
Linux FailSafe TM Programmer’s Guide
Date: 10 October 2000

Written by Joshua Rodman of SuSE, Inc. and Lori Johnson of SGI

Illustrated by Dany Galgani and Chris Wengelski

Production by Diane Ciardelli and Adrian Daley

Engineering contributions by Rusty Ballinger, Franck Chastagnol,
Jeff Hanson, Vidula Iyer, Herbert Lewis, Michael Nishimoto,
Hugh Shannon Jr., Bill Sparks, Paddy Sreenivasan,
Dan Stekloff, Rebecca Underwood, Mayank Vasa, and Manish Verma

© 2000 Silicon Graphics, Inc.; All rights reserved

NOTICE:

This documentation, in electronic format, is provided as is without any warranty or condition of any kind, either express,
implied, or statutory, including, but not limited to, any warranty or condition that it constitutes specifications to which
any related software will conform, any implied warranties or conditions, on the documentation and related software, of
merchantability, satisfactory quality, fitness for a particular purpose, and freedom from infringement, and any warranty
or condition that the related software will be error free. In no event shall SGI or its suppliers be liable for any damages,
including, but not limited to direct, indirect, special or consequential damages, arising out of, resulting from, or in any
way connected with this documentation and related software, whether or not based upon warranty, contract, tort or
otherwise, whether or not injury was sustained by persons or property or otherwise, and whether or not loss was
sustained from, or arose out of the results of, or use of, the documentation and related software.

Silicon Graphics, Inc. grants the user permission to reproduce, distribute, and create derivative works from the
documentation, provided that: (1) the user reproduces this entire notice within both source and binary format
redistributions in printed or electronic format; and (2) no further license or permission may be inferred or deemed
or construed to exist with regard to the sample code or the code base of which it forms a part.

Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, or:

http://www.sgi.com

LIMITED RIGHTS LEGEND

The electronic (software) version of this document was developed at private expense; if acquired under an agreement
with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the
provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for
Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto.
Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS

SGI, the SGI logo, IRIS FailSafe, SGI FailSafe, SGI Linux, and Linux FailSafe are trademarks of Silicon Graphics, Inc.
Linux a registered trademark of Linux Torvalds, used with permission by Silicon Graphics, Inc. SuSE is a trademark
of SuSE Inc. All other trademarks mentioned are the property of their respective owners.

007-4295-001 August 2000
Original publication

007-4295-002 September 2000
Corrections

ii

Contents

Linux FailSafe
TM

Programmer’s Guide 1

About This Guide 7

Audience 7

Related Documentation 7

Conventions Used in This Guide 8

Chapter 1 Introduction to Writing Application Scripts 9

1.1 Concepts 9

1.1.1 Cluster Node (or Node) 9

1.1.2 Pool 9

1.1.3 Cluster 9

1.1.4 Node Membership 9

1.1.5 Process Membership 10

1.1.6 Resource 10

1.1.7 Resource Type 10

1.1.8 Resource Name 10

1.1.9 Resource Group 10

1.1.10 Resource Dependency List 11

1.1.11 Resource Type Dependency List 11

1.1.12 Failover 11

1.1.13 Failover Policy 11

1.1.14 Failover Domain 12

1.1.15 Failover Attribute 12

1.1.16 Failover Scripts 12

1.1.17 Action Scripts 12

1.2 Highly Available Services Included with Linux FailSafe 13

1.3 Plug-Ins 13

1.4 Characteristics that Permit an Application to be Highly Available 13

1.5 Overview of the Programming Steps 14

Chapter 2 Writing the Action Scripts and Adding Monitoring
Agents 16

2.1 Set of Action Scripts 16

2.2 Understanding the Execution of Action Scripts 17

2.2.1 Multiple Instances of Script Executed at the Same Time 17

2.2.2 Differences between the exclusive and monitor Scripts 17

2.2.3 Successful Execution of Action Scripts 18

2.2.4 Failure of Action Scripts 18

2.2.5 Implementing Timeouts and Retrying a Command 19

iii

2.2.6 Sending UNIX Signals 19

2.3 Preparation 19

2.3.1 Is Monitoring Necessary? 21

2.3.2 Types of Monitoring 21

2.3.3 What are the Symptoms of Monitoring Failure? 21

2.3.4 How Often Should Monitoring Occur? 22

2.3.5 Examples of Testing for Monitoring Failure 22

2.4 Script Format 22

2.4.1 Header Information 23

2.4.2 Set Local Variables 24

2.4.3 Read Resource Information 24

2.4.4 Exit Status 24

2.4.5 Basic Action 25

2.4.6 Set Global Variables 25

2.4.7 Verify Arguments 26

2.4.8 Read Input File 26

2.4.9 Complete the Action 26

2.5 Steps in Writing a Script 27

2.6 Examples of Action Scripts 27

2.6.1 start Script 27

2.6.2 stop Script 29

2.6.3 monitor Script 30

2.6.4 exclusive Script 31

2.6.5 restart Script 32

2.7 Monitoring Agents 33

Chapter 3 Creating a Failover Policy 35

3.1 Contents of a Failover Policy 35

3.1.1 Failover Domain 35

3.1.2 Failover Attributes 36

3.1.3 Failover Scripts 37

3.1.3.1 The ordered Failover Script 37

3.1.3.2 The round-robin Failover Script 40

3.1.3.3 Creating a New Failover Script 43

3.2 Failover Script Interface 43

3.3 Example Failover Policies for Linux FailSafe 44

3.3.1 N+1 Configuration for Linux FailSafe 44

3.3.2 N+2 Configuration 46

3.3.3 N+M Configuration for Linux FailSafe 46

Chapter 4 Defining a New Resource Type 48

4.1 Using the GUI 50

iv

4.1.1 Define a New Resource Type 50

4.1.2 Define Dependencies 55

4.2 Using cluster_mgr Interactively 56

4.3 Using cluster_mgr With a Script 60

4.4 Testing a New Resource Type 62

Chapter 5 Testing Scripts 63

5.1 General Testing and Debugging Techniques 63

5.2 Debugging Notes 63

5.3 Testing an Action Script 64

5.4 Special Testing Considerations for the monitor Script 65

Appendix A Starting the FailSafe Manager 67

Appendix B Using the SRM Script Library 69

B.1 Linux FailSafe application interfaces 69

B.2 Set Global Definitions 70

B.2.1 Global Variable 70

B.2.1.1 HA_HOSTNAME 70

B.2.2 Command Location Variables 70

B.2.2.1 HA_CMDSPATH 70

B.2.2.2 HA_PRIVCMDSPATH 70

B.2.2.3 HA_LOGCMD 70

B.2.2.4 HA_RESOURCEQUERYCMD 71

B.2.2.5 HA_SCRIPTTMPDIR 71

B.2.3 Database Location Variables 71

B.2.3.1 HA_CDB 71

B.2.4 Script Log Level Variables 71

B.2.4.1 HA_NORMLVL 71

B.2.4.2 HA_DBGLVL 71

B.2.5 Script Log Variables 71

B.2.5.1 HA_SCRIPTGROUP 71

B.2.5.2 HA_SCRIPTSUBSYS 71

B.2.6 Script Logging Command Variables 71

B.2.6.1 HA_DBGLOG 71

B.2.6.2 HA_CURRENT_LOGLEVEL 72

B.2.6.3 HA_LOG 72

B.2.7 Script Error Value Variables 72

B.2.7.1 HA_SUCCESS 72

B.2.7.2 HA_NOT_RUNNING 72

B.2.7.3 HA_INVAL_ARGS 72

B.2.7.4 HA_CMD_FAILED 72

v

B.2.7.5 HA_RUNNING 72

B.2.7.6 HA_NOTSUPPORTED 72

B.2.7.7 HA_NOCFGINFO 72

B.3 Check Arguments 73

B.4 Read an Input File 74

B.5 Execute a Command 74

B.6 Write Status for a Resource 75

B.7 Get the Value for a Field 75

B.8 Get the Value for Multiple Fields 76

B.9 Get Resource Information 76

B.10 Print Exclusivity Check Messages 79

Glossary 80

Figure 2–1 Monitoring Process 33

Figure 3–1 N+1 Configuration Concept 45

Figure 3–2 N+2 Configuration Concept 46

Figure 3–3 N+M Configuration Concept 47

Figure 4–1 Select Define a New Resource 51

Figure 4–2 Specify the Name of the New Resource Type 52

Figure 4–3 Specify Settings for Required Actions 53

Figure 4–4 Change Settings for Optional Actions 54

Figure 4–5 Set Type-specific Attributes 55

Figure 4–6 Add Dependencies 56

Figure A–1 FailSafe Manager 68

Table 1–1 Example Resource Group 11

Table 2–1 Differences Between the monitor and exclusive Action Scripts 18

Table 2–2 Successful Action Script Results 18

Table 2–3 Failure of an Action Script 19

Table 3–1 Required Failover Attributes (mutually exclusive) 36

Table 3–2 Optional Failover Attributes (mutually exclusive) 37

Table 4–1 Order Ranges 48

Table 4–2 Resource Type Order Numbers 49

vi

About This Guide
This guide explains how to write the set of scripts that are required to turn an application into
a highly available service in conjunction with Linux FailSafe software. It also tells you how to
create a new resource type.

This guide assumes that the Linux FailSafe system has been configured as described in theLinux
FailSafe Administrator’s Guide.

Audience
This guide is written for system programmers who are developing scripts for the Linux FailSafe
system. These scripts allow the failover of applications that are not handled by the base and
optional products. Readers must be familiar with the operation and administration of nodes
running Linux FailSafe, with the applications that are to be failed over, and with theLinux
FailSafe Administrator’s Guide.

Related Documentation
Besides this guide, other documentation for Linux FailSafe includes the following:

• Linux FailSafe Administrator’s Guide

System man pages for referenced commands are as follows:

• cbeutil

• cdbBackup

• cdbRestore

• cdbutil

• cluster_mgr

• crsd

• failsafe

• cdbd

• ha_cilog

• ha_cmsd

• ha_exec2

• ha_fsd

• ha_gcd

• ha_ifd

• ha_ifdadmin

7

• ha_macconfig2

• ha_srmd

• ha_statd2

• haStatus

Conventions Used in This Guide
These type conventions and symbols are used in this guide:

command

Function names, literal command-line arguments (options/flags)

filename

Name of a file or directory

command -o option

Commands and text that you are to type literally in response to shell and command prompts

term

New terms

Book Title

Manual or book title

variable

Command-line arguments, filenames, and variables to be supplied by the user in examples,
code, and syntax statements

literal text

Code examples, error messages, prompts, and screen text

#

System shell prompt for the superuser (root)

8

1 Introduction to Writing Application Scripts
Linux FailSafe provides several highly available services for a two–node cluster. These services
are monitored by the Linux FailSafe software. You can create additional services that are highly
available by using the instructions in this guide.

This chapter provides an introduction to Linux FailSafe programming. The sections are as
follows:

• Section 1.1,Concepts

• Section 1.2,Highly Available Services Included with Linux FailSafe

• Section 1.3,Plug-Ins

• Section 1.5,Overview of the Programming Steps

• Section 1.4,Characteristics that Permit an Application to be Highly Available

• Section 1.5,Overview of the Programming Steps

For an overview of the software layers, communication paths, and cluster configuration database,
see theLinux FailSafe Administrator’s Guide.

1.1 Concepts
In order to use Linux FailSafe, you must understand the concepts in this section.

1.1.1 Cluster Node (or Node)

A cluster node is a single Linux execution environment. In other words, a single physical or
virtual machine. In current Linux environments this will always be an individual computer. The
term node is used to indicate this meaning in this guide for brevity, as opposed to any meaning
such as a network node.

1.1.2 Pool

A pool is the entire set of nodes having membership in a group of clusters. The clusters
are usually close together and should always serve a common purpose. A replicated cluster
configuration database is stored on each node in the pool.

1.1.3 Cluster

A cluster is a collection of one or more nodes coupled to each other by networks or other similar
interconnections. A cluster belongs to one pool and only one pool. A cluster is identified by a
simple name; this name must be unique within the pool. A particular node may be a member
of only one cluster. All nodes in a cluster are also in the pool; however, all nodes in the pool
are not necessarily in the cluster.

1.1.4 Node Membership

A node membership is the list of nodes in a cluster on which Linux FailSafe can allocate
resource groups.

9

1.1.5 Process Membership

A process membershipis the list of process instances in a cluster that form a process group.
There can be multiple process groups per node.

1.1.6 Resource

A resource is a single physical or logical entity that provides a service to clients or other
resources. For example, a resource can be a single disk volume, a particular network address,
or an application such as a web server. A resource is generally available for use over time on
two or more nodes in a cluster, although it can only be allocated to one node at any given time.

Resources are identified by a resource name and a resource type. One resource can be dependent
on one or more other resources; if so, it will not be able to start (that is, be made available for
use) unless the dependent resources are also started. Dependent resources must be part of the
same resource group and are identified in a resource dependency list.

1.1.7 Resource Type

A resource type is a particular class of resource. All of the resources in a particular resource
type can be handled in the same way for the purposes of failover. Every resource is an instance
of exactly one resource type.

A resource type is identified by a simple name; this name should be unique within the cluster.
A resource type can be defined for a specific node, or it can be defined for an entire cluster. A
resource type definition for a specific node overrides a clusterwide resource type definition with
the same name; this allows an individual node to override global settings from a clusterwide
resource type definition.

Like resources, a resource type can be dependent on one or more other resource types. If such a
dependency exists, at least one instance of each of the dependent resource types must be defined.
For example, a resource type namedNetscape_web might have resource type dependencies
on resource types namedIP_address and volume . If a resource namedweb1 is defined
with the Netscape_web resource type, then the resource group containingweb1 must also
contain at least one resource of the typeIP_address and one resource of the typevolume .

The Linux FailSafe software includes some predefined resource types. If these types fit the
application you want to make highly available, you can reuse them. If none fit, you can create
additional resource types by using the instructions in this guide.

1.1.8 Resource Name

A resource nameidentifies a specific instance of a resource type. A resource name must be
unique for a given resource type.

1.1.9 Resource Group

A resource group is a collection of interdependent resources. A resource group is identified by
a simple name; this name must be unique within a cluster. Table 1–1,Example Resource Group
shows an example of the resources and their corresponding resource types for a resource group
namedWebGroup.

10

Table 1–1 Example Resource Group

Resource Resource Type

10.10.48.22 IP_address

/fs1 filesystem

vol1 volume

web1 Netscape_web

If any individual resource in a resource group becomes unavailable for its intended use, then
the entire resource group is considered unavailable. Therefore, a resource group is the unit of
failover.

Resource groups cannot overlap; that is, two resource groups cannot contain the same resource.

For information about configuring resource groups, see theLinux FailSafe Administrator’s Guide.

1.1.10 Resource Dependency List
A resource dependency listis a list of resources upon which a resource depends. Each resource
instance must have resource dependencies that satisfy its resource type dependencies before it
can be added to a resource group.

1.1.11 Resource Type Dependency List
A resource type dependency listis a list of resource types upon which a resource type depends.
For example, thefilesystem resource type depends upon thevolume resource type, and the
Netscape_web resource type depends upon thefilesystem and IP_address resource
types.

For example, suppose a file system instancefs1 is mounted on volumevol1 . Beforefs1 can
be added to a resource group,fs1 must be defined to depend onvol1 . Linux FailSafe only
knows that a file system instance must have one volume instance in its dependency list. This re-
quirement is inferred from the resource type dependency list.

1.1.12 Failover
A failover is the process of allocating a resource group (or application) to another node, according
to a failover policy. A failover may be triggered by the failure of a resource, a change in the
node membership (such as when a node fails or starts), or a manual request by the administrator.

1.1.13 Failover Policy
A failover policy is the method used by Linux FailSafe to determine the destination node of a
failover. A failover policy consists of the following:

• Failover domain

• Failover attributes

• Failover script

Linux FailSafe uses the failover domain output from a failover script along with failover attributes
to determine on which node a resource group should reside.

11

The administrator must configure a failover policy for each resource group. A failover policy
name must be unique within the pool. Linux FailSafe includes predefined failover policies, but
youcan define your own failover algorithms as well.

1.1.14 Failover Domain

A failover domain is the ordered list of nodes on which a given resource group can be allocated.
The nodes listed in the failover domain must be within the same cluster; however, the failover
domain does not have to include every node in the cluster.

The administrator defines the initial failover domain when creating a failover policy. This list
is transformed into a run-time failover domain by the failover script; Linux FailSafe uses the
run-time failover domain along with failover attributes and the node membership to determine
the node on which a resource group should reside. Linux FailSafe stores the run-time failover
domain and uses it as input to the next failover script invocation. Depending on the run-time
conditions and contents of the failover script, the initial and run-time failover domains may be
identical.

In general, Linux FailSafe allocates a given resource group to the first node listed in the run-time
failover domain that is also in the node membership; the point at which this allocation takes
place is affected by the failover attributes.

1.1.15 Failover Attribute

A failover attribute is a string that affects the allocation of a resource group in a clus-
ter. The administrator must specify system attributes (such asAuto_Failback or Con-
trolled_Failback), and can optionally supply site-specific attributes.

1.1.16 Failover Scripts

A failover script is a shell script that generates a run-time failover domain and returns it to
the Linux FailSafe process. The Linux FailSafe processha_fsd applies the failover attributes
and then selects the first node in the returned failover domain that is also in the current node
membership.

The following failover scripts are provided with the Linux FailSafe release:

• ordered , which never changes the initial failover domain. When using this script, the
initial and run-time failover domains are equivalent.

• round-robin , which selects the resource group owner in a round-robin (circular) fashion.
This policy can be used for resource groups that can be run in any node in the cluster.

If these scripts do not meet your needs, you can create a new failover script using the information
in this guide.

1.1.17 Action Scripts

Theaction scripts are the set of scripts that determine how a resource is started, monitored, and
stopped. There must be a set of action scripts specified for each resource type.

The following is the complete set of action scripts that can be specified for each resource type:

• exclusive , which verifies that a resource is not already running

12

• start , which starts a resource

• stop , which stops a resource

• monitor , which monitors a resource

• restart , which restarts a resource on the same server after a monitoring failure occurs

The release includes action scripts for predefined resource types. If these scripts fit the resource
type that you want to make highly available, you can reuse them by copying them and modifying
them as needed. If none fits, you can create additional action scripts by using the instructions
in this guide.

1.2 Highly Available Services Included with Linux FailSafe
The base release includes the software required to make IP addresses (theIP_address resource
type) highly available.

1.3 Plug-Ins
Optional software packages, known asplug-ins, are available to make additional applications
highly available.

The following plug-ins are available for Linux FailSafe:

• Logical volumes (thevolume resource type) such as provided byLVM

• Filesystems such asreiserfs andext2fs (the filesystem resource type)

• MAC addresses (theMAC_address resource type)

• Linux FailSafe Samba

• Linux FailSafe NFS

Linux FailSafe NFS is not part of the core Linux FailSafe software,
but it is documented with the base release.

If you want to create new highly available services, or change the functionality of the provided
failover scripts and action scripts by writing new scripts, you will use the instructions in this
guide. However, not all resources can be made highly available; see Section 1.4,Characteristics
that Permit an Application to be Highly Available.

1.4 Characteristics that Permit an Application to be Highly
Available
The characteristics of an application that can be made highly available are as follows:

• The application can be easily restarted and monitored.

It should be able to recover from failures as does most client/server software. The failure
could be a hardware failure, an operating system failure, or an application failure. If a node
crashed and reboots, client/server software should be able to attach again automatically.

13

• The application must have a start and stop procedure.

When the application fails over, the instances of the application are stopped on one node
using the stop procedure and restarted on the other node using the start procedure.

• The application can be moved from one node to another after failures.

If the resource has failed, it must still be possible to run the resource stop procedure. In
addition, the resource must recover from the failed state when the resource start procedure
is executed in another node.

Ensure that there is no affinity for a specific node.

• The application does not depend on knowing the primary host name (as returned by
hostname); that is, required resources can be configured to work with an IP address.

• Other resources on which the application depends can be made highly available. If they are
not provided by Linux FailSafe and its optional products (see Section 1.2,Highly Available
Services Included with Linux FailSafe), you must make these resources highly available, using
the information in this guide.

An application itself is not modified to make it highly available.

1.5 Overview of the Programming Steps

If you do not want to write the scripts yourself, you can establish a
contract with the Silicon Graphics Professional Services group to create
customized scripts. See: http://www.sgi.com/services/index.html.

To make an application highly available, follow these steps:

1. Understand the application and determine:

• The configuration required for the application, such as user names, permissions, data
location (volumes), and so on. For more information about configuration, see theLinux
FailSafe Administrator’s Guide.

• The other resources on which the application depends. All interdependent resources must
be part of the same resource group.

• The resource type that best suits this application.

• The number of instances of the resource type that will constitute the application. (Each
instance of a given application, orresource type, is a separate resource.) For example,
a web server may depend upon two filesystem resources.

• The commands and arguments required to start, stop, and monitor this application (that
is, the resources in the resource group).

• The order in which all resources in the resource group must be started and stopped.

2. Determine whether existing action scripts can be reused. If they cannot,
write a new set of action scripts, using existing scripts and the templates in

14

/usr/lib/failsafe/resource_types/template as a guide. See Chapter 2,
Writing the Action Scripts and Adding Monitoring Agents.

3. Determine whether the existingordered or round-robin failover scripts can be reused
for the resource group. If they cannot, write a new failover script. See Chapter 4,Defining
a New Resource Type.

4. Determine whether an existing resource type can be reused. If none applies, create a new
resource type or modify an existing resource type. See Chapter 4,Defining a New Resource
Type.

5. Configure the following in the cluster configuration database (for more information, see the
Linux FailSafe Administrator’s Guide):

• Resource group

• Resource type

• Failover policy

6. Test the action scripts and failover script. See Chapter 5,Testing Scripts, and Section 5.2,
Debugging Notes.

Do not modify the scripts included with the Linux FailSafe product.
New or customized scripts must have different names from the files
included with the release.

15

2 Writing the Action Scripts and Adding
Monitoring Agents
This chapter provides information about writing the action scripts required to make an application
highly available and how to add monitoring agents. It discusses the following topics:

• Section 2.1,Set of Action Scripts

• Section 2.2,Understanding the Execution of Action Scripts

• Section 2.3,Preparation

• Section 2.4,Script Format

• Section 2.5,Steps in Writing a Script

• Section 2.6,Examples of Action Scripts

• Section 2.7,Monitoring Agents

2.1 Set of Action Scripts

CAUTION

Multiple instances of scripts may be executed at the same time. For more
information, see Section 2.2,Understanding the Execution of Action
Scripts.

The following set of action scripts can be provided for each resource:

• exclusive , which verifies that the resource is not already running

• start , which starts the resource

• stop , which stops the resource

• monitor , which monitors the resource

• restart , which restarts the resource on the same node when a monitoring failure occurs

The start , stop , andexclusive scripts are required for every resource type.

The start and stop scripts must beidempotent; that is, an action
requested multiple times successively should continue to return success,
and should have no side-effects. For example, if thestart script is
run for a resource that is already started, the script must not return an
error.

A monitor script is required, but if you wish it may contain only a return-success function.
A restart script is required if the application must have a restart ability on the same node in
case of failure. However, therestart script may contain only a return-success function.

16

2.2 Understanding the Execution of Action Scripts
Before you can write a new action script, you must understand how action scripts are executed.
This section covers the following topics:

• Section 2.2.1,Multiple Instances of Script Executed at the Same Time

• Section 2.2.2,Differences between theexclusive and monitor Scripts

• Section 2.2.3,Successful Execution of Action Scripts

• Section 2.2.4,Failure of Action Scripts

• Section 2.2.5,Implementing Timeouts and Retrying a Command

• Section 2.2.6,Sending UNIX Signals

2.2.1 Multiple Instances of Script Executed at the Same Time
Multiple instances of the same script may be executed at the same time. To avoid problems this
may cause, you can use theha_filelock and ha_execute_lock commands to achieve
sequential execution of commands in different instances of the same script.

For example, consider a script which modifies a configuration file to start a new application
instance. Multiple instances of the script modifying the file simultaneously could cause file
corruption and data loss. The start script for the application should useha_execute_lock
when executing the modification script to ensure correct configuration file modification.

Assuming the script is namedmodify_configuration_file , the start script would contain
a statement similar to the following:

${HA_CMDSPATH}/ha_execute_lock 30
${HA_SCRIPTTMPDIR}/lock.volume_assemble \"modify_configuration_file\"

The ha_execute_lock command takes 3 arguments:

• Number of seconds before the command times out waiting for the file lock

• File to be used for locking

• Command to be executed

The ha_execute_lock command tries to obtain a lock on the file every second fortimeout
seconds. After obtaining a lock on the file, it executes the command argument. On command
completion, it releases lock on the file.

2.2.2 Differences between the exclusive and monitor Scripts
Although the same check can be used inmonitor and exclusive action scripts, they are
used for different purposes. Table 2–1,Differences Between themonitor and exclusive
Action Scriptssummarizes the differences between the scripts.

17

Table 2–1 Differences Between the monitor and exclusive Action Scripts

exclusive monitor

Executed in all nodes in the cluster. Executed only on the node where the resource
group (which contains the resource) is online.

Executed before the resource is started in the
cluster.

Executed when the resource is online in the
cluster. (Themonitor script could degrade
the services provided by the HA server.
Therefore, the check performed by themon-
itor script should be lightweight and less
time consuming than the check performed by
the exclusive script))

Executed only once before the resource group
is made online in the cluster.

Executed periodically.

Failure will result in resource group not be-
coming online in the cluster.

Failure will cause a resource group failover
to another node or a restart of the resource in
the local node. An error will cause false re-
source group failovers in the cluster.

2.2.3 Successful Execution of Action Scripts
Table 2–2, Successful Action Script Resultsshows the state of a resource group after the
successful execution of an action script for every resource within a resource group. To view
the state of a resource group, use the Cluster Manager graphical user interface (GUI) or the
cluster_mgr command.

Table 2–2 Successful Action Script Results

Event Action Script to Execute Resource Group State

Resource group is made online on a nodestart online

Resource group is made offline on a nodestop offline

Online status of the resource group exclusive (No effect)

Normal monitoring of online resource
group

monitor online

Resource group monitoring failure restart online

2.2.4 Failure of Action Scripts
Table 2–3,Failure of an Action Scriptshows the state of the resource group and the error state
when an action script fails.

18

Table 2–3 Failure of an Action Script

Failing Action Script Resource Group State Error State

exclusive online exclusivity

monitor online monitoring failure

restart online monitoring failure

start online srmd executable error

stop online srmd executable error

2.2.5 Implementing Timeouts and Retrying a Command

You can use theha_exec2 command to execute action scripts using timeouts. This allows
the action script to be completed within the specified time, and permits proper error messages
to be logged on failure or timeout. Theretry variable is especially useful inmonitor and
exclusive action scripts.

To retry a command, use the following syntax:

/usr/lib/failsafe/bin/ha_exec2 timeout_in_seconds number_of_retries command_to_be_executed

For example:

${HA_CMDSPATH}/ha_exec2 30 2 "umount /fs"

The aboveha_exec2 command executes theumount /fs command line. If the command
does not complete within 30 seconds, it kills theumount command and retries the command.
The ha_exec2 command retries theumount command 2 times if it times out or fails.

For more information, see theha_exec2 man page.

2.2.6 Sending UNIX Signals

You can use theha_exec2 command to send UNIX signals to specific process. A process is
identified by its name or its arguments.

For example:

${HA_CMDSPATH}/ha_exec2 -s 0 -t "knfsd"

The above command sends signal 0 (checks if the process exists) to all processes whose name
or arguments match the stringknfsd . The command returns 0 if it is a success.

You should use theha_exec2 command to check for server processes in themonitor script
instead of using a ps -ef | grep command line construction, for performance and speed
considerations.

For more information, see theha_exec2 man page.

2.3 Preparation
Before you can write the action scripts, you must do the following:

19

• Understand thescriptlib functions described in Appendix B,Using the SRM Script
Library.

• Familiarize yourself with the script templates provided in the following directory:
/usr/lib/failsafe/resource_types/template

• Read the man pages for the following commands:

– cluster_mgr

– cdbd

– ha_cilog

– ha_cmsd

– ha_exec2

– ha_fsd

– ha_gcd

– ha_ifd

– ha_ifdadmin

– ha_macconfig2

– ha_srmd

– ha_statd2

– haStatus

• Familiarize yourself with the action scripts for other highly available services in
/usr/lib/failsafe/resource_types that are similar to the scripts you wish to
create.

• Understand how to do the following actions for your application:

– Verify that the resource is running

– Verify that the resource can be run

– Start the resource

– Stop the resource

– Check for the server processes

– Do a simple query as a client and understand the expected response

– Check for configuration file or directory existence (as needed)

• Determine whether or not monitoring is required (see Section 2.3.1,Is Monitoring
Necessary?). However, even if monitoring is not needed, amonitor script is still required;
in this case, it can contain only a return-success function.

• Determine if a resource type must be added to the cluster configuration database.

20

• Understand the vendor-supplied startup and shutdown procedures.

• Determine the configuration parameters for the application; these may be used in the action
script and should be stored in the CDB.

• Determine whether the resource type can be restarted in its local node, and whether this
action makes sense.

2.3.1 Is Monitoring Necessary?
In the following situations, you may not need to perform application monitoring:

• Heartbeat monitoring is sufficient; that is, simply verifying that the node is alive (provided
automatically by the base software) determines the health of the highly available service.

• There is no process or resource that can be monitored. For example, the Linux kernel ipchains
filtering software performs IP filtering on firewall nodes. Because the filtering is done in the
kernel, there is no process or resource to monitor.

• A resource on which the application depends is already monitored. For example, monitoring
some client-node resources might best be done by monitoring the file systems, volumes, and
network interfaces they use. Because this is already done by the base software, additional
monitoring is not required.

CAUTION

Beware that monitoring should be as lightweight as possible so that it
does not affect system performance. Also, security issues may make
monitoring difficult. If you are unable to provide a monitoring script
with appropriate performance and security, consider a monitoring
agent; see Section 2.7,Monitoring Agents.

2.3.2 Types of Monitoring
There are two types of monitoring that may be accomplished in amonitor script:

• Is the resource present?

• Is the resource responding?

You can define multiple levels of monitoring within the monitor script, and the administrator
can choose the desired level by configuring the resource definition in the cluster configuration
database. Ensure that the monitoring level chosen does not affect system performance. For more
information, see theLinux FailSafe Administrator’s Guide.

2.3.3 What are the Symptoms of Monitoring Failure?
Possible symptoms of failure include the following:

• The resource returns an error code

• The resource returns the wrong result

• The resource does not return quickly enough

21

2.3.4 How Often Should Monitoring Occur?
You must determine the monitoring interval and time-out values for themonitor script. The
time-out must be long enough to guarantee that occasional anomalies do not cause false failovers.
It will be useful for you to determine the peak load that resource may need to sustain.

You must also determine if themonitor test should execute multiple times so that an application
is not declared dead after a single failure. In general, testing more than once before declaring
failure is a good idea.

2.3.5 Examples of Testing for Monitoring Failure
The test should be simple and should complete quickly, whether it succeeds or fails. Some
examples of tests are as follows:

• For a client/server applications that follows a well-defined protocol, themonitor script can
make a simple request and verify that the proper response is received.

• For a web server application, themonitor script can request a home page, verify that the
connection was made, and ignore the resulting home page.

• For a database, a simple request such as querying a table can be made.

• For NFS, more complicated end-to-end monitoring is required. The test might consist of
mounting an exported file system, checking access to the file system with astat() system
call to the root of the file system, and undoing the mount.

• For a resource that writes to a log file, check that the size of the log file is increasing or use
the grep command to check for a particular message.

• The following command can be used to determine quickly whether a process exists:

/usr/bin/killall -0 process_name

You can also use theha_exec2 command to check if a process is running.

The ha_exec2 command differs fromkillall in that it performs a more exhaustive
check on the process name as well as process arguments.killall searches for the process
using the process name only. The command line is as follows:

/usr/lib/failsafe/bin/ha_exec2 -s 0 -t process_name

Do not use theps command to check on a particular process because
its execution can be too slow.

2.4 Script Format
Templates for the action scripts are provided in the following directory:

/usr/lib/failsafe/resource_types/template

The template scripts have the same general format. Following is the order in which the
information appears in the script:

22

• Header information

• Set local variables

• Read resource information

• Exit status

• Perform the basic action of the script, which is the customized area you must provide

• Set global variables

• Verify arguments

• Read input file

Action “scripts” can be of any form – such as Bourne shell script,
perl script, or C language program.

The following sections show an example from the NFSstart script. Note that the contents of
these examples may not match the latest software.

2.4.1 Header Information

The header information contains comments about the resource type, script type, and resource
configuration format. You must modify the code as needed.

Following is the header for the NFSstart script:

#!/bin/sh

**

* *
* Copyright (C) 1998 Silicon Graphics, Inc. *
* *

* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *

* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *

**

#ident "$Revision: 1.9 $"

Resource type: NFS
Start script NFS

#
Test resource configuration information is present in the database in
the following format

#
resource-type.NFS

23

2.4.2 Set Local Variables
Theset_local_variables() section of the script defines all of the variables that are local
to the script, such as temporary file names or database keys. All local variables should use the
LOCAL_prefix. You must modify the code as needed.

Following is theset_local_variables() section from the NFSstart script:

set_local_variables()
{

LOCAL_TEST_KEY=NFS

}

2.4.3 Read Resource Information
The get_ xxx_info() function, such asget_nfs_info() , reads the resource information
from the cluster configuration database.$1 is the test resource name. If the operation is
successful, a value of 0 is returned; if the operation fails, 1 is returned.

The information is returned in theHA_STRING variable. For more information about
HA_STRING, see Appendix B,Using the SRM Script Library.

Following is theget_nfs_info() section from the NFSstart script

get_nfs_info ()

{
ha_get_info ${LOCAL_TEST_KEY} $1
if [$? -ne 0]; then

return 1;
else

return 0;

fi
}

If you wish to get resource dependency information, you can callha_get_info with a third
argument of any value. The resource dependency list will be returned in theHA_STRING
variable.

2.4.4 Exit Status
In the exit_script() function, $1 contains theexit_status value. If cleanup actions
are required, such as the removal of temporary files that were created as part of the process,
place them before theexit line.

Following is theexit_script() section from the NFSstart script

exit_script()
{

exit $1;

}

24

If you call the exit_script function prior to normal termination,
it should be preceded by theha_write_status_for_resource
function and you should use the same return code that is logged to the
output file. For more information see Appendix B,Using the SRM Script
Library.

2.4.5 Basic Action

This area of the script is the portion you must customize. The templates provide a minimal
framework.

Following is the framework for the basic action from thestart template:

start_template()

for all template resources passed as parameter

for TEMPLATE in $HA_RES_NAMES
do

#HA_CMD="command to start $TEMPLATE resource on the local machine ";

#ha_execute_cmd " string to describe the command being executed ";

ha_write_status_for_resource $TEMPLATE $HA_SUCCESS;

done
}

When testing the script, you can obtain debugging information by adding
the shell command set -x to this section.

For examples of this area, see Section 2.6,Examples of Action Scripts.

2.4.6 Set Global Variables

The following lines set all of the global and local variables and store the resource names in
$HA_RES_NAMES.

Following is theset_global_variables() function from the NFSstart script:

set_global_variables()
{

HA_DIR=/usr/lib/failsafe
COMMON_LIB=${HA_DIR}/common_scripts/scriptlib

Execute the common library file
. $COMMON_LIB

ha_set_global_defs;
}

25

2.4.7 Verify Arguments
Theha_check_args() function verifies the arguments and stores them in the$HA_INFILE
and$HA_OUTFILE variables. It returns 1 on error and 0 on success.

Following is the following is the section from the NFS start script that callsha_check_args :

ha_check_args $*;
if [$? -ne 0]; then

exit $HA_INVAL_ARGS;
fi

2.4.8 Read Input File
The ha_read_infile() function reads the input file and stores the resource names in the
$HA_RES_NAMESvariable.

Following is theha_read_infile() function from the common library filescriptlib :

ha_read_infile()

{
HA_RES_NAMES="";

for HA_RESOURCE in ‘cat ${HA_INFILE}‘
do

HA_TMP="${HA_RES_NAMES} ${HA_RESOURCE}";

HA_RES_NAMES=${HA_TMP};
done

}

2.4.9 Complete the Action
Located at the bottom of the script file are the lines which perform the actual work of the
requested action using the prior sections and provided tools. The results are written as output to
$HA_OUTFILE:

action _resourcetype ;

exit_script $HA_SUCCESS

Following is the completion from the NFSstart script:

start_nfs;

exit_script $HA_SUCCESS;

26

2.5 Steps in Writing a Script

CAUTION

Multiple copies of actions scripts can execute at the same time.
Therefore, all temporary file names must be unique within the storage
space used. Often adding ascript.$$ to the name is sufficient.
If multiple nodes share a temporary directory, you will also want to
incorporate host identifier to ensure uniqueness. Another method is to
use the resource name because it must be unique to the cluster.

For each script, you must do the following:

• Get the required variables

• Check the variables

• Perform the action

• Check the action

The start and stop scripts are required to beidempotent; that
is, they have the appearance of being run once but can in fact be
run multiple times. For example, if thestart script is run for a
resource that is already started, the script must not return an error.

All action scripts must return the status to the
/var/log/failsafe/script_ nodename file.

2.6 Examples of Action Scripts
The following sections use portions of the NFS scripts as examples.

The examples in this guide may not exactly match the released system.

2.6.1 start Script
The NFSstart script does the following:

1. Creates a resource-specific NFS status directory.

2. Exports the specified export-point with the specified export-options.

Following is a section from the NFSstart script:

Start the resource on the local machine.
Return HA_SUCCESS if the resource has been successfully started on the local

27

machine and HA_CMD_FAILED otherwise.
#
start_nfs()
{

${HA_DBGLOG} "Entry: start_nfs()";

for all nfs resources passed as parameter

for resource in ${HA_RES_NAMES}
do

NFSFILEDIR=${HA_SCRIPTTMPDIR}/${LOCAL_TEST_KEY}$resource

HA_CMD="mkdir -p $NFSFILEDIR";
ha_execute_cmd "creating nfs status file directory";
if [$? -ne 0]; then

${HA_LOG} "Failed to create ${NFSFILEDIR} directory";
ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script $HA_NOCFGINFO

fi

get_nfs_info $resource

if [$? -ne 0]; then
${HA_LOG} "NFS: $resource parameters not present in CDB";
ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

ha_get_field "${HA_STRING}" export-info

if [$? -ne 0]; then
${HA_LOG} "NFS: export-info not present in CDB for resource $resource";
ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};
fi
export_opts="$HA_FIELD_VALUE"

ha_get_field "${HA_STRING}" filesystem
if [$? -ne 0]; then

${HA_LOG} "NFS: filesystem-info not present in CDB for resource $resource";
ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

filesystem="$HA_FIELD_VALUE"

Before we try and export the NFS resource, make sure

filesystem is mounted.
HA_CMD="grep $filesystem /etc/mtab > /dev/null 2>&1";
ha_execute_cmd "check if the filesystem $filesystem is mounted";

if [$? -ne 0]; then
${HA_LOG} "NFS: filesystem $filesystem not mounted";
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script ${HA_CMD_FAILED};
fi

Now do the job: export the new directory
Note: the export_dir command will check wether this directory

28

is already exported or not.
HA_CMD="export_dir ${resource} ${export_opts}";
ha_execute_cmd "export $resource directories to NFS clients";
if [$? -ne 0]; then

${HA_LOG} "NFS: could not export resoure ${resource}"
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
exit_script ${HA_CMD_FAILED};

else
ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

done
}

2.6.2 stop Script
The NFSstop script does the following:

1. Unexports the specified export-point.

2. Removes the NFS status directory.

Following is an example from the NFSstop script:

Stop the nfs resource on the local machine.
Return HA_SUCCESS if the resource has been successfully stopped on the local
machine and HA_CMD_FAILED otherwise.
#

stop_nfs()
{

${HA_DBGLOG} "Entry: stop_nfs()";

for all nfs resources passed as parameter

for resource in ${HA_RES_NAMES}
do

get_nfs_info ${resource}

if [$? -ne 0]; then
NFS resource information not available.
${HA_LOG} "NFS: $resource parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

ha_get_field "${HA_STRING}" export-info
if [$? -ne 0]; then

${HA_LOG} "NFS: export-info not present in CDB for resource $resource";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

export_opts="$HA_FIELD_VALUE"

Unexport the directory
HA_CMD="unexport_dir ${resource}"

29

ha_execute_cmd "unexport ${resource} directory to NFS clients"
if [$? -ne 0]; then

${HA_LOG} "NFS: Failed to unexport resource ${resource}"
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED}

fi

ha_write_status_for_resource ${resource} ${HA_SUCCESS}

done
}

2.6.3 monitor Script
The NFSmonitor script does the following:

1. Verifies that the file system is mounted at the correct mount point.

2. Requests the status of the exported file system.

3. Checks the export-point.

4. Requests NFS statistics and (based on the results) make a Remote Procedure Call (RPC) to
NFS as needed.

Following is an example from the NFSmonitor script:

Check if the nfs resource is allocated in the local node
This check must be light weight and less intrusive compared to
exclusive check. This check is done when the resource has been
allocated in the local node.

Return HA_SUCCESS if the resource is running in the local node
and HA_CMD_FAILED if the resource is not running in the local node
The list of the resources passed as input is in variable

$HA_RES_NAMES
#
monitor_nfs()

{
${HA_DBGLOG} "Entry: monitor_nfs()";

for resource in ${HA_RES_NAMES}
do

get_nfs_info ${resource}

if [$? -ne 0]; then
No resource information available.
${HA_LOG} "NFS: ${resource} parameters not present in CDB";

ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

ha_get_field "${HA_STRING}" filesystem
if [$? -ne 0]; then

filesystem not available available.

${HA_LOG} "NFS: filesystem not present in CDB for resource $resource";
ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};

fi
fs="$HA_FIELD_VALUE";

30

Check to see if the filesystem is mounted
HA_CMD="mount | grep ${fs} >/dev/null 2>&1"
ha_execute_cmd "check to see if $fs is mounted"

if [$? -ne 0]; then
${HA_LOG} "NFS: ${fs} not mounted";
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;
fi

stat the filesystem
HA_CMD="fs_stat -r ${resource} >/dev/null 2>&1";
ha_execute_cmd "stat mount point $resource"

if [$? -ne 0]; then
${HA_LOG} "NFS: cannot stat ${resource} NFS export point";
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};

exit_script $HA_CMD_FAILED;
fi

check the filesystem is exported
showmount -e | grep "${resource} " >/dev/null 2>&1
if [$? -ne 0]; then

${HA_LOG} "NFS: failed to find ${resource} in exported filesystem list:-"

${HA_LOG} "‘showmount -e‘"
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED}
exit_script ${HA_CMD_FAILED}

fi

check the NFS daemon is still alive and responding

exec_rpcinfo;
if [$? -ne 0]; then

${HA_LOG} "NFS: exec_rpcinfo failed";

ha_write_status_for_resource ${resource} ${HA_CMD_FAILED}
exit_script $HA_CMD_FAILED

fi

Check the stats ?
To Be Done... but there is no nfsstat command
for the user space NFS daemon.

ha_write_status_for_resource $resource $HA_SUCCESS;

done
}

2.6.4 exclusive Script

The NFSexclusive script determines whether the file system is already exported. The check
made by an exclusive script can be more expensive than a monitor check. Linux FailSafe uses
this script to determine if resources are running on a node in the cluster, and to thereby prevent
starting resources on multiple nodes in the cluster.

Following is an example from the NFSexclusive script:

31

Check if the nfs resource is running in the local node. This check can
more intrusive than the monitor check. This check is used to determine
if the resource has to be started on a machine in the cluster.
Return HA_NOT_RUNNING if the resource is not running in the local node

and HA_RUNNING if the resource is running in the local node
The list of nfs resources passed as input is in variable
$HA_RES_NAMES

#
exclusive_nfs()
{

${HA_DBGLOG} "Entry: exclusive_nfs()";

for all resources passed as parameter
for resource in ${HA_RES_NAMES}
do

get_nfs_info $resource
if [$? -ne 0]; then

No resource information available

${HA_LOG} "NFS: $resource parameters not present in CDB";
ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

Check if resource is already exported by the NFS server
showmount -e | grep "${resource} " >/dev/null 2>&1

if [$? -eq 0];then
ha_write_status_for_resource ${resource} ${HA_RUNNING};
ha_print_exclusive_status ${resource} ${HA_RUNNING};

else
ha_write_status_for_resource ${resource} ${HA_NOT_RUNNING};
ha_print_exclusive_status ${resource} ${HA_NOT_RUNNING};

fi

done

}

2.6.5 restart Script

The NFSrestart script exports the specified export-point with the specified export-options.

Following is an example from therestart script for NFS:

Restart nfs resource
Return HA_SUCCESS if nfs resource failed over successfully or
return HA_CMD_FAILED if nfs resource could not be failed over locally.

The list of nfs resources passed as input is in variable
$HA_RES_NAMES
#

restart_nfs()
{

${HA_DBGLOG} "Entry: restart_nfs()";

for all nfs resources passed as parameter

32

for resource in ${HA_RES_NAMES}
do

get_nfs_info $resource
if [$? -ne 0]; then

${HA_LOG} "NFS: $resource parameters not present in CDB";
ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
exit_script ${HA_NOCFGINFO};

fi

ha_get_field "${HA_STRING}" export-info

if [$? -ne 0]; then
${HA_LOG} "NFS: export-info not present in CDB for resource $resource";
ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};

exit_script ${HA_NOCFGINFO};
fi
export_opts="$HA_FIELD_VALUE"

Note: the export_dir command will check wether this directory

is already exported or not.
HA_CMD="export_dir ${resource} ${export_opts}";
ha_execute_cmd "export $resource directories to NFS clients";
if [$? -ne 0]; then

${HA_LOG} "NFS: could not export resoure ${resource}"
ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
exit_script ${HA_CMD_FAILED};

else
ha_write_status_for_resource ${resource} ${HA_SUCCESS};

fi

done
}

2.7 Monitoring Agents
If resources cannot be monitored using a lightweight check, you should use amonitoring agent.
Themonitor action script contacts the monitoring agent to determine the status of the resource
in the node. The monitoring agent in turn periodically monitors the resource. Figure 2–1,
Monitoring Processshows the monitoring process.

Figure 2–1 Monitoring Process

Action script
monito

r

Monitoring

agent

Resource

Monitoring agents are useful for monitoring database resources. In databases, creating the
database connection is costly and time consuming. The monitoring agent maintains connections
to the database and it queries the database using the connection in response to themonitor
action script request.

33

Monitoring agents are independent processes and can be started bycmond process, al-
though this is not required. For example, if a monitoring agent must be started when
activating highly available services on a node, information about that agent can be added
to the cmond configuration on that node. Thecmond configuration is located in the
/etc/failsafe/cmon_process_groups directory. Information about different agents
should go into different files. The name of the file is not relevant to the activate/deactivate
procedure.

If a monitoring agent exits or aborts,cmond will automatically restart the monitoring agent.
This preventsmonitor action script failures due to monitoring agent failures.

For example, the/etc/failsafe/cmon_process_groups/ip_addresses file con-
tains information about theha_ifd process that monitors network interfaces. It contains the
following, whereACTIONS represents whatcmond can perform on the agents (which will be
the same for all scripts):

TYPE = cluster_agent

PROCS = ha_ifd
ACTIONS = start stop restart attach detach
AUTOACTION = attach

If you create a new monitoring agent, you must also create a corresponding file in the
/etc/failsafe/cmon_process_groups directory that contains similar information
about the new agent. To do this, you can copy theip_addresses file and modify thePROCS
line to list the executables that constitute your new agent. These processes must be located in the
/usr/lib/failsafe/bin directory. You should not modify the other configuration lines
(TYPE, ACTIONS, andAUTOACTION).

Suppose you need to add a new agent callednewagent that consists of processes
ha_x and ha_y . The configuration information for this agent will be located in the
/etc/failsafe/cmon_process_groups/newagent file, which will contain the fol-
lowing:

TYPE = cluster_agent
PROCS = ha_x ha_y

ACTIONS = start stop restart attach detach
AUTOACTION = attach

In this case, the software will expect two executables (/usr/lib/failsafe/bin/ha_x
and /usr/lib/failsafe/bin/ha_y) to be present.

34

3 Creating a Failover Policy
This chapter tells you how to create a failover policy. It describes the following topics:

• Section 3.1,Contents of a Failover Policy

• Section 3.2,Failover Script Interface

• Section 3.3,Example Failover Policies for Linux FailSafe

3.1 Contents of a Failover Policy
A failover policy is the method by which a resource group is failed over from one node to
another. A failover policy consists of the following:

• Failover domain

• Failover attributes

• Failover scripts

Linux FailSafe uses the failover domain output from a failover script along with failover attributes
to determine on which node a resource group should reside.

The administrator must configure a failover policy for each resource group. The name of the
failover policy must be unique within the pool.

3.1.1 Failover Domain
A failover domain is the ordered list of nodes on which a given resource group can be
allocated. The nodes listed in the failover domainmust be within the same cluster; however,
the failover domain does not have to include every node in the cluster. The failover domain can
also be used to statically load balance the resource groups in a cluster.

Examples:

• In a four–node cluster, a set of two nodes that have access to a particular XLV volume may
be the failover domain of the resource group containing that XLV volume.

• In a cluster of nodes named venus, mercury, and pluto, you could configure the following
initial failover domains for resource groups RG1 and RG2:

– mercury, venus, pluto for RG1

– pluto, mercury for RG2

The administrator defines the initial failover domain when configuring a failover policy. The
initial failover domain is used when a cluster is first booted. The ordered list specified by the
initial failover domain is transformed into a run-time failover domain by the failover script.
With each failure, the failover script takes the current run-time failover domain and potentially
modifies it; the initial failover domain is never used again. Depending on the run-time conditions
and contents of the failover script, the initial and run-time failover domains may be identical.

For example, suppose the initial failover domain is:

N1 N2 N3

The runtime failover domain will vary based on the failover script:

35

• If ordered :

N1 N2 N3

• If round-robin :

N2 N3 N1

• If a customized failover script, the order could be any permutation, based on the contents of
the script:

N1 N2 N3
N1 N3 N2
N2 N3 N1
N2 N1 N3
N3 N2 N1
N3 N1 N2

Linux FailSafe stores the run-time failover domain and uses it as input to the next failover script
invocation.

3.1.2 Failover Attributes

A failover attribute is a value that is passed to the failover scrip and used by Linux FailSafe for
the purpose of modifying the run-time failover domain for a specific resource group. There are
required and optional failover attributes, and you can also specify your own strings as attributes.

Table 3–1,Required Failover Attributes (mutually exclusive)shows the required failover attributes.
You must specify one and only one of these attributes. Note that the starting conditions for the
attributes differs: for the required attributes, the starting condition is that a node joins the cluster
membership when the cluster is already providing HA services; for the optional attributes, the
starting condition is that HA services are started and the resource group is running in only one
node in the cluster

Table 3–1 Required Failover Attributes (mutually exclusive)

Name Description

Auto_Failback Specifies that the resource group is made online based on
the failover policy when a node joins the cluster. This at-
tribute is best used when some type of load balancing is
required. You must specify either this attribute or theCon-
trolled_Failback attribute.

Controlled_Failback Specifies that the resource group remains on the same node
when a node joins the cluster. This attribute is best used
when client/server applications have expensive recovery
mechanisms, such as databases or any application that uses
tcp to communicate. You must specify either this attribute
or theAuto_Failback attribute.

When defining a failover policy, you can optionally also choose one and only one of the recovery
attributes shown in Table 3–2,Optional Failover Attributes (mutually exclusive). The recovery

36

attribute determines the node on which a resource group will be allocated when its state changes
to online and a member of the group is already allocated (such as when volumes are present).

Table 3–2 Optional Failover Attributes (mutually exclusive)

Name Description

Auto_Recovery Specifies that the resource group is made online based on
the failover policy even when an exclusivity check shows
that the resource group is running on a node. This attribute
is optional and is mutually exclusive with theIn-
place_Recovery attribute. If you specify neither of
these attributes, Linux FailSafe will use this attribute by de-
fault if you have specified theAuto_Failback attribute.

InPlace_Recovery Specifies that the resource group is made online on the same
node where the resource group is running. This attribute is
the default and is mutually exclusive with the
Auto_Recovery attribute. If you specify neither of these
attributes, Linux FailSafe will use this attribute by default if
you have specified theControlled_Failback attribute.

3.1.3 Failover Scripts
A failover script generates the run-time failover domain and returns it to the Linux FailSafe
process. The Linux FailSafe process applies the failover attributes and then selects the first node
in the returned failover domain that is also in the current node membership.

The run-time of the failover script must be capped to a system-definable
maximum. Hence, any external calls must be guaranteed to return
quickly. If the failover script takes too long to return, Linux FailSafe
will kill the script process and use the previous run-time failover domain.

Failover scripts are stored in the/usr/lib/failsafe/policies directory.

3.1.3.1 The ordered Failover Script

The ordered failover script is provided with the release. Theordered script never changes
the initial domain; when using this script, the initial and run-time domains are equivalent. The
script reads six lines from the input file and in case of errors logs the input parameters and/or
the error to the script log.

The following example shows the contents of theordered failover script. (Line breaks added
for readability.)

#!/bin/sh

#
Copyright (c) 2000 Silicon Graphics, Inc. All Rights Reserved.
#

This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as

37

published by the Free Software Foundation.
#
This program is distributed in the hope that it would be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#
Further, this software is distributed without any warranty that it is

free of the rightful claim of any third person regarding infringement
or the like. Any license provided herein, whether implied or
otherwise, applies only to this software file. Patent licenses, if

any, provided herein do not apply to combinations of this program with
other software, or any other product whatsoever.
#

You should have received a copy of the GNU General Public License
along with this program; if not, write the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.

#
Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
Mountain View, CA 94043, or:

#
http://www.sgi.com
#
For further information regarding this notice, see:

#
http://oss.sgi.com/projects/GenInfo/NoticeExplan

#
$1 - input file
$2 - output file

#
line 1 input file - version
line 2 input file - name

line 3 input file - owner field
line 4 input file - attributes
line 5 input file - list of possible owners

line 6 input file - application failover domain

DIR=/usr/lib/failsafe/bin

LOG="${DIR}/ha_cilog -g ha_script -s script"
FILE=/usr/lib/failsafe/policies/ordered

input=$1
output=$2

{
read version
read name

read owner
read attr
read mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8

read afd1 afd2 afd3 afd4 afd5 afd6 afd7 afd8
} < ${input}

38

${LOG} -l 1 "${FILE}:" ‘/bin/cat ${input}‘

if ["${version}" -ne 1] ; then
${LOG} -l 1 "ERROR: ${FILE}: Different version no. Should be (1) rather than (${version})" ;
exit 1;

elif [-z "${name}"]; then
${LOG} -l 1 "ERROR: ${FILE}: Failover script not defined";
exit 1;

elif [-z "${attr}"]; then
${LOG} -l 1 "ERROR: ${FILE}: Attributes not defined";
exit 1;

elif [-z "${mem1}"]; then
${LOG} -l 1 "ERROR: ${FILE}: No node membership defined";
exit 1;

elif [-z "${afd1}"]; then
${LOG} -l 1 "ERROR: ${FILE}: No failover domain defined";
exit 1;

fi

found=0
for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

for j in $mem1 $mem2 $mem3 $mem4 $mem5 $mem6 $mem7 $mem8; do
if ["X${j}" = "X${i}"]; then

found=1;

break;
fi

done

done

if [${found} -eq 0]; then
mem="("$mem1")"" ""("$mem2")"" ""("$mem3")"" ""("$mem4")"" \
""("$mem5")"" ""("$mem6")"" ""("$mem7")"" ""("$mem8")";

afd="("$afd1")"" ""("$afd2")"" ""("$afd3")"" ""("$afd4")"" \
""("$afd5")"" ""("$afd6")"" ""("$afd7")"" ""("$afd8")";
${LOG} -l 1 "ERROR: ${FILE}: Policy script failed"
${LOG} -l 1 "ERROR: ${FILE}: " ‘/bin/cat ${input}‘

${LOG} -l 1 "ERROR: ${FILE}: Nodes defined in membership do not match \
the ones in failure domain"
${LOG} -l 1 "ERROR: ${FILE}: Parameters read from input file: \

version = $version, name = $name, owner = $owner, attribute = $attr, \
nodes = $mem, afd = $afd"
exit 1;

fi

if [${found} -eq 1]; then
rm -f ${output}
echo $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8 > ${output}

exit 0
fi

39

exit 1

3.1.3.2 The round-robin Failover Script
The round-robin script selects the resource group owner in a round-robin (circular) fashion.
This policy can be used for resource groups that can be run in any node in the cluster.

The following example shows the contents of theround-robin failover script.

#!/bin/sh
#
Copyright (c) 2000 Silicon Graphics, Inc. All Rights Reserved.

#
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as

published by the Free Software Foundation.
#
This program is distributed in the hope that it would be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#

Further, this software is distributed without any warranty that it is
free of the rightful claim of any third person regarding infringement
or the like. Any license provided herein, whether implied or

otherwise, applies only to this software file. Patent licenses, if
any, provided herein do not apply to combinations of this program with
other software, or any other product whatsoever.
#

You should have received a copy of the GNU General Public License
along with this program; if not, write the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.

#
Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
Mountain View, CA 94043, or:

#
http://www.sgi.com
#

For further information regarding this notice, see:
#
http://oss.sgi.com/projects/GenInfo/NoticeExplan

#

$1 - input file
$2 - output file
#
line 1 input file - version

line 2 input file - name
line 3 input file - owner field
line 4 input file - attributes

line 5 input file - Possible list of owners
line 6 input file - application failover domain

DIR=/usr/lib/failsafe/bin
LOG="${DIR}/ha_cilog -g ha_script -s script"

40

FILE=/usr/lib/failsafe/policies/round-robin

Read input file
input=$1

output=$2

{

read version
read name
read owner

read attr
read mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8
read afd1 afd2 afd3 afd4 afd5 afd6 afd7 afd8

} < ${input}

Validate input file

${LOG} -l 1 "${FILE}:" ‘/bin/cat ${input}‘

if ["${version}" -ne 1] ; then

${LOG} -l 1 "ERROR: ${FILE}: Different version no. Should be (1) \
rather than (${version})" ;
exit 1;

elif [-z "${name}"]; then

${LOG} -l 1 "ERROR: ${FILE}: Failover script not defined";
exit 1;

elif [-z "${attr}"]; then

${LOG} -l 1 "ERROR: ${FILE}: Attributes not defined";
exit 1;

elif [-z "${mem1}"]; then

${LOG} -l 1 "ERROR: ${FILE}: No node membership defined";
exit 1;

elif [-z "${afd1}"]; then

${LOG} -l 1 "ERROR: ${FILE}: No failover domain defined";
exit 1;

fi

Return 0 if $1 is in the membership and return 1 otherwise.

check_in_mem()
{

for j in $mem1 $mem2 $mem3 $mem4 $mem5 $mem6 $mem7 $mem8; do

if ["X${j}" = "X$1"]; then
return 0;

fi

done
return 1;

}

Check if owner has to be changed. There is no need to change owner if
owner node is in the possible list of owners.

check_in_mem ${owner}
if [$? -eq 0]; then

41

nextowner=${owner};
fi

Search for the next owner

if ["X${nextowner}" = "X"]; then
next=0;
for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

if ["X${i}" = "X${owner}"]; then
next=1;
continue;

fi

if ["X${owner}" = "XNO ONE"]; then

next=1;
fi

if [${next} -eq 1]; then
Check if ${i} is in membership
check_in_mem ${i};

if [$? -eq 0]; then
found next owner
nextowner=${i};
next=0;

break;
fi

fi

done
fi

if ["X${nextowner}" = "X"]; then
wrap round the afd list.
for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do

if ["X${i}" = "X${owner}"]; then
Search for next owner complete
break;

fi

Previous loop should have found new owner
if ["X${owner}" = "XNO ONE"]; then

break;
fi

if [${next} -eq 1]; then
check_in_mem ${i};
if [$? -eq 0]; then

found next owner
nextowner=${i};
next=0;

break;
fi

fi

done
fi

42

if ["X${nextowner}" = "X"]; then
${LOG} -l 1 "ERROR: ${FILE}: Policy script failed"
${LOG} -l 1 "ERROR: ${FILE}: " ‘/bin/cat ${input}‘

${LOG} -l 1 "ERROR: ${FILE}: Could not find new owner"
exit 1;

fi

nextowner is the new owner
print=0;
rm -f ${output};

Print the new afd to the output file
echo -n "${nextowner} " > ${output};

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8;
do

if ["X${nextowner}" = "X${i}"]; then

print=1;
elif [${print} -eq 1]; then

echo -n "${i} " >> ${output}
fi

done

print=1;

for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do
if ["X${nextowner}" = "X${i}"]; then

print=0;

elif [${print} -eq 1]; then
echo -n "${i} " >> ${output}

fi

done

echo >> ${output};

exit 0;

3.1.3.3 Creating a New Failover Script

If the ordered or round-robin scripts do not meet your needs, you can create a new failover
script and place it in the/usr/lib/failsafe/policies directory. You can then configure
the cluster configuration database to use your new failover script for the required resource groups.

3.2 Failover Script Interface
The following is passed to the failover script:

function(version , name, owner , attributes , possibleowners , domain)

version

Linux FailSafe version. The Linux FailSafe release uses version number 1.

name

43

Name of the failover script (used for error validations and logging purposes).

owner

Logical name of the node that has the resource group allocated.

attributes

Failover attributes (Auto_Failback or Controlled_Failback must be included)

possibleowners

List of possible owners for the resource group. This list can be subset of the current node
membership.

domain

Ordered list of nodes used at the last failover. (At the first failover, the initial failover
domain is used.)

The failover script returns the newly generated run-time failover domain to Linux FailSafe, which
then chooses the node on which the resource group should be allocated by applying the failover
attributes and node membership to the run-time failover domain.

3.3 Example Failover Policies for Linux FailSafe

There are two general types of configuration, each of which can have from 2 through 8 nodes:

• N nodes that can potentially failover their applications to any of the other nodes in the cluster.

• N primary nodes that can failover toM backup nodes. For example, you could have 3 primary
nodes and 1 backup node.

This section shows examples of failover policies for the following types of configuration, each
of which can have from 2 through 8 nodes:

• N primary nodes and one backup node (N+1)

• N primary nodes and two backup nodes (N+2)

• N primary nodes andM backup nodes (N+M)

The diagrams in the following sections illustrate the configuration
concepts discussed here, but they do not address all required or
supported elements, such as reset hubs. For configuration details,
see theLinux FailSafe Installation and Maintenance Instructions.

3.3.1 N+1 Configuration for Linux FailSafe

Figure 3–1,N+1 Configuration Conceptshows a specific instance of anN+1 configuration in
which there are three primary nodes and one backup node. (This is also known as astar
configuration.) The disks shown could each be disk farms.

44

Figure 3–1 N+1 Configuration Concept

A

B

C

D

Prim
ary nodes

Backup node
Disks

You could configure the following failover policies for load balancing:

• Failover policy for RG1:

– Initial failover domain = A, D

– Failover attribute =Auto_Failback

– Failover script =ordered

• Failover policy for RG2:

– Initial failover domain = B, D

– Failover attribute =Auto_Failback

– Failover script =ordered

• Failover policy for RG3:

– Initial failover domain = C, D

– Failover attribute =Auto_Failback

– Failover script =ordered

If node A fails, RG1 will fail over to node D. As soon as node A reboots, RG1 will be moved
back to node A.

If you change the failover attribute toControlled_Failback for RG1 and node A fails,
RG1 will fail over to node D and will remain running on node D even if node A reboots.

45

3.3.2 N+2 Configuration

Figure 3–2,N+2 Configuration Conceptshows a specific instance of anN+2 configuration in
which there are four primary nodes and two backup nodes. The disks shown could each be disk
farms.

Figure 3–2 N+2 Configuration Concept

Prim
ary

nodes

Backup

nodes

Disks

A

B

C

D

E

F

You could configure the following failover policy for resource groups RG7 and RG8:

• Failover policy for RG7:

– Initial failover domain = A, E, F

– Failover attribute =Controlled_Failback

– Failover script = ordered

• Failover policy for RG8:

– Initial failover domain = B, F, E

– Failover attribute =Auto_Failback

– Failover script =ordered

If node A fails, RG7 will fail over to node E. If node E also fails, RG7 will fail over to node F.
If A is rebooted, RG7 will remain on node F.

If node B fails, RG8 will fail over to node F. If B is rebooted, RG8 will return to node B.

3.3.3 N+M Configuration for Linux FailSafe

Figure 3–3,N+M Configuration Conceptshows a specific instance of anN+M configuration in
which there are four primary nodes and each can serve as a backup node. The disk shown could
be a disk farm.

46

Figure 3–3 N+M Configuration Concept
A

B

C

D

You could configure the following failover policy for resource groups RG5 and RG6:

• Failover policy for RG5:

– Initial failover domain = A, B, C, D

– Failover attribute =Controlled_Failback

– Failover script =ordered

• Failover policy for RG6:

– Initial failover domain = C, A, D

– Failover attribute =Controlled_Failback

– Failover script =ordered

If node C fails, RG6 will fail over to node A. When node C reboots, RG6 will remain running
on node A. If node A then fails, RG6 will return to node C and RG5 will move to node B. If
node B then fails, RG5 moves to node C.

47

4 Defining a New Resource Type
This chapter tells you how to define a new resource type:

• Section 4.1,Using the GUI

• Section 4.2,Using cluster_mgr Interactively

• Section 4.3,Using cluster_mgr With a Script

It also tells you how to test the results in Section 4.4,Testing a New Resource Type.

To define a new resource type, you must have the following information:

• Name of the resource type. The name can consist of alphanumeric characters and any of the
following:

- (hyphen)
_ (underscore)
/
.
:
"
=
@
,

The name cannot contain a space, an unprintable character, or any of the following characters:

*
?
\
#

• Name of the cluster to which the resource type will apply.

• If the resource type is to be restricted to a specific node, you must know the node name.

• Order of performing the action scripts for resources of this type in relation to resources of
other types:

– Resources are started in the increasing order of this value

– Resources are stopped in the decreasing order of this value

Ensure that the number you choose for a new resource type permits the resource types
on which it depends to be started before it is started, or stopped after it is stopped, as
appropriate.

Table 4–1,Order Rangesshows the conventions used for order ranges. The values
available for customer use are 201-400 and 701-999.

Table 4–1 Order Ranges

Range Reservation

1-100 SGI-provided basic system resource types, such asMAC_address

101-200 SGI-provided system plug-ins that can be started beforeIP_address

201-400 User-defined resource types that can be started beforeIP_address

48

Range Reservation

401-500 SGI-provided basic system resource types, such asIP_address

501-700 SGI-provided system plug-ins that must be started afterIP_address

701-999 User-defined resource types that must be started afterIP_address

Table 4–2,Resource Type Order Numbersshows the order numbers of the resource types
provided with the release or available as plug-ins from SGI.

Table 4–2 Resource Type Order Numbers

Order Number Resource Type

10 MAC_address

20 volume

30 filesystem

201 NFS

401 IP_address

411 statd

502 Samba

• Restart mode, which can be one of the following values:

– 0 = Do not restart on monitoring failures

– 1 = Restart a fixed number of times

• Number of local restarts (when restart mode is 1).

• Location of the executable script. This is always
/usr/lib/failsafe/resource_types/ resource_type_tname .

• Monitoring interval, which is the time period (in milliseconds) between successive executions
of the monitor action script; this is only valid for themonitor action script.

• Starting time for monitoring. When the resource group is made online in a cluster node, Linux
FailSafe will start monitoring the resources after the specified time period (in milliseconds).

• Action scripts to be defined for this resource type. You must specify scripts forstart ,
stop , exclusive , and monitor , although themonitor script may contain only a
return-success function if you wish. If you specify 1 for the restart mode, you must specify
a restart script.

• Type-specific attributes to be defined for this resource type. The action scripts use this
information to start, stop, and monitor a resource of this resource type. For example, NFS
requires the following resource keys:

– export-info which takes a value that defines the export options for the file system.
These options are used in thekexportfs command. For example:

export-info = rw,wsync,anon=root

49

– filesystem which takes a value that defines the raw file system. This name is used
as input to themount command. For example:

filesystem = /dev/xlv/xlv_object

4.1 Using the GUI
You can use the FailSafe Manager graphical user interface (GUI) to define a new resource type
and to define the dependencies for a given type. For details about the GUI, see theLinux FailSafe
Administrator’s Guide. For convenience, Appendix A,Starting the FailSafe Manager, contains
information about starting the GUI.

4.1.1 Define a New Resource Type
To define a new resource type using the GUI, select the following task:

Resources & Resource Types => Define a Resource Type

The GUI will prompt you for required and optional information. Online help is provided for
each item.

The following figures show this process for a new resource type callednewresourcetype .

50

Figure 4–1 Select Define a New Resource

51

Figure 4–2 Specify the Name of the New Resource Type

52

Figure 4–3 Specify Settings for Required Actions

53

Figure 4–4 Change Settings for Optional Actions

54

Figure 4–5 Set Type-specific Attributes

4.1.2 Define Dependencies
To define the dependencies for a given type use the following task:

Add/Remove Dependencies for a Resource Type

Figure 4–6,Add Dependenciesshows an example of adding two dependencies (filesystem
andNFS) to thenewresourcetype resource type.

55

Figure 4–6 Add Dependencies

4.2 Using cluster_mgr Interactively
The following steps show the use ofcluster_mgr interactively to define a resource type called
newresourcetype . Note that you can have multiple resource types. For example, if you
want to have some IP addresses that allow local restart (restart mode = 0) and some that do not
(restart mode = 1), you can copy theIP_address type to a new type namedIP_address2
and change just that value in theIP_address2 .

A resource type name cannot contain a space, an unprintable character,
or any of the following characters:

*
?
\
#

1. Log in asroot .

56

2. Execute thecluster_mgr command using the-p option to prompt you for information
(the command name can be abbreviated tocmgr):

/usr/lib/failsafe/bin/cluster_mgr -p
Welcome to Linux FailSafe Cluster Manager Command-Line Interface

cmgr>

3. Use theset subcommand to specify the default cluster used forcluster_mgr operations.
In this example, we use a cluster namedtest :

cmgr> set cluster test

If you prefer, you can specify the cluster name as needed with each
subcommand.

4. Use thedefine resource_type subcommand. By default, the resource type will apply
across the cluster; if you wish to limit the resource type to a specific node, enter the node
name when prompted. If you wish to enable restart mode, enter 1 when prompted.

The following example only shows the prompts and answers for
two action scripts (start and stop) for a new resource type
namednewresourcetype .

cmgr> define resource_type newresourcetype

(Enter "cancel" at any time to abort)

Node[optional]?
Order ? 300
Restart Mode ? (0)

DEFINE RESOURCE TYPE OPTIONS

1) Add Action Script.
2) Remove Action Script.
3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.
5) Add Dependency.
6) Remove Dependency.
7) Show Current Information.

8) Cancel. (Aborts command)
9) Done. (Exits and runs command)

Enter option: 1

No current resource type actions

Action name ? start

57

Executable Time? 40000
Monitoring Interval? 0
Start Monitoring Time? 0

1) Add Action Script.
2) Remove Action Script.
3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.
5) Add Dependency.
6) Remove Dependency.

7) Show Current Information.
8) Cancel. (Aborts command)
9) Done. (Exits and runs command)

Enter option: 1

Current resource type actions:
Action - 1: start

Action name stop
Executable Time? 40000
Monitoring Interval? 0
Start Monitoring Time? 0

1) Add Action Script.
2) Remove Action Script.

3) Add Type Specific Attribute.
4) Remove Type Specific Attribute.
5) Add Dependency.

6) Remove Dependency.
7) Show Current Information.
8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option: 3

No current type specific attributes

Type Specific Attribute ? integer-att

Datatype ? integer
Default value[optional] ? 33

1) Add Action Script.
2) Remove Action Script.
3) Add Type Specific Attribute.

4) Remove Type Specific Attribute.
5) Add Dependency.
6) Remove Dependency.

7) Show Current Information.
8) Cancel. (Aborts command)
9) Done. (Exits and runs command)

Enter option: 3

58

Current type specific attributes:
Type Specific Attribute - 1: export-point

Type Specific Attribute ? string-att
Datatype ? string
Default value[optional] ? rw

1) Add Action Script.
2) Remove Action Script.

3) Add Type Specific Attribute.
4) Remove Type Specific Attribute.
5) Add Dependency.

6) Remove Dependency.
7) Show Current Information.
8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option: 5

No current resource type dependencies

Dependency name ? filesystem

1) Add Action Script.
2) Remove Action Script.

3) Add Type Specific Attribute.
4) Remove Type Specific Attribute.
5) Add Dependency.

6) Remove Dependency.
7) Show Current Information.
8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option: 7

Current resource type actions:
Action - 1: start
Action - 2: stop

Current type specific attributes:
Type Specific Attribute - 1: integer-att

Type Specific Attribute - 2: string-att

No current resource type dependencies

Resource dependencies to be added:
Resource dependency - 1: filesystem

1) Add Action Script.
2) Remove Action Script.

3) Add Type Specific Attribute.
4) Remove Type Specific Attribute.

59

5) Add Dependency.
6) Remove Dependency.
7) Show Current Information.
8) Cancel. (Aborts command)

9) Done. (Exits and runs command)

Enter option: 9

Successfully defined resource_type newresourcetype

cmgr> show resource_types in cluster test

NFS
template

newresourcetype
statd
MAC_address

IP_address
filesystem
volume

cmgr> exit
#

4.3 Using cluster_mgr With a Script
You can write a script that contains all of the information required to define a resource type and
supply it tocluster_mgr by using the-f option:

cluster_mgr -f scriptname

Or, you could include the following as the first line of the script and then execute the script
itself:

#!/usr/lib/failsafe/bin/cluster_mgr -f

If any line of the script fails,cluster_mgr will exit. You can choose to ignore the failure
and continue the process by using the -i option, as follows:

#!/usr/lib/failsafe/bin/cluster_mgr -if

If you include -i when using a cluster_mgr command line as the first
line of the script, you must use this exact syntax (that is,-if).

A template script for creating a new resource type is located in/usr/lib/failsafe/cmgr-
templates/cmgr-create-resource_type . Each line of the script must be a valid
cluster_mgr line, a comment line (starting with #), or a blank line.

60

You must include adone command line to finish a multi-level
command. If you concatenate information from multiple template scripts
to prepare your cluster configuration, you must remove thequit at the
end of each template script.

For example, you could use the following script to define the samenewresourcetype
resource type defined interactively in the previous section:

newresourcetype.script: Script to define the "newresourcetype" resource type

set cluster test

define resource_type newresourcetype
set order to 300
set restart_mode to 0
add action start

set exec_time to 40000
set monitor_interval to 0
set monitor_time to 0

done
add action stop
set exec_time to 40000

set monitor_interval to 0
set monitor_time to 0
done

add type_attribute integer-att
set data_type to integer
set default_value to 33

done
add type_attribute string-att
set data_type to string

set default_value to rw
done
add dependency filesystem
done

quit

When you execute thecluster_mgr -f command line with this script, you will see the
following output:

/usr/lib/failsafe/bin/cluster_mgr -f newresourcetype.script
Successfully defined resource_type newresourcetype

#

To verify that the resource type was defined, enter the following:

/ usr/lib/failsafe/bin/cluster_mgr -c "show resource_types in cluster test"

NFS
template

newresourcetype
statd

61

MAC_address
IP_address
filesystem
volume

4.4 Testing a New Resource Type

After adding a new resource type, you should test it as follows:

1. Define a resource group that contains resources of the new type. Ensure that the group
contains all of the resources on which the new resource type depends.

2. Bring the resource group online in the cluster usingcluster_mgr or the GUI.

For example, usingcluster_mgr :

cmgr> admin online resource_group new_rg in cluster test_cluster

3. Check the status of the resource group usingcluster_mgr or GUI after a few minutes.

For example:

cmgr> show status of resource_group new_rg in cluster test_cluster

4. If the resource group has been made online successfully, you will see output similar to the
following:

State: Online
Error: No error

Owner: node1

5. If there are resource group errors, do the following:

• Check thesrmd logs (/var/log/failsafe/srmd_ nodename) on the node on
which the resource group is online

• Search for the stringERRORin the log file. There should be an error message about a
resource in the resource group. The message also provides information about the action
script that failed. For example:

Wed Nov 3 04:20:10.135 <E ha_srmd srm 12127:1 sa_process_tasks.c:627>

CI_FAILURE, ERROR: Action (exclusive) for resource (10.0.2.45) of type
(IP_address) failed with status (failed)
exclusive script failed for the resource 10.0.2.45 of resource type

IP_address. The status "failed"
indicates that the script returned an error.

• Check the script logs (/var/log/failsafe/script_ nodename on the same node)
for IP_address exclusive script errors.

• After the fixing the problems in the action script, perform anoffline_force operation
to clear the error. For example:

cmgr> admin offline_force resource_group new_rg in cluster test_cluster

62

5 Testing Scripts
This chapter describes how to test action scripts without running Linux FailSafe. It also provides
tips on how to debug problems that you may encounter.

Parameters are passed to the action scripts as both input files and output
files. Each line of the input file contains the resource name; the output
file contains the resource name and the script exit status.

5.1 General Testing and Debugging Techniques
Some general testing and debugging techniques you can use during testing are as follows:

• To get debugging information, adding the following line to each of your scripts in the main
function of the script:

set -x

• To check that an application is running on a node, you may be able to use a command
provided by the application.

• Another way to check that an application is running on a node, is to enter this command on
that node:

ps -ef | grep application

application is the name (or a portion of the name) of the executable for the application.

• To show the status of a resource, use the followingcluster_mgr command:

cmgr> set cluster clustername
cmgr> show status of resource resourcename of resource_type typename

• To show the status of a node, use the followingcluster_mgr command:

cmgr> show status of node nodename

• To show the status of a resource group, use the followingcluster_mgr command:

cmgr> show status of resource_group rgname in cluster cname

5.2 Debugging Notes
• The exclusive script returns an error when the resource is running in the local node. If

the resource is actually running in the node, there is noexclusive action script bug.

• If the resource group does not become online on the primary node, it can be because of a
start script error on the primary node or amonitor script error on the primary node.
The nature of the failure can be seen in thesrmd logs of the primary node.

• If the action script failure status istimeout , resource type timeouts for the action should
be increased. In the case of themonitor script, the check can be made more lightweight.

63

• The resource type action script timeouts are for a resource. So, if an action is performed on
two resources, the script timeout is twice the configured resource type action timeout.

• If the resource group has a configuration error, check thesrmd logs on the primary node
for errors.

• The action scripts that use${HA_LOG} and${HA_DBGLOG}macros to log messages can
find the messages in/var/log/failsafe/script_ nodename file in each node in the
cluster.

5.3 Testing an Action Script
To test an action script, do the following:

1. Create an input file, such as/tmp/input , that contains expected resource names. For
example, to create a file that contains the resource nameddisk1 do the following:

echo "/disk1" > /tmp/input

2. Create an input parameter file, such as/tmp/ipparamfile , as follows:

echo "ClusterName web-cluster" > /tmp/ipparamfile

3. Execute the action script as follows:

./start /tmp/input /tmp/output /tmp/ipparamfile

The use of the input parameter file is optional.

4. Change the log level fromHA_NORMLVL to HA_DBGLVL to allow messages
written with HA_DBGLOGto be printed by adding the following line after the
set_global_variables statement in your script:

HA_CURRENT_LOGLEVEL=$HA_DBGLVL

The output file will contain one of the following return values for thestart , stop , monitor ,
and restart scripts:

HA_SUCCESS=0

HA_INVAL_ARGS=1
HA_CMD_FAILED=2
HA_NOTSUPPORTED=3

HA_NOCFGINFO=4

The output file will contain one of the following return values for theexclusive script:

HA_NOT_RUNNING=0
HA_RUNNING=2

If you call the exit_script function prior to normal termination,
it should be preceded by theha_write_status_for_resource
function and you should use the same return code that is logged to the
output file.

64

Suppose you have a resource named/disk1 and the following files:

• The syntax for the input file is:<resourcename>

• The syntax for the output file is:<resourcename> <status>

The following example shows:

• The exit status of the action script is 1

• The exit status of the resource is 2

The use ofanonymous indicates that the script was run manually.
When the script is run by Linux FailSafe, the full path to the script
name is displayed.

echo " /disk1 " > /tmp/ipfile

./monitor /tmp/ipfile /tmp/opfile /tmp/ipparamfile
echo $?
2

cat /tmp/opfile
/disk1 2
tail /var/log/failsafe/script_heb1

Tue Aug 25 11:32:57.437 <anonymous script 23787:0 Unknown:0> ./monitor:
./monitor called with /tmp/ipfile and /tmp/opfile
Tue Aug 25 11:32:58.118 <anonymous script 24556:0 Unknown:0> ./monitor:
check to see if /disk1 is mounted on /disk1

Tue Aug 25 11:32:58.433 <anonymous script 23811:0 Unknown:0> ./monitor:
/bin/mount | grep /disk1 | grep /disk1 >> /dev/null 2>&1 exited with
status 0

Tue Aug 25 11:32:58.665 <anonymous script 24124:0 Unknown:0> ./monitor:
stat mount point /disk1
Tue Aug 25 11:32:58.969 <anonymous script 23525:0 Unknown:0> ./monitor:

/bin/stat /disk1 exited with status 0
Tue Aug 25 11:32:59.258 <anonymous script 24431:0 Unknown:0> ./monitor:
check the filesystem /disk1 is exported

Tue Aug 25 11:32:59.610 <anonymous script 6982:0 Unknown:0> ./monitor:
Tue Aug 25 11:32:59.917 <anonymous script 24040:0 Unknown:0> ./monitor:
awk ’{print \$1}’ /var/run/failasafe/tmp/exportfs.23762 | grep /disk1 exited

with status 1
Tue Aug 25 11:33:00.131 <anonymous script 24418:0 Unknown:0> ./monitor:
echo failed to find /disk1 in exported filesystem list:-

Tue Aug 25 11:33:00.340 <anonymous script 24236:0 Unknown:0> ./monitor:
echo /disk2

For additional information about a script’s processing, see the
/var/log/failsafe/script_ nodename.

5.4 Special Testing Considerations for the monitor Script
The monitor script tests the liveliness of applications and resources. The best way to test it is
to induce a failure, run the script, and check if this failure is detected by the script; then repeat
the process for another failure.

65

Use this checklist for testing amonitor script:

• Verify that the script detects failure of the application successfully.

• Verify that the script always exits with a return value.

• Verify that the script does not contain commands that can hang (such as using DNS for name
resolution) or those that continue forever, such asping .

• Verify that the script completes before the time-out value specified in the configuration file.

• Verify that the script’s return codes are correct.

During testing, measure the time it takes for a script to complete and adjust the monitoring times
in your script accordingly. To get a good estimate of the time required for the script to execute,
run it under different system load conditions.

66

A Starting the FailSafe Manager
To start the FailSafe Manager, use one of these methods:

• On a system with sysadm_failsafe2-client and KDE or GNOME in-
stalled, choose "FailSafe Manager" from the Applications menu. (After installing
sysadm_failsafe2-client , you may need to restart the desktop’s launch bar before
the Failsafe Manager will show up in the Applications menu. (To do this in KDE, right-click
on the panel and select Restart from the menu.)

• On a system withsysadm_failsafe2-client installed, enter the following command
line:

$ /usr/bin/fstask

• In your web browser, enter the following, whereserver is the name of the node in the pool
or cluster that you want to administer:

http://server/FailSafeManager/

At the resulting Web page, click on the icon. The server must have
sysadm_failsafe2-web installed.

Figure A–1,FailSafe Manager, shows the FailSafe Manager.

67

Figure A–1 FailSafe Manager

68

B Using the SRM Script Library
The /usr/lib/failsafe/common_scripts/scriptlib file contains the library of
environment variables (beginning with uppercaseHA_) and functions (beginning with lowercase
ha_) available for use in your action scripts.

Do not change the contents of thescriptlib file.

This chapter describes functions that perform the following tasks, using samples from the
scriptlib file:

• Linux FailSafe application interfaces

• Set global definitions

• Check arguments

• Read an input file

• Execute a command

• Write status for a resource

• Get the value for a field

• Get resource information

• Print exclusivity check messages

B.1 Linux FailSafe application interfaces
The Linux FailSafe application interface identifies resources by two strings:

• Resource name

• Resource type

For example, a resource namedvol1 of resource typevolumes is identified by the following:
vol1 volumes .

Using the script library simplifies interaction with the interface. If you do not use the script
library, you must understand the following file formats used by action scripts:

• Input file, which contains the list of resources that must be acted on by the executable; each
resource must be specified on a separate line in the file. SRMD can also pass action flags
for each resource in the input file. The format of a line in the input file is as follows (fields
separated by white space):

resource_name action_flags

• Output file, in which the executable writes the return the status of the each resource on a
separate line using the following format (fields separated by white space):

resource_name resource_status

• (optional) Input parameters file, which contains the name of the cluster:

69

ClusterName clustername

The following codes are defined in
/usr/lib/failsafe/common_scripts/scriptlib :

• HA_SUCCESS

• HA_NOT_RUNNING

• HA_INVAL_ARGS

• HA_CMD_FAILED

• HA_RUNNING

• HA_NOTSUPPORTED

• HA_NOCFGINFO

B.2 Set Global Definitions
The ha_set_global_defs() function sets the global definitions for the environment
variables shown in this section.

The HA_INFILE andHA_OUTFILE variables set the input and output files for a script. These
variables do not have global definitions, and are not set by theha_set_global_defs()
function.

B.2.1 Global Variable

B.2.1.1 HA_HOSTNAME

The output of theuname command with the-n option, which is the host name or nodename.
The nodename is the name by which the system is known to communications networks.

Default: ‘uname -n‘

B.2.2 Command Location Variables

B.2.2.1 HA_CMDSPATH

Path to user commands.

Default: /usr/lib/failsafe/bin

B.2.2.2 HA_PRIVCMDSPATH

Path to privileged commands (those that can only be run byroot).

Default: /usr/lib/sysadm/privbin

B.2.2.3 HA_LOGCMD

Command used to log information.

Default: ha_cilog

70

B.2.2.4 HA_RESOURCEQUERYCMD

Resource query command. This is an internal command that is not meant for direct use in scripts;
use theha_get_info() function of scriptlib instead.

Default: resourceQuery

B.2.2.5 HA_SCRIPTTMPDIR

Location of the script temporary directory.

Default: /var/run/failsafe/tmp

B.2.3 Database Location Variables

B.2.3.1 HA_CDB

Location of the cluster configuration database.

Default: /var/lib/failsafe/cdb/cdb.db

B.2.4 Script Log Level Variables

B.2.4.1 HA_NORMLVL

Normal level of script logs.

Default: 1

B.2.4.2 HA_DBGLVL

Debug level of script logs.

Default: 10

B.2.5 Script Log Variables

B.2.5.1 HA_SCRIPTGROUP

Log for the script group.

Default: ha_script

B.2.5.2 HA_SCRIPTSUBSYS

Log for the script subsystem.

Default:script

B.2.6 Script Logging Command Variables

B.2.6.1 HA_DBGLOG

Command used to log debug messages from the scripts.

Default: ha_dbglog

71

B.2.6.2 HA_CURRENT_LOGLEVEL

The value of the current logging level.ha_log will only output messages if this value is greater
than or equal toHA_NORMLVL. ha_dbglog will only output messages if this value is greater
than or equal toHA_DBGLVL.

Default: 2

B.2.6.3 HA_LOG

Command used to log the scripts.

Default: ha_log

B.2.7 Script Error Value Variables

B.2.7.1 HA_SUCCESS

Successful execution of the script. This variable is used by thestart , stop , restart , and
monitor scripts.

Default: 0

B.2.7.2 HA_NOT_RUNNING

The script is not running. This variable is used byexclusive scripts.

Default: 0

B.2.7.3 HA_INVAL_ARGS

An invalid argument was entered. This is used by all scripts.

Default: 1

B.2.7.4 HA_CMD_FAILED

A command called by the script has failed. his variable is used by thestart , stop , restart ,
andmonitor , scripts.

Default: 2

B.2.7.5 HA_RUNNING

The script is running. This variable is used byexclusive scripts.

Default: 2

B.2.7.6 HA_NOTSUPPORTED

The specific action is not supported for this resource type. This is used by all scripts.

Default: 3

B.2.7.7 HA_NOCFGINFO

No configuration information was found. This is used by all scripts.

72

Default: 4

B.3 Check Arguments

An action script has the following arguments: an input file,HA_INFILE , an output file
HA_OUTFILE, and an optional parameter fileHA_PARAMFILE. These become the positional
arguments to the script,$1 , $2 and$3 parameter file is optional.

The ha_check_args() function checks the arguments specified for a script and sets the
$HA_INFILE and$HA_OUTFILE variables accordingly.

If a parameter file exists, theha_check_args() function reads the list of parameters from
the file and sets the$HA_CLUSTERNAMEvariable.

In the following, long lines use the continuation character (\) for readability.

ha_check_args()
{

${HA_DBGLOG} "$HA_SCRIPTNAME called with $1, $2 and $3"

if ! [$# -eq 2 -o $# -eq 3]; then

${HA_LOG} "Incorrect number of arguments"
return 1;

fi

if [! -r $1]; then
${HA_LOG} "file $1 is not readable or does not exist"
return 1;

fi

if [! -s $1]; then

${HA_LOG} "file $1 is empty"
return 1;

fi

if [$# -eq 3]; then
HA_PARAMFILE=$3

if [! -r $3]; then
${HA_LOG} "file $3 is not readable or does not exist"

return 1;
fi

HA_CLUSTERNAME=‘/usr/bin/awk ’{ if ($1 == "ClusterName") \

print $2 }’ ${HA_PARAMFILE}‘
fi

HA_INFILE=$1
HA_OUTFILE=$2

return 0;
}

73

B.4 Read an Input File
The ha_read_infile() function reads the $HA_INFILE input file into the
$HA_RES_NAMESvariable, which specifies the list of resource names.

ha_read_infile()
{

HA_RES_NAMES="";

for HA_RESOURCE in c` at ${HA_INFILE} `

do

HA_RES_NAMES="${HA_RES_NAMES} ${HA_RESOURCE}";
done

}

B.5 Execute a Command
The ha_execute_cmd() function executes the command specified by$HA_CMD, which is
set in the action script.$1 is the string to be logged. The function returns 1 on error and 0 on
success. On errors, the standard output and standard error of the command is redirected to the
log file.

ha_execute_cmd()

{
OUTFILE=${HA_SCRIPTTMPDIR}/script.$$

${HA_DBGLOG} $1

eval ${HA_CMD} > ${OUTFILE} 2>&1;

ha_exit_code=$?;

if [$ha_exit_code -ne 0]; then

${HA_LOG} "$1 failed"
${HA_LOG} ‘cat ${HA_SCRIPTTMPDIR}/script.$$‘

fi

${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";

rm ${OUTFILE}

return $ha_exit_code;

}

The ha_execute_cmd_ret() function is similar toha_execute_cmd , except that it
places the command output in the string$HA_CMD_OUTPUT.

ha_execute_cmd_ret()

{
${HA_DBGLOG} $1

HA_CMD_OUTPUT=‘${HA_CMD}‘;

74

ha_exit_code=$?;

${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";

return $ha_exit_code;
}

B.6 Write Status for a Resource
The ha_write_status_for_resource() function writes the status for a resource to the
$HA_OUTFILE output file. $1 is the resource name, and$2 is the resource status.

ha_write_status_for_resource()

{
echo $1 $2 >> $HA_OUTFILE;

}

Similarly, theha_write_status_for_all_resources() function writes the status for
all resources.$HA_RES_NAMESis the list of resource names.

ha_write_status_for_all_resources()

{
for HA_RES in $HA_RES_NAMES
do

echo $HA_RES $1 >> $HA_OUTFILE;

done
}

B.7 Get the Value for a Field
The ha_get_field() function obtains the field value from a string, where$1 is the string
and$2 is the field name. The string format is a series of name-value field pairs, where a name
field is followed by the value of the name, separated by whitespace. This appears as follows:

ha_get_field()
{

HA_STR=$1
HA_FIELD_NAME=$2
ha_found=0;

ha_field=1;

for ha_i in $HA_STR

do
if [$ha_field -eq 1]; then

ha_field=0;
if [$ha_i = $HA_FIELD_NAME]; then

ha_found=1;
fi

else

ha_field=1;
if [$ha_found -eq 1]; then

HA_FIELD_VALUE=$ha_i

return 0;
fi

75

fi
done

return 1;

}

B.8 Get the Value for Multiple Fields
The ha_get_multi_fields() function obtains the field values from a string, where$1 is
the string and$2 is the field name. The string format is a series of name-value field pairs, where
a name field is followed by the value of the name, separated by whitespace.

This function is typically used to extract dependency information. There may be multiple fields
with the same name so the string returned inHA_FIELD_VALUE may contain multiple values
separated by white space. This appears as follows:

ha_get_multi_fields()
{

HA_STR=$1
HA_FIELD_NAME=$2
ha_found=0;
ha_field=1;

for ha_i in $HA_STR
do

if [$ha_field -eq 1]; then
ha_field=0;
if [$ha_i = $HA_FIELD_NAME]; then

ha_found=1;
fi

else

ha_field=1;
if [$ha_found -eq 1]; then

if [-z "$HA_FIELD_VALUE"]; then

HA_FIELD_VALUE=$ha_i;
else

HA_FIELD_VALUE="$HA_FIELD_VALUE $ha_i";

fi;
ha_found=0;

fi
fi

done

if [-z "$HA_FIELD_VALUE"]; then

return 1;
else

return 0;

fi
}

B.9 Get Resource Information
Theha_get_info() andha_get_info_debug() functions read resource information.$1
is the resource type and$2 is the resource name, and$3 is an optional parameter of any value

76

that specifies a request for resource dependency information . Resource information is stored in
the HA_STRINGvariable. The return value of the query is passed back to the caller, 0 indicates
success. All errors are logged. If theresourceQuery command fails, theHA_STRINGis set
to an invalid string, and future calls toha_get_info() or ha_get_info_debug() return
errors.

The functionha_get_info_debug() differs fromha_get_info in that it will attempt the
resource query a single time, instead of retrying asha_get_info() would do. This is likely
to be useful for testing due to faster returns and less complexity. You can call this function
directly, or you can create the file/var/run/failsafe/resourceQuery.debug which
will cause all invocations ofha_get_info() in all scripts on the node to be diverted to
ha_get_info_debug() until the file is removed.

ha_get_info()
{

if [-f /var/run/failsafe/resourceQuery.debug]; then

ha_get_info_debug $1 $2 $3
return;

fi

if [-n "$3"]; then
ha_doall="_ALL=true"

else
ha_doall=""

fi

Retry resourceQuery command $HA_RETRY_CMD_MAX times if $HA_RETRY_CMD_ERR
is returned.
ha_retry_count=1

while [$ha_retry_count -le $HA_RETRY_CMD_MAX];
do

if [-n "${HA_CLUSTERNAME}"]; then
HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \

_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \

$ha_doall _NO_LOGGING=true _CLUSTER=${HA_CLUSTERNAME}‘
else

HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \

_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \
$ha_doall _NO_LOGGING=true‘

fi

ha_exit_code=$?

if [$ha_exit_code -ne 0]; then

${HA_LOG} "${HA_RESOURCEQUERYCMD}: resource name $2 resource type $1"
${HA_LOG} "Failed with error: ${HA_STRING}";

fi

if [$ha_exit_code -ne $HA_RETRY_CMD_ERR]; then
break;

fi

77

ha_retry_count=‘expr $ha_retry_count + 1‘

done

if [-n "$ha_doall"]; then
echo $HA_STRING \

| grep "No resource dependencies" > /dev/null 2>&1

if [$? -eq 0]; then
HA_STRING=

else

HA_STRING=‘echo $HA_STRING | /bin/sed -e "s/^.*Resource dependencies
//"‘

fi

fi

return ${ha_exit_code};

}

ha_get_info_debug()
{

if [-n "$3"]; then
ha_doall="_ALL=true"

else
ha_doall=""

fi

if [-n "${HA_CLUSTERNAME}"]; then
HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \

_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \
$ha_doall _CLUSTER=${HA_CLUSTERNAME}‘

else

HA_STRING=‘${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \
_CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 $ha_doall‘

fi

ha_exit_code=$?

if [$? -ne 0]; then
${HA_LOG} "${HA_RESOURCEQUERYCMD}: resource name $2 resource type $1"

${HA_LOG} "Failed with error: ${HA_STRING}";
fi

if [-n "$ha_doall"]; then
echo $HA_STRING \

| grep "No resource dependencies" > /dev/null 2>&1

if [$? -eq 0]; then
HA_STRING=

else

HA_STRING=‘echo $HA_STRING | /bin/sed -e "s/^.*Resource dependencies
//"‘

fi

fi

78

return ${ha_exit_code};
}

B.10 Print Exclusivity Check Messages
The ha_print_exclusive_status() function prints exclusivity check messages to the
log file. $1 is the resource name and$2 is the exit status.

ha_print_exclusive_status()
{

if [$? -eq $HA_NOT_RUNNING]; then

${HA_LOG} "resource $1 exclusive status: NOT RUNNING"
else

${HA_LOG} "resource $1 exclusive status: RUNNING"

fi
}

Theha_print_exclusive_status_all_resources() function is similar, but it prints
exclusivity check messages for all resources.$HA_RES_NAMESis the list of resource names.

ha_print_exclusive_status_all_resources()
{

for HA_RES in $HA_RES_NAMES

do
ha_print_exclusive_status ${HA_RES} $1

done

}

79

Glossary
action scripts

The set of scripts that determine how a resource is started, monitored, and stopped. There
must be a set of action scripts specified for each resource type. The possible set of action
scripts is:exclusive , start , stop , monitor , andrestart .

cluster

A collection of one or more cluster nodes coupled to each other by networks or other
similar interconnections. A cluster is identified by a simple name; this name must be
unique within the pool. A particular node may be a member of only one cluster.

cluster administrator

The person responsible for managing and maintaining a cluster.

cluster configuration database

Contains configuration information about all resources, resource types, resource groups,
failover policies, nodes, and clusters.

cluster node

A single Linux execution environment. In other words, a single physical machine or single
running Linux kernel. In current Linux environments this will be an individual computer.
The term node is used within this guide to indicate this meaning, as opposed to any
alternate meaning such as a network node.

control messages

Messages that cluster software sends between the cluster nodes to request operations on
or distribute information about cluster nodes and resource groups. Linux FailSafe sends
control messages for the purpose of ensuring nodes and groups remain highly available.
Control messages and heartbeat messages are sent through a node’s network interfaces
that have been attached to a control network. A node can be attached to multiple control
networks.

A node’s control networks should not be set to accept control messages if the node is not
a dedicated Linux FailSafe node. Otherwise, end users who run other jobs on the machine
can have their jobs killed unexpectedly when Linux FailSafe resets the node.

control network

The network that connects nodes through their network interfaces (typically Ethernet) such
that Linux FailSafe can maintain a cluster’s high availability by sending heartbeat messages
and control messages through the network to the attached nodes. Linux FailSafe uses the
highest priority network interface on the control network; it uses a network interface with
lower priority when all higher-priority network interfaces on the control network fail.

A node must have at least one control network interface for heartbeat messages and one
for control messages (both heartbeat and control messages can be configured to use the
same interface). A node can have no more than eight control network interfaces.

80

database

Seecluster configuration database

dependency list

Seeresource dependencyor resource type dependency.

failover

The process of allocating a resource group to another node according to a failover policy.
A failover may be triggered by the failure of a resource, a change in the node membership
(such as when a node fails or starts), or a manual request by the administrator.

failover attribute

A string that affects the allocation of a resource group in a cluster. The admin-
istrator must specify system-defined attributes (such asAuto_Failback or Con-
trolled_Failback), and can optionally supply site-specific attributes.

failover domain

The ordered list of nodes on which a particular resource group can be allocated. The
nodes listed in the failover domain must be within the same cluster; however, the failover
domain does not have to include every node in the cluster.The administrator defines the
initial failover domain when creating a failover policy. This list is transformed into the run-
time failover domain by the failover script the run-time failover domain is what is actually
used to select the failover node. Linux FailSafe stores the run-time failover domain and
uses it as input to the next failover script invocation. The initial and run-time failover
domains may be identical, depending upon the contents of the failover script. In general,
Linux FailSafe allocates a given resource group to the first node listed in the run-time
failover domain that is also in the node membership; the point at which this allocation
takes place is affected by the failover attributes.

failover policy

The method used by Linux FailSafe to determine the destination node of a failover. A
failover policy consists of a failover domain, failover attributes, and a failover script. A
failover policy name must be unique within the pool.

failover script

A failover policy component that generates a run-time failover domain and returns it to
the Linux FailSafe process. The process applies the failover attributes and then selects the
first node in the returned failover domain that is also in the current node membership.

Failsafe database

Seecluster configuration database

heartbeat messages

Messages that cluster software sends between the nodes that indicate a node is up and
running. Heartbeat messages and control messages are sent through a node’s network
interfaces that have been attached to a control network. A node can be attached to multiple
control networks.

81

heartbeat interval

Interval between heartbeat messages. The node timeout value must be at least 10 times the
heartbeat interval for proper Linux FailSafe operation (otherwise false failovers may be
triggered). The higher the number of heartbeats (smaller heartbeat interval), the greater the
potential for slowing down the network. Conversely, the fewer the number of heartbeats
(larger heartbeat interval), the greater the potential for reducing availability of resources.

initial failover domain

The ordered list of nodes, defined by the administrator when a failover policy is first created,
that is used the first time a cluster is booted.The ordered list specified by the initial failover
domain is transformed into a run-time failover domain by the failover script; the run-time
failover domain is used along with failover attributes to determine the node on which a
resource group should reside. With each failure, the failover script takes the current run-
time failover domain and potentially modifies it; the initial failover domain is never used
again. Depending on the run-time conditions and contents of the failover script, the initial
and run-time failover domains may be identical. See alsorun-time failover domain .

key/value attribute

A set of information that must be defined for a particular resource type. For example,
for the resource typefilesystem one key/value pair might bemount_point=/fs1where
mount_pointis the key andfs1 is the value specific to the particular resource being defined.
Depending on the value, you specify either astring or integer data type. In the
previous example, you would specifystring as the data type for the valuefs1.

log configuration

A log configuration has two parts: a log level and a log file, both associated with a
log group. The cluster administrator can customize the location and amount of log
output, and can specify a log configuration for all nodes or for only one node. For
example, thecrsd log group can be configured to log detailed level-10 messages to the
/var/log/failsafe/crsd_foo log only on the nodefoo and to write only minimal
level-1 messages to thecrsd log on all other nodes.

log file

A file containing Linux FailSafe notifications for a particular log group. A log file
is part of the log configuration for a log group. By default, log files reside in the
/var/log/failsafe directory, but the cluster administrator can customize this. Note:
Linux FailSafe logs both normal operations and critical errors to/var/log/failsafe ,
as well as to individual logs for specific log groups.

log group

A set of one or more Linux FailSafe processes that use the same log configuration. A log
group usually corresponds to one daemon, such asgcd .

log level

A number controlling the number of log messages that Linux FailSafe will write into an
associated log group’s log file. A log level is part of the log configuration for a log group.

82

node

Seecluster node

node ID

A 16-bit positive integer that uniquely defines a cluster node. During node definition, Linux
FailSafe will assign a node ID if one has not been assigned by the cluster administrator.
Once assigned, the node ID cannot be modified.

node membership

The list of nodes in a cluster on which Linux FailSafe can allocate resource groups.

node timeout

If no heartbeat is received from a node in this period of time, the node is considered to be
dead. The node timeout value must be at least 10 times the heartbeat interval for proper
Linux FailSafe operation (otherwise false failovers may be triggered).

notification command

The command used to notify the cluster administrator of changes or failures in the cluster,
nodes, and resource groups. The command must exist on every node in the cluster.

offline resource group

A resource group that is not highly available in the cluster. To put a resource group in
offline state, Linux FailSafe stops the group (if needed) and stops monitoring the group.
An offline resource group can be running on a node, yet not under Linux FailSafe control.
If the cluster administrator specifies thedetach only option while taking the group
offline, then Linux FailSafe will not stop the group but will stop monitoring the group.

online resource group

A resource group that is highly available in the cluster. When Linux FailSafe detects a
failure that degrades the resource group availability, it moves the resource group to another
node in the cluster. To put a resource group in online state, Linux FailSafe starts the group
(if needed) and begins monitoring the group. If the cluster administrator specifies the
attach only option while bringing the group online, then Linux FailSafe will not start the
group but will begin monitoring the group.

owner host

A system that can control a node remotely, for example power-cycling the node. At run
time, the owner host must be defined as a node in the pool.

owner TTY name

The device file name of the terminal port (TTY) on the owner host to which the system
controller serial cable is connected. The other end of the cable connects to the node with
the system controller port, so the node can be controlled remotely by the owner host.

pool

The entire set of nodes involved with a group of clusters. The group of clusters are
usually close together and should always serve a common purpose. A replicated cluster
configuration database is stored on each node in the pool.

83

port password

The password for the system controller port, usually set once in firmware or by setting
jumper wires. (This is not the same as the node’sroot password.)

powerfail mode

When powerfail mode is turnedon , Linux FailSafe tracks the response from a node’s
system controller as it makes reset requests to a cluster node. When these requests fail to
reset the node successfully, Linux FailSafe uses heuristics to try to estimate whether the
machine has been powered down. If the heuristic algorithm returns with success, Linux
FailSafe assumes the remote machine has been reset successfully. When powerfail mode
is turnedoff , the heuristics are not used and Linux FailSafe may not be able to detect
node power failures.

process group

A group of application instances. Each application instance can consist of one or more
UNIX processes and spans only one node.

process membership

A list of process instances in a cluster that form a process group. There can multiple
process groups per node.

resource

A single physical or logical entity that provides a service to clients or other resources.
For example, a resource can be a single disk volume, a particular network address, or an
application such as a web server. A resource is generally available for use over time on two
or more nodes in a cluster, although it can be allocated to only one node at any given time.
Resources are identified by a resource name and a resource type. Dependent resources
must be part of the same resource group and are identified in a resource dependency list.

resource dependency

The condition in which a resource requires the existence of other resources.

resource dependency list

A list of resources upon which a resource depends. Each resource instance must have
resource dependencies that satisfy its resource type dependencies before it can be added
to a resource group.

resource group

A collection of resources. A resource group is identified by a simple name; this name
must be unique within a cluster. Resource groups cannot overlap; that is, two resource
groups cannot contain the same resource. All interdependent resources must be part of the
same resource group. If any individual resource in a resource group becomes unavailable
for its intended use, then the entire resource group is considered unavailable. Therefore, a
resource group is the unit of failover.

resource keys

Variables that define a resource of a given resource type. The action scripts use this
information to start, stop, and monitor a resource of this resource type.

84

resource name

The simple name that identifies a specific instance of a resource type. A resource name
must be unique within a given resource type.

resource type

A particular class of resource. All of the resources in a particular resource type can be
handled in the same way for the purposes of failover. Every resource is an instance of
exactly one resource type. A resource type is identified by a simple name; this name
must be unique within a cluster. A resource type can be defined for a specific node or
for an entire cluster. A resource type that is defined for a node overrides a cluster-wide
resource type definition with the same name; this allows an individual node to override
global settings from a cluster-wide resource type definition.

resource type dependency

A set of resource types upon which a resource type depends. For example, the
filesystem resource type depends upon thevolume resource type, and the
Netscape_web resource type depends upon thefilesystem and IP_address
resource types.

resource type dependency list

A list of resource types upon which a resource type depends.

run-time failover domain

The ordered set of nodes on which the resource group can execute upon failures, as
modified by the failover script. The run-time failover domain is used along with failover
attributes to determine the node on which a resource group should reside. See alsoinitial
failover domain.

start/stop order

Each resource type has a start/stop order, which is a non–negative integer. In a resource
group, the start/stop orders of the resource types determine the order in which the resources
will be started when Linux FailSafe brings the group online and will be stopped when
Linux FailSafe takes the group offline. The group’s resources are started in increasing
order, and stopped in decreasing order; resources of the same type are started and stopped
in indeterminate order. For example, if resource typevolume has order 10 and resource
typefilesystem has order 20, then when Linux FailSafe brings a resource group online,
all volume resources in the group will be started before all file system resources in the
group.

system controller port

A port located on a node that provides a way to power-cycle the node remotely. One
example of this in the x86-based hardware arena is the Intel EMP (Emergency Management
Port) supplied on some Intel motherboards. Enabling or disabling a system controller port
in the cluster configuration database (CDB) tells Linux FailSafe whether it can perform
operations on the system controller port. (When the port is enabled, serial cables must
attach the port to another node, the owner host.) System controller port information is
optional for a node in the pool, but is required if the node will be added to a cluster;
otherwise resources running on that node never will be highly available.

85

tie-breaker node

A node identified as a tie-breaker for Linux FailSafe to use in the process of computing
node membership for the cluster, when exactly half the nodes in the cluster are up and can
communicate with each other. If a tie-breaker node is not specified, Linux FailSafe will
use the node with the lowest node ID in the cluster as the tie-breaker node.

type-specific attribute

Required information used to define a resource of a particular resource type. For example,
for a resource of typefilesystem you must enter attributes for the resource’s volume
name (where the file system is located) and specify options for how to mount the file
system (for example, as readable and writable).

86

Index

A
action scripts . 12

examples . 27
failure of . 19
format

basic action . 25
completion . 26
exit status . 24
header . 23
overview. 22
read input file . 26
read resource information 24
set global variables . 25
set local variables. 24
verify arguments . 26

monitoring
frequence . 22
necessity of . 21
testing examples . 22
types . 21

optional . 17
preparation for writing scripts . .. 20
required . 16
resource types provided. 20
set of scripts . 16
successful execution results 18
templates . 20
testing . 64
writing steps . 27

agents . 34
application failover domain . 12
attributes . 36
Auto_Failback failover attribute . .. 36
Auto_Recovery failover attribute . .. 37

C
check arguments . .. 73
cluster . 9
cluster node . 9
cluster_mgr command . 56
cmgr command . 56
cmond process

configuration . 34
command execution function. 74

87

command path 70
concepts . 9
configurations

N+1 . 45
N+2 . 46
N+M . 46

Controlled_Failback failover attribute. 36

D
database location . .. 71
debug script messages. 71
debugging information in action scripts. 63
dependency list 11
domain . 12, 35

E
environment variables . 70
/etc/failsafe/cmon_process_groups directory 34
exclusive script

example . 31
exclusive script

definition . 16
execute a command .. 74
exit status in action scripts . 24
exit_script() function . 24, 64
exit_status value . .. 24

F
failover attributes . 12, 36
failover domain . 12, 35
failover . 11
failover policy

contents . 35
examples

N+1 . 44
N+2 . 46
N+M . 47

failover attributes . 36
failover domain . 35

failover policy . 12
failover script . 37
failover script interface. 43

failover script
description . 12, 37
interface . 43

field value . 75
filesystemresource type. 13

88

G
get_xxx_info() function. 24
global definition setting. 70
global variables . 25

H
HA_CDB environment variable . .. 71
ha_check_args() function. 26, 73
HA_CMDSPATH environment variable . 70
HA_CMD_FAILED environment variable 72
HA_CURRENT_LOGLEVEL environment variable 72
HA_DBGLOG environment variable . 71
HA_DBGLVL environment variable . 71
ha_execute_cmd() function. 74
ha_execute_cmd_ret() function 74
ha_get_field() function . 75
ha_get_info() function . 76
HA_HOSTNAME environment variable . 70
HA_INVAL_ARGS environment variable. 72
HA_LOG environment variable . .. 72
HA_LOGCMD environment variable . 70
HA_NOCFGINFO environment variable. 73
HA_NORMLVL environment variable. 71
HA_NOTSUPPORTED environment variable 72
HA_NOT_RUNNING environment variable 72
ha_print_exclusive_status() function .. 79
ha_print_exclusive_status_all_resources() function. 79
HA_PRIVCMDSPATH environment variable 70
ha_read_infile() function . 26, 74
HA_RESOURCEQUERYCMD environment variable. 71
HA_RUNNING environment variable. 72
HA_SCRIPTGROUP environment variable 71
HA_SCRIPTSUBSYS environment variable 71
HA_SCRIPTTMPDIR environment variable 71
HA_SUCCESS environment variable. 72
ha_write_status_for_all_resources() function 75
ha_write_status_for_resource function. 25
ha_write_status_for_resource() function. 75
high availability characterists 13
highly available

services . 13
hostname . 70

I
initial failover domain . 35
InPlace_Recovery failover attribute .. 37
input file . 74

89

IP address service . .. 13

L
logs . 71
LVM logical volume service. 13

M
MAC address service .. 13
MAC_address resource type. 13
membership . 10
monitor script

example . 30
monitor script

definition . 16
monitoring

agents . 34
failure . 21
frequence . 22
necessity of . 21
script testing . 65
testing examples .. 22
types . 21

N
node membership . .. 9
node . 9
node status. 63
nodename output . .. 70

O
order ranges for resource types 49
ordered failover script . 37
overview of the programming steps .. 14

P
path to user commands. 70
plug-ins . 13
pool . 9
print exclusivity check messages . .. 79
privileged command path. 70
process

membership . 10
programming steps overview. 14

R
read an input file . 74
resource group

90

definition . 11
states . 18

resource information
obtaining . 76
read into an action script. 24

resource
definition . 10
dependency list . .. 11
name . 10
query command . .. 71

resource type
cluster_mgr use . .. 56
dependency list . .. 11
description . 10
GUI use . 50
information required to define a new resource type. 48
order ranges 49
provided with Linux FailSafe . 13
restart mode . 49
script templates . .. 60
script use . 60

restart script
example . 32

restart mode . 49
restart script

definition . 16
root command path .. 70
run-time failover domain . 35

S
script group log . 71
script library . 69
script testing

action scripts . 64
monitoring script considerations .. 65
techniques . 63

scriptlib file . 69
scripts. See action scripts or failover script 22
script.$$ suffix . 27
set_global_variables() function 25
set_local_variables() section of an action script 24
start script

example . 27
start script

definition . 16
status of a node 63
stop script

91

example . 29
stop script

definition . 16

T
templates

action scripts . 20
resource type script definition . .. 60

testing scripts. See script testing . .. 63

U
uname command . .. 70
user command path .. 70
/usr/lib/failsafe/cmgr-templates/cmgr-create-resource_type directory 60
/usr/lib/failsafe/policies directory . .. 37
usr/lib/failsafe/resource_types directory. 49

V
value for a field . 75
volume resource type . 13

W
write status for a resource. 75

X
XFS file system service. 13

92

