It is assumed that you have
installed IRIS InSight for viewing online books, or have access to the IRIX Admin
manual set, including IRIX Admin: System Configuration and Operation, and the
Personal System Administration Guide as hard—copy documents.

Related Resources

Man Pages

XXii

Additional resources include man pages, release notes, and SGI Web sites.

The IRIX man pages provide concise reference information on the use of IRIX
commands, subroutines, and system resources. There is usually a man page for each
PCP command or subroutine. To see a list of all the PCP man pages, enter the
following command:

man -k perfornmance
To see a particular man page, supply its name to the man command, for example:
man pcp

The man pages are divided into the following seven sections:

@D General commands

) System calls and error numbers
3) Library subroutines

4) File formats

5) Miscellaneous

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator's Guide

6) Demos and games
) Special files

When referring to man pages, this guide follows a standard UNIX convention: the
section number in parentheses follows the item. For example, pnmda(3) refers to the
man page in section 3 for the pmda command.

Release Notes

Release notes provide specific information about the current product release, available
online through the r el not es command. Exceptions to the printed and online
documentation are found in the release notes. The gr el not es command provides a
graphical interface to the release notes of all products installed on your system. For
additional information, see the r el not es(1) and gr el not es(1) man pages.

SGI Web Sites

The following Web sites are accessible to everyone with general Internet access:

URL Description

http://ww. sgi.com The SGI general Web site, with
search capability

http://ww. sgi.conl soft ware Links to Performance Co-Pilot
product information

http://oss. sgi.conl projects/pcp Some parts of the PCP
infrastructure that have also been
released as open source

Obtaining Publications

To obtain SGI documentation, go to the SGI Technical Publications Library at
http://techpubs. sgi.com

007-3964-002 XXiii

About This Guide

Conventions

The following conventions are used throughout this document:

Convention

comand

variable

user input

[]

ALL CAPS

0

XXiv

Meaning

This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

Italic typeface denotes variable entries and words or
concepts being defined.

This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

Brackets enclose optional portions of a command or
directive line.

Ellipses indicate that a preceding element can be
repeated.

All capital letters denote environment variables,
operator names, directives, defined constants, and
macros in C programs.

Parentheses that follow function names surround
function arguments or are empty if the function has no
arguments; parentheses that follow IRIX commands
surround man page section numbers.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator's Guide

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

Send e-mail to the following address:
t echpubs@gi . com

Use the Feedback option on the Technical Publications Library World Wide Web
page:
http://techpubs. sgi.com

Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

Send mail to the following address:

Technical Publications

SGI

1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

007-3964-002

XXV

Chapter 1

Objectives

PCP Target Usage

Introduction to Performance Co-Pilot

This chapter provides an introduction to Performance Co-Pilot (PCP), an overview of
its individual components, and conceptual information to help you use this product.

The following sections are included:
¢ "Objectives" covers the intended purposes of PCP.
* "Overview of Component Software", page 5, describes PCP tools and agents.

* "Conceptual Foundations", page 8, discusses the design theories behind PCP.

Performance Co-Pilot (PCP) provides a range of services that may be used to monitor
and manage system performance. These services are distributed and scalable to
accommodate the most complex system configurations and performance problems.

PCP is targeted at the performance analyst, benchmarker, capacity planner, developer,
database administrator, or system administrator with an interest in overall system
performance and a need to quickly isolate and understand performance behavior,
resource utilization, activity levels, and bottlenecks in complex systems. Platforms
that can benefit from this level of performance analysis include large servers, server
clusters, or multiserver sites delivering Database Management Systems (DBMS),
compute, Web, file, or video services.

Empowering the PCP User

007-3964-002

To deal efficiently with the dynamic behavior of complex systems, performance
analysts need to filter out noise from the overwhelming stream of performance data,
and focus on exceptional scenarios. Visualization of current and historical
performance data, and automated reasoning about performance data, effectively
provide this filtering.

1: Introduction to Performance Co-Pilot

From the PCP end user’s perspective, PCP presents an integrated suite of tools, user
interfaces, and services that support real-time and retrospective performance analysis,
with a bias towards eliminating mundane information and focusing attention on the
exceptional and extraordinary performance behaviors. When this is done, the user
can concentrate on in-depth analysis or target management procedures for those
critical system performance problems.

Unification of Performance Metric Domains

At the lowest level, performance metrics are collected and managed in autonomous
performance domains such as the IRIX operating system, a DBMS, a layered service,
or an end-user application. These domains feature a multitude of access control
policies, access methods, data semantics, and multiversion support. All this detail is
irrelevant to the developer or user of a performance monitoring tool, and is hidden
by the PCP infrastructure.

Performance Metrics Domain Agents (PMDAs) within PCP encapsulate the knowledge
about, and export performance information from, autonomous performance domains.

Uniform Naming and Access to Performance Metrics

Usability and extensibility of performance management tools mandate a single scheme
for naming performance metrics. The set of defined names constitutes a Performance
Metrics Name Space (PMNS). Within PCP, the PMNS is adaptive so it can be extended,
reshaped, and pruned to meet the needs of particular applications and users.

PCP provides a single interface to name and retrieve values for all performance
metrics, independently of their source or location.

PCP Distributed Operation

From a purely pragmatic viewpoint, a single workstation must be able to monitor the
concurrent performance of multiple remote hosts. At the same time, a single host
may be subject to monitoring from multiple remote workstations.

These requirements suggest a classic client-server architecture, which is exactly what
PCP uses to provide concurrent and multiconnected access to performance metrics,
independent of their host location.

2 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Dynamic Adaptation to Change

Complex systems are subject to continual changes as network connections fail and are
reestablished; nodes are taken out of service and rebooted; hardware is added and
removed; and software is upgraded, installed, or removed. Often these changes are
asynchronous and remote (perhaps in another geographic region or domain of
administrative control).

The distributed nature of the PCP (and the modular fashion in which performance
metrics domains can be installed, upgraded, and configured on different hosts)
enables PCP to adapt concurrently to changes in the monitored system(s). Variations
in the available performance metrics as a consequence of configuration changes are
handled automatically and become visible to all clients as soon as the reconfigured
host is rebooted or the responsible agent is restarted.

PCP also detects loss of client-server connections, and most clients support
subsequent automated reconnection.

Logging and Retrospective Analysis

A range of tools is provided to support flexible, adaptive logging of performance
metrics for archive, playback, remote diagnosis, and capacity planning. PCP archive
logs may be accumulated either at the host being monitored, at a monitoring
workstation, or both.

A universal replay mechanism, modeled on VCR controls, supports play, step,
rewind, fast forward at variable speed processing of archived performance data.

Most PCP applications are able to process archive logs and real-time performance
data with equal facility. Unification of real-time access and access to the archive logs,
in conjunction with VCR-like viewing controls, provides new and powerful ways to
build performance tools and to review both current and historical performance data.

Automated Operational Support

For operational and production environments, PCP provides a framework with scripts
to customize in order to automate the execution of ongoing tasks such as these:

* Centralized archive logging for multiple remote hosts

* Archive log rotation, consolidation, and culling

007-3964-002 3

1: Introduction to Performance Co-Pilot

PCP Extensibility

Metric Coverage

o WWW-based publishing of charts showing snapshots of performance activity
levels in the recent past

¢ Flexible alarm monitoring: parameterized rules to address common critical
performance scenarios and facilities to customize and refine this monitoring

¢ Retrospective performance audits covering the recent past; for example, daily or
weekly checks for performance regressions or quality of service problems

PCP permits the integration of new performance metrics into the PMNS, the
collection infrastructure, and the logging framework. The guiding principle is, “if it is
important for monitoring system performance, and you can measure it, you can easily
integrate it into the PCP framework.”

For many PCP customers, the most important performance metrics are not those
already supported, but new performance metrics that characterize the essence of good
or bad performance at their site, or within their particular application environment.

One example is an application that measures the round-trip time for a benign “probe”
transaction against some mission-critical application.

For application developers, a library is provided to support easy-to-use insertion of
trace and monitoring points within an application, and the automatic export of
resultant performance data into the PCP framework. Other libraries and tools aid the
development of customized and fully featured Performance Metrics Domain Agents
(PMDAs).

Extensive source code examples are provided in the distribution, and by using the
PCP toolkit and interfaces, these customized measures of performance or quality of
service can be easily and seamlessly integrated into the PCP framework.

The core PCP modules support export of performance metrics that include all IRIX
6.2 and 6.5.x kernel instrumentation, hardware instrumentation, process-level resource
utilization, and activity in the PCP collection infrastructure.

The supplied agents support over 1000 distinct performance metrics, many of which
can have multiple values, for example, per disk, per CPU, or per process.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Overview of Component Software

Performance Co-Pilot (PCP) is composed of text-based tools, graphical tools, and
related commands. Each tool or command is fully documented by a man page. These
man pages are named after the tools or commands they describe, and are accessible
through the man command. For example, to see the pmi nf o(1) man page for the

pmi nf o command, enter this command:

man pmi nfo

Many PCP tools and commands are accessible from an Icon Catalog on the IRIX
desktop, grouped under PerfTools. In the Toolchest Find menu, choose PerfTools; an
Icon Catalog appears, containing clickable PCP programs. To bring up a Web-based
introduction to Performance Co-Pilot, click the AboutPCP icon.

A list of PCP tools and commands, grouped by functionality, is provided in the
following four sections.

Performance Monitoring and Visualization

007-3964-002

The following tools provide the principal services for the PCP end-user with an
interest in monitoring, visualizing, or processing performance information collected
either in real time or from PCP archive logs:

ovi ew Visualizes the performance of SGI 3000 series and SGI
2000 series of systems, showing a dynamic display of
node topology and performance.

pmem Reports per-process memory usage statistics. Both
virtual size and prorated physical memory usage are
reported.

pmi e Evaluates predicate-action rules over performance

metrics domain, for performance alarms, automated
system management tasks, dynamic tuning
configuration, and so on. It is an inference engine.

pm econf Creates parameterized rules to be used with the PCP
inference engine (pmi e).

pmi nfo Displays information about arbitrary performance
metrics available from PCP, including help text with - T.

1: Introduction to Performance Co-Pilot

prkst at

prpr obe

prtime

prval

Provides a text-based display of metrics that summarize
system performance at a high level, suitable for ASCII
logs or inquiry over a modem.

Probes for performance metric availability, values, and
instances.

Provides a graphical user interface for PCP applications
requiring time control. This command is not normally
invoked directly by users.

Provides a text-based display of the values for arbitrary
instances of a selected performance metric, suitable for
ASCII logs or inquiry over a modem.

Collecting, Transporting, and Archiving Performance Information

PCP provides the following tools to support real-time data collection, network
transport, and archive log creation services for performance data:

prcd

prcd_wai t

prmdunpl og

pm c

pm ogconf

Is the Performance Metrics Collection Daemon (PMCD).
This daemon must run on each system being
monitored, to collect and export the performance
information necessary to monitor the system.

Waits for pntd to be ready to accept client connections.

Displays selected state information, control data, and
metric values from a PCP archive log created by
pm ogger.

Exercises control over an instance of the PCP archive
logger pm ogger, to modify the profile of which
metrics are logged and/or how frequently their values
are logged.

Creates or modifies pm ogger configuration files for
most common logging scenarios. It is an interactive
script.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Operational and Infrastructure Support

007-3964-002

pm ogger

Creates PCP archive logs of performance metrics over
time. Many tools accept these PCP archive logs as
alternative sources of metrics for retrospective analysis.

PCP provides the following tools to support the PCP infrastructure and assist
operational procedures for PCP deployment in a production environment:

aut of sd_pr obe

hi ppr obe

prdat e

pndbg

prer r

prmhost nane

pm e_check

pm ock

prpost

pnT un

prst or e

Probes the availability of the AutoFS mount/unmount
daemon. It is used by the shpi ng PMDA.

Probes the state of the configured HIPPI interfaces.
Used by the shpi ng PMDA.

Displays the current date and/or time, with an optional
offset.

Describes the available facilities and associated control
flags. PCP tools include internal diagnostic and
debugging facilities that may be activated by run-time
flags.

Translates PCP error codes into human-readable error
messages.

Reports hostname as returned by get host bynarre.
Used in assorted PCP management scripts.

Administration of the Performance Co-Pilot inference
engine (pmi e).

Attempts to acquire an exclusive lock by creating a file
with a mode of 0.

Appends the text message to the end of the PCP notice
board file (/ var / adm pcpl og/ NOTI CES).

Is a graphical utility for launching PCP commands with
optional arguments from the IRIX desktop.

Reinitializes counters or assigns new values to metrics
that act as control variables. The command changes the

1: Introduction to Performance Co-Pilot

current values for the specified instances of a single
performance metric.

Conceptual Foundations

Performance Metrics

The following sections provide a detailed overview of concepts that underpin
Performance Co-Pilot (PCP).

Across all of the supported performance metric domains, there are a large number of
performance metrics. Each metric has its own structure and semantics. PCP presents a
uniform interface to these metrics, independent of the underlying metric data source.

The Performance Metrics Name Space (PMNS) provides a hierarchical classification of
external metric names, and a mapping from external names to internal metric
identifiers. See "Performance Metrics Name Space", page 12, for a description of the
PMNS.

Performance Metric Instances

When performance metric values are returned to a requesting application, there may
be more than one value instance for a particular metric; for example, independent
counts for each CPU, process, disk, or local filesystem. Internal instance identifiers
correspond one to one with external (textual) descriptions of the members of an
instance domain.

Transient performance metrics (such as per-process information, per-XLV volume, and
so on) cause repeated requests for the same metric to return different numbers of
values, or changes in the particular instance identifiers returned. These changes are
expected and fully supported by the PCP infrastructure; however, metric instantiation
is guaranteed to be valid only at the time of collection.

Current Metric Context

When performance metrics are retrieved, they are delivered in the context of a
particular source of metrics, a point in time, and a profile of desired instances. This

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

means that the application making the request has already negotiated to establish the
context in which the request should be executed.

A metric source may be the current performance data from a particular host (a live or
real-time source), or an archive log of performance data collected by pm ogger at
some distant host or at an earlier time (a retrospective or archive source).

By default, the collection time for a performance metric is the current time of day for
real-time sources, or current point within an archive source. For archives, the
collection time may be reset to an arbitrary time within the bounds of the archive log.

Note: Performance Co-Pilot 2.x, and IRIX release 6.5, were developed to be
completely Year 2000 compliant.

Sources of Performance Metrics and Their Domains

Performance
metric
domains

007-3964-002

Instrumentation for the purpose of performance monitoring typically consists of
counts of activity or events, attribution of resource consumption, and service-time or
response-time measures. This instrumentation may exist in one or more of the
functional domains as shown in Figure 1-1.

Access method Access method Access method Access method

]]
L End-user
IRIX Layered application
DBMS ABC
service
XYZ

al2189

Figure 1-1 Performance Metric Domains as Autonomous Collections of Data

1: Introduction to Performance Co-Pilot

10

Each domain has an associated access method:

* The IRIX kernel, including sar data structures, per-process resource consumption,
network statistics, disk activity, or memory management instrumentation.

* A layered software service such as activity logs for a World Wide Web server or an
NNTP news server.

* An application program such as measured response time for a production
application running a periodic and benign probe transaction (as often required in
service quality agreements), or rate of computation and throughput in jobs per
hour for a batch stream.

* A layered system product such as the temperature, voltage levels, and fan speeds
from the environmental monitor in a Challenge system, or the length of the mail
queue as reported by nqueue.

¢ External equipment such as network routers and bridges.

For each domain, the set of performance metrics may be viewed as an abstract data
type, with an associated set of methods that may be used to perform the following
tasks:

¢ Interrogate the metadata that describes the syntax and semantics of the
performance metrics

e Control (enable or disable) the collection of some or all of the metrics
e Extract instantiations (current values) for some or all of the metrics

We refer to each functional domain as a performance metrics domain and assume that
domains are functionally, architecturally, and administratively independent and
autonomous. Obviously the set of performance metrics domains available on any host
is variable, and changes with time as software and hardware are installed and
removed.

The number of performance metrics domains may be further enlarged in
cluster-based or network-based configurations, where there is potentially an instance
of each performance metrics domain on each node. Hence, the management of
performance metrics domains must be both extensible at a particular host and
distributed across a number of hosts.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Each performance metrics domain on a particular host must be assigned a unique
Performance Metric Identifier (PMID). In practice, this means unique identifiers are
assigned globally for each performance metrics domain type. For example, the same
identifier would be used for the IRIX performance metrics domain on all hosts.

Distributed Collection

The performance metrics collection architecture is distributed, in the sense that any
performance tool may be executing remotely. However, a PMDA must run on the
system for which it is collecting performance measurements. In most cases,
connecting these tools together on the collector host is the responsibility of the PMCD
process, as shown in Figure 1-2.

Remote Host Local Host

/

Monitor N\ 4 Monitor Monitor\
' (Y ()
=

!

N J

007-3964-002

al12190

Figure 1-2 Process Structure for Distributed Operation

11

1: Introduction to Performance Co-Pilot

Performance Metrics

The host running the monitoring tools does not require any collection tools, including
prcd, because all requests for metrics are sent to the pnmcd process on the collector
host. These requests are then forwarded to the appropriate PMDAs, which respond
with metric descriptions, help text, and most importantly, metric values.

The connections between monitor clients and pntd processes are managed in

l'i bpcp, below the PMAPI level; see the prmapi (3) man page. Connections between
PMDAs and pntd are managed by the PMDA routines; see the pnda(3) man page.
There can be multiple monitor clients and multiple PMDAs on the one host, but there
may be at most one pntd process.

Name Space

Internally, each unique performance metric is identified by a Performance Metric
Identifier (PMID) drawn from a universal set of identifiers, including some that are
reserved for site-specific, application-specific, and customer-specific use.

An external name space called Performance Metrics Name Space (PMNS) maps from
a hierarchy (or tree) of external names to PMIDs.

Performance Metrics Name Space Diagram

12

Each node in the PMNS tree is assigned a label that must begin with an alphabet
character, and be followed by zero or more alphanumeric characters or the underscore
(L) character. The root node of the tree has the special label of r oot .

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

007-3964-002

A metric name is formed by traversing the tree from the root to a leaf node with each

node label on the path separated by a period. The common prefix r 00t . is omitted
from all names. For example, Figure 1-3 shows the nodes in a small subsection of a
PMNS.

kernel router

all

percpu

rcvpack total_util

al2191

Figure 1-3 Small Performance Metrics Name Space (PMNS)

In this subsection, the following are valid names for performance metrics:

ker nel . percpu. syscal |
net wor k. t cp. r cvpack
hw. router.recv.total util

Although a default PMNS is shipped and updated by the components of PCP,
individual users may create their own Name Space for metrics of interest, and all
tools may use a private PMNS, rather than the default PMNS.

13

1: Introduction to Performance Co-Pilot

Distributed PMNS

In Performance Co-Pilot 1.x releases, the PMNS was local to the application that
referred to PCP metrics by name. As of Performance Co-Pilot release 2.0, PMNS
operations are directed to the host or archive that is the source of the desired
performance metrics.

Distributed PMNS necessitated changes to PCP protocols between client applications
and pntd, and to the internal format of PCP archive files. Performance Co-Pilot
release 2.2 is compatible with earlier releases, so new PCP components operate
correctly with either new or old PCP components. For example, connections to the
PCP 1.x PMCD, or attempts to process a PCP archive created by a Performance
Co-Pilot 1.x pri ogger, revert to using the local PMNS.

Descriptions for Performance Metrics

14

Through the various performance metric domains, the PCP must support a wide
range of formats and semantics for performance metrics. This metadata describing the
performance metrics includes the following:

e The internal identifier, Performance Metric Identifier (PMID), for the metric

* The format and encoding for the values of the metric, for example, an unsigned
32-bit integer or a string or a 64-bit IEEE format floating point number

* The semantics of the metric, particularly the interpretation of the values as
free-running counters or instantaneous values

* The dimensionality of the values, in the dimensions of events, space, and time

* The scale of values; for example, bytes, kilobytes (KB), or megabytes (MB) for the
space dimension

¢ An indication if the metric may have one or many associated values
® Short (and extended) help text describing the metric

For each metric, this metadata is defined within the associated PMDA, and PCP
arranges for the information to be exported to the performance tools applications that
use the metadata when interpreting the values for performance metrics.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Values for Performance Metrics

The following sections describe two types of performance metrics, single-valued and
set-valued.

Single-Valued Performance Metrics

Some performance metrics have a singular value within their performance metric
domains. For example, available memory (or the total number of context switches)
has only one value per performance metric domain, that is, one value per host. The
metadata describing the metric makes this fact known to applications that process
values for these metrics.

Set-Valued Performance Metrics

Some performance metrics have a set of values or instances in each implementing
performance metric domain. For example, one value for each disk, one value for each
process, one value for each CPU, or one value for each activation of a given
application.

When a metric has multiple instances, the PCP framework does not pollute the Name
Space with additional metric names; rather, a single metric may have an associated
set of values. These multiple values are associated with the members of an instance
domain, such that each instance has a unique instance identifier within the associated
instance domain. For example, the “per CPU” instance domain may use the instance
identifiers 0, 1, 2, 3, and so on to identify the configured processors in the system.

Internally, instance identifiers are encoded as binary values, but each performance
metric domain also supports corresponding strings as external names for the instance
identifiers, and these names are used at the user interface to the PCP utilities.

007-3964-002 15

1: Introduction to Performance Co-Pilot

For example, the performance metric di sk. dev. t ot al counts I/O operations for
each disk spindle, and the associated instance domain contains one member for each
disk spindle. On a system with five specific disks, one value would be associated
with each of the external and internal instance identifier pairs shown in Table 1-1.

Table 1-1 Sample Instance Identifiers for Disk Statistics

External Instance Identifier Internal Instance Identifier
dks1d1 131329
dks1d2 131330
dks1d3 131331
dks3d1 131841
dks3d2 131842

Multiple performance metrics may be associated with a single instance domain.

Each performance metric domain may dynamically establish the instances within an
instance domain. For example, there may be one instance for the metric

ker nel . percpu. i dl e on a workstation, but multiple instances on a multiprocessor
server. Even more dynamic is fi | esys. f r ee, where the values report the amount of
free space per file system, and the number of values tracks the mounting and
unmounting of local filesystems.

PCP arranges for information describing instance domains to be exported from the
performance metric domains to the applications that require this information.
Applications may also choose to retrieve values for all instances of a performance
metric, or some arbitrary subset of the available instances.

16 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Collector and Monitor Roles

Hosts supporting PCP services are broadly classified into two categories:

Collector Hosts that have prcd and one or more performance
metric domain agents (PMDAs) running to collect and
export performance metrics

Monitor Hosts that import performance metrics from one or
more collector hosts to be consumed by tools to monitor,
manage, or record the performance of the collector hosts

Each PCP enabled host can operate as a collector, a monitor, or both.

Performance Metrics Collection System

PCP provides an infrastructure through the Performance Metrics Collection
Subsystem (PMCS). It unifies the autonomous and distributed PMDAs into a cohesive
pool of performance data, and provides the services required to create generalized
and powerful performance tools.

The PMCS provides the framework that underpins the PMAPIL The PMCS is
responsible for the following services on behalf of the performance tools developed
on top of the PMAPL

* Distributed Name Space services
e Instance domain services

* Coordination with the processes and procedures required to control the
description, collection, and extraction of performance metric values from agents
that interface to the performance metric domains

* Servicing incoming requests for local performance metric values and metadata
from applications running either locally or on a remote system

Retrospective Sources of Performance Metrics

The PMCS described in the previous section is used when PMAPI clients are
requesting performance metrics from a real-time or live source.

007-3964-002 17

1: Introduction to Performance Co-Pilot

The PMAPI also supports delivery of performance metrics from a historical source in
the form of a PCP archive log. Archive logs are created using the pml ogger utility,
and are replayed in an architecture as shown in Figure 1-4.

4)

/\Monitor

=S
=

PCP Archive Log PCP Archive Log

- J

al2192

Figure 1-4 Architecture for Retrospective Analysis

The PMAPI has been designed to minimize the differences required for an application
to process performance data from an archive or from a real-time source. As a result,
most PCP tools support live and retrospective monitoring with equal facility.

18 007-3964-002

Chapter 2

Installing and Configuring Performance Co-Pilot

The sections in this chapter describe the basic installation and configuration steps
necessary to run Performance Co-Pilot (PCP) on your systems. The following major
sections are included:

® '"Product Structure” describes the main packages of PCP software and how they
must be installed on each system.

* '"Performance Metrics Collection Daemon (PMCD)", page 20, describes the
fundamentals of maintaining the performance data collector.

¢ "Troubleshooting", page 27, offers advice on problems involving the PMCD.

Product Structure

007-3964-002

In a typical deployment, Performance Co-Pilot (PCP) would be installed in a collector
configuration on one or more hosts, from which the performance information could
then be collected, and in a monitor configuration on one or more workstations, from
which the performance of the server systems could then be monitored.

PCP is packaged into a number of basic subsystem types that reflect the functional
role of the product components. These subsystems may be installed using the i nst
or swrgr command:

Core The pcp_eoe. sw. eoe and pcp. sw. base subsystems
must be installed on every PCP enabled host, that is, on
both PCP monitor and PCP collection systems.

Monitor The pcp_eoe. sw. noni t or and pcp. sw. noni t or
subsystems must be installed on every PCP monitor
host. Subsystems pcp_eoe. books. hel p and
pcp. books. hel p should be installed to provide help
support for the GUI monitoring tools; see the
sgi hel p(1) man page.

Collector No additional installation is required because the
Performance Metrics Collection Daemon (pntd) is in
the pcp_eoe. sw. eoe subsystem.

19

2: Installing and Configuring Performance Co-Pilot

Demo

Other

Gift

Documentation

The pcp. sw. denp subsystems provide source code for
example applications and PMDAs that serve as
templates for developing new modules to extend the
PCP coverage of performance metrics or the capabilities
of monitoring tools.

The other pcp. sw. * subsystems provide the support
for the optional PMDAs, and when required, need to be
installed on the PCP collector host, and subsequently
configured before they become active.

The pcp_gi fts. sw. * subsystems provide optional
applications and services that may be individually
installed as required.

The pcp. man. * and pcp. books. * subsystems
provide release notes, man pages, interactive tutorials,
and IRIS InSight books, and may be installed as needed.

For complete information on the installable software packages, see the Performance
Co-Pilot release notes. For additional information, see the r el not es(1) or

gr el not es(1) man pages.

Performance Metrics Collection Daemon (PMCD)

On each Performance Co-Pilot (PCP) collection system, you must be certain that the
pntd daemon is running. This daemon coordinates the gathering and exporting of
performance statistics in response to requests from the PCP monitoring tools.

Starting and Stopping the PMCD

20

To start the daemon, enter the following commands as r oot on each PCP collection

system:

chkconfig pncd on
/etc/init.d/ pcp start

These commands instruct the system to start the daemon immediately, and again
whenever the system is booted. It is not necessary to start the daemon on the
monitoring system unless you wish to collect performance information from it as well.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

To stop pmcd immediately on a PCP collection system, enter the following command:

/etc/init.d/ pcp stop

Restarting an Unresponsive PMCD

Often, if a daemon is not responding on a PCP collection system, the problem can be
resolved by stopping and then immediately restarting a fresh instance of the daemon.
If you need to stop and then immediately restart PMCD on a PCP collection system,
use the st art argument provided with the script in / et ¢/ i ni t. d. The command
syntax is, as follows:

/etc/init.d/ pcp start

On startup, pncd looks for a configuration file named / et ¢/ pned. conf . This file
specifies which agents cover which performance metrics domains and how PMCD
should make contact with the agents. A comprehensive description of the
configuration file syntax and semantics can be found in the prcd(1) man page.

If the configuration is changed, pntd reconfigures itself when it receives the SI GHUP
signal. Use the following command to send the SI GHUP signal to the daemon:

killall -HUP pntd

This is also useful when one of the PMDAs managed by pntd has failed or has been
terminated by pntd. Upon receipt of the SI GHUP signal, pntd restarts any PMDA
that is configured but inactive.

PMCD Diagnostics and Error Messages

If there is a problem with pntd, the first place to investigate should be the pntd. | og
file. By default, this file is in the / var/ adn? pcpl og directory, although setting the
PCPLOGCDI R environment variable before running / et ¢/ i ni t. d/ pcp allows the file
to be relocated.

PMCD Options and Configuration Files

007-3964-002

There are two files that control PMCD operation. These are the / et ¢/ pntd. conf
and / et c/ confi g/ pncd. opti ons files. The pntd. opti ons file contains the
command line options used with PMCD; it is read when the daemon is invoked by
/etc/init.d/ pcp. The pntd. conf file contains configuration information

21

2: Installing and Configuring Performance Co-Pilot

The pntd. opti ons File

22

regarding domain agents and the metrics that they monitor. These configuration files
are described in the following sections.

Command line options for the PMCD are stored in the

/etc/config/pncd. options file. The PMCD can be invoked directly from a shell
prompt, or it can be invoked by /etc/init. d/ pcp as part of the boot process. It is
usual and normal to invoke it using / et ¢/ i ni t. d/ pcp, reserving shell invocation
for debugging purposes.

The PMCD accepts certain command line options to control its execution, and these
options are placed in the pntd. opti ons file when / et ¢/ i ni t. d/ pcp is being used
to start the daemon. The following options are available:

-f Causes the PMCD to be run in the foreground. The
PMCD is usually run in the background, as are most
daemons.

-1 address For hosts with more than one network interface, this
option specifies the interface on which this instance of
the PMCD accepts connections. Multiple - i options
may be specified. The default in the absence of any - i
option is for PMCD to accept connections on all
interfaces.

-1 file Specifies a log file. If no -1 option is specified, the log
file name is pnecd. | 0g and it is created in the directory
/ var /[adni pcpl og or in a directory as specified by the
PCPLOGDI R environment variable.

-t seconds Specifies the amount of time, in seconds, before PMCD
times out on protocol data unit (PDU) exchanges with
PMDAs. If no time out is specified, the default is five
seconds. Setting time out to zero disables time outs.

The time out may be dynamically modified by storing
the number of seconds into the metric
prtd. control . ti meout using prst or e.

- T mask Specifies whether connection and PDU tracing are
turned on for debugging purposes.

See the pntd(1) man page for complete information on these options.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

The pntd. conf File

007-3964-002

The default pred. opti ons file shipped with PCP is similar to the following:

comand |ine options to pncd, unconment/edit |lines as required
| onger timeout delay for slow agents

-t 10

suppress tinmeouts

-t 0

make | og go sonepl ace el se

-1 /sone/ pl acel el se

enabl e event tracing (1 for connections, 2 for PDUs, 3 for both)
-T 3

HOH O HH H H

The most commonly used options have been placed in this file for your convenience.

To uncomment and use an option, simply remove the pound sign (#) at the beginning
of the line with the option you wish to use. Restart pncd for the change to take effect;
that is, as superuser, enter the command:

/etc/init.d/ pcp start

When the PMCD is invoked, it reads its configuration file, which is

/ et c/ pned. conf. This file contains entries that specify the PMDAs used by this
instance of the PMCD and which metrics are covered by these PMDAs. Also, you
may specify access control rules in this file for the various hosts on your network.
This file is described completely in the pncd(1) man page.

With standard PCP operation (even if you have not created and added your own
PMDAs), you might need to edit this file in order to add any access control you wish
to impose. If you do not add access control rules, all access for all operations is
granted to all hosts. The default pncd. conf file shipped with PCP is similar to the
following:

Nanme |Id IPC | PC Parans Fil e/ Crd

irix 1 dso irix_init l'ibirixpnda. so
prcd 2 dso pred_i ni t prmda_pntd. so
proc 3 dso proc_init prmda_proc. so

Note: Because the PMCD runs with r oot privilege, you must be very careful not to
configure PMDAs in this file if you are not sure of their action. Pay close attention
that permissions on this file are not inadvertently downgraded to allow public write
access.

23

2: Installing and Configuring Performance Co-Pilot

24

Each entry in this configuration file contains rules that specify how to connect the
PMCD to a particular PMDA and which metrics the PMDA monitors. A PMDA may
be attached as a Dynamic Shared Object (DSO) or by using a socket or a pair of pipes.
The distinction between these attachment methods is described below.

An entry in the pntd. conf file looks like this:
label_name domain_number type path

The label_name field specifies a name for the PMDA. The domain_number is an integer
value that specifies a domain of metrics for the PMDA. The type field indicates the
type of entry (DSO, socket, or pipe). The path field is for additional information, and
varies according to the type of entry.

The following rules are common to DSO, socket, and pipe syntax:
label _name An alphanumeric string identifying the agent.

domain_number An unsigned integer specifying the agent’s domain.

DSO entries follow this syntax:

label_name domain_number dSoO entry-point path

The following rules apply to the DSO syntax:

dso The entry type.

entry-point The name of an initialization function called when the
DSO is loaded.

path Designates the location of the DSO. If path begins with

a slash (/), it is taken as an absolute path specifying the
DSO; otherwise, the DSO is located in one of the
directories / usr/ pcp/ i b or/var/pcp/lib.

Socket entries in the pncd. conf file follow this syntax:

label_name domain_number socket addr_family address command [args]

The following rules apply to the socket syntax:
socket The entry type.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

addr_family Specifies if the socket is AF_|I NET or AF_UNI X. If the
socket is | NET, the word i net appears in this place. If
the socket is UNI X, the word uni x appears in this place.

address Specifies the address of the socket. For INET sockets,
this is a port number or port name. For UNIX sockets,
this is the name of the PMDA’s socket on the local host.

command Specifies a command to start the PMDA when the
PMCD is invoked and reads the configuration file.

args Optional arguments for command.

Pipe entries in the pncd. conf file follow this syntax:

label_name domain_number pi pe protocol command [args]

The following rules apply to the pipe syntax:
pi pe The entry type.

protocol Specifies whether a text-based or a binary PCP protocol
should be used over the pipes. Values for this
parameter may be “text” and “binary.” The text-based
protocol is provided for backwards compatibility, but
otherwise its use is discouraged.

command Specifies a command to start the PMDA when the
PMCD is invoked and reads the configuration file.

args Optional arguments for command.

Controlling Access to PMCD with pntd. conf

007-3964-002

You can place this option extension in the pntd. conf file to control system access to
performance metric data. To add an access control section, begin by placing the
following line at the end of your pned. conf file:

[access]
Below this line, you can add entries of the following forms:
al | ow hostlist : operations ; di sal | ow hostlist : operations ;

The hostlist is a comma-separated list of host identifiers; the following rules apply:

25

2: Installing and Configuring Performance Co-Pilot

26

* Host names must be in the local system’s / et ¢/ host s file or known to the local
DNS (domain name service).

* [P addresses may be given in the usual four-field numeric notation. Subnet
addresses may be specified using three or fewer numeric components and an
asterisk as a wild card for the last component in the address.

For example, the following hostlist entries are all valid:

whi zki d

gat e- wheel er. eng. com
123.101. 27. 44

| ocal host

155. 116. 24. *

192. *

*

The operations field can be any of the following;:
* A comma-separated list of the operation types described below.
* The word all to allow or disallow all operations as specified in the first field.

* The words all except and a list of operations. This entry allows or disallows all
operations as specified in the first field except those listed.

The operations that can be allowed or disallowed are as follows:

fetch Allows retrieval of information from the PMCD. This may be
information about a metric (such as a description, instance domain, or
help text) or an actual value for a metric.

store Allows the PMCD to store metric values in PMDAs that permit store
operations. Be cautious in allowing this operation, because it may be a
security opening in large networks, although the PMDAs shipped with
the PCP product typically reject store operations, except for selected
performance metrics where the effect is benign.

For example, here is a sample access control portion of an / et ¢/ prnrd. conf file:

all ow whizkid : all ;
al l ow 192.127.4.* : fetch ;
di sall ow gate-inet : store ;

Complete information on access control syntax rules in the pntd. conf file can be
found in the pncd(1) man page.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Troubleshooting

Performance Metrics

The following sections offer troubleshooting advice on the Performance Metrics Name
Space (PMNS), missing and incomplete values for performance metrics, and IRIX
metrics and the PMCD.

Advice for troubleshooting the archive logging system is provided in Chapter 6,
"Archive Logging", page 95.

Name Space
To display the PMNS, use the pmi nf 0 command; see the pmi nf 0(1) man page.

The PMNS at the collector host is updated whenever a PMDA is installed or
removed, and may also be updated when new versions of the PCP or PCP add-on
products are installed. During these operations, the ASCII version of the PMNS is
typically updated, then the binary version is regenerated.

Missing and Incomplete Values for Performance Metrics

Missing or incomplete performance metric values are the result of their unavailability.

Metric Values Not Available

007-3964-002

The following symptom has a known cause and resolution:

Symptom: Values for some or all of the instances of a performance
metric are not available.

Cause: This can occur as a consequence of changes in the
installation of modules (for example, a DBMS or an
applications package) that provide the performance
instrumentation underpinning the PMDAs. Changes in
the selection of modules that are installed or
operational, along with changes in the version of these
modules, may make metrics appear and disappear over
time.

In simple terms, the PMNS contains a metric name, but
when that metric is requested, no PMDA at the
collector host supports the metric.

27

2: Installing and Configuring Performance Co-Pilot

Resolution:

IRIX Metrics and the PMCD

No IRIX Metrics Available

I's -1g /dev/knmem

28

1 sys

For archive logs, the collection of metrics to be logged
is a subset of the metrics available, so utilities replaying
from a PCP archive log may not have access to all of
the metrics available from a live (PMCD) source.

Make sure the underlying instrumentation is available
and the module is active. Ensure that the PMDA is
running on the host to be monitored. If necessary,
create a new archive log with a wider range of metrics
to be logged.

The following issues involve the IRIX operating system and the PMCD:

e No IRIX metrics available

e (Cannot connect to remote PMCD

e PMCD not reconfiguring after hang-up

e PMCD does not start

The following symptom has a known cause and resolution:

Symptom:

Cause:

Resolution:

Some of the IRIX metrics are unavailable.

PMCD (and therefore the IRIX PMDA) does not have
permission to read / dev/ kmem or the running kernel
is not the same as the kernel in / uni x.

Check / var/ adm pcpl og/ pntd. | og. An error
message of the following form means that PMCD
cannot access / dev/ knmem

kmeni nit: cannot open "/dev/kmeni:

Ensure that / dev/ knmemis readable by group sys. For
example, you should see something similar to this:

1, 1 May 28 15:16 /dev/ kmem

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Restart PMCD after correcting the group and/or file
permissions, and the problem should be solved.

If the running kernel is not the same as the kernel in
/ uni x, the IRIX PMDA cannot access raw data in the
kernel. A message like this appears in

/var/ adm pcpl og/ pntd. | og:

kmenminit: "/unix" is not nanelist for the running kernel

The only resolution to this is to make the running kernel
the same as the one in / uni x. If the running kernel
was booted from the filesystem, then renaming files to
make / uni x the booted kernel and restarting PMCD
should resolve the problem. If the running kernel was
booted over the network, then PMCD cannot access the
kernel’s symbol table and hence the metrics extracted
by reading / dev/ kmemdirectly are not available.

Cannot Connect to Remote PMCD

The following symptom has a known cause and resolution:

Symptom: A PCP client tool (such as pnthart, dkvi s, or
pm ogger) complains that it is unable to connect to a
remote PMCD (or establish a PMAPI context), but you
are sure that PMCD is active on the remote host.

Cause: To avoid hanging applications for the duration of
TCP/IP time outs, the PMAPI library implements its
own time out when trying to establish a connection to a
PMCD. If the connection to the host is over a slow
network, then successful establishment of the
connection may not be possible before the time out, and
the attempt is abandoned.

Resolution: Establish that the PMCD on far-away-host is really alive,
by connecting to its control port (TCP port number 4321
by default):

tel net far-away-host 4321

007-3964-002 29

2: Installing and Configuring Performance Co-Pilot

This response indicates the PMCD is not running and
needs restarting:

Unabl e to connect to renpte host: Connection refused

To restart the PMCD on that host, enter the following
command:

/etc/init.d/ pcp start
This response indicates the PMCD is running;:
Connected to far-away- host

Interrupt the t el net session, increase the PMAPI time
out by setting the PMCD_CONNECT_TI MEQUT
environment variable to some number of seconds (60
for instance), and try the PCP tool again.

PMCD Not Reconfiguring after SI GHUP

The following symptom has a known cause and resolution:

Symptom PMCD does not reconfigure itself after receiving the
SI GHUP signal.

Cause: If there is a syntax error in / et ¢/ pntd. conf, PMCD
does not use the contents of the file. This can lead to
situations in which the configuration file and PMCD’s
internal state do not agree.

Resolution: Always monitor PMCD’s log. For example, use the
following command in another window when
reconfiguring PMCD, to watch errors occur:

tail -f /var/adm pcpl og/ pntd. | og
PMCD Does Not Start

The following symptom has a known cause and resolution:

Symptom: If the following messages appear in the PMCD log
(/ var/ adm pcpl og/ pntd. | 0g), consider the cause
and resolution:

30 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

pcp[27020] Error: OpenRequest Socket (4321) bind: Address already in

use

pcp[27020] Error: pntd is al ready running

pcp[27020] Error: pntd not started due to errors!

Cause:

Resolution:

007-3964-002

PMCD is already running or was terminated before it
could clean up properly. The error occurs because the
socket it advertises for client connections is already
being used or has not been cleared by the kernel.

Start PMCD as r oot (superuser) by typing:
/etc/init.d/ pcp start

Any existing PMCD is shut down, and a new one is
started in such a way that the symptomatic message
should not appear.

If you are starting PMCD this way and the symptomatic
message appears, a problem has occurred with the
connection to one of the deceased PMCD’s clients.

This could happen when the network connection to a
remote client is lost and PMCD is subsequently
terminated. The system may attempt to keep the socket
open for a time to allow the remote client a chance to
reestablish the connection and read any outstanding
data.

The only solution in these circumstances is to wait until
the socket times out and the kernel deletes it. This

net st at command displays the status of the socket
and any connections:

netstat -a | grep 4321

31

2: Installing and Configuring Performance Co-Pilot

32

If the socket is in the FI N_WAI T or TI ME_WAI T state,
then you must wait for it to be deleted. Once the
command above produces no output, PMCD may be
restarted. Less commonly, you may have another
program running on your system that uses the same
Internet port number (4321) that PMCD uses.

Refer to the PCPI nt r o(1) man page for a description of
how to override the default PMCD port assignment
using the PMCD_PORT environment variable.

007-3964-002

Chapter 3

PerfTools Icon Catalog

007-3964-002

Common Conventions and Arguments

This chapter deals with the user interface components that are common to most of the
graphical tools and text-based utilities that make up the monitor portion of
Performance Co-Pilot (PCP). These are the major sections in this chapter:

e '"PerfTools Icon Catalog", page 33, shows a picture of the PerfTools icons.

¢ "Alternate Metrics Source Options", page 34, details some basic standards used in
the development of PCP tools.

* "General PCP Tool Options", page 35, details other options to use with PCP tools.

* "Time Duration and Control", page 37, describes the time control dialog and
time-related command line options available for use with PCP tools.

* '"Transient Problems with Performance Metric Values", page 45, covers some
uncommon scenarios that may compromise performance metric integrity over the
short term.

Many of the utilities provided with PCP conform to a common set of naming and
syntactic conventions for command line arguments and options. This section outlines
these conventions and their meaning. The options may be generally assumed to be
honored for all utilities supporting the corresponding functionality.

In all cases, the man pages for each utility fully describe the supported command
arguments and options.

Command line options are also relevant when starting PCP applications from the
desktop using the Al t double-click method. This technique launches the pnr un
program to collect additional arguments to pass along when starting a PCP
application.

The conventions and arguments described in this chapter are common to all tools and
utilities in the PerfTools Icon Catalog group, shown in Figure 3-1.

33

3: Common Conventions and Arguments

fcon Catalog: Perflools (Page 9 of 14)

Page Selected Arrange Vew

Figure 3-1 PerfTools Icon Catalog Group

Alternate Metrics Source Options

The default source of performance metrics is from PMCD on the local host. This
section describes how to obtain metrics from sources other than the default.

Fetching Metrics from Another Host

The option - h host directs any PCP utility (such as pnchart or dkvi s) to make a
connection with the PMCD instance running on host. Once established, this connection
serves as the principal real-time source of performance metrics and metadata.

34 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Fetching Metrics from an Archive Log

The option - a archive directs the utility to treat the PCP archive logs with base name
archive as the principal source of performance metrics and metadata.

PCP archive logs are created with prm ogger. Most PCP utilities operate with equal
facility for performance information coming from either a real-time feed via PMCD
on some host, or for historical data from a PCP archive log. For more information on
archive logs and their use, see Chapter 6, "Archive Logging", page 95.

The base name (ar chi ve) of the PCP archive log used with the - a option implies the
existence of the files created automatically by prm ogger, as listed in Table 3-1.

Table 3-1 Physical Filenames for Components of a PCP Archive Log

Filename Contents
ar chi ve. index Temporal index for rapid access to archive contents
ar chi ve. meta Metadata descriptions for performance metrics and instance

domains appearing in the archive

archi ve. N Volumes of performance metrics values, for N=0,1,2,...

Some tools are able to concurrently process multiple PCP archive logs (for example,
for retrospective analysis of performance across multiple hosts), and accept either
multiple - a options or a comma separated list of archive names following the - a
option.

Note: The - h and - a options are mutually exclusive in all cases.

General PCP Tool Options

The following sections provide information relevant to most of the PCP tools. It is
presented here in a single place for convenience.

007-3964-002 35

3: Common Conventions and Arguments

Common Directories and File Locations

36

The following files and directories are used by the PCP tools as repositories for option
and configuration files and for binaries:

[etc/pcp. env
/ et c/ pcp. conf

/ et c/ pntd. conf

/usr/etc/pnecd

/etc/config/
prcd. opti ons

/etc/config/
pm ogger . opti ons

/letc/init.d/ pcp

/usr/sbin

[usr/ pcp

[var/ pcp

/usr/pcp/ bin

lfusr/pcp/lib
[var/ pcp/ prdas

[usr/ pcp/ prdas

/var/pcp/config

[usr/ pcp/ denos

Script to set PCP run-time environment variables.
PCP configuration and environment file.

Configuration file for Performance Metrics Collection
Daemon (PMCD). Sets environment variables, including
PATH.

The PMCD binary.
Command line options for PMCD.

Command line options for pm ogger launched from /
etc/init.d/ pcp.

The PMCD startup script.

Directory containing PCP tools such as prkst at,
pmi nf o, and ovi ew.

Directory containing shareable PCP-specific files and
repository directories.

Directory containing non-shareable (that is, per-host)
PCP specific files and repository directories. There are
some symbolic links from the / usr/ pcp directory
hierarchy pointing into the / var/ pcp directory
hierarchy.

PCP tools that are typically not executed directly by the
end user such as pnbr and, prmsconp, and pm ogger .

Miscellaneous PCP libraries and executables.

Performance Metric Domain Agents (PMDAs), one
directory per PMDA.

An alternate repository for some PMDAs. Certain
entries here are symbolic links into / var/ pcp/ prndas.

Contfiguration files for PCP tools, typically with one
directory per tool.

Demonstration data files and example programs.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

/var/ pcp/ Tutori al PCP Tutorial, in HTML format.

/ var /[adni pcpl og By default, diagnostic and trace log files generated by
PMCD and PMDAs. Also, the PCP archive logs are
managed in one directory per logged host below here.

[var/ pcp/ pms Files and scripts for the Performance Metrics Name
Space (PMNS).

Alternate Performance Metric Name Spaces

The Performance Metrics Name Space (PMNS) defines a mapping from a collection of
external names for performance metrics (convenient to the user) into corresponding
internal identifiers (convenient for the underlying implementation).

The distributed PMNS used in PCP 2.x avoids most requirements for an alternate
PMNS, because clients” PMNS operations are supported at the Performance Metrics
Collection Daemon (PMCD) or by means of PMNS data in a PCP archive log. The
distributed PMNS is the default, but alternates may be specified using the - n
namespace argument to the PCP tools. When a PMNS is maintained on a host, it is
likely to reside in the / var/ pcp/ prms directory.

Refer to the pmms(4) and pmmsconp(l) man pages for details of PMNS structure and
creation.

Time Duration and Control

The periodic nature of sampling performance metrics and refreshing the displays of
the PCP tools makes specification and control of the temporal domain a common
operation. In the following sections, the services and conventions for specifying time
positions and intervals are described.

Performance Monitor Reporting Frequency and Duration

007-3964-002

Many of the performance monitoring utilities have periodic reporting patterns. The
-t interval and - s samples options are used to control the sampling (reporting)
interval, usually expressed as a real number of seconds (interval), and the number of
samples to be reported, respectively. In the absence of the - s flag, the default behavior
is for the performance monitoring utilities to run until they are explicitly stopped.

37

3: Common Conventions and Arguments

The interval argument may also be expressed in terms of minutes, hours, or days, as
described in the PCPI nt r o(1) man page.

Time Window Options

38

The following options may be used with most PCP tools (typically when the source of
the performance metrics is a PCP archive log) to tailor the beginning and end points
of a display, the sample origin, and the sample time alignment to your convenience.

The - S, - T, - Oand - A command line options are used by PCP applications to define

a time window of interest.

- S duration

The start option may be used to request that the display
start at the nominated time. By default, the first sample
of performance data is retrieved immediately in
real-time mode, or coincides with the first sample of
data in a PCP archive log in archive mode. For archive
mode, the - S option may be used to specify a later time
for the start of sampling. By default, if duration is an
integer, the units are assumed to be seconds.

To specify an offset from the beginning of a PCP
archive (in archive mode) simply specify the offset as
the duration. For example, the following entry retrieves
the first sample of data at exactly 30 minutes from the
beginning of a PCP archive.

-S 30min

To specify an offset from the end of a PCP archive,
prefix the duration with a minus sign. In this case, the
first sample time precedes the end of archived data by
the given duration. For example, the following entry
retrieves the first sample exactly one hour preceding
the last sample in a PCP archive.

-S -1lhour

To specify the calendar date and time (local time in the
reporting timezone) for the first sample, use the cti me

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

007-3964-002

- T duration

- O duration

syntax preceded by an “at” sign (@). For example, the
following entry specifies the date and time to be used.

-S’'@Mn Mar 4 13:07:47 1996’

Note that this format corresponds to the output format
of the dat e command for easy “cut and paste.”
However, be sure to enclose the string in quotes so it is
preserved as a single argument for the PCP tool.

For more complete information on the date and time
syntax, see the PCPI nt r o(1) man page.

The terminate option may be used to request that the
display stop at the time designated by duration. By
default, the PCP tools keep sampling performance data
indefinitely (in real-time mode) or until the end of a
PCP archive (in archive mode). The - T option may be
used to specify an earlier time to terminate sampling.

The interpretation for the duration argumentina - T
option is the same as for the - S option, except for an
unsigned time interval that is interpreted as being an
offset from the start of the time window as defined by
the default (now for real time, else start of archive) or
by a - S option. For example, these options define a
time window that spans 45 minutes, after an initial
offset (or delay) of 1 hour:

-S lhour -T 45m ns

By default, samples are fetched from the start time (see
the description of the - S option) to the terminate time
(see the description of the - T option). The offset - O
option allows the specification of a time between the
start time and the terminate time where the tool should
position its initial sample time. This option is useful
when initial attention is focused at some point within a
larger time window of interest, or when one PCP tool
wishes to launch another PCP tool with a common
current point of time within a shared time window.

The duration argument accepted by - O conforms to the
same syntax and semantics as the duration argument for

39

3: Common Conventions and Arguments

Timezone Options

40

- A alignment

- T. For example, these options specify that the initial
position should be the end of the time window:

-0-0

This is most useful with the pnchart command to
display the tail-end of the history up to the end of the
time window.

By default, performance data samples do not
necessarily happen at any natural unit of measured
time. The - A switch may be used to force the initial
sample to be on the specified alignment. For example,
these three options specify alignment on seconds, half
hours, and whole hours:

-A 1sec
-A 30mn
-A lhour

The - A option advances the time to achieve the desired
alignment as soon as possible after the start of the time
window, whether this is the default window, or one
specified with some combination of - Aand - O
command line options.

Obviously the time window may be overspecified by using multiple options from the
set-t,-s,-S,-T,-A and - O Similarly, the time window may shrink to nothing by

injudicious choice of options.

In all cases, the parsing of these options applies heuristics guided by the principal of
“least surprise”; the time window is always well-defined (with the end never earlier
than the start), but may shrink to nothing in the extreme.

All utilities that report time of day use the local timezone by default. The following
timezone options are available:

-Z

Forces times to be reported in the timezone of the host
that provided the metric values (the PCP collector host).
When used in conjunction with - a and multiple
archives, the convention is to use the timezone from the
first named archive.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

- Z timezone Sets the TZ variable to a timezone string, as defined in
envi ron(d) , for example, - Z UTC for universal time.

PCP Live Time Control

007-3964-002

The pmtime PCP Live Time Control dialog, shown in Figure 3-2, is invoked through
the PCP tools when you select the Show Time Control option from the Options
menu of most PCP tools. The dialog may also be exposed by selecting the “time
control state” button at the bottom left-hand corner of the pnthart display or the top
left-hand corner of a three-dimensional (3D) performance scene displayed with the
pnmvi ew or ovi ew tools.

For more information on the “time control state” button, see the pnvi ew(1),
prnthart (1), ovi ew(1), or pnt i me(1) man page.

If the PCP tool is displaying performance metrics from a real-time source, the pnt i e
dialog looks similar to that shown in Figure 3-2.

E E PCP Live Time Controf i

Fle Oplions Help

Interval | 2.88 Seconds

| Time [Thu Mar 5 18:58:43 1998

Real Time Controls: =

Figure 3-2 pnt i me PCP Live Time Control Dialog

This dialog can be used to set the sample interval and units; the latter may be in
milliseconds, seconds, minutes, hours, days, or weeks.

To change the units, select the measurement of time you want from the Options
menu (labelled Seconds in Figure 3-2).

41

3: Common Conventions and Arguments

To change the interval, enter the new value in the Interval text box, and press Enter.
All PCP tools attached to the pnt i me control dialog are notified of the new interval,
and will update their displays immediately to reflect the new sampling rate.

Creating a PCP Archive

The ability to start and stop recording of performance activity is available from the
ovi ew window using the File -> Record option from the menu bar.

Alternatively use pm ogger directly, as described in Chapter 6, "Archive Logging",
page 95.

PCP Archive Time Control

The ability to provide retrospective performance analysis in the PCP framework is
provided by making the monitor tools able to deal interchangeably with real-time
sources of performance metrics and PCP archive logs. For more information on
archive logging, see Chapter 6, "Archive Logging", page 95.

When a PCP tool is displaying performance metrics from a PCP archive log, and the
pmtime Archive Time Control dialog is exposed, it looks similar to that shown in
Figure 3-3.

42 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

007-3964-002

f f FOP Archive Time Controf [

Fle Oplions Help

Interval | 2.8H Seconds

Speed 1.0 ||]I||||||||||||:|]||E||

Position | Thu Mar 5 11:85:88 1995

YCR Controls
L]

Mormal =

Figure 3-3 pnt i me PCP Archive Time Control Dialog

As with the live pnt i me dialog, the user may change the update interval; however, a
number of other controls are available:

* The VCR Controls option menu may be used to change the mode of time advance
between Normal, Step, and Fast.

— In Normal mode, the time advances with the elapsed time per sample being
equal to the current Interval (divided by Speed).

— In Step mode, each selection of one of the direction buttons advances the time
by the current Interval.

— In Fast mode, the time advances by the | nt er val without any added delay.

* The Speed text box and associated thumb wheel may be used to make the rate of
time advance in Normal mode either slower (Speed < 1) or faster (Speed > 1)
than real time.

¢ The Position text box shows the current time within the PCP archive log. The
Position may be changed either by advancing the time using the VCR Controls
buttons (Play, Step, Rewind, Fast Fwd, or Stop), or by modifying the Position
text box (and pressing Enter), or by moving the slider below the Position text box.

43

3: Common Conventions and Arguments

File Menu

Options Menu

44

e The VCR Controls motion buttons allow time to be advanced forward or

backward, or stopped.

The menus of pmtime Archive Time Control provide the following additional

features:

The File menu supports the following option:

Hide

Hides the dialog; the PCP tools provide their own
menu options or time control icon that may be used to
re-expose the pnt i me dialog.

The Options menu supports three options:

Timezone

Show Bounds...

Selects an alternative timezone for all displayed dates
and times; all PCP tools attached to the pnt i ne control
are notified of the new timezone.

Because the UTC timezone is universal, it is useful
when several archives or live sources of data are being
displayed in multiple instances of the tools, and
comparisons between performance metrics are required
to be temporally correlated. Whenever a new source of
metrics is opened, whether an archive or live, the
timezone at that source of metrics is added to the list in
the Options menu. The default timezone is that of the
local host where the tool is being run.

Exposes the Archive Time Bounds dialog, shown in
Figure 3-4. This dialog shows the current time window
that defines the earliest and latest time for which
performance may be displayed from the current
archives.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

[Archfve fime Bounds [[

Thu Mar 5 11:85:88 1935

{ Finish| Thu Mar 5 11:85:22 1998

Cancel

Figure 3-4 pnt i me Archive Time Bounds Dialog

Detail For output fields, selectively includes or excludes the
year in the date or milliseconds in time. The year is
shown by default, milliseconds are not.

Transient Problems with Performance Metric Values

007-3964-002

Sometimes the values for a performance metric as reported by a PCP tool appear to
be incorrect. This is typically caused by transient conditions such as metric
wraparound or time skew, described below. These conditions result from design
decisions that are biased in favor of lightweight protocols and minimal resource
demands for PCP components.

In all cases, these events are expected to occur infrequently, and should not persist
beyond a few samples.

45

3: Common Conventions and Arguments

Performance Metric Wraparound

Performance metrics are usually expressed as numbers with finite precision. For
metrics that are cumulative counters of events or resource consumption, the value of
the metric may occasionally overflow the specified range and wraparound to zero.

Because the value of these counter metrics is computed from the rate of change with
respect to the previous sample, this may result in a transient condition where the rate
of change is an unknown value. If the PCP_COUNTER_WRAP environment variable is
set, this condition is treated as an overflow, and speculative rate calculations are made.
In either case, the correct rate calculation for the metric returns with the next sample.

Time Dilation and Time Skew

46

If a PMDA is tardy in returning results, or the PCP monitoring tool is connected to
PMCD via a slow or congested network, an error might be introduced in rate
calculations due to a difference between the time the metric was sampled and the
time PMCD sends the result to the monitoring tool.

In practice, these errors are usually so small as to be insignificant, and the errors are
self-correcting (not cumulative) over consecutive samples.

A related problem may occur when the system time is not synchronized between
multiple hosts, and the time stamps for the results returned from PMCD reflect the
skew in the system times. In this case, it is recommended that either ti mesl ave or
t i med be used to keep the system clocks on the collector systems synchronized; see
the t i med(1M) man page.

007-3964-002

Chapter 4

Monitoring System Performance

This chapter describes the performance monitoring tools available in Performance
Co-Pilot (PCP). This product provides a group of commands and tools for measuring
system performance. Each tool is described completely by its own man page. The
man pages are accessible through the man command. For example, the man page for
the tool pnthart is viewed by entering the following command:

man pnchart
The following major sections are covered in this chapter:

¢ "The pnkst at Command", page 47, discusses prkst at , a utility that provides a
periodic one-line summary of system performance.

® '"The pmval Command", page 49, describes pnval , a utility that displays
performance metrics in ASCII tables.

* "The pmemCommand", page 51, discusses prem a utility that reports per-process
memory usage statistics.

® "The pmi nf o Command", page 52, describes pmi nf o, a utility that displays
information about performance metrics.

¢ "The pnst or e Command", page 56, describes the use of the pnst or e utility to
arbitrarily set or reset selected performance metric values.

Further monitoring tools covering automated reasoning about performance are
described in Chapter 5, "Performance Metrics Inference Engine".

The following sections describe the various graphical and text-based PCP tools used
to monitor local or remote system performance.

The pnkst at Command

007-3964-002

The prkst at command provides a periodic, one-line summary of system
performance. This command is intended to monitor system performance at the
highest level, after which other tools may be used for examining subsystems to
observe potential performance problems in greater detail. After entering the prkst at
command, you see output similar to the following, with successive lines appearing
periodically:

47

4: Monitoring System Performance

48

prkst at

host nanme | oad avg: 0.26, interval: 5 sec, Thu Jan 19 12:30:13 1995
rung | menory | system | disks| cpu

memswp | free page | scall ctxsw intr| rd w|usr sys id w

0 o0 16268 0 64 19 2396 0 0 O 1 99 O

0 0 16264 0 142 45 2605 0 8 O 2 97 0

0 0O 16268 0 308 62 2532 0 1 1 1 98 O

0 O 16268 0 423 88 2643 0 0 1 1 97 O

An additional line of output is added every five seconds. The update interval may be
varied using the -t interval option.

The output from pnkst at is directed to standard output, and the columns in the
report are interpreted as follows:

rung Average number of runnable processes in main memory
(mem and in swap memory (swp) during the interval.

menory The free column indicates average f r ee memory
during the interval, in kilobytes. The page column is
the average number of page-out operations per second
during the interval. I/O operations caused by these
page-out operations are included in the disk write I/O
rate.

system System call rate (scal |), context switch rate (Ct xsw),
and interrupt rate (i ntr). Rates are expressed as
average operations per second during the interval.

di sks Aggregated physical read (r d) and write (W) rates over
all disks, expressed as physical 1/O operations issued
per second during the interval. These rates are
independent of the I/O block size.

cpu Percentage of CPU time spent executing user code
(usr), system and interrupt code (sys), idle loop (i dl)
and idle waiting for resources (W), typically disk 1/0.

As with most PCP utilities, real-time metric, and archive logs are interchangeable.

For example, the following command uses the PCP archive log foo and the timezone
of the host (t okyo) from which performance metrics in the archive were collected:

pnkstat -a foo -z
Note: tinezone set to local tinmezone of host "tokyo"

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

tokyo | oad avg: 1.06, interval:
runqg | nenory | system
mem swp| free page| scall ctxsw

0o o 4316 0 195 64
0o o 3976 0 279 86
1 0 3448 0 186 63
0o o 4364 0 254 81
0o o 3696 0 266 92
0o o 2668 42 237 81
0o o 4644 100 206 68
0o o 5384 0 174 63
0o o 4736 0 189 65
prFet ch: End of PCP archive |og

For complete information on prkst at usage and command line options, see the

prkst at (1) man page.

The pmval Command

007-3964-002

5 sec,

I
intr|
2242
2143
2304
2385
2374
2400
2590
2296
2197

Thu Feb 2 08:42:55 1995

di sks

rd
32
50
35
35
41
44
25
32
31

cpu

wr | usr sys idl

21
17
14
0
0
2
1
22
28

OO OPFr OO0 O0oOOo

3

WNWAWA-NOG

0 00 U1l N © © ©O© 0

wt

89
87
87
87
88
89
91
89
89

The pmval command dumps the current values for the named performance metrics.

For example, the following command reports the value of performance metric
proc. nprocs once per second (by default), and produces output similar to this:

pmval proc. nprocs
proc. nprocs

nmetric:
host :
semanti cs:
uni ts:
sanpl es:
interval:

In this example, the number of running processes was reported once per second.

| ocal hos

t

i nst ant aneous val ue

none

indefinite

1.00 sec
73
72
70
75
75

Where the semantics of the underlying performance metrics indicate that it would be

sensible, pnval reports the rate of change or resource utilization.

49

4: Monitoring System Performance

50

For example, the following command reports idle processor utilization for each of
four CPUs on the remote host mbomnba, each five seconds apart, producing output of
this form:

pmval -h rmoonba -t 5sec -s 4 kernel.percpu.cpu.idle

nmetric: kernel . percpu. cpu.idle

host : noonba

semantics: cumul ative counter (converting to rate)

units: mllisec (converting to tine utilization)

sanpl es: 4

interval: 5.00 sec
cpuO cpul cpu2 cpu3
0.8193 0. 7933 0. 4587 0.8193
0.7203 0.5822 0. 8563 0. 7303
0. 6100 0. 6360 0.7820 0. 7960
0. 8276 0. 7037 0. 6357 0. 6997

Similarly, the following command reports disk I/O read rate every minute for just the
disk / dev/ dsk/ dks0d1, and produces output similar to the following;:

pmval -t 1min -i dks0dl di sk. dev.read

nmetric: di sk. dev. read
host : | ocal host
semantics: cumul ative counter (converting to rate)
units: count (converting to count / sec)
sanpl es: indefinite
interval: 60.00 sec
dks0d1

33.67

48. 71

52. 33

11.33

2.333

The - r flag may be used to suppress the rate calculation (for metrics with counter
semantics) and display the raw values of the metrics.

When used in conjunction with a PCP archive, the - g option may be used to associate
a PCP time control dialog (see "Time Duration and Control") with the execution of
pmval to support temporal navigation within the archive. In the example below,
manipulation of the time within the archive is achieved by the exchange of time
control messages between pnval and pnti nme.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

pmval -g -a /var/adm pcpl og/ myserver/ 960801

The pnval command is documented by the prmval (1) man page, and annotated
examples of the use of pnval are in the PCP Tutorial.

The pnremCommand

The pmemcommand reports per-process memory usage statistics within the PCP
framework.

Both virtual size and prorated physical memory usage are reported. The virtual
memory usage statistics represent the total virtual size of each process, irrespective of
how many pages are valid (resident). Prorated physical memory statistics indicate
real memory usage (only valid pages are counted) and are prorated on a per-page
basis between all processes that reference each page. Thus the prorated physical
memory counts reflect the real memory demands for individual processes in the
context of the current process mix.

The output of premcan be very large. Here is an abbreviated example of prrem
output:

Host: gonzo Configured: 65536 Free:18380 Tue Jul 9 16:45:08 1996
pid ppid user vtxt ptxt vdat pdat vshm pshm comand

1 0 r oot 232 144 84 76 0 0 /etc/init
832 827 root 3204 1013 5796 3096 0 0 /usr/bin/X11/ Xsg
221 1 root 1424 54 156 84 0 0 /usr/lib/saf/sad
838 827 root 2948 36 268 75 0 0 /usr/bin/ X111/ xdm
86 1 root 1264 32 144 76 0 0 /usr/etc/syslogd
182 1 root 1476 129 596 387 0 0 /usr/etc/rpchind
827 1 root 2948 13 252 22 0 0 /usr/bin/ X111/ xdm

172 1 root 1276 52 148 100 0 0 /usr/etc/routed
Tot al vtxt ptxt vdat pdat vshm pshm 77 user processes
121M 36256 0 = 157Mvirtual
13982 20194 0 = 34176 physi cal

The columns report the following information:

pi d Process ID number.
ppi d Parent process ID number.
user Login name of the process owner.

007-3964-002 51

4: Monitoring System Performance

vt xt Total virtual memory used by text (executable code)
regions mapped by the process.

pt xt Prorated physical memory used by text regions.

vdat Total virtual memory used by all non-executable

regions, excluding shared memory regions. This
includes initialized data, bss, and stack but not shared
memory regions.

pdat Prorated physical memory used by all data regions
(data, bss, and stack but not shared memory regions).

vshm Total virtual memory used by all shared memory
regions.

pshm Prorated physical memory used by shared memory
regions.

command The command and arguments.

For complete information on pmemusage and command line options, see the prmemn(1)
man page.

The pm nf o Command

The pmi nf 0 command displays various types of information about performance
metrics available through the Performance Co-Pilot (PCP) facilities.

The - T option is extremely useful; it provides help text about performance metrics:

pminfo -T nemutil.fs_dirty

memutil.fs_dirty

Hel p:

The amount of nenory in Kbytes that is holding file system data.

The -t option displays the one-line help text associated with the selected metrics.
The - T option prints more verbose help text.

Without any options, pmi nf o verifies that the specified metrics exist in the Name
Space, and echoes those names. Metrics may be specified as arguments to pri nf o
using their full metric names. For example, this command returns the following
response:

52 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

007-3964-002

pmi nfo hinv.ncpu network.interface.total.bytes
hi nv. ncpu
network.interface.total.bytes

A group of related metrics in the Name Space may also be specified. For example, to
list all of the hi nv metrics you would use this command:

pm nfo hinv

h
h
h
h
h
h
h
h

nv.
nv.
nv.
nv.
nv.
nv.

nv

nv.

If no
be useful for searching for metrics, when only part of the full name is known. For
example, this command returns the following response:

ncpu
cpucl ock
dcache

i cache
secondar ycache
physmem

. pmrem nterl eave
ndi sk

metrics are specified, pm nf o displays the entire collection of metrics. This can

pminfo | grep nfs
nfs.
nfs.
nfs.
nfs.

nfs

nfs.
nfs.
nfs.
nfs.
nfs.
nfs.
nfs.

nfs

nfs.
nfs.
nfs.
nfs.

client.badcalls
client.badcalls
client.calls
client.ncl get

.client.nclsleep

client.reqgs
server. badcal | s
server.calls
server.regs
client.badcalls
client.calls
client.ncl get

.client.nclsleep

client.reqgs
server. badcal | s
server.calls
server.regs

The - d option causes pm nf 0 to display descriptive information about metrics (refer
to the pmLookupDesc(3) man page for an explanation of this metadata information).
The following command and response show use of the - d option:

53

4: Monitoring System Performance

54

pminfo -d proc.nprocs disk.dev.read filesys.free

proc. nprocs
Dat a Type:
Semanti cs:

di sk. dev. read
Dat a Type:
Semanti cs:

filesys.free
Dat a Type:
Semanti cs:

32-bit int InDom PM.INDOM NULL Oxffffffff

instant Units: none

32-bit unsigned int InDom 1.2 0x400002

count er Units: count

32-bit int InDom 1.7 0x400007
instant Units: Kbyte

The - f option to pmi nf o forces the current value of each named metric to be fetched
and printed. In the example below, all metrics in the group hi nv are selected:

pminfo -f hinv

hi nv. ncpu

val ue 1
hi nv. cpucl ock

val ue 100
hi nv. dcache

val ue 8192
hi nv. i cache

val ue 8192

hi nv. secondarycache
val ue 1048576

hi nv. physmem
val ue 64

hi nv. premi nter| eave

value 0
hi nv. ndi sk
value 1

The - h option directs pm nf o to retrieve information from the specified host. If the
metric has an instance domain, the value associated with each instance of the metric

is printed:

pmi nfo -h babyl on.

filesys.nountdir
inst [1 or
inst [2 or
inst [3 or
inst [4 or

engr.sgi.com-f filesys.mountdir

"“/dev/root"] value "/"

"/ dev/ dsk/ dks1d3s7"] val ue "/usr2"
"/ dev/ dsk/ dks3d1s7"] val ue "/dbv"

"/ dev/ dsk/ dks3d4s7"] val ue "/dbv/d4"

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

inst [5 or "/dev/dsk/dks3d2s7"] val ue "/dbv/d2"

inst [6 or "/dev/dsk/dks3d3s7"] val ue "/dbv/d3"

inst [7 or "/dev/dsk/dks2d4s7"] val ue "/vicepb"

inst [8 or "/dev/dsk/xlv/build9"] value "/build9"
inst [9 or "/dev/dsk/xlv/build8"] value "/buil d8"
inst [10 or "/dev/dsk/xlIv/lIv9.xfs"] value "/1v9"
inst [11 or "/dev/dsk/dks2d5s7"] val ue "/usenet"
inst [12 or "/dev/dsk/xlv/work"] value "/usr/work"
inst [13 or "/dev/dsk/xlv/buildl0"] value "/buil d10"
inst [14 or "/dev/dsk/xlv/dist"] value "/usr/dist"
inst [15 or "/dev/dsk/xlv/people"] value "/usr/people"
inst [16 or "/dev/dsk/xlv/buildl2"] value "/buil dl12"
inst [17 or "/dev/dsk/xlv/buildl1"] value "/buildl1l"

The - moption prints the Performance Metric Identifiers (PMIDs) of the selected
metrics. This is useful for finding out which PMDA supplies the metric. For example,
the output below identifies the PMDA supporting domain 4 (the leftmost part of the
PMID) as the one supplying information for the metric envi r on. ext r ema. m nt enp:

pmi nfo -m environ. extrenma. m ntenp
environ.extrema. mintenp PMD: 4.0.3

The - v option verifies that metric definitions in the PMNS correspond with
supported metrics, and checks that a value is available for the metric. Descriptions
and values are fetched, but not printed. Only errors are reported.

Some instance domains are not enumerable. That is, it is not possible to ask for all of
the instances at once. Only explicit instances may be fetched from such instance
domains. This is because instances in such a domain may have a very short lifetime
or the cost of obtaining all of the instances at once is very high. The proc metrics are
an example of such an instance domain. The - f option is not able to fetch metrics
with non-enumerable instance domains; however, the - F option tells pm nf o to
obtain a snapshot of all of the currently available instances in the instance domain
and then to retrieve a value for each.

Complete information on the pmi nf 0 command is found in the pmi nf 0(1) man page.
There are examples of the use of pmi nf o in the PCP Tutorial.

007-3964-002 55

4: Monitoring System Performance

The pnst or e Command

56

From time to time you may wish to change the value of a particular metric. Some
metrics are counters that may need to be reset, and some are simply control variables
for agents that collect performance metrics. When you need to change the value of a
metric for any reason, the command to use is prst or e.

Note: For obvious reasons, the ability to arbitrarily change the value of a performance
metric is not supported. Rather, the PMCS selectively allows some metrics to be
modified in a very controlled fashion.

The basic syntax of the command is as follows:
prst or e metricname value

There are also command line flags to further specify the action. For example, the - i
option restricts the change to one or more instances of the performance metric.

The value may be in one of several forms, according to the following rules:

1. If the metric has an integer type, then value should consist of an optional leading
hyphen, followed either by decimal digits or “Ox” and some hexadecimal digits;
“0X” is also acceptable instead of “0x.”

2. If the metric has a floating point type, then value should be in the form of an
integer (described above), a fixed point number, or a number in scientific notation.

3. If the metric has a string type, then value is interpreted as a literal string of ASCII
characters.

4. If the metric has an aggregate type, then an attempt is made to interpret value as
an integer, a floating point number, or a string. In the first two cases, the minimal
word length encoding is used; for example, “123” would be interpreted as a
four-byte aggregate, and “0x100000000” would be interpreted as an eight-byte
aggregate.

The following example illustrates the use of pnst or e to enable performance metrics
collection in the t xmon PMDA (see / usr/ pcp/ pndas/ t xnmon for the source code of
the txmon PMDA). When the metric t xnon. control . | evel has the value 0, no
performance metrics are collected. Values greater than 0 enable progressively more
verbose instrumentation.

pminfo -f txmon. count
t xmon. count

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

No val ue(s) avail abl e!

prnstore txnon.control.level 1

t xmon. control .l evel old val ue=0 new val ue=1

pminfo -f txmon. count

t xmon. count
inst [0 or "ord-entry"] value 23
inst [1 or "ord-enq"] value 11
inst [2 or "ord-ship"] value 10
inst [3 or "part-recv"] value 3
inst [4 or "part-enq"] value 2
inst [5 or "part-used"] value 1
inst [6 or "b-o-nm'] value O

For complete information on pnst or e usage and syntax, see the pnst or e(1) man
page.

The ovi ew Origin Visualization Tool

007-3964-002

The ovi ew tool displays the topology of SGI 3000 series and SGI 2000 series of
systems with dynamic updates for performance information about CPUs, nodes, and
routers. It behaves differently and produces different views for SGI 3000 series and
SGI 2000 series of systems. See the ovi ew(1) man page for details.

Figure 4-1 shows a view of an SGI 2000 series system as generated by the ovi ew tool.

57

4: Monitoring System Performance

=!i Chrigin Performance Viewer | = |D |
Hle Options Launch Help

£ [~]| snort:hw.router.recv.total_util["router:2.2"]
T B none [B% of color scale]

Seale ML 1M |E]| 1.Ba6E Tue Feb 13 15:52:51 2681

Rotx Roty | I m|

Figure 4-1 ovi ew View of an SGI 2000 Series System
58 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

007-3964-002

Figure 4-2 shows a view of an SGI 3000 series system. Systems with up-to 128 CPUs
can be displayed.

i

L=

Performance Melrics Viewer

B

File Options Launch

Help

1w

MO

v
L)
=&
v
L)
=

Live

blaze.engr:kernel.percpu. cpu.user[
992.6 millisec / second [99.Z26% of

Seale | ML |=|| 1.0608

Tue Mar

I NENRN | |

I EEEEENR | | -=I/:Zj'..?

Dolly

Figure 4-2 ovi ew View of an SGI 3000 Series System

59

Chapter 5

Performance Metrics Inference Engine

The Performance Metrics Inference Engine (pmi €) is a tool that provides automated

monitoring of, and reasoning about, system performance within the Performance
Co-Pilot (PCP) framework.

The following major sections in this chapter are as follows:

¢ ‘"Introduction to pmi e", page 61, provides an introduction to the concepts and
design of pmi e.

* "Basic pmi e Usage", page 64, describes the basic syntax and usage of pmi e.

* '"Specification Language for pmi e", page 68, discusses the complete pri e rule
specification language.

e "pmi e Examples", page 83, provides an example, covering several common
performance scenarios.

¢ "Developing and Debugging pmi e Rules", page 86, presents some tips and
techniques for pmi e rule development.

* "Caveats and Notes on pm e", page 86, presents some important information on

using pmi e.

® "Creating pmi e Rules with pmi econf ", page 88, describes how to use the
pm econf command to generate pmi e rules.

¢ "Management of pri e Processes", page 91, provides support for running pmi e as

a daemon.

Introduction to pm e

007-3964-002

Automated reasoning within Performance Co-Pilot (PCP) is provided by the
Performance Metrics Inference Engine, (pmi e), which is an applied artificial
intelligence application.

The pmi e tool accepts expressions describing adverse performance scenarios, and

periodically evaluates these against streams of performance metric values from one or

more sources. When an expression is found to be true, pm e is able to execute

arbitrary actions to alert or notify the system administrator of the occurrence of an

61

5: Performance Metrics Inference Engine

62

adverse performance scenario. These facilities are very general, and are designed to
accommodate the automated execution of a mixture of generic and site-specific
performance monitoring and control functions.

The stream of performance metrics to be evaluated may be from one or more hosts, or
from one or more PCP archive logs. In the latter case, pm e may be used to
retrospectively identify adverse performance conditions.

Using pmi e, you can filter, interpret, and reason about the large volume of
performance data made available by the Performance Metrics Collection Subsystem
(PMCS) and delivered through the Performance Metrics Application Programming
Interface (PMAPI).

Typical pm e uses include the following;:

* Automated real-time monitoring of a host, a set of hosts, or client-server pairs of
hosts to raise operational alarms when poor performance is detected in a
production environment

¢ Nightly processing of archive logs to detect and report performance regressions, or
quantify quality of service for service agreements or management reports, or
produce advance warning of pending performance problems

* Strategic performance management, for example, detection of abnormal, but not
chronic, system behavior, trend analysis, and capacity planning

The pmi e expressions are described in a language with expressive power and
operational flexibility. It includes the following operators and functions:

* Generalized predicate-action pairs, where a predicate is a logical expression over
the available performance metrics, and the action is arbitrary. Predefined actions
include the following:

— Launch a visible alarm with xconf i r m see the xconf i r (1) man page.

— Post an entry to the system log / var/ adm SYSLOG see the sysl 0g(3C) man
page.
— Post an entry to the PCP noticeboard file / var / adm pcpl og/ NOTI CES.

— Execute a shell command or script, for example, to send e-mail, initiate a pager
call, warn the help desk, and so on.

— Echo a message on standard output; useful for scripts that generate reports
from retrospective processing of PCP archive logs.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

¢ Arithmetic and logical expressions in a C-like syntax.

* Expression groups may have an independent evaluation frequency, to support
both short-term and long-term monitoring.

* Canonical scale and rate conversion of performance metric values to provide
sensible expression evaluation.

¢ Aggregation functions of sum avg, m n, and max, that may be applied to
collections of performance metrics values clustered over multiple hosts, or
multiple instances, or multiple consecutive samples in time.

* Universal and existential quantification, to handle expressions of the form “for

every....” and “at least one...”.
¢ Percentile aggregation to handle statistical outliers, such as “for at least 80% of the
last 20 samples, ...”.

® Macro processing to expedite repeated use of common subexpressions or
specification components.

¢ Transparent operation against either live-feeds of performance metric values from
PMCD on one or more hosts, or against PCP archive logs of previously
accumulated performance metric values.

The power of pmi € may be harnessed to automate the most common of the
deterministic system management functions that are responses to changes in system
performance. For example, disable a batch stream if the DBMS transaction commit
response time at the ninetieth percentile goes over two seconds, or stop accepting
news and send e-mail to the sysadmin alias if free space in the news file system falls
below five percent.

Moreover, the power of pm e can be directed towards the exceptional and sporadic
performance problems. For example, if a network packet storm is expected, enable IP
header tracing for ten seconds, and send e-mail to advise that data has been collected
and is awaiting analysis. Or, if production batch throughput falls below 50 jobs per
hour, activate a pager to the systems administrator on duty.

Obviously, pmi e customization is required to produce meaningful filtering and
actions in each production environment. The pm econf tool provides a convenient
customization method, allowing the user to generate parameterized pmi e rules for
some of the more common performance scenarios.

007-3964-002 63

5: Performance Metrics Inference Engine

Basic pm e Usage

This section presents and explains some basic examples of pmi e usage. The pmi e
tool accepts the common PCP command line arguments, as described in Chapter 3,
"Common Conventions and Arguments", page 33. In addition, pri e accepts the
following command line arguments:

-d Enables interactive debug mode.

-V Verbose mode: expression values are displayed.

-V Verbose mode: annotated expression values are displayed.

-W When-verbose mode: when a condition is true, the satisfying expression

bindings are displayed.
One of the most basic invocations of this tool is this form:
pm e filename

In this form, the expressions to be evaluated are read from filename. In the absence of
a given filename, expressions are read from standard input, usually your system
keyboard.

pm e and the Performance Metrics Collection Subsystem

64

Before you use pmi e, familiarize yourself with some Performance Metrics Collection
System (PMCS) basics. It is strongly recommended that you familiarize yourself with
the concepts from the "Conceptual Foundations", page 8. The discussion in this
section serves as a very brief review of these concepts.

The PMCS makes available hundreds of performance metrics that you can use when
formulating expressions for pmi e to evaluate. If you want to find out which metrics
are currently available on your system, use this command:

pmi nfo

Use the pmi e command line arguments to find out more about a particular metric. In
Example 5-1, to fetch new metric values from host moonba, you use the - f flag:

Example 5-1 pnmi e with the - f Option
pminfo -f -h noonba di sk. dev. total

This produces the following response:

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

di sk. dev.tota

inst [131329 or "dks1dl"] val ue 970853
inst [131330 or "dks1d2"] val ue 53581
inst [131331 or "dks1d3"] val ue 5353
inst [131332 or "dks1d4"] val ue 225
inst [131333 or "dks1d5"] val ue 9674
inst [131334 or "dks1d6"] val ue 14383
inst [131335 or "dks1d7"] val ue 5578

This reveals that on the host nbonba, the metric di sk. dev. t ot al has seven
instances, one for each disk on the system. The instance names are dks1d1, dks1d2,
and so on up to dks1d7.

Use the following command to request help text (specified with the - T flag) to
provide more information about performance metrics:

pminfo -T network.interface.in.packets

The metadata associated with a performance metric is used by pmi e to determine
how the value should be interpreted. You can examine the descriptor that encodes
the metadata by using the - d flag for pm nf o, as shown in Example 5-2:

Example 5-2 pnmi e with the - d and - h Options
pminfo -d -h somehost mem freemem ker nel . percpu. syscal |

In response, you see output similar to this:

mem freemem

kernel .

Data Type: 32-bit unsigned int |InDom PMI|NDOMV NULL Oxffffffff
Semantics: instant Units: Kbyte

per cpu. syscal |

Data Type: 32-bit unsigned int |InDom 1.1 0x400001

Semantics: counter Units: count

Note: A cumulative counter such as ker nel . per cpu. syscal | is automatically
converted by pmi e into a rate (measured in events per second, or count/second),
while instantaneous values such as mem f r eememare not subjected to rate
conversion. Metrics with an instance domain (I nDomin the pmi nf o output) of

PM_| NDOM_NULL are singular and always produce one value per source. However, a
metric like ker nel . per cpu. syscal | has an instance domain, and may produce
multiple values per source (in this case, it is one value for each configured CPU).

007-3964-002 65

5: Performance Metrics Inference Engine

Simple pm e Usage

66

Example 5-3 directs the inference engine to evaluate and print values (specified with
the - v flag) for a single performance metric (the simplest possible expression), in this
case di sk. dev. t ot al , collected from the local PMCD:

Example 5-3 pnmi e with the - v Option

ops: 8.594 52.17
ops: 2.001 71.64

pmie -v

iops = disk.dev.total;
crl+D

i ops: ? ?

i ops: 14. 4 0

i ops: 25.9 0.112

i ops: 12. 2 0

i ops: 12.3 64.1

i

i

On this system, there are two disk spindles, hence two values of the expression i ops
per sample. Notice that the values for the first sample are unknown (represented by
the question marks [?] in the first line of output), because rates can be computed only
when at least two samples are available. The subsequent samples are produced every
ten seconds by default. The second sample reports that during the preceding ten
seconds there was an average of 14.4 transfers per second on one disk and no
transfers on the other disk.

Rates are computed using time stamps delivered by the PMCS. Due to unavoidable
inaccuracy in the actual sampling time (the sample interval is not exactly 10 seconds),
you may see more decimal places in values than you expect. Notice, however, that
these errors do not accumulate but cancel each other out over subsequent samples.

In Example 5-3, the expression to be evaluated was enter (the keyboard), followed by
the end-of-file character [Ct r | +D]. Usually, it is more convenient to enter expressions
into a file (for example, myr ul es) and ask pmi e to read the file. Use this command
syntax:

pmie -v myrul es

Please refer to the pri e(1) man page for a complete description of prmi € command
line options.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Complex pm e Examples

pmie -v -t 3sec

This section illustrates more complex pmi e expressions of the specification language.
"Specification Language for pm e", page 68, provides a complete description of the
pmi e specification language.

The following arithmetic expression computes the percentage of write operations over
the total number of disk transfers.

(disk.all.wite / disk.all.total) * 100;

The di sk. al | metrics are singular, so this expression produces exactly one value per
sample, independent of the number of disk devices.

Note: If there is no disk activity, di sk. all.total will be zero and pmi e evaluates
this expression to be not a number. When - v is used, any such values are displayed
as question marks.

The following logical expression has the value t r ue or f al se for each disk:

di sk.dev.total > 10 &&
di sk.dev.wite > di sk.dev.read;

The value is true if the number of writes exceeds the number of reads, and if there is
significant disk activity (more than 10 transfers per second). Example 5-4
demonstrates a simple action:

Example 5-4 pm e Output Printed

some_inst disk.dev.total > 60 ->
print "[%] high disk i/o ";

This prints a message to the standard output whenever the total number of transfers
for some disk (some_i nst) exceeds 60 transfers per second. The % (instance) in the
message is replaced with the name(s) of the disk(s) that caused the logical expression
to betrue.

Using pmi e to evaluate the above expressions every 3 seconds, you see output similar
to the following:

pct_wt = (disk.all.wite / disk.all.total) * 100;
busy_wt = disk.dev.total > 10 &&
di sk.dev.wite > di sk.dev.read;

007-3964-002

67

5: Performance Metrics Inference Engine

busy = some_inst disk.dev.total > 60 ->
print "[%] high disk i/o ";

crl+D

pct_wrt: ?
busy_wrt: ? ?
busy: ?
pct_wrt: 18. 43

busy wt: false false
busy: fal se

Mon Aug 5 14:56:08 1996: [dks0d2] high disk i/o

pct_wrt: 10. 83

busy wt: false false
busy: true
pct_wrt: 19. 85
busy_wrt: true false
busy: fal se
pct_wrt: ?

busy wt: false false
busy: fal se

Mon Aug 5 14:56:17 1996: [dksO0dl] high disk i/o [dks0d2] high disk i/o
pct_wrt: 14.8

busy wt: false false

busy: true

The first sample contains unknowns, since all expressions depend on computing
rates. Also notice that the expression pct _wrt may have an undefined value
whenever all disks are idle, as the denominator of the expression is zero. If one or
more disks is busy, the expression busy is true, and the message from the pri nt in
the action part of the rule appears (before the - v values).

Specification Language for pm e

This section describes the complete syntax of the pm e specification language, as well
as macro facilities and the issue of sampling and evaluation frequency. The reader

68 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

with a preference for learning by example may choose to skip this section and go
straight to the examples in "pmi e Examples", page 83.

Complex expressions are built up recursively from simple elements:

1.

Basic pm e Syntax

Performance metric values are obtained from PMCD for real-time sources,
otherwise from PCP archive logs.

. Metrics values may be combined using arithmetic operators to produce arithmetic

expressions.

Arithmetic expressions may be compared using relational operators to produce
logical expressions.

Logical expressions may be combined using Boolean operators, including
powerful quantifiers.

Aggregation operators may be used to compute summary expressions, for either
arithmetic or logical operands.

The final logical expression may be used to initiate a sequence of actions.

The pmi e rule specification language supports a number of basic syntactic elements.

Lexical Elements

All pmi e expressions are composed of the following lexical elements:

Identifier Begins with an alphabetic character (either upper or

007-3964-002

lowercase), followed by zero or more letters, the
numeric digits, and the special characters period (.)
and underscore (_), as shown in the following example:

X, disk.dev.total and my_stuff

As a special case, an arbitrary sequence of letters
enclosed by apostrophes (*) is also interpreted as an
identifier; for example:

"vne$sl ow_r esponse’

69

5: Performance Metrics Inference Engine

Comments

Macros

70

Keyword The aggregate operators, units, and predefined actions
are represented by keywords; for example, sonme_i nst,
print, and hour.

Numeric constant Any likely representation of a decimal integer or
floating point number; for example, 124, 0.05, and -45.67

String constant An arbitrary sequence of characters, enclosed by double
quotation marks (" x"

Within quotes of any sort, the backslash (/) may be used as an escape character as
shown in the following example:

"A\"gentle\" rem nder"

Comments may be embedded anywhere in the source, in either of these forms:

/* text */ Comment, optionally spanning multiple lines, with no
nesting of comments.

/] text Comment from here to the end of the line.

When they are fully specified, expressions in pm e tend to be verbose and repetitious.
The use of macros can reduce repetition and improve readability and modularity.
Any statement of the following form associates the macro name i denti fi er with
the given string constant.

identifier = "string";

Any subsequent occurrence of the macro name i denti fi er is replaced by the string
most recently associated with a macro definition for i dentifier.

$identifier

For example, start with the following macro definition:
disk = "disk.all";

You can then use the following syntax:

pct_wt = ($disk.wite / $disk.total) * 100;

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Units

Note: Macro expansion is performed before syntactic parsing; so macros may only be
assigned constant string values.

The inference engine converts all numeric values to canonical units (seconds for time,
bytes for space, and events for count). To avoid surprises, you are encouraged to
specify the units for numeric constants. If units are specified, they are checked for
dimension compatibility against the metadata for the associated performance metrics.

The syntax for a uni t s specification is a sequence of one or more of the following
keywords separated by either a space or a slash (/), to denote per: byt e, KByt e,
MByt e, GByt e, TByt e, nsec, nanosecond, usec, m cr osecond, nsec,
mllisecond, sec, second, mi n, m nut e, hour, count, Kcount, Mcount,
Gcount, or Tcount . Plural forms are also accepted.

The following are examples of units usage:

di sk.dev. bl ktotal > 1 Myte / second;
mem freemem < 500 Kbyt e;

Note: If you do not specify the units for numeric constants, it is assumed that the
constant is in the canonical units of seconds for time, bytes for space, and events for
count, and the dimensionality of the constant is assumed to be correct. Thus, in the
following expression, the 500 is interpreted as 500 bytes.

mem freenmem < 500

Setting Evaluation Frequency

007-3964-002

The identifier name del t a is reserved to denote the interval of time between
consecutive evaluations of one or more expressions. Set del t a as follows:

del ta = number [units] ;

If present, uni t s must be one of the time units described in the preceding section. If
absent, uni t s are assumed to be seconds. For example, the following expression
has the effect that any subsequent expressions (up to the next expression that assigns

71

5: Performance Metrics Inference Engine

a value to del t &) are scheduled for evaluation at a fixed frequency, once every five
minutes.

delta = 5 mn;

The default value for del t a may be specified using the -t command line option;
otherwise del t a is initially set to be 10 seconds.

pm e Metric Expressions

72

A Performance Metrics Name Space (PMNS) provides a means of naming
performance metrics, for example, di sk. dev. r ead. The Performance Metrics
Collection System (PMCS) allows an application to retrieve one or more values for a
performance metric from a designated source (a collector host running PMCD, or a
PCP archive log). To specify a single value for some performance metric requires the
metric name to be associated with all three of the following:

* A particular host (or source of metrics values)
¢ A particular instance (for metrics with multiple values)
¢ A sample time

The permissible values for hosts are the range of valid hostnames as provided by
Internet naming conventions.

The names for instances are provided by the Performance Metrics Domain Agents
(PMDA) for the instance domain associated with the chosen performance metric.

The sample time specification is defined as the set of natural numbers 0, 1, 2, and so
on. A number refers to one of a sequence of sampling events, from the current
sample O to its predecessor 1, whose predecessor was 2, and so on. This scheme is
illustrated by the time line shown in Figure 5-1.

past now future
|

al2217

Figure 5-1 Sampling Time Line

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Each sample point is assumed to be separated from its predecessor by a constant
amount of real time, the del t a. The most recent sample point is always zero. The
value of del t a may vary from one expression to the next, but is fixed for each
expression; for more information on the sampling interval, see "Setting Evaluation
Frequency", page 71.

For pmi e, a metrics expression is the name of a metric, optionally qualified by a host,
instance and sample time specification. Special characters introduce the qualifiers:
colon (:) for hosts, hash or pound sign (#) for instances, and at (@ for sample times.
The following expression refers to the previous value (@) of the counter for the disk
read operations associated with the disk instance #dks0d1 on the host noonba.

di sk. dev. read : noonba #dks0dl @

In fact, this expression defines a point in the three-dimensional (3D) parameter space
of {host } x {i nst ance} x {sanpl e ti ne} as shown in Figure 5-2.

host A

sample
time

e

instance

al2218

Figure 5-2 Three-Dimensional Parameter Space

A metric expression may also identify sets of values corresponding to one-, two-, or
three-dimensional slices of this space, according to the following rules:

1. A metric expression consists of a PCP metric name, followed by optional host
specifications, followed by optional instance specifications, and finally, optional
sample time specifications.

2. A host specification consists of one or more host names, each prefixed by a colon
(:). For example: : i ndy :far.away. domai n. com : | ocal host

007-3964-002 73

5: Performance Metrics Inference Engine

3. A missing host specification implies the default pm e source of metrics, as
defined by a - h option on the command line, or the first named archive in an - a
option on the command line, or PMCD on the local host.

4. An instance specification consists of one or more instance names, each prefixed by
a hash or pound (#) sign. For example: #ec0 #ec2

Recall that you can discover the instance names for a particular metric, using the
pmi nf o command. See "pni e and the Performance Metrics Collection
Subsystem", page 64.

Within the pmi e grammar, an instance name is an identifier. If the instance name
contains characters other than alphanumeric characters, enclose the instance name
in single quotes; for example, #' / dev/root’ #' /dev/usr’

5. A missing instance specification implies all instances for the associated
performance metric from each associated pm e source of metrics.

6. A sample time specification consists of either a single time or a range of times. A
single time is represented as an at (@ followed by a natural number. A range of
times is an at (@, followed by a natural number, followed by two periods (. .)
followed by a second natural number. The ordering of the end points in a range
is immaterial. For example, @. . 9 specifies the last 10 sample times.

7. A missing sample time specification implies the most recent sample time.

The following metric expression refers to a three-dimensional set of values, with two
hosts in one dimension, five sample times in another, and the number of instances in
the third dimension being determined by the number of configured disk spindles on
the two hosts.

di sk.dev.read :foo :bar @..4

pm e Rate Conversion

74

Many of the metrics delivered by the PMCS are cumulative counters. Consider the
following metric:

disk.all.total

A single value for this metric tells you only that a certain number of disk I/0O
operations have occurred since boot time, and that information may be invalid if the
counter has exceeded its 32-bit range and wrapped. You need at least two values,

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

sampled at known times, to compute the recent rate at which the I/O operations are
being executed. The required syntax would be this:

(disk.all.total @ - disk.all.total @) / delta

The accuracy of del t a as a measure of actual inter-sample delay is an issue. pmi e
requests samples, at intervals of approximately del t a, while the results exported to
the PMCS are time stamped with the high-resolution system clock time when the
samples were exported. For these reasons, a built-in and implicit rate conversion
using accurate time stamps is provided by pmi e for performance metrics that have
counter semantics. For example, the following expression is unconditionally
converted to a rate by pmi e.

di sk.all.total

pm e Arithmetic Expressions

Within pni e, simple arithmetic expressions are constructed from metrics expressions
(see "pmi e Metric Expressions", page 72) and numeric constants, using all of the
arithmetic operators and precedence rules of the C programming language.

All pmi e arithmetic is performed in double precision.

"pmi e Intrinsic Operators", page 82, describes additional operators that may be used
for aggregate operations to reduce the dimensionality of an arithmetic expression.

pm e Logical Expressions

Logical Constants

007-3964-002

A number of logical expression types are supported:
¢ Logical constants

* Relational expressions

* Boolean expressions

¢ Quantification operators

Like in the C programming language, pmi e interprets an arithmetic value of zero to
be false, and all other arithmetic values are considered true.

75

5: Performance Metrics Inference Engine

Relational Expressions

76

Relational expressions are the simplest form of logical expression, in which values
may be derived from arithmetic expressions using pmi e relational operators. For
example, the following is a relational expression that is true or false, depending on
the aggregate total of disk read operations per second being greater than 50.

disk.all.read > 50 count/sec

All of the relational logical operators and precedence rules of the C programming
language are supported in pmi e.

As described in "pmi e Metric Expressions", page 72, arithmetic expressions in pmi e
may assume set values. The relational operators are also required to take constant,
singleton, and set-valued expressions as arguments. The result has the same
dimensionality as the operands. Suppose the rule in Example 5-5 is given:

Example 5-5 Relational Expressions

hosts = ":gonzo";
intfs = "#ecO #ec2";
all _intf = network.interface.in.packets

$hosts $intfs @..2 > 300 count/sec;
Then the execution of pm e may proceed as follows:

pmie -V uag. 11

all _intf:
gonzo: [ecO] ? ? ?
gonzo: [ec2] ? ? ?
all _intf:
gonzo: [ecO0] false ? ?
gonzo: [ec2] false ? ?
all _intf:
gonzo: [ecO] true false ?
gonzo: [ec2] false false ?
all _intf:

gonzo: [ecO] true true false
gonzo: [ec2] false false false

At each sample, the relational operator greater than (>) produces six truth values for
the cross-product of the i nst ance and sanpl e ti me dimensions.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Boolean Expressions

Quantification Operators

007-3964-002

"Quantification Operators", page 77, describes additional logical operators that may be
used to reduce the dimensionality of a relational expression.

The regular Boolean operators from the C programming language are supported:
conjunction (&&), disjunction (| |) and negation (!).

As with the relational operators, the Boolean operators accommodate set-valued
operands, and set-valued results.

Boolean and relational operators may accept set-valued operands and produce
set-valued results. In many cases, rules that are appropriate for performance
management require a set of truth values to be reduced along one or more of the
dimensions of hosts, instances, and sample times described in "pmi e Metric
Expressions", page 72. The pm e quantification operators perform this function.

Each quantification operator takes a one-, two-, or three-dimension set of truth values
as an operand, and reduces it to a set of smaller dimension, by quantification along a
single dimension. For example, suppose the expression in the previous example is
simplified and prefixed by some_sanpl e, to produce the following expression:

intfs = "#ecO #ec2";
all _intf = some_sanpl e network.interface.in. packets
$intfs @..2 > 300 count/sec;

Then the expression result is reduced from six values to two (one per interface
instance), such that the result for a particular instance will be false unless the
relational expression for the same interface instance is true for at least one of the
preceding three sample times.

There are existential, universal, and percentile quantification operators in each of the
host, instance, and sample time dimensions to produce the nine operators as follows:

sone_host True if the expression is true for at least one host for the
same instance and sanpl e ti ne.

al | _host True if the expression is true for every host for the same
instance and sample time.

N% host True if the expression is true for at least N% of the hosts
for the same instance and sample time.

77

5: Performance Metrics Inference Engine

78

sone_i nst True if the expression is true for at least one instance for
the same host and sample time.

al'l _instance True if the expression is true for every instance for the
same host and sample time.

N% i nst ance True if the expression is true for at least N% of the
instances for the same host and sample time.

sone_sanple tine True if the expression is true for at least one sample time
for the same host and instance.

all _sanple tine True if the expression is true for every sample time for
the same host and instance.

N% sanple tine True if the expression is true for at least N% of the
sample times for the same host and instance.

These operators may be nested. For example, the following expression answers the
question: “Are all hosts experiencing at least 20% of their disks busy either reading or
writing?”

Servers = ":noonba : babyl on";

all _host (
20% i nst di sk.dev.read $Servers > 40 ||
20% i nst disk.dev.wite $Servers > 40

)
The following expression uses different syntax to encode the same semantics:

all _host (
20%i nst (
di sk.dev.read $Servers > 40 ||
di sk.dev.wite $Servers > 40

)

Note: To avoid confusion over precedence and scope for the quantification operators,
use explicit parentheses.

Two additional quantification operators are available for the instance dimension only,
namely mat ch_i nst and nomat ch_i nst, that take a regular expression and a
boolean expression. The result is the boolean AND of the expression and the result of

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

some_i nst

-> sysl og "Ethernet

matching (or not matching) the associated instance name against the regular
expression.

For example, this rule evaluates error rates on various 10BaseT Ethernet network
interfaces (such as ecN, etN, or efN):

mat ch_i nst "~(ec|et|ef)"

network.interface.total.errors > 10 count/sec

errors:" " %"

pm e Rule Expressions

007-3964-002

Rule expressions for pmi e have the following syntax:
| expr -> actions ;
The semantics are as follows:

¢ If the logical expression | expr evaluates t r ue, then perform the actions that
follow. Otherwise, do not perform the actions.

e It is required that | expr has a singular truth value. Aggregation and
quantification operators must have been applied to reduce multiple truth values to
a single value.

* When executed, an action completes with a success/failure status.

¢ One or more actions may appear; consecutive actions are separated by operators
that control the execution of subsequent actions, as follows:

action-1 & Always execute subsequent actions (serial
execution).
action-1 | If action-1 fails, execute subsequent actions,

otherwise skip the subsequent actions (alternation).

An action is composed of a keyword to identify the action method, an optional time
specification, and one or more arguments.

A time specification uses the same syntax as a valid time interval that may be
assigned to del t a, as described in "Setting Evaluation Frequency", page 71. If the
action is executed and the time specification is present, pri e will suppress any
subsequent execution of this action until the wall clock time has advanced by time.

79

5: Performance Metrics Inference Engine

80

The arguments are passed directly to the action method.

The following action methods are provided:

shel | The single argument is passed to the shell for
execution. This action is implemented using syst emin
the background. The action does not wait for the system
call to return, and succeeds unless the fork fails.

alarm A notifier containing a time stamp, a single argument as
a message, and a Cancel button is posted on the
current display screen (as identified by the DI SPLAY
environment variable). Each alarm action first checks if
its notifier is already active. If there is an identical
active notifier, a duplicate notifier is not posted. The
action succeeds unless the fork fails.

sysl og A message is written into the system log as a priority
(see the - p option for pm ogger);" to: "A message is
written into the system log. If the first word of the first
argument is - p, the second word is interpreted as the
priority (see the sysl 0g(3) man page)"; the message
tag is pcp- pmi e. The remaining argument is the
message to be written to the system log. The action
succeeds unless the fork fails.

print A message containing a time stamp in ct i me format
and the argument is displayed out to standard output
(st dout). This action always succeeds.

Within the argument passed to an action method, the following expansions are
supported to allow some of the context from the logical expression on the left to
appear to be embedded in the argument:

%h The value of a host that makes the expression true.
% The value of an instance that makes the expression true.
Ny The value of a performance metric from the logical expression.

Some ambiguity may occur in respect to which host, instance, or performance metric
is bound to a %-token. In most cases, the leftmost binding in the top-level
subexpression is used. You may need to use pmi € in the interactive debugging mode
(specify the - d command line option) in conjunction with the - Wcommand line
option to discover which subexpressions contributes to the %-token bindings.

Example 5-6 illustrates some of the options when constructing rule expressions:

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Example 5-6 Rule Expression Options

sone_inst (disk.dev.total > 60)
-> syslog 10 nmins "[%] busy, W IOPS " &
shell 1 hour "echo \
"Disk % is REALLY busy. Running at % 1/ Qs per second \
| Mail -s "pmie alarm sysadni;

In this case, % and % are both associated with the instances for the metric

di sk. dev. tot al that make the expression true. If more than one instance makes
the expression true (more than one disk is busy), then the argument is formed by
concatenating the result from each %-token binding. The text added to

/ var/ adnm SYSLOG might be as shown in Example 5-7:

Example 5-7 / var / adm SYSLOG Text

Aug 6 08:12: 44 5B: gonzo pcp-pm e[3371]:
[dks0d1] busy, 3.7 10PS [dks0d2] busy, 0.3 IOPS

Note: When pni e is processing performance metrics from a PCP archive log, the
actions will be processed in the expected manner; however, the action methods are
modified to report a textual facsimile of the action on the standard output.

Consider the rule in Example 5-8:
Example 5-8 Standard Output

delta = 2 sec; // more often for denonstration purposes
percpu = "kernel.percpu";
/1 Unusual usr-sys split when sone CPU is nore than 20% i n usr node
/1 and sys node is at least 1.5 times usr node
/1
cpu_usr_sys = some_inst (
$percpu. cpu. sys > $percpu.cpu.user * 1.5 &&
$per cpu. cpu. user > 0.2
) -> alarm"Unusual sys time: " "% ";

When evaluated against an archive, the following output is generated (the alarm
action produces a message on standard output):

pmafm/tnp/f4 pm e cpu. head cpu. 00
alarm Wed Aug 7 14:54:48 1996: Unusual sys tinme: cpuO
alarm Wed Aug 7 14:54:50 1996: Unusual sys tinme: cpuO

007-3964-002 81

5: Performance Metrics Inference Engine

alarm Wed Aug 7 14:54:52 1996: Unusual sys tinme: cpuO
alarm Wed Aug 7 14:55:02 1996: Unusual sys tinme: cpuO
alarm Wed Aug 7 14:55:06 1996: Unusual sys tinme: cpuO

pm e Intrinsic Operators

Arithmetic Aggregation

82

The following sections describe some other useful intrinsic operators for pmi e. These
operators are divided into three groups:

* Arithmetic aggregation
* The r at e operator

¢ Transitional operators

For set-valued arithmetic expressions, the following operators reduce the
dimensionality of the result by arithmetic aggregation along one of the host, instance,
or sample time dimensions. For example, to aggregate in the host dimension, the
following operators are provided:

avg_host Computes the average value across all instances for the
same host and sample time

sum_host Computes the total value across all instances for the
same host and sample time

count _host Computes the number of values across all instances for
the same host and sample time

m n_host Computes the minimum value across all instances for
the same host and sample time

max_host Computes the maximum value across all instances for
the same host and sample time

Ten additional operators correspond to the forms *_i nst and *_sanpl e.

The following example illustrates the use of an aggregate operator in combination
with an existential operator to answer the question “Does some host currently have
two or more busy processors?”

/1 note to escape - in host name
poke = ":moonba :’mac-larry’ :bitbucket";

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

The r at e Operator

Transitional Operators

pm e Examples

007-3964-002

sone_host (
count _inst (kernel.percpu. cpu.user $poke +
kernel . percpu. cpu. sys $poke > 0.7) >= 2
)

-> alarm"2 or nore busy CPUs";

The r at e operator computes the rate of change of an arithmetic expression as shown
in the following example:

rate mem freenmem

It returns the rate of change for the mem f r eememperformance metric; that is, the
rate at which free physical memory is being allocated or released.

The r at e intrinsic operator is most useful for metrics with instantaneous value
semantics. For metrics with counter semantics, pmi e already performs an implicit rate
calculation (see the "pni e Rate Conversion", page 74) and the r at e operator would
produce the second derivative with respect to time, which is less likely to be useful.

In some cases, an action needs to be triggered when an expression changes from true
to false or vice versa. The following operators take a logical expression as an
operand, and return a logical expression:

rising Has the value t r ue when the operand transitions from
fal se to true in consecutive samples.

falling Has the value f al se when the operand transitions
from t r ue to f al se in consecutive samples.

The examples presented in this section are task-oriented and use the full power of the
pmi e specification language as described in "Specification Language for pmi e", page
68.

Source code for the pmi e examples in this chapter, and many more examples, is
provided in the PCP subsystem pcp. sw. denp, and when installed may be found in

83

5: Performance Metrics Inference Engine

/ var/ pcp/ denos/ pmi e. Example 5-9 and Example 5-10 illustrate monitoring CPU

utilization and disk activity.
Example 5-9 Monitoring CPU Utilization

/1 Some Common Performance Monitoring Scenari os

I

/1 The CPU G oup

I

delta = 2 sec; // more often for denonstration purposes
/1 conmmon prefixes

I
percpu = "kernel.percpu";
al | = "kernel.all";

/1 Unusual usr-sys split when sone CPU is nore than 20%in usr node
/1 and sys node is at least 1.5 times usr node
/1
Cpu_usr_sys =
sone_i nst (
$percpu. cpu. sys > $percpu. cpu.user * 1.5 &&
$percpu. cpu. user > 0.2

-> alarm"Unusual sys time: " "% ";
/1 Cver all CPUs, syscall_rate > 1000 * no_of _cpus
/1
cpu_syscall =

$al |l .syscall > 1000 count/sec * hinv.ncpu
-> print "high aggregate syscalls: %W";
/1 Sustained high syscall rate on a single CPU
I
delta = 30 sec;
percpu_syscall =
sone_i nst (
$percpu. syscall > 2000 count/sec
)
-> syslog "Sustained syscalls per second? " "[%] W ";
/1 the 1 minute | oad average exceeds 5 * nunber of CPUs on any host

84

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

hosts = ":gonzo :nmoonba"; /1 change as required
delta = 1 m nute; // no need to evaluate nore often than this
hi gh_l oad =
sone_host (
$all.load $hosts # 1 minute’ > 5 * hinv.ncpu

)
-> alarm "Hi gh Load Average? " "%: %W ";

Example 5-10 Monitoring Disk Activity

/1 Some Common Performance Monitoring Scenari os

/1

/1 The Di sk G oup

/1

delta = 15 sec; /1 often enough for disks?
/1 conmmon prefixes

/1

di sk = "di sk";

/1 Any disk performng nore than 40 1/ Gs per second, sustained over
/1 at least 30 seconds is probably busy

/1
delta = 30 seconds;
di sk_busy =

sone_i nst (

$di sk. dev.total > 40 count/sec

)
] -> shell "Mail -s 'Heavy systained disk traffic’ sysadni;
/1 Try and catch bursts of activity ... nore than 60 |/ Os per second
/1 for at |least 25% of 8 consecutive 3 second sanpl es
/1
delta = 3 sec;
di sk_burst =

sone_i nst (
25% sanpl e (
$di sk.dev.total @..7 > 60 count/sec
)
)

-> alarm"Disk Burst? " "% ";
/1 any SCSI disk controller performng nore than 3 Mytes per
/'l second is busy
/1 Note: the obscure 512 is to convert blocks/sec to byte/sec,
/1 and pnmie handl es the rest of the scal e conversion

007-3964-002 85

5: Performance Metrics Inference Engine

/1
sonme_i nst $disk.ctl.blktotal * 512 > 3 Myte/sec
-> alarm"Busy Disk Controller: " "% ";

Developing and Debugging pm e Rules

Given the - d command line option, pm e executes in interactive mode, and the user
is presented with a menu of options:

pm e debugger commands

f [file-name] - load expressions fromgiven file or stdin
I [expr-nane] - list named expression or all expressions
r [interval] - run for given or default interval
S time-spec - set start tine for run
T time-spec - set default interval for run comand
v [expr-nane] - print subexpression for %, % and % bindings
h or ? - print this menu of commands
q - quit
pmi e>

If both the - d option and a filename are present, the expressions in the given file are
loaded before entering interactive mode. Interactive mode is useful for debugging
new rules.

Caveats and Notes on pm e

The following sections provide important information for users of pmi e.

Performance Metrics Wraparound

Performance metrics that are cumulative counters may occasionally overflow their
range and wraparound to 0. When this happens, an unknown value (printed as ?) is
returned as the value of the metric for one sample (recall that the value returned is
normally a rate). You can have PCP interpolate a value based on expected rate of
change by setting the PCP_COUNTER_WRAP environment variable.

86 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

pm e Sample Intervals

The sample interval (del t a) should always be long enough, particularly in the case
of rates, to ensure that a meaningful value is computed. Interval may vary according
to the metric and your needs. A reasonable minimum is in the range of ten seconds
or several minutes. Although the PMCS supports sampling rates up to hundreds of
times per second, using small sample intervals creates unnecessary load on the
monitored system.

pm e Instance Names

pm e Error Detection

007-3964-002

When you specify a metric instance name (#identifier) in a pm e expression, it is
compared against the instance name supplied by the PMCS as follows:

¢ If the given instance name and the PMCS name are the same, they are considered
to match.

* Otherwise, the first two space separated tokens are extracted from the PMCS
name. If the given instance name is the same as either of these tokens, they are
considered a match.

For some metrics, notably the per process (pr 0C. XXX. XXX) metrics, the first token in
the PMCS instance name is impossible to determine at the time you are writing pmi e
expressions. The above policy circumvents this problem.

The parser used in pmi e is currently not robust in handling syntax errors. It is
suggested that you check any problematic expressions individually in interactive
mode:

pmie -v -d
pmie> f
expression
Grl+D

If the expression was parsed, its internal representation is shown:
pmie> |
The expression is evaluated twice and its value printed:

pmie> r 10sec

87

5: Performance Metrics Inference Engine

Then quit:
pm e> q

It is not always possible to detect semantic errors at parse time. This happens when a
performance metric descriptor is not available from the named host at this time. A
warning is issued, and the expression is put on a wait list. The wait list is checked
periodically (about every five minutes) to see if the metric descriptor has become
available. If an error is detected at this time, a message is printed to the standard
error stream (st derr) and the offending expression is put aside.

Creating pm e Rules with pm econf

88

The pmi econf tool is a command line utility that is designed to aid the specification
of pmi e rules from parameterized versions of the rules. pmi econf is used to display
and modify variables or parameters controlling the details of the generated pm e
rules.

pmi econf reads two different forms of supplied input files and produces a localized
pmi e configuration file as its output.

The first input form is a generalized pmi e rule file such as those found below

/var/ pcp/ confi g/ pm econf/*/*. These files contain the generalized rules which
pm econf is able to manipulate. Each of the rules can be enabled or disabled, or the
individual variables associated with each rule can be edited.

The second form is an actual pri e configuration file (that is, a file which can be
interpreted by pmi e, conforming to the pmi e syntax described in "Specification
Language for pmi e", page 68). This file is both input to and output from pmi econf .

The input version of the file contains any changed variables or rule states from
previous invocations of prmi econf, and the output version contains both the changes
in state (for any subsequent prmi econf sessions) and the generated pm e syntax. The
pmi econf state is embedded within a pri € comment block at the head of the output
file and is not interpreted by pni e itself.

pmi econf is an integral part of the pm e daemon management process described in
"Management of pm e Processes", page 91. Procedure 5-1 and Procedure 5-2
introduce the pm econf tool through a series of typical operations.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Procedure 5-1 Display pm econf Rules

1. Start pmi econf interactively.

$ pmieconf -f /tnp/pniefile
Updates will be made to /tnp/pnmiefile

pmi econf >
2. List the set of available pmi econf rules by using the r ul es command.
3. List the set of rule groups using the gr oups command.
4. List only the enabled rules, using the r ul es enabl ed command.
5. List a single rule:

pm econf> |ist nmenory. swap_| ow
rule: nenory.swap_low [Low free swap space]
hel p: There is only threshold percent swap space remaining - the system
may soon run out of virtual nenory. Reduce the nunber and size of
the running progranms or add nore swap(l) space before it
conpl etely
runs out.
predi cate =
sone_host (
(100 * (swap.free $hosts$ / swap.length $hosts$))
< $t hreshol d$
&& swap. |l ength $hosts$ > 0 /'l ensure swap in use
)
vars: enabled = no
threshold = 10%

pmi econf >
6. List one rule variable:

pmi econf> |ist menory. swap_|l ow t hreshol d
rule: nenory.swap_low [Low free swap space]
threshold = 10%

pmi econf >

007-3964-002 89

5: Performance Metrics Inference Engine

90

Procedure 5-2 Modify pnmi econf Rules and Generate a pri e File

1. Lower the threshold for the menory. swap_| ow rule, and also change the pmi e

sample interval affecting just this rule. The del t a variable is special in that it is
not associated with any particular rule; it has been defined as a global pmi econf
variable. Global variables can be displayed using the | i st gl obal command to
pm econf, and can be modified either globally or local to a specific rule.

pmi econf> nodi fy menory. swap_| ow threshold 5
pmi econf> nodi fy menory. swap_| ow delta "1 sec"

pmi econf >

. Disable all of the rules except for the menory. swap_| ow rule so that you can see

the effects of your change in isolation.
This produces a relatively simple pmi e configuration file:

pmi econf > di sabl e all
pmi econf > enabl e menory. swap_| ow

pm econf > st at us
verbose: off
enabled rules: 1 of 35
pmie configuration file: /tnp/pmiefile
pmi e processes (PIDs) using this file: (none found)

pmi econf> quit

You can also use the st at us command to verify that only one rule is enabled at
the end of this step.

. Run pm e with the new configuration file. Use a text editor to view the newly

generated pmi e configuration file (/ t rp/ pri ef i | e), and then run the command:

$ pmie -T "1.5 sec" -v -1 /tnp/log /tnp/pmiefile
nmenory. swap_|l ow. fal se

nmenory. swap_|l ow. fal se

$ cat /tnp/log
Log for prmie on nmoonba started Mon Jun 21 16:26:06 1999

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

pmie: PID = 21847, default host = nponba
[Mon Jun 21 16:26:07] pm e(21847) Info: eval uator exiting

Log finished Mon Jun 21 16:26: 07 1999
$

4. Notice that both of the pm econf files used in the previous step are simple text
files, as described in the pm econf (4) man page:

$ file /tnp/pniefile

/trp/pmiefile: PCP pmie config (V.1)

$ file /var/pcp/config/pm econf/nenory/swap_| ow

/var/ pcp/ confi g/ pm econf/ menory/ swap_| ow: PCP pmi econf rules (V.1)

Management of pm e Processes

The pmi e process can be run as a daemon as part of the system startup sequence, and
can thus be used to perform automated, live performance monitoring of a running
system. To do this, run these commands (as superuser):

chkconfig pm e on
/etc/init.d/pnmie start

By default, these enable a single pmi e process monitoring the local host, with the
default set of prmi econf rules enabled (for more information about pmi econf, see
"Creating pmi e Rules with prmi econf"). Procedure 5-3 illustrates how you can use
these commands to start any number of pmi e processes to monitor local or remote
machines.

Procedure 5-3 Add a New pnmi e Instance to the pm e Daemon Management Framework

1. Use a text editor (as superuser) to edit the pm e control file
/var/ pcp/ confi g/ pm e/ control . Notice the default entry toward the end of
the file, which looks like this:

#Host S? Log File Argunent s
LOCALHOSTNAME n /var/ adm pmi el og/ LOCALHOSTNAME/ pni e. | og -c config.default

This entry is used to enable a local pmi e process. Add a new entry for a remote
host on your local network (for example, moonba), by using your pmi e
configuration file (see "Creating pmi e Rules with pm econf ", page 88):

007-3964-002 91

5: Performance Metrics Inference Engine

#Host S? Log File Argunent s
noonba n /var/ adm pmni el og/ noonba/ pmi e. | og -c /tnp/pmiefile

2. Enable pmi e daemon management:
chkconfig pmie on
This simple step allows pri e to be started as part of your machine’s boot process.

3. Start the two pmi e daemons. At the end of this step, you should see two new
pm e processes monitoring the local and remote hosts:

/etc/init.d/ pmie start
Performance Co-Pilot starting inference engine(s)

Wait a few moments while the startup scripts run. The pmi e start script uses the
pm e_check script to do most of its work.

Verify that the pmi e processes have started using the pri e metrics exported by
the PMCD PMDA (wobbl y is the local host):

pminfo -f pncd. pmi e. pntd_host

pred. pm e. pncd_host
inst [23150 or "23150"] val ue "wobbly. nel bour ne. sgi . conf
inst [23204 or "23204"] val ue "noonba. nel bour ne. sgi . cont

If a remote host is not up at the time when pmi e is started, the pm e process may
exit. pm e processes may also exit if the local machine is starved of memory
resources. To counter these adverse cases, it can be useful to have a cr ont ab entry
running. Adding an entry as shown in Procedure 5-4, ensures that if one of the
configured pmi e processes exits, it is automatically restarted.

Procedure 5-4 Add a pmi e cront ab Entry
1. Merge the sample pmi e cr ont ab entry with your r oot cront ab entry. The
/var/ pcp/ confi g/ pm e/ cront ab file holds this sample entry:

$ cat /var/pcp/config/pm el/crontab

#

standard Performance Co-Pilot crontab entries for a PCP site
with one or nore pnie instances running

92 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

#
every 30 minutes, check pm e instances are running
25,55 * * * * /usr/ pcp/ bi n/ pm e_check

2. Use the cront ab command and a text editor to append the sample pm e
cront ab entry to r oot cront ab file. This procedure runs the pm e_check
script once every thirty minutes to verify that the pri e instances are running. If
they are not, the procedure restarts them and sends e-mail to r oot indicating
which instances needed restarting.

Global Files and Directories

The following global files and directories influence the behavior of pm e and the
pm e management scripts:

/etc/config/pme
Controls the pmi e daemon facility. Enable it using this command:
chkconfig pme on

[var/ pcp/ denos/ pmi e/ *

Contains sample pmi e rules that may be used as a basis for
developing local rules.

/var/ pcp/ config/ pm e/ config. default

Is the default pmi e configuration file that is used when the pmi e
daemon facility is enabled.

[var/ pcp/ confi g/ pm econf/*/*
Contains the pmi econf rule definitions in its subdirectories.

[var/ pcp/ config/pm e/ control

Defines which PCP collector hosts require a daemon prmi e to be
launched on the local host, where the configuration file comes from,
where the pmi e log file should be created, and pmi e startup options.

007-3964-002 93

5: Performance Metrics Inference Engine

/var/ pcp/ confi g/ pm ogger/crontab

Contains prototype cr ont ab entries that may be merged with the
cront ab entries for root to schedule the periodic execution of the
pm e_check script, for verifying that pm e instances are running.

[var/ adn pmi el og/

Contains the pmi e log files for the host. These files are created by the
default behavior of the / et ¢/ i ni t. d/ pmi e startup scripts.

pm e Instances and Their Progress

The PMCD PMDA exports information about executing pm e instances and their
progress in terms of rule evaluations and action execution rates.

pm e_check This command is similar to the
pm ogger support script,
pm ogger _check.

letc/init.d/ pme This control file supports the
starting and stopping of multiple
pmi e instances that are monitoring
one or more hosts.

[var/tmp/ pm e The statistics that pmi e gathers are
maintained in binary data structure
files. These files are in the
/var/tnp/ pm e directory.

prtcd. pmi e metrics If pm e is running on a system
with a PCP collector deployment,
the PMCD PMDA exports these
metrics via the pntd. pmi e group
of metrics.

94 007-3964-002

Chapter 6

Archive Logging

Performance monitoring and management in complex systems demands the ability to
accurately capture performance characteristics for subsequent review, analysis, and
comparison. Performance Co-Pilot (PCP) provides extensive support for the creation
and management of archive logs that capture a user-specified profile of performance
information to support retrospective performance analysis.

The following major sections are included in this chapter:

"Introduction to Archive Logging", page 95, presents the concepts and issues
involved with creating and using archive logs.

"Using Archive Logs with Performance Visualization Tools", page 97, describes the
interaction of the PCP tools with archive logs.

"Other Archive Logging Features and Services", page 100, provides information
about other archive logging features and sevices.

"Archive Logging Troubleshooting", page 103, presents helpful directions if your
archive logging implementation is not functioning correctly.

Introduction to Archive Logging

007-3964-002

Within the PCP, the prmi ogger utility may be configured to collect archives of
performance metrics. The archive creation process is easy and very flexible,
incorporating the following features:

Archive log creation at either a PCP collector (typically a server) or a PCP monitor
system (typically a workstation), or at some designated PCP archive logger host.

Concurrent independent logging, both local and remote. The performance analyst
can activate a private prm ogger instance to collect only the metrics of interest for
the problem at hand, independent of other logging on the workstation or remote
host.

Record mode in various GUI monitoring tools to create archives as needed from
the current visualization.

Independent determination of logging frequency for individual metrics or metric
instances. For example, you could log the “5 minute” load average every half

95

6: Archive Logging

hour, the write I/O rate on the DBMS log spindle every 10 seconds, and aggregate
I/0O rates on the other disks every minute.

* Dynamic adjustment of what is to be logged, and how frequently, via prm c. This
feature may be used to disable logging or to increase the sample interval during
periods of low activity or chronic high activity (to minimize logging overhead and
intrusion). A local pm ¢ may interrogate and control a remote pr ogger, subject
to the access control restrictions implemented by pml ogger .

* Self-contained logs that include all system configuration and metadata required to
interpret the values in the log. These logs can be kept for analysis at a much later
time, potentially after the hardware or software has been reconfigured and the
logs have been stored as discrete, autonomous files for remote analysis.

* Archive folios as a convenient aggregation of multiple archive logs. Archive folios
may be created with the nmkaf utility and processed with the pmaf mtool.

Archive Logs and the PMAPI

Critical to the success of the PCP archive logging scheme is the fact that the library
routines providing access to real-time feeds of performance metrics also provide
access to the archive logs.

Live feeds (or real-time) sources of performance metrics and archives are literally
interchangeable, with a single Performance Metrics Application Programming
Interface (PMAPI) that preserves the same semantics for both styles of metric source.
In this way, applications and tools developed against the PMAPI can automatically
process either live or historical performance data.

The only restriction is that both live and historical data cannot be monitored
simultaneously with the same invocation of a visualization tool.

Retrospective Analysis Using Archive Logs

96

One of the most important applications of archive logging services provided by PCP
is in the area of retrospective analysis. In many cases, understanding today’s
performance problems can be assisted by side-by-side comparisons with yesterday’s
performance. With routine creation of performance archive logs, you can concurrently
replay pictures of system performance for two or more periods in the past.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Archive logs are also an invaluable source of intelligence when trying to diagnose
what went wrong, as in a performance postmortem. Because the PCP archive logs are
entirely self-contained, this analysis can be performed off-site if necessary.

Each archive log contains metric values from only one host. However, many PCP
tools can simultaneously visualize values from multiple archives collected from
different hosts.

The archives can be replayed against the inference engine (pm e is an application that
uses the PMAPI). This allows you to automate the regular, first-level analysis of
system performance.

Such analysis can be performed by constructing suitable expressions to capture the
essence of common resource saturation problems, then periodically creating an archive
and playing it against the expressions. For example, you may wish to create a daily
performance audit (run by the cr on command) to detect performance regressions.

For more about pmi e, see Chapter 5, "Performance Metrics Inference Engine".

Using Archive Logs for Capacity Planning

By collecting performance archives with relatively long sampling periods, or by
reducing the daily archives to produce summary logs, the capacity planner can collect
the base data required for forward projections, and can estimate resource demands
and explore “what if” scenarios by replaying data using visualization tools and the
inference engine.

Using Archive Logs with Performance Visualization Tools

Most PCP tools default to real-time display of current values for performance metrics
from PCP collector host(s). However, most PCP tools also have the capability to
display values for performance metrics retrieved from PCP archive log(s). The
following sections describe plans, steps, and general issues involving archive logs and
the PCP tools.

Coordination between pm ogger and PCP tools

007-3964-002

Most commonly, a PCP tool would be invoked with the - a option to process an
archive log some time after pm ogger had finished creating the archive. However, a
tool such as ovi ew that uses a Time Control dialog (see "Time Duration and Control",

97

6: Archive Logging

page 37) stops when the end of archive is reached, but could resume if more data is
written to the PCP archive log.

Note: prl ogger uses buffered 1/O to write the archive log so that the end of the
archive may be aligned with an 1/O buffer boundary, rather than with a logical
archive log record. If such an archive was read by a PCP tool, it would appear
truncated and might confuse the tool. These problems may be avoided by sending
pm ogger a Sl GUSRI signal, or by using the f| ush command of pmi ¢ to force
pm ogger to flush its output buffers.

Archive Log File Management

Basename Conventions

Log Volumes

98

PCP archive log files can occupy a great deal of disk space, and management of
archive logs can be a large task in itself. The following sections provide information
to assist you in PCP archive log file management.

When a PCP archive is created by pm ogger, an archive basename must be specified
and several physical files are created, as shown in Table 6-1.

Table 6-1 Filenames for PCP Archive Log Components (ar chi ve.*)

Filename Contents
ar chi ve. index Temporal index for rapid access to archive contents.
ar chi ve. meta Metadata descriptions for performance metrics and instance

domains appearing in the archive.

archi ve. N Volumes of performance metrics values, for N=0,1,2,...

A single PCP archive may be partitioned into a number of volumes. These volumes
may expedite management of the archive; however, the metadata file and at least one
volume must be present before a PCP tool can process the archive.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

You can control the size of an archive log volume by using the - v command line
option to pm ogger . This option specifies how large a volume should become before
pm ogger starts a new volume. Archive log volumes retain the same base filename
as other files in the archive log, and are differentiated by a numeric suffix that is
incremented with each volume change. For example, you might have a log volume
sequence that looks like this:

net server.l og.0
netserver.log. 1
net server.| og. 2

You can also cause an existing log to be closed and a new one to be opened by
sending a SI GHUP signal to prmi ogger, or by using the pml ¢ command to change the
pm ogger instructions dynamically, without interrupting pm ogger operation.
Complete information on log volumes is found in the pni ogger (1) man page.

Configuration of prm ogger

007-3964-002

The configuration files used by pm ogger describe which metrics are to be logged.
Groups of metrics may be logged at different intervals to other groups of metrics.
Two states, mandatory and advisory, also apply to each group of metrics, defining
whether metrics definitely should be logged or not logged, or whether a later
advisory definition may change that state.

The mandatory state takes precedence if it is on or of f, causing any subsequent
request for a change in advisory state to have no effect. If the mandatory state is
maybe, then the advisory state determines if logging is enabled or not.

The mandatory states are on, of f, and maybe. The advisory states, which only affect
metrics that are mandatory maybe, are on and of f . Therefore, a metric that is
mandatory maybe in one definition and advisory on in another definition would be
logged at the advisory interval. Metrics that are not specified in the pnmi ogger
configuration file are mandatory maybe and advisory of f by default and are not
logged.

A complete description of the pml ogger configuration format can be found on the
pm ogger (1) man page.

99

6: Archive Logging

PCP Archive Contents

Once a PCP archive log has been created, the prdunpl og utility may be used to
display various information about the contents of the archive. For example, start with
the following command:

prmdunpl og -1 /var/adni pcpl og/ www. sgi . conf 960731
It might produce the following output:

Log Label (Log Format Version 1)

Performance netrics from host ww. sgi.com
comenci ng Wed Jul 31 00: 16: 34. 941 1996
endi ng Thu Aug 1 00:18:01.468 1996

The simplest way to discover what performance metrics are contained within an
archive is to use pmi nf 0 as shown in Example 6-1:

Example 6-1 Using pmi nf o to Obtain Archive Information

pmnfo -a /var/adn pcpl og/ ww. sgi . conif 960731 net wor k. nbuf
net wor k. nbuf . al | oc

net wor k. nmbuf . t ypeal | oc

net wor k. nbuf . cl ustal | oc

net wor k. nbuf . cl ustfree

net wor k. nbuf . fail ed

net wor k. nbuf . wai t ed

net wor k. nbuf . dr ai ned

Other Archive Logging Features and Services

PCP Archive Folios

100

Other archive logging features and services include PCP archive folios, manipulating
archive logs, primary logger, and using pmi c.

A collection of one or more PCP archive logs may be combined with a control file to
produce a PCP archive folio. Archive folios are created using either nkaf or the
interactive record mode services of various PCP GUI monitoring tools.

® Checking the integrity of the archives in the folio.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

¢ Displaying information about the component archives.

¢ Executing PCP tools with their source of performance metrics assigned
concurrently to all of the component archives (where the tool supports this), or
serially executing the PCP tool once per component archive.

e If the folio was created by a single PCP monitoring tool, replaying all of the
archives in the folio with that monitoring tool.

¢ Restricting the processing to particular archives, or the archives associated with
particular hosts.

Using pm ¢
You may tailor pm ogger dynamically with the pm ¢ command. Normally, the
pm ogger configuration is read at startup. If you choose to modify the confi g file
to change the parameters under which pnl ogger operates, you must stop and restart
the program for your changes to have effect. Alternatively, you may change
parameters whenever required by using the pm ¢ interface.
To run the pm ¢ tool, enter:
pm c
By default, pml ¢ acts on the primary instance of pm ogger on the current host. See
the pm ¢ (1) man page for a description of command line options. When it is invoked,
pm ¢ presents you with a prompt:
pm c>
You may obtain a listing of the available commands by entering a question mark (?)
and pressing Ent er . You see output similar to that in Example 6-2:
Example 6-2 Listing Available Commands

show | oggers [@host >] di spl ay <pid>s of running pm oggers

connect _| ogger _i
status

query netric-1list
new vol une

flush

log { mandatory |
log { mandatory |

007-3964-002

d [@host >] connect to designated pnl ogger
informati on about connected pml ogger
show | oggi ng state of metrics
start a new | og vol unme
flush the log buffers to disk

advisory } on <interval> _netric-1list
advisory } off _metric-list

101

6: Archive Logging

| og mandatory nmaybe _nmetric-1list
ti mezone | ocal |1 ogger|’ <timezone>" change reporting tinezone

hel p
qui t
_logger_id is
_metric-list is
_metric-spec is

102

print this help nmessage

exit frompnc
primary | <pid> | port <n>
_metric-spec | { _netric-spec ... }
<metric-name> | <metric-name> [<instance> ...]

Here is an example:

pm c

pm c> show | oggers @abyl on

The foll owi ng pm oggers are runni ng on babyl on:
primary (1892)

pm c¢> connect 1892 @abyl on

pm c> |l og advisory on 2 secs disk.dev.read

pm c> query di sk. dev

di sk. dev. read

adv on nl 5 mn [131073 or ‘‘dks0dl’’]
adv on nl 5 mn [131074 or ‘‘dks0d2’'’]
pm c> quit

Note: Any changes to the set of logged metrics made via pri ¢ are not saved, and are
lost the next time pr ogger is started with the same configuration file. Permanent
changes are made by modifying the pml ogger configuration file(s).

Refer to the pml ¢(1) and pm ogger (1) man pages for complete details.

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

Archive Logging Troubleshooting

The following issues concern the creation and use of logs using pri ogger .

pm ogger Cannot Write Log

Symptom:
_pnlogNewrFil e: *‘foo.index’’ already exists,
Cause:
Resolution:
Cannot Find Log
Symptom:

Cannot open archive nmylog: No such file or

Cause:

007-3964-002

The pm ogger utility does not start, and you see this
message:

not over-witten

Archive logs are considered sufficiently precious that
pm ogger does not empty or overwrite an existing set
of archive log files. The log named f 00 actually
consists of the physical file f 00. i ndex, f 00. net a,
and at least one file f 00. N, where Nis in the range 0, 1,
2, 3, and so on.

A message similar to the one above is produced when a
new pm ogger instance encounters one of these files
already in existence.

If you are sure, remove all of the parts of the archive
log. For example, use the following command:

rm-f foo.*

Then rerun pmi ogger .

The pmdunpl og utility, or any tool that can read an
archive log, displays this message:

directory

An archive consists of at least three physical files. If the
base name for the archive is nyl og, then the archive
actually consists of the physical files nyl og. i ndex,
nyl og. et a, and at least one file nmyl og. N, where N
is in the range 0, 1, 2, 3, and so on.

The above message is produced if one or more of the
files is missing.

103

6: Archive Logging

Resolution: Use this command to check which files the utility is
trying to open:

I's nylog.*

Turn on the internal debug flag DBG_TRACE_LOG (- D
128) to see which files are being inspected by the
_pmOpenLog routine as shown in the following
example:

pmdunpl og -D 128 -1 nyl og

Locate the missing files and move them all to the same
directory, or remove all of the files that are part of the
archive, and recreate the archive log.

Identifying an Active pm ogger Process

Symptom: You have a PCP archive log that is demonstrably
growing, but do not know the identify of the associated
pm ogger process.

Cause: The PID is not obvious from the log, or the archive
name may not be obvious from the output of the ps
command.

Resolution: If the archive basename is f 00, run the following
commands:

pmdunpl og -1 foo
Log Label (Log Format Version 1)
Performance netrics from host gonzo
comenci ng Wed Aug 7 00:10:09.214 1996
endi ng Wed Aug 7 16:10:09. 155 1996
pminfo -a foo -f pntd. pm ogger
precd. pnl ogger . host
inst [10728 or "10728"] val ue "gonzo. nel bour ne. sgi . cont
precd. pnl ogger . port
inst [10728 or "10728"] value 4331
pred. pml ogger . ar chi ve
inst [10728 or "10728"] val ue " /usr/var/adm/pcplog/gonzo/foo’

All of the information describing the creator of the
archive is revealed and, in particular, the instance

104 007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator’s Guide

identifier for the PMCD metrics (10728 in the example
above) is the PID of the prm ogger instance, which may
be used to control the process via pni c.

lllegal Label Record
Symptom: PCP tools report:

Illegal label record at start of PCP archive log file.

Cause: Either you are attempting to read a Version 2 archive
with a PCP 1.x tool, or the archive log has become
corrupted.

Resolution: By default, pm ogger in PCP release 2.0 and later

generates Version 2 archives that PCP 1.0 to 1.3 tools
cannot interpret. If you must use older tools, pass the
-V 1 option to pm ogger, forcing it to generate
Version 1 archives.

Empty Archive Log Files or pnl ogger Exits Immediately

Symptom: Archive log files are zero size, requested metrics are not
being logged, or pm ogger exits immediately with no
error messages.

Cause: Either pm ogger encountered errors in the
configuration file or has not flushed its output buffers
yet or some (or all) metrics specified in the pri ogger
configuration file have had their state changed to
advisory of f or mandatory of f via pnl c. It is also
possible that the logging interval specified in the
pm ogger configuration file for some or all of the
metrics is longer than the period of time you have been
waiting since pml ogger started.

Resolution: If pm ogger exits immediately with no error messages,
check the prm ogger . | og file in the directory
pm ogger was started in for any error messages. If

007-3964-002 105

6: Archive Logging

pm ogger has not yet flushed its buffers, enter the
following command:

killall -SIGUSRL pnl ogger

Otherwise, use the st at us command for pm ¢ to
interrogate the internal pml ogger state of specific
metrics.

106 007-3964-002

Appendix A

007-3964-002

Acronyms

provides a list of the acronyms used in the Performance Co-Pilot (PCP)
documentation, help cards, man pages, and user interface.

Table A-1 Performance Co-Pilot Acronyms and Their Meanings

Acronym Meaning

API Application Programming Interface

DBMS Database Management System

DNS Domain Name Service

DSO Dynamic Shared Object

170 Input/Output

IPC Interprocess Communication

PCP Performance Co-Pilot

PDU Protocol data unit

PMAPI Performance Metrics Application Programming Interface
PMCD Performance Metrics Collection Daemon

PMCS Performance Metrics Collection Subsystem
PMD Performance Metrics Domain

PMDA Performance Metrics Domain Agent

PMID Performance Metric Identifier

PMNS Performance Metrics Name Space

TCP/IP Transmission Control Protocol/Internet Protocol

107

Index

2D tools .
64-bit IEEE format .

A

acronyms . .
active pmlogger process
adaptation .
application programs .
Archive creation .
archive logs
analysis .
archive time control
capacity planning .
collection time
contents
creation
customization .
fetching metrics . .
file management
folios S
physical f1lenames .
PMAPT . .
retrospective analys1s
troubleshooting . .
usage R
arithmetic aggregation
arithmetic expressions
audience
audits .
autofsd_probe tool

automated operational support

avg_host operator

007-3964-002

47
14

107
104

10
42

42
97

100

35
98

100

35
96
96

103

95
82
75

N W]

B

basename conventions
Boolean expressions

C

capacity planning
caveats .

centralized archlve loggmg
Challenge systems .
client-server architecture
collection time .
collector hosts .
collector subsystem
comments

common directories
component software

conceptual foundations . .

configuring PCP . .
conventions .

core subsystems . .
count_host operator

D

data collection tools
debugging tools . .
demo subsystems
/dev/kmem file . .
diagnostic tools
DISPLAY variable
distributed collection .
distributed PMNS
dkvis tool

98
77

97
86

4,10

11,17

19
70
36

19
33
19
82

20
28

80

11
14

109

Index

fetching metrics . .
remote PMCD
documentation subsystems
domains
DSO . .
duration
dynamic adaptatron

environ man page
error detection . .
/etc/config/pmcd. optrons f11e .

/etc/config/pmlogger. optrons file .

/etc/init.d/pcp file
/etc/pcp.conf file
/etc/pcp.env file
/etc/pmced.conf file
evaluation frequency .
extensibility . .
external equipment

fetching metrics .
file locations

flush command
folios . .
functional domams

G

gift subsystems
glossary

H

hipprobe tool

110

34
29
20

107
37

41
87
36
36
36
36
36

30 36

71

10

34, 35
36

98
100

. 20
107

I/0 . .

illegal label record .
infrastructure support tools .
inst command .

*_inst operator

installing PCP .

instance domain services
intrinsic operators

IPC

layered software services .
lexical elements
live time control . .
log volumes .
logging

See "archive logs"
logical constants . .
logical expressions .

M

macros .
man command

usage .
max_host operator .
metadata . .
metric domains
metric wraparound
min_host operator .
mkaf tool . . .
monitor configuration
monitor hosts .
monitor subsystems

monitoring system performance .

107
105

19
82
19
17
82
107

10
69
41
98

75
75

70

47
82
14

86
82
96
19
17
19
47

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator's Guide

N

naming scheme

netstat command .
network routers and bridges
network transportation tools
NNTP news servers

o

objectives . .
operational support tools .
operators .
Options menu .
overview .
oview tool
archive creation .
brief description .
description .
record mode
time control

P

pcemd.options file
PCP
acronym

configuring and 1nsta1hng

conventions . .
distributed operation
extensibility
features
log file option .
naming conventions .
tool summaries
PCP Tutorial
pminfo command
pmval command
Web manual .
pcp-books.* subsystem

007-3964-002

31
10

10

—_

77
41

42

57

95
41

22

107

55
51
37
20

pcp-books.help subsystem .
pcp.man.* subsystem .
pcp.sw.* subsystems
pcp.sw.base subsystem .
pcp.sw.demo subsystems
pcp-sw.monitor subsystem .
PCP_COUNTER_WRAP variable
pcp_eoe.books.help subsystem .
pcp_eoe.sw.eoe subsystem
pcp_eoe.sw.monitor subsystem
pcp_gifts.sw.* subsystems .
PCPIntro command
PDU . .
Performance Co- Pllot

See "PCP"
Performance Metric Ident1f1er

See "PMID" . Coe
performance metric wraparound .
performance metrics

concept

descriptions

methods .

missing and 1nc0rnplete Values

PMNS . .

retrospective sources .

sources . .
Performance Metncs Collectlon Daernon

See "PMCD"

Performance Metrics Collectlon Subsystem

See "PMCS" .
Performance Metrics Dornaln Agent
See "PMDA" .
Performance Metrics Inference Englne
See "pmie tool" .
Performance Metrics Name Space
See "PMNS"
performance monitoring
performance visualization tools
PerfTools icon catalog
PM_INDOM_NULL
pmafm tool

19
20
20
19

20, 83

19

46 86

19
19
19
20

32 38

22,107

11

46, 86

14
10
27
12
17

6,20
17
61

5,47
97
33
65

111

Index

archive folios .
PMAPI

acronym . .

archive logs .

naming metrics

pmie capabilities
PMCD

acronym . .

brief description . .

collector host .

configuration files . .

diagnostics and error messages

distributed collection .

/etc/pmced.conf file

maintenance

not starting .

remote connection .

starting and stopping
pmcd tool

See "PMCD"
pmcd.conf file .

PMCD_CONNECT TIMEOUT Vanable .

PMCD_PORT variable

pmcd_wait tool

pmchart tool
fetching metrics . .
man example .
record mode
remote PMCD
time control

PMCS
acronym . .
description . .
metric expressions .
pmie capabilities
pmie tool . .

PMD . .

PMDA
acronym . .
collectors . .
instance names
libraries

112

96

107
96

62
107
72

21
21

11, 12

36
20
30
29
20

23,25

30
32

34
47

95, 100

29
41

107
17
72
62

. 64

107

107
17
72

unification

pmdate tool . .

pmdbg facility .

pmdumplog tool
archive log contents
brief description .
troubleshooting .

pmem tool

pmerr tool

pmhostname tool

PMID
acronym .
description .
printing

pmie tool
arithmetic aggregation .
arithmetic expressions
automated reasoning . .
basic examples
brief description .
customization . .
developing rules
error detection
examples . .
global files and d1rect0r1es
instance names
intrinsic operators .
language .
logical expressions .
metric expressions . Coe
performance metrics inference engine
pmieconf rules
procedures
rate conversion
rate operator
real examples . .
sample intervals . .
setting evaluation frequency
syntax . .
%-token .
transitional operators

N

100

103
5,51

107

11, 12

55

82
75
61

. 64
57
63
86
87

66 67

93
87
82

62, 68

75
72
61
5 88

88, 91

74
83
83
87
71
69
80
83

007-3964-002

Performance Co-Pilot™ IRIX® Base Software Administrator's Guide

pmieconf tool
brief description . .
customization .
rules .

pminfo tool
brief description . .
description .

displaying the PMNS

PCP Tutorial
pmie arguments . .
pmbkstat tool
brief description . .
description .
pmlc tool
brief description . .
description .

dynamic ad]ustment .

flush command . .

SIGHUP signal
pmlock tool . .
pmlogconf tool
pmlogger tool .

archive logs .

brief description . .

configuration .

current metric context

distributed PMNS .
PCP tool coordination
pmlc control
remote PMCD
troubleshooting . .
PMNS
acronym
brief description . .
defined names
description .
distributed product
metric expressions .
PMNS .
services -
troubleshooting . .
pmnscomp tool

007-3964-002

5
63
88

5
52
27
55
64

6
47

. 6
101
96
98
99

7

6

80

35,42, 95

.. 7
99, 101
9
14
97
96
.29
103

107
8

2
12
14
72
37
17
27

PMNS 03
pmposttool 7
pmprobetool 6
pmruntool 7733
pmstore tool

brief description 7

description 56

setting metric values T V4
pmtime Archive Time Control d1alog R
pmtime PCP Live Time Control dialog 41
pmtime tool

brief description 6

time control 41

timezone option 4
pmval tool

brief description 6

description 49
pmview tool

recordmode 95100

time control 41
protocol data units

See "'PDU" 22

Q
quantification operators 77
R
rate conversion 74
rate operator 8
relational expressions 76
releasenotes 20
reporting frequency 37
retrospective analysis 96
roles

collector 17,19

monitor 17,19
rule expressions 79

113

Index

sample intervals .
*

sgihelp command
SIGHUP signal
SIGUSR1 signal

single-valued performance metrlcs .

software
subsystems

sum_host operator . .

swmgr command
syslog function

T

target usage . .
TCP/IP
acronym . .
remote PMCD
text-based tools
time control . .
time dilation

time duration

time window options .
time-stamped message
timezone options
tool options . . .
transient problems . .
transitional operators .
troubleshooting
archive logging
general utilities

114

_sample operator . .
sar data structures . . .
set-valued performance metrlcs

87
82
10
15
19

30 99

98
15

19, 20

82
19

62, 80

107
29
47

41, 42

46
37
38
80
40

35, 61

45
83

103
29

IRIX metrics
PMCD . .

8]
uniform naming . .
units . .
user interface components
/usr/etc/pmcd file
/ust/pcp/pmdas

\'%

/var/adm/pcplog/NOTICES file

/var/adm/pcplog/pmcd.log file .

/var/adm/SYSLOG file
/var/pcp/demos/pmie file .

W

window options . .

X

xconfirm command
visible alarm

Y

year 2000 compliance .

. 28
27 28

71
33
36
36

7,62
28, 30
62, 81

83

38

62

007-3964-002

