
XFS® for Linux® Administration

007–4273–004

COPYRIGHT
© 2003-2004, 2011 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner,
in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
IRIX, Silicon Graphics, SGI, the SGI logo, and XFS are trademarks or registered trademarks of Silicon Graphics International Corp. or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in several countries. All other trademarks mentioned herein are the property of their
respective owners.

New Features in This Guide

This revision contains use of the xfs_quota command, the new Chapter 7,
"Enhanced XFS Extensions" on page 67, and other clarifications and corrections.

007–4273–004 iii

Record of Revision

Version Description

001 January 2003
First printing, incorporating information for the SGITM ProPackTM v
2.1 for Linux® release

002 May 2003
Incorporates information for the SGI ProPack v 2.2 for Linux release

003 January 2004
Incorporates information for the SGI ProPack v 2.4 for Linux release

004 January 2011
Incorporates information for the SGI InfiniteStorage Software
Platform (ISSP) 2.3 release and XFS & XVM media kit 2.3 for Red
Hat® Enterprise Linux® (RHEL) 6

007–4273–004 v

Contents

About This Guide . xi

Related Publications . xi

Obtaining Publications . xi

Conventions . xii

Reader Comments . xiii

1. The XFS® Filesystem 1

2. Planning an XFS Filesystem 3

Choosing the Filesystem Block Size 3

Choosing the Filesystem Directory Block Size 4

Choosing the Log Type and Size 4

Choosing Allocation Groups and Stripe Units 6

Repartitioning the Disks . 7

3. Creating XFS Filesystems 9

Making a Filesystem . 9

mkfs.xfs Using the Defaults 10

mkfs.xfs Specifying Block and Log Size of Internal Log 11

mkfs.xfs for a Logical Volume with a Log Subvolume 12

mkfs.xfs for a Directory Block Size Larger than Filesystem Block Size 12

Growing a Filesystem . 13

4. Filesystem Maintenance 15

Filesystem Reorganization . 15

007–4273–004 vii

Contents

Filesystem Corruption . 15

Checking Filesystem Consistency 16

Overview of Checking Filesystem Consistency 16

xfs_repair -n . 17

xfs_check . 18

Repairing XFS Filesystem Problems 18

Repairing Inconsistent Filesystems 19

Common xfs_repair Error Messages 20

xfs_repair Error Messages When Files Are in lost+found 21

What to Do If xfs_repair Cannot Repair a Filesystem 22

Mounting a Filesystem Without Log Recovery 23

5. Disk Quotas . 25

Overview of Disk Quotas . 25

Enabling Quotas . 26

Enabling Quotas for Users . 26

Enabling Quotas for Groups 27

Enabling Quotas for Projects 27

Setting Quota Limits . 28

Setting Quota Limits for Users 29

Setting Quota Limits for Groups 29

Setting Quota Limits for Projects 30

Displaying Quota Information 30

Administering Quotas . 31

Monitoring Disk Space Usage with Quota Accounting 31

Checking Disk Space Usage . 33

viii 007–4273–004

XFS
®

for Linux
®

Administration

6. Backup and Recovery Procedures 35

Features of xfsdump and xfsrestore 35

Media Layout for xfsdump . 36

Possible xfsdump Layouts . 37

Saving Data with xfsdump . 43

xfsdump Syntax . 43

Specifying Local Media . 44

Specifying a Remote Tape Drive 45

Backing Up to a File . 47

Reusing Tapes . 47

Erasing Used Tapes . 48

About Incremental and Resumed Dumps 48

Performing an Incremental Dump 49

Performing a Resumed Dump 50

Examining xfsdump Archives 51

About xfsrestore . 52

xfsrestore Syntax . 53

Displaying the Contents of the Dump Media with xfsrestore 54

Performing Simple Restores with xfsrestore 55

Restoring Individual Files with xfsrestore 57

Performing Network Restores with xfsrestore 58

Performing Interactive Restores with xfsrestore 59

Performing Cumulative Restores with xfsrestore 60

Interrupting xfsrestore . 63

About the housekeeping and orphanage Directories 65

Using xfsdump and xfsrestore to Copy Filesystems 65

007–4273–004 ix

Contents

7. Enhanced XFS Extensions 67

agskip Mount Option for Allocation Group Specification 67

ibound Mount Option for Solid-State Drives 67

ibound Examples . 68

ibound and Messages . 69

Improving Efficiency . 69

Index . 71

x 007–4273–004

About This Guide

This guide tells you how to plan, create, and maintain XFS® filesystems on a system
running the Linux operating system.

Related Publications
For information about this release, see the following SGI InfiniteStorage Software
Platform (ISSP) README.txt release note.

The following documents contain additional information:

• DMF 5 Administrator’s Guide for SGI InfiniteStorage

• CXFS 6 Client-Only Guide for SGI InfiniteStorage

• XVM Volume Manager Administrator’s Guide

• Linux Configuration and Operations Guide

• The user guide and quick start guide for your hardware

• NIS Administrator’s Guide

• Personal System Administration Guide

• Performance Co-Pilot for Linux User’s and Administrator’s Guide

• SGI L1 and L2 Controller Software User’s Guide

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, man pages, and other information.

• The /docs directory on the ISSP DVD or in the Supportfolio download directory
contains information about the release, such as the following:

007–4273–004 xi

About This Guide

– The ISSP release note: /docs/README.txt

– Other release notes: /docs/README_NAME.txt

– A complete list of the packages and their location on the media:
/docs/RPMS.txt

– The packages and their respective licenses: /docs/PACKAGE_LICENSES.txt

• The /docs directory on the SGI XFS & XVM media kit for RHEL CD or in the
Supportfolio download directory contains information about the release, such as
the following :

– The XFS & XVM media kit release note:
/docs/xfs_xvm-VERSION-reademe.txt

– A complete list of the packages and their location on the media:
/docs/xfs_xvm-VERSION-rpms.txt

– The packages and their respective licenses: /docs/PACKAGE_LICENSES.txt

• The ISSP release notes and manuals are provided in the noarch/sgi-isspdocs
RPM and will be installed on the system into the following location:

/usr/share/doc/packages/sgi-issp-VERSION/TITLE

• You can view man pages by typing man title at a command line.

Note: The external websites referred to in this guide were correct at the time of
publication, but are subject to change.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

xii 007–4273–004

XFS
®

for Linux
®

Administration

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

SGI
Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.

007–4273–004 xiii

Chapter 1

The XFS® Filesystem

The XFS® filesystem provides the following major features:

• Full 64-bit file capabilities (files larger than 2 GB)

• Rapid and reliable recovery after system crashes because of journaling technology

• Efficient support of large, sparse files (files with “holes”)

• Integrated, full-function volume manager support

• Extremely high I/O performance that scales well on multiprocessing systems

• User-specified filesystem block sizes ranging from 512 bytes up to a maximum of
the filesystem page size

At least 64 MB of memory is recommended for systems with XFS filesystems.

The maximum size of an XFS filesystem is 264 bytes. The maximum size of an XFS
file is 263-1 bytes.

XFS uses database journaling technology to provide high reliability and rapid
recovery. Recovery after a system crash is completed within a few seconds, without
the use of a filesystem checker such as the fsck command. Recovery time is
independent of filesystem size.

XFS is designed to be a very high performance filesystem. XFS as a filesystem is
capable of delivering near-raw I/O performance. While traditional filesystems suffer
from reduced performance as they grow in size, with XFS there is no performance
penalty.

You can create filesystems with block sizes ranging from 512 bytes to a maximum of
the filesystem page size. The filesystem page size is a kernel compile option and may
be set to 4K, 8K, or 16K.

Filesystem extents, which provide for contiguous data within a file, are created
automatically for normal files and may be configured at file creation time using the
fcntl() system call. Extents are multiples of a filesystem block.

Inodes are created as needed by XFS filesystems. You can specify the size of inodes
with the -i size= option to the filesystem creation command, mkfs.xfs. You can
also specify the maximum percentage of the space in a filesystem that can be
occupied by inodes with the -i maxpct= option of the mkfs.xfs command.

007–4273–004 1

1: The XFS® Filesystem

XFS implements fully journaled extended attributes. An extended attribute is a
name/value pair associated with a file. Attributes can be attached to all types of
inodes: regular files, directories, symbolic links, device nodes, and so forth. Attribute
values can contain up to 64 KB of arbitrary binary data.

XFS implements two attribute namespaces:

• A user namespace available to all users, protected by the normal file permissions

• A system namespace, accessible only to privileged users

The system namespace can be used for protected filesystem metadata such as access
control lists (ACLs) and hierarchical storage manager (HSM) file migration status. For
more information see the, attr(1) man page.

To dump XFS filesystems, you must use the command xfsdump(8) (not the dump
command). Restoring from these dumps is done using xfsrestore(8). For more
information about the relationships between xfsdump, xfsrestore on XFS
filesystems, see the man pages and Chapter 6, "Backup and Recovery Procedures".

2 007–4273–004

Chapter 2

Planning an XFS Filesystem

This chapter discusses the following:

• "Choosing the Filesystem Block Size" on page 3

• "Choosing the Filesystem Directory Block Size" on page 4

• "Choosing the Log Type and Size" on page 4

• "Choosing Allocation Groups and Stripe Units" on page 6

• "Repartitioning the Disks" on page 7

Choosing the Filesystem Block Size
XFS lets you choose the logical block size for each filesystem by using the -b size=
option of the mkfs.xfs command. (Physical disk blocks remain 512 bytes.)

For XFS filesystems on disk partitions and logical volumes and for the data
subvolume of filesystems on logical volumes, the block size guidelines are as follows:

• The minimum block size is 512 bytes. Small block sizes increase allocation
overhead which decreases filesystem performance. In general, the recommended
block size for filesystems under 100 MB and for filesystems with many small files
is 512 bytes. The filesystem block size must be a power of two.

• The default block size is 4096 bytes (4 KB). This is the recommended block size for
filesystems over 100 MB.

• The maximum block size is the page size of the kernel, which is 4 KB on x86
systems (both 32-bit and 64-bit) and is configurable on ia64 systems. Because large
block sizes can waste space, in general block sizes should not be larger than 4096
bytes (4 KB).

Block sizes are specified in bytes as follows:

• Decimal (default)

• Octal (prefixed by 0)

• Hexadecimal (prefixed by 0x or 0X)

007–4273–004 3

2: Planning an XFS Filesystem

If the number has the suffix “K” it is multiplied by 1024.

Choosing the Filesystem Directory Block Size
To select a logical block size for the filesystem directory that is greater than the logical
block size of the filesystem, use the -n option of the mkfs.xfs command. This lets
you choose a filesystem block size to match the distribution of data file sizes without
adversely affecting directory operation performance. Using this option could improve
performance for a filesystem with many small files, such as a news or mail filesystem.
In this case, the filesystem logical block size could be small (512 bytes, 1 KB, or 2 KB)
and the logical block size for the filesystem directory could be large (4 KB or 8 KB);
this can improve the performance of directory lookups because the tree storing the
index information has larger blocks and less depth.

You should consider setting a logical block size for a filesystem directory that is
greater than the logical block size for the filesystem if you are supporting an
application that reads directories (with the readdir(3C) or getdents(2) system
calls) many times in relation to how much it creates and removes files. Using a small
filesystem block size saves on disk space and on I/O throughput for the small files.

The data needed to perform a readdir operation is segregated from the index
information. Directory data blocks can be “read-ahead” in a readdir. Performing
read-ahead improves the readdir performance dramatically. Because the data
needed for a readdir operation and index information are separate in a directory
block, the offset in a directory is limited to 32 bits.

Choosing the Log Type and Size
Each XFS filesystem has a log that contains filesystem journaling records. This log
requires dedicated disk space. This disk space does not show up in listings from the
df command, nor can you access it with a filename.

The location of the disk space depends on the type of log you choose:

Log Type Description

External log Log records that are maintained in a dedicated log
device. To make the XFS filesystem on a logical volume
with a log subvolume, use the mkfs.xfs -l option.

4 007–4273–004

XFS
®

for Linux
®

Administration

You should use an external log in the following
circumstances:

• If you want the data and log records to be on
different partitions

• If you want the data and the log subvolume of a
logical volume to be on different partitions or to use
different subvolume configurations

• If you want the log subvolume of a logical volume to
be striped independently from the data subvolume

Internal log Log records that are put into a dedicated portion of the
disk partition (or data subvolume) that contains user
files. This is used when an XFS filesystem is created on
a disk partition or logical volume that does not have a
log subvolume. This is the default.

The amount of disk space that should be allocated for the log is a function of how the
filesystem is used. The amount of disk space required for log records is proportional
to the transaction rate and the size of transactions on the filesystem, not the size of
the filesystem. Larger block sizes result in larger transactions. Transactions from
directory updates (for example, the mkdir and rmdir commands and the
create() and unlink() system calls) cause more log data to be generated.

You can choose the amount of disk space to dedicate to the log (called the log size).
The minimum log size for a filesystem is enforced by the size of the largest transaction,
which depends on the filesystem and directory block sizes. The maximum log size is
64K blocks or 128 MB, whichever is smaller (this will depend on the block size).

For internal logs, the size of the log is specified with the -l size= option when you
create the filesystem with the mkfs.xfs command. The default log size grows with
the size of the filesystem up to the maximum log size, 128 MB, on a 1–TB filesystem.
The log size is specified in bytes as described in "Choosing the Filesystem Block Size"
on page 3, or as a multiple of the filesystem block size by using the suffix “b.”

For a filesystem that is contained in a striped logical volume, the default internal log
size is rounded up to a multiple of the stripe unit size. In this case, the user-specified
size value must be a multiple of the stripe unit size.

For external logs, the default size of the log is the same as the size of the log device.
You can specify the size of the log with the -l size= option of the mkfs.xfs

007–4273–004 5

2: Planning an XFS Filesystem

command, but any additional space in the log device cannot be used. You may find
that you need to repartition a disk to create a properly sized log subvolume.

For filesystems with a very high transaction activity, a large log size is recommended.
You should avoid making your log too large because a large log can increase
filesystem mount time after a crash.

Choosing Allocation Groups and Stripe Units
The data section of an XFS filesystem is divided into allocation groups. You can select
the number of allocation groups when you create an XFS filesystem or, alternatively,
you can select the size of an allocation group. The larger the number of allocation
groups, the more parallelism can be achieved when allocating blocks and inodes. You
should avoid selecting a very large number of allocation groups or an allocation
group size that will yield a very large number of allocation groups; a large number of
allocation groups causes an unreasonable amount of CPU time to be used when the
filesystem is close to full.

The minimum allocation group size is 16 MB; the maximum size is just under 4 GB.

The default number of allocation groups is 8, unless the filesystem is smaller than 128
MB or larger than 8 GB. When the filesystem is smaller than 128 MB, the default
number of allocation groups is fewer than 8, since the minimum allocation group size
is 16 MB. In this case, the data section, by default, will be divided into as many
allocation groups as possible that are at least 16 MB. When the filesystem is larger
than 8 GB, but smaller than 64 GB, the default number of allocation groups is greater
than 8, with each allocation group approximately 1 GB in size. When the filesystem is
larger than 64 GB, the default number of allocation groups is still greater than 8, but
the allocation group size is 4 GB.

XFS lets you select the stripe unit for a RAID device or stripe volume. This ensures
that data allocations, inode allocations, and the internal log will be aligned along
stripe units when the end-of-file is extended and the file size is larger than 512 KB.
You specify stripe units in 512-byte block units or in bytes. See the mkfs.xfs(1M)
man page for information on specifying stripe units.

When you specify a stripe unit, you also specify a stripe width in 512-byte block units
or in bytes. The stripe width must be a multiple of the stripe unit. The stripe width
will be the preferred I/O size returned in the stat() system call. See the
mkfs.xfs(8) man page for information on specifying stripe width.

6 007–4273–004

XFS
®

for Linux
®

Administration

When used in conjunction with the -b (block size) option of the mkfs.xfs
command, you can use the -d su= and -d sw= options to specify the stripe unit and
stripe width, respectively, in filesystem blocks.

For a RAID device, the default stripe unit is 0, indicating that the feature is disabled.
You should configure the stripe unit and width sizes of RAID devices in order to
avoid unexpected performance anomalies caused by the filesystem doing non-optimal
I/O operations to the RAID unit. For example, if a block write is not aligned on a
RAID stripe unit boundary and is not a full stripe unit, the RAID will be forced to do
a read/modify/write cycle to write the data. This can have a significant performance
impact. By setting the stripe unit size properly, XFS will avoid unaligned accesses.

For a striped volume, the stripe unit that was specified when the volume was created
is provided by default.

Repartitioning the Disks
Many system administrators may find that they want or need to repartition disks
when they switch to XFS filesystems and/or logical volumes. Some of the reasons to
consider repartitioning are:

• Repartitioning can result in a larger pool of free space for all of the formerly
separate filesystems

• If you plan to use logical volumes, you may want to put the XFS log into a small
subvolume. This requires disk repartitioning to create a small partition for the log
subvolume.

• If you plan to use logical volumes, you may want to repartition to create disk
partitions of equal size that can be striped or plexed.

007–4273–004 7

Chapter 3

Creating XFS Filesystems

This chapter discusses the following:

• "Making a Filesystem" on page 9

• "Growing a Filesystem" on page 13

!
Caution: When you create a filesystem, all files already on the disk partition or
logical volume are destroyed.

Making a Filesystem
Use the following procedure to make an XFS filesystem:

1. Review Chapter 2, "Planning an XFS Filesystem" to verify that you are ready to
begin this procedure.

2. Identify the device name of the partition or logical volume where you plan to
create the filesystem. This is the value of partition in the examples below. For
simplicity, the examples in this chapter use an example partition name of
/dev/sdc1. (For more information about partitioning, see the parted(8) man
page.)

3. If the disk partition is already mounted, unmount it:

umount partition

!
Caution: Any data that is on the disk partition is destroyed.

For example:

umount /dev/sdc1

007–4273–004 9

3: Creating XFS Filesystems

4. Use the mkfs.xfs(8) command to make the filesystem. See the following
examples:

• "mkfs.xfs Using the Defaults" on page 10

• "mkfs.xfs Specifying Block and Log Size of Internal Log" on page 11

• "mkfs.xfs for a Logical Volume with a Log Subvolume" on page 12

• "mkfs.xfs for a Directory Block Size Larger than Filesystem Block Size" on
page 12

5. Make a mount directory:

mkdir -p mountdir

mountdir is the directory to be mounted. For example:

mkdir -p /mnt/scratch_space

6. Mount the filesystem on the mount directory:

mount partition mountdir

For example:

mount /dev/sdc1 /mnt/scratch_space

7. To configure the system so that the new filesystem is automatically mounted
when the system is booted, add the following line to the file /etc/fstab:

partition mountdir xfs defaults 0 0

For example:

/dev/sdc1 /mnt/scratch_space xfs defaults 0 0

mkfs.xfs Using the Defaults

If you are making a filesystem on a disk partition or on a logical volume that does
not have a log subvolume and want to use the default values for block size and log
size, use the following command to create the new XFS filesystem:

mkfs.xfs partition

10 007–4273–004

XFS
®

for Linux
®

Administration

The following example shows the command line to create an XFS filesystem using the
defaults and system output:

mkfs.xfs /dev/sdc1

meta-data=/dev/sdc1 isize=256 agcount=18, agsize=1048576 blks

data = bsize=4096 blocks=17921788, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=0

naming =version 2 bsize=4096

log =internal log bsize=4096 blocks=2187, version=1
= sunit=0 blks

realtime =none extsz=65536 blocks=0, rtextents=0

mkfs.xfs Specifying Block and Log Size of Internal Log

If you are making a filesystem on a disk partition or on a logical volume that does
not have a log subvolume and want to specify the block size and log size, use the
following mkfs.xfs command to create the new XFS filesystem:

mkfs.xfs -b size=blocksize -l size=logsize partition

blocksize is the filesystem block size (see "Choosing the Filesystem Block Size" on page
3), logsize is the size of the area dedicated to log records (see "Choosing the Log Type
and Size" on page 4), and partition is the device name or logical volume. The default
values are 4-KB blocks and a 1000-block log.

The following example shows the command line used to create an XFS filesystem and
the system output. The filesystem has a 10–MB internal log and a block size of 1 KB
and is on the partition /dev/dsk/dks0d4s7.

mkfs.xfs -b size=1k -l size=10m /dev/sdc1

meta-data=/dev/sdc1 isize=256 agcount=18, agsize=4194304 blks

data = bsize=1024 blocks=71687152, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=0
naming =version 2 bsize=4096

log =internal log bsize=1024 blocks=10240, version=1

= sunit=0 blks

realtime =none extsz=65536 blocks=0, rtextents=0

007–4273–004 11

3: Creating XFS Filesystems

mkfs.xfs for a Logical Volume with a Log Subvolume

If you are making a filesystem on a logical volume that has a log subvolume (for an
external log), use the following mkfs.xfs command to make the new XFS filesystem:

mkfs.xfs -l logdev=device,size=blocksize partition

For example, to make a filesystem on partition /dev/sdc1, with an external log on
the entire device /dev/sdh, whose size is 65536 filesystem blocks, enter the following:

mkfs.xfs -l logdev=/dev/sdh,size=65536b /dev/sdc1

meta-data=/dev/sdc1 isize=256 agcount=4, agsize=76433916

blks

= sectsz=512 attr=2

data = bsize=4096 blocks=305735663,
imaxpct=5

= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0

log =/dev/sdh bsize=4096 blocks=65536, version=2

= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

mkfs.xfs for a Directory Block Size Larger than Filesystem Block Size

If you are making a filesystem with a directory block size that is larger than the
filesystem block size, use the following mkfs.xfs command to create the new XFS
filesystem:

mkfs.xfs -b size=blocksize -n size=dirblocksize partition

dirblocksize is the directory block size (see "Choosing the Filesystem Directory Block
Size" on page 4).

For example:

mkfs.xfs -b size=2k -n size=4k /dev/sdc1

meta-data=/dev/sdc1 isize=256 agcount=4,

agsize=152867832 blks

= sectsz=512 attr=2
data = bsize=2048 blocks=611471327,

imaxpct=5

= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0

12 007–4273–004

XFS
®

for Linux
®

Administration

log =internal log bsize=2048 blocks=298569, version=2
= sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

Growing a Filesystem
To grow an existing XFS filesystem, increase the available disk space and use the
xfs_growfs(8) command. The filesystem must be mounted to be grown. The
existing contents of the filesystem are undisturbed, and the added space becomes
available for additional file storage.

Growing an XFS filesystem is supported on XVM volumes. You must first grow the
XVM volume before growing the XFS filesystem. For information on XVM volumes,
see the XVM Volume Manager Administrator’s Guide.

The following example grows a filesystem mounted at /mnt:

xfs_growfs /mnt
meta-data=/mnt isize=256 agcount=30, agsize=262144 blks

data = bsize=4096 blocks=7680000, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=0

naming =version 2 bsize=4096

log =internal bsize=4096 blocks=1200 version=1
= sunit=0 blks

realtime =none extsz=65536 blocks=0, rtextents=0

data blocks changed from 7680000 to 17921788

007–4273–004 13

Chapter 4

Filesystem Maintenance

The chapter discusses the following:

• "Filesystem Reorganization" on page 15

• "Filesystem Corruption" on page 15

• "Checking Filesystem Consistency" on page 16

• "Repairing XFS Filesystem Problems" on page 18

Filesystem Reorganization
Filesystems can become fragmented over time. When a filesystem is fragmented,
blocks of free space are small and files have many extents. The xfs_fsr command
reorganizes filesystems so that the layout of the extents is improved. This improves
overall performance. See the xfs_fsr(8) man page for more information.

Filesystem Corruption
Most often, a filesystem is corrupted because the system experienced a panic. This
can be caused by system software failure, hardware failure, or human error (for
example, pulling the plug). Another possible source of filesystem corruption is
overlapping partitions.

There is no foolproof way to predict hardware failure. The best way to avoid
hardware failures is to conscientiously follow recommended diagnostic and
maintenance procedures.

Human error is probably the greatest single cause of filesystem corruption. To avoid
problems, follow these rules closely:

• Always shut down the system properly. Do not simply turn off power to the
system. Use a standard system shutdown tool, such as the shutdown(8) command.

• Never remove a filesystem physically (never pull out a hard disk) without first
turning off power.

007–4273–004 15

4: Filesystem Maintenance

• Never physically write-protect a mounted filesystem, unless it is mounted
read-only.

• Do not mount filesystems on dual-hosted disks on two systems simultaneously.

The best way to ensure against data loss is to make regular, careful backups.

In some cases, XFS filesystem corruption, even on the root filesystem, can be repaired
with the command xfs_repair. For more information about xfs_repair(8) see
the man page and "Checking Filesystem Consistency" on page 16

Checking Filesystem Consistency
This section discusses the following:

• "Overview of Checking Filesystem Consistency" on page 16

• "xfs_repair -n" on page 17

• "xfs_check" on page 18

Overview of Checking Filesystem Consistency

You can use the following commands to check the consistency of a filesystem:

• xfs_repair -n (no-modify mode)

• xfs_check

Unlike fsck, neither xfs_check nor xfs_repair are invoked automatically on
system startup. You should use these commands if you suspect a filesystem
consistency problem.

The xfs_repair -n command checks XFS filesystem consistency without making
any attempt to repair problems. It performs a more complete check than xfs_check.
However, you can use xfs_check on filesystems with extended attributes.
(xfs_repair performs only limited checking of extended attributes.) For more
information about extended attributes, see the attr(1) man page.

The filesystem to be checked must have been unmounted cleanly using normal system
administration procedures (the umount command or system shutdown), not as a
result of a crash or system reset. If the filesystem has not been unmounted cleanly,
mount it and unmount it cleanly before running xfs_check or xfs_repair -n.

16 007–4273–004

XFS
®

for Linux
®

Administration

xfs_repair -n

!
Caution: If you suspect problems with the root filesystem, you should use a boot disk
or an alternate root to run xfs_repair.

The command line for xfs_repair -n is:

xfs_repair -n device

device is the device file for a disk partition or logical volume that contains an XFS
filesystem, such as /dev/xscsi/pci02.02.0-1/target3/lun0/part1

The following example shows output with no consistency problems found:

xfs_repair -n /dev/xscsi/pci02.02.0-1/target3/lun0/part1

Phase 1 - find and verify superblock...

Phase 2 - using internal log

- scan filesystem freespace and inode maps...

- found root inode chunk

Phase 3 - for each AG...
- scan (but don’t clear) agi unlinked lists...

- process known inodes and perform inode discovery...

- agno = 0

- agno = 1

...
- process newly discovered inodes...

Phase 4 - check for duplicate blocks...

- setting up duplicate extent list...

- check for inodes claiming duplicate blocks...

- agno = 0
- agno = 1

...

No modify flag set, skipping phase 5

Phase 6 - check inode connectivity...

- traversing filesystem starting at / ...

- traversal finished ...
- traversing all unattached subtrees ...

- traversals finished ...

- moving disconnected inodes to lost+found ...

Phase 7 - verify link counts...

No modify flag set, skipping filesystem flush and exiting.

007–4273–004 17

4: Filesystem Maintenance

For information about potential errors, see "Common xfs_repair Error Messages"
on page 20.

For more details, see the xfs_repair(8) man page.

xfs_check

The command line for xfs_check is:

xfs_check device

device is the disk or volume device for the filesystem.

If no consistency problems were found, xfs_check returns without displaying any
output, as shown in the following example:

xfs_check /dev/xscsi/pci02.02.0-1/target3/lun0/part1

#

If a problem is reported, use xfs_repair -n to obtain more information. See
"xfs_repair -n" on page 17.

For more information, see the xfs_check(8) man page.

Repairing XFS Filesystem Problems
The xfs_repair command checks XFS filesystem consistency and sometimes repairs
problems that are found. This section discusses the following:

• "Repairing Inconsistent Filesystems" on page 19

• "Common xfs_repair Error Messages" on page 20

• "xfs_repair Error Messages When Files Are in lost+found" on page 21

• "What to Do If xfs_repair Cannot Repair a Filesystem" on page 22

• "Mounting a Filesystem Without Log Recovery" on page 23

18 007–4273–004

XFS
®

for Linux
®

Administration

Repairing Inconsistent Filesystems

!
Caution: If you suspect problems with the root filesystem, you should use a boot disk
or an alternate boot disk to run xfs_repair.

The xfs_repair (without the -n option) checks XFS filesystem consistency and, if
problems are detected, also corrects them if possible. The filesystem to be checked
and repaired must have been unmounted cleanly using normal system administration
procedures (the umount command or system shutdown), not as a result of a crash or
system reset. If the filesystem has not been unmounted cleanly, mount it and
unmount it cleanly before running xfs_repair.

The command line for xfs_repair when you want it to repair any inconsistencies it
finds is:

xfs_repair device

device is the disk or volume device for the filesystem. It must not be mounted.

The following example shows the output you see from running xfs_repair on a
clean filesystem:

xfs_repair /dev/xscsi/pci02.02.0-1/target3/lun0/part1

Phase 1 - find and verify superblock...

Phase 2 - using internal log

- zero log...
- scan filesystem freespace and inode maps...

- found root inode chunk

Phase 3 - for each AG...

- scan and clear agi unlinked lists...

- process known inodes and perform inode discovery...

- agno = 0
- agno = 1

...

- process newly discovered inodes...

Phase 4 - check for duplicate blocks...

- setting up duplicate extent list...
- clear lost+found (if it exists) ...

- check for inodes claiming duplicate blocks...

- agno = 0

- agno = 1

...

007–4273–004 19

4: Filesystem Maintenance

Phase 5 - rebuild AG headers and trees...
- reset superblock...

Phase 6 - check inode connectivity...

- resetting contents of realtime bitmap and summary inodes

- ensuring existence of lost+found directory

- traversing filesystem starting at / ...
- traversal finished ...

- traversing all unattached subtrees ...

- traversals finished ...

- moving disconnected inodes to lost+found ...

Phase 7 - verify and correct link counts...

done

Common xfs_repair Error Messages

Some common error messages from xfs_repair and the repairs that it performs are
the following:

disconnected inode 242002, moving to lost+found

xfs_repair found an inode that is in use, but is not connected to
the filesystem. The inode is moved to the filesystem’s lost+found
directory. Its name is its inode number (in this example, 242002). If
the disconnected inode is a directory, the directory’s subtree is
preserved—all of its child inodes are automatically moved with it, so
the entire directory subtree moves to lost+found.

imap claims in-use inode 2444941 is free, correcting imap

The inode allocation map in the filesystem behaves as if inode
2444941(in this example) is free, but the inode itself looks like it is
still in use. xfs_repair corrects the inode map to say that the inode
is in use.

entry references free inode 2444940 in shortform directory
2444922 junking entry "fb" in directory inode 2444922

A directory entry points to an inode (in this example, 2444940) that
xfs_repair has determined is actually free. xfs_repair junks the
directory entry. The term shortform means a small directory. In larger
directories, the entry deletion is usually a two-pass process. In this
case, the second part of the message reads something like marking

20 007–4273–004

XFS
®

for Linux
®

Administration

bad entry, marking entry to be deleted, or will clear
entry.

resetting inode 241996 nlinks from 5 to 3

xfs_repair detected a mismatch between the number of directory
entries pointing to the inode (in this example, 241996) and the
number of links recorded in the inode. It corrected the number (from
5 to 3 in this case).

cleared inode 2444926

There was something wrong with the inode that was not correctable,
so xfs_repair turned it into a zero-length free inode. This usually
happens because the inode claims blocks that are used by something
else or the inode itself is badly corrupted. Typically, the cleared
inode message is preceded by one or more messages indicating why
the inode must be cleared.

xfs_repair Error Messages When Files Are in lost+found

If xfs_repair has put files and directories in a filesystem’s lost+found directory
and you do not remove them, the next time you run xfs_repair it temporarily
disconnects the inodes for those files and directories. They are reconnected before
xfs_repair terminates. As a result of the disconnected inodes in lost+found, you
see output like this:

Phase 1 - find and verify superblock...

Phase 2 - zero log...

- scan filesystem freespace and inode maps...
- found root inode chunk

Phase 3 - for each AG...

- scan and clear agi unlinked lists...

- process known inodes and perform inode discovery...

- agno = 0
- agno = 1

...

- process newly discovered inodes...

Phase 4 - check for duplicate blocks...

- setting up duplicate extent list...

- clear lost+found (if it exists) ...
- clearing existing ‘‘lost+found’’ inode

007–4273–004 21

4: Filesystem Maintenance

- deleting existing ‘‘lost+found’’ entry
- check for inodes claiming duplicate blocks...

- agno = 0

imap claims in-use inode 242000 is free, correcting imap

- agno = 1

- agno = 2
...

Phase 5 - rebuild AG headers and trees...

- reset superblock counters...

Phase 6 - check inode connectivity...

- ensuring existence of lost+found directory

- traversing filesystem starting at / ...
- traversal finished ...

- traversing all unattached subtrees ...

- traversals finished ...

- moving disconnected inodes to lost+found ...

disconnected inode 242000, moving to lost+found
Phase 7 - verify and correct link counts...

done

In this example, inode 242000 was an inode that was moved to lost+found during
a previous xfs_repair run. This run of xfs_repair found that the filesystem is
consistent. If the lost+found directory had been empty, in phase 4 only the
messages about clearing and deleting the lost+found directory would have
appeared. The imap claims and disconnected inode messages appear (one pair
of messages per inode) if there are inodes in the lost+found directory.

What to Do If xfs_repair Cannot Repair a Filesystem

If xfs_repair fails to repair the filesystem successfully, try giving the same
xfs_repair command twice more; xfs_repair may be able to make more repairs
on successive runs. If xfs_repair fails to fix the consistency problems in three tries,
your next step depends upon where it failed:

• If xfs_repair failed in phase 1, you must restore lost files from backups.

• If xfs_repair failed in phase 2 or later, you may be able to restore files from the
disk by backing up and restoring the files on the filesystem.

22 007–4273–004

XFS
®

for Linux
®

Administration

If xfs_repair failed in phase 2 or later, follow these steps:

1. Mount the filesystem read-only using mount -r.

2. Make a filesystem backup with xfsdump.

3. Use mkfs.xfs to a make new filesystem on the same disk partition or logical
volume.

4. Restore the files from the backup with xfsrestore.

See Chapter 6, "Backup and Recovery Procedures" for information about xfsdump
and xfsrestore.

Mounting a Filesystem Without Log Recovery

If a filesystem is damaged to the extent that you are unable to mount the filesystem
successfully in the standard fashion, you may be able to recover some of its data by
mounting the filesystem with the -o norecover option of the mount command.
This option mounts the filesystem without running log recovery. You must mount the
filesystem as read-only when you use this option.

007–4273–004 23

Chapter 5

Disk Quotas

This chapter discusses the following:

• "Overview of Disk Quotas" on page 25

• "Enabling Quotas" on page 26

• "Setting Quota Limits" on page 28

• "Displaying Quota Information" on page 30

• "Administering Quotas" on page 31

• "Monitoring Disk Space Usage with Quota Accounting" on page 31

• "Checking Disk Space Usage" on page 33

For more information, see the xfs_quota(8) man pages.

Overview of Disk Quotas
If your system is constantly short of disk space and you cannot increase the amount
of available space, you an use disk quotas to manage your existing space.

Disk quotas let you limit the amount of space a user can occupy and the number of
files (inodes) each user can own. You can implement hard or soft limits; hard limits
are enforced by the system, soft limits merely remind the user to trim disk usage.
Disk usage limits are not enforced for root.

With soft limits, whenever a user logs in with a usage greater than the assigned soft
limit, that user is warned (by the login command). When the user exceeds the soft
limit, the timer is enabled. Any time the quota drops below the soft limits, the timer
is disabled. If the timer is enabled longer than a time period set by the system
administrator, the particular limit that has been exceeded is treated as if the hard limit
has been reached, and no more disk space is allocated to the user. The only way to
reset this condition is to reduce usage below the quota. Only root may set the time
limits, and this is done on a per-filesystem basis.

You can impose limits on some users and not others, some filesystems and not others,
and on total disk usage per user, or total number of files. There is no limit to the
number of accounts and there is little performance penalty for large numbers of users.

007–4273–004 25

5: Disk Quotas

You can also impose limits according to user ID, group ID, or project ID. You can
associate a directory in the filesystem hierarchy with a project ID by including it in
the /etc/projects file. (You can use /etc/projid to map each project name to
its number.) With project quotas in effect, such a directory and all files and directories
below it can be subjected to a quota, meaning that the aggregate resource used
thereunder is limited. For more information, see the xfs_quota(8) man page.

Note: Group quotas and project quotas are mutually exclusive per filesystem because
XFS records either the project ID or the group ID of a file in the same physical
location; how the number is interpreted depends upon whether project or group
quotas are in force.

Disk quotas can be used to do disk usage accounting. Disk usage accounting
monitors disk usage, but does not enforce disk usage limits. See "Monitoring Disk
Space Usage with Quota Accounting" on page 31 for more information.

You must first turn on disk quotas on a filesystem, then you can set quotas on that
filesystem for individual users and for projects or groups.

For more details about disk quotas, see the quotas(4) man page.

Enabling Quotas
This section discusses the following:

• "Enabling Quotas for Users" on page 26

• "Enabling Quotas for Groups" on page 27

• "Enabling Quotas for Projects" on page 27

Enabling Quotas for Users

You can enable quotas for users in these ways:

• To turn on disk quotas automatically for users on a non-root filesystem, include
the option quota in the /etc/fstab entry, for example:

/dev/foo / xfs rw,quota 0 0

26 007–4273–004

XFS
®

for Linux
®

Administration

• To turn on disk quotas manually for users on a non-root filesystem, mount the
filesystem with this command:

mount -o quota fsname rootdir

fsname is the device name of the filesystem, rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas for users on the root filesystem, you must pass the quota
mount options into the kernel at boot time through the Linux rootflags boot
option. The following example adds the rootflags=quota option to the append
line in elilo.conf:

append="root=/dev/xscsi/pci00.01.0-1/tsrget0/lun0/part3 rootflags=quota"

Enabling Quotas for Groups

You can enable quotas for groups in these ways:

• To turn on disk quotas automatically for groups on a non-root filesystem, include
the option gquota in the /etc/fstab entry, for example:

/dev/foo / xfs rw,gquota 0 0

• To turn on disk quotas manually for groups on a non-root filesystem, mount the
filesystem with this command:

mount -o gquota fsname rootdir

fsname is the device name of the filesystem, rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas for groups on the root filesystem, you must pass the quota
mount options into the kernel at boot time through the Linux rootflags boot
option. The following example adds the rootflags=gquota option to the
append line in elilo.conf:

append="root=/dev/xscsi/pci00.01.0-1/tsrget0/lun0/part3 rootflags=gquota"

Enabling Quotas for Projects

Note: Group and project quotas are mutually exclusive per filesystem.

007–4273–004 27

5: Disk Quotas

You can enable quotas for projects in these ways:

• To turn on disk quotas automatically for projects on a non-root filesystem, include
the option prjquota in the /etc/fstab entry, for example:

/dev/foo / xfs rw,prjquota 0 0

• To turn on disk quotas manually for projects on a non-root filesystem, mount the
filesystem with this command:

mount -o prjquota fsname rootdir

fsname is the device name of the filesystem, rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas for projects on the root filesystem, you must pass the quota
mount options into the kernel at boot time through the Linux rootflags boot
option. The following example adds the rootflags=prjquota option to the
append line in elilo.conf:

append="root=/dev/xscsi/pci00.01.0-1/tsrget0/lun0/part3 rootflags=prjquota"

Setting Quota Limits
After enabling quotas, you can set limits for users, groups, or projects:

• "Setting Quota Limits for Users" on page 29

• "Setting Quota Limits for Groups" on page 29

• "Setting Quota Limits for Projects" on page 30

Note: Group and project quotas are mutually exclusive per filesystem.

28 007–4273–004

XFS
®

for Linux
®

Administration

Setting Quota Limits for Users

After completing "Enabling Quotas for Users" on page 26, do the following to specify
quota limits for a user:

xfs_quota -x -c ’limit -u bsoft=N bhard=N user’ rootdir

where:

• N is a soft or hard limit for disk usage in blocks of the specified unit: k (kilobytes),
m (megabytes), g (gigabytes), or t (terabytes)

• user is a user name or numeric user ID

• rootdir is the mount point of the XFS filesystem.

For example, to set limits for user userA on /mnt/myxfs using a soft limit of 5
Mbytes and a hard limit of 6 Mbytes:

xfs_quota -x -c ’limit -u bsoft=5m bhard=6m userA’ /mnt/myxfs

Setting Quota Limits for Groups

After completing "Enabling Quotas for Groups" on page 27, setting disk quota limits
for groups is similar to setting limits for users (as described in "Setting Quota Limits
for Users" on page 29), but uses the -g option and the group name or ID.

To specify quota limits for a group:

xfs_quota -x -c ’limit -g bsoft=N bhard=N group’ rootdir

where:

• N is a soft or hard limit for disk usage in blocks of the specified unit: k (kilobytes),
m (megabytes), g (gigabytes), or t (terabytes)

• group is a group name or numeric group ID

• rootdir is the mount point of the XFS filesystem.

For example, to set limits for group groupA on /mnt/myxfs using a soft limit of 5
Mbytes and a hard limit of 6 Mbytes:

xfs_quota -x -c ’limit -g bsoft=5m bhard=6m groupA’ /mnt/myxfs

007–4273–004 29

5: Disk Quotas

Setting Quota Limits for Projects

After completing "Enabling Quotas for Projects" on page 27, setting limits for projects
is similar to setting limits for groups (as described in "Setting Quota Limits for
Groups" on page 29), but uses the -p option and the project name or ID.

Note: Group and project quotas are mutually exclusive per filesystem.

To specify quota limits for a project:

xfs_quota -x -c ’limit -p bsoft=N bhard=N project’ rootdir

where:

• N is a soft or hard limit for disk usage in blocks of the specified unit: k (kilobytes),
m (megabytes), g (gigabytes), or t (terabytes)

• project is a project name or numeric group ID

• rootdir is the mount point of the XFS filesystem.

For example, to set limits for project projectA on /mnt/myxfs using a soft limit of
5 Mbytes and a hard limit of 6 Mbytes:

xfs_quota -x -c ’limit -p bsoft=5m bhard=6m projectA’ /mnt/myxfs

For more information about projects, see the xfs_quota(8) man page.

Displaying Quota Information
Some commands that display information about disk quotas are as follows:

• To display a report that shows whether disk quotas are on or off for each
filesystem:

xfs_quota -x -c state

• To see filesystem quota information for a specific filesystem:

xfs_quota -x -c report rootdir

30 007–4273–004

XFS
®

for Linux
®

Administration

For example, to see quota information for the /mnt/myxfs filesystem:

xfs_quota -x -c report /mnt/myxfs

• To get information about group disk quotas for each filesystem:

xfs_quota -x -c ’report -g’

Administering Quotas
If the filesystem being dumped contains quotas, xfsdump will use xfs_quota(8) to
store the quotas in the following files in the root of the filesystem to be dumped:

xfsdump_quotas User quotas

xfsdump_quotas_group Group quotas

These files will then be included in the dump. These files will appear only for those
quotas that are enabled on the filesystem being dumped. Upon restoration, you can
use xfs_quota to reactivate the quotas for the filesystem.

Note: The xfsdump_quotas file will probably require modification to change the
filesystem or UIDs if the filesystem has been restored to a different partition or system.

To create quota reports, do the following:

• To create a file that lists the current quota limits of all the filesystems for users,
enter this command as superuser:

xfs_quota -x -c ’report -f quotafile’

• To create a file that lists the current quota limits of all the filesystems for groups,
enter this command as superuser:

xfs_quota -x -c ’report -g -f quotafile’

Monitoring Disk Space Usage with Quota Accounting
The disk quotas system can be used to monitor disk space usage without enforcing
disk usage limits. Disk quota accounting can be enabled by user or by group.

Use the following commands to turn on disk usage accounting without enforcement,
stop disk usage accounting, and report disk space usage:

007–4273–004 31

5: Disk Quotas

• To turn on disk usage accounting automatically on a filesystem for user quotas,
include the option qnoenforce in the /etc/fstab entry:

/dev/foo / xfs rw,qnoenforce 0 0

• To turn on disk usage accounting automatically on a filesystem for group quotas,
include the option gqnoenforce in the /etc/fstab entry:

/dev/foo / xfs rw,

gqnoenforce 0 0

• To turn on disk usage accounting manually for user quotas on a non-root
filesystem, when mounting the filesystem:

mount -o qnoenforce fsname rootdir

fsname is the device name of the filesystem, rootdir is the directory where the
filesystem is mounted.

• To turn on disk usage accounting manually on a non-root filesystem for group
quotas when mounting the filesystem:

mount -o gqnoenforce fsname rootdir

• To turn on disk usage accounting manually on the root filesystem for user quotas,
execute the following commands. The quotaon command turns on disk
accounting with enforcement, and the quotaoff -o command turns off the
enforcement:

quotaon -v /

quotaoff -v -o enforce /

reboot

• To turn on disk usage accounting manually on the root filesystem (/) for group
quotas:

quotaon -v -o gquota /
quotaoff -v -o gqenforce /

reboot

• To stop disk usage accounting on a filesystem for user quotas:

quotaoff fsname

32 007–4273–004

XFS
®

for Linux
®

Administration

• To stop disk usage accounting on a filesystem for group quotas:

quotaoff -o gquota fsname

• To get information about disk usage, use the commands described in "Checking
Disk Space Usage" on page 33.

Checking Disk Space Usage
The quota command reports the amount of disk usage per user, per group, or per
project on a filesystem, as well as additional information about the disk quotas. You
must turn on quotas to use this feature, even if you are not going to enforce quota
limits. For instructions on monitoring disk space usage without enforcing disk usage
limits see "Monitoring Disk Space Usage with Quota Accounting" on page 31.

For information on the output of the quota command, see "Displaying Quota
Information" on page 30.

007–4273–004 33

Chapter 6

Backup and Recovery Procedures

This section discusses the following:

• "Features of xfsdump and xfsrestore" on page 35

• "Media Layout for xfsdump" on page 36

• "Possible xfsdump Layouts" on page 37

• "Saving Data with xfsdump" on page 43

• "Examining xfsdump Archives" on page 51

• "About xfsrestore" on page 52

• "Using xfsdump and xfsrestore to Copy Filesystems" on page 65

For more information, see the xfsdump(8) and xfsrestore(8) man pages.

Features of xfsdump and xfsrestore

The xfsdump and xfsrestore utilities fully support XFS filesystems. With
xfsdump and xfsrestore, you can back up and restore data using local or remote
drives. You can back up filesystems, directories, and individual files, and then restore
them independently of how they were backed up. xfsdump also allows you to back
up “live” (mounted, in-use) filesystems.

With xfsdump and xfsrestore, you can recover from intentional or accidental
interruptions—this means you can interrupt a dump or restore at any time, and then
resume it whenever desired. xfsdump and xfsrestore support incremental
dumps, and multiple dumps can be placed on a single media object.

xfsdump and xfsrestore support the following:

• XFS features including 64-bit inode numbers, file lengths, and holes

• Multiple media types (disk and various kinds of tape)

007–4273–004 35

6: Backup and Recovery Procedures

• File types:

Regular
Directory
Symbolic link
Block and character special
FIFO
socket

xfsdump and xfsrestore retain hard links. xfsdump does not affect the state of
the filesystem being dumped (for example, access times are retained). xfsrestore
detects and bypasses media errors and recovers rapidly after encountering them.
xfsdump does not cross mount points, local or remote.

xfsdump optionally prompts for additional media when the end of the current media
is reached. Operator estimates of media capacity are not required and xfsdump also
supports automated backups. xfsdump maintains an extensive online inventory of all
dumps performed. Inventory contents can be viewed through various filters to
quickly locate specific dump information. xfsrestore supports interactive
operation, allowing selection of individual files or directories for recovery. It also
permits selection from among backups performed at different times when multiple
dumps are available. Dump contents may also be viewed noninteractively.

Note: If you are using disk quotas on XFS filesystems, see Chapter 5, "Disk Quotas".

Media Layout for xfsdump

The following section introduces some terminology and then describes the way
xfsdump formats data on the storage media for use by xfsrestore.

While xfsdump and xfsrestore are often used with tape media, the utilities
actually support multiple kinds of media, so in the following discussions, the term
media object is used to refer to the media in a generic fashion. The term dump refers to
the result of a single use of the xfsdump command to output data files to the selected
media objects. An instance of the use of xfsdump is referred to as a dump session.

The dump session sends a single dump stream to the media objects. The dump stream
may contain as little as a single file or as much as an entire filesystem. The dump
stream is composed of dump objects, which are:

• One or more data segments

36 007–4273–004

XFS
®

for Linux
®

Administration

• An optional dump inventory

• A stream terminator

The data segment contains the actual data, the dump inventory contains a list of the
dump objects in the dump, and the stream terminator marks the end of the dump
stream. When a dump stream is composed of multiple dump objects, each object is
contained in a media file. Some output devices, for example standard output, do not
support the concept of media files—the dump stream is only the data.

Possible xfsdump Layouts
The simplest dump, for example the dump of a small amount of data to a single tape,
produces a data segment and a stream terminator as the only dump objects. If the
optional inventory object is added, you have a dump like that illustrated in Figure
6-1. (In the data layout diagrams in this section, the optional inventory object is
always included.)

Data

Inventory

Terminator

Media files

Figure 6-1 Single Dump on Single Media Object

007–4273–004 37

6: Backup and Recovery Procedures

You can also dump data streams that are larger than a single media object. The data
stream can be broken between any two media files including data segment boundaries.
(The inventory is never broken into segments.) In addition, if you specify multiple
drives, the dump is automatically broken into multiple streams. The xfsdump utility
prompts for a new media object when the end of the current media object is reached.

Figure 6-2 illustrates the data layout of a single dump session that requires two media
objects on each of two devices.

38 007–4273–004

XFS
®

for Linux
®

Administration

Data segment

Inventory

Terminator

Data segment

Data segment

Data segment

Media object 1

Media object 2

Figure 6-2 Single Dump on Multiple Media Objects

007–4273–004 39

6: Backup and Recovery Procedures

The xfsdump utility also accommodates multiple dumps on a single media object.
When dumping to tape, for example, the tape is automatically advanced past the
existing dump sessions and the existing stream terminator is erased. The new dump
data is then written, followed by the new stream terminator. (For drives that do not
permit termination to operate in this way, other means are used to achieve the same
effective result.)

Figure 6-3 illustrates the layout of media files for two dumps on a single media object.

Figure 6-4 illustrates a case in which multiple dumps use multiple media objects. If
media files already exist on the additional media objects, the xfsdump utility finds the
existing stream terminator, erases it, and begins writing the new dump data stream.

40 007–4273–004

XFS
®

for Linux
®

Administration

Inventory

Terminator

Inventory

Data segment

Data segment

Data segment

Data segment

First dum
p

S
econd dum

p

Former

terminator

location

Figure 6-3 Multiple Dumps on Single Media Object

007–4273–004 41

6: Backup and Recovery Procedures

Inventory

Data segment

Data segment

Data segment

Inventory

Terminator

Data segment

Data segment

Data segment

First dum
p

M
edia object 1

M
edia object 2

S
econd dum

p

Former

terminator

location

Figure 6-4 Multiple Dumps on Multiple Media Objects

42 007–4273–004

XFS
®

for Linux
®

Administration

Saving Data with xfsdump

This section discusses the following:

• "xfsdump Syntax" on page 43

• "Specifying Local Media" on page 44

• "Specifying a Remote Tape Drive" on page 45

• "Backing Up to a File" on page 47

• "Reusing Tapes" on page 47

• "Erasing Used Tapes" on page 48

• "About Incremental and Resumed Dumps" on page 48

• "Performing an Incremental Dump" on page 49

• "Performing a Resumed Dump" on page 50

xfsdump Syntax

You must be the superuser to use xfsdump. To display a summary of xfsdump
syntax, use the -h option:

xfsdump -h
xfsdump: version X.X
xfsdump: usage: xfsdump [-b <blocksize> (with minimal rmt option)]

[-c <media change alert program>]

[-f <destination> ...]

[-h (help)]
[-l <level>]

[-m <force usage of minimal rmt>]

[-o <overwrite tape >]

[-p <seconds between progress reports>]

[-s <subtree> ...]

[-v <verbosity {silent, verbose, trace}>]
[-A (don’t dump extended file attributes)]

[-B <base dump session id>]

[-E (pre-erase media)]

[-F (don’t prompt)]

[-I (display dump inventory)]

007–4273–004 43

6: Backup and Recovery Procedures

[-J (inhibit inventory update)]
[-L <session label>]

[-M <media label> ...]

[-O <options file>]

[-R (resume)]

[-T (don’t timeout dialogs)]
[-Y <I/O buffer ring length>]

[- (stdout)]

[<source (mntpnt|device)>]

Specifying Local Media

You can use xfsdump to back up data to various media. For example, you can dump
data to a tape or hard disk. The drive containing the media object may be connected
to the local system or accessible over the network.

Following is an example of a level–0 dump to a local tape drive.

Note: The dump level does not need to be specified for a level–0 dump. For a
discussion of dump levels, see "About Incremental and Resumed Dumps" on page 48.

xfsdump -f /dev/tape -L testers_11_21_94 -M test_1 /disk2

xfsdump: version 2.0 - type ^C for status and control

xfsdump: level 0 dump of cumulus:/disk2
xfsdump: dump date: Wed Oct 25 16:19:13 1995

xfsdump: session id: d2a6123b-b21d-1001-8938-08006906dc5c

xfsdump: session label: ‘‘testers_11_21_94’’

xfsdump: ino map phase 1: skipping (no subtrees specified)

xfsdump: ino map phase 2: constructing initial dump list
xfsdump: ino map phase 3: skipping (no pruning necessary)

xfsdump: ino map phase 4: skipping (size estimated in phase 2)

xfsdump: ino map phase 5: skipping (only one dump stream)

xfsdump: ino map construction complete

xfsdump: preparing drive
xfsdump: creating dump session media file 0 (media 0, file 0)

xfsdump: dumping ino map

xfsdump: dumping directories

xfsdump: dumping non-directory files

xfsdump: ending media file

xfsdump: media file size 16777216 bytes

44 007–4273–004

XFS
®

for Linux
®

Administration

xfsdump: dumping session inventory
xfsdump: beginning inventory media file

xfsdump: media file 1 (media 0, file 1)

xfsdump: ending inventory media file

xfsdump: inventory media file size 4194304 bytes

xfsdump: writing stream terminator
xfsdump: beginning media stream terminator

xfsdump: media file 2 (media 0, file 2)

xfsdump: ending media stream terminator

xfsdump: media stream terminator size 2097152 bytes

xfsdump: I/O metrics: 3 by 2MB ring; 14/22 (64%) records streamed; 145889B/s

xfsdump: dump complete: 141 seconds elapsed

In this case, a session label (-L option) and a media label (-M option) are supplied,
and the entire filesystem is dumped. Since no verbosity option is supplied, the default
of verbose is used, resulting in the detailed screen output. The dump inventory is
updated with the record of this backup because the -J option is not specified.

Following is an example of a backup of a subdirectory of a filesystem. In the
following example, the verbosity is set to silent, and the dump inventory is not
updated (-J option):

xfsdump -f /dev/tape -v silent -J -s people/fred /usr

The subdirectory backed up (/usr/people/fred) was specified relative to the
filesystem, so the specification did not include the name of the filesystem (in this case,
/usr). Because /usr may be a very large filesystem and the -v silent option was
used, this could take a long time during which there would be no screen output.

Specifying a Remote Tape Drive

To back up data to a remote tape drive, use the standard remote system syntax,
specifying the system (by hostname if supported by a name server or IP address if
not) followed by a colon (:), then the pathname of the special file.

Note: For remote backups, use the variable block size tape device if the device
supports variable block size operation; otherwise, use the fixed block size device. For
more information, see intro(7) .

The following example shows a subtree backup to a remote tape device:

007–4273–004 45

6: Backup and Recovery Procedures

xfsdump -f magnolia:/dev/tape -L mag_10-95 -s engr /disk2
xfsdump: version 2.0 - type ^C for status and control

xfsdump: level 0 dump of cumulus:/disk2

xfsdump: dump date: Wed Oct 25 16:27:39 1995

xfsdump: session id: d2a6124b-b21d-1001-8938-08006906dc5c

xfsdump: session label: ‘‘mag_10-95’’
xfsdump: ino map phase 1: parsing subtree selections

xfsdump: ino map phase 2: constructing initial dump list

xfsdump: ino map phase 3: pruning unneeded subtrees

xfsdump: ino map phase 4: estimating dump size

xfsdump: ino map phase 5: skipping (only one dump stream)

xfsdump: ino map construction complete
xfsdump: preparing drive

xfsdump: positioned at media file 0: dump 0, stream 0

xfsdump: positioned at media file 1: dump 0, stream 0

xfsdump: positioned at media file 2: dump 0, stream 0

xfsdump: stream terminator found
xfsdump: creating dump session media file 0 (media 0, file 2)

xfsdump: dumping ino map

xfsdump: dumping directories

xfsdump: dumping non-directory files

xfsdump: ending media file

xfsdump: media file size 6291456 bytes
xfsdump: dumping session inventory

xfsdump: beginning inventory media file

xfsdump: media file 1 (media 0, file 3)

xfsdump: ending inventory media file

xfsdump: inventory media file size 4194304 bytes
xfsdump: writing stream terminator

xfsdump: beginning media stream terminator

xfsdump: media file 2 (media 0, file 4)

xfsdump: ending media stream terminator

xfsdump: media stream terminator size 2097152 bytes
xfsdump: I/O metrics: 3 by 2MB ring; 12/22 (55%) records streamed; 99864B/s

xfsdump: dump complete: 149 seconds elapsed

In this case, /disk2/engr is backed up to the variable block size tape device on the
remote system magnolia. Existing dumps on the tape mounted on magnolia were
skipped before recording the new data.

46 007–4273–004

XFS
®

for Linux
®

Administration

Note: The superuser account on the local system must be able to rsh to the remote
system without a password. For more information, see hosts.equiv(4) .

Backing Up to a File

You can back up data to a file instead of a device. In the following example, a file
(Makefile) and a directory (Source) are backed up to a dump file
(monday_backup) in /usr/tmp on the local system:

xfsdump -f /usr/tmp/monday_backup -v silent -J -s \

people/fred/Makefile -s people/fred/Source /usr

You may also dump to a file on a remote system, but the file must be in the remote
system’s /dev directory. For example, the following command backs up the
/usr/people/fred subdirectory on the local system to the regular
file /dev/fred_mon_12-2 on the remote system theduke:

xfsdump -f theduke:/dev/fred_mon_12-2 -s people/fred /usr

Alternatively, you could dump to any remote file if that file is on an NFS-mounted
filesystem. In any case, permission settings on the remote system must allow you to
write to the file.

For information on using the standard input and standard output capabilities of
xfsdump and xfsrestore to pipe data between filesystems or across the network,
see "Using xfsdump and xfsrestore to Copy Filesystems" on page 65.

Reusing Tapes

When you use a new tape as the media object of a dump session, xfsdump begins
writing dump data at the beginning of the tape without prompting. If the tape
already has dump data on it, xfsdump begins writing data after the last dump
stream, again without prompting.

007–4273–004 47

6: Backup and Recovery Procedures

If, however, the tape contains data that is not from a dump session, xfsdump
prompts you before continuing:

xfsdump -f /dev/tape /test

xfsdump: version X.X - type ^C for status and control

xfsdump: dump date: Fri Dec 2 11:25:19 1994

xfsdump: level 0 dump

xfsdump: session id: d23cc072-b21d-1001-8f97-080069068eeb

xfsdump: preparing tape drive
xfsdump: this tape contains data that is not part of an XFS dump

xfsdump: do you want to overwrite this tape?

type y to overwrite, n to change tapes or abort (y/n):

You must answer y if you want to continue with the dump session, or n to quit. If
you answer y, the dump session resumes and the tape is overwritten. If you do not
respond to the prompt, the session eventually times out.

Note: This means that an automatic backup, for example one initiated by a crontab
entry, will not succeed unless you specified the -F option with the xfsdump
command, which forces it to overwrite the tape rather than prompt for approval.

Erasing Used Tapes

Erase preexisting data on tapes with the mt erase command. Make sure the tape is
not write-protected. For example, to prepare a used tape in the local default tape
drive, enter:

mt -f /dev/tape erase

!
Caution: This erases all data on the tape, including any dump sessions

The tape can now be used by xfsdump without prompting for approval.

About Incremental and Resumed Dumps

Incremental dumps are a way of backing up less data at a time but still preserving
current versions of all your backed-up files, directories, and so on. Incremental
backups are organized numerically by levels from 0 through 9. A level-0 dump

48 007–4273–004

XFS
®

for Linux
®

Administration

always backs up the complete filesystem. A dump level of any other number backs
up all files that have changed since a dump with a lower dump level number.

For example, if you perform a level–2 backup on a filesystem one day and your next
dump is a level–3 backup, only those files that have changed since the level–2 backup
are dumped with the level–3 backup. In this case, the level–2 backup is called the base
dump for the level–3 backup. The base dump is the most recent backup of that
filesystem with a lower dump level number.

Resumed dumps work in much the same way. When a dump is resumed after it has
been interrupted, the remaining files that had been scheduled to be backed up during
the interrupted dump session are backed up, and any files that changed during the
interruption are also backed up.

Note: You must restore an interrupted dump as if it is an incremental dump
(see"Performing Cumulative Restores with xfsrestore" on page 60).

Performing an Incremental Dump

In the following example, a level-0 dump is the first backup written to a new tape:

xfsdump -f /dev/tape -l 0 -M Jun_94 -L week_1 -v silent /usr

A week later, a level–1 dump of the filesystem is performed on the same tape:

xfsdump -f /dev/tape -l 1 -L week_2 /usr

The tape is forwarded past the existing dump data and the new data from the level 1
dump is written after it. (Note that it is not necessary to specify the media label for
each successive dump on a media object.)

A week later, a level 2 dump is taken and so on, for the four weeks of a month in this
example, the fourth week being a level 3 dump (up to nine dump levels are
supported):

xfsdump -f /dev/tape -l 2 -L week_3 /usr

For information on the proper procedure for restoring incremental dumps,
see"Performing Cumulative Restores with xfsrestore" on page 60.

007–4273–004 49

6: Backup and Recovery Procedures

Performing a Resumed Dump

You can interrupt a dump session and resume it later. To interrupt a dump session,
type the interrupt character (typically <CTRL-C>). You receive a list of options that
allow you to interrupt the session, change verbosity level, or resume the session.

In the following example, xfsdump is interrupted after dumping approximately 37%
of a filesystem:

xfsdump -f /dev/tape -M march95 -L week_1 -v silent /disk2

========================= status and control dialog ==========================

status at 16:49:16: 378/910 files dumped, 37.8% complete, 32 seconds elapsed

please select one of the following operations
1: interrupt this session

2: change verbosity

3: display metrics

4: other controls

5: continue (default) (timeout in 60 sec)
-> 1

please confirm

1: interrupt this session

2: continue (default) (timeout in 60 sec)

-> 1

interrupt request accepted
--------------------------------- end dialog ---------------------------------

xfsdump: initiating session interrupt

xfsdump: dump interrupted prior to ino 1053172 offset 0

You can later continue the dump by including the-R option and a different session
label:

xfsdump -f /dev/tape -R -L week_1.contd -v silent /disk2p

Any files that were not backed up before the interruption, and any file changes that
were made during the interruption, are backed up after the dump is resumed.

Note: Use of the -R option requires that the dump was made with a dump inventory
taken, that is, the -J option was not used with xfsdump.

50 007–4273–004

XFS
®

for Linux
®

Administration

Examining xfsdump Archives
This section describes how to use the xfsdump command to view an xfsdump
inventory.

The xfsdump inventory is maintained in the directory /var/xfsdump created by
xfsdump. You can view the dump inventory at any time with the xfsdump -I
command. With no other arguments, xfsdump -I displays the entire dump
inventory. (The xfsdump -I command does not require root privileges.)

The following output presents a section of a dump inventory:

xfsdump -I | more

file system 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb

session 0:

mount point: magnolia.abc.xyz.com:/test
device: magnolia.abc.xyz.com:/dev/rdsk/dks0d3s2

time: Mon Nov 28 11:44:04 1994

session label: ""

session id: d23cbf44-b21d-1001-8f97-080069068eeb

level: 0
resumed: NO

subtree: NO

streams: 1

stream 0:

pathname: /dev/tape
start: ino 4121 offset 0

end: ino 0 offset 0

interrupted: YES

media files: 2

media file 0:

mfile index: 0
---more---

The dump inventory records are presented sequentially and are indented to illustrate
the hierarchical order of the dump information.

You can view a subset of the dump inventory by specifying the level of depth (1, 2, or
3) that you want to view. For example, specifying depth=2 filters out a lot of the
specific dump information, as you can see by comparing the previous output with the
following:

007–4273–004 51

6: Backup and Recovery Procedures

xfsdump -I depth=2
file system 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb

session 0:

mount point: magnolia.abc.xyz.com:/test

device: magnolia.abc.xyz.com:/dev/rdsk/dks0d3s2
time: Mon Nov 28 11:44:04 1994

session label: ""

session id: d23cbf44-b21d-1001-8f97-080069068eeb

level: 0

resumed: NO

subtree: NO
streams: 1

session 1:

mount point: magnolia.abc.xyz.com:/test

device: magnolia.abc.xyz.com:/dev/rdsk/dks0d3s2

...

You can also view a filesystem-specific inventory by specifying the filesystem mount
point with the mnt option. The following output shows an example of a dump
inventory display in which the depth is set to 1, and only a single filesystem is
displayed:

xfsdump -I depth=1,mnt=magnolia.abc.xyz.com:/test

filesystem 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb

You can also look at a list of contents on the dump media itself by using the-t option
with xfsrestore. See "Displaying the Contents of the Dump Media with
xfsrestore" on page 54.

About xfsrestore

This section discusses the following:

• "xfsrestore Syntax" on page 53

• "Displaying the Contents of the Dump Media with xfsrestore" on page 54

• "Performing Simple Restores with xfsrestore" on page 55

• "Restoring Individual Files with xfsrestore" on page 57

52 007–4273–004

XFS
®

for Linux
®

Administration

• "Performing Network Restores with xfsrestore" on page 58

• "Performing Interactive Restores with xfsrestore" on page 59

• "Performing Cumulative Restores with xfsrestore" on page 60

• "Interrupting xfsrestore" on page 63

• "About the housekeeping and orphanage Directories" on page 65

For more information, see the xfsrestore(8) man page.

xfsrestore Syntax

You can use the xfsrestore command to view and extract data from the dump data
created by xfsdump.

You can get a summary of xfsrestore syntax with the --h option:

xfsrestore -h

xfsrestore: version X.X
xfsrestore: usage: xfsrestore [-a <alt. workspace dir> ...]

[-e (don’t overwrite existing files)]

[-f <source> ...]

[-h (help)]

[-i (interactive)]
[-n <file> (restore only if newer than)]

[-o (restore owner/group even if not root)]

[-p <seconds between progress reports>]

[-r (cumulative restore)]

[-s <subtree> ...]
[-t (contents only)]

[-v <verbosity {silent, verbose, trace}>]

[-A (don’t restore extended file attributes)]

[-C (check tape record checksums)]

[-D (restore DMAPI event settings)]

[-E (don’t overwrite if changed)]
[-F (don’t prompt)]

[-I (display dump inventory)]

[-J (inhibit inventory update)]

[-L <session label>]

[-N (timestamp messages)]
[-O <options file>]

007–4273–004 53

6: Backup and Recovery Procedures

[-P (pin down I/O buffers)]
[-Q (force interrupted session completion)]

[-R (resume)]

[-S <session id>]

[-T (don’t timeout dialogs)]

[-U (unload media when change needed)]
[-V (show subsystem in messages)]

[-W (show verbosity in messages)]

[-X <excluded subtree> ...]

[-Y <I/O buffer ring length>]

[-Z (miniroot restrictions)]

[- (stdin)]
[<destination>]

Use xfsrestore to restore data backed up with xfsdump. You can restore files,
subdirectories, and filesystems regardless of the way they were backed up. For
example, if you back up an entire filesystem in a single dump, you can select
individual files and subdirectories from within that filesystem to restore.

You can use xfsrestore interactively or noninteractively. With interactive mode,
you can peruse the filesystem or files backed up, selecting those you want to restore.
In noninteractive operation, a single command line can restore selected files and
subdirectories, or an entire filesystem. You can restore data to its original filesystem
location or any other location in an XFS filesystem.

By using successive invocations of xfsrestore, you can restore incremental dumps
on a base dump. This restores data in the same sequence it was dumped.

Displaying the Contents of the Dump Media with xfsrestore

To list the contents of the dump tape currently in the local tape drive, type:

xfsrestore -f /dev/tape -t -v silent | more
xfsrestore: dump session found

xfsrestore: session label: "week_1"

xfsrestore: session id: d23cbcb4-b21d-1001-8f97-080069068eeb

xfsrestore: no media label

xfsrestore: media id: d23cbcb5-b21d-1001-8f97-080069068eeb

do you want to select this dump? (y/n): y
selected

one

54 007–4273–004

XFS
®

for Linux
®

Administration

A/five
people/fred/TOC

people/fred/ch3.doc

people/fred/ch3TOC.doc

people/fred/questions

A/four
people/fred/script_0

people/fred/script_1

people/fred/script_2

people/fred/script_3

people/fred/sub1/TOC

people/fred/sub1/ch3.doc
people/fred/sub1/ch3TOC.doc

people/fred/sub1/questions

people/fred/sub1/script_0

people/fred/sub1/script_1

people/fred/sub1/script_2
people/fred/sub1/script_3

people/fred/sub1/xdump1.doc

people/fred/sub1/xdump1.doc.backup

people/fred/sub1/xfsdump.doc

people/fred/sub1/xfsdump.doc.auto

people/fred/sub1/sub2/TOC
---more---

Performing Simple Restores with xfsrestore

A simple restore is a non-cumulative restore (for information on restoring incremental
dumps, refer to "Performing Cumulative Restores with xfsrestore" on page 60).
An example of a simple, noninteractive use of xfsrestore is:

xfsrestore -f /dev/tape /disk2
xfsrestore: version 2.0 - type ^C for status and control

xfsrestore: searching media for dump

xfsrestore: preparing drive

xfsrestore: examining media file 0

=========================== dump selection dialog ============================

the following dump has been found on drive 0

007–4273–004 55

6: Backup and Recovery Procedures

hostname: cumulus

mount point: /disk2

volume: /dev/rdsk/dks0d2s0

session time: Wed Oct 25 16:59:00 1995

level: 0
session label: ‘‘tape1’’

media label: ‘‘media1’’

file system id: d2a602fc-b21d-1001-8938-08006906dc5c

session id: d2a61284-b21d-1001-8938-08006906dc5c

media id: d2a61285-b21d-1001-8938-08006906dc5c

restore this dump?

1: skip

2: restore (default)

-> 2

this dump selected for restoral

--------------------------------- end dialog ---------------------------------

xfsrestore: using online session inventory

xfsrestore: searching media for directory dump

xfsrestore: reading directories
xfsrestore: directory post-processing

xfsrestore: restoring non-directory files

xfsrestore: I/O metrics: 3 by 2MB ring; 9/13 (69%) records streamed; 204600B/s

xfsrestore: restore complete: 104 seconds elapsed

In this case, xfsrestore went to the first dump on the tape and asked if this was
the dump to restore. If you had entered 1 for “skip,” xfsrestore would have
proceeded to the next dump on the tape (if there was one) and asked if this was the
dump you wanted to restore.

You can request a specific dump if you used xfsdump with a session label. For
example:

xfsrestore -f /dev/tape -L Wed_11_23 /usr

xfsrestore: version X.X - type ^C for status and control

xfsrestore: preparing tape drive

xfsrestore: dump session found
xfsrestore: advancing tape to next media file

xfsrestore: dump session found

56 007–4273–004

XFS
®

for Linux
®

Administration

xfsrestore: restore of level 0 dump of magnolia.abc.xyz.com:/usr created Wed Nov 23 11:17:54 1994
xfsrestore: beginning media file

xfsrestore: reading ino map

xfsrestore: initializing the map tree

xfsrestore: reading the directory hierarchy

xfsrestore: restoring non-directory files
xfsrestore: ending media file

xfsrestore: restoring directory attributes

xfsrestore: restore complete: 200 seconds elapsed

In this way you recover a dump with a single command line and do not have to
answer y or n to the prompts asking you if the dump session found is the correct
one. To be even more exact, use the -S option and specify the unique session ID of
the particular dump session:

xfsrestore -f /dev/tape -S \ d23cbf47-b21d-1001-8f97-080069068eeb /usr2/tmp
xfsrestore: version X.X - type ^C for status and control

xfsrestore: preparing tape drive

xfsrestore: dump session found

xfsrestore: advancing tape to next media file

xfsrestore: advancing tape to next media file
xfsrestore: dump session found

xfsrestore: restore of level 0 dump of magnolia.abc.xyz.com:/test resumed Mon Nov 28 11:50:41 1994

xfsrestore: beginning media file

xfsrestore: media file 0 (media 0, file 2)

xfsrestore: reading ino map

xfsrestore: initializing the map tree
xfsrestore: reading the directory hierarchy

xfsrestore: restoring non-directory files

xfsrestore: ending media file

xfsrestore: restoring directory attributes

xfsrestore: restore complete: 229 seconds elapsed

You can find the session ID by viewing the dump inventory (see "Examining xfsdump
Archives" on page 51). Session labels might be duplicated, but session IDs never are.

Restoring Individual Files with xfsrestore

On the xfsrestore command line, you can specify an individual file or subdirectory
to restore. In this example, the file people/fred/notes is restored and placed in the
/usr/tmp directory (that is, the file is restored in /usr/tmp/people/fred/notes):

007–4273–004 57

6: Backup and Recovery Procedures

xfsrestore -f /dev/tape -L week_1 -s people/fred/notes /usr/tmp

You can also restore a file “in place” that is, restore it directly to where it came from
in the original backup.

Note: However, if you do not use the -e, -E, or -n option, you will overwrite any
existing files of the same name.

In the following example, the subdirectory people/fred is restored in the
destination /usr, which overwrites any files and subdirectories in
/usr/people/fred with the data on the dump tape:

xfsrestore -f /dev/tape -L week_1 -s people/fred /usr

Performing Network Restores with xfsrestore

You can use standard network references to specify devices and files on the network.
For example, to use the tape drive on a network host named magnolia as the source
for a restore, you can use the following command:

xfsrestore -f magnolia:/dev/tape -L 120694u2 /usr2

xfsrestore: version X.X - type ^C for status and control

xfsrestore: preparing tape drive

xfsrestore: dump session found

xfsrestore: advancing tape to next media file
xfsrestore: dump session found

xfsrestore: restore of level 0 dump of magnolia.abc.xyz.com:/usr2 created Tue Dec 6 10:55:17 1994

xfsrestore: beginning media file

xfsrestore: media file 0 (media 0, file 1)

xfsrestore: reading ino map

xfsrestore: initializing the map tree
xfsrestore: reading the directory hierarchy

xfsrestore: restoring non-directory files

xfsrestore: ending media file

xfsrestore: restoring directory attributes

xfsrestore: restore complete: 203 seconds elapsed

In this case, the dump data is extracted from the tape on magnolia, and the
destination is the directory /usr2 on the local system. For an example of using the
standard input option of xfsrestore, see "Using xfsdump and xfsrestore to
Copy Filesystems" on page 65.

58 007–4273–004

XFS
®

for Linux
®

Administration

Performing Interactive Restores with xfsrestore

Use the -i option of xfsrestore to perform interactive file restoration. With
interactive restoration, you can use the commands ls, pwd, and cd to peruse the
filesystem, and the add and delete commands to create a list of files and
subdirectories you want to restore. Then you can enter the extract command to
restore the files, or quit to exit the interactive restore session without restoring files.
(The use of wildcards is not allowed with these commands.)

Note: Interactive restore is not allowed when the xfsrestore source is standard
input (stdin).

The following screen output shows an example of a simple interactive restoration.

xfsrestore -f /dev/tape -i -v silent .

xfsrestore: dump session found

xfsrestore: no session label

xfsrestore: session id: d23cbeda-b21d-1001-8f97-080069068eeb
xfsrestore: no media label

xfsrestore: media id: d23cbedb-b21d-1001-8f97-080069068eeb

do you want to select this dump? (y/n): y

selected

--- interactive subtree selection dialog ---

the following commands are available:

pwd

ls [{ <name>, ".." }]

cd [{ <name>, ".." }]
add [<name>]

delete [<name>]

extract

quit

help
-> ls

4122 people/

4130 two

4126 A/

4121 one

-> add two
-> cd people

007–4273–004 59

6: Backup and Recovery Procedures

-> ls
4124 fred/

-> add fred

-> ls

* 4124 fred/

-> extract

---------------- end dialog ----------------

In the interactive restore session above, the subdirectory people/fred and the file
two were restored relative to the current working directory (“.”). An asterisk (*) in
your ls output indicates your selections.

Performing Cumulative Restores with xfsrestore

Cumulative restores sequentially restore incremental dumps to re-create filesystems
and are also used to restore interrupted dumps. To perform a cumulative restore of a
filesystem, begin with the media object that contains the base-level dump and recover
it first, then recover the incremental dump with the next higher dump level number,
then the next, and so on. Use the -r option to inform xfsrestore that you are
performing a cumulative recovery.

In the following example, the level–0 base dump and succeeding higher-level dumps
are on /dev/tape. First the level-0 dump is restored, then each higher-level dump
in succession:

/usr/tmp/xfsrestore -f /dev/tape -r -v silent .

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus

mount point: /disk2

volume: /dev/rdsk/dks0d2s0

session time: Wed Oct 25 14:37:47 1995
level: 0

session label: "week_1"

media label: "Jun_94"

file system id: d2a602fc-b21d-1001-8938-08006906dc5c

session id: d2a60b26-b21d-1001-8938-08006906dc5c

60 007–4273–004

XFS
®

for Linux
®

Administration

media id: d2a60b27-b21d-1001-8938-08006906dc5c

restore this dump?

1: skip

2: restore (default)

-> Enter
this dump selected for restoral

--------------------------------- end dialog ---------------------------------

#

Next, enter the same command again. The program goes to the next dump and again
you select the default:

xfsrestore -f /dev/tape -r -v silent .

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus

mount point: /disk2

volume: /dev/rdsk/dks0d2s0

session time: Wed Oct 25 14:40:54 1995

level: 1

session label: "week_2"
media label: "Jun_94"

file system id: d2a602fc-b21d-1001-8938-08006906dc5c

session id: d2a60b2b-b21d-1001-8938-08006906dc5c

media id: d2a60b27-b21d-1001-8938-08006906dc5c

restore this dump?

1: skip

2: restore (default)

-> Enter

this dump selected for restoral

--------------------------------- end dialog ---------------------------------

#

007–4273–004 61

6: Backup and Recovery Procedures

You then repeat this process until you have recovered the entire sequence of
incremental dumps. The full and latest copy of the filesystem will then have been
restored. In this case, it is restored relative to “.”, that is, in the directory you are in
when the sequence of xfsrestore commands is issued.

Restore an interrupted dump just as if it were an incremental dump. Use the -r
option to inform xfsrestore that you are performing an incremental restore, and
answer y and n appropriately to select the proper “increments” to restore (see
"Performing Cumulative Restores with xfsrestore" on page 60).

Note: If you try to restore an interrupted dump as if it were a non-interrupted,
non-incremental dump, the portion of the dump that occurred before the interruption
is restored, but not the remainder of the dump. You can determine if a dump is an
interrupted dump by looking in the online inventory.

Following is an example of a dump inventory showing an interrupted dump session
(the crucial fields are in bold type):

xfsdump -I depth=3,mobjlabel=AugTape,mnt=indy4.xyz.com:/usr

file system 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb
session 0:

mount point: indy4.xyz.com.com:/usr

device: indy4.xyz.com.com:/dev/rdsk/dks0d3s2

time: Tue Dec 6 15:01:26 1994

session label: "180894usr"
session id: d23cc0c3-b21d-1001-8f97-080069068eeb

level: 0

resumed: NO

subtree: NO

streams: 1

stream 0:
pathname: /dev/tape

start: ino 4121 offset 0

end: ino 0 offset 0

interrupted: YES

media files: 2
session 1:

mount point: indy4.xyz.com.com:/usr

device: indy4.xyz.com.com:/dev/rdsk/dks0d3s2

time: Tue Dec 6 15:48:37 1994

62 007–4273–004

XFS
®

for Linux
®

Administration

session label: "Resumed180894usr"
session id: d23cc0cc-b21d-1001-8f97-080069068eeb

level: 0

resumed: YES

subtree: NO

streams: 1
stream 0:

pathname: /dev/tape

start: ino 4121 offset 0

end: ino 0 offset 0

interrupted: NO

media files: 2
...

From this it can be determined that session 0 was interrupted and then resumed and
completed in session 1.

To restore the interrupted dump session in the example above, use the following
sequence of commands:

xfsrestore -f /dev/tape -r -L 180894usr .

xfsrestore -f /dev/tape -r -L Resumed180894usr .

This restores the entire /usr backup relative to the current directory. (You should
remove the housekeeping directory from the destination directory when you are
finished.)

Interrupting xfsrestore

In a manner similar to xfsdump interruptions, you can interrupt an xfsrestore
session. This allows you to interrupt a restore session and then resume it later. To
interrupt a restore session, type the interrupt character (typically <CTRL-C>). You
receive a list of options, which include interrupting the session or continuing.

xfsrestore -f /dev/tape -v silent /disk2

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus

007–4273–004 63

6: Backup and Recovery Procedures

mount point: /disk2
volume: /dev/rdsk/dks0d2s0

session time: Wed Oct 25 17:20:16 1995

level: 0

session label: "week1"

media label: "newtape"
file system id: d2a602fc-b21d-1001-8938-08006906dc5c

session id: d2a6129e-b21d-1001-8938-08006906dc5c

media id: d2a6129f-b21d-1001-8938-08006906dc5c

restore this dump?

1: skip
2: restore (default)

-> 2

this dump selected for restoral

--------------------------------- end dialog ---------------------------------

========================= status and control dialog ==========================

status at 17:23:52: 131/910 files restored, 14.4% complete, 42 seconds elapsed

please select one of the following operations

1: interrupt this session

2: change verbosity

3: display metrics

4: other controls
5: continue (default) (timeout in 60 sec)

-> 1

please confirm

1: interrupt this session
2: continue (default) (timeout in 60 sec)

-> 1

interrupt request accepted

--------------------------------- end dialog ---------------------------------

xfsrestore: initiating session interrupt

64 007–4273–004

XFS
®

for Linux
®

Administration

Resume the xfsrestore session with the --R option:

xfsrestore -f /dev/tape -R -v silent /disk2

Data recovery continues from the point of the interruption.

About the housekeeping and orphanage Directories

The xfsrestore utility can create two subdirectories in the destination called
housekeeping and orphanage:

• housekeeping is a temporary directory used during cumulative recovery to pass
information from one invocation of xfsrestore to the next. It must not be
removed during the process of performing the cumulative recovery but should be
removed after the cumulative recovery is completed.

• orphanage is created if a file or subdirectory is restored that is not referenced in
the filesystem structure of the dump. For example, if you dump a very active
filesystem, it is possible for new files to be in the non-directory portion of the
dump, yet none of the directories dumped reference that file. A warning message
is displayed, and the file is placed in the orphanage directory, named with its
original inode number and generation count (for example, 123479.14).

Using xfsdump and xfsrestore to Copy Filesystems
You can use xfsdump and xfsrestore to pipe data across filesystems or across the
network with a single command line. By piping xfsdump standard output to
xfsrestore standard input you create an exact copy of a filesystem.

For example, to make a copy of /usr/people/fred in the /usr2 directory, enter:

xfsdump -J -s people/fred - /usr | xfsrestore - /usr2

To copy /usr/people/fred to the network host magnolia’s /usr/tmp directory:

xfsdump -J -s people/fred - /usr | rsh magnolia \

xfsrestore - /usr/tmp

This creates the directory /usr/tmp/people/fred on magnolia.

007–4273–004 65

6: Backup and Recovery Procedures

Note: The superuser account on the local system must be able to rsh to the remote
system without a password. For more information, seehosts.equiv(4).

66 007–4273–004

Chapter 7

Enhanced XFS Extensions

This chapter discusses the following enhanced XFS extensions:

• "agskip Mount Option for Allocation Group Specification" on page 67

• "ibound Mount Option for Solid-State Drives" on page 67

agskip Mount Option for Allocation Group Specification
The agskip mount option specifies the allocation group (AG) for a new file, relative
to the last previously created file (that is, it has the opposite effect of the rotorstep
system tunable parameter). Using agskip=agskipvalue causes each new file to be
placed in the AG initialAG+agskipvalue, where initialAG is the allocation group used
for the previously created new file.

For example, agskip=3 means each new file thereafter will be allocated three AGs
away from the AG used for the most recently created file.

The agskip mount option disables the rotorstep system tunable parameter.

ibound Mount Option for Solid-State Drives
The ibound mkfs.xfs mount option supports use of a solid-state drive (SSD) in
combination with rotating disk storage. SSD is appropriate for small latency-sensitive
operations, while rotating hard-disk drive (HDD) media is appropriate for larger
bandwidth- and capacity-intensive operations.

You should create an XVM volume for the storage that concatenates a slice of SSD
storage with HDD storage. The SSD storage is positioned at the beginning of the
volume, followed by the HDD storage. You can configure the HDD storage as a
simple slice or as a stripe of slices.

The configuration of the HDD concat depends on the data I/O workload. You should
construct the volume containing the SSD so that the SSD is the first concat element in
the volume. With the SSD at the beginning of the volume, you can use the ibound
mount option to specify that all inodes are placed on the SSD device.

007–4273–004 67

7: Enhanced XFS Extensions

If the ibound address falls within the middle of an XFS filesystem allocation group
(AG), that AG is not used for inode allocation. Only the lower-numbered AGs are
used for inode allocation. Should the ibound address fall within the first AG (AG 0),
the value of ibound is changed to include the entire first AG.

Note: The ibound mount option implies inode32 behavior and is therefore
incompatible with the inode64 mount option. Behavior of the inode32 mount
option is not affected.

To maximize performance of the filesystem with an SSD drive, you should use an
external log. You can use a partition of the SSD or a separate HDD.

ibound Examples

The ibound mount option uses the following format, where daddr is the largest disk
address (sector) allowed to be used for storing an inode:

mount -o ibound={daddr} device dir

You should also use the daddr value for the allocation group (AG) size (agize) when
creating the filesystem. The AG should be no larger than the SSD slice.

For example, the following shows that the SSD element is slice/ssd0s1, with
195093024 sectors:

xvm:local> show -e -top vol

vol/hybridfs 0 online,accessible

subvol/hybridfs/data 11916164384 online,accessible

concat/hybridconcat 11916164384 online,accessible

slice/ssd0s1 195093024 online,accessible (ssd0:/dev/dis
stripe/diskstripe 11721071360 online,accessible (unit size: 1

slice/dsk0s0 1172107168 online,accessible (dsk0:/dev

slice/dsk1s0 1172107168 online,accessible (dsk1:/dev

slice/dsk2s0 1172107168 online,accessible (dsk2:/dev

slice/dsk3s0 1172107168 online,accessible (dsk3:/dev
slice/dsk4s0 1172107168 online,accessible (dsk4:/dev

slice/dsk5s0 1172107168 online,accessible (dsk5:/dev

slice/dsk6s0 1172107168 online,accessible (dsk6:/dev

slice/dsk7s0 1172107168 online,accessible (dsk7:/dev

slice/dsk8s0 1172107168 online,accessible (dsk8:/dev

slice/dsk9s0 1172107168 online,accessible (dsk9:/dev

68 007–4273–004

XFS
®

for Linux
®

Administration

subvol/hybridfs/log 262144 online,accessible
concat/extlog 262144 online,accessible

slice/ssd0s0 262144 online,accessible (ssd0:/dev/dis

The mkfs.xfs command is as follows:

mkfs.xfs -d agsize=195093024s -l logdev=/dev/lxvm/hybridfs_log \

-l size=128m /dev/lxvm/hybridfs

meta-data=/dev/lxvm/hybridfs isize=256 agcount=62, agsize=24386628 blks

= sectsz=512 attr=2

data = bsize=4096 blocks=1489520548, imaxpct=5
= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0

log =/dev/lxvm/hybridfs_log bsize=4096 blocks=32768, version=2

= sectsz=512 sunit=0 blks, lazy-count=0

realtime =none extsz=4096 blocks=0, rtextents=0

mount -o ibound=195093024 /dev/lxvm/hybridfs /mnt

ibound and Messages

When the ibound mount option is used, the XFS kernel module will log an INFO log
message, indicating the maximum inode number possible. For example:

XFS: maximum new inode number is 3318592

When the ibound value is smaller than the size of the first AG, the XFS kernel module
will log a WARN message, indicating that it has changed the value. For example:

XFS: ibound is too small, using 19543056

Improving Efficiency

The space for user data is rotored among the AGs. This behavior may result
decreased I/O efficiency, especially for streaming workloads that create sequential
files. You can adjust the allocation behavior for newly created files by using the
fs.xfs.rotorstep sysctl parameter. Setting the value to 255 may provide more
favorable behavior by allocating space for user data in 255 new files in an AG before
moving to the next AG for allocating space for a new file in the next AG.

007–4273–004 69

Index

64–bit file capabilities, 1

A

access control lists (ACLs), 2
accounting, 31
agskip, 67
allocation group specification, 67
allocation groups, 6
archives, 51
attr, 2
attributes, 2

B

backup and restore, 2
backup procedures, 35
backups, 16
block size

filesystem directory, 4
planning, 3

block sizes, 1

C

consistency of filesystems, 16
copying files with xfsdump and xfsrestore, 65
corruption of filesystems, 15
crash recovery, 1
create(), 5
creating filesystems, 9
cumulative restores, 60

D

data segments, 37
database journaling, 1
df, 4
disk partitioning, 7
disk quotas

See quotas, 25
dual-hosted disks, 16
dump, 2
dump inventory, 37
dump layouts, 37
dump session, 36
dump stream, 36
dump, incremental, 48
dump, resumed, 48

E

Enhanced XFS extension, 67
agskip mount option, 67
ibound mount option for SSDs, 67

erasing tape data, 48
/etc/fstab, 32
/etc/fstab file, 26
extended attributes, 2
extents, 1
external filesystem log, 4

F

fcntl system call, 1
features, 1
filesystem log, 4
filesystem repair, 18

007–4273–004 71

Index

fs_quota –p, 30
fsck, 1, 16
fstab file, 10

G

gqnoenforce, 32
gquota mount option, 27
group quotas

See "quotas", 29
growing filesystems, 13

H

hard limits, 25
hard-disk drive (HDD), 67
hardware requirements, 3
hierarchical storage manager (HSM), 2
housekeeping directory, 65

I

I/O performance, 1
ibound, 67
inconsistent filesystems, 19
incremental dumps, 48
inodes, 1, 20
internal filesystem log, 5
inventory of a dump, 51

J

journaling, 1

L

log, 4

log recovery, 23
log size, 5
lost+found, 21
lost+found directory, 20

M

maintenance of filesystems, 15
making a filesystem, 9
maximum filesystem size, 1
media file, 37
media layout, 36
media object, 36
memory recommendation, 1
mkdir, 5
mkfs.xfs -n, 4
mkfs.xfs command, 11
mkfs.xfs –b, 3, 11, 12
mkfs.xfs –l, 5, 12
mkfs.xfs –p, 10
monitoring disk space usage, 31
mount —o norecover, 25
mounting a filesystem, 10
mounting without log recovery, 23
mt erase, 48
multiprocessing systems, 1

N

namespaces, 2
network restores, 58

O

orphanage directory, 65

72 007–4273–004

XFS
®

for Linux
®

Administration

P

panic, 15
partitioning, 7
performance, 1
physical write protection, 16
power-off, 16
prerequisite hardware, 3
prjquota mount option, 28
project quotas

See "quotas", 30

Q

qnoenforce, 32
quotaoff, 32
quotaon, 32
quotas, 25

administering, 31
disk space usage monitoring and , 31
displaying, 30
enabling for groups, 27
enabling for projects, 28
enabling for users, 26
hard limits, 25
limits for groups, 29
limits for projects, 30
limits for users, 29
mutually exclusive group and project quotas, 28
soft limits, 25

R

RAID and stripe unit, 7
readdr, 4
recovery, 1
recovery procedures, 35
remote tape drive, 45
reorganization of filesystems, 15
repair problems, 22

repartitioning, 7
resumed dumps, 48
reusing tapes, 47
rmdir, 5
rootflags boot option, 26
rotorstep, 67

S

shutdown, 15
size of filesystem, 1
soft limits, 25
solid-state drives (SSDs), 67
sparse files, 1
stream terminator, 37
stripe units, 6
striped logical volume, 5
striped volume and stripe unit, 7
system namespace, 2
system panic, 15

T

tape data, erasing, 48
tapes, reusing, 47
transaction activity and log size, 6

U

umount, 9
unlink(), 5
unmounting a disk partition, 9
user namespace, 2
user quotas

See "quotas", 29

007–4273–004 73

Index

V

volume manager, 1

X

xfs_check, 16, 18
xfs_check command, 16
xfs_fsr, 15
xfs_growfs, 13
xfs_quota, 28
xfs_quota command, 31

xfs_quota –g, 29
xfs_repair, 18
xfs_repair –n, 16, 17
xfs_repair error messages, 20
xfsdump, 2, 35
xfsdump archives, 51
xfsdump utility

local media, 44
xfsdump_quotas file, 31
xfsdump_quotas_group file, 31
xfsrestore, 2, 35, 52
xfsrestore syntax, 53

74 007–4273–004

	New Features in This Guide
	Table of Contents
	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. The XFS (R) Filesystem
	2. Planning an XFS Filesystem
	Choosing the Filesystem Block Size
	Choosing the Filesystem Directory Block Size
	Choosing the Log Type and Size
	Choosing Allocation Groups and Stripe Units
	Repartitioning the Disks

	3. Creating XFS Filesystems
	Making a Filesystem
	mkfs.xfs Using the Defaults
	mkfs.xfs Specifying Block and Log Size of Internal Log
	mkfs.xfs for a Logical Volume with a Log Subvolume
	mkfs.xfs for a Directory Block Size Larger than Filesystem Block Size

	Growing a Filesystem

	4. Filesystem Maintenance
	Filesystem Reorganization
	Filesystem Corruption
	Checking Filesystem Consistency
	Overview of Checking Filesystem Consistency
	xfs_repair -n
	xfs_check

	Repairing XFS Filesystem Problems
	Repairing Inconsistent Filesystems
	Common xfs_repair Error Messages
	xfs_repair Error Messages When Files Are in lost+found
	What to Do If xfs_repair Cannot Repair a Filesystem
	Mounting a Filesystem Without Log Recovery

	5. Disk Quotas
	Overview of Disk Quotas
	Enabling Quotas
	Enabling Quotas for Users
	Enabling Quotas for Groups
	Enabling Quotas for Projects

	Setting Quota Limits
	Setting Quota Limits for Users
	Setting Quota Limits for Groups
	Setting Quota Limits for Projects

	Displaying Quota Information
	Administering Quotas
	Monitoring Disk Space Usage with Quota Accounting
	Checking Disk Space Usage

	6. Backup and Recovery Procedures
	Features of xfsdump and xfsrestore
	Media Layout for xfsdump
	Possible xfsdump Layouts
	Saving Data with xfsdump
	xfsdump Syntax
	Specifying Local Media
	Specifying a Remote Tape Drive
	Backing Up to a File
	Reusing Tapes
	Erasing Used Tapes
	About Incremental and Resumed Dumps
	Performing an Incremental Dump
	Performing a Resumed Dump

	Examining xfsdump Archives
	About xfsrestore
	xfsrestore Syntax
	Displaying the Contents of the Dump Media with xfsrestore
	Performing Simple Restores with xfsrestore
	Restoring Individual Files with xfsrestore
	Performing Network Restores with xfsrestore
	Performing Interactive Restores with xfsrestore
	Performing Cumulative Restores with xfsrestore
	Interrupting xfsrestore
	About the housekeeping and orphanage Directories

	Using xfsdump and xfsrestore to Copy Filesystems

	7. Enhanced XFS Extensions
	agskip Mount Option for Allocation Group Specification
	ibound Mount Option for Solid-State Drives
	ibound Examples
	ibound and Messages
	Improving Efficiency

	Index

