
ProDevTM WorkShop: Tester User’s
Guide

007–3986–004

COPYRIGHT
© 1999 – 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere
herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in
any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, and IRIX are registered trademarks and Developer Magic, GL, ProDev, IRIS Graphics Library, and
IRIS ViewKit are trademarks of Silicon Graphics, Inc.

MIPSpro is a trademark of MIPS Technologies, Inc., and is used under license by Silicon Graphics, Inc. UNIX and the X device are
registered trademarks of The Open Group.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

001 April 1999
Initial release as a separate product. Supports ProDev WorkShop
2.8 release.

002 June 2001
Supports ProDev WorkShop 2.9 release.

003 November 2001
Supports ProDev WorkShop 2.9.1 release.

004 September 2002
Released with the ProDev WorkShop 2.9.2 release.

007–3986–004 iii

Contents

About This Guide . xix

Related Publications . xix

Obtaining Publications . xix

Conventions . xx

Reader Comments . xxi

1. Using Tester . 1

Tester Overview . 1

Test Coverage Data . 2

Types of Experiments . 2

Experiment Results . 3

Multiple Tests . 3

Test Components . 4

Usage Model . 5

Single Test Analysis Process 5

Automated Testing . 11

Additional Coverage Testing 13

2. Tester Command Line Interface Tutorial 15

Setting Up the Tutorials . 15

Tutorial #1: Analyzing a Single Test 16

Instrumenting an Executable 16

Making a Test . 17

Running a Test . 17

007–3986–004 v

Contents

Analyzing Test Coverage Data 18

Tutorial #2: Analyzing a Test Set 21

Tutorial #3: Optimizing a Test Set 27

3. Tester Command Line Reference 33

Common cvcov Options . 33

cvcov Command Syntax and Description 34

General Test Commands . 35

Coverage Analysis Commands 37

Test Set Commands . 39

Test Group Commands . 40

4. Tester Graphical User Interface Tutorial 43

Setting Up the Tutorial . 43

Tutorial #1: Analyzing a Single Test 44

Invoking the Graphical User Interface 44

Instrumenting an Executable 47

Making a Test . 48

Running a Test . 50

Analyzing the Results . 51

Tutorial #2: Analyzing a Test Set 57

Tutorial #3: Exploring the Graphical User Interface 61

5. Tester Graphical User Interface Reference 71

Accessing the Tester Graphical Interface 71

Main Window and Menus . 72

Test Name Input Field . 74

Coverage Display Area . 74

vi 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Search Field . 74

Control Area Buttons . 74

Status Area and Query-Specific Fields 75

Main Window Menus . 75

Test Menu Operations . 76

Views Menu Operations . 84

Queries Menu Operations . 87

Admin Menu Operations . 101

Appendix A. cvcov Command Line Examples 105

General Test Command Examples 105

Coverage Analysis Commands 107

Test Set Command Examples . 112

Glossary . 115

Index . 133

007–3986–004 vii

Figures

Figure 1-1 Instrumentation Process 8

Figure 1-2 Make Test Process 9

Figure 1-3 Run Test Process 9

Figure 1-4 The Queries Menu from the Main Tester Window 11

Figure 1-5 Typical Coverage Testing Hierarchy 14

Figure 4-1 Main Tester Window 46

Figure 4-2 Running Instrumentation 47

Figure 4-3 Selecting Make Test 49

Figure 4-4 Run Test Dialog Box 51

Figure 4-5 List Summary Query Window 53

Figure 4-6 List Functions Query with Options 54

Figure 4-7 List Functions Display Area with Blocks and Branches 55

Figure 4-8 Source View with Count Annotations 56

Figure 4-9 Disassembly View with Count Annotations 57

Figure 4-10 Make Test Dialog Box with Features Used in Tutorial 58

Figure 4-11 Make Test Dialog Box for Test Set Type 60

Figure 4-12 Call Graph for List Functions Query 62

Figure 4-13 Call Graph Display Controls 63

Figure 4-14 Call Graph for List Arcs Query 65

Figure 4-15 Call Graph for List Arcs Query — Multiple Arcs 66

Figure 4-16 Test Analyzer Queries: List Arcs 67

Figure 4-17 Test Analyzer Queries: List Blocks 68

Figure 4-18 Test Analyzer Queries: List Branches 69

007–3986–004 ix

Contents

Figure 5-1 Accessing Tester from the WorkShop Debugger 72

Figure 5-2 Main Test Analyzer Window 73

Figure 5-3 Test Menu Commands 77

Figure 5-4 Run Instrumentation Dialog Box 78

Figure 5-5 Run Test Dialog Box 79

Figure 5-6 Make Test Dialog Box 80

Figure 5-7 Make Test Dialog Box with Test Group Selected 81

Figure 5-8 Delete Test Dialog Box 82

Figure 5-9 List Tests Dialog Box 83

Figure 5-10 Modify Test Dialog Box after Loading Tests 84

Figure 5-11 List Functions Query in Text View Format 85

Figure 5-12 List Functions Query in Call Tree View Format 86

Figure 5-13 List Summary Query in Bar Graph View Format 87

Figure 5-14 Query-Specific Default Fields for a Test or Test Set 88

Figure 5-15 Query-Specific Default Fields for a DSO Test Group 88

Figure 5-16 Queries Menu . 89

Figure 5-17 List Summary Query 90

Figure 5-18 List Functions Query with Options 92

Figure 5-19 List Functions Example in Call Tree View Format 93

Figure 5-20 List Blocks Example 94

Figure 5-21 List Branches Example 95

Figure 5-22 List Arcs Example 96

Figure 5-23 List Instrumentation Example 97

Figure 5-24 “List Line Coverage” Example 98

Figure 5-25 Describe Test Example 99

Figure 5-26 Compare Test Example — Coverage Differences 100

x 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 5-27 Compare Test Example — Function Differences 101

Figure 5-28 Admin Menu . 102

Figure 5-29 “Set Defaults” Dialog Box 102

Figure 5-30 Launch Tool Submenu 103

007–3986–004 xi

Tables

Table 1-1 Common Queries for a Single Test 10

007–3986–004 xiii

Examples

Example 1-1 Making Tests and Running Them 12

Example 1-2 Applying a Make-and-Run Script 13

Example 2-1 lssum Example 18

Example 2-2 lssource Example 19

Example 2-3 tut_make_testset Script: Making Individual Tests 21

Example 2-4 tut_make_testset Script: Making and Adding to the Test Set 22

Example 2-5 Contents of the New Test Set 23

Example 2-6 Running the New Test Set 24

Example 2-7 Examining the Results of the New Test Set 25

Example 2-8 Source with Counts 25

Example 2-9 Test Contributions by Function 28

Example 2-10 Arc Coverage Test Contribution Portion of Report 29

Example 2-11 Test Set Summary after Removing Tests [8] and [7] 31

Example A-1 cattest Example 105

Example A-2 cattest Example without -r 105

Example A-3 cattest Example with -r 106

Example A-4 lsinstr Example 107

Example A-5 Test Description File Examples 107

Example A-6 lssum Example 108

Example A-7 lsfun Example 108

Example A-8 lsblock Example 108

Example A-9 lsbranch Example 109

Example A-10 lsarc Example 110

007–3986–004 xv

Contents

Example A-11 lscall Example 110

Example A-12 lsline Example 110

Example A-13 lssource Example 111

Example A-14 diff between Two Tests 111

Example A-15 diff between Different Instrumentations of the Same Test 112

Example A-16 Optimizing Test Sets 112

xvi 007–3986–004

Procedures

Procedure 4-1 Invoking the GUI 44

Procedure 4-2 Instrumenting an Executable 47

Procedure 4-3 Making a Test 48

Procedure 4-4 Running a Test 50

Procedure 4-5 Analyzing Test Coverage Data 51

007–3986–004 xvii

About This Guide

This publication documents the ProDev WorkShop Tester release 2.9.2 running on
IRIX systems. WorkShop Tester is a UNIX-based software quality assurance toolset
for dynamic test coverage over any set of tests. This product is intended for software
and test engineers and their managers involved in the development, test, and
maintenance of long-lived software projects.

Related Publications
The following documents contain additional information that may be helpful:

• ProDev WorkShop: Debugger User’s Guide

• ProDev WorkShop: Debugger Reference Manual

• ProDev WorkShop: Overview

• C Language Reference Manual

• MIPSpro C++ Programmer’s Guide

• MIPSpro C and C++ Pragmas

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro Fortran 77 Language Reference Manual

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

• MIPSpro Fortran 90 Commands and Directives Reference Manual

Obtaining Publications
You can obtain SGI documentation in the following ways:

007–3986–004 xix

About This Guide

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

xx 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

GUI This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog boxes,
menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

007–3986–004 xxi

Chapter 1

Using Tester

This chapter describes the Tester usage model. It shows the general approach of
applying Tester for coverage analysis. It contains these sections:

• "Tester Overview", page 1, describes Tester and its capabilities.

• "Usage Model", page 5, describes the steps in testing, and using scripts to
automate testing.

See the Glossary, page 115, for a list of commonly used terms and their meanings.

Tester Overview
WorkShop Tester is a quality assurance toolset for dynamic test coverage over sets of
tests. The term coverage means that the test has executed a particular unit of source
code.

In this product, units are functions, individual source lines, arcs, blocks, or branches.
If the unit is a branch, covered means it has been executed under both true and false
conditions. This product is intended for software and test engineers and their
managers involved in the development, test, and maintenance of long-lived software
projects.

WorkShop Tester provides these general benefits:

• Provides visualization of coverage data, which yields immediate insight into
quality issues at both engineering and management levels

• Provides useful measures of test coverage over a set of tests/experiments

• Lets you view the coverage results of a dynamically shared object (DSO) by
executables that use it

• Provides comparison of coverage over different program versions

• Provides tracing capabilities for function arcs that go beyond traditional test
coverage tools

• Supports programs written in C, C++, and Fortran

• Is integrated into the CASEVision family of products

007–3986–004 1

1: Using Tester

• Allows users to build and maintain higher quality software products

There are two versions of Tester:

• cvcov is the command line version of the test coverage program.

• cvxcov is the GUI version of the test coverage program.

Most of the functionality is available from either program, although the graphical
representations of the data are available only from cvxcov, the GUI tool.

Test Coverage Data

Tester provides the following basic coverage:

• Basic block: how many times was this basic block executed?

• Function: how many times was this function executed?

• Branch: did this condition take on both TRUE and FALSE values?

You can also request the following coverage information:

• Arc: was function F called by function A and function B? Which arcs for function
F were not taken?

• Source line coverage: how many times has this source line been executed and
what percentage of source lines is covered?

• When the target program execs, forks, or sprocs another program, only the
main target is tested, unless you specify which executables are to be tested, the
parent and/or child programs.

Note: When you compile with the -g flag, you may create assembly blocks and
branches that can never be executed, thus preventing “full” coverage from being
achieved. These are usually negligible. However, if you compile with the 01 flag (the
default), you can increase the number of executable blocks and branches.

Types of Experiments

You can conduct Tester coverage experiments for:

• Separate tests

2 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

• A set of tests operating on the same executable

• A list of executables related by fork, exec, or sproc commands

• A test group of executables sharing a common dynamically shared object (DSO)

Experiment Results

Tester presents the experiment results in these reports:

• Summary of test coverage, including user parameterized dynamic coverage metric

• List of functions, which can be sorted by count, file, or function name and filtered
by percentage of block, branch, or function covered

• Comparison of test coverage between different versions of the same program

• Source or assembly code listing annotated with coverage data

• Breakdown of coverage according to contribution by tests within a test set or test
group

The graphical user interface lets you view test results in different contexts to make
them more meaningful. It provides:

• Annotated function call graph highlighting coverage by counts and percentage
(ASCII function call graph supported as well)

• Annotated Source View showing coverage at the source language level

• Annotated Disassembly View showing coverage at the assembly language level

• Bar chart summary showing coverage by functions, lines, blocks, branches, and
arcs

Multiple Tests

Tester supports multiple tests. You can:

• Define and run a test set to cover the same program.

• Define and run a test group to cover programs sharing a common DSO. This
approach is useful if you want to test different client programs that bind with the
same libraries.

007–3986–004 3

1: Using Tester

• Automate test execution via command line interface as well as GUI mode.

Test Components

Each test is a named object containing the following:

• Instrumentation file: This describes the data to be collected.

• Executable: This is the program being instrumented for coverage analysis.

• Executable list: If the program you are testing can fork, exec, or sproc other
executables and you want these other executables included in the test, then you
can specify a list of executables for this purpose.

• Command: This defines the program.

• Instrumentation directory: The instrumentation directory contains directories
representing different versions of the instrumented program and related data.
Instrumentation directories are named ver##<n> where n is the version number.
Several tests can share the same instrumentation directory. This is true for tests
with the same instrumentation file and program version. The instrumentation
directory contains the following files, which are automatically generated:

<program|DSO>.Log instrumentation log file (cvinstr)
<program|DSO>.pixie instrumented executable

As part of instrumentation, you can filter the functions to be included or excluded
in your test, through the directives INCLUDE, EXCLUDE, and CONSTRAIN.

• Experiment results: Test run coverage results are deposited in a results directory.
Results directories are named exp##<n> where n corresponds to the
instrumentation directory used in the experiment. There is one results directory
for each version of the program in the instrumentation directory for this test. Note
that results are not deposited in the instrumentation directory because the
instrumentation directory may be shared by other tests. The results directory is
different when you run the test with or without the -keep option.

When you run your test without the -keep option the results directory contains
the following files:

– COV_DESC: description file of experiment.

– COUNTS_<exe>: dounts file for each executable; <exe> is an executable file
name.

4 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

– USER_SELECTIONS: instrumentation criteria.

When you run your test with the -keep option the results directory contains the
following files:

– COV_DESC: description file of experiment.

– COUNTS_ <exe>: counts file for each executable; exe is an executable file name.

– USER_SELECTIONS: instrumentation criteria.

– COUNTS_<n>: basic block and branch counts database.

Usage Model
This section describes the steps in testing:

• "Single Test Analysis Process", page 5, shows the general steps in conducting a test.

• "Automated Testing", page 11, discusses using scripts to automate your testing.

• "Additional Coverage Testing", page 13, describes strategies using multiple tests.

Single Test Analysis Process

In performing coverage analysis for a single test, you typically go through the
following steps:

1. Plan your test. Test tools are only as good as the quality and completeness of the
tests themselves.

2. Create (or reuse) an instrumentation file. The instrumentation file defines the
coverage data you wish to collect in this test. You can define:

• COUNTS: three types of count items perform tracking.

– bbcounts tracks execution of basic blocks.

– fpcounts counts calls to functions through function pointers.

– branchcounts tracks branches at the assembly language level.

• INCLUDE/EXCLUDE: lets you define a subset of functions to be covered.
INCLUDE adds the named functions to the current set of functions.

007–3986–004 5

1: Using Tester

EXCLUDE removes the named functions from the set of functions. Simple
pattern matching is supported for pathnames and function names. The basic
component for inclusion/exclusion is of the form:

<shared library | program name>:<functionlist>

INCLUDE, EXCLUDE, and CONSTRAIN (see below) play a major role in
working with DSOs. Tester instruments all DSOs in an executable whether you
are testing them or not, so it is necessary to restrict your coverage accordingly.
By default, the directory /usr/tmp/cvinstrlib/CacheExclude is used as
the excluded DSOs cache and /usr/tmp/cvinstrlib/CacheInclude as
the included DSOs cache. If you wish to override these defaults, set the
CVINSTRLIB environment variable to the desired cache directory.

• CONSTRAIN: equivalent to EXCLUDE *, INCLUDE <subset>. Thus, the only
functions in the test will be those named in the CONSTRAIN subset. You can
constrain the set of functions in the program to either a list of functions or a
file containing the functions to be constrained. The function list file format is:

function_1
function_2

function_3

...

You can use the -file option to include an ASCII file containing all the
functions as follows:

CONSTRAIN -file filename

The default instrumentation file
/usr/WorkShop/usr/lib/WorkShop/Tester/default_instr_file
contains:

#
Coverage instrumentation normally consists of tracing

basic block execution, function pointer calls, and branches

#

COUNTS -bbcounts -fpcounts -branchcounts

#

Exclude instrumentation of any DSOs found under the system

6 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

library directories (including both system libraries and the
runtime linker ‘rld’)

#

EXCLUDE /lib/* : *

EXCLUDE /lib32/* : *
EXCLUDE /lib64/* : *

EXCLUDE /usr/lib/* : *

EXCLUDE /usr/lib32/* : *

EXCLUDE /usr/lib64/* : *

#

Exclude instrumentation of the C++ "std" namespace

#

EXCLUDE * : std::*

#
Exclude instrumentation of compiler and implementation specific

functions that start with the underscore character

#

EXCLUDE * : _*

The excluded items are all dynamically shared objects that might interfere with
the testing of your main program.

Note: If you do not use the default_instr_file file, functions in shared
libraries will be included by default, unless your instrumentation file excludes
them.

The minimum instrumentation file contains the line:

COUNTS -bbcounts

007–3986–004 7

1: Using Tester

You create an instrumentation file using your preferred text editor. Comments are
allowed only at the beginning of a new line and are designated by the “#”
character. Lines can be continued using a back slash (\) for lists separated with
commas. White space is ignored. Keywords are case insensitive. Options and
user-supplied names are case sensitive. All lines are additive to the overall
experiment description.

Here is a partial instrument file:

COUNTS -bbcounts -fpcounts -branchcounts

defines the counting options, in this case,<
basic blocks, function pointers, and branches.

CONSTRAIN program:abc, xdr*, functionF, \

classX::methodY, *::methodM, functionG

constrains the set of functions in the

‘‘program’’ to the list of user specified functions
EXCLUDE libc.so.1:*

...

Note: Instrumentation can increase the size of a program two to five times. Using
DSO caching and sharing can alleviate this problem.

3. Apply the instrument file to the target executable(s).

This is the instrumentation process. You can specify a single executable or more
than one if you are creating other processes through fork, exec, or sproc.

The command line interface command is runinstr. The graphical user interface
equivalent is the Run Instrumentation selection in the Test menu.

The effect of performing a run instrument operation is shown in Figure 1-1. An
instrumentation directory is created (.../ver##<n>). It contains the
instrumented executable and other files used in instrumentation.

Run instrument

.../ver##<n>

<instrumented executable(s)>
<other instrumentation data>

Target executable(s)

Instrument file

Figure 1-1 Instrumentation Process

8 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

4. Create the test directory. This part of the process creates a test data directory
(test0000) containing a test description file named TDF. See Figure 1-2, page 9.

Make test
.../test<nnnn>

TDF
Command line

Instrument directory

Figure 1-2 Make Test Process

Tester names the test directory test0000 by default and increments it
automatically for subsequent make test operations. You can supply your own
name for the test directory if you prefer.

The TDF file contains information necessary for running the test. A typical TDF
file contains the test name, type, instrument directory, description, and list of
executables. In addition, for a test set or test group, the TDF file contains a list of
subtests.

Note that the Instrument Directory can be either the instrumentation directory
itself (such as ver##0) or a directory containing one or more instrumentation
subdirectories.

The command line interface command is mktest. The graphical user interface
equivalent is the Make Test selection in the Test menu.

5. Run the instrumented version of the executable to collect the coverage data.
This creates a subdirectory (exp##0) under the test directory in which results
from the current experiment will be placed.

See Figure 1-3, page 9. The commands to run a test use the most recent
instrumentation directory version unless you specify a different directory.

Run test

.../test<nnnn>

TDF exp##0
 <experimental results>

Test description file (TDF)

Figure 1-3 Run Test Process

007–3986–004 9

1: Using Tester

The command-line interface command is runtest. The graphical user interface
equivalent is the Run Test selection in the Test menu.

6. Analyze the results. Tester provides a variety of column-based presentations for
analyzing the results. The data can be sorted by a number of criteria. In addition,
the graphical user interface can display a call graph indicating coverage by
function and call.

The Tester interface provides many kinds of queries for performing analysis on a
single test. Table 1-1, page 10, shows query commands for a single test that are
available either from the command line or the graphical user interface Queries
menu.

Table 1-1 Common Queries for a Single Test

Command
Line

Graphical User
Interface Description

lsarc List Arcs Shows the function arc coverage. An arc is a
call from one function to another.

lsblock List Blocks Shows basic block count information.

lsbranch List Branches Shows the count information for assembly
language branches.

lsfun List Functions Shows coverage by function.

lssum List Summary Provides a summary of overall coverage.

lsline List Line Coverage Shows coverage for native source lines.

cattest Describe Test Describes the test details.

diff Compare Test Shows the difference in coverage between
programs.

lsinstr List Instrumentation Show instrumentation details for a test.

Other queries are accessed differently from either interface.

• lscall: shows a function graph indicating caller and callee functions and
their counts. From the graphical user interface, function graphs are accessed
from a Call Tree View (Views menu selection).

10 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

• lssource: displays the source or assembly code annotated with the execution
count by line. From the graphical user interface, you access source or
assembly code from a Source View (using the Source button) or a
Disassembly View (using the Disassembly button), respectively.

The queries available in the graphical user interface are shown in Figure 1-4, page
11.

Figure 1-4 The Queries Menu from the Main Tester Window

Automated Testing
Tester is best suited to automated testing of command-line programs, where the test
behavior can be completely specified at the invocation. Command-line programs let
you incorporate contextual information, such as environment variables and current
working directory.

Automated testing of server processes in a client-server application proceeds basically
the same as single-program cases except that startup time introduces a new factor.
Tester can substantially increase the startup time of your target process so that the
instrumented target process will run somewhat slower than the standard,
uninstrumented one. Tests which start a server, wait a while for it to be ready, and
then start the client will have to wait considerably longer. The additional time
depends on the size and complexity of the server process itself and on how much and
what kind of data you have asked Tester to collect. You will have to experiment to
see how long to wait.

007–3986–004 11

1: Using Tester

Automated testing of interactive or nondeterministic tests is somewhat harder. These
tests are not completely determined by their command line; they can produce different
results (and display different coverage) from the same command line, depending
upon other factors, such as user input or the timing of events. For tests such as these,
Tester provides a -sum argument to the runtest command. Normally each test run is
treated as an independent event, but when you use runtest -sum, the coverage
from each run is added to the coverage from previous runs of the same test case.
Other details of the coverage measurement process are identical to the first case.

In each case, you first need to instrument your target program, then run the test, sum
the test results if desired, and finally analyze the results. There are two general
approaches to applying cvcov in automated testing

• If you have not yet created any test scripts or have a small number of tests, you
should create a script that makes each test individually and then runs the
complete test set. Example 1-1 shows a script that automates a test program called
target with different arguments:

Example 1-1 Making Tests and Running Them

instrument program
cvcov runinstr -instr_file instrfile mypath/target

test machinery

make all tests

cvcov mktest -cmd ‘‘target A B C’’ -testname test0001

cvcov mktest -cmd ‘‘target D E F’’ -testname test0002
...

define testset to include all tests

cvcov lstest > mytest_list

cvcov mktset -list mytest_list -testname mytestset

run all tests in testset and sum up results

cvcov runtest mytestset

• If you have existing test scripts of substantial size or an automated test machinery
setup, then you may find it straightforward to embed Tester by replacing each test
line with a script containing two Tester command lines for making and running
the test and then accumulating the results in a testset, such as in Example 1-2. Of
course, you can also rewrite the whole test machinery as described in Example 1-1,
page 12.

12 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Example 1-2 Applying a Make-and-Run Script

instrument program
cvcov runinstr -instr_file instrfile mypath/target

test machinery

make and run all tests

make_and_run ‘‘target A B C’’

make_and_run ‘‘target D E F’’

...
make testset

cvcov lstest > mytestlist

cvcov mktset -list mytestlist -testname mytestset

accumulate results

cvcov runtest mytestset

where the make_and_run script is:

#!/bin/sh
testname=‘cvcov mktest -instr_dir /usr/tmp -cmd ‘‘$*’’‘

testname=‘expr ‘‘$testname’’ : ‘‘.*Made test directory: ‘.*’’’‘

cvcov runtest $testname

Note that both examples use simple testset structures—these could have been nested
hierarchically if desired.

After running your test machinery, you can use cvcov or cvxcov to analyze your
results. Make sure that your test machinery does not remove the products of the test
run (even if the test succeeds), or it may destroy the test coverage data.

Additional Coverage Testing

After you have created and run your first test, you typically need additional testing.
Here are some scenarios.

• You can define a test set so that you can vary your coverage using the same
instrumentation. You can analyze the new tests singly or you can combine them in
a set and look at the cumulative results. If the tests are based on the same
executable, they can share the same instrumentation file. You can also have a test
set with tests based on different executables but they should have the same
instrumentation file.

• You can change the instrumentation criteria to gather different counts or examine
a different set of functions.

007–3986–004 13

1: Using Tester

• You can create a script to run tests in batch mode (command line interface only).

• You can run different programs that use a common dynamically shared object
(DSO) and accumulate test coverage for a test group containing the DSO.

• You can run the same tests using the same instrumentation criteria for two
versions of the same program and compare the coverage differences.

• You can run a test multiple times and sum the result over the runs. This is
typically used for GUI-based applications.

As you conduct more tests, you will be creating more directories. A typical coverage
testing hierarchy is shown in Figure 1-5.

There are two different instrumentation directories, ver##0 and ver##1. The test
directory test0000 contains results for a single experiment that uses the
instrumentation from ver##0. The number in the name of the experiment results
directory corresponds to the number of the instrumentation directory. Test directory
test0001 has results for two experiments corresponding to both instrumentation
directories, ver##0 and ver##1.

Test Directories

.../ver##0

<instrumented executable(s)>
<other instrumentation data>

Instrumentation Directories

.../ver##1

<instrumented executable(s)>
<other instrumentation data>

.../test0000

exp##0
<experiment results>

TDF

.../test0001

exp##0
<experiment results>

TDF exp##1
<experiment results>

Figure 1-5 Typical Coverage Testing Hierarchy

14 007–3986–004

Chapter 2

Tester Command Line Interface Tutorial

The tutorials in this chapter are based on simple programs written in C. To run them,
you need the C compiler. The chapter has the following sections:

• "Setting Up the Tutorials", page 15, shows you how to run the script that creates
the files needed for the tutorials.

• "Tutorial #1: Analyzing a Single Test", page 16, takes you through the steps of
performing coverage analysis for a single test.

• "Tutorial #2: Analyzing a Test Set", page 21, discusses creating additional tests to
achieve full coverage.

• "Tutorial #3: Optimizing a Test Set", page 27, explains how to fine-tune a test set to
eliminate redundant tests.

If you are going to run these tutorials, you must run them in order; each tutorial
builds on the results of previous tutorials.

If at any time a command syntax is not clear, enter the following:

cvcov help commandname

Setting Up the Tutorials
1. Enter the following commands to set up the tutorials:

% cp -r /usr/demos/WorkShop/Tester /usr/tmp/tutorial
% cd /usr/tmp/tutorial

% echo ABCDEFGHIJKLMNOPQRSTUVWXYZ > alphabet

% make -f Makefile.tutorial copyn

This moves some scripts and source files used in the tutorial to
/usr/tmp/tutorial, creates a test file named alphabet, and makes a simple
program, copyn, which copies n bytes from a source file to a target file.

2. To see how the program works, try a simple test by typing:

% copyn alphabet targetfile 10

% cat targetfile
ABCDEFGHIJ

007–3986–004 15

2: Tester Command Line Interface Tutorial

You should see the first 10 bytes of alphabet copied to targetfile.

Tutorial #1: Analyzing a Single Test
Tutorial #1 discusses the following topics:

• "Instrumenting an Executable", page 16.

• "Making a Test", page 17.

• "Running a Test", page 17.

• "Analyzing Test Coverage Data", page 18.

Instrumenting an Executable

This is the first step in providing test coverage. The user defines the instrumentation
criteria in an instrumentation file.

1. Enter the following to see the instrumentation directives in the file
tut_instr_file used in the tutorials:

% cat tut_instr_file

COUNTS -bbcounts -fpcounts -branchcounts
CONSTRAIN main, copy_file

We will be getting all counting information (blocks, functions, branches, and arcs)
for the two functions specified in the CONSTRAIN directive, main and
copy_file.

2. Enter the following command to instrument copyn:

% cvcov runinstr -instr_file tut_instr_file copyn

/lib32/rld

/usr/lib32/libssrt.so
/usr/lib32/libss.so

/usr/lib32/libc.so.1

cvcov: Instrument "copyn" of version "0" succeeded.

Directory ver##0 has been created by default. This contains the instrumented
executable, copyn.pixie, and other instrumentation data.

16 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Making a Test

A test defines the program and arguments to be run, instrument directory,
executables, and descriptive information about the test.

1. Enter the following to make a test:

% cvcov mktest -cmd "copyn alphabet targetfile 20"

You will see the following message:

cvcov: Made test directory: "/var/tmp/tutorial/test0000"

Directory test0000 has been created by default. It contains a single file, TDF,
the test description file.

Note: The directory /var/tmp is linked to /usr/tmp.

2. Enter the following to get a textual listing of the test:

% cvcov cattest test0000

Test Info Settings

Test /var/tmp/tutorial/test0000

Type single

Description

Command Line copyn alphabet targetfile 20
Number of Exes 1

Exe List copyn

Instrument Directory /var/tmp/tutorial/

Experiment List

Running a Test

To run a test, we use technology from the WorkShop Performance Analyzer. The
instrumented process is set to run, and a monitor process (cvmon) captures test
coverage data by interacting with the WorkShop process control server (cvpcs).

1. Enter the following command:

% cvcov runtest test0000

2. You will see the following message:

007–3986–004 17

2: Tester Command Line Interface Tutorial

cvcov: Running test "/var/tmp/tutorial/test0000" ...
/var/tmp/tutorial//ver##0/copyn.pixie alphabet targetfile 20

Now the directory test0000 contains the directory exp##0, which contains the
results of the first test experiment.

Analyzing Test Coverage Data

You can analyze test coverage data many ways. In this tutorial, we will illustrate a
simple top-down approach. We will start at the top to get a summary of overall
coverage, proceed to the function level, and go finally to the actual source lines.

1. Enter the following to get the summary:

% cvcov lssum test0000

You will see the display shown in Example 2-1.

Example 2-1 lssum Example

% cvcov lssum test0000

% cvcov lssum test0000

Coverages Covered Total % Coverage Weight

Function 3 3 100.00% 0.400

Source Line 22 33 66.67% 0.200

Branch 0 10 0.00% 0.200

Arc 8 18 44.44% 0.200

Block 24 49 48.98% 0.000
Weighted Sum 62.22% 1.000

Although both functions have been covered, there is incomplete coverage for
source lines, branches, arcs, and blocks.

Note: Items are highlighted on your screen to emphasize null coverage. As a
convention in this manual, highlighting or user input is in boldface.

2. Enter the following to look at the line count information for the main function:

% cvcov lssource main test0000

18 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

This produces a source listing annotated with counts, shown in Example 2-2.

Example 2-2 lssource Example

% cvcov lssource main test0000

Counts Source
--

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#define OPEN_ERR 1

#define NOT_ENOUGH_BYTES 2

#define SIZE_0 3

int copy_file();

main (int argc, char *argv[])

1 {

int bytes, status;

1 if(argc < 4){

0 printf("copyn: Insufficient arguments.\n");

0 printf("Usage: copyn f1 f2 bytes\n");

0 exit(1);

}

1 if(argc > 4) {
0 printf("Error: Too many arguments\n");

0 printf("Usage: copyn f1 f2 bytes\n");

0 exit(1);

}

1 bytes = atoi(argv[3]);
1 if((status = copy_file(argv[1], argv[2], bytes)) >0){

0 switch (status) {

case SIZE_0:

0 printf("Nothing to copy\n");

0 break;
case NOT_ENOUGH_BYTES:

0 printf("Not enough bytes\n");

0 break;

case OPEN_ERR:

007–3986–004 19

2: Tester Command Line Interface Tutorial

0 printf("File open error\n");
0 break;

}

0 exit(1);

}

1 }

int copy_file(source, destn, size)

char *source, *destn;

int size;

1 {

char *buf;
int fd1, fd2;

struct stat fstat;

1 if((fd1 = open(source, O_RDONLY)) <= 0){

0 return OPEN_ERR;

}
1 stat(source, &fstat);

1 if(size <= 0){

0 return SIZE_0;

}

1 if(fstat.st_size < size){

0 return NOT_ENOUGH_BYTES;
}

1 if((fd2 = creat(destn, 00777)) <= 0){

0 return OPEN_ERR;

}

1 buf = (char *)malloc(size);

1 read(fd1, buf, size);

1 write(fd2, buf, size);

1 return 0;

}

Notice that the 0-counted lines appear in a highlight color. In this example, the
lines with 0 counts occur where there is an error condition. This is our first good
look at branch and block coverage at the source line level. The branch and block
coverage in the summary are at the assembly language level.

20 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Tutorial #2: Analyzing a Test Set
In the second tutorial, we are going to create additional tests with the objective of
achieving 100% overall coverage. From examining the source code in Example 2-2,
page 19, it seems that the 0-count lines in main and copy_file are due to
error-checking code that is not tested by test0000.

Note: This tutorial needs test0000, which was created in the previous tutorial.

The script tut_make_testset is supplied to demonstrate how to set up this test set.

1. Enter sh -x tut_make_testset to run the script.

Example 2-3 shows the first portion of the script (as it runs), in which the
individual tests are created. The tut_make_testset script uses mktest to
create eight additional tests. The tests test0001 and test0002 pass too few
and too many arguments, respectively. test0003 attempts to copy from a
nonexistent file named no_file. test0004 attempts to pass 0 bytes, which is
illegal. test0005 attempts to copy 20 bytes from a file called not_enough,
which contains only one byte. In test0006, we attempt to write to a directory
without proper permission. test0007 tries to copy too many bytes. In
test0008, we attempt to copy from a file without read permission.

Example 2-3 tut_make_testset Script: Making Individual Tests

% sh -x tut_make_testset

+ cvcov mktest -cmd copyn alphabet target -des not enough arguments
cvcov: Made test directory: "/var/tmp/tutorial/test0001"

+ cvcov mktest -cmd copyn alphabet target 20 extra_arg \

-des too many arguments

cvcov: Made test directory: "/var/tmp/tutorial/test0002"

+ cvcov mktest -cmd copyn no_file target 20 -des cannot access file

cvcov: Made test directory: "/var/tmp/tutorial/test0003"

+ cvcov mktest -cmd copyn alphabet target 0 -des pass bad size arg

cvcov: Made test directory: "/var/tmp/tutorial/test0004"

+ echo a

+ 1> not_enough

007–3986–004 21

2: Tester Command Line Interface Tutorial

+ cvcov mktest -cmd copyn not_enough target 20 -des not enough data \

(less bytes than requested) in original file

cvcov: Made test directory: "/var/tmp/tutorial/test0005"

+ cvcov mktest -cmd copyn alphabet /usr/bin/target 20 \
-des cannot create target executable due to permission problems

cvcov: Made test directory: "/var/tmp/tutorial/test0006"

+ ls -ld /usr/bin

drwxr-xr-x 3 root sys 3584 May 12 18:25 /usr/bin

+ cvcov mktest -cmd copyn alphabet targetfile 200

-des size arg too big

cvcov: Made test directory: "/var/tmp/tutorial/test0007"

+ cvcov mktest -cmd copyn /usr/adm/sulog targetfile 20 \
-des no read permission on source file

cvcov: Made test directory: "/var/tmp/tutorial/test0008"

After the individual tests are created, the script uses mktset to make a new test
set and addtest to include the new tests in the set. Example 2-4 shows the
portion of the script in which the test set is created and the individual tests are
added to the test set.

Example 2-4 tut_make_testset Script: Making and Adding to the Test Set

+ cvcov mktset -des full coverage testset -testname tut_testset

cvcov: Made test directory: "/var/tmp/tutorial/tut_testset"

+ cvcov addtest test0000 tut_testset

cvcov: Added "/var/tmp/tutorial/test0000" to "tut_testset"

+ cvcov addtest test0001 tut_testset

cvcov: Added "/var/tmp/tutorial/test0001" to "tut_testset"

+ cvcov addtest test0002 tut_testset

cvcov: Added "/var/tmp/tutorial/test0002" to "tut_testset"

+ cvcov addtest test0003 tut_testset
cvcov: Added "/var/tmp/tutorial/test0003" to "tut_testset"

22 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

+ cvcov addtest test0004 tut_testset
cvcov: Added "/var/tmp/tutorial/test0004" to "tut_testset"

+ cvcov addtest test0005 tut_testset

cvcov: Added "/var/tmp/tutorial/test0005" to "tut_testset"

+ cvcov addtest test0006 tut_testset

cvcov: Added "/var/tmp/tutorial/test0006" to "tut_testset"

+ cvcov addtest test0007 tut_testset

cvcov: Added "/var/tmp/tutorial/test0007" to "tut_testset"

+ cvcov addtest test0008 tut_testset

cvcov: Added "/var/tmp/tutorial/test0008" to "tut_testset"

2. Enter cvcov cattest tut_testset to check that the new test set was created
correctly.

This is shown in Example 2-5. The index numbers in brackets in the subtest list
are used to identify the individual tests as part of a test set. This index is used to
list the contribution of each test.

Example 2-5 Contents of the New Test Set

% cvcov cattest tut_testset

Test Info Settings
--

Test /var/tmp/tutorial/tut_testset

Type set

Description full coverage testset

Number of Exes 1

Exe List copyn
Number of Subtests 9

Subtest List

[0] /var/tmp/tutorial/test0000

[1] /var/tmp/tutorial/test0001

[2] /var/tmp/tutorial/test0002
[3] /var/tmp/tutorial/test0003

[4] /var/tmp/tutorial/test0004

[5] /var/tmp/tutorial/test0005

[6] /var/tmp/tutorial/test0006

[7] /var/tmp/tutorial/test0007

007–3986–004 23

2: Tester Command Line Interface Tutorial

[8] /var/tmp/tutorial/test0008
Experiment List

3. Enter the following to run the tests in the test set:

% cvcov runtest tut_testset

By applying the runtest command to the test set, we can run all the tests
together. See Example 2-6. When you run a test set, only tests without results are
run; tests that already have results will not be run again. In this case, test0000
has already been run. If you need to rerun a test, you can do so using the
-force flag.

Example 2-6 Running the New Test Set

% cvcov runtest tut_testset

cvcov: Running test "/var/tmp/tutorial/test0000" ...

cvcov: Running test "/var/tmp/tutorial/test0001" ...
/var/tmp/tutorial//ver##0/copyn.pixie alphabet target

copyn: Insufficient arguments.

Usage: copyn f1 f2 bytes

cvcov: Running test "/var/tmp/tutorial/test0002" ...

/var/tmp/tutorial//ver##0/copyn.pixie alphabet target 20 extra_arg
Error: Too many arguments

Usage: copyn f1 f2 bytes

cvcov: Running test "/var/tmp/tutorial/test0003" ...

/var/tmp/tutorial//ver##0/copyn.pixie no_file target 20

File open error

cvcov: Running test "/var/tmp/tutorial/test0004" ...
/var/tmp/tutorial//ver##0/copyn.pixie alphabet target 0

Nothing to copy

cvcov: Running test "/var/tmp/tutorial/test0005" ...

/var/tmp/tutorial//ver##0/copyn.pixie not_enough target 20

Not enough bytes
cvcov: Running test "/var/tmp/tutorial/test0006" ...

/var/tmp/tutorial//ver##0/copyn.pixie alphabet /usr/bin/target 20

File open error

cvcov: Running test "/var/tmp/tutorial/test0007" ...

/var/tmp/tutorial//ver##0/copyn.pixie alphabet targetfile 200
Not enough bytes

cvcov: Running test "/var/tmp/tutorial/test0008" ...

/var/tmp/tutorial//ver##0/copyn.pixie /usr/adm/sulog targetfile 20

File open error

24 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

4. Enter cvcov lssum tut_testset to list the summary for the test set.

Example 2-7 shows the results of the tests in the new test set with lssum.

Example 2-7 Examining the Results of the New Test Set

% cvcov lssum tut_testsetCoverages Covered Total % Coverage Weight

Function 3 3 100.00% 0.400

Source Line 33 33 100.00% 0.200

Branch 9 10 90.00% 0.200

Arc 18 18 100.00% 0.200

Block 46 49 93.88% 0.000

Weighted Sum 98.00% 1.000

Note: Block (basic block) weight will always be different based depending on
compile options and compiler versions.

5. Enter cvcov lssource main tut_testset to see the coverage for the
individual source lines as shown in Example 2-8, page 25.

Example 2-8 Source with Counts

% cvcov lssource main tut_testset

Counts Source

--

#include <stdio.h>
#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#define OPEN_ERR 1
#define NOT_ENOUGH_BYTES 2

#define SIZE_0 3

int copy_file();

main (int argc, char *argv[])
9 {

int bytes, status;

007–3986–004 25

2: Tester Command Line Interface Tutorial

9 if(argc < 4){
1 printf("copyn: Insufficient arguments.\n");

1 printf("Usage: copyn f1 f2 bytes\n");

1 exit(1);

}

8 if(argc > 4) {
1 printf("Error: Too many arguments\n");

1 printf("Usage: copyn f1 f2 bytes\n");

1 exit(1);

}

7 bytes = atoi(argv[3]);

7 if((status = copy_file(argv[1], argv[2], bytes)) >0){
6 switch (status) {

case SIZE_0:

1 printf("Nothing to copy\n");

1 break;

case NOT_ENOUGH_BYTES:
2 printf("Not enough bytes\n");

2 break;

case OPEN_ERR:

3 printf("File open error\n");

3 break;

}
6 exit(1);

}

1 }

int copy_file(source, destn, size)
char *source, *destn;

int size;

7 {

char *buf;

int fd1, fd2;
struct stat fstat;

7 if((fd1 = open(source, O_RDONLY)) <= 0){

2 return OPEN_ERR;

}

5 stat(source, &fstat);

5 if(size <= 0){
1 return SIZE_0;

}

26 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

4 if(fstat.st_size < size){
2 return NOT_ENOUGH_BYTES;

}

2 if((fd2 = creat(destn, 00777)) <= 0){

1 return OPEN_ERR;

}
1 buf = (char *)malloc(size);

1 read(fd1, buf, size);

1 write(fd2, buf, size);

7 return 0;

}

As you look at the source code, notice that all lines are covered.

6. Enter cvcov lssource -asm main tut_testset to see the coverage for the
individual assembly lines.

When we list the assembly code using lssource -asm, we find that not all
blocks and branches are covered at the assembly level. This is due to compilation
with the -g flag, which adds debugging code that can never be executed.

Enter cvcov lsline tut_testset to see the coverage at the source line level.
Notice that 100% of the lines have been covered.

Tutorial #3: Optimizing a Test Set
Tester lets you look at the individual test coverages in a test set. When you put
together a set of tests, you may want to improve the efficiency of your coverage by
eliminating redundant tests. The lsfun, lsblock, and lsarc commands all have
the -contrib option, which displays coverage result contributions by individual
tests. We will now look at the contributions by tests for the test set we just ran,
tut_testset.

Note: This tutorial needs tut_testset and all its subtests; these were created in the
previous tutorial.

1. Enter cvcov lsfun -contrib -pretty tut_testset to see the function
coverage test contribution.

007–3986–004 27

2: Tester Command Line Interface Tutorial

Example 2-9, page 28, shows how the test set covers functions. Note that the
subtests are identified by index numbers; use cattest if you need to map these
results back to the test directories.

Example 2-9 Test Contributions by Function

% cvcov lsfun -contrib -pretty tut_testset

Functions Files Counts

--

main copyn.c 9

copy_file copyn.c 7
main rld_startup.c 1

Functions Files [0] [1] [2] [3] [4] [5]

--

main copyn.c 1 1 1 1 1 1

copy_file copyn.c 1 0 0 1 1 1
main rld_startup.c 1 0 0 0 0 0

Functions Files [6] [7] [8]

main copyn.c 1 1 1
copy_file copyn.c 1 1 1

main rld_startup.c 0 0 0

At the function level, each test covers both functions except for Tests [1] and [2].
The information here is not sufficient to tell us if we have optimized the test set.
To do this, we must look at contributions at the arc and block levels. Tester shows
arc and block coverage information by test when you apply the -contrib flag to
lsarc and lsblock, respectively.

2. Enter cvcov lsarc -contrib -pretty tut_testset to see the arc
coverage test contribution.

Example 2-10, page 29, shows the individual test contributions. Notice that Tests
[5] and [7] have identical coverage to each other; so do Tests [3] and [8].

We can get additional information by looking at block coverage, confirming our
hypothesis about redundant tests.

28 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Example 2-10 Arc Coverage Test Contribution Portion of Report

% cvcov lsarc -contrib -pretty tut_testset

Callers Callees Line Files Counts

--

main copy_file 27 copyn.c 7

main printf 17 copyn.c 1

main printf 18 copyn.c 1

main __exit 19 copyn.c 1

main printf 22 copyn.c 1

main printf 23 copyn.c 1

main __exit 24 copyn.c 1

main atoi 26 copyn.c 7

main printf 30 copyn.c 1

main printf 33 copyn.c 2

main printf 36 copyn.c 3

main __exit 39 copyn.c 6

copy_file _open 50 copyn.c 7

copy_file _stat 53 copyn.c 5

copy_file _creat 60 copyn.c 2

copy_file malloc 63 copyn.c 1

copy_file _read 65 copyn.c 1

copy_file _write 66 copyn.c 1

Callers Callees Line Files [0] [1] [2] [3] [4] [5]

main copy_file 27 copyn.c 1 0 0 1 1 1

main printf 17 copyn.c 0 1 0 0 0 0

main printf 18 copyn.c 0 1 0 0 0 0

main __exit 19 copyn.c 0 1 0 0 0 0

main printf 22 copyn.c 0 0 1 0 0 0

main printf 23 copyn.c 0 0 1 0 0 0

main __exit 24 copyn.c 0 0 1 0 0 0

main atoi 26 copyn.c 1 0 0 1 1 1

main printf 30 copyn.c 0 0 0 0 1 0

main printf 33 copyn.c 0 0 0 0 0 1

main printf 36 copyn.c 0 0 0 1 0 0

main __exit 39 copyn.c 0 0 0 1 1 1

copy_file _open 50 copyn.c 1 0 0 1 1 1

copy_file _stat 53 copyn.c 1 0 0 0 1 1

copy_file _creat 60 copyn.c 1 0 0 0 0 0

007–3986–004 29

2: Tester Command Line Interface Tutorial

copy_file malloc 63 copyn.c 1 0 0 0 0 0

copy_file _read 65 copyn.c 1 0 0 0 0 0

copy_file _write 66 copyn.c 1 0 0 0 0 0

Callers Callees Line Files [6] [7] [8]

main copy_file 27 copyn.c 1 1 1

main printf 17 copyn.c 0 0 0

main printf 18 copyn.c 0 0 0

main __exit 19 copyn.c 0 0 0

main printf 22 copyn.c 0 0 0

main printf 23 copyn.c 0 0 0

main __exit 24 copyn.c 0 0 0

main atoi 26 copyn.c 1 1 1

main printf 30 copyn.c 0 0 0

main printf 33 copyn.c 0 1 0

main printf 36 copyn.c 1 0 1

main __exit 39 copyn.c 1 1 1

copy_file _open 50 copyn.c 1 1 1

copy_file _stat 53 copyn.c 1 1 0

copy_file _creat 60 copyn.c 1 0 0

copy_file malloc 63 copyn.c 0 0 0

copy_file _read 65 copyn.c 0 0 0

copy_file _write 66 copyn.c 0 0 0

3. Enter the following to see the test contribution to block coverage:

% cvcov lsblock -contrib -pretty tut_testset

If you examine the results, you will see that Tests [5] and [7] and Tests [3] and [8]
are identical.

Now we can try to tune the test set. If we can remove tests with redundant
coverage and still achieve the equivalent overall coverage, then we have tuned
our test set successfully. Since the arcs and blocks covered by Test [7] are also
covered by Test [5], we can remove either one of them without affecting the
overall coverage. The same analysis holds true for Tests [3] and [8].

4. Delete test0007 and test0008 as shown in Example 2-11, page 31. Then rerun
the test set and look at its summary.

30 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Note that the coverage is retabulated without actually rerunning the tests. The
test summary shows that overall coverage is unchanged, thus confirming our
hypothesis.

Example 2-11 Test Set Summary after Removing Tests [8] and [7]

% cvcov deltest test0008 tut_testset

cvcov: Deleted "/var/tmp/tutorial/test0008" from "tut_testset"

% cvcov deltest test0007 tut_testset

cvcov: Deleted "/var/tmp/tutorial/test0007" from "tut_testset"

% cvcov runtest tut_testset

cvcov: Running test "/var/tmp/tutorial/test0000" ...

cvcov: Running test "/var/tmp/tutorial/test0001" ...

cvcov: Running test "/var/tmp/tutorial/test0002" ...

cvcov: Running test "/var/tmp/tutorial/test0003" ...
cvcov: Running test "/var/tmp/tutorial/test0004" ...

cvcov: Running test "/var/tmp/tutorial/test0005" ...

cvcov: Running test "/var/tmp/tutorial/test0006" ...

% cvcov lssum tut_testset
Coverages Covered Total % Coverage Weight

--

Function 3 3 100.00% 0.400

Source Line 33 33 100.00% 0.200

Branch 9 10 90.00% 0.200

Arc 18 18 100.00% 0.200
Block 48 52 92.31% 0.000

Weighted Sum 98.00% 1.000

007–3986–004 31

Chapter 3

Tester Command Line Reference

This chapter describes the cvcov commands. It contains the following two
subsections:

• "Common cvcov Options", page 33, describes the command arguments that are
common to more than one command

• "cvcov Command Syntax and Description", page 34, describes the specifications
with descriptions for each command

A complete description of the cvcov commands, including individual arguments, is
available on the cvcov man page by typing:

% man cvcov

For examples of cvcov usage, see Appendix A, "cvcov Command Line Examples",
page 105.

Common cvcov Options
This section contains descriptions of some cvcov flags and variables that are
common to more than one command.

• [-ver]: displays the version of cvcov. Note that there are no other arguments
permitted; you enter: cvcov -ver

• [-v versionnumber]: allows you to specify a version of the instrumentation or
experiment directory other than the most recent, which is the default.

• [-contrib]: shows the list of tests that contributed to coverage for the particular
query.

• [-exe exe_name]: lets you specify an executable for coverage testing. This is
used when there are multiple executables involved, as in testing processes created
by the fork, exec, or sproc command.

• [-instr_dir instr_dir]: allows you to specify an instrumentation directory other
than the current working directory, which is the default.

• [-instr_file instr_file]: specifies the instrumentation file, which is an ASCII
description of the instrumentation criteria you have selected.

007–3986–004 33

3: Tester Command Line Reference

• [-list list_file]: specifies a file containing a list of test names to be made part of a
test set or group. If no -list option is specified, an empty test set will be created.

• [-r]: (Recursion) lets you specify tests in a hierarchy of subdirectories.

• [-arg]: displays functions with their arguments.

• [-pretty]: displays output aligned in columns. Without -pretty, the output is
in columns but more condensed.

• [-sort]: sorts the output by the specified criteria, as follows:

– function: alphabetically by function

– diff: by differences in the counting information for coverage type

– caller: alphabetically by calling function

– callee: alphabetically by called function

– count: by counts for current coverage type

– file: alphabetically by file name

– type: alphabetically by argument type

• [-functions]: displays list of constrained functions.

• [-pat func_pattern]: lets you enter a pattern instead of a complete function name.
The pattern can be of the form func_name, dso_:func_name, or ‘dso:*’.

• experiment | test_name: lets you specify either the experiment subdirectory
or the test directory. The test directory is typically of the form test<nnnn>, where
<nnnn> is a number in a sequence counting from 0000. You can specify your own
name. The test directory contains all information about a test including the
experiment directory. The experiment directory is typically of the form exp##<n>,
where <n> is a sequential number, counting from 0.

cvcov Command Syntax and Description
This section contains the syntax and description for all cvcov commands in the
command line interface. If you need information on command arguments that are not
described in this section, please refer back to "Common cvcov Options", page 33.

34 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

The most general command is the help command, as follows:

cvcov help command_name

The help command prints help on the specified command. If the optional command
name is not specified, it prints help for all the commands.

The rest of the commands are divided up into these categories:

• General test commands, described in "General Test Commands", page 35.

• Coverage analysis commands, described in "Coverage Analysis Commands", page
37.

• Test set commands, described in "Test Set Commands", page 39.

• Test group command, described in "Test Group Commands", page 40.

General Test Commands

The following commands support the creation, inspection, modification, and deletion
of tests:

• cvcov cattest [-r] test_name

Describes the test details for a test, test set, or test group. See Example A-1, page
105, Example A-2, page 105, and Example A-3, page 106.

• cvcov lsinstr [-exe] exe_name [-functions] [-v versionnumber] test_name

Displays the instrumentation information for a particular test. exe_name is the
executable targeted for query. The main program is the default if no executable is
specified. The -functions parameter shows the functions that are included in
the coverage experiment. The versionnumber parameter allows you to specify the
version of the program that was instrumented. You can specify the test directory
using the test_name parameter. See Example A-4, page 107.

• cvcov lstest [-r][test_name...]

Lists the test directories in the current working directory. Note that the test_name
parameter will accept regular expressions for lstest.

• cvcov mktest -cmd cmd_line [-des description] [-instr_dir
directoryname] [-testname test] [exe1 exe2 ...]

007–3986–004 35

3: Tester Command Line Reference

Creates a test directory. You specify the program and command line options for
the program to be tested. This includes any redirection for stdin, stderr, or
stdout as run from the Bourne shell.

The -cmd qualifier is mandatory, even if it only includes the program name. If no
executables are specified, only the main program is tested. Example A-5, page 107,
shows an example of mktest, followed by cattest to display the contents of the
Test Description File (TDF).

• cvcov rmtest [-r]test_name ...

Removes tests and test sets. Note that the test_name parameter will accept regular
expressions for rmtest. It is recommended to separate the test set directory from
its test subdirectories and the instrument directory. In this way, rmtest will not
remove instrumentation data or subtests if you choose to remove the test set only.

• cvcov runinstr [-instr_dirinstr_dir] [-instr_file instr_file] [-v
versionnumber] executable

Adds code to the target executable to enable you to capture coverage data,
according to the criteria you specify. The instrument file is an ASCII description of
the instrumentation criteria for the experiment. You can also specify the version of
the executable and instrument directory.

You can capture basic block counts, function pointer counts, and branch counts (at
the assembly language level). You can use INCLUDE, EXCLUDE, or CONSTRAIN
to modify the set of functions covered. CONSTRAIN lets you define a set of
functions for the test.

• cvcov runtest [-bitcount][-compress][-force] [-keep][-sum]
[-v versionnumber] [-noarc] [-rmsub] test_name

Runs a test or a set of tests.

The -bitcount flag compresses count data file to be 1-bit-per-count. This option
can decrease the database size up to 32 times, although branch count information
will be lost.

The -compress flag compresses the experiment database using the standard
utility compress.

The -force flag forces the test to be run again even if an experiment is present. It
uses WorkShop performance tool technology to set up the instrumented process,
run the process, and monitor the run, collecting counting information upon exit.

36 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

The -keep flag retains all performance data collected in the experiment. By
default, the performance data is not retained, because it is not required by the
coverage tool. The -sum flag accumulates (sum over) the coverage data into the
existing experiment results. This allows users to run and rerun the same test and
accumulate the results in one place.

The -noarc flag prevents arc information from being saved in the test database.
With the -noarc flag, all arc-related queries will not work (for example, lsarc
and lscall).

The -rmsub flag removes results for individual subtests for a test set or test
group. There will be no data to query if you are querying a subtest. -noarc and
-rmsub save disk space.

Coverage Analysis Commands

After the data has been collected from the test experiments, the user can analyze the
data. There are special commands for the various types of coverage available.

• cvcov lssum [-exe exe_name] [-weight func_factor :line_factor :
branch_factor : arc_factor : block_factor] experiment | test_name

Shows the overall coverage based on the user-defined weighted average over
function, line, block, branch, and arc coverage. See Example A-6, page 108.

• cvcov lsfun [-arg] [-bf filter_type block_filter_value] [-blocks]
[-branches] [-contrib] [-exe exe_name] [-ff filter_type
func_filter_value] [-pat func_pattern] [-pretty] [-rf filter_type
branch_filter_value] [-sort count | file | function] experiment |test_name

Lists coverage information for the specified functions in the program that was
tested. Several sorting, matching, and filtering techniques are available. For
example, you can show the list of functions that have 0 counts (were not covered)
in alphabetical order. You can display arguments with the -arg flag. See Example
A-7, page 108.

• cvcov lsblock [-addr] [-arg] [-contrib] [-exe exe_name] [-pat
func_pattern] [-pretty] [-sort count|file|function] experiment| test_name

Displays a list of blocks for one or more functions and the count information
associated with each block. See Example A-8, page 108.

007–3986–004 37

3: Tester Command Line Reference

Blocks are identified by the line numbers in which they occur. If there are multiple
blocks in a line, blocks subsequent to the first are shown in order with an index
number in parentheses. Be careful before listing all blocks in the program, since
this can produce a lot of data. The -addr flag show blocks with the PC range
instead of the source line number range.

• cvcov lsbranch [-addr] [-arg] [-exeexe_name][-pat
func_pattern][-pretty][-sort function| file] experiment|test_name

Lists coverage information for branches in the program, including the line number
at which the branch occurs. See Example A-9, page 109.

Branch coverage counts assembly language branch instructions that are both taken
and not taken. The -addr flag show blocks with the PC range instead of the
source line number range.

• cvcov lsarc [-arg] [-callee callee_pattern] [-caller caller_pattern]
[-contrib][-exe exe_name] [-pretty][-sort caller|callee| count|file]
experiment| test_name

Shows arc coverage, that is, the number of arcs taken out of the total possible arcs.
See Example A-10, page 110.

An arc is a function caller-callee pair. Both callee_pattern and caller_pattern can be
specified in the same way as func_pattern (used with the -pat option) as shown
under "Common cvcov Options", page 33.

• cvcov lscall [-arg] [-exe exe_name][-node func_name] [-pretty]
[-r] experiment|test_name

Lists the call graph for the executable with counts for each function. The
contribution to this coverage by each test is shown in a separate column. N/A
means the node is excluded. See Example A-11, page 110.

A function that has more than one parent and has children is called a subnode.
Using -r will display the subnodes. Subnodes are given their own starting point
in the textual call graph. They are identified by a trailing ellipsis (...). For example,
see printf, exit, and malloc in Example A-11.

• cvcov lsline [-arg] [-exe exe_name] [-pat func_pattern][-pretty]
[-sort function|file] experiment|test_name

Lists the coverage for native source lines. Use -arg to show arguments for
functions. If no executable is specified, the main program is the default. Use
-pretty to provide column-aligned output. See Example A-12, page 110.

38 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

• cvcov lssource [-asm] [-exe exe_name] function experiment test_name

Displays the source annotated with line counts. The -asm switch displays the
assembly level source code annotated with line counts. Lines with 0 counts are
highlighted to show the absence of coverage. This is useful for mapping to the
source level blocks and branches that were not covered. Lines in functions that
were not included in the test appear without count annotations. See Example
A-13, page 111.

Note: lssource requires the code to be compiled with the -g option.

• cvcov diff [-arg] [-exe exe_name] [-functions] [-pretty][-sort
diff|function] experiment1 experiment2

Shows the difference in coverage for different versions of the same program. See
Example A-14, page 111.

Test Set Commands

A test set is a named collection of tests and other test sets. Test sets can be
hierarchical. For example, compiler_language_suite might include C++_suite,
C_suite, and Fortran_suite, where Fortran_suite is a test set with
subdirectories. The following commands support creation, inspection, modification,
and deletion of test sets. Both addtest and deltest are also used with test groups,
described in the next section.

• cvcov mktset [-des description] [-list list_file][-testname test]

Makes a test set. If no test name is specified, the command assigns one
automatically. See Example A-16, page 112.

• cvcov addtest test_nametest_set_name| test_group

Adds a test or test set to a test set or test group.

• cvcov deltest test_name test_set_name|test_group

Removes a test or test set from a test set or test group.

Note: Do not use UNIX commands mv and cp to rename or copy test sets because
they are constructed with absolute file paths.

007–3986–004 39

3: Tester Command Line Reference

• cvcov optimize [-blocks][-branches][-cbb filter_type
bb_filter_value][-cbr filter_type br_filter_value] [-exe exe_name] [-pat
func_pattern] [-pretty][-stat]experiment...|test_name ...

Selects the minimum set of tests that give the same coverage or meet the given
coverage criteria as the given set.

The -blocks flag shows block coverage for all the selected tests.

The -branches flag shows branch coverage for all the selected tests.

The -cbb filter_type bb_filter_value gives the basic block coverage criteria for test
selection. The rules are the same as the flag -bf of the lsfun command.

The -cbr filter_type br_filter_value gives the branch coverage criteria for test
selection. The rules are the same as the flag -rf of lsfun command.

The -exe exe_name option lets you specify which executable is targeted for test
optimization. If no executable is specified, the main program is the default.

The -pat pattern option lets you specify DSO patterns for calculation of coverage
on test selection. The -pretty flag aligns column output.

The -stat flag prints out block and branch coverage for all the selected tests.
Without this option, cumulative coverages for block and branch are given.

The experiment ...|test_name ... option lets you specify names of experiments or
tests to be optimized. Example A-16, page 112, demonstrates how test sets are
optimized. In this case, optimizing is applied to all tests matching the expression
test00*.

Test Group Commands

A test group is a collection of programs to be tested that have a common dynamically
shared object (DSO). The coverage testing is limited to activity with the DSO so that
the arcs and branches that terminate outside of the DSO will not be included. See
descriptions of addtest and deltest in the previous section as well as the
following command.

cvcov mktgroup [-des description][-list list_file][-testname test] target1 target2...

This command creates a test group that can contain other tests or test groups. The
targets are either the target libraries or DSOs.

40 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Note: Do not use UNIX commands mv and cp to rename or copy test groups because
they are constructed with absolute files paths.

007–3986–004 41

Chapter 4

Tester Graphical User Interface Tutorial

This chapter provides a tutorial for the Tester graphical user interface. It covers these
topics:

• "Setting Up the Tutorial", page 43

• "Tutorial #1: Analyzing a Single Test", page 44

• "Tutorial #2: Analyzing a Test Set", page 57

• "Tutorial #3: Exploring the Graphical User Interface", page 61

Setting Up the Tutorial
If you have already set up a tutorial directory for the command line interface tutorial,
you can continue to use it. If you remove the subdirectories, your directory names
will match exactly; if you leave the subdirectories in, you can add new ones as part of
this tutorial.

If you would like the test data built automatically, run the following script:

/usr/demos/WorkShop/Tester/setup_Tester_demo

To set up a tutorial directory from scratch, do the following; otherwise you can skip
the rest of this section.

1. Enter the following:

% cp -r /usr/demos/WorkShop/Tester /usr/tmp/tutorial

% cd /usr/tmp/tutorial
% echo ABCDEFGHIJKLMNOPQRSTUVWXYZ > alphabet

% make -f Makefile.tutorial copyn

This moves some scripts and source files used in the tutorial to
/usr/tmp/tutorial, creates a test file named alphabet, and makes a simple
program, copyn, which copies n bytes from a source file to a target file.

2. To see how the program works, try a simple test by typing the following at the
command line:

007–3986–004 43

4: Tester Graphical User Interface Tutorial

% ./copyn alphabet targetfile 10
% cat targetfile

ABCDEFGHIJ

You should see the first 10 bytes of alphabet copied to targetfile.

Tutorial #1: Analyzing a Single Test
Tutorial #1 discusses the following topics:

• "Invoking the Graphical User Interface", page 44.

• "Instrumenting an Executable", page 47.

• "Making a Test", page 48.

• "Running a Test", page 50.

• "Analyzing the Results", page 51.

These topics are all covered in the following sections.

Invoking the Graphical User Interface

You typically call up the graphical user interface from the directory that will contain
your test subdirectories. This section tells you how to invoke the Tester graphical user
interface and describes the main window.

Procedure 4-1 Invoking the GUI

1. Enter cvxcov from the tutorial directory you created previously (for example,
/usr/tmp/tutorial) to bring up the Tester main window.

Figure 4-1, page 46, shows the main Tester window with all its menus displayed.

Note: You can also access Tester from the Admin menu in other WorkShop tools.

2. Observe the features of the Tester window.

• The Test Name field is used to display the current test. You can switch to
different tests through this field.

44 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

• Test results display in the coverage display area. You display the results by
choosing an item from the Queries menu. You also can select the format of
the data from the Views menu.

• The Source button lets you bring up the standard Source View window with
Tester annotations. Source View shows the counts for each line included in
the test and highlights lines with 0 counts. Lines from excluded functions
display but without count annotations.

• The Disassembly button brings up the Disassembly View window for
assembly language source. It operates in a similar fashion to the Source button.

• The Contribution button displays a separate window with the contributions
to the coverage made by each test in a test set or test group.

• A sort button lets you sort the test results by such criteria as function, count,
file, type, difference, caller, or callee. The criteria available (shown by the
name of the button) depend on the current query.

• The status area displays status messages regarding the test.

The area below the status area will display special query-specific fields when
you make queries.

• You can launch other WorkShop applications from the Launch Tool submenu
of the Admin menu. The applications include the Build Analyzer, Debugger,
Parallel Analyzer, Performance Analyzer, and Static Analyzer.

You will also find an icon version of the Execution View labeled cvxcovExec. It
is a shell window for viewing test results as they would appear on the command
line.

007–3986–004 45

4: Tester Graphical User Interface Tutorial

Admin menu Views menu Queries menu Test menu

Test Name
input field

Coverage
display area

Control buttons

Status area

Figure 4-1 Main Tester Window

46 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Instrumenting an Executable

The first step in providing test coverage is to define the instrumentation criteria in an
instrumentation file.

Procedure 4-2 Instrumenting an Executable

1. From Execution View, enter the following to see the instrumentation directives in
the file tut_instr_file used in the tutorials:

% cat tut_instr_file

COUNTS -bbcounts -fpcounts -branchcounts

CONSTRAIN main, copy_file
TRACE BOUNDS copy_file(size)

We will be getting all counting information (blocks, functions, source lines,
branches, and arcs) for the two functions specified in the CONSTRAIN directive,
main and copy_file.

2. Select Run Instrumentation from the Test menu in the Tester main window.

This process inserts code into the target executable that enables coverage data to
be captured. The dialog box shown in Figure 4-2, page 47, displays when Run
Instrumentation is selected from the Test menu.

Figure 4-2 Running Instrumentation

007–3986–004 47

4: Tester Graphical User Interface Tutorial

3. Enter copyn in the Executable field.

The Executable field is required, as indicated by the red highlight. You enter the
executable in this field.

4. Leave the Instrument Dir and Version Number fields as is.

The Instrument Dir field indicates the directory in which the instrumented
programs are stored. A versioned directory is created (the default is ver##n,
where n is 0 the first time and is incremented automatically if you subsequently
change the instrumentation). The version number n helps you identify the
instrumentation version you use in an experiment. The experiment results
directory will have a matching version number. The instrument directory is the
current working directory; it can be set from the Admin menu.

5. Click OK.

This executes the instrumentation process. If there are no problems, the dialog
box closes and the message Instrumentation succeeded displays in the
status area with the version number created.

Making a Test

A test defines the program and arguments to be run, the instrumentation criteria, and
descriptive information about the test.

Procedure 4-3 Making a Test

1. Select Make Test from the Test menu.

This creates a test directory. Figure 4-3 shows the Make Test window.

You specify the name of the test directory in the Test Name field, in this case
test0000. The field displays a default directory test<nnnn>, where nnnn is
0000 the first time and incremented for subsequent tests. You can edit this field if
necessary.

48 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 4-3 Selecting Make Test

2. Enter a description of the test in the Description field.

This is optional, but can help you differentiate between tests you have created.

3. Enter the executable to be tested with its arguments in the Command Line field,
in this example:

copyn alphabet targetfile 20

This field is mandatory, as indicated by its highlighting.

4. Leave the remaining fields as is.

007–3986–004 49

4: Tester Graphical User Interface Tutorial

Tester supplies a default instrumentation directory in the Instrument Dir field.
The Executable List field lets you specify multiple executables when your main
program forks, execs, or sprocs other processes.

5. Click OK to perform the make test operation with your selections.

The results of the make test operation display in the status area of the main Tester
window.

Running a Test

To run a test, we use technology from the WorkShop Performance Analyzer. The
instrumented process is set to run, and a monitor process (cvmon) captures test
coverage data by interacting with the WorkShop process control server (cvpcs).

Procedure 4-4 Running a Test

1. Select Run Test from the Test menu.

The dialog box shown in Figure 4-4, page 51, is displayed. You enter the test
directory in the Test Name field. You can also specify a version of the executable
in the Version Number field if you do not want to use the latest, which is the
default.

The Force Run toggle forces the test to be run again even if a test result already
exists. The Keep Performance Data toggle retains all the performance data
collected in the experiment. The Accumulate Results toggle sums over the
coverage data into the existing experiment results. Both No Arc Data and
Remove Subtest Expt toggles retain less data in the experiments and are
designed to save disk space.

50 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 4-4 Run Test Dialog Box

2. Enter test0000 in the Test Name field.

3. Click OK to run the test with your selections.

When the test completes, a status message showing completion displays and you
will have data to be analyzed. You can observe the test as it runs in Execution
View.

Analyzing the Results

You can analyze test coverage data in many ways. In this tutorial, we will illustrate a
simple top-down approach. We will start at the top to get a summary of overall
coverage, proceed to the function level, and finally go to the actual source lines.

Having collected all the coverage data, now you can analyze it. You do this through
the Queries menu in the main Tester window.

Procedure 4-5 Analyzing Test Coverage Data

1. Enter test0000 in the Test Name field in the main window and select List
Summary from the Queries menu.

007–3986–004 51

4: Tester Graphical User Interface Tutorial

This loads the test and changes the main window display as shown in Figure 4-5,
page 53. The query type (in this case, List Summary) is indicated above the
display area. Column headings identify the data, which displays in columns in
the coverage display area. The status area is shortened.

The query-specific fields (in this case, coverage weighting factors) that appear
below the control buttons and status area are different for each query type. You
can change the numbers and click Apply to weight the factors differently. The
Executable List button brings up the Target List dialog box. It displays a list of
executables used in the experiment and lets you select different executables for
analysis. You can select other experiments from the experiment menu (Expt).

List Summary shows the coverage data (number of coverage hits, total possible
hits, percentage, and weighting factor) for functions, source lines, branches, arcs,
and blocks. The last coverage item is the weighted average, obtained by
multiplying individual coverage averages by the weighting factors and summing
the products.

52 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Single/test set indicator
Query type

Coverage column headings

Coverage summary

Coverage weighting factors

Executable List
button

Experiment Menu
button

Figure 4-5 List Summary Query Window

2. Select List Functions from the Queries menu.

This query lists the coverage data for functions specified for inclusion in this test.
The default version is shown in Figure 4-6, page 54, with the available options.

007–3986–004 53

4: Tester Graphical User Interface Tutorial

Find
string

Display
or enter
function

Number of items
in the list

Sort menu

Include branches
Include blocks

Figure 4-6 List Functions Query with Options

If there are functions with 0 counts, they will be highlighted. The default column
headings are Functions, Files, and Counts.

3. Click the Blocks and Branches toggles.

The Blocks and Branches toggle buttons let you display these items in the
function list. Figure 4-7, page 55, shows the display area with Blocks and
Branches enabled.

54 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 4-7 List Functions Display Area with Blocks and Branches

The Blocks column shows three values. The number of blocks executed within
the function is shown first. The number of blocks covered out of the total possible
for that function is shown inside the parentheses. If you divide these numbers,
you will arrive at the percentage of coverage.

Similarly, the Branches column shows the number of branches covered, followed
by the number covered out of the total possible branches. The term covered means
that the branch has been executed under both true and false conditions.

4. Select the function main in the display area and click Source.

The Source View window displays with count annotations as shown in Figure 4-8,
page 56. Lines with 0 counts are highlighted in the display area and in the vertical
scroll bar area. Lines in excluded functions display with no count annotations.

5. Click the Disassembly button in the main window.

The Disassembly View window displays with count annotations as shown in
Figure 4-9, page 57. Lines with 0 counts are highlighted in the display area and in
the vertical scroll bar area.

007–3986–004 55

4: Tester Graphical User Interface Tutorial

Annotation
column

0-count
highlight

Figure 4-8 Source View with Count Annotations

56 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Annotation
column

0-count
highlight

Figure 4-9 Disassembly View with Count Annotations

Tutorial #2: Analyzing a Test Set
In the second tutorial, we are going to create additional tests with the objective of
achieving 100% overall coverage. From examining the source code, it seems that the
0-count lines in main and copy_file are due to error-checking code that is not
tested by test0000.

Note: This tutorial needs test0000, which was created in the previous tutorial.

1. Select Make Test from the Test menu on the Tester main window.

This displays the Make Test dialog box. It is easy to enter a series of tests. Using
the Apply button in the dialog box instead of the OK button completes the task
without closing the dialog box. The Test Name field supplies an incremented
default test name after each test is created.

We are going to create a test set named tut_testset and add to it 8 tests in
addition to test0000 from the previous tutorial. The tests test0001 and
test0002 pass too few and too many arguments, respectively. test0003
attempts to copy from a file named no_file that does not exist. test0004

007–3986–004 57

4: Tester Graphical User Interface Tutorial

attempts to pass 0 bytes, which is illegal. test0005 attempts to copy 20 bytes
from a file called not_enough, which contains only one byte. In test0006, we
attempt to write to a directory without proper permission. test0007 tries to
pass too many bytes. In test0008, we attempt to copy from a file without read
permission.

The following steps show the command line target and arguments and description
for the tests in the tutorial. The descriptions are helpful but optional. Figure 4-10
shows the features of the dialog box you will need for creating these tests.

2. Enter copyn alphabet target in the Command Line field, not enough
arguments in the Description field, and click Apply (or simply press the
Return key) to make test0001.

3. Enter copyn alphabet target 20 extra_arg in the Command Line field,
too many arguments in the Description field, and click Apply to make
test0002.

Default test name

Test description

Target with
arguments

Apply button

Figure 4-10 Make Test Dialog Box with Features Used in Tutorial

58 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

4. Enter copyn no_file target 20 in the Command Line field, cannot
access file in the Description field, and click Apply to make test0003.

5. Enter copyn alphabet target 0 in the Command Line field, pass bad
size arg in the Description field, and click Apply to make test0004.

6. Enter copyn not_enough target 20 in the Command Line field, not
enough data in the Description field, and click Apply to make test0005.

7. Enter copyn alphabet /usr/bin/target 20 in the Command Line field,
cannot create target executable due to permission problems in
the Description field, and click Apply to make test0006.

8. Enter copyn alphabet targetfile 200 in the Command Line field, size
arg too big in the Description field, and click Apply to make test0007.

9. Enter copyn /usr/etc/snmpd.auth targetfile 20 in the Command Line
field, no read permission on source file in the Description field, and
click Apply to make test0008.

We now need to create the test set that will contain these tests.

10. Click the Test Set toggle in the Test Type field.

This changes the dialog box as shown in Figure 4-11, page 60.

007–3986–004 59

4: Tester Graphical User Interface Tutorial

Test set toggle

Tests in working
directory Test set list

Test list control
buttons

Figure 4-11 Make Test Dialog Box for Test Set Type

11. Change the default in the Test Name field to tut_testset.

This is the name of the new test set. Now we have to add the tests to the test set.

12. Select the first test in the Test List field and click Add.

This displays the selected test in the Test Include List field, indicating that it will
be part of the test set after you click OK (or Apply and Close).

13. Repeat the process of selecting a test and clicking Add for each test in the Test
List field. When all tests have been added to the test set, click OK.

This saves the test set as specified and closes the Make Test dialog box.

14. Enter tut_testset in the Test Name field and select Describe Test from the
Queries menu on the main Tester screen.

60 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

This displays the test set information in the display area of the main window.

15. Select Run Test from the Test menu, enter tut_testset in the Test Name field
in the Run Test dialog box.

This runs all the tests in the test set.

16. Make sure tut_testset is in the Test Name field in the main Tester window
and select List Summary from the Queries menu.

This displays a summary of the results for the entire test set.

17. Select List Functions from the Queries menu.

This step serves two purposes. It enables the Source button so that we can look
at counts by source line. It displays the list of functions included in the test, from
which we can select functions to analyze.

18. Click the main function, which is displayed in the function list, and click the
Source button.

This displays the source code, with the counts for each line shown in the
annotations column. Note that the counts are higher now and full coverage has
been achieved at the source level (although not necessarily at the assembly level).

Tutorial #3: Exploring the Graphical User Interface
The rest of this chapter shows you how to use the graphical user interface (GUI) to
analyze test data. The GUI has all the functionality of the command line interface and
in addition shows the function calls, blocks, branches, and arcs graphically.

For a discussion of applying Tester to test set optimization, refer to "Tutorial #3:
Optimizing a Test Set", page 27. Although this is written for the command line
interface, you can use the graphical interface to follow the tutorial.

1. Enter test0000 in the Test Name field of the main window and press the
Enter key.

Since test0000 has incomplete coverage, it is more useful for illustrating how
uncovered items appear.

2. Select List Functions from the Queries menu.

The list of functions displays in the text view format.

007–3986–004 61

4: Tester Graphical User Interface Tutorial

3. Select Call Tree View from the Views menu.

The Tester main window changes to call graph format. Figure 4-12, page 62,
shows a typical call graph. Initially, the call graph displays the main function and
its immediate callees.

Call graph display area

Included (and covered)
nodes

Excluded nodes

Display control buttons

Search node field

Graph type controls

Figure 4-12 Call Graph for List Functions Query

The call graph displays functions as nodes and calls as connecting arrows. The
nodes are annotated by call count information. Functions with 0 counts are
highlighted. Excluded functions when visible appear in the background color.

62 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

The controls for changing the display of the call graph are just below the display
area (see Figure 4-13, page 63).

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button

Realign button

Rotate button a11661

Figure 4-13 Call Graph Display Controls

These facilities are:

• Zoom menu icon: shows the current scale of the graph. If clicked on, a popup
menu appears displaying other available scales. The scaling range is between
15% and 300% of the nominal (100%) size.

• Zoom Out icon: resets the scale of the graph to the next (available) smaller
size in the range.

• Zoom In icon: resets the scale of the graph to the next (available) larger size in
the range.

• Overview icon: invokes an overview popup display that shows a scaled-down
representation of the graph. The nodes appear in the analogous places on the
overview popup, and a white outline may be used to position the main graph
relative to the popup. Alternatively, the main graph may be repositioned with
its scroll bars.

• Multiple Arcs icon: toggles between single and multiple arc mode. Multiple
arc mode is extremely useful for the List Arcs query, because it indicates
graphically how many of the paths between two functions were actually used.

• Realign icon: redraws the graph, restoring the positions of any nodes that
were repositioned.

• Rotate icon: flips the orientation of the graph between horizontal (calling
nodes at the left) and vertical (calling nodes at the top).

007–3986–004 63

4: Tester Graphical User Interface Tutorial

Entering a function in the Search Node field scrolls the display to the portion of
the graph in which the function is located.

There are two buttons controlling the type of graph. Entering a node in the Func
Name field and clicking Butterfly displays the calling and called functions for
that node only (Butterfly mode is the default). Selecting Full displays the entire
call graph (although not all portions may be visible in the display area).

4. Select List Arcs from the Queries menu.

The List Arcs query displays coverage data for calls made in the test. Because we
were just in call graph mode for the List Functions query, List Arcs comes up in
call graph rather than text mode.

See Figure 4-14, page 65. To improve legibility, this figure has been scaled up to
150% and the nodes moved by middle-click-dragging the outlines. Arcs with 0
counts are highlighted in color. Notice that in List Arcs, the arcs rather than the
nodes are annotated.

64 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 4-14 Call Graph for List Arcs Query

5. Click the Multiple Arcs button (the third button from the right in the row of
display controls).

This displays each of the potential arcs between the nodes. See Figure 4-15, page
66. Arcs labeled N/A connect excluded functions and do not have call counts.

007–3986–004 65

4: Tester Graphical User Interface Tutorial

Multiple arcs
button

Figure 4-15 Call Graph for List Arcs Query — Multiple Arcs

6. Select Text View from the Views menu.

This returns the display area to text mode from call graph mode. See Figure 4-16,
page 67.

The Callers column lists the calling functions. The Callees column lists the
functions called. Line provides the line number where the call occurred; this is
particularly useful if there are multiple arcs between the caller and callee. The
Files column identifies the source code file. Counts shows the number of times
the call was made.

You can sort the data in the List Arcs query by count, file, caller, or callee.

66 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 4-16 Test Analyzer Queries: List Arcs

7. Select List Blocks from the Queries menu.

The window should be similar to Figure 4-17, page 68. The data displays in order
of blocks, with the starting and ending line numbers of the block indicated.
Blocks that span multiple lines are labeled sequentially in parentheses. The count
for each block is shown with 0-count blocks highlighted.

007–3986–004 67

4: Tester Graphical User Interface Tutorial

!
Caution: Listing all blocks in a program may be very slow for large programs. To
avoid this problem, limit your List Blocks operation to a single function.

Figure 4-17 Test Analyzer Queries: List Blocks

You can sort the data for List Blocks by count, file, or function.

68 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

8. Select List Branches from the Queries menu.

The List Branches query displays a window similar to Figure 4-18, page 69.

Figure 4-18 Test Analyzer Queries: List Branches

The first column shows the line number in which the branch occurs. If there are
multiple branches in a line, they are labeled by order of appearance within
trailing parentheses. The next two columns indicate the function containing the
branch and the file. A branch is considered covered if it has been executed under

007–3986–004 69

4: Tester Graphical User Interface Tutorial

both true and false conditions. The Taken column indicates the number of
branches that were executed only under the true condition. The Not Taken
column indicates the number of branches that were executed only under the false
condition.

The List Branches query permits sorting by function or file.

70 007–3986–004

Chapter 5

Tester Graphical User Interface Reference

This chapter describes the Tester graphical user interface. It contains these sections:

• "Accessing the Tester Graphical Interface", page 71

• "Main Window and Menus", page 72

• "Test Menu Operations", page 76

• "Views Menu Operations", page 84

• "Queries Menu Operations", page 87

• "Admin Menu Operations", page 101

When you run cvxcov, the main Tester window opens and an iconized version of the
Execution View appears on your screen. It displays the output and status of a
running program and accepts input. To open a closed Execution View, see “Clone
Execution View” in "Admin Menu Operations", page 101.

Accessing the Tester Graphical Interface
There are two methods of accessing the Tester graphical user interface:

• Type cvxcov at the command line with these optional arguments: -testname
test to load the test; -ver to show the Tester release version; and -scheme
schemename to set a predefined color scheme.

• Select Tester from the Launch Tool submenu in a WorkShop Admin menu (see
Figure 5-1, page 72). The major WorkShop tools, the Debugger, Static Analyzer,
and Build Manager provide Admin menus from which you can access Tester.

007–3986–004 71

5: Tester Graphical User Interface Reference

Figure 5-1 Accessing Tester from the WorkShop Debugger

Main Window and Menus
The main window and its menus are shown in Figure 5-2, page 73.

72 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Admin menu Views menu Queries menu Test menu

Test Name
input field

Coverage
display area

Control area

Status area

Search field

Figure 5-2 Main Test Analyzer Window

007–3986–004 73

5: Tester Graphical User Interface Reference

Test Name Input Field

The current test is entered (and displayed) in the Test Name field. You can switch to
a different test, test set, or test group through this field. To the right, the Type field
indicates whether it is a Single Test, Test Set, or Test Group. You can select a test (test
set or test group) from the List Tests dialog box under the Test menu, to appear in
the Test Name field in the main window.

Coverage Display Area

Test results display in the coverage display area. You select the results by choosing an
item from the Queries menu. You can select the format of the data—text, call tree, or
bar chart— from the Views menu. (Note that the Text View format is available for all
queries, whereas the other two views are limited.)

The Query Type displays under the Test Name field, just over the display. It is
followed on the far right of the window by the Query Size (number of items in the
list). Headings above the display are specific to each query.

Search Field

The Search field lets you look for strings in the coverage data. It uses an incremental
search, that is, as you enter characters, the highlight moves to the first matching
target. When you press the Return key, the highlight moves to the next occurrence.

Control Area Buttons

The Apply button is a general-purpose button for terminating data entry in text
fields; you can use the Return key equivalently. Both start the query.

The Source button lets you bring up the standard Source View window with Tester
annotations. Source View shows the counts for each line and highlights lines with 0
counts. By default, Source View is shared with other applications. For example, if
cvstatic performs a search for function A, the results of the query overwrite Tester
query results that are in the shared Source View. To stop sharing Source View with
other applications, set the following resource:

cvsourceNoShare: True

74 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

The Disassembly button brings up the Disassembly View window, called Assembly
Source Coverage, which operates at the machine level in a similar fashion to the
Source View. This view is not shared with other applications.

Note: If a test has very large counts, there may not be enough space in the Source
View and Disassembly View windows to display them. To make more room,
increase the canvasWidth resource in the Cvxcov app-defaults file,
Cvxcov*test*testdata*canvasWidth.

The Contribution button brings up the Test Contribution window with the
contributions made by each test so that you can compare the results. It is available for
the queries List Functions, List Arcs, and List Blocks. When the tests do not fit on
one page, multiple pages are used. Use the Previous Page and Next Page buttons to
display all the tests.

The Sort button lets you sort the test results by criteria such as function, count, file,
type, difference, caller, or callee. The criteria available depend on the current query.

Status Area and Query-Specific Fields

The status area displays status messages that confirm commands, issue warnings, and
indicate error conditions. When you enter a test name in the Test Name field, the
Func Name field appears (along with other items) in the status area for use with
queries. Entering a function in this field displays the coverage results limited to that
function only.

Additional items display in the area below the status area that change when you select
commands from the Queries menu. These items are specific to the query selected.
Some of these items can be used as defaults (see "Queries Menu Operations", page 87).

Main Window Menus

The Admin menu lets you perform general housekeeping concerning saving files,
setting defaults, changing directories, launching other WorkShop applications, and
exiting.

The Test menu lets you create, modify, and run tests, test sets, and test groups.

The Views menu lets you choose one of the following modes:

• Text mode, which displays results numerically in columns

007–3986–004 75

5: Tester Graphical User Interface Reference

• Graphical mode, which displays the following:

– Functions as nodes (rectangles) annotated by results

– Calls as arcs (connecting arrows)

• Bar graph mode, which displays the summary of a test as a bar graph.

The Queries menu lets you analyze the results of tests. The Help menu is standard in
all tools.

Test Menu Operations
All operations for running tests are accessed from the Test menu in the main Tester
window. Figure 5-3, page 77, shows the dialog boxes used to perform test operations.

The Test menu provides the following selections:

• Run Instrumentation: instruments the target executable. Instrumentation adds
code to the executable to collect coverage data. For a more detailed discussion of
instrumentation and instrument files, see "Single Test Analysis Process", page 5.

76 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 5-3 Test Menu Commands

The Run Instrumentation dialog box (see Figure 5-4, page 78) has these fields:

– Executable lets you enter the name of the target.

– Instrumentation File is for entering the instrumentation file, which is an ASCII
description of the instrumentation criteria for the experiment.

007–3986–004 77

5: Tester Graphical User Interface Reference

– Instrumentation Dir lets you enter the directory in which the instrumentation
file is stored (not necessary if you are using the current working directory).

– Version Number lets you specify the version number of the instrumentation
directory (ver##<versionnumber>). If this field is left blank, the version
number increments automatically.

If you are testing multiple executables (that is, testing coverage of an
executable that forks, execs, or sprocs other processes), then you need to
store these in the same instrumentation directory. You do this by entering the
same number in the Version Number field.

Figure 5-4 Run Instrumentation Dialog Box

• Run Test: invokes the executable with selected arguments and collects the
coverage data. The Run Test dialog box (see Figure 5-5, page 79) provides these
fields and buttons:

– Test Name is for entering the test name.

– Version Number is for entering the version number of the directory (ver##
<number>) containing the instrumented executable. If you are using the most
current (highest) version number, then you can leave the field blank; otherwise,
you need to enter the desired number.

– Force Run is a toggle that when turned on causes the test to be run even if
results already exist.

– Keep Performance Data is a toggle that when turned on retains all the
performance data collected in the experiment.

78 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

– Accumulate Results is a toggle that when turned on accumulates (sums over)
the coverage data into the existing experiment results.

– No Arc Data prevents arc information from being collected in the experiment.
It cannot be used with List Arcs or a Call Tree View. List Summary and
Compare Test will have 0% coverage on arc items. Use it to save space if you
do not need arc data.

– Remove Subtest Expt removes results for individual subtests for test sets or
test groups, letting you see the top level and taking less space. There will be
no data to query if you are querying a subtest.

Figure 5-5 Run Test Dialog Box

• Make Test: creates a test directory where the coverage data is to be stored and
stores a TDF (test description file).

The Make Test dialog box (see Figure 5-6, page 80) provides these fields for tests,
test sets, and test groups:

– Test Name is for entering the test name.

– Test Type is a toggle for indicating the type of test: single, test set, or test
group (for dynamically shared objects).

– Description lets you enter a description to document the test.

007–3986–004 79

5: Tester Graphical User Interface Reference

Figure 5-6 Make Test Dialog Box

If you select Single Test, the following fields are provided:

– Command Line lets you enter the target and any arguments to be used in the
test.

– Instrument Dir is the directory in which the instrumentation file and related
data are stored (not necessary if current working directory).

– Executable List is used if you are testing coverage of an executable that forks,
execs, or sprocs other processes and want to include those processes. You
must specify these executables in the Executable List field.

If you select Test Set, the following fields and buttons are provided:

– Test List contains all the tests in the working directory.

80 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

– Test Include List (to the right) displays tests included in the test set or test
group.

– Add looks at the selected item in the Test List or Select field and adds it to the
Test Include List.

– Remove looks at the selected item in the Test Include List and removes it.

– Select displays the currently selected test.

For a test group (see Figure 5-7, page 81), the following field is added to the same
fields and buttons used for a test set:

– Targets lets you enter a list of target DSOs or shared libraries, separated by
spaces.

Tests in
directory

Selected toggle

Tests selected for
inclusion in group

Figure 5-7 Make Test Dialog Box with Test Group Selected

007–3986–004 81

5: Tester Graphical User Interface Reference

• Delete Test: removes the specified test directory and its contents. The Delete Test
dialog box (see Figure 5-8, page 82) provides these fields:

– Test Name is for entering the test name.

– Recursive List is a toggle that when turned on includes all subtests in the
removal of test sets and test groups.

Figure 5-8 Delete Test Dialog Box

• List Tests: shows you the tests in the current working directory. The List Tests
dialog box (see Figure 5-9, page 83) provides these fields:

– Working Dir shows the directory containing the tests.

– A scrollable list field displays the tests present in the specified directory. The
scroll bars let you navigate through the tests if they do not fit completely in the
field. Clicking an item places it in the Select field. Double-clicking on a test
selects and loads it.

– Select displays the test name you type in or that you clicked in the list. Click
OK to load your selection into the Test Name field of the main Tester window.

– Close lets you exit without loading a selection.

82 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 5-9 List Tests Dialog Box

• Modify Test: lets you modify a test set or test group. You enter the test name in
the Test Name field and press the Return key or click the View button to load it.

The View button changes to Apply, the Test List field displays tests in the current
working directory, and the Test Include List field displays the contents of the test
set or test group. You can then add or delete tests, test sets, or test groups in the
current test set or test group, respectively. The Modify Test dialog box (see Figure
5-10, page 84) has these fields:

– Test Name is for entering the test name.

– Test List displays the tests in the current directory.

– Test Include List displays the subtests for the test specified in the Test Name
field.

– Select displays the test currently selected for adding or removing. You can
enter the test directly in this field instead of selecting it from the Test List or
Test Include List.

– The Add button lets you add the selected test to the Test Include List.

– The Remove button lets you delete the selected test from the Test Include List.

– The Apply button applies the changes you have selected. (The button name is
View until you load something.)

007–3986–004 83

5: Tester Graphical User Interface Reference

Figure 5-10 Modify Test Dialog Box after Loading Tests

Views Menu Operations
The Views menu has three selections that let you view coverage data in different
forms. The selections are:

• Text View: displays the coverage data in text form. The information displayed
depends on which query you have selected. See Figure 5-11, page 85.

84 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Column headings

Coverage data

Figure 5-11 List Functions Query in Text View Format

• Call Tree View: displays coverage data graphically, with functions as nodes
(rectangles) and calls as arcs (connecting arrows). This view is only valid for List
Functions, List Blocks, List Branches, and List Arcs. See Figure 5-12, page 86. It
is not available if you run a test with No Arc Data on.

007–3986–004 85

5: Tester Graphical User Interface Reference

Included node

Arc

Excluded node

Figure 5-12 List Functions Query in Call Tree View Format

• Bar Graph View: displays a bar chart showing the percentage covered for
functions, lines, blocks, branches, and arcs. See Figure 5-13, page 87. This view is
only valid for List Summary, which is described in detail in "Queries Menu
Operations", page 87.

86 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Coverage bars

Figure 5-13 List Summary Query in Bar Graph View Format

Queries Menu Operations
The Queries menu provides different methods for analyzing the results of coverage
tests. Each type of query displays the coverage data in the coverage display area in
the main Tester window and displays items that are specific to the query in the area
below the status area. When you set these items for a query, the same values are used
by default for subsequent queries until you change them. You can set these defaults
before the first query or as part of any query. For a single test or test set, all queries
except Describe Test have the fields shown in Figure 5-15, page 88.

007–3986–004 87

5: Tester Graphical User Interface Reference

Executable

Button for Target List dialog box
Experiment list

Figure 5-14 Query-Specific Default Fields for a Test or Test Set

The Executable field displays the executable associated with the current coverage
data. You can switch to a different executable by entering it directly in this field. You
can also switch executables by clicking the Executable List button, selecting from the
list in the Target List dialog box and clicking Apply in the dialog box.

The experiment menu (Expt) lets you see the results for a different experiment that
uses the same test criteria.

Note: When you are performing queries on a test group, the Executable field changes
to Object field and the Executable List button changes to Object List as shown in
Figure 5-15, page 88. These items act analogously except that they operate on
dynamically shared objects (DSOs).

Object name

Object list
Experiment list

Figure 5-15 Query-Specific Default Fields for a DSO Test Group

The Queries menu (see Figure 5-16, page 89) has these selections:

88 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 5-16 Queries Menu

• List Summary: shows the overall coverage based on the user-defined weighted
average over function, source line, branch, arc, and block coverage. The coverage
data appears in the coverage display area. A typical summary appears in Figure
5-17, page 90.

007–3986–004 89

5: Tester Graphical User Interface Reference

Single/test set/test
group indicator

Coverage summary

Coverage weighting
factor fields

Figure 5-17 List Summary Query

The Coverages column indicates the type of coverage. The Covered column
shows the number of functions, source lines, branches, arcs, and blocks that were
executed in this test (or test set or test group). The Total column indicates the total
number of items that could be executed for each type of coverage. The %
Coverage column is simply the Covered value divided by the Total value in each

90 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

category. The Weight column indicates the weighting assigned to each type of
coverage. It is used to compute the Weighted Sum, a user-defined factor that can
be used to judge the effectiveness of the test. The Weighted Sum is obtained by
first multiplying the individual coverage percentages by the weighting factors and
then summing the products.

The List Summary command causes the coverage weighting factor fields to
display below the status area. Use these to adjust the factor values as desired.
They should add up to 1.0.

If you select Bar Graph View from the Views menu, the summary will be shown
in bar graph format as shown in Figure 5-13, page 87. The percentage covered is
shown along the vertical axis; the types of coverage are indicated along the
horizontal axis.

• List Functions: displays the coverage data for functions in the specified test. The
Functions column heading identifies the function, Files shows the source file
containing the function, and Counts displays the number of times the function
was executed in the test.

List Functions enables the sort menu that lets you determine the order in which
the functions display. Only the sort criteria appropriate for the current query are
enabled, in this case, Sort By Func, Sort By Count, and Sort By File as shown in
Figure 5-18, page 92.

The Search field scrolls the list to the string entered. The string may occur in any
of the columns. This is an incremental search and is activated as you enter
characters, scrolling to the first matching occurrence.

Entering a function in the Func Name field displays the coverage results limited to
that function only in the display area.

The Filters button displays the Filters dialog box, which lets you enter filter
criteria to display a subset of the coverage results. There are three types of filters:
Function Count, Block Count (%), and Branch Count (%).

For blocks or branch coverage, use the toggles described below. Following each
label is an operator menu to define the relationship to the limit quantity entered.
Each filter type has a text field for entering the desired limit. The limits for Block
Count and Branch Count are percentages (of coverage) and can also be entered
using sliders.

007–3986–004 91

5: Tester Graphical User Interface Reference

Two toggles are available for including branch and block counts. Both appear as
actual counts followed by parentheses containing the ratio of counts to total
possible.

Display
function

Filters dialog
box

Include branches
Include blocks

Sort menu

Figure 5-18 List Functions Query with Options

If you select Call Tree View from the Views menu with a List Functions query, a
call graph displays (see Figure 5-19, page 93). The call graph displays coverage

92 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

data graphically, with functions as nodes (rectangles) and calls as arcs (connecting
arrows). The nodes are color-coded according to whether the function was
included and covered in the test, included and not covered, or excluded from the
test. Arcs labeled N/A connect excluded functions and do not have call counts.

If you hold down the right mouse button over a node, the node menu displays,
including the function name, coverage statistics, and standard node manipulation
commands. If you have a particularly large graph, you may find it useful to zoom
to 15% or 40% and look at the coverage statistics through the node menu.

Included node

Arc

Excluded node

Color key

Node menu

Figure 5-19 List Functions Example in Call Tree View Format

• List Blocks: displays a list of blocks for one or more functions and the count
information associated with each block (see Figure 5-20, page 94). The Blocks
column displays the line number in which the block occurs.

If there are multiple blocks in a line, blocks subsequent to the first are shown in
order with an index number in parentheses. The other three columns show the
function and file containing the block and the count, that is, the number of times
the block was executed in the test. Uncovered blocks (those containing 0 counts)
are highlighted. Block data can be sorted by function, file, or count.

Be careful before listing all blocks in the program, since this can produce a lot of
data. Entering a function in the Func Name field displays the coverage results
limited to that function only in the display area.

007–3986–004 93

5: Tester Graphical User Interface Reference

Block coverage
data

Multiple block
line

Figure 5-20 List Blocks Example

• List Branches: lists coverage information for branches in the program. Branch
coverage counts assembly language branch instructions that are taken and not
taken. See Figure 5-21, page 95.

The first column shows the line number in which the branch occurs. If there are
multiple branches in a line, they are labeled by order of appearance within trailing
parentheses.

The next two columns indicate the function containing the branch and the file. A
branch is considered covered if it has been executed under both true and false
conditions. The Taken column indicates the number of branches that were

94 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

executed only under the true condition. The Not Taken column indicates the
number of branches that were executed only under the false condition. Branch
coverage can be sorted only by function and file.

Entering a function in the Func Name field displays the coverage results limited to
that function only in the display area.

Block coverage
data

Multiple branch
line

Figure 5-21 List Branches Example

• List Arcs: shows arc coverage (that is, the number of arcs taken out of the total
possible arcs). An arc is a call from one function (caller) to another (callee). See
Figure 5-22, page 96. The caller and callee functions are identified in the first two
columns. The Line column identifies the line in the caller function where the call
occurs. The file and arc execution count display in the last two columns.

007–3986–004 95

5: Tester Graphical User Interface Reference

Arc coverage
data

Figure 5-22 List Arcs Example

Entering a function in the Func Name field displays the coverage results limited to
that function only.

The Caller and CalleeFunc Name toggles let you view the arcs for a single
function either as a caller or callee. You do this by entering the function name in
the field and then clicking the appropriate toggle, or CallerCallee.

• List Instrumentation: displays the instrumentation information for a particular
test. See Figure 5-23, page 97.

Function List toggle shows the functions that are included in the coverage
experiment.

96 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Ver allows you to specify the version of the program that was instrumented. The
latest version is used by default.

Executable displays the executable associated with the current coverage data. You
can switch to a different executable by entering it directly in this field. You can
also switch executables by clicking the Executable List button, selecting from the
list in the dialog box, and clicking Apply in the dialog box.

Test
description

Figure 5-23 List Instrumentation Example

007–3986–004 97

5: Tester Graphical User Interface Reference

• List Line Coverage: lists the coverage for each function for native source lines.
Entering a function in the Func Name field displays the coverage results limited to
that function only in the display area. See Figure 5-24.

Line coverage
data

Function input
field

Figure 5-24 “List Line Coverage” Example

• Describe Test: describes the details of the test, test set, or test group. When
working with test sets and test groups, it is useful to select the Recursive List
toggle, because it describes the details for all subtests. See Figure 5-25, page 99.

98 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Test
description

Recursive
list

Figure 5-25 Describe Test Example

• Compare Test: shows the difference in coverage for the same test applied to
different versions of the same program. To perform a comparison, you need to
select Compare Test from the Queries menu, enter experiment directories in the
experiment fields, and click Apply or press Return. The experiments are entered
in the form exp##<n> if in the same test or in the form test<nnnn>/exp##<n>
when comparing the results of different tests. See Figure 5-26, page 100.

007–3986–004 99

5: Tester Graphical User Interface Reference

Coverage comparison
results

Experiment fields

Function toggle

Experiment menu

Figure 5-26 Compare Test Example — Coverage Differences

The comparison data displays in the coverage display area. The basic types of
coverage display in the Coverages column. Result 1 and Result 2 display the
results of the experiments specified in the Expt1 and Expt2 fields, respectively.
Results are shown as the counts followed by the coverage percentage in
parentheses. The values in the Result 2 column are subtracted from those in
Result 1 and the differences are shown in the Differences column. If you want to
view the available experiments, click the Expt: menu.

100 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

You can also compare the differences in function coverage by clicking the Diff
Functions toggle. Figure 5-27, page 101, shows a typical function difference
example.

Differences
column

Function
toggle

Figure 5-27 Compare Test Example — Function Differences

Admin Menu Operations
The Admin menu is shown in Figure 5-28, page 102.

007–3986–004 101

5: Tester Graphical User Interface Reference

Figure 5-28 Admin Menu

The Admin menu has these selections:

• Save Results: brings up the standard File Browser dialog box so that you can
specify a file in which to save the results.

• Clone Execution View: displays an Execution View window. Use this if you have
closed the initial Execution View window and need a new one. (You need this
window to see the results of Run Test.)

• Set Defaults: allows you to change the working directory for work on tests in
other directories. Also, you can select whether or not to show function arguments.
This is useful when distinguishing functions that have the same name but
different arguments (for example, C++ constructors and overloaded functions).
See Figure 5-29, page 102.

Figure 5-29 “Set Defaults” Dialog Box

• “Launch Tool”: the Launch Tool submenu contains commands for launching other
WorkShop applications (see Figure 5-30, page 103).

102 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Figure 5-30 Launch Tool Submenu

If any of these tools are not installed on your system, the corresponding menu
item will be grayed out.

Exit closes all Tester windows.

007–3986–004 103

Appendix A

cvcov Command Line Examples

This appendix contains several examples of command line usage for cvcov. For
complete details about using cvcov, see the cvcov(1) man page and Chapter 3,
"Tester Command Line Reference", page 33.

General Test Command Examples
The following examples demonstrate commands that support the creation, inspection,
modification, and deletion of tests:

cattest describes the test details for a test, test set, or test group.

Example A-1 cattest Example

% cvcov cattest test0000

Test Info Settings

--

Test /disk2/tutorial/tutorial/test0000

Type single

Description

Command Line copyn alphabet targetfile 20

Number of Exes 1

Exe List copyn

Instrument Directory /disk2/tutorial/tutorial/

Experiment List

exp##0

exp##1

Example A-2 cattest Example without -r

% cvcov cattest tut_testset

Test Info Settings

--
Test /disk2/tutorial/tutorial/tut_testset

Type set

Description full coverage testset

Number of Exes 1

Exe List copyn

Number of Subtests 9

007–3986–004 105

A: cvcov Command Line Examples

Subtest List
[0] /disk2/tutorial/tutorial/test0000

[1] /disk2/tutorial/tutorial/test0001

[2] /disk2/tutorial/tutorial/test0002

[3] /disk2/tutorial/tutorial/test0003

[4] /disk2/tutorial/tutorial/test0004
[5] /disk2/tutorial/tutorial/test0005

[6] /disk2/tutorial/tutorial/test0006

[7] /disk2/tutorial/tutorial/test0007

[8] /disk2/tutorial/tutorial/test0008

Experiment List

exp##0

Example A-3 cattest Example with -r

% cvcov cattest -r tut_testset

Test Info Settings

Test /disk2/tutorial/tutorial/tut_testset

Type set

Description full coverage testset
Number of Exes 1

Exe List copyn

Number of Subtests 9

Subtest List

/disk2/tutorial/tutorial/test0000

/disk2/tutorial/tutorial/test0001
/disk2/tutorial/tutorial/test0002

/disk2/tutorial/tutorial/test0003

/disk2/tutorial/tutorial/test0004

/disk2/tutorial/tutorial/test0005

/disk2/tutorial/tutorial/test0006
/disk2/tutorial/tutorial/test0007

/disk2/tutorial/tutorial/test0008

Experiment List

exp##0

lsinstr lists the test directories in the current working directory.

106 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Example A-4 lsinstr Example

% cvcov lsinstr test0000
Instrumentation Info

Executable copyn

Version 0

Instrument Directory /x/tmp/carol/

Instrument File tut_instr_file
Criteria RBPA

Instrumented Objects copyn.pixie(2.57X)

libc.so.1_RBP_Instr(1.07X)

mktest creates a test directory.

Example A-5 Test Description File Examples

% cvcov mktest -cmd "copyn tut_instr_file targetfile"

cvcov: Made test directory: /d/Tester/tutorial/test0002

% cvcov cattest test0002

Test Info Settings

Test /d/Tester/tutorial/test0002

Type single

Description

Command Line copyn tut_instr_file targetfile

Number of Exes 1

Exe List copyn

Instrument Directory /d/Tester/tutorial

Experiment List

Coverage Analysis Commands
After the data has been collected from the test experiments, data can be analyzed
with special commands for the various types of coverage available.

lssum shows the overall coverage based on the user-defined weighted average over
function, line, block, branch, and arc coverage.

007–3986–004 107

A: cvcov Command Line Examples

Example A-6 lssum Example

% cvcov lssum test0000

Coverages Covered Total % Coverage Weight

--

Function 2 2 100.00% 0.400

Source Line 17 35 48.57% 0.200

Branch 0 10 0.00% 0.200

Arc 8 18 44.44% 0.200

Block 19 42 45.24% 0.000

Weighted Sum 58.60% 1.000

lsfun lists coverage information for the specified functions in the program that was
tested.

Example A-7 lsfun Example

% cvcov lsfun -pretty -sort function test0000

Functions Files Counts

copy_file copyn.c 1

main copyn.c 1

Note: C++ inline functions are not counted as functions.

lsblock displays a list of blocks for one or more functions and the count
information associated with each block.

Example A-8 lsblock Example

cvcov lsblock -pat main -pretty test0000

Blocks Functions Files Counts

13~16 main copyn.c 1

17~17 main copyn.c 0

18~18 main copyn.c 0

19~19 main copyn.c 0
21~21 main copyn.c 1

22~22 main copyn.c 0

23~23 main copyn.c 0

24~24 main copyn.c 0

108 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

26~26 main copyn.c 1
26~27 main copyn.c 1

27~27 main copyn.c 1

28~28 main copyn.c 0

28~28(2) main copyn.c 0

28~28(3) main copyn.c 0
28~28(4) main copyn.c 0

30~30 main copyn.c 0

31~31 main copyn.c 0

33~33 main copyn.c 0

34~34 main copyn.c 0

36~36 main copyn.c 0
37~37 main copyn.c 0

39~39 main copyn.c 0

41~41 main copyn.c 0

43~43 main copyn.c 1

43~43(2) main copyn.c 0
43~43(3) main copyn.c 1

lsbranch lists coverage information for branches in the program, including the line
number at which the branch occurs.

Example A-9 lsbranch Example

% cvcov lsbranch -pretty -sort function test0000

Line Functions Files Taken Not Taken

50 copy_file copyn.c 1 0

54 copy_file copyn.c 1 0
57 copy_file copyn.c 1 0

60 copy_file copyn.c 1 0

16 main copyn.c 1 0

21 main copyn.c 1 0

27 main copyn.c 1 0
28 main copyn.c 0 0

28(2) main copyn.c 0 0

28(3) main copyn.c 0 0

lsarc shows arc coverage, that is, the number of arcs taken out of the total possible
arcs.

007–3986–004 109

A: cvcov Command Line Examples

Example A-10 lsarc Example

% cvcov lsarc -callee printf -pretty test0001
Callers Callees Line Files Counts

main printf 17 copyn.c 1

main printf 18 copyn.c 1

main printf 22 copyn.c 0

main printf 23 copyn.c 0
main printf 30 copyn.c 0

main printf 33 copyn.c 0

main printf 36 copyn.c 0

lscall lists the call graph for the executable with counts for each function.

Example A-11 lscall Example

% cvcov lscall -pretty test0000

Graph Counts

main 1
copy_file 1

_open N/A

_stat... N/A

_creat N/A

_malloc... N/A
_read N/A

_write N/A

printf... N/A

exit... N/A

atoi N/A

Lists the coverage for native source lines.

Example A-12 lsline Example

% cvcov lsline -pretty -pat main test0000

Functions Files Covered Total % Coverage

main copyn.c 6 20 30.00%

lssource displays the source annotated with line counts. This option requires the
code to be compiled with the -g option.

110 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Example A-13 lssource Example

% cvcov lssource main test0000

Counts Source

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <fcntl.h>

#define OPEN_ERR 1

#define NOT_ENOUGH_BYTES 2

#define SIZE_0 3

int copy_file();

main (int argc, char *argv[])

1 {

int bytes, status;

1 if(argc < 4){

0 printf(‘‘copyn: Insufficient arguments.\n’’);

0 printf(‘‘Usage: copyn f1 f2 bytes\n’’);

0 exit(1);

}

1 if(argc > 4) {

0 printf(‘‘Error: Too many arguments\n’’);

0 printf(‘‘Usage: copyn f1 f2 bytes\n’’);

0 exit(1);

}

1 bytes = atoi(argv[3]);

diff shows the difference in coverage for different versions of the same program.
The following examples show different uses of the diff option.

Example A-14 diff between Two Tests

% cvcov diff test0000/exp##0 test0001/exp##0

Experiment 1: test0000/exp##0

Experiment 2: test0001/exp##0

007–3986–004 111

A: cvcov Command Line Examples

Coverages Exp 1 Exp 2 Differences
--

Function Coverage 2(100.00%) 1(50.00%) 1(50.00%)

Source Line Coverage 17(48.57%) 5(14.29%) 12(34.29%)

Branch Coverage 0(0.00%) 0(0.00%) 0(0.00%)

Arc Coverage 8(44.44%) 3(16.67%) 5(27.78%)
Block Coverage 19(45.24%) 4(9.52%) 15(35.71%)

Example A-15 diff between Different Instrumentations of the Same Test

% cvcov diff test0000/exp##0 test0000/exp##1
Experiment 1: test0000/exp##0

Experiment 2: test0000/exp##1

Coverages Exp 1 Exp 2 Differences

--

Function Coverage 2(100.00%) 2(100.00%) 0(0.00%)
Source Line Coverage 17(48.57%) 17(47.22%) 0(1.35%)

Branch Coverage 0(0.00%) 0(0.00%) 0(0.00%)

Arc Coverage 8(44.44%) 8(44.44%) 0(0.00%)

Block Coverage 19(45.24%) 19(44.19%) 0(-1.05%)

Test Set Command Examples
A test set is a named collection of tests and other test sets. Test sets can be
hierarchical. There are several commands used with test sets, including mktset,
addtest, deltest, and optimize.

optimize selects the minimum set of tests that give the same coverage or meet the
given coverage criteria as the given set.

Example A-16 Optimizing Test Sets

% cvcov optimize -pretty -blocks -branches test00*

Test Block Coverage Branch Coverage

test0000 41.54% 0.00%

test0001 7.69% 10.00%

test0002 7.69% 10.00%
test0003 9.23% 20.00%

112 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

test0004 9.23% 20.00%
test0005 6.15% 20.00%

test0006 1.54% 10.00%

Total Coverage 83.08% 90.00%

007–3986–004 113

Glossary

anti-leak

See bad free.

arc

A relation between two entities in a program depicted graphically as lines between
rectangles (nodes). For example, arcs can represent function calls, file dependency, or
inheritance.

Array Browser

A Debugger view that displays the values of an array in a spreadsheet format and
can also depict them graphically in a 3D rendering.

bad free

A problem that occurs when a program frees a malloced piece of memory that it had
already freed (also referred to as an anti-leak condition or double free).

bar graph view

A display mode of Tester that shows a summary of coverage information in a bar
graph.

basic block

A block of machine-level instructions used as a metric in Performance Analyzer and
Tester experiments. A basic block is the largest set of consecutive machine
instructions that can be formed with no branches into or out of them.

boundary overrun

A problem that occurs when a program writes beyond a specified region, for example
overwriting the end of an array or a malloced structure.

boundary underrun

A problem that occurs when a program writes in front of a specified region, for
example, writing ahead of the first element in an array or a malloced structure.

007–3986–004 115

Glossary

breakpoint

See trap (breakpoint) and watchpoint (data-breakpoint).

Browser (Static Analyzer)

A facility within the Static Analyzer for viewing structural and relationship
information in C++ or Ada programs. It provides three views: Browser View for
displaying member and class information; Class Graph for displaying inheritance,
containment, interaction, and friend relationships in the hierarchy; and Call Graph
for displaying the calling relationships of methods, virtual methods, and functions.

Build Analyzer

A tool that displays a graph of program files (source and object) indicating build
dependencies and provides access to the source files.

Build Manager

A tool for recompiling programs within WorkShop. The Build Manager has two
windows: Build Analyzer and Build View.

Build View

A view that lets you run compiles. In addition, Build View displays compile errors
and provides access to the code containing the errors.

calipers

See time line.

call graph

A generic term for views used in several tools (Static Analyzer, C++ Browser,
Performance Analyzer, and Tester) that display a graph of the calling hierarchy of
functions. Double-clicking a function in a call graph causes the Source View window
to be displayed showing the function’s source code.

Call Graph

A display mode of the C++ Browser that shows methods and their calls. See also call
graph and C++ Browser.

116 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Call Graph View

A Performance Analyzer view that shows functions, their calls, and associated
performance data. See also call graph and C++ Browser.

Call Stack View

A view that displays the call stack at the current context. In the Debugger this means
where the process is stopped; in the Performance Analyzer this means sample traps
and other events where data was written out to disk. Each frame in the Call Stack
view can show the function; argument names, values, and types; the function’s source
file and line number; and the PC (program counter). Double-clicking a frame in the
Call Stack view causes the Source View window to be displayed showing the
corresponding source code.

Call Tree View (Static Analyzer version)

A Static Analyzer view that displays the results of function queries as a call graph.
See also call graph and Static Analyzer.

Call Tree View (Tester version)

A Tester view that displays function coverage information in a call graph. See also
Tester.

Call View

A C++ Browser view for displaying member and class information. See also C++
Browser.

Class Graph

A C++ Browser view for displaying inheritance, containment, interaction, and friend
relationships in the class hierarchy.

Class Tree View

A Static Analyzer view that displays the results of class queries as a class hierarchy.
See also Static Analyzer.

command line (Debugger)

A field in the Debugger Main View that lets you enter a set of commands similar to
dbx commands.

007–3986–004 117

Glossary

cord

A system command used to rearrange procedures in an executable file to reduce
paging and achieve better instruction cache mapping. The Cord Analyzer and
Working Set View let you analyze the effectiveness of an arrangement and try out
new arrangements to improve efficiency.

Cord Analyzer

A tool that lets you analyze the paging efficiency of your executable’s working sets,
that is, the executable code brought into memory during a particular phase or
operation. It also calculates an optimized ordering and lets you try out different
working set configurations to reduce paging problems. The Cord Analyzer works
with the Working Set View, a part of the Performance Analyzer. See also cord,
working set, and Working Set View.

counts

The number of times a piece of code (function, line, instruction, or basic block) was
executed as listed by Tester or the Performance Analyzer.

coverage

A term used in Tester. Coverage means a test has exercised a particular unit of source
code, such as functions, individual source lines, arcs, blocks, or branches. In the case
of branches, coverage means the branch has been executed under both true and false
conditions.

CPU-bound

A performance analysis term for a condition in which a process spends its time in the
CPU and is limited by CPU speed and availability.

CPU time

A performance analysis metric approximating the time spent in the CPU. CPU time is
calculated by multiplying the number of times a PC appears in the profile of a
function, source line, or instruction by 10 ms.

cvcord

The name of the Cord Analyzer executable. See also Cord Analyzer.

118 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

cvcov

The name of the Tester command line interface executable. See also Tester.

cvd

The name of the Debugger executable file. cvd has options for attaching the
Debugger to a running process (-pid), examining core files (executable), and running
from a remote host (-host). See also Debugger.

cvperf

The name of the executable file that calls the Performance Analyzer. cvperf has an
option (-exp) for designating the name of the experiment directory. See also
Performance Analyzer.

cvspeed

The name of the executable file that brings up the Performance Panel, a window for
setting up Performance Analyzer experiments. See also Performance Panel.

cvstatic

The name of the executable file that calls the Static Analyzer. See also Static Analyzer.

cvxcov

The name of the executable file that calls the graphical interface of Tester. See also
Tester.

cycle count

The specified number of times to hit a breakpoint before stopping the process, it
defaults to one. The cycle count for any trap can be set through the Trap Manager
view in the Debugger.

Debugger

A tool in the ProDev WorkShop toolkit used for analyzing general software problems
using a live process. The Debugger lets you stop the process at specific locations in
the code by setting breakpoints (referred to as traps) or by clicking the Stop button.
At each trap, you can examine data by displaying special windows called views. See
also cvd.

007–3986–004 119

Glossary

Disassembly View

A view that lets you see the program’s machine-level code. The Debugger version
shows you the code; the Performance Analyzer version additionally displays
performance data for each line.

double free

See bad free.

DSO (dynamic shared object)

An ELF (Executable and Linking Format) format object file, similar in structure to an
executable program but with no main. It has a shared component, consisting of
shared text and read-only data; a private component, consisting of data and the GOT
(Global Offset Table); several sections that hold information necessary to load and link
the object; and a liblist, the list of other shared objects referenced by this object. Most
of the libraries supplied by Silicon Graphics are available as dynamic shared objects.

erroneous free

A problem that occurs when a program calls free() on addresses that were not
returned by malloc, such as static, global, or automatic variables, or other invalid
expressions.

event

An action that takes place during a process, such as a function call, signal, or a form
of user interaction. The Performance Analyzer uses event tracing in experiments to
help you correlate measurements to points in the process where events occurred.

exclusive performance data

Performance Analyzer data collected for a function without including the data for any
functions it calls. See also inclusive performance data.

Execution View

A Debugger view that serves as a simple shell to provide access outside of the
WorkShop environment. It is typically used to set environment variables, inspect
error messages, and conduct I/O with the program being debugged.

120 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

experiment

The model for using the Performance Analyzer and Tester. The steps in creating an
experiment are (1) creating a directory to hold the results, (2) instrumenting the
executable (instrumentation is recompiling with special libraries for collecting data),
(3) running the instrumented executable as a test, and (4) analyzing the results using
the views in the tools. The first two steps are done automatically when you use the
Performance Panel and select a performance task (performance experiments only).
The term experiment can also refer to the actual data itself that was saved.

Expression View

A Debugger view that lets you specify one or more expressions to be evaluated
whenever the process stops or the callstack context is changed. Expression View lets
you save sets of expressions for subsequent reuse, specify the language of the
expression (Ada, Fortran 77, Fortran 90, C, or C++), and specify the format for the
resulting values.

File Dependency View

A Static Analyzer view that displays the results of queries in a graph indicating file
dependency relationships. See also Static Analyzer.

Fileset Editor

A window for specifying a fileset, that is, the set of files to be used in creating a
database for Static Analyzer queries. The Fileset Editor also lets you specify whether
a file is to be analyzed using scanner mode or parser mode. See also parser mode,
scanner mode, and Static Analyzer.

fine-grained usage

A technique in performance analysis that captures resource usage data between
sample traps.

Fix+Continue

A feature in the Debugger that lets you make source level changes and continue
debugging without having to perform a full compile and relinking.

007–3986–004 121

Glossary

floating-point exception

A problem that occurs when a program cannot complete a numerical calculation due
to division by zero, overflow, underflow, inexact result, or invalid operand.
Floating-point exceptions can be captured by the Performance Analyzer and can also
be identified in the Array Browser.

freed memory

Freed memory is memory that was originally malloced and has been returned for
general use by calling free(). Accessing freed memory is a problem that occurs
when a program attempts to read or write this memory, possibly corrupting the free
list maintained by malloc.

function list

A generic type of view used in several tools (Static Analyzer, Performance Analyzer,
Tester, and Cord Analyzer) to list functions and related information, such as location,
experiment data, and executable code size. Double-clicking a function displays its
source code in Source View.

GLDebug

A graphical software tool for debugging application programs that use the IRIS
Graphics Library (GL). GLDebug locates programming errors in executables when GL
calls are used incorrectly. GLDebug is not part of WorkShop but is accessible from the
Admin menu in Main View.

heap corruption

A memory problem that may be due to boundary overrun or underrun, accessing
uninitialized memory, accessing freed memory, freeing a memory location twice, or
attempting to free a memory location erroneously. See also malloc debugging library.

Heap View

A Performance Analyzer view that displays a map of memory indicating how blocks
of memory were used in the time interval set by the time line calipers.

122 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

ideal time

A performance analysis metric that assumes that each instruction takes one cycle of
the particular machine’s time. It is then useful to compare the ideal time with the
actual time in an experiment.

inclusive performance data

Performance Analyzer data collected for a function where the total includes data for
all of the called functions. See also exclusive performance data.

instrumentation

See experiment.

I/O-bound

A performance analysis term for a condition in which a process has to wait for I/O to
complete and may be limited by disk access speeds or memory caching.

I/O View

A Performance Analyzer view that displays a chart devoted to I/O system calls. I/O
View can identify up to ten files involved in I/O.

IRIS IM

A user interface toolkit on Silicon Graphics systems based on X/Motif.

IRIS IM Analyzer

A Debugger view for debugging X/Motif applications. The IRIS IM Analyzer lets you
look at object data, set breakpoints at the object or X protocol level, trace X and
widget events, and tune performance.

IRIS ViewKit

A Developer Magic toolkit that provides predefined widgets and classes for building
applications.

007–3986–004 123

Glossary

Leak View

A Performance Analyzer view that displays each memory leak that occurred in your
experiment, its size, the number of times the leak occurred at that location during the
experiment, and the call stack corresponding to the selected leak.

library search path

A path you may need to specify when debugging executables or core files to indicate
which DSOs (dynamic shared objects) are required for debugging. See also DSO.

Main View

The main window of the Debugger. The MainView provides access to other tools and
views, process controls, a source code display, and a command line for entering a set
of commands similar to dbx. You can also add custom buttons to Main View using
the command line.

Malloc Error View

A Performance Analyzer view that displays each malloc error (leaks and bad frees)
that occurred in an experiment, the number of times the malloc occurred (a count is
kept of mallocs with identical call stacks), and the call stack corresponding to the
selected malloc error.

malloc debugging library

A special library (libmalloc_cv.a) for detecting heap corruption problems.
Relinking your executable with the malloc library sets up mechanisms for trapping
memory problems.

Malloc View

A Performance Analyzer view that displays each malloc (whether or not it caused a
problem) that occurred in your experiment, its size, the number of times the malloc
occurred (a count is kept of mallocs with identical call stacks), and the call stack
corresponding to the selected malloc.

MegaDev

The package name for a set of advanced Developer Magic tools for the development
of C and C++ applications.

124 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Memory-bound

A performance analysis term for a condition in which a process continuously needs to
swap out pages of memory.

memory leak

A problem when a program dynamically allocates memory and fails to deallocate that
memory when it is through with the space.

Memory View

A Debugger view that lets you see or change the contents of memory locations.

Multiprocess View

A Debugger view that lets you manage the debugging of a multiprocess executable.
For example, you can set traps in individual processes or across groups of processes.

node

The rectangles in graphical views. A node may represent a function, class, or file
depending on the type of graph.

Overview window

A window in graphical views that displays the current graph at a reduced scale and
lets you navigate to different parts of the graph.

parser mode

A method of extracting Static Analyzer data from source files. Parser mode uses the
compiler to build the Static Analyzer database. It is language-specific and very
thorough; as a result, it is slower than scanner mode. See also scanner mode and
Static Analyzer.

Path Remapping

A dialog box that lets you set mappings to redirect filenames used in building your
executable to their actual locations in the filesystem.

007–3986–004 125

Glossary

PC (program counter)

The current line in a stopped process, indicated by a right-pointing arrow with a
highlight in the source code display areas and by a highlighted frame in the Call
Stack views.

Performance Analyzer

A tool in the ProDev WorkShop toolkit used for measuring the performance of an
application. To use the tool, you select one of the predefined analysis tasks, run an
experiment, and examine the results in one of the Performance Analyzer views. See
alsocvperf.

Performance Panel

A window for setting up Performance Analyzer experiments. The panel displays
toggles and fields for specifying data to be captured. As a convenience, you can select
performance tasks (such as Determine bottlenecks... or Find memory leaks) from a
menu that specifies the data automatically. See alsocvspeed(1).

phase

A performance analysis term for a period in an experiment covering a single activity.
In a phase, there is one limiting resource that controls the speed of execution.

pollpoint sampling

A technique in performance analysis that captures performance data, such as resource
usage or event tracing, at regular intervals.

Process Meter

A view that monitors the resource usage of a running process without saving the
data. See also Performance Analyzer and Performance Panel.

ProDev WorkShop

The package name for the core WorkShop tools.

profile

A record of a program’s PC (program counter), call stack, and resource consumption
over time, used in performance analysis.

126 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Project View

A Debugger view for managing the ProDev WorkShop toolkit and MegaDev tools
operating on a common target.

query

The term for a search through a Static Analyzer database to locate elements in your
program. Queries are similar to the IRIX grep(1) command but provide a more
specific search. For example, you can perform a query to find where a method is
defined. See also Static Analyze

Register View

A Debugger view that lets you see or change the contents of the machine registers.

Results Filter

A dialog box that lets you limit the scope of Static Analyzer queries. See also query
and Static Analyzer.

sample trap

Similar to a stop trap except that instead of stopping the process, performance data is
written out to disk and the process continues running. See also trap.

sampling

In performance analysis, the capture of performance data, such as resource usage or
event tracing, at points in an experiment so that a graph of usage over time can be
created.

scanner mode

A method of extracting Static Analyzer data from source files. Scanner mode is fast
but not language-specific so that the source code need not be compliable. Results may
have minor inaccuracies. See also parser mode and Static Analyzer.

Signal Panel

A dialog box for specifying signals to trap.

007–3986–004 127

Glossary

Smart Build

An option to the compiler where only those files that must be recompiled are
recompiled.

Source View

A window for viewing or editing source code. Source View is an alternative editing
window to Main View. If you have conducted Performance Analyzer or Tester
experiments, you can view the results in the column to the left of the source code
display area.

stack

See Call Stack.

Static Analyzer

A tool in the ProDev WorkShop toolkit used for viewing the structure of a program at
different levels and locating where elements of the program are used or defined. The
Static Analyzer works by extracting structure and location information from files that
you specify and storing the information in a database for subsequent analysis. You
can view the analysis as a text list or graphically. See alsocvstatic(1), Call Tree
View, Class Tree View, File Dependency View, and Text View.

stop trap

A breakpoint. See also trap.

Data Explorer

A Debugger view that graphically displays data structures including data values and
pointer relationships.

Syscall Panel

A dialog box for specifying system calls to trap. You can designate whether to trap
the system calls at the entry or exit from the call.

test group

A grouping of experiments in Tester used to test a common DSO (dynamic shared
object).

128 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

test set

A group of experiments in Tester used to test a common executable file.

Tester

A tool in the ProDev WorkShop toolkit used for measuring dynamic coverage over a
set of tests. It tracks the execution of functions, individual source lines, arcs, blocks,
and branches. Tester has both a command line and a graphical interface.

Text View (Static Analyzer version)

A Static Analyzer view that displays the results of queries as a scrollable text list. See
also Static Analyzer.

Text View (Tester version)

A Tester view that displays function coverage information in a report form. See also
Tester.

time line

A feature in the main Performance Analyzer window that shows where events
occurred in an experiment and provides calipers for controlling the scope of analysis
for the Performance Analyzer views.

tracing

A record of a specified type of event (such as reads and writes, system calls, page
faults, floating-point exceptions, and mallocs, reallocs, and frees) over time, used in
performance analysis.

trap

A mechanism to allow the debugger to get control at specified points and conditions
in a live process. More commonly referred to as a breakpoint (either a code
breakpoint or a data-breakpoint [watchpoint]).

There are two types of traps: stop traps are used in debugging to halt a process, and
sample traps are used in performance analysis to collect data while halting the
process only briefly (and continuing execution automatically). See also watchpoint.

007–3986–004 129

Glossary

Trap Manager

A window for managing traps. It lets you set simple or conditional traps, browse (or
modify) a list of traps, and save or load a set of traps.

uninitialized memory

Memory that is allocated but not assigned any specific contents. Accessing
uninitialized memory is a problem that occurs when a program attempts to read
memory that has not yet been initialized with valid information.

Usage View (Graphical)

A Performance Analyzer view that contains charts indicating resource usage and the
occurrence of events, corresponding to time intervals set by the time line calipers.

Usage View (Textual)

A Performance Analyzer report that displays the actual resource usage values
corresponding to time intervals set by the time line calipers.

Variable Browser

A Debugger view that displays the local variables valid in the current context and
their values (or addresses). The Variable Browser also lets you view the previous
value at the breakpoint. You can enter a new value directly if you wish.

view

A window that lets you analyze data.

ViewKit

See IRIS ViewKit.

watchpoint

Commonly referred to as a data-breakpoint. A trap that fires when a specified
variable or address is read or written.

working set

The set of executable pages, functions, and instructions brought into memory during
a particular phase or operation. See also Working Set View.

130 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Working Set View

A Performance Analyzer view that lets you measure the coverage of the dynamic
shared objects (DSOs) that make up your executable. It indicates instructions,
functions, and pages that were not used in a particular phase or operation in an
experiment. Working Set View works with the Cord Analyzer. See also working set
and Cord Analyzer.

007–3986–004 131

Index

A

Accumulate results button, 51
Add button, 81
addtest, 39
Admin menu, 101
analyzing a test set, 21
analyzing test data, 18
app-defaults file, cvxcov resource, 75
Apply button, 74
arc coverage, 2
-arg, 34
automated testing , 11

B

bar graph example, 91
Bar graph view, 87
basic block coverage, 2
batch testing, 11
Blocks button, 92
BOUNDS

example, 47
branch coverage, 2, 92
Branches button, 92

C

call graph controls, 63
Call tree view, 86
callees, 66

cvcov, 34
List arcs and, 96

callers, 66
cvcov, 34

callers List arcs and, 96
canvasWidth resource, 75
cattest, 35

example, 17, 105, 107
Clone execution view, 102
Command line field, 49

Make test and, 80
command line tutorial, 15
command test component, 4
Compare test, 100
compiling, effect on coverage, 2
CONSTRAIN, 6

example, 16, 47
-contrib, 33
Contribution button, 45, 75
control area buttons, 74
COUNTS, 5

example, 16, 47
coverage

defined, 1
display area, 74
types, 2

coverage analysis, 10
procedure, 5

coverage analysis commands, 37
coverage display area, 45
coverage testing hierarchy, 14
coverage weighting factor fields, 91
cp, not using with cvcov, 39, 41
cvcov

addtest, 39
cattest, 35
coverage analysis commands, 35
coverage test set commands, 35
deltest, 39
diff, 39
help, 15, 35

007–3986–004 133

Index

lsarc, 38
lsblock, 38
lsbranch, 38
lscall, 38
lsfun, 37
lsinstr, 35
lsline, 38
lssource, 39
lssum, 37
lstest, 35
mktest, 36
mktgroup, 41
mktset, 39
rmtest, 36
runinstr, 36
runtest, 37
syntax, 34
test commands, 35
test group command, 35

cvcov options, 33
cvsourceNoShare, 74
cvxcov, 44

D

default instrumentation file, 6
default_instr_file, 6
Delete test dialog box, 82
deltest, 39
Describe test, 99
Description field, 49
diff, 39

example, , 111, 112
Diff functions button, 101
directory

instrumentation, 4
Disassembly button, 45, 55
Disassembly view, 45

example, 56
width, 75

DSO, 1, 4, 14

making a test group, 81
test group commands, 40

dynamically shared object , 1

E

EXCLUDE, 6
-exe, 33
Executable field, 88
executable file, 4
executable instrumentation, 16
executable list, 4
Executable list button, 88
Execution View, 51
Execution view, 71, 102
exp##0, 9
experiment result reports, 3
experiment results, 3, 9
experiment types, 2
Expt menu, 88
Expt1 and expt2 fields, 101

F

Filters dialog box, 92
Force run button, 51
Func name field, 75
function coverage, 2
-functions, 34

G

Graph call tree
example, 62

graphical user interface, , 44, 46
methods of access, 71
reference, 71
tutorial, 43

134 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

GUI main window, 72
GUI tutorial

setup, 43

H

help, 15, 35

I

INCLUDE, 6
-instr_dir, 33
-instr_file, 34
instrumentation

lsinstr, 35
process, 8
tutorial, 16, 47

instrumentation directory, 4
instrumentation file, 4, 5

CONSTRAIN, 6
COUNTS, 5
default, 6
EXCLUDE, 6
INCLUDE, 6

K

Keep performance data button, 51

L

Launch tool submenu, 103
List arcs, 96

column headings, 66
example, 64

List blocks, 93
example, 68

List branches, 94

column headings, 70
example, 69

List Functions, 91
column headings, 54
example, 54

List instrumentation, 96
List line coverage, 98
List Summary

example, 52
List summary, 90
List tests dialog box, 83
-list, 34
lsarc, 10, 38

example, 110
lsblock, 10, 38

example, , 108
lsbranch, 10, 38

example, 109
lscall, 10, 38

example, 110
lsfun, 10, 37

example, , 18, 108
lsinstr, 35

example, , 107
lsline, 38

example, 39
lssource, 11, 39

example, 18, 111
lssum, 10, 37

example, , 18, 51, 108
lstest, 35

M

main tester window, , 44–46
graphical overview, 72
menus, 75

Make test, 9
dialog box, 79
example, 48

007–3986–004 135

Index

MAX
example, 47

mktest, 9, 36
example, 17, 48, 107

mktgroup, 40
mktset, 39
Modify test dialog box, 83
Multiple arcs

example, 66
icon, 63

multiple tests, 3, 13
mv, not using with cvcov, 39, 41

N

Next page button, 75
No arc data, 51
Not taken column, 95

O

Object field, test group and, 88
Object list button, test group and, 88
optimizing a test set, 27
Overview button, 63

P

-pat, 34
-pretty, 34
Previous page button, 75

Q

Queries menu, 89, 87
introduction, 11

Query size, 74
Query type, 74

query-specific fields, 87

R

-r, 34
realign button, 63
Recursive list button

Delete test and, 82
Describe test and, 99

Remove button, 81
Remove subtest expt, 50
resource, cvsourceNoShare, 74
result directories, 4
results directory, 9
rmtest, 36
rotate button, 64
Run Instrumentation

example, 47
Run instrumentation

dialog box, 77
Run Test

example, 51
Run test, 9

dialog box, 78
“Run instrumentation”, 8
runinstr, 8, 36

example, 16
runtest, 9, 37

example, 17, 50

S

Save results, 102
Search field, 74

List Functions and, 91
Select, 81
Set defaults, 102
setting up the tutorial, 15, 43
sharing source view with applications, 74

136 007–3986–004

ProDevTM WorkShop: Tester User’s Guide

Show function arguments button, 102
sort menu, 45, 75

List Functions and, 91
-sort, 34
Source button, 45
source line coverage, 2
Source view, 45

width, 75
starting tester main window, 44
status area, 45, 75
subnode, 38

T

Taken column, 95
Target list dialog box, 88
Targets, 81
TDF, 9

example, 17
test components, 4
test description file, 9

example, 17
test directory, 9
test group, 40

commands, 40
Test include list, 81
Test list, 81
Test menu, 76
Test name field, 45, 74
test set, 3, 13, 39, 57

making, 80
test0000, 9
Tester GUI, 71
Tester versions, 2
testing procedure, 5
tests, contribution button and, 45
Text call tree example, 66
Text view, 84
tutorial

analyzing a single test, 16
command line interface, 15
graphical user interface, 43
set up, 15, 43

Type field, 74
types of experiments, 2

U

units
defined, 1

usage model, 5

V

-v, 33
ver##0, 8

example, 17
-ver, 33
Version number field

Run instrumentation and, 78
Run Test and, 51
”Run executable” and, 48

Views menu, 84

W

WorkShop, 103

Z

Zoom in, 63
Zoom menu, 63
Zoom out, 63

007–3986–004 137

	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	List of Procedures

	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Using Tester
	Tester Overview
	Test Coverage Data
	Types of Experiments
	Experiment Results
	Multiple Tests
	Test Components

	Usage Model
	Single Test Analysis Process

	Automated Testing
	Additional Coverage Testing

	2. Tester Command Line Interface Tutorial
	Setting Up the Tutorials
	Tutorial #1: Analyzing a Single Test
	Instrumenting an Executable
	Making a Test
	Running a Test
	Analyzing Test Coverage Data

	Tutorial #2: Analyzing a Test Set
	Tutorial #3: Optimizing a Test Set

	3. Tester Command Line Reference
	Common cvcov Options
	cvcov Command Syntax and Description
	General Test Commands
	Coverage Analysis Commands
	Test Set Commands
	Test Group Commands

	4. Tester Graphical User Interface Tutorial
	Setting Up the Tutorial
	Tutorial #1: Analyzing a Single Test
	Invoking the Graphical User Interface
	Instrumenting an Executable
	Making a Test
	Running a Test
	Analyzing the Results

	Tutorial #2: Analyzing a Test Set
	Tutorial #3: Exploring the Graphical User Interface

	5. Tester Graphical User Interface Reference
	Accessing the Tester Graphical Interface
	Main Window and Menus
	Test Name Input Field
	Coverage Display Area
	Search Field
	Control Area Buttons
	Status Area and Query-Specific Fields
	Main Window Menus

	Test Menu Operations
	Views Menu Operations
	Queries Menu Operations
	Admin Menu Operations

	A. cvcov Command Line Examples
	General Test Command Examples
	Coverage Analysis Commands
	Test Set Command Examples

	Glossary
	Index

