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New Features in This Guide

This revision includes the following noteworthy changes:

• Added Chapter 7, “Volumizer File Loader”.
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About This Guide

This publication documents OpenGL Volumizer 2, a C++ volume rendering toolkit
optimized for SGI scalable servers. It provides the developer with the tool set needed to
solve the problems inherent in high-quality, interactive volume rendering of large
datasets. This guide gives an introduction to the OpenGL Volumizer 2 application
programming interface (API) and examples of its use.

Audience for this Guide

This guide is intended for C++ developers of volume rendering applications who
understand the basic concepts of computer graphics programming.

Familiarity with OpenGL and program interfaces is strongly recommended.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

function This bold font indicates a function or method name. Parentheses are
also appended to the name.

variable Italic typeface denotes variable entries and words or concepts being
defined.
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About This Guide
Obtaining Publications

To obtain SGI documentation, go to the SGI Technical Publications Library at
http://docs.sgi.com.

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

user input This bold, fixed-space font denotes literal items that the user enters
in interactive sessions. Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or directive line.

... Ellipses indicate that a preceding element can be repeated.

manpage(x) Man page section identifiers appear in parentheses after man page
names.

Convention Meaning
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About This Guide
• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.
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Chapter 1

1. Overview

This overview consists of the following sections:

• “What Is OpenGL Volumizer 2?”

• “Product Components”

• “Supported Platforms”

• “Comparison with OpenGL Volumizer 1.x”

What Is OpenGL Volumizer 2?

As the volume of information produced by instrumentation devices and simulation
increases in size, complexity, and level of detail, so does the need for better, more
powerful interpretation tools. In particular, the requirements for volume-data
interpretation software keeps expanding. Utilizing various computational techniques
(such as marching cubes, segmentation, region growing, isosurface extraction, flow
streamlines, and flow volumes) and visualization techniques (such as 3D texture
mapping, ray casting, Shirley-Tuchman), users demand more interactivity and
immersion capabilities with their large volumetric datasets.

To help application programmers answer these needs, SGI has developed
OpenGL Volumizer 2, a software development kit that provides a simple interface to the
high-end graphics features available on InfiniteReality systems (such as 3D texture
mapping and texture lookup tables).

OpenGL Volumizer 2 is a new design that allows better incorporation and sharing of
capabilities across our application programming interfaces (APIs) and facilitates
management of extremely large volumetric datasets (See Chapter 5, “The Large-Data
API: 3D Clip Textures” for detailed information). OpenGL Volumizer 2 provides a
supported pathway for new application writers and current application writers who will
want to migrate to new technologies (like visual serving) in the coming years.
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1: Overview
OpenGL Volumizer 2 Versus Other APIs

OpenGL Volumizer 2, like other SGI graphics APIs, is a layer of functionality that sits on
top of OpenGL, as shown in Figure 1-1.

Figure 1-1 OpenGL Volumizer 2 in Relation to Other Graphics APIs

OpenGL Volumizer 2 is a toolkit designed to handle the volume rendering aspect of an
application. You can use other toolkits, like OpenGL Performer and Open Inventor, to
structure the other elements of your application. The API is designed to allow seamless
integration with other scene graph APIs.

OpenGL

Volumizer 2

Open Inventor, 
Performer, 
Optimizer

Applications
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Product Components
Features

OpenGL Volumizer 2 is a rich toolkit with features that include the following:

• A high-level, extensible, C++ API that segments classes and methods based on the
corresponding procedural-versus-descriptive nature of the component members.
The core API consists of a volumetric-shape description API and a procedural 3D
texture-based render action. See Chapter 3, “The OpenGL Volumizer API” and
Chapter 4, “Texture Mapping Render Action” for more information.

• Thread safety, which allows implementation of multithreaded applications that run
on multiple processors and graphics engines in conjunction with APIs like OpenGL
Multipipe SDK and OpenGL Performer.

• Integrated shading capabilities to perform volumetric shading, which allows
techniques like multivolume blending and volumetric lighting to improve realism
and to implement very high quality visualizations.

• Large data management capabilities, including support for 3D clip textures, which
allow interactive visualization of extremely large datasets. See Chapter 5, “The
Large-Data API: 3D Clip Textures” for more information.

• Examples that include a transfer function editor, data loaders, and a volume
rendering application for multipipe systems, along with sample integration with
existing APIs.

• A container for volume rendering techniques. Developers can integrate their own
scene graph parameters and rendering algorithms in the API structure. The ability
to incorporate such custom-tailored parameters and renderers gives the flexibility
to advanced developers to implement and experiment with new rendering
methods.

Product Components

The product components fall into the following categories:

• libvz.so

Volumetric shape description API

Clip rendering (large-data) API

• libvzxml.so

File loader interface
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1: Overview
Figure 1-2 shows the directories that are installed under /usr/share/Volumizer2/.

Figure 1-2 OpenGL Volumizer Sample Distribution

In addition to the above, sample applications and plug-in libraries are installed under
/usr/demos/Volumizer2.

The following directories are installed under /usr/ share/Volumizer2/

src - Sample Source Code Distribution

          lib - Sample Plug-in Libraries 

                    Inventor - Open Inventor node (SoVolumeShape) 

                    Performer - OpenGL Performer node (pfVolume) 

                    tfeditor - Transfer Function Editor 

                    loaders - Sample Data Loaders 

                    writers - Sample Data Writers 

                    appsUtil - Application Utilities 

          apps - Sample Applications 

                    volview - Multipipe Volume Viewer Application 

                    Inventor - Open Inventor Viewer 

                    VTK - Visualization Toolkit Demo 

                    XMLViewer - Volumizer XML File Viewer 

                    simple - Simple OpenGL Based Applications 

                    simpleMPK - Simple Multipipe SDK Application 

          conv - Data Conversion Utilities 

                    tiff - 3D Tiff Generation/Conversion Utilities 

                    tv - Time-Varying Data File Generator 

bin - Utility Applications 

          dicom - DICOM Data to IFL Convertor Utility 

          ClipGen3d - 3D Clip-Texture Generator 

data - Sample Data Sets 

lib - Compiled Sample Plug-in Libraries 

doc - Volumizer Documentation 

release_notes - Important Information About Current Release
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Supported Platforms
OpenGL Volumizer 2 includes a number of example modules and utilities to help you
use the API. These modules, located in the directory /usr/share/Volumizer2/src,
are not part of the supported API . This directory includes the following items:

• Plug-in libraries

– Sample transfer function editor

– Examples of volume loaders and writers

• Toolkit libraries

– Additional utility programs to reformat data into format readable
OpenGL Volumizer 2

– Examples of integration with other APIs, such as OpenGL Performer and
Visualization Toolkit (VTK)

• Sample applications

– Simple examples of each of the render actions

– Volume-viewer application, volview, based on OpenGL Multipipe SDK

Figure 1-3 shows the structure of the Volview application, which is written on top on
OpenGL Volumizer, OpenGL Multipipe SDK, and uses the plug-in libraries provided
with OpenGL Volumizer sample distribution.

Figure 1-3 Volview: OpenGL Multipipe Volume Viewer Application

Supported Platforms

OpenGL Volumizer 2 supports all SGI graphics systems with 3D texture mapping and
color tables (for instance, Silicon Graphics O2 systems do not support 3D texture
mapping). However, OpenGL Volumizer 2 is optimized for InfiniteReality graphics and
is targeted at SGI scalable servers. Specifically, the texture mapping render action is

Volview

Multipipe SDK Volumizer 2 TFEditor

Open GL
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1: Overview
optimized for InfiniteReality systems. Also, as the product name implies, it targets
OpenGL applications.

Comparison with OpenGL Volumizer 1.x

OpenGL Volumizer 2 should be distinguished from its predecessor,
OpenGL Volumizer 1.x. OpenGL Volumizer 2 is optimized to take advantage of SGI
high-end scalable servers running InfiniteReality graphics, while OpenGL Volumizer 1.x
is available on all SGI platforms. OpenGL Volumizer 2 also provides a much higher-level
API than OpenGL Volumizer 1.x, enabling you, the application writer, to solve large data
problems with greater ease.

See Table 1-1 for a more complete comparison of features contained in
OpenGL Volumizer 2 and OpenGL Volumizer 1.x.

Note: Hereafter in this manual, OpenGL Volumizer unqualified refers to
OpenGL Volumizer 2.

Table 1-1 OpenGL Volumizer 2 Versus OpenGL Volumizer 1.x Features

Volumizer 2 Volumizer 1.x

API High-level, descriptive Low-level, procedural

Interoperability Integrates with other toolkits Integrates with other toolkits

Cross-platform SGI systems supporting 3D
texture mapping

Runs on multiple SGI
platforms

Texture mapping render action Yes Yes

Arbitrary regions of interest Yes Yes

Lookup tables Yes Yes

Volume shading Integrated support Unsupported example code

Thread safety Yes No

Virtualized volumes Transparent support Exposed support

3D clip textures Integrated support No
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Chapter 2

2. Getting Started

This chapter describes how you use OpenGL Volumizer to build an application. The
chapter consists of the following sections:

• “Basic Concepts”

• “Sample Volume Rendering Application”

Basic Concepts

There are two key notions in OpenGL Volumizer:

• Introduction of a volumetric shape node to the scene graph

• Highly parameterized control of rendering, termed render actions

The following subsections introduce these two concepts. Chapter 3, “The OpenGL
Volumizer API” describes these concepts in greater detail.

The Shape Node

The shape node encapsulates a volume in a manner that allows you to separate its
geometry from its appearance. The volume’s geometry defines its spatial attributes and
a region of interest while the volume’s appearance defines its visual attributes. The
appearance itself consists of a list of parameters that are specific to the particular
rendering technique being applied to the shape. Figure 2-1 illustrates this concept.
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2: Getting Started
Figure 2-1 The Shape Node

The shape node contains all information required to render itself. Hence, it can be treated
as the leaf node of a scene graph. You can create a more complex scene graph by inserting
these shape nodes to represent the volumetric components of the scene, as shown in
Figure 2-2.

Figure 2-2 A More Complex Scene Graph

Figure 2-2 shows an example of a scene graph that has polygonal data mixed with
volumetric shapes. Such a scene graph can sit on top of the OpenGL Volumizer API in
conjunction with other scene graph APIs like OpenGL Performer or Open Inventor.

Shape

AppearanceGeometry

Parameter 1 Parameter 2 Parameter n...

Root node

Hybrid nodeShape 1

Poly nodeVolume node

Shape 2Shape 2
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Sample Volume Rendering Application
Render Actions

A render action primarily implements a visualization algorithm that accepts a shape
node and renders it. Hence, in OpenGL Volumizer, there is a clear distinction between
the descriptive components of the scene (the shape nodes) and the procedural
components (the render actions). Your control of render actions allows you flexibility in
employing known visualization algorithms. Figure 2-3 illustrates rendering actions.

Figure 2-3 Render Actions

Closely related to render actions are shaders, which are used to apply specific rendering
techniques to generate a desired visual effect. Shaders deal with the specific OpenGL
state settings that need to be applied during the rendering process. The shaders are
attached to the shape’s appearance and expect a list of parameters for rendering the
shape. Figure 2-4 illustrates the function of shaders.

Figure 2-4 Shaders

Sample Volume Rendering Application

Example 2-1 shows a simple volume rendering application that uses the OpenGL Utility
Toolkit (GLUT) to manage the user interface. This application demonstrates how to
create a shape node and how to render it. The source for this application can be found in
the directory /usr/share/Volumizer2/src/apps/simple/pguide/.

ShapeRender action
Draw

AppearanceShader
Apply
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2: Getting Started
Example 2-1 Sample Volume Rendering Application

// C / C++
#include <stdlib.h>
#include <iostream.h>

// OpenGL / GLUT
#include <GL/gl.h>
#include <GL/glut.h>

// IFL
#include <loaders/IFLLoader.h>

// Volumizer2
#include <Volumizer2/Version.h>
#include <Volumizer2/Shape.h>
#include <Volumizer2/Block.h>
#include <Volumizer2/Appearance.h>
#include <Volumizer2/ParameterVolumeTexture.h>
#include <Volumizer2/TMRenderAction.h>
#include <Volumizer2/TMSimpleShader.h>

// Global variables
vzShape *shape = NULL;
vzTMRenderAction *renderAction = NULL;
GLint viewport[4];
int lastPosition[2] = {0, 0};
float angles[2] = {0, 0}, lastAngles[2] = {0, 0};

//////////////////////// Volumizer //////////////////////////////

//  Load the volume data and initialize the shape node.
void loadVolumeData(char *fileName)
{
    // Print the volumizer version string
    cerr<<vzGetVersionString()<<endl;

    // Create a data loader
    IFLLoader *loader = IFLLoader::open(fileName);
    if (loader == NULL) {
        cerr<<“Error: couldn’t open file “<<fileName<<endl;
        exit(0);
    }
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Sample Volume Rendering Application
    // Load the volume data
    vzParameterVolumeTexture *volume = loader->loadVolume();
    if (volume == NULL) {
        cerr<<“Error: couldn’t read volume data”<<endl;
        delete loader;
        exit(0);
    }

    // Initialize appearance
    vzShader *shader = new vzTMSimpleShader();
    vzAppearance *appearance = new vzAppearance(shader);
    shader->unref();
    appearance->setParameter(“volume”, volume);
    volume->unref();

    // Initialize geometry
    vzGeometry *geometry = new vzBlock();

    // Initialize shape node
    shape = new vzShape(geometry, appearance);
    geometry->unref();
    appearance->unref();

    // Initialize the render action
    renderAction = new vzTMRenderAction(1);
    renderAction->manage(shape);
    }

// Draw the volume data
void renderVolumeData()
{
    // Begin drawing
    renderAction->beginDraw(VZ_RESTORE_GL_STATE_BIT);
    renderAction->draw(shape);
    renderAction->endDraw();
}

// Clean up the shape node and the render action
void cleanup()
{
    // Delete the render action and unref() the shape node
    renderAction->unmanage(shape);
    delete renderAction;
    shape->unref();
}
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2: Getting Started
/////////////////////// GLUT callback functions///////////////////

// glutDisplayFunc() callback function
void display()
{
    glClear(GL_COLOR_BUFFER_BIT);
    glDisable(GL_DEPTH_TEST);

    // Viewport
    glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);

    // Projection matrix
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glOrtho(-1, 1, -1, 1, -1, 1);

    // Modelview matrix
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glRotated( 90 + angles[1], 1, 0, 0);
    glRotated(180 + angles[0], 0, 0, 1);
    glScalef(1.5, 1.5, 1.5);
    glTranslatef(- 0.5, - 0.5, - 0.5);

    // Enable back-to-front alpha blending
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

    // Render the volume data
    renderVolumeData();
    glutSwapBuffers();
}

// glutKeyboardFunc() callback function
void keyboard(unsigned char key, int x, int y)
{
    switch (key) {
        case 27:
            cleanup();
            exit(0);
    }
}

// glutReshapeFunc() callback function
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Sample Volume Rendering Application
void reshape(int width, int height)
{

    // Update viewport
    viewport[0] = 0;     viewport[1] = 0;
    viewport[2] = width; viewport[3] = height;
    glutPostRedisplay();
}

// glutMouseFunc() callback function
void mouse(int button, int state, int x, int y)
{
    if (state == GLUT_DOWN) {
        lastPosition[0] = x;
        lastPosition[1] = y;
        lastAngles[0] = angles[0];
        lastAngles[1] = angles[1];
    }
}

// glutMotionFunc() callback function
void motion(int x, int y)
{
    angles[0] = lastAngles[0] + (lastPosition[0] - x) / 4.0;
    angles[1] = lastAngles[1] + (y - lastPosition[1]) / 4.0;
    glutPostRedisplay();
}

// main
void main(int argc, char *argv[])
{
    if(argc < 2) {
        cerr<<“Usage: “<<argv[0]<<“ <filename>”<<endl;
        exit(0);
    }
    glutInit(&argc, argv);
    loadVolumeData(argv[1]);

    // Initialize window
    glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
    glutCreateWindow(“Simple Volume Viewer”);

    // Initialize callbacks
    glutDisplayFunc(display);
    glutReshapeFunc(reshape);
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2: Getting Started
    glutKeyboardFunc(keyboard);
    glutMouseFunc(mouse);
    glutMotionFunc(motion);
    glutMainLoop();
}

The following subsections describe the sample application:

• “Prerequisites”

• “Compiling and Running the Application”

• “Program Components”

Prerequisites

The following software must be installed on your system:

• OpenGL Volumizer

• Source for the sample application, installed in
/usr/share/Volumizer2/src/apps/simple/pguide

• GLUT (available and free on the Web)

Note that the application links against libvzLoaders.so, which is generated by
compiling the source given in /usr/share/Volumizer2/src/lib/loaders.

Compiling and Running the Application

To compile the application, enter the following commands:

% CC -o glut.o glut.cxx -c -I/usr/share/Volumizer2/src/lib
% CC -o viewer glut.o -L/usr/share/Volumizer2/lib -lvz
-lvzLoaders -lglut -lGLU -lGL -lXmu -lX11

To run the application, enter the following commands:

% viewer /usr/share/Volumizer2/data/medical/Phantom/
  CT.Head.Bone.char.tif
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Sample Volume Rendering Application
Program Components

The program can be divided into the two main components:

• OpenGL Volumizer—Manages the scene graph and draws the volume data.

• GLUT—Manages the display and user interaction.

The following subsections describe program initialization and the OpenGL Volumizer
component of the program:

• “Basic Initialization”

• “Creating the Shape Node”

• “Creating the Render Action”

• “Rendering the Volume Data”

• “Freeing the Allocated Memory”

Basic Initialization

The OpenGL Volumizer related include files are located in the directory
/usr/include/Volumizer2.

This program also uses the IFL data loaders, which are installed in the directory
/usr/share/Volumizer2/src/loaders.

Creating the Shape Node

The method loadVolumeData() loads in a volumetric data set from the disk and then
creates the vzShape node. The following are the key actions required to create the shape
node.

1. Create a loader for the volume data.

The following line from the function loadVolumeData() creates an IFL loader.

IFLLoader *loader = IFLLoader::open(fileName);

Upon success, open() returns the data loader; otherwise, a NULL pointer is returned.
The value fileName should point to a valid file in the IFL tiff format.

2. Load the volume data.
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2: Getting Started
The following line uses the loader just created to load in the volume data:

vzParameterVolumeTexture *volume = loader->loadVolume();

The loadVolume() method returns a vzParameterVolumeTexture value. The
vzParameterVolumeTexture value corresponds to the only shader parameter
attached to the shape’s appearance in this example. One could attach multiple
shader parameters to an appearance. See “Shader Parameters” in Chapter 3 for
details.

3. Create a shader for the appearance.

The following line creates a shader:

vzShader *shader = new vzTMSimpleShader();

The shader determines the particular rendering technique to be applied to the shape
while rendering it. The vzTMSimpleShader shader performs simple volume
rendering using 3D texture mapping. See Chapter 4, “Texture Mapping Render
Action” for details.

4. Create the shape’s appearance.

The following line creates the shape’s appearance:

vzAppearance *appearance = new vzAppearance(shader);

The appearance for the shape determines how the shape looks when rendered. It
accepts a vzShader value as an argument to its constructor.

5. Add the volume texture as a parameter to the appearance.

The following line adds the parameter:

appearance->setParameter(“volume”, volume);

The shader vzTMSimpleShader needs a parameter named volume, which should
be of the type vzParameterVolumeTexture. The appearance adds the parameter
to its list of parameters.

6. Decrement the reference counts of the shader and the volume texture.

On initialization, the reference count of any OpenGL Volumizer object is set to 1.
The previous two calls cause the appearance to increase the reference counts of the
shader and the volume texture. The following unref() calls decrease the reference
counts by one. This ensures that shader and volume will be deleted when
appearance is deleted.

shader->unref(); // shader ref count = 1
volume->unref(); // volume ref count = 1
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Sample Volume Rendering Application
7. Initialize the geometry.

The following line creates a simple cuboidal geometry:

vzGeometry *geometry = new vzBlock();

The vzBlock object represents a simple axis-aligned cube. By default, the extents of
the cube are set to (0, 0, 0) and (1, 1, 1).

8. Initialize the shape node.

The following line creates the shape node shape with the given geometry and
appearance:

shape = new vzShape(geometry, appearance);

Again, the reference counts of geometry and appearance are increased by one.

9. Decrement the reference counts of the geometry and appearance.

The following lines ensure that geometry and appearance will be deleted when
shape is deleted.

geometry->unref();// geometry ref count = 1
appearance->unref(); // appearance ref count = 1

Figure 2-5 depicts the resulting shape node.

Figure 2-5 Shape Node in Sample Application

vzShape

vzAppearancevzBlock

vzParameterVolumeTexture
007-4389-005 17



2: Getting Started
Creating the Render Action

The render action used in this example is Texture Mapping Render Action
(TMRenderAction). It renders the given geometry by slicing it using sampling planes
and then compositing them in a back-to-front order with alpha blending.

The next two steps create the render action and manage the shape.

1. Create a vzTMRenderAction.

renderAction = new vzTMRenderAction(1);

The integral argument specifies the number of threads the render action is allowed
to create.

2. Manage the vzShape.

renderAction->manage(shape); // shape ref count = 2

The render action adds the given shape to its list of managed shapes. In this case, it
ensures that the volume textures in the shape are made resident in the texture
memory of the graphics subsystem. The render action also maintains a reference
count for the shape inside the manage() method.

Rendering the Volume Data

The method renderVolumeData() draws the created shape node using the
vzTMRenderAction.

The following lines render the shape node:

renderAction->beginDraw(VZ_RESTORE_GL_STATE_BIT);
renderAction->draw(shape);
renderAction->endDraw();

The beginDraw() method tells the render action that the application is done creating and
managing the shape nodes for this frame and now it needs to render the shapes. The
actual rendering is done inside the draw() calls for the individual shapes to be rendered.
The endDraw() method marks the end of the rendering phase.

Freeing the Allocated Memory

The method cleanup() deletes the shape node and the render action. The reference
counting ensures that all the other components of the shape node are also deleted when
the shape node is deleted.
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The following lines delete the render action and the shape node:

renderAction->unmanage(shape); // shape ref count = 1
delete renderAction;
shape->unref(); // shape ref count = 0. Deletes itself

For the details about the shape node and related classes, refer to Chapter 3, “The OpenGL
Volumizer API”. Chapter 4, “Texture Mapping Render Action” describes in detail
TMRenderAction and related shaders.
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Chapter 3

3. The OpenGL Volumizer API

Chapter 2, “Getting Started” provides an overview of the basic concepts of
OpenGL Volumizer. This chapter describes in greater detail how you use the
OpenGL Volumizer API. For details on the individual classes, refer to their respective
man pages.

This chapter has the following sections:

• “Libraries”

• “Base Classes”

• “Shape-Related Classes”

• “Rendering Classes”

• “Error Reporting”

Libraries

As an application writer, you need to be primarily concerned with only the following
library that is installed as part of the OpenGL Volumizer installation:

Library Description

libvz.so Volumetric shape description and management
constructs
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Base Classes

Table 3-1 summarizes the base classes for all the OpenGL Volumizer object classes.

The following subsections describe the roles of these classes:

• “Memory Allocation and Deallocation”

• “Reference Counting and Deletion Notification”

Memory Allocation and Deallocation

All OpenGL Volumizer object classes are derived from the base class vzMemory. It
provides you with the ability to control memory allocation and deallocation of objects by
providing two static operators new and delete. By default, the operators new and
delete simply use the malloc() and free() functions. By overriding this default
behavior, you can customize the allocation and deallocation of OpenGL Volumizer
objects.

For example, consider the case of designing a volume rendering application using
OpenGL Performer where OpenGL Volumizer shape nodes are used to represent the
volumetric components of the scene. OpenGL Performer uses a multiprocess model of
execution, using the fork() system call to set up separate processes for APP, CULL, and
DRAW. To share the objects between the processes, you would need to allocate them in
shared memory. To accomplish this, simply override the default new and delete
operators by setting two callback functions: one for allocation and one for deallocation.

For instance, the following lines force the API to use OpenGL Performer shared arenas:

// Set the callbacks for vzMemory base class
vzMemory::setMemoryManagementCallbacks (myNewCB, myDeleteCB, NULL);

Table 3-1 Base Classes

Class Description

vzMemory Memory allocation and deallocation
routines

vzObject Reference counting and deletion
notification
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The callbacks myNewCB() and myDeleteCB() look like the following:

// Callback for memory allocation - uses pfMalloc()
void *myNewCB (size_t nBytes, void *userData) {
   return pfMalloc (nBytes, pfGetSharedArena());
}

// Callback for freeing memory - uses pfFree()
void myDeleteCB (void *ptr, void *userData) {
   pfFree (ptr);
}

Refer to the vzMemory man page for details of the functions used in the preceding code.

Reference Counting and Deletion Notification

The vzObject class encapsulates the notions of reference counting and deletion
notification, which this section describes separately.

Reference Counting

Reference counting allows painless memory management of objects that are shared
between multiple objects. The basic idea is to maintain a counter for each object to
indicate the number of outside references currently being held for it. Thus, the counter
value indicates the number of users and objects that have a reference for the object. A
count of zero indicates that there are no references to the object and, hence, it is safe to
delete it.

All OpenGL Volumizer objects are derived from the vzObject class, which provides
simple reference counting and deletion notification facilities. When an object is created,
its reference count is initialized to one. If the reference count of an object reaches zero, the
object calls its own destructor.

The vzObject class provides two public methods: ref() and unref(), which can be used to
increase and decrease the reference count for the object, respectively. For each invocation
of ref(), the count is increased by one and similarly for unref(), the count is decreased by
one. If inside an unref() call the counter reaches zero, the object deletes itself.

The following code snippet from the example used in “Sample Volume Rendering
Application” in Chapter 2 illustrates the use of reference counts for the shader.
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// shader ref count = 1
vzShader *shader = new vzTMSimpleShader();

// shader ref count = 2
vzAppearance *appearance = new vzAppearance(shader);

// shader ref count = 1
shader->unref();

The shader is unreferenced since the appearance would invoke a ref() on it inside the
constructor. Unreferencing the shader ensures that it would get deleted when the
appearance is deleted. This is because, in its destructor, the appearance would invoke an
unref() on the shader, which brings its reference count to 0, hence, deleting it. The
following code illustrates the use of reference counts for the geometry and appearance
classes.

// geometry ref count = 1
vzGeometry *geometry = new vzBlock();

// geometry ref count = 2, appearance ref count = 2
shape = new vzShape(geometry, appearance);

// geometry ref count = 1
geometry->unref();

// appearance ref count = 1
appearance->unref();

If you are not careful, you might make mistakes with the reference counting system. Two
possible symptoms result from mismanagement of reference counts:

• Your program leaks memory. This is caused by forgetting to use unref() on an object
once you are done using it.

• You have called methods on objects that have already been deleted. Once an object’s
reference count drops to zero, it is invalid to call methods on it. Doing so will have
unpredictable results.

The OpenGL Volumizer API in itself is very consistent with the use of reference counts—
that is, every object A that keeps a reference for another object B invokes a ref() on B.
Also, A is supposed to invoke an unref() on B when it removes that reference. If you were
to create a new geometry and use it for the shape node in the sample application from
“Sample Volume Rendering Application” in Chapter 2, you would do something like the
following:
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// create a new geometry
vzGeometry *newGeometry = createNewGeometry();

// update the geometry for the shape to the new one
shape->setGeometry(newGeometry);

The following steps occur inside the setGeometry() method of vzShape:

void setGeometry(vzGeometry *newGeometry) {

    // ref() the new geometry
    newGeometry->ref();

    // unref() the old geometry
    currentGeometry->unref();

    // update the geometry
    currentGeometry = newGeometry;
}

To debug reference counts more effectively, you can set the debug level to 4 (see the
vzError class for details). This causes the API to print the value of the reference count
every time a ref() or unref() call is issued.

Deletion Notification

The OpenGL Volumizer API maintains a consistent system for memory allocation and
deallocation. If you allocate any memory, then it is your responsibility to free that chunk
of memory. To do this, it is essential for you to know when an object is about to be
deleted—that is, when its reference count drops to zero. The API provides you the ability
to specify deletion callbacks that are invoked just before an object is deleted. These
callbacks can be used to do the necessary cleanup for the particular object.

The following code illustrates the use of this deletion notification system for freeing
memory. Suppose you allocated a floating point array of vertex data and passed a pointer
into the vzVertexArray class as in the following:

int numVerts = 20;
float *myData = new float[numVerts*3];
vzVertexArray *array = new vzVertexArray (numVerts, myData);

Since you allocated the memory for the array, you are responsible for freeing it. Using the
deletion notification system, this can be accomplished very easily by installing a deletion
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callback on the vertex array. This callback can be used to free the array since it is no longer
needed, as shown in the following example:

// Add a deletion notification callback to the vertexArray just created
vertexArray->addDeletionCallback (myArrayDeletionCB, myData);

// Deletion notification callback - frees allocated memory
void myArrayDeletionCB (vzObject *object, void *userData) {
   delete [] userData;
}

It is valid to add multiple deletion callbacks with the same function pointer but different
user data pointers. Refer to the vzObject man page for details of the callbacks and
functions used in this section.

Shape-Related Classes

Table 3-2 summarizes the shape-related classes.

Table 3-2 Shape-Related Classes

Class Description

vzShape Container node for a volume’s
geometry and appearance

vzGeometry Geometry of a shape node

vzVolumeGeometry Volumetric geometry associated
with a shape node

vzBlock Volumetric geometry representing
an axis-aligned cuboid

vzStructuredHexaMesh Volumetric geometry representing a
structured hexahedral mesh

vzUnstructuredMesh Unstructured volumetric geometry

vzUnstructuredTetraMesh Volumetric geometry representing
an unstructured tetrahedral mesh

vzUnstructuredHexaMesh Volumetric geometry representing
an unstructured hexahedral mesh
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This section describes how to use the shape-related classes in the following subsections:

• “Shape Node Construction”

• “Geometry Description”

• “Appearance Description”

• “Shader Parameters”

Shape Node Construction

As mentioned briefly in Chapter 2, the shape node encapsulates a volumetric
representation in the form of its geometry and appearance. The shape node is the basic
unit of rendering in the OpenGL Volumizer API. This means that the shape node is
atomic; hence, you cannot render part of a shape. Shape nodes form the leaf nodes of a
potentially more complex scene graph. The scene graph can be built upon the existing
infrastructure provided by OpenGL Volumizer.

The geometry of a shape provides a region of interest while the appearance controls how
it looks. In other words, the geometry of the shape describes what is rendered and the
appearance describes how the geometry is rendered. Figure 3-1 illustrates this
separation.

vzVertexArray An array of floating-point vertex
coordinates

vzIndexArray An array of integral indexes

vzAppearance Appearance description of a shape
node

vzParameter Shader parameter for a shape’s
appearance

vzSlicePlaneSet A set of slice planes

Table 3-2 (continued) Shape-Related Classes

Class Description
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Figure 3-1 The Shape Node

Geometry Description

As mentioned before, the geometry of a shape defines what is rendered or the spatial
attributes of the shape. In general, geometry can have any dimension. For example, a
triangle is a 2D geometry type whereas a tetrahedron is 3D.

2D objects can be directly rendered using OpenGL primitives like triangles and polygons
while 3D objects cannot. In order to render 3D objects using OpenGL, you must generate
2D primitives first and then use them to render the 3D objects.

The vzGeometry class is an abstract class which can be used to represent the geometry
associated with a shape node. The class has one public method that allows you to retrieve
the bounding box of the geometry. You can use the bounding box, which is an attribute
of every geometric object, for culling to the viewing frustum, collision detection, or
applying other special algorithms.

This following subsections further describe how to define your geometry:

• “Volumetric Geometry”

• “Simple Cuboidal Geometry”

• “General Tetrahedral Meshes”

• “Creating Your Own Volumetric Geometry Classes”

• “Arbitrary Polygonal Geometry”

Shape

AppearanceGeometry

Parameter 1 Parameter 2 Parameter n...
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Volumetric Geometry

OpenGL Volumizer allows you to specify 3D geometry using the vzVolumeGeometry
class, which is derived from the vzGeometry class. The vzVolumeGeometry class can be
used to represent a set of polyhedral primitives that define the volumetric structure of
the shape node. On one hand, OpenGL Volumizer simplifies the description for the most
commonly used cases of volumetric geometry like cuboids. On the other hand, it
provides other constructs to allow specifying much more complex geometry types like
structured hexahedral meshes and unstructured tetrahedral meshes. This is done by
providing built-in classes that support these representations. For a complete list of the
built-in volumetric geometry classes, see Table 3-2 on page 26.

All volumetric geometry types can be represented using a set of tetrahedra. Hence,
internally OpenGL Volumizer uses the tetrahedron as the basic unit for representing
volumetric geometry. The volumetric geometry class that represents arbitrary
tetrahedral meshes is vzUnstructuredTetraMesh, which is described later in section
“General Tetrahedral Meshes”. All of the classes derived from the vzVolumeGeometry
class need to know how to tessellate themselves into such a tetrahedal mesh. The
following subsections describe the two most important volumetric geometry classes,
vzBlock and vzUnstructuredTetraMesh. For a description of the others, refer to the man
pages of the classes listed in Table 3-2 on page 26.

In addition to specifying the volumetric geometry, the vzVolumeGeometry class allows
you to set arbitrary slice planes that pass through it. In many volume rendering
applications, slice planes passing through the volume data can be a very powerful
visualization technique. See the vzSlicePlaneSet man page for more details on how
to use these slice planes in conjunction with volumetric geometry.

Simple Cuboidal Geometry

The vzBlock class is used to represent the simple case of an axis-aligned cuboid. This is
the simplest and the most commonly used construct used to represent volumetric data.
The vzBlock class has routines that allow you to set the offsets and dimensions of this
cuboid.

The sample application “Sample Volume Rendering Application” in Chapter 2 uses a
vzBlock object to represent the geometry of the volume data. By default, the constructor
creates a cuboid at the offsets (0, 0, 0) and with dimensions (1, 1, 1). Try adding the
following lines of code to the application before the renderAction->beginDraw()
line:
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// New offset and dimensions
float offset[3] = {0.25,0.25,0.25}, dimensions[3] = {0.5,0.5,0.5};

// Shape’s geometry
vzBlock *block = (vzBlock *) shape->getGeometry();

// Modify the offsets for the cuboid
block->setOffsets(offset);

// Modify the dimensions of the cuboid
block->setDimensions(dimensions);

The result should be similar to the one shown in Figure 3-2. This simple example
illustrates how modifying the geometry can allow you to carve your shape node.

Figure 3-2 Modification of Shape Node from Sample Application

General Tetrahedral Meshes

The vzUnstructuredTetraMesh class is derived from the vzUnstructuredMesh class and
represents indexed sets of tetrahedra. Each tetrahedron is represented by four integers
that index a list of vertex coordinates. Figure 3-3 illustrates the structure of an
unstructured tetrahedral mesh.
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Figure 3-3 Construction of vzUnstructuredTetraMesh with Two Tetras

For example, you can represent an octahedron using a tetrahedral mesh consisting of six
vertices and four tetrahedra.

Creating Your Own Volumetric Geometry Classes

It is possible to derive your own subclass of volumetric geometry simply by overriding
the virtual tessellate() method of a vzVolumeGeometry object.

The tessellate() method is intended to take your geometry type and tessellate it into
tetrahedra, which can then be used as geometry by the render actions. For example, you
could design a vzSphere class that knew how to tessellate itself into tetrahedra. Simply
create and initialize a vzIndexArray object and a vzVertexArray object for the resulting
tetrahedral-mesh approximation.

Arbitrary Polygonal Geometry

In addition to the basic geometry elements outlined earlier in this section,
OpenGL Volumizer allows applications to use arbitrary polygonal geometry within a
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shape node. The vzPolyGeometry class and its associated virtual draw method provides
a vehicle for such implementations.

The vzPolyGeometry class represents any polygonal geometry attached to a shape node.
Derived from the vzGeometry abstract class, the class provides a pure virtual draw
method, invoked by the render action while rendering the shape node. When the render
action invokes the draw method, it passes the appropriate bounding box of the
polygonal geometry to be rendered.This method allows applications to skip the
"polygonization" step of the render action and instead, render arbitrary polygonal
geometry. The OpenGL state used is the same as for the render action with polygonized
geometry. The example below illustrates how to use this class:

class myPolyGeometry: public vzPolyGeometry {
public:
       virtual void draw(double bounding_box[6]) const
       {
          // Render geometry
       }
};

Appearance Description

The vzAppearance class encodes the visual attributes of a shape node. Volumetric
appearance includes all descriptive characteristics that control the way a volumetric
shape will look when it is rendered. The render actions are responsible for interpreting
and applying this appearance description during the rendering process.

The appearance contains a list of parameters and a shader. Shaders associated with an
appearance are specific to the render action to be applied to the shape. The list of
parameters are attributes that are used by the shader to generate a desired visual effect.
The appearance associates each parameter attached to it with a name and type.

Each render action supports one or more built-in shaders. Each shader in turn expects
parameters of a given name and type, which are necessary for its use. For example, the
sample application “Sample Volume Rendering Application” in Chapter 2 creates a
simple appearance that uses the shader vzTMSimpleShader to volume render the given
shape using 3D texture mapping.

TMRenderAction, used in the sample application, supports another built-in shader
called vzTMTangentSpaceShader, which expects three parameters (see Chapter 4,
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“Texture Mapping Render Action” for more details). The following code creates the
appearance to be used to perform gradient-less shading of volumetric data:

// Create a tangent space shader
vzTMTangentSpaceShader *shader = new vzTMTangentSpaceShader();

// Create the appearance
vzAppearance *appearance = new vzAppearance(shader);

// Set the parameters required by the shader
appearance->setParameter (“volume”, volumeTextureParameter);
appearance->setParameter (“lookup_table”, lookupTableParameter);
appearance->setParameter (“lightdir”, lightDirectionParameter);

The appearance stores a reference to the supplied parameters and associates them with
the given names. Invoking the setParameter() method with a name already used but
with a different parameter would overwrite the previous value.

Shader Parameters

Parameters are attached to the shape’s appearance and provide the necessary
information to complete a volumetric appearance description. Examples of parameters
include 3D textures, texture lookup tables, lighting directions, and per-vertex floating
point values.

The vzParameter class forms an abstract base class for all the shader parameters. For
complete descriptions of the parameter classes and their usage, see Chapter 4, “Texture
Mapping Render Action”.
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Rendering Classes

Table 3-3 summarizes the function of the rendering classes.

This section describes the use of the two classes listed in Table 3-3.

Render Actions

A render action, as mentioned earlier, implements a certain visualization algorithm to
render the given shape nodes. Depending on the available resources and desired effect,
you can apply different render actions to render your volume data. For example,
TMRenderAction shipped with OpenGL Volumizer renders shape nodes using 3D
texture mapping. You can also write your render action to implement different
visualization algorithms if you want.

Render actions are responsible for more than just implementing a particular
visualization algorithm. They can also perform the resource management for improving
the performance of the rendering. This might also include doing their own OpenGL state
management.

In order for a render action to implement intelligent resource management techniques, it
should have some knowledge of the total size of resources available on the system and
what is required to render the given shape nodes. You can provide information about the
latter using the manage() and unmanage() methods of the render action. You can add a
shape to the render action’s list of managed shapes using manage() and remove it using
unmanage(). Finally, the shapes can be drawn by calling draw() on the shapes. A shape
that has not been managed cannot be drawn, but a shape that has been managed does
not need to be drawn. Refer to the documentation specific to the render action you are
using for the details on its implementation.

Table 3-3 Rendering Classes

Class Description

vzRenderAction Renderer for drawing shape nodes

vzShader Shader for generating a desired
visual effect from an appearance
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Shaders

Each render action recognizes a certain set of built-in shaders. Each built-in shader
expects certain parameters to be defined. You must provide all of the parameters
required for a given shader; failing to do so will generate an error. Shaders extract the
required parameters from the respective appearances using the getParameter() method
with the name of the respective parameters as an argument. For information on the
built-in shaders available for the render action, see the documentation specific to the
render action you are using.

Shaders are more lightweight as opposed to render actions in the sense that they are only
concerned with the specific OpenGL state settings required to generate a particular
visual effect. On the other hand, the render action performs more complex resource
management for the list of shapes that are managed and need to be rendered. Hence,
switching the shader for an appearance by using the setShader() method of the
vzAppearance class would have minimal overhead. But using a different render action
would involve more complex resource management to be done for the shape.

Error Reporting

The vzError class implements a mechanism for logging and reporting errors. It can also
be used to print debug messages at run time. The class consists of a collection of static
methods that allow you to do the error processing.

The following two subsections describe error processing:

• “Logging and Reporting Errors”

• “Printing Debug Messages”

Logging and Reporting Errors

The vzError::log() method is used by the library to log errors. Depending on the severity
of the error (see vzErrorSeverity), you can issue a log() call with a severity of VZ_ERROR
or VZ_WARNING. You can use your own error routine to handle all the logged errors. The
default handler simply prints out an error message if the severity is VZ_WARNING. If the
severity is VZ_ERROR, it calls abort() after printing the error message. The error handler
installed applies to all threads.
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You can use the convenience methods error() and warn() to log errors and warnings,
respectively. Calling error() or warn() is equivalent to calling log() with the severity
passed in as VZ_ERROR or VZ_WARNING.

The following example shows how to install your own error handling routine.

// Set the error handler for vzError::log()
vzError::setHandler (myHandler, NULL);

The handler might look like the following:

static void myHandler(vzErrorSeverity severity, vzErrorType type,
                      const char *format, va_list args, void* data)
{
    if(severity == VZ_ERROR)
        cerr<<"myHandler::Error!!!";
    else if(severity == VZ_WARNING)
        cerr<<"myHandler::Warning!!!";

    // Print the error message
    vfprintf(stderr, format, args);

    // Use the vzErrorType to do whatever else is needed!!!
    ....
}

Regardless of the error handler in effect, the first error encountered will be recorded and
can be queried later using getError(). The clear() method resets the saved error to
VZ_NO_ERROR. Errors are recorded and cleared on a per-thread basis.

Printing Debug Messages

The vzError class also provides the message() method to print debug messages that are
neither errors nor warnings. Each debug message is given a particular debug level,
passed as a parameter to the message() method.

The message will be output to stderr only if the debug level of the message is less than
or equal to the current debug level. Therefore, the higher you set this debug level, the
more debug information you will see. This is useful for debugging reference counts,
monitoring texture memory usage, and so on.
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The API internally does not use messages of levels 0 or 1. The guidelines in Table 3-4 are
used by the API to print debug messages.

To debug applications effectively, you can print out the right level of debug messages by
setting the environment variable VOLUMIZER_DEBUG_LEVEL to the appropriate value.

Table 3-4 Guidelines for Debug Messages

Level Message

2 Major changes in execution model—setting error or memory
callbacks, etc.

3 Changes caused by using set methods on object classes or
managing and unmanaging shape nodes

4 Reference count changes

5 GL state-related changes
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Chapter 4

4. Texture Mapping Render Action

The Texture Mapping Render Action (TMRenderAction) is the standard render action
provided by OpenGL Volumizer. This render action uses the 3D texture mapping
hardware to perform volume rendering of the given shape nodes.

This chapter describes the following topics:

• “Volume Rendering Using 3D Texture Mapping”

• “Algorithm Used by TMRenderAction”

• “Volume Rendering Using TMRenderAction”

• “A Closer Look at TMRenderAction”

Volume Rendering Using 3D Texture Mapping

The main steps involved in volume rendering using 3D texture mapping are as follows:

1. Sample the volumetric data using sampling planes parallel to the viewport.

2. Render these planes using 3D texture mapping with the volumetric data as the
currently bound 3D texture.

3. Composite the planes in a back-to-front manner using the over operator.

Figure 4-1 depicts the previous steps, respectively:
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Figure 4-1 Viewport-Aligned Sampling Planes, 3D Textures Sampling Planes, and Final
Image after Back-to-Front Compositing

The following are advantages of using 3D texture mapping:

• Immediate-mode execution to prevent the overhead of storing transient geometry
from polygonization.

• Optimized texture managment for improved texture download performance. [This
includes the case of texture memory oversubscription.]

• Support for custom volumetric shading techniques along with built-in shaders for
volumetric lighting and tagging.

• Transparent bricking and interleaving of texture data.

• Support for applications using multi-resolution and volume roaming techniques.

Algorithm Used by TMRenderAction

TMRenderAction implements a 3D volume rendering technique. The render action uses
the tetrahedron as the basic unit for representing volumetric geometry. The rendering
algorithm used by TMRenderAction consists of the following steps:

1. Tessellate the given volumetric geometry into a tetrahedral mesh.

Figure 4-2 depicts the tessellation.

Viewport-Aligned
sampling planes

3D Texture
sampling planes

Final Image
after Back-to-Front

compositioning
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Figure 4-2 Original vzBlock and Corresponding Tessellation

2. Sort the tetrahedral mesh in a back-to-front visibility order.

3. Set the OpenGL state for a given shader.

4. Starting with the rearmost element, slice the tetrahedra one-by-one and render the
polygonal geometry generated.

Figure 4-3 illustrates the slicing and the final rendering.

Figure 4-3 Back-to-Front Composited Slices for One, Three, and Five Tetrahedra

Volume Rendering Using TMRenderAction

The sample application in Chapter 2, “Getting Started” shows how simple it is to use the
vzTMRenderAction class to render a simple volume shape. However, most real-life
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volume rendering applications need to do more complex operations than just render a
simple volume shape. The vzTMRenderAction class has been designed with such
applications in mind.

The following sections describe how to use the various components of TMRenderAction:

• “Creating the Render Action”

• “Managing and Drawing Shapes”

• “Using the Built-in Shaders”

• “Using Shader Parameters”

• “Custom Volumetric Shading”

Creating the Render Action

The constructor to the render action takes an integer as a parameter, which represents the
maximum number of threads the render action is allowed to create, as shown in the
following:

vzTMRenderAction (int maxThreads);

The render action is not thread safe. Hence, do not share render actions across multiple
threads. Also, for efficiency reasons, create only one render action per graphics pipe.

Managing and Drawing Shapes

The vzTMRenderAction base class has the following pure virtual methods:

• manage()

• unmanage()

• draw()

They allow the application to tell the render action about the shapes it wants to be cached
and rendered. The process is shown in Figure 4-4.
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Figure 4-4 Managing, Unmanaging, and Drawing Shapes

TMRenderAction tries to load all the managed shapes into texture memory. Similarily, it
removes any unmanaged shapes from the texture memory. All shapes that are drawn
need to be managed first, even though it is not necessary to draw all the shapes currently
managed.

The beginDraw() and endDraw() methods are used to inform the render action about
the end of the management phase and the beginning of the rendering phase. The render
action performs all the texture management in the beginDraw() method. Hence, all the
manage() and unmanage() calls are queued until the application issues a beginDraw()
call, when the actual management is done.

Using the Built-in Shaders

TMRenderAction currently supports three built-in shaders. All of them use 3D texture
mapping to do volume rendering and implement specific techniques to generate a
desired visual effect. All shaders render the shapes using one or more passes over the
polygonal geometry generated from the slicing of the volumetric geometry. As you
might expect, there is one parameter common to all shaders supported by
TMRenderAction: volume. This parameter specifies the actual volume data to be
rendered and is of the type vzParameterVolumeTexture.

Texture cache

All Shapes

S

S

S

S

S

S

S

S

S

S

S

S

manage ( )

unmanage ( )

draw ( )

S

S

S

007-4389-005 43



4: Texture Mapping Render Action
The following subsections describe the list of shaders currently supported by
TMRenderAction:

• “vzTMSimpleShader”

• “vzTMLUTShader”

• “vzTMTangentSpaceShader”

• “vzTMGradientShader”

• “vzTMTagShader”

vzTMSimpleShader

The shader vzTMSimpleShader has the following parameter:

Parameter Name Type

volume vzParameterVolumeTexture

As the name implies, vzTMSimpleShader performs simple volume rendering of the
given volume texture. The polygonal geometry to be rendered is generated as described
earlier in section “Volume Rendering Using 3D Texture Mapping”. This geometry is
rendered in a back-to-front order with the given "volume" texture as the currently bound
texture. Figure 4-5 shows a 256 MB size CT of a human head rendered using
vzTMSimpleShader.
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Figure 4-5 vzTMSimpleShader

vzTMLUTShader

The shader vzTMLUTShader has the two following parameters:

Parameter Name Type

volume vzParameterVolumeTexture

lookup_table vzParameterLookupTable

The shader vzTMLUTShader allows you to apply transfer functions to the volume data
by using a one-dimensional lookup table, which maps the interpolated texel values to
color values. You can achieve a similar effect by applying the transfer function to
precompute the color values for each texel in the volume and then use it as the volume
texture for vzTMSimpleShader. This technique, however, would have a huge overhead
due to the amount of computation involved. In addition, for every change to the transfer
function the whole volume data will need to be re-downloaded to texture memory.
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The shader vzTMLUTShader applies the transfer function using color tables, which are
applied to the texel values in the imaging pipeline of the OpenGL hardware. This process
is much faster than doing the computation in software. Moreover, for every change to the
transfer function, only the lookup table needs to be downloaded again, which is usually
much faster than downloading the whole volume texture. Figure 4-6 shows the head
data set used in Figure 4-5 on page 45 now rendered with vzTMLUTShader. Notice how
use of the LUT shader allows getting rid of unwanted values in the data set.

Figure 4-6 vzTMLUTShader

vzTMTangentSpaceShader

The shader vzTMTangentSpaceShader has the three following parameters:

Parameter Name Type

volume vzParameterVolumeTexture

lookup_table vzParameterLookupTable
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lightdir vzParameterVec3f

The shader vzTMTangentSpaceShader implements a shader to perform lighting of
volumetric data. The shader also uses lookup tables to apply transfer functions to the
volumetric data. In order to perform the lighting computations, the shader also expects
a parameter to specify the direction of the light source. Figure 4-7 shows the head data
set used in Figure 4-5 on page 45 now rendered with vzTMTangentSpaceShader. Notice
how use of the Tangent Space shader provides higher image quality and better depth
cues.

Figure 4-7 vzTMTangentSpaceShader

The technique implemented by vzTMTangentSpaceShader is a “gradient-less lighting”
technique. It does not use the gradients for every texel of the volume data. The lighting
computations are performed by manipulating the texture matrix and rendering the
sliced geometry in two passes.
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Note: The shader vzTMTangentSpaceShader does not generate correct lighting of
volumetric data. It simply creates the appropriate visual effect by manipulating the
texture matrix.

The technique used here produces seams for bricked shapes along the borders of the
bricks (see the later section “Texture Management” for more information on bricks). Use
vzTMGradientShader for correct volumetric lighting of shapes.

vzTMGradientShader

Note: This shader is not available in versions prior to OpenGL Volumizer 2.1.

The shader vzTMGradientShader has the following four parameters:

Parameter Name Type

volume vzParameterVolumeTexture

gradient vzParameterVolumeTexture

lookup_table vzParameterLookupTable

lightdir vzParameterVec3f

The shader vzTMGradientShader implements a three-pass shading algorithm to perform
gradient shading of volume data. The algorithm uses two perfectly overlapping volumes
to perform gradient shading. The volume texture defines the actual volume data, while
the other gradient texture defines the gradient for volume. The RGB values of the
gradient texture provide the (a, b, c) coefficients for the gradient at each texel in the
original volume. It is the application’s responsibility to compute the gradient texture and
add it to the shape’s appearance.

The shader computes the dot product of the gradient values with the light direction
using the OpenGL imaging pipeline. This is done efficiently by setting the appropriate
color matrix before downloading the gradient texture. The result of this dot product is a
scalar value and, hence, can be stored internally as an intensity texture. So, the
gradient texture should have an internal texture format of VZ_INTENSITYn (where n
can be 8,12 or, 16). Changing the light direction forces the gradient texture to be
re-downloaded in order to re-compute the dot products with the new light direction. In
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addition, the shader accepts a lookup table parameter to apply transfer functions to the
volume data.

Note:
The shading algorithm uses destination alpha to compute the gradient lighting. Hence,
the application should ensure that the appropriate visual is selected.

Using vzTMGradientShader has the overhead of potentially using two times the texture
memory than vzTMTangentSpaceShader. The gradient shader generates accurate
lighting effects and does not have artifacts associated with the bricking of shapes, as
opposed to vzTMTangentSpaceShader, which does not generate correct lighting and
produces seams for bricked shapes.

vzTMTagShader

Note: This shader is not available in versions prior to OpenGL Volumizer 2.1.

The shader vzTMTagShader has the following three parameters:

Parameter Name Type

volume vzParameterVolumeTexture

tag vzParameterVolumeTexture

lookup_table vzParameterLookupTable

The vzTMTagShader implements a two-pass algorithm to perform volumetric tagging.
The algorithm uses two perfectly overlapping volumes. The volume texture defines the
actual volume data, while the tag texture defines a 3D stencil buffer for volume. Each
value in tag contains the mask for the corresponding texel in volume. If the value of the
tag texel is greater than 0.5, then the corresponding texel in the volume data is rendered;
otherwise, the texel is masked out. Figure 4-8 shows the head data set used in Figure 4-5
on page 45 now rendered with vzTMTagShader. Notice how use of the Tag Shader allows
masking out arbitrary regions in the data set.
007-4389-005 49



4: Texture Mapping Render Action
Figure 4-8 vzTMTag Shader

The tagging algorithm uses stencil and alpha tests to perform tagging. Ideally, the tag
volume should require only one bit to represent each texel. However, on most graphics
hardware, each texel will use at least one byte to represent a texel. On InfiniteReality
graphics systems, the application can specify the internal texture format to be
VZ_QUAD_INTENSITY4 and ask the API to optimize the texture. The texture would then
be interleaved so that each texel requires only four bits to represent it; this reduces texture
memory consumption and improves the texture download rate. See the man page for
vzParameterVolumeTexture for more details.

Note:
The tagging algorithm uses the stencil buffer to mask out the volume data. Hence, the
application should ensure that the appropriate visual is selected.

Using vzTMTagShader has the overhead of storing an additional 3D texture in the
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texture memory. You can also generate the same effect by actually modifying the volume
texture to remove the unwanted texels by setting their opacity to zero explicitly. This,
however, has the disadvantage of modifying the original volume data.

Using Shader Parameters

The preceding section describes the list of shaders that are supported by
TMRenderAction. The following subsections briefly describe the shader parameters
used by the shaders:

• “The vzParameterVolumeTexture Parameter”

• “The vzParameterLookupTable Parameter”

• “The vzParameterVec3f Parameter”

For details on the specific methods, refer to the man pages of the individual classes.

The vzParameterVolumeTexture Parameter

The vzParameterVolumeTexture class provides a simple abstraction of a 3D texture and
its position in 3D space. This section describes each of the components of the class by
looking at the constructor for the class. The following is the constructor:

vzParameterVolumeTexture( const int dataDimensions[3],
                        const int dataROI[6],
                        void* dataPtr,
                        vzTextureType dataType,
                        vzExternalTextureFormat externalFormat,
                        vzInternalTextureFormatinternalFormat=
                        VZ_DEFAULT_INTERNAL_FORMAT);

The dataDimensions values are the dimensions of the texture data along the X, Y, and
Z axes, respectively. The dataROI value specifies a cuboidal region of interest (ROI)
“contained” within the volumetric data. This will be useful if, for example, you have a
volumetric data of size 256 x 256 x 256 and you want to render texture data of size 128 x
128 x 128 starting at offsets (64, 64, 64). This can be done simply by choosing a dataROI
defined as in the following:

int dataROI[6] = {64, 64, 64, 191, 191, 191};
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This prevents you from having to create a separate buffer for the subtexture and then
copying the data over to it. TMRenderAction will use only the data that lies in the data
ROI for all subsequent operations.

The dataPtr value specifies the actual texture data. The dataType value specifies the
type of the texture data stored in the dataPtr variable (unsigned byte, integer, float,
etc.), while the externalFormat value specifies the format of the data (luminance,
RGBA, etc.). One can also specify the internal format to be used for the OpenGL texture.
The internal format is the format used internally by OpenGL to store the texture in
texture memory. The texture data has to be specified in a row-major order, as when
creating a 3D texture in OpenGL using the glTexImage3D() function call. For example, if
the external format is RGBA, the data should be stored as in the following:

{ {R1, G1, B1, A1}, {R2, G2, B2, A2}, .....}

Note the following:

• The texture data is only “shallow copied” by the API. This means that there is no
allocation done internally for the texture data. The class just stores the data pointer
and uses it for all subsequent operations.

• The texture data can be modified by using the setDataPtr() method. This call would
force TMRenderAction to reload the texture into texture memory before using the
texture again.

• The dataDimensions, dataROI, dataType, externalFormat, and
internalFormat values of a texture cannot be modified once the texture has been
created. In order to change any of the above, you will need to create a new texture
and use the setParameter() method of the shape’s appearance to use the new
texture.

• The texture dimensions do not need to be powers of two as required by OpenGL.
TMRenderAction will internally pad the texture data to create the appropriate
power-of-two texture.

• The complete texture need not fit in texture memory. If the texture does not fit in
texture memory, TMRenderAction will break the texture into smaller bricks
internally and use them to create the actual OpenGL textures.

• If a default value is used for the internal format, then the render action would infer
a suitable value from the data type and external format of the texture.

In addition to specifying the texture data for the 3D texture, the
vzParameterVolumeTexture class also contains information for mapping the texture data
to geometry space. This mapping is specified by the geometryROI parameter of the
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volume texture. The geometry ROI of the texture represents the bounding box for the
region in world space to which the texture maps. Figure 4-9 illustrates the relationship
between the data ROI and the geometry ROI of a texture.

Figure 4-9 Data ROI and Geometry ROI of a Texture

The geometry lying outside the geometry ROI is clipped out by TMRenderAction using
clipping planes. If a particular OpenGL clipping plane is enabled before calling the
draw() method, then TMRenderAction uses software clipping planes to clip the
geometry. Otherwise, it uses OpenGL clipping planes to do the clipping. This allows you
to use OpenGL clipping planes in your application. The values for the geometry ROI are
set to (0, 0, 0) to (1, 1, 1) by default inside the constructor. Try adding the following lines
of code to the sample program in Chapter 2:

Geometry
ROI

Texture data

Geometry space

Geometry

Texture space

Data
ROI
007-4389-005 53



4: Texture Mapping Render Action
// Get the parameter “volume” from the shape’s appearance
vzParameter *parameter =shape->getAppearance()->getParameter(“volume”);

// Cast the parameter to a vzParameterVolumeTexture
vzParameterVolumeTexture *texture =
                                  (vzParameterVolumeTexture*)parameter;

// Set the geometryROI for the texture
double geometryROI[6] = {0.25, 0.25, 0.25, 0.75, 0.75, 0.75};
texture->setGeometryROI(geometryROI);

Figure 4-10 shows the original texture and the modified texture. This illustrates how you
can arbitrarily scale and translate your texture to fit the shape’s geometry.

Figure 4-10 Original Texture and Texture after Modifying the Geometry ROI

Note the following:

• If specified, only the data ROI gets mapped to the geometry ROI and not the entire
texture.

• The voxel samples along the border of the data ROI are mapped so that they lie
exactly along the boundaries of the geometry ROI.
54 007-4389-005



Volume Rendering Using TMRenderAction
The vzParameterLookupTable Parameter

The vzParameterLookupTable class provides a mechanism for specifying transfer
functions to be applied to the volume texture. A transfer function provides the mapping
from data values to color values. In this case, it provides the mapping from texel values
in the volume texture to color values to be rendered. Using transfer functions, you can
visually “remove” unwanted values from the volume rendered image by setting an
alpha value of zero for such values. Similarly, you can emphasize other values by giving
them different colors and high opacity values. This could be used, for example, to see
only the skull from the head data set by assigning an opacity of zero to the other
components. Figure 4-11 shows a head image along with its lookup table.

Figure 4-11 Head Image and Its Lookup Table

Figure 4-11 was generated using both the transfer function editor and the demo code
provided with OpenGL Volumizer.

Figure 4-12 shows the skull of the head along with its lookup table.

Image Lookup table
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Figure 4-12 Skull of the Head and Its Lookup Table

TMRenderAction implements the transfer function using post-interpolation lookup
tables. These lookup tables get applied in the imaging pipeline after the texture
interpolation stage. The interface for specifying the lookup table is similar to that of the
vzParameterVolumeTexture parameter since a lookup table can be thought of as a
one-dimensional texture. The constructor for the class looks like the following:

vzParameterLookupTable( int width,
                      void* dataPtr,
                      vzTextureType dataType,
                      vzExternalTextureFormat externalFormat);

The width value specifies the number of entries in the table. The dataPtr value is the
address of the table entries in memory. The dataType and externalFormat values
specify the data type and format, respectively, similar to that of a
vzParameterVolumeTexture parameter.

Note the following:

• Unlike the vzParameterVolumeTexture parameter, the width of the lookup table
must be a power of two.

• The dataPtr, dataType, and dataFormat values of a lookup table can be
modified once it is created. For any of these modifications, the table would be
reloaded.

Image Lookup table
56 007-4389-005



Volume Rendering Using TMRenderAction
• Like the vzParameterVolumeTexture parameter, the dataPtr value is shallow
copied—that is, no memory is allocated internally for the data. Also, the data
should be specified in an interleaved format similar to that of the volume texture.

• The maximum size of the lookup tables on InfiniteReality systems is 1024 for RGBA,
2048 for LUMINANCE_ALPHA, and 4096 for INTENSITY formats.

The vzParameterVec3f Parameter

The vzParameterVec3f class is used to specify a vector of three floating point values. It is
used by vzTMTangentSpaceShader to specify the light direction for the volumetric
lighting. It can potentially be used by other shaders that require parameters such as color
values, material properties, and so on. The constructor is simply the following:

vzParameterVec3f( );

The vector is given a default value of (1, 0, 0). You can modify the value by using the
setValue() method of the class.

Custom Volumetric Shading

The built-in shaders, described earlier in section “Using the Built-in Shaders” on page 43,
render the polygonized geometry using multiple passes with different OpenGL states set
before the various passes. The polygonized geometry is essentially the set of triangles
corresponding to each slice of the volume data. Rendering each slice using different
OpenGL states allows you to create shading effects that are otherwise difficult to
generate using the OpenGL hardware. OpenGL Shader uses the same approach for
surface shading.

The vzTMShader Class

TMRenderAction provides a built-in shader class that allows applications to write their
own custom, multipass shaders. The vzTMShader class provides such an interface to
apply arbitrary shading to shapes being rendered using the render action. The class
provides a set of callbacks that are invoked by the shader while rendering the
polygonized geometry. These callbacks can be used to set the appropriate OpenGL state
for the rendered geometry. There are two types of callbacks used by vzTMShader:

• Shape callbacks

• Slice callbacks
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The shape callbacks are invoked before and after the current shape is rendered. The
shader typically uses the pre-render shape callbacks to set the OpenGL state, which does
not change while rendering the shape. This might include enabling 3D textures, binding
lookup tables, and the like. The pre-render shape callback can also be used to do error
checking. For example, the shader can verify the list of required parameters in the current
appearance (described later in this section). The post-render shape callback can be used
to restore the OpenGL state modified by the shader.

The slice callbacks are invoked before each slice of the polygonized geometry is
rendered. These callbacks are used to set the OpenGL state, which needs to be modified
for every slice. The OpenGL state includes the currently bound texture, enabling and
disabling blending, modifying the color mask, and the like.

The shape and slice callbacks can be set using the following methods (see man pages for
vzTMShader for more details):

void setShapeCallbacks(vzTMShaderCB preCB, vzTMShaderCB postCB, void*
userData);

void setSliceCallbacks (int numCB, vzTMShaderCB* callbacks, void*
userData);

The vzTMShaderCB callback is defined as the following:

void (*vzTMShaderCB)(vzTMShaderData *shaderData);

The shader can request TMRenderAction to “bind” the shader parameters using the
vzTMBindParameterCB callback function, defined as the following:

bool (*vzTMBindParameterCB)(const char *name, vzTMShaderData
*shaderData, vzTMShaderOp operation = VZ_TM_BIND);

The bind-parameter callbacks accept the following three arguments: the name of the
parameter to be bound, shader data, and the shader operation to be applied on the given
parameter. If the shader operation is VZ_TM_ENABLE or VZ_TM_DISABLE, the
corresponding OpenGL state is simply enabled or disabled, respectively. The default
shader operation is VZ_TM_BIND, which binds the given parameter.

The bind-parameter callbacks can be invoked from the shape or slice callacks to bind the
appropriate parameters. The bind-parameter callbacks return a true value if the call
succeeds. Otherwise, it returns a false value. The vzTMShaderData argument passed to
the callbacks contains shading information. The vzTMShaderData argument has the
following data members:
58 007-4389-005



Volume Rendering Using TMRenderAction
vzTMBindParameterCB bindVolumeTextureCB;
vzTMBindParameterCB bindLookupTableCB;
vzAppearance* appearance;
void* userData;

TMRenderAction primarily manages two OpenGL resources for the application. These
resources are the shader parameters corresponding to the texture data (usually
vzParameterVolumeTexture) and the transfer functions (vzParameterLookupTable).
These parameters can be bound using the bindVolumeTextureCB and
bindLookupTableCB callbacks. The appearance can be used to access the other
parameters required by the shader.

While the two bind-parameter callbacks can be used to bind the appropriate parameters,
the current appearance can be used to access the other parameters required by this
shader. The user-data pointer can be used to store arbitrary user data that the shader
might need. The shader-data pointer needs to be passed back to the render action as an
argument to the bind-parameter callbacks.

The following code shows an example of a shader that blends two volume textures
together. This is done using two slice callbacks that bind the different volume textures.
The following are pre-render and post-render shape callbacks that enable and disable 3D
texturing, respectively:

void preShape(vzTMShaderData *shaderData) {
(*shaderData->bindVolumeTextureCB)("volume", shaderData, VZ_TM_ENABLE);
}
void postShape(vzTMShaderData *shaderData) {
(*shaderData->bindVolumeTextureCB)("volume", shaderData,VZ_TM_DISABLE);
}

The following are the two slice callbacks that bind the different volume textures:

void pass1(vzTMShaderData *shaderData) {
    if(!(*shaderData->bindVolumeTextureCB)(“volume”, shaderData))
       vzError::error(VZ_OPERATION_FAILED,”Could not bind volume
texture ‘volume’”);
}
void pass2(vzTMShaderData *shaderData) {
    if(!(*shaderData->bindVolumeTextureCB)(“volume2”, shaderData))
       vzError::error(VZ_OPERATION_FAILED,”Could not bind volume
texture ‘volume2’”);
}
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Guidelines for Creating Your Shaders

Use the following guidelines when creating your shaders:

• Try to minimize the number of state settings in the callbacks. For example, do not
bind the same parameter repeatedly in the slice callbacks if this is not necessary.

• All the shaders need to have a parameter of type vzParameterVolumeTexture
and name volume. TMRenderAction uses this parameter to compute the number of
slices from the geometryROI and sampling rate.

• Each appearance can have any number of volume texture parameters but only one
lookup table parameter.

• The dataROI and geometryROI of all the volume textures in the appearance should
be the same. Different dataROI and geometryROI would work correctly if the shape
is not bricked internally.

A Closer Look at TMRenderAction

TMRenderAction implements the 3D texture slicing technique (described earlier in
section “Algorithm Used by TMRenderAction”) to render volumetric shapes. This
section explains some of the details of the render action and mentions a few techniques
that you can employ for added functionality and performance. Included are the
following subsections:

• “The Volume Rendering Pipeline”

• “Texture Management”

• “Sampling Rate”

• “Arbitrary Polygonal Geometry”

The Volume Rendering Pipeline

Figure 4-13 shows the pipeline used by a typical volume rendering application using the
render action.
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Figure 4-13 Volume Rendering Pipeline

First, the application computes the number of shapes it needs to keep resident in texture
memory for the given frame. The list of shapes might be the outcome of visibility culling
in an immersive application, the current frame index of a time-varying simulation, or the
like. Note that it is not necessary to draw all shapes that are managed, but a shape that
needs to be drawn must be managed.

Next, it is the application’s responsibility to sort the rendered shapes in the correct order
since TMRenderAction does not perform any visibility sorting of the rendered shapes.
After the sort, the application sets the appropriate OpenGL state, such as enabling
blending and setting the appropriate blending functions, for performing volume
rendering. TMRenderAction renders the polygonal geometry in a back-to-front sorted
order. Hence, the blending function for the most common volume rendering case would
be the over operator glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA).
The following is a typical example of the OpenGL state settings using the over operator:

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

The flexibility in choosing the blending function allows you to implement other
techniques. For example, you can implement Maximum Intensity Projection by using the
blending equation glBlendEquation(GL_MAX). See the man page for glBlendEquation()
for a complete list of modes.

After these two steps, the application lets the render action know that it is ready to start
drawing the shapes by calling beginDraw(). The beginDraw() method marks the end of
the texture management phase and the beginning of the rendering phase. Inside the
method, the render action does the following:

• Computes total resources required for the list of managed shapes.

• Manages the OpenGL state (push application’s OpenGL state, store transformation
matrices, etc.).

• Manages the OpenGL resources (creates and downloads texture objects, lookup
tables, etc.).

Manage/
Unmanage

shapes

Sort shapes/
Set OpenGL

state
Draw shapes
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Then the application draws all the shapes in the visibility sorted order just described in
the preceding paragraphs. Inside each draw method, the render action does the
following:

• Invokes the shader’s initialization routine, which sets the appropriate OpenGL state
(bind texture objects, enable lookup tables, etc.).

• Polygonizes the volumetric geometry using the transformation matrices.

• Draws the polygonized geometry in a back-to-front order.

Note that the polygonized geometry is always parallel to the viewport, unless the
application has set slicing planes on the volumetric geometry. The transformation
matrices are queried directly from OpenGL in the beginDraw() method. These matrices
are stored and used for all the subsequent draws before the next endDraw() call.

Finally, in the endDraw() method, the render action restores the OpenGL state that it has
modified. This includes texture related settings, lookup tables, and pixel store.

Texture Management

Texture memory is a very valuable resource that needs to be managed very efficiently if
one is to achieve interactive rates for volume rendering using 3D texture mapping.
TMRenderAction makes this job easier for you by hiding all the machine-specific details
of texture management and giving you transparent access to the graphics hardware. The
render action optimizes the texture management process by using techniques to prevent
fragmentation of texture memory and optimizing the flow of texture data to the graphics
subsystem.

The following subsections provide some specific details of the texture management
performed by TMRenderAction:

• “Texture Dimensions and Sizes”

• “Custom Bricking of Textures”

• “Texture Memory Usage”

• “Intelligent Texture Management”

• “Texture Interleaving”
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Texture Dimensions and Sizes

TMRenderAction allows specifying textures of arbitrary dimensions and sizes using the
vzParameterVolumeTexture class. All texture dimensions have to be powers of two for
the textures to be valid. Also, the texture size should be less than or equal to the amount
of texture memory available on the graphics subsystem.

TMRenderAction removes this restriction by appropriately padding the textures of
invalid dimensions to the next higher power-of-two dimensions. Also, TMRenderAction
is capable of virtualizing textures that are too big to fit in texture memory. Requiring no
intervention in brick creation, management, and sorting, all of these processes are
transparent to you.

Custom Bricking of Textures

For some applications, you might want to implement your own bricking of the texture
data. In this case, you will have to create one vzShape per brick. Each of these shapes will
contain one volume texture corresponding to the texture data for the brick. Once the
shape is created, you should manage, unmanage, and draw these shapes as required.
TMRenderAction will try to optimize the texture management, depending on the total
size of the textures that you have created.

For your custom bricking, you should make sure that the geometry ROIs of the texture
bricks are such that the boundaries match with those of the adjacent bricks. You should
invoke the draw function in such a manner that the shapes are rendered in a
back-to-front sorted order. TMRenderAction assumes linear filtering of textures; so, you
should have a one-voxel overlap between the adjacent textures. Figure 4-14 illustrates
this in 2D.
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Figure 4-14 Texture Bricking

Figure 4-14 shows a 7 x 7 texture, which is divided into 4 bricks of size 4 x 4 each. These
textures use the same data pointer of the original texture and do the bricking by using a
different data ROI for each of the bricks. The first row gives the data ROIs of each of the
bricks. In order for the brick boundaries to match, you need to adjust the geometry ROIs
of each of the bricks so that they match on their boundaries. The second row gives
potential values for the geometry ROIs of each brick.

Texture Memory Usage

TMRenderAction by default uses all of the texture memory available on the graphics
subsystem. It uses GL_PROXY_TEXTURE_3D to figure out the amount of texture memory
available on the system.

Intelligent Texture Management

Understanding the texture management can help you improve the performance of the
rendering by the render action in many common cases. TMRenderAction computes the
total amount of resources required to render the given set of managed shapes in the
beginDraw() call and compares it to the amount available on the graphics pipe.
Depending on the outcome of the comparison, the render action uses different texture
management schemes. One optimization common to all the schemes is that the render

Texture data (7 x 7)
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Brick 2
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action tries to reuse OpenGL texture objects whenever possible. Note the sequence of
frames in Figure 4-15.

Figure 4-15 Reusing Texture Objects

In the first frame, the render action would allocate OpenGL texture objects for Shape1and
Shape2. In the second frame, even though Shape2 is not managed, the render action does
not delete the texture objects for it. Instead, it reuses the texture objects for downloading
and binding the textures in Shape3. This has two advantages. First, reusing texture
objects prevents fragmentation of texture memory, since not all texture managers do
garbage collection immediately after the texture object has been deleted. Second, for
downloading the textures in Shape3, the render action uses glTexSubImage3D() calls,
which are considerably faster than the corresponding glTexImage3D() calls.

The preceding discussion assumes that the textures in the shapes fit in texture memory
and have the same data ROI dimensions and internal texture formats. Hence, if your
application uses multiple shapes and needs to constantly manage and unmanage them
in order to improve the download performance of your application, you should try to
divide the whole scene into multiple shapes such that the textures in the shapes are all of
equal sizes. Typical examples of such applications are volume roaming, multiresolution
volume rendering, and time-varying volumes.

You can use the manage() and unmanage() methods to do predictive texture downloads
of volumetric textures. For example, you could manage a shape in frame n which you
need to render in frame n+1. This process can help you split the cost of downloading the
textures over multiple frames. This can be very useful for applications like volume
roaming, time-varying volumes, and the like.

Frame 1

Frame 2

Manage
Shape1

Manage
Shape2

Manage
Shape1

Unmanage
Shape2

Manage
Shape3
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Texture Interleaving

Note: This section is intended for advanced users.

On InfiniteReality graphics systems, the smallest texel supported by the hardware is 16
bits. Hence, even if your textures are single-byte textures, they would end up taking
twice the amount of texture memory. Texture interleaving allows you to efficiently fill up
the space in texture memory using the texture-select extension.

Texture interleaving has two main benefits:

1. Efficient use of texture memory

Texture interleaving allows you to use all the texture memory available on
InfiniteReality systems. This would not be true if you had single-byte LUMINANCE
textures rendered with an internal format of VZ_INTENSITYn (where n can be 8, 12
or 16).

2. Increase in texture download rate

With an internal texture format of VZ_DUAL_INTENSITY8, the texture download
takes only half the time as compared to the format VZ_INTENSITYn (where n can
be 8, 12 or 16).

TMRenderAction currently supports interleaving of LUMINANCE textures using either
two-way (DUAL) or four-way (QUAD) interleaving. Interleaving can be used in multiple
ways depending upon the application. The following are the three ways that interleaving
can be used with TMRenderAction:

• Transparent interleaving

If you create a vzParameterVolumeTexture with an external format of
VZ_LUMINANCE and data type of VZ_BYTE or VZ_UNSIGNED_BYTE; then, on
InfiniteReality systems, TMRenderAction would internally interleave the texture
data and use it to download and bind the appropriate texture. Requiring no
interference from you, this process is completely transparent to the application.
This, however, can have some computational disadvantages in dynamic
applications such as time-varying volumes because the interleaving process itself
can be slow. For such applications, you can prevent the render action from
interleaving the textures by specifying the appropriate internal texture format—for
example, VZ_INTENSITY16 instead of VZ_DEFAULT_INTERNAL_FORMAT.
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• Forced interleaving

In order to avoid the cost of interleaving every time you manage a texture, you can
force the render action to interleave the texture data and store the results. This can
be done by specifying the desired internal texture format—for example,
VZ_DUAL_INTENSITY8 or VZ_QUAD_INTENSITY4—and calling the method
optimize() on the vzParameterVolumeTexture after creating it. The results of the
interleaving process will be stored in the texture and will be available to the render
actions for all subsequent operations. If you use the internal format of
VZ_DEFAULT_INTERNAL_FORMAT, then an appropriate internal format will be
inferred from the external data format and type.

• Pre-interleaved textures

You can also provide pre-interleaved texture data to the render action. In this case, it
is the application’s responsibility to interleave the texture data and provide the
appropriate internal and external texture formats. Also, the texture data should be
compliant with the texture specifications of OpenGL. For example, the textures
should fit in texture memory and should have power-of-two dimensions. The
sample code in /usr/share/Volumizer2/src/lib/apps/appsUtil/
demonstrates how to create interleaved textures from a given input texture.

Note: In the interleaving interface, the interleaving is done within the same texture and
the data is rendered appropriately. The render action assumes the texture is decomposed
into two textures along the X dimension of the data. Rendering with these textures
involves sorting and using the appropriate OpenGL state settings, but this procedure is
completely transparent to the application, even for pre-interleaved textures.

Sampling Rate

The sampling rate used to polygonize the volumetric geometry controls the number of
slices that are used to render the shape. Theoretically, the minimum data slice spacing is
computed by finding the longest ray cast through the volume in the view direction, and
then finding the highest frequency component of the texel values and using double that
number for the minimum number of data slices for that view direction. Practically, the
rendering process tends to give a pixel-fill limitation; and, in many cases, choosing the
number of data slices to be equal to the volume’s dimensions, measured in texels, works
well. Trading performance and image quality can be a key issue for numerous
applications.
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You can control the sampling rate by setting the appropriate value using the
setSamplingRate() method. By default, TMRenderAction uses a sampling rate of
(1, 1, 1), which implies that the slicing is done once per voxel along each of the data
dimensions. This default usually provides acceptable image quality.

However, when zooming into the volume data, you might see artifacts due to
undersampling in the image space. In order to remove this, you might need to increase
the sampling rate accordingly. Varying the sampling rate is also necessary for anisotropic
data to compensate for the difference sampling rate along the various data dimensions.
The sample medical data set in the following file is an example of such a data set:

/usr/share/Volumizer2/data/medical/Phantom/CT.Head.char.tif

Using a sampling rate of (1, 1, 3.32) would usually give better image quality for this data
set.

Arbitrary Polygonal Geometry

You can render arbitrary polygonal geometry with the shape’s volume texture applied
to it by using the vzPolyGeometry class described in “Arbitrary Polygonal Geometry” in
Chapter 3. When the draw method is invoked on the vzPolyGeometry, the appropriate
geometry ROI for the polygonal data is passed with the method. The render action also
sets the appropriate OpenGL state, including 3D texture state and clipping planes, before
calling the draw method. So, if the shape’s appearance used vzTMSimpleShader or
vzTMLUTShader, the corresponding volume texture will still be bound with the
appropriate lookup tables and texgen settings. Using this scheme, applications can
implement the spherical sampling technique (described in the following paragraphs) by
rendering the appropriate tessellated shells after the corresponding draw. There is one
notable caveat, however: the technique would not work correctly with multipass shaders
like vzTMTangentSpaceShader.

Slicing with planes is common but artifacts can appear when the observer is very close
to the model. As an implementation alternative, spherical slicing provides a more
accurate visualization in perspective projection. Figure 4-16 illustrates the principle.
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Figure 4-16 Spherical Slicing

In this case, the polygonization process might become the performance bottleneck. Using
a parallel algorithm to perform the polygonization on multiple processors will help
maintain a good level of performance.

Shells

Volume

Eye
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Chapter 5

5. The Large-Data API: 3D Clip Textures

OpenGL Volumizer includes a new application programming interface (API) for
large-data volume rendering. This API allows volume rendering of datasets that exceed
main memory and texture memory and addresses bottlenecks associated with pixel-fill
performance using a multiresolution rendering scheme.

This chapter contains the following topics:

• “Problems in Large-Data Visualization”

• “3D Clip Textures”

• “Clip Texture Representation: Class vzParameterClipTexture”

• “Clip Texture Rendering: Class vzClipRenderAction”

• “Visualization Pipeline for the Large-Data API”

Problems in Large-Data Visualization

Chapter 4 introduces the render action Texture Mapping Render Action
(TMRenderAction). TMRenderAction uses 3D texture mapping hardware to volume
render a shape node. TMRenderAction manages the data resident in texture or graphics
memory. In the context of volume rendering and 3D texture mapping, when the size of
volume data is larger than what the local resources can handle, volume visualization also
becomes a data management problem. This chapter shows how OpenGL Volumizer can
efficiently manage resources to maintain interactive frame rates.

In the context of 3D texture-based rendering, large data implies that the size of the
volume data exceeds one or more of the following:

• Rendering efficiency of the graphics hardware, such as the fill rate limitation of the
graphics subsystem

• Amount of texture or graphics memory of the graphics subsystem
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• Amount of main memory of the computer system

• System data bandwidth, especially between the various peripherals and the
graphics pipe

Current graphics subsystems provide unified graphics memory or dedicated texture
memory in addition to necessary framebuffer and ancillary-buffer support. With
graphics hardware providing ever larger texture- or graphics-memory configurations, it
is possible to render sizable volumes at frame rates approaching near real-time
performance (10/15 fps). However, even if the volume data fits in graphics memory, the
pixel fill rate of the graphics hardware can limit an application’s rendering performance.
Moreover, if the size of the data exceeds graphics-memory resources, the data to be
visualized will partly reside on slower and larger storage peripherals, such as system
memory, and disks. It is the task of the visualization application to manage the data
among memory devices within the time constraint in addition to taking into account
concerns over pixel fill-rate limitations.

Bricking

Applications can improve volume rendering performance when rendering large data by
addressing bandwidth bottlenecks—for instance, during data transfer. One approach is
to divide the whole volumetric data into smaller components called bricks. Using bricks
provides an application more control over frame rates by moving these data bricks to the
local texture memory from the various storage devices. This level of control gives
applications the capability to visualize huge data located in memory or on
high-performance disks by paging them into texture memory using intelligent schemes.
Thus, bricking allows applications to page in to an application space as needed smaller
units of a large volume that would not otherwise fit into main or graphics memory.

In addition to the usefulness of bricks in the implementation of texture-paging
mechanisms, view-frustum culling, and load balancing on multipipe systems, this
representation is useful in circumventing the inefficiencies due to the padding of textures
to the next higher power-of-two dimensions, as required by OpenGL. Brick size plays an
important role in the overall efficiency. Short data transfers may require frequent
interrupts in the data flow and can consequently affect performances. On the other hand,
long data transfers optimize the overall bandwidth but are not interruptible. The choice
of brick size depends upon the hardware architecture; therefore, applications should
select values taking system parameters into consideration.
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Bricking alone addresses data representation for efficient data transfer. Data
visualization techniques used in 3D texture-based rendering applications, such as
volume roaming and multiresolution volume rendering can affect application
performance as well. These rendering methods use bricking as a base for exchanging
data from main memory to texture memory or from disks to main memory.

Volume Roaming

Volume roaming is a technique that allows the user to explore large volumetric data
using a volumetric probe, through which users interactively move inside a rendered
volume. The probe allows users to navigate the dataset using a viewing window and
helps them concentrate on a specific section of the whole dataset. The key components of
the technique are texture bricking, intelligent texture and main memory management,
and asynchronous disk paging of volume data. The application maintains a hierarchy of
windows, which contain smaller subsets of the total volume data and are updated during
user motion. Each window is subdivided into multiple shapes, one for each brick. As the
window moves, the bricks are updated with new texture data. The application is
responsible for controlling all of the window management and data transfer between the
various peripherals. TMRenderAction efficiently pages in the new data into texture
memory from main memory. Roaming allows an application to overcome fill rate, texture
memory, and main memory constraints. The technique renders only a subvolume of data
at a time and cannot guarantee constant frame rates during fast user motion.

Multiresolution Volume Rendering

To achieve interactive rendering for a volume dataset of a given size, applications can
control the sampling of the data that they render. Making a tradeoff between
performance and image quality, multiresolution volume rendering allows applications
to interactively render large volume data by rendering bricks that vary in volume
levels-of-detail (LOD). Lower resolutions help improve performance since it limits the
texture memory as well as the fill rate consumption of the application. To improve
rendering performance while maintaining acceptable image quality, applications can do
the following:

• Couple texture management with LOD switching to ensure near-constant frame
rates.

• Take advantage of the sorted order of bricks to determine the LOD to be rendered.
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• Use clipping geometries to optimize the use of texture memory available on the
graphics subsystem.

• Progressively render higher-resolution volumes during minimal stages of user
interaction or for bricks closer to the user.

Using LODs requires the volume data to be reformatted at different resolutions by
filtering and decimation to produce a more compressed representation. Because this
compression is usually lossy, the rendering process trades off interactivity against
rendering performance and image quality against visualization accuracy.

The key components of multiresolution volume rendering include texture bricking,
intelligent texture memory management, and proper computation of the various LODs.
Applications can improve the performance by rendering low-resolution data during user
interaction and then successively improving the image quality during an absence of user
interaction. In this case, a shape is used to represent each node in the octree. The
TMRenderAction manages the texture data and multiple lookup tables used to
compensate for the different opacities at the LODs. Low resolutions help improve
rendering performance by limiting texture memory and fill-rate consumption of the
application. A limitation of this technique is that all of the volume data along with the
various LODs need to be present in main memory, thereby constraining the size of the
dataset that can be rendered using this method.

OpenGL Volumizer provides a large-data API: an interface to a hierarchy of 3D clip
textures and their associated renderer. 3D clip textures allow applications to visualize
arbitrarily large volumetric data by merging the advantages of volume roaming and
multiresolution techniques.

3D Clip Textures

While multiresolution volume rendering and volume roaming are attractive techniques
for rendering volumetric data, they are restricted when dealing with extremely large
datasets. 3D clip textures allow applications to visualize arbitrarily large volumetric data
by combining the advantages of bricking, volume roaming, and multiresolution
techniques.

Figure 5-1 illustrates the concept of 2D clip textures. 2D clip textures have been used
successfully to provide interactive navigation of very large terrain data. Clip textures are
mipmap versions of the original texture data, except that each mipmap level maintains a
roaming window (physical memory window in Figure 5-1) to limit the amount of texture
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data resident in main memory. These clipped mipmap levels are called clip levels. The
highest level of resolution in the hierarchy corresponds to the original texture data. The
remaining levels are computed by filtering and decimating the preceding clip level.

Figure 5-1 Clip Texture Hierarchy in Two Dimensions

The center of the physical memory window is usually the viewer’s center of interest. As
the viewer moves, the center of interest is updated and the texture data that is not in the
window anymore is replaced by new data from disk. This data is paged into slots vacated
by data being paged out of the window. This mapping ensures constant memory usage
during user interaction. As shown in Figure 5-1, lower resolutions of texture data fit
completely in main memory. During periods of fast user motion, these low-resolution
textures are rendered while high-resolution data is being paged in. As higher-resolution
texture data is available, it is rendered to improve the image quality of the visualization.
This mechanism provides the capability to interactively visualize huge amounts of
texture data resident in main memory or on high-performance disks.

Physical memory window

Highest level of resolution

Entire level in
main memory
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Special-purpose SGI graphics hardware, such as InfiniteReality systems, provides
built-in support for 2D clip textures. OpenGL Volumizer implements a software
emulation of 3D clip textures. A 3D clip texture is an extension of a 2D clip texture
scheme combining volume roaming with multiresolution volume rendering. In this case,
the data transfer process is supported by representing the whole clip texture hierarchy as
a collection of smaller 3D bricks at each level of resolution. This volume data
representation combines the benefits of bricked volume files, asynchronous disk paging,
multiresolution and volume roaming methods to overcome memory and pixel-fill
constraints.

Like their 2D counterparts, 3D clip textures maintain a window of textures, which fits in
main memory of the system at each level of the hierarchy. A clip texture loader replaces
all texture data not contained in the window with new texture data from disk. To
maintain the highest data transfer rate, OpenGL Volumizer represents the clip texture
hierarchy as a collection of smaller 3D bricks at each level of resolution.

Figure 5-2 shows different resolutions for the same volume data. Each brick in the figure
has the same data dimensions but they have different geometry ROIs. For example, if the
brick has dimensions of 128 x 128 x 128 (2MB for 1 byte/texel), approximately 4 terabytes
of volume data require 256 x 256 x 256 blocks at the highest resolution. By subsampling
the data to lower resolutions using a kernel of size 2 x 2 x 2 or 4 x 4 x 4 texels, the data can
be reduced by a factor of 8 and 64, respectively.

Figure 5-2 Subsampled Volume Data

res = n voxels/dim unit
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The core of the large-data API for OpenGL Volumizer is in the abstraction of a 3D clip
texture and its associated renderer. The implementation of the clip texturing is exposed
as a new class, vzParameterClipTexture, and an associated render action,
vzClipRenderAction. Figure 5-3 and Figure 5-4 show the similarities between shape
node components for the core OpenGL Volumizer API and the 3D clip texture API.

Figure 5-3 A Shape Node Using a Volume Texture

vzParameterVolumeTexture vzParameterLookupTable

vzAppearancevzGeometry

vzShapevzTMRenderAction
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Figure 5-4 A Shape Node Using a Clip Texture

Clip Texture Representation: Class vzParameterClipTexture

The class vzParameterClipTexture is a new parameter class that provides an abstraction
for a 3D clip texture hierarchy. The class maintains a set of clip levels and manages the
amount of physical memory necessary to store the texture data. In addition, the class
handles texture bricking and paging based on application-specific parameters. For
efficiency, texture bricks are of constant size.

Applications control the following parameters to initialize a clip texture hierarchy:

Parameter General Function

Brick dimensions Optimizes the data transfer on the underlying hardware
architecture, and it is constant for all bricks.

vzParameterVolumeTexture vzParameterLookupTable

vzAppearancevzGeometry

vzShapevzTMRenderAction

Physical memory window

Highest level of resolution

Entire level in
main memory
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Physical memory size Limits the amount of physical memory used to load
texture data.

Data loader callback Allows a clip texture to load the texture data from the
disk.

Depending on the preceding parameters, the clip texture class creates a number of clip
levels. Each clip level is assigned a maximum physical memory window, the size of
which is computed from the total physical memory allowed for the clip texture. When
the application starts, multiple loader threads are created, which invoke data-load
callbacks to load texture bricks from disk. These callbacks are invoked in a sorted order
using a cost function proportional to the distance of the brick from the center of the
physical memory window. When a callback returns, the appropriate flag in the brick is
updated to reflect the presence of the brick in main memory. As illustrated in Figure 5-5,
this memory management and window management mechanism is implemented using
a 4D toroidal mapping technique. OpenGL Volumizer maintains a separate toroidal map
for each clip level.

Figure 5-5 The Volume Buffer
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5: The Large-Data API: 3D Clip Textures
Applications control the following parameters on a per-frame basis:

Parameter General Function

Center of interest Updates the center of the physical memory windows
of the clip levels.

Roaming window size Updates the size of the physical memory windows.

When the physical memory window is updated, all of the bricks that are not in the
window anymore are marked to be dirty and, hence, need to be reloaded by the loader
threads.

The following list defines the parameters for this class:

Parameter Description

Data dimensions Size of the whole volume data. This value is useful in
computing the total number of bricks in the volume
and the number of levels in the heirarchy.

Texture type and formats Texture format, type, and internal format. These
values are necessary to compute the number of bytes
per texel and to create the volume textures
representing the sub-bricks.

Center of interest The (X, Y, Z) index in volume data space,
corresponding to the current center of interest. Sets
the center of interest for the current frame. Texture
bricks closer to the center of interest will be paged in
earlier compared to the bricks that are farther away.

Roaming window size The dimensions of the actual roaming window
containing the visible volume data. By default, all the
data is visible. The setRoamingWindowSize()
method requires the dimensions of a window as
input. The method uses this window as the roaming
window in conjunction with the center of interest.
The dimensions are assumed to be specified
according to the original data dimensions. Moreover,
the actual roaming window dimensions for each clip
level is computed depending on the total physical
memory that clip texture is allowed to use.
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The remaining parameters, shown in the following list, have default values computed
internally. Applications can override the default values using the corresponding set
methods. All these methods affect the way the clip texture is set up, applications should
be modified immediately after the construction of the clip texture and before it is
managed and drawn for the first time.

Parameter Description

Texture brick dimensions Size of the texture brick in terms of the number of texels
in (X, Y, Z).

Geometry ROI A mapping of the texture data onto world coordinates.
Each of the subtextures will be assigned an ROI
accordingly. The default values are (0, 0, 0) to (1, 1, 1).

Physical memory size Limit for the size of the volumetric data to be kept in main
memory. The method setPhysicalMemorySize() takes as
input the maximum volume size kept in main memory.
This value should be set depending on the total memory
available on the system. Specifying a small value will
mean that fewer high-resolution bricks will be resident in
main memory at any given instant and, hence,
lower-resolution levels of the clip texture will be
rendered. Conversely, if a high value is specified, then
higher resolution textures will be rendered.

Most of the set methods also have corresponding get methods. The man pages for
OpenGL Volumizer describe the complete set of methods.

To load the volume data from disk, the clip texture class uses a data-load callback.
OpenGL Volumizer provides sample callbacks with the demo code. The following is the
format for the callback:

static void loadData(int offset[3], int level, int dimensions[3], void
*data, void *userData);

The callback that an application uses to load in volume data passes through the position
offset and level. The dimensions of the data to be loaded are in the argument
dimensions. The resulting data will be set in argument data. For example, the
following sample code uses IFL loaders to load in the volume data.

void loadDataCB(int offset[3], int level, int dimensions[3], void
*data, void *userData) {
IFLLoader *loader=((ClipLoaders **)userData)->getLoaderForLevel(level);
loader–>loadBrick(data, offset, dimensions);}
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Clip Texture Rendering: Class vzClipRenderAction

The class vzClipRenderAction implements a render action for 3D clip textures. This
render action implements intelligent, texture-paging techniques to render a clip texture
hierarchy in a view-dependent fashion. It renders bricks that are closer to the viewpoint
at a higher resolution compared to those farther away. It also performs view-frustum and
geometry culling to discard bricks that are not visible in the current frame. This render
action supports both looking at the visible frustum as well as roaming the dataset using
multiple levels of detail. The renderer encapsulates a vzTMRenderAction and
implements view-dependent rendering of clip textures. Depending on the geometry
bounding box, the renderer is capable of rendering the whole volume or a subcubical
roaming window in the data. Like vzTMRenderAction, it provides methods to manage
and unmanage a vzShape and the methods beginDraw() and endDraw(). Unlike the
draw method of vzTMRenderAction, the vzClipRenderAction draw method uses the
current center of interest and clip window of the clip texture. The renderer culls out the
texture bricks that do not lie in the visible frustum of the current window. In addition,
the render action provides a debug utility that draws the wireframe for the bounding
boxes of the texture bricks being rendered in the current frame.

The LOD used to decide whether a given brick is rendered or not is computed by
projecting the brick’s bounding box to screen space and then comparing it with a
user-supplied threshold value. A brick that is closer to the viewpoint (that is, in front of
other bricks at the same LOD in the visibility sorted order) gets higher priority in the
selection process. The render action selects a brick for rendering if the following
conditions are true:

• The brick intersects the viewing frustum and intersects the shape’s geometry.

• Its associated texture data is in main memory.

• Its projection-to-screen space meets the LOD threshold criteria.

• The associated texture fits in texture memory.

The renderer allows applications to roam the clip texture by modifying the volumetric
geometry for the shape. This geometry provides the region of interest in the volume data
and can be moved around to navigate the dataset interactively. In order to maintain
near-constant frame rates during user motion, the render action performs predictive
texture downloads to distribute the overhead of the data transfer over multiple frames.
The predictive texture download is a function of the direction of motion of the probe and
a differential of the current and predicted positions. The texture download will proceed
over a sequence of multiple frames. In the roaming mode, only textures at the same level
of resolution are rendered. To find such textures, the renderer traverses the clip level
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hierarchy to find the collection of bricks with the highest resolution possible and which
satisfy the preceding criteria. Roaming mode is more efficient when using a smaller
geometry as a probe, because the render action can provide finer control over the frame
rate.

The vzClipRenderAction provides methods to control texture memory resources and
trades off such resources against rendering time. For example, applications can control
the amount of texture memory that the render action uses to store texture data by using
the setTextureMemorySize() method. Applications can set an upper bound on the total
size of textures that the renderer can download in a given frame using
setMaxDownloadSize(). This constraint in conjunction with the LOD threshold helps
improve the interactivity of the render action by reducing the time spent in downloading
textures. In addition, the setMaxDrawSize() method allows applications to set an upper
bound on the total size of textures that the renderer can draw in a given frame.

To get an approximate measure of texture-download time in a previous frame, use the
getDownloadTime() method. It is only applicable if the total texture being rendered in
the frame does not exceed the size of texture memory. The getDrawTime() method
allows an application to elicit the time taken in microseconds for the actual draw of the
shapes, including the time for the polygonization and the polygon rendering.
Applications can control the ability to roam using the setRoam() method, which enables
or disables the roaming mode by setting the argument roaming to true or false,
respectively. If roaming is enabled, only texture bricks at the same level of resolution are
drawn. In the “normal” multiresolution rendering mode, textures closer to the viewpoint
are drawn at a higher resolution than textures farther from the viewpoint.

Visualization Pipeline for the Large-Data API

A visualization pipeline for large-data applications needs to address constraints imposed
by large data and limited resources. Because of the amount of data involved, OpenGL
Volumizer uses a two-step approach: offline data preparation followed by a visualization
method that supports 3D clip textures. The first step in the data visualization is volume
data preprocessing, which is done before the visualization process begins by an offline
application. OpenGL Volumizer provides the ClipGen3d application (installed in the
directory bin/clipGen3d under the sample distribution), which performs this
pre-processing. See the README file in the directory for details for the various options,
some of which will be discussed in the following sections.
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Preprocessing

The vzParameterClipTexture class represents the clip texture hierarchy as a set of clipped
mipmap levels of the original texture data. The clip renderer roams through each of the
clip levels individually to provide interactive visualization. These mipmap levels are
stored on the disk so that they can be paged in by the clip texture through a data-load
callback and then rendered by the clip render action. Hence, before creating the clip
texture, the original texture data needs to be preprocessed to compute these mipmap
levels. At run time, the clip texture invokes a previously provided data-load callback to
load texture bricks from disk. It is essential to understand the clip texture mechanism to
be able to create your own clip texture levels.

The preprocessing step involves filtering and decimation of the input texture data to
compute the clip levels, which are compressed representations of the data. In this
process, the filtering step is applied to retain valuable features in the dataset that might
be lost during decimation. Figure 5-6 illustrates the preprocessing.

Figure 5-6 Preprocess Texture Data

The preceding process is repeated for each clip level that needs to be computed.

Number of Clip Levels

In this discussion, we assume that the level 0 corresponds to the original (highest)
resolution texture data. Currently, vzParameterClipTexture assumes a decimation factor
of 2 x 2 x 2. Hence, each of the clip levels has data dimensions that are half in size of the
next higher resolution level. Let X, Y, and Z denote the texture dimensions of the original
texture. Figure 5-7 illustrates the data decimation.

Load input
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Figure 5-7 Data Decimation

Chapter 4, “Texture Mapping Render Action” describes the bricking of textures and the
need to have a one-voxel overlap among adjacent bricks. The clip texture class handles
the bricking of texture data internally, but the application has to ensure that it has taken
the one-voxel overlap into consideration to compute the appropriate number of clip
levels for the hierarchy.

To compute the correct number of clip levels, given the data dimension of the input data
and the texture brick dimensions used for bricking the data, you must determine the
following:

• The number of bricks along each dimension

Bricks = Data Dimensions / (Brick Dimensions – 1)

• The number of levels

Clip Levels = log2(max (bricksx, bricksy, bricksz)) + 1

For example, using a brick size of 1283 on a dataset with dimensions of 10243 results in
the following:

Bricks = ceil ( 1024 / (128 – 1) ) = 9

Clip Levels = ceil ( log2(9) ) + 1 = 5

The lowest resolution level in the hierarchy contains only one texture brick. Hence, using
a brick size of 128 x 128 x 128 would generate five clip levels with the following data
dimensions:

1024 x 1024 x 1024

512 x 512 x 512

Level n-1

Level 0X Y Z

Level 1X/2 Y/2 Z/2

Level 2X/4 Y/4 Z/4
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256 x 256 x 256

128 x 128 x 128

64 x 64 x 64

Writing Clip Levels for Optimal Disk Paging

Taking advantage of the fact that clip textures always load in bricks of constant sizes, the
application can optimize the disk-to-memory transfer rate by computing the clip level
files appropriately. The clip files can be stored using a scheme in which the data for the
appropriate bricks is stored contiguously to account for a one-voxel overlap among
adjacent bricks. This technique is used by the RoamLoader example loaders provided in
/usr/share/Volumizer2/src/lib/loaders.

 The following pseudocode reorganizes an ordinary data file into such a bricked file:

for texture bricks index = 0 to numBricks - 1 {
    offset = index * (brickSize - 1)
    loadBrickDataFromFile(offset, brickSize, brickDataBuffer)
    writeBrickDataToFile(index, brickDataBuffer)
}

The writeBrickDataToFile() function writes the brick data to a file using contiguous
bricks. Hence, while loading this file, the loader needs to perform only one seek-and-read
per brick to load the data.

Data Filtering

The clip generator reads the volume data at a given clip level, computes the appropriate
input and output parameters, filters, and then decimates the data to generate the
following clip level in the hierarchy. To compute clip level n, a clip-generating
application may choose to use clip level n–1 as the input texture. The exception to this
rule is that an application should only brick and potentially filter clip level 0, but it
should not be decimated, unless required by the application.

Users must be aware of available computational and memory resources and of
application-specific requirements, such as specific filters, when implementing the
filtering and decimation portions of a clip-generating utility in light of the data sizes
involved when designing for the large-data API.

In general, you have two choices for implementing a 3D filtering routine. For example,
you may choose to implement spatial filtering using convolution in three dimensions.
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The second choice is to use a frequency-filtering method, which requires that the volume
data, as well as the filter, be Fourier-transformed into frequency space, multiplied, and
inverse-transformed to spatial coordinates. The desired method depends on the
following:

• Number of available CPUs

• Characteristics of the filtering method to be implemented

• Availability of high-performing mathematical libraries for optimal, multithreaded
or parallelizable computation

• Amount of memory resources available

The README file in that directory provides instructions on how to generate your clip
levels. This utility generates a ClipData.ct file and a series of clip level files based on
the size of the original datasets and the user-specified brick dimensions. The
ClipData.ct file indicates the location of the source texture, its format, brick
dimensions, the clip level formats, and the names of the clip level files. The text format
of the ClipData.ct configuration file is the following:

Brick dimensions - dimx dimy dimz

Original volume - <file format>
<outFileName>0
Clip volumes - <file format>
<outFileName>1
<outFileName>2
.....
<outFileName>n – 1

Each clip level file contains a filtered and decimated copy of the texture. In ClipGen3d,
the filter implementation is through basic 3D convolution, assuming non-separable,
odd-sized kernels. For voxels not covered by the filter support, such as edges, the
convolution copies the corresponding voxels within the original dataset. Decimation
takes a step in each of X, Y, and Z and subsamples the already filtered volume by the
corresponding factor.

The file format for filters for this first release of ClipGen3d is a text file where the first
three entries denote the dimensions of the filter kernel in three dimensions, followed by
the filter taps or coefficients, as shown in the following:

dimx dimy dimz

k0 ... (kx*ky*kz - 1)
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The dimi values are the dimensions of the filter kernel along the respective directions. The
ki values are the corresponding filter components or taps. The utility ClipGen3d does
not assume that filters are normalized; so, it will normalize it if necessary upon reading
the coefficients.

Clip Texture Visualization

A clip texture visualization architecture can be structured into the following separate
threads that run at different rates, each depending on the resources available to the
thread:

• An application thread that manages user interaction, including the
center-of-interest region and the roaming window

• A clip texture loader that manages the physical memory window

• A clip texture renderer that manages and renders the texture memory window (a
subset of the physical-memory window) and supports geometry and view frustum
culling

Depending on the user interaction, the volume data is loaded from the storage device
into memory in a predictive way. The view dependency affects the functions of the loader
and the renderer in that it affects visibility windows, data loading, culling, and
rendering.

The clip texture loader uses a visibility window, a cache cuboid from the clip texture
class, and a second cache cuboid from the clip rendering class, representing the contents
of main memory and texture memory. The clip texture loader uses that information to
manage volume data in main memory. As needed by the application and based on the
user’s view, the loader asynchronously loads additional data from disk when the main
memory cuboid moves. The computation of the visibility windows is based on the
movement the user gives from mouse and button events.

The clip texture uses texture bricks of constant size for efficiency, as explained in
Chapter 4, “Texture Mapping Render Action”. The data-load callback provided to the
clip texture is invoked to load bricks of this size only. Different bricks are loaded by
modifying the offset and clip level parameters in the loader callback. The application
should be able to properly load boundary bricks by appropriately padding the bricks to
the requested brick dimensions.
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For example, in the preceding example, in order to load a boundary brick along the X
dimension, the clip texture might invoke the following:

int off[3] = {1016, 0, 0};
int level = 0;
int dims[3] = {128, 128, 128};
void *data = malloc(texelSize * 128 * 128 * 128);
(*loadDataCB)(off, level, dims, data, userData);

In this case, the brick to be loaded exceeds the data dimensions of clip level 0. The
callback loadDataCB should be able to handle this case properly by loading the correct
dataset into a temporary buffer of brick dimensions (8, 128, 128) and then copying it
appropriately to the given brick data buffer.

Before rendering a particular brick, the renderer checks for its availability in main
memory. As illustrated in Figure 5-8, the culler extracts boxes from the data
representation according to the field of view, the position of the user, and the culler’s
direction inside the texture memory cuboid. This functionality also selects the level of
detail needed from back to front of the volume. The optimizer selects the resolution level
according to the presence of volume data in buffer memory and maintains bricks in
texture memory. In addition, it produces a list of bricks to reside in texture memory as
bricks to be rendered.
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Figure 5-8 Rendering a Scene

As soon as the culler retrieves cuboids for rendering a new frame, the loader starts
reading additional volume data blocks on disks. The renderer thread polls for the
presence of data and determines whether to render the shape inside the cull space. Once
all the shapes in the culling frustum have their data loaded in main memory and then in
texture memory, they are rendered.

Mapping the preceding description to the clip texture API, a basic clip texture viewing
application must do the following:

1. Initialize the vzParameterClipTexture class.

2. Attach a parameter volume to the appearance.

3. Use vzClipRenderAction to render the clip texture.

Whole data

Main memory data

+ Main mem center

Tex memory data

+ Tex center

+ Frustrum center
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Chapter 6

6. Advanced Topics

This chapter consists of the following topics:

• “Integration with Other Toolkits”

• “Using Multiple Graphics Pipes”

Integration with Other Toolkits

OpenGL Volumizer is an API designed to handle the volume rendering aspect of an
application. You can use other toolkits, such as OpenGL Performer and Open Inventor,
to structure the other elements of your application. The API allows seamless integration
with other scene graph APIs because the shape node can be used as the leaf nodes of such
scene graphs. Figure 6-1 illustrates a hypothetical scene graph that contains polygonal
data mixed with volumetric data. In this case, the shape nodes are used to represent the
volumetric components of the scene while the Poly node is used to represent the
polygonal geometry.
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Figure 6-1 A Complex Scene Graph

Mixing geometric objects with volume-rendered data is a useful technique for many
applications. For opaque objects, the geometry is rendered first using depth buffering
and then the volume data is rendered with depth testing enabled. When using APIs such
as OpenGL Performer, the scene graph traversal should be done in the appropriate order
to ensure correct alpha compositing. The application can ensure this by “marking” the
volumetric nodes as transparent so that the scene traverser renders it after the opaque
geometry. In the case of OpenGL Performer, this can be accomplished by creating the
appropriate pfGeoState and attaching it to the volume node. Figure 6-2 shows a
volumetric data set rendered along with opaque geometry using the preceding
technique.

Root node

Hybrid nodeShape 1

Poly nodeVolume node

Shape 2Shape 2
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Integration with Other Toolkits
Figure 6-2 Volume and Opaque Geometry Integrated in a Single Scene

The design of OpenGL Volumizer permits integration with visualization toolkits as well.
To demonstrate this aspect of that design, OpenGL Volumizer provides a new volume
rendering method for the Visualization Toolkit (VTK) using 3D textures and based on the
OpenGL Volumizer API. VTK is open source, free software for imaging and
visualization. VTK supports a number of visualization algorithms including scalar,
vector, tensor, texture, and volumetric methods. Its volume rendering method is an
implementation of ray casting and 2D texture-based rendering.

In the directory /usr/share/Volumizer2/src, the VTK example shows how to add
3D texture-based volume rendering to VTK, encapsulated in a class that provides all the
necessary steps to support 3D texture-based volume rendering. The joint
implementation (OpenGL Volumizer coupled with VTK ) consists primarily of an
OpenGL, 3D, texture-based mapper class. This class initializes the necessary
OpenGL Volumizer volume parameters (such as shape and appearance), creates the
geometry, creates an appropriate shader, and manages the shape. The new class,
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vtkOpenGLVolumeTextureMapper3D, takes as input a vtkVolume and creates an
equivalent vzShape node. Then the virtual renderer method uses TMRenderAction to
draw the shape node.

Using Multiple Graphics Pipes

Thread safety allows applications the ability to run on large platforms for large
immersive displays or to scale the graphics performance and resource use by sharing the
scene graph among multiple rendering threads/processes. Typically used with
OpenGL Multipipe SDK, the applications will be scalable and able to run in a Reality
Center environment. Applications can scale the rendering performance of the system by
compositing the intermediate results from different pipes to get the final image.
Figure 6-3 shows n pipes rendering the same scene using one thread/process per pipe.

Figure 6-3 Multipipe Architecture

Rendering performance can be scaled using multiple compositing schemes. Figure 6-4
shows an example of DPLEX decomposition, where consecutive frames are rendered
over different pipes. This example shows a sequence of frames as the user modifies the
transfer function for this seismic data set. The even frames are rendered on pipe 1 (red)
and the odd frames on pipe 2 (blue), respectively. This technique effectively doubles the
frame rate with minimal application effort.

Pipe 2Pipe 1 Pipe n

Scene
graph

...

drawdrawdraw
94 007-4389-005



Using Multiple Graphics Pipes
Figure 6-4 DPLEX Decomposition

Figure 6-5 illustrates database (DB) decomposition using OpenGL Volumizer and
OpenGL Multipipe SDK. The application partitions the volume data into four separate
bricks. Each of these bricks are rendered on four different pipes to generate partial
images. These images are then composited and displayed on the destination channel
(which is also a source in this case) to give the final image.

DB decomposition allows applications to linearly scale the texture memory size and fill
rate performance with the number of graphics pipes on the system.
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Figure 6-5 DB Decomposition
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Chapter 7

7. Volumizer File Loader

This chapter consists of the following topics:

• “Volumizer Shape Loader” on page 97

• “Simple Code Example” on page 98

• “Related Classes” on page 99

• “XML File format” on page 100

Volumizer Shape Loader

Volumizer based applications have the option of creating volumetric shapes using
different components. These components form the descriptive part of the Volumizer API.
The Volumizer file loader provides an easy to use interface for creating and modifying
volumetric shapes using a shape description file. This interface allows applications to
modify the shape nodes at run-time using a simple XML based text file. This prevents
application writers from having to modify the application for every such change.

The file format greatly reduces the effort involved in plugging Volumizer nodes in
existing applications. These applications might be based on other toolkits like Open
Inventor or OpenGL Performer. These scene graphs treat the volumetric nodes as leaf
nodes (see Chapter 6, “Advanced Topics”) and usually do not need to have any
knowledge of the contents of these nodes. With the new interface, the leaf nodes can be
modified simply by changing the node description (XML based text) file, which gets
loaded at run time by the application. Additionally, the interface supports using plug-in
modules to allow application defined loaders for loading different components in the
data description hierarchy.

The file format supports loading of multiple Volumizer shapes into a collection of shapes
(see “Shape Set Class” on page 99). This collection of shapes can then be rendered using
the vzClipRenderAction (see following sections).
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Simple Code Example

See /usr/share/Volumizer2/src/apps/simple/clipRenderAction/
viewer.cxx for a minimal GLUT based application which uses the new file interface to
load and render Volumizer based shape nodes. The application is a slightly modified
version of the example program used in Chapter 2, “Getting Started” and uses the file
loader interface instead. The code can be compiled using the following commands:

% CC -c viewer.cxx
% CC -o viewer viewer.o -lvz -lvzxml -lglut -lGL -lGLU -lXm -lXt -lX11
-lm -lXmu

Note: The application needs to link against libvzxml, which provides the XML loader
for the shape set. The libvzxml library uses the Xerces XML Parser from Apache for
parsing and validating the XML file

The following are the two main components that change:

1. Load a shape set. The following code snippet loads a shape set and prints some
debug information about the shape set.

vzShapeSet *shapeSet = vzShapeSet::load(filename);
if(!shapeSet) {

cerr<<"Error loading shape set from "<<filename<<endl;
} else {

cerr<<"Shape set has "<<shapeSet->getNumShapes()<<" shapes"<endl;
}

2. Render the shape set. The following code snippet demonstrates how to use the
vzClipRenderAction to render a shape set. It uses the draw(vzShapeSet *)
method, which performs the management, sorting and rendering of the shapes in
the shape set.

vzClipRenderAction *renderAction = new vzClipRenderAction();
renderAction->draw(shapeSet);
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Related Classes

Shape Set Class

The vzShapeSet class is a collection of vzShape’s and can be loaded directly using the
factory vzShapeSet::load(). The load method accepts the file name for the XML file,
parses and validates the file and then creates and returns the appropriate shape set. If the
file format is invalid or if an error occurred while loading the file, the method returns
NULL.

In addition to the file loader, shape set provides utility routines for querying the
bounding box of the collection of shapes and sorting the shape set in a back-to-front
visibility sorted order. Other routines are provided to add, remove and get individual
shapes in the set. This allows applications to create/modify a shape set using a
programic interface.

Clip Render Action Interface

The Clip render action (see Chapter 5, “The Large-Data API: 3D Clip Textures”) is part of
the Large Data API and can be used to render shape sets directly. The shape set can be
rendered either using the draw(vzShapeSet *) method (as in the above example), or
using the regular manage, unmanage, and draw interface provided by the render action.
In the former case, all the shape management, sorting and rendering of the shapes in the
set is handled by the render action. This scheme allows rendering of shapes with simple
volume textures and those with clip-textures in a unified manner using the same render
action. The clip render action first allocates the resources required for rendering volume
textures and then uses the remaining to render any clip-textures in the shape set.

Graphics State Class

A shape set is associated with its own graphics state, which is useful for controlling
dynamic rendering parameters for the set. This encapsulation is provided by the
vzGraphicsState class, which is used by applications to pass the necessary viewing
and other graphics state related information to the shape set. For example, the graphics
state associated with avzShapeSet is used by thevzParameterClipTexture’s in the
set to update their center of interests when the view direction changes.
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The following code shows how to update the modelview matrix for the graphics state by
querying the current matrix from OpenGL:

GLdouble modelview[16];
glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
shapeSet->getGraphicsState()->setModelviewMatrix(modelview);

The above needs to be called by the application to notify the shape set of changes to the
viewing parameters when relevant. For example, if the viewing direction changes and
the render action is using the multi-resolution mode, the above should be called.

XML File format

The file format mimics the Volumizer shape description hierarchy using XML tags. The
file loader uses appropriate default values for unspecified components in the file. See the
vzxml.dtd file for the complete grammar of the file format in
/usr/share/Volumizer2/data/XML/ directory. This directory also contains other
files that can help you get started. The XMLViewer application installed in
/usr/share/Volumizer2/src/apps/XMLViewer loads and renders the sample
Volumizer XML data files installed in /usr/share/Volumizer2/data/XML.

Simple Shape Example

The following file is used to represent a shape with an appearance containing a single
volume texture parameter, specified using a 3D tiff file. In the following example, a
vzBlockwill be used as the default geometry and a vzTMSimpleShader as the default
shader.

<?xml version="1.0"?>
<!-- DTD file for the XML file format -->
<!DOCTYPE vzShapeSet SYSTEM "vzxml.dtd">
<vzShapeSet>

<vzShape>
<!-- Appearance -->
<vzAppearance>

<!-- Parameter: name - ’volume’, type -
vzParameterVolumeTexture -->
<vzParameterVolumeTexture name="volume">
<filename>/usr/share/Volumizer2/data/medical/Phantom/CT.He
ad.char.tif</filename>
</vzParameterVolumeTexture>
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XML File format
</vzAppearance>
</vzShape>

</vzShapeSet>

Adding Shaders and Parameters

The above file can be modified to define more complex shape sets containing multiple
shapes, more sophisticated shaders and parameters, etc. Augmenting the appearance
description in the above to add a new shader and the required parameters allows
rendering the same shape with a volumetric lighting shader applied to it.

<!-- Tangent space shader -->
<vzTMTangentSpaceShader/>

<!-- Param: name - ’lookup_table’, type - vzParameterLookupTable -->
<vzParameterLookupTable name="lookup_table"/>

<!-- Parameter: name - ’lightdir’, type - vzParameterVec3f -->
<vzParameterVec3f name="lightdir"/>

Modifying Geometry

The following example defines a new block geometry that is scaled to a range of (-1, -1,
-1) - (1, 1, 1).

<!-- Geometry -->
<vzBlock>

<offsets>-1 -1 -1</offsets>
<dimensions>2 2 2</dimensions>

</vzBlock>

In order to match the above geometry, the geometry ROI for the texture can also be
updated to the following:

<vzParameterVolumeTexture name="volume">
<filename>/usr/share/Volumizer2/data/medical/Phantom/CT.Head.char.ti
f</filename>
<geometryROI>-1 -1 -1 1 1 1</geometryROI>

</vzParameterVolumeTexture>
007-4389-005 101



7: Volumizer File Loader
Using Plug-in Modules

As can be seen from the above, the file loader supports loading of data files in only certain
formats. The loader however allows using built-in as well as application provided data
loaders using plug-ins. For example, the following example loads a volume texture
provided in raw binary format using a built-in module:

<vzParameterVolumeTexture name="volume">
<filename>/usr/share/Volumizer2/data/misc/bonsai.tif</filename>
<!-- Built-in Module named "bin" -->
<module name="bin">

<!-- User string for passing additional info to the loader -->
<!-- Header size, data dimensions, data format, data type -->
<userString>0 64 64 64 luminance ubyte</userString>

</module>
</vzParameterVolumeTexture>

The following example shows how to use an application provided plug-in module to
load a polygonal geometry from the data file using the appropriate DSO.

<!-- Polygonal Geometry -->
<vzPolyGeometry>

<!-- Geometry data file name -->
<filename>/usr/share/Volumizer2/data/polygonal/knot.sgo</filename>
<module>

<!-- Module DSO’s file name -->
<filename>/usr/share/Volumizer2/lib/libvzLoaders.so</filename>

</module>
</vzPolyGeometry>

The module is responsible for implementing the loader callback routine with the name
createObjectClassName, where the ObjectClassName is the name of the class without the
vz prefix. The callback is defined as the following:

typedef vzObject * (*vzObjectLoaderCB)(const char *filename, const char
*userString);

For the above example, the callback routine might look like the following:

extern "C" vzObject *createPolyGeometry(const char *filename,
const char *userString)
{

vzPolyGeometry *geom = SimplePolyGeometry::open(filename);
if(!geom) {
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cerr<<"Could not open file "<<filename<<" for
vzPolyGeometry"<<endl;
return NULL;

}
return (vzObject *)geom;

}
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