
Linux® Resource Administration Guide

007–4413–001

CONTRIBUTORS

Written by Terry Schultz
Edited by Susan Wilkening
Illustrated by Chris Wengelski
Production by Glen Traefald
Engineering contributions by Jeremy Brown, Marlys Kohnke, Paul Jackson, John Hesterberg, Robin Holt, Kevin McMahon, Troy Miller,
Dennis Parker, Sam Watters, and Todd Wyman

COPYRIGHT
© 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any
manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, and IRIX are registered trademarks and SGI Linux and SGI ProPack for Linux are trademarks of
Silicon Graphics, Inc.

SGI Linux Environment 7.2 is based on [or "is compatible with"] Red Hat Linux 7.2, but is not sponsored by or endorsed by Red Hat,
Inc. in any way. Red Hat is a registered trademark and Red Hat Linux 7.2 is a trademark of Red Hat, Inc.

Linux is a registered trademark of Linus Torvalds, used with permission by Silicon Graphics, Inc. UNIX and the X Window System are
registered trademarks of The Open Group in the United States and other countries.

Cover Design By Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

001 February 2003
Original publication.

007–4413–001 iii

Contents

About This Guide . xvii

Related Publications . xvii

Obtaining Publications . xvii

Conventions . xviii

Reader Comments . xviii

1. Linux Kernel Jobs . 1

Overview . 1

Installing and Configuring Linux Kernel Jobs 3

2. Comprehensive System Accounting 5

CSA Overview . 5

Concepts and Terminology . 7

Enabling or Disabling CSA . 9

CSA Files and Directories . 10

Files in the /var/csa Directory 10

Files in the /var/csa/ Directory 11

Files in the /var/csa/day Directory 12

Files in the /var/csa/work Directory 12

Files in the /var/csa/sum Directory 13

Files in the /var/csa/fiscal Directory 13

Files in the /var/csa/nite Directory 14

/usr/sbin and /usr/bin Directories 16

/etc Directory . 17

007–4413–001 v

Contents

/etc/rc.d Directory . 17

CSA Expanded Description . 18

Daily Operation Overview . 18

Setting Up CSA . 19

The csarun Command . 24

Daily Invocation . 24

Error and Status Messages 24

States . 25

Restarting csarun . 26

Verifying and Editing Data Files 28

CSA Data Processing . 28

Data Recycling . 32

How Jobs Are Terminated 32

Why Recycled Sessions Should Be Scrutinized 33

How to Remove Recycled Data 33

Adverse Effects of Removing Recycled Data 35

Workload Management Requests and Recycled Data 37

Tailoring CSA . 38

System Billing Units (SBUs) 38

Process SBUs . 39

Workload Management SBUs 41

Tape SBUs (not supported in this release) 42

Daemon Accounting . 42

Setting up User Exits . 43

Charging for Workload Management Jobs 44

Tailoring CSA Shell Scripts and Commands 45

Using at to Execute csarun 45

vi 007–4413–001

Linux® Resource Administration Guide

Using an Alternate Configuration File 46

CSA Reports . 46

CSA Daily Report . 47

Consolidated Information Report 47

Unfinished Job Information Report 48

Disk Usage Report . 48

Command Summary Report 48

Last Login Report . 49

Daemon Usage Report . 49

Periodic Report . 51

Consolidated accounting report 51

Command summary report 51

CSA Man Pages . 52

User-Level Man Pages . 52

Administrator Man Pages . 53

3. Array Services . 55

Array Services Package . 56

Installing and Configuring Array Services 56

Using an Array . 58

Using an Array System . 58

Finding Basic Usage Information 59

Logging In to an Array . 59

Invoking a Program . 60

Managing Local Processes . 61

Monitoring Local Processes and System Usage 61

Scheduling and Killing Local Processes 61

007–4413–001 vii

Contents

Summary of Local Process Management Commands 62

Using Array Services Commands 62

About Array Sessions . 63

About Names of Arrays and Nodes 63

About Authentication Keys 64

Summary of Common Command Options 64

Specifying a Single Node . 65

Common Environment Variables 66

Interrogating the Array . 66

Learning Array Names . 66

Learning Node Names . 67

Learning Node Features . 67

Learning User Names and Workload 68

Learning User Names . 68

Learning Workload . 68

Managing Distributed Processes 69

About Array Session Handles (ASH) 69

Listing Processes and ASH Values 70

Controlling Processes . 71

Using arshell . 71

About the Distributed Example 72

Managing Session Processes 73

About Job Container IDs 74

About Array Configuration . 74

About the Uses of the Configuration File 75

About Configuration File Format and Contents 76

Loading Configuration Data 76

viii 007–4413–001

Linux® Resource Administration Guide

About Substitution Syntax . 77

Testing Configuration Changes 78

Configuring Arrays and Machines 79

Specifying Arrayname and Machine Names 79

Specifying IP Addresses and Ports 79

Specifying Additional Attributes 80

Configuring Authentication Codes 80

Configuring Array Commands 81

Operation of Array Commands 81

Summary of Command Definition Syntax 82

Configuring Local Options . 84

Designing New Array Commands 85

4. CPU Memory Sets and Scheduling 87

Memory Management Terminology 88

System Memory Blocks . 88

Tasks . 88

Virtual Memory Areas . 89

Nodes . 89

CpuMemSet System Implementation 89

Cpumemmap . 90

cpumemset . 90

Installing, Configuring, and Tuning CpuMemSets 92

Installing CpuMemSets . 92

Configuring CpuMemSets . 93

Tuning CpuMemSets . 93

Using CpuMemSets . 93

007–4413–001 ix

Contents

Using the runon(1) Command 94

Initializing CpuMemSets . 94

Operating on CpuMemSets 95

Managing CpuMemSets . 95

Initializing System Service on CpuMemSets 96

Resolving Pages for Memory Areas 96

Determining an Application’s Current CPU 97

Determining the Memory Layout of cpumemmaps and cpumemsets 97

Hard Partitioning versus CpuMemSets 97

Error Messages . 98

5. Cpuset System . 99

Cpusets on Linux versus IRIX 100

Using Cpusets . 102

Restrictions on CPUs within Cpusets 104

Cpuset System Examples . 104

Cpuset Configuration File . 107

Installing the Cpuset System . 110

Using the Cpuset Library . 111

Cpuset System Man Pages . 111

User-Level Man Pages . 111

Cpuset Library Man Pages . 112

File Format Man Pages . 113

Miscellaneous Man Pages . 113

6. NUMA Tools . 115

dlook . 115

dplace . 121

x 007–4413–001

Linux® Resource Administration Guide

topology . 125

Installing NUMA Tools . 126

Index . 129

007–4413–001 xi

Figures

Figure 1-1 Point-of-Entry Processes 2

Figure 2-1 The /var/csa Directory 11

Figure 2-2 CSA Data Processing 29

007–4413–001 xiii

Tables

Table 2-1 Possible Effects of Removing Recycled Data 36

Table 3-1 Information Sources for Invoking a Program 61

Table 3-2 Information Sources: Local Process Management 62

Table 3-3 Common Array Services Commands 63

Table 3-4 Array Services Command Option Summary 64

Table 3-5 Array Services Environment Variables 66

Table 3-6 Information Sources: Array Configuration 75

Table 3-7 Subentries of a COMMAND Definition 82

Table 3-8 Substitutions Used in a COMMAND Definition 83

Table 3-9 Options of the COMMAND Definition 84

Table 3-10 Subentries of the LOCAL Entry 84

007–4413–001 xv

About This Guide

This guide is a reference document for people who manage the operation of SGI
computer systems running the Linux operating system. It contains information
needed in the administration of various system resource management features.

This manual contains the following chapters:

• Chapter 1, "Linux Kernel Jobs", page 1

• Chapter 2, "Comprehensive System Accounting", page 5

• Chapter 3, "Array Services", page 55

• Chapter 4, "CPU Memory Sets and Scheduling", page 87

• Chapter 5, "Cpuset System", page 99

• Chapter 6, "NUMA Tools", page 115

Related Publications
For a list of Comprehensive System Accounting (CSA) man pages, see "CSA Man
Pages", page 52.

For a list of Array Services man pages, see "Using Array Services Commands", page
62.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• SGI ProPack for Linux documentation, and all other documentation included in the
RPMs on the distribution CDs can be found on the CD titled "SGI ProPack V.2.1
for Linux - Documentation CD." To access the information on the documentation

007–4413–001 xvii

About This Guide

CD, open the index.html file with a web browser. Because this online file can be
updated later in the release cycle than this document, you should check it for the
latest information. After installation, all SGI ProPack for Linux documentation
(including README.SGI) is in /usr/share/doc/sgi-propack-2.1.

• You can view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

xviii 007–4413–001

Linux® Resource Administration Guide

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

007–4413–001 xix

Chapter 1

Linux Kernel Jobs

This chapter describes Linux kernel jobs and contains the following sections:

• "Overview", page 1

• "Installing and Configuring Linux Kernel Jobs", page 3

Overview
Work on a machine is submitted in a variety of ways, such as an interactive login, a
submission from a workload management system, a cron job, or a remote access
such as rsh, rcp, or array services. Each of these points of entry creates an original
shell process and multiple processes flow from that original point of entry. The Linux
kernel job, used by the Comprehensive System Accounting (CSA) software, provides
a means to measure the resource usage of all the processes resulting from a point of
entry. A job is a group of related processes all descended from a point-of- entry
process and identified by a unique job ID. A job can contain multiple process groups,
sessions, or array sessions and all processes in one of these subgroups are always
contained within one job. Figure 1-1, page 2, shows the point-of-entry processes that
initiate the creation of jobs.

007–4413–001 1

1: Linux Kernel Jobs

log
in

cro
n

su
rsh

, r
log

in

Workload manager

arr
ayd

Linux
job

start a job

Figure 1-1 Point-of-Entry Processes

A Linux job has the following characteristics:

• A job is an inescapable container. A process cannot leave the job nor can a new
process be created outside the job without explicit action, that is, a system call
with root privilege.

• Each new process inherits the job ID from its parent process.

• All point-of-entry processes (job initiators) create a new job.

• The job initiator performs authentication and security checks.

• Job initiation on Linux is performed via a Pluggable Authentication Module
(PAM) session module.

• Not all processes on a system need to be members of a job.

The process-control initialization process (init(8)) and startup scripts called by init
are not part of a job and have a job ID of zero.

Note: The existing command jobs(1) applies to shell "jobs" and it is not related to
the Linux kernel module jobs. The at(1), atd(8), atq(1), batch(1), atrun(8), and
atrm(1) man pages refer to shell scripts as a job.

2 007–4413–001

Linux® Resource Administration Guide

Installing and Configuring Linux Kernel Jobs
Linux kernel jobs are part of the kernel on your SGI ProPack for Linux system. To
configure jobs for services, such as Comprehensive System Accounting (CSA),
perform the following steps:

1. Change to the directory where the PAM configuration files reside by entering the
following:

cd /etc/pam.d

2. Enable job creation for login users by adding this entry to the login
configuration file:

session required /lib/security/pam_job.so

This example shows the login configuration file being changed. You need to add
the session line to all of the PAM entry points that will create jobs on your
system, for example, login, rlogin, rsh, su, and xdm.

3. To configure jobs on across system reboots, use the chkconfig(8) command as
follows:

chkconfig --add job

4. To stop jobs from initiating after a system reboot, use the chkconfig(8)
command as follows:

chkconfig --del job

007–4413–001 3

Chapter 2

Comprehensive System Accounting

Comprehensive System Accounting (CSA) provides detailed, accurate accounting data
per job. It also provides data from some daemons. CSA is dependent on the concept
of a Linux kernel job. For more information on Linux kernel jobs, see Chapter 1,
"Linux Kernel Jobs", page 1.

The csarun(8) command, usually initiated by the cron(8) command, directs the
processing of the CSA daily accounting files. The csarun(8) command processes
accounting records written into the CSA accounting data file.

Using accounting data, you can determine how system resources were used and if a
particular user has used more than a reasonable share; trace significant system events,
such as security breaches, by examining the list of all processes invoked by a
particular user at a particular time; and set up billing systems to charge login
accounts for using system resources.

This chapter contains the following sections:

• "CSA Overview", page 5

• "Concepts and Terminology", page 7

• "Enabling or Disabling CSA", page 9

• "CSA Files and Directories", page 10

• "CSA Expanded Description", page 18

• "CSA Reports", page 46

• "CSA Man Pages", page 52

CSA Overview
Comprehensive System Accounting (CSA) is a set of C programs and shell scripts
that, like the other accounting packages, provide methods for collecting per-process
resource usage data, monitoring disk usage, and charging fees to specific login
accounts. CSA provides:

• Per-job accounting

007–4413–001 5

2: Comprehensive System Accounting

• Daemon accounting (workload management systems and tape systems; note that
tape daemon accounting is not supported in this release)

• Flexible accounting periods (daily and periodic (monthly) accounting reports can
be generated as often as desired and are not restricted to once per day or once per
month)

• Flexible system billing units (SBUs)

• Offline archiving of accounting data

• User exits for site specific customizing of daily and periodic (monthly) accounting

• Configurable parameters within the /etc/csa.conf file

• User job accounting (ja(1) command)

CSA takes this per-process accounting information and combines it by job identifier
(jid) within system boot uptime periods. CSA accounting for a job consists of all
accounting data for a given job identifier during a single system boot period.
However, since workload management jobs may span multiple reboots and thereby
consist of multiple job identifiers, CSA accounting for these jobs includes the
accounting data associated with the workload management identifier. For this release,
the workload managment identifier is yet to be defined.

Daemon accounting records are written at the completion of daemon specific events.
These records are combined with per-process accounting records associated with the
same job.

By default, CSA only reports accounting data for terminated jobs. Interactive jobs,
cron jobs and at jobs terminate when the last process in the job exits, which is
normally the login shell. A workload management job is recognized as terminated by
CSA based upon daemon accounting records and an end-of-job record for that job.
Jobs which are still active are recycled into the next accounting period. This behavior
can be changed through use of the csarun command -A option.

A system billing unit (SBU) is a unit of measure that reflects use of machine
resources. SBUs are defined in the CSA configuration file /etc/csa.conf and are
set to 0.0 by default. The weighting factor associated with each field in the CSA
accounting records can be altered to obtain an SBU value suitable for your site. For
more information on SBUs, see "System Billing Units (SBUs)", page 38.

The CSA accounting records are written into a separate CSA /var/csa/day/pacct
file. The CSA commands can only be used with CSA generated accounting records.

6 007–4413–001

Linux® Resource Administration Guide

There are four user exits available with the csarun(8) daily accounting script. There
is one user exit available with the csaperiod(8) monthly accounting script. These
user exits allow sites to tailor the daily and monthly run of accounting to their
specific needs by creating user exit scripts to perform any additional processing and
to allow archiving of accounting data. See the csarun(8) and csaperiod(8) man
pages for further information. (User exits have not been defined for this release).

CSA provides two user accounting commands, csacom(1) and ja(1). The csacom
command reads the CSA pacct file and writes selected accounting records to
standard output. The ja command provides job accounting information for the
current job of the caller. This information is obtained from a separate user job
accounting file to which the kernel writes. See the csacom(1) and ja(1) man pages
for further information.

The /etc/csa.conf file contains CSA configuration variables. These variables are
used by the CSA commands.

CSA is disabled in the kernel by default. To enable CSA, see "Enabling or Disabling
CSA", page 9.

Concepts and Terminology
The following concepts and terms are important to understand when using the
accounting feature:

Term Description

Daily accounting Daily accounting is the processing, organizing, and
reporting of the raw accounting data, generally
performed once per day.

In CSA, daily accounting can be run as many times as
necessary during a day; however, this feature is still
referred to as daily accounting.

Job A job is a grouping of processes that the system treats
as a single entity and is identified by a unique job
identifier (job ID).

There are multiple accounting types, and of them, CSA
is the only accounting type to organize accounting data

007–4413–001 7

2: Comprehensive System Accounting

by jobs and boot times and then place the data into a
sorted pacct file.

For non-workload management jobs, a job consists of
all accounting data for a given job ID during a single
boot period.

A workload management job consists of the accounting
data for all job IDs associated with the job’s workload
management request ID. Workload management jobs
may span multiple boot periods. If a job is restarted, it
has the same job ID associated with it during all boot
periods in which it runs. Rerun workload management
jobs have multiple job IDs. CSA treats all phases of a
workload management job as being in the same job.

Note: The existing command jobs(1) applies to shell
"jobs" and it is not related to the Linux kernel module
jobs. The at(1), atd(8), atq(1), batch(1), atrun(8),
and atrm(1) man pages refer to shell scripts as a job.

Periodic accounting Periodic (monthly) accounting further processes,
reports, and summarizes the daily accounting reports to
give a higher level view of how the system is being
used.

CSA lets system administrators specify the time periods
for which monthly or cumulative accounting is to be
run. Thus, periodic accounting can be run more than
once a month, but sometimes is still referred to as
monthly accounting.

Daemon accounting Daemon accounting is the processing, organizing, and
reporting of the raw accounting data, performed at the
completion of daemon specific events.

Recycled data Recycled data is data left in the raw accounting data
file, saved for the next accounting report run.

By default, accounting data for active jobs is recycled
until the job terminates. CSA reports only data for
terminated jobs unless csarun is invoked with the -A

8 007–4413–001

Linux® Resource Administration Guide

option. csarun places recycled data into the
/var/csa/day/pacct0 data file.

The following abbreviations and definitions are used throughout this chapter:

Abbreviation Definition

MMDD Month, day

hhmm Hour, minute

Enabling or Disabling CSA
The following steps are required to set up CSA job accounting:

Note: Before you configure CSA on your machine, make sure that Linux jobs are
installed and configured on your system. When you run the jstat -a command,
you should see output similar to the following:

$ jstat -a

JID OWNER COMMAND

------------------ ------------ --------------------------------

0xa28052020000483d user login -- user
0xa28052020000432f jh /usr/sbin/sshd

If jobs are not installed and configured, see "Installing and Configuring Linux Kernel
Jobs", page 3.

1. Configure CSA on across system reboots by using the chkconfig(8) command as
follows:

chkconfig --add csaacct

2. Modify the CSA configuration variables in /etc/csa.conf as desired.
Comments in the file describe these configuration options.

3. Turn on CSA, by entering the following:

/etc/rc.d/init.d/csaacct start

This step will be done automatically for subsequent system reboots when CSA is
configured on via the chkconfig(8) command.

007–4413–001 9

2: Comprehensive System Accounting

For information on adding entries to the crontabs file so that the cron(1M)
command automatically runs daily accounting, see "Setting Up CSA", page 19.

The following steps are required to disable CSA job accounting:

1. To turn off CSA, enter the following:

/etc/rc.d/init.d/csaacct stop

2. To stop CSA from initiating after a system reboot, enter the chkconfig
command as follows:

chkconfig --del csaacct

CSA Files and Directories
The following sections describe the CSA files and directories.

Files in the /var/csa Directory

The /var/csa directory contains CSA data and report files within various
subdirectories. /var/csa contains data collection files used by CSA. CSA accesses
pacct files to process system accounting data. The following diagram shows the
directory and file layout for CSA:

10 007–4413–001

Linux® Resource Administration Guide

/var/csa

workday sum fiscal nite

Raw data files
pacct (CSA)

cacct.MMDDhhmm
dacct.MMDDhhmm
cms.MMDDhhmm
rprt.MMDDhhmm
login log

pdacct.MMDDhhmm
cms.MMDDhhmm
rprt.MMDDhhmm

Logs
pdact
Misc files
Error files

spacct

Temporary
files

Figure 2-1 The /var/csa Directory

Each data and report file for CSA has a month-day-hour-minute suffix.

Files in the /var/csa/ Directory

The /var/csa directory contains the following directories:

Directory Description

day Contains the current raw accounting data files in pacct format.

work Used by CSA as a temporary work area. Contains raw files that were
moved from /var/csa/day at the start of a CSA daily accounting run
and the spacct file.

sum Contains the cumulative daily accounting summary files and reports
created by csarun(8). The ASCII format is in
/var/csa/sum/rprt.MMDDhhmm.

The binary data is in /var/csa/sum/cacct.MMDDhhmm,
/var/csa/sum/cms.MMDDhhmm,
and /var/csa/sum/dacct.MMDDhhmm.

007–4413–001 11

2: Comprehensive System Accounting

fiscal Contains periodic accounting summary files and reports created by
csaperiod(8). The ASCII format is in
/var/csa/fiscal/csa/rprt.MMDDhhmm.

The binary data is in /usr/csa/fiscal/cms.MMDDhhmm and
/usr/csa/fiscal/pdacct.MMDDhhmm.

nite Contains log files, csarun state, and execution times files.

Files in the /var/csa/day Directory

The following files are located in the /var/csa/day directory:

File Description

dodiskerr Disk accounting error file.

pacct Process and daemon accounting data.

pacct0 Recycled process and daemon accounting data.

dtmp Disk accounting data (ASCII) created by dodisk.

Files in the /var/csa/work Directory

The following files are located in the /var/csa/work/MMDD/hhmm directory:

File Description

BAD.Wpacct* Unprocessed accounting data containing invalid records
(verified by csaverify(8)).

Note: The /var/csa/work/Wpacct* files are
generated during the execution of the csarun(8)
command.

Ever.tmp1 Data verification work file.

Ever.tmp2 Data verification work file.

Rpacct0 Process and daemon accounting data to be recycled in
the next accounting run.

Wdiskcacct Disk accounting data (cacct.h format) created by
dodisk(8) (see the dodisk(8) man page).

12 007–4413–001

Linux® Resource Administration Guide

Wdtmp Disk accounting data (ASCII) created by dodisk(8).

Wpacct* Raw process and daemon accounting data.

Note: The /var/csa/work/Wpacct* files are
generated during the execution of the csarun(8)
command.

spacct sorted pacct file

Files in the /var/csa/sum Directory

The following data files are located in the /var/csa/sum directory:

File Description

cacct.MMDDhhmm Consolidated daily data in cacct.h format. This file is
deleted by csaperiod if the -r option is specified.

cms.MMDDhhmm Daily command usage data in command summary
(cms) record format. This file is deleted by csaperiod
if the -r option is specified.

dacct.MMDDhhmm Daily disk usage data in cacct.h format. This file is
deleted by csaperiod if the -r option is specified.

loginlog Login record file created by lastlogin.

rprt.MMDDhhmm Daily accounting report.

Files in the /var/csa/fiscal Directory

The following files are located in the /var/csa/fiscal directory:

File Description

cms.MMDDhhmm Periodic command usage data in command summary
(cms) record format.

pdacct.MMDDhhmm Consolidated periodic data.

007–4413–001 13

2: Comprehensive System Accounting

rprt.MMDDhhmm Periodic accounting report.

Files in the /var/csa/nite Directory

The following files are located in the /var/csa/nite directory:

File Description

active Used by the csarun(8) command to record progress
and print warning and error messages.
activeMMDDhhmm is the same as active after
csarun detects an error.

clastdate Last two times csarun was executed; in MMDDhhmm
format.

dk2log Diagnostic output created during execution of dodisk
(see the cron entry for dodisk in "Setting Up CSA",
page 19).

diskcacct Disk accounting records in cacct.h format, created by
dodisk.

EaddcMMDDhhmm Error/warning messages from the csaaddc(8)
command for an accounting run done on MMDD at
hhmm.

Earc1MMDDhhmm Error/warning messages from the csa.archive1(8)
command for an accounting run done on MMDD at
hhmm.

Earc2MMDDhhmm Error/warning messages from the csa.archive2(8)
command for an accounting run done on MMDD at
hhmm.

Ebld.MMDDhhmm Error/warning messages from the csabuild(8)
command for an accounting run done on MMDD at
hhmm.

Ecmd.MMDDhhmm Error/warning messages from the csacms(8) command
when generating an ASCII report for an accounting run
done on MMDD at hhmm.

Ecms.MMDDhhmm Error/warning messages from the csacms(8) command
when generating binary data for an accounting run
done on MMDD at hhmm.

14 007–4413–001

Linux® Resource Administration Guide

Econ.MMDDhhmm Error/warning messages from the csacon(8) command
for an accounting run done on MMDD at hhmm.

Ecrep.MMDDhhmm Error/warning messages from the csacrep(8)
command for an accounting run done on MMDD at
hhmm.

Ecrpt.MMDDhhmm Error/warning messages from the csacrep(8)
command for an accounting run done on MMDD at
hhmm.

Edrpt.MMDDhhmm Error/warning messages from the csadrep(8)
command for an accounting run done on MMDD at
hhmm.

Erec.MMDDhhmm Error/warning messages from the csarecy(8)
command for an accounting run done on MMDD at
hhmm.

Euser.MMDDhhmm Error/warning messages from the csa.user(8) user
exit for an accounting run done on MMDD at hhmm.

Epuser.MMDDhhmm Error/warning messages from the csa.puser(8) user
exit for an accounting run done on MMDD at hhmm.

Ever.tmp1MMDDhhmm Output file from invalid record offsets from the
csaverify(8) command for an accounting run done
on MMDD at hhmm.

Ever.tmp2MMDDhhmm Error/warning messages from the csaverify(8)
command for an accounting run done on MMDD at
hhmm.

Ever.MMDDhhmm Error/warning messages from the csaedit(8) and
csaverify(8) command (from the Ever.tmp2 file) for
an accounting run done on MMDD at hhmm.

fd2log Diagnostic output created during execution of csarun
(see cron entry for csarun in "Setting Up CSA", page
19).

lock lock1 Used to control serial use of the csarun(8) comand.

pd2log Diagnostic output created during execution of
csaperiod (see cron entry for csaperiod in "Setting
Up CSA", page 19).

007–4413–001 15

2: Comprehensive System Accounting

pdact Progress and status of csaperiod.
pdact.MMDDhhmm is the same as pdact after
csaperiod detects an error.

statefile Used to record current state during execution of the
csarun command.

/usr/sbin and /usr/bin Directories

The /usr/sbin directory contains the following commands and shell scripts used by
CSA that can be executed individually or by cron(1):

Command Description

csaaddc Combines cacct records.

csabuild Organizes accounting records into job records.

csachargefee Charges a fee to a user.

csackpacct Checks the size of the CSA process accounting file.

csacms Summarizes command usage from per-process
accounting records.

csacon Condenses records from the sorted pacct file.

csacrep Reports on consolidated accounting data.

csadrep Reports daemon usage.

csaedit Displays and edits the accounting information.

csagetconfig Searches the accounting configuration file for the
specified argument.

csajrep Prints a job report from the sorted pacct file.

csaperiod Runs periodic accounting.

csarecy Recycles unfinished job records into next accounting
run.

csarun Processes the daily accounting files and generates
reports.

csaswitch Checks the status of, enables or disables the different
types of Comprehensive System Accounting (CSA), and
switches accounting files for maintainability.

16 007–4413–001

Linux® Resource Administration Guide

csaverify Verifies that the accounting records are valid.

The /usr/bin directory contains the following user commands associated with CSA:

Command Description

csacom Searches and prints the CSA process accounting files.

ja Starts and stops user job accounting information.

User exits allow you to tailor the csarun or csaperiod procedures to the specific
needs of your site by creating scripts to perform additional site-specific processing
during daily accounting. You need to create user exit files owned by adm with
execute permission if your site uses the accounting user exits. User exits need to be
recreated when you upgrade your system. For information on setting up user exits at
your site and some example user exit scripts, see "Setting up User Exits", page 43.
The /usr/sbin directory may contain the following scripts

Script Description

csa.archive1 Site-generated user exit for csarun. This script saves
off raw pacct data.

csa.archive2 Site-generated user exit for csarun. This script saves
off sorted pacct data.

csa.fef Site-generated user exit for csarun. This script is
written by an administrator for site-specific processing.

csa.user Site-generated user exit for csarun. This script is
written by an administrator for site-specific processing.

csa.puser Site-generated user exit for csaperiod. This script is
written by an administrator for site-specific processing.

/etc Directory

The /etc directory is the location of the csa.conf file that contains the parameter
labels and values used by CSA software.

/etc/rc.d Directory

The /etc/rc.d/init.d directory is the location of the csaacct file used by the
chkconfig(8) command. Use a text editor to add any csaswitch(8) options to be
passed to csaswitch during system startup only.

007–4413–001 17

2: Comprehensive System Accounting

CSA Expanded Description
This section contains detailed information about CSA and covers the following topics:

• "Daily Operation Overview", page 18

• "Setting Up CSA", page 19

• "The csarun Command", page 24

• "Verifying and Editing Data Files", page 28

• "CSA Data Processing", page 28

• "Data Recycling", page 32

• "Tailoring CSA", page 38

Daily Operation Overview

When the Linux operating system is run in multiuser mode, accounting behaves in a
manner similar to the following process. However, because sites may customize CSA,
the following may not reflect the actual process at a particular site.

1. When CSA accounting is enabled and the system is switched to multiuser mode,
the /usr/sbin/csaswitch (see the csaswitch(8) man page) command is
called by /etc/rc.d/init.d/csaacct.

2. By default, CPU, memory, and I/O record types are enabled in /etc/csa.conf.
However, to run workload management and tape daemon accounting, you must
modify the /etc/csa.conf file and the appropriate subsystem. For more
information, see "Setting Up CSA", page 19.

3. The amount of disk space used by each user is determined periodically. The
/usr/sbin/dodisk command (see dodisk(8)) is run periodically by the cron
command to generate a snapshot of the amount of disk space being used by each
user. The dodisk command should be run at most once for each time
/usr/sbin/csarun is run (see csarun(8)). Multiple invocations of dodisk
during the same accounting period write over previous dodisk output.

4. A fee file is created. Sites desiring to charge fees to certain users can do so by
invoking /usr/sbin/csachargefee (see csachargefee(8)). Each accounting
period’s fee file (/var/csa/day/fee) is merged into the consolidated
accounting records by /usr/sbin/csaperiod (see csaperiod(8)).

18 007–4413–001

Linux® Resource Administration Guide

5. Daily accounting is run. At specified times during the day, csarun is executed
by the cron command to process the current accounting data. The output from
csarun is daily accounting files and an ASCII report.

6. Periodic (monthly) accounting is run. At a specific time during the day, or on
certain days of the month, /usr/sbin/csaperiod (see csaperiod) is executed
by the cron command to process consolidated accounting data from previous
accounting periods. The output from csaperiod is periodic (monthly)
accounting files and an ASCII report.

7. Accounting is disabled. When the system is shut down gracefully, the
csaswitch(8) command is executed to halt all CSA process and daemon
accounting.

Setting Up CSA

The following is a brief description of setting up CSA. Site-specific modifications are
discussed in detail in "Tailoring CSA", page 38. As described in this section, CSA is
run by a person with superuser permissions.

1. Change the default system billing unit (SBU) weighting factors, if necessary. By
default, no SBUs are calculated. If your site wants to report SBUs, you must
modify the configuration file /etc/csa.conf.

2. Modify any necessary parameters in the /etc/csa.conf file, which contains
configurable parameters for the accounting system.

3. If you want daemon accounting, you must enable daemon accounting at system
startup time by performing the following steps:

a. Ensure that the variables in /etc/csa.conf for the subsystems for which
you want to enable daemon accounting are set to on.

b. Set WKMG_START to on to enable workload management.

4. As root, use the crontab(1) command with the -e option to add entries similar
to the following:

007–4413–001 19

2: Comprehensive System Accounting

Note: If you do not use the crontab(1) command to update the crontab file
(for example, using the vi(1) editor to update the file), you must signal cron(8)
after updating the file. The crontab command automatically updates the
crontab file and signals cron(8) when you save the file and exit the editor. For
more information on the crontab command, see the crontab(1) man page.

0 4 * * 1-6 if /sbin/chkconfig csaacct; then /usr/sbin/csarun 2> /var/csa/nite/fd2log; fi

0 2 * * 4 if /sbin/chkconfig csaacct; then /usr/sbin/dodisk > /var/csa/nite/dk2log; fi

5 * * * 1-6 if /sbin/chkconfig csaacct; then /usr/sbin/csackpacct; fi

0 5 1 * * if /sbin/chkconfig csaacct; then /usr/sbin/csaperiod -r \

2> /var/csa/nite/pd2log; fi

These entries are described in the following steps:

a. For most installations, entries similar to the following should be made in
/var/spool/cron/root so that cron(8) automatically runs daily
accounting:

0 4 * * 1-6 if /sbin/chkconfig csaacct; then /usr/sbin/csarun 2> /var/csa/nite/fd2log; fi

0 2 * * 4 if /sbin/chkconfig csaacct; then /usr/sbin/dodisk > /var/csa/nite/dk2log; fi

The csarun(8) command should be executed at such a time that dodisk has
sufficient time to complete. If dodisk does not complete before csarun
executes, disk accounting information may be missing or incomplete.

For more information, see the dodisk(8) man page.

b. Periodically check the size of the pacct files. An entry similar to the
following should be made in /var/spool/cron/root:

5 * * * 1-6 if /sbin/chkconfig csaacct; then /usr/sbin/csackpacct; fi

The cron command should periodically execute the csackpacct(8) shell
script. If the pacct file grows larger than 4000 1K blocks (default),
csackpacct calls the command /usr/sbin/csaswitch -c switch to
start a new pacct file. The csackpacct command also makes sure that
there are at least 2000 1KB blocks free on the file system containing
/var/csa. If there are not enough blocks, CSA accounting is turned off. The
next time csackpacct is executed, it turns CSA accounting back on if there
are enough free blocks.

20 007–4413–001

Linux® Resource Administration Guide

Ensure that the ACCT_FS and MIN_BLKS variables have been set correctly in
the /etc/csa.conf configuration file. ACCT_FS is the file system containing
/var/csa. MIN_BLKS is the minimum number of free 1K blocks needed in
the ACCT_FS file system. The default is 2000.

It is very important that csackpacct be run periodically so that an
administrator is notified when the accounting file system (located in the
/var/csa directory by default) runs out of disk space. After the file system
is cleaned up, the next invocation of csackpacct enables process and
daemon accounting. You can manually re-enable accounting by invoking
csaswitch -c on.

If csackpacct is not run periodically, and the accounting file system runs
out of space, an error message is written to the console stating that a write
error occurred and that accounting is disabled. If you do not free disk space
as soon as possible, a vast amount of accounting data can be lost
unnecessarily. Additionally, lost accounting data can cause csarun to abort
or report erroneous information.

c. To run monthly accounting, an entry similar to the command shown below
should be made in /var/spool/cron/root. This command generates a
monthly report on all consolidated data files found in /var/csa/sum/* and
then deletes those data files:

0 5 1 * * if /sbin/chkconfig csaacct; then /usr/sbin/csaperiod -r \

2> /var/csa/nite/pd2log; fi

This entry is executed at such a time that csarun has sufficient time to
complete. This example results in the creation of a periodic accounting file
and report on the first day of each month. These files contain information
about the previous month’s accounting.

5. Update the holidays file. The holidays file allows you to adust the price of
system resources depending on expected demand. The file
/usr/local/etc/holidays contains the prime/nonprime table for the
accounting system. The table should be edited to reflect your location’s holiday
schedule for the year. By default, the holidays file is located in the
/usr/local/etc directory. You can change this location by modifying the
HOLIDAY_FILE variable in /etc/csa.conf. If necessary, modify the
NUM_HOLIDAYS variable (also located in /etc/csa.conf), which sets the
upper limit on the number of holidays that can be defined in HOLIDAY_FILE.
The format of this file is composed of the following types of entries:

007–4413–001 21

2: Comprehensive System Accounting

• Comment lines: These lines may appear anywhere in the file as long as the
first character in the line is an asterisk (*).

• Version line: This line must be the first uncommented line in the file and must
only appear once. It denotes that the new holidays file format is being used.
This line should not be changed by the site.

• Year designation line: This line must be the second uncommented line in the
file and must only appear once. The line consists of two fields. The first field
is the keyword YEAR. The second field must be either the current year or the
wildcard character, asterisk (*). If the year is wildcarded, the current year is
automatically substituted for the year. The following are examples of two
valid entries:

YEAR 2003

YEAR *

• Prime/nonprime time designation lines: These must be uncommented lines 3,
4, and 5 in the file. The format of these lines is:

period prime_time_start nonprime_time_start

The variable, period, is one of the following: WEEKDAY, SATURDAY, or SUNDAY.
The period can be specified in either uppercase or lowercase.

The prime and nonprime start time can be one of two formats:

– Both start times are 4–digit numeric values between 0000 and 2359. The
nonprime_time_start value must be greater than the prime_time_start value.
For example, it is incorrect to have prime time start at 07:30 A.M. and
nonprime time start at 1 minute after midnight. Therefore, the following
entry is wrong and can cause incorrect accounting values to be reported.

WEEKDAY 0730 0001

It is correct to specify prime time to start at 07:30 A.M. and nonprime time
to start at 5:30 P.M. on weekdays. You would enter the following in the
holiday file:

WEEKDAY 0730 1730

– NONE/ALL or ALL/NONE. These start times specify that the entire period is
to be either all prime time or all nonprime time. To specify that the entire
period is to be considered prime time, set prime_time_start to ALL and

22 007–4413–001

Linux® Resource Administration Guide

nonprime_time_start to NONE. If the period is to be considered all nonprime
time, set prime_time_start to NONE and nonprime_time_start to ALL. For
example, to specify Monday through Friday as all prime time, you would
enter the following:

WEEKDAY ALL NONE

To specify all of Sunday to be nonprime time, you would enter the
following:

SUNDAY NONE ALL

• Site holidays lines: These entries follow the year designation line and have the
following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is either a number in the range of 1 through 366,
indicating the day for a given holiday (leading white space is ignored), or it is
the month and day in the mm/dd format. The other three fields are
commentary and are not currently used by other programs. Each holiday is
considered all nonprime time.

If the holidays file does not exist or there is an error in the year designation
line, the default values for all lines are used.

If there is an error in a prime/nonprime time designation line, the entry for
the erroneous line is set to a default value. All other lines in the holidays
file are ignored and default values are used.

If there is an error in a site holidays line, all holidays are ignored.

The defaults values are as follows:

YEAR The current year

WEEKDAY Monday through Friday is all prime time

SATURDAY Saturday is all nonprime time

SUNDAY Sunday is all nonprime time

No holidays are specified

007–4413–001 23

2: Comprehensive System Accounting

The csarun Command

The /usr/sbin/csarun command, usually initiated by cron(1), directs the
processing of the daily accounting files. csarun processes accounting records written
into the pacct file. It is normally initiated by cron during nonprime hours.

The csarun command also contains four user-exit points, allowing sites to tailor the
daily run of accounting to their specific needs.

The csarun command does not damage files in the event of errors. It contains a
series of protection mechanisms that attempt to recognize an error, provide intelligent
diagnostics, and terminate processing in such a way that csarun can be restarted
with minimal intervention.

Daily Invocation

The csarun command is invoked periodically by cron. It is very important that you
ensure that the previous invocation of csarun completed successfully before
invoking csarun for a new accounting period. If this is not done, information about
unfinished jobs will be inaccurate.

Data for a new accounting period can also be interactively processed by executing the
following:

nohup csarun 2> /var/csa/nite/fd2log &

Before executing csarun in this manner, ensure that the previous invocation
completed successfully. To do this, look at the files active and statefile in
/var/csa/nite. Both files should specify that the last invocation completed
successfully. See "Restarting csarun", page 26.

Error and Status Messages

The csarun error and status messages are placed in the /var/csa/nite directory.
The progress of a run is tracked by writing descriptive messages to the file active.
Diagnostic output during the execution of csarun is written to fd2log. The lock
and lock1 files prevent concurrent invocations of csarun; csarun will abort if these
two files exist when it is invoked. The clastdate file contains the month, day, and
time of the last two executions of csarun.

24 007–4413–001

Linux® Resource Administration Guide

Errors and warning messages from programs called by csarun are written to files
that have names beginning with E and ending with the current date and time. For
example, Ebld.11121400 is an error file from csabuild for a csarun invocation
on November 12, at 14:00.

If csarun detects an error, it writes a message to the /var/log/messages file,
removes the locks, saves the diagnostic files, and terminates execution. When csarun
detects an error, it will send mail either to MAIL_LIST if it is a fatal error, or to
WMAIL_LIST if it is a warning message, as defined in the configuration file
/etc/csa.conf.

States

Processing is broken down into separate re-entrant states so that csarun can be
restarted. As each state completes, /var/csa/nite/statefile is updated to
reflect the next state. When csarun reaches the CLEANUP state, it removes various
data files and the locks, and then terminates.

The following describes the events that occur in each state. MMDD refers to the
month and day csarun was invoked. hhmm refers to the hour and minute of
invocation.

State Description

SETUP The current accounting file is switched via csaswitch. The accounting
file is then moved to the /var/csa/work/MMDD/hhmm directory.
File names are prefaced with W. /var/csa/nite/diskcacct is also
moved to this directory.

VERIFY The accounting files are checked for valid data. Records with invalid
data are removed. Names of bad data files are prefixed with BAD. in
the /var/csa/work/MMDD/hhmm directory. The corrected files do
not have this prefix.

ARCHIVE1 First user exit of the csarun script. If a script named
/usr/sbin/csa.archive1 exists, it will be executed through the
shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. You might use this user
exit to archive the accounting files in ${WORK}.

BUILD The pacct accounting data is organized into a sorted pacct file.

ARCHIVE2 Second user exit of the csarun script. If a script named
/usr/sbin/csa.archive2 exists, it will be executed through the

007–4413–001 25

2: Comprehensive System Accounting

shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. You might use this exit
to archive the sorted pacct file.

CMS Produces a command summary file in cms.h format. The cms file is
written to /var/csa/sum/cms.MMDDhhmm for use by csaperiod.

REPORT Generates the daily accounting report and puts it
into /var/csa/sum/rprt.MMDDhhmm. A consolidated data file,
/var/csa/sum/cacct.MMDDhhmm, is also produced from the
sorted pacct file. In addition, accounting data for unfinished jobs is
recycled.

DREP Generates a daemon usage report based on the sorted pacct file.
This report is appended to the daily accounting report,
/var/csa/sum/rprt.MMDDhhmm.

FEF Third user exit of the csarun script. If a script named
/var/local/sbin/csa.fef exists, it will be executed through the
shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. The csarun variables
are available, without being exported, to the user exit script. You might
use this exit to convert the sorted pacct file to a format suitable for
a front-end system.

USEREXIT Fourth user exit of the csarun script. If a script named
/usr/sbin/csa.user exists, it will be executed through the shell .
(dot) command. The . (dot) command will not execute a compiled
program, but the user exit script can. The csarun variables are
available, without being exported, to the user exit script. You might use
this exit to run local accounting programs.

CLEANUP Cleans up temporary files, removes the locks, and then exits.

Restarting csarun

If csarun is executed without arguments, the previous invocation is assumed to have
completed successfully.

The following operands are required with csarun if it is being restarted:

csarun [MMDD [hhmm [state]]]

26 007–4413–001

Linux® Resource Administration Guide

MMDD is month and day, hhmm is hour and minute, and state is the csarun entry
state.

To restart csarun, follow these steps:

1. Remove all lock files, by using the following command line:

rm -f /var/csa/nite/lock*

2. Execute the appropriate csarun restart command, using the following examples
as guides:

a. To restart csarun using the time and the state specified in clastdate and
statefile, execute the following command:

nohup csarun 0601 2> /var/csa/nite/fd2log &

In this example, csarun will be rerun for June 1, using the time and state
specified in clastdate and statefile.

b. To restart csarun using the state specified in statefile, execute the
following command:

nohup csarun 0601 0400 2> /var/csa/nite/fd2log &

In this example, csarun will be rerun for the June 1 invocation that started at
4:00 A.M., using the state found in statefile.

c. To restart csarun using the specified date, time, and state, execute the
following command:

nohup csarun 0601 0400 BUILD 2> /var/csa/nite/fd2log &

In this example, csarun will be restarted for the June 1 invocation that
started at 4:00 A.M., beginning with state BUILD.

Before csarun is restarted, the appropriate directories must be restored. If the
directories are not restored, further processing is impossible. These directories are as
follows:

/var/csa/work/MMDD/hhmm
/var/csa/sum

If you are restarting at state ARCHIVE2, CMS, REPORT, DREP, or FEF , the sorted
pacct file must be in /var/csa/work/MMDD/hhmm. If the file does not exist,
csarun automatically will restart at the BUILD state. Depending on the tasks

007–4413–001 27

2: Comprehensive System Accounting

performed during the site-specific USEREXIT state, the sorted pacct file may or
may not need to exist. This may or may not be acceptable.

Verifying and Editing Data Files

This section describes how to remove bad data from various accounting files.

The csaverify(8) command verifies that the accounting records are valid and
identifies invalid records. The accounting file can be a pacct or sorted pacct file.
When csaverify finds an invalid record, it reports the starting byte offset and
length of the record. This information can be written to a file in addition to standard
output. A length of -1 indicates the end of file. The resulting output file can be used
as input to csaedit(8) to delete pacct or sorted pacct records.

1. The pacct file is verified with the following command line, and the following
output is received:

$ /usr/sbin/csaverify -P pacct -o offsetfile

/usr/sbin/csaverify: CAUTION

readacctent(): An error was returned from the ’readpacct()’ routine.

2. The file offsetfile from csaverify is used as input to csaedit to delete the
invalid records as follows (remaining valid records are written to pacct.NEW):

/usr/sbin/csaedit -b offsetfile -P pacct -o pacct.NEW

3. The new pacct file is reverified as follows to ensure that all the bad records have
been deleted:

/usr/sbin/csaverify -P pacct.NEW

You can use the csaedit -A option to produce an abbreviated ASCII version of
pacct or sorted pacct files.

CSA Data Processing

The flow of data among the various CSA programs is explained in this section and is
illustrated in Figure 2-2.

28 007–4413–001

Linux® Resource Administration Guide

a11927

CSA system diagram

1

2

3

4

5

6

7

8

9

10

11

13 14

6

csachargefee

csarun

csarecy

csacon

csaaddc

acctdusg

Periodic
report

csabuild

csadrep

pacct

spacct

Job
report

Daemon
usage
report

Daily
report

csajrep

cms cms

cms

csacms

cacct
csacrep

csacms

cms

cacctcacct

12

pdacct

dacct

fee

dtmp
acctdisk

csacrep

Figure 2-2 CSA Data Processing

1. Generate raw accounting files. Various daemons and system processes write to
the raw pacct accounting files.

007–4413–001 29

2: Comprehensive System Accounting

2. Create a fee file. Sites that want to charge fees to certain users can do so with the
csachargefee(8) command. The csachargefee command creates a fee file
that is processed by csaaddc(8).

3. Produce disk usage statistics. The dodisk(8) shell script allows sites to take
snapshots of disk usage. dodisk does not report dynamic usage; it only reports
the disk usage at the time the command was run. Disk usage is processed by
csaaddc.

4. Organize accounting records into job records. The csabuild(8) command reads
accounting records from the CSA pacct file and organizes them into job records
by job ID and boot times. It writes these job records into the sorted pacct file.
This sorted pacct file contains all of the accounting data available for each job.
The configuration records in the pacct files are associated with the job ID 0 job
record within each boot period. The information in the sorted pacct file is
used by other commands to generate reports and for billing.

5. Recycle information about unfinished jobs. The csarecy(8) command retrieves
job information from the sorted pacct file of the current accounting period
and writes the records for unfinished jobs into a pacct0 file for recycling into the
next accounting period. csabuild(8) marks unfinished accounting jobs (those
are jobs without an end-of-job record). csarecy takes these records from the
sorted pacct file and puts them into the next period’s accounting files
directory. This process is repeated until the job finishes.

Sometimes data for terminated jobs are continually recycled. This can occur when
accounting data is lost. To prevent data from recycling forever, edit csarun so
that csabuild is executed with the -o nday option, which causes all jobs older
than nday days to terminate. Select an appropriate nday value (see the csabuild
man page for more information and "Data Recycling", page 32).

6. Generate the daemon usage report, which is appended to the daily report.
csadrep(8) reports usage of the workload management and tape (tape is not
supported in this release) daemons. Input is either from a sorted pacct file
created by csabuild(8) or from a binary file created by csadrep with the -o
option. The files operand specifies the binary files.

7. Summarize command usage from per-process accounting records. The csacms(8)
command reads the sorted pacct files. It adds all records for processes that
executed identically named commands, and it sorts and writes them to
/var/csa/sum/cms.MMDDhhmm, using the cms format. The csacms(8)
command can also create an ASCII file.

30 007–4413–001

Linux® Resource Administration Guide

8. Condense records from the sorted pacct file. The csacon(8) command
condenses records from the sorted pacct file and writes consolidated records
in cacct format to /var/csa/sum/cacct.MMDDhhmm.

9. Generate an accounting report based on the consolidated data. The csacrep(8)
command generates reports from data in cacct format, such as output from the
csacon(8) command. The report format is determined by the value of CSACREP
in the /etc/csa.conf file. Unless modified, it will report the CPU time, total
KCORE minutes total KVIRTUAL minutes, block I/O wait time, and raw I/O wait
time. The report will be sorted first by user ID and then by the secondary key of
project ID (project ID is not supported in this release) and the headers will be
printed.

10. Create the daily accounting report. The daily accounting report includes the
following:

• Consolidated information report (step 11)

• Unfinished recycled jobs (step 5)

• Disk usage report (step 3)

• Daily command summary (step 7)

• Last login information

• Daemon usage report (step 6)

11. Combine cacct records. The csaaddc(8) command combines cacct records by
specified consolidation options and writes out a consolidated record in cacct
format.

12. Summarize command usage from per-process accounting records. The csacms(8)
command reads the cms files created in step 7. Both an ASCII and a binary file
are created.

13. Produce a consolidated accounting report. csacrep(8) is used to generate a
report based on a periodic accounting file.

14. The periodic accounting report layout is as follows:

• Consolidated information report

• Command summary report

007–4413–001 31

2: Comprehensive System Accounting

Steps 4 through 11 are performed during each accounting period by csarun(8).
Periodic (monthly) accounting (steps 12 through 14) is initiated by the csaperiod(8)
command. Daily and periodic accounting, as well as fee and disk usage generation
(steps 2 through 3), can be scheduled by cron(8) to execute regularly. See "Setting Up
CSA", page 19, for more information.

Data Recycling

A system administrator must correctly maintain recycled data to ensure accurate
accounting reports. The following sections discuss data recycling and describe how
an administrator can purge unwanted recycled accounting data.

Data recycling allows CSA to properly bill jobs that are active during multiple
accounting periods. By default, csarun reports data only for jobs that terminate
during the current accounting period. Through data recycling, CSA preserves data for
active jobs until the jobs terminate.

In the sorted pacct file, csabuild flags each job as being either active or
terminated. csarecy reads the sorted pacct file and recycles data for the active
jobs. csacon consolidates the data for the terminated jobs, which csaperiod uses
later. csabuild, csarecy, and csacon are all invoked by csarun.

The csarun command puts recycled data in the /var/csa/day/pacct0 file.

Normally, an administrator should not have to manually purge the recycled
accounting data. This purge should only be necessary if accounting data is missing.
Missing data can cause jobs to recycle forever and consume valuable CPU cycles and
disk space.

How Jobs Are Terminated

Interactive jobs, cron jobs, and at jobs terminate when the last process in the job
exits. Normally, the last process to terminate is the login shell. The kernel writes an
end-of-job (EOJ) record to the pacct file when the job terminates.

When the workload management daemon delivers a workload management request’s
output, the request terminates. The daemon then writes an NQ_DISP record type to
the pacct accounting file, while the kernel writes an EOJ record to the pacct file.

Unlike interactive jobs, workload management requests can have multiple EOJ
records associated with them. In addition to the request’s EOJ record, there can be

32 007–4413–001

Linux® Resource Administration Guide

EOJ records for net clients and checkpointed portions of the request. The net client
perform workload management processing on behalf of the request.

The csabuild command flags jobs in the sorted pacct file as being terminated if
they meet one of the following conditions:

• The job is an interactive, cron, or at job, and there is an EOJ record for the job in
the pacct file.

• The job is a workload management request, and there is both an EOJ record for
the request and an NQ_DISP record type in the pacct file.

• The job is an interactive, cron, or at job and is active at the time of a system
crash. (Note that for this release jobs can not be restarted).

• The job is manually terminated by the administrator using one of the methods
described in "How to Remove Recycled Data", page 33.

Why Recycled Sessions Should Be Scrutinized

Recycling unnecessary data can consume large amounts of disk space and CPU time.
The sorted pacct file and recycled data can occupy a vast amount of disk space on
the file system containing /var/csa/day. Sites that archive data also require
additional offline media. Wasted CPU cycles are used by csarun to reexamine and
recycle the data. Therefore, to conserve disk space and CPU cycles, unnecessary
recycled data should be purged from the accounting system.

Any of the following situations can cause CSA erroneously to recycle terminated jobs:

• Kernel or daemon accounting is turned off.

The kernel or csackpacct(8) command can turn off accounting when there is not
enough space on the file system containing /var/csa/day.

• Accounting files are corrupt. Accounting data can be lost or corrupted during a
system or disk crash.

• Recycled data is erroneously deleted in a previous accounting period.

How to Remove Recycled Data

Before choosing to delete recycled data, you should understand the repercussions, as
described in "Adverse Effects of Removing Recycled Data", page 35. Data removal

007–4413–001 33

2: Comprehensive System Accounting

can affect billing and can alter the contents of the consolidated data file, which is used
by csaperiod.

You can remove recycled data from CSA in the following ways:

• Interactively execute the csarecy -A command. Administrators can select the
active jobs that are to be recycled by running csarecy with the -A option. Users
are not billed for the resources used in the jobs terminated in this manner. Deleted
data is also not included in the consolidated data file.

The following example is one way to execute csarecy -A (which generates two
accounting reports and two consolidated files):

1. Run csarun at the regularly scheduled time.

2. Edit a copy of /usr/sbin/csarun. Change the -r option on the csarecy
invocation line to -A. Also, do not redirect standard output to
${SUM_DIR}/recyrpt. The result should be similar to the following:

csarecy -A -s ${SPACCT} -P ${WTIME_DIR}/Rpacct \ 2> ${NITE_DIR}/Erec.${DTIME}

Since both the -A and -r options write output to stdout, the -r option is not
invoked and stdout is not redirected to a file. As a result, the recycled job
report is not generated.

3. Execute the jstat command, as follows, to display a list of currently active
jobs:

jstat -a > jstat.out

4. Execute the qstat command to display a list of workload management
requests. The qstat command is used for seeing whether there are requests
that are not currently running. This includes requests that are checkpointed,
held, queued, or waiting.

To list all workload management requests, execute the qstat command, as
follows, using a login that has either workload management manager or
workload management operator privilege:

qstat -a > qstat.out

5. Interactively run the modified version of csarun. If you execute the modified
csarun soon after the first step is complete, little data is lost because not very
much data exists.

34 007–4413–001

Linux® Resource Administration Guide

For each active job, csarecy asks you if you want to preserve the job.
Preserve the active and nonrunning workload management jobs found in the
third and fourth steps. All other jobs are candidates for removal.

• Execute csabuild with the -o ndays option, which terminates all active jobs
older than the specified number of days. Resource usage for these terminated jobs
is reported by csarun, and users are billed for the jobs. The consolidated data file
also includes this resource usage.

To execute csabuild with the -o option, edit a copy of /usr/sbin/csarun .
Add the -o ndays option to the csabuild invocation line. Specify for ndays an
appropriate value for your site.

Recycled data for currently active jobs will be removed if you specify an
inappropriate value for ndays.

• Execute csarun with the -A option. It reports resource usage for both active and
terminated jobs, so users are billed for recycled sessions. This data is also included
in the consolidated data file.

None of the data for the active jobs, including the currently active jobs, is recycled.
No recycled data file is generated in the /var/csa/day directory.

• Remove the recycled data file from the /var/csa/day directory. You can delete
data for all of the recycled jobs, both terminated and active, by executing the
following command:

rm /var/csa/day/pacct0

The next time csarun is executed, it will not find data for any recycled jobs.
Thus, users are not billed for the resources used in the recycled jobs, and this data
is not included in the consolidated data file. csarun recycles the data for
currently active jobs.

Adverse Effects of Removing Recycled Data

CSA assumes that all necessary accounting information is available to it, which means
that CSA expects kernel and daemon accounting to be enabled and recycled data not
to have been mistakenly removed. If some data is unavailable, CSA may provide
erroneous billing information. Sites should be aware of the following facts before
removing data:

• Users may or may not be billed for terminated recycled jobs. Administrators must
understand which of the previously described methods cause the user to be billed

007–4413–001 35

2: Comprehensive System Accounting

for the terminated recycled jobs. It is up to the site to decide whether or not it is
valid for the user to be billed for these jobs.

For those methods that cause the user to be billed, both csarun and csaperiod
report the resource usage.

• It may be impossible to reconstruct a terminated recycled job. If a recycled job is
terminated by the administrator, but the job actually terminates in a later
accounting period, information about the job is lost. If a user questions the
resource billing, it may be extremely difficult or impossible for the administrator
to correctly reassemble all accounting information for the job in question.

• Manually terminated recycled jobs may be improperly billed in a future billing
period. If the accounting data for the first portion of a job has been deleted, CSA
may be unable to correctly identify the remaining portion of the job. Errors may
occur, such as workload management requests being flagged as interactive jobs, or
workload management requests being billed at the wrong queue rate. This is
explained in detail in "Workload Management Requests and Recycled Data", page
37.

• CSA programs may detect data inconsistencies. When accounting data is missing,
CSA programs may detect errors and abort.

The following table summarizes the effects of using the methods described in "How
to Remove Recycled Data", page 33.

Table 2-1 Possible Effects of Removing Recycled Data

Method Underbilling? Incorrect billing? Consolidated data file

csarecy -A Yes. Users are not billed for
the portion of the job that was
terminated by csarecy -A.

Possible. Manually
terminated recycled jobs
may be billed improperly
in a future billing period.

Does not include data for
jobs terminated by
csarecy -A.

csabuild -o No. Users are billed for the
portion of the job that was
terminated by csabuild -o.

Possible. Manually
terminated recycled jobs
may be billed improperly
in a future billing period.

Includes data for jobs
terminated by
csabuild -o.

36 007–4413–001

Linux® Resource Administration Guide

Method Underbilling? Incorrect billing? Consolidated data file

csarun -A No. All active and recycled
jobs are billed.

Possible. All active and
recycled jobs that
eventually terminate may
be billed improperly in a
future billing period,
because no data is recycled.

Includes data for all active
and recycled jobs.

rm Yes. All users are not billed
for the portion of the job that
was recycled.

Possible. All recycled jobs
that eventually terminate
may be billed improperly
in a future billing period.

Does not include data for
any recycled job.

By default, the consolidated data file contains data only for terminated jobs. Manual
termination of recycled data may cause some of the recycled data to be included in
the consolidated file.

Workload Management Requests and Recycled Data

For CSA to identify all workload management requests, data must be properly
recycled. When an administrator manually purges recycled data for a workload
management request, errors such as the following can occur:

• CSA fails to flag the job as a workload management job. This causes the request to
be billed at standard rates instead of a workload management queue rate (see
"Workload Management SBUs", page 41).

• The request is billed at the wrong queue rate.

• The wrong queue wait time is associated with the request.

These errors occur because valuable workload management accounting information
was purged by the administrator. Only a few workload management accounting
records are written by the workload management daemon, and all of the records are
needed for CSA to properly bill workload management requests.

Workload management accounting records are only written under the following
circumstances:

• The workload management daemon receives a request.

• A request executes. This includes executing a request for the first time, restarting,
and rerunning a request.

007–4413–001 37

2: Comprehensive System Accounting

• A request terminates. A workload management request can terminate because it is
completed, requeued, held, rerun, or migrated.

• Output is delivered.

Thus, for long running requests that span days, there can be days when no workload
management data is written. Consequently, it is extremely important that accounting
data be recycled. If the site administrator manually terminates recycled jobs, care
must be taken to be sure that only nonexistent workload management requests are
terminated.

Tailoring CSA

This section describes the following actions in CSA:

• Setting up SBUs

• Setting up daemon accounting

• Setting up user exits

• Modifying the charging of workload management jobs based on workload
management termination status

• Tailoring CSA shell scripts

• Using at(1) instead of cron(8) to periodically execute csarun

• Allowing users without superuser permissions to run CSA

• Using an alternate configuration file

System Billing Units (SBUs)

A system billing unit (SBU) is a unit of measure that reflects use of machine resources.
You can alter the weighting factors associated with each field in each accounting
record to obtain an SBU value suitable for your site. SBUs are defined in the
accounting configuration file, /etc/csa.conf. By default, all SBUs are set to 0.0.

Accounting allows different periods of time to be designated either prime or
nonprime time (the time periods are specified in /usr/sbin/holidays).

Following is an example of how the prime/nonprime algorithm works:

38 007–4413–001

Linux® Resource Administration Guide

Assume a user uses 10 seconds of CPU time, and executes for 100 seconds of prime
wall-clock time, and pauses for 100 seconds of nonprime wall-clock time. Therefore,
elapsed time is 200 seconds (100+100). If

prime = prime time / elapsed time
nonprime = nonprime time / elapsed time
cputime[PRIME] = prime * CPU time
cputime[NONPRIME] = nonprime * CPU time

then

cputime[PRIME] == 5 seconds

cputime[NONPRIME] == 5 seconds

Under CSA, an SBU value is associated with each record in the sorted pacct file
when that file is assembled by csabuild. Final summation of the SBU values is
done by csacon during the creation of the cacct record file.

The following examples show how a site can bill different NQS or workload
management queues at differing rates:

Total SBU = (Workload management queue SBU value) * (sum of all process record SBUs
+ sum of all tape record SBUs)

Process SBUs

The SBUs for process data are separated into prime and nonprime values. Prime and
nonprime use is calculated by a ratio of elapsed time. If you do not want to make a
distinction between prime and nonprime time, set the nonprime time SBUs and the
prime time SBUs to the same value. Prime time is defined in
/usr/local/etc/holidays. By default, Saturday and Sunday are considered
nonprime time.

The following is a list of prime time process SBU weights. Descriptions and factor
units for the nonprime time SBU weights are similar to those listed here. SBU weights
are defined in /etc/csa.conf.

Value Description

P_BASIC Prime-time weight factor. P_BASIC is multiplied by the
sum of prime time SBU values to get the final SBU
factor for the process record.

007–4413–001 39

2: Comprehensive System Accounting

P_TIME General-time weight factor. P_TIME is multiplied by
the time SBUs (made up of P_STIME, P_UTIME,
P_QTIME, P_BWTIME, and P_RWTIME) to get the time
contribution to the process record SBU value.

P_STIME System CPU-time weight factor. The unit used for this
weight is billing units per second. P_STIME is
multiplied by the system CPU time.

P_UTIME User CPU-time weight factor. The unit used for this
weight is billing units per second. P_UTIME is
multiplied by the user CPU time.

P_BWTIME Block I/O wait time weight factor. The unit used for
this weight is billing units per second. P_BWTIME is
multiplied by the block I/O wait time.

P_RWTIME Raw I/O wait time weight factor. The unit used for this
weight is billing units per second. P_RWTIME is
multiplied by the raw I/O wait time.

P_MEM General-memory-integral weight factor. P_MEM is
multiplied by the memory SBUs (made up of P_XMEM
and P_VMEM) to get the memory contribution to the
process record SBU value.

P_XMEM CPU-time-core-physical memory-integral weight factor.
The unit used for this weight is billing units per
Mbyte-minute P_XMEM is multiplied by the
core-memory integral.

P_VMEM CPU-time-virtual-memory-integral weight factor. The
unit used for this weight is billing units per
Mbyte-minute. P_VMEM is multiplied by the virtual
memory integral.

P_IO General-I/O weight factor. P_IO is multiplied by the
I/O SBUs (made up of P_BIO, P_CIO, and P_LIO) to
get the I/O contribution to the process record SBU
value.

P_BIO Blocks-transferred weight factor. The unit used for this
weight is billing units per block transferred. P_BIO is
multiplied by the number of I/O blocks transferred.

40 007–4413–001

Linux® Resource Administration Guide

P_CIO Characters-transferred weight factor. The unit used for
this weight is billing units per character transferred.
P_CIO is multiplied by the number of I/O characters
transferred.

P_LIO Logical-I/O-request weight factor. The unit used for
this weight is billing units per logical I/O request.
P_LIO is multiplied by the number of logical I/O
requests made. The number of logical I/O requests is
total number of read and write system calls.

The formula for calculating the whole process record SBU is as follows:

PSBU = (P_TIME * (P_STIME * stime + P_UTIME * utime +

P_BWTIME * bwtime + P_RWTIME * rwtime)) + (P_MEM * (P_XMEM * coremem + P_VMEM

* virtmem)) + (P_IO * (P_BIO * bio + P_CIO * cio + P_LIO * lio));

NSBU = (NP_TIME * (NP_STIME * stime + NP_UTIME * utime
NP_BWTIME * bwtime + NP_RWTIME * rwtime)) + (NP_MEM * (NP_XMEM * coremem +

NP_VMEM * virtmem)) + (NP_IO * (NP_BIO * bio + NP_CIO * cio + NP_LIO * lio));

SBU = P_BASIC * PSBU + NP_BASIC * NSBU;

The variables in this formula are described as follows:

Variable Description

stime System CPU time in seconds

utime User CPU time in seconds

bwtime Block I/O wait time in seconds

rwtime Raw I/O wait time in seconds

coremem Core (physical) memory integral in Mbyte-minutes

virtmem Virtual memory integral in Mbyte-minutes

bio Number of blocks of data transferred

cio Number of characters of data transferred

lio Number of logical I/O requests

Workload Management SBUs

The /etc/csa.conf file contains the configurable parameters that pertain to
workload management SBUs.

007–4413–001 41

2: Comprehensive System Accounting

The WKMG_NUM_QUEUES parameter sets the number of queues for which you want to
set SBUs (the value must be set to at least 1). Each WKMG_QUEUE x variable in the
configuration file has a queue name and an SBU pair associated with it (the total
number of queue/SBU pairs must equal WKMG_NUM_QUEUES). The queue/SBU pairs
define weights for the queues. If an SBU value is less than 1.0, there is an incentive to
run jobs in the associated queue; if the value is 1.0, jobs are charged as though they
are non-workload management jobs; and if the SBU is 0.0, there is no charge for jobs
running in the associated queue. SBUs for queues not found in the configuration file
are automatically set to 1.0.

The WKMG_NUM_MACHINES parameter sets the number of originating machines for
which you want to set SBUs (the value must be at least 1). Each WKMG_MACHINE x
variable in the configuration file has an originating machine and an SBU pair
associated with it (the total number of machine/SBU pairs must equal
WKMG_NUM_MACHINES). SBUs for originating machines not specified in
/etc/csa.conf are automatically set to 1.0.

Tape SBUs (not supported in this release)

There is a set of weighting factors for each group of tape devices. By default, there
are only two groups, tape and cart. The TAPE_SBU i parameters in
/etc/csa.conf define the weighting factors for each group. There are SBUs
associated with the follpwing:

• Number of mounts

• Device reservation time (seconds)

• Number of bytes read

• Number of bytes written

Note: Tape support is not supported in this release.

Daemon Accounting

Accounting information is available from the workload management daemon. Data is
written to the pacct file in the /var/csa/day directory.

In most cases, daemon accounting must be enabled by both the CSA subsystem and
the daemon. "Setting Up CSA", page 19, describes how to enable daemon accounting

42 007–4413–001

Linux® Resource Administration Guide

at system startup time. You can also enable daemon accounting after the system has
booted.

You can enable accounting for a specified daemon by using the csaswitch
command. For example, to start tape accounting, you should do the following:

/usr/sbin/csaswitch -c on -n tape

Daemon accounting is disabled at system shutdown (see "Setting Up CSA", page 19).
It can also be disabled at any time by the csaswitch command when used with the
off operand. For example, to disable workload management accounting, execute the
following command:

/usr/sbin/csaswitch -c off -n wkmg

These dynamic changes using csaswitch are not saved across a system reboot.

Setting up User Exits

CSA accommodates the following user exits, which can be called from certain
csarun states:

csarun state User exit

ARCHIVE1 /usr/sbin/csa.archive1

ARCHIVE2 /usr/sbin/csa.archive2

FEF /var/local/sbin/csa.fef

USEREXIT /usr/sbin/csa.user

CSA accommodates the following user exit, which can be called from certain
csaperiod states:

csaperiod state User exit

USEREXIT /usr/sbin/csa.puser

These exits allow an administrator to tailor the csarun procedure (or csaperiod
procedure) to the individual site’s needs by creating scripts to perform additional
site-specific processing during daily accounting. (Note that the following comments
also apply to csaperiod).

While executing, csarun checks in the ARCHIVE1, ARCHIVE2, FEF and USEREXIT
states for a shell script with the appropriate name.

007–4413–001 43

2: Comprehensive System Accounting

If the script exists, it is executed via the shell . (dot) command. If the script does not
exist, the user exit is ignored. The . (dot) command will not execute a compiled
program, but the user exit script can. csarun variables are available, without being
exported, to the user exit script. csarun checks the return status from the user exit
and if it is nonzero, the execution of csarun is terminated.

Some examples of user exits are as follows:

rain1# cd /usr/lib/acct

rain1# cat csa.archive1

#!/bin/sh

mkdir -p /tmp/acct/pacct${DTIME}

cp ${WTIME_DIR}/${PACCT}* /tmp/acct/pacct${DTIME}

rain1# cat csa.archive2

#!/bin/sh

cp ${SPACCT} /tmp/acct

rain1# cat csa.fef

#!/bin/sh

mkdir -p /tmp/acct/jobs

/usr/lib/acct/csadrep -o /tmp/acct/jobs/dbin.${DTIME} -s ${SPACCT}
/usr/lib/acct/csadrep -n -V3 /tmp/acct/jobs/dbin.${DTIME}

Charging for Workload Management Jobs

By default, SBUs are calculated for all workload management jobs regardless of the
workload management termination code of the job. If you do not want to bill
portions of a workload management request, set the appropriate WKMG_TERM_xxxx
variable (termination code) in the /etc/csa.conf file to 0, which sets the SBU for
this portion to 0.0. This sets the SBU for this portion to 0.0. By default, all portions of
a request are billed.

The following table describes the termination codes:

44 007–4413–001

Linux® Resource Administration Guide

Code Description

WKMG_TERM_EXIT Generated when the request finishes running and is no
longer in a queued state.

WKMG_TERM_REQUEUE Written for a request that is requeued.

WKMG_TERM_HOLD Written for a request that is checkpointed and held.

WKMG_TERM_RERUN Written when a request is rerun.

WKMG_TERM_MIGRATE Written when a request is migrated.

Note: The above descriptions of the termination codes are very generic. Different
workload managers will tailor the meaning of these codes to suit their products. LSF
currently only uses the WKMG_TERM_EXIT termination code.

Tailoring CSA Shell Scripts and Commands

Modify the following variables in /etc/csa.conf if necessary:

Variable Description

ACCT_FS File system on which /var/csa resides. The default is
/var.

MAIL_LIST List of users to whom mail is sent if fatal errors are
detected in the accounting shell scripts. The default is
root and adm.

WMAIL_LIST List of users to whom mail is sent if warning errors are
detected by the accounting scripts at cleanup time. The
default is root and adm.

MIN_BLKS Minimum number of free blocks needed in
${ACCT_FS} to run csarun or csaperiod. The
default is 2000 free blocks. Block size is 1024 bytes.

Using at to Execute csarun

You can use the at command instead of cron to execute csarun periodically. If your
system is down when csarun is scheduled to run via cron, csarun will not be
executed until the next scheduled time. On the other hand, at jobs execute when the
machine reboots if their scheduled execution time was during a down period.

007–4413–001 45

2: Comprehensive System Accounting

You can execute csarun by using at in several ways. For example, a separate script
can be written to execute csarun and then resubmit the job at a specified time. Also,
an at invocation of csarun could be placed in a user exit script,
/usr/sbin/csa.user, that is executed from the USEREXIT section of csarun. For
more information, see "Setting up User Exits", page 43.

Using an Alternate Configuration File

By default, the /etc/csa.conf configuration file is used when any of the CSA
commands are executed. You can specify a different file by setting the shell variable
CSACONFIG to another configuration file, and then executing the CSA commands.

For example, you would execute the following commands to use the configuration file
/tmp/myconfig while executing csarun:

CSACONFIG=/tmp/myconfig

/usr/sbin/csarun 2> /var/csa/nite/fd2log

CSA Reports
You can use CSA to create accounting reports. The reports can be used to help track
system usage, monitor performance, and charge users for their time on the system.

The CSA daily reports are located in the /var/csa/sum directory; periodic reports
are located in the /var/csa/fiscal directory. To view the reports, go to the ASCII
file rprt.MMDDhhmm in the report directories.

The CSA reports contain more detailed data than the other accounting reports. For
CSA accounting, daily reports are generated by the csarun command. The daily
report includes the following:

• disk usage statistics

• unfinished job information

• command summary data

• consolidated accounting report

• last login information

• daemon usage report

46 007–4413–001

Linux® Resource Administration Guide

Periodic reports are generated by the csaperiod command. You can also create a
disk usage report using the diskusg command.

This section describes the following reports:

CSA Daily Report

This section describes the following reports:

• "Consolidated Information Report", page 47

• "Unfinished Job Information Report", page 48

• "Disk Usage Report", page 48

• "Command Summary Report", page 48

• "Last Login Report", page 49

• "Daemon Usage Report", page 49

Consolidated Information Report

The Consolidated Information Report is sorted by user ID and then project ID (project
ID is not supported in this release). The following usage values are the total amount
of resources used by all processes for the specified user and project during the
reporting period.

Heading Description

PROJECT NAME Project associated with this resource usage information
(not supported in this release)

USER ID User identifier

LOGIN NAME Login name for the user identifier

CPU_TIME Total accumulated CPU time in seconds

KCORE * CPU-MIN Total accumulated amount of Kbytes of core (physical)
memory used per minute of CPU time

KVIRT * CPU-MIN Total accumulated amount of Kbytes of virtual memory
used per minute of CPU time

IOWAIT BLOCK Total accumulated block I/O wait time in seconds

007–4413–001 47

2: Comprehensive System Accounting

IOWAIT RAW Total accumulated raw I/O wait time in seconds

Unfinished Job Information Report

The Unfinished Job Information Report describes jobs which have not terminated and
are recycled into the next accounting period.

Heading Description

JOB ID Job identifier

USERS Login name of the owner of this job

PROJECT ID Project identifier associated with this job (not supported
in this release)

STARTED Beginning time of this job

Disk Usage Report

The Disk Usage Report describes the amount of disk resource consumption by login
name.

There are no column headings for this report. The first column gives the user
identifier. The second column gives the login name associated with the user identifier.
The third column gives the number of disk blocks used by this user.

Command Summary Report

The Command Summary Report summarizes command usage during this reporting
period. The usage values are the total amount of resources used by all invocations of
the specified command. Commands which were run only once are combined together
in the "***other" entry. Only the first 44 command entries are displayed in the daily
report. The periodic report displays all command entries.

48 007–4413–001

Linux® Resource Administration Guide

Heading Description

COMMAND NAME Name of the command (program)

NUMBER OF
COMMANDS

Number of times this command was executed

TOTAL
KCORE-MINUTES

Total amount of Kbytes of core (physical) memory used
per minute of CPU time

TOTAL
KVIRT-MINUTES

Total amount of Kbytes of virtual memory used per
minute of CPU time

TOTAL CPU Total amount of CPU time used in minutes

TOTAL REAL Total amount of real (wall clock) time used in minutes

MEAN SIZE KCORE Average amount of core (physical) memory used in
Kbytes

MEAN SIZE KVIRT Average amount of virtual memory used in Kbytes

MEAN CPU Average amount of CPU time used in minutes

HOG FACTOR Total CPU time used divided by the total real time
(elapsed time)

K-CHARS READ Total number of characters read in Kbytes

K-CHARS WRITTEN Total number of characters written in Kbytes

BLOCKS READ Total number of blocks read

BLOCKS WRITTEN Total number of blocks written

Last Login Report

The Last Login Report shows the last login date for each login account listed.

There are no column headings for this report. The first column is the last login date.
The second column is the login account name.

Daemon Usage Report

Daemon Usage Report shows reports usage of the workload management and tape
daemons (tape is not supported in this release). This report has several individual
reports depending upon if there was workload management or tape daemon activity
within this reporting period.

007–4413–001 49

2: Comprehensive System Accounting

The Job Type Report gives the workload management and interactive job usage count.

Heading Description

Job Type Type of job (interactive or workload management)

Total Job Count Number and percentage of jobs per job type

Tape Jobs Number and percentage of tape jobs associated with
these interactive and workload management job (not
supported in this release)

The CPU Usage Report gives the workload management and interactive job usage
related to CPU usage.

Heading Description

Job Type Type of job (interactive or workload management)

Total CPU Time Total amount of CPU time used in seconds and
percentage of CPU time

System CPU Time Amount of system CPU time used of the total and the
percentage of the total time which was system CPU
time usage

User CPU Time Amount of user CPU time used of the total and the
percentage of the total time which was user CPU time
usage

The workload management Queue Report gives the following information for each
workload management queue.

Queue Name Name of the workload management queue

Number of Jobs Number of jobs initiated from this queue

CPU Time Amount of system and user CPU times used by jobs
from this queue and percentage of CPU time used

Used Tapes How many jobs from this queue used tapes

Ave Queue Wait Average queue wait time before initiation in seconds

50 007–4413–001

Linux® Resource Administration Guide

Periodic Report

This section describes two periodic reports as follows:

• "Consolidated accounting report", page 51

• "Command summary report", page 51

Consolidated accounting report

The following usage values for the Consolidated accounting report are the total
amount of resources used by all processes for the specified user and project during
the reporting period.

Heading Description

PROJECT NAME Project associated with this resource usage information

USER ID User identifier

LOGIN NAME Login name for the user identifier

CPU_TIME Total accumulated CPU time in seconds

KCORE * CPU-MIN Total accumulated amount of Kbytes of core (physical)
memory used per minute of CPU time of processes

KVIRT * CPU-MIN Total accumulated amount of Kbytes of virtual memory
used per minute of CPU time

IOWAIT BLOCK Total accumulated block I/O wait time in seconds

IOWAIT RAW Total accumulated raw I/O wait time in seconds

DISK BLOCKS Total number of disk blocks used

DISK SAMPLES Number of times disk accounting was run to obtain the
disk blocks used value

FEE Total fees charged to this user from csachargefee(8)

SBUs System billing units charged to this user and project

Command summary report

The following information summarizes command usage during the defined reporting
period. The usage values are the total amount of resources used by all invocations of
the specified command. Unlike the daily command summary report, the periodic
command summary report displays all command entries. Commands executed only

007–4413–001 51

2: Comprehensive System Accounting

once are not combined together into an "***other" entry but are listed individually in
the periodic command summary report.

Heading Description

COMMAND NAME Name of the command (program)

NUMBER OF
COMMANDS

Number of times this command was executed

TOTAL
KCORE-MINUTES

Total amount of Kbytes of core (physical) memory used
per minute of CPU time

TOTAL
KVIRT-MINUTES

Total amount of Kbytes of virtual memory used per
minute of CPU time

TOTAL CPU Total amount of CPU time used in minutes

TOTAL REAL Total amount of real (wall clock) time used in minutes

MEAN SIZE KCORE Average amount of core (physical) memory used in
Kbytes

MEAN SIZE KVIRT Average amount of virtual memory used in Kbytes

MEAN CPU Average amount of CPU time used in minutes

HOG FACTOR Total CPU time used divided by the total real time
(elapsed time)

K-CHARS READ Total number of characters read in Kbytes

K-CHARS WRITTEN Total number of characters written in Kbytes

BLOCKS READ Total number of blocks read

BLOCKS WRITTEN Total number of blocks written

CSA Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type man commandname.

User-Level Man Pages

The following user-level man pages are provided with CSA software:

52 007–4413–001

Linux® Resource Administration Guide

User-level man
page

Description

csacom(1) Searches and prints the CSA process accounting files.

ja(1) Starts and stops user job accounting information.

Administrator Man Pages

The following administrator man page is provided with CSA software:

Administrator man page Description

csaaddc(8) Combines cacct records.

csabuild(8) Organizes accounting records into
job records.

csachargefee(8) Charges a fee to a user.

csackpacct(8) Checks the size of the CSA process
accounting file.

csacms(8) Summarizes command usage from
per-process accounting records

csacon(8) Condenses records from the
sorted pacct file.

csacrep(8) Reports on consolidated accounting
data.

csadrep(8) Reports daemon usage.

csaedit(8) Displays and edits the accounting
information.

csagetconfig(8) Searches the accounting
configuration file for the specified
argument.

csajrep(8) Prints a job report from the sorted
pacct file.

csarecy(8) Recycles unfinished jobs into the
next accounting run.

007–4413–001 53

2: Comprehensive System Accounting

csaswitch(8) Checks the status of, enables or
disables the different types of CSA,
and switches accounting files for
maintainability.

csaverify(8) Verifies that the accounting records
are valid.

54 007–4413–001

Chapter 3

Array Services

Array Services includes administrator commands, libraries, daemons, and kernel
extensions that support the execution of programs across an array.

A central concept in Array Services is the array session handle (ASH), a number that
is used to logically group related processes that may be distributed across multiple
systems. The ASH creates a global process namespace across the Array, facilitating
accounting and administration

Array Services also provides an array configuration database, listing the nodes
comprising an array. Array inventory inquiry functions provide a centralized,
canonical view of the configuration of each node. Other array utilities let the
administrator query and manipulate distributed array applications.

This chapter covers the follow topics:

• "Array Services Package", page 56

• "Installing and Configuring Array Services", page 56

• "Using an Array", page 58

• "Managing Local Processes", page 61

• "Using Array Services Commands", page 62

• "Summary of Common Command Options", page 64

• "Interrogating the Array", page 66

• "Managing Distributed Processes", page 69

• "About Array Configuration", page 74

• "Configuring Arrays and Machines", page 79

• "Configuring Authentication Codes", page 80

• "Configuring Array Commands", page 81

007–4413–001 55

3: Array Services

Array Services Package
The Array Services package comprises the following primary components:

array daemon Allocates ASH values and maintain information about
node configuration and the relation of process IDs to
ASHs. Array daemons reside on each node and work
in cooperation.

array configuration
database

Describes the array configuration used by array
daemons and user programs. One copy at each node.

ainfo command Lets the user or administrator query the Array
configuration database and information about ASH
values and processes.

array command Executes a specified command on one or more nodes.
Commands are predefined by the administrator in the
configuration database.

arshell command Starts a command remotely on a different node using
the current ASH value.

aview command Displays a multiwindow, graphical display of each
node’s status. (Not currently available)

The use of the ainfo, array, arshell, and aview commands is covered in "Using
an Array", page 58.

Installing and Configuring Array Services
To use the Array Services package on Linux, you must have an Array Services
enabled kernel. This is done with the arsess kernel module, which is provided with
SGI’s Linux Base Software. If the module is installed correctly, the init script
provided with the Array Services rpm will load the module when starting up the
arrayd daemon.

1. An account must exist on all hosts in the array for the purposes of running
certain Array Services commands. This is controlled by the
/usr/lib/array/arrayd.conf configuration file. The default is to use the
user account "guest" since this is typically found on UNIX machines. The account
name can be changed in arrayd.conf. For more information, see the
arrayd.conf(8) man page.

56 007–4413–001

Linux® Resource Administration Guide

If necessary, add the specified user account or "guest" by default, to all machines
in the array.

2. Add the following entry to /etc/services file for arrayd service and port.
The default port number is 5434 and is specified in the arrayd.conf
configuration file.

sgi-arrayd 5434/tcp # SGI Array Services daemon

3. If necessary, modify the default authentication configuration. The default
authentication is AUTHENTICATION NOREMOTE, which does not allow access
from remote hosts. The authentication model is specified in the
/usr/lib/array/arrayd.auth configuration file.

4. To configure Array Services on across system reboots using the chkconfig(8)
utility, perform the following:

chkconfig --add array

5. For information on configuring Array Services, see the following:

• "About Array Configuration", page 74

• "Configuring Arrays and Machines", page 79

• "Configuring Authentication Codes", page 80

• "Configuring Array Commands", page 81

6. To turn on Array Services, perform the following:

/etc/rc.d/init.d/array start

This step will be done automatically for subsequent system reboots when Array
Services is configured on via the chkconfig(8) utility.

The following steps are required to disable Array Services:

1. To turn off Array Services, perform the following:

/etc/rc.d/init.d/array stop

2. To stop Array Services from initiating after a system reboot, use the
chkconfig(8) command:

chkconfig --del array

007–4413–001 57

3: Array Services

Using an Array
An Array system is an aggregation of nodes, which are servers bound together with a
high-speed network and Array Services 3.5 software. Array users have the advantage
of greater performance and additional services. Array users access the system with
familiar commands for job control, login and password management, and remote
execution.

Array Services 3.5 augments conventional facilities with additional services for array
users and for array administrators. The extensions include support for global session
management, array configuration management, batch processing, message passing,
system administration, and performance visualization.

This section introduces the extensions for Array use, with pointers to more detailed
information. The main topics are as follows:

• "Using an Array System", page 58, summarizes what a user needs to know and
the main facilities a user has available.

• "Managing Local Processes", page 61, reviews the conventional tools for listing
and controlling processes within one node.

• "Using Array Services Commands", page 62, describes the common concepts,
options, and environment variables used by the Array Services commands.

• "Interrogating the Array", page 66, summarizes how to use Array Services
commands to learn about the Array and its workload, with examples.

• "Summary of Common Command Options", page 64

• "Managing Distributed Processes", page 69, summarizes how to use Array Services
commands to list and control processes in multiple nodes.

Using an Array System

The array system allows you to run distributed sessions on multiple nodes of an
array. You can access the Array from either:

• A workstation

• An X terminal

• An ASCII terminal

58 007–4413–001

Linux® Resource Administration Guide

In each case, you log in to one node of the Array in the way you would log in to any
remote UNIX host. From a workstation or an X terminal you can of course open more
than one terminal window and log into more than one node.

Finding Basic Usage Information

In order to use an Array, you need the following items of information:

• The name of the Array.

You use this arrayname in Array Services commands.

• The login name and password you will use on the Array.

You use these when logging in to the Array to use it.

• The hostnames of the array nodes.

Typically these names follow a simple pattern, often arrayname1, arrayname2, and
so on.

• Any special resource-distribution or accounting rules that may apply to you or
your group under a job scheduling system.

You can learn the hostnames of the array nodes if you know the array name, using
the ainfo command as follows:

ainfo -a arrayname machines

Logging In to an Array

Each node in an Array has an associated hostname and IP network address. Typically,
you use an Array by logging in to one node directly, or by logging in remotely from
another host (such as the Array console or a networked workstation). For example,
from a workstation on the same network, this command would log you in to the
node named hydra6 as follows:

rlogin hydra6

For details of the rlogin command, see the rlogin(1) man page.

The system administrators of your array may choose to disallow direct node logins in
order to schedule array resources. If your site is configured to disallow direct node
logins, your administrators will be able to tell you how you are expected to submit

007–4413–001 59

3: Array Services

work to the array–perhaps through remote execution software or batch queueing
facilities.

Invoking a Program

Once you have access to an array, you can invoke programs of several classes:

• Ordinary (sequential) applications

• Parallel shared-memory applications within a node

• Parallel message-passing applications within a node

• Parallel message-passing applications distributed over multiple nodes (and
possibly other servers on the same network running Array Services 3.5

If you are allowed to do so, you can invoke programs explicitly from a logged-in shell
command line; or you may use remote execution or a batch queueing system.

Programs that are X Windows clients must be started from an X server, either an X
Terminal or a workstation running X Windows.

Some application classes may require input in the form of command line options,
environment variables, or support files upon execution. For example:

• X client applications need the DISPLAY environment variable set to specify the X
server (workstation or X-terminal) where their windows will display.

• A multithreaded program may require environment variables to be set describing
the number of threads.

For example, C and Fortran programs that use parallel processing directives test
the MP_SET_NUMTHREADS variable.

• Message Passing Interface (MPI) and Parallel Virtual Machine (PVM)
message-passing programs may require support files to describe how many tasks
to invoke on specified nodes.

Some information sources on program invocation are listed in Table 3-1, page 61.

60 007–4413–001

Linux® Resource Administration Guide

Table 3-1 Information Sources for Invoking a Program

Topic Man Page

Remote login rlogin(1)

Setting environment variables environ(5), env(1)

Managing Local Processes
Each UNIX process has a process identifier (PID), a number that identifies that process
within the node where it runs. It is important to realize that a PID is local to the node;
so it is possible to have processes in different nodes using the same PID numbers.

Within a node, processes can be logically grouped in process groups. A process group
is composed of a parent process together with all the processes that it creates. Each
process group has a process group identifier (PGID). Like a PID, a PGID is defined
locally to that node, and there is no guarantee of uniqueness across the Array.

Monitoring Local Processes and System Usage

You query the status of processes using the system command ps. To generate a full
list of all processes on a local system, use a command such as the following:

ps -elfj

You can monitor the activity of processes using the command top (an ASCII display
in a terminal window).

Scheduling and Killing Local Processes

You can schedule commands to run at specific times using the at command. You can
kill or stop processes using the kill command. To destroy the process with PID
13032, use a command such as the following:

kill -KILL 13032

007–4413–001 61

3: Array Services

Summary of Local Process Management Commands

Table 3-2, page 62, summarizes information about local process management.

Table 3-2 Information Sources: Local Process Management
standard

Topic Man Page

Process ID and process group intro(2)

Listing and monitoring processes ps(1), top(1)

Running programs at low priority nice(1), batch(1)

Running programs at a scheduled time at(1)

Terminating a process kill(1)

Using Array Services Commands
When an application starts processes on more than one node, the PID and PGID are
no longer adequate to manage the application. The commands of Array Services 3.5
give you the ability to view the entire array, and to control the processes of multinode
programs.

Note: You can use Array Services commands from any workstation connected to an
array system. You don’t have to be logged in to an array node.

The following commands are common to Array Services operations as shown in Table
3-3, page 62.

Table 3-3 Common Array Services Commands

62 007–4413–001

Linux® Resource Administration Guide

Topic Man Page

Array Services Overview array_services(5)

ainfo command ainfo(1)

array command Use array(1); configuration:
arrayd.conf(4)

arshell command arshell(1)

newsess command newsess (1)

About Array Sessions

Array Services is composed of a daemon–a background process that is started at boot
time in every node–and a set of commands such as ainfo(1). The commands call on
the daemon process in each node to get the information they need.

One concept that is basic to Array Services is the array session, which is a term for all
the processes of one application, wherever they may execute. Normally, your login
shell, with the programs you start from it, constitutes an array session. A batch job is
an array session; and you can create a new shell with a new array session identity.

Each session is identified by an array session handle (ASH), a number that identifies
any process that is part of that session. You use the ASH to query and to control all
the processes of a program, even when they are running in different nodes.

About Names of Arrays and Nodes

Each node is server, and as such has a hostname. The hostname of a node is returned
by the hostname(1) command executed in that node as follows:

% hostname

tokyo

The command is simple and documented in the hostname(1) man page. The more
complicated issues of hostname syntax, and of how hostnames are resolved to
hardware addresses are covered in hostname(5).

007–4413–001 63

3: Array Services

An Array system as a whole has a name too. In most installations there is only a
single Array, and you never need to specify which Array you mean. However, it is
possible to have multiple Arrays available on a network, and you can direct Array
Services commands to a specific Array.

About Authentication Keys

It is possible for the Array administrator to establish an authentication code, which is
a 64-bit number, for all or some of the nodes in an array (see "Configuring
Authentication Codes" on page 58). When this is done, each use of an Array Services
command must specify the appropriate authentication key, as a command option, for
the nodes it uses. Your system administrator will tell you if this is necessary.

Summary of Common Command Options
The following Array Services commands have a consistent set of command options:
ainfo(1), array(1), arshell(1), and aview(1) (aview(1) is not currently available).
Table 3-4 is a summary of these options. Not all options are valid with all commands;
and each command has unique options besides those shown. The default values of
some options are set by environment variables listed in the next topic.

Table 3-4 Array Services Command Option Summary

Option Used In Description

-a array ainfo, array, aview Specify a particular
Array when more
than one is accessible.

-D ainfo, array,
arshell, aview

Send commands to
other nodes directly,
rather than through
array daemon.

-F ainfo, array,
arshell, aview

Forward commands to
other nodes through
the array daemon.

64 007–4413–001

Linux® Resource Administration Guide

Option Used In Description

-Kl number ainfo, array, aview Authentication key (a
64-bit number) for the
local node.

-Kr number ainfo, array, aview Authentication key (a
64-bit number) for the
remote node.

-l (letter ell) ainfo, array Execute in context of
the destination node,
not necessarily the
current node.

-l port ainfo, array,
arshell, aview

Nonstandard port
number of array
daemon.

-s hostname ainfo, array, aview Specify a destination
node.

Specifying a Single Node

The -l and -s options work together. The -l (letter ell for “local”) option restricts
the scope of a command to the node where the command is executed. By default, that
is the node where the command is entered. When -l is not used, the scope of a
query command is all nodes of the array. The -s (server, or node name) option
directs the command to be executed on a specified node of the array. These options
work together in query commands as follows:

• To interrogate all nodes as seen by the local node, use neither option.

• To interrogate only the local node, use only -l.

• To interrogate all nodes as seen by a specified node, use only -s.

• To interrogate only a particular node, use both -s and -l.

007–4413–001 65

3: Array Services

Common Environment Variables

The Array Services commands depend on environment variables to define default
values for the less-common command options. These variables are summarized in
Table 3-5.

Table 3-5 Array Services Environment Variables

Variable Name Use Default When Undefined

ARRAYD_FORWARD When defined with a string
starting with the letter y, all
commands default to
forwarding through the array
daemon (option -F).

Commands default to
direct communication
(option -D).

ARRAYD_PORT The port (socket) number
monitored by the array daemon
on the destination node.

The standard number of
5434, or the number
given with option -p.

ARRAYD_LOCALKEY Authentication key for the local
node (option -Kl).

No authentication unless
-Kl option is used.

ARRAYD_REMOTEKEY Authentication key for the
destination node (option -Kr).

No authentication unless
-Kr option is used.

ARRAYD The destination node, when
not specified by the -s option.

The local node, or the
node given with -s.

Interrogating the Array
Any user of an Array system can use Array Services commands to check the
hardware components and the software workload of the Array. The commands
needed are ainfo, array, and aview.

Learning Array Names

If your network includes more than one Array system, you can use ainfo arrays
at one array node to list all the Array names that are configured, as in the following
example.

66 007–4413–001

Linux® Resource Administration Guide

homegrown% ainfo arrays
Arrays known to array services daemon

ARRAY DevArray

IDENT 0x3381

ARRAY BigDevArray

IDENT 0x7456
ARRAY test

IDENT 0x655e

Array names are configured into the array database by the administrator. Different
Arrays might know different sets of other Array names.

Learning Node Names

You can use ainfo machines to learn the names and some features of all nodes in
the current Array, as in the following example.

homegrown 175% ainfo -b machines

machine homegrown homegrown 5434 192.48.165.36 0

machine disarray disarray 5434 192.48.165.62 0

machine datarray datarray 5434 192.48.165.64 0

machine tokyo tokyo 5434 150.166.39.39 0

In this example, the -b option of ainfo is used to get a concise display.

Learning Node Features

You can use ainfo nodeinfo to request detailed information about one or all nodes
in the array. To get information about the local node, use ainfo -l nodeinfo.
However, to get information about only a particular other node, for example node
tokyo, use -l and -s, as in the following example. (The example has been edited for
brevity.)

homegrown 181% ainfo -s tokyo -l nodeinfo

Node information for server on machine "tokyo"

MACHINE tokyo

VERSION 1.2

8 PROCESSOR BOARDS

BOARD: TYPE 15 SPEED 190
CPU: TYPE 9 REVISION 2.4

FPU: TYPE 9 REVISION 0.0

007–4413–001 67

3: Array Services

...
16 IP INTERFACES HOSTNAME tokyo HOSTID 0xc01a5035

DEVICE et0 NETWORK 150.166.39.0 ADDRESS 150.166.39.39 UP

DEVICE atm0 NETWORK 255.255.255.255 ADDRESS 0.0.0.0 UP

DEVICE atm1 NETWORK 255.255.255.255 ADDRESS 0.0.0.0 UP

...
0 GRAPHICS INTERFACES

MEMORY

512 MB MAIN MEMORY

INTERLEAVE 4

If the -l option is omitted, the destination node will return information about every
node that it knows.

Learning User Names and Workload

The system commands who(1), top(1), and uptime(1) are commonly used to get
information about users and workload on one server. The array(1) command offers
Array-wide equivalents to these commands.

Learning User Names

To get the names of all users logged in to the whole array, use array who. To learn
the names of users logged in to a particular node, for example tokyo, use -l and -s,
as in the following example. (The example has been edited for brevity and security.)

homegrown 180% array -s tokyo -l who
joecd tokyo frummage.eng.sgi -tcsh

joecd tokyo frummage.eng.sgi -tcsh

benf tokyo einstein.ued.sgi. /bin/tcsh

yohn tokyo rayleigh.eng.sg vi +153 fs/procfs/prd

...

Learning Workload

Two variants of the array command return workload information. The array-wide
equivalent of uptime is array uptime, as follows:

homegrown 181% array uptime

homegrown: up 1 day, 7:40, 26 users, load average: 7.21, 6.35, 4.72

disarray: up 2:53, 0 user, load average: 0.00, 0.00, 0.00

68 007–4413–001

Linux® Resource Administration Guide

datarray: up 5:34, 1 user, load average: 0.00, 0.00, 0.00
tokyo: up 7 days, 9:11, 17 users, load average: 0.15, 0.31, 0.29

homegrown 182% array -l -s tokyo uptime

tokyo: up 7 days, 9:11, 17 users, load average: 0.12, 0.30, 0.28

The command array top lists the processes that are currently using the most CPU
time, with their ASH values, as in the following example.

homegrown 183% array top

ASH Host PID User %CPU Command

--

0x1111ffff00000000 homegrown 5 root 1.20 vfs_sync
0x1111ffff000001e9 homegrown 1327 guest 1.19 atop

0x1111ffff000001e9 tokyo 19816 guest 0.73 atop

0x1111ffff000001e9 disarray 1106 guest 0.47 atop

0x1111ffff000001e9 datarray 1423 guest 0.42 atop

0x1111ffff00000000 homegrown 20 root 0.41 ShareII

0x1111ffff000000c0 homegrown 29683 kchang 0.37 ld
0x1111ffff0000001e homegrown 1324 root 0.17 arrayd

0x1111ffff00000000 homegrown 229 root 0.14 routed

0x1111ffff00000000 homegrown 19 root 0.09 pdflush

0x1111ffff000001e9 disarray 1105 guest 0.02 atopm

The -l and -s options can be used to select data about a single node, as usual.

Managing Distributed Processes
Using commands from Array Services 3.5, you can create and manage processes that
are distributed across multiple nodes of the Array system.

About Array Session Handles (ASH)

In an Array system you can start a program with processes that are in more than one
node. In order to name such collections of processes, Array Services 3.5 software
assigns each process to an array session handle (ASH).

An ASH is a number that is unique across the entire array (unlike a PID or PGID). An
ASH is the same for every process that is part of a single array session—no matter
which node the process runs in. You display and use ASH values with Array Services

007–4413–001 69

3: Array Services

commands. Each time you log in to an Array node, your shell is given an ASH,
which is used by all the processes you start from that shell.

The command ainfo ash returns the ASH of the current process on the local node,
which is simply the ASH of the ainfo command itself.

homegrown 178% ainfo ash

Array session handle of process 10068: 0x1111ffff000002c1

homegrown 179% ainfo ash
Array session handle of process 10069: 0x1111ffff000002c1

In the preceding example, each instance of the ainfo command was a new process:
first PID 10068, then PID 10069. However, the ASH is the same in both cases. This
illustrates a very important rule: every process inherits its parent’s ASH. In this case,
each instance of array was forked by the command shell, and the ASH value shown
is that of the shell, inherited by the child process.

You can create a new global ASH with the command ainfo newash, as follows:

homegrown 175% ainfo newash

Allocating new global ASH

0x11110000308b2f7c

This feature has little use at present. There is no existing command that can change
its ASH, so you cannot assign the new ASH to another command. It is possible to
write a program that takes an ASH from a command-line option and uses the Array
Services function setash() to change to that ASH (however such a program must be
privileged). No such program is distributed with Array Services 3.5.

Listing Processes and ASH Values

The command array ps returns a summary of all processes running on all nodes in
an array. The display shows the ASH, the node, the PID, the associated username, the
accumulated CPU time, and the command string.

To list all the processes on a particular node, use the -l and -s options. To list
processes associated with a particular ASH, or a particular username, pipe the
returned values through grep, as in the following example. (The display has been
edited to save space.)

homegrown 182% array -l -s tokyo ps | fgrep wombat
0x261cffff0000054c tokyo 19007 wombat 0:00 -csh

0x261cffff0000054a tokyo 17940 wombat 0:00 csh -c (setenv...

70 007–4413–001

Linux® Resource Administration Guide

0x261cffff0000054c tokyo 18941 wombat 0:00 csh -c (setenv...
0x261cffff0000054a tokyo 17957 wombat 0:44 xem -geometry 84x42

0x261cffff0000054a tokyo 17938 wombat 0:00 rshd

0x261cffff0000054a tokyo 18022 wombat 0:00 /bin/csh -i

0x261cffff0000054a tokyo 17980 wombat 0:03 /usr/gnu/lib/ema...

0x261cffff0000054c tokyo 18928 wombat 0:00 rshd

Controlling Processes

The arshell command lets you start an arbitrary program on a single other node.
The array command gives you the ability to suspend, resume, or kill all processes
associated with a specified ASH.

Using arshell

The arshell command is an Array Services extension of the familiar rsh command;
it executes a single system command on a specified Array node. The difference from
rsh is that the remote shell executes under the same ASH as the invoking shell (this
is not true of simple rsh). The following example demonstrates the difference.

homegrown 179% ainfo ash

Array session handle of process 8506: 0x1111ffff00000425
homegrown 180% rsh guest@tokyo ainfo ash

Array session handle of process 13113: 0x261cffff0000145e

homegrown 181% arshell guest@tokyo ainfo ash

Array session handle of process 13119: 0x1111ffff00000425

You can use arshell to start a collection of unrelated programs in multiple nodes
under a single ASH; then you can use the commands described under "Managing
Session Processes", page 73 to stop, resume, or kill them.

Both MPI and PVM use arshell to start up distributed processes.

007–4413–001 71

3: Array Services

Tip: The shell is a process under its own ASH. If you use the array command to
stop or kill all processes started from a shell, you will stop or kill the shell also. In
order to create a group of programs under a single ASH that can be killed safely,
proceed as follows:

1. Within the new shell, start one or more programs using arshell.

2. Exit the nested shell.

Now you are back to the original shell. You know the ASH of all programs started
from the nested shell. You can safely kill all jobs that have that ASH because the
current shell is not affected.

About the Distributed Example

The programs launched with arshell are not coordinated (they could of course be
written to communicate with each other, for example using sockets), and you must
start each program individually.

The array command is designed to permit the simultaneous launch of programs on
all nodes with a single command. However, array can only launch programs that
have been configured into it, in the Array Services configuration file. (The creation and
management of this file is discussed under "About Array Configuration", page 74.)

In order to demonstrate process management in a simple way from the command
line, the following command was inserted into the configuration file
/usr/lib/array/arrayd.conf:

#

Local commands

#
command spin # Do nothing on multiple machines

invoke /usr/lib/array/spin

user %USER

group %GROUP

options nowait

The invoked command, /usr/lib/array/spin, is a shell script that does nothing
in a loop, as follows:

#!/bin/sh

Go into a tight loop

72 007–4413–001

Linux® Resource Administration Guide

#
interrupted() {

echo "spin has been interrupted - goodbye"

exit 0

}

trap interrupted 1 2
while [! -f /tmp/spin.stop]; do

sleep 5

done

echo "spin has been stopped - goodbye"

exit 1

With this preparation, the command array spin starts a process executing that
script on every processor in the array. Alternatively, array -l -s nodename spin
would start a process on one specific node.

Managing Session Processes

The following command sequence creates and then kills a spin process in every
node. The first step creates a new session with its own ASH. This is so that later,
array kill can be used without killing the interactive shell.

homegrown 175% ainfo ash

Array session handle of process 8912: 0x1111ffff0000032d

homegrown 175% ainfo ash

Array session handle of process 8941: 0x11110000308b2fa6

In the new session with ASH 0x11110000308b2fa6, the command array spin starts the
/usr/lib/array/spin script on every node. In this test array, there were only two
nodes on this day, homegrown and tokyo.

homegrown 176% array spin

After exiting back to the original shell, the command array ps is used to search for
all processes that have the ASH 0x11110000308b2fa6.

007–4413–001 73

3: Array Services

homegrown 177% exit
homegrown 178% homegrown 177%

homegrown 177% ainfo ash

Array session handle of process 9257: 0x1111ffff0000032d

homegrown 179% array ps | fgrep 0x11110000308b2fa6

0x11110000308b2fa6 homegrown 9033 guest 0:00 /bin/sh /usr/lib/array/spin
0x11110000308b2fa6 homegrown 9618 guest 0:00 sleep 5

0x11110000308b2fa6 tokyo 26021 guest 0:00 /bin/sh /usr/lib/array/spin

0x11110000308b2fa6 tokyo 26072 guest 0:00 sleep 5

0x1111ffff0000032d homegrown 9642 guest 0:00 fgrep 0x11110000308b2fa6

There are two processes related to the spin script on each node. The next command
kills them all.

homegrown 180% array kill 0x11110000308b2fa6

homegrown 181% array ps | fgrep 0x11110000308b2fa6

0x1111ffff0000032d homegrown 10030 guest 0:00 fgrep 0x11110000308b2fa6

The command array suspend 0x11110000308b2fa6 would suspend the
processes instead (however, it is hard to demonstrate that a sleep command has
been suspended).

About Job Container IDs

Array systems have the capability to forward job IDs (JIDs) from the initiating host.
All of the processes running in the ASH across one or more nodes in an array also
belong to the same job. For a complete description of the job container and it usage,
see Chapter 1, "Linux Kernel Jobs", page 1.

When processes are running on the initiating host, they belong to the same job as the
initiating process and operate under the limits established for that job. On remote
nodes, a new job is created using the same JID as the initiating process. Job limits for
a job on remote nodes use the systune defaults and are set using the systune(1M)
command on the initiating host.

About Array Configuration
The system administrator has to initialize the Array configuration database, a file that
is used by the Array Services daemon in executing almost every ainfo and array
command. For details about array configuration, see the man pages cited in Table 3-6.

74 007–4413–001

Linux® Resource Administration Guide

Table 3-6 Information Sources: Array Configuration

Topic Man Page

Array Services overview array_services(5)

Array Services user
commands

ainfo(1) , array(1)

Array Services daemon
overview

arrayd(1m)

Configuration file format arrayd.conf(4) ,
/usr/lib/array/arrayd.conf.template

Configuration file
validator

ascheck(1)

Array Services simple
configurator

arrayconfig(1m)

About the Uses of the Configuration File

The configuration files are read by the Array Services daemon when it starts.
Normally it is started in each node during the system startup. (You can also run the
daemon from a command line in order to check the syntax of the configuration files.)

The configuration files contain data needed by ainfo and array:

• The names of Array systems, including the current Array but also any other Arrays
on which a user could run an Array Services command (reported by ainfo).

• The names and types of the nodes in each named Array, especially the hostnames
that would be used in an Array Services command (reported by ainfo).

• The authentication keys, if any, that must be used with Array Services commands
(required as -Kl and -Kr command options, see "Summary of Common
Command Options", page 64).

• The commands that are valid with the array command.

007–4413–001 75

3: Array Services

About Configuration File Format and Contents

A configuration file is a readable text file. The file contains entries of the following
four types, which are detailed in later topics.

Array definition Describes this array and other known arrays, including
array names and the node names and types.

Command definition Specifies the usage and operation of a command that
can be invoked through the array command.

Authentication Specifies authentication numbers that must be used to
access the Array.

Local option Options that modify the operation of the other entries
or arrayd.

Blank lines, white space, and comment lines beginning with “#” can be used freely for
readability. Entries can be in any order in any of the files read by arrayd.

Besides punctuation, entries are formed with a keyword-based syntax. Keyword
recognition is not case-sensitive; however keywords are shown in uppercase in this
text and in the man page. The entries are primarily formed from keywords, numbers,
and quoted strings, as detailed in the man page arrayd.conf(4) .

Loading Configuration Data

The Array Services daemon, arrayd, can take one or more filenames as arguments. It
reads them all, and treats them like logical continuations (in effect, it concatenates
them). If no filenames are specified, it reads /usr/lib/array/arrayd.conf and
/usr/lib/array/arrayd.auth. A different set of files, and any other arrayd
command-line options, can be written into the file /etc/config/arrayd.options,
which is read by the startup script that launches arrayd at boot time.

Since configuration data can be stored in two or more files, you can combine different
strategies, for example:

• One file can have different access permissions than another. Typically,
/usr/lib/array/arrayd.conf is world-readable and contains the available
array commands, while /usr/lib/array/arrayd.auth is readable only by
root and contains authentication codes.

76 007–4413–001

Linux® Resource Administration Guide

• One node can have different configuration data than another. For example, certain
commands might be defined only in certain nodes; or only the nodes used for
interactive logins might know the names of all other nodes.

• You can use NFS-mounted configuration files. You could put a small configuration
file on each machine to define the Array and authentication keys, but you could
have a larger file defining array commands that is NFS-mounted from one node.

After you modify the configuration files, you can make arrayd reload them by
killing the daemon and restarting it in each machine. The script
/etc/rc.d/init.d/array supports this operation:

To kill daemon, execute this command:

/etc/rc.d/init.d/array stop

To kill and restart the daemon in one operation; peform the following command:

/etc/rc.d/init.d/array restart

Note: On Linux systems, the script path name is /etc/rc.d/init.d/array.

The Array Services daemon in any node knows only the information in the
configuration files available in that node. This can be an advantage, in that you can
limit the use of particular nodes; but it does require that you take pains to keep
common information synchronized. (An automated way to do this is summarized
under "Designing New Array Commands", page 85.)

About Substitution Syntax

The man page arrayd.conf(4) details the syntax rules for forming entries in the
configuration files. An important feature of this syntax is the use of several kinds of
text substitution, by which variable text is substituted into entries when they are
executed.

Most of the supported substitutions are used in command entries. These substitutions
are performed dynamically, each time the array command invokes a subcommand.
At that time, substitutions insert values that are unique to the invocation of that
subcommand. For example, the value %USER inserts the user ID of the user who is
invoking the array command. Such a substitution has no meaning except during
execution of a command.

007–4413–001 77

3: Array Services

Substitutions in other configuration entries are performed only once, at the time the
configuration file is read by arrayd. Only environment variable substitution makes
sense in these entries. The environment variable values that are substituted are the
values inherited by arrayd from the script that invokes it, which is
/etc/rc.d/init.d/array.

Testing Configuration Changes

The configuration files contain many sections and options (detailed in the section that
follow this one). The Array Services command ascheck performs a basic sanity
check of all configuration files in the array.

After making a change, you can test an individual configuration file for correct syntax
by executing arrayd as a command with the -c and -f options. For example,
suppose you have just added a new command definition to
/usr/lib/array/arrayd.local. You can check its syntax with the following
command:

arrayd -c -f /usr/lib/array/arrayd.local

When testing new commands for correct operation, you need to see the warning and
error messages produced by arrayd and processes that it may spawn. The stderr
messages from a daemon are not normally visible. You can make them visible by the
following procedure:

1. On one node, kill the daemon.

2. In one shell window on that node, start arrayd with the options -n -v. Instead
of moving into the background, it remains attached to the shell terminal.

Note: Although arrayd becomes functional in this mode, it does not refer to
/etc/config/arrayd.options, so you need to specify explicitly all
command-line options, such as the names of nonstandard configuration files.

3. From another shell window on the same or other nodes, issue ainfo and array
commands to test the new configuration data. Diagnostic output appears in the
arrayd shell window.

4. Terminate arrayd and restart it as a daemon (without -n).

During steps 1, 2, and 4, the test node may fail to respond to ainfo and array
commands, so users should be warned that the Array is in test mode.

78 007–4413–001

Linux® Resource Administration Guide

Configuring Arrays and Machines
Each ARRAY entry gives the name and composition of an Array system that users
can access. At least one ARRAY must be defined at every node, the array in use.

Note: ARRAY is a keyword.

Specifying Arrayname and Machine Names

A simple example of an ARRAY definition is a follows:

array simple

machine congo

machine niger
machine nile

The arrayname simple is the value the user must specify in the -a option (see
"Summary of Common Command Options", page 64). One arrayname should be
specified in a DESTINATION ARRAY local option as the default array (reported by
ainfo dflt). Local options are listed under "Configuring Local Options", page 84.

It is recommended that you have at least one array called me that just contains the
localhost. The default arrayd.conf file has the me array defined as the default
destination array.

The MACHINE subentries of ARRAY define the node names that the user can specify
with the -s option. These names are also reported by the command ainfo
machines.

Specifying IP Addresses and Ports

The simple MACHINE subentries shown in the example are based on the assumption
that the hostname is the same as the machine’s name to Domain Name Services
(DNS). If a machine’s IP address cannot be obtained from the given hostname, you
must provide a HOSTNAME subentry to specify either a completely qualified domain
name or an IP address, as follows:

array simple

machine congo

hostname congo.engr.hitech.com
port 8820

007–4413–001 79

3: Array Services

machine niger
hostname niger.engr.hitech.com

machine nile

hostname "198.206.32.85"

The preceding example also shows how the PORT subentry can be used to specify that
arrayd in a particular machine uses a different socket number than the default 5434.

Specifying Additional Attributes

Under both ARRAY and MACHINE you can insert attributes, which are named string
values. These attributes are not used by Array Services, but they are displayed by
ainfo .Some examples of attributes would be as follows:

array simple

array_attribute config_date="04/03/96"

machine a_node
machine_attribute aka="congo"

hostname congo.engr.hitech.com

Tip: You can write code that fetches any arrayname, machine name, or attribute
string from any node in the array.

Configuring Authentication Codes
In Array Services 3.5 only one type of authentication is provided: a simple numeric
key that can be required with any Array Services command. You can specify a single
authentication code number for each node. The user must specify the code with any
command entered at that node, or addressed to that node using the -s option (see
"Summary of Common Command Options", page 64).

The arshell command is like rsh in that it runs a command on another machine
under the userid of the invoking user. Use of authentication codes makes Array
Services somewhat more secure than rsh.

80 007–4413–001

Linux® Resource Administration Guide

Configuring Array Commands
The user can invoke arbitrary system commands on single nodes using the arshell
command (see "Using arshell", page 71). The user can also launch MPI and PVM
programs that automatically distribute over multiple nodes. However, the only way
to launch coordinated system programs on all nodes at once is to use the array
command. This command does not accept any system command; it only permits
execution of commands that the administrator has configured into the Array Services
database.

You can define any set of commands that your users need. You have complete control
over how any single Array node executes a command (the definition can be different
in different nodes). A command can simply invoke a standard system command, or,
since you can define a command as invoking a script, you can make a command
arbitrarily complex.

Operation of Array Commands

When a user invokes the array command, the subcommand and its arguments are
processed by the destination node specified by -s. Unless the -l option was given,
that daemon also distributes the subcommand and its arguments to all other array
nodes that it knows about (the destination node might be configured with only a
subset of nodes). At each node, arrayd searches the configuration database for a
COMMAND entry with the same name as the array subcommand.

In the following example, the subcommand uptime is processed by arrayd in node
tokyo:

array -s tokyo uptime

When arrayd finds the subcommand valid, it distributes it to every node that is
configured in the default array at node tokyo.

The COMMAND entry for uptime is distributed in this form (you can read it in the
file /usr/lib/array/arrayd.conf).

command uptime # Display uptime/load of all nodes in array

invoke /usr/lib/array/auptime %LOCAL

The INVOKE subentry tells arrayd how to execute this command. In this case, it
executes a shell script /usr/lib/array/auptime , passing it one argument, the
name of the local node. This command is executed at every node, with %LOCAL
replaced by that node’s name.

007–4413–001 81

3: Array Services

Summary of Command Definition Syntax

Look at the basic set of commands distributed with Array Services 3.5
(/usr/lib/array/arrayd.conf). Each COMMAND entry is defined using the
subentries shown in Table 3-7. (These are described in great detail in the man page
arrayd.conf(4).)

Table 3-7 Subentries of a COMMAND Definition

Keyword Meaning of Following Values

COMMAND The name of the command as the user gives it to array.

INVOKE A system command to be executed on every node. The argument
values can be literals, or arguments given by the user, or other
substitution values.

MERGE A system command to be executed only on the distributing node, to
gather the streams of output from all nodes and combine them into a
single stream.

USER The user ID under which the INVOKE and MERGE commands run.
Usually given as USER %USER, so as to run as the user who invoked
array.

GROUP The group name under which the INVOKE and MERGE commands
run. Usually given as GROUP %GROUP, so as to run in the group of
the user who invoked array (see the groups(1) man page).

PROJECT The project under which the INVOKE and MERGE commands run.
Usually given as PROJECT %PROJECT, so as to run in the project of
the user who invoked array (see the projects(5) man page).

OPTIONS A variety of options to modify this command; see Table 3-9.

The system commands called by INVOKE and MERGE must be specified as full
pathnames, because arrayd has no defined execution path. As with a shell script,
these system commands are often composed from a few literal values and many
substitution strings. The substitutions that are supported (which are documented in
detail in the arrayd.conf(4) man page) are summarized in Table 3-8.

82 007–4413–001

Linux® Resource Administration Guide

Table 3-8 Substitutions Used in a COMMAND Definition

Substitution Replacement Value

%1..%9;
%ARG(n);
%ALLARGS;
%OPTARG(n)

Argument tokens from the user’s subcommand. %OPTARG does
not produce an error message if the specified argument is
omitted.

%USER,
%GROUP,
%PROJECT

The effective user ID, effective group ID, and project of the user
who invoked array.

%REALUSER,
%REALGROUP

The real user ID and real group ID of the user who invoked
array.

%ASH The ASH under which the INVOKE or MERGE command is to
run.

%PID(ash) List of PID values for a specified ASH. %PID(%ASH) is a
common use.

%ARRAY The array name, either default or as given in the -a option.

%LOCAL The hostname of the executing node.

%ORIGIN The full domain name of the node where the array command
ran and the output is to be viewed.

%OUTFILE List of names of temporary files, each containing the output from
one node’s INVOKE command (valid only in the MERGE
subentry).

The OPTIONS subentry permits a number of important modifications of the
command execution; these are summarized in Table 3-9.

007–4413–001 83

3: Array Services

Table 3-9 Options of the COMMAND Definition

Keyword Effect on Command

LOCAL Do not distribute to other nodes (effectively forces the -l option).

NEWSESSION Execute the INVOKE command under a newly created ASH.
%ASH in the INVOKE line is the new ASH. The MERGE
command runs under the original ASH, and %ASH substitutes as
the old ASH in that line.

SETRUID Set both the real and effective user ID from the USER subentry
(normally USER only sets the effective UID).

SETRGID Set both the real and effective group ID from the GROUP
subentry (normally GROUP sets only the effective GID).

QUIET Discard the output of INVOKE, unless a MERGE subentry is
given. If a MERGE subentry is given, pass INVOKE output to
MERGE as usual and discard the MERGE output.

NOWAIT Discard the output and return as soon as the processes are
invoked; do not wait for completion (a MERGE subentry is
ineffective).

Configuring Local Options

The LOCAL entry specifies options to arrayd itself. The most important options are
summarized in Table 3-10.

Table 3-10 Subentries of the LOCAL Entry

Subentry Purpose

DIR Pathname for the arrayd working directory, which is
the initial, current working directory of INVOKE and
MERGE commands. The default is /usr/lib/array.

DESTINATION ARRAY Name of the default array, used when the user omits the
-a option. When only one ARRAY entry is given, it is
the default destination.

84 007–4413–001

Linux® Resource Administration Guide

Subentry Purpose

USER, GROUP,
PROJECT

Default values for COMMAND execution when USER,
GROUP, or PROJECT are omitted from the COMMAND
definition.

HOSTNAME Value returned in this node by %LOCAL. Default is the
hostname.

PORT Socket to be used by arrayd.

If you do not supply LOCAL USER, GROUP, and PROJECT values, the default values
for USER and GROUP are “guest.”

The HOSTNAME entry is needed whenever the hostname command does not return
a node name as specified in the ARRAY MACHINE entry. In order to supply a
LOCAL HOSTNAME entry unique to each node, each node needs an individualized
copy of at least one configuration file.

Designing New Array Commands

A basic set of commands is distributed in the file
/usr/lib/array/arrayd.conf.template . You should examine this file
carefully before defining commands of your own. You can define new commands
which then become available to the users of the Array system.

Typically, a new command will be defined with an INVOKE subentry that names a
script written in sh, csh, or Perl syntax. You use the substitution values to set up
arguments to the script. You use the USER, GROUP, PROJECT, and OPTIONS
subentries to establish the execution conditions of the script. For one example of a
command definition using a simple script, see "About the Distributed Example", page
72.

Within the invoked script, you can write any amount of logic to verify and validate
the arguments and to execute any sequence of commands. For an example of a script
in Perl, see /usr/lib/array/aps, which is invoked by the array ps command.

Note: Perl is a particularly interesting choice for array commands, since Perl has
native support for socket I/O. In principle at least, you could build a distributed
application in Perl in which multiple instances are launched by array and coordinate
and exchange data using sockets. Performance would not rival the highly tuned MPI
and PVM libraries, but development would be simpler.

007–4413–001 85

3: Array Services

The administrator has need for distributed applications as well, since the configuration
files are distributed over the Array. Here is an example of a distributed command to
reinitialize the Array Services database on all nodes at once. The script to be executed
at each node, called /usr/lib/array/arrayd-reinit would read as follows:

#!/bin/sh

Script to reinitialize arrayd with a new configuration file
Usage: arrayd-reinit <hostname:new-config-file>

sleep 10 # Let old arrayd finish distributing

rcp $1 /usr/lib/array/

/etc/rc.d/init.d/array restart

exit 0

The script uses rcp to copy a specified file (presumably a configuration file such as
arrayd.conf) into /usr/lib/array (this will fail if %USER is not privileged).
Then the script restarts arrayd (see /etc/rc.d/init.d/array) to reread
configuration files.

The command definition would be as follows:

command reinit

invoke /usr/lib/array/arrayd-reinit %ORIGIN:%1

user %USER

group %GROUP

options nowait # Exit before restart occurs!

The INVOKE subentry calls the restart script shown above. The NOWAIT option
prevents the daemon’s waiting for the script to finish, since the script will kill the
daemon.

86 007–4413–001

Chapter 4

CPU Memory Sets and Scheduling

This chapter describes the CPU memory sets and scheduling (CpuMemSet)
application interface for managing system scheduling and memory allocation across
the various CPUs and memory blocks in a system.

CpuMemSets provides a Linux kernel facility that enables system services and
applications to specify on which CPUs they may be scheduled and from which nodes
they may allocate memory. The default configuration makes all CPUs and all system
memory available to all applications. The CpuMemSet facility can be used to restrict
any process, process family, or process virtual memory region to a specified subset of
the system CPUs and memory.

Any service or application with sufficient privilege may alter its cpumemset (either
the set or map). The basic CpuMemSet facility requires root privilege to acquire more
resources, but allows any process to remove (cease using) a CPU or memory node.

The CpuMemSet interface adds two layers called cpumemmap and cpumemset to the
existing Linux scheduling and resource allocation code.

The lower cpumemmap layer provides a simple pair of maps that:

• Map system CPU numbers to application CPU numbers

• Map system memory block numbers to application block numbers

The upper cpumemset layer:

• Specifies on which application CPUs a process can schedule a task

• Specifies which application memory blocks the kernel or a virtual memory area
can allocate

The CpuMemSet interface allows system administrators to control the allocation of a
system CPU and of memory block resources to tasks and virtual memory areas. It
allows an application to control the use of the CPUs on which its tasks execute and to
obtain the optimal memory blocks from which its tasks’s virtual memory areas obtain
system memory.

The CpuMemSet interface provides support for such facilities as dplace(1),
runon(1), cpusets, and nodesets.

007–4413–001 87

4: CPU Memory Sets and Scheduling

The runon(1) command relies on CpuMemSets to enable you to run a specified
command on a specified list of CPUs. Both a C shared library and Python language
module are provided to access the CpuMemSets system interface. For more
information on the runon command, see "Using the runon(1) Command", page 94.
For more information on the Python interface, see "Managing CpuMemSets", page 95.

This chapter describes the following topics:

• "Memory Management Terminology", page 88

• "CpuMemSet System Implementation", page 89

• "Installing, Configuring, and Tuning CpuMemSets", page 92

• "Using CpuMemSets", page 93

• "Hard Partitioning versus CpuMemSets", page 97

• "Error Messages", page 98

Memory Management Terminology
The primitive concepts that are discussed in this chapter are hardware processors
(CPUs) and system memory and their corresponding software constructs of tasks and
virtual memory areas.

System Memory Blocks

On a nonuniform memory access (NUMA) system, blocks are the equivalence classes
of main memory locations defined by the relation of distance from CPUs. On a
typical symmetric multiprocessing (SMP) or uniprocessing (UP) system, all memory is
the same distance from any CPU (same speed), and equivalent for the purposes of
this discussion. System memory blocks do not include special purpose memory, such
as I/O and video frame buffers, caches, peripheral registers, and I/O ports.

Tasks

Tasks are execution threads that are part of a process. They are scheduled on
hardware processors called CPUs.

88 007–4413–001

Linux® Resource Administration Guide

The Linux kernel schedules threads of execution it calls tasks. A task executes on a
single processor (CPU) at a time. At any point in time, a task may be:

• Waiting for some event or resource or interrupt completion

• Executing on a CPU. Tasks may be restricted from executing on certain CPUs.

Linux kernel tasks execute on CPU hardware processors. This does not include
special purpose processors, such as direct memory access (DMA) engines, vector
processors, graphics pipelines, routers, or switches.

Virtual Memory Areas

For each task, the Linux kernel keeps track of multiple virtual address regions called
virtual memory areas. Some virtual memory areas may be shared between multiple
tasks. The kernel memory management software manages virtual memory areas in
units of pages. Each given page in the address space of a virtual memory area may
be as follows:

• Not yet allocated

• Allocated but swapped out to disk

• Currently residing in allocated system memory

Virtual memory areas may be restricted from allocating memory blocks from certain
system memory blocks.

Nodes

Typically, NUMA systems consists of nodes. Each node contains a number of CPUs
and system memory. The CpuMemSet system focuses on CPUs and memory blocks,
not on nodes. For currently available SGI systems, the CPUs and all memory within a
node are equivalent.

CpuMemSet System Implementation
The CpuMemSet system is implemented by two separate layers as follows:

• "Cpumemmap", page 90

007–4413–001 89

4: CPU Memory Sets and Scheduling

• "cpumemset", page 90

Cpumemmap

The lower layer —cpumemmap (cmm)— provides a simple pair of maps that map
system CPU and memory block numbers to application CPU and memory block
numbers. System numbers are used by the kernel task scheduling and memory
allocation code, and typically are assigned to all CPUs and memory blocks in the
system. Application numbers are assigned to the CPUs and memory blocks in an
application’s cpumemset and are used by the application to specify its CPU and
memory affinity for the CPUs and memory blocks it has available in its cpumemmap.
Each process, each virtual memory area, and the kernel has such a cpumemmap.
These maps are inherited across fork calls, exec calls, and the various ways to
create virtual memory areas. Only a process with root privileges can extend a
cpumemmap to include additional system CPUs or memory blocks. Changing a map
causes kernel scheduling code to immediately start using the new system CPUs and
causes kernel allocation code to allocate additional memory pages using the new
system memory blocks. Memory already allocated on old blocks is not migrated,
unless some non-CpuMemSet mechanism is used.

The cpumemmaps do not have holes. A given cpumemmap of size n, maps all
application numbers between 0 and n–1, inclusively, to valid system numbers. An
application can rely on any CPU or memory block numbers known to it to remain
valid. However, cpumemmaps are not necessarily one-to-one (injective). Multiple
application numbers can map to the same system number.

When a cmsSetCMM() routine is called, changes to cpumemmaps are applied to
system masks, such as cpus_allowed, and lists, such as zone lists, used by existing
Linux scheduling and allocation software.

cpumemset

The upper cpumemset (cms) layer specifies the application CPUs on which a process
can schedule a task to execute. It also specifies application memory blocks, known to
the kernel or a virtual memory area, from which it can allocate memory blocks. A
different list is specified for each CPU that may execute the request. An application
may change the cpumemset of its tasks and virtual memory areas. A root process can
change the cpumemset used for kernel memory allocation. A root process can change
the cpumemsets of any process. Any process may change the cpumemsets of other
processes with the same user ID (UID)(kill(2) permissions), except that the current

90 007–4413–001

Linux® Resource Administration Guide

implementation does not support changing the cpumemsets attached to the virtual
memory areas of another process.

Each task has two cpumemsets. One cpumemset defines the task’s current CPU
allocation and created virtual memory areas. The other cpumemset is inherited by
any child process the task forks. Both the current and child cpumemsets of a newly
forked process are set to copies of the child cpumemset of the parent process.
Allocations of memory to existing virtual memory areas visible to a process depend
on the cpumemset of that virtual memory area (as acquired from its creating process
at creation, and possibly modified since), not on the cpumemset of the currently
accessing task.

During system boot, the kernel creates and attaches a default cpumemmap and
cpumemset that are used everywhere on the system. By default, this initial map and
cpumemset contain all CPUs and all memory blocks.

An optional kernel-boot command line parameter causes this initial cpumemmap and
cpumemset to contain only the first CPU and one memory block, rather than all of
them, as follows:

cpumemset_minimal=1

This is for the convenience of system management services that are designed to take
greater control of the system.

The kernel schedules a task only on the CPUs in the task’s cpumemset, and allocates
memory only to a user virtual memory area, chosen from the list of memories in the
memory list of that area. The kernel allocates kernel memory only from the list of
memories in the cpumemset attached to the CPU that is executing the allocation
request, except for specific calls within the kernel that specify some other CPU or
memory block.

Both the current and child cpumemmaps and cpumemsets of a newly forked process
are taken from the child settings of its parent process. Memory allocated during the
creation of the new process is allocated according to the child cpumemset of the
parent process and associated cpumemmap because that cpumemset is acquired by
the new process and then by any virtual memory area created by that process.

The cpumemset (and associated cpumemmap) of a newly created virtual memory
area is taken from the current cpumemset of the task creating it. In the case of
attaching to an existing virtual memory area, the scenario is more complicated. Both
memory mapped memory objects and UNIX System V shared memory regions can be
attached to by multiple processes, or even attached to multiple times by the same
process at different addresses. If such an existing memory region is attached to, then

007–4413–001 91

4: CPU Memory Sets and Scheduling

by default the new virtual memory area describing that attachment inherits the
current cpumemset of the attaching process. If, however, the policy flag CMS_SHARE
is set in the cpumemset currently linked to from each virtual memory area for that
region, then the new virtual memory area is also linked to this same cpumemset.

When allocating another page to an area, the kernel chooses the memory list for the
CPU on which the current task is being executed, if that CPU is in the cpumemset of
that memory area, otherwise it chooses the memory list for the default CPU (see
CMS_DEFAULT_CPU) in that memory area’s cpumemset. The kernel then searches the
chosen memory list, looking for available memory. Typical kernel allocation software
searches the same list multiple times, with increasingly aggressive search criteria and
memory freeing actions.

The cpumemmap and cpumemset calls with the CMS_VMAREA flag apply to all future
allocation of memory by any existing virtual memory area, for any pages overlapping
any addresses in the range [start, start+len). This is similar to the behavior of the
madvise, mincore, and msync functions.

Installing, Configuring, and Tuning CpuMemSets
This section describes how to install, configure, and tune CpuMemSets on your
system and contains the following topics:

• "Installing CpuMemSets", page 92

• "Configuring CpuMemSets", page 93

• "Tuning CpuMemSets", page 93

Installing CpuMemSets

The CpuMemSets facility is automatically included in SGI ccNUMA Linux systems,
including the kernel support; the user level library (libcpumemsets.so) used to
access this facility from C language programs; a Python module (cpumemsets) for
access from a scripting environment; and a runon(1) command for controlling which
CPUs and memory nodes an application may be allowed to use.

To use the Python interface, from a script perform the following:

import cpumemsets

print cpumemsets.__doc__

92 007–4413–001

Linux® Resource Administration Guide

Configuring CpuMemSets

No configuration is required. All processes, all memory regions, and the kernel are
automatically provided with a default CpuMemSet, which includes all CPUs and
memory nodes in the system.

Tuning CpuMemSets

You can change the default CpuMemSet to include only the first CPU and first
memory node by providing this additional option on the kernel boot command line
(accessible via elilo) as follows:

cpumemset_minimal=1

This is useful if you want to dedicate portions of your system CPUs or memory to
particular tasks.

Using CpuMemSets
This section describes how CpuMemSets are used on your system and contains the
following topics:

• "Using the runon(1) Command", page 94

• "Initializing CpuMemSets", page 94

• "Operating on CpuMemSets", page 95

• "Managing CpuMemSets", page 95

• "Initializing System Service on CpuMemSets", page 96

• "Resolving Pages for Memory Areas", page 96

• "Determining an Application’s Current CPU", page 97

• "Determining the Memory Layout of cpumemmaps and cpumemsets", page 97

007–4413–001 93

4: CPU Memory Sets and Scheduling

Using the runon(1) Command

The runon(1) command allows you to run a command on a specified list of CPUs.
The syntax of the command is as follows:

runon cpu ... command [args ...]

The runon command, shown in Example 4-1, executes a command, assigning the
command to run only on the listed CPUs. The list of CPUs may include individual
CPUs or an inclusive range of CPUs separated by a hyphen. The specified CPU
affinity is inherited across fork(2) and exec(2) system calls. All options are passed
in the argv list to the executable being run.

Example 4-1 Using the runon(1) Command

To execute the echo(1) command on CPUs 1, 3, 4, 5, or 9, perform the following:

runon 1 3-5 9 echo Hello World

For more information, see the runon(1) man page.

Initializing CpuMemSets

Early in the boot sequence, before the normal kernel memory allocation routines are
usable, the kernel sets up a single default cpumemmap and cpumemset. If no action
is ever taken by user level code to change them, this one map and one set applies to
the kernel and all processes and virtual memory areas for the life of that system boot.

By default, this map includes all CPUs and memory blocks, and this set allows
scheduling on all CPUs and allocation on all blocks.

An optional kernel boot parameter causes this initial map and set to include only one
CPU and one memory block, in case the administrator or some system service will be
managing the remaining CPUs and blocks in some specific way.

As soon as the system has booted far enough to run the first user process, init(1M),
an early init script may be invoked that examines the topology and metrics of the
system, and establishes optimized cpumemmap and cpumemset settings for the
kernel and for the init process. Prior to that, various kernel daemons are started
and kernel data structures are allocated, which may allocate memory without the
benefit of these optimized settings. This reduces the amount of information that the
kernel needs about special topology and distance attributes of a system in that the
kernel needs only enough information to get early allocations placed correctly. More
detailed topology information can be kept in the user application space.

94 007–4413–001

Linux® Resource Administration Guide

Operating on CpuMemSets

On a system supporting CpuMemSets, all processes have their scheduling constrained
by their cpumemmap and cpumemset. The kernel will not schedule a process on a
CPU that is not allowed by its cpumemmap and cpumemset. The Linux task
scheduler must support a mechanism, such as the cpus_allowed bit vector, to
control on which CPUs a task may be scheduled.

Similarly, all memory allocation is constrained by the cpumemmap and cpumemset
associated to the kernel or virtual memory area requesting the memory, except for
specific requests within the kernel. The Linux page allocation code has been changed
to search only in the memory blocks allowed by the virtual memory area requesting
memory. If memory is not available in the specified memory blocks, the allocation
fails or sleeps, awaiting memory. The search for memory does not consider other
memory blocks in the system.

It is this "mandatory" nature of cpumemmaps and cpumemsets that allows
CpuMemSets to provide many of the benefits of hard partitioning in a dynamic,
single-system, image environment (see "Hard Partitioning versus CpuMemSets", page
97).

Managing CpuMemSets

System administrators and services with root privileges manage the initial allocation
of system CPUs and memory blocks to cpumemmaps, deciding which applications
will be allowed the use of specified CPUs and memory blocks. They also manage the
cpumemset for the kernel, which specifies what order to use to search for kernel
memory, depending on which CPU is executing the request.

Almost all ordinary applications will be unaware of CpuMemSets, and will run in
whatever CPUs and memory blocks their inherited cpumemmap and cpumemset
dictate.

Large multiprocessor applications can take advantage of CpuMemSets by using
existing legacy application programming interfaces (APIs) to control the placement of
the various processes and memory regions that the application manages. Emulators
for whatever API the application is using can convert these requests into cpumemset
changes, which then provide the application with detailed control of the CPUs and
memory blocks provided to the application by its cpumemmap.

To alter default cpumemsets or cpumemmaps, use one of the following:

• The C language interface provided by the library (libcpumemsets)

007–4413–001 95

4: CPU Memory Sets and Scheduling

• The Python interface provided by the module (cpumemsets)

• The runon(1) command

Initializing System Service on CpuMemSets

The cpumemmaps do not have system-wide names; they cannot be created ahead of
time when a system is initialized, and then attached to later by name. The
cpumemmaps are like classic UNIX anonymous pipes or anonymous shared memory
regions, which are identifiable within an individual process by file descriptor or virtual
address, but not by a common namespace visible to all processes on the system.

When a boot script starts up a major service on some particular subset of the machine
(its own cpumemmap), the script can set its child map to the cpumemmap desired for
the major service it is spawning and then invoke fork and exec calls to execute the
service. If the service has root privilege, it can extend its own cpumemmaps, as
determined by the system administrator.

A higher level API can use CpuMemSets to define a virtual system that could include
a certain number of CPUs and memory blocks and the means to manage these system
resources.

A daemon with root privilege can run and be responsible for managing the virtual
systems defined by the API; or perhaps some daemon without root privilege can run
with access to all the CPUs and memory blocks that might be used for this service.

When some user process application is granted permission by the daemon to run on
the named virtual systems, the daemon sets its child map to the cpumemmap
describing the CPU and memory available to that virtual system and spawns the
requested application on that map.

Resolving Pages for Memory Areas

The cpumemmap and cpumemset calls that specify a range of memory
(CMS_VMAREA) apply to all pages in the specified range. The internal kernel data
structures, tracking each virtual memory area in an address space, are automatically
split if a cpumemmap or cpumemset is applied to only part of the range of pages in
that virtual memory area. This splitting happens transparently to the application.
Subsequent re-merging of two such neighboring virtual memory areas may occur if
the two virtual memory areas no longer differ. This same behavior is seen in the
system calls madvise(2), msync(2), and mincore(2).

96 007–4413–001

Linux® Resource Administration Guide

Determining an Application’s Current CPU

The cmsGetCpu() function returns the currently executing application CPU number
as found in the cpumemmap of the current process. This information, along with the
results of the cmsQuery*() calls, may be helpful for applications running on some
architectures to determine the topology and current utilization of a system. If a
process can be scheduled on two or more CPUs, the results of cmsGetCpu() may
become invalid even before the query returns to the invoking user code.

Determining the Memory Layout of cpumemmaps and cpumemsets

The cmsQuery*() library calls construct cpumemmaps and cpumemsets by using
malloc(3) to allocate each distinct structure and array element in the return value
and linking them together. The cmsFree*() calls assume this layout, and call the
free(3) routine on each element.

If you construct your own cpumemmap or cpumemset, using some other memory
layout, do not pass that layout to the cmsFree*() call.

You may alter in place and replace malloc’d elements of a cpumemmap or
cpumemset returned by a cmsQuery*() call, and pass the result back into a
corresponding cmsSet*() or cmsFree*() call.

Hard Partitioning versus CpuMemSets
On a large NUMA system, you may want to control which subset of processors and
memory is devoted to s specified major application. This can be done using “hard"
partitions, where subsets of the system are booted using separate system images and
the partitions act as a cluster of distinct computers rather than a single-system-image
computer.

Partitioning a large NUMA system partially defeats the advantages of a large NUMA
machine with a single system image. CpuMemSets enable you to carve out more
flexible, possibly overlapping, partitions of the system’s CPUs and memory. This
allows all processes to see a single system image, without rebooting, but guarantees
certain CPU and memory resources to selected applications at various times.

CpuMemSets provide you with substantial control over system processor and
memory resources without the attendant inflexibility of hard partitions.

007–4413–001 97

4: CPU Memory Sets and Scheduling

Error Messages
This section describes typical error situations. Some of them are as follows:

• If a request is made to set a cpumemmap that has fewer CPUs or memory blocks
listed than needed by any cpumemsets that will be using that cpumemmap after
the change, the cmsSetCMM() call fails, with errno set to ENOENT. You cannot
remove elements of a cpumemmap that are in use.

• If a request is made to set a cpumemset that references CPU or memory blocks not
available in its current cpumemmap, the cmsSetCMS() call fails, with errno set
to ENOENT. You cannot reference unmapped application CPUs or memory blocks
in a cpumemset.

• If a request is made without root privileges to set a cpumemmap by a process ,
and that request attempts to add any system CPU or memory block number not
currently in the map being changed, the request fails, with errno set to EPERM.

• If a cmsSetCMS() request is made on another process, the requesting process
must either have root privileges, or the real or effective user ID of the sending
process must equal the real or saved set-user-ID of the other process, or else the
request fails, with errno set to EPERM. These permissions are similar to those
required by the kill(2) system call.

• Every cpumemset must specify a memory list for the CMS_DEFAULT_CPU, to
ensure that regardless of which CPU a memory request is executed on, a memory
list will be available to search for memory. Attempts to set a cpumemset without a
memory list specified for the CMS_DEFAULT_CPU fail, with errno set to EINVAL.

• If a request is made to set a cpumemset that has the same CPU (application
number) listed in more than one array cpus of CPUs sharing any
cms_memory_list_t structures, then the request fails, with errno set to
EINVAL. Otherwise, duplicate CPU or memory block numbers are harmless,
except for minor inefficiencies.

• The operations to query and set cpumemmaps and cpumemsets can be applied to
any process ID (PID). If the PID is zero, then the operation is applied to the
current process. If the specified PID does not exist, then the operation fails, with
errno set to ESRCH.

98 007–4413–001

Chapter 5

Cpuset System

The Cpuset System is primarily a workload manager tool permitting a system
administrator to restrict the number of processors that a process or set of processes
may use.

In Linux, when a process running on a cpuset runs out of available memory on the
requested nodes, memory on other nodes can be used. The MEMORY_LOCAL policy is
the policy that supports using memory on other nodes if no memory is freely
available on the requested nodes and currently is the only policy supported.

A system administrator can use cpusets to create a division of CPUs within a larger
system. Such a divided system allows a set of processes to be contained to specific
CPUs, reducing the amount of interaction and contention those processes have with
other work on the system. In the case of a restricted cpuset, the processes that are
attached to that cpuset will not be affected by other work on the system; only those
processes attached to the cpuset can be scheduled to run on the CPUs assigned to the
cpuset. An open cpuset can be used to restrict processes to a set of CPUs so that the
effect these processes have on the rest of the system is minimized. In Linux the
concept of restricted is essentially cooperative, and can be overriden by processes
with root privilege.

The state files for a cpuset reside in the /var/cpuset directory.

When you boot your system, an init script called cpunodemap creates a boot cpuset
that by default contains all the CPUs in the system; enabling any process to run on
any CPU and use any system memory. Processes on a Linux system run on the entire
system unless they are placed on a specific cpuset or are constrained by some other
tool.

A system administrator might choose to use cpusets to divide a system into two
halves, with one half supporting normal system usage and the other half dedicated to
a particular application. You can make the changes you want to your cpusets and all
new processes attached to those cpusets will adhere to the new settings. The
advantage this mechanism has over physical reconfiguration is that the configuration
may be changed using the cpuset system and does not need to be aligned on a
hardware module boundary.

Static cpusets are defined by an administrator after a system had been started. Users
can attach processes to these existing cpusets. The cpusets continue to exist after jobs
are finished executing.

007–4413–001 99

5: Cpuset System

Dynamic cpusets are created by a workload manager when required by a job. The
workload manager attaches a job to a newly created cpuset and destroys the cpuset
when the job has finished executing.

The runon(1) command allows you to run a command on a specified list of CPUs. If
you use the runon command to restrict a process to a subset of CPUs that it is
already executing on, runon will restrict the process without root permission or the
use of cpusets. If the you use the runon command to run a command on different or
additional CPUs, runon invokes the cpuset command to handle the request. If all of
the specified CPUs are within the same cpuset and you have the appropriate
permissions, the cpuset command will execute the request.

The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain the properties associated
with a cpuset, and to attach a process and all of its children to a cpuset.

This chapter contains the following sections:

• "Cpusets on Linux versus IRIX", page 100

• "Using Cpusets", page 102

• "Restrictions on CPUs within Cpusets", page 104

• "Cpuset System Examples", page 104

• "Cpuset Configuration File", page 107

• "Installing the Cpuset System", page 110

• "Using the Cpuset Library", page 111

• "Cpuset System Man Pages", page 111

Cpusets on Linux versus IRIX
This sections describes the major differences between how the Cpuset System is
implemented on the Linux operating system for the SGI Linux Environment 7.2
release versus the current IRIX operating system. These differences are likely to
change for future releases of the SGI Linux Environment.

Major differences include the following:

100 007–4413–001

Linux® Resource Administration Guide

• Linux does not have the explicit concept of a boot cpuset. The boot cpuset is
implicit on Linux systems. All processes run on the entire system and can use any
system memory unless otherwise placed on a cpuset. For an example of how to
create a “virtual” boot cpuset on your SGI Linux system, see Example 5-2, page
107.

• In IRIX, the cpuset command maintains the /etc/cpusettab file that defines the
currently established cpusets, including the boot cpuset. In Linux, state files for
cpusets are maintained in a directory called /var/cpuset.

• Permission checking against the cpuset configuration file permissions is not
implemented for this release. For more information, see "Cpuset Configuration
File", page 107.

• The Linux kernel does not enforce cpuset restriction directly. Rather restriction is
established by booting the kernel with the optional boot command line parameter
cpumemset_minimal that establishes the CpuMemSets initial kernel,
CpuMemSet, to include only the first CPU and memory node. The rest of the
systems CPUs and memory then remain unused until attached to using cpuset or
some other facility with root privilege. The cpuset command and library support
ensure restriction among clients of cpusets, but not from other processes.

• Linux currently supports only the MEMORY_LOCAL policy that allows a process to
obtain memory on other nodes if memory is not freely available on the requested
nodes. For more information on Cpuset policies, see "Cpuset Configuration File",
page 107.

• Linux does not support the MEMORY_EXCLUSIVE policy.

The MEMORY_EXCLUSIVE policy and the related notion of a "restricted" cpuset are
essentially only cooperative in Linux, rather than mandatory. On Linux, a process
with root privilege may use CpuMemSet calls directly to run tasks on any CPU
and use any memory, potentially violating cpuset boundaries and exclusiveness.
For more information on CpuMemSets, see Chapter 4, "CPU Memory Sets and
Scheduling", page 87.

• In IRIX, a cpuset can only be destroyed using the cpusetDestroy function if
there are no processes currently attached to the cpuset. In Linux, when a cpuset is
destroyed using the cpusetDestroy function, processes currently running on the
cpuset continue to run and can spawn a new process that will continue to run on
the cpuset. Otherwise, new processes are not allowed to run on the cpuset.

007–4413–001 101

5: Cpuset System

• The current Linux release does not support the cpuset library routines,
cpusetMove(3x) and cpusetMoveMigrate(3x), that can be used to move
processes between cpusets and optionally migrate their memory.

• The current Linux release does not support the cpuset library
routinescpusetAttachPid(3x) and cpusetDetachPid(3x), which can be used
to attach or detach a specific process from a cpuset.

• In IRIX, the runon(1) command cannot run a command on a CPU that is part of a
cpuset unless the user has write or group write permission to access the
configuration file of the cpuset. On Linux, this restriction is not implemented for
this release.

Using Cpusets
This section describes the basic steps for using cpusets and the cpuset(1) command.
For a detailed example, see "Cpuset System Examples", page 104.

To install the Cpuset System software, see "Installing the Cpuset System", page 110.

To use cpusets, perform the following steps:

1. Create a cpuset configuration file and give it a name. For the format of this file,
see "Cpuset Configuration File", page 107. For restrictions that apply to CPUs
belonging to cpusets, see "Restrictions on CPUs within Cpusets", page 104.

2. Create the cpuset with the configuration file specified by the -f parameter and
the name specified by the -q parameter.

The cpuset(1) command is used to create and destroy cpusets, to retrieve
information about existing cpusets, and to attach a process and all of its children to a
cpuset. The syntax of the cpuset command is as follows:

cpuset [-q cpuset_name[,cpuset_name_dest] [-A command]
[-c -f filename] [-d] [-l] [-m] [-Q] [-C] [-h]

The cpuset command accepts the following options:

-q cpuset_name [-A command] Runs the specified command on the
cpuset identified by the -q
parameter. If the user does not have
access permissions or the cpuset
does not exist, an error is returned.

102 007–4413–001

Linux® Resource Administration Guide

Note: File permission checking
against the configuratuion file
permissions is not implemented for
this release of SGI Linux.

-q cpuset_name [-c -f filename] Creates a cpuset with the
configuration file specified by the
-f parameter and the name
specified by the -q parameter. The
operation fails if the cpuset name
already exists, a CPU specified in
the cpuset configuration file is
already a member of a cpuset, or
the user does not have the requisite
permissions.

Note: File permission checking
against the configuratuion file
permissions is not implemented for
this release of SGI Linux.

-q cpuset_name -d Destroys the specified cpuset. Any
processes currently attached to it
continue running where they are,
but no further commands to list
(-Q) or attach (-A) to that cpuset
will succeed.

-q cpuset_name -Q Prints a list of the CPUs that belong
to the cpuset.

-C Prints the name of the cpuset to
which the process is currently
attached.

-Q Lists the names of all the cpusets
currently defined.

007–4413–001 103

5: Cpuset System

-h Print the command’s usage
message.

3. Execute the cpuset command to run a command on the cpuset you created as
follows:

cpuset -q cpuset_name -A command

For more information on using cpusets, see the cpuset(1) man page, "Restrictions on
CPUs within Cpusets", page 104, and "Cpuset System Examples", page 104.

Restrictions on CPUs within Cpusets
The following restrictions apply to CPUs belonging to cpusets:

• A CPU should belong to only one cpuset.

• Only the superuser can create or destroy cpusets.

• The runon(1) command cannot run a command on a CPU that is part of a cpuset
unless the user has write or group write permission to access the configuration file
of the cpuset. (This restriction is not implemented for this release).

The Linux kernel does not enforce cpuset restriction directly. Rather restriction is
established by booting the kernel with the optional boot command line parameter
cpumemset_minimal that establishes the CpuMemSets initial kernel CpuMemSet to
only include the first CPU and memory node. The rest of the systems CPUs and
memory then remain unused until attached to using cpuset or some other facility
with root privilege. The cpuset command and library support ensure restriction
among clients of cpusets, but not from other processes.

For a description of cpuset command arguments and additional information, see the
cpuset(1), cpuset(4), and cpuset(5) man pages.

Cpuset System Examples
This section provides some examples of using cpusets. This following specification
creates a cpuset containing 8 CPUs and a cpuset containg 4 CPUs and will restrict
those CPUs to running threads that have been explicitly assigned to the cpuset. Jobs
running on the cpuset will use memory from nodes containing the CPUs in the

104 007–4413–001

Linux® Resource Administration Guide

cpuset. Jobs running on other cpusets or on the global cpuset will not use memory
from these nodes.

Example 5-1 Creating Cpusets and Assigning Applications

Perform the following steps to create two cpusets on your system called cpuset_art
and cpuset_numberic.

1. Create a dedicated cpuset called cpuset_art and assign a specific application, in
this case, gimp, a GNU Image Manipulation Program, to run on it. Perform the
following steps to accomplish this:

a. Create a cpuset configuration file called cpuset_1 with the following
contents:

the cpuset configuration file called cpuset_1 that shows

a cpuset dedicated to a specific application

MEMORY_LOCAL

CPU 4-7

CPU 8

CPU 9

CPU 10
CPU 11

Note: You can designate more than one CPU or a range of CPUs on a single
line in the cpuset configuration file. In this example, you can designate CPUs
4 through 7 on a single line as follows: CPU 4-7. For more information on
the cpuset configuration file, see "Cpuset Configuration File", page 107.

For an explanation of the MEMORY_LOCAL flag, see "Cpuset Configuration
File", page 107.

b. Use the chmod(1) command to set the file permissions on the cpuset_1
configuration file so that only members of group artists can execute the
application gimp on the cpuset_art cpuset.

c. Use the cpuset(1) command to create the cpuset_art cpuset with the
configuration file cpuset_1 specified by the -c and -f parameters and the
name cpuset_art specified by the -q parameter.

cpuset -q cpuset_art -c -f cpuset_1

007–4413–001 105

5: Cpuset System

d. Execute the cpuset command as follows to run gimp on a dedicated cpuset:

cpuset -q cpuset_art -A gimp

The gimp job threads will run only on CPUs in this cpuset. gimp jobs will
use memory from system nodes containing the CPUs in the cpuset. Jobs
running on other cpusets will not use memory from these nodes. You could
use the cpuset command to run additional applications on the same cpuset
using the syntax shown in this example.

2. Create a second cpuset file called cpuset_number and specify an application
that will run only on this cpuset. Perform the following steps to accomplish this:

a. Create a cpuset configuration file called cpuset_2 with the following
contents:

the cpuset configuration file called cpuset_2 that shows
a cpuset dedicated to a specific application

EXCLUSIVE

MEMORY_LOCAL

CPU 12
CPU 13

CPU 14

CPU 15

For an explanation of the EXCLUSIVE flag, see "Cpuset Configuration File",
page 107.

b. Use the chmod(1) command to set the file permissions on the cpuset_2
configuration file so that only members of group accountants can execute
the application gnumeric on the cpuset_number cpuset.

c. Use the cpuset(1) command to create the cpuset_number cpuset with the
configuration file cpuset_2 specified by the -c and -f parameters and the
name specified by the -q parameter.

cpuset -q cpuset_number -c -f cpuset_2

d. Execute the cpuset(1) command as follows to run gnumeric on CPUs in the
cpuset_number cpuset.

cpuset -q cpuset_number -A gnumeric

106 007–4413–001

Linux® Resource Administration Guide

The gnumeric job threads will run only on this cpuset. gnumeric jobs will
use memory from system nodes containing the CPUs in the cpuset. Jobs
running on other cpusets will not use memory from these nodes.

Example 5-2 Creating a “Boot” Cpuset

You can create a “boot” cpuset and assign all system daemons and user logins to run
on a single CPU leaving the rest of the system CPUs to be assigned to job specific
cpusets as follows:

1. To constrain your system, including the kernel, user logins, and all processes to
just one CPU and one node, before the init process begins executing, set the
following kernel boot option (accessible via elilo)

cpumemset_minimal=1

For more information on kernel boot command line options, see "cpumemset",
page 90 and "Tuning CpuMemSets", page 93.

2. To configure the rest of your system, follow the steps in Example 5-1 to create
cpusets and assign specific applications to execute on them. The system
resources, other than the one CPU and the one node running init, the kernel,
and all processes, remain “dark” until explicitly attached to a cpuset with one
exception as follows:

If there is no free memory on the current node when an application requests
memory, memory may be acquired from other nodes, which may or may not be
in the cpuset or CpuMemSet specified for that process. This behavior is subject to
change in future releases of SGI Linux.

Cpuset Configuration File
This section describes the cpuset(1) command and the cpuset configuration file.

A cpuset is defined by a cpuset configuration file and a name. See the cpuset(4)
man page for a definition of the file format. The cpuset configuration file is used to
list the CPUs that are members of the cpuset. It also contains any additional
arguments required to define the cpuset. A cpuset name is between 3 and 8
characters long; names of 2 or fewer characters are reserved. You can designate one
or more CPUs or a range of CPUs as part of a cpuset on a single line in the cpuset
configuration file. CPUs in a cpuset do not have to be specified in a particular order.
Each cpuset on your system must have a separate cpuset configuration file.

007–4413–001 107

5: Cpuset System

Note: In a CXFS cluster environment, the cpuset configuration file should reside on
the root file system. If the cpuset configuration file resides on a file system other than
the root file system and you attempt to unmount the file system, the vnode for the
cpuset remains active and the unmount command fails. For more information, see the
mount(1M) man page.

The file permissions of the configuration file define access to the cpuset. When
permissions need to be checked, the current permissions of the file are used. It is
therefore possible to change access to a particular cpuset without having to tear it
down and recreate it, simply by changing the access permission. Read access allows a
user to retrieve information about a cpuset, while execute permission allows a user to
attach a process to the cpuset.

Note: Permission checking against the cpuset configuration file permissions is not
implemented for this release of SGI Linux.

By convention, CPU numbering on SGI systems ranges between zero and the number
of processors on the system minus one.

The following is a sample configuration file that describes an exclusive cpuset
containing three CPUs:

cpuset configuration file
EXCLUSIVE

MEMORY_LOCAL

MEMORY_EXCLUSIVE

CPU 1
CPU 5

CPU 10

This specification will create a cpuset containing three CPUs. When the EXCLUSIVE
flag is set, it restricts those CPUs to running threads that have been explicitly
assigned to the cpuset. When the MEMORY_LOCAL flag is set, the jobs running on the
cpuset will use memory from the nodes containing the CPUs in the cpuset. When the
MEMORY_EXCLUSIVE flag is set, jobs running on other cpusets or on the global cpuset
will normally not use memory from these nodes.

108 007–4413–001

Linux® Resource Administration Guide

Note: For this Linux release, MEMORY_EXCLUSIVE, MEMORY_KERNEL_AVOID,
MEMORY_MANDATORY, POLICY_PAGE, and POLICY_KILL are policies are not
supported.

The following is a sample configuration file that describes an exclusive cpuset
containing seven CPUs:

cpuset configuration file

EXCLUSIVE

MEMORY_LOCAL

MEMORY_EXCLUSIVE

CPU 16

CPU 17-19, 21

CPU 27

CPU 25

Commands are newline terminated; characters following the comment delimiter, #,
are ignored; case matters; and tokens are separated by whitespace, which is ignored.

The valid tokens are as follows:

Valid tokens Description

EXCLUSIVE Defines the CPUs in the cpuset to be restricted. It can
occur anywhere in the file. Anything else on the line is
ignored.

MEMORY_LOCAL Threads assigned to the cpuset will attempt to assign
memory only from nodes within the cpuset.
Assignment of memory from outside the cpuset will
occur only if no free memory is available from within
the cpuset. No restrictions are made on memory
assignment to threads running outside the cpuset.

MEMORY_EXCLUSIVE Threads not assigned to the cpuset will not use memory
from within the cpuset unless no memory outside the
cpuset is available.

When a cpuset is created and memory is occupied by
threads that are already running on the cpuset nodes,
no attempt is made to explicitly move this memory. If

007–4413–001 109

5: Cpuset System

page migration is enabled, the pages will be migrated
when the system detects the most references to the
pages that are nonlocal.

MEMORY_KERNEL_AVOID The kernel will attempt to avoid allocating memory
from nodes contained in this cpuset. If kernel memory
requests cannot be satisfied from outside this cpuset,
this option will be ignored and allocations will occur
from within the cpuset.

MEMORY_MANDATORY The kernel will attempt to avoid allocating memory
from nodes contained in this cpuset. If kernel memory
requests cannot be satisfied from outside this cpuset,
this option will be ignored and allocations will occur
from within the cpuset.

POLICY_PAGE Requires MEMORY_MANDATORY. This is the default
policy if no policy is specified. This policy will cause
the kernel to page user pages to the swap file to free
physical memory on the nodes contained in this cpuset.
If swap space is exhausted, the process will be killed.

POLICY_KILL Requires MEMORY_MANDATORY. The kernel will attempt
to free as much space as possible from kernel heaps,
but will not page user pages to the swap file. If all
physical memory on the nodes contained in this cpuset
are exhausted, the process will be killed.

CPU Specifies that a CPU will be part of the cpuset. The user
can mix a single cpu line with a cpu list line. For
example:

CPU 2

CPU 3-4,5,7,9-12

Installing the Cpuset System
The following steps are required to enable cpusets:

110 007–4413–001

Linux® Resource Administration Guide

1. Configure the cpusets on across system reboots by using the chkconfig(8) utility
as follows:

chkconfig --add cpuset

2. To turn on cpusets, perform the following:

/etc/rc.d/init.d/cpuset start

This step will be done automatically for subsequent system reboots when the
Cpuset System is configured on via the chkconfig(8) utility.

The following steps are required to disable cpusets:

1. To turn off cpusets, perform the following:

/etc/rc.d/init.d/cpuset stop

2. To stop cpusets from initiating after a system reboot, use the chkconfig(8)
command:

chkconfig --del cpuset

Using the Cpuset Library
The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain the properties associated
with an existing cpuset, and to attach a process and all of its children to a cpuset. For
more information on the Cpuset Library, see the cpuset(5) man page.

Cpuset System Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type man commandname.

User-Level Man Pages

The following user-level man pages are provided with Cpuset System software:

007–4413–001 111

5: Cpuset System

User-level man page Description

cpuset(1) Defines and manages a set of CPUs

Cpuset Library Man Pages

The following cpuset Library man pages are provided with Cpuset System software:

Cpuset library man page Description

cpusetAllocQueueDef(3x) Allocates a cpuset_QueueDef_t
structure

cpusetAttach(3x) Attaches the current process to a
cpuset

cpusetAttachPID(3x) Attaches a specific process to a
cpuset

cpusetCreate(3x) Creates a cpuset

cpusetDestroy(3x) Destroys a cpuset

cpusetDetachAll(3x) Detaches all threads from a cpuset
Not implemented on Linux

cpusetDetachPID(3x) Detaches a specific process from a
cpuset

cpusetFreeCPUList(3x) Releases memory used by a
cpuset_CPUList_t structure

cpusetFreeNameList(3x) Releases memory used by a
cpuset_NameList_t structure

cpusetFreePIDList(3x) Releases memory used by a
cpuset_PIDList_t structure

cpusetFreeProperties(3x) Releases memory used by a
cpuset_Properties_t structure
Not implemented on Linux

cpusetFreeQueueDef(3x) Releases memory used by a
cpuset_QueueDef_t structure

cpusetGetCPUCount(3x) Obtains the number of CPUs
configured on the system

112 007–4413–001

Linux® Resource Administration Guide

cpusetGetCPUList(3x) Gets the list of all CPUs assigned to
a cpuset

cpusetGetName(3x) Gets the name of the cpuset to
which a process is attached

cpusetGetNameList(3x) Gets a list of names for all defined
cpusets

cpusetGetPIDList(3x) Gets a list of all PIDs attached to a
cpuset

cpusetGetProperties(3x) Retrieves various properties
associated with a cpuset Not
implemented on Linux

File Format Man Pages

The following file format description man pages are provided with Cpuset System
software:

File Format man page Description

cpuset(4) Cpuset configuration files

Miscellaneous Man Pages

The following miscellaneous man pages are provided with Cpuset System software:

Miscellaneous man page Description

cpuset(5) Overview of the Cpuset System

007–4413–001 113

Chapter 6

NUMA Tools

This chapter describes the dlook(1) and dplace(1) tools that you can use to improve
the performance of processes running on your SGI nonuniform memory access
(NUMA) machine. You can use dlook(1) to find out where in memory the operating
system is placing your application’s pages and how much system and user CPU time
it is consuming. You can use the dplace(1) command to bind a related set of
processes to specific CPUs or nodes to prevent process migration. This can improve
the performance of your application since it increases the percentage of memory
accesses that are local.

This chapter covers the following topics:

• "dlook", page 115

• "dplace", page 121

• "topology", page 125

• "Installing NUMA Tools", page 126

dlook

The dlook(1) command allows you to display the memory map and CPU usage for a
specified process as follows:

dlook [-a] [-c] [-h] [-l] [-o outfile] [-s secs] command [command-args]
dlook [-a] [-c] [-h] [-l] [-o outfile] [-s secs] pid

For each page in the virtual address space of the process, dlook(1) prints the
following information:

• The object that owns the page, such as a file, SYSV shared memory, a device
driver, and so on.

• The type of page, such as random access memory (RAM), FETCHOP, IOSPACE,
and so on.

• If the page type is RAM memory, the following information is displayed:

– Memory attributes, such as, SHARED, DIRTY, and so on

007–4413–001 115

6: NUMA Tools

– The node on which the page is located

– The physical address of the page (optional)

• Optionally, the dlook(1) command also prints the amount of elapsed CPU time
that the process has executed on each physical CPU in the system.

Two forms of the dlook(1) command are provided. In one form, dlook prints
information about an existing process that is identified by a process ID (PID). To use
this form of the command, you must be the owner of the process or be running with
root privilege. In the other form, you use dlook on a command you are launching
and thus are the owner.

The dlook(1) command accepts the following options:

-a Shows the physical addresses of each page in the address space.

-c Shows the elapsed CPU time, that is how long the process has executed
on each CPU.

-h Explicitly lists holes in the address space.

-l Shows libraries.

-o Outputs the file name. If not specified, output is written to stdout.

-s Specifies a sample interval in seconds. Information about the process is
displayed every second (secs) of CPU usage by the process.

An example for the sleep process with a PID of 4702 is as follows:

Note: The output has been abbreviated to shorten the example and bold headings
added for easier reading.

dlook 4702

Peek: sleep

Pid: 4702 Thu Aug 22 10:45:34 2002

Cputime by cpu (in seconds):

user system
TOTAL 0.002 0.033

cpu1 0.002 0.033

Process memory map:

2000000000000000-2000000000030000 r-xp 0000000000000000 04:03 4479 /lib/ld-2.2.4.so

116 007–4413–001

Linux® Resource Administration Guide

[2000000000000000-200000000002c000] 11 pages on node 1 MEMORY|SHARED

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-200000000003c000] 3 pages on node 0 MEMORY|DIRTY

...

2000000000128000-2000000000370000 r-xp 0000000000000000 04:03 4672 /lib/libc-2.2.4.so

[2000000000128000-2000000000164000] 15 pages on node 1 MEMORY|SHARED

[2000000000174000-2000000000188000] 5 pages on node 2 MEMORY|SHARED

[2000000000188000-2000000000190000] 2 pages on node 1 MEMORY|SHARED

[200000000019c000-20000000001a8000] 3 pages on node 1 MEMORY|SHARED
[20000000001c8000-20000000001d0000] 2 pages on node 1 MEMORY|SHARED

[20000000001fc000-2000000000204000] 2 pages on node 1 MEMORY|SHARED

[200000000020c000-2000000000230000] 9 pages on node 1 MEMORY|SHARED

[200000000026c000-2000000000270000] 1 page on node 1 MEMORY|SHARED

[2000000000284000-2000000000288000] 1 page on node 1 MEMORY|SHARED
[20000000002b4000-20000000002b8000] 1 page on node 1 MEMORY|SHARED

[20000000002c4000-20000000002c8000] 1 page on node 1 MEMORY|SHARED

[20000000002d0000-20000000002d8000] 2 pages on node 1 MEMORY|SHARED

[20000000002dc000-20000000002e0000] 1 page on node 1 MEMORY|SHARED

[2000000000340000-2000000000344000] 1 page on node 1 MEMORY|SHARED

[200000000034c000-2000000000358000] 3 pages on node 2 MEMORY|SHARED

....

20000000003c8000-20000000003d0000 rw-p 0000000000000000 00:00 0

[20000000003c8000-20000000003d0000] 2 pages on node 0 MEMORY|DIRTY

The dlook command gives the name of the process (Peek: sleep), the process ID,
and time and date it was invoked. It provides total user and system CPU time in
seconds for the process.

Under the heading Process memory map, the dlook command prints information
about a process from the /proc/pid/cpu and /proc/pid/maps files. On the left, it
shows the memory segment with the offsets below in decimal. In the middle of the
output page, it shows the type of access, time of execution, the PID, and the object
that owns the memory (in this case, /lib/ld-2.2.4.so). The characters s or p
indicate whether the page is mapped as sharable (s) with other processes or is private
(p). The right side of the output page shows the number of pages of memory
consumed and on which nodes the pages reside. Dirty memory means that the
memory has been modified by a user.

007–4413–001 117

6: NUMA Tools

In the second form of the dlook command, you specify a command and optional
command arguments. The dlook command issues an exec call on the command and
passes the command arguments. When the process terminates, dlook prints
information about the process, as shown in the following example:

dlook date

Thu Aug 22 10:39:20 CDT 2002

Exit: date

Pid: 4680 Thu Aug 22 10:39:20 2002

Process memory map:
2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-200000000003c000] 3 pages on node 3 MEMORY|DIRTY

20000000002dc000-20000000002e4000 rw-p 0000000000000000 00:00 0

[20000000002dc000-20000000002e4000] 2 pages on node 3 MEMORY|DIRTY

2000000000324000-2000000000334000 rw-p 0000000000000000 00:00 0

[2000000000324000-2000000000328000] 1 page on node 3 MEMORY|DIRTY

4000000000000000-400000000000c000 r-xp 0000000000000000 04:03 9657220 /bin/date

[4000000000000000-400000000000c000] 3 pages on node 1 MEMORY|SHARED

6000000000008000-6000000000010000 rw-p 0000000000008000 04:03 9657220 /bin/date

[600000000000c000-6000000000010000] 1 page on node 3 MEMORY|DIRTY

6000000000010000-6000000000014000 rwxp 0000000000000000 00:00 0
[6000000000010000-6000000000014000] 1 page on node 3 MEMORY|DIRTY

60000fff80000000-60000fff80004000 rw-p 0000000000000000 00:00 0

[60000fff80000000-60000fff80004000] 1 page on node 3 MEMORY|DIRTY

60000fffffff4000-60000fffffffc000 rwxp ffffffffffffc000 00:00 0

[60000fffffff4000-60000fffffffc000] 2 pages on node 3 MEMORY|DIRTY

118 007–4413–001

Linux® Resource Administration Guide

If you use the dlook command with the -s secs option, the information is sampled at
regular internals. The output for the command dlook -s 5 sleep 50 is as follows:

Exit: sleep

Pid: 5617 Thu Aug 22 11:16:05 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0
[2000000000030000-200000000003c000] 3 pages on node 3 MEMORY|DIRTY

2000000000134000-2000000000140000 rw-p 0000000000000000 00:00 0

20000000003a4000-20000000003a8000 rw-p 0000000000000000 00:00 0
[20000000003a4000-20000000003a8000] 1 page on node 3 MEMORY|DIRTY

20000000003e0000-20000000003ec000 rw-p 0000000000000000 00:00 0

[20000000003e0000-20000000003ec000] 3 pages on node 3 MEMORY|DIRTY

4000000000000000-4000000000008000 r-xp 0000000000000000 04:03 9657225 /bin/sleep

[4000000000000000-4000000000008000] 2 pages on node 3 MEMORY|SHARED

6000000000004000-6000000000008000 rw-p 0000000000004000 04:03 9657225 /bin/sleep

[6000000000004000-6000000000008000] 1 page on node 3 MEMORY|DIRTY

6000000000008000-600000000000c000 rwxp 0000000000000000 00:00 0

[6000000000008000-600000000000c000] 1 page on node 3 MEMORY|DIRTY

60000fff80000000-60000fff80004000 rw-p 0000000000000000 00:00 0

[60000fff80000000-60000fff80004000] 1 page on node 3 MEMORY|DIRTY

60000fffffff4000-60000fffffffc000 rwxp ffffffffffffc000 00:00 0

[60000fffffff4000-60000fffffffc000] 2 pages on node 3 MEMORY|DIRTY

You can run an message passing interface (MPI) job using the mpirun command and
print the memory map for each thread, or redirect the ouput to a file, as follows:

007–4413–001 119

6: NUMA Tools

Note: The output has been abbreviated to shorten the example and bold headings
added for easier reading.

mpirun -np 8 dlook -o dlook.out ft.C.8

Contents of dlook.out:

Exit: ft.C.8

Pid: 2306 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 21 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

...

Exit: ft.C.8

Pid: 2310 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 25 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 25 MEMORY|DIRTY

...

Exit: ft.C.8

Pid: 2307 Fri Aug 30 14:33:37 2002

120 007–4413–001

Linux® Resource Administration Guide

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 30 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 30 MEMORY|DIRTY

...

Exit: ft.C.8

Pid: 2308 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 0 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 0 MEMORY|DIRTY

...

For more information on the dlook command, see the dlook man page.

dplace

The dplace command allow you to control the placement of a process onto specified
CPUs as follows:

dplace [-c cpu_numbers] [-s skip_count] [-n process_name]
[-x skip_mask] [-p placement_file] command [command-args]

dplace -q

Scheduling and memory placement policies for the process are set up according to
dplace command line arguments.

007–4413–001 121

6: NUMA Tools

By default, memory is allocated to a process on the node on which the process is
executing. If a process moves from node to node while it running, a higher
percentage of memory references are made to remote nodes. Because remote accesses
typically have higher access times, process performance can be diminished.

You can use the dplace command to bind a related set of processes to specific CPUs
or nodes to prevent process migrations. In some cases, this improves performance
since a higher percentage of memory accesses are made to local nodes.

Processes always execute within a CpuMemSet. The CpuMemSet specifies the CPUs
on which a process can execute. By default, processes usually execute in a
CpuMemSet that contains all the CPUs in the system (for detailed information on
CpusMemSets, see Chapter 4, "CPU Memory Sets and Scheduling", page 87).

The dplace command invokes a kernel hook (that is, a process aggregate or PAGG)
to create a placement container consisting of all the CPUs (or a or a subset of CPUs)
of the CpuMemSet. The dplace process is placed in this container and by default is
bound to the first CPU of the CpuMemSet associated with the container. Then
dplace invokes exec to execute the command.

The command executes within this placement container and remains bound to the
first CPU of the container. As the command forks child processes, they inherit the
container and are bound to the next available CPU of the container.

If you do not specify a placement file, dplace binds processes sequentially in a
round-robin fashion to CPUs of the placement container. For example, if the current
CpuMemSet consists of physical CPUs 2, 3, 8, and 9, the first process launched by
dplace is bound to CPU 2. The first child process forked by this process is bound to
CPU 3, the next process (regardless whether it is forked by parent or child) to 8, and
so on. If more processes are forked than there are CPUs in the CpuMemSet, binding
starts over with the first CPU in the CpuMemSet.

For more information on dplace(1) and examples of how to use the command, see
the dplace(1) man page.

The dplace(1) command accepts the following options:

-c cpu_numbers The cpu_numbers variable specifies a list of CPU ranges,
for example: "-c1", "-c2-4", "-c1, 4-8, 3". CPU numbers
are not physical CPU numbers. They are logical CPU
numbers that are relative to the CPUs that are in the set
of allowed CPUs as specified by the current
CpuMemSet or runon(1) command. CPU numbers
start at 0. If this option is not specified, all CPUs of the

122 007–4413–001

Linux® Resource Administration Guide

current CpuMemSet are available. Note that a previous
runon command may be used to restrict the available
CPUs.

-s skip_count Skips the first skip_count processes before starting to
place processes onto CPUs. This option is useful if the
first skip_count processes are “shepherd" processes that
are used only for launching the application. If
skip_count is not specified, a default value of 0 is used.

-n process_name Only processes named process_name are placed. Other
processes are ignored and are not explicitly bound to
CPUs.

Note: The process_name argument is the basename of
the executable.

-x skip_mask Provides the ability to skip placement of processes. The
skip_mask argument is a bitmask. If bit N of
skip_mask is set, then the N+1th process that is forked
is not placed. For example, setting the mask to 6 causes
the second and third processes from being placed. The
first process (the process named by the command) will
be assigned to the first CPU. The second amd third
processes are not placed. The fourth process is assigned
to the second CPU, and so on. This option is useful for
certain classes of threaded applications that spawn a
few helper processes that typically do not use much
CPU time.

Note: Intel OpenMP applications currently should be
placed using the -x option with a skip_mask of 6
(-x6). This could change in future versions of OpenMP.

-p placement_file Specifies a placement file that contains additional
directives that are used to control process placement.
(Not yet implemented).

command
[command-args]

Specifies the command you want to place and its
arguments.

007–4413–001 123

6: NUMA Tools

-q Lists the global count of the number of active processes
that have been placed (by dplace) on each CPU in the
current cpuset. Note that CPU numbers are logical CPU
numbers within the cpuset, not physical CPU numbers.

Example 6-1 Using dplace command with MPI Programs

You can use the dplace command to improve placement of MPI programs on
NUMA systems and verify placement of certain data structures of a long running
MPI program by running a command such as the following:

mpirun -np 64 /usr/bin/dplace -s1 -c 0-63 ./a.out

You can then use the dlook(1) command to verify placement of certain data
structures of long running MPI program by using the dlook command in another
window on one of the slave thread PIDs to verify placement. For more information
on using the dlook command, see "dlook", page 115 and the dlook(1) man page.

Example 6-2 Using dplace command with OpenMP Programs

To run an OpenMP program on logical CPUs 4 through 7 within the current
CpuMemSet, perform the following:

efc -o prog -openmp -O3 program.f
setenv OMP_NUM_THREADS 4
dplace -x6 -c4-7 ./prog

The dplace(1) command has a static load balancing feature so that you do not
necessarily have to supply a CPU list. To place prog1 on logical CPUs 0 through 3
and prog2 on logical CPUs 4 through 7, perform the following:

setenv OMP_NUM_THREADS 4
dplace -x6 ./prog1 &

dplace -x6 ./prog2 &

You can use the dplace -q command to display the static load information.

Example 6-3 Using dplace command with Linux Commands

The following examples assume that the command is executed from a shell running
in a CpuMemSet consisting of physical CPUs 8 through 15.

Command Run Location

dplace -c2 date Runs the date command on physical CPU 10.

124 007–4413–001

Linux® Resource Administration Guide

dplace make linux Runs gcc and related processes on physical CPUs 8
through 15.

dplace -c0-4,6
make linux

Runs gcc and related processes on physical CPUs 8
through 12 or 14.

runon 4-7 dplace
app

The runon command restricts execution to physical
CPUs 12 through 15. The dplace sequentially binds
processes to CPUs 12 through 15.

topology

The topology(1) command provides topology information about your system.
Topology information is extracted from information in the/dev/hw directory. Unlike
IRIX, in Linux the hardware topology information is implemented on a devfs
filesystem rather than on a hwgraph filesystem. The devfs filesystem represents the
collection of all significant hardware connected to a system, such as CPUs, memory
nodes, routers, repeater routers, disk drives, disk partitions, serial ports, Ethernet
ports, and so on. The devfs filesystem is maintained by system software and is
mounted at /hw by the Linux kernel at system boot.

Applications programmers can use the topology command to help execution layout
for their applications. For more information, see the topology(1) man page.

Output from the topology command is similar to the following: (Note that the
following output has been abbreviated.)

% topology
Machine parrot.americas.sgi.com has:

64 cpu’s

32 memory nodes

8 routers

8 repeaterrouters

The cpus are:

cpu 0 is /dev/hw/module/001c07/slab/0/node/cpubus/0/a

cpu 1 is /dev/hw/module/001c07/slab/0/node/cpubus/0/c

cpu 2 is /dev/hw/module/001c07/slab/1/node/cpubus/0/a
cpu 3 is /dev/hw/module/001c07/slab/1/node/cpubus/0/c

cpu 4 is /dev/hw/module/001c10/slab/0/node/cpubus/0/a

...

The nodes are:

007–4413–001 125

6: NUMA Tools

node 0 is /dev/hw/module/001c07/slab/0/node
node 1 is /dev/hw/module/001c07/slab/1/node

node 2 is /dev/hw/module/001c10/slab/0/node

node 3 is /dev/hw/module/001c10/slab/1/node

node 4 is /dev/hw/module/001c17/slab/0/node

...
The routers are:

/dev/hw/module/002r15/slab/0/router

/dev/hw/module/002r17/slab/0/router

/dev/hw/module/002r19/slab/0/router

/dev/hw/module/002r21/slab/0/router

...
The repeaterrouters are:

/dev/hw/module/001r13/slab/0/repeaterrouter

/dev/hw/module/001r15/slab/0/repeaterrouter

/dev/hw/module/001r29/slab/0/repeaterrouter

/dev/hw/module/001r31/slab/0/repeaterrouter
...

The topology is defined by:

/dev/hw/module/001c07/slab/0/node/link/1 is /dev/hw/module/001c07/slab/1/node

/dev/hw/module/001c07/slab/0/node/link/2 is /dev/hw/module/001r13/slab/0/repeaterrouter

/dev/hw/module/001c07/slab/1/node/link/1 is /dev/hw/module/001c07/slab/0/node

/dev/hw/module/001c07/slab/1/node/link/2 is /dev/hw/module/001r13/slab/0/repeaterrouter
/dev/hw/module/001c10/slab/0/node/link/1 is /dev/hw/module/001c10/slab/1/node

/dev/hw/module/001c10/slab/0/node/link/2 is /dev/hw/module/001r13/slab/0/repeaterrouter

Installing NUMA Tools
To use the dlook(1), dplace(1), and topology(1) commands, you must load the
numatools kernel module. Perform the following steps:

1. Configure the numatools kernel module on across system reboots by using the
chkconfig(8) utility as follows:

chkconfig --add numatools

2. To turn on numatools, enter the following command:

/etc/rc.d/init.d/numatools start

126 007–4413–001

Linux® Resource Administration Guide

This step will be done automatically for subsequent system reboots when
numatools are configured on by using the chkconfig(8) utility.

The following steps are required to disable numatools:

1. To turn off numatools, enter the following:

/etc/rc.d/init.d/numatools stop

2. To stop numatools from initiating after a system reboot, use the chkconfig(8)
command as follows:

chkconfig --del numatools

007–4413–001 127

Index

A

accounting
concepts, 7
daily accounting, 7
job, 7
jobs, 7
terminology, 7

Array Services, 56
acessing an array, 58
array configuration database, 55, 56
array daemon, 56
array name, 59
array session handle, 55, 69
ASH

See " array session handle", 55
authentication key, 64
commands, 56

ainfo, 59, 56–64
array, 56, 64
arshell, 56, 64
aview, 56, 64

common command options, 64
common environment variables, 66
concepts

array session, 63
array session handle, 63
ASH

See "array session handle", 63
finding basic usage information, 59
global process namespace, 55
hostname command, 64
ibarray, 56
invoking a program, 60

information sources, 60
ordinary (sequential) applications, 60

parallel message-passing applications
distributed over multiple nodes , 60

parallel message-passing applications
within a node, 60

parallel shared-memory applications within
a node, 60

local process management commands, 62
at, 62
batch, 62
intro, 62
kill, 62
nice, 62
ps, 62
top, 62

logging into an array, 59
managing local processes, 61
monitoring processes and system usage, 61
names of arrays and nodes, 63
overview, 55
scheduling and killing local processes, 61
specifying a single node, 65
using an array, 58
using array services commands, 62

C

Comprehensive System Accounting
accounting commands, 52
administrator commands, 16
charging for workload management jobs, 44
commands

csaaddc, 30
csachargefee, 19, 30
csackpacct, 21
csacms, 30
csacon, 31

007–4413–001 129

Index

csadrep, 30
csaedit, 28, 30
csaperiod, 7, 19
csarecy, 30
csarun, 7, 18, 24
csaswitch, 18, 19
csaverify, 28
dodisk, 18
ja, 7

configuration file
See also "/etc/csa.conf", 6, 19

configuration variables
See also "/etc/csa.conf", 7

daemon accounting, 42
daily operation overview, 18
data processing, 28
data recycling, 32
enabling or disabling, 9
/etc/csa.conf

See also "configuration file", 6
files and directories, 10
overview, 5
recycled data

workload management requests, 37
recycled sessions, 33
removing recycled data, 33
reports

daily, 47
periodic, 51

SBUs
process, 39
See "system billing units", 38
tape

See also "system billing units", 42
workload management, 41

setting up CSA, 19
system billing units

See "SBUs", 38
tailoring CSA, 38

commands, 45
shell scripts, 45

terminating jobs, 32

user commands, 17
user exits, 43
verifying and editing data files, 28

CpuMemSet System, 92
access

C shared library, 88
Python language module, 88

commands
runon, 88, 94

configuring, 92
cpumemmap, 90
cpumemset, 90
determining an application’s current CPU, 97
determining the memory layout of

cpumemmaps and cpumemsets, 97
error messages, 98
hard partitioning versus CpuMemSets, 97
implementation, 89
initializing, 94
initializing system service on CpuMemSets, 96
installing, 92
kernel-boot command line parameter, 91
layers, 87
managing, 95
operating on, 95
overview, 87
page allocation, 92
policy flag

CMS_SHARE, 92
Python module, 92
resolving pages for memory areas, 96
tuning, 92
using CPU memory sets, 93

Cpuset System
commands

cpuset, 102
configuration flags

CPU, 110
EXCLUSIVE, 109
MEMORY_EXCLUSIVE, 110
MEMORY_KERNEL_AVOID, 110

130 007–4413–001

Linux® Resource Administration Guide

MEMORY_LOCAL, 109
MEMORY_MANDATORY, 110
POLICY_KILL, 110
POLICY_PAGE, 110

CPU restrictions, 104
cpuset configuration file, 107

flags
See also "valid tokens", 109

Cpuset library, 111
enabling or disabling, 110
library

overview, 100
system division, 99

csaaddc, 30
csachargefee, 18
csackpacct, 21
csacms, 30
csacon, 31
csadrep, 30
csaedit, 28, 30
csaperiod, 7
csarecy, 30
csarun, 7, 18
csaswitch, 18
csaverify, 28

D

dodisk, 30

F

files
holidays file (accounting) updating, 21

H

holidays file (accounting) updating, 21

J

ja, 7
Job Limits

Pluggable Authentication Module (PAM), 2
point-of-entry processes, 1

Jobs
installing and configuring, 3
job characteristics, 2
job initiators

See also "point-of-entry processes", 2
jobs

accounting, in, 7

L

Linux kernel tasks, 88

M

memory management terminology, 88

N

node, 89
NUMA Tools

Command
dlook, 115
dplace, 121
topology, 125

installing, 126

P

Pluggable Authentication Module (PAM), 2
Python module, 92

007–4413–001 131

Index

S

system memory blocks, 88

T

task

See "Linux kernel tasks", 88

V

virtual memory areas, 89

132 007–4413–001

	Table of Contents
	List of Figures
	List of Tables

	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Linux Kernel Jobs
	Overview
	Installing and Configuring Linux Kernel Jobs

	2. Comprehensive System Accounting
	CSA Overview
	Concepts and Terminology
	Enabling or Disabling CSA
	CSA Files and Directories
	Files in the /var/csa Directory

	CSA Expanded Description
	Daily Operation Overview
	Setting Up CSA
	The csarun Command
	Verifying and Editing Data Files
	CSA Data Processing
	Data Recycling
	Tailoring CSA

	CSA Reports
	CSA Daily Report
	Periodic Report

	CSA Man Pages
	User-Level Man Pages
	Administrator Man Pages

	3. Array Services
	Array Services Package
	Installing and Configuring Array Services
	Using an Array
	Using an Array System

	Managing Local Processes
	Monitoring Local Processes and System Usage
	Scheduling and Killing Local Processes
	Summary of Local Process Management Commands

	Using Array Services Commands
	About Array Sessions
	About Names of Arrays and Nodes
	About Authentication Keys

	Summary of Common Command Options
	Specifying a Single Node
	Common Environment Variables

	Interrogating the Array
	Learning Array Names
	Learning Node Names
	Learning Node Features
	Learning User Names and Workload

	Managing Distributed Processes
	About Array Session Handles (ASH)
	Listing Processes and ASH Values
	Controlling Processes

	About Array Configuration
	About the Uses of the Configuration File
	About Configuration File Format and Contents
	Loading Configuration Data
	About Substitution Syntax
	Testing Configuration Changes

	Configuring Arrays and Machines
	Specifying Arrayname and Machine Names
	Specifying IP Addresses and Ports
	Specifying Additional Attributes

	Configuring Authentication Codes
	Configuring Array Commands
	Operation of Array Commands
	Summary of Command Definition Syntax
	Configuring Local Options
	Designing New Array Commands

	4. CPU Memory Sets and Scheduling
	Memory Management Terminology
	System Memory Blocks
	Tasks
	Virtual Memory Areas
	Nodes

	CpuMemSet System Implementation
	Cpumemmap
	cpumemset

	Installing, Configuring, and Tuning CpuMemSets
	Installing CpuMemSets
	Configuring CpuMemSets
	Tuning CpuMemSets

	Using CpuMemSets
	Using the runon (1) Command
	Initializing CpuMemSets
	Operating on CpuMemSets
	Managing CpuMemSets
	Initializing System Service on CpuMemSets
	Resolving Pages for Memory Areas
	Determining an Application's Current CPU
	Determining the Memory Layout of cpumemmaps and cpumemsets

	Hard Partitioning versus CpuMemSets
	Error Messages

	5. Cpuset System
	Cpusets on Linux versus IRIX
	Using Cpusets
	Restrictions on CPUs within Cpusets
	Cpuset System Examples
	Cpuset Configuration File
	Installing the Cpuset System
	Using the Cpuset Library
	Cpuset System Man Pages
	User-Level Man Pages
	Cpuset Library Man Pages
	File Format Man Pages
	Miscellaneous Man Pages

	6. NUMA Tools
	dlook
	dplace
	topology
	Installing NUMA Tools

	Index

