
SGI™ DataSync™ Programmer’s Guide
007-4463-001

CONTRIBUTORS
Written by Ken Jones
Illustrated by Chrystie Danzer and Dan Young
Edited by Susan Wilkening
Production by Bryan Perkins
Engineering contributions by Patrick Bouchaud, Stefan Eilemann, Phillipe Robert, and Yair Kurzion

COPYRIGHT
© 2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The License applicable to this software provides that the Licensed Software is for use only on the accompanying SGI Graphics Cluster and that
it is not supported on any other systems or platforms. Accordingly, it is a violation of the License and applicable law and international treaties
to distribute or run the software on non-SGI hardware.

The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, Onyx, and OpenGL are registered trademarks, and SGI, the SGI logo, SGI DataSync, SGI Graphics Cluster, SGI ImageSync, and
SynaptIQ are trademarks of Silicon Graphics, Inc.

Linux is a registered trademark of Linus Torvalds. Windows NT is a registred trademark of Microsoft Corporation.

Record of Revision

Version Description

001 August 2001
Original publication.
007-4463-001 iii

Contents
Contents

Figures . . vii
Audience . ix
Related Publications . . ix
Conventions . x
Reader Comments . . x

1. SGI DataSync Overview . . 1
SGI Graphics Cluster System Architecture 1
System Software . 3
What SGI DataSync Provides 5

2. Sharing Memory Across a Cluster 7
A Typical Cluster . . 7
Basic Services . . 8
dsDataId—A Sharing Primitive 9
Session Initialization—An Overview 10
Session Initialization—API Details 12
Session—Run-Time Considerations 13
Events . 14
Message Passing . 15
Sample Frame-Based Execution with Barriers 15
Session State . 16
Exit Sequence . . 17
Man Pages . . 18
007-4463-001 v

Contents
3. ClusterFly—A Sample Application 19
Basic Operations . 19

Starting ClusterFly. . 20
Running cfly Manually on Each Channel Node. 20
Running cfly on the Cluster from a Single Node 20

ClusterFly Controls . 21
Looking Around . 22
Approaching the Building 22
More Controls . . 23
Other Motion Models . . 24

Flying . . 24
Trackball . 25

Motion Using Paths . 25
Quitting ClusterFly . 25

An Overview of the Source Code. 26
Changes to perfly . 26
Initialization Sequence—Function InitClusterViewState() 27
Sending Data from the Master to the Slaves 30
Receiving Data from the Master 31
Synchronizing Master and Slaves 31
Design Decisions . . 32
vi 007-4463-001

Figures

007-4463-001 vii

Figures

Figure 1-1 Sample Configuration of an SGI Graphics Cluster Series 12 . . . 2
Figure 1-2 System Software Architecture. 4
Figure 2-1 Typical Cluster Block Diagram 8
Figure 2-2 Propagation of Allocated dsDataId Objects across a Cluster . . . 11
Figure 3-1 Section of the New Jerusalem City Hall 22

About This Guide

This guide describes the SGI DataSync component of the SGI Graphics Cluster, which
provides high-end graphics for visual simulation and virtual reality applications. The
SGI Graphics Cluster uses either the Linux or Windows NT operating system and
incorporates proprietary hardware and software from SGI.

SGI DataSync is a software component of the SGI Graphics Cluster Series 12 and is
available only for Linux. The SGI DataSync component provides an API that enables data
sharing across a cluster.

Audience

This guide targets applications programmers interested in creating graphics applications
that can run efficiently in a cluster environment.

Related Publications

The following SGI documents contain additional information that may be helpful:

• SGI ImageSync User’s Guide

• SGI SynaptIQ Administrator’s Guide

• SGI Graphics Cluster Hardware User’s Guide

• SGI Graphics Cluster Quick Start Guide

To obtain SGI documentation, see the SGI Technical Publications Library at
http://techpubs.sgi.com.
007-4463-001 ix

About This Guide
Conventions

The following conventions are used throughout this document:

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, programming language structures, and
URLs.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

interface This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog
boxes, and menus. Functions are also denoted in bold
with following parentheses.

manpage(x) Man page section identifiers appear in parentheses
after man page names.
x 007-4463-001

About This Guide
• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.
007-4463-001 xi

Chapter 1

1. SGI DataSync Overview

This overview of SGI DataSync consists of the following sections:

• “SGI Graphics Cluster System Architecture”

• “System Software”

• “What SGI DataSync Provides”

SGI Graphics Cluster System Architecture

The SGI Graphics Cluster uses either the Linux or Windows NT operating system and
incorporates proprietary hardware and software from SGI. The hardware consists of the
following:

• A single master node

• Multiple visual channel nodes (each with a commercial graphics card)

• An Ethernet backbone, including a network switch

• An optional SGI ImageSync network

Figure 1-1 illustrates the hardware architecture.
007-4463-001 1

1: SGI DataSync Overview
Figure 1-1 Sample Configuration of an SGI Graphics Cluster Series 12
2 007-4463-001

System Software
System Software

The software for the SGI Graphics Cluster Series 12 consists of the following:

• Operating system (Windows NT 4.0 or SGI Linux kernel with XFS support
(2.4.2-5SGI-137 or greater)

• SGI ImageSync device drivers

• SGI SynaptIQ (Linux systems only)

• SGI DataSync (Linux systems only)

Figure 1-2 illustrates the software architecture.
007-4463-001 3

1: SGI DataSync Overview
Figure 1-2 System Software Architecture

It can work directly
with the OS core and

take advantage of
ImageSync

It can take advantage
of DataSync software

SGI proprietary

SGI proprietary

SGI proprietary

It can take
advantage of
OpenGL APIs,
DataSync and
ImageSync

Application data
can be supported
in a number of ways

The OS core contains SGI's
ImageSync and SynaptIQ
technology, both of which are
application independent
4 007-4463-001

What SGI DataSync Provides
What SGI DataSync Provides

SGI DataSync attempts to provide a simulated single-system image (SSI) interface to
distributed applications running on a cluster. Although compute applications have long
used packages like Message Passing Interface (MPI) to parallelize codes across a cluster,
a similar fabric has been missing in the rendering arena. SGI DataSync handles the
complexity of breaking up and reassembling graphics data in a cluster environment and
of rendering an application across multiple pipes.

The software core creates a shared arena style module within each node. A library call
then creates named blocks within this shared arena. These blocks of memory can then be
selectively shared across the nodes to provide a transparent mechanism for sharing data.
007-4463-001 5

Chapter 2

2. Sharing Memory Across a Cluster

SGI DataSync is an API enables data sharing across a cluster. It aims at imitating a shared
memory system such as SGI Onyx on a cluster of computers with no physical shared
memory.

SGI DataSync implements a client-server model for control operations and a symmetric,
shared-memory model for data exchanges. This document describes the SGI DataSync
API in the following sections:

• “A Typical Cluster”

• “Basic Services”

• “dsDataId—A Sharing Primitive”

• “Session Initialization—An Overview”

• “Session Initialization—API Details”

• “Session—Run-Time Considerations”

• “Events”

• “Message Passing”

• “Sample Frame-Based Execution with Barriers”

• “Session State”

• “Exit Sequence”

• “Man Pages”

A Typical Cluster

This section describes a typical cluster and names its components. A cluster consists of
multiple PCs. Each one of these PCs is a cluster node. Figure 2-1 shows a cluster
007-4463-001 7

2: Sharing Memory Across a Cluster
consisting of four nodes. Commonly, one of these nodes has the host name
master-channel, and the others have the names channel0, channel1, and so on.

Figure 2-1 Typical Cluster Block Diagram

The node with the host name master-channel has a special designation: it is the
master of the SGI ImageSync network. The SGI ImageSync network enables frame
synchronization of all video outputs of cluster nodes.

SGI DataSync provides the API for sharing data and synchronizing processes on each
one of the cluster nodes. Typically, SGI DataSync uses the node with the host name
master-channel for running its daemon. All cluster nodes may run processes
(multiple processes per node) sharing data using SGI DataSync.

Basic Services

When a collection of processes on cluster nodes has to share some data, it has to connect
to an SGI DataSync session. SGI DataSync provides a server process that manages
sessions. Processes can create or join sessions on the server. Once connected to a session,
processes can share data with other processes in the same session.

When connecting to a server session, a process receives access to the following
synchronization primitives:

• Shared memory blocks

• Messages

ImageSync network

Data network

Node # 3

Host name:
channel2

Node # 1

Host name:
channel0

Node # 2

Host name:
channel1

Node # 0

Host name:
master-channel

DataSync daemon
8 007-4463-001

dsDataId—A Sharing Primitive
• Cluster events (for example, nodes added or dropped from a session)

• Barriers

• Semaphores

• Locks

dsDataId—A Sharing Primitive

In order to share data, cluster nodes have to create a correspondence between memory
buffers on each node. In order to create this correspondence, SGI DataSync lets an
application attach each memory buffer to a unique identifier. Two nodes attaching
memory blocks to the same unique identifier are sharing the contents of their memory
blocks.

SGI DataSync identifies blocks of data and other synchronization primitives among
cluster nodes using unique identifiers called dsDataId objects. Each node on the cluster
can allocate multiple dsDataId objects and these are unique across the entire cluster.
When two nodes on a cluster operate on the same dsDataId identifier, they access the
same object.

A dsDataId object can have one of the following types:

DS_MEMORY A memory block identifier

DS_BARRIER A barrier identifier

DS_SEMA A semaphore identifier

DS_LOCK A lock identifier

A dsDataId object of type DS_MEMORY does not allocate any memory. Attaching a block
of previously allocated memory to a dsDataId object of type DS_MEMORY makes this
memory block shared.

dsDataId objects of types DS_BARRIER, DS_SEMA, and DS_LOCK do not need additional
attachment to local constructs. For example, an application can join a barrier by naming
a dsDataId object of type DS_BARRIER.

For each type of dsDataId object, SGI DataSync provides a different API set. For example,
on dsDataId objects of type DS_MEMORY, SGI DataSync provides interfaces for the
following actions:
007-4463-001 9

2: Sharing Memory Across a Cluster
• Allocate/free memory for a dsDataId object.

• Map/unmap (attach/detach) a block of physical memory to a dsDataId object.

• Mark a dsDataId memory block as dirty.

• Synchronize contents of all dirty memory blocks.

Session Initialization—An Overview

This section describes the order of events in a basic SGI DataSync session (dsSession).
This high-level description includes the required operations without exposing API
details, which are described in the following subsection.

The following steps describe the initialization of a session.

1. Start the server process on one cluster node.

2. Repeat the following steps for each process needing to share data:

a. Initialize SGI DataSync.

b. Acquire a handle to the SGI DataSync server.

c. Try to create a dsSession on the server. If you succeed, this process is the first
process in the dsSession. If you fail, a dsSession already exists and the process
has to log in to the existing dsSession.

d. Add a new user (dsUser) to the dsSession. A dsUser is a connection to a
dsSession. All dsSession-related operations use the dsUser pointer.

3. If this process is the first process in a dsSession, do the following:

a. Allocate unique identifiers for shared data blocks.

b. Allocate a special identifier for a dsSession information block.

c. Allocate local memory for each identifier.

d. Attach each identifier to its newly allocated memory.

e. Store the unique identifiers in the dsSession information block.

f. Realize the dsSession.

4. For each process other than the first one in a dsSession, do the following:

a. Query the dsSession for its information identifier (a dsDataId indentifier).
10 007-4463-001

Session Initialization—An Overview
b. Allocate memory for the dsSession information.

c. Attach newly allocated memory to the dsSession information identifier.

d. Retrieve the unique identifiers that the first process stored in the dsSession
information block.

e. Allocate memory for each unique identifier.

f. Attach the newly allocated memory to the new identifier.

Figure 2-2 demonstrates the process of allocating new dsDataId objects and distributing
them to all cluster nodes. Node A is the first node to join a session. It allocates three
dsDataId objects (D1, D2, and D3) and three memory blocks (A1, A2 and A3). Node A
then maps A1 to D1, A2 to D2, and A3 to D3. In order to inform node B of the newly
allocated dsDataId objects, Node A stores D2 and D3 in memory block A1 and designates
dsDataId D1 as the session information block.

Figure 2-2 Propagation of Allocated dsDataId Objects across a Cluster

Node B would like to share blocks A2 and A3 with node A. Node B starts by allocating
three memory blocks B1, B2, and B3. In order to make B2 and A2 shared, node B has to
get dsDataId D2. It queries the dsSession for the dsDataId of its information block (D1),
maps memory block B1 to it, and reads D2 and D3 out of its local B1.

In effect, the dsSession info block serves as a globally known name that all dsSession
users can access.

Node A: first in a dsSession Node B: second in a dsSession

map dsDataId D1

Session info
identifier

dsDataId D2

dsDataId D3

Memory block A3

Memory block A2

Memory block A1:
session info

Memory block B2

Memory block B3

Memory block B1:
session info

map

mapmap

mapmap
007-4463-001 11

2: Sharing Memory Across a Cluster
Session Initialization—API Details

This section shows pseudo-code for implementing the example in Figure 2-2 using the
SGI DataSync API.

dsInit(initParams);
server = dsOpen(openParams);
buffer1 = malloc (...);
buffer2 = malloc (...);
buffer2 = malloc (...);
session = server->addSession(“SessionName”);
if (session) // Success - I’m the first user of this session.
{

user = session->addUser(“First”);
// Create three dsDataId’s
D1 = user -> alloc(DS_MEMORY, DS_PRESERVED);
D2 = user -> alloc(DS_MEMORY, DS_UNPRESERVED);
D3 = user -> alloc(DS_MEMORY, DS_UNPRESERVED);

// Store dsDataId’s in dsSession information block
buffer1 -> d2 = D2;
buffer1 -> d3 = D3;

// Attach dsDataId’s to physical memory.
user -> mapMemory(D1, 0, buffer1, ...);
user -> mapMemory(D2, 0, buffer2, ...);
user -> mapMemory(D3, 0, buffer3, ...);

// Notify SGI DataSync that the contents of buffer1 should be sent
to

// all other cluster nodes that mapped memory to D1.
user -> markMemory(D1, ...);
user -> syncMemory();

// Designate the dsDataId D1 as the session information
// identifier.
session -> putInfo(D1);

// Finish session startup.
session -> realize();

{
else
{

session = server -> login(“SessionName”);
12 007-4463-001

Session—Run-Time Considerations
user = addUser(“Second”);

// Obtain dsDataId of session information block.
D1 = session -> getInfo();

// Attach memory to the session information dsDataId. Request an
// immediate copy of the most up-to-date data in that buffer.
user -> mapMemory(D1, buffer1, ..., DS_RDONLY | DS_COPY);

// Get the dsDataId’s for D2 and D3 from the session information
// block.
D2 = buffer1 -> d2;
D3 = buffer1 -> d3;

user -> mapMemory(D2, buffer2, ...);
user -> mapMemory(D3, buffer3, ...);

}

At the end of the above code sequence, each one of the processes on the dsSession has
three local memory buffers and SGI DataSync is responsible for keeping their contents
identical upon user request.

Session—Run-Time Considerations

SGI DataSync optimizes its processing based on the amount of network traffic that it
produces. It does not propagate memory block changes unless specifically requested to
do so by the application. On the other hand, an application does not have to request SGI
DataSync to update its local memory blocks with information from other nodes. These
updates happen transparently using a separate updating thread.

Assume Buffer is a local memory block mapped to dsDataId D. A frame of a producer
process would therefore contain the following stages:

• Compute new data in Buffer.

• Mark D dirty.

• Call the syncMemory() function to propagate the contents of Buffer across the
cluster.
007-4463-001 13

2: Sharing Memory Across a Cluster
A consumer of the shared data in Buffer would simply use its contents—that is, never
calling any API to update it. Updates happen transparently without application
intervention.

Note: Transparent updates can cause program errors and race conditions. The
application should always assume that any shared buffer may be changing while being
read. Shared buffers are just as sensitive to race conditions as true shared memory buffers
in a multiprocessing environment.

The simple session in the preceding section does not synchronize the writers and readers
of a shared memory block. Most applications require some level of synchronization
among cluster processes. The following sections demonstrate how to use the SGI
DataSync synchronization primitives.

Events

Many SGI DataSync API calls generate a notification event either for the dsUser calling
the API or for all other connected dsUsers. Each dsUser can read a queue of incoming
events in order to find out about these API calls. Event types break into the following
groups:

• dsSession/dsUser activity

– A session was added or removed on the SGI DataSync server.

– A dsUser joined or left a dsSession.

These events are important when a process needs to change its behavior based on
the size or existence of dsSessions.

• dsDataId activity

A memory block mapped to some dsDataId has been updated with new contents,
or a dsDataId has been freed.

• Messages

A message from another user has arrived.
14 007-4463-001

Message Passing
An application may declare what type of events it wants to receive by calling
dsUser::handleEvent(). All other events will be rejected upon arrival and will not fill up
the event queue.

An application can poll for events using dsUser::checkEvent() and read the next event
by calling dsUser::nextEvent().

Message Passing

SGI DataSync provides a message passing mechanism among nodes connected to a
dsSession. A dsUser can send a memory block as a message to either a single other
dsUser or to all dsUsers on a dsSession.

Upon arrival of a message, the receiving dsUser receives a dsEvent of type
dsMessageEvent.

Sample Frame-Based Execution with Barriers

This section demonstrates the use of barriers in the following setup: multiple cluster
nodes read a shared memory block that one cluster node writes. The writer changes the
contents of the buffer at regular frame intervals. The readers are to process new contents
as it arrives.

In the following event-sequence example, process A is the writer and process B is one of
the readers of a shared memory block D.

1. At initialization time, the first process in the dsSession allocates a dsBarrier and
store its dsDataId in the session information block.

All other processes can retrieve the barrier dsDataId from the session information
block.

2. For each frame, writer process A does the following:

a. Changes the contents of the shared memory block D.

b. Calls dsUser::markMemory() on D.

c. Calls dsUser::syncMemory().

d. Enters the barrier.
007-4463-001 15

2: Sharing Memory Across a Cluster
3. For each frame, reader process B does the following:

a. Enters the barrier.

b. Reads and uses the contents of data block D.

The preceding sequence assumes that B’s usage of the contents of D is always shorter
than A’s frame duration. In other words, at the time B finishes reading the block D, A has
not yet started modifying it again. If this assumption is too strong, the application could
use another barrier in order to avoid writing on D before B finishes its reading.

Note: Using a dsBarrier requires specifying the number of nodes expected to join the
barrier. Since nodes can join or leave a dsSession at any time, the application may run into
race conditions and hang on a barrier expecting too many participants.

Session State

Applications often have to know about all dsUsers connected to their session.They often
wish to acquire a list of all other dsUsers on a cluster and compute their relative position
on that list. The following code sample demonstrates how to compute this information:

// get the directory of all dsUsers in session
dsDirectory *dir = (dsDirectory *) session -> directory();

// Lock directory while we look through it.
dir -> lock();

// Loop through dsUsers until we find our user name.
for (i = 0 ; i < dir -> size() ; i ++)

if (strcmp (myUserName, dir -> entry(i)) == 0)
{

myUserID = i;
break;

}

// Unlock directory so we can receive session updates from daemon.
dir -> unlock();
16 007-4463-001

Exit Sequence
Exit Sequence

When exiting a session, all processes other than the first process in a session should log
out of the session. The first process in the session must remove the session after all other
processes have logged out.

Note: Removing a dsSession (by calling the dsServer::removeSession() function) before
all dsUsers have logged out of it may cause the application to crash. When removing a
dsSession, all dsSession and dsUser interfaces are disabled on the removed dsSession.
This means that any call other than dsServer::logout() and dsSession::removeUser() will
produce an error.

To expedite the exit sequence of your program, you can replace the sleep(1) call with
user->nextEvent(dsRemoveUserEvent).

The following code sample demonstrates how the first process in a dsSession waits for
all dsUsers to log out before it removes the dsSession:

// Figure out initial number of users in session.
dsDirectory *dir = (dsDirectory *)(session -> directory());
numUsers = dir -> size();

// Wait for all users to logout from the session.
while (numUsers > 1)
{

dsDirectory *dir = (dsDirectory *)(session -> directory());
numUsers = dir -> size();
sleep (1);

}
// Remove dsSession from the master.
server -> removeSession (session_name);
// Exit SGI DataSync.
dsExit();

Note: Exiting an application without removing the dsSession leaves this session open on
the SGI DataSync daemon. If you run the application again without restarting the server,
there is no way to tell which process is the first in the session.
007-4463-001 17

2: Sharing Memory Across a Cluster
Man Pages

For further descriptions of the SGI DataSync API, see the following online man pages:

• dsInit

• dsServer

• dsSession

• dsUser

• dsArena

• dsDirectory

• dsError

• dsEvent

• dsInitParams

• dsMessage

• dsOpen

• dsOpenParams
18 007-4463-001

Chapter 3

3. ClusterFly—A Sample Application

This chapter demonstrates the basic DataSync functionality through the ClusterFly
demo. The application ClusterFly is a basic visual simulation application that can load,
store, and display scene databases in many common formats. This chapter describes how
to use ClusterFly to look at several sample databases provided with the SGI Graphics
Cluster.

The following sections describe ClusterFly:

• “Basic Operations”

• “An Overview of the Source Code”

Basic Operations

The ClusterFly demo provides a graphical user interface (GUI) with which you can
control many visual simulation features such as time-of-day selection, fog density, and
so on. These options all default to reasonable values; so, you do not need to learn about
them before using ClusterFly.

Note: To faciliate the description of ClusterFly operation, this section assumes your
cluster consists of the following four nodes: master-channel, channel0, channel1,
and channel2.

The following sections describe ClusterFly operation:

• “Starting ClusterFly”

• “ClusterFly Controls”

• “Looking Around”

• “Approaching the Building”
007-4463-001 19

3: ClusterFly—A Sample Application
• “More Controls”

• “Other Motion Models”

• “Motion Using Paths”

• “Quitting ClusterFly”

Starting ClusterFly

In order to run ClusterFly, start an identical copy of the program cfly on each of the
channel nodes. You can either run cfly manually on each node, or you can use a script
that runs cfly on them from a single node. The following subsections show each one of
these operation modes using a data file called town_ogl.pfb.

Running cfly Manually on Each Channel Node

If you wish to run each node separately, on each node enter the following:

% setenv PFSERVER master-channel
% cfly town_ogl.pfb

Start at the leftmost node and advance to the right. As new nodes start, cfly breaks the
viewer field of view among all the available hosts from left to right in the order that they
were activated.

Running cfly on the Cluster from a Single Node

If you wish to start cfly from a single node, do the following:

1. Ensure all nodes have logged in and have executed the following command:

% xhost +

2. Start cfly using the provided script on the node master-channel:

% run_all_cfly town_ogl.pfb

The following is the contents of the script run_all_cfly:

#!/bin/csh
start ImageSync.
/usr/share/ImageSync/bin/imagesync -v
Start cfly application on all channels listed in /etc/channel_list
Channels should be listed from left to right to ensure correct
20 007-4463-001

Basic Operations
breakup of the cfly field of view.
set list=‘cat /etc/channel_list‘
assume DataSync server runs on master host (this host)
set server=‘hostname‘
set c=0
set i=2
while ($c < $list[1])

rsh $list[$i] /usr/bin/X11/run_cfly $server $* &
@ c = ($c + 1)
@ i = ($i + 1)
sleep 3

end

Each channel node contains the script run_cfly, which consists of the following:

#!/bin/csh
setenv PFSERVER $1
setenv DISPLAY :0
setenv __GL_SYNC_TO_VBLANK 1
shift
/usr/bin/X11/cfly $*

Note that the script run_all_cfly uses the channel information file
/etc/channel_list. The script assumes that this file lists channel nodes in the
order determined by the left-to-right position of their display monitors. If your
channels come up with incorrect view offsets, check the file /etc/channel_list.

ClusterFly Controls

The ClusterFly GUI provides a control panel with an assortment of controls. You can
operate the control panel using the mouse buttons and the keyboard attached to node
channel0 (or the node that started running cfly first).

Many other keys on the keyboard are active and can be used to control ClusterFly even
when the control panel is not displayed. For full details, the perfly man page contains
a list of these key sequences and their effects, as well as details on motion models.

Entering cfly -H at the command line displays a list of the command-line options. For
instance, the ClusterFly program allows several motion models; the –d on the command
line tells the program to start in the Drive model, which provides an easy way to drive
or walk through a scene while maintaining a fixed height above the ground.
007-4463-001 21

3: ClusterFly—A Sample Application
Looking Around

Look around the scene using the mouse. First, place the cursor in the center of the
simulation window. Now depress the middle mouse button and move the mouse to the
left or right to turn in place; you will continue to pivot until you place the cursor back in
the center of the screen.

Do not worry if you inadvertently start moving around, lose sight of the building, or
otherwise lose position or control. Just move the cursor into the control panel area and
click the Reset All button on the control panel to get back to the original setup.

Approaching the Building

To approach the City Hall model, turn until you are facing it (if you are not already facing
it) and then center the mouse in the screen. Depress the left mouse button briefly to start
accelerating forward. When you release the button, you will continue gliding forward at
constant speed and can hold down the middle mouse button to steer. The ClusterFly
application shows you how the basic visual simulation tools work. This example uses a
section of the New Jerusalem City Hall (see Figure 3-1).

Figure 3-1 Section of the New Jerusalem City Hall
22 007-4463-001

Basic Operations
Tap the middle mouse button to stop in front of the building (if you actually entered the
building, remember the Reset All button). Now accelerate backward by pressing the
right button. When you are as far back as you want to go, hold down the left mouse
button to gradually slow down, or tap the middle mouse button to stop immediately.

Now use the left mouse button again to start moving forward and drive slowly into the
model. Notice that the walls closest to you are cut away at first so you can see inside;
when you are completely inside the building, those walls reappear. Drive around and
explore the building. Tap the middle mouse button to stop before you run into anything
(but do not worry—at this point you will bounce off any walls you hit). If the walls get
in your way, you can turn off collision detection with the button labeled Collide on the
control panel, or press the c key on the keyboard.

More Controls

To see the underlying geometry used to create the model, click the Style button in the
control panel, or press the w key on the keyboard. This changes the display to wireframe
mode. In this mode you can more easily see how many polygons are used to represent
an object. This information can be helpful when you are tuning a database, because it is
important to know when the number of polygons becomes a limiting factor. To turn
wireframe mode off, just click the Style button (or press w) again. The W key can be used
to cycle through several different drawing styles.

To close the entire control panel (and devote the entire screen to the model), click the GUI
Off button at the upper right of the control panel, or just press the F1 key. Press the F1
key again to restore the control panel. The GUI is part of libpfutil. See the sample
program, /usr/share/Performer/src/pguide/libpfutil/utilui.c.

If you click the Stats button in the control panel, a transparent panel showing scene
statistics appears overlaid on the screen. The buttons next to the Stats button allow you
to choose one of the available statistical displays. Try moving around in the scene while
watching how the statistics change. Note in particular that the number of triangles being
considered for rendering changes drastically depending on where you look; this
demonstrates OpenGL Performer’s use of culling to ignore objects that are completely
outside the field of vision. For more information about culling and the statistics panels,
see the OpenGL Performer Programmer’s Guide.

The control panel’s field-of-view slider can be used to select a wide angle view, up to
100 degrees.
007-4463-001 23

3: ClusterFly—A Sample Application
As you travel through the building, try turning on the fog effect by clicking the Fog
button. Experiment with the fog density and other controls. (Remember: If you have
closed the control panel, the F1 key restores it.)

Other Motion Models

So far you have been driving. There are other default motion models provided through
the libpfui library. These motion models can be subclassed to create your own models.
You can find the source code for these motion models in the directory
/usr/share/performer/src/lib/libpfui/.

Flying

The Fly motion model provides an alternative to the Drive model. This model allows full
motion in three dimensions (unlike the Drive model, which does not allow vertical
motion). The mouse in the Fly model is used in much the same way to control motion,
but when steering, the vertical position of the mouse in the window controls your
vertical tilt. You can select this mode by pressing the right mouse button on the button
marked Drive and select Fly from the menu.

As when driving, the left mouse button makes you go forward and the right mouse
button makes you go backward. As long as either button is pressed you will continue to
accelerate.

You turn by holding down the middle mouse button and moving the cursor away from
the center of the simulation window. Moving the cursor left or right causes left or right
turns, respectively. Moving the cursor up or down causes the view direction to tilt up or
down, respectively. The rate of turning and tilting is scaled by the distance of the cursor
from the center of the simulation window; that is, no change of direction occurs when the
cursor is at the center and full-speed rotation occurs at the edges of the window.

If you want to maintain a steady velocity rather than accelerating, hold down the middle
mouse button to steer while using the left and right buttons to control the speed. To stop,
tap the middle mouse button.
24 007-4463-001

Basic Operations
Trackball

The Trackball motion model provides a third option for controlling motion. You can
select this mode by pressing the right mouse button on the button marked Fly and
selecting Trackball from the menu.

In trackball mode, when you drag with the middle button the object rotates about its
center as if it were attached to a large trackball that fills the screen. Dragging up and
down causes rotation about the horizontal axis parallel to the screen; dragging left and
right causes rotation about the vertical axis parallel to the screen.

By dragging with the left mouse button, you can translate the object in the direction you
drag: left, right, up or down. By dragging with the right mouse button, you can translate
the object in and out of the screen. In all cases, if you release the mouse button while
dragging, the motion continues on its own.

Motion Using Paths

There are other approaches to traveling through a scene than the models described here.
For instance, you can build a specific path into the viewer, to prevent the user from
straying outside your model. The Path model is supported by a general path-following
system in thelibpfutil library. Many simulation applications require path support for
such objects as cars, trucks, and people (in driver-training software); waiting aircraft both
on the ground and in the air (in flight simulation); and opposing forces in military
trainers. Path support in libpfutil allows paths of varying speeds to be built from line
segments and arcs with automatic fillet construction between segments for smooth
transitions.

Quitting ClusterFly

When you want to quit cfly, either press the Esc key on the keyboard of channel0 (or
the node that started running cfly first) or click the Quit button on the ClusterFly GUI
of channel0 (or the node that started running cfly first).
007-4463-001 25

3: ClusterFly—A Sample Application
An Overview of the Source Code

The ClusterFly demo is a good demonstration of DataSync and OpenGL Performer in
action because it is a complete application. It is, however, a large and complex piece of
code. The program cfly is based on the perfly sample code. This section assumes that
you have a basic knowledge of the perfly sample code. An overview of perfly is
available in the OpenGL Performer documentation.

This overview of the cfly source code consists of the following subsections:

• “Changes to perfly”

• “Initialization Sequence—Function InitClusterViewState()”

• “Sending Data from the Master to the Slaves”

• “Receiving Data from the Master”

• “Synchronizing Master and Slaves”

• “Design Decisions”

Changes to perfly

This subsection describes the changes made to perfly in order to create cfly.

In general, all the global information in perfly is shared among the cluster nodes. This
information is stored in a global variable named ViewState. The naive approach would
assign ViewState for sharing via the DataSync API. Unfortunately, ViewState contains
pointers to node-local objects such as pfDCS nodes. Sharing the exact contents of
ViewState would therefore share the pointers to the pfDCS nodes (incorrect). Moreover,
the intent is to share information in two phase-shifted stages:

• Right before starting a new frame (before calling pfFrame()), share latency critical
information like the viewer camera position.

• Right after a frame and before suspending in wait for a new frame (between
pfFrame() and pfSync()), share the bulk of the required information—for example,
draw modes, positions of vehicles, time of day, etc.

There are two new memory structures containing data for the two phase shifted stages:

• ClusterViewState_pre for sharing data before calling pfFrame()
26 007-4463-001

An Overview of the Source Code
• ClusterViewState_post for sharing data between pfFrame() and pfSync()

The intent was to keep the changes to the perfly source code to the necessary
minimum. The new file cluster.C contains all the code accessing the DataSync cluster
API. The original code contains new function calls in three places:

Initialization In function initViewState(), call InitClusterViewState() for initializing
DataSync.

Pre-Frame In function localPreFrame(), call functions sendClusterViewState_pre()
or recvClusterViewState_pre(), depending on the variable
ViewState -> clusterRole. The first node to start up cfly has
clusterRole ROLE_MASTER. All other nodes have clusterRole
ROLE_SLAVE. These functions propagate the latency-critical portion of
ViewState.

Post-Frame In function updateSim(), call functions sendClusterViewState_post()
or recvClusterViewState_post(), depending on clusterRole. These
functions propagate the non-latency-critical portion of ViewState.

The perfly code contains a few other changes. In multiple places a node with
clusterRole ROLE_SLAVE should skip some standard operations—for example, setting
camera position.

Initialization Sequence—Function InitClusterViewState()

The code starts by initializing the DataSync library. Initializing requires initialization
parameters as in the following code:

dsInitParams *initParams = new dsInitParams();
dsInit(initParams);

The program must now get a handle to the DataSync server. We use the environment
variables PFSERVER and PFPORT to select the server host and port. Once selected, the
program calls dsOpen() and receives a handle to the server as shown in the following:

dsOpenParams *openParams = new dsOpenParams();
if ((server = getenv ("PFSERVER")) != NULL)

openParams -> setAddress(server);
else

openParams -> setAddress(server_name);

if ((port = getenv ("PFPORT")) != NULL)
007-4463-001 27

3: ClusterFly—A Sample Application
openParams -> setPort(atoi(port));
dsServer *svr = dsOpen(openParams);

The program now allocates memory in the Performer shared arena for all the data
structures that it wants to share via DataSync. These include the pre-pfFrame() and
post-pfFrame() structures as well as a DataSync session information block. The following
code shows the memory allocation:

ViewState -> SessionData = (ClusterSessionData *)
 pfCalloc (sizeof (ClusterSessionData), 1,
 pfGetSharedArena());
ClusterViewState_pre = (ClusterSharedViewState_pre *)
 pfCalloc (sizeof (ClusterSharedViewState_pre), 1,
 pfGetSharedArena());
ClusterViewState_post = (ClusterSharedViewState_post *)
 pfCalloc (sizeof (ClusterSharedViewState_post), 1,
 pfGetSharedArena());

The program tries to add a session to the DataSync server. Only one cluster node can add
a session of a given name. The DataSync server returns a non-NULL result to that node.
The program designates this node to be the master of the cluster. All other nodes are
slaves of that master. The following code shows adding a session and finding the master:

dsSession *session = svr->addSession(session_name);
if (session) // Success - I’m the first use of this session.
{
 ViewState -> clusterRole = ROLE_MASTER;
 sprintf (ViewState -> UserName, "master");
 ViewState -> SessionUser = session->addUser(ViewState -> UserName);

}
else
{
 ViewState -> clusterRole = ROLE_SLAVE;
 sprintf (ViewState -> UserName, "slave[%d]", getpid());
 dsSession *session = svr->login(session_name);
 ViewState -> SessionUser = session->addUser(ViewState -> UserName);

}

28 007-4463-001

An Overview of the Source Code
A master receives a pointer to the newly created session and is considered logged in to
the session. A slave has to log in to a session in order to receive a pointer. Once a session
pointer is obtained, the master and the slave have to add themselves as users to a session.
A dsUser is the only way a process can interact with a session. One process may have
multiple dsUsers to a single session. In the cfly implementation, each process has only
one dsUser.

During the execution of cfly, the program has to receive DataSync events when other
cluster nodes enter or leave the session. The program informs the DataSync server what
events we wish to handle by calling the following function:

ViewState -> SessionUser -> handleEvent (session_events);

On the master side, the program has to create all the DataSync shared components: a
session-info block, shared-memory buffers, and barriers. The program allocates shared
data IDs for these elements in the following code:

dsDataId session_data_id = ViewState -> SessionUser
 ->alloc(DS_MEMORY, DS_PRESERVED);
ViewState -> SessionData -> data_pre = ViewState -> SessionUser
 ->alloc(DS_MEMORY, DS_UNPRESERVED);
ViewState -> SessionData -> data_post = ViewState -> SessionUser
 ->alloc(DS_MEMORY, DS_UNPRESERVED);
ViewState -> SessionData -> barrier_pre = ViewState -> SessionUser
 ->alloc(DS_BARRIER, DS_UNPRESERVED);
ViewState -> SessionData -> barrier_post = ViewState -> SessionUser
 ->alloc(DS_BARRIER, DS_UNPRESERVED);

The program only allocates these shared Data IDs on the master. The slaves receive these
the IDs using a session-info block as described in the following paragraphs.

For barrier objects, the previous allocations are all that are needed. However, DataSync
does not allocate any memory for memory objects. We have to attach a local memory
buffer (allocated earlier by the application) to each shared data ID in order to enable
sharing. The program does this in the following calls (on the master):

 ViewState -> SessionUser -> mapMemory(
 ViewState -> SessionData -> data_pre,
 0,
 ClusterViewState_pre,
 sizeof(ClusterSharedViewState_pre),
 DS_WRONLY);
 ViewState -> SessionUser -> mapMemory(
 ViewState -> SessionData -> data_post,
007-4463-001 29

3: ClusterFly—A Sample Application
 0,
 ClusterViewState_post,
 sizeof(ClusterSharedViewState_post),
 DS_WRONLY);
 ClusterViewState_post -> exitFlag = 0;
 ViewState -> SessionUser -> mapMemory(
 session_data_id,
 0,
 ViewState -> SessionData,
 sizeof(ClusterSessionData),
 DS_WRONLY);

On the slaves, the program maps the above shared memory blocks as read-only.

The only pre-defined shared memory block on the DataSync server is the session info.
The master has to notify the slaves of its newly allocated shared data IDs by storing their
IDs in the session info as follows:

session->putInfo(session_data_id);

Slaves can call dsSession::getInfo() to retrieve the shared data ID used for the session
info and map a local memory block to it:

dsDataId cluster_data_id = session->getInfo();

ViewState -> SessionUser -> mapMemory(
 cluster_data_id,
 0,
 ViewState -> SessionData,
 sizeof(ClusterSessionData),
 DS_RDONLY|DS_COPY);

When done with its initialization, the master calls the following function:

session->realize();

All pending slaves continue running their initialization code.

Sending Data from the Master to the Slaves

The functions sendClusterViewState_pre() and sendClusterViewState_post() package
portions of the ViewState structure and inform DataSync to propagate them to the slaves.
This section will focus on sendClusterViewState_pre() because it is shorter.
30 007-4463-001

An Overview of the Source Code
As explained earlier, some members of ViewState are pointers to local objects; so, the
program has to package them before sharing across a cluster. One such example is
ViewState -> sceneDCS. The program cannot share its pointer over the cluster.
Instead, the program calls the following function:

 ViewState -> sceneDCS -> getMat(ClusterViewState_pre -> sceneDCS);

Once done packing all latency-critical members in ClusterViewState_pre, the program
informs DataSync that the buffer is not clear:

ViewState -> SessionUser -> markMemory (
 ViewState -> SessionData ->data_pre,
 0,
 sizeof (ClusterSharedViewState_pre));

The program then makes DataSync propagate all marked buffers across the cluster as
shown in the following:

ViewState -> SessionUser -> syncMemory();

Receiving Data from the Master

DataSync does not have any API for receiving data. The local memory blocks that each
slave creates are updated transparently. Slaves can assume that their input buffers are
up-to-date and process them. The cfly slaves unpack input buffers into ViewState and
make the necessary changes in the displayed GUI.

Synchronizing Master and Slaves

In order to force synchronization between the master and the slaves, each joins two
barriers each frame. The master joins barriers right after calling dsUser::syncMemory().
The slaves join the same barriers before reading their shared memory copies. This
ensures that slaves do not run too fast and process the same shared memory before the
master finished updating it. It also ensures that slaves do not run too slow and miss
complete updates of their shared memory.

Joining a barrier requires knowing its shared data ID and the number of users that should
also join this barrier. The following call joins a barrier:

ViewState -> SessionUser -> barrier (
 ViewState -> SessionData -> barrier_pre,
 ViewState -> numUsers);
007-4463-001 31

3: ClusterFly—A Sample Application
In order to maintain an up-to-date count on the number of users in a session, the program
makes the following calls:

dsDirectory *dir = (dsDirectory *)
 (ViewState -> ClusterSession -> directory());
ViewState -> numUsers = dir -> size();

The function queryClusterRank() computes the size of a cluster and the relative position
of the current node in the cluster.

Design Decisions

The program cfly uses shared memory to share the contents of ViewState. Another
possible approach would send messages every time some value changes in the ViewState
structure.

• Advantages for shared memory approach

– Much simpler. The application looks more like a multipipe Onyx application.

– Any cluster node that joins the session late sees the full contents of ViewState.
There is no need to request updates from one of the nodes.

• Advantage for message passing

When users do not make many GUI selections, there is less traffic on the network.
The application only has to send camera position and the position of moving
models every frame.
32 007-4463-001

	Record of Revision
	Figures
	About This Guide
	Audience
	Related Publications
	Conventions
	Reader Comments

	SGI DataSync Overview
	SGI Graphics Cluster System Architecture
	System Software
	What SGI DataSync Provides

	Sharing Memory Across a Cluster
	A Typical Cluster
	Basic Services
	dsDataId—A Sharing Primitive
	Session Initialization—An Overview
	Session Initialization—API Details
	Session—Run-Time Considerations
	Events
	Message Passing
	Sample Frame-Based Execution with Barriers
	Session State
	Exit Sequence
	Man Pages

	ClusterFly—A Sample Application
	Basic Operations
	Starting ClusterFly
	Running cfly Manually on Each Channel Node
	Running cfly on the Cluster from a Single Node

	ClusterFly Controls
	Looking Around
	Approaching the Building
	More Controls
	Other Motion Models
	Flying
	Trackball

	Motion Using Paths
	Quitting ClusterFly

	An Overview of the Source Code
	Changes to perfly
	Initialization Sequence—Function InitClusterViewState()
	Sending Data from the Master to the Slaves
	Receiving Data from the Master
	Synchronizing Master and Slaves
	Design Decisions

