
Guaranteed-Rate I/O Version 2 for Linux
Guide

007–4244–006

COPYRIGHT
© 2004, 2006 – 2009 SGI All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner,
in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
SGI, Altix, the SGI cube, the SGI logo, and IRIX are registered trademarks and CXFS is a trademark of SGI in the United States and/or
other countries worldwide.

UNIX and the X device are registered trademarks of The Open Group in the United States and other countries. All other trademarks
mentioned herein are the property of their respective owners.

New Features in this Guide

This guide contains minor corrections.

007–4244–006 iii

Record of Revision

Version Description

001 February 2004
Original publication

002 March 2006
Revision

003 June 2006
Revision for IRIX 6.5.30

004 August 2007
Revision for CXFS 4.2

005 June 2008
Revision for CXFS 5.1

006 March 2009
Revision for CXFS 5.4 and ISSP 1.6

007–4244–006 v

Contents

About This Guide . xi

Scope . xi

Related Publications . xi

Obtaining Publications . xii

Conventions . xiii

Reader Comments . xiii

1. Introduction . 1

What Does GRIO Do? . 1

Terminology . 2

2. How GRIO Works . 5

Traffic Control . 5

Stream Use and Real-Time File Setup 6

Software Components . 6

ggd2 Daemon . 6

Qualified Bandwidth . 7

Managing Bandwidth: Encapsulation and Distributed Bandwidth Allocator 7

GRIO Server Relocation and Recovery 10

3. Setting Up GRIO . 11

Installation Requirements . 11

Deployment Considerations for Cluster Volumes 11

Data Layout . 12

Choosing a Qualified Bandwidth 12

007–4244–006 vii

Contents

Cluster Volumes . 15

Licensing . 17

ggd2.options File . 17

4. Administering and Monitoring GRIO 21

Administering GRIO with the grioadmin Command 21

grioadmin Command Line 21

grioadmin Examples . 22

Monitoring GRIO Streams with the griomon Command 29

5. Monitoring Quality of Service 31

grioqos Command Line . 31

GRIO Scheduler . 35

Monitoring Stream and I/O Metrics 36

Quality of Service . 39

Quality-of-Service Metrics . 39

grioqos Caveats . 40

grioqos Examples . 41

6. GRIO API Overview for IRIX and Windows 47

grio_avail() . 47

grio_bind() . 48

grio_get_stream() . 48

grio_modify() . 49

grio_release() . 49

grio_reserve() and grio_reserve_fd() 50

grio_unbind() . 52

Appendix A. GRIOv1 and GRIOv2 Differences 53

viii 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

Glossary . 55

Index . 59

007–4244–006 ix

About This Guide

This publication provides information about GRIO version 2, the second-generation
guaranteed-rate I/O product from SGI.

Scope
This guide provides the information you need to administer GRIO version 2. It
discusses the following:

• Chapter 1, "Introduction" on page 1

• Chapter 2, "How GRIO Works" on page 5

• Chapter 3, "Setting Up GRIO" on page 11

• Chapter 4, "Administering and Monitoring GRIO" on page 21

• Chapter 5, "Monitoring Quality of Service" on page 31

• Chapter 6, "GRIO API Overview for IRIX and Windows" on page 47

Related Publications
For information about this release, see the SGI InfiniteStorage Software Platform
(ISSP) release notes (README.txt).

The following publications contain additional information that may be helpful:

• CXFS 5 Administration Guide for SGI InfiniteStorage

• CXFS 5 Client-Only Guide for SGI InfiniteStorage

• XVM Volume Manager Administrator’s Guide

• Man pages:

ggd2(1M)
grioadmin(1M)
grioqos(1M)
open(2)

007–4244–006 xi

About This Guide

grio_avail(3X)
grio_bind(3X)
grio_modify(3X)
grio_release(3X)
grio_reserve(3X)
grio_unbind(3X)
grio2(5)

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, man pages, and other information.

• You can view man pages by typing man title at a command line.

• The /docs directory on the ISSP DVD or in the Supportfolio download directory
contains the following:

– The ISSP release note: /docs/README.txt

– Other release notes: /docs/README_NAME.txt

– The manuals provided with ISSP

– A complete list of the packages and their location on the media:
/docs/RPMS.txt

– The packages and their respective licenses: /docs/PACKAGE_LICENSES.txt

• The ISSP release notes and manuals are installed on the system as part of the
sgi-isspdocs RPM into the following location:

/usr/share/doc/packages/sgi-issp-ISSPVERSION-TITLE

xii 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

Conventions

Note: When it is necessary to distinguish between the previous version (version 1)
and the current version (version 2), this guide uses the terms GRIOv1 and GRIOv2.
Where the term GRIO is used without qualification, it refers to version 2.

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

007–4244–006 xiii

About This Guide

• Send mail to the following address:

SGI
Technical Publications
1140 East Arques Avenue
Sunnyvale, CA 94085–4602

SGI values your comments and will respond to them promptly.

xiv 007–4244–006

Chapter 1

Introduction

GRIO version 2 (GRIO) is the second-generation guaranteed-rate I/O product from
SGI.

This section discusses the following:

• "What Does GRIO Do?" on page 1

• "Terminology" on page 2

What Does GRIO Do?
GRIO does the following:

• Enables a proportion of a filesystem’s I/O resources to be reserved for the
exclusive use of a process or compute node

• Ensures that the rate at which a process or node issues I/O does not exceed its
reservation and throttles I/O if necessary

• Ensures that the aggregate utilization of a filesystem never exceeds a configurable
maximum level, referred to as the qualified bandwidth

With a carefully selected and verified qualified bandwidth, you can use GRIO to meet
the quality-of-service requirements of demanding I/O workloads where data must be
processed without interruption.

GRIO includes the following features:

• Support for CXFS filesystems shared among nodes in a cluster as well as locally
attached XFS filesystems

• A simple filesystem-level performance qualification model (rather than the often
complex device-qualification model used in GRIOv1)

• A range of tools for monitoring and measuring delivered bandwidth and I/O
service time

When GRIO begins managing a filesystem, every node with access to that filesystem
is notified. From that point on, all user and system I/O that does not have an explicit
reservation is encapsulated. This means that I/O that is not explicitly managed by a

007–4244–006 1

1: Introduction

GRIO reservation is automatically associated with a system-managed kernel stream.
The ggd2 daemon allocates otherwise unused bandwidth to these streams, which
allows I/O that is not explicitly managed by a GRIO reservation to be processed even
when there are active reservations in the system. ggd2 dynamically adjusts the
amount of bandwidth allocated for this purpose based on monitoring of filesystem
demand and utilization.

You can use the information provided by the QoS infrastructure to choose the tradeoff
between resource utilization and delivered I/O performance that is most appropriate
for a given application mix, workload, and production environment.

For more information, see the following:

• Chapter 4, "Administering and Monitoring GRIO" on page 21 and the
grioadmin(1M) man page

• Chapter 5, "Monitoring Quality of Service" on page 31 and the grioqos(5) and
grioqos(1M) man pages

• The ggd2(1M) man page

Terminology
GRIO uses the following terminology:

• Quality of service (QoS) refers to the performance properties of a system service
(such as worst-case bandwidth or I/O service time).

• Qualified bandwidth is the maximum bandwidth that can be delivered by a
filesystem (and the XVM volume on which it resides) in a given configuration
under a realistic application workload such that all applications are delivered an
adequate QoS.

• Reservation is the set of QoS parameters requested by a user application.
Reservation requests are forwarded to the ggd2(1M) bandwidth management
daemon. GRIO supports two kinds of reservations:

– Explicit application-level reservations, which are made by individual
applications using the libgrio2 APIs. These are available only on IRIX and
Windows nodes.

2 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

– Node-level bandwidth allocations, which are used within GRIO to control the
I/O flowing from a compute node to a given filesystem that is not part of a
GRIO-enabled application stream. These are available on all nodes.

• Guarantee is the assurance made by the system to a user process that it will deliver
data from a storage device at the reserved rate.

• Stream is the object within the kernel that encodes the reservation’s QoS
parameters and maintains the necessary scheduling and monitoring state required
to fulfill the guarantee.

007–4244–006 3

Chapter 2

How GRIO Works

This chapter discusses the following:

• "Traffic Control" on page 5

• "Stream Use and Real-Time File Setup" on page 6

• "Software Components" on page 6

• "ggd2 Daemon" on page 6

• "Qualified Bandwidth" on page 7

• "Managing Bandwidth: Encapsulation and Distributed Bandwidth Allocator" on
page 7

• "GRIO Server Relocation and Recovery" on page 10

Traffic Control
GRIO is a component on the XFS and CXFS I/O path that runs in every node with
access to a GRIO-managed filesystem. When active, all I/O on a machine and in the
cluster is controlled by the GRIO scheduler.

I/O falls into the following categories:

• GRIO I/O: direct (non-buffered) I/O for applications that have made an explicit
GRIO reservation

• Non-GRIO I/O: all other buffered and system I/O

GRIO ensures that applications with reserved bandwidth receive data at the requested
rate, regardless of other I/O activity on the node and elsewhere within the cluster.
GRIO will throttle an application if it attempts to use more bandwidth than it has
reserved.

007–4244–006 5

2: How GRIO Works

Stream Use and Real-Time File Setup
In order to use an application-level GRIO reservation, a file must be read or written
using direct I/O requests. The open(2) man page describes the use and buffer
alignment restrictions of the direct I/O interface. A GRIO reservation can be made for
any regular file within an XFS or CXFS filesystem created on an XVM volume.

Both XFS and CXFS provide a dedicated real-time subvolume that allows filesystem
metadata to be separate from user data. To allocate a file on the real-time subvolume
of an XFS or CXFS filesystem, you must use the fcntl(2) F_FSSETXATTR command
to set the XFS_XFLAG_REALTIME flag. You can only issue this command on a newly
created file. It is not possible to mark a file as real-time after non-real-time data
blocks have been allocated to it.

Software Components
GRIO functionality is distributed between the following main components:

• ggd2 daemon (see "ggd2 Daemon" on page 6)

• libgrio2 library, which implements the GRIO userspace API (see Chapter 6,
"GRIO API Overview for IRIX and Windows" on page 47)

• The operating system kernel, including the following:

– Stream management

– I/O scheduler

– Cluster integration

– Messaging

ggd2 Daemon
The ggd2(1M) daemon is a user-level process started at system boot time that
manages the I/O bandwidth for a collection of XVM volumes. It does the following:

• Activates and deactivates the GRIO kernel scheduler

• Processes client requests to reserve and release bandwidth

6 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

• Tracks bandwidth utilization

• Manages unallocated bandwidth

• Prevents oversubscription

• Enforces GRIO software licenses

• Broadcasts to the relevant kernels the amount of bandwidth per filesystem that
may be used for non-GRIO I/O

Qualified Bandwidth
The qualified bandwidth for a filesystem is the maximum I/O load that it can sustain
while still satisfying requirements for delivered bandwidth and I/O service time.

You must determine a specific qualified bandwidth for each GRIO-managed
filesystem. The qualified bandwidth is specified by using the cxfs_admin(1M)
command.

The ggd2 daemon is responsible for managing the allocation of available bandwidth
between different applications and nodes.

You can adjust the qualified bandwidth as needed to make the best use of your
system, taking into account the tradeoff between resource utilization and delivered
I/O performance. For more information, see "Choosing a Qualified Bandwidth" on
page 12.

Managing Bandwidth: Encapsulation and Distributed Bandwidth Allocator
The ggd2 daemon tracks the total qualified bandwidth and ensures that the total
workload never exceeds the qualified bandwidth.

When ggd2 begins managing a filesystem, every node with access to that filesystem
is notified. Each node in turn creates a dedicated system stream for that filesystem,
which is called the non-GRIO stream. From that point on, all user and system I/O that
does not have an explicit GRIO reservation is encapsulated by this stream and then
managed by the GRIO scheduler. There is a non-GRIO stream on each node with
access to the filesystem; the default bandwidth allocation for non-GRIO streams is 1
Mbyte/sec.

007–4244–006 7

2: How GRIO Works

Note: The scheduling for all non-GRIO I/O within a GRIO-managed filesystem
received from different applications and system services is on a first-come-first-served
basis.

GRIO supports application-level reservations (created by GRIO-enabled applications
using the libgrio2 interfaces) and node-level bandwidth allocations (configured
using the GRIO administration interfaces). The libgrio2 interfaces permit an
application to do the following:

• Reserve bandwidth

• Dynamically bind and unbind the resulting GRIO stream to any number of open
file descriptors

• Modify its reservation

• Release its bandwidth back to the system

GRIO ensures that the requested guarantee is met for the aggregate I/O performed
across the bound file descriptors.

However, applications are often not GRIO-enabled. For these applications, GRIO
allows an administrator to configure a node-level bandwidth allocation. GRIO
supports two types of node-level allocations:

• Floor allocations (-F), for which GRIO ensures that the node receives at least the
configured bandwidth. While there is any unallocated bandwidth, and the node is
issuing I/O at a rate greater than its initial allocation, ggd2 will attempt to
increase its allocation temporarily to help service the additional demand.

• Ceiling allocations (-C), for which the node receives at most the configured
bandwidth. That is, the configured bandwidth acts as a cap on the amount of I/O
that the node will be permitted to issue. This is the default.

To keep the total throughput of the filesystem high even when there are active GRIO
streams or node-level allocations, ggd2 attempts to allocate any unreserved portion of
the qualified bandwidth for use by non-GRIO applications. This bandwidth is
effectively lent for short periods of time until ggd2 receives a new request for
guaranteed-rate bandwidth, at which point it is reclaimed. GRIO applications have
priority over non-GRIO applications.

The ggd2 daemon periodically adjusts the amount of bandwidth allocated to the
individual non-GRIO streams for its managed filesystems. This functionality is

8 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

referred to as the distributed bandwidth allocator (DBA). The DBA is responsible for
determining how unreserved bandwidth is distributed between the nodes with access
to the filesystem. By default, the DBA runs every two seconds , constantly allocating
free bandwidth to nodes based on a range of dynamically monitored demand and
utilization metrics. (To change the DBA default, edit the ggd2.options file on each
of the GRIO server-capable nodes. For more information, see "ggd2.options File"
on page 17.)

Note: The rate at which the DBA runs affects the delay that an application or node
that does not have a GRIO reservation might experience when it starts doing I/O.
The longer the interval, the longer a node may have to wait (with its I/O paused)
before ggd2 will increase its allocation.

Reservation
A

Reservation
B

Reservation
C

Res
D

freenode1
-s
bw node2

-s
bw

-s
bw

-s
bw

Free bandwidth that
can be allocated
to future GRIO or
non-GRIO useSpare bandwidth after GRIO

reservations have been made
that has been allocated to
non-GRIO use (by the DBA),
with a minimum assigned to
each node in MB/sec (ggd2 -s bw)

Qualified bandwidth

Explicit GRIO reservations

Figure 2-1 Qualified Bandwidth

A user process can request a reservation using the grio_reserve() and
grio_reserve_fd() library calls. Requests are forwarded to the ggd2 that is
actively managing the target volume domain. Requests to filesystems in the local
domain are sent to the local instance of ggd2 directly. Requests to filesystems in the
cluster domain are forwarded to ggd2 on the GRIO server, which may be running on
a different node in the cluster.

For more information, see the grio_reserve(3X) man page.

007–4244–006 9

2: How GRIO Works

GRIO Server Relocation and Recovery
Each instance of ggd2 maintains reservation and bandwidth state that must be kept
consistent with one or more kernels.

If ggd2 fails, a new ggd2 instance will receive from the local kernel all of the
information necessary to reestablish the following:

• Local volume reservations

• Cluster volume reservations (if the ggd2 that failed was the GRIO server for the
cluster)

• All of the DBA state for non-GRIO I/O

If a GRIO server node fails, a new GRIO server is automatically elected and all of the
cluster volume reservations and DBA state is reestablished by that instance of ggd2.

You can also choose to manually migrate the GRIO server to another CXFS
server-capable administration node in the cluster. For more information, see Chapter
4, "Administering and Monitoring GRIO" on page 21 and the grioadmin(1M) man
page.

To determine the active GRIO server, use the grioadmin -sv command.

10 007–4244–006

Chapter 3

Setting Up GRIO

This chapter discusses the following:

• "Installation Requirements" on page 11

• "Deployment Considerations for Cluster Volumes" on page 11

• "Data Layout" on page 12

• "Choosing a Qualified Bandwidth" on page 12

• "Cluster Volumes" on page 15

• "Licensing" on page 17

• "ggd2.options File" on page 17

Installation Requirements
Every CXFS platform supports GRIO. All platforms are enabled by default except for
Linux client-only nodes; on a Linux client-only node, you must enable GRIO and
reboot the node in order for GRIO to take effect. For more information, see the CXFS
5 Administration Guide for SGI InfiniteStorage and the CXFS 5 Client-Only Guide for SGI
InfiniteStorage.

Install the following RPM on all nodes in the cluster:

grio2-cmds-VERSION.ARCHITECTURE.rpm

Install the following additional RPM on server-capable administration nodes:

grio2-server-VERSION.ARCHITECTURE.rpm

Deployment Considerations for Cluster Volumes
You must observe the following constraints when setting up GRIO filesystems in a
cluster:

• If any of the logical units (LUNs) on a particular device will be managed as GRIO
filesystems, then all of the LUNs should be managed as GRIO filesystems.

007–4244–006 11

3: Setting Up GRIO

Typically, there will be hardware contention between separate LUNs, both in the
storage area network (SAN) and within the storage device. If only a subset of the
LUNs are managed, I/O to the unmanaged LUNs could still cause
oversubscription of the device and could in turn violate guarantees on the
managed filesystems.

• A storage device containing GRIO–managed filesystems should not be shared
between clusters. The GRIO daemons running within different clusters are not
coordinated, and unmanaged I/O from one cluster can cause guarantees in the
other cluster to be violated.

Data Layout
To set up a filesystem on a RAID device such that you achieve correct filesystem
device alignment and maximize I/O performance, remember to do the following:

• Ensure that each data partition is correctly aligned with the internal disk layout of
its LUN

• Set XVM stripe parameters correctly

• Pass correct volume geometry (stripe unit and width) to mkfs_xfs(1)

For more information, see the grio2(5) man page.

Choosing a Qualified Bandwidth
You can adjust the qualified bandwidth to reflect the specific trade-off between
delivered QoS and utilization of the storage infrastructure for your situation.

The following affect the qualified bandwidth you will choose:

• The hardware configuration

• The application work flow and I/O load

• The specific QoS requirements of applications and users

Typically, the first concern is that the required bandwidth can be delivered by the
storage system. The second concern is the service time observed for individual I/Os.

12 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

Determining qualified bandwidth is an iterative process. There are several strategies
you can use to determine and fine-tune the qualified bandwidth for a filesystem. For
example:

• Establish a given bandwidth and then adjust so that the QoS requirements are
met. Do the following:

1. Make an initial estimate of the qualified bandwidth. You can use the fixed
storage architecture parameters (RAID performance, number of HBAs, and so
on) to estimate the anticipated peak bandwidth that can be delivered. The
qualified bandwidth is then determined as an appropriate fraction of this peak.

2. Configure ggd2 appropriately using the cxfs_admin(1M) command.

After configuring using cxfs_admin, you must restart the grio2 service:

service grio2 restart

3. Run a test workload.

4. Monitor the delivered performance.

5. Refine the estimate as needed.

• Establish that QoS requirements are satisfied and then adjust to maximize
throughput. To do this, increase the load until the storage system can no longer
meet the application QoS requirements; the qualified bandwidth must be lower
than this value.

• Explore the space of possible workloads and test whether a given workload
satisfies both bandwidth and application QoS requirements.

Although the hardware configuration provides a basis for calculating an estimate,
remember that the qualified bandwidth is also affected by the particular work-flow
issues and the QoS requirements of individual applications. For example, an
application that has large tunable buffers (such as a flipbook application that does
aggressive RAM caching) can tolerate a greater variation in I/O service time than can
a media broadcast system that must cue and play a sequence of very short clips. In
the first example, the qualified bandwidth would be configured as a larger proportion
of the sustained maximum. In the second example, the qualified bandwidth might be
reduced to minimize the system utilization levels and improve I/O service times.

A high qualified bandwidth will generally achieve the greatest overall throughput but
with the consequence that individual applications may intermittently experience
longer service times for some I/Os. This variation in individual service times is

007–4244–006 13

3: Setting Up GRIO

referred to as jitter; as the storage system approaches saturation, service-time jitter
will typically increase. A lower qualified bandwidth means that total throughput will
be reduced, but because the I/O infrastructure is under less stress, individual requests
will typically be processed with less variation in individual I/O service times. Figure
3-1 illustrates these basic ideas. The precise relationship between load on the storage
system and variation in I/O service time is highly dependent on your storage
hardware.

Variation in I/O Service Time "Jitter"

Aggressive
(high qualified bandwidth)

T
h

ro
u

g
h

p
u

t

High

Low
HighLow

Conservative
(low qualified bandwidth)

Figure 3-1 Tradeoff Between Throughput and Variation in I/O Service Time (Jitter)

Some storage devices (particularly those with real-time schedulers) can provide a
fixed bound on I/O service time even at utilization levels close to their maximum. In
this case, the qualified bandwidth can be set higher even where applications have
tight QoS requirements. The user-adjustable qualified bandwidth provides the
flexibility required for GRIO to work with both dedicated real-time devices as well as
more common off-the-shelf storage systems.

Note: In all cases, you must verify the chosen qualified bandwidth by testing the
storage system under a realistic workload.

14 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

You can use the grioqos(1M) tool to measure the delivered QoS performance. This
tool extracts QoS performance for an active stream without disturbing the application
or the kernel scheduler. GRIO maintains very detailed performance metrics for each
active stream. Using the grioqos command while running a workload test lets you
answer questions such the following for every active stream in the system:

• What has been the worst observed bandwidth over a 1-second period?

• What is the worst observed average I/O service time for a sequence of 10 I/Os?

For more information about GRIO tools and the mechanisms for accessing QoS data
within the kernel, see Chapter 5, "Monitoring Quality of Service" on page 31, and the
grioqos(1M) man page.

Cluster Volumes
A cluster volume is used with CXFS filesystems and is shared among nodes in a
cluster. This volume is in the cluster volume domain.

All cluster volumes are managed by a single instance of the ggd2 daemon running on
one of the CXFS administration nodes in the cluster; this node is referred to as the
GRIO server. There is one GRIO server per cluster.

The GRIO server is elected automatically. You can relocate it by using the
grioadmin(1M) command. The GRIO server must be a CXFS administration node.
Client-only nodes will never be elected as GRIO servers. For more information, see
Chapter 4, "Administering and Monitoring GRIO" on page 21, and the
grioadmin(1M) man page.

If a given CXFS administration node has locally attached volumes and has also been
selected as the GRIO server, then the ggd2 running on that node will serve dual-duty
and will manage both its own local volume domain and the cluster volume domain.

You must use the cxfs_admin(1M) command to configure cluster volumes for GRIO.
A prompting mode is also available for cxfs_admin(1M). For more information, see
the CXFS 5 Administration Guide for SGI InfiniteStorage.

If you have installed the grio2-server-* RPM and turned on GRIO, the ggd2
daemon will automatically query the cluster configuration database for GRIO volume
configuration information. ggd2 dynamically tracks updates to the cluster database.

007–4244–006 15

3: Setting Up GRIO

In cxfs_admin, there are two GRIO attributes associated with filesystems:

• grio_managed, which specifies whether a filesystem is managed by GRIOv2
(true) or not (false). The default is false. Setting grio_managed to false
disables GRIO management for the specified filesystem, but it does not reset the
grio_qual_bandwidth value. In this case, grio_qual_bandwidth is left
unmodified in the cluster database and ignored.

Note: A filesystem that has been configured as managed by GRIO will be allowed
to mount even if GRIO software is not installed or GRIO is not configured
properly. See "Deployment Considerations for Cluster Volumes" on page 11.

• grio_qual_bandwidth, which specifies a filesystem’s qualified bandwidth in
bytes (B suffix), kilobytes (KB), megabytes (MB), or gigabytes (GB), where the units
are multiples of 1024. The default is MB for 4000 or less, B for 4001 or greater. If
the filesystem is GRIO-managed, you must specify a qualified bandwidth with this
attribute. To modify the qualified bandwidth, a filesystem must be unmounted.

Note: These are advanced-mode attributes. When configuring GRIO with
cxfs_admin, you should use set mode=advanced.

For example, any one of the following commands sets a filesystem’s qualified
bandwidth to 1.2 GB/s:

cxfs_admin:cluster> modify filesystem grio_qual_bandwidth=1288500000

cxfs_admin:cluster> modify filesystem grio_qual_bandwidth=1258300KB

cxfs_admin:cluster> modify filesystem grio_qual_bandwidth=1288.8MB

cxfs_admin:cluster> modify filesystem grio_qual_bandwidth=1288.8

For more information about CXFS, see CXFS 5 Administration Guide for SGI
InfiniteStorage and CXFS 5 Client-Only Guide for SGI InfiniteStorage.

16 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

Licensing
The GRIO licensing schema supports one license for local volumes and one license for
cluster volumes.

The ggd2 daemon checks the license at startup, whenever it detects a configuration
change, or when it receives a SIGHUP signal. The ggd2 daemon validates the
configuration at startup and whenever the configuration is changed.

If the configuration of a volume domain is altered and becomes unlicensed, ggd2
enters a passive mode in which all further requests pertaining to that domain, with
the exception of release requests, are denied. A message is sent to the system log and
that volume domain will remain deactivated until the configuration returns to a
licensed state, at which time another message will be logged indicating the domain is
again active.

For more information, see the license.dat(5) man page.

ggd2.options File
The /etc/cluster/config/ggd2.options file contains the command line
options for ggd2 when launched at startup.

You can uncomment and edit lines as required. The arguments are as follows:

-d level Sets the maximum debug level and logs the specified level of messages
to both the system log and to an additional log file called
/var/tmp/ggd2log/PID.

level is an integer in the range 0 through 4(the higher the level number,
the more debug information that is output). The levels are as follows:

• 0 logs critical system resource errors

• 1 logs the above plus ggd2–specific error and warning messages

• 2 logs the above plus important events or state changes

• 3 logs the above plus infrequent, less-important events

• 4 logs the above plus debug-level messages

By default, ggd2 logs just level 0 critical system resource errors to the
system log only.

007–4244–006 17

3: Setting Up GRIO

-f Runs ggd2 in the foreground. By default, ggd2 is started as a daemon.

-m bw Specifies the minimum amount of bw bandwidth in KB/s (default) that
ggd2 will allocate for non-guaranteed user and system I/O per
GRIO-managed volume. All nodes issuing non-GRIO I/O will receive
a fair share of this minimum bandwidth. A node will be allocated the
bigger value specified by -m or -s. The default is 1 MB/s.

For example, -m2048 causes ggd2 to allocate a minimum of 2048 KB/s
to each GRIO-managed volume. This bandwidth becomes permanently
allocated to non-GRIO I/O and cannot be reserved for GRIO I/O. Use
the suffix K or M to explicitly specify bandwidth in KB/s or MB/s. For
example, -m3M causes ggd2 to allocate a minimum of 3 MB/s to each
GRIO-managed volume.

-r
percent

Reserves a percentage of each volume’s available qualified bandwidth
for GRIO I/O. Reservation requests are then serviced directly from this
pool of cached free bandwidth without blocking. percent is the
percentage of each volume’s qualified bandwidth that ggd2 attempts to
keep unallocated, expressed as an integer in the range 0 through 100.
You should choose this value based on the following:

• Expected I/O utilization levels

• Importance of minimizing the stream creation latency

• Expected rate at which reservation requests will be made

By default, ggd2 allows unreserved bandwidth to be allocated for
servicing non-GRIO I/O. This maximizes the total throughput of the
system. However, as ggd2 only makes adjustments to these allocations
periodically, a new reservation may block until ggd2 can reclaim the
requested bandwidth.

Note: Using the -r option causes a proportion of the unreserved I/O
capacity to remain unused and reduces the total throughput and
efficiency of the system for non-GRIO I/O. You should only use this
option if minimizing reservation latency is a priority.

For example, given a volume with a qualified bandwidth of 200 MB/s,
-r 20 will instruct ggd2 to try to keep up to 20% (40 MB/s) of any
remaining unreserved bandwidth cached and available for servicing
reservation requests directly. ggd2 adjusts this cache of free bandwidth

18 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

every time the distributed bandwidth allocator (DBA) runs, which
defaults to once every 2 seconds (see -u). With these settings, ggd2
will be able to grant an additional 40 MB/s every 2 seconds without
blocking any reservation requests.

-s bw Specifies the minimum amount of bw bandwidth in KB/s (default) that
ggd2 will allocate for non-GRIO user and system I/O per node. A
node will be allocated the bigger value specified by -s or -m. The
default is 1 MB/s.

For example, -s2048 causes ggd2 to allocate a minimum of 2048 KB/s
to each node accessing a GRIO-managed volume. This bandwidth
becomes permanently allocated to non-GRIO I/O and cannot be
reserved for GRIO I/O. Use the suffix K or M to explicitly specify
bandwidth in KB/s or MB/s. For example, -s3M causes ggd2 to
allocate a minimum of 3 MB/s to each node accessing a GRIO-managed
volume.

-u ms Specifies the distributed bandwidth allocator (DBA) update interval in
milliseconds (ms), where ms is a value in the range 250 through
100000. The default is 2000 (2 seconds). For more information about
DBA, see "Managing Bandwidth: Encapsulation and Distributed
Bandwidth Allocator" on page 7.

Note: The rate at which the DBA runs affects the delay that an
application or node that does not have a GRIO reservation might
experience when it starts doing I/O. The longer the interval, the longer
a node may have to wait (with its I/O paused) before ggd2 will
increase its allocation.

For example, highlighting the modified lines in bold:

command line options for ggd2 when launched from /etc/init.d/grio2

uncomment/edit lines as required

#

Minimum non-GRIO bandwidth per node. Units are Mbytes/sec

-s 1M

debug level, in the range 0 to 4

-d 1

007–4244–006 19

3: Setting Up GRIO

minimum reserve bandwidth to accommodate short-latency reservation
demands, expressed as a percentage of the total qualified bandwidth

-r 30

Distributed Bandwidth Allocator (DBA) update interval

value in milliseconds
-u 2000

For changes to this file to take effect, do one of the following on the GRIO server,
which will cause ggd2 to reread its options file:

• Stop and restart the grio2 service:

service grio2 restart

• Run the following:

run killall -HUP ggd2

To determine the active GRIO server, use the grioadmin -sv command.

Note: In the event of a GRIO server relocation or recovery, you must perform the
above steps on each GRIO server-capable node in the cluster.

20 007–4244–006

Chapter 4

Administering and Monitoring GRIO

This chapter discusses the following:

• "Administering GRIO with the grioadmin Command" on page 21

• "Monitoring GRIO Streams with the griomon Command" on page 29

Administering GRIO with the grioadmin Command
You can use the grioadmin tool to perform node-level administration tasks for local
XFS and shared CXFS filesystems, such as the following:

• List active GRIO reservations on the current node

• Create, modify, and release node-level bandwidth allocations

• Query available bandwidth

This section discusses the following:

• "grioadmin Command Line" on page 21

• "grioadmin Examples" on page 22

grioadmin Command Line

grioadmin [options] [fs|streamID]

The arguments are as follows:

-a Prints the bandwidth available for reservation for the specified
filesystem and the total bandwidth currently reserved for use by the
local node, either allocated to the node or reserved by applications.
This total includes bandwidth temporarily allocated to the node by the
distributed bandwidth allocator (DBA) running within ggd2.

-C Indicates that the node-level allocation requested with the -g or -m
option should be at most bw MB/s (a ceiling). This is the default
behavior for -g.

007–4244–006 21

4: Administering and Monitoring GRIO

-F Indicates that the node-level allocation requested with the -g or -m
option should be at least bw MB/s (a floor).

-g bw Allocates bw MB/s for access by the local node to the specified
filesystem, if bandwidth is available. This node-level allocation is
shared by all applications running on the node that are not GRIO
aware. The allocation type can be either a ceiling (-C) or a floor (-F).
The default allocation type is a ceiling.

-h Print a usage message.

-l Lists active streams in an easily parsed form (one per line).

-L cell Relocates the GRIO server to the node with the cell ID cell. To
determine the cell ID, use any of the standard CXFS reporting utilities,
such as cxfs_admin, cxfs_info, or clconf_info.

-m bw Modifies the current node-level allocation on the specified filesystem to
a bandwidth of bw MB/s. You can modify the type of an active
allocation by also specifying either -C or -F.

-r Releases the current node-level allocation on the specified filesystem.

-s Prints a more human-readable summary of active streams than -l. The
results are grouped per filesystem.

-v Displays verbose output (used with -s).

streamID Specifies the ID of an active GRIO stream.

fs Specifies a path that identifies a mounted GRIO-managed filesystem (in
which case the non-GRIO stream for the filesystem is used).

If you specify grioadmin without any arguments, it prints a usage message by
default.

grioadmin Examples

The following example commands create, inspect, modify, and remove a node-level
allocation of the GRIO-managed filesystem /stripe with a qualified bandwidth of
350 MB/s.

22 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

Note: grioadmin classifies active streams as one of the followings:

• App, which is a GRIO stream that is created explicitly by an application using the
interfaces in the GRIO library. Only I/O to file descriptors that have been bound
to such a stream using grio_bind(3X) will receive the requested QoS guarantee.

• Dynamic, which is the component of the node-level allocation that is controlled by
the DBA running within ggd2. It is updated periodically based on the amount of
free bandwidth in the filesystem and the I/O demand from different nodes.

• Static, which is the component of the node-level allocation that has been
configured by an administrator using grioadmin with the -g option. The
Static component is not affected by the operation of the DBA or other App
reservations, and persists until you remove it manually by using the -r option.
You can configure a node-level allocation as either a floor or a ceiling. The
grioadmin -s option output indicates the type of active node-level allocations
by printing a FLOOR or CEIL designator with the Static component of the
currently allocated bandwidth.

1. Query the available bandwidth on the /stripe filesystem and show the active
streams:

$ grioadmin -a /stripe

349.94 MB/s available on /stripe

1.00 MB/s allocated to this node

$ grioadmin -s

/stripe:
Dynamic 1.00 MB/s

The output from these commands shows the following:

• The minimum dynamic allocation that ggd2 is configured to make to an idle
node is 1.00 MB/s

• There are just under 350 MB/s available to be reserved

2. Create a 200–MB/s node-level allocation for this node in the /stripe filesystem:

$ grioadmin -g200 /stripe

Static allocation configured for /stripe.

Stream ID is d919c6e5-8405-1029-8d74-08006913a7f7

A stream will be created for the allocation and is attached to the non-GRIO
stream in the kernel.

007–4244–006 23

4: Administering and Monitoring GRIO

3. Verify that the available bandwidth was reduced accordingly:

$ grioadmin -a /stripe
149.94 MB/s available on /stripe

200.06 MB/s allocated to this node

4. Inspect the kernel streams:

$ grioadmin -s

/stripe:

Dynamic 1.00 MB/s

Static 200.00 MB/s CEIL

This shows that the /stripe filesystem has its initial minimal Dynamic
allocation and a new node-level (Static) allocation.

To be more verbose and print the stream IDs, add the -v option:

$ grioadmin -sv
/stripe:

Dynamic 1.00 MB/s b77c9351-7b63-1029-8f56-08006913a7f7

Static 200.00 MB/s d919c6e5-8405-1029-8d74-08006913a7f7 CEIL

5. Increase the node-level allocation to 300 MB/s without disturbing in-progress I/O
on the node:

$ grioadmin -m300 /stripe

Static bandwidth allocation for filesystem /stripe has

been modified:
$ grioadmin -s

/stripe:

Dynamic 1.00 MB/s

Static 300.00 MB/s CEIL

6. Start a GRIO-aware application that requests a 50–MB/s reservation and print the
stream IDs:

$ grioadmin -s /stripe
/stripe:

Dynamic 1.00 MB/s

Static 200.00 MB/s CEIL

App (31932) 50.00 MB/s

This output shows that the new App stream has a process ID of 31932.

24 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

7. Terminate the application and remove the node-level allocation:

$ grioadmin -r /stripe
Static bandwidth allocation for filesystem /stripe has

been released.

$ grioadmin -s

/stripe:

Dynamic 1.00 MB/s

The following examples show using grioadmin on a Windows client to create a floor
reservation (-F) , modify it to a ceiling allocation (-C) , and then release it:

C:\>grioadmin -sv
GRIO cluster server is cxfsaltix1 (cell 0)

x:\mnt\tp9500_1: cluster:

Dynamic 1.00 MB/s 6016cd36-8900-2a10-b682-9c12fb0816e8

C:\>grioadmin -F -g 10 x:\mnt\tp9500_1
Static allocation configured for x:\mnt\tp9500_1.

Stream ID is a267e371-caca-324f-3b89-f8c41eaca4b0.

C:\>grioadmin -sv

GRIO cluster server is cxfsaltix1 (cell 0)

x:\mnt\tp9500_1: cluster:
Dynamic 1.00 MB/s 6016cd36-8900-2a10-b682-9c12fb0816e8

Static 10.00 MB/s a267e371-caca-324f-3b89-f8c41eaca4b0 FLOOR

C:\>grioadmin -C -m 10 x:\mnt\tp9500_1

Static bandwidth allocation for filesystem x:\mnt\tp9500_1 has been modified.

C:\>grioadmin -sv

GRIO cluster server is cxfsaltix1 (cell 0)

x:\mnt\tp9500_1: cluster:

Dynamic 1.00 MB/s 6016cd36-8900-2a10-b682-9c12fb0816e8
Static 10.00 MB/s a267e371-caca-324f-3b89-f8c41eaca4b0 CEIL

C:\>grioadmin -r x:\mnt\tp9500_1

Static bandwidth allocation for filesystem x:\mnt\tp9500_1 has been released.

C:\>grioadmin -sv

007–4244–006 25

4: Administering and Monitoring GRIO

GRIO cluster server is cxfsaltix1 (cell 0)
x:\mnt\tp9500_1: cluster:

Dynamic 1.00 MB/s 6016cd36-8900-2a10-b682-9c12fb0816e8

Figure 4-1 through Figure 4-3 show cxfs_info examples on a Windows node.

Figure 4-1 Ceiling (Max) Node-Level Allocation

26 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

Figure 4-2 Floor (Min) Node-Level Allocation

007–4244–006 27

4: Administering and Monitoring GRIO

Figure 4-3 No Node-Level Allocation

The following shows an example of creating a static reservation and modifying it:

grioadmin -sv

GRIO cluster server is cxfsaltix1 (cell 0)

x:\mnt\concat2and8: local:

Dynamic 1.00 MB/s 534d0eee-ad73-2c10-4e09-d513ea1d17e3

x:\mnt\l0: local:

Dynamic 1.00 MB/s d066916d-3758-2c10-6201-c1a6db6d693c

Static 20.00 MB/s 39dcee18-9f9f-b64a-328c-b3c8a3a895df FLOOR

grioadmin -m 30 -F x:\mnt\l0
Static bandwidth allocation for filesystem x:\mnt\l0 has been modified.

28 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

grioadmin -g 30 -F x:\mnt\concat2and8

Static allocation configured for x:\mnt\concat2and8.

Stream ID is 68a1e264-a698-7746-1f95-e7ae4693e568.

grioadmin -m 60 -F x:\mnt\concat2and8
Static bandwidth allocation for filesystem x:\mnt\concat2and8 has been modified.

grioadmin -sv

GRIO cluster server is cxfsaltix1 (cell 0)

x:\mnt\concat2and8: local:

Dynamic 1.00 MB/s 534d0eee-ad73-2c10-4e09-d513ea1d17e3
Static 60.00 MB/s 68a1e264-a698-7746-1f95-e7ae4693e568 FLOOR

x:\mnt\l0: local:

Dynamic 1.00 MB/s d066916d-3758-2c10-6201-c1a6db6d693c

Static 30.00 MB/s 39dcee18-9f9f-b64a-328c-b3c8a3a895df FLOOR

Monitoring GRIO Streams with the griomon Command
You can use the griomon command to display information about GRIO. To display
information about streams only, use the -s option. By default, griomon polls and
updates every second; with the -s option, griomon displays updates when a change
occurs in the bandwidth allocation on the filesystems.

For example, on a Linux node:

linux# griomon

Active GRIO streams (gen=0):

9c1e0676-9ad6-2c10-7009-c11f3f3766a3 /mnt/lun1
STATIC NONGRIO fs_id: 9c1e0676-9ad6-2c10-7009-c11f3f3766a3

gr_bytes: 22020096 gr_msecs: 1000ms

gr_bucket: 44040192 gr_bucket_max: 44040192

gr_total: 30246800896 gr_backlog: 0 gr_issued: 0 gr_idle: 498568744239us

9b2f7943-0c88-6847-e3aa-6844e75dae28 /mnt/lun1

STATIC USER (hidden) pid: -1 fs_id: 9c1e0676-9ad6-2c10-7009-c11f3f3766a3

gr_bytes: 20971520 gr_msecs: 1000ms

007–4244–006 29

4: Administering and Monitoring GRIO

gr_bucket: 41943040 gr_bucket_max: 41943040
gr_total: 0 gr_backlog: 0 gr_issued: 0 gr_idle: 256442555825us

linux# griomon -s

Active GRIO streams (gen=0):

9c1e0676-9ad6-2c10-7009-c11f3f3766a3 /mnt/lun1

STATIC NONGRIO fs_id: 9c1e0676-9ad6-2c10-7009-c11f3f3766a3

9b2f7943-0c88-6847-e3aa-6844e75dae28 /mnt/lun1

STATIC USER (hidden) pid: -1 fs_id: 9c1e0676-9ad6-2c10-7009-c11f3f3766a3

30 007–4244–006

Chapter 5

Monitoring Quality of Service

You can use the grioqos(1M) command to extract and report the QoS metrics that
GRIO maintains for each active stream. grioqos loops, repeatedly fetching new QoS
statistics from the kernel for the specified application stream or node-level allocation.
grioqos displays a header containing the following information:

• Operating system and release

• Date and time

• Filesystem reported on

• Current reservation and stream ID

This section discusses the following:

• "grioqos Command Line" on page 31

• "GRIO Scheduler" on page 35

• "Monitoring Stream and I/O Metrics" on page 36

• "Quality of Service" on page 39

• "Quality-of-Service Metrics" on page 39

• "grioqos Caveats" on page 40

• "grioqos Examples" on page 41

grioqos Command Line
grioqos [options] [streamID|fs] [delay [count]]

-c Clears the screen before printing each new set of
statistics.

-h Prints a usage message.

-i Reports the following low-level QoS metrics for all
currently configured sampling intervals:

minbw

007–4244–006 31

5: Monitoring Quality of Service

maxbw
lastbw
minio
maxio
lastio

For details about these metrics, see "Quality-of-Service
Metrics" on page 39.

-I intervals Reports the same low-level QoS metrics as -i, but for a
specified range of sampling intervals.

intervals is a comma-separated list of sampling intervals
expressed as either a number of I/Os or a time interval
in msecs. For example, the following would report
results averaged over the last 5 and 10 I/Os, and over
the last 1 and 2 seconds, respectively:

-I 5,10,1000ms,2000ms

-l Lists active streams in an easily parsed form (one per
line with the following fields:

• Filesystem mount point (or the string <unmounted>
if the filesystem is not mounted)

• Type of the stream

• Stream ID

• Reserved bandwidth reported in bytes and msecs

• Process ID for application-created streams

-m Enables monitoring mode, which reports the following
high-level stream and I/O metrics:

bytes
msecs
bckt
bckt (max)
total
rate
bklg
issd

32 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

idle
thrt
wait

See "Monitoring Stream and I/O Metrics" on page 36
for more information.

-n Prints a more human-readable version of the
performance information reported with the -i option
for all currently configured sampling intervals:

lastbw
minbw
maxio

For more information, see "Quality-of-Service Metrics"
on page 39

The minimum bandwidth and maximum average
service time are the metrics of most concern when
attempting to deliver guaranteed data rates.

-N intervals Reports the same metrics as -n, but for a specified
range of sampling intervals.

intervals is a comma-separated list of sampling intervals
expressed as either a number of I/Os or a time interval
in msecs. For example, the following would report
results averaged over the last 5 and 10 I/Os, and over
the last 1 and 2 seconds, respectively:

-N 5,10,1000ms,2000ms

-o file Logs output to the specified file.

-r Resets the specified statistics when used with one of the
following options:

• High-level stream statistics: -m

• Low-level QoS statistics: -i, -I, -n, -N, -t, or -T

The -r option is ignored if none of these other options
is specified.

007–4244–006 33

5: Monitoring Quality of Service

GRIO will continue to update some kernel statistics
even when no I/O is being performed (such as when
the rate metric reported in the -m mode is updated
even on an idle stream). In order to get results that
accurately correspond with those seen by a user
application, you should start grioqos with the -r
option at the same time that the application test begins.

-R intervals Reconfigures the kernel QoS monitoring intervals and
resets the statistics. This allows you to change the set of
sampling intervals used in the kernel to compute recent
bandwidth and average service time.

intervals is a comma-separated list of sampling intervals
expressed as either a number of I/Os or a time interval
in msecs. For example, the following would report
results averaged over the last 5 and 10 I/Os, and over
the last 1 and 2 seconds, respectively:

-R 5,10,1000ms,2000ms

By default, GRIO is configured to compute statistics for
a wide range of sampling intervals. However, it can be
useful to change these intervals using the -R option
when a monitored application has a buffering behavior
that is not well-matched by the default intervals.

Note: GRIO always configures two additional intervals
automatically:

• The single sample interval, which tracks the best
and worst case service times for individual I/Os

• The maximum interval, which is as large as the
kernel data structures can accommodate

-s Prints a more human-readable summary of active
streams than -l. Results are grouped per filesystem
and include the following:

• Stream type

• Process ID (for application streams)

34 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

• Bandwidth reservation in MB/s

• Stream IDs (when -v is also specified)

For more information about the output format, see the
grioqos(1M) man page.

-t Displays a per-stream I/O service time histogram for
all buckets.

-T buckets Displays a per-stream I/O service time histogram for
the specified buckets. You can display a ranges of
values. For example, the following would cause the
values of 11 histogram buckets to be displayed:

-T 0,1,2,3,20-25,52

-v Display verbose output (used with -s).

streamID Specifies the ID of an active GRIO stream.

fs Specifies a path that identifies a mounted
GRIO-managed filesystem.

delay Specifies the length of time in seconds that grioqos
should sleep before retrieving each new set of statistics.

count Specifies the total number of samples to be retrieved.

If you specify grioqos without any arguments, it prints a usage message by default.

To terminate grioqos, press Ctrl-C on Windows or send a SIGINT on other
platforms.

GRIO Scheduler
Interpreting the statistics collected by grioqos requires a basic understanding of the
GRIO scheduler.

GRIO uses the token bucket abstraction to limit the average rate and burstiness of
I/O flowing to or from the filesystem. Conceptually, each stream has a bucket of
tokens. Each token confers the right to issue one unit of I/O. Tokens are added to the
token bucket at a rate corresponding to the GRIO reservation and accumulate up to
the maximum size of the bucket, at which point any further tokens are discarded.
When a new I/O request arrives, it is issued if there are sufficient tokens available to

007–4244–006 35

5: Monitoring Quality of Service

the token bucket; if there are insufficient tokens, it is added to the throttle queue for
the stream, where it is held for a short period before the token bucket is checked
again. The rate at which tokens accrue to the token bucket controls the average rate
of the stream. The maximum size of the token bucket controls the size of the largest
burst of I/O that can be issued.

The ability to issue a temporary burst of I/O above the reserved data rate is
important. It is the mechanism within GRIO by which an application or device that
temporarily falls below the required data rate can catch up, thus preserving the
required average data rate.

GRIO implements a variation of the weighted round-robin scheduling discipline. At
each scheduler activation, it visits each stream in the system and issues as much I/O
as it can, up to the limit of the token bucket. The order in which the streams are
visited is always the same. To increase the determinism of the resulting I/O flow,
GRIO will (on platforms where it is possible) attempt to disable further I/O
reordering operations in lower-level devices.

Monitoring Stream and I/O Metrics
In monitoring mode (enabled with -m), grioqos reports the following metrics:

bytes, msecs Reports the current GRIO reservation. If the monitored
stream is a non-GRIO stream, this includes both the
static and dynamic components (and may change as the
DBA periodically adjusts the dynamic allocation or if
an administrator modifies the static allocation using
grioadmin). An application reservation may change if
the application uses the grio_modify(3X) call to
modify its reservation at runtime.

bckt, bckt (max) Describes the current state of the token bucket:

• bckt measures the current contents of the token
bucket in MB. The contents of bckt change
continuously as I/O is issued.

• bckt = (max) is the size of the token bucket in MB
and the maximum burst of I/O that GRIO will issue
to the filesystem. The value of bckt (max) is
related to the size of the current reservation and
only changes when the reservation is changed.

36 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

total, rate Describes the amount of data transferred:

• total is the total amount of data in MB transferred
across the stream since it was created or the
statistics were reset

• rate is the overall data rate in MB/s that was
achieved

When a stream is first initialized, the token bucket is
full, which means that bckt is equal to bckt (max).
An unthrottled application can issue a large initial burst
of I/O before it drains its token bucket and the GRIO
throttle forcibly slows it down. Depending on the size
of individual I/Os, the action of the throttle can cause
the instantaneous bandwidth to oscillate slightly above
and below the guaranteed rate. In these cases, however,
the overall data rate including the initial burst is greater
than the requested data rate and can be verified with
the rate metric (for example, by using grioqos -rm).

bklg, issd Tracks I/Os being actively processed by the stream:

• bklg is the backlog of I/O that has been placed on
the throttle queue

• issd is active I/O that has been issued to the
volume but has not yet completed

idle, thrt, wait Accounts for the utilization of the stream. These are
instantaneous metrics that are computed for the period
since the last sample:

• idle is the percentage of the time during which the
stream was not processing I/O, that is, there was no
active I/O and no I/O on the throttle queue (bklg
and issd are both equal to 0)

• thrt is the percentage of the time during which the
stream had I/O on the throttle queue (bklg is
non-zero)

007–4244–006 37

5: Monitoring Quality of Service

• wait is the percentage of the time during which
there was active I/O (issd is non-zero)

The stream utilization metrics (idle, thrt, and wait) can be useful when trying to
understand the interaction between an application, the GRIO scheduler, and the
storage device. Table 5-1 describes commonly observed behaviors and their
corresponding metrics.

Table 5-1 Relationship of Stream Utilization Metrics to Application State

idle thrt wait Application State

Low Low Low Expected behavior for a self-throttled application:

• The application is issuing I/O to the filesystem efficiently, so the stream
is rarely idle

• The application is not issuing I/O at a rate faster than its reservation, as
there is little I/O on the throttle queue of the stream

• I/O is being serviced quickly suggesting that the filesystem is not
currently oversubscribed

Low High Low Expected behavior for an application being throttled by GRIO.

Any Any High The application is spending a lot of time waiting for I/O. This may or may
not be a problem, but if the application is seeing poor QoS as reported by
the -i, -I, -n, -N, -t, or -T options, you should review the qualified
bandwidth for this filesystem. An indication of poor QoS would be low
worst-case bandwidth and high average service times over relatively long
sampling intervals.

High Any Any The stream is spending a lot of time idle. The application may not be
issuing I/O to the filesystem efficiently. You should investigate whether it
is using multithreaded or asynchronous I/O. If the desired data rate in
userspace is not being achieved, the behavior of the application should be
reviewed.

38 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

Quality of Service
Depending on the amount of I/O buffering an application performs, it may be more
or less sensitive to variation in I/O service time, also known as jitter. This can vary
from tens of seconds for applications that have large buffers and use threaded or
asynchronous I/O, to tens of milliseconds for single-threaded applications with little
buffering that require a low upper bound on I/O service time.

Approaches to measuring I/O performance often tend to focus at the ends of this
spectrum, measuring one of the following (which can be limiting as a result):

• Average bandwidth and ignoring the effects of service interruptions over shorter
time intervals

• Worst-case service time that (for applications that are able to tolerate more jitter)
can be a stronger criteria that is useful

The GRIO QoS infrastructure provides a configurable mechanism for monitoring
performance over the entire range of time scales from the service times of individual
I/Os to the sustained bandwidth over long sampling intervals. It can do so for an
individual application or over a period of time without instrumenting or otherwise
disrupting the performance of the application.

Quality-of-Service Metrics
Within the kernel, GRIO records the I/O completion times for all recent I/Os to or
from a stream. From this high-resolution data, it computes a number of derived
metrics that can be efficiently exported to userspace. You can change the monitoring
intervals over which these metrics are computed by using grioqos. Sampling
intervals can be expressed as either a time t (such as 1000ms) or as a number of
individual samples n. For instance, grioqos can display average I/O service time
and bandwidth for the last four I/Os, the last 200ms, the last second, and so forth.

GRIO computes the following metrics for each configured sampling interval:

lastbw Describes the recent average bandwidth, which is the
bandwidth observed over the last t ms or n samples. It
is an instantaneous metric describing recent stream
activity.

minbw, maxbw Describes the minimum and maximum values of
lastbw. These metrics track the worst- and best-case
bandwidth delivered over any continuous interval of

007–4244–006 39

5: Monitoring Quality of Service

the specified length since the creation of the stream or
the last time the statistics were reset.

lastio Describes the average I/O service time for I/Os over
t ms or n samples. When n is 1, this metric records the
actual service times of individual I/Os. When n is
greater than 1, this metric is the average of the
observed service times. It is an instantaneous metric
describing recent stream activity.

minio, maxio Describes the minimum and maximum values of
lastio. Like minbw and maxbw, these metrics track
the worst- and best-case average service times delivered
over any continuous interval of the specified length
since the statistics were initialized or last reset.

grioqos Caveats
There is a size restriction on the kernel structures used to hold recent I/O statistics. If
a requested metric cannot be computed because there is insufficient data, a single
hyphen (-) is printed. This can also happen when the QoS metrics have been recently
reset using the -r or -R options. For example, requesting a sampling interval of
10000ms may display only a hyphen (-) because the GRIO kernel structures cannot
hold enough individual samples to compute an average over ten seconds. However,
for most I/O rates and sampling intervals, the kernel structures should be adequate.

Use care when interpreting the low-level QoS statistics. A number of the bandwidth
and service time measures only make sense if they have been recorded during a
period of continuous, consistent application I/O (for example, for a video playout).

The lastbw and maxbw metrics are meaningful regardless of the behavior of the
application. However, minbw tracks all interruptions to the flow of I/O. This includes
interruptions due to the normal operation of the application as opposed to an actual
service interruption in the filesystem or device. Thus, if the application stops and
starts I/O during the sampling period, this will be recorded in the minbw, which will
in turn be of little use in detecting a real service interruption and is unlikely to
provide any useful insight into the performance of the application and system.

Similarly, the lastio metric is most useful if the application uses a consistent request
size when issuing I/O to the filesystem. If the application issues I/O of widely
varying size, then the service time is permuted both by filesystem and device issues
and the behavior of the application. For such applications, this makes it very difficult

40 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

to determine the origin of a performance issue. This is particularly true for non-GRIO
streams., which manage all of the I/O on a node that does not otherwise have an
explicit GRIO reservation. This includes the following:

• Direct I/O from applications that do not have a GRIO reservation

• Buffered I/O from all sources via the buffer cache (or whatever the native
filesystem caching mechanism is for the platform)

• All other system I/O to the managed filesystem

The result is that the non-GRIO stream may see a large variation in I/O sizes and the
average service time of those I/Os is unlikely to provide useful insight into the
performance of the system.

grioqos Examples
This section shows grioqos used to monitor a GRIO-aware application. High-level
stream and low-level quality-of-service metrics are collected. The application is
temporarily suspended to show the effect on the stream utilization and average data
rate. The example filesystem /mirror has a qualified bandwidth of 30 MB/s.

1. Confirm the available bandwidth on /mirror:

$ grioadmin -a /mirror

29.94 MB/s available on /mirror

0.06 MB/s allocated to this node

There are just under 30 MB/s available, and a minimal dynamic allocation. Now
we start the test application, which makes a 20–MB/s reservation and starts
performing reads as fast as it can. The I/O size is just under 8 MBs. The
application is multithreaded and configured to have up to four I/Os active.

2. List the active streams and get the stream ID of the application’s GRIO stream:

$ grioqos -sv
/mirror:

Dynamic 0.06 MB/s b77c9351-7b63-1029-8f56-08006913a7f7

App (6754151) 20.00 MB/s 03041498-871c-1029-87e2-08006913a7f7

007–4244–006 41

5: Monitoring Quality of Service

3. Monitor the application stream:

$ grioqos -m 03041499-871c-1029-87e2-08006913a7f7 1

Linux cxfsaltix1 2.6.16.46-0.12-default #1 SMP Thu May 17 14:00:09 UTC 2007

ia64 05/20/08

Filesystem: /mirror

App (6754151) 20.00 MB/s 03041498-871c-1029-87e2-08006913a7f7

- bytes msecs bckt (max) total rate bklg issd idle thrt wait

- bytes ms MB MB MB MB/s MB MB % % %

21:00:38 20971520 1000 26.97 40.00 0.00 0.00 0.00 15.82 - - -
21:00:39 20971520 1000 7.63 40.00 31.64 25.5 0.00 23.73 0 5 100

21:00:40 20971520 1000 4.12 40.00 63.28 28.1 15.82 15.82 0 88 100

21:00:41 20971520 1000 0.61 40.00 94.92 29.1 23.73 7.91 0 100 85

21:00:42 20971520 1000 5.01 40.00 110.74 25.9 23.73 7.91 0 100 72

21:00:43 20971520 1000 1.49 40.00 134.47 25.5 23.73 7.91 0 100 55
21:00:44 20971520 1000 5.89 40.00 158.20 25.2 31.64 0.00 0 100 71

21:00:45 20971520 1000 2.41 40.00 174.02 23.8 23.73 7.91 0 100 60

21:00:46 20971520 1000 6.80 40.00 197.75 23.8 31.64 0.00 0 100 65

21:00:47 20971520 1000 3.29 40.00 213.57 22.9 23.73 7.91 0 100 66

21:00:48 20971520 1000 7.69 40.00 237.30 23.0 31.64 0.00 0 100 61

21:00:49 20971520 1000 4.18 40.00 253.12 22.3 23.73 7.91 0 100 70
21:00:50 20971520 1000 0.67 40.00 276.86 22.4 23.73 7.91 0 100 55

21:00:51 20971520 1000 5.13 40.00 292.68 21.9 23.73 7.91 0 100 70

...

The first few samples show that the token bucket bckt is initially full, which
allows the overall data rate rate to jump above the reserved 20 MB/s briefly (see
"Monitoring Stream and I/O Metrics" on page 36).

The stream utilization metrics idle, thrt, and wait show that while the
application is draining its token bucket, the application spends all of its time
waiting for I/O to the device. Very quickly, the token bucket empties completely
and GRIO begins to throttle the application. thrt jumps to 100%. wait drops to
around 60-70%, which is consistent with the qualified bandwidth.

The maximum this filesystem can deliver is 30MB/s, therefore a reservation of
20MB/s should keep the filesystem active approximately two-thirds of the time,
which is what we see. The application is clearly very efficient about issuing I/O

42 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

to the filesystem (multithreaded with four active I/Os), because there is never any
point when the stream is idle and the filesystem does not have I/O to process.

4. To simulate an interruption, temporarily suspend the application in userspace
(sending it a SIGSTOP). The grioqos -m output would change as follows:

21:01:04 20971520 1000 7.42 40.00 561.62 21.2 15.82 0.00 0 100 61

21:01:05 20971520 1000 11.82 40.00 577.44 21.0 0.00 0.00 31 44 49

21:01:06 20971520 1000 32.04 40.00 577.44 20.2 0.00 0.00 100 0 0

21:01:07 20971520 1000 40.00 40.00 577.44 19.5 0.00 0.00 100 0 0

21:01:08 20971520 1000 40.00 40.00 577.44 18.9 0.00 0.00 100 0 0
...

The application stops issuing I/O completely and immediately the utilization
metrics change:

• The token bucket fills

• Any remaining I/O on the throttle queue drains out (thrt goes to 0)

• The stream becomes completely idle

Note: The rate metric, which computes the overall data rate, is updated even
while the stream is idle and gradually decreases during this period of inactivity.

5. Restart the application. The grioqos -m output changes accordingly:

21:01:12 20971520 1000 16.10 40.00 593.26 17.1 0.00 23.73 23 0 77

21:01:13 20971520 1000 4.80 40.00 632.81 17.8 15.82 15.82 0 70 99

21:01:14 20971520 1000 1.53 40.00 664.45 18.1 23.73 7.91 0 100 100

21:01:15 20971520 1000 5.93 40.00 688.18 18.3 31.64 0.00 0 100 66

21:01:16 20971520 1000 2.42 40.00 704.00 18.2 23.73 7.91 0 100 60
21:01:17 20971520 1000 6.82 40.00 727.73 18.3 31.64 0.00 0 100 64

21:01:18 20971520 1000 3.31 40.00 743.55 18.3 23.73 7.91 0 100 63

21:01:19 20971520 1000 7.71 40.00 767.29 18.4 31.64 0.00 0 100 63

There is a small initial burst as the token bucket is drained and GRIO throttles the
application to 20 MB/s.

007–4244–006 43

5: Monitoring Quality of Service

6. During the same run, we collect low-level QoS statistics. At the start of the run,
use -i to display all of the intervals that are being monitored in the kernel:

$ grioqos -i 03041498-871c-1029-87e2-08006913a7f 1

Linux cxfsaltix1 2.6.16.46-0.12-default #1 SMP Thu May 17 14:00:09 UTC 2007

ia64 05/20/08

Filesystem: /mirror

App (6754151) 20.00 MB/s 03041498-871c-1029-87e2-08006913a7f7

- interval minbw maxbw lastbw minio maxio lastio

- - MB/s MB/s MB/s ms ms ms
21:00:38 1io - - - 296.8 1004.3 1004.3

+ 2io 29.32 32.89 32.89 402.2 967.8 967.8

+ 3io 30.68 31.94 31.00 505.0 882.0 882.0

+ 4io 31.01 31.38 31.38 611.6 788.4 788.4

+ 5io 31.46 31.46 31.46 690.1 690.1 690.1
+ 6io - - - - - -

+ 10io - - - - - -

+ 100ms 29.32 32.89 32.89 402.2 967.8 967.8

+ 200ms 29.32 32.89 32.89 402.2 967.8 967.8

+ 500ms 30.68 31.00 31.00 716.5 882.0 882.0

+ 1000ms 31.46 31.46 31.46 690.1 690.1 690.1
+ 2000ms - - - - - -

+ 5000ms - - - - - -

+ 1500io - - - - - -

There are 14 intervals being monitored for this stream. This sample was collected
just after the application was started and only a small number of I/Os had been
issued. There is insufficient data to compute some of these metrics and a number
of samples are displayed as “-” .

7. Select two intervals (500ms and 2000ms) and monitor them during the course of
the run:

$ grioqos -I "500ms,2000ms" 03041498-871c-1029-87e2-08006913a7f 2

Linux cxfsaltix1 2.6.16.46-0.12-default #1 SMP Thu May 17 14:00:09 UTC 2007

ia64 05/20/08

44 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

Filesystem: /mirror

App (6754151) 20.00 MB/s 03041498-871c-1029-87e2-08006913a7f7

- interval minbw maxbw lastbw minio maxio lastio

- - MB/s MB/s MB/s ms ms ms
21:00:38 500ms - - - - - -

+ 2000ms - - - - - -

21:00:40 500ms 30.37 31.93 31.48 479.0 1009.0 959.2

+ 2000ms 31.46 31.46 31.46 789.4 789.4 789.4

21:00:42 500ms 18.91 32.31 20.14 479.0 1224.1 1224.1

+ 2000ms 25.37 31.72 25.37 789.4 1057.5 1057.5
21:00:44 500ms 18.91 32.31 20.75 479.0 1588.4 1583.9

+ 2000ms 19.74 31.72 20.38 789.4 1527.7 1527.7

...

As seen in the high-level metrics, there is an initial burst of I/O before the
application is throttled by GRIO. The current bandwidth lastbw quickly
stabilizes at around 20 MB/s. After the application is suspended in userspace, the
low-level QoS statistics clearly record the interruption:

21:01:13 500ms 1.15 32.31 27.27 479.0 1609.3 554.7

+ 2000ms 1.15 31.72 3.19 789.4 1594.4 816.3

21:01:15 500ms 1.15 34.95 31.96 479.0 1609.3 988.3

+ 2000ms 1.15 33.08 33.08 788.7 1594.4 861.1

...

007–4244–006 45

Chapter 6

GRIO API Overview for IRIX and Windows

On IRIX and Windows nodes, User processes communicate with the ggd2 daemon
using the following core library calls:

• "grio_avail()" on page 47

• "grio_bind()" on page 48

• "grio_get_stream()" on page 48

• "grio_modify()" on page 49

• "grio_release()" on page 49

• "grio_reserve() and grio_reserve_fd()" on page 50

• "grio_unbind()" on page 52

The process that initially reserves bandwidth by calling grio_reserve() or
grio_reserve_fd() is referred to as the owning process. Any streams not already
released when their owning process exits will be automatically released. Processes
can share streams. The ownership of a GRIO stream is nontransferable.

grio_avail()

Synopsis:

#include <grio2.h>

int grio_avail(

const char *fs,

grio_off_t *bytes, grio_msecs_t *msecs)

cc ... -lgrio2

The grio_avail() call returns the currently available guaranteed-rate bandwidth
for a specified filesystem. The returned bandwidth is the qualified bandwidth of the
filesystem minus bandwidth reserved for active GRIO streams and any bandwidth
statically allocated for non-GRIO I/O. While ggd2 temporarily allows unreserved

007–4244–006 47

6: GRIO API Overview for IRIX and Windows

bandwidth to be used for servicing nonguaranteed-rate I/O, this bandwidth is
reclaimed when a GRIO reservation is received and is therefore considered available.

For more information, see the grio_avail(3X) man page.

grio_bind()

Synopsis:

#include <grio2.h>

int grio_bind(grio_descriptor_t fd, grio_stream_id_t *stream_id);

cc ... -lgrio2

The grio_bind() call binds one or more open file descriptors to a GRIO stream.
Once bound, all I/O to or from the file descriptors will receive the QoS guarantees of
the stream.

Binding a file descriptor increments the reference count of a stream by 1. The file
descriptor remains bound to the stream until it is either closed or explicitly unbound
with grio_unbind().

The file descriptor must be capable of GRIO I/O. That is, it must refer to an open file
on an XFS or CXFS filesystem and be configured for direct I/O.

For more information, see the grio_bind(3X) man page.

grio_get_stream()

Synopsis:

#include <grio2.h>

int grio_get_stream(

grio_descriptor_t fd,

grio_stream_id_t *stream_id);

cc ... -lgrio2

The grio_get_stream() call returns the ID of the stream to which it is bound.

48 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

For more information, see the grio_get_stream(3X) man page.

grio_modify()

Synopsis:

#include <grio2.h>

int grio_modify(

grio_stream_id_t *stream_id,

grio_off_t *bytes, grio_msecs_t *msecs,

int flags)

cc ... -lgrio2

The grio_modify() call changes the properties of an existing GRIO stream. You can
increase or decrease reserved bandwidth by using this call.

Note: grio_modify() is a synchronous call and, when increasing a reservation,
may block while bandwidth is reallocated. This delay can be in the order of 1 or 2
seconds and applications should be designed to accommodate this delay if necessary.
While a call to grio_modify() is being processed, I/O to the stream continues
uninterrupted at its existing rate.

For more information, see the grio_modify(3X) man page.

grio_release()

Synopsis:

#include <grio2.h>

int grio_release(grio_stream_id_t *stream_id)

cc ... -lgrio2

The grio_release() call removes a GRIO stream ID from the system and releases
the primary reference taken when it was created. When all remaining references to

007–4244–006 49

6: GRIO API Overview for IRIX and Windows

the stream are removed, the stream will be destroyed and its associated bandwidth
will be returned to the system.

The grio_release() call hides the stream. Attempts to bind new file descriptors
using grio_bind() will fail with a return value of ENOENT. However, the QoS
guarantees of the stream will remain in effect until all remaining bound file descriptors
are either unbound or closed, and any in-flight I/O to the stream completes.

This behavior gives an application some flexibility in controlling the extent of a GRIO
guarantee. For instance, by binding a file descriptor to a stream and immediately
releasing the stream, an application can create a temporary reservation that persists
for as long as the file descriptor remains open. Alternatively, if a process does not
explicitly release a stream, the guarantee persists until that process exits.

For more information, see the grio_release(3X) man page.

grio_reserve() and grio_reserve_fd()

Synopsis:

#include <grio2.h>

int grio_reserve(

const char *path,
grio_off_t *bytes, grio_msecs_t *msecs,

int flags,

grio_stream_id_t *stream_id)

int grio_reserve_fd(
grio_descriptor_t fd,

grio_off_t *bytes, grio_msecs_t *msecs,

int flags,

grio_stream_id_t *stream_id)

cc ... -lgrio2

50 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

The grio_reserve() and grio_reserve_fd() calls reserve guaranteed rate
bandwidth to or from a GRIO-managed filesystem. If successful, they set up a GRIO
stream in the kernel with the requested properties and return its stream ID:

• grio_reserve() makes a filesystem-level reservation. The target filesystem is
identified with a path that must be either the filesystem mount point or the device
special file on which it is located. Before guaranteed rate I/O can be performed,
an open file descriptor must be bound to the new stream using grio_bind().

• grio_reserve_fd() makes a file-level reservation. It takes an open file
descriptor on the target filesystem. In addition to reserving bandwidth, the file
descriptor is bound to the newly created stream. The file must therefore be suitable
for guaranteed rate I/O and satisfy the normal requirements of grio_bind.

The requested bandwidth is specified as the number of bytes delivered every msecs
milliseconds. msecs is referred to as the reservation interval. This value provides
additional information to the GRIO scheduler about an application’s ability to tolerate
variation in I/O service time. (For example, an application request of 1MB every
tenth of a second suggests a tighter requirement than 100 MB delivered every second,
even though both requests describe the same average data rate.) GRIO uses this
information as a hint only, and honors the expressed bandwidth over an
implementation-defined scheduling interval.

grio_release() should be called when the stream is no longer required.

The process that creates a stream with these calls is said to be the owning process. Any
streams not already released when their owning process exits will be automatically
released. The ownership of a GRIO stream is not transferable.

GRIO streams are reference-counted. When created, a new stream has a reference
count of 1. This primary reference remains until the reservation is released using
grio_release() or the owning process exits.

A stream persists until its reference count drops to 0. Binding a file descriptor using
grio_bind() adds a reference. Unbinding using grio_unbind() or closing a file
descriptor removes a reference. In-flight I/O will also add references to a stream for
short periods of time.

It is possible, and frequently useful, for a stream to persist after it has been released.
For more information, see the grio_release() man page.

007–4244–006 51

6: GRIO API Overview for IRIX and Windows

Note: Both grio_reserve() and grio_reserve_fd() are synchronous calls and
may block while bandwidth is reallocated. This delay is referred to as the stream
creation latency.

In the worst case, this delay can be in the order of 1 or 2 seconds, although it may be
significantly less depending on the configuration of a particular GRIO deployment.

The following are strategies to minimize the impact of this behavior:

• Reserve bandwidth well ahead of time
• Perform reservations in a dedicated thread
• Reuse a reservation wherever possible
• Configure ggd2 to keep a proportion of the available free bandwidth

uncommitted using the -r option

For more information, see the grio_reserve(3X) and ggd2(1M) man pages.

grio_unbind()

Synopsis:

#include <grio2.h>

int grio_unbind(grio_descriptor_t fd);

cc ... -lgrio2

The grio_unbind() call unbinds a file descriptor from its GRIO stream. Unbinding
a file descriptor decrements the reference count of its stream by 1.

Once unbound, I/O to or from the file descriptor may continue, but will be scheduled
as regular, non-guaranteed rate I/O.

For more information, see the grio_unbind(3X) man page.

52 007–4244–006

Appendix A

GRIOv1 and GRIOv2 Differences

Table A-1 summarizes the primary differences between GRIOv1 and GRIOv2.

007–4244–006 53

A: GRIOv1 and GRIOv2 Differences

Table A-1 Differences Between GRIOv1 and GRIOv2

GRIOv1 GRIOv2

Reservation-granting
daemon:

ggd ggd2

Userspace library: libgrio libgrio2

Logical volumes: XLV XVM

Filesystems supported: Local XFS filesystems only Shared CXFS filesystems only

Multiple-node support: No Yes

Qualification model: Device-level: the maximum
sustainable bandwidth for each
hardware component in the I/O
path is qualified individually.
(This includes the storage devices,
SCSI and Fibre Channel busses,
system interconnects, and so on.)

Filesystem-level: the maximum sustainable
bandwidth is measured across the entire
filesystem under a realistic application
workload. The qualified bandwidth is stored in
the cluster database using the
cxfs_admin(1M) command

Monitoring service Limited administration tools Comprehensive tools for measuring and
monitoring delivered QoS levels, including
collection of per-stream performance metrics.

Control of
non-GRIO-managed
I/O

No control Cluster-wide encapsulation and control.

54 007–4244–006

Glossary

burstiness

The extent to which the I/O data rate for an application or node tends to vary
suddenly, over short intervals of time. Contrast with an application that issues its I/O
smoothly to the filesystem, with little variation in the rate at which it submits I/O.
For example, an application that buffered a data flow in its internal buffers then
periodically flushed that data to disk through multiple I/O worker threads would
produce a highly bursty data flow.

ceiling allocation

A node-level allocation for which GRIO ensures that the node receives at most the
configured bandwidth.

cluster volume

An XVM volume configured for shared access via a CXFS filesystem

cluster volume domain

An XVM concept that refers to the entire set of configured cluster volumes

device-level qualification model

The maximum sustainable bandwidth is measured for each hardware component in
the I/ O path, a user reservation for I/O resources is then processed for each hardware
component, and is refused if any one component would become oversubscribed.

See also filesystem-level qualification model.

distributed bandwidth allocator (DBA)

The functionality of the ggd2 daemon that periodically adjusts the amount of
bandwidth allocated to the individual non-GRIO streams for its managed filesystems.
The DBA is responsible for determining how unreserved bandwidth is distributed
among the nodes with access to the filesystem.

007–4244–006 55

Glossary

filesystem-level qualification model

A qualified bandwidth for the entire filesystem is determined empirically by verifying
that the required QoS is delivered to all of the applications running a range of
realistic workloads.

The maximum sustainable bandwidth is measured across the entire filesystem under
a realistic application workload.

See also device-level qualification model.

floor allocation

A node-level allocation for which GRIO ensures that the node receives at least the
configured bandwidth. While there is any unallocated bandwidth, and the node is
issuing I/O, ggd2 will allocate it additional bandwidth.

GRIO

Guaranteed-rate I/O. GRIOv1 is GRIO version 1, GRIOv2 is GRIO version 2. GRIOv1
is a legacy product.

GRIO I/O

I/O for applications that have made an explicit GRIO reservation.

See also non-GRIO I/O.

GRIO server

The CXFS server-capable administration node on which the active ggd2 daemon is
running. All cluster volumes are managed by this single instance of ggd2. There is
one GRIO server per cluster.

guarantee

The assurance made by the system to a user process that it will deliver data from a
storage device at the reserved rate regardless of any other I/O activity on the system
or on other nodes within its cluster.

jitter

The variation in individual service times. As the storage system approaches
saturation, service-time jitter will typically increase.

56 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

local volume

An XVM volume that is dedicated for the sole use of one node.

local volume domain

An XVM concept that refers to the entire set of configured local volumes

non-GRIO I/O

All buffered and system I/O other than I/O for applications that have made an
explicit GRIO reservation.

See also GRIO I/O

non-GRIO stream

A dedicated system stream created for a filesystem by a node when ggd2 begins
managing that filesystem. All non-GRIO I/O issued by a node is automatically
attached to and managed by this stream.

owning process

The user process that initially reserves bandwidth by calling grio_reserve() or
grio_reserve_fd().

qualified bandwidth

The maximum bandwidth that can be delivered by a filesystem (and the XVM
volume on which it resides) in a given configuration under a realistic application
workload such that all applications are delivered an adequate QoS.

quality of service (QoS)

The performance properties of a system service (such as worst-case bandwidth or I/O
service time).

reservation

The set of QoS parameters requested by a user application. Reservation requests are
forwarded to the ggd2(1M) bandwidth management daemon.

007–4244–006 57

Glossary

reservation interval

For GRIO functions where the reservation is expressed as a number of bytes delivered
every number of milliseconds, that time in milliseconds is referred to as the reservation
interval. It gives GRIO an indication as to the request’s sensitivity to I/O jitter.

stream

The object within the kernel that encodes the reservation’s QoS parameters and
maintains the necessary scheduling and monitoring state required to fulfill the
guarantee.

stream creation latency

The delay resulting when the grio_reserve() and grio_reserve_fd() calls
block while bandwidth is reallocated.

58 007–4244–006

Index

A

active reservations, 21
administering GRIO, 21
administration node, 15
administration tools, 54
API overview, 47
available guaranteed-rate bandwidth, 48

B

bandwidth availability, 21
bandwidth management, 7
binding open file descriptors, 48
buffered I/O, 5

C

capabilities, 1
caveats, 40
ceiling allocation, 8, 22, 23
change a GRIO stream, 49
client-only node, 15
cluster database, 13, 54
cluster integration, 6
cluster volume domain, 15
clusters

See "CXFS", 12
CXFS, 1, 6, 10, 11, 48, 54
CXFS administration node, 15
CXFS client-only node, 15

D

daemon, 54
data layout, 12
DBA, 9
DBA per-node minimum, 19
DBA per-volume minimum, 18
DBA update interval, 19
device alignment, 12
device-level qualification, 54
distributed bandwidth allocator, 9

E

encapsulation of non-GRIO I/O, 54
ENOENT, 50

F

F_FSSETXATTR, 6
fcntl, 6
features, 1
file allocation and stream use, 6
file descriptor binding/unbinding, 48
file-level reservation, 51
filesystem-level

qualification, 54
reservation, 51

filesystems supported, 54
flipbook application, 13
floor allocation, 8, 22, 23
FS_XFLAG_REALTIME, 6

007–4244–006 59

Index

G

ggd, 54
ggd2, 6, 7, 10, 13, 15, 17, 47, 48, 52, 54
ggd2.options, 17
GRIO server, 15
GRIO-enabled platforms, 11
grio_avail(), 47
grio_bind(), 48, 50, 51
grio_get_stream(), 48
grio_modify(), 49
grio_release(), 49, 51
grio_reserve(), 9, 51
grio_reserve_fd(), 9, 51
grio_unbind(), 48, 51, 52
grioadmin, 21, 54
grioqos, 15, 54
GRIOv1 and GRIOv2 differences, 53
guarantee, 3

H

HBA number, 13
how GRIO works, 5

I

I/O metrics, 36
I/O performance, 12
I/O scheduler, 6
I/O service times, 13
installation requirements, 11
introduction, 1

J

jitter, 14, 39

L

latency in stream creation, 52
libgrio, 54
libgrio2, 54
library, 54
library calls, 47
license.dat, 17
licensing, 17
logical unit (LUN) management, 12
logical volumes, 54
LUN, 12
LUN management, 12

M

messaging, 6
metrics, 36
modify a GRIO stream, 49
monitoring QoS, 31
monitoring service, 54
multiOS release (CXFS), 11
multiple-node support, 54

N

non-GRIO managed I/O, 54
non-GRIO stream, 7

O

open, 6
oversubscription, 7
owning process, 47, 51

60 007–4244–006

Guaranteed-Rate I/O Version 2 for Linux Guide

Q

qualification model, 54
qualified bandwidth, 2, 7, 12, 54
quality of service (QOS), 39
quality of service (QoS), 2
quality-of-service metrics, 39
query available bandwidth, 21

R

RAID, 12, 13
RAM caching, 13
real-time data blocks, 6
real-time schedulers, 14
real-time subvolume, 6
releasing a GRIO stream, 49
releasing open file descriptors, 48
relocation and recovery of the GRIO server, 10
remove a GRIO stream, 49
reservation, 2
reservation interval, 51
reservations list, 21
reserve bandwidth, 51

S

SAN, 12
scheduler, 5, 35
shared storage device, 12
SIGHUP signal, 17
software components, 6
static bandwidth allocations, 21
statistics , 35
storage area network (SAN), 12
stream

creation latency, 52
management, 6
releasing, 49
sharing, 47
terminology, 5
use and file allocation, 6

stream ID, 49
stripe parameters, 12
stripe unit, 12

T

terminology, 2
testing, 14
traffic control, 5

U

unallocated bandwidth, 7
unbind a file descriptor, 48, 52
userspace library, 54

V

volume geometry, 12
volumes, 54

X

XFS, 54
XLV, 54
XVM, 54
XVM stripe parameters, 12

007–4244–006 61

	New Features in this Guide
	Table of Contents
	About This Guide
	Scope
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction
	What Does GRIO Do?
	Terminology

	2. How GRIO W orks
	Traffic Control
	Stream Use and Real-Time File Setup
	Software Components
	ggd2 Daemon
	Qualified Bandwidth
	Managing Bandwidth: Encapsulation and Distributed Bandwidth Allocator
	GRIO Server Relocation and Recovery

	3. Setting Up GRIO
	Installation Requirements
	Deployment Considerations for Cluster Volumes
	Data Layout
	Choosing a Qualified Bandwidth
	Cluster Volumes
	Licensing
	ggd2.options File

	4. Administering and Monitoring GRIO
	Administering GRIO with the grioadmin Command
	grioadmin Command Line
	grioadmin Examples

	Monitoring GRIO Streams with the griomon Command

	5. Monitoring Quality of Service
	grioqos Command Line
	GRIO Scheduler
	Monitoring Stream and I/O Metrics
	Quality of Service
	Quality-of-Service Metrics
	grioqos Caveats
	grioqos Examples

	6. GRIO API Overview for IRIX and Windows
	grio_avail()
	grio_bind()
	grio_get_stream()
	grio_modify()
	grio_release()
	grio_reserve() and grio_reserve_fd()
	grio_unbind()

	A. GRIOv1 and GRIOv2 Differences
	Glossary
	Index

