Linux FailSafe[™] Programmer's Guide

Date: 10 October 2000

Written by Joshua Rodman of SuSE, Inc. and Lori Johnson of SGI

Illustrated by Dany Galgani and Chris Wengelski

Production by Diane Ciardelli and Adrian Daley

Engineering contributions by Rusty Ballinger, Franck Chastagnol, Jeff Hanson, Vidula Iyer, Herbert Lewis, Michael Nishimoto, Hugh Shannon Jr., Bill Sparks, Paddy Sreenivasan, Dan Stekloff, Rebecca Underwood, Mayank Vasa, and Manish Verma © 2000 Silicon Graphics, Inc.; All rights reserved

NOTICE:

This documentation, in electronic format, is provided as is without any warranty or condition of any kind, either express, implied, or statutory, including, but not limited to, any warranty or condition that it constitutes specifications to which any related software will conform, any implied warranties or conditions, on the documentation and related software, of merchantability, satisfactory quality, fitness for a particular purpose, and freedom from infringement, and any warranty or condition that the related software will be error free. In no event shall SGI or its suppliers be liable for any damages, including, but not limited to direct, indirect, special or consequential damages, arising out of, resulting from, or in any way connected with this documentation and related software, whether or not based upon warranty, contract, tort or otherwise, whether or not injury was sustained by persons or property or otherwise, and whether or not loss was sustained from, or arose out of the results of, or use of, the documentation and related software.

Silicon Graphics, Inc. grants the user permission to reproduce, distribute, and create derivative works from the documentation, provided that: (1) the user reproduces this entire notice within both source and binary format redistributions in printed or electronic format; and (2) no further license or permission may be inferred or deemed or construed to exist with regard to the sample code or the code base of which it forms a part.

Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, or:

http://www.sgi.com

LIMITED RIGHTS LEGEND

The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS

SGI, the SGI logo, IRIS FailSafe, SGI FailSafe, SGI Linux, and Linux FailSafe are trademarks of Silicon Graphics, Inc. Linux a registered trademark of Linux Torvalds, used with permission by Silicon Graphics, Inc. SuSE is a trademark of SuSE Inc. All other trademarks mentioned are the property of their respective owners.

007-4295-001	August 2000
Original publication	C
007-4295-002	September 2000
Corrections	-

Contents

Linux FailSafe [™] Programmer's Guide 1
About This Guide 7
Audience 7
Related Documentation 7
Conventions Used in This Guide 8
Chapter 1 Introduction to Writing Application Scripts 9
1.1 Concepts 9
1.1.1 Cluster Node (or Node) 9
1.1.2 Pool 9
1.1.3 Cluster 9
1.1.4 Node Membership 9
1.1.5 Process Membership 10
1.1.6 Resource 10
1.1.7 Resource Type 10
1.1.8 Resource Name 10
1.1.9 Resource Group 10
1.1.10 Resource Dependency List 11
1.1.11 Resource Type Dependency List 11
1.1.12 Failover 11
1.1.13 Failover Policy 11
1.1.14 Failover Domain 12
1.1.15 Failover Attribute 12
1.1.16 Failover Scripts 12
1.1.17 Action Scripts 12
1.2 Highly Available Services Included with Linux FailSafe 13
1.3 Plug-Ins 13
1.4 Characteristics that Permit an Application to be Highly Available 13
1.5 Overview of the Programming Steps 14
Chapter 2 Writing the Action Scripts and Adding Monitoring Agents 16
2.1 Set of Action Scripts 16
2.2 Understanding the Execution of Action Scripts 17
2.2.1 Multiple Instances of Script Executed at the Same Time 17
2.2.2 Differences between the exclusive and monitor Scripts 17
2.2.3 Successful Execution of Action Scripts 18
2.2.4 Failure of Action Scripts 18
2.2.5 Implementing Timeouts and Retrying a Command 19

2.2.6 Sending UNIX Signals 19 2.3 Preparation 19 2.3.1 Is Monitoring Necessary? 21 2.3.2 Types of Monitoring 21 2.3.3 What are the Symptoms of Monitoring Failure? 21 How Often Should Monitoring Occur? 2.3.4 22 2.3.5 Examples of Testing for Monitoring Failure 22 2.4 Script Format 22 2.4.1Header Information 23 2.4.2 Set Local Variables 24 2.4.3 **Read Resource Information** 24 2.4.4 Exit Status 24 2.4.5 **Basic Action** 25 2.4.6 Set Global Variables 25 2.4.7 Verify Arguments 26 26 2.4.8 Read Input File 2.4.9 Complete the Action 26 27 2.5 Steps in Writing a Script 2.6 Examples of Action Scripts 27 2.6.1 start Script 27 2.6.2 stop Script 29 2.6.3 30 monitor Script 2.6.4 exclusive Script 31 32 2.6.5 restart Script 2.7 Monitoring Agents 33 Chapter 3 Creating a Failover Policy 35 3.1 Contents of a Failover Policy 35 Failover Domain 3.1.1 35 3.1.2 Failover Attributes 36 3.1.3 Failover Scripts 37 3.1.3.1 The ordered Failover Script 37 3.1.3.2 The round-robin Failover Script 40 3.1.3.3 Creating a New Failover Script 43 3.2 Failover Script Interface 43 3.3 Example Failover Policies for Linux FailSafe 44 3.3.1 N+1 Configuration for Linux FailSafe 44 3.3.2 N+2 Configuration 46 3.3.3 N+M Configuration for Linux FailSafe 46 Chapter 4 Defining a New Resource Type 48 Using the GUI 50 4.1

4.1.1 Define a New Resource T	<u>у</u> ре <i>50</i>
4.1.2 Define Dependencies	55
4.2 Using cluster_mgr Interactiv	rely 56
4.3 Using cluster_mgr With a S	cript 60
4.4 Testing a New Resource Ty	pe <i>62</i>
Chapter 5 Testing Scripts	63
5.1 General Testing and Debug	ging Techniques 63
5.2 Debugging Notes 6	53
5.3 Testing an Action Script	64
5.4 Special Testing Consideration	ons for the monitor Script
Appendix A Starting the F	ailSafe Manager
Appendix B Using the SR	M Script Library
B.1 Linux FailSafe application ir	• •
B.2 Set Global Definitions	70
B.2.1 Global Variable 7	70
B.2.1.1 HA_HOSTNAME	70
B.2.2 Command Location Varia	bles 70
B.2.2.1 HA_CMDSPATH	70
B.2.2.2 HA_PRIVCMDSPATH	70
B.2.2.3 HA_LOGCMD	70
B.2.2.4 HA_RESOURCEQUER	YCMD 71
B.2.2.5 HA_SCRIPTTMPDIR	71
B.2.3 Database Location Variab	oles 71
B.2.3.1 HA_CDB 71	
B.2.4 Script Log Level Variables	s 71
B.2.4.1 HA_NORMLVL	71
B.2.4.2 HA_DBGLVL 7	1
B.2.5 Script Log Variables	71
B.2.5.1 HA_SCRIPTGROUP	71
B.2.5.2 HA_SCRIPTSUBSYS	71
B.2.6 Script Logging Command	
—	71
B.2.6.2 HA_CURRENT_LOGLE	EVEL 72
B.2.6.3 HA_LOG 72	
B.2.7 Script Error Value Variable	
B.2.7.1 HA_SUCCESS	72
B.2.7.2 HA_NOT_RUNNING	72
B.2.7.3 HA_INVAL_ARGS	72
B.2.7.4 HA_CMD_FAILED	72

B.2.7	7.5 HA_RUNNING	72
B.2.7	7.6 HA_NOTSUPPORTED	72
B.2.7	7.7 HA_NOCFGINFO	72
B.3	Check Arguments 7	73
B.4	Read an Input File	74
B.5	Execute a Command	74
B.6	Write Status for a Resource	75
B.7	Get the Value for a Field	75
B.8	Get the Value for Multiple Fi	ields 76
B.9	Get Resource Information	76
B.10	Print Exclusivity Check Me	ssages 79

Glossary 80

Figure 2–1	Monitoring Process 33
Figure 3–1	N+1 Configuration Concept 45
Figure 3–2	N+2 Configuration Concept 46
Figure 3–3	<i>N+M</i> Configuration Concept 47
Figure 4–1	Select Define a New Resource 51
Figure 4–2	Specify the Name of the New Resource Type 52
Figure 4–3	Specify Settings for Required Actions 53
Figure 4–4	Change Settings for Optional Actions 54
Figure 4–5	Set Type-specific Attributes 55
Figure 4–6	Add Dependencies 56
Figure A–1	FailSafe Manager 68
Table 1–1	Example Resource Group 11
Table 2–1	Differences Between the monitor and exclusive Action Scripts 18
Table 2–2	Successful Action Script Results 18
Table 2–3	Failure of an Action Script 19
Table 3–1	Required Failover Attributes (mutually exclusive) 36
Table 3–2	Optional Failover Attributes (mutually exclusive) 37
Table 4–1	Order Ranges 48

About This Guide

This guide explains how to write the set of scripts that are required to turn an application into a highly available service in conjunction with Linux FailSafe software. It also tells you how to create a new resource type.

This guide assumes that the Linux FailSafe system has been configured as described in the *Linux FailSafe Administrator's Guide*.

Audience

This guide is written for system programmers who are developing scripts for the Linux FailSafe system. These scripts allow the failover of applications that are not handled by the base and optional products. Readers must be familiar with the operation and administration of nodes running Linux FailSafe, with the applications that are to be failed over, and with the *Linux FailSafe Administrator's Guide*.

Related Documentation

Besides this guide, other documentation for Linux FailSafe includes the following:

• Linux FailSafe Administrator's Guide

System man pages for referenced commands are as follows:

- cbeutil
- cdbBackup
- cdbRestore
- cdbutil
- cluster_mgr
- crsd
- failsafe
- cdbd
- ha_cilog
- ha_cmsd
- ha_exec2
- ha_fsd
- ha_gcd
- ha_ifd
- ha_ifdadmin

- ha_macconfig2
- ha_srmd
- ha_statd2
- haStatus

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

command

Function names, literal command-line arguments (options/flags)

filename

Name of a file or directory

command -o option

Commands and text that you are to type literally in response to shell and command prompts

term

New terms

Book Title

Manual or book title

variable

Command-line arguments, filenames, and variables to be supplied by the user in examples, code, and syntax statements

literal text

Code examples, error messages, prompts, and screen text

#

System shell prompt for the superuser (root)

1 Introduction to Writing Application Scripts

Linux FailSafe provides several highly available services for a two–node cluster. These services are monitored by the Linux FailSafe software. You can create additional services that are highly available by using the instructions in this guide.

This chapter provides an introduction to Linux FailSafe programming. The sections are as follows:

- Section 1.1, *Concepts*
- Section 1.2, *Highly Available Services Included with Linux FailSafe*
- Section 1.3, *Plug-Ins*
- Section 1.5, Overview of the Programming Steps
- Section 1.4, *Characteristics that Permit an Application to be Highly Available*
- Section 1.5, Overview of the Programming Steps

For an overview of the software layers, communication paths, and cluster configuration database, see the *Linux FailSafe Administrator's Guide*.

1.1 Concepts

In order to use Linux FailSafe, you must understand the concepts in this section.

1.1.1 Cluster Node (or Node)

A **cluster node** is a single Linux execution environment. In other words, a single physical or virtual machine. In current Linux environments this will always be an individual computer. The term **node** is used to indicate this meaning in this guide for brevity, as opposed to any meaning such as a network node.

1.1.2 Pool

A **pool** is the entire set of nodes having membership in a group of clusters. The clusters are usually close together and should always serve a common purpose. A replicated cluster configuration database is stored on each node in the pool.

1.1.3 Cluster

A **cluster** is a collection of one or more nodes coupled to each other by networks or other similar interconnections. A cluster belongs to one pool and only one pool. A cluster is identified by a simple name; this name must be unique within the pool. A particular node may be a member of only one cluster. All nodes in a cluster are also in the pool; however, all nodes in the pool are not necessarily in the cluster.

1.1.4 Node Membership

A **node membership** is the list of nodes in a cluster on which Linux FailSafe can allocate resource groups.

1.1.5 Process Membership

A **process membership** is the list of process instances in a cluster that form a process group. There can be multiple process groups per node.

1.1.6 Resource

A **resource** is a single physical or logical entity that provides a service to clients or other resources. For example, a resource can be a single disk volume, a particular network address, or an application such as a web server. A resource is generally available for use over time on two or more nodes in a cluster, although it can only be allocated to one node at any given time.

Resources are identified by a resource name and a resource type. One resource can be dependent on one or more other resources; if so, it will not be able to start (that is, be made available for use) unless the dependent resources are also started. Dependent resources must be part of the same resource group and are identified in a resource dependency list.

1.1.7 Resource Type

A **resource type** is a particular class of resource. All of the resources in a particular resource type can be handled in the same way for the purposes of failover. Every resource is an instance of exactly one resource type.

A resource type is identified by a simple name; this name should be unique within the cluster. A resource type can be defined for a specific node, or it can be defined for an entire cluster. A resource type definition for a specific node overrides a clusterwide resource type definition with the same name; this allows an individual node to override global settings from a clusterwide resource type definition.

Like resources, a resource type can be dependent on one or more other resource types. If such a dependency exists, at least one instance of each of the dependent resource types must be defined. For example, a resource type named Netscape_web might have resource type dependencies on resource types named IP_address and volume. If a resource named web1 is defined with the Netscape_web resource type, then the resource group containing web1 must also contain at least one resource of the type IP_address and one resource of the type volume.

The Linux FailSafe software includes some predefined resource types. If these types fit the application you want to make highly available, you can reuse them. If none fit, you can create additional resource types by using the instructions in this guide.

1.1.8 Resource Name

A **resource name** identifies a specific instance of a resource type. A resource name must be unique for a given resource type.

1.1.9 Resource Group

A **resource group** is a collection of interdependent resources. A resource group is identified by a simple name; this name must be unique within a cluster. Table 1–1, *Example Resource Group* shows an example of the resources and their corresponding resource types for a resource group named WebGroup.

 Table 1–1
 Example Resource Group

Resource	Resource Type
10.10.48.22	IP_address
/fsl	filesystem
voll	volume
webl	Netscape_web

If any individual resource in a resource group becomes unavailable for its intended use, then the entire resource group is considered unavailable. Therefore, a resource group is the unit of failover.

Resource groups cannot overlap; that is, two resource groups cannot contain the same resource.

For information about configuring resource groups, see the Linux FailSafe Administrator's Guide.

1.1.10 Resource Dependency List

A **resource dependency list** is a list of resources upon which a resource depends. Each resource instance must have resource dependencies that satisfy its resource type dependencies before it can be added to a resource group.

1.1.11 Resource Type Dependency List

A **resource type dependency list** is a list of resource types upon which a resource type depends. For example, the filesystem resource type depends upon the volume resource type, and the Netscape_web resource type depends upon the filesystem and IP_address resource types.

For example, suppose a file system instance fsl is mounted on volume voll. Before fsl can be added to a resource group, fsl must be defined to depend on voll. Linux FailSafe only knows that a file system instance must have one volume instance in its dependency list. This requirement is inferred from the resource type dependency list.

1.1.12 Failover

A **failover** is the process of allocating a resource group (or application) to another node, according to a failover policy. A failover may be triggered by the failure of a resource, a change in the node membership (such as when a node fails or starts), or a manual request by the administrator.

1.1.13 Failover Policy

A **failover policy** is the method used by Linux FailSafe to determine the destination node of a failover. A failover policy consists of the following:

- Failover domain
- Failover attributes
- Failover script

Linux FailSafe uses the failover domain output from a failover script along with failover attributes to determine on which node a resource group should reside.

The administrator must configure a failover policy for each resource group. A failover policy name must be unique within the pool. Linux FailSafe includes predefined failover policies, but youcan define your own failover algorithms as well.

1.1.14 Failover Domain

A **failover domain** is the ordered list of nodes on which a given resource group can be allocated. The nodes listed in the failover domain must be within the same cluster; however, the failover domain does not have to include every node in the cluster.

The administrator defines the initial failover domain when creating a failover policy. This list is transformed into a run-time failover domain by the failover script; Linux FailSafe uses the run-time failover domain along with failover attributes and the node membership to determine the node on which a resource group should reside. Linux FailSafe stores the run-time failover domain and uses it as input to the next failover script invocation. Depending on the run-time conditions and contents of the failover script, the initial and run-time failover domains may be identical.

In general, Linux FailSafe allocates a given resource group to the first node listed in the run-time failover domain that is also in the node membership; the point at which this allocation takes place is affected by the failover attributes.

1.1.15 Failover Attribute

A failover attribute is a string that affects the allocation of a resource group in a cluster. The administrator must specify system attributes (such as Auto_Failback or Controlled_Failback), and can optionally supply site-specific attributes.

1.1.16 Failover Scripts

A **failover script** is a shell script that generates a run-time failover domain and returns it to the Linux FailSafe process. The Linux FailSafe process ha_fsd applies the failover attributes and then selects the first node in the returned failover domain that is also in the current node membership.

The following failover scripts are provided with the Linux FailSafe release:

- ordered, which never changes the initial failover domain. When using this script, the initial and run-time failover domains are equivalent.
- round-robin, which selects the resource group owner in a round-robin (circular) fashion. This policy can be used for resource groups that can be run in any node in the cluster.

If these scripts do not meet your needs, you can create a new failover script using the information in this guide.

1.1.17 Action Scripts

The **action scripts** are the set of scripts that determine how a resource is started, monitored, and stopped. There must be a set of action scripts specified for each resource type.

The following is the complete set of action scripts that can be specified for each resource type:

• exclusive, which verifies that a resource is not already running

- start, which starts a resource
- stop, which stops a resource
- monitor, which monitors a resource
- restart, which restarts a resource on the same server after a monitoring failure occurs

The release includes action scripts for predefined resource types. If these scripts fit the resource type that you want to make highly available, you can reuse them by copying them and modifying them as needed. If none fits, you can create additional action scripts by using the instructions in this guide.

1.2 Highly Available Services Included with Linux FailSafe

The base release includes the software required to make IP addresses (the IP_address resource type) highly available.

1.3 Plug-Ins

Optional software packages, known as **plug-ins**, are available to make additional applications highly available.

The following plug-ins are available for Linux FailSafe:

- Logical volumes (the volume resource type) such as provided by LVM
- Filesystems such as reiserfs and ext2fs (the filesystem resource type)
- MAC addresses (the MAC_address resource type)
- Linux FailSafe Samba
- Linux FailSafe NFS

Linux FailSafe NFS is not part of the core Linux FailSafe software, but it is documented with the base release.

If you want to create new highly available services, or change the functionality of the provided failover scripts and action scripts by writing new scripts, you will use the instructions in this guide. However, not all resources can be made highly available; see Section 1.4, *Characteristics that Permit an Application to be Highly Available*.

1.4 Characteristics that Permit an Application to be Highly Available

The characteristics of an application that can be made highly available are as follows:

• The application can be easily restarted and monitored.

It should be able to recover from failures as does most client/server software. The failure could be a hardware failure, an operating system failure, or an application failure. If a node crashed and reboots, client/server software should be able to attach again automatically.

• The application must have a start and stop procedure.

When the application fails over, the instances of the application are stopped on one node using the stop procedure and restarted on the other node using the start procedure.

• The application can be moved from one node to another after failures.

If the resource has failed, it must still be possible to run the resource stop procedure. In addition, the resource must recover from the failed state when the resource start procedure is executed in another node.

Ensure that there is no affinity for a specific node.

- The application does not depend on knowing the primary host name (as returned by hostname); that is, required resources can be configured to work with an IP address.
- Other resources on which the application depends can be made highly available. If they are not provided by Linux FailSafe and its optional products (see Section 1.2, *Highly Available Services Included with Linux FailSafe*), you must make these resources highly available, using the information in this guide.

An application itself is not modified to make it highly available.

1.5 Overview of the Programming Steps

If you do not want to write the scripts yourself, you can establish a contract with the Silicon Graphics Professional Services group to create customized scripts. See: http://www.sgi.com/services/index.html.

To make an application highly available, follow these steps:

- 1. Understand the application and determine:
 - The configuration required for the application, such as user names, permissions, data location (volumes), and so on. For more information about configuration, see the *Linux FailSafe Administrator's Guide*.
 - The other resources on which the application depends. All interdependent resources must be part of the same resource group.
 - The resource type that best suits this application.
 - The number of instances of the resource type that will constitute the application. (Each instance of a given application, or **resource type**, is a separate resource.) For example, a web server may depend upon two filesystem resources.
 - The commands and arguments required to start, stop, and monitor this application (that is, the resources in the resource group).
 - The order in which all resources in the resource group must be started and stopped.
- 2. Determine whether existing action scripts can be reused. If they cannot, write a new set of action scripts, using existing scripts and the templates in

/usr/lib/failsafe/resource_types/template as a guide. See Chapter 2, Writing the Action Scripts and Adding Monitoring Agents.

- 3. Determine whether the existing ordered or round-robin failover scripts can be reused for the resource group. If they cannot, write a new failover script. See Chapter 4, *Defining a New Resource Type*.
- 4. Determine whether an existing resource type can be reused. If none applies, create a new resource type or modify an existing resource type. See Chapter 4, *Defining a New Resource Type*.
- 5. Configure the following in the cluster configuration database (for more information, see the *Linux FailSafe Administrator's Guide*):
 - Resource group
 - Resource type
 - Failover policy
- 6. Test the action scripts and failover script. See Chapter 5, *Testing Scripts*, and Section 5.2, *Debugging Notes*.

Do not modify the scripts included with the Linux FailSafe product. New or customized scripts must have different names from the files included with the release.

2 Writing the Action Scripts and Adding Monitoring Agents

This chapter provides information about writing the action scripts required to make an application highly available and how to add monitoring agents. It discusses the following topics:

- Section 2.1, *Set of Action Scripts*
- Section 2.2, Understanding the Execution of Action Scripts
- Section 2.3, Preparation
- Section 2.4, Script Format
- Section 2.5, Steps in Writing a Script
- Section 2.6, Examples of Action Scripts
- Section 2.7, Monitoring Agents

2.1 Set of Action Scripts

CAUTION

Multiple instances of scripts may be executed at the same time. For more information, see Section 2.2, *Understanding the Execution of Action Scripts*.

The following set of action scripts can be provided for each resource:

- exclusive, which verifies that the resource is not already running
- start, which starts the resource
- stop, which stops the resource
- monitor, which monitors the resource
- restart, which restarts the resource on the same node when a monitoring failure occurs

The start, stop, and exclusive scripts are required for every resource type.

The start and stop scripts must be **idempotent**; that is, an action requested multiple times successively should continue to return success, and should have no side-effects. For example, if the start script is run for a resource that is already started, the script must not return an error.

A monitor script is required, but if you wish it may contain only a return-success function. A restart script is required if the application must have a restart ability on the same node in case of failure. However, the restart script may contain only a return-success function.

2.2 Understanding the Execution of Action Scripts

Before you can write a new action script, you must understand how action scripts are executed. This section covers the following topics:

- Section 2.2.1, Multiple Instances of Script Executed at the Same Time
- Section 2.2.2, Differences between the exclusive and monitor Scripts
- Section 2.2.3, Successful Execution of Action Scripts
- Section 2.2.4, Failure of Action Scripts
- Section 2.2.5, Implementing Timeouts and Retrying a Command
- Section 2.2.6, Sending UNIX Signals

2.2.1 Multiple Instances of Script Executed at the Same Time

Multiple instances of the same script may be executed at the same time. To avoid problems this may cause, you can use the ha_filelock and ha_execute_lock commands to achieve sequential execution of commands in different instances of the same script.

For example, consider a script which modifies a configuration file to start a new application instance. Multiple instances of the script modifying the file simultaneously could cause file corruption and data loss. The start script for the application should use ha_execute_lock when executing the modification script to ensure correct configuration file modification.

Assuming the script is named modify_configuration_file, the start script would contain a statement similar to the following:

```
${HA_CMDSPATH}/ha_execute_lock 30
    ${HA_SCRIPTTMPDIR}/lock.volume assemble \"modify_configuration_file\"
```

The ha_execute_lock command takes 3 arguments:

- Number of seconds before the command times out waiting for the file lock
- File to be used for locking
- Command to be executed

The ha_execute_lock command tries to obtain a lock on the file every second for *timeout* seconds. After obtaining a lock on the file, it executes the command argument. On command completion, it releases lock on the file.

2.2.2 Differences between the exclusive and monitor Scripts

Although the same check can be used in monitor and exclusive action scripts, they are used for different purposes. Table 2–1, *Differences Between the monitor and exclusive Action Scripts* summarizes the differences between the scripts.

exclusive	monitor
Executed in all nodes in the cluster.	Executed only on the node where the resource group (which contains the resource) is online.
Executed before the resource is started in the cluster.	Executed when the resource is online in the cluster. (The monitor script could degrade the services provided by the HA server. Therefore, the check performed by the mon- itor script should be lightweight and less time consuming than the check performed by the exclusive script))
Executed only once before the resource group is made online in the cluster.	Executed periodically.
Failure will result in resource group not be- coming online in the cluster.	Failure will cause a resource group failover to another node or a restart of the resource in the local node. An error will cause false re- source group failovers in the cluster.

Table 2–1 Differences Between the monitor and exclusive Action Scripts

2.2.3 Successful Execution of Action Scripts

Table 2–2, *Successful Action Script Results* shows the state of a resource group after the successful execution of an action script for every resource within a resource group. To view the state of a resource group, use the Cluster Manager graphical user interface (GUI) or the cluster_mgr command.

Table 2–2	Successful	Action	Script	Results
-----------	------------	--------	--------	---------

Event	Action Script to Execute	Resource Group State
Resource group is made online on a node	start	online
Resource group is made offline on a node	stop	offline
Online status of the resource group	exclusive	(No effect)
Normal monitoring of online resource group	monitor	online
Resource group monitoring failure	restart	online

2.2.4 Failure of Action Scripts

Table 2–3, *Failure of an Action Script* shows the state of the resource group and the error state when an action script fails.

Failing Action Script	Resource Group State	Error State
exclusive	online	exclusivity
monitor	online	monitoring failure
restart	online	monitoring failure
start	online	srmd executable error
stop	online	srmd executable error

Table 2–3 Failure of an Action Script

2.2.5 Implementing Timeouts and Retrying a Command

You can use the ha_exec2 command to execute action scripts using timeouts. This allows the action script to be completed within the specified time, and permits proper error messages to be logged on failure or timeout. The *retry* variable is especially useful in monitor and exclusive action scripts.

To retry a command, use the following syntax:

/usr/lib/failsafe/bin/ha_exec2 timeout_in_seconds number_of_retries command_to_be_executed

For example:

\${HA_CMDSPATH}/ha_exec2 30 2 "umount /fs"

The above ha_exec2 command executes the umount /fs command line. If the command does not complete within 30 seconds, it kills the umount command and retries the command. The ha_exec2 command retries the umount command 2 times if it times out or fails.

For more information, see the ha_exec2 man page.

2.2.6 Sending UNIX Signals

You can use the ha_exec2 command to send UNIX signals to specific process. A process is identified by its name or its arguments.

For example:

\${HA_CMDSPATH}/ha_exec2 -s 0 -t "knfsd"

The above command sends signal 0 (checks if the process exists) to all processes whose name or arguments match the string knfsd. The command returns 0 if it is a success.

You should use the ha_exec2 command to check for server processes in the monitor script instead of using a ps -ef | grep command line construction, for performance and speed considerations.

For more information, see the ha_exec2 man page.

2.3 Preparation

Before you can write the action scripts, you must do the following:

- Understand the scriptlib functions described in Appendix B, Using the SRM Script Library.
- Familiarize yourself with the script templates provided in the following directory: /usr/lib/failsafe/resource_types/template
- Read the man pages for the following commands:
 - cluster_mgr
 - cdbd
 - ha_cilog
 - ha_cmsd
 - ha_exec2
 - ha_fsd
 - ha_gcd
 - ha_ifd
 - ha_ifdadmin
 - ha_macconfig2
 - ha_srmd
 - ha_statd2
 - haStatus
- Familiarize yourself with the action scripts for other highly available services in /usr/lib/failsafe/resource_types that are similar to the scripts you wish to create.
- Understand how to do the following actions for your application:
 - Verify that the resource is running
 - Verify that the resource can be run
 - Start the resource
 - Stop the resource
 - Check for the server processes
 - Do a simple query as a client and understand the expected response
 - Check for configuration file or directory existence (as needed)
- Determine whether or not monitoring is required (see Section 2.3.1, *Is Monitoring Necessary?*). However, even if monitoring is not needed, a monitor script is still required; in this case, it can contain only a return-success function.
- Determine if a resource type must be added to the cluster configuration database.

- Understand the vendor-supplied startup and shutdown procedures.
- Determine the configuration parameters for the application; these may be used in the action script and should be stored in the CDB.
- Determine whether the resource type can be restarted in its local node, and whether this action makes sense.

2.3.1 Is Monitoring Necessary?

In the following situations, you may not need to perform application monitoring:

- Heartbeat monitoring is sufficient; that is, simply verifying that the node is alive (provided automatically by the base software) determines the health of the highly available service.
- There is no process or resource that can be monitored. For example, the Linux kernel ipchains filtering software performs IP filtering on firewall nodes. Because the filtering is done in the kernel, there is no process or resource to monitor.
- A resource on which the application depends is already monitored. For example, monitoring some client-node resources might best be done by monitoring the file systems, volumes, and network interfaces they use. Because this is already done by the base software, additional monitoring is not required.

Beware that monitoring should be as lightweight as possible so that it does not affect system performance. Also, security issues may make monitoring difficult. If you are unable to provide a monitoring script with appropriate performance and security, consider a monitoring agent; see Section 2.7, *Monitoring Agents*.

2.3.2 Types of Monitoring

There are two types of monitoring that may be accomplished in a monitor script:

- Is the resource present?
- Is the resource responding?

You can define multiple levels of monitoring within the monitor script, and the administrator can choose the desired level by configuring the resource definition in the cluster configuration database. Ensure that the monitoring level chosen does not affect system performance. For more information, see the *Linux FailSafe Administrator's Guide*.

2.3.3 What are the Symptoms of Monitoring Failure?

Possible symptoms of failure include the following:

- The resource returns an error code
- The resource returns the wrong result
- The resource does not return quickly enough

2.3.4 How Often Should Monitoring Occur?

You must determine the monitoring interval and time-out values for the monitor script. The time-out must be long enough to guarantee that occasional anomalies do not cause false failovers. It will be useful for you to determine the peak load that resource may need to sustain.

You must also determine if the monitor test should execute multiple times so that an application is not declared dead after a single failure. In general, testing more than once before declaring failure is a good idea.

2.3.5 Examples of Testing for Monitoring Failure

The test should be simple and should complete quickly, whether it succeeds or fails. Some examples of tests are as follows:

- For a client/server applications that follows a well-defined protocol, the monitor script can make a simple request and verify that the proper response is received.
- For a web server application, the monitor script can request a home page, verify that the connection was made, and ignore the resulting home page.
- For a database, a simple request such as querying a table can be made.
- For NFS, more complicated end-to-end monitoring is required. The test might consist of mounting an exported file system, checking access to the file system with a stat() system call to the root of the file system, and undoing the mount.
- For a resource that writes to a log file, check that the size of the log file is increasing or use the grep command to check for a particular message.
- The following command can be used to determine quickly whether a process exists:

```
/usr/bin/killall -0 process_name
```

You can also use the ha_exec2 command to check if a process is running.

The ha_exec2 command differs from killall in that it performs a more exhaustive check on the process name as well as process arguments. killall searches for the process using the process name only. The command line is as follows:

/usr/lib/failsafe/bin/ha_exec2 -s 0 -t process_name

Do not use the ps command to check on a particular process because its execution can be too slow.

2.4 Script Format

Templates for the action scripts are provided in the following directory:

```
/usr/lib/failsafe/resource_types/template
```

The template scripts have the same general format. Following is the order in which the information appears in the script:

- Header information
- Set local variables
- Read resource information
- Exit status
- Perform the basic action of the script, which is the customized area you must provide
- Set global variables
- Verify arguments
- Read input file

Action "scripts" can be of any form – such as Bourne shell script, perl script, or C language program.

The following sections show an example from the NFS start script. Note that the contents of these examples may not match the latest software.

2.4.1 Header Information

The header information contains comments about the resource type, script type, and resource configuration format. You must modify the code as needed.

Following is the header for the NFS start script:

```
#!/bin/sh
 # *
# *
                Copyright (C) 1998 Silicon Graphics, Inc.
# *
# * These coded instructions, statements, and computer programs contain
# * unpublished proprietary information of Silicon Graphics, Inc., and
# * are protected by Federal copyright law. They may not be disclosed
# * to third parties or copied or duplicated in any form, in whole or
# * in part, without the prior written consent of Silicon Graphics, Inc.
# *
#ident "$Revision: 1.9 $"
# Resource type: NFS
# Start script NFS
±
# Test resource configuration information is present in the database in
# the following format
#
# resource-type.NFS
```

2.4.2 Set Local Variables

The set_local_variables() section of the script defines all of the variables that are local to the script, such as temporary file names or database keys. All local variables should use the LOCAL_ prefix. You must modify the code as needed.

Following is the set_local_variables() section from the NFS start script:

```
set_local_variables()
{
    LOCAL_TEST_KEY=NFS
}
```

2.4.3 Read Resource Information

The $get_xxx_info()$ function, such as $get_nfs_info()$, reads the resource information from the cluster configuration database. \$1 is the test resource name. If the operation is successful, a value of 0 is returned; if the operation fails, 1 is returned.

The information is returned in the HA_STRING variable. For more information about HA_STRING, see Appendix B, *Using the SRM Script Library*.

Following is the get_nfs_info() section from the NFS start script

```
get_nfs_info ()
{
    ha_get_info ${LOCAL_TEST_KEY} $1
    if [ $? -ne 0 ]; then
        return 1;
    else
        return 0;
    fi
}
```

If you wish to get resource dependency information, you can call ha_get_info with a third argument of any value. The resource dependency list will be returned in the HA_STRING variable.

2.4.4 Exit Status

In the exit_script() function, \$1 contains the exit_status value. If cleanup actions are required, such as the removal of temporary files that were created as part of the process, place them before the exit line.

Following is the exit_script() section from the NFS start script

```
exit_script()
{
    exit $1;
}
```

If you call the exit_script function prior to normal termination, it should be preceded by the ha_write_status_for_resource function and you should use the same return code that is logged to the output file. For more information see Appendix B, *Using the SRM Script Library*.

2.4.5 Basic Action

This area of the script is the portion you must customize. The templates provide a minimal framework.

Following is the framework for the basic action from the start template:

```
start_template()
# for all template resources passed as parameter
for TEMPLATE in $HA_RES_NAMES
do
     #HA_CMD="command to start $TEMPLATE resource on the local machine";
     #ha_execute_cmd "string to describe the command being executed";
     ha_write_status_for_resource $TEMPLATE $HA_SUCCESS;
done
}
```

When testing the script, you can obtain debugging information by adding the shell command set -x to this section.

For examples of this area, see Section 2.6, Examples of Action Scripts.

2.4.6 Set Global Variables

The following lines set all of the global and local variables and store the resource names in \$HA_RES_NAMES.

Following is the set_global_variables() function from the NFS start script:

```
set_global_variables()
{
    HA_DIR=/usr/lib/failsafe
    COMMON_LIB=${HA_DIR}/common_scripts/scriptlib
    # Execute the common library file
    . $COMMON_LIB
    ha_set_global_defs;
}
```

2.4.7 Verify Arguments

The ha_check_args() function verifies the arguments and stores them in the \$HA_INFILE and \$HA_OUTFILE variables. It returns 1 on error and 0 on success.

Following is the following is the section from the NFS start script that calls ha_check_args:

```
ha_check_args $*;
if [ $? -ne 0 ]; then
    exit $HA_INVAL_ARGS;
fi
```

2.4.8 Read Input File

The ha_read_infile() function reads the input file and stores the resource names in the \$HA_RES_NAMES variable.

Following is the ha_read_infile() function from the common library file scriptlib:

```
ha_read_infile()
{
    HA_RES_NAMES="";
    for HA_RESOURCE in `cat ${HA_INFILE}`
    do
        HA_TMP="${HA_RES_NAMES} ${HA_RESOURCE}";
        HA_RES_NAMES=${HA_TMP};
    done
}
```

2.4.9 Complete the Action

Located at the bottom of the script file are the lines which perform the actual work of the requested action using the prior sections and provided tools. The results are written as output to \$HA_OUTFILE:

```
action_resourcetype;
```

exit_script \$HA_SUCCESS

Following is the completion from the NFS start script:

```
start_nfs;
exit_script $HA_SUCCESS;
```

2.5 Steps in Writing a Script

CAUTION

Multiple copies of actions scripts can execute at the same time. Therefore, all temporary file names must be unique within the storage space used. Often adding a script.\$\$ to the name is sufficient. If multiple nodes share a temporary directory, you will also want to incorporate host identifier to ensure uniqueness. Another method is to use the resource name because it must be unique to the cluster.

For each script, you must do the following:

- Get the required variables
- Check the variables
- Perform the action
- Check the action

The start and stop scripts are required to be **idempotent**; that is, they have the appearance of being run once but can in fact be run multiple times. For example, if the start script is run for a resource that is already started, the script must not return an error.

All action scripts must return the status to the /var/log/failsafe/script_nodename file.

2.6 Examples of Action Scripts

The following sections use portions of the NFS scripts as examples.

The examples in this guide may not exactly match the released system.

2.6.1 start Script

The NFS start script does the following:

- 1. Creates a resource-specific NFS status directory.
- 2. Exports the specified export-point with the specified export-options.

Following is a section from the NFS start script:

Start the resource on the local machine.

Return HA_SUCCESS if the resource has been successfully started on the local

```
# machine and HA_CMD_FAILED otherwise.
start_nfs()
    ${HA_DBGLOG} "Entry: start_nfs()";
    # for all nfs resources passed as parameter
    for resource in ${HA_RES_NAMES}
   do
       NFSFILEDIR=${HA_SCRIPTTMPDIR}/${LOCAL_TEST_KEY}$resource
        HA_CMD="mkdir -p $NFSFILEDIR";
        ha_execute_cmd "creating nfs status file directory";
        if [ $? -ne 0 ]; then
           ${HA_LOG} "Failed to create ${NFSFILEDIR} directory";
           ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
           exit_script $HA_NOCFGINFO
        fi
        get_nfs_info $resource
        if [ $? -ne 0 ]; then
            ${HA_LOG} "NFS: $resource parameters not present in CDB";
            ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
            exit_script ${HA_NOCFGINFO};
        fi
        ha_get_field "${HA_STRING}" export-info
        if [ $? -ne 0 ]; then
            ${HA_LOG} "NFS: export-info not present in CDB for resource $resource";
            ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
            exit_script ${HA_NOCFGINFO};
        fi
        export_opts="$HA_FIELD_VALUE"
        ha_get_field "${HA_STRING}" filesystem
        if [ $? -ne 0 ]; then
            ${HA_LOG} "NFS: filesystem-info not present in CDB for resource $resource";
            ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
            exit_script ${HA_NOCFGINFO};
        fi
        filesystem="$HA_FIELD_VALUE"
        # Before we try and export the NFS resource, make sure
        # filesystem is mounted.
        HA_CMD="grep $filesystem /etc/mtab > /dev/null 2>&1";
        ha_execute_cmd "check if the filesystem $filesystem is mounted";
        if [ $? -ne 0 ]; then
            ${HA_LOG} "NFS: filesystem $filesystem not mounted";
            ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
            exit_script ${HA_CMD_FAILED};
        fi
        # Now do the job: export the new directory
        # Note: the export_dir command will check wether this directory
```

{

```
28
```

```
# is already exported or not.
   HA_CMD="export_dir ${resource} ${export_opts}";
   ha_execute_cmd "export $resource directories to NFS clients";
    if [ $? -ne 0 ]; then
        ${HA_LOG} "NFS: could not export resoure ${resource}"
       ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
        exit_script ${HA_CMD_FAILED};
   else
        ha_write_status_for_resource ${resource} ${HA_SUCCESS};
    fi
done
```

```
}
```

#

{

2.6.2 stop Script

The NFS stop script does the following:

- 1. Unexports the specified export-point.
- 2. Removes the NFS status directory.

Following is an example from the NFS stop script:

```
# Stop the nfs resource on the local machine.
\ensuremath{\texttt{\#}} Return <code>HA_SUCCESS</code> if the resource has been successfully stopped on the local
# machine and HA_CMD_FAILED otherwise.
stop_nfs()
    ${HA_DBGLOG} "Entry: stop_nfs()";
    # for all nfs resources passed as parameter
    for resource in ${HA_RES_NAMES}
    do
        get_nfs_info ${resource}
        if [ $? -ne 0 ]; then
            # NFS resource information not available.
            ${HA_LOG} "NFS: $resource parameters not present in CDB";
            ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
            exit_script ${HA_NOCFGINFO};
        fi
        ha_get_field "${HA_STRING}" export-info
        if [ $? -ne 0 ]; then
            ${HA_LOG} "NFS: export-info not present in CDB for resource $resource";
            ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
            exit_script ${HA_NOCFGINFO};
        fi
        export_opts="$HA_FIELD_VALUE"
        # Unexport the directory
        HA_CMD="unexport_dir ${resource}"
```

```
ha_execute_cmd "unexport ${resource} directory to NFS clients"
if [ $? -ne 0 ]; then
        ${HA_LOG} "NFS: Failed to unexport resource ${resource}"
        ha_write_status_for_resource ${resource} ${HA_CMD_FAILED}
fi
        ha_write_status_for_resource ${resource} ${HA_SUCCESS}
done
}
```

2.6.3 monitor Script

The NFS monitor script does the following:

- 1. Verifies that the file system is mounted at the correct mount point.
- 2. Requests the status of the exported file system.
- 3. Checks the export-point.
- 4. Requests NFS statistics and (based on the results) make a Remote Procedure Call (RPC) to NFS as needed.

Following is an example from the NFS monitor script:

```
# Check if the nfs resource is allocated in the local node
# This check must be light weight and less intrusive compared to
# exclusive check. This check is done when the resource has been
# allocated in the local node.
# Return HA_SUCCESS if the resource is running in the local node
# and HA_CMD_FAILED if the resource is not running in the local node
# The list of the resources passed as input is in variable
# $HA_RES_NAMES
#
monitor_nfs()
{
    ${HA_DBGLOG} "Entry: monitor_nfs()";
    for resource in ${HA_RES_NAMES}
    do
        get_nfs_info ${resource}
        if [ $? -ne 0 ]; then
            # No resource information available.
            ${HA_LOG} "NFS: ${resource} parameters not present in CDB";
            ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
            exit_script ${HA_NOCFGINFO};
        fi
        ha_get_field "${HA_STRING}" filesystem
        if [ $? -ne 0 ]; then
            # filesystem not available available.
            ${HA_LOG} "NFS: filesystem not present in CDB for resource $resource";
     ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
            exit_script ${HA_NOCFGINFO};
        fi
        fs="$HA_FIELD_VALUE";
```

```
# Check to see if the filesystem is mounted
   HA_CMD="mount | grep ${fs} >/dev/null 2>&1"
   ha_execute_cmd "check to see if $fs is mounted"
    if [ $? -ne 0 ]; then
        ${HA_LOG} "NFS: ${fs} not mounted";
       ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
        exit_script $HA_CMD_FAILED;
   fi
   # stat the filesystem
   HA_CMD="fs_stat -r ${resource} >/dev/null 2>&1";
   ha_execute_cmd "stat mount point $resource"
   if [ $? -ne 0 ]; then
        ${HA_LOG} "NFS: cannot stat ${resource} NFS export point";
       ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
        exit_script $HA_CMD_FAILED;
   fi
   # check the filesystem is exported
   showmount -e | grep "${resource} " >/dev/null 2>&1
   if [ $? -ne 0 ]; then
        ${HA_LOG} "NFS: failed to find ${resource} in exported filesystem list:-"
        ${HA_LOG} "`showmount -e`"
       ha_write_status_for_resource ${resource} ${HA_CMD_FAILED}
        exit_script ${HA_CMD_FAILED}
   fi
   # check the NFS daemon is still alive and responding
   exec_rpcinfo;
   if [ $? -ne 0 ]; then
            ${HA_LOG} "NFS: exec_rpcinfo failed";
            ha_write_status_for_resource ${resource} ${HA_CMD_FAILED}
            exit_script $HA_CMD_FAILED
   fi
    # Check the stats ?
    # To Be Done... but there is no nfsstat command
    # for the user space NFS daemon.
   ha_write_status_for_resource $resource $HA_SUCCESS;
done
```

2.6.4 exclusive Script

}

The NFS exclusive script determines whether the file system is already exported. The check made by an exclusive script can be more expensive than a monitor check. Linux FailSafe uses this script to determine if resources are running on a node in the cluster, and to thereby prevent starting resources on multiple nodes in the cluster.

Following is an example from the NFS exclusive script:

```
# Check if the nfs resource is running in the local node. This check can
# more intrusive than the monitor check. This check is used to determine
# if the resource has to be started on a machine in the cluster.
# Return HA_NOT_RUNNING if the resource is not running in the local node
# and HA_RUNNING if the resource is running in the local node
# The list of nfs resources passed as input is in variable
# $HA_RES_NAMES
#
exclusive_nfs()
{
    ${HA_DBGLOG} "Entry: exclusive_nfs()";
    # for all resources passed as parameter
   for resource in ${HA_RES_NAMES}
   do
        get_nfs_info $resource
        if [ $? -ne 0 ]; then
            # No resource information available
            ${HA_LOG} "NFS: $resource parameters not present in CDB";
            ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
            exit_script ${HA_NOCFGINFO};
        fi
        # Check if resource is already exported by the NFS server
        showmount -e | grep "${resource} " >/dev/null 2>&1
        if [ $? -eq 0 ];then
            ha_write_status_for_resource ${resource} ${HA_RUNNING};
            ha_print_exclusive_status ${resource} ${HA_RUNNING};
        else
            ha_write_status_for_resource ${resource} ${HA_NOT_RUNNING};
            ha_print_exclusive_status ${resource} ${HA_NOT_RUNNING};
        fi
    done
}
```

2.6.5 restart Script

The NFS restart script exports the specified export-point with the specified export-options. Following is an example from the restart script for NFS:

```
# Restart nfs resource
# Return HA_SUCCESS if nfs resource failed over successfully or
# return HA_CMD_FAILED if nfs resource could not be failed over locally.
# The list of nfs resources passed as input is in variable
# $HA_RES_NAMES
#
restart_nfs()
{
    ${HA_DBGLOG} "Entry: restart_nfs()";
    # for all nfs resources passed as parameter
```

```
for resource in ${HA_RES_NAMES}
do
   get_nfs_info $resource
    if [ $? -ne 0 ]; then
        ${HA_LOG} "NFS: $resource parameters not present in CDB";
       ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
        exit_script ${HA_NOCFGINFO};
   fi
   ha_get_field "${HA_STRING}" export-info
   if [ $? -ne 0 ]; then
        ${HA_LOG} "NFS: export-info not present in CDB for resource $resource";
       ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
        exit_script ${HA_NOCFGINFO};
   fi
    export_opts="$HA_FIELD_VALUE"
   # Note: the export_dir command will check wether this directory
   # is already exported or not.
   HA_CMD="export_dir ${resource} ${export_opts}";
   ha_execute_cmd "export $resource directories to NFS clients";
   if [ $? -ne 0 ]; then
        ${HA_LOG} "NFS: could not export resoure ${resource}"
       ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
       exit_script ${HA_CMD_FAILED};
   else
        ha_write_status_for_resource ${resource} ${HA_SUCCESS};
    fi
done
```

2.7 Monitoring Agents

}

If resources cannot be monitored using a lightweight check, you should use a **monitoring agent**. The monitor action script contacts the monitoring agent to determine the status of the resource in the node. The monitoring agent in turn periodically monitors the resource. Figure 2–1, *Monitoring Process* shows the monitoring process.

Figure 2–1 Monitoring Process

Monitoring agents are useful for monitoring database resources. In databases, creating the database connection is costly and time consuming. The monitoring agent maintains connections to the database and it queries the database using the connection in response to the monitor action script request.

Monitoring agents are independent processes and can be started by cmond process, although this is not required. For example, if a monitoring agent must be started when activating highly available services on a node, information about that agent can be added to the cmond configuration on that node. The cmond configuration is located in the /etc/failsafe/cmon_process_groups directory. Information about different agents should go into different files. The name of the file is not relevant to the activate/deactivate procedure.

If a monitoring agent exits or aborts, cmond will automatically restart the monitoring agent. This prevents monitor action script failures due to monitoring agent failures.

For example, the /etc/failsafe/cmon_process_groups/ip_addresses file contains information about the ha_ifd process that monitors network interfaces. It contains the following, where ACTIONS represents what cmond can perform on the agents (which will be the same for all scripts):

TYPE = cluster_agent PROCS = ha_ifd ACTIONS = start stop restart attach detach AUTOACTION = attach

If you create a new monitoring agent, you must also create a corresponding file in the /etc/failsafe/cmon_process_groups directory that contains similar information about the new agent. To do this, you can copy the ip_addresses file and modify the PROCS line to list the executables that constitute your new agent. These processes must be located in the /usr/lib/failsafe/bin directory. You should not modify the other configuration lines (TYPE, ACTIONS, and AUTOACTION).

Suppose you need to add a new agent called newagent that consists of processes ha_x and ha_y. The configuration information for this agent will be located in the /etc/failsafe/cmon_process_groups/newagent file, which will contain the following:

```
TYPE = cluster_agent
PROCS = ha_x ha_y
ACTIONS = start stop restart attach detach
AUTOACTION = attach
```

In this case, the software will expect two executables (/usr/lib/failsafe/bin/ha_x and /usr/lib/failsafe/bin/ha_y) to be present.

3 Creating a Failover Policy

This chapter tells you how to create a failover policy. It describes the following topics:

- Section 3.1, *Contents of a Failover Policy*
- Section 3.2, Failover Script Interface
- Section 3.3, Example Failover Policies for Linux FailSafe

3.1 Contents of a Failover Policy

A **failover policy** is the method by which a resource group is failed over from one node to another. A failover policy consists of the following:

- Failover domain
- Failover attributes
- Failover scripts

Linux FailSafe uses the failover domain output from a failover script along with failover attributes to determine on which node a resource group should reside.

The administrator must configure a failover policy for each resource group. The name of the failover policy must be unique within the pool.

3.1.1 Failover Domain

A **failover domain** is the ordered list of nodes on which a given resource group can be allocated. The nodes listed in the failover domain must be within the same cluster; however, the failover domain does not have to include every node in the cluster. The failover domain can also be used to statically load balance the resource groups in a cluster.

Examples:

- In a four-node cluster, a set of two nodes that have access to a particular XLV volume may be the failover domain of the resource group containing that XLV volume.
- In a cluster of nodes named venus, mercury, and pluto, you could configure the following initial failover domains for resource groups RG1 and RG2:
 - mercury, venus, pluto for RG1
 - pluto, mercury for RG2

The administrator defines the initial failover domain when configuring a failover policy. The initial failover domain is used when a cluster is first booted. The ordered list specified by the initial failover domain is transformed into a run-time failover domain by the failover script. With each failure, the failover script takes the current run-time failover domain and potentially modifies it; the initial failover domain is never used again. Depending on the run-time conditions and contents of the failover script, the initial and run-time failover domains may be identical.

For example, suppose the initial failover domain is:

N1 N2 N3

The runtime failover domain will vary based on the failover script:

• If ordered:

N1 N2 N3

• If round-robin:

N2 N3 N1

• If a customized failover script, the order could be any permutation, based on the contents of the script:

N1 N2 N3 N1 N3 N2 N2 N3 N1 N2 N1 N3 N3 N2 N1 N3 N1 N2

Linux FailSafe stores the run-time failover domain and uses it as input to the next failover script invocation.

3.1.2 Failover Attributes

A **failover attribute** is a value that is passed to the failover scrip and used by Linux FailSafe for the purpose of modifying the run-time failover domain for a specific resource group. There are required and optional failover attributes, and you can also specify your own strings as attributes.

Table 3–1, *Required Failover Attributes (mutually exclusive)* shows the required failover attributes. You must specify one and only one of these attributes. Note that the starting conditions for the attributes differs: for the required attributes, the starting condition is that a node joins the cluster membership when the cluster is already providing HA services; for the optional attributes, the starting condition is that HA services are started and the resource group is running in only one node in the cluster

Name	Description
Auto_Failback	Specifies that the resource group is made online based on the failover policy when a node joins the cluster. This at- tribute is best used when some type of load balancing is required. You must specify either this attribute or the Con- trolled_Failback attribute.
Controlled_Failback	Specifies that the resource group remains on the same node when a node joins the cluster. This attribute is best used when client/server applications have expensive recovery mechanisms, such as databases or any application that uses tcp to communicate. You must specify either this attribute or the Auto_Failback attribute.

 Table 3–1
 Required Failover Attributes (mutually exclusive)

When defining a failover policy, you can optionally also choose one and only one of the recovery attributes shown in Table 3–2, *Optional Failover Attributes (mutually exclusive)*. The recovery

attribute determines the node on which a resource group will be allocated when its state changes to online and a member of the group is already allocated (such as when volumes are present).

Name	Description
Auto_Recovery	Specifies that the resource group is made online based on the failover policy even when an exclusivity check shows that the resource group is running on a node. This attribute is optional and is mutually exclusive with the In- place_Recovery attribute. If you specify neither of these attributes, Linux FailSafe will use this attribute by de- fault if you have specified the Auto_Failback attribute.
InPlace_Recovery	Specifies that the resource group is made online on the same node where the resource group is running. This attribute is the default and is mutually exclusive with the Auto_Recovery attribute. If you specify neither of these attributes, Linux FailSafe will use this attribute by default if you have specified the Controlled_Failback attribute.

Table 3–2 Optional Failover Attributes (mutually exclusive)

3.1.3 Failover Scripts

A failover script generates the run-time failover domain and returns it to the Linux FailSafe process. The Linux FailSafe process applies the failover attributes and then selects the first node in the returned failover domain that is also in the current node membership.

The run-time of the failover script must be capped to a system-definable maximum. Hence, any external calls must be guaranteed to return quickly. If the failover script takes too long to return, Linux FailSafe will kill the script process and use the previous run-time failover domain.

Failover scripts are stored in the /usr/lib/failsafe/policies directory.

3.1.3.1 The ordered Failover Script

The ordered failover script is provided with the release. The ordered script never changes the initial domain; when using this script, the initial and run-time domains are equivalent. The script reads six lines from the input file and in case of errors logs the input parameters and/or the error to the script log.

The following example shows the contents of the ordered failover script. (Line breaks added for readability.)

#!/bin/sh
#
Copyright (c) 2000 Silicon Graphics, Inc. All Rights Reserved.
#
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as

```
# published by the Free Software Foundation.
# This program is distributed in the hope that it would be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# Further, this software is distributed without any warranty that it is
# free of the rightful claim of any third person regarding infringement
# or the like. Any license provided herein, whether implied or
# otherwise, applies only to this software file. Patent licenses, if
# any, provided herein do not apply to combinations of this program with
# other software, or any other product whatsoever.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
#
# Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
# Mountain View, CA 94043, or:
#
# http://www.sgi.com
# For further information regarding this notice, see:
#
# http://oss.sgi.com/projects/GenInfo/NoticeExplan
#
# $1 - input file
# $2 - output file
# line 1 input file - version
# line 2 input file - name
# line 3 input file - owner field
# line 4 input file - attributes
# line 5 input file - list of possible owners
# line 6 input file - application failover domain
DIR=/usr/lib/failsafe/bin
LOG="${DIR}/ha_cilog -g ha_script -s script"
FILE=/usr/lib/failsafe/policies/ordered
input=$1
output=$2
 read version
 read name
 read owner
 read attr
 read mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8
 read afd1 afd2 afd3 afd4 afd5 afd6 afd7 afd8
{ < ${input}</pre>
```

```
${LOG} -1 1 "${FILE}:" '/bin/cat ${input}'
if [ "${version}" -ne 1 ] ; then
   ${LOG} -1 1 "ERROR: ${FILE}: Different version no. Should be (1) rather than (${version})";
    exit 1;
elif [ -z "${name}" ]; then
    ${LOG} -1 1 "ERROR: ${FILE}: Failover script not defined";
    exit 1;
elif [-z "${attr}"]; then
    ${LOG} -1 1 "ERROR: ${FILE}: Attributes not defined";
    exit 1;
elif [ -z "${mem1}" ]; then
    ${LOG} -1 1 "ERROR: ${FILE}: No node membership defined";
    exit 1;
elif [ -z "${afd1}" ]; then
    ${LOG} -1 1 "ERROR: ${FILE}: No failover domain defined";
    exit 1;
fi
found=0
for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do
    for j in $mem1 $mem2 $mem3 $mem4 $mem5 $mem6 $mem7 $mem8; do
        if [ "X${j}" = "X${i}" ]; then
            found=1;
            break;
        fi
    done
done
if [ ${found} -eq 0 ]; then
   mem="("$mem1")"" ""("$mem2")"" ""("$mem3")"" ""("$mem4")"" \
    ""("$mem5")"" ""("$mem6")"" ""("$mem7")"" ""("$mem8")";
   afd="("$afd1")"" ""("$afd2")"" ""("$afd3")"" ""("$afd4")"" \
    ""("$afd5")"" ""("$afd6")"" ""("$afd7")"" ""("$afd8")";
    ${LOG} -1 1 "ERROR: ${FILE}: Policy script failed"
    ${LOG} -1 1 "ERROR: ${FILE}: " '/bin/cat ${input}'
    \{LOG\} -1 1 "ERROR: \{FILE\}: Nodes defined in membership do not match \setminus
    the ones in failure domain"
    {LOG} -1 1 "ERROR: {FILE}: Parameters read from input file: \
   version = $version, name = $name, owner = $owner, attribute = $attr, \
   nodes = $mem, afd = $afd"
    exit 1;
fi
if [ ${found} -eq 1 ]; then
    rm -f ${output}
    echo $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8 > ${output}
   exit 0
fi
```

```
39
```

exit 1

3.1.3.2 The round-robin Failover Script

The round-robin script selects the resource group owner in a round-robin (circular) fashion. This policy can be used for resource groups that can be run in any node in the cluster.

The following example shows the contents of the round-robin failover script.

```
#!/bin/sh
#
# Copyright (c) 2000 Silicon Graphics, Inc. All Rights Reserved.
# This program is free software; you can redistribute it and/or modify
# it under the terms of version 2 of the GNU General Public License as
# published by the Free Software Foundation.
# This program is distributed in the hope that it would be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# Further, this software is distributed without any warranty that it is
# free of the rightful claim of any third person regarding infringement
# or the like. Any license provided herein, whether implied or
# otherwise, applies only to this software file. Patent licenses, if
# any, provided herein do not apply to combinations of this program with
# other software, or any other product whatsoever.
# You should have received a copy of the GNU General Public License
# along with this program; if not, write the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
# Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
# Mountain View, CA 94043, or:
# http://www.sgi.com
#
# For further information regarding this notice, see:
# http://oss.sgi.com/projects/GenInfo/NoticeExplan
# $1 - input file
# $2 - output file
# line 1 input file - version
# line 2 input file - name
# line 3 input file - owner field
# line 4 input file - attributes
# line 5 input file - Possible list of owners
# line 6 input file - application failover domain
DIR=/usr/lib/failsafe/bin
LOG="${DIR}/ha_cilog -g ha_script -s script"
```

```
# Read input file
input=$1
output=$2
  read version
  read name
 read owner
  read attr
  read mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8
  read afd1 afd2 afd3 afd4 afd5 afd6 afd7 afd8
{ < ${input}</pre>
# Validate input file
${LOG} -1 1 "${FILE}:" '/bin/cat ${input}'
if [ "${version}" -ne 1 ] ; then
    \{LOG\} -1 1 "ERROR: \{FILE\}: Different version no. Should be (1) \
    rather than (${version})" ;
    exit 1;
elif [ -z "${name}" ]; then
    ${LOG} -1 1 "ERROR: ${FILE}: Failover script not defined";
    exit 1;
elif [ -z "${attr}" ]; then
    ${LOG} -1 1 "ERROR: ${FILE}: Attributes not defined";
    exit 1;
elif [ -z "${mem1}" ]; then
    ${LOG} -1 1 "ERROR: ${FILE}: No node membership defined";
    exit 1;
elif [ -z "${afd1}" ]; then
    ${LOG} -1 1 "ERROR: ${FILE}: No failover domain defined";
    exit 1;
fi
# Return 0 if $1 is in the membership and return 1 otherwise.
check_in_mem()
{
    for j in $mem1 $mem2 $mem3 $mem4 $mem5 $mem6 $mem7 $mem8; do
        if [ "X${j}" = "X$1" ]; then
            return 0;
        fi
    done
    return 1;
}
# Check if owner has to be changed. There is no need to change owner if
# owner node is in the possible list of owners.
check_in_mem ${owner}
if [ $? -eq 0 ]; then
```

FILE=/usr/lib/failsafe/policies/round-robin

```
nextowner=${owner};
fi
# Search for the next owner
if [ "X${nextowner}" = "X" ]; then
   next=0;
    for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do
        if [ "X${i}" = "X${owner}" ]; then
            next=1;
            continue;
        fi
        if [ "X${owner}" = "XNO ONE" ]; then
            next=1;
        fi
        if [ ${next} -eq 1 ]; then
            # Check if ${i} is in membership
            check_in_mem ${i};
            if [ $? -eq 0 ]; then
                # found next owner
                nextowner=${i};
                next=0;
                break;
            fi
        fi
    done
fi
if [ "X${nextowner}" = "X" ]; then
    # wrap round the afd list.
    for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do
        if [ "X${i}" = "X${owner}" ]; then
            # Search for next owner complete
            break;
        fi
        # Previous loop should have found new owner
        if [ "X${owner}" = "XNO ONE" ]; then
            break;
        fi
        if [ ${next} -eq 1 ]; then
            check_in_mem ${i};
            if [ $? -eq 0 ]; then
                # found next owner
                nextowner=${i};
                next=0;
                break;
            fi
        fi
    done
fi
```

```
if [ "X${nextowner}" = "X" ]; then
    ${LOG} -1 1 "ERROR: ${FILE}: Policy script failed"
    ${LOG} -1 1 "ERROR: ${FILE}: " '/bin/cat ${input}'
    ${LOG} -1 1 "ERROR: ${FILE}: Could not find new owner"
    exit 1;
fi
# nextowner is the new owner
print=0;
rm -f ${output};
# Print the new afd to the output file
echo -n "${nextowner} " > ${output};
for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8;
do
    if [ "X${nextowner}" = "X${i}" ]; then
        print=1;
    elif [ ${print} -eq 1 ]; then
        echo -n "${i} " >> ${output}
    fi
done
print=1;
for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do
    if [ "X${nextowner}" = "X${i}" ]; then
        print=0;
    elif [ ${print} -eq 1 ]; then
        echo -n "${i} " >> ${output}
    fi
done
echo >> ${output};
exit 0;
```

3.1.3.3 Creating a New Failover Script

If the ordered or round-robin scripts do not meet your needs, you can create a new failover script and place it in the /usr/lib/failsafe/policies directory. You can then configure the cluster configuration database to use your new failover script for the required resource groups.

3.2 Failover Script Interface

The following is passed to the failover script:

```
function(version, name, owner, attributes, possibleowners, domain)
```

version

Linux FailSafe version. The Linux FailSafe release uses version number 1.

name

Name of the failover script (used for error validations and logging purposes).

owner

Logical name of the node that has the resource group allocated.

attributes

Failover attributes (Auto_Failback or Controlled_Failback must be included)

possibleowners

List of possible owners for the resource group. This list can be subset of the current node membership.

domain

Ordered list of nodes used at the last failover. (At the first failover, the initial failover domain is used.)

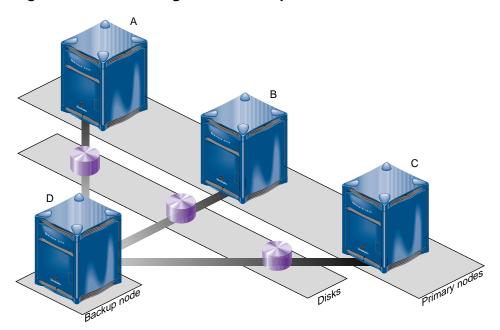
The failover script returns the newly generated run-time failover domain to Linux FailSafe, which then chooses the node on which the resource group should be allocated by applying the failover attributes and node membership to the run-time failover domain.

3.3 Example Failover Policies for Linux FailSafe

There are two general types of configuration, each of which can have from 2 through 8 nodes:

- *N* nodes that can potentially failover their applications to any of the other nodes in the cluster.
- *N* primary nodes that can failover to *M* backup nodes. For example, you could have 3 primary nodes and 1 backup node.

This section shows examples of failover policies for the following types of configuration, each of which can have from 2 through 8 nodes:


- *N* primary nodes and one backup node (N+1)
- *N* primary nodes and two backup nodes (N+2)
- *N* primary nodes and *M* backup nodes (*N*+*M*)

The diagrams in the following sections illustrate the configuration concepts discussed here, but they do not address all required or supported elements, such as reset hubs. For configuration details, see the *Linux FailSafe Installation and Maintenance Instructions*.

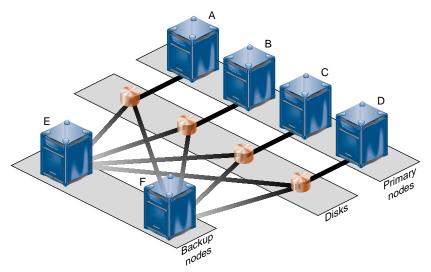
3.3.1 N+1 Configuration for Linux FailSafe

Figure 3–1, N+1 Configuration Concept shows a specific instance of an N+1 configuration in which there are three primary nodes and one backup node. (This is also known as a **star configuration**.) The disks shown could each be disk farms.

Figure 3–1 N+1 Configuration Concept

You could configure the following failover policies for load balancing:

- Failover policy for RG1:
 - Initial failover domain = A, D
 - Failover attribute = Auto_Failback
 - Failover script = ordered
- Failover policy for RG2:
 - Initial failover domain = B, D
 - Failover attribute = Auto_Failback
 - Failover script = ordered
- Failover policy for RG3:
 - Initial failover domain = C, D
 - Failover attribute = Auto_Failback
 - Failover script = ordered


If node A fails, RG1 will fail over to node D. As soon as node A reboots, RG1 will be moved back to node A.

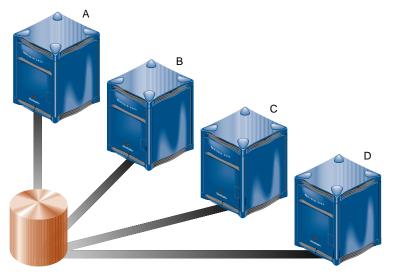
If you change the failover attribute to Controlled_Failback for RG1 and node A fails, RG1 will fail over to node D and will remain running on node D even if node A reboots.

3.3.2 N+2 Configuration

Figure 3–2, N+2 Configuration Concept shows a specific instance of an N+2 configuration in which there are four primary nodes and two backup nodes. The disks shown could each be disk farms.

You could configure the following failover policy for resource groups RG7 and RG8:

- Failover policy for RG7:
 - Initial failover domain = A, E, F
 - Failover attribute = Controlled_Failback
 - Failover script = ordered
- Failover policy for RG8:
 - Initial failover domain = B, F, E
 - Failover attribute = Auto_Failback
 - Failover script = ordered


If node A fails, RG7 will fail over to node E. If node E also fails, RG7 will fail over to node F. If A is rebooted, RG7 will remain on node F.

If node B fails, RG8 will fail over to node F. If B is rebooted, RG8 will return to node B.

3.3.3 N+M Configuration for Linux FailSafe

Figure 3–3, N+M Configuration Concept shows a specific instance of an N+M configuration in which there are four primary nodes and each can serve as a backup node. The disk shown could be a disk farm.

Figure 3–3 N+M Configuration Concept

You could configure the following failover policy for resource groups RG5 and RG6:

- Failover policy for RG5:
 - Initial failover domain = A, B, C, D
 - Failover attribute = Controlled_Failback
 - Failover script = ordered
- Failover policy for RG6:
 - Initial failover domain = C, A, D
 - Failover attribute = Controlled_Failback
 - Failover script = ordered

If node C fails, RG6 will fail over to node A. When node C reboots, RG6 will remain running on node A. If node A then fails, RG6 will return to node C and RG5 will move to node B. If node B then fails, RG5 moves to node C.

4 Defining a New Resource Type

This chapter tells you how to define a new resource type:

- Section 4.1, Using the GUI
- Section 4.2, Using cluster_mgr Interactively
- Section 4.3, Using cluster_mgr With a Script

It also tells you how to test the results in Section 4.4, Testing a New Resource Type.

To define a new resource type, you must have the following information:

• Name of the resource type. The name can consist of alphanumeric characters and any of the following:

```
- (hyphen)
_ (underscore)
/
:
:
"
=
@
```

The name cannot contain a space, an unprintable character, or any of the following characters:

```
*
?
\
#
```

- Name of the cluster to which the resource type will apply.
- If the resource type is to be restricted to a specific node, you must know the node name.
- Order of performing the action scripts for resources of this type in relation to resources of other types:
 - Resources are started in the increasing order of this value
 - Resources are stopped in the decreasing order of this value

Ensure that the number you choose for a new resource type permits the resource types on which it depends to be started before it is started, or stopped after it is stopped, as appropriate.

Table 4–1, *Order Ranges* shows the conventions used for order ranges. The values available for customer use are 201-400 and 701-999.

Range	Reservation
1-100	SGI-provided basic system resource types, such as MAC_address
101-200	SGI-provided system plug-ins that can be started before IP_address
201-400	User-defined resource types that can be started before IP_address

Table 4–1 Order Ranges

Range	Reservation
401-500	SGI-provided basic system resource types, such as IP_address
501-700	SGI-provided system plug-ins that must be started after IP_address
701-999	User-defined resource types that must be started after IP_address

Table 4–2, *Resource Type Order Numbers* shows the order numbers of the resource types provided with the release or available as plug-ins from SGI.

Order Number	Resource Type
10	MAC_address
20	volume
30	filesystem
201	NFS
401	IP_address
411	statd
502	Samba

 Table 4–2
 Resource Type Order Numbers

- Restart mode, which can be one of the following values:
 - 0 = Do not restart on monitoring failures
 - -1 =Restart a fixed number of times
- Number of local restarts (when restart mode is 1).
- Location of the executable script. This is always /usr/lib/failsafe/resource_types/resource_type_tname.
- Monitoring interval, which is the time period (in milliseconds) between successive executions of the monitor action script; this is only valid for the monitor action script.
- Starting time for monitoring. When the resource group is made online in a cluster node, Linux FailSafe will start monitoring the resources after the specified time period (in milliseconds).
- Action scripts to be defined for this resource type. You must specify scripts for start, stop, exclusive, and monitor, although the monitor script may contain only a return-success function if you wish. If you specify 1 for the restart mode, you must specify a restart script.
- Type-specific attributes to be defined for this resource type. The action scripts use this information to start, stop, and monitor a resource of this resource type. For example, NFS requires the following resource keys:
 - export-info which takes a value that defines the export options for the file system. These options are used in the kexportfs command. For example:

export-info = rw,wsync,anon=root

- filesystem which takes a value that defines the raw file system. This name is used as input to the mount command. For example:

```
filesystem = /dev/xlv/xlv_object
```

4.1 Using the GUI

You can use the FailSafe Manager graphical user interface (GUI) to define a new resource type and to define the dependencies for a given type. For details about the GUI, see the *Linux FailSafe Administrator's Guide*. For convenience, Appendix A, *Starting the FailSafe Manager*, contains information about starting the GUI.

4.1.1 Define a New Resource Type

To define a new resource type using the GUI, select the following task:

Resources & Resource Types => Define a Resource Type

The GUI will prompt you for required and optional information. Online help is provided for each item.

The following figures show this process for a new resource type called newresourcetype.

Figure 4–1 Select Define a New Resource

FailSafe Manager for cluster test-cluster (on chaos3)			
FailSafe Manager	Resources & Resource Types		
▶ Overview	Resource Tasks		
	Carlo a New Resource		
Guided	Redefine a Resource for a Specific Node		
Configuration	Add/Remove Dependencies for a Resource Definition		
l	The second secon		
▶ Nodes & Cluster	🕼 Clear Resource Error State		
D	📲 Delete a Resource		
Resources & Resource Types	Resource Type Tasks		
Failover Policies	🕼 Define a Resource Type		
▶ & Resource	Redefine a Resource Type for a Specific Node		
Groups	Carl Add/Remove Dependencies for a Resource Type		
▶ Diagnostics	🕼 Load a Resource Type		
	C Modify a Resource Type Definition		
▶ Find a Task	🕼 Delete a Resource Type		
FailSafe Cluster Vie	w Select Cluster View System Log Close		

Figure 4–2	Specify the	Name of the	New Resource	Туре
------------	-------------	-------------	---------------------	------

Define Resource Type for cluster test-cluster (on chaos3) (Step 1 of 4)				
	Define a resource type. This task lets you create a new clusterwide resource type definition that you can use when defining resources . Type a name for the new resource type and then click <i>Next</i> .			
	Resource Type: newresourcetype			
Prev	OK Cancel Help Next ►			

Define Resource Type for cluster test-cluster (on chaos3) (Step 2 of 4)			
	Specify settings for required actions. Enter settings below for the required action scripts associated with the resource type. After you make the appropriate settings, click <i>Next</i> . Enter all time settings in milliseconds.		
	Start/Stop Order:300Start Timeout:40000Stop Timeout:0Exclusive Timeout:0Monitor Timeout:0Monitor Interval:0Monitor Start Time:0		
Prev	OK Cancel Help Next ►		

Figure 4–3 Specify Settings for Required Actions

Figure 4–4	Change	Settings	for	Optional	Actions
------------	--------	----------	-----	----------	---------

📥 Define	Resource Type for cluster test-cluster (on chaos3) (Step 3 of 4)
ran -	Change settings for optional actions.
	Enter settings below for the optional action scripts associated with the resource type. After you make the appropriate settings, click Next. Optional settings appear in <i>italics</i> .
	Enter all time settings in milliseconds.
	Restart Enabled: 🗆
	Restart Timeout:
	Restart Count:
	Probe Enabled:
	Probe Timeout:
Prev	OK Cancel Help Next ►

Figure 4–5	Set Type-specific	Attributes
------------	-------------------	------------

Define Resource Type for cluster test-cluster (on chaos3) (Step 4 of 4)						
	Set type-specific attributes. Specify resource type attributes and click <i>Add</i> to include them in the list of attributes specific to the resource type. To change or delete an attribute, select it below and then click <i>Modify</i> or <i>Delete</i> . Resource type attributes are optional. Click <i>OK</i> to define the resource type. <i>Type-specific Attributes:</i>					
	Attribute:	Data Type: String ╺	Default Value:	Add		
	Attribute integer-att string-att	Data Type Integer String	Default Value 33 rw	Modify		
				Delete		
Prev		OK Cancel	Help	Next 🕨		

4.1.2 Define Dependencies

To define the dependencies for a given type use the following task:

Add/Remove Dependencies for a Resource Type

Figure 4–6, *Add Dependencies* shows an example of adding two dependencies (filesystem and NFS) to the newresourcetype resource type.

Figure 4–6 Add Dependencies

Add/Remove Dependencies for Resource Type for cluster test-cluster (on chaos3)		
real and the second sec	Add or remove dependencies for a resource type definition.	
	This task lets you change a resource type by adding or removing resource type dependencies	
Use the "Resource Type" menu to choose the resource type that you want to chan. A list of its existing dependencies appears; use the buttons to make changes. To a new dependency, choose it from the "Dependency Type" menu and click Add. To remove a dependency, select it from the list below and click Delete. Changes do take effect until you click the OK button.		
	Resource Type: newresourcetype -	
List of Dependencies:		
	Dependency Type:	
	▼ Add	
	Dependency Type	
	filesystem	
	OK Cancel Help	

4.2 Using cluster_mgr Interactively

The following steps show the use of cluster_mgr interactively to define a resource type called newresourcetype. Note that you can have multiple resource types. For example, if you want to have some IP addresses that allow local restart (restart mode = 0) and some that do not (restart mode = 1), you can copy the IP_address type to a new type named IP_address2 and change just that value in the IP_address2.

A resource type name cannot contain a space, an unprintable character, or any of the following characters:

^ ? \ #

1. Log in as root.

2. Execute the cluster_mgr command using the -p option to prompt you for information (the command name can be abbreviated to cmgr):

```
# /usr/lib/failsafe/bin/cluster_mgr -p
Welcome to Linux FailSafe Cluster Manager Command-Line Interface
cmgr>
```

3. Use the set subcommand to specify the default cluster used for cluster_mgr operations. In this example, we use a cluster named test:

```
cmgr> set cluster test
```

If you prefer, you can specify the cluster name as needed with each subcommand.

4. Use the define resource_type subcommand. By default, the resource type will apply across the cluster; if you wish to limit the resource type to a specific node, enter the node name when prompted. If you wish to enable restart mode, enter 1 when prompted.

The following example only shows the prompts and answers for two action scripts (start and stop) for a new resource type namednewresourcetype.

```
cmgr> define resource_type newresourcetype
(Enter "cancel" at any time to abort)
Node[optional]?
Order ? 300
Restart Mode ? (0)
DEFINE RESOURCE TYPE OPTIONS
        1) Add Action Script.
        2) Remove Action Script.
        3) Add Type Specific Attribute.
        4) Remove Type Specific Attribute.
        5) Add Dependency.
        6) Remove Dependency.
        7) Show Current Information.
        8) Cancel. (Aborts command)
        9) Done. (Exits and runs command)
Enter option:1
No current resource type actions
Action name ? start
```

Executable Time? 40000 Monitoring Interval? 0 Start Monitoring Time? 0 1) Add Action Script. 2) Remove Action Script. 3) Add Type Specific Attribute. 4) Remove Type Specific Attribute. 5) Add Dependency. 6) Remove Dependency. 7) Show Current Information. 8) Cancel. (Aborts command) 9) Done. (Exits and runs command) Enter option:1 Current resource type actions: Action - 1: start Action name **stop** Executable Time? 40000 Monitoring Interval? 0 Start Monitoring Time? 0 1) Add Action Script. 2) Remove Action Script. 3) Add Type Specific Attribute. 4) Remove Type Specific Attribute. 5) Add Dependency. 6) Remove Dependency. 7) Show Current Information. 8) Cancel. (Aborts command) 9) Done. (Exits and runs command) Enter option:3 No current type specific attributes Type Specific Attribute ? integer-att Datatype ? integer Default value[optional] ? 33 1) Add Action Script. 2) Remove Action Script. 3) Add Type Specific Attribute. 4) Remove Type Specific Attribute. 5) Add Dependency. 6) Remove Dependency. 7) Show Current Information. 8) Cancel. (Aborts command) 9) Done. (Exits and runs command)

Enter option:3

```
Current type specific attributes:
       Type Specific Attribute - 1: export-point
Type Specific Attribute ? string-att
Datatype ? string
Default value[optional] ? rw
        1) Add Action Script.
        2) Remove Action Script.
        3) Add Type Specific Attribute.
        4) Remove Type Specific Attribute.
        5) Add Dependency.
        6) Remove Dependency.
        7) Show Current Information.
        8) Cancel. (Aborts command)
        9) Done. (Exits and runs command)
Enter option:5
No current resource type dependencies
Dependency name ? filesystem
        1) Add Action Script.
        2) Remove Action Script.
        3) Add Type Specific Attribute.
        4) Remove Type Specific Attribute.
        5) Add Dependency.
        6) Remove Dependency.
        7) Show Current Information.
        8) Cancel. (Aborts command)
        9) Done. (Exits and runs command)
Enter option:7
Current resource type actions:
       Action - 1: start
       Action - 2: stop
Current type specific attributes:
        Type Specific Attribute - 1: integer-att
        Type Specific Attribute - 2: string-att
No current resource type dependencies
Resource dependencies to be added:
        Resource dependency - 1: filesystem
        1) Add Action Script.
        2) Remove Action Script.
        3) Add Type Specific Attribute.
        4) Remove Type Specific Attribute.
```

```
5) Add Dependency.
        6) Remove Dependency.
        7) Show Current Information.
        8) Cancel. (Aborts command)
        9) Done. (Exits and runs command)
Enter option:9
Successfully defined resource_type newresourcetype
cmgr> show resource_types in cluster test
NFS
template
newresourcetype
statd
MAC_address
IP_address
filesystem
volume
cmgr> exit
#
```

4.3 Using cluster_mgr With a Script

You can write a script that contains all of the information required to define a resource type and supply it to cluster_mgr by using the -f option:

cluster_mgr -f scriptname

Or, you could include the following as the first line of the script and then execute the script itself:

```
#!/usr/lib/failsafe/bin/cluster_mgr -f
```

If any line of the script fails, cluster_mgr will exit. You can choose to ignore the failure and continue the process by using the -i option, as follows:

```
#!/usr/lib/failsafe/bin/cluster_mgr -if
```

If you include -i when using a cluster_mgr command line as the first line of the script, you must use this exact syntax (that is, -if).

A template script for creating a new resource type is located in /usr/lib/failsafe/cmgr-templates/cmgr-create-resource_type. Each line of the script must be a valid cluster_mgr line, a comment line (starting with #), or a blank line.

You must include a done command line to finish a multi-level command. If you concatenate information from multiple template scripts to prepare your cluster configuration, you must remove the quit at the end of each template script.

For example, you could use the following script to define the same newresourcetype resource type defined interactively in the previous section:

```
# newresourcetype.script: Script to define the "newresourcetype" resource type
set cluster test
define resource_type newresourcetype
set order to 300
set restart_mode to 0
add action start
set exec_time to 40000
set monitor_interval to 0
set monitor_time to 0
done
add action stop
set exec_time to 40000
set monitor_interval to 0
set monitor_time to 0
done
add type_attribute integer-att
set data_type to integer
set default_value to 33
done
add type_attribute string-att
set data_type to string
set default_value to rw
done
add dependency filesystem
done
quit
```

When you execute the cluster_mgr -f command line with this script, you will see the following output:

```
# /usr/lib/failsafe/bin/cluster_mgr -f newresourcetype.script
Successfully defined resource_type newresourcetype
```

#

To verify that the resource type was defined, enter the following:

```
# /usr/lib/failsafe/bin/cluster_mgr -c "show resource_types in cluster test"
```

```
NFS
template
newresourcetype
statd
```

```
MAC_address
IP_address
filesystem
volume
```

4.4 Testing a New Resource Type

After adding a new resource type, you should test it as follows:

- 1. Define a resource group that contains resources of the new type. Ensure that the group contains all of the resources on which the new resource type depends.
- 2. Bring the resource group online in the cluster using cluster_mgr or the GUI.

For example, using cluster_mgr:

```
cmgr> admin online resource_group new_rg in cluster test_cluster
```

3. Check the status of the resource group using cluster_mgr or GUI after a few minutes.

For example:

```
cmgr> show status of resource_group new_rg in cluster test_cluster
```

4. If the resource group has been made online successfully, you will see output similar to the following:

```
State: Online
Error: No error
Owner: nodel
```

- 5. If there are resource group errors, do the following:
 - Check the srmd logs (/var/log/failsafe/srmd_nodename) on the node on which the resource group is online
 - Search for the string ERROR in the log file. There should be an error message about a resource in the resource group. The message also provides information about the action script that failed. For example:

Wed Nov 3 04:20:10.135 <E ha_srmd srm 12127:1 sa_process_tasks.c:627> CI_FAILURE, ERROR: Action (exclusive) for resource (10.0.2.45) of type (IP_address) failed with status (failed) exclusive script failed for the resource 10.0.2.45 of resource type IP_address. The status "failed" indicates that the script returned an error.

- Check the script logs (/var/log/failsafe/script_nodename on the same node) for IP_address exclusive script errors.
- After the fixing the problems in the action script, perform an offline_force operation to clear the error. For example:

cmgr> admin offline_force resource_group new_rg in cluster test_cluster

5 Testing Scripts

This chapter describes how to test action scripts without running Linux FailSafe. It also provides tips on how to debug problems that you may encounter.

Parameters are passed to the action scripts as both input files and output files. Each line of the input file contains the resource name; the output file contains the resource name and the script exit status.

5.1 General Testing and Debugging Techniques

Some general testing and debugging techniques you can use during testing are as follows:

• To get debugging information, adding the following line to each of your scripts in the main function of the script:

set -x

- To check that an application is running on a node, you may be able to use a command provided by the application.
- Another way to check that an application is running on a node, is to enter this command on that node:

ps -ef | grep application

application is the name (or a portion of the name) of the executable for the application.

• To show the status of a resource, use the following cluster_mgr command:

cmgr> set cluster clustername
cmgr> show status of resource resourcename of resource_type typename

• To show the status of a node, use the following cluster_mgr command:

cmgr> show status of node nodename

• To show the status of a resource group, use the following cluster_mgr command: cmgr> show status of resource_group rgname in cluster cname

5.2 Debugging Notes

- The exclusive script returns an error when the resource is running in the local node. If the resource is actually running in the node, there is no exclusive action script bug.
- If the resource group does not become online on the primary node, it can be because of a start script error on the primary node or a monitor script error on the primary node. The nature of the failure can be seen in the srmd logs of the primary node.
- If the action script failure status is timeout, resource type timeouts for the action should be increased. In the case of the monitor script, the check can be made more lightweight.

- The resource type action script timeouts are for a resource. So, if an action is performed on two resources, the script timeout is twice the configured resource type action timeout.
- If the resource group has a configuration error, check the srmd logs on the primary node for errors.
- The action scripts that use \${HA_LOG} and \${HA_DBGLOG} macros to log messages can find the messages in /var/log/failsafe/script_nodename file in each node in the cluster.

5.3 Testing an Action Script

To test an action script, do the following:

1. Create an input file, such as /tmp/input, that contains expected resource names. For example, to create a file that contains the resource named disk1 do the following:

echo "/disk1" > /tmp/input

2. Create an input parameter file, such as /tmp/ipparamfile, as follows:

```
# echo "ClusterName web-cluster" > /tmp/ipparamfile
```

3. Execute the action script as follows:

```
# ./start /tmp/input /tmp/output /tmp/ipparamfile
```

The use of the input parameter file is optional.

4. Change the log level from HA_NORMLVL to HA_DBGLVL to allow messages written with HA_DBGLOG to be printed by adding the following line after the set_global_variables statement in your script:

```
HA_CURRENT_LOGLEVEL=$HA_DBGLVL
```

The output file will contain one of the following return values for the start, stop, monitor, and restart scripts:

```
HA_SUCCESS=0
HA_INVAL_ARGS=1
HA_CMD_FAILED=2
HA_NOTSUPPORTED=3
HA_NOCFGINFO=4
```

The output file will contain one of the following return values for the exclusive script:

HA_NOT_RUNNING=0 HA_RUNNING=2

If you call the exit_script function prior to normal termination, it should be preceded by the ha_write_status_for_resource function and you should use the same return code that is logged to the output file.

Suppose you have a resource named /disk1 and the following files:

- The syntax for the input file is: *<resourcename>*
- The syntax for the output file is: <resourcename> <status>

The following example shows:

- The exit status of the action script is 1
- The exit status of the resource is 2

The use of anonymous indicates that the script was run manually. When the script is run by Linux FailSafe, the full path to the script name is displayed.

```
# echo "/disk1" > /tmp/ipfile
# ./monitor /tmp/ipfile /tmp/opfile /tmp/ipparamfile
# echo $?
2
# cat /tmp/opfile
/disk1 2
# tail /var/log/failsafe/script_heb1
Tue Aug 25 11:32:57.437 <anonymous script 23787:0 Unknown:0> ./monitor:
./monitor called with /tmp/ipfile and /tmp/opfile
Tue Aug 25 11:32:58.118 <anonymous script 24556:0 Unknown:0> ./monitor:
check to see if /disk1 is mounted on /disk1
Tue Aug 25 11:32:58.433 <anonymous script 23811:0 Unknown:0> ./monitor:
/bin/mount | grep /disk1 | grep /disk1 >> /dev/null 2>&1 exited with
status 0
Tue Aug 25 11:32:58.665 <anonymous script 24124:0 Unknown:0> ./monitor:
stat mount point /disk1
Tue Aug 25 11:32:58.969 <anonymous script 23525:0 Unknown:0> ./monitor:
/bin/stat /disk1 exited with status 0
Tue Aug 25 11:32:59.258 <anonymous script 24431:0 Unknown:0> ./monitor:
check the filesystem /disk1 is exported
Tue Aug 25 11:32:59.610 <anonymous script 6982:0 Unknown:0> ./monitor:
Tue Aug 25 11:32:59.917 <anonymous script 24040:0 Unknown:0> ./monitor:
awk '{print \$1}' /var/run/failasafe/tmp/exportfs.23762 | grep /disk1 exited
with status 1
Tue Aug 25 11:33:00.131 <anonymous script 24418:0 Unknown:0> ./monitor:
echo failed to find /disk1 in exported filesystem list:-
Tue Aug 25 11:33:00.340 <anonymous script 24236:0 Unknown:0> ./monitor:
echo /disk2
```

For additional information about a script's processing, see the /var/log/failsafe/script_nodename.

5.4 Special Testing Considerations for the monitor Script

The monitor script tests the liveliness of applications and resources. The best way to test it is to induce a failure, run the script, and check if this failure is detected by the script; then repeat the process for another failure.

Use this checklist for testing a monitor script:

- Verify that the script detects failure of the application successfully.
- Verify that the script always exits with a return value.
- Verify that the script does not contain commands that can hang (such as using DNS for name resolution) or those that continue forever, such as ping.
- Verify that the script completes before the time-out value specified in the configuration file.
- Verify that the script's return codes are correct.

During testing, measure the time it takes for a script to complete and adjust the monitoring times in your script accordingly. To get a good estimate of the time required for the script to execute, run it under different system load conditions.

A Starting the FailSafe Manager

To start the FailSafe Manager, use one of these methods:

- On a system with sysadm_failsafe2-client and KDE or GNOME installed, choose "FailSafe Manager" from the Applications menu. (After installing sysadm_failsafe2-client, you may need to restart the desktop's launch bar before the Failsafe Manager will show up in the Applications menu. (To do this in KDE, right-click on the panel and select Restart from the menu.)
- On a system with sysadm_failsafe2-client installed, enter the following command line:

\$ /usr/bin/fstask

• In your web browser, enter the following, where *server* is the name of the node in the pool or cluster that you want to administer:

http://server/FailSafeManager/

At the resulting Web page, click on the icon. The server must have sysadm_failsafe2-web installed.

Figure A-1, FailSafe Manager, shows the FailSafe Manager.

- FailSafe Manager for cluster test-cluster (on chaos3)		
FailSafe Manager	Overview	
⊳ Overview	FailSafe Manager provides access to the tasks that help you set up and administer your high availability cluster. The tasks are organized into the categories described below. To view a category, click on it in the column at left.	
► Guided Configuration	To set up a cluster for the first time, click Guided Configuration.	
I	Overview Display this overview document.	
▶ Nodes & Cluster	Guided Configuration –– Launch tasksets to set up your initial cluster, or to customize or fix an existing cluster.	
► Resources & Resource Types	Nodes & Cluster Set up a cluster, and define and manage nodes in the cluster. Set parameters for how FailSafe monitors cluster and start FailSafe high-availability services on the cluster.	
Failover Policies ▶ & Resource Groups	Resources & Resource Types Set up and configure high- availability resources and resource types (such as applications, IP addresses, filesystems, and volumes).	
 ▶ Diagnostics → Find a Task 	Failover Policies & Resource Groups Set up groups of resources and create policies to determine how FailSafe should keep the groups highly available. Manage resource groups by moving them, taking them offline, or stopping FailSafe monitoring.	
	Diagnostics –– Verify your node, resource, and failover policy definitions.	
	Find a Task –– Use keywords to search for a specific task.	
FailSafe Cluster View Select Cluster View System Log Close		

B Using the SRM Script Library

The /usr/lib/failsafe/common_scripts/scriptlib file contains the library of environment variables (beginning with uppercase HA_) and functions (beginning with lowercase ha_) available for use in your action scripts.

Do not change the contents of the scriptlib file.

This chapter describes functions that perform the following tasks, using samples from the scriptlib file:

- Linux FailSafe application interfaces
- Set global definitions
- Check arguments
- Read an input file
- Execute a command
- Write status for a resource
- Get the value for a field
- Get resource information
- Print exclusivity check messages

B.1 Linux FailSafe application interfaces

The Linux FailSafe application interface identifies resources by two strings:

- Resource name
- Resource type

For example, a resource named vol1 of resource type volumes is identified by the following: vol1 volumes.

Using the script library simplifies interaction with the interface. If you do not use the script library, you must understand the following file formats used by action scripts:

• Input file, which contains the list of resources that must be acted on by the executable; each resource must be specified on a separate line in the file. SRMD can also pass action flags for each resource in the input file. The format of a line in the input file is as follows (fields separated by white space):

resource_name action_flags

• Output file, in which the executable writes the return the status of the each resource on a separate line using the following format (fields separated by white space):

resource_name resource_status

• (optional) Input parameters file, which contains the name of the cluster:

ClusterName *clustername*

The following codes are defined in /usr/lib/failsafe/common_scripts/scriptlib:

- HA_SUCCESS
- HA_NOT_RUNNING
- HA_INVAL_ARGS
- HA_CMD_FAILED
- HA_RUNNING
- HA_NOTSUPPORTED
- HA_NOCFGINFO

B.2 Set Global Definitions

The ha_set_global_defs() function sets the global definitions for the environment variables shown in this section.

The HA_INFILE and HA_OUTFILE variables set the input and output files for a script. These variables do not have global definitions, and are not set by the ha_set_global_defs() function.

B.2.1 Global Variable

B.2.1.1 HA_HOSTNAME

The output of the uname command with the -n option, which is the host name or nodename. The nodename is the name by which the system is known to communications networks.

Default: 'uname -n'

B.2.2 Command Location Variables

B.2.2.1 HA_CMDSPATH

Path to user commands.

Default: /usr/lib/failsafe/bin

B.2.2.2 HA_PRIVCMDSPATH

Path to privileged commands (those that can only be run by root).

Default: /usr/lib/sysadm/privbin

B.2.2.3 HA_LOGCMD

Command used to log information.

Default: ha_cilog

B.2.2.4 HA_RESOURCEQUERYCMD

Resource query command. This is an internal command that is not meant for direct use in scripts; use the ha_get_info() function of scriptlib instead.

Default: resourceQuery

B.2.2.5 HA_SCRIPTTMPDIR

Location of the script temporary directory.

Default: /var/run/failsafe/tmp

B.2.3 Database Location Variables

B.2.3.1 HA_CDB

Location of the cluster configuration database.

Default: /var/lib/failsafe/cdb/cdb.db

B.2.4 Script Log Level Variables

B.2.4.1 HA_NORMLVL

Normal level of script logs.

Default: 1

B.2.4.2 HA_DBGLVL

Debug level of script logs. Default: 10

B.2.5 Script Log Variables

B.2.5.1 HA_SCRIPTGROUP

Log for the script group.

Default: ha_script

B.2.5.2 HA_SCRIPTSUBSYS

Log for the script subsystem.

Default:script

B.2.6 Script Logging Command Variables

B.2.6.1 HA_DBGLOG

Command used to log debug messages from the scripts.

Default: ha_dbglog

B.2.6.2 HA_CURRENT_LOGLEVEL

The value of the current logging level. ha_log will only output messages if this value is greater than or equal to HA_NORMLVL. ha_dbglog will only output messages if this value is greater than or equal to HA_DBGLVL.

Default: 2

B.2.6.3 HA_LOG

Command used to log the scripts.

Default: ha_log

B.2.7 Script Error Value Variables

B.2.7.1 HA_SUCCESS

Successful execution of the script. This variable is used by the start, stop, restart, and monitor scripts.

Default: 0

B.2.7.2 HA_NOT_RUNNING

The script is not running. This variable is used by exclusive scripts.

Default: 0

B.2.7.3 HA_INVAL_ARGS

An invalid argument was entered. This is used by all scripts.

Default: 1

B.2.7.4 HA_CMD_FAILED

A command called by the script has failed. his variable is used by the start, stop, restart, and monitor, scripts.

Default: 2

B.2.7.5 HA_RUNNING

The script is running. This variable is used by exclusive scripts.

Default: 2

B.2.7.6 HA_NOTSUPPORTED

The specific action is not supported for this resource type. This is used by all scripts.

Default: 3

B.2.7.7 HA_NOCFGINFO

No configuration information was found. This is used by all scripts.

Default: 4

B.3 Check Arguments

An action script has the following arguments: an input file, HA_INFILE, an output file HA_OUTFILE, and an optional parameter file HA_PARAMFILE. These become the positional arguments to the script, \$1, \$2 and \$3 parameter file is optional.

The ha_check_args() function checks the arguments specified for a script and sets the \$HA_INFILE and \$HA_OUTFILE variables accordingly.

If a parameter file exists, the ha_check_args() function reads the list of parameters from the file and sets the \$HA_CLUSTERNAME variable.

In the following, long lines use the continuation character (\setminus) for readability.

```
ha_check_args()
{
    ${HA_DBGLOG} "$HA_SCRIPTNAME called with $1, $2 and $3"
    if ! [ $# -eq 2 -o $# -eq 3 ]; then
        ${HA_LOG} "Incorrect number of arguments"
        return 1;
    fi
    if [ ! -r $1 ]; then
        ${HA_LOG} "file $1 is not readable or does not exist"
        return 1;
    fi
    if [ ! -s $1 ]; then
        ${HA_LOG} "file $1 is empty"
        return 1;
    fi
    if [ $# -eq 3 ]; then
        HA_PARAMFILE=$3
        if [ ! -r $3 ]; then
            ${HA_LOG} "file $3 is not readable or does not exist"
            return 1;
        fi
        HA_CLUSTERNAME='/usr/bin/awk '{ if ( $1 == "ClusterName" ) \
            print $2 }' ${HA_PARAMFILE}`
    fi
    HA_INFILE=$1
    HA_OUTFILE=$2
    return 0;
}
```

B.4 Read an Input File

The ha_read_infile() function reads the \$HA_INFILE input file into the \$HA_RES_NAMES variable, which specifies the list of resource names.

```
ha_read_infile()
{
    HA_RES_NAMES="";
    for HA_RESOURCE in`cat ${HA_INFILE}
    do
        HA_RES_NAMES="${HA_RES_NAMES} ${HA_RESOURCE}";
    done
}
```

B.5 Execute a Command

The ha_execute_cmd() function executes the command specified by \$HA_CMD, which is set in the action script. \$1 is the string to be logged. The function returns 1 on error and 0 on success. On errors, the standard output and standard error of the command is redirected to the log file.

```
ha_execute_cmd()
{
    OUTFILE=${HA_SCRIPTTMPDIR}/script.$$
    ${HA_DEGLOG} $1
    eval ${HA_CMD} > ${OUTFILE} 2>&1;
    ha_exit_code=$?;
    if [ $ha_exit_code -ne 0 ]; then
        ${HA_LOG} "$1 failed"
        ${HA_LOG} 'cat ${HA_SCRIPTTMPDIR}/script.$$`
    fi
        ${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";
        rm ${OUTFILE}
        return $ha_exit_code;
}
```

The ha_execute_cmd_ret() function is similar to ha_execute_cmd, except that it places the command output in the string \$HA_CMD_OUTPUT.

```
ha_execute_cmd_ret()
{
    ${HA_DBGLOG} $1
    HA_CMD_OUTPUT=`${HA_CMD}`;
```

```
ha_exit_code=$?;
${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";
return $ha_exit_code;
}
```

B.6 Write Status for a Resource

The ha_write_status_for_resource() function writes the status for a resource to the \$HA_OUTFILE output file. \$1 is the resource name, and \$2 is the resource status.

```
ha_write_status_for_resource()
{
    echo $1 $2 >> $HA_OUTFILE;
}
```

Similarly, the ha_write_status_for_all_resources() function writes the status for all resources. \$HA_RES_NAMES is the list of resource names.

```
ha_write_status_for_all_resources()
{
    for HA_RES in $HA_RES_NAMES
    do
        echo $HA_RES $1 >> $HA_OUTFILE;
    done
}
```

B.7 Get the Value for a Field

The ha_get_field() function obtains the field value from a string, where \$1 is the string and \$2 is the field name. The string format is a series of name-value field pairs, where a name field is followed by the value of the name, separated by whitespace. This appears as follows:

```
ha_get_field()
 {
     HA_STR=$1
     HA_FIELD_NAME=$2
     ha_found=0;
     ha_field=1;
     for ha_i in $HA_STR
     do
         if [ $ha_field -eq 1 ]; then
             ha_field=0;
             if [ $ha_i = $HA_FIELD_NAME ]; then
                 ha_found=1;
             fi
         else
             ha_field=1;
             if [ $ha_found -eq 1 ]; then
                 HA_FIELD_VALUE=$ha_i
                 return 0;
             fi
```

```
fi
done
return 1;
}
```

B.8 Get the Value for Multiple Fields

The ha_get_multi_fields() function obtains the field values from a string, where \$1 is the string and \$2 is the field name. The string format is a series of name-value field pairs, where a name field is followed by the value of the name, separated by whitespace.

This function is typically used to extract dependency information. There may be multiple fields with the same name so the string returned in HA_FIELD_VALUE may contain multiple values separated by white space. This appears as follows:

```
ha_get_multi_fields()
{
   HA_STR=$1
   HA_FIELD_NAME=$2
   ha found=0;
   ha field=1;
    for ha_i in $HA_STR
    do
        if [ $ha_field -eq 1 ]; then
            ha_field=0;
            if [ $ha_i = $HA_FIELD_NAME ]; then
                ha_found=1;
            fi
        else
            ha_field=1;
            if [ $ha_found -eq 1 ]; then
                if [ -z "$HA_FIELD_VALUE" ]; then
                    HA_FIELD_VALUE=$ha_i;
                else
                    HA_FIELD_VALUE="$HA_FIELD_VALUE $ha_i";
                fi;
                ha_found=0;
            fi
        fi
    done
    if [ -z "$HA_FIELD_VALUE" ]; then
        return 1;
    else
        return 0;
    fi
}
```

B.9 Get Resource Information

The ha_get_info() and ha_get_info_debug() functions read resource information. \$1 is the resource type and \$2 is the resource name, and \$3 is an optional parameter of any value

that specifies a request for resource dependency information. Resource information is stored in the HA_STRING variable. The return value of the query is passed back to the caller, 0 indicates success. All errors are logged. If the resourceQuery command fails, the HA_STRING is set to an invalid string, and future calls to ha_get_info() or ha_get_info_debug() return errors.

The function ha_get_info_debug() differs from ha_get_info in that it will attempt the resource query a single time, instead of retrying as ha_get_info() would do. This is likely to be useful for testing due to faster returns and less complexity. You can call this function directly, or you can create the file /var/run/failsafe/resourceQuery.debug which will cause all invocations of ha_get_info() in all scripts on the node to be diverted to ha_get_info_debug() until the file is removed.

```
ha_get_info()
{
    if [ -f /var/run/failsafe/resourceQuery.debug ]; then
        ha_get_info_debug $1 $2 $3
        return;
    fi
    if [ -n "$3" ]; then
        ha_doall="_ALL=true"
    else
        ha_doall=""
    fi
    # Retry resourceQuery command $HA RETRY CMD MAX times if $HA RETRY CMD ERR
    # is returned.
    ha_retry_count=1
    while [ $ha_retry_count -le $HA_RETRY_CMD_MAX ];
    do
        if [ -n "${HA_CLUSTERNAME}" ]; then
            HA_STRING=`${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \
                        _CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \
                        $ha_doall _NO_LOGGING=true _CLUSTER=${HA_CLUSTERNAME}`
        else
            HA_STRING=`${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \
                        _CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 \
                        $ha_doall _NO_LOGGING=true`
        fi
        ha_exit_code=$?
        if [ $ha_exit_code -ne 0 ]; then
            ${HA_LOG} "${HA_RESOURCEQUERYCMD}: resource name $2 resource type $1"
            ${HA_LOG} "Failed with error: ${HA_STRING}";
        fi
        if [ $ha_exit_code -ne $HA_RETRY_CMD_ERR ]; then
            break;
        fi
```

```
ha_retry_count='expr $ha_retry_count + 1'
    done
   if [ -n "$ha_doall" ]; then
        echo $HA STRING \
                grep "No resource dependencies" > /dev/null 2>&1
        if [ $? -eq 0 ]; then
            HA_STRING=
        else
            HA_STRING='echo $HA_STRING | /bin/sed -e "s/^.*Resource dependencies
//"`
        fi
    fi
    return ${ha_exit_code};
}
ha_get_info_debug()
{
    if [ -n "$3" ]; then
        ha_doall="_ALL=true"
    else
        ha_doall=""
    fi
    if [ -n "${HA_CLUSTERNAME}}" ]; then
        HA_STRING=`${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \
                    _CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1
                                                                          \backslash
                    $ha_doall _CLUSTER=${HA_CLUSTERNAME}`
    else
        HA_STRING=`${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD} \
                    _CDB_DB=$HA_CDB _RESOURCE=$2 _RESOURCE_TYPE=$1 $ha_doall`
    fi
    ha_exit_code=$?
    if [ $? -ne 0 ]; then
        ${HA LOG} "${HA RESOURCEQUERYCMD}: resource name $2 resource type $1"
        ${HA_LOG} "Failed with error: ${HA_STRING}";
    fi
    if [ -n "$ha_doall" ]; then
        echo HA_STRING \setminus
                | grep "No resource dependencies" > /dev/null 2>&1
        if [ $? -eq 0 ]; then
            HA_STRING=
        else
            HA_STRING='echo $HA_STRING | /bin/sed -e "s/^.*Resource dependencies
//"`
        fi
    fi
```

```
return ${ha_exit_code};
}
```

B.10 Print Exclusivity Check Messages

The ha_print_exclusive_status() function prints exclusivity check messages to the log file. \$1 is the resource name and \$2 is the exit status.

```
ha_print_exclusive_status()
{
    if [ $? -eq $HA_NOT_RUNNING ]; then
        ${HA_LOG} "resource $1 exclusive status: NOT RUNNING"
        else
            ${HA_LOG} "resource $1 exclusive status: RUNNING"
        fi
}
```

The ha_print_exclusive_status_all_resources() function is similar, but it prints exclusivity check messages for all resources. \$HA_RES_NAMES is the list of resource names.

```
ha_print_exclusive_status_all_resources()
{
    for HA_RES in $HA_RES_NAMES
    do
        ha_print_exclusive_status ${HA_RES} $1
    done
}
```

Glossary

action scripts

The set of scripts that determine how a resource is started, monitored, and stopped. There must be a set of action scripts specified for each resource type. The possible set of action scripts is: exclusive, start, stop, monitor, and restart.

cluster

A collection of one or more cluster nodes coupled to each other by networks or other similar interconnections. A cluster is identified by a simple name; this name must be unique within the pool. A particular node may be a member of only one cluster.

cluster administrator

The person responsible for managing and maintaining a cluster.

cluster configuration database

Contains configuration information about all resources, resource types, resource groups, failover policies, nodes, and clusters.

cluster node

A single Linux execution environment. In other words, a single physical machine or single running Linux kernel. In current Linux environments this will be an individual computer. The term **node** is used within this guide to indicate this meaning, as opposed to any alternate meaning such as a network node.

control messages

Messages that cluster software sends between the cluster nodes to request operations on or distribute information about cluster nodes and resource groups. Linux FailSafe sends control messages for the purpose of ensuring nodes and groups remain highly available. Control messages and heartbeat messages are sent through a node's network interfaces that have been attached to a control network. A node can be attached to multiple control networks.

A node's control networks should not be set to accept control messages if the node is not a dedicated Linux FailSafe node. Otherwise, end users who run other jobs on the machine can have their jobs killed unexpectedly when Linux FailSafe resets the node.

control network

The network that connects nodes through their network interfaces (typically Ethernet) such that Linux FailSafe can maintain a cluster's high availability by sending heartbeat messages and control messages through the network to the attached nodes. Linux FailSafe uses the highest priority network interface on the control network; it uses a network interface with lower priority when all higher-priority network interfaces on the control network fail.

A node must have at least one control network interface for heartbeat messages and one for control messages (both heartbeat and control messages can be configured to use the same interface). A node can have no more than eight control network interfaces.

database

See cluster configuration database

dependency list

See resource dependency or resource type dependency.

failover

The process of allocating a resource group to another node according to a failover policy. A failover may be triggered by the failure of a resource, a change in the node membership (such as when a node fails or starts), or a manual request by the administrator.

failover attribute

A string that affects the allocation of a resource group in a cluster. The administrator must specify system-defined attributes (such as Auto_Failback or Con-trolled_Failback), and can optionally supply site-specific attributes.

failover domain

The ordered list of nodes on which a particular resource group can be allocated. The nodes listed in the failover domain must be within the same cluster; however, the failover domain does not have to include every node in the cluster. The administrator defines the initial failover domain when creating a failover policy. This list is transformed into the run-time failover domain by the failover script the run-time failover domain is what is actually used to select the failover node. Linux FailSafe stores the run-time failover domain and uses it as input to the next failover script invocation. The initial and run-time failover domains may be identical, depending upon the contents of the failover script. In general, Linux FailSafe allocates a given resource group to the first node listed in the run-time failover domain that is also in the node membership; the point at which this allocation takes place is affected by the failover attributes.

failover policy

The method used by Linux FailSafe to determine the destination node of a failover. A failover policy consists of a failover domain, failover attributes, and a failover script. A failover policy name must be unique within the pool.

failover script

A failover policy component that generates a run-time failover domain and returns it to the Linux FailSafe process. The process applies the failover attributes and then selects the first node in the returned failover domain that is also in the current node membership.

Failsafe database

See cluster configuration database

heartbeat messages

Messages that cluster software sends between the nodes that indicate a node is up and running. Heartbeat messages and control messages are sent through a node's network interfaces that have been attached to a control network. A node can be attached to multiple control networks.

heartbeat interval

Interval between heartbeat messages. The node timeout value must be at least 10 times the heartbeat interval for proper Linux FailSafe operation (otherwise false failovers may be triggered). The higher the number of heartbeats (smaller heartbeat interval), the greater the potential for slowing down the network. Conversely, the fewer the number of heartbeats (larger heartbeat interval), the greater the potential for reducing availability of resources.

initial failover domain

The ordered list of nodes, defined by the administrator when a failover policy is first created, that is used the first time a cluster is booted. The ordered list specified by the initial failover domain is transformed into a run-time failover domain by the failover script; the run-time failover domain is used along with failover attributes to determine the node on which a resource group should reside. With each failure, the failover script takes the current run-time failover domain and potentially modifies it; the initial failover domain is never used again. Depending on the run-time conditions and contents of the failover script, the initial and run-time failover domains may be identical. See also **run-time failover domain**.

key/value attribute

A set of information that must be defined for a particular resource type. For example, for the resource type filesystem one key/value pair might be *mount_point=/fs1* where *mount_point* is the key and *fs1* is the value specific to the particular resource being defined. Depending on the value, you specify either a string or integer data type. In the previous example, you would specify string as the data type for the value *fs1*.

log configuration

A log configuration has two parts: a log level and a log file, both associated with a log group. The cluster administrator can customize the location and amount of log output, and can specify a log configuration for all nodes or for only one node. For example, the crsd log group can be configured to log detailed level-10 messages to the /var/log/failsafe/crsd_foo log only on the node foo and to write only minimal level-1 messages to the crsd log on all other nodes.

log file

A file containing Linux FailSafe notifications for a particular log group. A log file is part of the log configuration for a log group. By default, log files reside in the /var/log/failsafe directory, but the cluster administrator can customize this. Note: Linux FailSafe logs both normal operations and critical errors to /var/log/failsafe, as well as to individual logs for specific log groups.

log group

A set of one or more Linux FailSafe processes that use the same log configuration. A log group usually corresponds to one daemon, such as gcd.

log level

A number controlling the number of log messages that Linux FailSafe will write into an associated log group's log file. A log level is part of the log configuration for a log group.

node

See cluster node

node ID

A 16-bit positive integer that uniquely defines a cluster node. During node definition, Linux FailSafe will assign a node ID if one has not been assigned by the cluster administrator. Once assigned, the node ID cannot be modified.

node membership

The list of nodes in a cluster on which Linux FailSafe can allocate resource groups.

node timeout

If no heartbeat is received from a node in this period of time, the node is considered to be dead. The node timeout value must be at least 10 times the heartbeat interval for proper Linux FailSafe operation (otherwise false failovers may be triggered).

notification command

The command used to notify the cluster administrator of changes or failures in the cluster, nodes, and resource groups. The command must exist on every node in the cluster.

offline resource group

A resource group that is not highly available in the cluster. To put a resource group in offline state, Linux FailSafe stops the group (if needed) and stops monitoring the group. An offline resource group can be running on a node, yet not under Linux FailSafe control. If the cluster administrator specifies the detach only option while taking the group offline, then Linux FailSafe will not stop the group but will stop monitoring the group.

online resource group

A resource group that is highly available in the cluster. When Linux FailSafe detects a failure that degrades the resource group availability, it moves the resource group to another node in the cluster. To put a resource group in online state, Linux FailSafe starts the group (if needed) and begins monitoring the group. If the cluster administrator specifies the **attach only** option while bringing the group online, then Linux FailSafe will not start the group but will begin monitoring the group.

owner host

A system that can control a node remotely, for example power-cycling the node. At run time, the owner host must be defined as a node in the pool.

owner TTY name

The device file name of the terminal port (TTY) on the owner host to which the system controller serial cable is connected. The other end of the cable connects to the node with the system controller port, so the node can be controlled remotely by the owner host.

pool

The entire set of nodes involved with a group of clusters. The group of clusters are usually close together and should always serve a common purpose. A replicated cluster configuration database is stored on each node in the pool.

port password

The password for the system controller port, usually set once in firmware or by setting jumper wires. (This is not the same as the node's root password.)

powerfail mode

When powerfail mode is turned on, Linux FailSafe tracks the response from a node's system controller as it makes reset requests to a cluster node. When these requests fail to reset the node successfully, Linux FailSafe uses heuristics to try to estimate whether the machine has been powered down. If the heuristic algorithm returns with success, Linux FailSafe assumes the remote machine has been reset successfully. When powerfail mode is turned off, the heuristics are not used and Linux FailSafe may not be able to detect node power failures.

process group

A group of application instances. Each application instance can consist of one or more UNIX processes and spans only one node.

process membership

A list of process instances in a cluster that form a process group. There can multiple process groups per node.

resource

A single physical or logical entity that provides a service to clients or other resources. For example, a resource can be a single disk volume, a particular network address, or an application such as a web server. A resource is generally available for use over time on two or more nodes in a cluster, although it can be allocated to only one node at any given time. Resources are identified by a resource name and a resource type. Dependent resources must be part of the same resource group and are identified in a resource dependency list.

resource dependency

The condition in which a resource requires the existence of other resources.

resource dependency list

A list of resources upon which a resource depends. Each resource instance must have resource dependencies that satisfy its resource type dependencies before it can be added to a resource group.

resource group

A collection of resources. A resource group is identified by a simple name; this name must be unique within a cluster. Resource groups cannot overlap; that is, two resource groups cannot contain the same resource. All interdependent resources must be part of the same resource group. If any individual resource in a resource group becomes unavailable for its intended use, then the entire resource group is considered unavailable. Therefore, a resource group is the unit of failover.

resource keys

Variables that define a resource of a given resource type. The action scripts use this information to start, stop, and monitor a resource of this resource type.

resource name

The simple name that identifies a specific instance of a resource type. A resource name must be unique within a given resource type.

resource type

A particular class of resource. All of the resources in a particular resource type can be handled in the same way for the purposes of failover. Every resource is an instance of exactly one resource type. A resource type is identified by a simple name; this name must be unique within a cluster. A resource type can be defined for a specific node or for an entire cluster. A resource type that is defined for a node overrides a cluster-wide resource type definition with the same name; this allows an individual node to override global settings from a cluster-wide resource type definition.

resource type dependency

A set of resource types upon which a resource type depends. For example, the filesystem resource type depends upon the volume resource type, and the Netscape_web resource type depends upon the filesystem and IP_address resource types.

resource type dependency list

A list of resource types upon which a resource type depends.

run-time failover domain

The ordered set of nodes on which the resource group can execute upon failures, as modified by the failover script. The run-time failover domain is used along with failover attributes to determine the node on which a resource group should reside. See also **initial failover domain**.

start/stop order

Each resource type has a start/stop order, which is a non-negative integer. In a resource group, the start/stop orders of the resource types determine the order in which the resources will be started when Linux FailSafe brings the group online and will be stopped when Linux FailSafe takes the group offline. The group's resources are started in increasing order, and stopped in decreasing order; resources of the same type are started and stopped in indeterminate order. For example, if resource type volume has order 10 and resource type filesystem has order 20, then when Linux FailSafe brings a resource group online, all volume resources in the group will be started before all file system resources in the group.

system controller port

A port located on a node that provides a way to power-cycle the node remotely. One example of this in the x86-based hardware arena is the Intel EMP (Emergency Management Port) supplied on some Intel motherboards. Enabling or disabling a system controller port in the cluster configuration database (CDB) tells Linux FailSafe whether it can perform operations on the system controller port. (When the port is enabled, serial cables must attach the port to another node, the owner host.) System controller port information is optional for a node in the pool, but is required if the node will be added to a cluster; otherwise resources running on that node never will be highly available.

tie-breaker node

A node identified as a tie-breaker for Linux FailSafe to use in the process of computing node membership for the cluster, when exactly half the nodes in the cluster are up and can communicate with each other. If a tie-breaker node is not specified, Linux FailSafe will use the node with the lowest node ID in the cluster as the tie-breaker node.

type-specific attribute

Required information used to define a resource of a particular resource type. For example, for a resource of type filesystem you must enter attributes for the resource's volume name (where the file system is located) and specify options for how to mount the file system (for example, as readable and writable).

Index

Α															_
action scripts														. 12	2
examples														. 27	7
failure of														. 19	9
format															
basic action					•		•							. 25	5
completion														. 26	5
exit status					•		•							. 24	4
header					•		•							. 23	3
overview														. 22	2
read input file														. 26	5
read resource information .														. 24	4
set global variables														. 25	5
set local variables														. 24	4
verify arguments														. 26	5
monitoring															
frequence														. 22	2
necessity of														. 21	1
testing examples														. 22	2
types														. 21	1
optional															
preparation for writing scripts															
required															
resource types provided															
set of scripts														. 16	5
successful execution results .															
templates														. 20	C
testing															
writing steps															
agents															
application failover domain														. 12	2
attributes															
Auto_Failback failover attribute															
Auto_Recovery failover attribute															
_ ,															
C															_
check arguments		•	•	•	•		•			•	•	•	•	. 73	3
cluster		•	•		•	•	•			•	•	•	•	. 9	9
cluster node		•	•		•	•	•	•		•	•	•	•	. 9	9
cluster_mgr command						•	•				•	•	•	. 56	5
cmgr command		•	•		•		•				•	•	•	. 56	5

command path	
N+1	45
N+2	
N+Z	
Controlled_Failback failover attribute	
	71
debug script messages	
debugging information in action scripts	
dependency list	
domain	
	55
<u>E</u>	
environment variables	
/etc/failsafe/cmon_process_groups directory	34
exclusive script	
example	31
exclusive script	
definition	16
execute a command	74
exit status in action scripts	24
exit_script() function	64
exit_status value	24
F	
failover attributes	36
failover domain	
failover	
failover policy	
contents	35
examples	
	44
N+2	46
N+M	47
failover attributes	36
failover domain	35
failover policy	12
	37
failover script interface	43
failover script	
description	37
interface	43
	75
field value	15

G

<pre>get_xxx_info() function</pre>																				24
global definition setting		•								•	•	•		•					•	70
global variables	•	•	•		•		•	•		•	•	•	•	•	•	•		•	•	25

H

n	
HA_CDB environment variable	. 71
ha_check_args() function	, 73
HA_CMDSPATH environment variable	. 70
HA_CMD_FAILED environment variable	
HA_CURRENT_LOGLEVEL environment variable	
HA_DBGLOG environment variable	. 71
HA_DBGLVL environment variable	. 71
ha_execute_cmd() function	
ha_execute_cmd_ret() function	. 74
ha_get_field() function	
ha_get_info() function	. 76
HA_HOSTNAME environment variable	. 70
HA_INVAL_ARGS environment variable	
HA_LOG environment variable	
HA_LOGCMD environment variable	
HA_NOCFGINFO environment variable	
HA_NORMLVL environment variable	
HA_NOTSUPPORTED environment variable	. 72
HA NOT RUNNING environment variable	
ha_print_exclusive_status() function	
ha_print_exclusive_status_all_resources() function	
HA_PRIVCMDSPATH environment variable	. 70
ha_read_infile() function	
HA_RESOURCEQUERYCMD environment variable	. 71
HA_RUNNING environment variable	
HA_SCRIPTGROUP environment variable	
HA_SCRIPTSUBSYS environment variable	
HA_SCRIPTTMPDIR environment variable	71
HA_SUCCESS environment variable	. 72
ha_write_status_for_all_resources() function	
ha_write_status_for_resource function	
ha_write_status_for_resource() function	
high availability characterists	
highly available	10
	. 13
hostname	70
	10
1	
initial failover domain	. 35
InPlace_Recovery failover attribute	. 33
•	. 74
input file	. 74

IP address service	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	13
L																							
logs																							
LVM logical volume service	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
Μ																							
MAC address service																		•	•				13
MAC_address resource type	•				•	•	•		•		•	•		•		•	•	•				•	13
membership	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	10
monitor script																							
	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30
monitor script definition																							10
	•	•	•	• •	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	·	·	•	10
monitoring agents																							34
failure																							
frequence																							
necessity of																							
script testing																							
testing examples																							
types																							
N																							
node membership																							
node																							
node status																							
nodename output																							
0																							
order ranges for resource types .																							
ordered failover script																							
overview of the programming step																							
P																							
path to user commands																							70
plug-ins												•	•	•	•	•	•						13
pool												•	•	•	•	•	•						
print exclusivity check messages																							
privileged command path																							
process	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	, 0
membership																							10
programming steps overview																							
R																							
																							71
read an input file	•	•	•	• •	•	•	•	•	·	•	•	•	•	•	•	·	•	·	•	•	•	•	14

resource group

definition																				
resource information																				
obtaining																			. ′	76
read into an action script																				
resource																				
definition																			•	10
dependency list																			•	11
name																				
query command																				
resource type																				
cluster_mgr use	•																			56
dependency list																				
description																				
GUI use																				
information required to define a r																				
order ranges																				
provided with Linux FailSafe .																				
restart mode																				
script templates																				
script use																				
restart script	•	•••	•	•	•••	•	•	•	•	•••	•	•	•	·	•	•	•	•	•	,,,
example																			1	32
restart mode																				
restart script	•	• •	•	•	• •	•	·	•	•	•••	•	•	•	•	•	•	•	•	• -	77
definition																				16
root command path																				
run-time failover domain																				
	•	• •	•	•	• •	•	•	•	•		•	•	•	•	·	•	•	•	• •	55
S																				
script group log	•			•															. ´	71
script library			•	•				•	•		•	•			•				. (59
script testing																				
action scripts	•								•										. (54
monitoring script considerations																			. (55
techniques																				
scriptlib file																			. (59
scripts. See action scripts or failove	r sc	ript	•																. 2	22
script.\$\$ suffix																				
<pre>set_global_variables() function</pre>																				
set_local_variables() section of an a																				
start script			·r	-			-	-	-		-	-	-	-	-		-	-		
example											-								. 2	27
start script	•	•	-	-	•	•	-	•	-	•	•	•	•	-	•	•		-	- 4	
definition				_									_	_		_				16
status of a node																				
	-	- •	•	-	- •	•	•	-	-	•	•	•	•	•	•	•	•	-		~~

example	29
definition	16
Τ	
templates	• •
action scripts	20
action scripts	60
U	
uname command	
user command path	70
/usr/lib/failsafe/cmgr-templates/cmgr-create-resource_type directory	
/usr/lib/failsafe/policies directory	
V	
value for a field	75
volume resource type	13
<u>W</u>	
write status for a resource	75
X	
XFS file system service	13