
Linux® Resource Administration Guide

007–4413–004

CONTRIBUTORS

Written by Terry Schultz
Illustrated by Chris Wengelski
Production by Karen Jacobson
Engineering contributions by Jeremy Brown, Marlys Kohnke, Paul Jackson, John Hesterberg, Robin Holt, Kevin McMahon, Troy Miller,
Dennis Parker, Sam Watters, and Todd Wyman

COPYRIGHT
© 2002–2004 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere
herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in
any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, and IRIX are registered trademarks and SGI Linux and SGI ProPack for Linux are trademarks of
Silicon Graphics, Inc., in the United States and/or other countries worldwide.

SGI Advanced Linux Environment 2.1 is based on Red Hat Linux Advanced Server 2.1 for the Itanium Processor, but is not sponsored
by or endorsed by Red Hat, Inc. in any way. Red Hat is a registered trademark and Red Hat Linux Advanced Server 2.1 is a
trademark of Red Hat, Inc.

Linux is a registered trademark of Linus Torvalds, used with permission by Silicon Graphics, Inc. UNIX and the X Window System are
registered trademarks of The Open Group in the United States and other countries.

New Features in This Manual

This rewrite of the Linux Resource Administration Guide supports the 2.4 release of the
SGI ProPack for Linux operating system.

New Features Documented
Added information about the bootcpuset facility in "Bootcpuset" on page 54.

Major Documentation Changes
Removed Chapter 2 on Comprehensive System Accounting (CSA).

007–4413–004 iii

Record of Revision

Version Description

001 February 2003
Original publication.

002 June 2003
Updated to support the SGI ProPack for Linux 2.2 release

003 October 2003
Updated to support the SGI ProPack for Linux 2.3 release.

004 February 2004
Updated to support the SGI ProPack for Linux 2.4 release.

007–4413–004 v

Contents

About This Guide . xvii

Related Publications . xvii

Obtaining Publications . xvii

Conventions . xviii

Reader Comments . xviii

1. Linux Kernel Jobs . 1

Overview . 1

Installing and Configuring Linux Kernel Jobs 3

2. Array Services . 5

Array Services Package . 6

Installing and Configuring Array Services 6

Using an Array . 8

Using an Array System . 8

Finding Basic Usage Information 9

Logging In to an Array . 9

Invoking a Program . 10

Managing Local Processes . 11

Monitoring Local Processes and System Usage 11

Scheduling and Killing Local Processes 11

Summary of Local Process Management Commands 12

Using Array Services Commands 12

About Array Sessions . 13

007–4413–004 vii

Contents

About Names of Arrays and Nodes 13

About Authentication Keys 14

Summary of Common Command Options 14

Specifying a Single Node . 15

Common Environment Variables 16

Interrogating the Array . 16

Learning Array Names . 16

Learning Node Names . 17

Learning Node Features . 17

Learning User Names and Workload 18

Learning User Names . 18

Learning Workload . 18

Managing Distributed Processes 19

About Array Session Handles (ASH) 19

Listing Processes and ASH Values 20

Controlling Processes . 21

Using arshell . 21

About the Distributed Example 22

Managing Session Processes 23

About Job Container IDs 24

About Array Configuration . 24

About the Uses of the Configuration File 25

About Configuration File Format and Contents 26

Loading Configuration Data 26

About Substitution Syntax . 27

Testing Configuration Changes 28

Configuring Arrays and Machines 29

viii 007–4413–004

Linux® Resource Administration Guide

Specifying Arrayname and Machine Names 29

Specifying IP Addresses and Ports 29

Specifying Additional Attributes 30

Configuring Authentication Codes 30

Configuring Array Commands 31

Operation of Array Commands 31

Summary of Command Definition Syntax 32

Configuring Local Options . 34

Designing New Array Commands 35

3. CPU Memory Sets and Scheduling 37

Memory Management Terminology 38

System Memory Blocks . 38

Tasks . 38

Virtual Memory Areas . 39

Nodes . 39

CpuMemSet System Implementation 39

Cpumemmap . 40

cpumemset . 40

Installing, Configuring, and Tuning CpuMemSets 42

Installing CpuMemSets . 42

Configuring CpuMemSets . 43

Tuning CpuMemSets . 43

Using CpuMemSets . 43

Using the runon(1) Command 44

Initializing CpuMemSets . 44

Operating on CpuMemSets 45

007–4413–004 ix

Contents

Managing CpuMemSets . 45

Initializing System Service on CpuMemSets 46

Resolving Pages for Memory Areas 46

Determining an Application’s Current CPU 47

Determining the Memory Layout of cpumemmaps and cpumemsets 47

Hard Partitioning versus CpuMemSets 47

Error Messages . 48

4. Cpuset System . 51

Cpusets on Linux versus IRIX 53

Bootcpuset . 54

Using Cpusets . 55

Restrictions on CPUs within Cpusets 57

Cpuset System Examples . 57

Cpuset Configuration File . 60

Installing the Cpuset System . 63

Using the Cpuset Library . 63

Cpuset System Man Pages . 63

User-Level Man Pages . 64

Admin-Level Man Pages . 64

Cpuset Library Man Pages . 64

File Format Man Pages . 65

Miscellaneous Man Pages . 66

5. NUMA Tools . 67

Appendix A. Application Programming Interface for the Cpuset System . 69

Overview . 69

x 007–4413–004

Linux® Resource Administration Guide

Management Functions . 71

Retrieval Functions . 85

Clean-up Functions . 103

Using the Cpuset Library . 109

Index . 113

007–4413–004 xi

Figures

Figure 1-1 Point-of-Entry Processes 2

007–4413–004 xiii

Tables

Table 2-1 Information Sources for Invoking a Program 11

Table 2-2 Information Sources: Local Process Management 12

Table 2-3 Common Array Services Commands 13

Table 2-4 Array Services Command Option Summary 14

Table 2-5 Array Services Environment Variables 16

Table 2-6 Information Sources: Array Configuration 25

Table 2-7 Subentries of a COMMAND Definition 32

Table 2-8 Substitutions Used in a COMMAND Definition 33

Table 2-9 Options of the COMMAND Definition 34

Table 2-10 Subentries of the LOCAL Entry 34

007–4413–004 xv

About This Guide

This guide is a reference document for people who manage the operation of SGI
computer systems running the Linux operating system. It contains information
needed in the administration of various system resource management features.

This manual contains the following chapters:

• Chapter 1, "Linux Kernel Jobs" on page 1

• Chapter 2, "Array Services" on page 5

• Chapter 3, "CPU Memory Sets and Scheduling" on page 37

• Chapter 4, "Cpuset System" on page 51

• Chapter 5, "NUMA Tools" on page 67

• Appendix A, "Application Programming Interface for the Cpuset System" on page
69

Related Publications
For a list of Array Services man pages, see "Using Array Services Commands" on
page 12.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• SGI ProPack for Linux documentation, and all other documentation included in
the RPMs on the distribution CDs, can be found on the CD titled "SGI ProPack
V.2.4 for Linux - Documentation CD." To access the information on the
documentation CD, open the index.html file with a web browser. Because this
online file can be updated later in the release cycle than this document, you
should check it for the latest information. After installation, all SGI ProPack for

007–4413–004 xvii

About This Guide

Linux documentation (including README.SGI) is in the
/usr/share/doc/sgi-propack-2.4 directory.

• You can view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

xviii 007–4413–004

Linux® Resource Administration Guide

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, California 94043–1351

SGI values your comments and will respond to them promptly.

007–4413–004 xix

Chapter 1

Linux Kernel Jobs

This chapter describes Linux kernel jobs and contains the following sections:

• "Overview" on page 1

• "Installing and Configuring Linux Kernel Jobs" on page 3

Overview
Work on a machine is submitted in a variety of ways, such as an interactive login, a
submission from a workload management system, a cron job, or a remote access
such as rsh, rcp, or array services. Each of these points of entry creates an original
shell process and multiple processes flow from that original point of entry. The Linux
kernel job, used by the Comprehensive System Accounting (CSA) software, provides
a means to measure the resource usage of all the processes resulting from a point of
entry. A job is a group of related processes all descended from a point-of- entry
process and identified by a unique job ID. A job can contain multiple process groups,
sessions, or array sessions and all processes in one of these subgroups are always
contained within one job. Figure 1-1 on page 2, shows the point-of-entry processes
that initiate the creation of jobs.

007–4413–004 1

1: Linux Kernel Jobs

log
in

cro
n

su
rsh

, r
log

in

Workload manager

arr
ayd

Linux
job

start a job

Figure 1-1 Point-of-Entry Processes

A Linux job has the following characteristics:

• A job is an inescapable container. A process cannot leave the job nor can a new
process be created outside the job without explicit action, that is, a system call
with root privilege.

• Each new process inherits the job ID from its parent process.

• All point-of-entry processes (job initiators) create a new job.

• The job initiator performs authentication and security checks.

• Job initiation on Linux is performed via a Pluggable Authentication Module
(PAM) session module.

Note: PAMs are a suite of shared libraries that enable the local system
administrator to choose how applications authenticate users. For more information
on PAM, see the Linux Configuration and Operations Guide.

• Not all processes on a system need to be members of a job.

The process-control initialization process (init(8)) and startup scripts called by init
are not part of a job and have a job ID of zero.

2 007–4413–004

Linux® Resource Administration Guide

Note: The existing command jobs(1) applies to shell "jobs" and it is not related to
the Linux kernel module jobs. The at(1), atd(8), atq(1), batch(1), atrun(8), and
atrm(1) man pages refer to shell scripts as a job.

Installing and Configuring Linux Kernel Jobs
Linux kernel jobs are part of the kernel on your SGI ProPack for Linux system. To
configure jobs for services, such as Comprehensive System Accounting (CSA),
perform the following steps:

1. Change to the directory where the PAM configuration files reside by entering the
following:

cd /etc/pam.d

2. To enable job creation for all session services add an entry to the
/etc/pam.d/system-auth file.

If you want to enable jobs only for certain PAM services you can update
individual configuration files. This example shows the login configuration file
being changed. You customize PAM services by adding the session line to PAM
entry points that will create jobs on your system, for example, login, rlogin,
rsh, and su.

To enable job creation for login users by adding this entry to the login
configuration file:

session required /lib/security/pam_job.so

3. To configure jobs to be started automatically during system startup, use the
chkconfig(8) command as follows:

chkconfig --add job

4. To stop jobs from being started automatically during system startup, use the
chkconfig(8) command as follows:

chkconfig --del job

007–4413–004 3

Chapter 2

Array Services

Array Services includes administrator commands, libraries, daemons, and kernel
extensions that support the execution of programs across an array.

A central concept in Array Services is the array session handle (ASH), a number that
is used to logically group related processes that may be distributed across multiple
systems. The ASH creates a global process namespace across the Array, facilitating
accounting and administration

Array Services also provides an array configuration database, listing the nodes
comprising an array. Array inventory inquiry functions provide a centralized,
canonical view of the configuration of each node. Other array utilities let the
administrator query and manipulate distributed array applications.

This chapter covers the follow topics:

• "Array Services Package" on page 6

• "Installing and Configuring Array Services" on page 6

• "Using an Array" on page 8

• "Managing Local Processes" on page 11

• "Using Array Services Commands" on page 12

• "Summary of Common Command Options" on page 14

• "Interrogating the Array" on page 16

• "Managing Distributed Processes" on page 19

• "About Array Configuration" on page 24

• "Configuring Arrays and Machines" on page 29

• "Configuring Authentication Codes" on page 30

• "Configuring Array Commands" on page 31

007–4413–004 5

2: Array Services

Array Services Package
The Array Services package comprises the following primary components:

array daemon Allocates ASH values and maintain information about
node configuration and the relation of process IDs to
ASHs. Array daemons reside on each node and work
in cooperation.

array configuration
database

Describes the array configuration used by array
daemons and user programs. One copy at each node.

ainfo command Lets the user or administrator query the Array
configuration database and information about ASH
values and processes.

array command Executes a specified command on one or more nodes.
Commands are predefined by the administrator in the
configuration database.

arshell command Starts a command remotely on a different node using
the current ASH value.

aview command Displays a multiwindow, graphical display of each
node’s status. (Not currently available)

The use of the ainfo, array, arshell, and aview commands is covered in "Using
an Array" on page 8.

Installing and Configuring Array Services
To use the Array Services package on Linux, you must have an Array Services
enabled kernel. This is done with the arsess kernel module, which is provided with
SGI’s Linux Base Software. If the module is installed correctly, the init script
provided with the Array Services rpm will load the module when starting up the
arrayd daemon.

1. An account must exist on all hosts in the array for the purposes of running
certain Array Services commands. This is controlled by the
/usr/lib/array/arrayd.conf configuration file. The default is to use the
user account "guest" since this is typically found on UNIX machines. The account
name can be changed in arrayd.conf. For more information, see the
arrayd.conf(8) man page.

6 007–4413–004

Linux® Resource Administration Guide

If necessary, add the specified user account or "guest" by default, to all machines
in the array.

2. Add the following entry to /etc/services file for arrayd service and port.
The default port number is 5434 and is specified in the arrayd.conf
configuration file.

sgi-arrayd 5434/tcp # SGI Array Services daemon

3. If necessary, modify the default authentication configuration. The default
authentication is AUTHENTICATION NOREMOTE, which does not allow access
from remote hosts. The authentication model is specified in the
/usr/lib/array/arrayd.auth configuration file.

4. To configure Array Services on across system reboots using the chkconfig(8)
utility, perform the following:

chkconfig --add array

5. For information on configuring Array Services, see the following:

• "About Array Configuration" on page 24

• "Configuring Arrays and Machines" on page 29

• "Configuring Authentication Codes" on page 30

• "Configuring Array Commands" on page 31

6. To turn on Array Services, perform the following:

/etc/rc.d/init.d/array start

This step will be done automatically for subsequent system reboots when Array
Services is configured on via the chkconfig(8) utility.

The following steps are required to disable Array Services:

1. To turn off Array Services, perform the following:

/etc/rc.d/init.d/array stop

2. To stop Array Services from initiating after a system reboot, use the
chkconfig(8) command:

chkconfig --del array

007–4413–004 7

2: Array Services

Using an Array
An Array system is an aggregation of nodes, which are servers bound together with a
high-speed network and Array Services 3.5 software. Array users have the advantage
of greater performance and additional services. Array users access the system with
familiar commands for job control, login and password management, and remote
execution.

Array Services 3.5 augments conventional facilities with additional services for array
users and for array administrators. The extensions include support for global session
management, array configuration management, batch processing, message passing,
system administration, and performance visualization.

This section introduces the extensions for Array use, with pointers to more detailed
information. The main topics are as follows:

• "Using an Array System" on page 8, summarizes what a user needs to know and
the main facilities a user has available.

• "Managing Local Processes" on page 11, reviews the conventional tools for listing
and controlling processes within one node.

• "Using Array Services Commands" on page 12, describes the common concepts,
options, and environment variables used by the Array Services commands.

• "Interrogating the Array" on page 16, summarizes how to use Array Services
commands to learn about the Array and its workload, with examples.

• "Summary of Common Command Options" on page 14

• "Managing Distributed Processes" on page 19, summarizes how to use Array
Services commands to list and control processes in multiple nodes.

Using an Array System

The array system allows you to run distributed sessions on multiple nodes of an
array. You can access the Array from either:

• A workstation

• An X terminal

• An ASCII terminal

8 007–4413–004

Linux® Resource Administration Guide

In each case, you log in to one node of the Array in the way you would log in to any
remote UNIX host. From a workstation or an X terminal you can of course open more
than one terminal window and log into more than one node.

Finding Basic Usage Information

In order to use an Array, you need the following items of information:

• The name of the Array.

You use this arrayname in Array Services commands.

• The login name and password you will use on the Array.

You use these when logging in to the Array to use it.

• The hostnames of the array nodes.

Typically these names follow a simple pattern, often arrayname1, arrayname2, and
so on.

• Any special resource-distribution or accounting rules that may apply to you or
your group under a job scheduling system.

You can learn the hostnames of the array nodes if you know the array name, using
the ainfo command as follows:

ainfo -a arrayname machines

Logging In to an Array

Each node in an Array has an associated hostname and IP network address. Typically,
you use an Array by logging in to one node directly, or by logging in remotely from
another host (such as the Array console or a networked workstation). For example,
from a workstation on the same network, this command would log you in to the
node named hydra6 as follows:

rlogin hydra6

For details of the rlogin command, see the rlogin(1) man page.

The system administrators of your array may choose to disallow direct node logins in
order to schedule array resources. If your site is configured to disallow direct node
logins, your administrators will be able to tell you how you are expected to submit

007–4413–004 9

2: Array Services

work to the array–perhaps through remote execution software or batch queueing
facilities.

Invoking a Program

Once you have access to an array, you can invoke programs of several classes:

• Ordinary (sequential) applications

• Parallel shared-memory applications within a node

• Parallel message-passing applications within a node

• Parallel message-passing applications distributed over multiple nodes (and
possibly other servers on the same network running Array Services 3.5

If you are allowed to do so, you can invoke programs explicitly from a logged-in shell
command line; or you may use remote execution or a batch queueing system.

Programs that are X Windows clients must be started from an X server, either an X
Terminal or a workstation running X Windows.

Some application classes may require input in the form of command line options,
environment variables, or support files upon execution. For example:

• X client applications need the DISPLAY environment variable set to specify the X
server (workstation or X-terminal) where their windows will display.

• A multithreaded program may require environment variables to be set describing
the number of threads.

For example, C and Fortran programs that use parallel processing directives test
the MP_SET_NUMTHREADS variable.

• Message Passing Interface (MPI) and Parallel Virtual Machine (PVM)
message-passing programs may require support files to describe how many tasks
to invoke on specified nodes.

Some information sources on program invocation are listed in Table 2-1 on page 11.

10 007–4413–004

Linux® Resource Administration Guide

Table 2-1 Information Sources for Invoking a Program

Topic Man Page

Remote login rlogin(1)

Setting environment variables environ(5), env(1)

Managing Local Processes
Each UNIX process has a process identifier (PID), a number that identifies that process
within the node where it runs. It is important to realize that a PID is local to the node;
so it is possible to have processes in different nodes using the same PID numbers.

Within a node, processes can be logically grouped in process groups. A process group
is composed of a parent process together with all the processes that it creates. Each
process group has a process group identifier (PGID). Like a PID, a PGID is defined
locally to that node, and there is no guarantee of uniqueness across the Array.

Monitoring Local Processes and System Usage

You query the status of processes using the system command ps. To generate a full
list of all processes on a local system, use a command such as the following:

ps -elfj

You can monitor the activity of processes using the command top (an ASCII display
in a terminal window).

Scheduling and Killing Local Processes

You can schedule commands to run at specific times using the at command. You can
kill or stop processes using the kill command. To destroy the process with PID
13032, use a command such as the following:

kill -KILL 13032

007–4413–004 11

2: Array Services

Summary of Local Process Management Commands

Table 2-2 on page 12, summarizes information about local process management.

Table 2-2 Information Sources: Local Process Management
standard

Topic Man Page

Process ID and process group intro(2)

Listing and monitoring processes ps(1), top(1)

Running programs at low priority nice(1), batch(1)

Running programs at a scheduled time at(1)

Terminating a process kill(1)

Using Array Services Commands
When an application starts processes on more than one node, the PID and PGID are
no longer adequate to manage the application. The commands of Array Services 3.5
give you the ability to view the entire array, and to control the processes of multinode
programs.

Note: You can use Array Services commands from any workstation connected to an
array system. You don’t have to be logged in to an array node.

The following commands are common to Array Services operations as shown in Table
2-3 on page 13.

12 007–4413–004

Linux® Resource Administration Guide

Table 2-3 Common Array Services Commands

Topic Man Page

Array Services Overview array_services(5)

ainfo command ainfo(1)

array command Use array(1); configuration:
arrayd.conf(4)

arshell command arshell(1)

newsess command newsess (1)

About Array Sessions

Array Services is composed of a daemon–a background process that is started at boot
time in every node–and a set of commands such as ainfo(1). The commands call on
the daemon process in each node to get the information they need.

One concept that is basic to Array Services is the array session, which is a term for all
the processes of one application, wherever they may execute. Normally, your login
shell, with the programs you start from it, constitutes an array session. A batch job is
an array session; and you can create a new shell with a new array session identity.

Each session is identified by an array session handle (ASH), a number that identifies
any process that is part of that session. You use the ASH to query and to control all
the processes of a program, even when they are running in different nodes.

About Names of Arrays and Nodes

Each node is server, and as such has a hostname. The hostname of a node is returned
by the hostname(1) command executed in that node as follows:

% hostname
tokyo

007–4413–004 13

2: Array Services

The command is simple and documented in the hostname(1) man page. The more
complicated issues of hostname syntax, and of how hostnames are resolved to
hardware addresses are covered in hostname(5).

An Array system as a whole has a name too. In most installations there is only a
single Array, and you never need to specify which Array you mean. However, it is
possible to have multiple Arrays available on a network, and you can direct Array
Services commands to a specific Array.

About Authentication Keys

It is possible for the Array administrator to establish an authentication code, which is
a 64-bit number, for all or some of the nodes in an array (see "Configuring
Authentication Codes" on page 58). When this is done, each use of an Array Services
command must specify the appropriate authentication key, as a command option, for
the nodes it uses. Your system administrator will tell you if this is necessary.

Summary of Common Command Options
The following Array Services commands have a consistent set of command options:
ainfo(1), array(1), arshell(1), and aview(1) (aview(1) is not currently available).
Table 2-4 is a summary of these options. Not all options are valid with all commands;
and each command has unique options besides those shown. The default values of
some options are set by environment variables listed in the next topic.

Table 2-4 Array Services Command Option Summary

Option Used In Description

-a array ainfo, array, aview Specify a particular
Array when more
than one is accessible.

-D ainfo, array,
arshell, aview

Send commands to
other nodes directly,
rather than through
array daemon.

14 007–4413–004

Linux® Resource Administration Guide

Option Used In Description

-F ainfo, array,
arshell, aview

Forward commands to
other nodes through
the array daemon.

-Kl number ainfo, array, aview Authentication key (a
64-bit number) for the
local node.

-Kr number ainfo, array, aview Authentication key (a
64-bit number) for the
remote node.

-l (letter ell) ainfo, array Execute in context of
the destination node,
not necessarily the
current node.

-l port ainfo, array,
arshell, aview

Nonstandard port
number of array
daemon.

-s hostname ainfo, array, aview Specify a destination
node.

Specifying a Single Node

The -l and -s options work together. The -l (letter ell for “local”) option restricts
the scope of a command to the node where the command is executed. By default, that
is the node where the command is entered. When -l is not used, the scope of a
query command is all nodes of the array. The -s (server, or node name) option
directs the command to be executed on a specified node of the array. These options
work together in query commands as follows:

• To interrogate all nodes as seen by the local node, use neither option.

• To interrogate only the local node, use only -l.

• To interrogate all nodes as seen by a specified node, use only -s.

• To interrogate only a particular node, use both -s and -l.

007–4413–004 15

2: Array Services

Common Environment Variables

The Array Services commands depend on environment variables to define default
values for the less-common command options. These variables are summarized in
Table 2-5.

Table 2-5 Array Services Environment Variables

Variable Name Use Default When Undefined

ARRAYD_FORWARD When defined with a string
starting with the letter y, all
commands default to
forwarding through the array
daemon (option -F).

Commands default to
direct communication
(option -D).

ARRAYD_PORT The port (socket) number
monitored by the array daemon
on the destination node.

The standard number of
5434, or the number
given with option -p.

ARRAYD_LOCALKEY Authentication key for the local
node (option -Kl).

No authentication unless
-Kl option is used.

ARRAYD_REMOTEKEY Authentication key for the
destination node (option -Kr).

No authentication unless
-Kr option is used.

ARRAYD The destination node, when
not specified by the -s option.

The local node, or the
node given with -s.

Interrogating the Array
Any user of an Array system can use Array Services commands to check the
hardware components and the software workload of the Array. The commands
needed are ainfo, array, and aview.

Learning Array Names

If your network includes more than one Array system, you can use ainfo arrays
at one array node to list all the Array names that are configured, as in the following
example.

16 007–4413–004

Linux® Resource Administration Guide

homegrown% ainfo arrays
Arrays known to array services daemon

ARRAY DevArray

IDENT 0x3381

ARRAY BigDevArray

IDENT 0x7456
ARRAY test

IDENT 0x655e

Array names are configured into the array database by the administrator. Different
Arrays might know different sets of other Array names.

Learning Node Names

You can use ainfo machines to learn the names and some features of all nodes in
the current Array, as in the following example.

homegrown 175% ainfo -b machines

machine homegrown homegrown 5434 192.48.165.36 0

machine disarray disarray 5434 192.48.165.62 0

machine datarray datarray 5434 192.48.165.64 0

machine tokyo tokyo 5434 150.166.39.39 0

In this example, the -b option of ainfo is used to get a concise display.

Learning Node Features

You can use ainfo nodeinfo to request detailed information about one or all nodes
in the array. To get information about the local node, use ainfo -l nodeinfo.
However, to get information about only a particular other node, for example node
tokyo, use -l and -s, as in the following example. (The example has been edited for
brevity.)

homegrown 181% ainfo -s tokyo -l nodeinfo

Node information for server on machine "tokyo"

MACHINE tokyo

VERSION 1.2

8 PROCESSOR BOARDS

BOARD: TYPE 15 SPEED 190
CPU: TYPE 9 REVISION 2.4

FPU: TYPE 9 REVISION 0.0

007–4413–004 17

2: Array Services

...
16 IP INTERFACES HOSTNAME tokyo HOSTID 0xc01a5035

DEVICE et0 NETWORK 150.166.39.0 ADDRESS 150.166.39.39 UP

DEVICE atm0 NETWORK 255.255.255.255 ADDRESS 0.0.0.0 UP

DEVICE atm1 NETWORK 255.255.255.255 ADDRESS 0.0.0.0 UP

...
0 GRAPHICS INTERFACES

MEMORY

512 MB MAIN MEMORY

INTERLEAVE 4

If the -l option is omitted, the destination node will return information about every
node that it knows.

Learning User Names and Workload

The system commands who(1), top(1), and uptime(1) are commonly used to get
information about users and workload on one server. The array(1) command offers
Array-wide equivalents to these commands.

Learning User Names

To get the names of all users logged in to the whole array, use array who. To learn
the names of users logged in to a particular node, for example tokyo, use -l and -s,
as in the following example. (The example has been edited for brevity and security.)

homegrown 180% array -s tokyo -l who
joecd tokyo frummage.eng.sgi -tcsh

joecd tokyo frummage.eng.sgi -tcsh

benf tokyo einstein.ued.sgi. /bin/tcsh

yohn tokyo rayleigh.eng.sg vi +153 fs/procfs/prd

...

Learning Workload

Two variants of the array command return workload information. The array-wide
equivalent of uptime is array uptime, as follows:

homegrown 181% array uptime

homegrown: up 1 day, 7:40, 26 users, load average: 7.21, 6.35, 4.72

disarray: up 2:53, 0 user, load average: 0.00, 0.00, 0.00

18 007–4413–004

Linux® Resource Administration Guide

datarray: up 5:34, 1 user, load average: 0.00, 0.00, 0.00
tokyo: up 7 days, 9:11, 17 users, load average: 0.15, 0.31, 0.29

homegrown 182% array -l -s tokyo uptime

tokyo: up 7 days, 9:11, 17 users, load average: 0.12, 0.30, 0.28

The command array top lists the processes that are currently using the most CPU
time, with their ASH values, as in the following example.

homegrown 183% array top

ASH Host PID User %CPU Command

--

0x1111ffff00000000 homegrown 5 root 1.20 vfs_sync
0x1111ffff000001e9 homegrown 1327 guest 1.19 atop

0x1111ffff000001e9 tokyo 19816 guest 0.73 atop

0x1111ffff000001e9 disarray 1106 guest 0.47 atop

0x1111ffff000001e9 datarray 1423 guest 0.42 atop

0x1111ffff00000000 homegrown 20 root 0.41 ShareII

0x1111ffff000000c0 homegrown 29683 kchang 0.37 ld
0x1111ffff0000001e homegrown 1324 root 0.17 arrayd

0x1111ffff00000000 homegrown 229 root 0.14 routed

0x1111ffff00000000 homegrown 19 root 0.09 pdflush

0x1111ffff000001e9 disarray 1105 guest 0.02 atopm

The -l and -s options can be used to select data about a single node, as usual.

Managing Distributed Processes
Using commands from Array Services 3.5, you can create and manage processes that
are distributed across multiple nodes of the Array system.

About Array Session Handles (ASH)

In an Array system you can start a program with processes that are in more than one
node. In order to name such collections of processes, Array Services 3.5 software
assigns each process to an array session handle (ASH).

An ASH is a number that is unique across the entire array (unlike a PID or PGID). An
ASH is the same for every process that is part of a single array session—no matter
which node the process runs in. You display and use ASH values with Array Services

007–4413–004 19

2: Array Services

commands. Each time you log in to an Array node, your shell is given an ASH,
which is used by all the processes you start from that shell.

The command ainfo ash returns the ASH of the current process on the local node,
which is simply the ASH of the ainfo command itself.

homegrown 178% ainfo ash

Array session handle of process 10068: 0x1111ffff000002c1

homegrown 179% ainfo ash
Array session handle of process 10069: 0x1111ffff000002c1

In the preceding example, each instance of the ainfo command was a new process:
first PID 10068, then PID 10069. However, the ASH is the same in both cases. This
illustrates a very important rule: every process inherits its parent’s ASH. In this case,
each instance of array was forked by the command shell, and the ASH value shown
is that of the shell, inherited by the child process.

You can create a new global ASH with the command ainfo newash, as follows:

homegrown 175% ainfo newash

Allocating new global ASH

0x11110000308b2f7c

This feature has little use at present. There is no existing command that can change
its ASH, so you cannot assign the new ASH to another command. It is possible to
write a program that takes an ASH from a command-line option and uses the Array
Services function setash() to change to that ASH (however such a program must be
privileged). No such program is distributed with Array Services 3.5.

Listing Processes and ASH Values

The command array ps returns a summary of all processes running on all nodes in
an array. The display shows the ASH, the node, the PID, the associated username, the
accumulated CPU time, and the command string.

To list all the processes on a particular node, use the -l and -s options. To list
processes associated with a particular ASH, or a particular username, pipe the
returned values through grep, as in the following example. (The display has been
edited to save space.)

homegrown 182% array -l -s tokyo ps | fgrep wombat
0x261cffff0000054c tokyo 19007 wombat 0:00 -csh

0x261cffff0000054a tokyo 17940 wombat 0:00 csh -c (setenv...

20 007–4413–004

Linux® Resource Administration Guide

0x261cffff0000054c tokyo 18941 wombat 0:00 csh -c (setenv...
0x261cffff0000054a tokyo 17957 wombat 0:44 xem -geometry 84x42

0x261cffff0000054a tokyo 17938 wombat 0:00 rshd

0x261cffff0000054a tokyo 18022 wombat 0:00 /bin/csh -i

0x261cffff0000054a tokyo 17980 wombat 0:03 /usr/gnu/lib/ema...

0x261cffff0000054c tokyo 18928 wombat 0:00 rshd

Controlling Processes

The arshell command lets you start an arbitrary program on a single other node.
The array command gives you the ability to suspend, resume, or kill all processes
associated with a specified ASH.

Using arshell

The arshell command is an Array Services extension of the familiar rsh command;
it executes a single system command on a specified Array node. The difference from
rsh is that the remote shell executes under the same ASH as the invoking shell (this
is not true of simple rsh). The following example demonstrates the difference.

homegrown 179% ainfo ash

Array session handle of process 8506: 0x1111ffff00000425
homegrown 180% rsh guest@tokyo ainfo ash

Array session handle of process 13113: 0x261cffff0000145e

homegrown 181% arshell guest@tokyo ainfo ash

Array session handle of process 13119: 0x1111ffff00000425

You can use arshell to start a collection of unrelated programs in multiple nodes
under a single ASH; then you can use the commands described under "Managing
Session Processes" on page 23 to stop, resume, or kill them.

Both MPI and PVM use arshell to start up distributed processes.

007–4413–004 21

2: Array Services

Tip: The shell is a process under its own ASH. If you use the array command to
stop or kill all processes started from a shell, you will stop or kill the shell also. In
order to create a group of programs under a single ASH that can be killed safely,
proceed as follows:

1. Within the new shell, start one or more programs using arshell.

2. Exit the nested shell.

Now you are back to the original shell. You know the ASH of all programs started
from the nested shell. You can safely kill all jobs that have that ASH because the
current shell is not affected.

About the Distributed Example

The programs launched with arshell are not coordinated (they could of course be
written to communicate with each other, for example using sockets), and you must
start each program individually.

The array command is designed to permit the simultaneous launch of programs on
all nodes with a single command. However, array can only launch programs that
have been configured into it, in the Array Services configuration file. (The creation and
management of this file is discussed under "About Array Configuration" on page 24.)

In order to demonstrate process management in a simple way from the command
line, the following command was inserted into the configuration file
/usr/lib/array/arrayd.conf:

#

Local commands

#
command spin # Do nothing on multiple machines

invoke /usr/lib/array/spin

user %USER

group %GROUP

options nowait

The invoked command, /usr/lib/array/spin, is a shell script that does nothing
in a loop, as follows:

#!/bin/sh

Go into a tight loop

22 007–4413–004

Linux® Resource Administration Guide

#
interrupted() {

echo "spin has been interrupted - goodbye"

exit 0

}

trap interrupted 1 2
while [! -f /tmp/spin.stop]; do

sleep 5

done

echo "spin has been stopped - goodbye"

exit 1

With this preparation, the command array spin starts a process executing that
script on every processor in the array. Alternatively, array -l -s nodename spin
would start a process on one specific node.

Managing Session Processes

The following command sequence creates and then kills a spin process in every
node. The first step creates a new session with its own ASH. This is so that later,
array kill can be used without killing the interactive shell.

homegrown 175% ainfo ash

Array session handle of process 8912: 0x1111ffff0000032d

homegrown 175% ainfo ash

Array session handle of process 8941: 0x11110000308b2fa6

In the new session with ASH 0x11110000308b2fa6, the command array spin starts the
/usr/lib/array/spin script on every node. In this test array, there were only two
nodes on this day, homegrown and tokyo.

homegrown 176% array spin

After exiting back to the original shell, the command array ps is used to search for
all processes that have the ASH 0x11110000308b2fa6.

007–4413–004 23

2: Array Services

homegrown 177% exit
homegrown 178% homegrown 177%

homegrown 177% ainfo ash

Array session handle of process 9257: 0x1111ffff0000032d

homegrown 179% array ps | fgrep 0x11110000308b2fa6

0x11110000308b2fa6 homegrown 9033 guest 0:00 /bin/sh /usr/lib/array/spin
0x11110000308b2fa6 homegrown 9618 guest 0:00 sleep 5

0x11110000308b2fa6 tokyo 26021 guest 0:00 /bin/sh /usr/lib/array/spin

0x11110000308b2fa6 tokyo 26072 guest 0:00 sleep 5

0x1111ffff0000032d homegrown 9642 guest 0:00 fgrep 0x11110000308b2fa6

There are two processes related to the spin script on each node. The next command
kills them all.

homegrown 180% array kill 0x11110000308b2fa6

homegrown 181% array ps | fgrep 0x11110000308b2fa6

0x1111ffff0000032d homegrown 10030 guest 0:00 fgrep 0x11110000308b2fa6

The command array suspend 0x11110000308b2fa6 would suspend the
processes instead (however, it is hard to demonstrate that a sleep command has
been suspended).

About Job Container IDs

Array systems have the capability to forward job IDs (JIDs) from the initiating host.
All of the processes running in the ASH across one or more nodes in an array also
belong to the same job. For a complete description of the job container and it usage,
see Chapter 1, "Linux Kernel Jobs" on page 1.

When processes are running on the initiating host, they belong to the same job as the
initiating process and operate under the limits established for that job. On remote
nodes, a new job is created using the same JID as the initiating process. Job limits for
a job on remote nodes use the systune defaults and are set using the systune(1M)
command on the initiating host.

About Array Configuration
The system administrator has to initialize the Array configuration database, a file that
is used by the Array Services daemon in executing almost every ainfo and array
command. For details about array configuration, see the man pages cited in Table 2-6.

24 007–4413–004

Linux® Resource Administration Guide

Table 2-6 Information Sources: Array Configuration

Topic Man Page

Array Services overview array_services(5)

Array Services user
commands

ainfo(1) , array(1)

Array Services daemon
overview

arrayd(1m)

Configuration file format arrayd.conf(4) ,
/usr/lib/array/arrayd.conf.template

Configuration file
validator

ascheck(1)

Array Services simple
configurator

arrayconfig(1m)

About the Uses of the Configuration File

The configuration files are read by the Array Services daemon when it starts.
Normally it is started in each node during the system startup. (You can also run the
daemon from a command line in order to check the syntax of the configuration files.)

The configuration files contain data needed by ainfo and array:

• The names of Array systems, including the current Array but also any other Arrays
on which a user could run an Array Services command (reported by ainfo).

• The names and types of the nodes in each named Array, especially the hostnames
that would be used in an Array Services command (reported by ainfo).

• The authentication keys, if any, that must be used with Array Services commands
(required as -Kl and -Kr command options, see "Summary of Common
Command Options" on page 14).

• The commands that are valid with the array command.

007–4413–004 25

2: Array Services

About Configuration File Format and Contents

A configuration file is a readable text file. The file contains entries of the following
four types, which are detailed in later topics.

Array definition Describes this array and other known arrays, including
array names and the node names and types.

Command definition Specifies the usage and operation of a command that
can be invoked through the array command.

Authentication Specifies authentication numbers that must be used to
access the Array.

Local option Options that modify the operation of the other entries
or arrayd.

Blank lines, white space, and comment lines beginning with “#” can be used freely for
readability. Entries can be in any order in any of the files read by arrayd.

Besides punctuation, entries are formed with a keyword-based syntax. Keyword
recognition is not case-sensitive; however keywords are shown in uppercase in this
text and in the man page. The entries are primarily formed from keywords, numbers,
and quoted strings, as detailed in the man page arrayd.conf(4).

Loading Configuration Data

The Array Services daemon, arrayd, can take one or more filenames as arguments. It
reads them all, and treats them like logical continuations (in effect, it concatenates
them). If no filenames are specified, it reads /usr/lib/array/arrayd.conf and
/usr/lib/array/arrayd.auth. A different set of files, and any other arrayd
command-line options, can be written into the file /etc/config/arrayd.options,
which is read by the startup script that launches arrayd at boot time.

Since configuration data can be stored in two or more files, you can combine different
strategies, for example:

• One file can have different access permissions than another. Typically,
/usr/lib/array/arrayd.conf is world-readable and contains the available
array commands, while /usr/lib/array/arrayd.auth is readable only by
root and contains authentication codes.

26 007–4413–004

Linux® Resource Administration Guide

• One node can have different configuration data than another. For example, certain
commands might be defined only in certain nodes; or only the nodes used for
interactive logins might know the names of all other nodes.

• You can use NFS-mounted configuration files. You could put a small configuration
file on each machine to define the Array and authentication keys, but you could
have a larger file defining array commands that is NFS-mounted from one node.

After you modify the configuration files, you can make arrayd reload them by
killing the daemon and restarting it in each machine. The script
/etc/rc.d/init.d/array supports this operation:

To kill daemon, execute this command:

/etc/rc.d/init.d/array stop

To kill and restart the daemon in one operation; peform the following command:

/etc/rc.d/init.d/array restart

Note: On Linux systems, the script path name is /etc/rc.d/init.d/array.

The Array Services daemon in any node knows only the information in the
configuration files available in that node. This can be an advantage, in that you can
limit the use of particular nodes; but it does require that you take pains to keep
common information synchronized. (An automated way to do this is summarized
under "Designing New Array Commands" on page 35.)

About Substitution Syntax

The man page arrayd.conf(4) details the syntax rules for forming entries in the
configuration files. An important feature of this syntax is the use of several kinds of
text substitution, by which variable text is substituted into entries when they are
executed.

Most of the supported substitutions are used in command entries. These substitutions
are performed dynamically, each time the array command invokes a subcommand.
At that time, substitutions insert values that are unique to the invocation of that
subcommand. For example, the value %USER inserts the user ID of the user who is
invoking the array command. Such a substitution has no meaning except during
execution of a command.

007–4413–004 27

2: Array Services

Substitutions in other configuration entries are performed only once, at the time the
configuration file is read by arrayd. Only environment variable substitution makes
sense in these entries. The environment variable values that are substituted are the
values inherited by arrayd from the script that invokes it, which is
/etc/rc.d/init.d/array.

Testing Configuration Changes

The configuration files contain many sections and options (detailed in the section that
follow this one). The Array Services command ascheck performs a basic sanity
check of all configuration files in the array.

After making a change, you can test an individual configuration file for correct syntax
by executing arrayd as a command with the -c and -f options. For example,
suppose you have just added a new command definition to
/usr/lib/array/arrayd.local. You can check its syntax with the following
command:

arrayd -c -f /usr/lib/array/arrayd.local

When testing new commands for correct operation, you need to see the warning and
error messages produced by arrayd and processes that it may spawn. The stderr
messages from a daemon are not normally visible. You can make them visible by the
following procedure:

1. On one node, kill the daemon.

2. In one shell window on that node, start arrayd with the options -n -v. Instead
of moving into the background, it remains attached to the shell terminal.

Note: Although arrayd becomes functional in this mode, it does not refer to
/etc/config/arrayd.options, so you need to specify explicitly all
command-line options, such as the names of nonstandard configuration files.

3. From another shell window on the same or other nodes, issue ainfo and array
commands to test the new configuration data. Diagnostic output appears in the
arrayd shell window.

4. Terminate arrayd and restart it as a daemon (without -n).

During steps 1, 2, and 4, the test node may fail to respond to ainfo and array
commands, so users should be warned that the Array is in test mode.

28 007–4413–004

Linux® Resource Administration Guide

Configuring Arrays and Machines
Each ARRAY entry gives the name and composition of an Array system that users
can access. At least one ARRAY must be defined at every node, the array in use.

Note: ARRAY is a keyword.

Specifying Arrayname and Machine Names

A simple example of an ARRAY definition is a follows:

array simple

machine congo

machine niger
machine nile

The arrayname simple is the value the user must specify in the -a option (see
"Summary of Common Command Options" on page 14). One arrayname should be
specified in a DESTINATION ARRAY local option as the default array (reported by
ainfo dflt). Local options are listed under "Configuring Local Options" on page 34.

It is recommended that you have at least one array called me that just contains the
localhost. The default arrayd.conf file has the me array defined as the default
destination array.

The MACHINE subentries of ARRAY define the node names that the user can specify
with the -s option. These names are also reported by the command ainfo
machines.

Specifying IP Addresses and Ports

The simple MACHINE subentries shown in the example are based on the assumption
that the hostname is the same as the machine’s name to Domain Name Services
(DNS). If a machine’s IP address cannot be obtained from the given hostname, you
must provide a HOSTNAME subentry to specify either a completely qualified domain
name or an IP address, as follows:

array simple

machine congo

hostname congo.engr.hitech.com
port 8820

007–4413–004 29

2: Array Services

machine niger
hostname niger.engr.hitech.com

machine nile

hostname "198.206.32.85"

The preceding example also shows how the PORT subentry can be used to specify that
arrayd in a particular machine uses a different socket number than the default 5434.

Specifying Additional Attributes

Under both ARRAY and MACHINE you can insert attributes, which are named string
values. These attributes are not used by Array Services, but they are displayed by
ainfo .Some examples of attributes would be as follows:

array simple

array_attribute config_date="04/03/96"

machine a_node
machine_attribute aka="congo"

hostname congo.engr.hitech.com

Tip: You can write code that fetches any arrayname, machine name, or attribute
string from any node in the array.

Configuring Authentication Codes
In Array Services 3.5 only one type of authentication is provided: a simple numeric
key that can be required with any Array Services command. You can specify a single
authentication code number for each node. The user must specify the code with any
command entered at that node, or addressed to that node using the -s option (see
"Summary of Common Command Options" on page 14).

The arshell command is like rsh in that it runs a command on another machine
under the userid of the invoking user. Use of authentication codes makes Array
Services somewhat more secure than rsh.

30 007–4413–004

Linux® Resource Administration Guide

Configuring Array Commands
The user can invoke arbitrary system commands on single nodes using the arshell
command (see "Using arshell" on page 21). The user can also launch MPI and PVM
programs that automatically distribute over multiple nodes. However, the only way
to launch coordinated system programs on all nodes at once is to use the array
command. This command does not accept any system command; it only permits
execution of commands that the administrator has configured into the Array Services
database.

You can define any set of commands that your users need. You have complete control
over how any single Array node executes a command (the definition can be different
in different nodes). A command can simply invoke a standard system command, or,
since you can define a command as invoking a script, you can make a command
arbitrarily complex.

Operation of Array Commands

When a user invokes the array command, the subcommand and its arguments are
processed by the destination node specified by -s. Unless the -l option was given,
that daemon also distributes the subcommand and its arguments to all other array
nodes that it knows about (the destination node might be configured with only a
subset of nodes). At each node, arrayd searches the configuration database for a
COMMAND entry with the same name as the array subcommand.

In the following example, the subcommand uptime is processed by arrayd in node
tokyo:

array -s tokyo uptime

When arrayd finds the subcommand valid, it distributes it to every node that is
configured in the default array at node tokyo.

The COMMAND entry for uptime is distributed in this form (you can read it in the
file /usr/lib/array/arrayd.conf).

command uptime # Display uptime/load of all nodes in array

invoke /usr/lib/array/auptime %LOCAL

The INVOKE subentry tells arrayd how to execute this command. In this case, it
executes a shell script /usr/lib/array/auptime , passing it one argument, the
name of the local node. This command is executed at every node, with %LOCAL
replaced by that node’s name.

007–4413–004 31

2: Array Services

Summary of Command Definition Syntax

Look at the basic set of commands distributed with Array Services 3.5
(/usr/lib/array/arrayd.conf). Each COMMAND entry is defined using the
subentries shown in Table 2-7. (These are described in great detail in the man page
arrayd.conf(4).)

Table 2-7 Subentries of a COMMAND Definition

Keyword Meaning of Following Values

COMMAND The name of the command as the user gives it to array.

INVOKE A system command to be executed on every node. The argument
values can be literals, or arguments given by the user, or other
substitution values.

MERGE A system command to be executed only on the distributing node, to
gather the streams of output from all nodes and combine them into a
single stream.

USER The user ID under which the INVOKE and MERGE commands run.
Usually given as USER %USER, so as to run as the user who invoked
array.

GROUP The group name under which the INVOKE and MERGE commands
run. Usually given as GROUP %GROUP, so as to run in the group of
the user who invoked array (see the groups(1) man page).

PROJECT The project under which the INVOKE and MERGE commands run.
Usually given as PROJECT %PROJECT, so as to run in the project of
the user who invoked array (see the projects(5) man page).

OPTIONS A variety of options to modify this command; see Table 2-9.

The system commands called by INVOKE and MERGE must be specified as full
pathnames, because arrayd has no defined execution path. As with a shell script,
these system commands are often composed from a few literal values and many
substitution strings. The substitutions that are supported (which are documented in
detail in the arrayd.conf(4) man page) are summarized in Table 2-8.

32 007–4413–004

Linux® Resource Administration Guide

Table 2-8 Substitutions Used in a COMMAND Definition

Substitution Replacement Value

%1..%9;
%ARG(n);
%ALLARGS;
%OPTARG(n)

Argument tokens from the user’s subcommand. %OPTARG does
not produce an error message if the specified argument is
omitted.

%USER,
%GROUP,
%PROJECT

The effective user ID, effective group ID, and project of the user
who invoked array.

%REALUSER,
%REALGROUP

The real user ID and real group ID of the user who invoked
array.

%ASH The ASH under which the INVOKE or MERGE command is to
run.

%PID(ash) List of PID values for a specified ASH. %PID(%ASH) is a
common use.

%ARRAY The array name, either default or as given in the -a option.

%LOCAL The hostname of the executing node.

%ORIGIN The full domain name of the node where the array command
ran and the output is to be viewed.

%OUTFILE List of names of temporary files, each containing the output from
one node’s INVOKE command (valid only in the MERGE
subentry).

The OPTIONS subentry permits a number of important modifications of the
command execution; these are summarized in Table 2-9.

007–4413–004 33

2: Array Services

Table 2-9 Options of the COMMAND Definition

Keyword Effect on Command

LOCAL Do not distribute to other nodes (effectively forces the -l option).

NEWSESSION Execute the INVOKE command under a newly created ASH.
%ASH in the INVOKE line is the new ASH. The MERGE
command runs under the original ASH, and %ASH substitutes as
the old ASH in that line.

SETRUID Set both the real and effective user ID from the USER subentry
(normally USER only sets the effective UID).

SETRGID Set both the real and effective group ID from the GROUP
subentry (normally GROUP sets only the effective GID).

QUIET Discard the output of INVOKE, unless a MERGE subentry is
given. If a MERGE subentry is given, pass INVOKE output to
MERGE as usual and discard the MERGE output.

NOWAIT Discard the output and return as soon as the processes are
invoked; do not wait for completion (a MERGE subentry is
ineffective).

Configuring Local Options

The LOCAL entry specifies options to arrayd itself. The most important options are
summarized in Table 2-10.

Table 2-10 Subentries of the LOCAL Entry

Subentry Purpose

DIR Pathname for the arrayd working directory, which is
the initial, current working directory of INVOKE and
MERGE commands. The default is /usr/lib/array.

DESTINATION ARRAY Name of the default array, used when the user omits the
-a option. When only one ARRAY entry is given, it is
the default destination.

34 007–4413–004

Linux® Resource Administration Guide

Subentry Purpose

USER, GROUP,
PROJECT

Default values for COMMAND execution when USER,
GROUP, or PROJECT are omitted from the COMMAND
definition.

HOSTNAME Value returned in this node by %LOCAL. Default is the
hostname.

PORT Socket to be used by arrayd.

If you do not supply LOCAL USER, GROUP, and PROJECT values, the default values
for USER and GROUP are “guest.”

The HOSTNAME entry is needed whenever the hostname command does not return
a node name as specified in the ARRAY MACHINE entry. In order to supply a
LOCAL HOSTNAME entry unique to each node, each node needs an individualized
copy of at least one configuration file.

Designing New Array Commands

A basic set of commands is distributed in the file
/usr/lib/array/arrayd.conf.template . You should examine this file
carefully before defining commands of your own. You can define new commands
which then become available to the users of the Array system.

Typically, a new command will be defined with an INVOKE subentry that names a
script written in sh, csh, or Perl syntax. You use the substitution values to set up
arguments to the script. You use the USER, GROUP, PROJECT, and OPTIONS
subentries to establish the execution conditions of the script. For one example of a
command definition using a simple script, see "About the Distributed Example" on
page 22.

Within the invoked script, you can write any amount of logic to verify and validate
the arguments and to execute any sequence of commands. For an example of a script
in Perl, see /usr/lib/array/aps, which is invoked by the array ps command.

Note: Perl is a particularly interesting choice for array commands, since Perl has
native support for socket I/O. In principle at least, you could build a distributed
application in Perl in which multiple instances are launched by array and coordinate
and exchange data using sockets. Performance would not rival the highly tuned MPI
and PVM libraries, but development would be simpler.

007–4413–004 35

2: Array Services

The administrator has need for distributed applications as well, since the configuration
files are distributed over the Array. Here is an example of a distributed command to
reinitialize the Array Services database on all nodes at once. The script to be executed
at each node, called /usr/lib/array/arrayd-reinit would read as follows:

#!/bin/sh

Script to reinitialize arrayd with a new configuration file
Usage: arrayd-reinit <hostname:new-config-file>

sleep 10 # Let old arrayd finish distributing

rcp $1 /usr/lib/array/

/etc/rc.d/init.d/array restart

exit 0

The script uses rcp to copy a specified file (presumably a configuration file such as
arrayd.conf) into /usr/lib/array (this will fail if %USER is not privileged).
Then the script restarts arrayd (see /etc/rc.d/init.d/array) to reread
configuration files.

The command definition would be as follows:

command reinit

invoke /usr/lib/array/arrayd-reinit %ORIGIN:%1

user %USER

group %GROUP

options nowait # Exit before restart occurs!

The INVOKE subentry calls the restart script shown above. The NOWAIT option
prevents the daemon’s waiting for the script to finish, since the script will kill the
daemon.

36 007–4413–004

Chapter 3

CPU Memory Sets and Scheduling

This chapter describes the CPU memory sets and scheduling (CpuMemSet)
application interface for managing system scheduling and memory allocation across
the various CPUs and memory blocks in a system.

CpuMemSets provides a Linux kernel facility that enables system services and
applications to specify on which CPUs they may be scheduled and from which nodes
they may allocate memory. On an SGI Altix 3000 system, each C-brick contains two
nodes. The default configuration makes all CPUs and all system memory available to
all applications. The CpuMemSet facility can be used to restrict any process, process
family, or process virtual memory region to a specified subset of the system CPUs
and memory.

Any service or application with sufficient privilege may alter its cpumemset (either
the set or map). The basic CpuMemSet facility requires root privilege to acquire more
resources, but allows any process to remove (cease using) a CPU or memory node.

The CpuMemSet interface adds two layers called cpumemmap and cpumemset to the
existing Linux scheduling and resource allocation code.

The lower cpumemmap layer provides a simple pair of maps that:

• Map system CPU numbers to application CPU numbers

• Map system memory block numbers to application block numbers

The upper cpumemset layer:

• Specifies on which application CPUs a process can schedule a task

• Specifies which application memory blocks the kernel or a virtual memory area
can allocate

The CpuMemSet interface allows system administrators to control the allocation of a
system CPU and of memory block resources to tasks and virtual memory areas. It
allows an application to control the use of the CPUs on which its tasks execute and to
obtain the optimal memory blocks from which its tasks’s virtual memory areas obtain
system memory.

The CpuMemSet interface provides support for such facilities as dplace(1),
runon(1), cpusets, and nodesets.

007–4413–004 37

3: CPU Memory Sets and Scheduling

The runon(1) command relies on CpuMemSets to enable you to run a specified
command on a specified list of CPUs. Both a C shared library and Python language
module are provided to access the CpuMemSets system interface. For more
information on the runon command, see "Using the runon(1) Command" on page 44.
For more information on the Python interface, see "Managing CpuMemSets" on page
45.

This chapter describes the following topics:

• "Memory Management Terminology" on page 38

• "CpuMemSet System Implementation" on page 39

• "Installing, Configuring, and Tuning CpuMemSets" on page 42

• "Using CpuMemSets" on page 43

• "Hard Partitioning versus CpuMemSets" on page 47

• "Error Messages" on page 48

Memory Management Terminology
The primitive concepts that are discussed in this chapter are hardware processors
(CPUs) and system memory and their corresponding software constructs of tasks and
virtual memory areas.

System Memory Blocks

On a nonuniform memory access (NUMA) system, blocks are the equivalence classes
of main memory locations defined by the relation of distance from CPUs. On a
typical symmetric multiprocessing (SMP) or uniprocessing (UP) system, all memory is
the same distance from any CPU (same speed), and equivalent for the purposes of
this discussion. System memory blocks do not include special purpose memory, such
as I/O and video frame buffers, caches, peripheral registers, and I/O ports.

Tasks

Tasks are execution threads that are part of a process. They are scheduled on
hardware processors called CPUs.

38 007–4413–004

Linux® Resource Administration Guide

The Linux kernel schedules threads of execution it calls tasks. A task executes on a
single processor (CPU) at a time. At any point in time, a task may be:

• Waiting for some event or resource or interrupt completion

• Executing on a CPU. Tasks may be restricted from executing on certain CPUs.

Linux kernel tasks execute on CPU hardware processors. This does not include
special purpose processors, such as direct memory access (DMA) engines, vector
processors, graphics pipelines, routers, or switches.

Virtual Memory Areas

For each task, the Linux kernel keeps track of multiple virtual address regions called
virtual memory areas. Some virtual memory areas may be shared between multiple
tasks. The kernel memory management software manages virtual memory areas in
units of pages. Each given page in the address space of a virtual memory area may
be as follows:

• Not yet allocated

• Allocated but swapped out to disk

• Currently residing in allocated system memory

Virtual memory areas may be restricted from allocating memory blocks from certain
system memory blocks.

Nodes

Typically, NUMA systems consists of nodes. Each node contains a number of CPUs
and system memory. On an SGI Altix 3000 system, for example, each C-brick contains
two nodes. The CpuMemSet system focuses on CPUs and memory blocks, not on
nodes. For currently available SGI systems, the CPUs and all memory within a node
are equivalent.

CpuMemSet System Implementation
The CpuMemSet system is implemented by two separate layers as follows:

• "Cpumemmap" on page 40

007–4413–004 39

3: CPU Memory Sets and Scheduling

• "cpumemset" on page 40

Cpumemmap

The lower layer —cpumemmap (cmm)— provides a simple pair of maps that map
system CPU and memory block numbers to application CPU and memory block
numbers. System numbers are used by the kernel task scheduling and memory
allocation code, and typically are assigned to all CPUs and memory blocks in the
system. Application numbers are assigned to the CPUs and memory blocks in an
application’s cpumemset and are used by the application to specify its CPU and
memory affinity for the CPUs and memory blocks it has available in its cpumemmap.
Each process, each virtual memory area, and the kernel has such a cpumemmap.
These maps are inherited across fork calls, exec calls, and the various ways to
create virtual memory areas. Only a process with root privileges can extend a
cpumemmap to include additional system CPUs or memory blocks. Changing a map
causes kernel scheduling code to immediately start using the new system CPUs and
causes kernel allocation code to allocate additional memory pages using the new
system memory blocks. Memory already allocated on old blocks is not migrated,
unless some non-CpuMemSet mechanism is used.

The cpumemmaps do not have holes. A given cpumemmap of size n, maps all
application numbers between 0 and n–1, inclusively, to valid system numbers. An
application can rely on any CPU or memory block numbers known to it to remain
valid. However, cpumemmaps are not necessarily one-to-one (injective). Multiple
application numbers can map to the same system number.

When a cmsSetCMM() routine is called, changes to cpumemmaps are applied to
system masks, such as cpus_allowed, and lists, such as zone lists, used by existing
Linux scheduling and allocation software.

cpumemset

The upper cpumemset (cms) layer specifies the application CPUs on which a process
can schedule a task to execute. It also specifies application memory blocks, known to
the kernel or a virtual memory area, from which it can allocate memory blocks. A
different list is specified for each CPU that may execute the request. An application
may change the cpumemset of its tasks and virtual memory areas. A root process can
change the cpumemset used for kernel memory allocation. A root process can change
the cpumemsets of any process. Any process may change the cpumemsets of other
processes with the same user ID (UID)(kill(2) permissions), except that the current

40 007–4413–004

Linux® Resource Administration Guide

implementation does not support changing the cpumemsets attached to the virtual
memory areas of another process.

Each task has two cpumemsets. One cpumemset defines the task’s current CPU
allocation and created virtual memory areas. The other cpumemset is inherited by
any child process the task forks. Both the current and child cpumemsets of a newly
forked process are set to copies of the child cpumemset of the parent process.
Allocations of memory to existing virtual memory areas visible to a process depend
on the cpumemset of that virtual memory area (as acquired from its creating process
at creation, and possibly modified since), not on the cpumemset of the currently
accessing task.

During system boot, the kernel creates and attaches a default cpumemmap and
cpumemset that are used everywhere on the system. By default, this initial map and
cpumemset contain all CPUs and all memory blocks.

An optional kernel-boot command line parameter causes this initial cpumemmap and
cpumemset to contain only the first CPU and one memory block, rather than all of
them, as follows:

cpumemset_minimal=1

This is for the convenience of system management services that are designed to take
greater control of the system.

The kernel schedules a task only on the CPUs in the task’s cpumemset, and allocates
memory only to a user virtual memory area, chosen from the list of memories in the
memory list of that area. The kernel allocates kernel memory only from the list of
memories in the cpumemset attached to the CPU that is executing the allocation
request, except for specific calls within the kernel that specify some other CPU or
memory block.

Both the current and child cpumemmaps and cpumemsets of a newly forked process
are taken from the child settings of its parent process. Memory allocated during the
creation of the new process is allocated according to the child cpumemset of the
parent process and associated cpumemmap because that cpumemset is acquired by
the new process and then by any virtual memory area created by that process.

The cpumemset (and associated cpumemmap) of a newly created virtual memory
area is taken from the current cpumemset of the task creating it. In the case of
attaching to an existing virtual memory area, the scenario is more complicated. Both
memory mapped memory objects and UNIX System V shared memory regions can be
attached to by multiple processes, or even attached to multiple times by the same
process at different addresses. If such an existing memory region is attached to, then

007–4413–004 41

3: CPU Memory Sets and Scheduling

by default the new virtual memory area describing that attachment inherits the
current cpumemset of the attaching process. If, however, the policy flag CMS_SHARE
is set in the cpumemset currently linked to from each virtual memory area for that
region, then the new virtual memory area is also linked to this same cpumemset.

When allocating another page to an area, the kernel chooses the memory list for the
CPU on which the current task is being executed, if that CPU is in the cpumemset of
that memory area, otherwise it chooses the memory list for the default CPU (see
CMS_DEFAULT_CPU) in that memory area’s cpumemset. The kernel then searches the
chosen memory list, looking for available memory. Typical kernel allocation software
searches the same list multiple times, with increasingly aggressive search criteria and
memory freeing actions.

The cpumemmap and cpumemset calls with the CMS_VMAREA flag apply to all future
allocation of memory by any existing virtual memory area, for any pages overlapping
any addresses in the range [start, start+len). This is similar to the behavior of the
madvise, mincore, and msync functions.

Installing, Configuring, and Tuning CpuMemSets
This section describes how to install, configure, and tune CpuMemSets on your
system and contains the following topics:

• "Installing CpuMemSets" on page 42

• "Configuring CpuMemSets" on page 43

• "Tuning CpuMemSets" on page 43

Installing CpuMemSets

The CpuMemSets facility is automatically included in SGI ccNUMA Linux systems,
including the kernel support; the user level library (libcpumemsets.so) used to
access this facility from C language programs; a Python module (cpumemsets) for
access from a scripting environment; and a runon(1) command for controlling which
CPUs and memory nodes an application may be allowed to use.

To use the Python interface, from a script perform the following:

import cpumemsets

print cpumemsets.__doc__

42 007–4413–004

Linux® Resource Administration Guide

Configuring CpuMemSets

No configuration is required. All processes, all memory regions, and the kernel are
automatically provided with a default CpuMemSet, which includes all CPUs and
memory nodes in the system.

Tuning CpuMemSets

You can change the default CpuMemSet to include only the first CPU and first
memory node by providing this additional option on the kernel boot command line
(accessible via elilo) as follows:

cpumemset_minimal=1

This is useful if you want to dedicate portions of your system CPUs or memory to
particular tasks.

Using CpuMemSets
This section describes how CpuMemSets are used on your system and contains the
following topics:

• "Using the runon(1) Command" on page 44

• "Initializing CpuMemSets" on page 44

• "Operating on CpuMemSets" on page 45

• "Managing CpuMemSets" on page 45

• "Initializing System Service on CpuMemSets" on page 46

• "Resolving Pages for Memory Areas" on page 46

• "Determining an Application’s Current CPU" on page 47

• "Determining the Memory Layout of cpumemmaps and cpumemsets" on page 47

007–4413–004 43

3: CPU Memory Sets and Scheduling

Using the runon(1) Command

The runon(1) command allows you to run a command on a specified list of CPUs.
The syntax of the command is as follows:

runon cpu ... command [args ...]

The runon command, shown in Example 3-1, executes a command, assigning the
command to run only on the listed CPUs. The list of CPUs may include individual
CPUs or an inclusive range of CPUs separated by a hyphen. The specified CPU
affinity is inherited across fork(2) and exec(2) system calls. All options are passed
in the argv list to the executable being run.

Example 3-1 Using the runon(1) Command

To execute the echo(1) command on CPUs 1, 3, 4, 5, or 9, perform the following:

runon 1 3-5 9 echo Hello World

For more information, see the runon(1) man page.

Initializing CpuMemSets

Early in the boot sequence, before the normal kernel memory allocation routines are
usable, the kernel sets up a single default cpumemmap and cpumemset. If no action
is ever taken by user level code to change them, this one map and one set applies to
the kernel and all processes and virtual memory areas for the life of that system boot.

By default, this map includes all CPUs and memory blocks, and this set allows
scheduling on all CPUs and allocation on all blocks.

An optional kernel boot parameter causes this initial map and set to include only one
CPU and one memory block, in case the administrator or some system service will be
managing the remaining CPUs and blocks in some specific way.

As soon as the system has booted far enough to run the first user process, init(1M),
an early init script may be invoked that examines the topology and metrics of the
system, and establishes optimized cpumemmap and cpumemset settings for the
kernel and for the init process. Prior to that, various kernel daemons are started
and kernel data structures are allocated, which may allocate memory without the
benefit of these optimized settings. This reduces the amount of information that the
kernel needs about special topology and distance attributes of a system in that the
kernel needs only enough information to get early allocations placed correctly. More
detailed topology information can be kept in the user application space.

44 007–4413–004

Linux® Resource Administration Guide

Operating on CpuMemSets

On a system supporting CpuMemSets, all processes have their scheduling constrained
by their cpumemmap and cpumemset. The kernel will not schedule a process on a
CPU that is not allowed by its cpumemmap and cpumemset. The Linux task
scheduler must support a mechanism, such as the cpus_allowed bit vector, to
control on which CPUs a task may be scheduled.

Similarly, all memory allocation is constrained by the cpumemmap and cpumemset
associated to the kernel or virtual memory area requesting the memory, except for
specific requests within the kernel. The Linux page allocation code has been changed
to search only in the memory blocks allowed by the virtual memory area requesting
memory. If memory is not available in the specified memory blocks, the allocation
fails or sleeps, awaiting memory. The search for memory does not consider other
memory blocks in the system.

It is this "mandatory" nature of cpumemmaps and cpumemsets that allows
CpuMemSets to provide many of the benefits of hard partitioning in a dynamic,
single-system, image environment (see "Hard Partitioning versus CpuMemSets" on
page 47).

Managing CpuMemSets

System administrators and services with root privileges manage the initial allocation
of system CPUs and memory blocks to cpumemmaps, deciding which applications
will be allowed the use of specified CPUs and memory blocks. They also manage the
cpumemset for the kernel, which specifies what order to use to search for kernel
memory, depending on which CPU is executing the request.

Almost all ordinary applications will be unaware of CpuMemSets, and will run in
whatever CPUs and memory blocks their inherited cpumemmap and cpumemset
dictate.

Large multiprocessor applications can take advantage of CpuMemSets by using
existing legacy application programming interfaces (APIs) to control the placement of
the various processes and memory regions that the application manages. Emulators
for whatever API the application is using can convert these requests into cpumemset
changes, which then provide the application with detailed control of the CPUs and
memory blocks provided to the application by its cpumemmap.

To alter default cpumemsets or cpumemmaps, use one of the following:

• The C language interface provided by the library (libcpumemsets)

007–4413–004 45

3: CPU Memory Sets and Scheduling

• The Python interface provided by the module (cpumemsets)

• The runon(1) command

Initializing System Service on CpuMemSets

The cpumemmaps do not have system-wide names; they cannot be created ahead of
time when a system is initialized, and then attached to later by name. The
cpumemmaps are like classic UNIX anonymous pipes or anonymous shared memory
regions, which are identifiable within an individual process by file descriptor or virtual
address, but not by a common namespace visible to all processes on the system.

When a boot script starts up a major service on some particular subset of the machine
(its own cpumemmap), the script can set its child map to the cpumemmap desired for
the major service it is spawning and then invoke fork and exec calls to execute the
service. If the service has root privilege, it can extend its own cpumemmaps, as
determined by the system administrator.

A higher level API can use CpuMemSets to define a virtual system that could include
a certain number of CPUs and memory blocks and the means to manage these system
resources.

A daemon with root privilege can run and be responsible for managing the virtual
systems defined by the API; or perhaps some daemon without root privilege can run
with access to all the CPUs and memory blocks that might be used for this service.

When some user process application is granted permission by the daemon to run on
the named virtual systems, the daemon sets its child map to the cpumemmap
describing the CPU and memory available to that virtual system and spawns the
requested application on that map.

Resolving Pages for Memory Areas

The cpumemmap and cpumemset calls that specify a range of memory
(CMS_VMAREA) apply to all pages in the specified range. The internal kernel data
structures, tracking each virtual memory area in an address space, are automatically
split if a cpumemmap or cpumemset is applied to only part of the range of pages in
that virtual memory area. This splitting happens transparently to the application.
Subsequent re-merging of two such neighboring virtual memory areas may occur if
the two virtual memory areas no longer differ. This same behavior is seen in the
system calls madvise(2), msync(2), and mincore(2).

46 007–4413–004

Linux® Resource Administration Guide

Determining an Application’s Current CPU

The cmsGetCpu() function returns the currently executing application CPU number
as found in the cpumemmap of the current process. This information, along with the
results of the cmsQuery*() calls, may be helpful for applications running on some
architectures to determine the topology and current utilization of a system. If a
process can be scheduled on two or more CPUs, the results of cmsGetCpu() may
become invalid even before the query returns to the invoking user code.

Determining the Memory Layout of cpumemmaps and cpumemsets

The cmsQuery*() library calls construct cpumemmaps and cpumemsets by using
malloc(3) to allocate each distinct structure and array element in the return value
and linking them together. The cmsFree*() calls assume this layout, and call the
free(3) routine on each element.

If you construct your own cpumemmap or cpumemset, using some other memory
layout, do not pass that layout to the cmsFree*() call.

You may alter in place and replace malloc’d elements of a cpumemmap or
cpumemset returned by a cmsQuery*() call, and pass the result back into a
corresponding cmsSet*() or cmsFree*() call.

Hard Partitioning versus CpuMemSets
On a large NUMA system, you may want to control which subset of processors and
memory is devoted to s specified major application. This can be done using “hard"
partitions, where subsets of the system are booted using separate system images and
the partitions act as a cluster of distinct computers rather than a single-system-image
computer.

Partitioning a large NUMA system partially defeats the advantages of a large NUMA
machine with a single system image. CpuMemSets enable you to carve out more
flexible, possibly overlapping, partitions of the system’s CPUs and memory. This
allows all processes to see a single system image, without rebooting, but guarantees
certain CPU and memory resources to selected applications at various times.

SGI software partitioning technology overcomes many of the disadvantages of hard
partitioning. A single SGI ProPack for Linux server can be divided into multiple
distinct systems, each with its own console, root filesystem, and IP network address.
Each of these software-defined group of processors are distinct systems referred to as

007–4413–004 47

3: CPU Memory Sets and Scheduling

a partition. Each partition can be rebooted, loaded with software, powered down, and
upgraded independently. The partitions communicate with each other over an SGI
NUMAlink connection. Collectively, all of these partitions compose a single,
shared-memory cluster.

Direct memory access between partitions, sometimes referred to as global shared
memory, is made available by the XPC and XPMEM kernel modules. This allows
processes in one partition to access physical memory located on another partition.
The benefits of global shared memory are currently available via SGI’s Message
Passing Toolkit (MPT) software.

CpuMemSets provide you with substantial control over system processor and
memory resources without the attendant inflexibility of hard partitions.

It is relatively easy to configure a large SGI Altix system into partitions and
reconfigure the machine for specific needs. No cable changes are needed to partition
or repartition an SGI Altix machine. Partitioning is accomplished by commands sent
to the system controller. For information on how to partition a system, see “System
Partitioning” in the Linux Configuration and Operations Guide. For details on system
controller commands, see SGI L1 and L2 Controller Software User’s Guide.

Error Messages
This section describes typical error situations. Some of them are as follows:

• If a request is made to set a cpumemmap that has fewer CPUs or memory blocks
listed than needed by any cpumemsets that will be using that cpumemmap after
the change, the cmsSetCMM() call fails, with errno set to ENOENT. You cannot
remove elements of a cpumemmap that are in use.

• If a request is made to set a cpumemset that references CPU or memory blocks not
available in its current cpumemmap, the cmsSetCMS() call fails, with errno set
to ENOENT. You cannot reference unmapped application CPUs or memory blocks
in a cpumemset.

• If a request is made without root privileges to set a cpumemmap by a process ,
and that request attempts to add any system CPU or memory block number not
currently in the map being changed, the request fails, with errno set to EPERM.

• If a cmsSetCMS() request is made on another process, the requesting process
must either have root privileges, or the real or effective user ID of the sending
process must equal the real or saved set-user-ID of the other process, or else the

48 007–4413–004

Linux® Resource Administration Guide

request fails, with errno set to EPERM. These permissions are similar to those
required by the kill(2) system call.

• Every cpumemset must specify a memory list for the CMS_DEFAULT_CPU, to
ensure that regardless of which CPU a memory request is executed on, a memory
list will be available to search for memory. Attempts to set a cpumemset without a
memory list specified for the CMS_DEFAULT_CPU fail, with errno set to EINVAL.

• If a request is made to set a cpumemset that has the same CPU (application
number) listed in more than one array cpus of CPUs sharing any
cms_memory_list_t structures, then the request fails, with errno set to
EINVAL. Otherwise, duplicate CPU or memory block numbers are harmless,
except for minor inefficiencies.

• The operations to query and set cpumemmaps and cpumemsets can be applied to
any process ID (PID). If the PID is zero, then the operation is applied to the
current process. If the specified PID does not exist, then the operation fails, with
errno set to ESRCH.

007–4413–004 49

Chapter 4

Cpuset System

The Cpuset System is primarily a workload manager tool permitting a system
administrator to restrict the number of processors that a process or set of processes
may use.

In Linux, when a process running on a cpuset runs out of available memory on the
requested nodes, memory on other nodes can be used. The MEMORY_LOCAL policy is
the policy that supports using memory on other nodes if no memory is freely
available on the requested nodes and currently is the only policy supported.

A system administrator can use cpusets to create a division of CPUs within a larger
system. Such a divided system allows a set of processes to be contained to specific
CPUs, reducing the amount of interaction and contention those processes have with
other work on the system. In the case of a restricted cpuset, the processes that are
attached to that cpuset will not be affected by other work on the system; only those
processes attached to the cpuset can be scheduled to run on the CPUs assigned to the
cpuset. An open cpuset can be used to restrict processes to a set of CPUs so that the
effect these processes have on the rest of the system is minimized. In Linux the
concept of restricted is essentially cooperative, and can be overriden by processes
with root privilege.

The state files for a cpuset reside in the /var/cpuset directory.

When you boot your system, an init script called cpunodemap creates a boot cpuset
that by default contains all the CPUs in the system; enabling any process to run on
any CPU and use any system memory. Processes on a Linux system run on the entire
system unless they are placed on a specific cpuset or are constrained by some other
tool.

A system administrator might choose to use cpusets to divide a system into two
halves, with one half supporting normal system usage and the other half dedicated to
a particular application. You can make the changes you want to your cpusets and all
new processes attached to those cpusets will adhere to the new settings. The
advantage this mechanism has over physical reconfiguration is that the configuration
may be changed using the cpuset system and does not need to be aligned on a
hardware module boundary.

Static cpusets are defined by an administrator after a system had been started. Users
can attach processes to these existing cpusets. The cpusets continue to exist after jobs
are finished executing.

007–4413–004 51

4: Cpuset System

Dynamic cpusets are created by a workload manager when required by a job. The
workload manager attaches a job to a newly created cpuset and destroys the cpuset
when the job has finished executing.

The runon(1) command allows you to run a command on a specified list of CPUs. If
you use the runon command to restrict a process to a subset of CPUs that it is
already executing on, runon will restrict the process without root permission or the
use of cpusets. If the you use the runon command to run a command on different or
additional CPUs, runon invokes the cpuset command to handle the request. If all of
the specified CPUs are within the same cpuset and you have the appropriate
permissions, the cpuset command will execute the request.

The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain the properties associated
with a cpuset, and to attach a process and all of its children to a cpuset.

The bootcpuset facility provides a method to restrict all normal start-up processes
(including init and its descendents) to some portion of the machine and allow
specific users to use the other portion of the machine for their special purpose
applications. For more information on the bootcpuset facility, see "Bootcpuset" on
page 54.

This chapter contains the following sections:

• "Cpusets on Linux versus IRIX" on page 53

• "Bootcpuset" on page 54

• "Using Cpusets" on page 55

• "Restrictions on CPUs within Cpusets" on page 57

• "Cpuset System Examples" on page 57

• "Cpuset Configuration File" on page 60

• "Installing the Cpuset System" on page 63

• "Using the Cpuset Library" on page 63

• "Cpuset System Man Pages" on page 63

52 007–4413–004

Linux® Resource Administration Guide

Cpusets on Linux versus IRIX
This sections describes the major differences between how the Cpuset System is
implemented on the SGI ProPack for Linux releases versus the current IRIX operating
system. These differences are likely to change for future releases of SGI ProPack for
Linux.

Major differences include the following:

• In IRIX, the cpuset command maintains the /etc/cpusettab file that defines the
currently established cpusets, including the boot cpuset. In Linux, state files for
cpusets are maintained in a directory called /var/cpuset.

• Permission checking against the cpuset configuration file permissions is not
implemented for this Linux release. For more information, see "Cpuset
Configuration File" on page 60.

• In Linux, you can use cpumemset_minimal boot parameter to keep the init
process (and the shell and shared libraries that early boot init scripts load)
constrained to the first node as a means to control usage of the system. For more
information, see "Bootcpuset" on page 54.

• Linux currently supports only the MEMORY_LOCAL policy that allows a process to
obtain memory on other nodes if memory is not freely available on the requested
nodes. For more information on Cpuset policies, see "Cpuset Configuration File"
on page 60.

• Linux does not support the MEMORY_EXCLUSIVE policy.

The MEMORY_EXCLUSIVE policy and the related notion of a "restricted" cpuset are
essentially only cooperative in Linux, rather than mandatory. On Linux, a process
with root privilege may use CpuMemSet calls directly to run tasks on any CPU
and use any memory, potentially violating cpuset boundaries and exclusiveness.
For more information on CpuMemSets, see Chapter 3, "CPU Memory Sets and
Scheduling" on page 37.

• In IRIX, a cpuset can only be destroyed using the cpusetDestroy function if
there are no processes currently attached to the cpuset. In Linux, when a cpuset is
destroyed using the cpusetDestroy function, processes currently running on the
cpuset continue to run and can spawn a new process that will continue to run on
the cpuset. Otherwise, new processes are not allowed to run on the cpuset.

007–4413–004 53

4: Cpuset System

• The current Linux release does not support the cpuset library routines,
cpusetMove(3x) and cpusetMoveMigrate(3x), that can be used to move
processes between cpusets and optionally migrate their memory.

• In IRIX, the runon(1) command cannot run a command on a CPU that is part of a
cpuset unless the user has write or group write permission to access the
configuration file of the cpuset. On Linux, this restriction is not implemented for
this release.

Bootcpuset
A bootcpuset consists of a number of nodes, specified by a system administrator, on
which user-level processes and memory are constrained. User-level processes will not
run on the remaining nodes in the system, unless placed there by commands or
system calls, such as, runon(1), dplace(1), cpuset(1), or cpumemsets. User process
scheduling is tightly constrained to the CPUs on the bootcpuset nodes. Memory
allocation for user space is preferentially allocated from the bootcpuset nodes but not
tightly constrained in the current implementation. If the nodes in the bootcpuset are
short of free memory, the requests for memory may be met by taking memory from
other nodes.

The bootcpuset.conf(5) file specifies the number of nodes to be included in the
bootcpuset. The bootcpuset.rc(8) init script uses the bootcpuset(8) command
to constrain the init process and its descendents to the CPUs and memory on these
nodes. For more information, see the bootcpuset(8), bootcpuset.rc(8), and (5)
man pages.

To configure the bootcpuset to be created automatically during system startup, use
the chkconfig(8) command as follows:

chkconfig --add bootcpuset

To stop the bootcpuset from being created automatically during system startup, use
the chkconfig(8) command as follows:

chkconfig --del bootcpuset

For more information on the chkconfig command, see the chkconfig(8) man page.

If you plan to use the bootcpuset facility, SGI advises that you also boot your system
with the kernel boot parameter cpumemset_minimal=1 (accessible via elilo), to
keep the init process (and the shell and shared libraries that early boot init scripts

54 007–4413–004

Linux® Resource Administration Guide

load) constrained to the first node, prior to the point that the bootcpuset.rc init
script executes.

For more information on kernel boot command line options, see "cpumemset" on
page 40 and "Tuning CpuMemSets" on page 43.

Using Cpusets
This section describes the basic steps for using cpusets and the cpuset(1) command.
For a detailed example, see "Cpuset System Examples" on page 57.

To install the Cpuset System software, see "Installing the Cpuset System" on page 63.

To use cpusets, perform the following steps:

1. Create a cpuset configuration file and give it a name. For the format of this file,
see "Cpuset Configuration File" on page 60. For restrictions that apply to CPUs
belonging to cpusets, see "Restrictions on CPUs within Cpusets" on page 57.

2. Create the cpuset with the configuration file specified by the -f parameter and
the name specified by the -q parameter.

The cpuset(1) command is used to create and destroy cpusets, to retrieve
information about existing cpusets, and to attach a process and all of its children to a
cpuset. The syntax of the cpuset command is as follows:

cpuset [-q cpuset_name[,cpuset_name_dest][setName -1][-A command]
[-c -f filename] [-d] [-l] [-m] [-Q] [-C] [-h]

The cpuset command accepts the following options:

-q cpuset_name [-A command] Runs the specified command on the
cpuset identified by the -q
parameter. If the user does not have
access permissions or the cpuset
does not exist, an error is returned.

Note: File permission checking
against the configuratuion file
permissions is not implemented for
this release of SGI Linux.

007–4413–004 55

4: Cpuset System

-q cpuset_name [-c -f filename] Creates a cpuset with the
configuration file specified by the
-f parameter and the name
specified by the -q parameter. The
operation fails if the cpuset name
already exists, a CPU specified in
the cpuset configuration file is
already a member of a cpuset, or
the user does not have the requisite
permissions.

Note: File permission checking
against the configuratuion file
permissions is not implemented for
this release of SGI Linux.

-q cpuset_name -d Destroys the specified cpuset. Any
processes currently attached to it
continue running where they are,
but no further commands to list
(-Q) or attach (-A) to that cpuset
will succeed.

-q cpuset_name -Q Prints a list of the CPUs that belong
to the cpuset.

-q set_Name -1 Lists all processes in a cpuset.

-C Prints the name of the cpuset to
which the process is currently
attached.

-Q Lists the names of all the cpusets
currently defined.

-h Print the command’s usage
message.

3. Execute the cpuset command to run a command on the cpuset you created as
follows:

cpuset -q cpuset_name -A command

56 007–4413–004

Linux® Resource Administration Guide

For more information on using cpusets, see the cpuset(1) man page, "Restrictions on
CPUs within Cpusets" on page 57, and "Cpuset System Examples" on page 57.

Restrictions on CPUs within Cpusets
The following restrictions apply to CPUs belonging to cpusets:

• A CPU should belong to only one cpuset.

• Only the superuser can create or destroy cpusets.

• The runon(1) command cannot run a command on a CPU that is part of a cpuset
unless the user has write or group write permission to access the configuration file
of the cpuset. (This restriction is not implemented for this release).

The Linux kernel does not enforce cpuset restriction directly. Rather restriction is
established by booting the kernel with the optional boot command line parameter
cpumemset_minimal that establishes the CpuMemSets initial kernel CpuMemSet to
only include the first CPU and memory node. The rest of the systems CPUs and
memory then remain unused until attached to using cpuset or some other facility
with root privilege. The cpuset command and library support ensure restriction
among clients of cpusets, but not from other processes.

For a description of cpuset command arguments and additional information, see the
cpuset(1), cpuset(4), and cpuset(5) man pages.

Cpuset System Examples
This section provides some examples of using cpusets. This following specification
creates a cpuset containing 8 CPUs and a cpuset containg 4 CPUs and will restrict
those CPUs to running threads that have been explicitly assigned to the cpuset. Jobs
running on the cpuset will use memory from nodes containing the CPUs in the
cpuset. Jobs running on other cpusets or on the global cpuset will not use memory
from these nodes.

Example 4-1 Creating Cpusets and Assigning Applications

Perform the following steps to create two cpusets on your system called cpuset_art
and cpuset_numberic.

007–4413–004 57

4: Cpuset System

1. Create a dedicated cpuset called cpuset_art and assign a specific application, in
this case, gimp, a GNU Image Manipulation Program, to run on it. Perform the
following steps to accomplish this:

a. Create a cpuset configuration file called cpuset_1 with the following
contents:

the cpuset configuration file called cpuset_1 that shows

a cpuset dedicated to a specific application

MEMORY_LOCAL

CPU 4-7

CPU 8

CPU 9

CPU 10

CPU 11

Note: You can designate more than one CPU or a range of CPUs on a single
line in the cpuset configuration file. In this example, you can designate CPUs
4 through 7 on a single line as follows: CPU 4-7. For more information on
the cpuset configuration file, see "Cpuset Configuration File" on page 60.

For an explanation of the MEMORY_LOCAL flag, see "Cpuset Configuration
File" on page 60.

b. Use the chmod(1) command to set the file permissions on the cpuset_1
configuration file so that only members of group artists can execute the
application gimp on the cpuset_art cpuset.

c. Use the cpuset(1) command to create the cpuset_art cpuset with the
configuration file cpuset_1 specified by the -c and -f parameters and the
name cpuset_art specified by the -q parameter.

cpuset -q cpuset_art -c -f cpuset_1

d. Execute the cpuset command as follows to run gimp on a dedicated cpuset:

cpuset -q cpuset_art -A gimp

The gimp job threads will run only on CPUs in this cpuset. gimp jobs will
use memory from system nodes containing the CPUs in the cpuset. Jobs
running on other cpusets will not use memory from these nodes. You could

58 007–4413–004

Linux® Resource Administration Guide

use the cpuset command to run additional applications on the same cpuset
using the syntax shown in this example.

2. Create a second cpuset file called cpuset_number and specify an application
that will run only on this cpuset. Perform the following steps to accomplish this:

a. Create a cpuset configuration file called cpuset_2 with the following
contents:

the cpuset configuration file called cpuset_2 that shows

a cpuset dedicated to a specific application

EXCLUSIVE

MEMORY_LOCAL

CPU 12

CPU 13

CPU 14

CPU 15

For an explanation of the EXCLUSIVE flag, see "Cpuset Configuration File" on
page 60.

b. Use the chmod(1) command to set the file permissions on the cpuset_2
configuration file so that only members of group accountants can execute
the application gnumeric on the cpuset_number cpuset.

c. Use the cpuset(1) command to create the cpuset_number cpuset with the
configuration file cpuset_2 specified by the -c and -f parameters and the
name specified by the -q parameter.

cpuset -q cpuset_number -c -f cpuset_2

d. Execute the cpuset(1) command as follows to run gnumeric on CPUs in the
cpuset_number cpuset.

cpuset -q cpuset_number -A gnumeric

The gnumeric job threads will run only on this cpuset. gnumeric jobs will
use memory from system nodes containing the CPUs in the cpuset. Jobs
running on other cpusets will not use memory from these nodes.

You can create a bootcpuset and assign all system daemons and user logins to run on
a single CPU leaving the rest of the system CPUs to be assigned to job specific cpusets.
You can use the bootcpuset facility to create a bootcpuset using the chkconfig
--add bootcpuset command. For more information, see "Bootcpuset" on page 54.

007–4413–004 59

4: Cpuset System

Cpuset Configuration File
This section describes the cpuset(1) command and the cpuset configuration file.

A cpuset is defined by a cpuset configuration file and a name. See the cpuset(4)
man page for a definition of the file format. The cpuset configuration file is used to
list the CPUs that are members of the cpuset. It also contains any additional
arguments required to define the cpuset. A cpuset name is between 3 and 8
characters long; names of 2 or fewer characters are reserved. You can designate one
or more CPUs or a range of CPUs as part of a cpuset on a single line in the cpuset
configuration file. CPUs in a cpuset do not have to be specified in a particular order.
Each cpuset on your system must have a separate cpuset configuration file.

Note: In a CXFS cluster environment, the cpuset configuration file should reside on
the root file system. If the cpuset configuration file resides on a file system other than
the root file system and you attempt to unmount the file system, the vnode for the
cpuset remains active and the unmount command fails. For more information, see the
mount(1M) man page.

The file permissions of the configuration file define access to the cpuset. When
permissions need to be checked, the current permissions of the file are used. It is
therefore possible to change access to a particular cpuset without having to tear it
down and recreate it, simply by changing the access permission. Read access allows a
user to retrieve information about a cpuset, while execute permission allows a user to
attach a process to the cpuset.

Note: Permission checking against the cpuset configuration file permissions is not
implemented for this release of SGI Linux.

By convention, CPU numbering on SGI systems ranges between zero and the number
of processors on the system minus one.

The following is a sample configuration file that describes an exclusive cpuset
containing three CPUs:

cpuset configuration file

EXCLUSIVE

MEMORY_LOCAL
MEMORY_EXCLUSIVE

CPU 1

60 007–4413–004

Linux® Resource Administration Guide

CPU 5
CPU 10

This specification will create a cpuset containing three CPUs. When the EXCLUSIVE
flag is set, it restricts those CPUs to running threads that have been explicitly
assigned to the cpuset. When the MEMORY_LOCAL flag is set, the jobs running on the
cpuset will use memory from the nodes containing the CPUs in the cpuset. When the
MEMORY_EXCLUSIVE flag is set, jobs running on other cpusets or on the global cpuset
will normally not use memory from these nodes.

Note: For this Linux release, MEMORY_EXCLUSIVE, MEMORY_KERNEL_AVOID,
MEMORY_MANDATORY, POLICY_PAGE, and POLICY_KILL are policies are not
supported.

The following is a sample configuration file that describes an exclusive cpuset
containing seven CPUs:

cpuset configuration file

EXCLUSIVE

MEMORY_LOCAL

MEMORY_EXCLUSIVE

CPU 16
CPU 17-19, 21

CPU 27

CPU 25

Commands are newline terminated; characters following the comment delimiter, #,
are ignored; case matters; and tokens are separated by whitespace, which is ignored.

The valid tokens are as follows:

Valid tokens Description

EXCLUSIVE Defines the CPUs in the cpuset to be restricted. It can
occur anywhere in the file. Anything else on the line is
ignored.

MEMORY_LOCAL Threads assigned to the cpuset will attempt to assign
memory only from nodes within the cpuset.
Assignment of memory from outside the cpuset will
occur only if no free memory is available from within

007–4413–004 61

4: Cpuset System

the cpuset. No restrictions are made on memory
assignment to threads running outside the cpuset.

MEMORY_EXCLUSIVE Threads not assigned to the cpuset will not use memory
from within the cpuset unless no memory outside the
cpuset is available.

When a cpuset is created and memory is occupied by
threads that are already running on the cpuset nodes,
no attempt is made to explicitly move this memory. If
page migration is enabled, the pages will be migrated
when the system detects the most references to the
pages that are nonlocal.

MEMORY_KERNEL_AVOID The kernel will attempt to avoid allocating memory
from nodes contained in this cpuset. If kernel memory
requests cannot be satisfied from outside this cpuset,
this option will be ignored and allocations will occur
from within the cpuset.

MEMORY_MANDATORY The kernel will attempt to avoid allocating memory
from nodes contained in this cpuset. If kernel memory
requests cannot be satisfied from outside this cpuset,
this option will be ignored and allocations will occur
from within the cpuset.

POLICY_PAGE Requires MEMORY_MANDATORY. This is the default
policy if no policy is specified. This policy will cause
the kernel to page user pages to the swap file to free
physical memory on the nodes contained in this cpuset.
If swap space is exhausted, the process will be killed.

POLICY_KILL Requires MEMORY_MANDATORY. The kernel will attempt
to free as much space as possible from kernel heaps,
but will not page user pages to the swap file. If all
physical memory on the nodes contained in this cpuset
are exhausted, the process will be killed.

CPU Specifies that a CPU will be part of the cpuset. The user
can mix a single cpu line with a cpu list line. For
example:

CPU 2

CPU 3-4,5,7,9-12

62 007–4413–004

Linux® Resource Administration Guide

Installing the Cpuset System
The following steps are required to enable cpusets:

1. Configure the cpusets on across system reboots by using the chkconfig(8) utility
as follows:

chkconfig --add cpuset

2. To turn on cpusets, perform the following:

/etc/rc.d/init.d/cpuset start

This step will be done automatically for subsequent system reboots when the
Cpuset System is configured on via the chkconfig(8) utility.

The following steps are required to disable cpusets:

1. To turn off cpusets, perform the following:

/etc/rc.d/init.d/cpuset stop

2. To stop cpusets from initiating after a system reboot, use the chkconfig(8)
command:

chkconfig --del cpuset

Using the Cpuset Library
The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain the properties associated
with an existing cpuset, and to attach a process and all of its children to a cpuset. For
more information on the Cpuset Library, see the cpuset(5) man page.

Cpuset System Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type man commandname.

007–4413–004 63

4: Cpuset System

User-Level Man Pages

The following user-level man pages are provided with Cpuset System software:

User-level man page Description

cpuset(1) Defines and manages a set of CPUs

Admin-Level Man Pages

The following system administrator-level man pages are provided with Cpuset
System software:

User-level man page Description

bootcpuset(8) Places the specified process IDs
(PIDs) into a bootcpuset of a
configured size

bootcpuset.rc(8) An init script, that creates the
bootcpuset.

Cpuset Library Man Pages

The following cpuset library man pages are provided with Cpuset System software:

Cpuset library man page Description

cpusetAllocQueueDef(3x) Allocates a cpuset_QueueDef_t
structure

cpusetAttach(3x) Attaches the current process to a
cpuset

cpusetAttachPID(3x) Attaches a specific process to a
cpuset

cpusetCreate(3x) Creates a cpuset

cpusetDestroy(3x) Destroys a cpuset

cpusetDetachAll(3x) Detaches all threads from a cpuset

64 007–4413–004

Linux® Resource Administration Guide

cpusetDetachPID(3x) Detaches a specific process from a
cpuset

cpusetFreeCPUList(3x) Releases memory used by a
cpuset_CPUList_t structure

cpusetFreeNameList(3x) Releases memory used by a
cpuset_NameList_t structure

cpusetFreePIDList(3x) Releases memory used by a
cpuset_PIDList_t structure

cpusetFreeProperties(3x) Releases memory used by a
cpuset_Properties_t structure
Not implemented on Linux

cpusetFreeQueueDef(3x) Releases memory used by a
cpuset_QueueDef_t structure

cpusetGetCPUCount(3x) Obtains the number of CPUs
configured on the system

cpusetGetCPUList(3x) Gets the list of all CPUs assigned to
a cpuset

cpusetGetName(3x) Gets the name of the cpuset to
which a process is attached

cpusetGetNameList(3x) Gets a list of names for all defined
cpusets

cpusetGetPIDList(3x) Gets a list of all PIDs attached to a
cpuset

cpusetGetProperties(3x) Retrieves various properties
associated with a cpuset Not
implemented on Linux

For more information on the cpuset library man pages, see Appendix A, "Application
Programming Interface for the Cpuset System" on page 69.

File Format Man Pages

The following file format description man pages are provided with Cpuset System
software:

007–4413–004 65

4: Cpuset System

File Format man page Description

cpuset(4) Cpuset configuration files

bootcpuset.conf(5) Defines the number of nodes in a
bootcpuset

Miscellaneous Man Pages

The following miscellaneous man pages are provided with Cpuset System software:

Miscellaneous man page Description

cpuset(5) Overview of the Cpuset System

66 007–4413–004

Chapter 5

NUMA Tools

This chapter describes the dlook(1) and dplace(1) tools that you can use to improve
the performance of processes running on your SGI nonuniform memory access
(NUMA) machine. You can use dlook(1) to find out where in memory the operating
system is placing your application’s pages and how much system and user CPU time
it is consuming. You can use the dplace(1) command to bind a related set of
processes to specific CPUs or nodes to prevent process migration. This can improve
the performance of your application since it increases the percentage of memory
accesses that are local.

Note: The information in this chapter was moved to the Linux Configuration and
Operations Guide.

007–4413–004 67

Appendix A

Application Programming Interface for the Cpuset
System

This appendix contains information about cpusets system programming.

This appendix contains the following sections:

• "Overview" on page 69

• "Management Functions" on page 71

• "Retrieval Functions" on page 85

• "Clean-up Functions" on page 103

• "Using the Cpuset Library" on page 109

Overview
The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain information about the
properties associated with existing cpusets, and to attach a process and all of its
children to a cpuset.

The cpuset library requires that a permission file be defined for a cpuset that is
created. The permissions file may be an empty file, since it is only the file permissions
for the file that define access to the cpuset. When permissions need to be checked, the
current permissions of the file are used. It is therefore possible to change access to a
particular cpuset without having to tear it down and recreate it, simply by changing
the access permissions. Read access allows a user to retrieve information about a
cpuset and execute permission allows the user to attach a process to the cpuset.

The cpuset library is provided as a Dynamic Shared Object (DSO) library. The library
file is libcpuset.so, and it is normally located in the directory /usr/lib. Users of
the library must include the cpuset.h header file, which is located in
/usr/include. The function interfaces provided in the cpuset library are declared as
optional interfaces to allow for backward compatibility as new interfaces are added to
the library.

The function interfaces within the cpuset library include the following:

007–4413–004 69

A: Application Programming Interface for the Cpuset System

Function interface Description

cpusetCreate(3x) Creates a cpuset

cpusetAttach(3x) Attaches the current process to a
cpuset

cpusetAttachPID(3x) Attaches a specific process to a
cpuset

cpusetDetachAll(3x) Detaches all threads from a cpuset

cpusetDetachPID(3x) Detaches a specific process from a
cpuset

cpusetDestroy(3x) Destroys a cpuset

cpusetGetCPUCount(3x) Obtains the number of CPUs
configured on the system

cpusetGetCPUList(3x) Gets the list of all CPUs assigned to
a cpuset

cpusetGetName(3x) Gets the name of the cpuset to
which a process is attached

cpusetGetNameList(3x) Gets a list of names for all defined
cpusets

cpusetGetPIDList(3x) Gets a list of all PIDs attached to a
cpuset

cpusetGetProperties(3x) Retrieves various properties
associated with a cpuset

cpusetAllocQueueDef(3x) Allocates a cpuset_QueueDef_t
structure

cpusetFreeQueueDef(3x) Releases memory used by a
cpuset_QueueDef_t structure

cpusetFreeCPUList(3x) Releases memory used by a
cpuset_CPUList_t structure

cpusetFreeNameList(3x) Releases memory used by a
cpuset_NameList_t structure

cpusetFreePIDList(3x) Releases memory used by a
cpuset_PIDList_t structure

70 007–4413–004

Linux® Resource Administration Guide

cpusetFreeProperties(3x) Releases memory used by a
cpuset_Properties_t structure

Management Functions
This section contains the man pages for the following Cpuset System library
management functions:

cpusetCreate(3x) Creates a cpuset

cpusetAttach(3x) Attaches the current process to a cpuset

cpusetAttachPID(3x) Attaches a specific process to a cpuset

cpusetDetachPID(3x) Detaches a specific process from a cpuset

cpusetDetachAll(3x) Detaches all threads from a cpuset

cpusetDestroy(3x) Destroys a cpuset

007–4413–004 71

A: Application Programming Interface for the Cpuset System

cpusetCreate(3x)

NAME

cpusetCreate - creates a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetCreate(char *qname, cpuset_QueueDef_t *qdef);

DESCRIPTION

The cpusetCreate function is used to create a cpuset queue. Only processes
running root user ID are allowed to create cpuset queues.

The qname argument is the name that will be assigned to the new cpuset. The name
of the cpuset must be a 3 to 8 character string. Queue names having 1 or 2 characters
are reserved for use by the operating system.

The qdef argument is a pointer to a cpuset_QueueDef_t structure (defined in the
cpuset.h include file) that defines the attributes of the queue to be created. The
memory for cpuset_QueueDef_t is allocated using cpusetAllocQueueDef(3x)
and it is released using cpusetFreeQueueDef(3x). The cpuset_QueueDef_t
structure is defined as follows:

typedef struct {

int flags;

char *permfile;

cpuset_CPUList_t *cpu;

} cpuset_QueueDef_t;

The flags member is used to specify various control options for the cpuset queue. It
is formed by applying the bitwise exclusive-OR operator to zero or more of the
following values:

Note: For the currrent SGI ProPack for Linux release, the operating system disregards
the setting of the flags member, and always acts as if CPUSET_MEMORY_LOCAL was
specified.

CPUSET_CPU_EXCLUSIVE Defines a cpuset to be restricted.
Only threads attached to the cpuset
queue (descendents of an attached
thread inherit the attachment) may

72 007–4413–004

Linux® Resource Administration Guide

execute on the CPUs contained in
the cpuset.

CPUSET_MEMORY_LOCAL Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. No restrictions
are made on memory assignment to
threads running outside the cpuset.

CPUSET_MEMORY_EXCLUSIVE Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. Threads not
assigned to the cpuset will not use
memory from within the cpuset
unless no memory outside the
cpuset is available. If, at the time a
cpuset is created, memory is
already assigned to threads that are
already running, no attempt will be
made to explicitly move this
memory. If page migration is
enabled, the pages will be migrated
when the system detects that most
references to the pages are nonlocal.

CPUSET_MEMORY_KERNEL_AVOID The kernel should attempt to avoid
allocating memory from nodes
contained in this cpuset. If kernel
memory requests cannot be satisfied
from outside this cpuset, this option
will be ignored and allocations will
occur from within the cpuset. (This
avoidance currently extends only to

007–4413–004 73

A: Application Programming Interface for the Cpuset System

keeping buffer cache away from the
protected nodes.)

The permfile member is the name of the file that defines the access permissions for
the cpuset queue. The file permissions of filename referenced by permfile define
access to the cpuset. Every time permissions need to be checked, the current
permissions of this file are used. Thus, it is possible to change the access to a
particular cpuset without having to tear it down and re-create it, simply by changing
the access permissions. Read access to the permfile allows a user to retrieve
information about a cpuset, and execute permission allows the user to attach a
process to the cpuset.

The cpu member is a pointer to a cpuset_CPUList_t structure. The memory for
the cpuset_CPUList_t structure is allocated and released when the
cpuset_QueueDef_t structure is allocated and released (see
cpusetAllocQueueDef(3x)). The CPU IDs listed here are (in the terms of the
cpumemsets(2) man page) application, not system, numbers. The
cpuset_CPUList_t structure contains the list of CPUs assigned to the cpuset. The
cpuset_CPUList_t structure (defined in the cpuset.h include file) is defined as
follows:

typedef struct {

int count;

int *list;
} cpuset_CPUList_t;

The count member defines the number of CPUs contained in the list.

The list member is a pointer to the list (an allocated array) of the CPU IDs. The
memory for the list array is allocated and released when the cpuset_CPUList_t
structure is allocated and released.

EXAMPLES

This example creates a cpuset queue that has access controlled by the file
/usr/tmp/mypermfile; contains CPU IDs 4, 8, and 12; and is CPU exclusive and
memory exclusive:

cpuset_QueueDef_t *qdef;
char *qname = "myqueue";

/* Alloc queue def for 3 CPU IDs */

qdef = cpusetAllocQueueDef(3);

if (!qdef) {

74 007–4413–004

Linux® Resource Administration Guide

perror("cpusetAllocQueueDef");
exit(1);

}

/* Define attributes of the cpuset */

qdef->flags = CPUSET_CPU_EXCLUSIVE
| CPUSET_MEMORY_EXCLUSIVE;

qdef->permfile = "/usr/tmp/mypermfile";

qdef->cpu->count = 3;

qdef->cpu->list[0] = 4;

qdef->cpu->list[1] = 8;

qdef->cpu->list[2] = 12;

/* Request that the cpuset be created */

if (!cpusetCreate(qname, qdef)) {

perror("cpusetCreate");

exit(1);
}

cpusetFreeQueueDef(qdef);

NOTES

The cpusetCreate function is found in the libcpuset.so library and is loaded if
the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), cpusetFreeQueueDef(3x), and
cpuset(5).

DIAGNOSTICS

If successful, the cpusetCreate function returns a value of 1. If the cpusetCreate
function fails, it returns the value 0 and errno is set to indicate the error. The
possible values for errno include those values set by fopen(3), cpumemsets(2), and
the following:

ENODEV Request for CPU IDs that do not exist on the system.

007–4413–004 75

A: Application Programming Interface for the Cpuset System

cpusetAttach(3x)

NAME

cpusetAttach - attaches the current process to a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetAttach(char *qname);

DESCRIPTION

The cpusetAttach function is used to attach the current process to the cpuset
identified by qname. Every cpuset queue has a file that defines access permissions to
the queue. The execute permissions for that file will determine if a process owned by
a specific user can attach a process to the cpuset queue.

The qname argument is the name of the cpuset to which the current process should
be attached.

EXAMPLES

This example attaches the current process to a cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Attach to cpuset, if error - print error & exit */
if (!cpusetAttach(qname)) {

perror("cpusetAttach");

exit(1);

}

NOTES

The cpusetAttach function is found in the libcpuset.so library and is loaded if
the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetCreate(3x), and cpuset(5).

76 007–4413–004

Linux® Resource Administration Guide

DIAGNOSTICS

If successful, the cpusetAttach function returns a value of 1. If the cpusetAttach
function fails, it returns the value 0 and errno is set to indicate the error. The
possible values for errno are the same as those used by cpumemsets(2).

007–4413–004 77

A: Application Programming Interface for the Cpuset System

cpusetAttachPID(3x)

NAME

cpusetAttachPID - attaches a specific process to a cpusett

SYNOPSIS

#include <cpuset.h>

int cpusetAttachPID(qname, pid);
char *qname;

pid_t pid;

DESCRIPTION

The cpusetAttachPID function is used to attach a specific process identified by its
PID to the cpuset identified by qname. Every cpuset queue has a file that defines
access permissions to the queue. The execute permissions for that file will determine
if a process owned by a specific user can attach a process to the cpuset queue.

The qname argument is the name of the cpuset to which the specified process should
be attached.

EXAMPLES

This example attaches the current process to a cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Attach to cpuset, if error - print error & exit */

if (!cpusetAttachPID(qname, pid)) {

perror("cpusetAttachPID");

exit(1); }

NOTES

The cpusetAttachPID function is found in the library libcpuset.so, and is
loaded if the -l cpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetCreate(3x), cpusetDetachPID(3x), and cpuset(5).

78 007–4413–004

Linux® Resource Administration Guide

DIAGNOSTICS

If successful, the cpusetAttachPID function returns a 1. If the cpusetAttachPID
function fails, it returns the value 0 and errno is set to indicate the error. The
possible values for errno are the same as those used by cpumemsets(2).

007–4413–004 79

A: Application Programming Interface for the Cpuset System

cpusetDetachPID(3x)

NAME

cpusetDetachPID - detaches a specific process from a cpusett

SYNOPSIS

#include <cpuset.h>

int cpusetDetachPID(qname, pid);
char *qname;

pid_t pid;

DESCRIPTION

The cpusetDetachPID function is used to detach a specific process identified by its
PID to the cpuset identified by qname.

The qname argument is the name of the cpuset from which the specified process
should be detached.

EXAMPLES

This example detaches the current process from a cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Detach from cpuset, if error - print error & exit */
if (!cpusetDetachPID(qname, pid)) {

perror("cpusetDetachPID");

exit(1); }

NOTES

The cpusetDetachPID function is found in the library libcpuset.so, and is
loaded if the -l cpuset option is used with either the cc(1) or ld(1) commands.

SEE ALSO

cpuset(1), cpusetCreate(3x), cpusetAttachPID(3x), and cpuset(5).

80 007–4413–004

Linux® Resource Administration Guide

DIAGNOSTICS

If successful, cpusetDetachPID returns a 1. If cpusetAttachPID fails, it returns
the value 0 and errno is set to indicate the error. The possible values for errno are
the same as those used by cpumemsets(2).

007–4413–004 81

A: Application Programming Interface for the Cpuset System

cpusetDetachAll(3x)

NAME

cpusetDetachAll - detaches all threads from a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetDetachAll(char *qname);

DESCRIPTION

The cpusetDetachAll function is used to detach all threads currently attached to
the specified cpuset. Only a process running with root user ID can successfully
execute cpusetDetachAll.

The qname argument is the name of the cpuset that the operation will be performed
upon.

For the currrent SGI ProPack for Linux release, processes detached from their cpuset
using cpusetDetachAll are assigned a CpuMemSet identical to that of the kernel
(see cpumemsets(2)). By default this will allow execution on any CPU. If the kernel
was booted with the cpumemset_minimal=1 kernel boot command line option, this
will only allow execution on CPU 0. Subsequent CpuMemSet administrative actions
can also affect the current setting of the kernel CpuMemSet.

EXAMPLES

This example detaches the current process from a cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Detach all members of cpuset, if error - print error & exit */

if (!cpusetDetachAll(qname)) {
perror("cpusetDetachAll");

exit(1);

}

NOTES

The cpusetDetachAll function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

82 007–4413–004

Linux® Resource Administration Guide

SEE ALSO

cpuset(1), cpusetAttach(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetDetachAll function returns a value of 1. If the
cpusetDetachAll function fails, it returns the value 0 and errno is set to indicate
the error. The possible values for errno are the same as those used by
cpumemsets(2).

007–4413–004 83

A: Application Programming Interface for the Cpuset System

cpusetDestroy(3x)

NAME

cpusetDestroy - destroys a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetDestroy(char *qname);

DESCRIPTION

The cpusetDestroy function is used to destroy the specified cpuset. The qname
argument is the name of the cpuset that will be destroyed. Only processes running
with root user ID are allowed to destroy cpuset queues. Any process currently
attached to a destroyed cpuset can continue executing and forking children on the
same processors and allocating memory in the same nodes, but no new processes
may explicitly attach to a destroyed cpuset, nor otherwise reference it.

EXAMPLES

This example destroys the cpuset queue named mpi_set.

char *qname = "mpi_set";

/* Destroy, if error - print error & exit */

if (!cpusetDestroy(qname)) {

perror("cpusetDestroy");

exit(1);

}

NOTES

The cpusetDestroy function is found in the libcpuset.so library and is loaded
if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetCreate(3x), and cpuset(5).

84 007–4413–004

Linux® Resource Administration Guide

Retrieval Functions
This section contains the man pages for the following Cpuset System library retrieval
functions:

cpusetGetCPUCount(3x) Obtains the number of CPUs configured on the system

cpusetGetCPUList(3x) Gets the list of all CPUs assigned to a cpuset

cpusetGetName(3x) Gets the name of the cpuset to which a process is
attached

cpusetGetNameList(3x) Gets a list of names for all defined cpusets

cpusetGetPIDList(3x) Gets a list of all PIDs attached to a cpuset

cpusetGetProperties(3x) Retrieves various properties associated with a cpuset

cpusetAllocQueueDef(3x) Allocates a cpuset_QueueDef_t structure

007–4413–004 85

A: Application Programming Interface for the Cpuset System

cpusetGetCPUCount(3x)

NAME

cpusetGetCPUCount - obtains the number of CPUs configured on the system

SYNOPSIS

#include <cpuset.h>

int cpusetGetCPUCount(void);

DESCRIPTION

The cpusetGetCPUCount function returns the number of CPUs that are configured
on the system.

EXAMPLES

This example obtains the number of CPUs configured on the system and then prints
out the result.

int ncpus;

if (!(ncpus = cpusetGetCPUCount())) {

perror("cpusetGetCPUCount");

exit(1);
}

printf("The systems is configured for %d CPUs\n",

ncpus);

NOTES

The cpusetGetCPUCount function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1) and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetCPUCount function returns a value greater than or equal
to the value of 1. If the cpusetGetCPUCount function fails, it returns the value 0
and errno is set to indicate the error. The possible values for errno are the same as
those used by cpumemsets(2) and the following:

ERANGE Number of CPUs configured on the system is not a
value greater than or equal to 1.

86 007–4413–004

Linux® Resource Administration Guide

cpusetGetCPUList(3x)

NAME

cpusetGetCPUList - gets the list of all CPUs assigned to a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_CPUList_t *cpusetGetCPUList(char *qname);

DESCRIPTION

The cpusetGetCPUList function is used to obtain the list of the CPUs assigned to
the specified cpuset. Only processes running with a user ID or group ID that has read
access permissions on the permissions file can successfully execute this function. The
qname argument is the name of the specified cpuset.

The function returns a pointer to a structure of type cpuset_CPUList_t (defined in
the cpuset.h include file). The function cpusetGetCPUList allocates the memory
for the structure and the user is responsible for freeing the memory using the
cpusetFreeCPUList(3x) function. The cpuset_CPUList_t structure looks similar
to this:

typedef struct {

int count;

pid_t *list;

} cpuset_CPUList_t;

The count member is the number of CPU IDs in the list. The list member
references the memory array that holds the list of CPU IDs. The memory for list is
allocated when the cpuset_CPUList_t structure is allocated and it is released when
the cpuset_CPUList_t structure is released. The CPU IDs listed here are (in the
terms of the cpumemsets(2) man page) application, not system, numbers.

EXAMPLES

This example obtains the list of CPUs assigned to the cpuset mpi_set and prints out
the CPU ID values.

char *qname = "mpi_set";

cpuset_CPUList_t *cpus;

/* Get the list of CPUs else print error & exit */

if (!(cpus = cpusetGetCPUList(qname))) {

007–4413–004 87

A: Application Programming Interface for the Cpuset System

perror("cpusetGetCPUList");
exit(1);

}

if (cpus->count == 0) {

printf("CPUSET[%s] has 0 assigned CPUs\n",

qname);
} else {

int i;

printf("CPUSET[%s] assigned CPUs:\n",

qname);

for (i = 0; i < cpuset->count; i++)
printf("CPU_ID[%d]\n", cpuset->list[i]);

}

cpusetFreeCPUList(cpus);

NOTES

The cpusetGetCPUList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetFreeCPUList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetCPUList function returns a pointer to a
cpuset_CPUList_t structure. If the cpusetGetCPUList function fails, it returns
NULL and errno is set to indicate the error. The possible values for errno include
those values as set by cpumemsets(2) and sbrk(2).

88 007–4413–004

Linux® Resource Administration Guide

cpusetGetName(3x)

NAME

cpusetGetName - gets the name of the cpuset to which a process is attached

SYNOPSIS

#include <cpuset.h>

cpuset_NameList_t *cpusetGetName(pid_t pid);

DESCRIPTION

The cpusetGetName function is used to obtain the name of the cpuset to which the
specified process has been attached. The pid argument specifies the process ID.

The function returns a pointer to a structure of type cpuset_NameList_t (defined
in the cpuset.h include file). The cpusetGetName function allocates the memory
for the structure and all of its associated data. The user is responsible for freeing the
memory using the cpusetFreeNameList(3x) function. The cpuset_NameList_t
structure is defined as follows:

typedef struct {
int count;

char **list;

int *status;

} cpuset_NameList_t;

The count member is the number of cpuset names in the list. In the case of
cpusetGetName function, this member should only contain the values of 0 and 1.

The list member references the list of names.

The status member is a list of status flags that indicate the status of the
corresponding cpuset name in list. The following flag values may be used:

CPUSET_QUEUE_NAME Indicates that the corresponding name in list is the
name of a cpuset queue

CPUSET_CPU_NAME Indicates that the corresponding name in list is the
CPU ID for a restricted CPU

The memory for list and status is allocated when the cpuset_NameList_t
structure is allocated and it is released when the cpuset_NameList_t structure is
released.

007–4413–004 89

A: Application Programming Interface for the Cpuset System

EXAMPLES

This example obtains the cpuset name or CPU ID to which the current process is
attached:

cpuset_NameList_t *name;

/* Get the list of names else print error & exit */

if (!(name = cpusetGetName(0))) {

perror("cpusetGetName");

exit(1);
}

if (name->count == 0) {

printf("Current process not attached\n");

} else {

if (name->status[0] == CPUSET_CPU_NAME) {
printf("Current process attached to"

" CPU_ID[%s]\n",

name->list[0]);

} else {

printf("Current process attached to"
" CPUSET[%s]\n",

name->list[0]);

}

}

cpusetFreeNameList(name);

NOTES

The cpusetGetName function is found in the libcpuset.so library and is loaded
if the -lcpuset option is used with either the cc(1) or ld(1) command.

This operation is not atomic and if multiple cpusets are defined with exactly the same
member CPUs, not a recommended configuration, this call will return the first
matching cpuset.

Restricted CPUs are not supported in the current SGI ProPack for Linux release.

SEE ALSO

cpuset(1), cpusetFreeNameList(3x), cpusetGetNameList(3x), and cpuset(5).

90 007–4413–004

Linux® Resource Administration Guide

DIAGNOSTICS

If successful, the cpusetGetName function returns a pointer to a
cpuset_NameList_t structure. If the cpusetGetName function fails, it returns
NULL and errno is set to indicate the error. The possible values for errno include
those values as set by cpumemsets(2), sbrk(2), and the following:

EINVAL Invalid value for pid was supplied. Currently, only 0 is
accepted to obtain the cpuset name that the current
process is attached to.

ERANGE Number of CPUs configured on the system is not a
value greater than or equal to 1.

007–4413–004 91

A: Application Programming Interface for the Cpuset System

cpusetGetNameList(3x)

NAME

cpusetGetNameList - gets the list of names for all defined cpusets

SYNOPSIS

#include <cpuset.h>

cpuset_NameList_t *cpusetGetNameList(void);

DESCRIPTION

The cpusetGetNameList function is used to obtain a list of the names for all the
cpusets on the system.

The cpusetGetNameList function returns a pointer to a structure of type
cpuset_NameList_t (defined in the cpuset.h include file). The
cpusetGetNameList function allocates the memory for the structure and all of its
associated data. The user is responsible for freeing the memory using the
cpusetFreeNameList(3x) function. The cpuset_NameList_t structure is defined
as follows:

typedef struct {

int count;

char **list;

int *status;

} cpuset_NameList_t;

The count member is the number of cpuset names in the list.

The list member references the list of names.

The status member is a list of status flags that indicate the status of the
corresponding cpuset name in list. The following flag values may be used:

CPUSET_QUEUE_NAME Indicates that the corresponding name in list is the
name of a cpuset queue.

CPUSET_CPU_NAME Indicates that the corresponding name in list is the
CPU ID for a restricted CPU.

The memory for list and status is allocated when the cpuset_NameList_t
structure is allocated and it is released when the cpuset_NameList_t structure is
released.

92 007–4413–004

Linux® Resource Administration Guide

EXAMPLES

This example obtains the list of names for all cpuset queues configured on the system.
The list of cpusets or restricted CPU IDs is then printed.

cpuset_NameList_t *names;

/* Get the list of names else print error & exit */

if (!(names = cpusetGetNameList())) {

perror("cpusetGetNameList");

exit(1);
}

if (names->count == 0) {

printf("No defined CPUSETs or restricted CPUs\n");

} else {

int i;

printf("CPUSET and restricted CPU names:\n");

for (i = 0; i < names->count; i++) {

if (names->status[i] == CPUSET_CPU_NAME) {

printf("CPU_ID[%s]\n", names->list[i]);
} else {

printf("CPUSET[%s]\n", names->list[i]);

}

}

}

cpusetFreeNameList(names);

NOTES

The cpusetGetNameList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

Restricted CPUs are not supported in the current SGI ProPack for Linux release.

SEE ALSO

cpuset(1), cpusetFreeNameList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetNameList function returns a pointer to a
cpuset_NameList_t structure. If the cpusetGetNameList function fails, it

007–4413–004 93

A: Application Programming Interface for the Cpuset System

returns NULL and errno is set to indicate the error. The possible values for errno
include those values set by cpumemsets(2) and sbrk(2).

94 007–4413–004

Linux® Resource Administration Guide

cpusetGetPIDList(3x)

NAME

cpusetGetPIDList - gets a list of all PIDs attached to a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_PIDList_t *cpusetGetPIDList(char *qname);

DESCRIPTION

The cpusetGetPIDList function is used to obtain a list of the PIDs for all processes
currently attached to the specified cpuset. Only processes with a user ID or group ID
that has read permissions on the permissions file can successfully execute this
function.

The qname argument is the name of the cpuset to which the current process should
be attached.

The function returns a pointer to a structure of type cpuset_PIDList_t (defined in
the cpuset.h) include file. The cpusetGetPIDList function allocates the memory
for the structure and the user is responsible for freeing the memory using the
cpusetFreePIDList(3x) function. The cpuset_PIDList_t structure looks similar
to this:

typedef struct {

int count;

pid_t *list;

} cpuset_PIDList_t;

The count member is the number of PID values in the list. The list member
references the memory array that holds the list of PID values. The memory for list
is allocated when the cpuset_PIDList_t structure is allocated and it is released
when the cpuset_PIDList_t structure is released.

EXAMPLES

This example obtains the list of PIDs attached to the cpuset mpi_set and prints out
the PID values.

(char *qname = "mpi_set";)

cpuset_PIDList_t *pids;

007–4413–004 95

A: Application Programming Interface for the Cpuset System

/* Get the list of PIDs else print error & exit */
if (!(pids = cpusetGetPIDList(qname))) {

perror("cpusetGetPIDList");

exit(1);

}

if (pids->count == 0) {
printf("CPUSET[%s] has 0 processes attached\n",

qname);

} else {

int i;

printf("CPUSET[%s] attached PIDs:\n",

qname);
for (i=o; i<pids->count; i++)

printf("PID[%d]\n", pids->list[i]);

}

cpusetFreePIDList(pids);

NOTES

The cpusetGetPIDList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

This function scans the /proc table to determine cpuset membership and is therefore
not atomic and the results cannot be guaranteed on a rapidly changing system.

SEE ALSO

cpuset(1), cpusetFreePIDList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetPIDList function returns a pointer to a
cpuset_PIDList_t structure. If the cpusetGetPIDList function fails, it returns
NULL and errno is set to indicate the error. The possible values for errno are the
same as the values set by cpumemsets(2) and sbrk(2).

96 007–4413–004

Linux® Resource Administration Guide

cpusetGetProperties(3x)

NAME

cpusetGetProperties - retrieves various properties associated with a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_Properties_t * cpusetGetProperties(char *qname);

DESCRIPTION

The cpusetGetProperties function is used to retrieve various properties identified
by qname and returns a pointer to a cpuset_Properties_t structure shown in the
following:

/* structure to return cpuset properties */

typedef struct {

cpuset_CPUList_t *cpuInfo; /* cpu count and list */

int pidCnt; /* number of process in cpuset */

uid_t owner; /* owner id of config file */

gid_t group; /* group id of config file */

mode_t DAC; /* Standard permissions of

config file*/

int flags; /* Config file flags for cpuset */

int extFlags; /* Bit flags indicating valid

ACL & MAC */

struct acl accAcl; /* structure for valid access

ACL */

struct acl defAcl; /* structure for valid default

ACL */

mac_label macLabel; /* structure for valid MAC

label */

} cpuset_Properties_t;

Every cpuset queue has a file that defines access permissions to the queue. The read
permissions for that file will determine if a process owned by a specific user can
retrieve the properties from the cpuset.

The qname argument is the name of the cpuset to which the properties should be
retrieved.

007–4413–004 97

A: Application Programming Interface for the Cpuset System

EXAMPLES

This example retrieves the properties of a cpuset queue named mpi_set.

char *qname = "mpi_set";
cpuset_Properties_t *csp;

/* Get properties, if error - print error & exit */

csp=cpusetGetProperties(qname);

if (!csp) {
perror("cpusetGetProperties");

exit(1);

}

.

.

.

cpusetFreeProperties(csp);

Once a valid pointer is returned, a check against the extFlags member of the
cpuset_Properties_t structure must be made with the flags
CPUSET_ACCESS_ACL, CPUSET_DEFAULT_ACL, and CPUSET_MAC_LABEL to see if
any valid ACLs or a valid MAC label was returned. The check flags can be found in
the sn\cpuset.h file.

NOTES

The cpusetGetProperties function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

Access control lists (ACLs) and mandatory access lists (MACs) are not implemented
in the current SGI ProPack for Linux release.

SEE ALSO

cpuset(1), cpusetFreeProperties(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetProperties function returns a pointer to a
cpuset_Properties_t structure. If the cpusetGetProperties function fails, it
returns NULL and errno is set to indicate the error. The possible values for errno
include those values set by cpumemsets(2).

98 007–4413–004

Linux® Resource Administration Guide

cpusetAllocQueueDef(3x)

NAME

cpusetAllocQueueDef - allocates a cpuset_QueueDef_t structure

SYNOPSIS

#include <cpuset.h>

cpuset_QueueDef_t *cpusetAllocQueueDef(int count)

DESCRIPTION

The cpusetAllocQueueDef function is used to allocate memory for a
cpuset_QueueDef_t structure. This memory can then be released using the
cpusetFreeQueueDef(3x) function.

The count argument indicates the number of CPUs that will be assigned to the
cpuset definition structure. The cpuset_QueueDef_t structure is defined as follows:

typedef struct {

int flags;

char *permfile;
cpuset_CPUList_t *cpu;

} cpuset_QueueDef_t;

The flags member is used to specify various control options for the cpuset queue. It
is formed by applying the bitwise exclusive-OR operator to zero or more of the
following values:

Note: For the currrent SGI ProPack for Linux release, the operating system disregards
the setting of the flags member, and always acts as if CPUSET_MEMORY_LOCAL was
specified.

CPUSET_CPU_EXCLUSIVE Defines a cpuset to be restricted.
Only threads attached to the cpuset
queue (descendents of an attached
thread inherit the attachement) may
execute on the CPUs contained in
the cpuset.

CPUSET_MEMORY_LOCAL Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.

007–4413–004 99

A: Application Programming Interface for the Cpuset System

Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. No restrictions
are made on memory assignment to
threads running outside the cpuset.

CPUSET_MEMORY_EXCLUSIVE Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. Threads not
assigned to the cpuset will not use
memory from within the cpuset
unless no memory outside the
cpuset is available. If, at the time a
cpuset is created, memory is
already assigned to threads that are
already running, no attempt will be
made to explicitly move this
memory. If page migration is
enabled, the pages will be migrated
when the system detects that most
references to the pages are nonlocal.

CPUSET_MEMORY_KERNEL_AVOID The kernel should attempt to avoid
allocating memory from nodes
contained in this cpuset. If kernel
memory requests cannot be satisfied
from outside this cpuset, this option
will be ignored and allocations will
occur from within the cpuset. (This
avoidance currently extends only to
keeping buffer cache away from the
protected nodes.)

The permfile member is the name of the file that defines the access permissions for
the cpuset queue. The file permissions of filename referenced by permfile
define access to the cpuset. Every time permissions need to be checked, the current
permissions of this file are used. Thus, it is possible to change the access to a

100 007–4413–004

Linux® Resource Administration Guide

particular cpuset without having to tear it down and re-create it, simply by changing
the access permissions. Read access to the permfile allows a user to retrieve
information about a cpuset, and execute permission allows the user to attach a
process to the cpuset.

The cpu member is a pointer to a cpuset_CPUList_t structure. The memory for
the cpuset_CPUList_t structure is allocated and released when the
cpuset_QueueDef_t structure is allocated and released (see
cpusetFreeQueueDef(3x)). The cpuset_CPUList_t structure contains the list of
CPUs assigned to the cpuset. The cpuset_CPUList_t structure (defind in the
cpuset.h include file) is defined as follows:

typedef struct {

int count;

int *list;

} cpuset_CPUList_t;

The count member defines the number of CPUs contained in the list.

The list member is the pointer to the list (an allocated array) of the CPU IDs. The
memory for the list array is allocated and released when the cpuset_CPUList_t
structure is allocated and released. The size of the list is determined by the count
argument passed into the function cpusetAllocQueueDef. The CPU IDs listed here
are (in the terms of the cpumemsets(2) man page) application, not system, numbers.

EXAMPLES

This example creates a cpuset queue using the cpusetCreate(3x) function and
provides an example of how the cpusetAllocQueueDef function might be used.
The cpuset created will have access controlled by the file /usr/tmp/mypermfile; it
will contain CPU IDs 4, 8, and 12; and it will be CPU exclusive and memory exclusive:

cpuset_QueueDef_t *qdef;

char *qname = "myqueue";

/* Alloc queue def for 3 CPU IDs */

qdef = cpusetAllocQueueDef(3);
if (!qdef) {

perror("cpusetAllocQueueDef");

exit(1);

}

/* Define attributes of the cpuset */

007–4413–004 101

A: Application Programming Interface for the Cpuset System

qdef->flags = CPUSET_CPU_EXCLUSIVE
| CPUSET_MEMORY_EXCLUSIVE;

qdef->permfile = "/usr/tmp/mypermfile";

qdef->cpu->count = 3;

qdef->cpu->list[0] = 4;

qdef->cpu->list[1] = 8;
qdef->cpu->list[2] = 12;

/* Request that the cpuset be created */

if (!cpusetCreate(qname, qdef)) {

perror("cpusetCreate");

exit(1);
}

cpusetFreeQueueDef(qdef);

NOTES

The cpusetAllocQueueDef function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

The current SGI ProPack for Linux release disregards the setting of the flags
member and always acts as if CPUSET_MEMORY_LOCAL was specified.

SEE ALSO

cpuset(1), cpusetFreeQueueDef(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetAllocQueueDef function returns a pointer to a
cpuset_QueueDef_t structure. If the cpusetAllocQueueDef function fails, it
returns NULL and errno is set to indicate the error. The possible values for errno
values include those returned by sbrk(2) and the following:

EINVAL Invalid argument was supplied. The user must supply
a value greater than or equal to 0.

102 007–4413–004

Linux® Resource Administration Guide

Clean-up Functions
This section contains the man pages for Cpuset System library clean-up functions:

cpusetFreeQueueDef(3x) Releases memory used by a
cpuset_QueueDef_t structure

cpusetFreeCPUList(3x) Releases memory used by a
cpuset_CPUList_t structure

cpusetFreeNameList(3x) Releases memory used by a
cpuset_NameList_t structure

cpusetFreePIDList(3x) Releases memory used by a
cpuset_PIDList_t structure

cpusetFreeProperties(3x) Release memory used by a
cpuset_Properties_t structure

007–4413–004 103

A: Application Programming Interface for the Cpuset System

cpusetFreeQueueDef(3x)

NAME

cpusetFreeQueueDef - releases memory used by a cpuset_QueueDef_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeQueueDef(cpuset_QueueDef_t *qdef);

DESCRIPTION

The cpusetFreeQueueDef function is used to release memory used by a
cpuset_QueueDef_t structure. This function releases all memory associated with
the cpuset_QueueDef_t structure.

The qdef argument is the pointer to the cpuset_QueueDef_t structure that will
have its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetAllocQueueDef(3x)) function.

NOTES

The cpusetFreeQueueDef function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), and cpuset(5).

104 007–4413–004

Linux® Resource Administration Guide

cpusetFreeCPUList(3x)

NAME

cpusetFreeCPUList - releases memory used by a cpuset_CPUList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeCPUList(cpuset_CPUList_t *cpu);

DESCRIPTION

The cpusetFreeCPUList function is used to release memory used by a
cpuset_CPUList_t structure. This function releases all memory associated with the
cpuset_CPUList_t structure.

The cpu argument is the pointer to the cpuset_CPUList_t structure that will have
its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetCPUList(3x) function.

NOTES

The cpusetFreeCPUList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetGetCPUList(3x), and cpuset(5).

007–4413–004 105

A: Application Programming Interface for the Cpuset System

cpusetFreeNameList(3x)

NAME

cpusetFreeNameList - releases memory used by a cpuset_NameList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeNameList(cpuset_NameList_t *name);

DESCRIPTION

The cpusetFreeNameList function is used to release memory used by a
cpuset_NameList_t structure. This function releases all memory associated with
the cpuset_NameList_t structure.

The name argument is the pointer to the cpuset_NameList_t structure that will
have its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetNameList(3x) function or cpusetGetName(3x) function.

NOTES

The cpusetFreeNameList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetGetName(3x), cpusetGetNameList(3x), and cpuset(5).

106 007–4413–004

Linux® Resource Administration Guide

cpusetFreePIDList(3x)

NAME

cpusetFreePIDList - releases memory used by a cpuset_PIDList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreePIDList(cpuset_PIDList_t *pid);

DESCRIPTION

The cpusetFreePIDList function is used to release memory used by a
cpuset_PIDList_t structure. This function releases all memory associated with the
cpuset_PIDList_t structure.

The pid argument is the pointer to the cpuset_PIDList_t structure that will have
its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetPIDList(3x) function.

NOTES

The cpusetFreePIDList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetGetPIDList(3x), and cpuset(5).

007–4413–004 107

A: Application Programming Interface for the Cpuset System

cpusetFreeProperties(3x)

NAME

cpusetFreeProperties - releases memory used by a cpuset_Properties_t
structure

SYNOPSIS

#include <cpuset.h>
void cpusetFreeProperties(cpuset_Properties_t *csp);

DESCRIPTION

The cpusetFreeProperties function is used to release memory used by a
cpuset_Properties_t structure. This function releases all memory associated with
the cpuset_Properties_t structure.

The csp argument is the pointer to the cpuset_Properties_t structure that will
have its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetProperties(3x)) function.

NOTES

The cpusetFreeProperties function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetGetProperties(3x), and cpuset(5).

108 007–4413–004

Linux® Resource Administration Guide

Using the Cpuset Library
This section provides an example of how to use the Cpuset library functions to create a
cpuset and an example of creating a replacement library for /lib32/libcpuset.so.

Example A-1 Example of Creating a Cpuset

This example creates a cpuset named myqueue containing CPUs 4, 8, and 12. The
example uses the interfaces in the cpuset library, /usr/lib/libcpuset.so, if they
are present.

#include <cpuset.h>

#include <stdio.h>

#include <errno.h>

#define PERMFILE "/usr/tmp/permfile"

int

main(int argc, char **argv)
{

cpuset_QueueDef_t *qdef;

char *qname = "myqueue";

FILE *fp;

/* Alloc queue def for 3 CPU IDs */

if (_MIPS_SYMBOL_PRESENT(cpusetAllocQueueDef)) {

printf("Creating cpuset definition\n");

qdef = cpusetAllocQueueDef(3);

if (!qdef) {

perror("cpusetAllocQueueDef");
exit(1);

}

/* Define attributes of the cpuset */

qdef->flags = CPUSET_CPU_EXCLUSIVE

| CPUSET_MEMORY_LOCAL
| CPUSET_MEMORY_EXCLUSIVE;

qdef->permfile = PERMFILE;

qdef->cpu->count = 3;

qdef->cpu->list[0] = 4;

qdef->cpu->list[1] = 8;

qdef->cpu->list[2] = 12;
} else {

007–4413–004 109

A: Application Programming Interface for the Cpuset System

printf("Writing cpuset command config"
" info into %s\n", PERMFILE);

fp = fopen(PERMFILE, "a");

if (!fp) {

perror("fopen");

exit(1);
}

fprintf(fp, "EXCLUSIVE\n");

fprintf(fp, "MEMORY_LOCAL\n");

fprintf(fp, "MEMORY_EXCLUSIVE\n\n");

fprintf(fp, "CPU 4\n");

fprintf(fp, "CPU 8\n");
fprintf(fp, "CPU 12\n");

fclose(fp);

}

/* Request that the cpuset be created */
if (_MIPS_SYMBOL_PRESENT(cpusetCreate)) {

printf("Creating cpuset = %s\n", qname);

if (!cpusetCreate(qname, qdef)) {

perror("cpusetCreate");

exit(1);

}
} else {

char command[256];

fprintf(command, "/usr/sbin/cpuset -q %s -c"

"-f %s", qname,
[PERMFILE];

if (system(command) < 0) {

perror("system");

exit(1);

}
}

/* Free memory for queue def */

if (_MIPS_SYMBOL_PRESENT(cpusetFreeQueueDef)) {

printf("Finished with cpuset definition,"

" releasing memory\n");
cpusetFreeQueueDef(qdef);

}

110 007–4413–004

Linux® Resource Administration Guide

return 0;
}

007–4413–004 111

Index

A

Array Services, 6
acessing an array, 8
array configuration database, 5, 6
array daemon, 6
array name, 9
array session handle, 5, 19
ASH

See " array session handle", 5
authentication key, 14
commands, 6

ainfo, 6, 9, 13, 14
array, 6, 14
arshell, 6, 14
aview, 6, 14

common command options, 14
common environment variables, 16
concepts

array session, 13
array session handle, 13
ASH

See "array session handle", 13
finding basic usage information, 9
global process namespace, 5
hostname command, 14
ibarray, 6
invoking a program, 10

information sources, 10
ordinary (sequential) applications, 10
parallel message-passing applications

distributed over multiple nodes , 10
parallel message-passing applications

within a node, 10
parallel shared-memory applications within

a node, 10
local process management commands, 12

at, 12
batch, 12
intro, 12
kill, 12
nice, 12
ps, 12
top, 12

logging into an array, 9
managing local processes, 11
monitoring processes and system usage, 11
names of arrays and nodes, 13
overview, 5
scheduling and killing local processes, 11
specifying a single node, 15
using an array, 8
using array services commands, 12

C

CpuMemSet System, 42
access

C shared library, 38
Python language module, 38

commands
runon, 38, 44

configuring, 42
cpumemmap, 40
cpumemset, 40
determining an application’s current CPU, 47
determining the memory layout of

cpumemmaps and cpumemsets, 47
error messages, 48
hard partitioning versus CpuMemSets, 47
implementation, 39
initializing, 44
initializing system service on CpuMemSets, 46

007–4413–004 113

Index

installing, 42
kernel-boot command line parameter, 41
layers, 37
managing, 45
operating on, 45
overview, 37
page allocation, 42
policy flag

CMS_SHARE, 42
Python module, 42
resolving pages for memory areas, 46
tuning, 42
using CPU memory sets, 43

Cpuset System
bootcpuset, 54
bootcpuset facility

bootcpuset command, 54
bootcpuset.conf file, 54
bootcpuset.rc init script, 54
chkconfig –add bootcpuset command, 54
chkconfig –del bootcpuset command, 54

commands
cpuset, 55

configuration flags
CPU, 63
EXCLUSIVE, 61
MEMORY_EXCLUSIVE, 62
MEMORY_KERNEL_AVOID, 62
MEMORY_LOCAL, 62
MEMORY_MANDATORY, 62
POLICY_KILL, 62
POLICY_PAGE, 62

CPU restrictions, 57
cpuset configuration file, 60

flags
See also "valid tokens", 61

Cpuset library, 63, 69
Cpuset library functions

cpusetAllocQueueDef, 99
cpusetAttach, 76
cpusetAttachPID, 78
cpusetCreate, 72

cpusetDestroy, 84
cpusetDetachAll, 82
cpusetDetachPID, 80
cpusetFreeCPUList, 105
cpusetFreeNameList, 106
cpusetFreePIDList, 107
cpusetFreeProperties, 108
cpusetFreeQueueDef, 104
cpusetGetCPUCount, 86
cpusetGetCPUList, 87
cpusetGetName, 89
cpusetGetNameList, 92
cpusetGetPIDList, 95
cpusetGetProperties, 97

enabling or disabling, 63
library

overview, 52
system division, 51

J

Job Limits
Pluggable Authentication Module (PAM), 2
point-of-entry processes, 1

Jobs
installing and configuring, 3
job characteristics, 2
job initiators

See also "point-of-entry processes", 2

L

Linux kernel tasks, 38

M

memory management terminology, 38

114 007–4413–004

Linux® Resource Administration Guide

N

node, 39
NUMA Tools

Command
dlook, 67

P

Pluggable Authentication Module (PAM), 2
Python module, 42

S

system memory blocks, 38

T

task
See "Linux kernel tasks", 38

U

using the cpuset library, 109

V

virtual memory areas, 39

007–4413–004 115

	New Features in This Manual
	New Features Documented
	Major Documentation Changes

	Table of Contents
	List of Figures
	List of Tables

	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Linux Kernel Jobs
	Overview
	Installing and Configuring Linux Kernel Jobs

	2. Array Services
	Array Services Package
	Installing and Configuring Array Services
	Using an Array
	Using an Array System

	Managing Local Processes
	Monitoring Local Processes and System Usage
	Scheduling and Killing Local Processes
	Summary of Local Process Management Commands

	Using Array Services Commands
	About Array Sessions
	About Names of Arrays and Nodes
	About Authentication Keys

	Summary of Common Command Options
	Specifying a Single Node
	Common Environment Variables

	Interrogating the Array
	Learning Array Names
	Learning Node Names
	Learning Node Features
	Learning User Names and Workload

	Managing Distributed Processes
	About Array Session Handles (ASH)
	Listing Processes and ASH Values
	Controlling Processes

	About Array Configuration
	About the Uses of the Configuration File
	About Configuration File Format and Contents
	Loading Configuration Data
	About Substitution Syntax
	Testing Configuration Changes

	Configuring Arrays and Machines
	Specifying Arrayname and Machine Names
	Specifying IP Addresses and Ports
	Specifying Additional Attributes

	Configuring Authentication Codes
	Configuring Array Commands
	Operation of Array Commands
	Summary of Command Definition Syntax
	Configuring Local Options
	Designing New Array Commands

	3. CPU Memory Sets and Scheduling
	Memory Management Terminology
	System Memory Blocks
	Tasks
	Virtual Memory Areas
	Nodes

	CpuMemSet System Implementation
	Cpumemmap
	cpumemset

	Installing, Configuring, and Tuning CpuMemSets
	Installing CpuMemSets
	Configuring CpuMemSets
	Tuning CpuMemSets

	Using CpuMemSets
	Using the runon (1) Command
	Initializing CpuMemSets
	Operating on CpuMemSets
	Managing CpuMemSets
	Initializing System Service on CpuMemSets
	Resolving Pages for Memory Areas
	Determining an Application's Current CPU
	Determining the Memory Layout of cpumemmaps and cpumemsets

	Hard Partitioning versus CpuMemSets
	Error Messages

	4. Cpuset System
	Cpusets on Linux versus IRIX
	Bootcpuset
	Using Cpusets
	Restrictions on CPUs within Cpusets
	Cpuset System Examples
	Cpuset Configuration File
	Installing the Cpuset System
	Using the Cpuset Library
	Cpuset System Man Pages
	User-Level Man Pages
	Admin-Level Man Pages
	Cpuset Library Man Pages
	File Format Man Pages
	Miscellaneous Man Pages

	5. NUMA Tools
	A. Application Programming Interface for the Cpuset System
	Overview
	Management Functions
	Retrieval Functions
	Clean-up Functions
	Using the Cpuset Library

	Index

