
The Mandate of Application Compatibility in SGI IRIX 6.5

Abstract

In May 1998, SGI released IRIX 6.5, its UNIX-based operating system. Each quarter SGI
releases a new minor version, IRIX 6.5.X. These quarterly releases are rigorously tested to
ensure reliability and strict compatibility both up and down the release stream. The IRIX
6.5 release stream design allows applications to run correctly on any version of IRIX 6.5,
regardless of the version on which the application was developed and tested.

This white paper describes the application compatibility protections offered by IRIX 6.5.
These protective attributes represent investment protection for customers and application
providers. Because of them, a customer can upgrade to any release of the IRIX 6.5 release
stream and be confident that its applications will continue to work properly. Likewise, an
application provider can develop its products on any release and easily support those
products across its entire customer base. The customer can be running any version within
the IRIX 6.5 release stream.

This paper begins with a general introduction to application compatibility issues and then
addresses in depth the IRIX 6.5 application compatibility and quality assurance efforts. A
detailed reference section closes this paper.

Introduction

Applications do not exist in a vacuum. An application provider typically develops an
application on a particular computer system running a particular operating system.
However, the user usually runs that application on a diverse array of computer systems
that are usually running different versions of the operating system than that on which the
application was developed.

What allows this to work is system and software “compatibility.” That is, the computer
system on which the application was developed and the one on which it is run are
“compatible” with respect to applications. Generally, operating systems from different
manufacturers are incompatible with one another. Indeed, sometimes computer systems
from the same manufacturer may be incompatible. (This latter situation usually occurs
only during major product transition periods.)

The job of an application provider is to create an application that solves a particular
problem for users. However, supporting an application on each “compatible platform”
007-4405-001 1



requires the application provider to invest considerable time and effort. Ideally, the
provider wants to reach the greatest number of users while supporting the fewest number
of platforms.

The typical computer system manufacturer recognizes this “market share” problem and
generally strives to maintain compatibility across both its product lines and multiple
releases of its operating system software. This effort is in its own best interest as every
change that results in incompatibility will produce, at minimum, a temporary but costly
lack of application coverage, as the application providers struggle to resolve the
incompatibility.

Factors That Govern Application Compatibility

There are several, mostly orthogonal, compatibility issues that affect applications, as
follows:

• Compatibility of syntax, semantics, and binary interfaces of all bundled APIs and
their associated data structures

An application programming interface (API) is used by an application to request
services from the underlying operating system and supporting libraries. Issues
include the names and locations of header files, the names and existence of symbols
and interfaces, the number, order, and data type of interface parameters, the return
value types of functions, and all of the subtle defined semantics of interfaces and
global symbols.

For example, if one manufacturer provides a service entry point named “foo” that
requires four input parameters, and another manufacturer supplies a version of “foo”
that requires five input parameters, these definitions of “foo” are incompatible.

• Application executable file format compatibility

The file format in which an application is stored is generally a binary format that the
operating system recognizes as an “executable image.”

• Operating system and library ABI compatibility

This concerns the application binary interfaces (ABIs) and conventions used within an
application, the supporting operating system software, the CPU registers used to pass
input parameters and return results, the exact binary format of various fundamental
data structures, and so on.

• CPU ISA standards and compatibility

This concerns the Instruction Set Architecture (ISA) standards that the CPU
recognizes, and their exact semantics.
2 007-4405-001



• Dependencies on special hardware and its capabilities

This involves the features supported by particular hardware devices and their
software drivers. An application may depend on hardware functionality available
only on a specific system or optional product, such as a digital video card. Other
examples include the necessity of ccNUMA hardware, graphics-adapter-specific
OpenGL extensions, and so on.

Often these dependencies can be detected at run-time. A well-written application tests
for the presence of special hardware and capabilities and either changes its behavior,
degrades, or fails gracefully.

If the executable object file format, the ABI, or the ISA differs between one computer or
operating system and another, an application will need to be recompiled in order to be
compatible with the other system. If the API changes, portions of the application will need
to be rewritten in order to accommodate the changes. Thus, changes to APIs are especially
unpleasant. If special hardware is used with different capabilities, fairly extensive changes
to the application will be necessary.

A prudent computer system manufacturer is extremely cautious when changing any of the
foregoing because of the potential impact to the availability of applications for the new
system. This is so important that most manufacturers bend over backward to seamlessly
support as many old interfaces as possible and consistently choose to add new
functionality rather than change old functionality. This is known as “backward
compatibility,” which means that the newer operating system release is “backward
compatible” with applications developed on older releases.

However, adding new functionality while leaving old functionality intact also has its
downside. For example, an application developed on a new system may not run on an
older system. This factor often causes an application provider to develop its products on
the “lowest common denominator” of a computer system manufacturer’s product line.
That is, if a manufacturer is currently supporting three different “backward compatible”
versions of its products, an application provider may develop its application on the oldest
version in order to offer that application across the entire line of the three supported
systems.

One method of tackling this lowest common denominator problem is to ensure that
applications developed on newer releases of an operating system can also run on older
releases. This is referred to as “forward compatibility,” which means that the older
operating system releases are “forward compatible” with applications developed on newer
releases. This requires that all of the issues concerning application compatibility be
carefully monitored and tested as new operating system releases are developed in order to
ensure that no change will result in an incompatibility with the older releases. This also
requires that any new operating system interfaces be added in a controlled manner in order
to allow applications using these new interfaces to recover gracefully when they are run on
older releases without them.

Because API differences are so problematic, international standards for APIs have been
developed to govern many of the interfaces that applications use. Most mainstream
computer system manufacturers have adopted these standards. Examples of these
standards include ANSI C, POSIX, X/Open, the X Window System, and so on. They govern
API compatibility issues regarding language, operating system, libraries, and so on.
007-4405-001 3



Application Dependencies That Affect Compatibility

Other issues, beyond those listed previously, can affect the ability of an application to run
correctly—even on computer systems that offer otherwise compatible interfaces, facilities,
and features. These issues include the following:

• Dependencies on undocumented features or even operating system bugs. A
“conforming” application adheres to the documented interfaces and their rules.

• Dependencies on operating system bug fixes that are available only in newer
operating system releases. An application provider usually tests its applications on
that set of operating system releases on which it is willing to support its customers.
Operating system vendors like SGI expend great efforts to ensure that each release
fixes problems identified by customers but that the release does not, itself, introduce
new problems.

• Dependencies on certain system capacities (e.g., amount of memory), system features
(e.g., system page size), or system tuning parameters (e.g., maximum number of
allowed processes). It is the responsibility of the application provider to document all
such dependencies.

• Bugs within the application itself that become apparent only when run on certain
types of systems (e.g., timing dependencies, or bugs within a multi-threaded
application that appear only on multi-processor systems). It is the responsibility of the
application provider to understand its application, identify those areas in which bugs
might be found, and design appropriate testing to cover these areas.

All of these issues usually require the application provider to conduct tests on diverse
computer systems and operating system releases in order to offer support for its
applications on those systems and releases.

This ongoing testing burden is minimized by writing applications that adhere to the
documented interfaces and their usage rules, designing good application tests to cover
likely problem areas, and documenting all system dependencies. Such properly written
and tested applications are referred to as “conforming applications.” A conforming
application achieves the greatest level of compatibility. (The testing burden is also
minimized if the operating system vendor uses a well-designed release model that avoids
interface incompatibilities and focuses on producing a stream of reliable, regression-free
releases.)

IRIX 6.5 Application Compatibility Design

As have many computer system manufacturers, SGI has introduced new compatibility
standards for its computer systems and IRIX. Some of these standards were driven by the
need for functionality and performance and some were driven by the need to comply with
international standards.

In almost all cases, these changes involved carefully adding new functionality while
continuing to support legacy interfaces. That is, applications developed on older versions
of IRIX continued to run correctly on newer versions of IRIX. Still, these changes were
problematic because application providers needed to develop on the lowest common
denominator.
4 007-4405-001



With the release of IRIX 6.5 in May 1998, SGI established a new compatibility standard,
again backward compatible with applications developed on older versions of IRIX.
However, unlike older versions of IRIX, IRIX 6.5 established a new mechanism for
releasing new versions of IRIX 6.5 that offers application compatibility across all releases
of IRIX 6.5 and the computer systems supported by IRIX 6.5. This compatibility design and
the new release mechanism were driven by the following application provider and
customer principles:

• New features, new computer systems, performance enhancements, and bug fixes are
good.

• Compatibility changes of any kind are bad.

• Reliability problems of any kind are bad.

Specifically, the IRIX 6.5 release stream offers application providers three release
assurances: constant and extensive product improvements, assurance of compatibility, and
assurance of reliability. These assurances are discussed in the following sections:

• Constant and extensive product improvements

Each release of IRIX 6.5.X includes support for new customer-requested features, new
hardware, performance enhancements, and bug fixes. All of this work is performed
under the overriding mandates of compatibility and reliability. All changes are
reviewed and carefully tested before being integrated into the IRIX 6.5 release stream.
Each release of IRIX 6.5.X includes a document entitled Start Here, which includes a
complete list of all the major work in that release.

• Assurance of compatibility

The IRIX 6.5 release series is, and always will be, an “all platforms” release. That is,
each release of IRIX 6.5.X contains support for all the system platforms supported by
IRIX 6.5 and any new system platforms introduced during the intervening time. As
new IRIX/MIPS system platforms are released, each is smoothly integrated into the
IRIX 6.5.X release series. There are no “special” versions of IRIX for new system
platforms. Good examples of this are the releases of the SGI Origin 3000 series and the
SGI Onyx 3000 series in IRIX 6.5.9.

The IRIX 6.5 release series offers binary compatibility up and down the release stream,
across the maintenance and feature branches of the release stream, and across all
systems. That is, a conforming application may be compiled on any version of IRIX
6.5.X, on either the maintenance or feature branch, and on any system. The resulting
application binary will then run on any other version of IRIX 6.5.X, on either the
maintenance or feature branch, and on any other system.

The following two sections discuss two circumstances under which this obviously
cannot hold true: if special hardware is needed, and if new interfaces, introduced after
the base release, are used.

If special hardware is needed. As noted previously, if an application depends on
particular hardware features, it must be run on systems with that hardware. There are
two special cases of hardware dependencies:

• Because of hardware limitations, some of the desktop workstations supported by
IRIX 6.5 cannot run 64-bit applications. These are the Indigo, Indy,
Indigo2/R4000/R5000, and O2.
007-4405-001 5



• Some older legacy systems supported by IRIX 6.5 use MIPS R4000-based CPUs
that can only execute instructions from the MIPS III ISA. Most systems supported
by IRIX 6.5 contain CPUs that conform to the MIPS IV ISA, which is a strict
superset of the MIPS III ISA. Attempts to execute new CPU instructions
introduced in the MIPS IV ISA on systems with R4000-based CPUs will result in
the application aborting with a reserved instruction fault. These legacy MIPS III
ISA systems are the Challenge/R4000, Indigo, Indy/R4000 and Indigo2/R4000.

If new interfaces, introduced after the base release, are used. If an application makes
use of a new, customer-requested software feature introduced after the base IRIX 6.5
release, that application must be run on a version of IRIX 6.5.X that offers that feature.
However, SGI has provided application providers with simple methods to work
around even this kind of problem via the “optional interface facility.” This allows an
application to test for the presence of an interface and either degrade or exit gracefully
if the interface is not present on the currently installed release of IRIX 6.5.X. For
example, an application that makes use of the new job limits features introduced in
IRIX 6.5.7f may contain code like the following. For more information on this facility,
see the online man page optionalsym(1).

if (_MIPS_SYMBOL_PRESENT(getjid) == 0) {
    fprintf(stderr,
             “This application uses Job Limits facilities and thus\n “
             “can only be run under IRIX 6.5.7f or later.
            Sorry.\n “);
    exit(EXIT_FAILURE);
}

If an application makes use of a new dynamic shared library (DSO), it must be run on
a version of IRIX 6.5.X with that DSO. In this case, run-time checks are often difficult
to arrange in the application itself because the dynamic run-time linker (rld) detects
the missing DSO before the application main line code is executed. Approaches to this
problem include the following:

• Using application installation packaging that allows the application to be
installed only on compatible systems.

• Using execution scripts that check for a compatible installed IRIX 6.5.X release.

• Using delay-loaded DSOs.

• Assurance of reliability

With the IRIX 6.5 release series, SGI is committed to the policy of “no regressions.”
This is obviously a very difficult task, given that IRIX 6.5 supports a wide-ranging set
of features and hardware. Nonetheless, it is our top priority.

To help ensure that this goal is reached, extensive code reviews and testing occur
throughout the development process. In particular, we run each IRIX 6.5.X release on
our own internal production machines before shipping the release to customers. This
practice has become known as “eating our own cooking before we serve it to our
customers.” The quarterly release process also provides the flexibility of waiting until
changes and new features are ready before including them in the release stream.

Of course, even with all this testing and the use of the releases on our own
mission-critical servers, a very small number of regressions have slipped through
during the years. Our commitment is to fix these immediately and provide these fixes
in a timely manner.
6 007-4405-001



The result of this compatibility design is that an application provider may develop and test
an application against any release of IRIX 6.5.X without worrying about whether the
resulting product will work on another version of IRIX 6.5.X or another system. It will
work.

Note: For IRIX 6.5 kernel components, there is a similar compatibility design. The only
difference is that backward compatibility alone is mandated. That is, if a kernel
component is developed and tested against IRIX 6.5.X, that kernel component
binary will work correctly on any release of IRIX 6.5.X that is the same or newer
than the release on which the kernel component was developed. The reason for
this restriction is that it is impossible to verify that a kernel component does not
depend on some kernel facility that may not be present in an older release. As with
applications, it is important that kernel components use only documented
interfaces and their documented semantics.

Fundamentally, our goal is to make the decision of whether to upgrade to the newest
release of IRIX 6.5 a completely surprise-free “no brainer.” Our philosophy is that an
operating system upgrade should be boring. We have proudly maintained this standard of
compatibility and reliability since the original release of IRIX 6.5 in May 1998, and we look
forward to maintaining this standard for many years.

Detailed Reference on IRIX 6.5 Compatibility Issues

IRIX 6.5 compatibility issues are explained in detail in the following sections:

• API compatibility in IRIX 6.5.

• Application executable file formats supported by IRIX 6.5.

• ABIs supported by IRIX 6.5.

• ISAs supported by IRIX 6.5.

API compatibility in IRIX 6.5

The IRIX 6.5 release series offers binary and API compatibility forward, backward, between
the maintenance and feature branches of the release stream, and across all systems. That is,
a conforming application may be developed on any version of IRIX 6.5.X, on either the
maintenance or feature branch, and on any system. The resulting application will run on
any other version of IRIX 6.5.X, on either the maintenance or feature branch, and on any
system.

Some new customer-requested interfaces have been added to IRIX 6.5 across the various
releases. IRIX 6.5 provides an “optional interface” facility, _MIPS_SYMBOL_PRESENT(),
which allows an application to determine if a new interface is available on the currently
running system. If not, the facility allows the application to either provide degraded
functionality or exit gracefully.

IRIX 6.5 is compliant with a number of international API standards, including ANSI C,
POSIX 1003.4, and X/Open 1995.
007-4405-001 7



Application executable file formats supported by IRIX 6.5

IRIX 6.5 supports ELF (Executable and Linking Format), a standard executable and object
file format used by most UNIX-based and UNIX-like operating systems. Support for the
older COFF (Common Object File Format) was dropped in IRIX 6.2.

ABIs supported by IRIX 6.5

IRIX 6.5 supports two ABIs under active development and one older legacy ABI that is
maintained for compatibility with legacy applications, as follows:

• 32. The “old 32-bit” ABI (sometimes referred to as “O32”) was the original 32-bit ABI
introduced when the first MIPS CPUs were developed. The O32 ABI supports only
the MIPS I and MIPS II ISAs. The O32 ABI is supported for legacy application
binaries.

• N32. The “new 32-bit” ABI was released in July 1995 in conjunction with the release of
IRIX 6.1. The N32 ABI was developed to address several shortcomings in the
performance of the O32 ABI and also to accommodate the larger CPU register sets of
the MIPS III ISA. N32 is the ABI of choice for applications that do not need large
virtual address spaces.

• 64. The “64-bit” ABI (sometimes referred to as “N64”) was released in August 1994 in
conjunction with the release of IRIX 6.0, the first 64-bit IRIX operating system. The
64-bit ABI was developed to enable applications to use virtual address spaces larger
than two gigabytes (232). The 64-bit ABI is identical to the N32 ABI in register-calling
conventions and other ABI issues, except that “long” integers and pointers are 64 bits
in length. (In the N32 ABI, these are 32 bits in length.) This promotion of the “long”
integer and pointer types to 64 bits is often referred to as the LP64 model.

All of the ABIs offer a common API. Thus, it is usually a simple matter of recompilation to
convert a correctly written application to use a different ABI. The compilers for the N32 and
64-bit ABIs are more stringent with regard to programming language standards and code
consistency. This may result in some compiler warnings and errors when compiling an
application that was formerly compiled for the O32 ABI. If an application contains coding
errors, such as an assumption that integers and pointers are the same size, then work is
required to make the application “64-bit clean.” The N32 and N64 compilers issue
diagnostics to search for such coding errors.

All computer systems supported by IRIX 6.5 support the 32-bit ABIs, and most also
support the 64-bit ABI. Some of the desktop workstations supported by IRIX 6.5 cannot run
64-bit applications because of hardware limitations. These are the Indigo, Indy,
Indigo2/R4000/R5000, and O2. All future IRIX/MIPS desktop and server system products
will support 64-bit applications.

For more detailed information on these ABIs, see the online man page ABI(5).
8 007-4405-001



ISAs supported by IRIX 6.5

IRIX 6.5 supports four MIPS ISAs: MIPS I, II, III, and IV. Each MIPS ISA is a strict superset
of the preceding MIPS ISAs. The MIPS III ISA was released in conjunction with the release
of the R4000 CPU family from MIPS Technologies, Inc., in 1992. The MIPS IV ISA was
released in conjunction with the R5000 CPU family from MIPS, and the R8000 and R10000
CPUs from SGI in 1994.

All systems supported by IRIX 6.5 support the MIPS III ISA, and the majority support the
MIPS IV ISA. Systems that do not support the MIPS IV ISA are older legacy systems that
use MIPS R4000-based CPUs. All currently shipping IRIX/MIPS systems support the MIPS
IV ISA, as will all future SGI IRIX/MIPS systems.

©2001, Silicon Graphics, Inc. All rights reserved.
Challenge, Indigo, Indy, IRIX, O2, Onyx, and OpenGL are registered trademarks, and SGI, Indigo2, and Origin are trademarks of
Silicon Graphics, Inc. MIPS, R5000, and R10000 are registered trademarks of MIPS Technologies, Inc., used under license by Silicon
Graphics, Inc. UNIX and X/Open are registered trademarks of The Open Group.
007-4405-001 9




	The Mandate of Application Compatibility in SGI IRIX 6.5
	Abstract
	Introduction
	Factors That Govern Application Compatibility
	Application Dependencies That Affect Compatibility
	IRIX 6.5 Application Compatibility Design
	Detailed Reference on IRIX 6.5 Compatibility Issues


