
HD I/O Option Board
Owner’s Guide

Document Number 007-3968-002

CONTRIBUTORS

Written by Carolyn Curtis
Illustrated by Cheri Brown, Dan Young, Dany Galgani, and Carolyn Curtis
Production by Carlos Miqueo
Engineering contributions by Bill Warner, Ted Marsh, Greg Sadowski, Ed

Miszkiewicz, Kirk Knapp, Michael Poimboeuf, and Scott Pritchett
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1999, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in the Rights in Data clause at FAR 52.227-14 and/or in similar or
successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements.
Unpublished rights reserved under the Copyright Laws of the United States.
Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy.,
Mountain View, CA 94043-1351.

FCC Warning
This equipment has been tested and found compliant with the limits for a Class A
digital device, pursuant to Part 15 of the FCC rules. These limits are designed to
provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment. This equipment generates, uses, and can
radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful
interference in which case the user will be required to correct the interference at his
own expense.

Attention
This product requires the use of external shielded cables in order to maintain
compliance pursuant to Part 15 of the FCC Rules.

European Union Statement
This device complies with the European Directives listed on the “Declaration of
Conformity” which is included with each product. The CE mark insignia displayed
on the device is an indication of conformity to the aforementioned European
requirements.

International Special Committee on Radio Interference (CISPR)
This equipment has been tested to and is in compliance with the Class A limits per
CISPR publication 22, Limits and Methods of Measurement of Radio Interference
Characteristics of Information Technology Equipment; Germany’s BZT Class A
limits for Information Technology Equipment; and Japan’s VCCI Class 1 limits.

Canadian Department of Communications Statement
This digital apparatus does not exceed the Class A limits for radio noise emissions
from digital apparatus as set out in the Radio Interference Regulations of the
Canadian Department of Communications.

Attention
Cet appareil numérique n’émet pas de perturbations radioélectriques dépassant les
normes applicables aux appareils numériques de Classe A préscrites dans le
Règlement sur les interferences radioélectriques etabli par le Ministère des
Communications du Canada.

VCCI Class 1 Statement for Japan

TUV

geprufte
Sicherheit

R

NRTL/C

HD I/O Option Board Owner’s Guide
Document Number 007-3968-002

Chinese Class A Warning

Silicon Graphics, SGI, the Silicon Graphics logo, OpenGL, Origin, and IRIS are
registered trademarks and IRIX, XIO, Onyx, Onyx2, Origin200, Origin2000, Graphics
Library, REACT, RealityEngine, XFS, and Sirius Video are trademarks of Silicon
Graphics, Inc.
Philips is a registered trademark and Spirit Datacine is a trademark of Philips
Electronics, N.V. D19.
QuickTime is a registered trademark of Apple Computer, Inc.

v

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
Audience xiii
Structure of This Guide xiii
Other Documents xiv
Conventions Used in This Guide xv

1. Features and Capabilities 1
HD I/O Features 1

Supported Video Formats 1
Genlock and Timing Features 2
Other Features 2

HD I/O Panel and Cable 5

2. Programming the HD I/O Option 7
VL Basics for the HD I/O Option Board 7

VL Concepts 8
VL Syntax Elements 9
VL Object Classes 9
VL Nodes for the HD I/O Option 10
VL Data Transfer Functions 12
HD I/O Data Flow 13

vi

Contents

HD I/O Controls 14
Setting Controls 15
HD I/O Control Summary 16
VL_TIMING 19
VL_FORMAT 20
VL_PACKING 21
VL_COLORSPACE 22
VL_CAP_TYPE 27
VL_SIZE and VL_OFFSET 28
VL_ZOOM 28

Field Dominance 29
Automatically Correcting for Output Underflow 30
Capturing Graphics to Video 31
HD I/O Events 31
Reporting 32
Examples 32

Capture to Memory for Disk Recording 33
Playback From Memory for Disk Playback 33
Capture to Memory for Graphics 34

3. Synchronizing Data Streams and Signals 35
Using UST, MSC, and Buffered Media Streams for Synchronization 35
Media Library Interfaces for UST and MSC 38

A. HD I/O Option Board Specifications 39
Cable Connectors 40
GPI Interface 44

GPI Connector 44
GPI Transmitter 46
GPI Receiver 47

Genlock 48

Contents

vii

B. Setting Up the HD I/O Board for Your Video Hardware 49
Setting Up Digital Source Video 50
Setting Up the Output (Drain) 52
Setting Up Sync 54

Setting Up Internal Sync 54
Setting Up External Sync 55

Saving Settings 56

C. Pixel Packings and Color Spaces 57
HD I/O Pixel Packings 57

Packings and Color Spaces 57
Packing Diagram Conventions 58
Packings and Library Tokens 60
Packing Naming Conventions 60
16-Bit Pixel Packings 62
20-Bit Pixel Packings 63
24-Bit Pixel Packings 64
32-Bit Pixel Packings 65

Sampling Patterns 74
4:4:4 and 4:4:4:4 Sampling 74
4:2:2 and 4:2:2:4 Sampling 75

D. Programming Methods for Real-Time Digital Media Recording and Playback 77
 Digital Media Buffers 78
 Direct I/O 78
 Multiprocessing 80
Asynchronous I/O 81

E. Installing HD I/O Software on a New Disk 83

Index 85

ix

List of Figures

Figure 1-1 HD I/O Option Board 3
Figure 1-2 HD I/O Board Diagram, Simplified 4
Figure 1-3 HD I/O Board Connectors 5
Figure 1-4 HD I/O Cables 5
Figure 2-1 Simple VL Path 8
Figure 2-2 Data Flow, Input 13
Figure 2-3 Data Flow, Output 13
Figure 2-4 Control Flow 14
Figure 2-5 Color-Space Conversion Example 26
Figure 2-6 Fields and Frames for SMPTE 274M 29
Figure A-1 HD I/O Cables 40
Figure A-2 GPI Connector 44
Figure A-3 GPI Pinouts 44
Figure A-4 GPI Pins and HD I/O Video Pipes 45
Figure A-5 GPI Transmitter Electrical Specifications 46
Figure A-6 GPI Receiver Electrical Specifications 47
Figure A-7 Genlock BNCs 48
Figure B-1 HD I/O Ports 49
Figure B-2 HD I/O Cables 50
Figure B-3 Selecting Digital Input Video Format in vcp 51
Figure B-4 Selecting Video Drain Format 53
Figure B-5 Setting Standalone or Genlock Sync 54
Figure C-1 VL_PACKING_444_8 58
Figure C-2 VL_PACKING_242_8 62
Figure C-3 VL_PACKING_R242_8 62
Figure C-4 VL_PACKING_242_10 63
Figure C-5 VL_PACKING_R242_10 63

x

List of Figures

Figure C-6 VL_PACKING_444_8 64
Figure C-7 VL_PACKING_R444_8 65
Figure C-8 VL_PACKING_4444_8 66
Figure C-9 VL_PACKING_R4444_8 67
Figure C-10 VL_PACKING_R0444_8 68
Figure C-11 VL_PACKING_0444_8 69
Figure C-12 VL_PACKING_4444_10_10_10_2 70
Figure C-13 VL_PACKING_R4444_10_10_10_2 70
Figure C-14 VL_PACKING_2424_10_10_10_2Z 71
Figure C-15 VL_PACKING_R2424_10_10_10_2Z 71
Figure C-16 VL_PACKING_242_10_in_16_L 72
Figure C-17 VL_PACKING_242_10_in_16_R 72
Figure C-18 VL_PACKING_R242_10_in_16_L 73
Figure C-19 VL_PACKING_R242_10_in_16_R 73
Figure C-20 4:4:4 Sampling 74
Figure C-21 4:2:2 Sampling 75

xi

List of Tables

Table 1-1 50-Pin Cable Connectors 6
Table 2-1 HD I/O Node Controls 16
Table 2-2 Controls for the HD I/O Option 17
Table 2-3 Values for VL_TIMING 19
Table 2-4 Genlock Sync Source and Timing 20
Table 2-5 VL_FORMAT and VL_COLORSPACE Combinations Supported 23
Table 2-6 Color-Space Values 24
Table 2-7 HD I/O Events 32
Table A-1 Panasonic 50-Pin Connector Pinout (HD-D5) 41
Table A-2 Philips 50-Pin Connector Pinout (Spirit DataCine) 42
Table A-3 LINK A and LINK B Usage in 4:2:2:4 Mode 42
Table A-4 LINK A and LINK B Usage in RGBA Mode 43
Table A-5 LINK A and LINK B Usage in 4:4:4:4 Mode 43
Table A-6 GPI Pinouts 45
Table A-7 GPI Transmitter Electrical Specifications 46
Table A-8 GPI Receiver Input Optoisolator Electrical Specifications 48
Table C-1 HD I/O Packings 61

xiii

About This Guide

The SGI HD I/O option board allows the Silicon Graphics Onyx2 supercomputing
workstation to generate and receive uncompressed high-definition television (HDTV)
signals in real time. The board is also supported in SGI Origin 2000 servers.

Note: This option board requires IRIX 6.5.4 or later; earlier versions of IRIX do not
recognize the board.

Features of this option are controlled with the Video Library (VL). VL
device-independent calls and controls are explained in the Digital Media Programming
Guide (007-1799-060 or later; online only).

Audience

This guide was written for the sophisticated video user in a professional or research
environment. You should be familiar with video standards, the operation of the Silicon
Graphics workstation or server, and the VL information in the Digital Media Programming
Guide.

Structure of This Guide

This guide includes the following chapters and appendices:

• Chapter 1, “Features and Capabilities,” outlines the main components of the
HD I/O option.

• Chapter 2, “Programming the HD I/O Option,” describes using the VL to
accomplish common specific tasks.

• Chapter 3, “Synchronizing Data Streams and Signals,” explains how to use
unadjusted system time (UST) and media stream count (MSC) for the HD I/O
board.

xiv

About This Guide

• Appendix A, “HD I/O Option Board Specifications,” summarizes technical
specifications for the option board.

• Appendix B, “Setting Up the HD I/O Board for Your Video Hardware,” describes
connecting video equipment to HD I/O board connectors and using the control
panel vcp to configure the board for the equipment.

• Appendix C, “Pixel Packings and Color Spaces,” sets forth all packing formats used
by the HD I/O hardware.

• Appendix D, “Programming Methods for Real-Time Digital Media Recording and
Playback,” explains programming concepts, such as real-time disk I/O, and gives
examples.

• Appendix E, “Installing HD I/O Software on a New Disk,” gives the steps for
installing the software, should that become necessary in the case of a new disk.

An index completes this guide.

Other Documents

Besides this guide, Digital Media Connections (007-3525-003 or later) is shipped with the
HD I/O option board. The Digital Media Programming Guide (007-1799-060) is available
with the IRIX digital media development environment software (dmedia_dev); the online
version of this manual is included with IRIS 6.5.4 and later.

It is also a good idea to have your system owner’s guide available. If you do not have
these guides handy, the information is also online in the following locations:

• IRIS InSight Library: from the Toolchest, choose Help > Online Books >
SGI EndUser or SGI Admin, and select the applicable guide.

• Technical Publications Library: if you have access to the Internet, enter the
following URL in your Web browser location window:
http://techpubs.sgi.com/library/

Once you are in the library, choose Catalogs > Hardware Catalog > and look under
the Owner’s Guides for the applicable owner’s guide. For software guides, look on
the bookshelf for the applicable IRIX version.

About This Guide

xv

Conventions Used in This Guide

In command syntax descriptions and examples, square brackets ([]) surrounding an
argument indicate an optional argument. Variable parameters are in italics. Replace these
variables with the appropriate string or value.

In text descriptions, IRIX filenames are in italics.

Helvetica Bold font is used for labels on hardware, such as for ports and LEDs on the I/O
panel.

Messages and prompts that appear on-screen are shown in typewriter font. Entries
that are to be typed exactly as shown are in boldface typewriter font.

In each chapter or appendix in which the Digital Media Programming Guide is referenced,
it is referred to by its full title at the first occurrence and thereafter as the DMPG.

1

Chapter 1

1. Features and Capabilities

The Silicon Graphics HD I/O option board is an XIO card for the Silicon Graphics Onyx2
supercomputing workstation for interfacing to American Television Standards
Committee high-definition television video formats, so that it can generate and receive
uncompressed HDTV signals in real time.

This chapter consists of the following sections:

• “HD I/O Features” on page 1

• “HD I/O Panel and Cable” on page 5

HD I/O Features

Features include the following:

• “Supported Video Formats” on page 1

• “Genlock and Timing Features” on page 2

• “Other Features” on page 2

Supported Video Formats

The HD I/O board supports all video formats defined by the Advanced Television
Standards Committee (ATSC) that have a pixel clock of up to 74.25 MHz:

• 16 x 9 aspect ratio with 1920, 1280 and 720 active pixels in line, depending on video
format

• Support for 24/1.001, 24, 25, 30/1.001, 50, and 60/1.001 Hz vertical rates

Examples of supported formats are SMPTE 274M (interlaced), SMPTE 296 (progressive),
SMPTE 295M (interlaced), SMPTE 260M, and SMPTE 293M.

2

Chapter 1: Features and Capabilities

HD I/O formats supported for this release are as follows:

• 1920x1080i@59.94Hz 4:2:2 (8,10-bit)

• 1280x720p@59.94Hz 4:2:2 (8,10-bit)

Both formats are used for content creation and telecine output, and support
serial-parallel conversion. Subsequent releases will support additional formats.

Genlock and Timing Features

Genlock and timing features are all designed to SMPTE 274M timing specifications:

• Genlock to external analog and internal digital sync reference inputs:

– Trilevel analog sync at high-definition (HD) rates

– Bilevel analog sync at standard-definition (SD) rates (with and without output
format timing conversion of SD to HD rates)

• Genlock to digital input: locking digital output to jitter-attenuated digital input
clock

• Standalone free-run timing:

Uncalibrated free-run mode provides 25 ppm-accurate free-run frequency. After
calibration, free-run mode provides higher than 10 ppm-accurate free-run
frequency, which can be recalibrated for local references and conditions to as high as
1 ppm accuracy. For information on calibration, see the HD I/O release notes.

Other Features

Other salient features of the HD I/O option board are:

• Bit-parallel ECL differential interface (special connectors, cable, adapters)

• Automatic adjustment of input phase between Link A and Link B (up to eight input
clocks)

• YCrCb 10 or 8 bits per component (4:2:2 or 4:4:4 sampling rates)

• Alpha channel support: 10 or 8 bits (full sampling rate; special connector/cable
required)

• Video interface support for RGB 10 or 8 bits (special connector/cable required)

HD I/O Features

3

• Support for up to 13 bits RGB in memory

• Real-time transparent color-space conversion and key scaling

• User-programmable horizontal and vertical phase adjustment of the output video

• UST support on input and output

• General-Purpose Interface (GPI) connector, two channels in and two channels out

• Gamma correction support through 13-bit-wide lookup tables

• Board internal loopback mode

Figure 1-1 shows the board.

Figure 1-1 HD I/O Option Board

HD 200-pin

Hook actuator
handle

GPI

Dual-link LEDs

Hook
actuator

Genlock out

Genlock LEDs

Genlock in

4

Chapter 1: Features and Capabilities

Figure 1-2 is a simplified top-level diagram of HD I/O option board.

Figure 1-2 HD I/O Board Diagram, Simplified

GIF

XG

IDMA unit
IOCTL bus
controller

Local bus

ODMA unit

Reg

PIO unit

Genlock
daughtercard

HDOC

TRS
insertion

Packer

FIFO

VIF

TRS
analyzer Timing

generator

Parallel in (4:2:2:4/4:4:4:4) Parallel out (4:2:2:4/4:4:4:4) External reference

200-pin connector

GPI

Receiver/ECL->TTL TTL->ECL/driver

Loopback

FIFO

FIFO FIFO

Reg

SSRAM SSRAM SSRAM

E-E

FIFO FIFO FIFO

iXCC

FIFO

FIFO

Unpacker

FIFO FIFO

Reg

SSRAM SSRAM SSRAM

FIFO FIFO FIFO

oXCC

IP OP
VFIFO VFIFO

Gamma LUT Gamma LUT

HD I/O Panel and Cable

5

HD I/O Panel and Cable

Figure 1-3 shows connectors on the HD I/O front panel.

Figure 1-3 HD I/O Board Connectors

Figure 1-3 shows the two multiheaded cables included with the board; each has four
50-pin connectors for link A input, link B input, link A output, and link B output. The
50-pin connectors differ for each type of cable, following the Panasonic and Philips
50-pin video equipment interface standard.

Figure 1-4 HD I/O Cables

GEN IN GEN OUT I/O 200
GPI

ALINK

LOCKED

VALID

IN

OUT

B

General-Purpose Interface (GPI) HD 200-pin interface (Link A and Link B)

LEDs for Link A and Link B in and out

Genlock BNCs

SGI Panasonic P1 (input link A)

SGI Panasonic P3 (output link A)

SGI Panasonic P2 (input link B)

SGI Panasonic P4 (output link B)

SGI Philips P1 (input link A)

SGI Philips P3 (output link A)

SGI Philips P2 (input link B)

SGI Philips P4 (output link B)

6

Chapter 1: Features and Capabilities

The cable 50-pin connectors are used as indicated in Table 1-1.

For pinouts, see “Cable Connectors” on page 40 in Appendix A.

The four 50-pin connectors can be used for 4:4:4:4 or 4:2:2:4 in dual-link mode, or 4:2:2 in
single-link mode where alpha is ignored:

• In 4:4:4:4 mode, Link A carries Y plus Cr and Cb from even-numbered sample
points; Link B carries alpha plus Cr and Cb from odd-numbered sample points.

• In 4:2:2:4 mode, Link A carries Y plus Cr and Cb; Link B carries alpha only.

• In RGBA mode, Link A carries B and G; Link B carries R and alpha.

The video format selected determines Link A and Link B usage. For more information,
see the following standards, which contain provisions for video signals:

• SMPTE 240M

SMPTE 240M corresponds to the early 1035i HDTV format; it is being replaced by
SMPTE 274M. The HD I/O option supports this model for compatibility with some
equipment still using this standard. (This standard also defines color spaces, which
must be set with a control, as explained in “VL_COLORSPACE” on page 22 in
Chapter 2.)

• SMPTE 274M (subset, up to 74.25 MHz)

• SMPTE 296M (progressive)

• Recommendation 709 (ITU-R BT.709-2), which defines color primaries used by
SMPTE 274M

Table 1-1 50-Pin Cable Connectors

Label Color Label: Panasonic Cable Label: Philips Cable Use

Green SGI <--- PANASONIC P1 SGI <--- PHILIPS P1 Input Link A

Red SGI <--- PANASONIC P2 SGI <--- PHILIPS P2 Input Link B

Green SGI ---> PANASONIC P3 SGI ---> PHILIPS P3 Output Link A

Red SGI ---> PANASONIC P4 SGI ---> PHILIPS P4 Output Link B

7

Chapter 2

2. Programming the HD I/O Option

The HD I/O option board supports the Video Library (VL). This API is described in the
Digital Media Programming Guide (007-1799-060 or later; hereafter referred to as the
DMPG).

This chapter consists of these sections:

• “VL Basics for the HD I/O Option Board” on page 7

• “HD I/O Controls” on page 14

• “Field Dominance” on page 29

• “HD I/O Events” on page 31

• “Capturing Graphics to Video” on page 31

• “Reporting” on page 32

• “Examples” on page 32

VL Basics for the HD I/O Option Board

To build programs that run under VL, you must

• install the dmedia_dev and dmedia_eoe options

• link with libvl

• include dmedia/vl.h and dmedia/vl_xthd.h for device-dependent functionality

The client library for VL is /usr/lib32/libvl.so. The header files for the VL are in
/usr/include/dmedia; the main file is vl.h. This file contains the main definition of the VL
API and controls that are common across all hardware. Several useful digital media
programming examples are in /usr/share/src/dmedia/video/XTHD.

Note: When building a VL-based program, you must add -lvl to the linking command.

8

Chapter 2: Programming the HD I/O Option

For more information on the Video Library and the API usage, see the latest version of
the DMPG.

This section explains

• “VL Concepts” on page 8

• “VL Syntax Elements” on page 9

• “VL Object Classes” on page 9

• “VL Nodes for the HD I/O Option” on page 10

• “VL Data Transfer Functions” on page 12

• “HD I/O Data Flow” on page 13

VL Concepts

The Video Library defines a basic set of primitives and mechanisms to specify
interconnections and controls to achieve the desired setup. The two central concepts for
VL are

• path: an abstraction for a way of moving data around

• node: an endpoint of the path

The basic nodes are a source (such as a VTR) and a drain (such as memory). Figure 2-1
diagrams the simplest VL path, with one of each of these two nodes.

Figure 2-1 Simple VL Path

Source Drain

VTR

Picture in
memory

VL Basics for the HD I/O Option Board

9

The HD I/O board has a video source node (the video input), a video drain node (the
video output), a memory source node (for output from application), and a memory drain
node (for input to application). For transfers, each path must contain exactly one video
node and one memory node. HD I/O nodes are further discussed in “VL Nodes for the
HD I/O Option” on page 10.

VL Syntax Elements

VL syntax elements are as follows:

• VL types and constants begin with uppercase VL; for example, VLServer

• VL functions begin with lowercase vl; for example, vlOpenVideo()

VL Object Classes

The VL recognizes these classes of objects:

• devices, each including sets of nodes

• nodes, which are sources, drains, and internal nodes (as discussed in the preceding
section)

• paths, connecting sources and drains (as discussed in the preceding section)

• buffers, for sending and receiving field/frame data to and from host memory

The HD I/O option requires the use of DMbuffers (digital media buffers).
DMbuffers, an abstraction of main memory, allow efficient and API-independent
interchange of data between the different digital media libraries. For example, video
fields can be captured into DMbuffers via VL and then displayed in graphics using
OpenGL. They can also be passed between two processes without the data having
to be copied explicitly. Refer to Chapter 5, “Digital Media Buffers,” in the DMPG for
details.

• events, for monitoring video I/O status

• controls, or parameters that modify how data flows through nodes; for example:

– video device parameters, such as sync source

– video data parameters such as packing, size, and color space

10

Chapter 2: Programming the HD I/O Option

VL controls fall into two categories:

• device-global or device-independent (prefix VL_), which can be used by several Silicon
Graphics video products

For details of the device-independent controls, refer to the DMPG.

• device-dependent (prefix VL_XTHD_), specific to a particular video device, in this
case, the HD I/O option

Both types of VL controls are explained in this chapter with respect to their usage with
The HD I/O option.

VL Nodes for the HD I/O Option

Use vlGetNode() to specify nodes. This call returns the node’s handle, which is used
when setting controls or setting up paths. Its function prototype is:

VLNode vlGetNode(VLServer svr, int type, int kind, int number)

In this prototype, variables are as follows:

svr Names the server (as returned by vlOpenVideo()).

type Specifies the type of node:

• VL_SRC: source, such as a digital tapedeck connected to an input
port

Note: The HD I/O option has only one input.

• VL_DRN: drain, such as system memory

• VL_DEVICE: global control, such as a default source; Table 2-1
summarizes the values for this type

Note: If you are using VL_DEVICE, the VLNode should be set to 0.

kind Specifies the kind of node:

• VL_VIDEO: connection to a video device equipment; for example,
a video tapedeck or camera

• VL_MEM: workstation memory

number Number of the node in cases of two or more identical nodes, such as two
video source nodes. The default value for all kinds is 0.

VL Basics for the HD I/O Option Board

11

VL_ANY can also be used as a value for number to reference the first available node of
the specificated type and kind.

In general, a path for the HD I/O option has a memory node and a video node. The
following fragment creates a digital video input source node and a memory drain node,
and creates the path:

VLServer svr;
VLPath path;
VLNode src;
VLNode drn;
 /*Set up video source node */
src = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);
 /*Set up memory drain node */
drn = vlGetNode(svr, VL_DRN, VL_MEM, VL_ANY);
 /* Create source-to-drain path */
if((path = vlCreatePath(svr, VL_ANY, src, drn)) < 0){
 fprintf(stderr,”%s\n”,vlStrError(vlGetErrno()));
 exit(1);
}
 /* Set up path with shared src and drn node */
vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE, VL_SHARE);

After nodes are specified, use vlSetControl() to specify parameters:

• memory nodes: you must set packing, color space, size, and capture type

• video nodes: if desired, set video timing, format (for example digital component),
and color space; otherwise, the default values displayed in the video control panel
(vcp) are applied

Controls for each node are defined in “HD I/O Controls” on page 14 in this chapter, and
are summarized in Table 2-2. You can set controls in any order.

12

Chapter 2: Programming the HD I/O Option

VL Data Transfer Functions

This section summarizes VL data transfer categories, and gives the basic steps of creating
an application. For the HD I/O option, VL data transfers always involve memory (video
to memory, memory to video) and require setting up a DMbuffer pool.

In the VL programming model, the process of creating a VL application consists of these
steps:

1. Open a connection to the video daemon (vlOpenVideo()).

2. Specify nodes on the data path (vlGetNode()).

3. Create the path (vlCreatePath()).

4. Optional step: add more nodes to a path (vlAddNode()).

5. Set up the hardware for the path (vlSetupPaths()).

6. Specify path-related events to be captured (vlSelectEvents(), vlAddCallback()).

7. Set input and output parameters (controls) for the nodes on the path
(vlSetControl()). Video format and timing set in the vcp are persistent and default to
reasonable values.

8. Create a dmBuffer pool to hold data for memory transfers (vlDMGetParams(),
dmBufferSetPoolDefaults(), dmBufferCreatePool(), vlGetTransferSize()).

9. Register the buffer (vlDMPoolRegister(),vlDMPoolDeregister()).

10. Start the data transfer (vlBeginTransfer()).

11. Get the data (vlDMBufferGetValid(), vlDMBufferPutValid(), dmBufferAllocate(),
dmBufferAllocateSize(), dmBufferGetPoolState(), dmBufferGetPoolFD(),
dmBufferSetPoolSelectSize(), dmBufferMapData(), dmBufferFree()) to
manipulate frame data.

12. Handle data stream events (vlSelectEvents(), vlNextEvent(), vlPending()).

13. Clean up (vlEndTransfer(), vlDMPoolDeregister(), vlDestroyPath(),
vlCloseVideo()).

Note: Error handling (vlPerror()) is accomplished throughout.

VL Basics for the HD I/O Option Board

13

HD I/O Data Flow

Figure 2-2 diagrams data flow for input.

Figure 2-2 Data Flow, Input

Figure 2-2 diagrams data flow for output.

Figure 2-3 Data Flow, Output

1.dmBufferAllocate()

2.DMAcomplete/fifo_enqueue()

3.vlDMBufferGetValid(()

4.dmBufferFree()

b. Hardware page table

c. dmBuffer FIFO d. Application

a. dmBuffer pool

_ _ _

1.dmBufferAllocate()

4.DMAcomplete/dmBufferFree()

3.fifo_dequeue()

2.dmBufferPutValid()

b. Hardware page tablec. dmBuffer FIFO

b. Application a. dmBuffer pool

_ _ _

14

Chapter 2: Programming the HD I/O Option

Figure 2-4 diagrams control flow.

Figure 2-4 Control Flow

HD I/O Controls

This section consists of the following:

• “Setting Controls” on page 15

• “HD I/O Control Summary” on page 16

• “VL_TIMING” on page 19

• “VL_FORMAT” on page 20

• “VL_PACKING” on page 21

• “VL_COLORSPACE” on page 22

• “VL_CAP_TYPE” on page 27

• “VL_SIZE and VL_OFFSET” on page 28

• “VL_ZOOM” on page 28

Video daemon

Application

Kernel driver

Hardware

vlSetControl()

Ioctls

PIOs

VL events

Event structure

Interrupts and status

HD I/O Controls

15

Setting Controls

After setting up a path, and before starting a transfer, the memory and video nodes must
be configured appropriately. Controls on the video node are persistent; that is, they retain
their values between path destruction and creation. Memory node controls, however, are
reset at each path creation. Because the video node controls are persistent, they need not
be set by the application that can deal with arbitrary settings.

For a memory node, the following controls must be set because the default values are
likely to be inappropriate:

• VL_PACKING

• VL_COLORSPACE

• VL_CAP_TYPE

• VL_SIZE

The recommended way to set VL_SIZE is to query VL_SIZE on the video node
(after setting VL_TIMING appropriately) and use the returned value to set VL_SIZE
on the memory node.

On the video node, applications will probably need to set the some controls as well. Most
of them can also be set with the video control panel application (vcp).

To determine the available devices (that is, video options in the workstation, such as the
HD I/O option board) and the nodes available on them, run vlinfo. To determine possible
controls for each device, enter

vlinfo -l

Note: VL controls specified as true with vlSetControl() are executed immediately.
However, they are not guaranteed to happen at a specific time.

To set controls for HD I/O nodes, use vlSetControl(). The following example sets video
format and timing on a node:

timing.intVal = VL_TIMING_1125_1920x1080_5994i;
format.intVal = VL_FORMAT_DIGITAL_COMPONENT;

if (vlSetControl(svr, path, drn, VL_TIMING, &timing) <0)
{
 vlPerror(“VlSetControl:TIMING”);
 exit(1);
}

16

Chapter 2: Programming the HD I/O Option

if (vlSetControl(svr, path, drn, VL_FORMAT, &format) <0)
{
 vlPerror(“VlSetControl:FORMAT”);
 exit(1);
 }

For details on vlSetControl() and vlGetControl(), see the latest version of the DMPG.

HD I/O Control Summary

Table 2-1 summarizes node controls for the HD I/O option.

Table 2-1 HD I/O Node Controls

Control Video Source Memory Source Video Drain Memory Drain

VL_CAP_TYPE X X

VL_COLORSPACE X (YCrCb and
RGB_H only)

X X YCrCb and
RGB_H only)

X

VL_FIELD_DOMINANCE X X

VL_FORMAT X X

VL_H_PHASE X

VL_OFFSET X (read only) X X (read only) X

VL_PACKING X X

VL_SIZE X (read only) X X (read only) X

VL_SYNC X

VL_SYNC_SOURCE X X

VL_TIMING X X

VL_V_PHASE X

HD I/O Controls

17

Note: Except for VL_XTHD_VITC_LINE_OFFSET, VL_H_PHASE, and VL__VPHASE,
no controls can be changed during a transfer.

Table 2-2 summarizes the values and uses of controls for the HD I/O option.

VL_XTHD_EE_MODE X X

VL_XTHD_INTERFACE_PRECISION X X

VL_XTHD_LOOPBACK X

VL_XTHD_OUTPUT_REPEAT X X

VL_ZOOM X X

Table 2-2 Controls for the HD I/O Option

Control Values or Range Use

VL_CAP_TYPE VL_CAPTURE_INTERLEAVED
VL_CAPTURE_NONINTERLEAVED
VL_CAPTURE_FIELDS

Selects type of frame(s) or field(s) to
capture. See “VL_CAP_TYPE” on page 27
in this chapter.

VL_COLORSPACE VL_COLORSPACE_REC601_YCRCB
VL_COLORSPACE_REC601_YUV
VL_COLORSPACE_REC601_RGB_H
VL_COLORSPACE_REC601_RGB_F
VL_COLORSPACE_240M_YCRCB
VL_COLORSPACE_240M_YUV
VL_COLORSPACE_240M_RGB_H
VL_COLORSPACE_240M_RGB_F
VL_COLORSPACE_REC709_YCRCB
VL_COLORSPACE_REC709_YUV
VL_COLORSPACE_REC709_RGB_H
VL_COLORSPACE_REC709_RGB_F

Specifies color space of video data in
memory or for input/output. See
“VL_COLORSPACE” on page 22 in this
chapter.

VL_FIELD_DOMINANCE VL_F1_IS_DOMINANT
VL_F2_IS_DOMINANT

Note: Frames that are output are deinterlaced
differently depending on the choice of output field
dominance. Deinterlacing is specified in the
application.

Identifies frame boundaries in a field
sequence (interlaced formats); ignored by
progressive timings.

See “Field Dominance” on page 29 in this
chapter.

Table 2-1 (continued) HD I/O Node Controls

Control Video Source Memory Source Video Drain Memory Drain

18

Chapter 2: Programming the HD I/O Option

VL_FORMAT
VL_FORMAT_DIGITAL_COMPONENT_DUAL

VL_FORMAT_DIGITAL_COMPONENT

Specifies sampling format of data in or out:
Standard YCrCb color space sampled at
4:4:4:4 or 4:4:4, depending on packing.
4:2:2:4 or 4:2:2, depending on packing.

See “VL_FORMAT” on page 20 in this
chapter.

VL_H_PHASE [-1000,1000] pixels (increment of 1) Sets horizontal phase.

VL_OFFSET Fixed at (0,0). Sets the position within the video raster to
(0,0).

VL_PACKING See Appendix C, “Pixel Packings and Color
Spaces” for values.

Sets packing format for memory source or
drain node. See “VL_PACKING” on
page 21 in this chapter and Appendix C,
“Pixel Packings and Color Spaces.”

VL_SIZE Raster size. Memory: Sets size of the desired region of
the video raster, which must be the same as
the default active region.

Video: Returns size of video raster (frame);
dependent on timing.

VL_SYNC VL_SYNC_INTERNAL
VL_SYNC_GENLOCK

Sets sync mode for video output.

VL_SYNC_SOURCE VL_SYNC_HOUSE
VL_SYNC_DIGITAL_INPUT_LINK_A
VL_SYNC_DIGITAL_INPUT_LINK_B
VL_XTHD_SYNC_DIGITAL_INPUT_LINK_A
VL_XTHD_SYNC_DIGITAL_INPUT_LINK_B

Selects the genlock source if
VL_SYNC_GENLOCK is used.
VL_SYNC_HOUSE is analog reference.

VL_XTHD_SYNC_DIGITAL_INPUT
LINK[A|B] on video source node only.

VL_TIMING VL_TIMING_1125_1920x1080_5994i
VL_TIMING_750_1280x720_5994p

Sets or gets timing; see “VL_TIMING” on
page 19 in this chapter.

VL_V_PHASE [-600,600] lines (increment of 1) Sets vertical phase.

VL_XTHD_EE_MODE VL_XTHD_EE_MODE_OFF
VL_XTHD_EE_MODE_ON

Causes digital output to transmit a copy of
digital input data; output must be
genlocked.

VL_XTHD_INTERFACE
_PRECISION

VL_XTHD_INTERFACE_PRECISION_8
VL_XTHD_INTERFACE_PRECISION_10

Specifies whether external video interface
is 8 bits or 10 bits wide.

Table 2-2 (continued) Controls for the HD I/O Option

Control Values or Range Use

HD I/O Controls

19

VL_TIMING

The VL_TIMING control sets timing type, which expresses the timing of video presented
to a source or drain.

Note: For the HD I/O option, VL_TIMING is specified on the video node only, and not
also on the memory mode, as with other Silicon Graphics video options.

Table 2-3 summarizes VL_TIMING values for the HD I/O option. Future releases will
support additional values.

Each value for VL_TIMING indicates the raster configuration of a particular SMPTE
specification, such as SMPTE 274M-1995 system 3. The values are named according to the
raster format:

• The first field is the number of total lines, such as 1125, 750, 525, or 625.

• The second field is the size of the active region, in pixels by lines.

VL_XTHD_LOOPBACK TRUE
FALSE

For video source only, sets video input to
the output pipe rather than the input jack
(TRUE).

VL_XTHD_OUTPUT_REPEAT VL_XTHD_OUTPUT_REPEAT_DISABLED
VL_XTHD_OUTPUT_REPEAT_LAST_FIELD
VL_XTHD_OUTPUT_REPEAT_LAST_FRAME

Controls whether system repeats
DMbuffers output is underflowing; see
“Automatically Correcting for Output
Underflow” on page 30.

VL_ZOOM 1, -1 Sets position of top video line in the buffer;
see “VL_ZOOM” on page 28 in this
chapter.

Table 2-3 Values for VL_TIMING

Timing Sampling Rate (MHz) Standard

VL_TIMING_1125_1920x1080_5994i ~74.18 (74.25/1.001) SMPTE 274M

VL_TIMING_750_1280x720_5994p ~74.18 (74.25/1.001) SMPTE 296M

Table 2-2 (continued) Controls for the HD I/O Option

Control Values or Range Use

20

Chapter 2: Programming the HD I/O Option

• The third field is the vertical refresh rate and the scanning format; the scanning
format is

– i: interlaced

– p: progressive (noninterlaced

For example, VL_TIMING_1125_1920x1080_5994i specifies 1125 total lines, an active
region of 1920 pixels by 1080 lines, 59.94 fields per second, and 2:1interlacing.

Note: Although the VL defines timings with sampling rates up through 148.5 MHz, the
HD I/O option supports only those through 74.25 MHz.

Timing rates and sync source are interrelated for HDTV. Table 2-4 summarizes the
relationships.

VL_FORMAT

The VL_FORMAT control is used on video nodes only. It specifies the sampling format
of data on the wire, specifically, dual-link (4:4:4 or 4:4:4:4) or single-link (4:2:2 or 4:2:2:4):

• VL_FORMAT_DIGITAL_COMPONENT_DUAL: either 4:4:4 or 4:4:4:4, depending
on the specified packing

• VL_FORMAT_DIGITAL_COMPONENT: Standard YCrCb color space sampled at
4:2:2 or 4:2:2:4, depending on the specified packing

Table 2-4 Genlock Sync Source and Timing

Connector Sync Source Output Timing Output Timing Calibration Timing Calibration Timing

GEN IN Analog 1920x1080
5994i trilevel

Analog NTSC color
black bilevel

Analog PAL black
bilevel

1920x1080 59.94i

1920x1080 59.94i

N/A

1280x720 59.94p

1280x720 59.94p

N/A

1920x1080 59.94i
(74.18 MHz)

1920x1080 59.94i
(74.18 MHz)

1920x1080 59.94i
(74.25 MHz)

1920x1080 59.94i
(74.18 MHz)

525
(108 MHz)

625
(108 MHz)

LINK A or B 1920x1080 59.94i

1280x720 59.94p

1920x1080 59.94i

1920x1080 59.94i

1280x720 59.94p

1280x720 59.94p

N/A

N/A

N/A

N/A

HD I/O Controls

21

The memory packing mode VL_PACKING determines how components are actually
sampled.

VL_FORMAT does not imply color space, nor does it imply whether the second link is
used. The second link is used whenever alpha/key channel is used, which depends on
the VL_PACKING setting, or when color is sampled at 4:4:4.

VL_PACKING

A video packing describes how a video signal is stored in memory, in contrast to a video
format, which describes the characteristics of the video signal. For example, the memory
source node accepts packed video from a DMbuffer and outputs video in a given format.
Packings are specified through the VL_PACKING control on the memory nodes.

Note: Because of HDTV’s multiple color spaces, “old style” packings, such as
VL_PACKING_Y_8_P, are ambiguous and therefore no longer supported for the HD I/O
board. You must specify the packing and color space explicitly.

The HD I/O option supports common packings up through 32 bits per pixel, including
4:4:4, 4:2:2, 4:4:4:4, and 4:2:2:4, at 8, 10, and 12 bits per component. Specifically, it supports
packings compatible with OpenGL and IRIS GL, and those in common use from other
video products. Appendix C, “Pixel Packings and Color Spaces,” shows the layout of
each packing for the HD I/O option. It also gives the corresponding names for these
packings that are used by other libraries.

An application must set both VL_PACKING and VL_COLORSPACE. Note that changes
in one parameter may change the values of other parameters set earlier; for example,
clipped size may change if VL_PACKING is set after VL_SIZE. For example:

VLControlValue val;

val.intVal = VL_PACKING_444_8;
vlSetControl(vlSvr, path, memdrn, VL_PACKING, &val);

Note: Changing this control at the beginning of data transfer takes several seconds to go
into effect.

22

Chapter 2: Programming the HD I/O Option

VL_COLORSPACE

The VL_COLORSPACE control specifies color space of video data in memory or for
input and output. A color space is a color component encoding format, for example, RGB
and YUV. Because video equipment uses more than one color space, the HD I/O video
nodes, in addition to the memory nodes, support the VL_COLORSPACE control.

Each component of an image has

• a color that it represents

• a canonical minimum value

• a canonical maximum value

Normally, a component stays within the minimum and maximum values. For example,
for a luma signal such as Y, you can think of these limits as the black level and the peak
white level, respectively. For an unsigned component with n bits, there are two
possibilities for [minimum value, maximum value]:

• full range: [0, (2nbits)-1], which provides the maximum resolution for each
component

• compressed (headroom) range, which provides numerical headroom, which is often
useful when processing video images:

– Cr and Cb: [(2n)/16, 15*(2n)/16]

– Y, A, R, G, and B: [(2n)/16, 235*(2n)/256]

Color Spaces and Color Models

Various HDTV specifications define color models differently from those defined in
ITU-R BT.601, which is used by most standard-definition digital video equipment. For
HDTV, the VL defines three color models:

• SMPTE 240M

• SMPTE 274M (Recommendation 709, which is ITU-R BT.709-2)

• Recommendation 601

HD I/O Controls

23

Within each color model, four different color spaces exist:

• YCrCb: headroom range

Headroom range means that black is at, for example, code 64 rather than 0, and
white is at, for example, code 940 rather than 1023. Headroom-range color spaces
can accommodate overshoot (superwhite) and undershoot (superblack) colors.
Full-range color spaces clamp these out-of-range colors to black and white.

• YUV: full range

• RGB_H: headroom range

• RGB_F: full range

For memory nodes, these four color spaces are defined for each of three color models,
resulting in 12 color spaces. Note that all 12 are supported on memory nodes, but only
YCrCb and RGB_H color spaces are supported on video nodes.

Table 2-5 summarizes currently supported combinations of VL_FORMAT and
VL_COLORSPACE; future releases will support more combinations.

Color-space conversion is performed within a color model if the color spaces are different
on the memory and video nodes. Conversion between the color models is not supported.

Table 2-5 VL_FORMAT and VL_COLORSPACE Combinations Supported

Video Node Memory Node

4:2:2 YCrCb 4:4:4 RGB_F

4:2:2 YCrCb 4:2:2 YCrCb

24

Chapter 2: Programming the HD I/O Option

Table 2-3 summarizes VL_COLORSPACE values for the HD I/O option.

Note: Changing this control at the beginning of data transfer takes several seconds to go
into effect.

Two sets of colors are commonly used together, RGB (RGBA) and YCrCb/YUV (VYUA).
YCrCb (YUV), the most common representation of color from the video world,
represents each color by a luma component called Y and two components of chroma,
called Cr (or V), and Cb (or U). The luma component is loosely related to brightness or
luminance, and the chroma components make up a quantity loosely related to hue. These
components are defined rigorously in ITU-R BT.601 (also known as Rec. 601 and CCIR
601), ITU-R BT.709-2, and SMPTE 240M.

The alpha channel is not a real color. For that channel, the canonical minimum value
means completely transparent, and the canonical maximum value means completely
opaque.

Table 2-6 Color-Space Values

Value Standard Nodes Definition

VL_COLORSPACE_REC601_YCRCB ITU-R BT.601 All Same as VL_COLORSPACE_CCIR601

VL_COLORSPACE_REC601_YUV ITU-R BT.601 Memory Full-range YUV (same as VL_COLORSPACE_YUV)

VL_COLORSPACE_REC601_RGB_H ITU-R BT.601 All Headroom-range RGB (VL_COLORSPACE_RP175)

VL_COLORSPACE_REC601_RGB_F ITU-R BT.601 Memory Full-range Rec. 601 RGB (VL_COLORSPACE_RGB)

VL_COLORSPACE_240M_YCRCB SMPTE 240M All SMPTE 240M YCrCb

VL_COLORSPACE_240M_YUV SMPTE 240M Memory Like 240M_YCRCB but full-range (no headroom)

VL_COLORSPACE_240M_RGB_H SMPTE 240M All Headroom-range RGB

VL_COLORSPACE_240M_RGB_F SMPTE 240M Memory Full-range RGB

VL_COLORSPACE_REC709_YCRCB ITU-R BT.709-2 All 60-Hz YCrCb

VL_COLORSPACE_REC709_YUV ITU-R BT.709-2 Memory Like REC709_YCRCB but full-range (no headroom)

VL_COLORSPACE_REC709_RGB_H ITU-R BT.709-2 All Headroom-range RGB

VL_COLORSPACE_REC709_RGB_F ITU-R BT.709-2 Memory Full-range RGB

HD I/O Controls

25

For OpenGL, IRIS GL, and DM:

• the library constant indicates whether the data is RGBA or VYUA

• RGBA data is full-range by default

• VYUA data in DM can be full-range or compressed-range; you must determine this
from context

For more information about color spaces, see A Technical Introduction to Digital Video, by
Charles A. Poynton (New York: Wiley, 1996).

VL_COLORSPACE Control of Blanking

Along with memory node color space, VL_COLORSPACE determines the
color-conversion matrix values. In addition, this control affects the type of blanking
output by the board during horizontal and vertical blanking, and during active video
area when not transferring data. On a video drain node, VL_COLORSPACE affects the
type of blanking that the board outputs, in accordance with SMPTE 274M:

• YCrCb: blanking is Y = 64, Cr/Cb = 512, A = 64

• RGB_H: blanking is R = 64, G = 64, B = 64, A = 64

VL_COLORSPACE and Lookup Tables

The HD I/O board supports lookup tables (LUTs) on input and output for gamma
correction or decorrection. If an application is to work with linear components, these can
be used to convert between linear and nonlinear spaces.

The HD I/O hardware includes a separate LUT for each RGB color component.Each of
the three LUTs is a table of 8192 entries; each entry stores 13 bits. The application
programs the entries in each table. LUTs accomplish offsets, if they are required by the
memory storage format.

The LUTs perform rounding as follows:

• If the LUT is not explicitly programmed by the application, it is in pass-through
mode, and all rounding is performed in the color-space converter.

• If the LUT has been programmed explicitly by the application, the application can
control rounding as part of the lookup table function. The packer (hardware that
reads the LUT and formats data for the host memory; see Figure 1-2 on page 4)
performs a final conversion from 13-bit LUT format to host memory format.

26

Chapter 2: Programming the HD I/O Option

VL_COLORSPACE Example

Figure 2-5 summarizes a complicated conversion between color spaces with for 4:2:2
sampling rates and different primary colors. The example shows conversion of material
produced using SMPTE 240M colorimetry to material in SMPTE 274M format (ITU-R
BT.709.2 colors).

Note: In Figure 2-5, RGB are values in linear space and R’G’B’ are values in nonlinear
space after the optoelectric transfer function is applied as specified in ITU-R BT.709. To
convert between RGB and R’G’B’, the LUTS can be used to apply this function or its
inverse.

Figure 2-5 Color-Space Conversion Example

Y'CrCb 422
SMPTE 240M

Color difference
interpolator

Matrix
multiplier LUT

R'G'B'
SMPTE 240M

CPU memory

RGB
SMPTE 240M

HD I/O input pipe

Matrix
multiplier LUT

RGB
Rec. 709

R'G'B'
Rec. 709

HD I/O loopback

CPU memory

DMA

DMA

Matrix
multiplier

HD I/O output pipe

Color difference
decimator

Y’CrCb 422
SMPTE 274

(ITU-R BT.709)

HD I/O Controls

27

VL_CAP_TYPE

An application can request that the HD I/O option capture or play back a video stream
in a number of ways. For example, the application can request that each field be placed
in its own buffer, or that each buffer contain an interleaved frame. This section explains
the capture types that the HD I/O option supports.

Capture types are as follows:

• VL_CAPTURE_NONINTERLEAVED

• VL_CAPTURE_INTERLEAVED

VL_CAPTURE_FIELDS is equivalent to VL_CAPTURE_NONINTERLEAVED. The
HD I/O option does not support VL_CAPTURE_EVEN_FIELDS and
VL_CAPTURE_ODD_FIELDS.

Note: VL_SIZE refers to the size of each frame, rather than the size of the buffer in
memory, so it is independent of VL_CAP_TYPE; the VL_CAP_TYPE setting does not
change VL_SIZE.

VL_CAPTURE_NONINTERLEAVED

The VL_CAPTURE_NONINTERLEAVED capture type specifies that frame-size units
are captured noninterleaved. Each field is placed in its own buffer, with the dominant
field in the first buffer. If one of the fields of a frame is dropped, all fields are dropped.
Consequently, an application is guaranteed that the field order is maintained; no special
synchronization is necessary to ensure that fields from different frames are mixed.

If VL_CAPTURE_NONINTERLEAVED is specified for playback, similar guarantees
apply as for capture. If one field is lost during playback, it is not possible to “take back”
the field. The HD I/O option resynchronizes on the next frame boundary, although black
or “garbage” video might be present between the erring field and the frame boundary.

VL_CAPTURE_INTERLEAVED

Interleaved capture interleaves the two fields of a frame and places them in a single
buffer; the order of the fields depends on the value set for VL_DOMINANCE_FIELD.

28

Chapter 2: Programming the HD I/O Option

The HD I/O option guarantees that the interleaved fields are from the same frame: if one
field of a frame is dropped, then both are dropped.

During playback, a frame is deinterleaved and output as two consecutive fields, with the
dominant field output first. If one of the fields is lost, the HD I/O option resynchronizes
to a frame boundary before playing the next frame. During the resynchronization period,
black or “garbage” data may be displayed.

VL_SIZE and VL_OFFSET

VL_SIZE refers to the size of each frame, rather than the size of the buffer in memory, so
it is independent of VL_CAP_TYPE; the VL_CAP_TYPE setting does not change
VL_SIZE.

For memory nodes, VL_SIZE specifies the desired region of the video raster, which must
be the same as the default active region. There is no default; this control must be set. On
video nodes, this control is read-only and cannot be set.

For memory nodes, VL_OFFSET is related to VL_SIZE; it specifies the origin of the video
region to be captured at (0,0), the standard beginning of active video. The recommended
way to set VL_SIZE for the memory node is to query it on the video node (after setting
VL_TIMING appropriately) and use the returned value to set VL_SIZE on the memory
node.

VL_ZOOM

The VL_ZOOM control specifies the site of the top video line in memory; it does not scale
(zoom and decimate) a video image as for some other Silicon Graphics video options.
The VL_ZOOM value can be 1 or -1:

• 1: Normal line order; the top video line is at the lowest address in the buffer.

• -1: Inverted line order; as in OpenGL, the top video line is at the highest address in
the buffer.

Field Dominance

29

Field Dominance

Field dominance identifies the frame boundaries in a field sequence; that is, it specifies
which pair of fields in a field sequence constitute a frame. The control
VL_FIELD_DOMINANCE allows you to specify whether an edit occurs on the nominal
video field boundary (Field 1, or F1) or on the intervening field boundary (Field 2, or F2).

• F1 dominant: The edit occurs on the nominal video field boundary.

• F2 dominant: The edit occurs on the intervening field boundary.

Whether a field is Field 1 or Field 2 is determined by the setting of bit 9, the F bit, in the
XYZ word of the EAV and SAV sequences. The setting means the following:

• For Field 1 (also called the odd field), the F bit is 0.

• For Field 2 (also called the even field), the F bit is 1.

Note: Field dominance has no effect on progressive timings.

Figure 2-6 shows fields and frames as defined for digital 1080-line formats for the
HD I/O option.

Figure 2-6 Fields and Frames for SMPTE 274M

Editing is usually on Field 1 boundaries, where Field 1 is defined as the first field in the
video standard’s two-field output sequence. However, some users may want to edit on
F2 boundaries, which fall on the field in between the video standard’s frame boundary.
To do so, use this control, then program your deck to select F2 edits.

FieldFrame (raster)
Line number

Frame (raster)
Line number

.

.

.

21 (F1)
584 (F2)

22 (F1)
585 (F2)

23 (F1)
.

.

.

1122 (F2)
560 (F1)

1123 (F2)

Field 1: Odd field
(540 lines active video

Field 2: Even field
(540 lines active video

preceded by

preceded by

584
585

.
1122
1123

.

.

.

21
22

.
560

.

.

.
20 blanking lines)

19 blanking lines)

.

30

Chapter 2: Programming the HD I/O Option

A set of frames to be output must be deinterlaced into fields differently, depending on
the choice of output field dominance: for SMPTE 274M, the top line is in F1, as shown in
Figure 2-6; for SMPTE 240M, the top line is in F2. For example, when F1 dominance is
selected, the field with the topmost line must be the first field to be transferred; when F2
dominance is selected, the field with the topmost line must be the second field to be
transferred.

Automatically Correcting for Output Underflow

If the application is not sending buffers fast enough for the receiving equipment’s video
frame rate, you can set VL_XTHD_OUTPUT_REPEAT to repeat DMbuffers
automatically. The values for this control vary depending on whether the transfer is
progressive or interlaced.

For interlaced noninterleaved transfers, choices are as follows:

• VL_XTHD_OUTPUT_REPEAT_LAST_FIELD

This setting repeats the last buffer twice. This setting is spacially imperfect, but does
not cause flicker.

• VL_XTHD_OUTPUT_REPEAT_LAST_FRAME (the default)

This setting repeats the last pair of buffers. This setting is spacially better than
VL_XTHD_OUTPUT_REPEAT_LAST_FIELD, but causes flicker.

• VL_XTHD_OUTPUT_REPEAT_DISABLED

This setting, which does not resend any data, is the most useful for debugging, since
underflow is then quite visible on output.

For progressive or interleaved transfers, choices are as follows:

• VL_XTHD_OUTPUT_REPEAT_LAST_FRAME (the default)

This setting repeats the last buffer.

• VL_XTHD_OUTPUT_REPEAT_DISABLED

Capturing Graphics to Video

31

Capturing Graphics to Video

To capture graphics to video, you can use OpenGL to read pixels into memory. However,
the coordinate system differs between video and Open GL; under OpenGL, the origin is
at the lower left corner and in video, origin is in the upper left corner. To adjust for this
difference, set VL_ZOOM to -1; see “VL_ZOOM” on page 28.

HD I/O Events

The VL provides several ways of handling data stream events, such as completion or
failure of data transfer, vertical retrace event, loss of the path to another client, lack of
detectable sync, or dropped fields or frames. The method you use depends on the kind
of application you are writing:

• For a strictly VL application, use

– vlSelectEvents() to choose the events to which you want the application to
respond

– vlCallback() to specify the function called when the event occurs

– your own event loop or a main loop (vlMainLoop()) to dispatch the events

• For an application that also accesses another program or device driver, or if you are
adding video capability to an existing X or OpenGL application, set up an event
loop in the main part of the application and use the IRIX file descriptor (FD) of the
event(s) you want to add.

For more information on these functions, see Chapter 4 in the DMPG.

32

Chapter 2: Programming the HD I/O Option

Table 2-7 summarizes events for the HD I/O option. For these options, this table
supersedes the table of events in Chapter 14, “VL Event Handling,” in the DMPG; the
HD I/O option supports only the events listed in Table 2-7.

Reporting

The DMediaInfo structure reports the Unadjusted System Time (UST).

The HD I/O option makes use of the error events noted in Chapter 4 of the DMPG, as
well as VLTransferErrorEvent, which reports nonfatal video transfer errors. The
VLTransferComplete and VLSequenceLost events also report the Media Stream Count
(MSC) of the field or frame transferred or failed.

Examples

This section contains three examples:

• “Capture to Memory for Disk Recording” on page 33

• “Playback From Memory for Disk Playback” on page 33

• “Capture to Memory for Graphics” on page 34

Table 2-7 HD I/O Events

Event Use

VLSyncLost Sync is not detected

VLStreamStarted Stream started delivery

VLStreamStopped Stream stopped delivery

VLSequenceLost A field/frame was dropped

VLControlChanged A control on the path has changed

VLTransferComplete A field/frame transfer has completed

VLTransferFailed A transfer has failed and DMA is aborted

VLTransferError A transfer error was discovered; field may be invalid

Examples

33

Capture to Memory for Disk Recording

This example shows an application that simply captures video data and records it to disk,
for later playout. The video is left in its original 4:2:2 sampling and color space. Because
10 bits are required, the R242_10 packing mode is chosen. Frames start on F1 boundaries.
After creating the VL path, the application sets up the video node, mostly as a result of
user input, since it depends on external equipment.
videoSource.VL_TIMING = VL_TIMING_1125_1920x1080_5994i
videoSource.VL_COLORSPACE = VL_COLORSPACE_REC709_YCRCB
videoSource.VL_FIELD_DOMINANCE = VL_F1_IS_DOMINANT
videoSource.VL_FORMAT = VL_FORMAT_DIGITAL_COMPONENT
videoSource.VL_XTHD_LOOPBACK = VL_XTHD_LOOPBACK_OFF
videoSource.VL_XTHD_INTERFACE_PRECISION = VL_XTHD_INTERFACE_PRECISION_10

Next, application configures memory node:

memoryDrain.VL_SIZE = videoSource.VL_SIZE
memoryDrain.VL_COLORSPACE = videoSource.VL_COLORSPACE
memoryDrain.VL_CAP_TYPE = VL_CAPTURE_NONINTERLEAVED
memoryDrain.VL_PACKING = VL_PACKING_R242_10

Next, the application calls vlGetTransferSize() to get the required buffer size to hold
each field. Using that size, it creates and registers a DMS buffer pool and starts the
transfer.

Playback From Memory for Disk Playback

This example shows an application that plays back data captured in the previous
example.

The application in the previous example has stored various attributes along with the
data, including color space, frame rate, dominance, and size. These attributes, along with
some user-specified options, are used to derive the control values. After creating the VL
path, the application sets up the video node:

videoDrain.VL_TIMING = VL_TIMING_1125_1920x1080_5994i
videoDrain.VL_COLORSPACE = VL_COLORSPACE_REC709_YCRCB
videoDrain.VL_FIELD_DOMINANCE = VL_F1_IS_DOMINANT
videoDrain.VL_FORMAT = VL_FORMAT_DIGITAL_COMPONENT
videoDrain.VL_XTHD_INTERFACE_PRECISION = VL_XTHD_INTERFACE_PRECISION_10
videoDrain.VL_SYNC = VL_SYNC_GENLOCK
videoDrain.VL_SYNC_SOURCE = VL_XTHD_SYNC_HOUSE

34

Chapter 2: Programming the HD I/O Option

Next, the application configures the memory node:

memorySource.VL_SIZE = videoDrain.VL_SIZE
memorySource.VL_COLORSPACE = videoDrain.VL_COLORSPACE
memorySource.VL_CAP_TYPE = VL_CAPTURE_NONINTERLEAVED
memorySource.VL_PACKING = VL_PACKING_R242_10

Next, the application calls vlGetTransferSize() to get the required buffer size to hold
each field. Using that size, it creates a DMS buffer pool, allocates, fills, and prequeues
some buffers, and starts the transfer.

Capture to Memory for Graphics

In this example, the application captures video and draws it on the graphics screen using
OpenGL. This example resembles the videoin application.

The incoming video is converted to 10-bit 4:4:4 full-range RGB in an OpenGL-compatible
packing format. The 4444_10_10_10_2 packing is chosen; it is compatible with OpenGL
using packed-pixel extension GL_UNSIGNED_INT_10_10_10_2_EXT pixel format.
Video is interleaved in memory into frames, and is written upside down to be compatible
with OpenGL’s default coordinate system (glPixelZoom of (1.0, 1.0)).

First, video node is configured:
videoSource.VL_TIMING = VL_TIMING_1125_1920x1080_5994i
videoSource.VL_COLORSPACE = VL_COLORSPACE_REC709_YCRCB
videoSource.VL_FIELD_DOMINANCE = VL_F1_IS_DOMINANT
videoSource.VL_FORMAT = VL_FORMAT_DIGITAL_COMPONENT
videoSource.VL_XTHD_LOOPBACK = VL_XTHD_LOOPBACK_OFF
videoSource.VL_XTHD_INTERFACE_PRECISION = VL_XTHD_INTERFACE_PRECISION_10

Next, application configures memory node:
memoryDrain.VL_SIZE = videoSource.VL_SIZE
memoryDrain.VL_COLORSPACE = VL_COLORSPACE_REC709_RGB_F
memoryDrain.VL_CAP_TYPE = VL_CAPTURE_INTERLEAVED
memoryDrain.VL_PACKING = VL_PACKING_4444_10_10_10_2 memoryDrain.VL_ZOOM = -1/1

Next, the application calls vlGetTransferSize() to get the required buffer size to hold
each field. Using that size, it creates and registers a DMS buffer pool and starts the
transfer.

35

Chapter 3

3. Synchronizing Data Streams and Signals

You can use special signals recognized or generated by the HD I/O board—UST
(unadjusted system time), MSC (media stream count)—to synchronize data streams. This
chapter explains

• “Using UST, MSC, and Buffered Media Streams for Synchronization” on page 35

• “Media Library Interfaces for UST and MSC” on page 38

Using UST, MSC, and Buffered Media Streams for Synchronization

Whenever a VL path is open in continuous mode, the HD I/O board and certain other
Silicon Graphics video devices continuously try to dequeue media stream samples from
the path’s buffer for input, or to enqueue media stream samples onto the path’s buffer for
output. If the buffer between the application and each device never underflows or
overflows, then the application can measure and schedule the timing of input and output
signals to 100% of the accuracy of the underlying device.

Occasionally, the application is held off and audio, video, or both come out late. Buffer
underflow on output and overflow on input can result from the application not keeping
the buffer adequately filled for the following reasons:

• The application is busy with other tasks, allowing too much time between putting
fields into the buffer.

• Processes are subject to various interruptions (10 to 80 ms for some processes) under
IRIX because

– the process for filling the buffer is running at too low a priority

– the process cannot get a resource from IRIX that it needs, such as memory pages

36

Chapter 3: Synchronizing Data Streams and Signals

To get around this problem, a mechanism built into the VL helps keep track of data flow
into and out of buffers by providing accurate timing information for each frame of video
that enters or leaves the system. This mechanism, called UST/MSC, produces matched
pairs of two numbers:

• unadjusted system time (UST), a time value that is used to state timing
measurements to applications

• media stream count (MSC), a count value that identifies a particular media stream
sample (a video field or frame)

The device keeps a counter called the device media stream count (device MSC), which
increments by one every time the device attempts to enqueue or dequeue a media stream
sample, whether or not the enqueue or dequeue attempt is successful. UST/MSC was
designed to return timing information in a form that is valid whenever the buffer is not
underflowing or overflowing.

The UST/MSC capability and the buffering that goes with it are appropriate for
applications and devices such as movie players and digital video editing devices.

UST/MSC affords maximally accurate synchronization when scheduling cannot be
guaranteed and some buffering is acceptable. Also, if scheduling becomes reliable at
some later point, UST/MSC continues to function the same way with no code changes
required; the buffers can be made smaller, and the result is a low-latency application with
the same accurate synchronization.

Note that UST/MSC itself

• does not add any latency to an application

The buffer adds latency: it increases the time the application would take to respond
to some output event by changing its input (and vice versa). This solution to the
synchronization problem is useful for applications in which a small latency can be
sacrificed for more accuracy.

• does not require that an application trade off latency for accuracy

• does not require that an application use any particular size buffer

• delivers the full accuracy of the underlying hardware’s timing support regardless of
the scheduling characteristics of the application

• could be useful for graphics and texture even for low-latency applications

Using UST, MSC, and Buffered Media Streams for Synchronization

37

For the HD I/O option, UST/MSC pairs are maintained in software and are valid only
during a transfer. Make calls to vlGetUSTMSCPair() and vlGetFrontierMSC() only
during a transfer; these calls block until at least one buffer has been successfully
transferred. Note the following:

• For interlaced timings, MSC always increments by 1 per field.

• For progressive timings, MSC always increments by 1 per frame.

The code below is a high-level algorithm to maintain synchronization of two buffered
media streams that send data from memory to hardware outputs; a corresponding one is
necessary for the other direction:

create video buffer between me and the audio output;
create audio buffer between me and the video output;
while (1)
{
 sleep until one of the buffers is getting empty;
 for (video buffer)
 {
 use UST/MSC to determine:
 “at what time (what UST) will the next video data I enqueue
 on the buffer actually go out the jack of the machine?”;
 }

 for (audio buffer)
 {
 (exact same thing as above, except for audio)
 }

 From the predicted video and audio USTs, determine
 “what is the synchronization error between the audio and video
 streams?”

 Enqueue more frames to fill up the audio and video buffer queues.
 If there is synchronization error, enqueue new frames to either skip
 frames on the stream that is behind or repeat frames on the stream
 that is ahead.
 }
}

The answers to the questions in the pseudocode above are obtained with three VL calls
that manipulate UST and MSC and are explained in the next section.

38

Chapter 3: Synchronizing Data Streams and Signals

Media Library Interfaces for UST and MSC

UST/MSC calls allow you to associate a UST with a particular piece of data that just left
a buffer or is about to enter a buffer. The VL calls for determining the MSC and UST—
vlGetUSTMSCPair(3dm), vlGetFrontierMSC(3dm), and vlGetUSTPerMSC(3dm)—help
synchronize input and output of different data streams in cases where the application is
getting data from or putting data into each device via a buffer. The application is at the
“frontier” end of this buffer and the devices are at the “device” end of the buffer.

• vlGetUSTMSCPair() gets the timing information for each frame or field as it enters
or leaves the physical jack of a device.

This call returns an atomic UST/MSC pair for the jack (specified with the VL_NODE)
for a given path that contains a VL_MEM node. The returned MSC is not guaranteed
to be the one currently at the jack, nor is it even guaranteed to be the number of any
media stream sample currently in the application’s buffer. To relate the returned MSC
to a particular item in the application’s buffer, you must use vlGetFrontierMSC().

• vlGetFrontierMSC() gets the frontier MSC associated with a particular VL_MEM node.

The frontier MSC, at the application end of the media stream, is the MSC of the next
item that the application removes from or puts into the buffer.

• vlGetUSTPerMSC() gets the time spacing of fields or frames in a path (the nominal
average UST time elapsed between media stream samples in a given VLPath that
includes a VL_MEM node).

These calls are used for extrapolating a UST/MSC pair as shown in vlGetFrontierMSC().
For other types of media streams, a similar mechanism extrapolates the UST/MSC pair;
for example, for audio, use equivalent AL calls.

Once you have calculated the extrapolated UST/MSC pairs for both media streams, you
can determine the synchronization error. The difference in the audio and video USTs for
matching frame numbers is the amount they are out of sync. To resynchronize them, you
must enqueue new frames to either skip frames on the stream that is behind or repeat
frames on the stream that is ahead. The number of frames to be skipped or repeated is
the difference in USTs divided by the frame rate.

To use UST/MSC, the application must have separate handles for each separate piece of
data coming in or going out of some kind of buffer. The application can use these handles
to specify, for example, a particular frame to output or pixels of a particular field to get.

Note: For complete details, including syntax, code examples, and caveats, see the man
pages for these calls.

39

Appendix A

A. HD I/O Option Board Specifications

This appendix summarizes hardware specifications for the HD I/O option board and its
cable, in these sections:

• “Cable Connectors” on page 40

• “GPI Interface” on page 44

• “Genlock” on page 48

40

Appendix A: HD I/O Option Board Specifications

Cable Connectors

Figure A-1 shows the two multiheaded cables included with the board; each has four
50-pin connectors for link A input, link B input, link A output, and link B output. The
50-pin connectors differ for each type of cable, following the Panasonic and Philips
50-pin video equipment interface standard.

Figure A-1 HD I/O Cables

SGI Panasonic P1 (input link A)

SGI Panasonic P3 (output link A)

SGI Panasonic P2 (input link B)

SGI Panasonic P4 (output link B)

SGI Philips P1 (input link A)

SGI Philips P3 (output link A)

SGI Philips P2 (input link B)

SGI Philips P4 (output link B)

Cable Connectors

41

Table A-1 summarizes the Panasonic (HD-D5) pinout for the cable’s 50-pin connector.

Table A-1 Panasonic 50-Pin Connector Pinout (HD-D5)

Pin Signal Pin Signal Pin Signal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

CLK+
Data9+
Data8+
Data7+
Data6+
Data5+
Data4+
Data3+
Data2+
Data19+
Data18+
Data17+
Data16+
Data15+
Data14+
Data13+
Data12+

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Data1+
Data1-
Data0+
Data0-
GND
GND
GND
GND
Data11+
Data11-
Data10+
Data10-
GND
GND
GND
GND

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

CLK-
Data9-
Data8-
Data7-
Data6-
Data5-
Data4-
Data3-
Data2-
Data19-
Data18-
Data17-
Data16-
Data15-
Data14-
Data13-
Data12-

42

Appendix A: HD I/O Option Board Specifications

Table A-2 summarizes the Philips (Spirit DataCine) pinout for the cable’s 50-pin
connector.

Table A-3 summarizes the use of LINK A and LINK B connectors for 4:2:2:4 mode. If LINK B
is not used in 4:2:2:4 format, the resulting format is 4:2:2. The LINK A connector carries
10-bit wide UVY information; the LINK B connector carries 10-bit alpha. The cables
included with the HD I/O option each carry two channels in parallel.

Table A-2 Philips 50-Pin Connector Pinout (Spirit DataCine)

Pin Signal Pin Signal Pin Signal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

CLK+
Data9+
Data8+
Data7+
Data6+
Data5+
Data4+
Data3+
Data2+
Data19+
Data18+
Data17+
Data16+
Data15+
Data14+
Data13+
Data12+

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

GND
GND
Data1+
Data1-
Data0+
Data0-
GND
GND
GND
GND
Data11+
Data11-
Data10+
Data10-
GND
GND

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

CLK-
Data9-
Data8-
Data7-
Data6-
Data5-
Data4-
Data3-
Data2-
Data19-
Data18-
Data17-
Data16-
Data15-
Data14-
Data13-
Data12-

Table A-3 LINK A and LINK B Usage in 4:2:2:4 Mode

Sample LINK A LINK B

0 Cb0 Y0 x A0

1 Cr1 Y1 x A1

2 Cb2 Y2 x A2

3 Cr3 Y3 x A3

Cable Connectors

43

Table A-4 summarizes usage for 10-bit RGBA.

Table A-5 summarizes the use of LINK A and LINK B connectors for 4:4:4:4 mode. The
LINK A connector carries a 4:2:2 sampled portion of 10-bit wide UVY; the LINK B
connector carries the remaining 10-bit UV samples and 10-bit alpha. Usage is similar for
10-bit RGBA.

Table A-4 LINK A and LINK B Usage in RGBA Mode

Sample LINK A LINK B

0 B0 G0 R0 A0

1 B1 G1 R1 A1

2 B2 G2 R2 A2

3 B3 G3 R3 A3

Table A-5 LINK A and LINK B Usage in 4:4:4:4 Mode

Sample LINK A LINK B

0 Cb0 Y0 Cr0 A0

1 Cb1 Y1 Cr1 A1

2 Cb2 Y2 Cr2 A2

3 Cb3 Y3 Cr3 A3

44

Appendix A: HD I/O Option Board Specifications

GPI Interface

The General Purpose Interface (GPI) port provides two channels of input and output
trigger signal pairs on one connector. This section consists of the following subsections:

• “GPI Connector” on page 44

• “GPI Transmitter” on page 46

• “GPI Receiver” on page 47

GPI Connector

Figure A-2 points out the GPI connector on the HD I/O panel.

Figure A-2 GPI Connector

Figure A-3 shows the pinouts for the GPI connector.

Figure A-3 GPI Pinouts

GEN IN GEN OUT I/O 200
GPI

ALINK

LOCKED

VALID

IN

OUT

B

General-Purpose Interface (GPI)

7
6

3

12

4

5

8

GPI Interface

45

Table A-6 gives the uses of the pins in Figure A-3.

Figure A-4 diagrams the relationship between the HD I/O board’s video pipes and the
GPI pins.

Figure A-4 GPI Pins and HD I/O Video Pipes

Table A-6 GPI Pinouts

Pin Use For Video Pipe CCT/CCR

8 In transmit + In CCT +

4 In transmit - In CCT -

5 Out transmit + Out CCT +

2 Out transmit - Out CCT -

6 In receive + In CCR +

7 In receive - In CCR -

3 Out receive + Out CCR +

1 Out receive - Out CCR -

Transmit +:pin 8

Transmit -:pin 4

Receive +:pin 6

Receive -:pin 7

Transmit +:pin 5

Transmit -:pin 2

Receive +:pin 3

Receive -:pin 1

In video pipe

Out video pipe

46

Appendix A: HD I/O Option Board Specifications

GPI Transmitter

GPI contact closure transmit (CCT) outputs use an optically coupled solid-state relay
(SSR) to provide a means of electrical isolation for destination equipment.

Figure A-5 and Table A-7 show electrical specifications for the GPI transmitter.

Figure A-5 GPI Transmitter Electrical Specifications

Table A-7 GPI Transmitter Electrical Specifications

Parameter Value

On resistance 10 ohms typical, 15 ohms maximum

Off resistance 5000 G ohms

Current limit 360 mA typical, 460 mA maximum

Output capacitance 60 pF

Continuous DC load current 180 mA

Output power dissipation 600 mW

Isolation voltage 3750 V rms

+V

S and S1 (bi-directional outputs)

Typical OFF resistance: 5000 G ohms
Typical ON resistance: 10 ohms

Computer
trigger

Optical solid state relay (SSR)

S1

S
CCT+ (transmit +)

CCT- (transmit -)

GPI Interface

47

The GPI transmitter can be interfaced to the destination equipment by tying the CCT-
terminal to GND and using the CCT+ terminal as a current sink. The input device of the
destination equipment can consist of a logic device with active pullup, an optoisolator
LED with series-limiting resistor, or relay primary with series-limiting resistor.

The GPI transmitter’s logic sense can be swapped (inverted) by tying the CCT+ terminal
to the logic power supply (VCC) of the destination equipment and using the CCT-
terminal to drive the input of the receiving device.

GPI Receiver

GPI receive (CCR) inputs use an optical isolator device to provide a means of electrical
isolation from source equipment. The device consists of a bidirectional input LED
optically coupled to a bipolar transistor. A voltage pulse applied across the CCR+/- pins
causes the LED to become momentarily forward-biased, which produces a GPI trigger to
the computer.

Figure A-6 shows electrical specifications for the GPI receiver.

Figure A-6 GPI Receiver Electrical Specifications

Computer
trigger

Optoisolator

470
CCR -

CCR +

48

Appendix A: HD I/O Option Board Specifications

Table A-8 summarizes electrical specifications for the GPI receiver optoisolator.

The GPI receiver can be interfaced to the source equipment by tying either the CCR+
terminal or the CCR- terminal across the output terminals of an optoisolator, solid-state
relay, or any device that acts like a single-pole contact switch. The other terminal (CCR-
or CCR+) must then be appropriately tied to power or ground. Whenever the logic
device is sourcing current (driving a logic high), a GPI trigger is generated.

Note: Proper biasing and current limitations must be observed for the input LED. See
Table A-8.

Genlock

The GEN IN and GEN OUT BNC connectors on the HD I/O front panel make up a passive
genlock loopthrough connection. If you attach a cable to one GEN connector, you must
attach to the other GEN connector either a 75-ohm BNC terminator or a cable to other
equipment accepting analog sync. If another cable is connected, it must be terminated at
the end of the loopthrough chain. Figure A-7 points out the genlock BNCs.

Figure A-7 Genlock BNCs

Table A-8 GPI Receiver Input Optoisolator Electrical Specifications

Parameter Value

Forward voltage (VF) 1.55 V, 1.2 V typical (IF = 10 mA)

Continuous forward current (IF) 30 mA

Peak forward current 1000 mA (10 us duration, 1% DC)

Reverse current (IR) 0.1 uA, 100 uA maximum (VR = 6 V)

Isolation surge voltage (V10) 2500 VACRMS (t = 1 min)

GEN IN GEN OUT I/O 200
GPI

ALINK

LOCKED

VALID

IN

OUT

B

Genlock BNCs

49

Appendix B

B. Setting Up the HD I/O Board for Your Video Hardware

This appendix illustrates how to attach video equipment to connectors on the HD I/O
front panel and how to use the video control panel vcp to set the option to match your
installation.

This appendix explains

• “Setting Up Digital Source Video” on page 50

• “Setting Up the Output (Drain)” on page 52

• “Setting Up Sync” on page 54

• “Saving Settings” on page 56

Figure B-1 shows connectors on the HD I/O front panel.

Figure B-1 HD I/O Ports

GEN IN GEN OUT I/O 200
GPI

ALINK

LOCKED

VALID

IN

OUT

B

General-Purpose Interface (GPI) HD 200-pin interface (Link A and Link B)

LEDs for Link A and Link B in and out

Genlock BNCs

50

Appendix B: Setting Up the HD I/O Board for Your Video Hardware

Setting Up Digital Source Video

The cables supplied with the HD I/O option each have four 50-in connectors for
attaching to equipment that complies with the SMPTE 274M standard. The cables can be
used for 4:4:4:4 or 4:2:2:4 dual-link mode; for 4:2:2 single-link mode, ignore the alpha:

• In 4:4:4:4 mode, Link A carries Y plus the U and V from even-numbered sample
points; Link B carries alpha plus the U and V from odd-numbered sample points.

• In 4:2:2:4 mode, Link A carries Y plus the U and V from all sample points; Link B
carries alpha only.

To set up the option for a digital video source, follow these steps:

1. Using the Panasonic-standard or Philips-standard cable included with the
HD I/O option, attach the connector with the green label SGI <--- PANASONIC P1 or
SGI <--- PHILIPS P1 to a device outputting data.

Depending on the equipment to be connected to, use the Panasonic or Philips cable.
If necessary, see “Cable Connectors” on page 40 in Appendix A for an explanation
of the labeling and color coding.

Figure B-2 HD I/O Cables

SGI Panasonic P1 (input link A)

SGI Panasonic P3 (output link A)

SGI Panasonic P2 (input link B)

SGI Panasonic P4 (output link B)

SGI Philips P1 (input link A)

SGI Philips P3 (output link A)

SGI Philips P2 (input link B)

SGI Philips P4 (output link B)

Setting Up Digital Source Video

51

2. If you are using a device for alpha key data, also attach the connector with the red
label SGI <--- PANASONIC P2 or SGI <--- PHILIPS P2 to a device outputting alpha.

3. Call up the panel:

/usr/sbin/vcp

4. In the Inputs(s): HD I/O Digital Video Source section of the control panel vcp
(pointed out in Figure B-3) for the channel(s) you are using, select the format that
matches your equipment: Digital Component 4:2:2:4 (the default) or Digital
Component 4:4:4:4.

Figure B-3 Selecting Digital Input Video Format in vcp

5. In the Digital Video Source portion of the panel for the channel(s) you are using,
select the timing that matches your equipment.

52

Appendix B: Setting Up the HD I/O Board for Your Video Hardware

Setting Up the Output (Drain)

To set up the digital video output, follow these steps:

1. Using the Panasonic-standard or Philips-standard cable included with the HD I/O
option, attach the connector with the green label SGI ---> PANASONIC P3 or SGI --->
PHILIPS P3 to a device to which you want to send data. If you use only one output,
you must use this connector.

Depending on the equipment to be connected to, use the Panasonic or Philips cable.
If necessary, see “Cable Connectors” on page 40 in Appendix A for an explanation
of the labeling and color coding.

2. If you are using a device for alpha key data, also attach the connector with the red
label SGI ---> PANASONIC P4 or SGI ---> PHILIPS P4 to a device receiving alpha key
data.

3. If necessary, call up the panel (/usr/sbin/vcp).

Setting Up the Output (Drain)

53

4. In the Output(s): Video Drain section of the control panel (pointed out in
Figure B-4), select the format that matches your equipment: Digital Component
4:2:2:4 (the default) or Digital Component 4:4:4:4.

Figure B-4 Selecting Video Drain Format

5. Select the timing that matches your equipment.

6. To set field dominance, at the “Input Timing” menu item select “F1 dominant” for
the edit to occur on the nominal video field boundary, or “F2 dominant” for the edit
to occur on the intervening field boundary. See “Field Dominance” on page 29 in
Chapter 2 for more information on field dominance.

54

Appendix B: Setting Up the HD I/O Board for Your Video Hardware

Setting Up Sync

This section explains

• “Setting Up Internal Sync” on page 54

• “Setting Up External Sync” on page 55

Setting Up Internal Sync

In the Output(s): Digital Video Drain section of the control panel, select the Sync format
that matches your equipment:

• standalone (not synced to another device): select Standalone (internal)

• output sync to an external source connected to the genlock in: select Genlock

These two choices toggle; Figure B-5 shows the default.

Figure B-5 Setting Standalone or Genlock Sync

Setting Up Sync

55

Setting Up External Sync

To set up the HD I/O option for an external sync source, follow these steps:

1. If necessary, call up the panel (/usr/sbin/vcp).

2. Select the appropriate external sync source in Output(s): Sync Source:

• For a device connected to GEN IN, select External 1920x1080_5994_i or
External 525 NTSC depending on your sync source.

• If you are syncing to the device attached to SGI <--- PANASONIC/PHILIPS P1,
select Digital Input Link A.

• If you are syncing to the device attached to SGI <--- PANASONIC/PHILIPS P2,
select Digital Input Link B.

Note: See Table 2-4 on page 20 in Chapter 2 for details of the interrelationships of
timing and sync source.

If a genlock source has not been cabled to the HD I/O panel yet, any application in
progress might generate an error message.

3. Connect the sync source equipment to one of the following connectors:

• the GEN IN BNC on the I/O panel (see Figure B-1 if necessary)

or

• the cable connector SGI <--- PANASONIC/PHILIPS P1 or
SGI <--- PANASONIC/PHILIPS P2 (if this cable connector is not already attached
to the device supplying sync)

4. If you are using the same signal for other equipment, attach a BNC cable to the
GEN OUT BNC to loop the signal through the board. Make sure the final element in
the chain is terminated.

If the HD I/O board is the last element in the sync chain, attach a terminator to the
GEN OUT BNC.

5. Check the genlock LEDs:

• If the yellow VALID LED is lit, an acceptable sync source is attached to the
genlock input.

• If the green LOCKED LED is lit, genlock is enabled (via vcp or an application),
the reference is adequate, and the board is ready to use.

56

Appendix B: Setting Up the HD I/O Board for Your Video Hardware

Saving Settings

Once you have set values in vcp to match your installation, save them; they are written
to /usr/etc/video/videod.defaults. Select “Restore Settings” on the video control panel File
menu to load the values in this file to vcp.

The last settings saved are automatically loaded every time the system is reinitialized. If
the panel is running, current settings are in effect.

Note: You do not need to open the panel to put its settings into effect.

You can also use File menu choices to restore the factory defaults and close the panel.

57

Appendix C

C. Pixel Packings and Color Spaces

This appendix explains

• “HD I/O Pixel Packings” on page 57

• “Sampling Patterns” on page 74

HD I/O Pixel Packings

This section presents each packing used by the HD I/O hardware, giving a diagram and
its tokens in the pertinent libraries. It explains

• “Packings and Color Spaces” on page 57

• “Packing Diagram Conventions” on page 58

• “Packings and Library Tokens” on page 60

• “Packing Naming Conventions” on page 60

• “16-Bit Pixel Packings” on page 62

• “20-Bit Pixel Packings” on page 63

• “24-Bit Pixel Packings” on page 64

• “32-Bit Pixel Packings” on page 65

Packings and Color Spaces

A packing

• determines which of the four components are sampled, either RGBA or VYUA
(more correctly, CrYCbA)

• determines the sampling pattern (for example, 4:4:4:4 or 4:2:2:4), which specifies
where and how often each component of the image is sampled

58

Appendix C: Pixel Packings and Color Spaces

• allocates a certain number of bits to represent the component samples, and
positions those samples along with possible padding in memory; each sample is an
unsigned number, unless specified otherwise in the description of the packing

A color space

• determines the color in each component by specifying the color set

• specifies a canonical minimum and maximum value for each component, either full
range or compressed range (headroom range); see “VL_COLORSPACE” on page 22
in Chapter 2 for an explanation

In most Silicon Graphics libraries, a single token encodes both color space and packing.
For example, VL_PACKING_RGBA_8 is a 32-bit packing in the RGBA color space. For
the VL of SGI advanced video products, the two parameters are specified separately with
different controls: VL_PACKING and VL_COLORSPACE. The color space must be
defined with the VL_COLORSPACE control.

Packing Diagram Conventions

In all illustrations, as you move from left to right:

• each byte goes from the most significant bit to the least significant bit

• the bytes increase in memory address by 1

• component samples go from most significant bit to least significant bit

Each illustration shows the smallest repeating spatial pattern of component samples that
is a multiple of 8 bits wide. No additional padding or alignment is to be inferred. For
example, a 24-bit-per-pixel diagram, such as that for VL_PACKING_444_8 (Figure C-1),
indicates 3-byte quantities packed together in memory; the values are not padded out to
32-bit boundaries.

Figure C-1 VL_PACKING_444_8

HD I/O Pixel Packings

59

The packing defines a bit layout, but for convenience, as shown in Figure C-1, the
component slots are filled with the RGBA or VYUA color set as appropriate. (See
“VL_COLORSPACE” on page 22 in Chapter 2 for more information.) For chroma
components, Cr and Cb are more accurate terms than V and U; however, this chapter
uses the letters V and U in the illustrations of packings for typographical convenience.

Packings that use 4:2:2 sampling also show the location of each component sample: left
and right for 4:2:2. The diagrams assume row-major, left-to-right ordering of pixels in
memory.

An x (“don’t care”) in a bit means the following:

• Readers may get any garbage in this bit.

• Writers can leave this bit as garbage.

A 0 means the following:

• Readers may assume this bit is zero.

• Writers can leave this bit as garbage.

An s indicates a padding bit that is a sign extension bit. For the HD I/O option, this
convention applies only to the more significant bits in 12-bit and 13-bit packings with
rightward orientation; that is, VL_PACKING_4444_12_in_16_R and
VL_PACKING_4444_13_in_16_R.

A p indicates a padding bit in the least significant bits of a left-justified 10-, 12-, or 13-bit
word, such as VL_PACKING_R242_10_in_16_L or VL_PACKING_4444_13_in_16_L:

• Readers can assume that the bits are replicated from the component found in the
same word: With bits numbered starting with 0 for the least significant, there are n
contiguous p bits to the right of the component. The p bits contain a copy of bits
[9,9-n+1] of the component.

• Writers can leave the p bits as garbage.

The HD I/O device can natively transfer data of all the packings shown in this appendix
in real time.

60

Appendix C: Pixel Packings and Color Spaces

Packings and Library Tokens

Following each packing diagram are comments and library tokens for that packing,
listing, where applicable, the color set (RGBA or VYUA) and the library (VL, OpenGL,
and DM) for each library token.

• DM refers to the tokens in /usr/lib/dmedia/dm_image.h, which are used by several
libraries (libdmedia (dmParams, dmIC, dmColor), libmoviefile, libmovieplay, and
others). See “VL_COLORSPACE” on page 22 in Chapter 2 for more information.

• The VL includes the packing control value and a color-space control value; for
example, VL_PACKING_4_8 + VL_COLORSPACE_{CCIR,YUV}. For the HD I/O
option, you set packing and color space separately for memory nodes. These
definitions provide a more flexible way to specify memory layout of pixels and their
color spaces.

Note: Because of HDTV’s multiple color spaces, “old style” packings, such as
VL_PACKING_Y_8_P, are ambiguous and therefore not supported.longer for the
HD I/O board. You must specify the packing and color space explicitly.

All HD I/O packings are also supported by the DIVO and DIVO-DVC boards.

Packing Naming Conventions

In packing tokens, the following applies:

• _L and _R appended to the end of tokens with padding (0 bits) indicate that the 0
bits are at the left end or the right end of the pattern, respectively; for example,
VL_PACKING_4444_10_in_16_L and VL_PACKING_4444_10_in_16_R).

• X before the numerical part of the token at the end of a token indicates a component
order other than the standard (RGBA or ABGR, VYUA or AUYV); for example,
DM_IMAGE_PACKING_XBGR.

• R before the numerical part of the token indicates reverse order of the components;
for example, VL_PACKING_242_8 and VL_PACKING_R242_8 have the same
pattern of component bits, but their order is reversed in VL_PACKING_R242_8.

• Z at the end of the token name means that the packing is padded to the word
boundary; for example, the packing in VL_PACKING_2424_10_10_10_2Z is 30 bits
per pixel, but it is padded to 32 bits per pixel.

HD I/O Pixel Packings

61

Table C-1 lists the HD I/O packings by number of bits in the pattern of component
samples—the order in which they are described in the rest of this section.

The packings are explained in these categories:

• “16-Bit Pixel Packings” on page 62

• “20-Bit Pixel Packings” on page 63

Table C-1 HD I/O Packings

Packing Bits Color Space

VL_PACKING_ 242_8 16 VYUA

VL_PACKING_R242_8 16 VYUA

VL_PACKING_242_10 20 VYUA

VL_PACKING_R242_10 20 VYUA

VL_PACKING_444_8 24 RGBA/VYUA

VL_PACKING_R444_8 24 RGBA/VYUA

VL_PACKING_4444_8 32 RGBA/VYUA

VL_PACKING_R4444_8 32 RGBA/VYUA

VL_PACKING_R0444_8 32 RGBA/VYUA

VL_PACKING_0444_8 32 RGBA/VYUA

VL_PACKING_4444_10_10_10_2 32 RGBA/VYUA

VL_PACKING_R4444_10_10_10_2 32 RGBA/VYUA

VL_PACKING_2424_10_10_10_2Z 32 VYUA

VL_PACKING_R2424_10_10_10_2Z 32 VYUA

VL_PACKING_242_10_in_16_L 32 VYUA

VL_PACKING_242_10_in_16_R 32 VYUA

VL_PACKING_R242_10_in_16_L 32 VYUA

VL_PACKING_R242_10_in_16_R 32 VYUA

62

Appendix C: Pixel Packings and Color Spaces

• “24-Bit Pixel Packings” on page 64

• “32-Bit Pixel Packings” on page 65

16-Bit Pixel Packings

Figure C-2 shows VL_PACKING_242_8, a 16-bit VYUA packing.

Figure C-2 VL_PACKING_242_8

Note: Cr and Cb are more accurate terms than V and U; however, this appendix uses the
letters V and U in the illustrations of packings for typographical convenience.

This rarely used packing is VL_PACKING_242_8 + VL_COLORSPACE_{CCIR,YUV} in
the VL. It samples chroma and luma in a 4:2:2 pattern. See “Sampling Patterns” on
page 74.

Figure C-3 shows VL_PACKING_R242_8, a 16-bit 4:2:2 VYUA packing. The most
commonly used 4:2:2 packing, it is used by other Silicon Graphics video hardware.

Figure C-3 VL_PACKING_R242_8

HD I/O Pixel Packings

63

This packing is

• VL_PACKING_R242_8 + VL_COLORSPACE_{CCIR,YUV}

• GL_YCRCB_422_SGIX GL_UNSIGNED_BYTE in OpenGL

• DM_IMAGE_PACKING_CbYCrY in DM

20-Bit Pixel Packings

Figure C-4 shows VL_PACKING_242_10, a 20-bit VYUA packing.

Figure C-4 VL_PACKING_242_10

This packing is VL_PACKING_242_10 + VL_COLORSPACE {CCIR,YUV}. It uses 4:2:2
sampling.

Figure C-5 shows VL_PACKING_R242_10, a 20-bit VYUA packing.

Figure C-5 VL_PACKING_R242_10

This packing is VL_PACKING_R242_10 + VL_COLORSPACE {CCIR,YUV}. It uses 4:2:2
sampling.

64

Appendix C: Pixel Packings and Color Spaces

24-Bit Pixel Packings

Figure C-6 shows VL_PACKING_444_8, a 24-bit RGBA/VYUA packing.

Figure C-6 VL_PACKING_444_8

This packing is

• RGBA:

– GL_RGB GL_UNSIGNED_BYTE in OpenGL

– VL_PACKING_444_8 + VL_COLORSPACE_{RGB,RP175}

– PM_RGB GL_UNSIGNED_BYTE on RealityEngine (IRIS GL)

– DM_IMAGE_PACKING_RGB in DM

• VYUA: VL_PACKING_444_8 + VL_COLORSPACE_{YUV/YCRCB}

HD I/O Pixel Packings

65

Figure C-7 shows VL_PACKING_R444_8, a 24-bit RGBA/VYUA packing.

Figure C-7 VL_PACKING_R444_8

This packing is

• RGBA:

– VL_PACKING_R444_8 + VL_COLORSPACE_{RGB,RP175}

– DM_IMAGE_PACKING_BGR in DM

– PM_BGR PM_UNSIGNED_BYTE on RealityEngine (IRIS GL)

• VYUA:

– VL_PACKING_R444_8 + VL_COLORSPACE_{CCIR,YUV}

– DM_IMAGE_PACKING_CbYCr in DM

32-Bit Pixel Packings

This section explains

• “OpenGL-Like 32-Bit Pixel Packing” on page 66

• “IRIS GL-Like 32-Bit Pixel Packings” on page 67

• “32-Bit Pixel Packing for QuickTime” on page 69

• “4:4:4:4 10_10_10_2 32-Bit Pixel Packings” on page 70

• “4:2:2:4 10_10_10_2 32-Bit Pixel Packings” on page 71

• “4:2:2 10_in_16 32-Bit Pixel Packings” on page 72

66

Appendix C: Pixel Packings and Color Spaces

OpenGL-Like 32-Bit Pixel Packing

Figure C-8 shows VL_PACKING_4444_8, an OpenGL-like 32-bit packing. This packing,
supported by many Silicon Graphics video products, is the most commonly used
OpenGL packing.

Figure C-8 VL_PACKING_4444_8

This packing is

• RGBA:

– VL_PACKING_4444_8 + VL_COLORSPACE_{RGB,RP175}

– GL_RGBA GL_UNSIGNED_BYTE in OpenGL (the default)

– DM_IMAGE_PACKING_RGBA in DM

– PM_RGBA PM_UNSIGNED_BYTE on RealityEngine (IRIS GL)

• VYUA: VL_PACKING_4444_8 + VL_COLORSPACE_{CCIR,YUV}

HD I/O Pixel Packings

67

IRIS GL-Like 32-Bit Pixel Packings

Figure C-9 shows VL_PACKING_R4444_8, an IRIS GL-like 32-bit packing. This packing,
supported by many Silicon Graphics video products, is the default IRIS GL packing.

Figure C-9 VL_PACKING_R4444_8

This packing is

• RGBA:

– VL_PACKING_R4444_8 + VL_COLORSPACE_{RGB,RP175}

– GL_ABGR_EXT GL_UNSIGNED_BYTE in OpenGL

– DM_IMAGE_PACKING_ABGR in DM

– PM_ABGR PM_UNSIGNED_BYTE (default IRIS GL packing)

• VYUA: VL_PACKING_R4444_8 + VL_COLORSPACE_{CCIR,YUV}

68

Appendix C: Pixel Packings and Color Spaces

Figure C-10 shows VL_PACKING_R0444_8, an IRIS GL-like 32-bit packing. This packing
is supported by many Silicon Graphics video products.

Figure C-10 VL_PACKING_R0444_8

• RGBA:

– VL_PACKING_R0444_8 + VL_COLORSPACE_{RGB,RP175}

– DM_IMAGE_PACKING_XBGR

Use DM_IMAGE_PACKING_ABGR instead of this packing unless you
specifically want to inform a piece of software (such as dmColor) not to spend
processing time on the alpha channel.

• VYUA: VL_PACKING_R0444_8 + VL_COLORSPACE_{CCIR,YUV}

HD I/O Pixel Packings

69

32-Bit Pixel Packing for QuickTime

Figure C-11 shows VL_PACKING_0444_8, a 32-bit packing used for QuickTime files
(uncompressed format without alpha).

Figure C-11 VL_PACKING_0444_8

This packing is

• RGBA:

– VL_PACKING_0444_8 + VL_COLORSPACE_{RGB,RP175}

– DM_IMAGE_PACKING_XRGB in DM

• VYUA: VL_PACKING_0444_8 + VL_COLORSPACE_{CCIR,YUV}

70

Appendix C: Pixel Packings and Color Spaces

4:4:4:4 10_10_10_2 32-Bit Pixel Packings

Figure C-12 shows VL_PACKING_4444_10_10_10_2, a 32-bit 4:4:4:4 10_10_10_2 packing.

Figure C-12 VL_PACKING_4444_10_10_10_2

This packing is

• RGBA:

– VL_PACKING_4444_10_10_10_2 + VL_COLORSPACE_{RGB,RP175}

– GL_RGBA GL_UNSIGNED_INT_10_10_10_2_EXT in OpenGL

• VYUA: VL_PACKING_4444_10_10_10_2 + VL_COLORSPACE_{CCIR,YUV}

Figure C-13 shows VL_PACKING_R4444_10_10_10_2, an alternate 32-bit 4:4:4:4
10_10_10_2 packing.

Figure C-13 VL_PACKING_R4444_10_10_10_2

This packing is

• RGBA:

– VL_PACKING_R4444_10_10_10_2 + VL_COLORSPACE_{RGB,RP175}

– GL_ABGR GL_UNSIGNED_INT_10_10_10_2_EXT in OpenGL

• VYUA: VL_PACKING_R4444_10_10_10_2 + VL_COLORSPACE_{CCIR,YUV}

HD I/O Pixel Packings

71

4:2:2:4 10_10_10_2 32-Bit Pixel Packings

Figure C-14 shows VL_PACKING_2424_10_10_10_2Z, the 4:2:2:4 10_10_10_2 32-bit
VYUA packing.

Figure C-14 VL_PACKING_2424_10_10_10_2Z

This packing is VL_PACKING_2424_10_10_10_2Z + VL_COLORSPACE_{CCIR,YUV} in
the VL.

Figure C-15 shows VL_PACKING_R2424_10_10_10_2Z, an alternate 4:2:2:4 10_10_10_2
32-bit packing.

Figure C-15 VL_PACKING_R2424_10_10_10_2Z

This packing is VL_PACKING_R2424_10_10_10_2Z + VL_COLORSPACE_{CCIR,YUV}
in the VL.

72

Appendix C: Pixel Packings and Color Spaces

4:2:2 10_in_16 32-Bit Pixel Packings

The diagrams of packings that use 4:2:2 sampling show the location (left and right) of
each component sample. Only DIVO and DIVO-DVC use this packing.

Figure C-16 shows VL_PACKING_242_10_in_16_L, a 4:2:2 10_in_16 32-bit VYUA
packing. This packing is supported by several Silicon Graphics video products. For an
explanation of the p bit, see “Packing Diagram Conventions” on page 58.

Figure C-16 VL_PACKING_242_10_in_16_L

This packing is VL_PACKING_242_10_in_16_L + VL_COLORSPACE_{CCIR,YUV} in
the VL.

Figure C-17 shows VL_PACKING_242_10_in_16_R, a 4:2:2 10_in_16 32-bit VYUA
packing.

Figure C-17 VL_PACKING_242_10_in_16_R

This packing is VYUA VL_PACKING_242_10_in_16_R +
VL_COLORSPACE_{CCIR,YUV} in the VL.

HD I/O Pixel Packings

73

Figure C-18 shows VL_PACKING_R242_10_in_16_L, a 4:2:2 10_in_16 32-bit VYUA
packing. This packing is supported by several Silicon Graphics video products. For an
explanation of the p bit, see “Packing Diagram Conventions” on page 58.

Figure C-18 VL_PACKING_R242_10_in_16_L

This packing is VL_PACKING_R242_10_in_16_L + VL_COLORSPACE_{CCIR,YUV} in
the VL.

Figure C-19 shows VL_PACKING_R242_10_in_16_R, a 4:2:2 10_in_16 32-bit VYUA
packing.

Figure C-19 VL_PACKING_R242_10_in_16_R

This packing is VYUA VL_PACKING_R242_10_in_16_R +
VL_COLORSPACE_{CCIR,YUV} in the VL.

74

Appendix C: Pixel Packings and Color Spaces

Sampling Patterns

Sampling patterns are

• “4:4:4 and 4:4:4:4 Sampling” on page 74

• “4:2:2 and 4:2:2:4 Sampling” on page 75

4:4:4 and 4:4:4:4 Sampling

Some of the diagrams in the “HD I/O Pixel Packings” section indicate 4:4:4 or 4:4:4:4
sampling. This video industry terminology means that each of the three or four
components is sampled at every pixel. Figure C-20 diagrams this sampling pattern.

Figure C-20 4:4:4 Sampling

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr
Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb

Luma:

Chroma:

Sampling Patterns

75

4:2:2 and 4:2:2:4 Sampling

The packings shown in diagrams that indicate 4:2:2 sampling make sense only in the
VYUA color spaces. For every two pixels, there are two luma samples (two Ys) but only
one chroma sample (one sample of Cr and Cb, which together determine the chroma), as
shown in Figure C-21.

Figure C-21 4:2:2 Sampling

The chroma samples belong at the same instant in space as the left Y sample (the
chrominance samples and the left Y are co-sited). The diagrams for 4:2:2 packings in the
“HD I/O Pixel Packings” section of this appendix show the location of each Y, Cr, or Cb
component as left or right. The first pixel of each line is a left pixel.

Converting 4:4:4 video to 4:2:2 video is like converting 44.1 kHz audio into 22.05 kHz
audio: just dropping every other Cr,Cb sample yields extremely poor results. Video
devices that need to convert between 4:4:4 and 4:2:2 use carefully designed filters. The
characteristics of the required filter are specified in ITU-R BT.601 (Rec. 601).

4:2:2 sampled packings that also include alpha are called 4:2:2:4. This method has one
alpha value per pixel, like the Y value.

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr Cr Cr Cr
Cb Cb Cb Cb Cb Cb Cb

Luma:

Chroma:

77

Appendix D

D. Programming Methods for Real-Time Digital Media
Recording and Playback

This appendix explains the following real-time disk I/O concepts:

• “Digital Media Buffers” on page 78

• “Direct I/O” on page 78

• “Multiprocessing” on page 80

• “Asynchronous I/O” on page 81

The methods described in this appendix used digital media buffers (DMbuffers), a
real-time data transport facility. See the Digital Media Programming Guide (document
number 007-1799-060 or later, hereafter referred to as the DMPG) for more details. The
emphasis here is not on how data is acquired from or transported to the video device, but
rather on how data is moved to disk in real time.

The DMPG covers basic digital media programming concepts. The directory
/usr/share/src/dmedia/video/XTHD contains two simple programming examples:

• sdhd_memtovid.c illustrates how video data is copied out of the DMbuffers for the
simpler non-real-time case

• sdhd_vidtogfx.c illustrates how video data is transferred into memory and from there
into graphics

At an abstract level, high-bandwidth throughput is simple; the work is in the details, as
explained in this appendix.

Note: For source code examples for developer I/O, contact the SGI Developer program,
for example, through the Web site http://www.sgi.com.

78

Appendix D: Programming Methods for Real-Time Digital Media Recording and Playback

 Digital Media Buffers

In IRIX 6.5.4 and later, you can tune how memory is allocated for digital media buffer
pools. This capability can offer a performance advantage for some HD I/O applications.

For example, the parameter DM_POOL_NODE_MASK allows you to request memory
allocation on particular physical node cards. Each bit in the node mask enables memory
allocation on that node. For example, to allocate buffers distributed across nodes 0 and
1, set the node mask to 3:

long long mask = 0x3;

if(dmParamsSetLongLong(plist,DM_POOL_NODE_MASK,mask)) {
 fprintf(stderr, “Error setting dmparam for pool node mask\n”);
 exit(-1);
}

if (dmBufferCreatePool(plist, &pool) != DM_SUCCESS) {
 fprintf(stderr,”Error creating dmbuffer pool\n”);
 exit(-1);
}

Note that the node mask is a long long parameter. To see the effect of setting this
parameter, use osview -a and examine the free memory on each node. For more
information on dmBuffers, see the dmbuffercreatepool(3dm) man page.

Direct I/O

The most efficient way to move data on and off a disk device is to use the XFS filesystem
with direct I/O mode and large data transfer sizes. If large transfer sizes cannot be
achieved, you can combine memory pages from noncontiguous locations using writev(2)
or readv(2). Finally, you can use asynchronous I/O to queue multiple I/O requests to the
kernel without waiting for blocked calls to return. Other real-time software features and
products, such as REACT, can be used to assure low-latency interrupts and high-priority
scheduling, but are not absolutely necessary for digital media applications.

Normally, when a disk file is opened with no status flags specified, a call to write(2) for
that file returns as soon as the data has been copied to a buffer managed by the device
driver (see open(2)). The actual disk write may not take place until considerable time has
passed. A common pool of disk buffers is used for all disk files.

Direct I/O

79

Disk buffering is integrated with the virtual memory paging mechanism. A daemon
executes periodically and initiates output of buffered blocks according to the age of the
data and the needs of the system. You can force the writing of all pending output for a
file by calling fsync(2) or by opening the file and specifying the O_SYNC flag. However,
the process blocks until the data has been written to disk, and all output data must still
be copied from the buffer in the user address space to a buffer in the kernel address space.
See Chapter 8, “Optimizing Disk I/O for a Real-Time Program,” in the REACT Real Time
Programmer’s Guide for details.

If you use the O_DIRECT flag, writes to the file take place directly from your program’s
buffer, and the data is not copied to a buffer in the kernel first. Because the filesystem
cache is bypassed, your application must manage buffer alignment and block size
specification. To use O_DIRECT, you must transfer data in quantities that are multiples
of the filesystem block size. The following code shows how to query the filesystem block
size and system DMA transfer size limit.

struct dioattr da;
struct stat fileStat;
char *ioFileName = “videodata”;
int ioBlockSize, ioMaxXferSize;

ioFileFD = open(ioFileName,O_DIRECT | O_RDWR | O_CREAT | O_TRUNC,0644);
if (ioFileFD < 0)
 return(DM_FAILURE);
if (fcntl(ioFileFD, F_DIOINFO, &da) < 0)
 return(DM_FAILURE);
ioBlockSize = da.d_miniosz;

ioMaxXferSize = da.d_maxiosz;

The two important constraints of direct I/O with XFS are memory address alignment
and buffer length. Direct I/O requires all memory addresses to be page-aligned. XFS
requires buffers to be allocated as a multiple of the filesystem block size, ioBlockSize.
DMbuffers are guaranteed to be page-aligned, but to ensure that the buffers are properly
padded, you must set the buffer size, bytesPerXfer, to the size of the image data you will
transfer rounded up to the nearest multiple of ioBlockSize.

VLServer vlServer;
VLPath vlPath;
DMparams * paramsList;
int dmBufferPoolSize = 30; /* 1 second of video */
int vlBytesPerImage = vlGetTransferSize(vlServer, vlPath);
int ioBlocksPerImage = (vlBytesPerImage+ioBlockSize - 1) / ioBlockSize;
int bytesPerXfer = ioBlocksPerImage * ioBlockSize;

80

Appendix D: Programming Methods for Real-Time Digital Media Recording and Playback

if (dmBufferSetPoolDefaults(paramsList,dmBufferPoolSize,bytesPerXfer,
 DM_TRUE, DM_TRUE) == DM_FAILURE) {
 fprintf(stderr, “error setting pool defaults\n”);
 return(DM_FAILURE);
}

All Silicon Graphics systems have a configurable maximum DMA transfer size (see
systune(1M)). This value should be compared with the user’s I/O request size.

if (bytesPerXfer > ioMaxXferSize) {
 fprintf(“DMA request size is too small. Reconfigure with
 systune()\n”);
 return(DM_FAILURE);

}

Multiprocessing

Some aspects of digital media programming lend themselves to a multiprocessing
programming model. On a multiprocessor system, the various tasks of moving multiple
streams of video and audio data on and off disk, serial I/O control of external video
equipment and input devices, processing of video data, or the transport of video data in
and out of the graphics framebuffer can be assigned to different processors. New
processes must be created with all virtual space attributes (shared memory, mapped files,
data space) shared. The following fragment illustrates how to create a process to perform
video recording.

if ((video_recorder_pid = sproc(video_recorder, PR_SADDR|PR_SFDS))<0){
 perror(“video_recorder”);
 exit(DM_FAILURE);
}

If you use multiprocessing, note the following caveats:

• When VL calls are made, VL objects such as VLServer, VLPath, VLNode, and so on,
are passed through the kernel to the video driver. However, you cannot create any
VL objects without first creating a VLServer, from which everything else is
instanced.

• In a process share group, only one VL call whose arguments derive from a VLServer
can execute at a time. This requirement applies even to VL calls that do not
explicitly take a VLServer as an argument (for example, vlBufferAdvise(3dm)).

Asynchronous I/O

81

• You can use objects derived from a given VLServer in any number of threads as
long as you use a locking scheme, such as usnewsema(3P) or
pthread_mutex_init(3P), to make the use in each thread mutually exclusive of a use
in any of the other threads.

The VL error state, returned by vlGetErrno(3dm), is global to a share group, not per
VLServer. If a VL call using one VLServer in one thread executes simultaneously with a
VL call using another VLServer in another thread, both calls try to set the error state
returned by vlGetErrno(). This call should be global only to the thread, not to the entire
process share group.

Asynchronous I/O

Asynchronous I/O allows an application to process multiple read or write requests
simultaneously. On Silicon Graphics platforms, asynchronous I/O is available through
the aio facility. This facility, based on sproc(2)’ed processes, provides all of the benefits of
multiprocessing for free. Because multiple I/O requests might be outstanding, when you
use asynchronous I/O, the round-trip delay between making a request, having it
serviced, and issuing another request is removed. Any process-scheduling delay
between these steps is also eliminated.

Because asynchronous I/O operations complete out of sequence, the application must
keep track of the order in which data appears in the DMbuffers. DMbuffers are contained
in a DMbufferPool; the pool itself is unordered and buffers can be obtained and returned
to the pool in any order. Ordering is achieved by a first-in-first-out queue and maintained
only while the buffers reside in the queue. The application is free to impose any
processing order once buffers are dequeued.

83

Appendix E

E. Installing HD I/O Software on a New Disk

Use inst to install the software. See the IRIX Admin: Software Installation and Licensing
manual (007-1364-xxx) if you need more detailed information on booting the miniroot
from a remote CD-ROM.

Follow these steps:

1. Make sure a CD-ROM drive is attached to the system (or is available on the
network).

2. If necessary, upgrade the system software to IRIX 6.5.4 or later, from the CD set
included with the HD I/O software.

3. Install the HD I/O software.

4. Reboot the system.

5. Enter hinv at the IRIX level to determine whether the system sees all boards
installed. A typical output might be as follows:

hinv
2 180 MHZ IP27 Processors
CPU: MIPS R10000 Processor Chip Revision: 2.6
FPU: MIPS R10010 Floating Point Chip Revision: 0.0
Main memory size: 256 Mbytes
Instruction cache size: 32 Kbytes
Data cache size: 32 Kbytes
Secondary unified instruction/data cache size: 1 Mbyte
Integral SCSI controller 0: Version QL1040B, single ended
 Disk drive: unit 1 on SCSI controller 0
Integral SCSI controller 1: Version QL1040B, single ended
IOC3 serial port: tty1
IOC3 serial port: tty2
Integral Fast Ethernet: ef0, version 1, module 1, slot io1, pci 2
Origin BASEIO board, module 1 slot 1: Revision 3
XT-HDIO Video: controller 2, unit 0, version 0x0
IOC3 external interrupts: 1

84

Appendix E: Installing HD I/O Software on a New Disk

You can use hinv -m to get the board serial number, revision level, and other statistics. A
typical output might be as follows.

hinv -m
 MODULEID Board: barcode K0002031 part rev
 8P12-MPLN Board: barcode CEM652 part 013-1547-003 rev A
 IP27 Board: barcode DAW914 part 030-1266-001 rev C
 BASEIO Board: barcode DCH915 part 030-1124-002 rev A
 HDTV1 Board: barcode DPX101 part 030-1282-001 rev A
 HDTV_GENLOCK Board: barcode DPD453 part 030-1382-003 rev A
2 180 MHZ IP27 Processors
CPU: MIPS R10000 Processor Chip Revision: 2.6
FPU: MIPS R10010 Floating Point Chip Revision: 0.0
Main memory size: 256 Mbytes
Instruction cache size: 32 Kbytes
Data cache size: 32 Kbytes
Secondary unified instruction/data cache size: 1 Mbyte
Integral SCSI controller 0: Version QL1040B, single ended
 Disk drive: unit 1 on SCSI controller 0
Integral SCSI controller 1: Version QL1040B, single ended
IOC3 serial port: tty1
IOC3 serial port: tty2
Integral Fast Ethernet: ef0, version 1, module 1, slot io1, pci 2
Origin BASEIO board, module 1 slot 1: Revision 3
XT-HDIO Video: controller 2, unit 0, version 0x0
IOC3 external interrupts: 1

85

Index

Numbers

0 bit in packing, 59
1280x720p@59.94Hz, 2, 19, 20
1920x1080i@59.94Hz, 2, 19, 20, 55
4:2:2

format, 6
sampling, 75
video, converting, 75

4:2:2:4
connector usage, 42
control for setting, 18
format, and Links A and B, 6, 50
sampling, 75

4:4:4
sampling, 74
video, converting, 75

4:4:4:4
connector usage, 43
control for setting, 18
format, and Links A and B, 6, 50
sampling, 74

8-bit or 10-bit precision, control, 17, 18

A

alpha, 2, 6
aspect ratio, 1
asynchronous I/O, 81

B

blanking and VL_COLORSPACE, 25
buffer, 9

and examples, 77
and I/O, 78-81
and UST/MSC, 35-38
pool, 78

C

cable, 5-6, 50, 55
calibration, 2
capture

control, 16, 17
type, 27-28

color space, 22-25
and blanking, 25
and color model, 22
and lookup tables, 25
compressed-range, 22-25
control, 16, 17, 22-25
conversion, 23

example, 26
full-range, 22-25
values, 24

compressed-range color space, 22-25
control, 14-31

determining for device, 15
device-dependent, 10
device-global, 10
device-independent. See control, device-global.

86

Index

HD I/O-specific, 10
order, 11
prefix, 10
setting, 15
values and uses, 17-19

conventions, xv

D

device, 9
determining, 15

Digital Media Programming Guide, xiii
digital video drain, setting up, 52-53
digital video source

setting up, 50-51
timing in panel, 51

direct I/O, 78-80
DMbuffer, 9

See also buffer.
drain node. See node, drain.
dual-link mode, 6, 50

E

events, 31-32

F

field dominance, 29-30
and outputtting frames, 30
control, 16, 17
in vcp, 53

format control, 15, 16, 18
full-range color space, 22-25

G

GEN IN, 48
genlock, 2, 48

LEDs, 55
GEN OUT, 48
GPI, 44-48

pinouts, 44-45
receiver, 47-48
transmitter, 46-47

interfacing, 47
graphics to video, 31

H

HD I/O
board

connectors, 5, 49
diagram, 4
illustration, 3
ports, 5, 49

cable, 5-6
controls for, 9, 14-31
panel, 5, 49
path, 11
setting up for hardware, 49-56
software, installing, 83-84

headroom-range color space. See compressed-range
color space.

horizontal phase control, 16, 18

I

installing software, 83-84
interlaced, 20
interleaving, 27-28

87

Index

I/O
asynchronous, 81
direct, 78-80

IRIX version required, xiii
ITU-R BT.601, 22, 24, 75
ITU-R BT.709-2, 6, 22, 24

K

kind, 10

L

Link A, 6, 50
and sync source, 55
transfer mode usage, 42, 43

Link B, 6, 50
and sync source, 55
transfer mode usage, 42, 43

linking, 7
lookup tables and VL_COLORSPACE, 25
loopback control, 17, 19
loopthrough for genlock input, 48

M

manual
conventions, xv
other requied, xiv

media stream count. See MSC.
MSC, 32, 35-38
multiprocessing, 80-81

N

node, 8, 9, 10-11
drain, 8, 10
source, 8, 10

O

offset control, 16, 18, 28
OpenGL to read pixels into memory, 31
origin, different in OpenGL and video, 31

P

packing, 21, 57-75
0 bit, 59
20-bit, 63
24-bit, 64-65
32-bit, 65-73
and sampling pattern, 57, 74-75
control, 16, 18
x bit, 59

panel (vcp), 51-56
callup, 51
Digital Video Drain, 52-53
Digital Video Source, 50-51
external sync source, 55
restoring settings, 56
saving settings, 56

path, 8, 9, 11
phase

horizontal, control, 16, 18
vertical, control, 16, 18

precision control, 17, 18
progressive, 20

88

Index

R

Recommendation 601, 22, 24
Recommendation 709, 6, 22
reporting, 32
RGB, 24
RGB_F, 23
RGB_H, 23
RGBA, 24

S

sampling pattern, 74-75
and packing, 57

single-link mode, 50
size control, 16, 18
SMPTE 240M, 6, 22, 24

field dominance, 30
SMPTE 260M, 1
SMPTE 274M, 1, 6, 22

field dominance, 29-30
genlock, 2

SMPTE 293M, 1
SMPTE 295M, 1
SMPTE 296M, 6
software, installing, 83-84
source node. See node, source.
specifications, 39-42
sync

connectors, 48
control, 16, 18
setting up, 54-55
source

and timing, 20
control, 16, 18
setting up, 55

synchronizing data streams, 35-38

T

timing
and sync source, 20
control, 16, 18
free-run, 2
setting, 19-20

in vcp, 51
type, 10

U

unadjusted system time. See UST.
underflow correction, 30

control, 17, 19, 30
UST, 32, 35-38

V

vcp, 49-56
callup, 51
See also panel.

vertical
phase control, 16, 18
rates supported, 1

video
formats supported, 1-2
pipes and GPI connector, 45

Video Library. See VL.
VL

central concepts, 8
data transfer functions summarized, 12
header files, 7
object classes, 9-10
path, 8
requirements for running, 7

VL_ANY, 11

89

Index

VL_CAP_TYPE, 16, 17, 27-28
VL_COLORSPACE, 16, 17, 22-26

values, 24
VL_FIELD_DOMINANCE, 16, 17, 29-30
VL_FORMAT, 16, 18, 20-21

supported combinations with VL_COLORSPACE,
23

VL_H_PHASE, 16, 18
VL_MEM, 10
VL_OFFSET, 16, 18, 28
VL_PACKING, 16, 18, 21
VL_PACKING_0444_8, 69
VL_PACKING_242_10, 63
VL_PACKING_242_8, 62
VL_PACKING_2424_10_10_10_2Z, 71
VL_PACKING_444_8, 58, 64
VL_PACKING_4444_10_10_10_2, 70
VL_PACKING_4444_8, 58, 66
VL_PACKING_R0444_8, 68
VL_PACKING_R242_10, 63
VL_PACKING_R242_10_in_16_L, 72, 73
VL_PACKING_R242_10_in_16_R, 72, 73
VL_PACKING_R242_8, 62
VL_PACKING_R2424_10_10_10_2Z, 71
VL_PACKING_R444_8, 65
VL_PACKING_R4444_8, 67
VL_SIZE, 16, 18, 28
VL_SYNC, 16, 18
VL_SYNC_SOURCE, 16, 18
VL_TIMING, 16, 18, 19
VL_V_PHASE, 16, 18
VL_VIDEO, 10
VL_XTHD_EE_MODE, 17, 18
VL_XTHD_INTERFACE_PRECISION, 17, 18
VL_XTHD_LOOPBACK, 17, 19
VL_XTHD_OUTPUT_REPEAT, 17, 19, 30

VL_ZOOM, 17, 19, 28, 31
vlGetFrontierMSC(), 38
vlGetNode(), 10
vlGetUSTMSCPair(), 38
vlGetUSTPerMSC(), 38
vlinfo, 15
vlOpenVideo(), 9, 10
vlSetControl(), 11, 15
VYUA, 24

X

x bit in packing, 59

Y

YCrCb, 23, 24
YUV, 23, 24

Z

zoom, 28
factor control, 17, 19

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3968-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

