
SGI® OpenGL Multipipe™

User’s Guide

007-4318-013

Version 2.3.1

CONTRIBUTORS
Written by Ken Jones and Jenn Byrnes

Illustrated by Chrystie Danzer

Production by Karen Jacobson

Engineering contributions by Craig Dunwoody, Bill Feth, Alpana Kaulgud, Claude Knaus, Ravid Na’ali, Jeffrey Ungar, Christophe Winkler, Guy
Zadicario, and Hansong Zhang

COPYRIGHT
© 2000–2004 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The software described in this document is “commercial computer software” provided with restricted rights (except as to included open/free
source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of
worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIS, IRIX, Onyx, Onyx2, OpenGL, and Reality Center are registered trademarks and GL,
InfinitePerformance, InfiniteReality2, IRIS GL, Octane2, Onyx4, Open Inventor, the OpenGL logo, OpenGL Multipipe, OpenGL Performer,
Power Onyx, Tezro, and UltimateVision are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide.

MIPS and R10000 are registered trademarks of MIPS Technologies, Inc. used under license by Silicon Graphics, Inc. Netscape is a trademark of
Netscape Communications Corporation. XFree86 is a trademark of The XFree86 Project, Inc. Xinerama, X Window System, and the X device are
trademarks of The Open Group.

007-4318-013 iii

New Features in This Release

OpenGL Multipipe 2.3.1 contains the following enhancements:

• Capabiliity to expand the OpenGL viewport size beyond the single-pipe limit

• Support for overlay visuals in the DMX proxy X server if supported by underlying
X servers

• Support for applications that use GLX pbuffers or GLX pixmaps

• Improved application compatibility

007-4318-013 v

Record of Revision

Version Description

001 August 2000
Beta release.

002 November 2000
Updated for release 1.0 of the OpenGL Multipipe product.

003 February 2001
Updated for release 1.1 of the OpenGL Multipipe product.
New features:
- Increased overall performance
- Support for overlapping screens, as in SGI Reality Center facilities

004 May 2001
Updated for release 1.2 of the OpenGL Multipipe product.
New features:
- Transparent OpenGL Pipe Management
- Subset of multipipe applications made aware of Xinerama

005 August 2001
Updated for release 1.3 of the OpenGL Multipipe product.
New features:
- Enhanced Support for Multithreaded Applications
- Enhanced tgl Script

006 November 2001
Updated for release 1.4 of the OpenGL Multipipe product.

vi 007-4318-013

Record of Revision

Bugfixes:
- Enhanced GLX conformance for context manipulation
- Support for pixmaps, pbuffers, and GLXWindows
Beta features:
- Curved Screen Support
This allows you to run applications on a non-planar Reality Center in
immersive mode by adapting the 3D projections to the display layout.
- Window Manager Support for Aware Windows
All applications started in aware mode can now be under window manager
control by using the customized window manager included with this
release.

007 February 2002
Updated for release 1.4.1 of the OpenGL Multipipe product.
Broader application support
Bugfixes:
- Enhanced OpenGL conformance for applications using glCallList() within

another display list
- Stability improvements to (beta) aware window manager

008 April 2002
Updated for release 1.4.2 of the OpenGL Multipipe product.
- Broader application support
- Stability improvements to (beta) aware window manager

009 October 2002
Updated for release 2.1 of the OpenGL Multipipe product.
Features:
Replacement of the Transparent OpenGL (TGL) layer with a proxy render
library and render servers
Support for additional servers. The list of supported servers now includes
the following:
- Silicon Graphics Onyx
- Silicon Graphics Onyx2
- SGI Onyx 3000, InfiniteReality

Record of Revision

007-4318-013 vii

- SGI Onyx 3000, InfinitePerformance
- Silicon Graphics Octane2

010 May 2003
Updated for release 2.1.2 of the OpenGL Multipipe product.
Features:

- Performance enhancements over the OpenGL Multipipe 2.1.1 and 2.1
releases

- Increased application compatibility for vertex array applications
- Option of running in master render mode or slave-only mode
- Support for compositor-based systems
- Seamless cursor movement across overlapped or composited screen

regions (IRIX 6.5.20 or later required)
- Support for SGI-SCREEN-CAPTURE and ReadDisplay X extensions in

SGI Xinerama mode (IRIX 6.5.20 or later required)
- An API introduced for integration of multipipe applications with

SGI Xinerama
- Hardware swap-synchronization option (Swap Ready, Genlock)
- Support for additional platforms. The list of supported visualization

systems now includes the following:
o SGI Onyx 3000 series with InfinitePerformance graphics
o SGI Onyx 3000 series with InfiniteReality graphics
o SGI Onyx 350
o Silicon Graphics Octane2
o Silicon Graphics Onyx
o Silicon Graphics Onyx2

011 July 2003
Updated for release 2.2 of the OpenGL Multipipe product.
Features:
- Performance enhancements over the 2.1.2 release including the following:

o Pixel drawing enhancements
o Geometry culling, which can improve application performance for

some applications beyond what can be achieved on a single pipe
- Support for the DMX (Distributed Multihead X) meta display server

viii 007-4318-013

Record of Revision

- Support for DMX and SGI Xinerama meta display servers by the MPC API
for multipipe-aware applications

- Support for additional platforms. The list of supported visualization
systems now includes the following:
o SGI Onyx 3000 series with InfinitePerformance graphics
o SGI Onyx 3000 series with InfiniteReality graphics

o SGI Onyx 350
o Silicon Graphics Octane2
o Silicon Graphics Onyx
o Silicon Graphics Onyx2
o Silicon Graphics Onyx4 UltimateVision

012 December 2003
Updated for release 2.3 of the OpenGL Multipipe product.
Features:
- Performance enhancement options including (disabled by default):

o Geometry culling to optional, additional OpenGL clip planes
o OpenGL viewport clipping and geometry culling to improve fill and

geometry performance when using a compositor
o Spatial partitioning of large display lists for efficient geometry culling

- Baseline performance enhancements over OpenGL Multipipe 2.2
o Swap synchronization and frame latency control improvements between

slave rendering processes
o Improved performance when using geometry culling

- Support for Onyx4 OpenGL extensions
- Support for additional platforms. The list of supported visualization

systems now includes the following:
o SGI Onyx 3000 series with InfinitePerformance graphics
o SGI Onyx 3000 series with InfiniteReality graphics
o SGI Onyx 350
o Silicon Graphics Octane2
o Silicon Graphics Onyx
o Silicon Graphics Onyx2
o Silicon Graphics Onyx4 UltimateVision
o Silicon Graphics Tezro

Record of Revision

007-4318-013 ix

013 April 2004
Updated for release 2.3.1 of the OpenGL Multipipe product.
Enhancements over OpenGL Multipipe 2.3:
- Capability to expand the OpenGL viewport size beyond the single-pipe

limit
- Support for overlay visuals in the DMX proxy X server if supported by

underlying X servers
- Support for applications that use GLX pbuffers or GLX pixmaps
- Improved application compatibility

007-4318-013 xi

Contents

New Features in This Release iii

Record of Revision . v

About This Guide. xv
Related Publications . xv
Obtaining Publications . xv
Conventions . xvi
Reader Comments . xvii

1. OpenGL Multipipe Overview 1
What OpenGL Multipipe Provides 1
Architecture of OpenGL Multipipe 4
Components of OpenGL Multipipe 5

The X Proxy Layer . 5
The SGI Xinerama Extension 5
The DMX Proxy Server 6

The 3D (Master) Proxy Render Library. 6
3D (Slave) Render Servers 7

Supported Platforms and Configurations 8

xii 007-4318-013

Contents

2. Installing OpenGL Multipipe 9

3. Using OpenGL Multipipe . 11
Setting up the OpenGL Multipipe Environment 11

Ensuring That the ompslave Render Server is Running 12
Configuring OpenGL Multipipe with DMX as the X Proxy Layer 13

Initializing DMX . 13
Creating DMX Configuration Files 14

Configuring OpenGL Multipipe with SGI Xinerama as the X Proxy Layer 16
Verifying That the OpenGL Multipipe Environment is Enabled. 17
Disabling the OpenGL Multipipe Environment 17

Running Applications with OpenGL Multipipe 18
Running OpenGL Single-Pipe Applications 19
Running Pure X Applications 20
Running IRIS GL Applications 20
Running o32 Applications 21
Running Multipipe Applications in Multipipe-Aware Mode 22

Performance Enhancing Features. 23
Viewport Clipping. 23
Geometry Culling . 24
Display List Partitioning . 24
Master Rendering Modes . 25

–mstrmode off Mode 25
–mstrmode track Mode 26
–mstrmode render Mode 27

Frame Latency Control . 28
Buffer Swap Synchronization 28

Software Swap Synchronization 29
Hardware Buffer Swap Synchronization 29

Using an SGI Scalable Graphics Compositor with OpenGL Multipipe 30
Configuring Composited Screens with SGI Xinerama. 30
Enabling Duplicate Cursor Images in Overlap Regions 31
Configuring Composited Screens with DMX 31
Specifying Static Composited Regions 32

Contents

007-4318-013 xiii

Managing Windows for Aware Applications 33
Starting an Aware Window Manager 34
Exiting an Aware Window Manager 35
Setting an Aware Window Manager as the Default 35

Configuring Overlapping Screens with SGI Xinerama 35

4. Limitations . 37
Performance Enhancement . 38
X Extensions . 38
The Multipipe-Aware Window Manager 38
OpenGL Window Size Constraints 38
Processor Requirements . 39
Overlay Windows Support in DMX 39
SGI Xinerama Is Not Supported on Onyx4 Platforms 39
Graphics Pipe Requirements . 39

5. Troubleshooting . 41
Problems Enabling SGI Xinerama 42
Problems Starting DMX . 42
Problems Starting Applications with omprun 43

DISPLAY Does Not Point to a Meta Display 43
Using omprun without the ompslave Render Server 44
Shared Memory Failure . 44

Problems Running IRIS GL Applications 45
Problems Running o32 Applications 45
Graphics Do Not Display Correctly on All Screens 45

Coding Problem in the Application. 46
You Did Not Use the omprun Script 46
A User-Defined Script Invokes an IRIS GL or o32 Application 46
You Are Using the Aware Window Manager 47
Set-User-ID (“s-bit”) Applications 47

Mouse Behavior Offset by a Screen 48
Problems Running Inherently Multipipe Applications 49
Multipipe-Aware Applications Fail to Receive Events on Screen 0 49

xiv 007-4318-013

Contents

Nothing Displays or the Graphic Stalls or Hangs 49
Coding Problem in the Application 50
Window Exceeds Maximum OpenGL Window Size 50
Improperly Wired Genlock or Swap Ready Cables 50

OpenGL Graphics Render Slowly 50
X Applications Are Not Behaving Correctly or Fail to Start 51

X Application Uses Unsupported X Extension 51
SGI Xinerama Client or Server Uses Nonstandard Protocol 52
Application Window Disappears 52
Application Explicitly Opens a Display Connection to :0.0. 53

Simultaneously Running X Servers with and without SGI Xinerama Enabled 53
Tiled Background Image . 54
Flickering Grey Rubberband During Window Movement 54
Mouse Disappears in Overlap Region 54
Problems Running Multithreaded Applications 55
Problems with Aware Window Management 55

Windows of Some Aware Applications are Not Managed 56
Problems with Desktop Background Images 56
Mouse Events Sometimes Register on the Wrong Screen 56
Ghost Windows Appear In Overlap Regions on Edge-Blended Displays 57

007-4318-013 xv

About This Guide

This guide describes the OpenGL Multipipe product, which allows you to run
single-pipe applications in a multipipe environment without modification. You can
seamlessly move single-pipe application windows across the single logical display that
OpenGL Multipipe creates from multiple pipes. Both multipipe applications and
single-pipe applications run concurrently.

Related Publications

The following SGI documents contain additional information that may be helpful:

• InfiniteReality Video Format Combiner User's Guide

• POWER Onyx and Onyx Rackmount Owner’s Guide

• SGI InfinitePerformance: Scalable Graphics Compositor User’s Guide

• IRIX Admin: Software Installation and Licensing

These books might also be helpful:

• Neider, Jackie, Tom Davis, and Mason Woo, OpenGL Programming Guide. Reading,
Mass.: Addison-Wesley Publishing Company, Inc., 1993. A comprehensive guide to
learning OpenGL.

• Nye, Adrian, Volume One: Xlib Programming Manual. Sebastopol, California: O’Reilly
& Associates, Inc., 1991.

Obtaining Publications

You can obtain SGI documentation in the following way:

xvi 007-4318-013

About This Guide

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With an
IRIX system, select Help from the Toolchest, and then select InfoSearch. Or you can
type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man< title> on a command line.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that
the user enters in interactive sessions. (Output is
shown in nonbold, fixed-space font.)

interface This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog
boxes, menus, toolbars, icons, buttons, boxes, fields,
and lists. Functions are also denoted in bold with
following parentheses.

manpage(x) Man page section identifiers appear in parentheses
after man page names.

Right angle brackets (>) These brackets indicate a path through menus to a
menu option. For example, “File > Open” means
“Under the File menu, choose the Open option.”

About This Guide

007-4318-013 xvii

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, CA 94043-1351

SGI values your comments and will respond to them promptly.

007-4318-013 1

Chapter 1

1. OpenGL Multipipe Overview

This overview of OpenGL Multipipe consists of the following sections:

• “What OpenGL Multipipe Provides”

• “Architecture of OpenGL Multipipe”

• “Components of OpenGL Multipipe”

• “Supported Platforms and Configurations”

What OpenGL Multipipe Provides

SGI has always been focused on high-end graphics solutions. The Onyx family of
scalable visualization supercomputers allows you to have multiple graphics pipes on one
single-system-image machine in order to reach new visualization performances. These
multipipe systems are commonly used to drive expanded visualization systems such as
SGI Reality Center facilities. OpenGL Multipipe extends the use of these powerful
supercomputers to a broad spectrum of graphics applications without the requirement
of modifying the applications.

Many existing graphics applications—such as Netscape or applications based on Open
Inventor, for example—are constrained to run on a single pipe. On these single-pipe
applications, you can choose the pipe on which to open the application’s windows, but
the windows cannot be dragged from one pipe to another. The main reason is that the
graphics pipes are separate logical units and are handled by an X server as different,
unconnected screens. This means that the X server does not provide any functionality to
group multiple screens into a single logical display. A second reason is that OpenGL
applications connect directly to a specified graphics pipe and bypass the X protocol layer.

In the past, displaying an application on multiple screens required you to explicitly write
the application for that purpose. You had to use tools like the OpenGL Performer or
OpenGL Multipipe SDK libraries to help you create these multipipe applications. These
tools allow you to explicitly open windows on different screens and to draw into them

2 007-4318-013

1: OpenGL Multipipe Overview

using OpenGL. However, this solution lacks consistency. In fact, all of the windows on
the different pipes are independent; hence, moving or iconifying one window on one
screen will not handle the other windows accordingly.

OpenGL Multipipe has been designed to overcome these difficulties. The goal is to group
pipes managed by the X server in order to create a consistent, single virtual screen as
shown in Figure 1-1. This means that the applications are unaware of the underlying
hardware configuration. Rather, they only know about a single display and behave
accordingly.

Figure 1-1 OpenGL Multipipe with Non-Overlapping Screens

In contrast to Figure 1-1, if you have screens that overlap each other (such as in an SGI
Reality Center wall display with edge blending), OpenGL Multipipe allows you to

What OpenGL Multipipe Provides

007-4318-013 3

specify the amount of this overlap. Figure 1-2 shows the image blended on overlapping
screens.

Figure 1-2 OpenGL Multipipe with Overlapping Screens

Note: OpenGL Multipipe does not require you to modify or recompile your application.

4 007-4318-013

1: OpenGL Multipipe Overview

Architecture of OpenGL Multipipe

OpenGL Multipipe provides the illusion that an application is rendering 2D (X
perspective) and 3D (OpenGL perspective) on a single local pipe when it is actually using
one or more pipes. In this regard, a single logical display, OpenGL Multipipe 2 is similar
to the first-generation product OpenGL Multipipe 1.

Unlike OpenGL Multipipe 1, however, the architecture of OpenGL Multipipe 2 allows
the application processing and the rendering to occur in separate processes instead of
separate threads of the same process. The separation improves application compatibility
and is a step toward providing better scalability.

Like OpenGL Multipipe 1, OpenGL Multipipe 2 is a set of protocols and proxies coupled
with clients and servers. Both versions of the product use an X proxy layer to hide the
physical screen layout. This X proxy layer presents a single logical pipe or “meta screen”
to all applications and allows their windows to be freely moved across or to span any set
of pipes. In OpenGL Multipipe 1, the X proxy layer is the SGI Xinerama X extension. In
OpenGL Multipipe 2 (OpenGL Multipipe 2.2 and later), the X proxy layer may be SGI
Xinerama or the new Distributed Multihead X (DMX) proxy server.

OpenGL Multipipe 1 uses the Transparent OpenGL (TGL) library to send OpenGL calls
to each real pipe. In contrast, OpenGL Multipipe 2 uses a 3D proxy library and render
servers for this purpose.

Table 1-1 charts the primary interfaces of OpenGL Multipipe 1 and OpenGL Multipipe 2.

Table 1-1 Primary OpenGL Multipipe Interfaces

Product X Server Interface
Interface with OpenGL and
Graphics Pipes

OpenGL Multipipe 1 SGI Xinerama extension Transparent OpenGL (TGL)

OpenGL Multipipe 2 SGI Xinerama extension
or Distributed Multihead
X (DMX) proxy server

Proxy render library and
render servers

Components of OpenGL Multipipe

007-4318-013 5

Components of OpenGL Multipipe

OpenGL Multipipe has the following components:

• An X proxy layer (the SGI Xinerama extension or the DMX proxy server)

• A 3D proxy render library

• 3D render servers

The X Proxy Layer

For pure X applications—that is, applications that do not use other graphics libraries
(such as OpenGL) to draw into their windows—the X proxy layer is all that is needed to
enable such applications to run transparently over multiple pipes. This means that
windows of applications that are based on the X protocol and that use X extensions can
be dragged from one pipe to another and even span multiple pipes. The applications
behave as if they are running on a single, large virtual pipe. The X proxy layer hides the
real screens from the client applications connecting to it. It distributes to all pipes the X
requests from the clients but only sends the clients information about the large virtual
display.

The X proxy layer can be either the SGI Xinerama extension or the DMX proxy server. In
the case of the SGI Xinerama extension, the X proxy layer is a part of the X server.
However, the DMX proxy server is a separate entity. The following sections describe the
two options.

The SGI Xinerama Extension

SGI Xinerama is an enhanced version of the standard Xinerama X extension, which
groups all screens managed by the X server into one logical screen that it exposes to
applications. You must have administrative privileges to enable or disable the SGI
Xinerama extension. For more information about the SGI Xinerama extension, see the
Xinerama(3X11) man page.

6 007-4318-013

1: OpenGL Multipipe Overview

The DMX Proxy Server

The DMX proxy server, unlike SGI Xinerama, is not part of the X server; it is an X
application that behaves like an X server to other X applications. DMX is more flexible
than SGI Xinerama both in its supported display geometries and in its ability to act as a
proxy for many different X servers. DMX also has built-in support for OpenGL
applications through its support of the GLX X extension. This means that DMX will
enable X and OpenGL applications to run transparently across multiple pipes. However,
DMX’s GLX extension is limited in performance. Hence, it is best to run
graphics-intensive applications under the full OpenGL Multipipe environment.

Unlike SGI Xinerama, administrative privileges are not required to start and stop DMX.
For more information about the DMX proxy server, see the Xdmx(1) man page, which is
installed in /usr/share/omp/doc/user/Xdmx.1.html.

The 3D (Master) Proxy Render Library

OpenGL applications are X applications that use another graphics library (namely the
OpenGL library) to draw into their windows. OpenGL applications open a direct
connection to a graphics pipe. This means that the application is bypassing the X protocol
(and the X proxy layer, which replicates the the X protocol stream to each pipe) in order
to draw in the windows through this direct connection. The X proxy layer, which
accounts only for the X protocol, is unable to handle this case. In OpenGL Multipipe 1,
the Transparent OpenGL (TGL) library was designed to handle the OpenGL side of any
application.

The “master” proxy library corresponds to the TGL layer in OpenGL Multipipe 1. It
intercepts OpenGL calls to enable distribution to multiple pipes, but it does this by
sending an OpenGL wire protocol stream to separate slave render processes rather than
by spawning threads within the application to render to local pipes as does TGL.
Figure 1-3 illustrates the functions of the master proxy library.

Components of OpenGL Multipipe

007-4318-013 7

Figure 1-3 Master Proxy Library Functions

In addition to sending an OpenGL stream to each slave, the master also has the capability
of rendering directly to a single local pipe in place of a single slave render process (for
faster GL state queries), or it may use a local pipe only to track OpenGL state while a
slave process renders to that pipe (for improved parallelism).

3D (Slave) Render Servers

A “slave” render server receives connections from applications running under the
“master” render library of OpenGL Multipipe. It translates the OpenGL wire protocol
stream into OpenGL commands that are executed locally.

The single ompslave process is responsible for spawning multiple slave render servers.
It does this for each screen per application that connects to it through the master render
library.

Master

Application

OpenGLOpenGL OpenGL

Slave

Pipe

Slave

Pipe

Slave

Pipe

8 007-4318-013

1: OpenGL Multipipe Overview

Supported Platforms and Configurations

OpenGL Multipipe 2.3.1 requires the following:

• IRIX 6.5.15 or later operating system
(IRIX 6.5.22 or later plus patch 5448 for Onyx4 platforms)

• One of the following servers:

– Silicon Graphics Onyx

– Silicon Graphics Onyx2

– SGI Onyx 3000 with InfiniteReality graphics

– SGI Onyx 3000 with InfinitePerformance grephics

– SGI Onyx 350

– SGI Onyx4 UltimateVision

– Silicon Graphics Octane2

– Silicon Graphics Tezro

• MIPS R10000 or later processor

007-4318-013 9

Chapter 2

2. Installing OpenGL Multipipe

This chapter lists information supplemental to the guide IRIX Admin: Software Installation
and Licensing. The information listed here is product-specific; use it with the installation
guide to install this product.

The following are the prerequisites for installing OpenGL Multipipe on your system:

• Hardware: an Octane2, Onyx, Onyx2, Onyx 3000, Onyx 350, Onyx4, or Tezro system
with MIPS R10000 or later processors

• Software:

– IRIX 6.5.15 or later, generally

– IRIX 6.5.22 or later plus patch 5448 for Onyx4 platforms

– C++ Standard Execution Environment (c++_eoe)

Note: IRIX 6.5.18 or later is required to use the aware window management feature
under SGI Xinerama. IRIX 6.5.20 or later is required to enable duplicate cursor images in
screen overlap regions under SGI Xinerama.

To install OpenGL Multipipe, follow these steps:

1. Go to the following URL:

http://www.sgi.com/software/multipipe/

2. Click on the Download button and follow the instructions to download
OpenGL Multipipe.

This installer includes the OpenGL Multipipe libraries and tools described in
Table 2-1.

10 007-4318-013

2: Installing OpenGL Multipipe

3. Use inst or swmgr to install OpenGL Multipipe.

The libraries are provided in two versions:

n32 The new 32-bit libraries. Located in the /usr/lib32 directory.
Usable only on IRIX 6.2 and later operating system releases. The n32
libraries operate at increased efficiency in many situations.

64 The 64-bit libraries. Located in the /usr/lib64 directory.

This step installs the file subsystems shown in Table 2-1.

You may check the release notes on the SGI website cited in step 1 for any critical updated
information between releases.

Table 2-1 File Subsystems for OpenGL Multipipe 2.3.1

Subsystem Description

omp_eoe.sw.base Contains the actual OpenGL Multipipe binaries as well as the script
for starting OpenGL applications in OpenGL Multipipe mode.

omp_eoe.sw64.base Contains the OpenGL Multipipe 64-bit software.

omp_eoe.man.relnotes Contains the release notes, located in the following directory:
/usr/share/omp/release_notes/user

omp_eoe.man.base Contains man pages and other documentation located in the
/usr/share/omp/doc/user directory.

omp_eoe.sw.wm Contains the aware window manager for multipipe-aware window
support under SGI Xinerama.

omp_eoe.sw.wmp Contains the aware window manager proxy for multipipe-aware
window support under DMX.

omp_eoe.sw.xdmx Contains the DMX proxy server, Xdmx, configuration utilities, and
documentation related to the DMX X proxy layer.

omp_eoe.sw.mpc Contains libraries, header files, and example code for integrating
multipipe applications with the X proxy layer.

omp_eoe.sw64.mpc Contains 64-bit libraries for integrating multipipe applications with
the X proxy layer.

omp_eoe.man.mpc Contains documentation related to the OpenGL Multipipe MPC
API, which is located in the directory
/usr/share/MPC/doc/developer.

007-4318-013 11

Chapter 3

3. Using OpenGL Multipipe

As described in Chapter 1, OpenGL Multipipe consists of three main components: an X
proxy layer, a proxy 3D render library, and 3D render servers. This chapter describes how
to effectively use these components with your graphics applications. The following
sections describe the pertinent tasks:

• “Setting up the OpenGL Multipipe Environment” on page 11

• “Running Applications with OpenGL Multipipe” on page 18

• “Performance Enhancing Features” on page 23

• “Using an SGI Scalable Graphics Compositor with OpenGL Multipipe” on page 30

• “Managing Windows for Aware Applications” on page 33

• “Configuring Overlapping Screens with SGI Xinerama” on page 35

For information about other features of OpenGL Multipipe specific to this release, see the
release notes in the following file:

/usr/share/omp/release_notes/user/relnotes.html

Setting up the OpenGL Multipipe Environment

To begin using OpenGL Multipipe, you must enable an X proxy layer and ensure that the
ompslave 3D render server daemon is running. This will cause all applications to see a
single logical pipe. To deactivate OpenGL Multipipe, disable the X proxy layer and
(optionally) stop the ompslave daemon. Some of the steps required to enable or disable
OpenGL Multipipe requires root access. This section notes this requirement in the
applicable steps.

12 007-4318-013

3: Using OpenGL Multipipe

This section describes the following tasks:

• “Ensuring That the ompslave Render Server is Running” on page 12

• “Configuring OpenGL Multipipe with DMX as the X Proxy Layer” on page 13

• “Configuring OpenGL Multipipe with SGI Xinerama as the X Proxy Layer” on
page 16

• “Verifying That the OpenGL Multipipe Environment is Enabled” on page 17

• “Disabling the OpenGL Multipipe Environment” on page 17

Ensuring That the ompslave Render Server is Running

If the ompslave render server is running, the following two daemons should be
running:

• ompslave

• ompswapready

You only need to explicitly start or restart these daemons after installing or upgrading
OpenGL Multipipe. The daemons will be started automatically when the system reboots
if the chkconfig flag omp is set to on (which is the default value).

To verify that the two daemons have been started, enter the following:

$ ps -e | grep omp

If output similar to the following appears, the ompslave render server and
ompswapready daemons are running:

1099 ? 0:00 ompslave
1101 ? 0:00 ompswapre

To start the two daemons, enter the following as root in an IRIX shell:

/etc/init.d/omp stop; /etc/init.d/omp start

Setting up the OpenGL Multipipe Environment

007-4318-013 13

Configuring OpenGL Multipipe with DMX as the X Proxy Layer

DMX will group multiple screens into a logical display. This section describes how you
initialize DMX and how to create DMX configuration files.

Initializing DMX

To initialize DMX, do the following:

1. Ensure that SGI Xinerama is not currently enabled.

To determine if SGI Xinerama is enabled, see the section “Verifying That the
OpenGL Multipipe Environment is Enabled” on page 17. If enabled, disable
SGI Xinerama and restart the X server.

Enter the following to disable SGI Xinerama:

chkconfig xinerama off

Enter the following as root in an IRIX shell to restart the X server:

(/usr/gfx/stopgfx; /usr/gfx/gfxinit; /usr/gfx/startgfx) &

The X server has to be restarted for the chkconfig change to take effect. With SGI
Xinerama disabled, the X server will manage pipes as separate screens.

2. Run DMX on top of the existing X server(s).

You may do this manually after logging into your desktop or you may configure an
.xsession script to run DMX immediately upon login.

To manually initialize DMX, enter the following (root access not needed) in an
IRIX shell:

$ ompstartdmx

You can use the flag –help for more information about the starting options. If you
specify no flags, DMX starts on top of the existing X server and will configure a
single large screen that overlays the existing n screens such that screen 0 will be the
leftmost and screen n –1 will be the rightmost. To use a different configuration, such
as a vertical configuration, you must provide a DMX configuration file. The
following section “Creating DMX Configuration Files”describes how to create such
a configuration file.

By default, ompstartdmx will run the following clients unless a session script has
been specified: 4Dwm, toolchest, and winterm.

14 007-4318-013

3: Using OpenGL Multipipe

To configure DMX to run automatically upon login, you need to start with an
.xsession file in your $HOME directory. If you do not already have one, you may
copy one of the example .xsession files provided from the
/usr/share/omp/examples/X11 directory, or you may copy the main system
Xsession file from /var/X11/xdm/Xsession by entering the following:

$ cp /var/X11/xdm/Xsession $HOME/.xsession
$ chmod +w $HOME/.xsession

The second command ensures the file is writeable. If not already present, add the
following lines at the beginning of your $HOME/.xsession file:

if [-x /usr/bin/ompstartdmx -a -z “$SGIOMP_META_DISPLAY”]; then
/usr/bin/ompstartdmx -wm none -session /var/X11/xdm/Xsession
exit

fi

Note that the if clause is necessary to prevent infinite recursion. Also, note that
–wm none is only needed if your .xsession script starts a window manager by
itself (which is the case if you copied the system Xsession file). Only one window
manager can be started on a display, and without the –wm none argument,
ompstartdmx would try to start a window manager by default, which would
result in an error.

For more information about .xsession files, see the X(1) and xdm(1) man pages.

After DMX has initialized, you will see a new session covering all the screens. At this
point, you can start using OpenGL Multipipe by running applications with omprun (see
“Running Applications with OpenGL Multipipe” on page 18).

Creating DMX Configuration Files

A DMX configuration file is simply a text file that describes the configuration of a virtual
display, the real displays it manages, and the geometry of the virtual screen. This section
provides some short examples of configuration files. These and other example
configuration files may be found in the directory /usr/share/omp/examples/dmx .

To start DMX with one of these configurations, do the following:

1. Save the configuration to a text file with any name—for example, updown.dmx.

2. Invoke ompstartdmx with the option –cfgfile, as shown in the following entry:

$ ompstartdmx -cfgfile updown.dmx

Setting up the OpenGL Multipipe Environment

007-4318-013 15

It is also possible to place many configurations in a single file. In this case, you can
choose one configuration from the file by specifying both the –cfgfile and
–cfgname options, as shown in the following:

$ ompstartdmx -cfgfile allmyconfigs.dmx -cfgname updown

The following example configuration file specifies a vertical layout:

virtual updown 1280x2048 {
display :0.0 1280x1024;
display :0.1 1280x1024 @0x1024;

}

This configuration file defines a virtual screen configuration named updown of size
1280x2048. The virtual screen includes the following two real back-end displays:

Display :0.0 It has a size of 1280x1024 and is located at location 0x0 in the virtual
screen space.

Display :0.1 It has a size of 1280x1024 and is located at 0x1024 in the virtual screen
space.

You may also define some overlap between each of the screens, as in the following
horizontal layout:

virtual overlap 2460x1024 {
display :0.0 1280x1024;
display :0.1 1280x1024 @1180x0;

}

This configuration file defines two screens of 1280x1024, each with 100 pixels of
overlap, resulting in a virtual screen size of 2460x1024.

The display value specified can be any valid display value, including a display value that
specifies a remote machine, as in the following example:

virtual remote 2560x1024 {
display localhost:0.0 1280x1024;
display remotehost:0.1 1280x1024 @1280x0;

}

There is also a graphical tool to create and edit configuration files. You can find
documentation for this tool in /usr/share/omp/doc/user/xdmxconfig.1.html.
The tool is installed in /usr/share/omp/X11/bin/xdmxconfig.

16 007-4318-013

3: Using OpenGL Multipipe

More information about the configuration file format can be found in the file
/usr/share/omp/doc/user/Xdmx.1.html.

Configuring OpenGL Multipipe with SGI Xinerama as the X Proxy Layer

Note: SGI Xinerama is not supported on Onyx4 servers. Only the DMX proxy layer is
supported on Onyx4 servers.

To configure OpenGL Multipipe with SGI Xinerama as the X proxy layer, perform the
following steps:

1. Enable SGI Xinerama.

If you are enabling SGI Xinerama on your system for the first time, enter the
following as root in an IRIX shell:

chkconfig -f xinerama on

Otherwise, enter the following to enable SGI Xinerama:

chkconfig xinerama on

On systems having only one graphics pipe or in the case where the X server is
directed to handle only one pipe (see the Xsgi(1) man page), enabling SGI
Xinerama has no effect. In these cases, SGI Xinerama will be disabled, regardless of
the value of the xinerama flag supplied on the chkconfig command.

2. Restart the X server.

The X server has to be restarted for the chkconfig change to take effect. Enter the
following as root in an IRIX shell to restart the X server:

(/usr/gfx/stopgfx; /usr/gfx/gfxinit; /usr/gfx/startgfx) &

After the X server is started with SGI Xinerama enabled and you have logged in to the
system, you can start using OpenGL Multipipe by running applications with omprun
(see “Running Applications with OpenGL Multipipe” on page 18).

Setting up the OpenGL Multipipe Environment

007-4318-013 17

Verifying That the OpenGL Multipipe Environment is Enabled

The OpenGL Multipipe environment is enabled if the following two conditions are true:

• An X proxy layer is enabled (DMX or SGI Xinerama).

• The omp daemons ompslave and ompswapready are running.

To verify that an X proxy layer is enabled, ensure that your DISPLAY environment
variable is pointing to the correct display (usually :0.0 for SGI Xinerama or :1.0 for
DMX) and enter the following commands in an IRIX shell:

$ xdpyinfo | grep SGI-XINERAMA

If SGI-XINERAMA appears as the result of the prior commands, SGI Xinerama is enabled.

$ xdpyinfo | grep DMX

If DMX appears as the result of the prior commands, DMX is enabled.

To verify that the two omp daemons are running, enter the following:

$ ps -e | grep omp

If output similar to the following appears, the ompslave and ompswapready daemons
are running:

1099 ? 0:00 ompslave
1101 ? 0:00 ompswapre

Disabling the OpenGL Multipipe Environment

To disable the OpenGL Multipipe environment, do the following:

• If enabled, disable DMX.

To end the DMX session, select Desktop > Logout from the Toolchest or run
/usr/bin/X11/endsession. You may also force the DMX server to exit by
pressing Ctrl+Alt+q.

After the session has ended, you will be returned to your regular X session.

18 007-4318-013

3: Using OpenGL Multipipe

If you have configured DMX to run automatically upon login and you end the DMX
session, it will automatically end the regular X session as well and you will return to
the login screen. To permanently disable DMX from starting upon login, revert the
DMX-related changes you made to your .xsession file, or delete or rename your
$HOME/.xsession file.

• If enabled, disable SGI Xinerama and restart the X server.

Enter the following to disable SGI Xinerama:

chkconfig xinerama off

Enter the following as root in an IRIX shell to restart the X server:

(/usr/gfx/stopgfx; /usr/gfx/gfxinit; /usr/gfx/startgfx) &

The X server has to be restarted for the chkconfig change to take effect.

• Optionally, enter the following as root in an IRIX shell to stop the ompslave
render server:

/etc/init.d/omp stop

Stopping the ompslave daemon is optional because it sits idle unless an OpenGL
program is started with omprun. The ompslave daemon may be left running even
when the X proxy layer is disabled.

Running Applications with OpenGL Multipipe

Plain X applications will generally run under an X proxy layer without assistance.
OpenGL (3D) applications need to use the OpenGL Multipipe 3D proxy library to handle
3D rendering correctly and efficiently on all screens.

To use the OpenGL Multipipe 3D proxy library with OpenGL applications, just run the
program using the omprun script:

$ omprun app_name app_args

This will preload the OpenGL Multipipe proxy libraries to intercept OpenGL calls.

The following is an example:

$ omprun ivview /usr/share/data/models/Banana.iv

Running Applications with OpenGL Multipipe

007-4318-013 19

Note: Failure to use the omprun command under DMX will cause the application to use
the slower GLX indirect rendering support in DMX to draw OpenGL to all screens.

The omprun script causes an OpenGL application to use the intermediate 3D proxy
libraries instead of the normal OpenGL library. This enables the OpenGL application to
behave correctly when its windows are moved across parts of the logical screen. Such an
application is considered to be started in multipipe-unaware mode (or simply, unaware
mode), since it is not aware of the underlying graphics hardware structure.

Technically, the omprun script sets the _RLD_LIST environment variable (actually
_RLDN32_LIST and _RLD64_LIST) to use the libOMPmaster.so library of matching
format prior to using the libGL.so library.

For more information on using omprun, see the omprun(1) man page or use the –help
command-line option of omprun as follows:

$ omprun –help

The following sections describe how to best run different types of graphics applications:

• “Running OpenGL Single-Pipe Applications”

• “Running Pure X Applications”

• “Running IRIS GL Applications”

• “Running o32 Applications”

• “Running Multipipe Applications in Multipipe-Aware Mode”

For more information on running applications with OpenGL Multipipe, see the
OpenGL Multipipe release notes, which are in the following file:

/usr/share/omp/release_notes/user/relnotes.html

Running OpenGL Single-Pipe Applications

OpenGL single-pipe applications are the targeted applications for OpenGL Multipipe. To
run such applications, simply enable the OpenGL Multipipe environment and invoke
the application using the omprun script.

20 007-4318-013

3: Using OpenGL Multipipe

Under SGI Xinerama, any OpenGL application started without the omprun script will
not behave correctly. In that case, OpenGL drawings will appear only in the part of the
window overlapping screen 0. On the other screens, the application will display a
random image that corresponds to the current content of the framebuffer on that pipe.

Under DMX, OpenGL applications started without the omprun script will display
correctly on all screens, using the GLX indirect rendering support in DMX. However,
using the omprun script will provide better performance for OpenGL applications.

Hint: For an easy way to run a number of single-pipe OpenGL applications under
OpenGL Multipipe without the need to always explicitly invoke omprun, start an IRIX
shell under omprun, as shown in the following :

$ omprun xwsh
<omprun xwsh>$ app_name app_args

Any application started from this new command shell will be started automatically in
transparent multipipe mode.

Running Pure X Applications

As noted in Chapter 1, “OpenGL Multipipe Overview”, the X proxy layer enables pure
X applications to run transparently over multiple pipes. To run pure X applications,
simply enable SGI Xinerama or DMX before invoking them and they will run correctly.
You do not need to use the omprun script for these applications.

Running IRIS GL Applications

There are applications that use the older IRIS GL graphics library instead of that of
OpenGL. OpenGL Multipipe does not support IRIS GL. To check whether your current
application is attempting to use IRIS GL, enter the following:

$ elfdump -Dl app_name | grep libgl.so

The following is an example:

$ elfdump -Dl /usr/sbin/showcase | grep libgl.so
[11] Jun 6 22:31:51 1996 0xe9155925 ----- libgl.so sgi1.0

The omprun script does this check and prevents OpenGL Multipipe from executing IRIS
GL applications.

Running Applications with OpenGL Multipipe

007-4318-013 21

If your system supports IRIS GL, you can still run IRIS GL applications, but not using the
OpenGL Multipipe omprun layer. Under SGI Xinerama, they will run correctly only on
screen 0. Also, IRIS GL applications will run correctly in multipipe-aware mode, which
is described in the subsequent section “Running Multipipe Applications in
Multipipe-Aware Mode”.

Only when DMX is used as the X proxy layer, will IRIS GL applications run correctly on
all screens without using the omprun script. This happens through the GLX indirect
rendering support in DMX. Consequently, performance decreases.

Running o32 Applications

There are applications that use the older o32 application binary interface (ABI) instead of
the newer n32 or 64-bit ABIs. OpenGL Multipipe does not support applications that were
built using the o32 ABI. To check whether your current application was built with the o32
ABI, enter the following:

$ file app_name | grep 32-bit

If the text ELF 32-bit ... is printed as a result, it is an o32 application.

The following is an example:

$ file /usr/sbin/showcase | grep 32-bit
/usr/sbin/showcase: ELF 32-bit MSB mips-2 dynamic executable MIPS -
version 1

The omprun script does this check and prevents OpenGL Multipipe from executing o32
applications.

If your system supports the o32 ABI, you can still run o32 applications, but not using the
OpenGL Multipipe omprun layer. Under SGI Xinerama, they will run correctly only on
screen 0. Also, o32 applications will run correctly in multipipe-aware mode, which is
described in the subsequent section “Running Multipipe Applications in
Multipipe-Aware Mode”.

Only when you use DMX as the X proxy layer, will o32 applications run correctly on all
screens without using the omprun script. This happens through the GLX indirect
rendering support in DMX. Consequently, performance decreases.

22 007-4318-013

3: Using OpenGL Multipipe

Running Multipipe Applications in Multipipe-Aware Mode

Multipipe applications are intentionally written to take advantage of systems that have
multiple graphics pipes. If they know about the underlying graphics hardware, they can
explicitly address and take advantage of the individual graphics pipes. Typically,
multipipe applications are written using OpenGL Performer or OpenGL Multipipe SDK.

It is best not to run such applications under OpenGL Multipipe, which hides the
hardware configuration of the system from the applications. To run at full potential, these
applications should be aware of the different graphics pipes in the system. To allow such
applications to see the real graphics hardware does not require you to disable
OpenGL Multipipe.

The OpenGL Multipipe layer may be bypassed on a per-application basis. This allows a
multipipe application to be fully aware of the multipipe environment while other
applications, aware of only a single large pipe, continue to run under OpenGL Multipipe.
Applications that bypass the OpenGL Multipipe layer are said to run in multipipe-aware
mode (or simply, aware mode), because they are aware of the different graphics pipes
handled by the X server.

To run a multipipe application in aware mode while other single-pipe applications run
concurrently in unaware mode, set the DISPLAY environment variable to point to the
desired backend display that is managed by the X proxy layer (for example, :0.1), and
then start the multipipe application with the –aware command-line option of the
omprun script, as in the following example:

$ setenv DISPLAY :0.0
$ omprun -aware perfly

Under DMX, it is especially important to set the DISPLAY environment variable because
the DMX meta display has a completely different display name than its component
backend displays. By default, the DMX display is :1 and the backend aware display is
:0. In the case of SGI Xinerama, the SGI Xinerama meta display and its component
backend displays are referred to by the same display name (for example, :0).

Note: Under SGI Xinerama, applications started in aware mode will be under window
manager control only with omp4Dwm. Under DMX, other window managers may be
used. See the subsequent section “Managing Windows for Aware Applications” for more
information about aware window management.

Performance Enhancing Features

007-4318-013 23

Hint: For an easy way to run a number of commands in aware mode, start an IRIX shell
in aware mode.

$ setenv DISPLAY :0.0
$ omprun -aware xwsh
<aware xwsh>$ app_name app_args

Any application started from this new command shell will be started automatically in
aware mode.

Performance Enhancing Features

OpenGL Multipipe has several methods of optimizing OpenGL applications to work
correctly and efficiently across multiple pipes. This section provides an overview of the
following performance features and some guidelines for their use:

• “Viewport Clipping” on page 23

• “Geometry Culling” on page 24

• “Display List Partitioning” on page 24

• “Master Rendering Modes” on page 25

• “Frame Latency Control” on page 28

• “Buffer Swap Synchronization” on page 28

The release notes provide a more technical discussion of each of these features.

Viewport Clipping

Applications that draw large polygons with complex texturing or shading procedures
are likely to be fill-limited—that is, the rasterization stage of the graphics pipeline is the
bottleneck to improving performance. If slower performance results in proportion to an
increase in the OpenGL window size, this is an indicator that fill performance could be
the problem.

To eliminate the pixel fill bottleneck, polygon rasterization work can be divided among
multiple graphics pipes. Using OpenGL Multipipe, this can be accomplished by simply
positioning a window so that it spans multiple graphics pipes and each pipe performs an
equal fraction of the rasterization work. On each component screen of the logical display,

24 007-4318-013

3: Using OpenGL Multipipe

OpenGL Multipipe automatically clips the OpenGL viewport to the physical screen
boundaries.

Viewport clipping is enabled by default. It can be disabled with the omprun -novpclip
option.

The fill performance benefits of viewport clipping can be more fully realized by using an
SGI Scalable Graphics Compositor and specifying additional parameters to
OpenGL Multipipe. For information on these parameters, see the section “Specifying
Static Composited Regions” on page 32.

Geometry Culling

Applications that render large amounts of geometry in display lists can sometimes reach
the limit of the polygon processing capabilities of the graphics hardware. Such an
application is said to be transform-limited or geometry-limited—that is, the geometry
transformation stage of the graphics pipeline is the bottleneck to improving
performance. The geometry limit varies for each graphics architecture. For example, an
Onyx 3000 pipe can handle millions of polygons per second; an Onyx4 pipe can handle
hundreds of millions of polygons per second. If performance remains the same when
lighting or textures are disabled by the application, these are indicators that geometry
performance is the limiting factor.

To eliminate the geometry transformation bottleneck, OpenGL Multipipe can divide
geometry among multiple pipes. By default, OpenGL Multipipe renders all geometry on
each graphics pipe, even if not all of the geometry is visible on a given pipe. When
geometry culling is enabled, each OpenGL Multipipe slave process renders only the
geometry from display lists, vertex arrays, and immediate mode commands that is
visible on its pipe. It is also possible for OpenGL Multipipe to cull geometry to
user-specified OpenGL clip planes.

This feature is enabled with the omprun -cull command-line option. Other options
related to geometry culling are described in the omprun -help text and in the Usage Tips
and Tricks section of the release notes.

Display List Partitioning

When rendering display lists with OpenGL Multipipe’s geometry culling option
enabled, OpenGL Multipipe culls or renders an entire display list as a unit. When the

Performance Enhancing Features

007-4318-013 25

original display list has a large amount of geometry and spans large areas of the scene,
performance scalability can suffer.

OpenGL Multipipe can optionally spatially divide user display lists to break them into
smaller ones. After the division, the smaller, more spatially coherent pieces are more
friendly to load balancing and display list culling.

This feature is enabled with the omprun -dlsplit command-line option. Other options
related to display list partitioning are described in the omprun -help text and in the
Usage Tips and Tricks section of the release notes.

Master Rendering Modes

As cited earlier, the OpenGL proxy layer of OpenGL Multipipe has two components: a
master render library that intercepts OpenGL calls made by the application and render
slave processes that each receive a stream of OpenGL calls from the master and perform
OpenGL rendering on the application’s behalf.

The master render library functions as part of the application process (that is, the “master
process”) and can have additional responsibilities besides intercepting, packing, and
distributing OpenGL calls to the slave processes. The master process may also render
directly to a single local pipe in place of a single slave process, or it may use a local pipe
only to track OpenGL state while a slave process renders to that pipe.

The omprun –mstrmode option allows you to specify what functions the master
component performs on the single local reference pipe. The master’s mode may improve
or hinder OpenGL performance depending upon the behavior of a particular
application. Therefore, it is important to understand the implications of each mode.

The following master modes are available:

• –mstrmode off

• –mstrmode track

• –mstrmode render

–mstrmode off Mode

The –mstrmode off mode is most efficient for applications that do not perform
glGetxxx() calls (GL state queries) in every frame since querying GL state requires

26 007-4318-013

3: Using OpenGL Multipipe

round-trip communication to a slave. The master process does not render; it only packs
and distributes GL calls to all slave processes. Slave processes render and one special
slave process tracks GL state for any occasional glGetxxx() calls. Figure 3-1 illustrates
running in –mstrmode off mode.

Figure 3-1 Running in –mstrmode off Mode

–mstrmode track Mode

The –mstrmode track mode is most efficient for applications that frequently query GL
state. The master process does not render but, in addition to packing and sending GL
calls to all slave processes, it tracks the GL state on a local reference pipe. Slave processes
render on all pipes. Figure 3-2 illustrates running in –mstrmode track mode.

Master

Application

OpenGL state queried
from slave reference pipe

OpenGLOpenGL OpenGL

Slave

Pipe

Slave

Pipe

Slave

Pipe

Performance Enhancing Features

007-4318-013 27

Figure 3-2 Running in –mstrmode track Mode

–mstrmode render Mode

The –mstrmode render mode may yield slightly better performance for applications
that do not use display lists and that run on systems with only two graphics pipes or with
a limited number of processors. The master process renders and tracks GL state on a local
reference pipe. One less slave process is needed because the application (master) process
renders itself. State queries again are made to the master’s local reference pipe. Figure 3-3
illustrates running in –mstrmode render mode.

Some of the performance features described in this section, including geometry culling,
are not available in -mstrmode render mode.

Note: Use the omprun –cull option to enable culling for an application. This option is
available with the –mstrmode off and –mstrmode track options. You cannot use
culling with the –mstrmode render option.

OpenGL state queried
from local reference pipe

OpenGLOpenGL OpenGL

Slave

Pipe

Slave

Pipe

Slave

Pipe
Master

Application

28 007-4318-013

3: Using OpenGL Multipipe

Figure 3-3 Running in –mstrmode render Mode

Frame Latency Control

OpenGL Multipipe uses a shared-memory buffer in between the application and the
drawing slaves. This buffer can introduce latency—that is, multiple frames can be
buffered to be consumed gradually by the slave. If the application does not call glFinish()
by itself, then OpenGL Multipipe allows the number of buffered frames to reach a small
preset limit.

The latency helps smooth out application and drawing speed differences, and thereby
increase throughput. However, if the amount of latency is beyond what you can accept,
it can be limited by using the omprun -latency command-line argument to specify the
maximum latency in number of frames. For more information related to frame latency
control, see the omprun -help text and the Usage Tips and Tricks section of the release
notes.

Buffer Swap Synchronization

Variations in pixel fill, geometry load, and many other factors can lead to an unbalanced
load among the graphics pipes. Some pipes will render their parts of the scene faster or
more slowly than the rest. Synchronization among the pipes is required to prevent one

OpenGL state queried
from local reference pipe OpenGLOpenGL

Pipe

Slave

Pipe

Slave

Pipe

Master

Application

Performance Enhancing Features

007-4318-013 29

pipe from rendering faster or slower than another, which in some cases can present
visible “tearing” in the output image.

This section decribes the following synchronization schemes:

• “Software Swap Synchronization”

• “Hardware Buffer Swap Synchronization”

Software Swap Synchronization

By default, OpenGL Multipipe performs a software synchronization among the slave
processes to ensure that they issue their respective swap-buffer commands at the same
time. The software synchronization approximates a synchronized swap in hardware.

Software swap synchronization is enabled by default. It can be disabled with the
omprun -nosync command-line option. Note that this also disables any meaningful
sense of frame latency.

Hardware Buffer Swap Synchronization

OpenGL Multipipe supports hardware synchronization of glXSwapBuffers() across all
pipes. Normally, when an application that is run with omprun makes a call to
glXSwapBuffers(), OpenGL Multipipe sends swap-buffer requests to all pipes since the
application window might be visible on all pipes. When multiple pipes are used to drive
a large logical screen (that is, a wall display), ensuring that the actual buffer swaps
happen at exactly the same time on every pipe improves the perception that the display
is a single logical pipe.

To use Swap Ready hardware synchronization, follow these steps:

1. Before using the –swapready option, make sure you have properly connected
Genlock and Swap Ready cables to all pipes and that the pipes are configured to be
genlocked.

Running any OpenGL application that attempts to use Swap Ready hardware
without proper configuration can cause a serious graphics failure. This includes all
applications started with omprun –swapready. For information about wiring the
Genlock and Swap Ready cables, see the POWER Onyx and Onyx Rackmount
Owner’s Guide. Also, see the genlock(1) man page.

2. When running the application with omprun, use the omprun –swapready flag:

$ omprun -swapready app_name app_args

30 007-4318-013

3: Using OpenGL Multipipe

Using Swap Ready implicitly disables software swap synchronization. If you are not
using Swap Ready hardware to synchronize glXSwapBuffers() calls, then
OpenGL Multipipe uses a software synchronization that is less accurate.

Note: More than one application may be started with hardware swap synchronization
using the omprun –swapready option. However, multipipe applications that support
Swap Ready natively will conflict with OpenGL Multipipe if an application that was
started with omprun –swapready is running. Likewise, if a multipipe application is
already using the Swap Ready line, the omprun –swapready option will revert to
software swap synchronization.

Using an SGI Scalable Graphics Compositor with OpenGL Multipipe

You may configure SGI Scalable Graphics Compositor hardware for use with OpenGL
Multipipe to improve geometry and fill performance for an application. This requires no
changes to the application. Using the following topics, this section describes how to
configure SGI Xinerama or DMX for this purpose as well as settings for OpenGL
Multipipe to improve performance and usability in composited logical screen mode:

• “Configuring Composited Screens with SGI Xinerama” on page 30

• “Enabling Duplicate Cursor Images in Overlap Regions” on page 31

• “Configuring Composited Screens with DMX” on page 31

• “Specifying Static Composited Regions” on page 32

Configuring Composited Screens with SGI Xinerama

Composited screens are a special case of overlapped screens in which each compositor
input screen completely overlaps the other compositor input screens. That is, each
compositor input pipelet displays the same area of the logical screen.

To configure totally overlapped pipes, specify negative xoffset and yoffset
parameters that equal the width (and height) of the screens you are overlapping. For
example, if you have four pipelets, each with a resolution of 1280 x 1024, connected to a
single compositor, you would place the following –hw arguments together on one line in
the /var/X11/xdm/Xservers file:

Using an SGI Scalable Graphics Compositor with OpenGL Multipipe

007-4318-013 31

:0 secure /usr/bin/X11/X
-boards 4,5,6,7
-hw board=4,right=1
-hw board=5,left=0,right=2,xoffset=-1280
-hw board=6,left=1,right=3,xoffset=-1280
-hw board=7,left=2,xoffset=-1280
... other X server arguments ...

Notes:

• The –boards numbers are physical pipe numbers, but the indexes given to the
right, left, above, and below parameters refer to the logical order of the –hw
parameters.

• The lines are separated in the example only for readability.

Enabling Duplicate Cursor Images in Overlap Regions

Note: This feature is available under SGI Xinerama and is not available on Onyx4
platforms.

When SGI Xinerama is used to overlap screen regions on an edge-blended display or
compositor-based system, the cursor will seem to disappear when it enters the
overlapped or uncomposited regions of the display.

In IRIX 6.5.20 or later, you can use a new X server feature that prevents the cursor from
disappearing in these cases. It causes additional cursor images (not real cursors) to
appear on all pipes contributing to the overlapped regions. To enable this feature, add the
–phantomcursors flag to the X server command line in the
/var/X11/xdm/Xservers file.

For more information about the –phantomcursors option, see the Xsgi(1) man page.

Configuring Composited Screens with DMX

To configure completely overlapped screens under DMX, simply create a DMX
configuration file to manage the screens of the backend X server in the desired order. Do
not specify an offset or a 0x0 offset after the screen specifications. The following is an
example configuration file:

32 007-4318-013

3: Using OpenGL Multipipe

virtual totaloverlap 1280x1024 {
display :0.0 1280x1024;
display :0.1 1280x1024;
display :0.2 1280x1024 @0x0; # “@0x0” is optional
display :0.3 1280x1024;

}

For more information on DMX configuration files, see section “Creating DMX
Configuration Files” on page 14.

Specifying Static Composited Regions

To establish static composited regions, do the following:

1. Set up fully overlapping screens with SGI Xinerama or DMX.

The sections “Configuring Composited Screens with SGI Xinerama” on page 30 and
“Configuring Composited Screens with DMX” on page 31 describe how you do
this.

2. Configure the SGI Scalable Graphics Compositor hardware and OpenGL Multipipe
to constrain drawing to areas of the physical pipes that will provide the best static
load balancing for your application with sgcombine.

Note that sgcombine must be run in multipipe-aware mode:

$ env DISPLAY=:0.0 omprun -aware /usr/gfx/sgcombine

For more information about setting up composited screens with sgcombine, see
the SGI InfinitePerformance: Scalable Graphics Compositor User’s Guide.

3. Configure OpenGL Multipipe to match the static compositor configuration set with
sgcombine.

For example, if you specify a compositor tiling of four input rectangles of 640x512
pixels in sgcombine, setting the environment variable SGIOMP_SCREEN_RECTS to
the following string provides the matching settings to OpenGL Multipipe:

“640x512+0+0 640x512+640+0 640x512+0+512 640x512+640+512”

OpenGL Multipipe will then clip drawing to these subregions on backend screens
:0.0, :0.1, :0.2, and :0.3 (pipes 4, 5, 6, and 7), respectively, if DMX or
SGI Xinerama are configured as in the previous sections. The rectangles are
specified in pipe-relative coordinates, one per backend X screen, using the format

Managing Windows for Aware Applications

007-4318-013 33

described in the XParseGeometry(3X11) man page. Extra rectangles are ignored
and screens for which a rectangle is not specified will have clipping performed at
the screen borders.

Enabling the omprun –cull option will cause geometry to be culled to these areas
as well.

Managing Windows for Aware Applications

To allow window manager support for applications started in aware mode,
OpenGL Multipipe provides aware window management. Under SGI Xinerama, the
window manager omp4Dwm, a specialized version of the SGI standard window manager
(4Dwm), is used to manage aware windows. Under DMX, a window manager wrapper is
provided that is much like omprun for GL applications.

When omp4Dwm or the window manager wrapper is not used, applications started in
aware mode (using omprun –aware app_name) will bypass the window manager. This
means that their windows cannot be moved, resized, iconified, or otherwise managed.
This includes the regular decoration provided by the window manager. The windows
will not have this decoration. This occurs because an unaware window manager does not
know about all of the real screens that the X proxy layer is managing. It cannot manage
aware windows that were not created through X proxy layer.

If you are using DMX as your X proxy layer and you invoke ompstartdmx with the
standard arguments (or if DMX is configured to start automatically when you log in),
4Dwm will be automatically started with the window manager wrapper so that it is able
to manage aware windows. You can change the DMX default window manger by using
the ompstartdmx –wm option. You may follow the steps in the following subsections if
you want to run a different window manager to manage aware windows.

This section describes the following topics:

• “Starting an Aware Window Manager”

• “Exiting an Aware Window Manager”

• “Setting an Aware Window Manager as the Default”

Note: The multipipe-aware window manager is currently not supported for
compositor-based systems.

34 007-4318-013

3: Using OpenGL Multipipe

Starting an Aware Window Manager

To start an aware window manager, perform the following steps:

1. Exit or kill any unaware window manager that is currently managing the display.

If you are using 4Dwm (the default window manager on IRIX), enter the following in
an IRIX shell:

$ tellwm quit

Otherwise, if possible, exit your window manager without logging out. One way to
do this is to find the process number for your window manager and kill it manually,
as the following illustrates:

$ ps -e | grep my_window_manager
23878 ? 0:42 my_window_manager

$ kill 23878

Some window managers may not allow you to exit the window manager and
remain logged in. If this is the case, you will need to start the aware window
manager from a .xsession file. See the section “Setting an Aware Window
Manager as the Default” on page 35 for more information.

2. Start the specialized window manager.

Under SGI Xinerama, enter the following:

$ start_ompwm

Under DMX, enter the following:

$ ompwrapwm twm

The start_ompwm script starts omp4Dwm after first checking if the display server
supports SGI Xinerama. The ompwrapwm script starts the window manager twm in
aware window management mode under DMX. If the display server is determined
to be compatible, the script starts the window manager with aware window
management support enabled. If the display server is not compatible, the script will
exit. The script can be made to start the window manager in unaware mode (with
aware window management disabled) as a contingency.

For more information on using the start_ompwm and ompwrapwm scripts, see their
man pages or use the -help command-line option of the scripts as follows:

$ start_ompwm -help

or

$ ompwrapwm -help

Configuring Overlapping Screens with SGI Xinerama

007-4318-013 35

Notes:

• You can use any window manager with the ompwrapwm script or with the
ompstartdmx –wm option, but currently only 4Dwm and twm are officially
supported.

• Starting an application in aware mode and then starting the window manager will
result in the application’s windows being unmanaged by the aware window
manager. An aware window manager must be started prior to running an
application in aware mode in order for its windows to be managed.

Exiting an Aware Window Manager

To exit an aware window manager, simply log out and log back in. The default window
manager will again manage your display.

If you are running omp4Dwm under SGI Xinerama, you may also exit omp4Dwm by
entering the following:

$ tellwm quit

Then start your original window manager.

Setting an Aware Window Manager as the Default

An alternate way to run an aware window manager is to invoke the start_ompwm or
ompwrapwm my_window_mgr script in your $HOME/.xsession file. Which script
should be invoked (start_ompwm or ompwrapwm) depends respectively on whether
SGI Xinerama or DMX is running.

The directory /usr/share/omp/examples/X11/ contains some example
.xsession files. For more information about .xsession files, see the man pages X(1)
and xdm(1).

Configuring Overlapping Screens with SGI Xinerama

Reality Center environments with multiple projectors and multiple graphics pipes often
have overlapping screens. To allow seamless alignment of these screens, projectors
typically have edge blending capability.

36 007-4318-013

3: Using OpenGL Multipipe

You control the amount of overlapping by specifying the xoffset and yoffset
arguments (in units of pixels) of the -hw parameters in the file
/var/X11/xdm/Xservers. See the Xsgi(1) and xdm(1) man pages for a detailed
description.

007-4318-013 37

Chapter 4

4. Limitations

OpenGL Mulitpipe allows single-pipe applications to run in a multipipe environment
without any modification and without the need to recompile the application. It also
allows single-pipe and multipipe applications to run concurrently on the same X server.
However, OpenGL Multipipe has limitations and the following sections describe them:

• “Performance Enhancement” on page 38

• “X Extensions” on page 38

• “The Multipipe-Aware Window Manager” on page 38

• “OpenGL Window Size Constraints” on page 38

• “Processor Requirements” on page 39

• “Overlay Windows Support in DMX” on page 39

• “SGI Xinerama Is Not Supported on Onyx4 Platforms” on page 39

• “Graphics Pipe Requirements” on page 39

For release-dependent limitations, see the OpenGL Multipipe release notes. For
supported platforms and configurations, see “Supported Platforms and Configurations”
in Chapter 1.

38 007-4318-013

4: Limitations

Performance Enhancement

OpenGL Multipipe does not replace performance-focused multipipe APIs—such as
OpenGL Performer or OpenGL Multipipe SDK—or any other custom multipipe
solution. Using OpenGL Multipipe results in some minimal overhead (performance loss)
for traditional single-pipe applications. This is due to the inherent cost of distributing the
X and OpenGL commands among the graphics pipes.

X Extensions

Some X extensions are not supported by SGI Xinerama, and others are not supported by
DMX. For example, SGI Xinerama does not support the SGI-VIDEO-CONTROL
extension, which permits control of video operations on the base graphics hardware, and
SCREEN-SAVER, which is used by some screen saver programs. Applications using these
X extensions may not function properly. The behavior of these applications started in
unaware mode is undefined, though they will generally behave correctly on screen 0 or
in aware mode. To determine whether a particular extension is supported, see the section
“X Application Uses Unsupported X Extension” on page 51.

The Multipipe-Aware Window Manager

Due to the nature of the screen overlapping required for composited displays, the aware
window manager is currently limited to managing aware windows on noncomposited
displays only. Unaware windows will continue to be managed properly.

OpenGL Window Size Constraints

The hardware graphics pipes have a hardware-dependent limit on the size of the region
into which an OpenGL application renders. The consequence is that an OpenGL
application is constrained to draw into a limited area. Under SGI Xinerama, enlarging an
OpenGL window beyond this size limit results in undefined behavior. An OpenGL
window may be placed anywhere within the the total area managed by the X server.
Only the size of the region into which OpenGL renders is restricted.

Processor Requirements

007-4318-013 39

Under DMX, however, OpenGL Multipipe allows OpenGL rendering to be unaffected by
the window size limit of the graphics hardware. If the OpenGL application is invoked
using omprun, the application may render into windows of any size.

Processor Requirements

OpenGL Multipipe requires that you use a MIPS R10000 processor or later. The following
example shows how you check for the processor type:

$ hinv -t cpu
CPU: MIPS R16000 Processor Chip Revision: 2.1

Overlay Windows Support in DMX

DMX supports overlay windows—that is, windows that use overlay visuals—only if
overlay visuals are available on each of the underlying X servers that DMX manages.
This is the case on most SGI systems. On Onyx4 systems, you must explicitly enable
support of overlay visuals in the configuration file(s) of the underlying XFree86 server(s).

SGI Xinerama Is Not Supported on Onyx4 Platforms

Due to changes in the X server on Onyx4 platforms, SGI Xinerama will not be supported
on these platforms. Only the DMX proxy layer is supported on Onyx4 graphics
platforms. DMX and SGI Xinerama are available on all other platforms supported by
OpenGL Multipipe.

Graphics Pipe Requirements

Each of the graphics pipes managed by SGI Xinerama or DMX must have identical
capabilities. Each pipe must provide the same set of X visuals and GLX FBConfigs, have
the same amount of texture memory, and so on

For example, if a system has three InfiniteReality3 graphics pipes where two pipes have
two raster managers (RMs) and one pipe has four RMs, the pipe with four RMs must be
configured to look as if it has two RMs. This can be done by ensuring the maximum pixel

40 007-4318-013

4: Limitations

depth setting on each pipe is consistent. You can inspect the pixel depth by using the
command /usr/gfx/gfxinfo. Depending on your system type, you can adjust the
pixel depth on a particular pipe with one of the following commands:
/usr/gfx/ircombine, /usr/gfx/sgcombine, or xsetmon. See the man pages for
gfxinfo(1), ircombine(1), sgcombine(1), and xsetmon(1) for more information.

007-4318-013 41

Chapter 5

5. Troubleshooting

This chapter describes some problems you might encounter and what to do to solve
them. For additional considerations, see the OpenGL Multipipe release notes, which are
in the following file:

/usr/share/omp/release_notes/user/relnotes.html

This chapter documents the following problems:

• “Problems Enabling SGI Xinerama” on page 42

• “Problems Starting DMX” on page 42

• “Problems Starting Applications with omprun” on page 43

• “Problems Running IRIS GL Applications” on page 45

• “Problems Running o32 Applications” on page 45

• “Graphics Do Not Display Correctly on All Screens” on page 45

• “Mouse Behavior Offset by a Screen” on page 48

• “Problems Running Inherently Multipipe Applications” on page 49

• “Multipipe-Aware Applications Fail to Receive Events on Screen 0” on page 49

• “Nothing Displays or the Graphic Stalls or Hangs” on page 49

• “OpenGL Graphics Render Slowly” on page 50

• “X Applications Are Not Behaving Correctly or Fail to Start” on page 51

• “Simultaneously Running X Servers with and without SGI Xinerama Enabled” on
page 53

• “Tiled Background Image” on page 54

• “Flickering Grey Rubberband During Window Movement” on page 54

• “Mouse Disappears in Overlap Region” on page 54

• “Problems Running Multithreaded Applications” on page 55

• “Problems with Aware Window Management” on page 55

42 007-4318-013

5: Troubleshooting

Problems Enabling SGI Xinerama

On systems having only one graphics pipe or in the case where the X server is directed
to handle only one pipe (see the Xsgi(1) man page), enabling SGI Xinerama has no effect.
In these cases, SGI Xinerama will be disabled, regardless of the value of the xinerama
flag supplied on the chkconfig command.

SGI Xinerama is not available on Onyx4 platforms. Only the DMX proxy layer is
supported on these platforms.

Problems Starting DMX

If there is a problem starting the DMX proxy server, you may see output such as the
following after running ompstartdmx:

ompstartdmx fatal: An error occured when starting Xdmx
Check the Xdmx log file for details: /tmp/Xdmx.log.xxxxx

This can result from a number of conditions, some of which have workarounds that are
described in the following paragraphs. Inspect the Xdmx.log.xxxxx file, especially
toward the end of the log, for messages that indicate one of the following conditions:

• Incompatible screens, no common visuals

DMX will not create a logical display from graphics pipes with differing graphics
capabilities. If the DMX proxy server detects that there are no common X visuals on
the backend screens it tries to manage, DMX will abort with an error to this effect.

• Only one screen on display

On systems having only one graphics pipe or in the case where the X server is
directed to handle only one pipe, ompstartdmx will exit with an error such as the
following:

ompstartdmx fatal: Display :0.0 has only one screen.
DMX was not started

In these cases, it does not make sense to start DMX since there is only one pipe.
However, specifying a configuration file with the ompstartdmx –cfgfile option
will not prevent DMX from running on a single backend screen. Use the
ompstartdmx –help option for more information.

Problems Starting Applications with omprun

007-4318-013 43

Problems Starting Applications with omprun

If an application will not start when using the omprun command, there are several likely
scenarios, which are described in the following subsections:

• “DISPLAY Does Not Point to a Meta Display”

• “Using omprun without the ompslave Render Server”

• “Shared Memory Failure”

DISPLAY Does Not Point to a Meta Display

If the DISPLAY environment variable does not toa meta display, ensure that the
following conditions true (check them in the order listed):

1. The DISPLAY environment variable points to the correct display.

2. An X proxy layer is enabled.

See the section “Verifying That the OpenGL Multipipe Environment is Enabled” on
page 17. An X proxy layer must be enabled or when you invoke an application with
omprun, the application will exit with the following error:

SGIomp fatal: DISPLAY does not point to a meta display

3. The application was not run from a shell that was started with the omprun –aware
command or from a script that used the omprun –aware command to start the
application.

The omprun –aware command effectively disables the X proxy layer for any
programs it invokes.

4. Your application does not use either the OpenGL Multipipe SDK or
OpenGL Performer multipipe API.

Recent versions of these APIs may have integrated with SGI Xinerama or DMX and
may not run under OpenGL Multipipe. The solution is to run these applications as
is or to simply ensure that they are run in aware mode (with omprun –aware).
Another alternative is to use older versions of these APIs that do not contain the
X proxy aware code.

44 007-4318-013

5: Troubleshooting

Using omprun without the ompslave Render Server

The OpenGL Multipipe layer needs to have the ompslave render server running. If none
is available on the host you are using and you invoke an application using omprun, the
application will exit. The following examples of shell sessions show the result of trying
to run the application ideas on a host that does not have the ompslave render server
running:

• Example 1:

$ omprun /usr/demos/General_Demos/ideas/ideas
omprun fatal: ompslave daemon is missing
please run /etc/init.d/omp stop; /etc/init.d/omp start

Stop and restart the ompslave render server, or simply run the application without
the omprun script. If the error persists, make sure that the chkconfig flag omp is
set to on; otherwise, /etc/init.d/omp start will have no effect. To do this,
type the following command as root:

chkconfig omp on

• Example 2:

$ omprun /usr/demos/General_Demos/ideas/ideas
SGIomp fatal: failed to connect to <hostname>: Connection refused

The <hostname> field is the display server where OpenGL Multipipe expects to find
an ompslave daemon.

Shared Memory Failure

After upgrading to a newer version of OpenGL Multipipe, running an application with
omprun may produce the following error:

SGIomp fatal: Failed to attach to shared memory object: No such file or
directory

This message indicates that the ompslave process of the older version is still running.
Be sure to run the following commands as root before using a new version of
OpenGL Multipipe for the first time:

/etc/init.d/omp stop; /etc/init.d/omp start

Problems Running IRIS GL Applications

007-4318-013 45

Problems Running IRIS GL Applications

OpenGL Multipipe does not support IRIS GL applications. In some cases (when the
application started with the omprun script is an executable and not a script), omprun can
determine if the application is based on IRIS GL. In such a case, a warning message is
generated and the application will not be started, as shown in the following example:

$ omprun clock
omprun warning: clock is an IRIS GL application
OMP Library does not support IRIS GL applications

For information about how to run an IRIS GL application when an X proxy layer is
enabled, see the section “Running IRIS GL Applications” on page 20.

Problems Running o32 Applications

OpenGL Multipipe does not support o32 applications. In some cases (when the
application started with the omprun script is an executable and not a script), omprun can
determine if the application was built using the o32 application binary interface (ABI). In
such a case, a warning message is generated and the application will not be started, as
shown in the following example:

$ omprun showcase
omprun warning: showcase is an O32 application
OMP Library does not support O32 applications

For information about how to run an o32 application when an X proxy layer is enabled,
see the section “Running o32 Applications” on page 21.

Graphics Do Not Display Correctly on All Screens

If a graphics window displays correctly on some screens only, there are several likely
scenarios, which are described in the following subsections:

• “Coding Problem in the Application”

• “You Did Not Use the omprun Script”

• “A User-Defined Script Invokes an IRIS GL or o32 Application”

• “You Are Using the Aware Window Manager”

• “Set-User-ID (“s-bit”) Applications”

46 007-4318-013

5: Troubleshooting

Coding Problem in the Application

If you are using the omprun –cull feature and you resize or move the application
window to different screens, some applications may not draw an image properly on all
screens. This can occur if an application does not call glClear() at the beginning of each
frame (that is, it “builds up” an image, relying on a sort of rendering history from past
frames). When culling is enabled, applications that do not call glClear() at the beginning
of each new frame may have unusual rendering artifacts when they are moved from their
initial window position. The culling feature by nature eliminates drawing commands
that would otherwise be rendered into an off-screen region. To avoid this behavior, do
not use the –cull option.

You Did Not Use the omprun Script

Note: This problem pertains to you only if you use the SGI Xinerama X proxy layer.

If a graphics window displays correctly on one screen only (usually screen 0), ensure that
you start the application with the omprun script. If the same behavior persists when you
invoke the application using the omprun script, ensure that one of the other conditions
described in the following subsections does not exist.

A User-Defined Script Invokes an IRIS GL or o32 Application

Note: This problem pertains to you only if you use the SGI Xinerama X proxy layer.

The omprun script cannot detect IRIS GL or o32 applications if it starts another script that
in turn starts the target application. The following shell session illustrates this case:

$ cd /usr/demos/General_Demos/atlantis
$ omprun ./atlantis
omprun warning: ./atlantis is an IRIS GL application
OMP Library does not support IRIS GL applications
$ omprun ./RUN

In the preceding session, RUN is a script that invokes Atlantis. RUN does start the
application, but it will be displayed correctly on one screen only.

Graphics Do Not Display Correctly on All Screens

007-4318-013 47

If you start an application by using a user-defined script, ensure that the application is
not an IRIS GL or o32 application. The following session shows how to test for an
application that uses IRIS GL:

$ elfdump -Dl /usr/sbin/clock | grep libgl.so
[1] Oct 20 20:39:53 2000 0xe5383809 ----- libgl.so sgi1.0

If there is no output, the application does not use IRIS GL.

The following demonstrates how to test for an application that uses the o32 ABI:

$ file /usr/sbin/iconsmith | grep ‘32-bit’
/usr/sbin/iconsmith: ELF 32-bit MSB mips-2 dynamic executable MIPS -
version 1

If there is no output, the application does not use the o32 ABI.

You Are Using the Aware Window Manager

If you started an application in aware mode (that is, by running the script
omprun –aware app_name...), the application running in aware mode only draws to
one screen. If you are running an aware window manager, it is possible that the window
manager may position the window on a screen other than the one on which the
application is drawing. To see the window rendered correctly, move the application’s
window to the correct screen.

Set-User-ID (“s-bit”) Applications

OpenGL Multipipe cannot override the OpenGL calls of set-user-ID applications. This is
because the omprun script makes use of the _RLDN32_LIST and _RLD64_LIST
environment variables to cause an application to load OpenGL Multipipe’s
libOMPmaster.so instead of the real OpenGL library, libGL.so. For security reasons,
IRIX may ignore the _RLDN32_LIST and _RLD64_LIST environment variables for
set-user-ID programs. Therefore, OpenGL Multipipe is not able to intercept and
distribute OpenGL calls to all pipes. As a workaround, you may run the application
under the DMX proxy layer to use its native support for GLX indirect rendering. To do
so, simply run the application under DMX without using the omprun command. If this
is not feasible, the application should run under omprun if you invoke the application
while logged in as the user that owns or created the executable (or as root if
administrative access is available).

48 007-4318-013

5: Troubleshooting

Mouse Behavior Offset by a Screen

Note: This problem pertains to you only if you use the SGI Xinerama X proxy layer.

If logical pipe 0 is not in the top left screen position, mouse events (such as clicks) are
offset by one screen. Logical pipe 0 can be any physical pipe; it is the physical pipe
specified by the first -hw argument in the X server configuration file,
/var/X11/xdm/Xservers.

To work around this problem, list the graphics pipe of the monitor that is in the top left
position first in the list of -hw arguments in the Xservers file. For example, in a
configuration where pipes 5, 3, and 4 are in a linear array in that order, you would use
the following –boards and –hw parameters together on one line in the
/var/X11/xdm/Xservers file:

:0 secure /usr/bin/X11/X
-boards 5,3,4
-hw board=5,right=1
-hw board=3,left=0,right=2
-hw board=4,left=1
... other X server args

Notes:

• The –boards numbers are physical pipe numbers, but the indexes given to the
right, left, above, and below parameters refer to the logical order of the –hw
parameters.

• The first –hw parameter is that of the top, leftmost pipe and should never have a left
or top neighbor.

• The lines are separated in the example only for readability.

See the Xsgi(1) and xdm(1) man pages for more information about the -hw options and
the Xservers file.

Problems Running Inherently Multipipe Applications

007-4318-013 49

Problems Running Inherently Multipipe Applications

Applications—such as ircombine, sgcombine, xsetmon, setmon, and gamma—
which are designed to manage graphics hardware pipes individually, are inherently
multipipe applications. Therefore, they should be started in multipipe-aware mode, as
shown in the following examples:

$ setenv DISPLAY :0.0
$ omprun -aware gamma

$ setenv DISPLAY :0.0
$ omprun -aware sgcombine

This allows the application to run as if the X proxy layer were disabled. Applications with
a GUI—such as sgcombine, ircombine, and xsetmon—will not be under window
manager control unless an aware window manager is active.

Multipipe-Aware Applications Fail to Receive Events on Screen 0

Windows of applications that are run in aware mode are not handled by ordinary
window managers. This can cause some problems on screen 0 for keyboard events.

Moving away all the windows that are overlapping the aware window (even if these
windows are displayed behind the aware window) will set the correct focus. The aware
window will then receive the keyboard events.

Alternately, running the aware window manager will also fix the focus problem.

Nothing Displays or the Graphic Stalls or Hangs

If you start an OpenGL application with omprun and it does not display anything or the
graphic stalls or even hangs, the source of the problem might be one of the following:

• “Coding Problem in the Application”

• “Window Exceeds Maximum OpenGL Window Size”

• “Improperly Wired Genlock or Swap Ready Cables”

50 007-4318-013

5: Troubleshooting

Coding Problem in the Application

You may see a blank display or experience stalls or hangs for OpenGL applications that
do not call glFlush(), glFinish(), or glXSwapBuffers() at the end of each frame. This
causes OpenGL Multipipe to draw only when its internal buffer overflows. It can happen
that the buffer never fills, in the case of an event-driven application—that is, the
application draws one frame and waits for an event before drawing the next frame.
Unfortunately, there is no workaround for applications that are not frame-based because
OpenGL Multipipe relies on regular calls to the functions just cited.

Window Exceeds Maximum OpenGL Window Size

If the size of a window with OpenGL content is larger than the maximum width or height
allowed by the graphics hardware, undefined drawing behavior will result. Although
this limit can vary depending on the graphics configuration, it is typically around 4000
pixels. Logical screen configurations with a width or height larger than the maximum
OpenGL window size are particularly susceptible to this behavior. As long as an OpenGL
window is smaller than the maximum size, it may be placed anywhere within the total
area managed by the X server. Only the size of the region into which OpenGL renders is
restricted. For more information, see “OpenGL Window Size Constraints” on page 38.

Improperly Wired Genlock or Swap Ready Cables

If you are experiencing long delays between frames of an OpenGL application (whether
or not it was started with omprun), the condition may have resulted from using the
omprun –swapready option with improperly configured or improperly wired Genlock
or Swap Ready cables.

For more information about this problem and a workaround, see the OpenGL Multipipe
release notes.

OpenGL Graphics Render Slowly

While there could be many reasons for slow rendering, ensure that you used the omprun
command to start your OpenGL application, in particular, if you are using the DMX X
proxy layer. Failure to use the omprun command under DMX will cause the application
to draw to all screens using the slower GLX indirect rendering support in DMX instead

X Applications Are Not Behaving Correctly or Fail to Start

007-4318-013 51

of the OpenGL direct rendering provided through the omprun command. Use the
omprun command to achieve the best rendering performance for single pipe
(“multipipe-unaware”) applications under DMX.

For other performance optimization suggestions when using the omprun command, see
the section “Performance Enhancing Features” on page 23.

To achieve the best performance with multipipe applications, see the section “Running
Multipipe Applications in Multipipe-Aware Mode” on page 22.

X Applications Are Not Behaving Correctly or Fail to Start

If X applications are not behaving correctly or fail to start, consider the cases described
in the following subsections:

• “X Application Uses Unsupported X Extension”

• “SGI Xinerama Client or Server Uses Nonstandard Protocol”

• “Application Window Disappears”

• “Application Explicitly Opens a Display Connection to :0.0”

X Application Uses Unsupported X Extension

Verify that the application is not using unsupported X extensions. Unfortunately, there is
no way to accurately list the extensions an application uses. However, the following
examples using the nm command give some hints about the extensions used. If an
application is using an X extension, this can usually be detected by searching for
occurrences of the string extension or for the name of a particular extension. The
xdpyinfo command lists the names of extensions supported by the X server.

Indicating the use of the DOUBLE-BUFFER extension (DBE), the following example
shows that command gmemusage calls XdbeQueryExtension:

nm /usr/sbin/gmemusage | grep -i extension
[116] |2143299120| 436|FUNC |GLOB |DEFAULT |UNDEF| XdbeQueryExtension

For a list of X extensions supported by SGI Xinerama, see the Xinerama(3X11) man page.
For a list of X extensions supported by DMX, see the Xdmx(1) man page in the directory
/usr/share/omp/doc/user. Applications that use unsupported X extensions may be

52 007-4318-013

5: Troubleshooting

run in aware mode by running them with the omprun –aware option so that they bypass
the X proxy layer.

SGI Xinerama Client or Server Uses Nonstandard Protocol

The SGI Xinerama versions in IRIX 6.5.11 and earlier use a protocol that is incompatible
with versions of SGI Xinerama released in IRIX 6.5.12 and later. If an application links
(dynamically at run time or statically at compile time) with X client libraries that came
with IRIX 6.5.11 and earlier and then attempts to make SGI Xinerama calls to an X server
from IRIX 6.5.12 or later, the behavior will be undefined. Similarly, linking with X client
libraries from IRIX 6.5.12 or later and connecting to an X server from IRIX 6.5.11 or earlier
will also yield undefined behavior.

Since the OpenGL Multipipe layer calls XineramaQueryVersion, it is able to reliably
detect and report this server-client version incompatibility.

If you encounter this protocol incompatibility, the workaround is to use a client library
and server that both support the same SGI Xinerama version—that is, use a client library
and X server from the same IRIX version. More simply stated, if you are connecting to a
remote display that has SGI Xinerma enabled, ensure that both the local and remote hosts
are running the same version of IRIX.

See the Xinerama(3X11) and XineramaQueryVersion(3X11) man pages for more
details.

Application Window Disappears

Note: This problem pertains to you only if you use the DMX X proxy layer.

This can occur if you start an application on one of DMX’s backend displays without
using omprun –aware—for example, if your DISPLAY environment variable is set to
:0.0 and the DMX proxy is managing display :1. The application will run on :0.0, a
backend (“aware”) display but because it was not started properly in aware mode (using
omprun –aware), the window will not be managed by the window manager running
under DMX. Consequently, it may be “pushed” behind the DMX root window. Exiting
the DMX session will reveal the application window. To avoid this problem, open the
application in aware mode using omprun –aware app_name.

Simultaneously Running X Servers with and without SGI Xinerama Enabled

007-4318-013 53

Application Explicitly Opens a Display Connection to :0.0

Note: This problem pertains to you only if you use the DMX X proxy layer.

This problem can manifest itself in many ways:

• An apparent X error may appear in the output of the application.

• A window may suddenly disappear behind the DMX root window.

• The command omprun may output the following message:

DISPLAY does not point to a meta display.

This problem originates from a program explicitly requesting an X display connection to
:0.0 even if the DISPLAY environment variable contains a different default display
string, which is usually the case when running DMX.

The workaround is for DMX to manage :0 and to have the backend X servers manage
other display numbers so that when the application tries to open :0.0, it correctly
connects to the DMX meta display on :0 instead of a backend display by accident. To
have other X servers manage other display numbers so that :0 is available for DMX, do
the following:

1. Open file /var/X11/xdm/Xservers.

2. Replace the instance of :0 with another display number (for example, :1 or :5).

3. Restart graphics.

Now when you run ompstartdmx, by default it will manage the first available X display
number, which should now be :0.

Simultaneously Running X Servers with and without SGI Xinerama
Enabled

To run X servers with SGI Xinerama enabled simultaneously with regular X servers (that
is, with SGI Xinerama disabled) on the same machine, add +xinerama or –xinerama
to the existing arguments in the file /var/X11/xdm/Xservers. This allows you to
override the chkconfig xinerama flag. Refer to the Xsgi(1) and xdm(1) man pages for
more information.

54 007-4318-013

5: Troubleshooting

Tiled Background Image

Setting a large image as the root window background image will result in having a tile
image displayed across the screens. You can overcome this problem by the using 4Dwm
desktop features as follows:

• Set the following line in the $HOME/.Sgiresources file:

4Dwm*SG_useBackgrounds: True

• Create the background image in the xpm (X Pixmap) file format. The fewer colors
used in that image, the less impact it will have on the colormaps used by other
applications.

• Copy the /usr/lib/X11/system.backgrounds file to $HOME/.backgrounds.

• Edit $HOME/.backgrounds and, using the syntax of
/usr/lib/X11/system.backgrounds as a template, add a new setting for your
image.

• Select your background from the GUI background program.

See the 4Dwm(1X) man page for more information.

Flickering Grey Rubberband During Window Movement

Note: This problem pertains to you only if you use the DMX X proxy layer.

This occurs as a result of the lack of overlay visual support in DMX. See “Overlay
Windows Support in DMX” on page 39.

Mouse Disappears in Overlap Region

Environments such as SGI Reality Center facilities with overlapping projection systems
typically use projectors with edge blending capability. The mouse will fade away when
dragged towards the edge of a screen unless the “duplicate cursors” feature is enabled.
This feature is described in the section “Enabling Duplicate Cursor Images in Overlap
Regions” on page 31 and requires IRIX 6.5.20 or later.

Problems Running Multithreaded Applications

007-4318-013 55

Note: This feature is not available on Onyx4 platforms.

In X, a mouse belongs to one screen of the X server at a time. Therefore, it is normally not
possible to draw the mouse multiple times (on different screens) in the overlap region.

Adding the –phantomcursors option to the X server command line in the
/var/X11/xdm/Xservers file tells the X server to draw extra cursor images when the
mouse is in a region where two or more screens overlap. There is still only one real cursor
position on the display.

Problems Running Multithreaded Applications

If the application supports the use of POSIX threads (pthreads), use the pthread threading
model with OpenGL Multipipe.

To force the use of the pthread threading model, use the -pthread option when starting
the application, as shown in the following:

$ omprun -pthread app_name

Problems with Aware Window Management

The following subsections detail problems with aware window management and
workarounds:

• “Windows of Some Aware Applications are Not Managed”

• “Problems with Desktop Background Images”

• “Mouse Events Sometimes Register on the Wrong Screen”

• “Ghost Windows Appear In Overlap Regions on Edge-Blended Displays”

56 007-4318-013

5: Troubleshooting

Windows of Some Aware Applications are Not Managed

For windows of aware applications to be managed, first start the aware window
manager, then start the desired application in aware mode. If the reverse is done, the
windows will not be able to be manipulated.

Problems with Desktop Background Images

Under SGI Xinerama, if desktop background images do not appear when the
start_ompwm script is used to start omp4Dwm, you must enable the
SG_UseBackgrounds resource for 4Dwm. This can be done through an X resource file or
on the start_ompwm command line, as shown in the following command entries:

$ tellwm quit
$ start_ompwm -xrm “*SG_UseBackgrounds: True”

If you started DMX as the X proxy layer using ompstartdmx, 4Dwm is started by default.
If you need to explicitly start 4Dwm with proper background images under DMX, you
may do so by entering the following:

$ tellwm quit
$ ompwrapwm 4Dwm -xrm “*SG_UseBackgrounds: True”

Mouse Events Sometimes Register on the Wrong Screen

Note: This problem pertains to you only if you use the SGI Xinerama X proxy layer.

A number of known mouse pointer and keyboard focus issues arise with aware windows
that reside on screens other than physical screen 0—that is, on any of the physical screens
1.. n that SGI Xinerama is managing. Events (mouse clicks, keyboard strokes, etc.) are
sometimes generated as though the mouse were on screen 0 instead of on the correct
screen (1.. n). This frequently occurs when a popup menu of an aware window is open
and the mouse is clicked outside the menu.

To avoid this particular problem, close the popup menu first (for example, by using a
keyboard shortcut to close the menu) then click the mouse.

Problems with Aware Window Management

007-4318-013 57

Ghost Windows Appear In Overlap Regions on Edge-Blended Displays

Aware windows bypass the X proxy layer and are only created on one physical screen,
but when an aware window manager manages an aware window, it creates window
frames on each screen. The frames are multipipe-transparent—that is, drawn on every
screen. However, the application window within the frame is multipipe-aware—that is,
drawn only on one screen.

Since an aware application window is not drawn on every screen, the
multipipe-transparent frame behind the application window will “show through” in
screen-overlap regions on an edge-blended display.

To work around this problem, you may want to run your application in a window of a
size and position such that it does not overlap any of the screen-overlap regions of the
display. Alternatively, you may want to temporarily quit the aware window manager.

	Record of Revision
	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	OpenGL Multipipe Overview
	What OpenGL Multipipe Provides
	Architecture of OpenGL Multipipe
	Components of OpenGL Multipipe
	The X Proxy Layer
	The SGI Xinerama Extension
	The DMX Proxy Server

	The 3D (Master) Proxy Render Library
	3D (Slave) Render Servers

	Supported Platforms and Configurations

	Installing OpenGL Multipipe
	Using OpenGL Multipipe
	Setting up the OpenGL Multipipe Environment
	Ensuring That the ompslave Render Server is Running
	Configuring OpenGL Multipipe with DMX as the X Proxy Layer
	Initializing DMX
	Creating DMX Configuration Files

	Configuring OpenGL Multipipe with SGI Xinerama as the X Proxy Layer
	Verifying That the OpenGL Multipipe Environment is Enabled
	Disabling the OpenGL Multipipe Environment

	Running Applications with OpenGL Multipipe
	Running OpenGL Single-Pipe Applications
	Running Pure X Applications
	Running IRIS GL Applications
	Running o32 Applications
	Running Multipipe Applications in Multipipe-Aware Mode

	Performance Enhancing Features
	Viewport Clipping
	Geometry Culling
	Display List Partitioning
	Master Rendering Modes
	–mstrmode off Mode
	–mstrmode track Mode
	–mstrmode render Mode

	Frame Latency Control
	Buffer Swap Synchronization
	Software Swap Synchronization
	Hardware Buffer Swap Synchronization

	Using an SGI Scalable Graphics Compositor with OpenGL Multipipe
	Configuring Composited Screens with SGI Xinerama
	Enabling Duplicate Cursor Images in Overlap Regions
	Configuring Composited Screens with DMX
	Specifying Static Composited Regions

	Managing Windows for Aware Applications
	Starting an Aware Window Manager
	Exiting an Aware Window Manager
	Setting an Aware Window Manager as the Default

	Configuring Overlapping Screens with SGI Xinerama

	Limitations
	Performance Enhancement
	X Extensions
	The Multipipe-Aware Window Manager
	OpenGL Window Size Constraints
	Processor Requirements
	Overlay Windows Support in DMX
	SGI Xinerama Is Not Supported on Onyx4 Platforms
	Graphics Pipe Requirements

	Troubleshooting
	Problems Enabling SGI Xinerama
	Problems Starting DMX
	Problems Starting Applications with omprun
	DISPLAY Does Not Point to a Meta Display
	Using omprun without the ompslave Render Server
	Shared Memory Failure

	Problems Running IRIS GL Applications
	Problems Running o32 Applications
	Graphics Do Not Display Correctly on All Screens
	Coding Problem in the Application
	You Did Not Use the omprun Script
	A User-Defined Script Invokes an IRIS GL or o32 Application
	You Are Using the Aware Window Manager
	Set-User-ID (“s-bit”) Applications

	Mouse Behavior Offset by a Screen
	Problems Running Inherently Multipipe Applications
	Multipipe-Aware Applications Fail to Receive Events on Screen 0
	Nothing Displays or the Graphic Stalls or Hangs
	Coding Problem in the Application
	Window Exceeds Maximum OpenGL Window Size
	Improperly Wired Genlock or Swap Ready Cables

	OpenGL Graphics Render Slowly
	X Applications Are Not Behaving Correctly or Fail to Start
	X Application Uses Unsupported X Extension
	SGI Xinerama Client or Server Uses Nonstandard Protocol
	Application Window Disappears
	Application Explicitly Opens a Display Connection to :0.0

	Simultaneously Running X Servers with and without SGI Xinerama Enabled
	Tiled Background Image
	Flickering Grey Rubberband During Window Movement
	Mouse Disappears in Overlap Region
	Problems Running Multithreaded Applications
	Problems with Aware Window Management
	Windows of Some Aware Applications are Not Managed
	Problems with Desktop Background Images
	Mouse Events Sometimes Register on the Wrong Screen
	Ghost Windows Appear In Overlap Regions on Edge-Blended Displays

