
Guaranteed-Rate I/O Version 2 Guide

007–4244–001

CONTRIBUTORS

Written by Lori Johnson
Illustrated by Chrystie Danzer
Production by Karen Jacobson
Engineering contributions by Andrew Gildfind, Ken McDonell

COPYRIGHT
© 2004 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any
manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1500 Crittenden Lane,
Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
IRIX, Silicon Graphics, SGI, and the SGI logo are registered trademarks and CXFS is a trademark of Silicon Graphics, Inc., in the
United States and/or other countries worldwide.

UNIX and the X device are registered trademarks of The Open Group in the United States and other countries.

Record of Revision

Version Description

001 February 2004
Original publication

007–4244–001 iii

Contents

About This Guide . vii

Related Publications . vii

Obtaining Publications . viii

Conventions . viii

Reader Comments . ix

1. Introduction . 1

What Does GRIO Do? . 1

Terminology . 2

GRIOv1 and GRIOv2 Differences 2

Overview . 4

2. How GRIO Works . 5

Traffic Control . 5

Stream Use and Real-Time File Setup 6

Software Components . 6

ggd2 Daemon . 6

Qualified Bandwidth . 7

Managing Bandwidth: Encapsulation and Distributed Bandwidth Allocator 7

GRIO Server Relocation and Recovery 9

3. Setting Up GRIO . 11

Installation Requirements . 11

Deployment Considerations for Cluster Volumes 11

Data Layout . 12

007–4244–001 v

Contents

Choosing a Qualified Bandwidth 12

Local Volumes and Cluster Volumes 15

Local Volume Domain Configuration 16

Cluster Volume Domain Configuration 16

Licensing . 17

Starting GRIO . 18

Starting GRIOv2 when GRIOv1 is Active 18

Starting GRIOv2 when GRIOV1 is Not Active 18

Monitoring GRIO . 19

4. GRIO API Overview 21

grio_avail() . 21

grio_bind() . 22

grio_get_stream() . 22

grio_modify() . 23

grio_release() . 23

grio_reserve() and grio_reserve_fd() 24

grio_unbind() . 26

Index . 27

vi 007–4244–001

About This Guide

This publication provides information about GRIO version 2, the second-generation
guaranteed-rate I/O product from SGI. It is supported with CXFS multiOS CXFS 3.1.1
or later plus any required patches.

Related Publications
The following publications contain additional information that may be helpful:

• CXFS Administration Guide for SGI InfiniteStorage

• CXFS MultiOS Client-Only Guide for SGI InfiniteStorage

• IRIX Admin: Disks and Filesystems

• XVM Volume Manager Administrator’s Guide

• Man pages:

– fx(1M)

– ggd2(1M)

– griomon(1M)

– grioqos(1M)

– grioadmin(1M)

– open(2)

– grio_avail(3X)

– grio_bind(3X)

– grio_modify(3X)

– grio_release(3X)

– grio_reserve(3X)

– grio_unbind(3X)

007–4244–001 vii

About This Guide

– griotab(4)

– grio2(5)

– grioqos(5)

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, enter infosearch at a command line or select Help >
InfoSearch from the Toolchest.

• On IRIX systems, you can view release notes by entering either grelnotes or
relnotes at a command line.

• On Linux systems, you can view release notes on your system by accessing the
README.txt file for the product. This is usually located in the
/usr/share/doc/productname directory, although file locations may vary.

• You can view man pages by typing man title at a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

viii 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, California 94043–1351

SGI values your comments and will respond to them promptly.

007–4244–001 ix

Chapter 1

Introduction

GRIO version 2 (GRIOv2) is the second-generation guaranteed-rate I/O product from
SGI.

Note: When it is necessary to distinguish between the previous version (version 1)
and the current version (version 2), this guide uses the terms GRIOv1 and GRIOv2.
Where the term GRIO is used without qualification, it refers to version 2.

What Does GRIO Do?
GRIO does the following:

• Enables a user application to reserve part of a system’s I/O resources for its
exclusive use

• Guarantees delivery of data from a storage device at a predefined rate, regardless
of any other I/O activity on the system or on other nodes in the cluster

• Ensures that the rate at which a process issues I/O does not exceed its guarantee
and will throttle the I/O if necessary

GRIO includes the following features:

• Support for CXFS filesystems shared among nodes in a cluster as well as locally
attached XFS filesystems

• A simple filesystem-level performance qualification model (rather than the often
complex device-qualification model used in GRIOv1)

• A range of tools for monitoring and measuring delivered bandwidth and I/O
service time

007–4244–001 1

1: Introduction

Terminology
GRIO uses the following terminology:

• Quality of service (QoS) refers to the performance properties of a system service
(such as worst-case bandwidth or I/O service time).

• Qualified bandwidth is the maximum bandwidth that can be delivered by a
filesystem (and the XVM volume on which it resides) in a given configuration
under a realistic application workload such that all applications are delivered an
adequate quality of service.

• Reservation is the set of quality-of-service parameters requested by a user
application. Reservation requests are forwarded to the ggd2(1M) bandwidth
management daemon.

• Guarantee is the assurance made by the system to a user process that it will deliver
data from a storage device at the reserved rate regardless of any other I/O activity
on the system or on other nodes within its cluster.

• Stream is the object within the kernel that encodes the reservation’s
quality-of-service parameters and maintains the necessary scheduling and
monitoring state required to fulfill the guarantee.

GRIOv1 and GRIOv2 Differences
Although you can have both the GRIOv1 and GRIOv2 subsystems installed on the
same machine, only one of them can be active. For more information, see "Starting
GRIO" on page 18.

Table 1-1 summarizes the primary differences between GRIOv1 and GRIOv2.

2 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

Table 1-1 Differences Between GRIOv1 and GRIOv2

GRIOv1 GRIOv2

Reservation-granting
daemon:

ggd ggd2

Userspace library: libgrio libgrio2

Logical volumes: XLV XVM

Filesystems supported: Local XFS filesystems only Local XFS filesystems and shared CXFS filesystems

Multiple-node support: No Yes

Qualification model: Device-level: the maximum
sustainable bandwidth for
each hardware component in
the I/O path (including the
storage devices themselves,
the SCSI and Fibre Channel
busses, system interconnects,
and bridges), is qualified
separately

Filesystem-level: the maximum sustainable
bandwidth is measured across the entire filesystem
under a realistic application workload. The
qualified bandwidth is stored as follows:

• XFS: in the /etc/griotab file
• CXFS: in the cluster database

007–4244–001 3

1: Introduction

GRIOv1 GRIOv2

Monitoring service Limited administration tools Comprehensive tools for measuring and monitoring
delivered quality-of-service levels, including
collection of per-stream performance metrics. You
can use the information provided by the
quality-of-service infrastructure to choose the
tradeoff between resource utilization and delivered
I/O performance that is most appropriate for a
given application mix, workload, and production
environment. For more information, see the
griomon(1M), grioqos(1M), and grioadmin(1M)
man pages.

Control of
non-GRIO-managed
I/O

No control Cluster-wide encapsulation and control. When
GRIOv2 begins managing a filesystem, every node
with access to that filesystem is notified. From that
point on, all user and system I/O that does not
have an explicit reservation is encapsulated. This
means that I/O that is not managed by GRIO is
automatically associated with a system-managed
kernel stream. The ggd2 daemon allocates
otherwise unused bandwidth to these streams,
which allows non-GRIO–managed I/O to be
processed even when there are active reservations in
the system. ggd2 dynamically adjusts the amount
of bandwidth allocated for this purpose based on
monitoring of filesystem demand and utilization.

For more information, see the ggd2(1M), griotab(4), grioadmin(1M),
grioqos(1M), griomon(1M), and grioqos(5) man pages

Overview
This guide provides the information you need to administer GRIO. It discusses the
following:

• Chapter 2, "How GRIO Works" on page 5

• Chapter 3, "Setting Up GRIO" on page 11

• Chapter 4, "GRIO API Overview" on page 21

4 007–4244–001

Chapter 2

How GRIO Works

This chapter discusses the following:

• "Traffic Control"

• "Stream Use and Real-Time File Setup" on page 6

• "Software Components" on page 6

• "ggd2 Daemon" on page 6

• "Qualified Bandwidth" on page 7

• "Managing Bandwidth: Encapsulation and Distributed Bandwidth Allocator" on
page 7

• "GRIO Server Relocation and Recovery" on page 9

Traffic Control
GRIO is a component on the XFS and CXFS I/O path that runs in every node with
access to a GRIO-managed filesystem. When active, all I/O on a machine and in the
cluster is controlled by the GRIO scheduler.

I/O falls into the following categories:

• GRIO I/O: I/O for applications that have made an explicit GRIO reservation

• Non-GRIO I/O: all other buffered and system I/O

GRIO ensures that applications with reserved bandwidth receive data at the requested
rate, regardless of other I/O activity on the node and elsewhere within the cluster.
GRIO will throttle an application if it attempts to use more bandwidth than it has
reserved.

007–4244–001 5

2: How GRIO Works

Stream Use and Real-Time File Setup
In order to use a GRIO reservation, a file must be read or written using direct,
synchronous I/O requests. The open(2) man page describes the use and buffer
alignment restrictions of the direct I/O interface. A GRIO reservation can be made for
any file within an XFS or CXFS filesystem created on an XVM volume. However, for
optimal performance, files should be created on a dedicated real-time subvolume.

To allocate a file on the real-time subvolume of an XFS or CXFS filesystem, you must
use the fcntl(2) F_FSSETXATTR command to set the XFS_XFLAG_REALTIME flag.
You can only issue this command on a newly created file. It is not possible to mark a
file as real-time after non-real-time data blocks have been allocated to it.

Software Components
GRIO functionality is distributed between the following main components:

• ggd2 daemon (see "ggd2 Daemon" on page 6)

• libgrio2 library, which implements the GRIO userspace API (see Chapter 4,
"GRIO API Overview" on page 21)

• The operating system kernel, including the following:

– Stream management

– I/O scheduler

– Cluster integration

– Messaging

ggd2 Daemon
The ggd2(1M) daemon is a user-level process started at system boot time that
manages the I/O bandwidth for a collection of XVM volumes. It does the following:

• Activates/deactivates the GRIO kernel scheduler

• Processes client requests to reserve and release bandwidth

• Tracks bandwidth utilization

6 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

• Manages unallocated bandwidth

• Prevents oversubscription

• Enforces GRIO software licenses

• Broadcasts to the relevant kernels the amount of bandwidth per filesystem that
may be used for non-GRIO I/O

Qualified Bandwidth
The qualified bandwidth for a filesystem is the maximum I/O load that it can sustain
while still satisfying requirements for delivered bandwidth and I/O service time.

You must determine a specific qualified bandwidth for each GRIO-managed
filesystem.

The qualified bandwidth is specified in the griotab file for local IRIX filesystems or
in the cluster database for shared filesystems.

The ggd2 daemon is responsible for managing the allocation of available bandwidth
between different applications.

You can adjust the qualified bandwidth as needed to make the best use of your
system, taking into account the tradeoff between resource utilization and delivered
I/O performance. For more information, see "Choosing a Qualified Bandwidth" on
page 12.

Managing Bandwidth: Encapsulation and Distributed Bandwidth Allocator
The ggd2 daemon tracks the total qualified bandwidth and ensures that the total
workload never exceeds the qualified bandwidth.

When ggd2 begins managing a filesystem, every node with access to that filesystem
is notified. Each node in turn creates a dedicated system stream for that filesystem,
which is called the non-GRIO stream. From that point on, all user and system I/O that
does not have an explicit GRIO reservation is encapsulated by this stream and then
managed by the GRIO scheduler. For a local filesystem, there is a single non-GRIO
stream. For a shared filesystems, there is a non-GRIO stream on each node with
access to the filesystem.

007–4244–001 7

2: How GRIO Works

Note: The scheduling for all non-GRIO I/O within a GRIO-managed filesystem
received from different applications and system services is on a first-come-first-served
basis.

To keep the total throughput of the filesystem high even when there are active GRIO
streams, ggd2 attempts to allocate the unreserved portion of the qualified bandwidth
for use by non-GRIO applications. This bandwidth is effectively lent for short periods
of time until ggd2 receives a new request for guaranteed-rate bandwidth, at which
point it is reclaimed. GRIO applications have priority over non-GRIO applications.

The ggd2 daemon periodically adjusts the amount of bandwidth allocated to the
individual non-GRIO streams for its managed filesystems. This functionality is
referred to as the distributed bandwidth allocator (DBA). The DBA is responsible for
determining how unreserved bandwidth is distributed between the nodes with access
to the filesystem. By default, the DBA runs every two seconds, constantly allocating
free bandwidth to nodes based on a range of dynamically monitored demand and
utilization metrics.

Calls to reserve bandwidth may block until the next DBA cycle. Therefore,
applications must be prepared for delays when setting up guaranteed-rate streams.
Refer to grio_reserve()(3X) for more information. To help manage this, you can
use the -r option to cause ggd2 to keep a cache (or reserve) of bandwidth that is
unavailable for non-GRIO use, from which new GRIO reservations can be processed
directly. Any additional bandwidth that is available is free to be used by either future
GRIO or DBA streams. Figure 2-1 represents these concepts.

8 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

Reservation
A

Reservation
B

Reservation
C

Res
D

-r cache freenode1
-m
bw node2

-m
bw

-m
bw

-m
bw

Free bandwidth that
can be allocated
to future GRIO or
non-GRIO use

Spare bandwidth after GRIO
reservations have been made
that has been allocated to
non-GRIO use (by the DBA),
with a minimum assigned to
each node in MB/sec (ggd2 -m bw)

Cached bandwidth
that may only be
allocated to new
GRIO reservations
 (ggd2 -r %)

Qualified bandwidth

Explicit GRIO reservations

Figure 2-1 Qualified Bandwidth

A user process can request a reservation using the grio_reserve() and
grio_reserve_fd() library calls. Requests are forwarded to the ggd2 that is
actively managing the target volume domain. Requests to filesystems in the local
domain are immediately sent to the local instance of ggd2. Requests to filesystems
cluster domain are forwarded to the GRIO server, which may be running on a
different node in the cluster.

GRIO Server Relocation and Recovery
Each instance of ggd2 maintains reservation and bandwidth state that must be kept
consistent with one or more kernels.

If ggd2 fails, a new ggd2 instance will receive from the local kernel all of the
information necessary to reestablish the following:

• Local volume reservations

• Cluster volume reservations (if the ggd2 that failed was the GRIO server for the
cluster)

• All of the DBA state for non-GRIO I/O

007–4244–001 9

2: How GRIO Works

If GRIO server node fails, a new GRIO server is automatically elected and all of the
cluster volume reservations and DBA state is reestablished by that instance of ggd2.

You can also choose to manually migrate the GRIO server to another CXFS
administration node in the cluster.

10 007–4244–001

Chapter 3

Setting Up GRIO

This chapter discusses the following:

• "Installation Requirements"

• "Deployment Considerations for Cluster Volumes"

• "Data Layout" on page 12

• "Choosing a Qualified Bandwidth" on page 12

• "Local Volumes and Cluster Volumes" on page 15

• "Licensing" on page 17

• "Starting GRIO" on page 18

• "Monitoring GRIO" on page 19

Installation Requirements
To operate in local volume domain on an IRIX node, you must install the
eoe.sw.grio2 product.

To enable clustered GRIO support on IRIX, you must install both eoe.sw.grio2 and
cxfs.sw.grio2_cell.

In a cluster deployment, every node must be GRIO-enabled. Consult the CXFS
multiOS release notes to determine whether your platform has been GRIO-enabled.

Deployment Considerations for Cluster Volumes
You must observe the following constraints when setting up GRIO filesystems:

• If any of the logical units (LUNs) on a particular device will be managed as GRIO
filesystems, then all of the LUNs should be managed as GRIO filesystems.
Typically, there will be hardware contention between separate LUNs, both in the
storage area network (SAN) and within the storage device. If only a subset of the
LUNs are managed, I/O to the unmanaged LUNs could still cause

007–4244–001 11

3: Setting Up GRIO

oversubscription of the device and could in turn violate guarantees on the
managed filesystems.

• A storage device containing GRIO–managed filesystems should not be shared
between clusters. The GRIO daemons running within different clusters are not
coordinated, and unmanaged I/O from one cluster can cause guarantees in the
other cluster to be violated.

Data Layout
To set up a filesystem on a RAID device such that you achieve correct filesystem
device alignment and maximize I/O performance, remember to do the following:

• Ensure that each data partition is correctly aligned with the internal disk layout of
its LUN

• Set XVM stripe parameters correctly

• Pass correct volume geometry (stripe unit and width) to mkfs_xfs(1)

For more information, see the grio2(5) man page.

Choosing a Qualified Bandwidth
You can adjust the qualified bandwidth to reflect the specific trade-off between
delivered quality of service and utilization of the storage infrastructure for your
situation.

The following affect the qualified bandwidth you will choose:

• The hardware configuration

• The application work flow and I/O load

• The specific quality–of–service requirements of applications and users

Typically, the first concern is that the required bandwidth can be delivered by the
storage system. The second concern is the timeliness or service times observed for
individual I/Os.

12 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

Determining qualified bandwidth is an iterative process. There are several strategies
you can use to determine and fine-tune the qualified bandwidth for a filesystem. For
example:

• Establish a given bandwidth and then adjust so that the quality-of-service
requirements are met. Do the following:

1. Make an initial estimate of the qualified bandwidth. You can use the fixed
storage architecture parameters (RAID performance, number of HBAs, etc.) to
estimate the anticipated peak bandwidth that can be delivered. The qualified
bandwidth is then determined as an appropriate fraction of this peak.

2. Configure ggd2 (either using griotab or the cluster database) appropriately.

3. Run a test workload.

4. Monitor the delivered performance.

5. Refine the estimate as needed.

• Establish that quality–of–service requirements are satisfied and then adjust to
maximize throughput. To do this, increase the load until the storage system can
no longer meet the application quality-of-service requirements; the qualified
bandwidth must be lower than this value.

• Explore the space of possible workloads and test whether a given workload
satisfies both bandwidth and application quality-of-service requirements.

Although the hardware configuration provides a basis for calculating an estimate,
remember that the qualified bandwidth is also affected by the particular work-flow
issues and the quality-of-service requirements of individual applications. For example,
an application that has large tunable buffers (such as a flipbook application that does
aggressive RAM caching) can tolerate a greater variation in I/O service time than can
a media broadcast system that must cue and play a sequence of very short clips. In
the first example, the qualified bandwidth would be configured as a larger proportion
of the sustained maximum. In the second example, the qualified bandwidth might be
reduced to minimize the system utilization levels and improve I/O service times.

A high qualified bandwidth will generally achieve the greatest overall throughput but
with the consequence that individual applications may intermittently experience
longer service times for some I/Os. This variation in individual service times is
referred to as jitter; as the storage system approaches saturation, service-time jitter
will typically increase. A lower qualified bandwidth means that total throughput will
be reduced, but because the I/O infrastructure is under less stress, individual requests

007–4244–001 13

3: Setting Up GRIO

will typically be processed with less variation in individual I/O service times. Figure
3-1 illustrates these basic ideas. The precise relationship between load on the storage
system and variation in I/O service time is highly dependent on your storage
hardware.

Variation in I/O Service Time "Jitter"

Aggressive
(high qualified bandwidth)

T
h

ro
u

g
h

p
u

t

High

Low
HighLow

Conservative
(low qualified bandwidth)

Figure 3-1 Tradeoff Between Throughput and Variation in I/O Service Time (Jitter)

Some storage devices (particularly those with real-time schedulers) can provide a
fixed bound on I/O service time even at utilization levels close to their maximum. In
this case, the qualified bandwidth can be set higher even where applications have
tight quality-of-service requirements. The user-adjustable qualified bandwidth
provides the flexibility required for GRIO to work with both dedicated real-time
devices as well as more common off-the-shelf storage systems.

Note: In all cases, you must verify the chosen qualified bandwidth by testing the
storage system under a realistic workload.

You can use the grioqos(1M) tool to measure the delivered quality-of-service
performance. This tool extracts quality-of-service performance for an active stream
without disturbing the application or the kernel scheduler. GRIO maintains very
detailed performance metrics for each active stream. Using the grioqos command

14 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

while running a workload test lets you answer questions such the following for every
active stream in the system:

• What has been the worst observed bandwidth over a 1-second period?

• What is the worst observed average I/O service time for a sequence of 10 I/Os?

For more information about GRIO tools and the mechanisms for accessing
quality-of-service data within the kernel, see the grioqos(1M) and grioqos(5) man
pages.

Local Volumes and Cluster Volumes
A managed volume can be one of the following:

• A local volume is attached to the node in question. This volume is in the local
volume domain.

Local volumes are always managed by the instance of the ggd2 daemon running
on the node to which they are attached.

• A cluster volume is used with CXFS filesystems and is shared among nodes in a
cluster. This volume is in the cluster volume domain.

All cluster volumes are managed by a single instance of the ggd2 daemon
running on one of the CXFS administration nodes in the cluster; this node is
referred to as the GRIO server. There is one GRIO server per cluster.

The GRIO server is elected automatically. You can relocate it by using the
grioadmin(1M) command. The GRIO server must be a CXFS administration
node. Client-only nodes will never be elected as GRIO servers.

If a given CXFS administration node has locally attached volumes and has also
been selected as the GRIO server, then the ggd2 running on that node will serve
dual-duty and will manage both its own local volume domain and the cluster
volume domain.

For more information about CXFS, see "Cluster Volume Domain Configuration" on
page 16 and CXFS Administration Guide for SGI InfiniteStorage.

007–4244–001 15

3: Setting Up GRIO

Local Volume Domain Configuration

To configure GRIO for local volume domains, you must provide information in the
/etc/griotab file.

The /etc/griotab file lists the volumes that should be managed by GRIO and the
maximum qualified bandwidth they can deliver. This file is read at startup and
whenever ggd2 receives a SIGHUP signal (such as when you issue a killall -HUP
ggd2 command). See the ggd2(1M) and griotab(4) man pages for more information.

Cluster Volume Domain Configuration

You must use the cmgr(1M) cluster configuration tool to configure cluster volumes
for GRIO.

To mark a filesystem as GRIO-managed and set its qualified bandwidth, use the
following commands:

/usr/cluster/bin/cmgr

Welcome to SGI Cluster Manager Command-Line Interface

cmgr> modify cxfs_filesystem fsname in cluster clustername
cmgr> set grio_managed to true

cmgr> set grio_qualified_bandwidth to qualified_bandwidth
cmgr> done

The value for qualified_bandwidth is specified in bytes per second. For example, the
following sets the qualified bandwidth to 200 MB/s (200*1024*1024):

cmgr> set grio_qualified_bandwidth to 209715200

To show the current status of a shared filesystem:

cmgr> show cxfs_filesystem fsname in cluster clustername
...

GRIO Managed Filesystem: true

GRIO Managed Bandwidth: qualified_bandwidth
...

Note: In cmgr, you must unmount a filesystem before you can modify it.

16 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

A prompting mode is also available for cmgr. For more information, see the CXFS
Administration Guide for SGI InfiniteStorage.

If you have installed the cxfs.sw.grio2_cell subsystem and turned on GRIO, the
ggd2 daemon will automatically query the cluster configuration database for GRIO
volume configuration information. ggd2 dynamically tracks updates to the cluster
database.

Licensing
The GRIO FLEXlm licensing regime controls a number of configuration parameters
including the total number of active streams and the total aggregate qualified
bandwidth of filesystems under management. Separate license types are provided for
the local and cluster volume domains, and license constraints are enforced for each
volume domain separately.

The ggd2 daemon checks the license at startup, whenever it detects a configuration
change, or when it receives a SIGHUP signal.

License enforcement for streams is straightforward. The license for a given volume
domain specifies a maximum number of active streams. All reservation requests
above this limit are denied.

In the case of bandwidth, a license specifies the maximum total aggregate qualified
bandwidths for all volumes within the volume domain. The ggd2 daemon validates
the configuration at startup and whenever the configuration is changed:

• For the local domain, ggd2 tracks changes to /etc/griotab (ggd2 is notified of
changes with a SIGHUP)

• For the cluster volume domain, ggd2 tracks the relevant cluster database entries
for cluster volume qualified bandwidth

If the configuration of a volume domain is altered and becomes unlicensed, ggd2
enters a passive mode in which all further requests pertaining to that domain, with
the exception of release requests, are denied. A message is sent to the system log and
that volume domain will remain deactivated until the configuration returns to a
licensed state, at which time another message will be logged indicating the domain is
again active.

For more information, see the license.dat(5) man page.

007–4244–001 17

3: Setting Up GRIO

Starting GRIO
Although you can have both the GRIOv1 subsystem and the GRIOv2 subsystem
installed on the same machine, only one of these subsystems can be active. The
subsystem that is turned on in chkconfig is started by default at boot time and
remains in effect until the chkconfig setting is changed and the machine is rebooted.

Starting GRIOv2 when GRIOv1 is Active

Suppose you were running GRIOv1 and wanted to switch to GRIOv2. After
performing the configuration tasks discussed in this guide, you would do the
following:

1. Turn off GRIOv1 (grio) and turn on GRIOv2 (grio2):

chkconfig grio off

chkconfig grio2 on

2. Reboot the system to allow the kernel to be reinitialized with the GRIOv2
scheduler.

You do not need to manually start GRIOv2 because the daemon is automatically
started upon reboot when the chkconfig setting is on.

Note: If GRIOv1 is still enabled when you perform a GRIOv2 library call, the return
will be ENOSYS. If you do not have either the GRIOv1 or GRIOv2 kernel initialized,
the return will be EAGAIN, indicating that the subsystem has not yet initialized and
the application should retry the request.

Starting GRIOv2 when GRIOV1 is Not Active

If you have not run GRIOv1 during the current boot session, you can start GRIOv2 by
doing the following:

1. Turn on GRIOv2:

chkconfig grio2 on

2. Start GRIOv2:

/etc/init.d/grio2 start

18 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

You must perform the manual start only once. When the machine is rebooted,
GRIOv2 will be restarted automatically as long as its chkconfig setting remains on.

Monitoring GRIO
You can use the griomon(1M) tool to monitor active streams within the system and
display their high-level performance metrics, such as the currently allocated
bandwidth and total bytes transferred.

007–4244–001 19

Chapter 4

GRIO API Overview

User processes communicate with the ggd2 daemon using the following core library
calls:

• "grio_avail()"

• "grio_bind()" on page 22

• "grio_get_stream()" on page 22

• "grio_modify()" on page 23

• "grio_release()" on page 23

• "grio_reserve() and grio_reserve_fd()" on page 24

• "grio_unbind()" on page 26

The process that initially reserves bandwidth by calling grio_reserve() or
grio_reserve_fd() is referred to as the owning process. Any streams not already
released when their owning process exits will be automatically released. Processes
can share streams. The ownership of a GRIO stream is nontransferable.

grio_avail()

Synopsis:

#include <grio2.h>

int grio_avail(

const char *fs,

grio_off_t *bytes, grio_msecs_t *msecs)

cc ... -lgrio2

The grio_avail() call returns the currently available guaranteed-rate bandwidth
for a specified filesystem. The returned bandwidth is the qualified bandwidth of the
filesystem minus bandwidth reserved for active GRIO streams and any bandwidth
statically allocated for nonguaranteed-rate I/O. While ggd2 temporarily allows
unreserved bandwidth to be used for servicing nonguaranteed-rate I/O, this

007–4244–001 21

4: GRIO API Overview

bandwidth is reclaimed when a GRIO reservation is received and is therefore
considered available.

For more information, see the grio_avail(3X) man page.

grio_bind()

Synopsis:

#include <grio2.h>

int grio_bind(grio_descriptor_t fd, grio_stream_id_t *stream_id);

cc ... -lgrio2

The grio_bind() call binds one or more open file descriptors to a GRIO stream.
Once bound, all I/O to or from the file descriptors will receive the quality-of-service
guarantees of the stream.

Binding a file descriptor increments the reference count of a stream by 1. The file
descriptor remains bound to the stream until it is either closed or explicitly unbound
with grio_unbind().

The file descriptor must be capable of GRIO I/O. That is, it must refer to an open file
on an XFS or CXFS filesystem and be configured for direct I/O.

For more information, see the grio_bind(3X) man page.

grio_get_stream()

Synopsis:

#include <grio2.h>

int grio_get_stream(

grio_descriptor_t fd,

grio_stream_id_t *stream_id);

cc ... -lgrio2

The grio_get_stream() call returns the ID of the stream to which it is bound.

22 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

For more information, see the grio_get_stream(3X) man page.

grio_modify()

Synopsis:

#include <grio2.h>

int grio_modify(

grio_stream_id_t *stream_id,

grio_off_t *bytes, grio_msecs_t *msecs,

int flags)

cc ... -lgrio2

The grio_modify() call changes the properties of an existing GRIO stream. You can
increase or decrease reserved bandwidth by using this call.

Note: grio_modify() is a synchronous call and, when increasing a reservation,
may block while bandwidth is reallocated. This delay can be in the order of 1 or 2
seconds and applications should be designed to accommodate this delay if necessary.
While a call to grio_modify() is being processed, I/O to the stream continues
uninterrupted at its existing rate.

For more information, see the grio_modify(3X) man page.

grio_release()

Synopsis:

#include <grio2.h>

int grio_release(grio_stream_id_t *stream_id)

cc ... -lgrio2

The grio_release() call removes a GRIO stream ID from the system and releases
the primary reference taken when it was created. When all remaining references to

007–4244–001 23

4: GRIO API Overview

the stream are removed, the stream will be destroyed and its associated bandwidth
will be returned to the system.

The grio_release() call hides the stream. Attempts to bind new file descriptors
using grio_bind() will fail with a return value of ENOENT. However, the
quality-of-service guarantees of the stream will remain in effect until all remaining
bound file descriptors are either unbound or closed, and any in-flight I/O to the
stream completes.

This behavior gives an application some flexibility in controlling the extent of a GRIO
guarantee. For instance, by binding a file descriptor to a stream and immediately
releasing the stream, an application can create a temporary reservation that persists
for as long as the file descriptor remains open. Alternatively, if a process does not
explicitly release a stream, the guarantee persists until that process exits.

For more information, see the grio_release(3X) man page.

grio_reserve() and grio_reserve_fd()

Synopsis:

#include <grio2.h>

int grio_reserve(
const char *path,

grio_off_t *bytes, grio_msecs_t *msecs,

int flags,

grio_stream_id_t *stream_id)

int grio_reserve_fd(

grio_descriptor_t fd,

grio_off_t *bytes, grio_msecs_t *msecs,

int flags,

grio_stream_id_t *stream_id)

cc ... -lgrio2

24 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

The grio_reserve() and grio_reserve_fd() calls reserve guaranteed rate
bandwidth to or from a GRIO-managed filesystem. If successful, they set up a GRIO
stream in the kernel with the requested properties and return its stream ID:

• grio_reserve() makes a filesystem-level reservation. The target filesystem is
identified with a path that must be either the filesystem mount point or the device
special file on which it is located. Before guaranteed rate I/O can be performed,
an open file descriptor must be bound to the new stream using grio_bind().

• grio_reserve_fd() makes a file-level reservation. It takes an open file
descriptor on the target filesystem. In addition to reserving bandwidth, the file
descriptor is bound to the newly created stream. The file must therefore be suitable
for guaranteed rate I/O and satisfy the normal requirements of grio_bind.

The requested bandwidth is specified as the number of bytes delivered every msecs
milliseconds. msecs is referred to as the reservation interval. This value provides
additional information to the GRIO scheduler about an application’s ability to tolerate
variation in I/O service time. (For example, an application request of 1MB every
tenth of a second suggests a tighter requirement than 100 MB delivered every second,
even though both requests describe the same average data rate.) GRIO uses this
information as a hint only, and honors the expressed bandwidth over an
implementation-defined scheduling interval.

grio_release() should be called when the stream is no longer required.

The process that creates a stream with these calls is said to be the owning process. Any
streams not already released when their owning process exits will be automatically
released. The ownership of a GRIO stream is not transferable.

GRIO streams are reference-counted. When created, a new stream has a reference
count of 1. This primary reference remains until the reservation is released using
grio_release() or the owning process exits.

A stream persists until its reference count drops to 0. Binding a file descriptor using
grio_bind() adds a reference. Unbinding using grio_unbind() or closing a file
descriptor removes a reference. In-flight I/O will also add references to a stream for
short periods of time.

It is possible, and frequently useful, for a stream to persist after it has been released.
For more information, see the grio_release() man page.

007–4244–001 25

4: GRIO API Overview

Note: Both grio_reserve() and grio_reserve_fd() are synchronous calls and
may block while bandwidth is reallocated. This delay is referred to as the stream
creation latency.

In the worst case, this delay can be in the order of 1 or 2 seconds, although it may be
significantly less depending on the configuration of a particular GRIO deployment.

The following are strategies to minimize the impact of this behavior:

• Reserve bandwidth well ahead of time
• Perform reservations in a dedicated thread
• Reuse a reservation wherever possible
• Configure ggd2 to keep a proportion of the available free bandwidth

uncommitted using the -r option.

For more information, see the grio_reserve(3X) and ggd2(1M) man pages.

grio_unbind()

Synopsis:

#include <grio2.h>

int grio_unbind(grio_descriptor_t fd);

cc ... -lgrio2

The grio_unbind() call unbinds a file descriptor from its GRIO stream. Unbinding
a file descriptor decrements the reference count of its stream by 1.

Once unbound, I/O to or from the file descriptor may continue, but will be scheduled
as regular, non-guaranteed rate I/O.

For more information, see the grio_unbind(3X) man page.

26 007–4244–001

Index

A

administration node, 15
administration tools, 4
API overview, 21
available guaranteed-rate bandwidth, 22

B

bandwidth management, 7
binding open file descriptors, 22
buffered I/O, 5

C

change a GRIO stream, 23
chkconfig, 18
client-only node, 15
cluster database, 4, 13
cluster integration, 6
cluster volume, 15
cluster volume domain, 15
clusters

See "CXFS", 12
cmgr, 16
configuration

cluster volume, 16
local volume, 16

CXFS, 1, 3, 6, 11, 11, 16, 22
CXFS administration node, 15
CXFS client-only node, 15
cxfs.sw.grio2_cell, 11, 17

D

daemon, 3
data layout, 12
DBA, 8
device alignment, 12
device-level qualification, 3
differences between GRIOv1 and GRIOv2, 2
distributed bandwidth allocator, 8
domains, 15

E

EAGAIN, 18
encapsulation of non-GRIO I/O, 4
ENOENT, 24
ENOSYS, 18
eoe.sw.grio2, 11
/etc/griotab, 3, 16

F

F_FSSETXATTR, 6
fcntl, 6
features, 1
file allocation and stream use, 6
file descriptor binding/unbinding, 22
file-level reservation, 25
filesystem-level

qualification, 3
reservation, 25

filesystems supported, 3
FLEXlm licensing, 17
flipbook application, 13
FS_XFLAG_REALTIME, 6

007–4244–001 27

Index

G

ggd, 3
ggd2, 3, 6, 7, 9, 13, 15, 17, 21, 22, 26
GRIO server, 15
GRIO-enabled platforms, 11
grio_avail(), 21
grio_bind(), 22, 24, 25
grio_get_stream(), 22
grio_modify(), 23
grio_release(), 23, 25
grio_reserve(), 8, 25
grio_reserve_fd(), 9, 25
grio_unbind(), 22, 25, 26
grioadmin, 4
griomon, 4
grioqos, 4, 14
griotab, 3, 13, 16
GRIOv1 and GRIOv2 differences, 2
guarantee, 2

H

HBA number, 13
how GRIO works, 5

I

I/O performance, 12
I/O scheduler, 6
I/O service times, 13
installation requirements, 11
introduction, 1

J

jitter, 13

L

latency in stream creation, 26
libgrio, 3
libgrio2, 3
library, 3
library calls, 21
license.dat, 18
licensing, 17
local volume, 15
local volume domain, 15
logical unit (LUN) management, 12
logical volumes, 3
LUN, 12
LUN management, 12

M

messaging, 6
modify a GRIO stream, 23
modify cxfs_filesystem, 16
monitoring GRIO, 21
monitoring service, 4
multiOS release (CXFS), 11
multiple-node support, 3

N

non-GRIO managed I/O, 4
non-GRIO stream, 7

O

open, 6
oversubscription, 7
overview, 4
owning process, 21, 25

28 007–4244–001

Guaranteed-Rate I/O Version 2 Guide

Q

QoS, 2
qualification model, 3
qualified bandwidth, 2, 3, 12
quality of service, 2

R

RAID, 12, 13
RAM caching, 13
real-time data blocks, 6
real-time schedulers, 14
real-time subvolume, 6
releasing a GRIO stream, 23
releasing open file descriptors, 22
relocation and recovery of the GRIO server, 9
remove a GRIO stream, 23
reservation, 2
reservation interval, 25
reserve bandwidth, 25

S

SAN, 12
scheduler, 5
SIGHUP signal, 16, 17
software components, 6
starting GRIO, 18
storage area network (SAN), 12
stream, 2, 21, 23

creation latency, 26
management, 6

use and file allocation, 6
stream ID, 23
stripe parameters, 12
stripe unit, 12

T

terminology, 2
testing, 14
traffic control, 5
turning GRIO on, 18

U

unallocated bandwidth, 7
unbind a file descriptor, 22, 26
userspace library, 3

V

volume geometry, 12
volumes, 3, 15

X

XFS, 3
XLV, 3
XVM, 3
XVM stripe parameters, 12

007–4244–001 29

	Table of Contents
	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction
	What Does GRIO Do?
	Terminology
	GRIOv1 and GRIOv2 Differences
	Overview

	2. How GRIO W orks
	Traffic Control
	Stream Use and Real-Time File Setup
	Software Components
	ggd2 Daemon
	Qualified Bandwidth
	Managing Bandwidth: Encapsulation and Distributed Bandwidth Allocator
	GRIO Server Relocation and Recovery

	3. Setting Up GRIO
	Installation Requirements
	Deployment Considerations for Cluster Volumes
	Data Layout
	Choosing a Qualified Bandwidth
	Local Volumes and Cluster Volumes
	Local Volume Domain Configuration
	Cluster Volume Domain Configuration

	Licensing
	Starting GRIO
	Starting GRIOv2 when GRIOv1 is Active
	Starting GRIOv2 when GRIOV1 is Not Active

	Monitoring GRIO

	4. GRIO API Overview
	grio_avail()
	grio_bind()
	grio_get_stream()
	grio_modify()
	grio_release()
	grio_reserve() and grio_reserve_fd()
	grio_unbind()

	Index

