
Guide to SGITM Compilers and
Compiling Tools

007–4479–001

COPYRIGHT
Copyright © 2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated
elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, IRIX, ProDev, SpeedShop and WorkShop are registered trademarks and SGI and the SGI logo are trademarks of
Silicon Graphics, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.
X/Open is a trademark of X/Open Company Ltd. The X device is a trademark of the Open Group.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

001 November 2001
Original publication

007–4479–001 iii

Contents

About This Guide . vii

Related Publications . vii

Obtaining Publications . viii

Conventions . viii

Reader Comments . ix

1. Introduction . 1

Sources of Performance Problems 2

2. Compilers and Compiler Documentation 5

Fortran Compilers . 5

MIPSpro FORTRAN 77 and MIPSpro Fortran 90 5

Fortran 77 and Fortran 90 . 6

C and C++ Compilers . 7

Other Compilers . 8

3. Debuggers and Debugging Documentation 9

dbx . 9

ProDevTM WorkShop Debugger 10

4. Optimization, Porting and Tuning Tools and Documentation 11

Optimization Guides . 11

Porting and Tuning Guides . 12

5. Performance Analysis Tools and Documentation 15

ProDevTM WorkShop Performance Analyzer 15

007–4479–001 v

Contents

ProDevTM WorkShop ProMP . 16

ProDevTM Workshop Tester . 17

ProDevTM WorkShop Static Analyzer 17

SpeedShop . 18

Index . 19

vi 007–4479–001

About This Guide

This publication describes the documentation available for the SGI compilers, and the
SGI compiling performance tools. It provides pointers to that documentation, and
gives details about the content of the documentation that you can use while you are
using SGI’s Fortran and C/C++ compilers.

Related Publications
The following is a list of the documents discussed in this book:

Fortran documentation:

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

• MIPSpro Fortran 90 Commands and Directives Reference Manual

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro Fortran 77 Language Reference Manual

C/C++ documentation:

• C Language Reference Manual

• C++ Programmer’s Guide

• MIPSpro C and C++ Pragmas

Other compilers:

• MIPSpro Assembly Language Programmer’s Guide

Optimization, porting, and performance tuning:

• MIPSpro N32/64 Compiling and Performance Tuning Guide

• MIPS O32 Compiling and Performance Tuning Guide

• Origin 2000 and Onyx2 Performance Tuning and Optimization Guide

007–4479–001 vii

About This Guide

• MIPSpro 64-Bit Porting and Transition Guide

• MIPSpro N32 ABI Handbook

• Application Programmer’s I/O Guide

Debugging tools:

• dbx User’s Guide

• dbx Quick Reference Card

• ProDev Workshop: Debugger User’s Guide

Performance analysis tools:

• ProDev Workshop: Performance Analyzer User’s Guide

• ProDev WorkShop: ProMP User’s Guide

• ProDev Workshop: Tester User’s Guide

• ProDev Workshop: Static Analyzer User’s Guide

• SpeedShop User’s Guide

In addition to these books which document current compilers and tools, other books
document older versions of SGI’s products. These older books are mentioned in the
appropriate chapters.

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://techpubs.sgi.com.

Conventions
The following conventions are used throughout this document:

viii 007–4479–001

Guide to SGITM Compilers and Compiling Tools

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

GUI This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog boxes,
menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

007–4479–001 ix

About This Guide

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

x 007–4479–001

Chapter 1

Introduction

This document is a guide to the SGI compilers, compiling tools, and the
documentation for those products. It provides overview information about the
compilers and the performance tools used with the compilers. It also provides a brief
description of the documentation available for all of these SGI products.

The SGI compilers include the FORTRAN 77 compiler, the Fortran 90 compiler, the C
compiler, the C++ compiler, and the Assembler.

Compiling tools include the WorkShop suite of tools (Debugger, Performance
Analyzer, Static Analyzer, ProMP, and Tester) as well as dbx and SpeedShop. In
addition to the compilers mentioned previously, these tools also support the Ada
compiler.

This book discusses the following topics:

• Chapter 2, "Compilers and Compiler Documentation", page 5, describes the
different SGI compilers and the documentation that accompanies those compilers.

• Chapter 3, "Debuggers and Debugging Documentation", page 9, describes the
debugging tools that are available.

• Chapter 4, "Optimization, Porting and Tuning Tools and Documentation", page 11,
describes optimization tools and the tuning and porting guides available for the
o32, n32 and 64–bit compiler systems.

• Chapter 5, "Performance Analysis Tools and Documentation", page 15, describes
the performance tools available with the WorkShop product set and also describes
the SpeedShop analysis tool.

There are three “versions” of Fortran and C/C++ compilers in use at SGI:

• The older 32-bit compiler (known as the o32 compiling system).

• The newer 32-bit compiler (known as the n32 compiling system).

• The 64-bit compiler.

Chapter 2, "Compilers and Compiler Documentation", page 5, discusses these
different compiling systems and the documentation that supports those systems.

007–4479–001 1

1: Introduction

Sources of Performance Problems
To tune a program’s performance, you must first determine where machine resources
are being used. At any point in a process, there is one limiting resource controlling
the speed of execution. Processes can be slowed down by:

• CPU speed and availability: a CPU-bound process spends its time executing in the
CPU and is limited by CPU speed and availability. To improve the performance of
CPU-bound processes, you may need to streamline your code. This can entail
modifying algorithms, reordering code to avoid interlocks, removing nonessential
steps, blocking to keep data in cache and registers, or using alternative algorithms.

• I/O processing: an I/O-bound process has to wait for input/output (I/O) to
complete. I/O may be limited by disk access speeds or memory caching. To
improve the performance of I/O-bound processes, you can try one of the
following techniques:

– Improve overlap of I/O with computation

– Optimize data usage to minimize disk access

– Use data compression

• Memory size and availability: a program that continuously needs to swap out
pages of memory is called memory-bound. Page thrashing is often due to accessing
virtual memory on a haphazard rather than strategic basis; cache misses result.
Insufficient memory bandwidth could also be the problem.

To fix a memory-bound process, you can try to improve the memory reference
patterns or, if possible, decrease the memory used by the program.

• Bugs: you may find that a bug is causing the performance problem. For example,
you may find that you are reading in the same file twice in different parts of the
program, that floating-point exceptions are slowing down your program, that old
code has not been completely removed, or that you are leaking memory (making
malloc calls without the corresponding calls to free).

• Performance phases: because programs exhibit different behavior during different
phases of operation, you need to identify the limiting resource during each phase.
A program can be I/O-bound while it reads in data, CPU-bound while it performs
computation, and I/O-bound again in its final stage while it writes out data. Once
you’ve identified the limiting resource in a phase, you can perform an in-depth
analysis to find the problem. And after you have solved that problem, you can

2 007–4479–001

Guide to SGITM Compilers and Compiling Tools

check for other problems within the phase. Performance analysis is an iterative
process.

The documentation available for the compilers and the performance tools can help
you pinpoint where these problems are occuring, and can help you determine how to
make the necessary changes to improve program performance.

007–4479–001 3

Chapter 2

Compilers and Compiler Documentation

SGI supports several compiler and programming languages. This chapter discusses
the different compilers and the documentation that supports those compilers. It
covers the following topics:

• "Fortran Compilers"

• "C and C++ Compilers", page 7

• "Other Compilers", page 8

All documentation mentioned in this chapter is available online or can be ordered. See
the SGI Technical Publications Library at http://techpubs.sgi.com for details.

Fortran Compilers
SGI provides support for the FORTRAN 77 and Fortran 90 programming languages,
as well as provides directives and extensions to each language.

There are two versions of each compiler, as discussed in the following subsections:

• "MIPSpro FORTRAN 77 and MIPSpro Fortran 90"

• "Fortran 77 and Fortran 90"

See these subsections for details about the documentation which supports each
version of the compiler.

MIPSpro FORTRAN 77 and MIPSpro Fortran 90

MIPSpro FORTRAN 77 and MIPSpro Fortran 90 (sometimes called “MIPSpro 7
Fortran 90”) have been available on SGI systems since the mid-1990s. These compilers
support the newer -n32 and -64 Application Binary Interface (ABI).

The following documentation is used with the Fortran 90 compiler:

• The MIPSpro Fortran 90 Commands and Directives Reference Manual contains
information about the command line options, the directives recognized by the
compiler, the OpenMP API multiprocessing directives, source preprocessing, and
the Auto-Parallelizing Option.

007–4479–001 5

2: Compilers and Compiler Documentation

The following books describe the Fortran 90 language as implemented by SGI’s
MIPSpro Fortran 90 compiler.

• The MIPSpro Fortran Language Reference Manual, Volume 1. Chapters 1 through 8
correspond to sections 1 through 8 of the Fortran standard.

• The MIPSpro Fortran Language Reference Manual, Volume 2. Chapter 1 through 6
correspond to sections 9 through 14 of the standard.

• The MIPSpro Fortran Language Reference Manual, Volume 3. This manual contains
compiler information that supplements the standard. This volume also contains
the complete Fortran syntax in Backus-Naur form (BNF).

The following books describe the FORTRAN 77 language as implemented by the
MIPSpro Fortran 77 compiler:

• The MIPSpro Fortran 77 Programmer’s Guide describes SGI’s implementation of the
FORTRAN 77 standard. This book contains information about compiling, linking,
and running programs; system functions and subroutines; and Fortran program
interfaces.

• The MIPSpro Fortran 77 Language Reference Manual describes the Fortran character
set, constants and data structures, specification statements, assignment and data
statements, and other elements of the FORTRAN 77 programming language.

In addition to these books, many man pages document the compilers, the libraries
used with the compilers, and several of the tools used by the compilers (including
f77(1), f90(1), f77.f90.difs(1), and intro_intrin(3i)). These man pages are
shipped as part of the software and are available online using the man command.

Fortran 77 and Fortran 90

Prior to 1996, SGI provided support for the Fortran 77 and Fortran 90 programming
languages. The older version of the Fortran 77 compiler supports only the older o32
ABI.. The older version of the Fortran 90 compiler supported the n32 and 64–bit ABI,
but that compiler is based on older technology than the current MIPSpro Fotran 90
compiler.

The Fortran 77 Programmer’s Guide and Fortran 77 Language Reference Manual document
the older versions of the Fortran 77 compiler. The MIPSpro Fortran 90 Programmer’s
Guide documents the older Fortran 90 compiler.

6 007–4479–001

Guide to SGITM Compilers and Compiling Tools

Note: Documentation for the older compilers is in maintenance, and should not be
considered current.

In addition to these books, the MIPS O32 Compiling and Performance Tuning Guide
discusses tuning issues in the older o32 compilers.

C and C++ Compilers
SGI provides support for the C and the C++ programming language. Like the Fortran
programming language, SGI has different versions of C and C++:

• MIPSpro 32–bit version (invoked with cc -n32) and the MIPSpro 64–bit version
(invoked with cc -64).

• An older, “ucode” version of the compiler invoked with cc -o32.

The N32 and 64–bit compilers accept a dialect of C++ that closely resembles the
ANSI/ISO draft C++ standard. The 32–bit ucode compiler is still available, but it is
no longer being enhanced. It is available to support legacy code.

The C++ compiler based on Cfront is still available but is no longer supported.

The following books document the newer versions of the C and C++ compilers:

• The C++ Programmer’s Guide describes SGI’s implementation of the C++ standard.
It discusses compiling and linking programs; dialect support; how to use
templates; and how to transition from the older Cfront compiler.

• MIPSpro C and C++ Pragmas describes all of the #pragma directives that are
supported (including automatic parallelization, DSM optimization, inlining, loader,
LNO, multiprocessing, precompiled header, scalar optimization, and warning
suppression control pragmas).

• The C Language Reference Manual contains a summary of the syntax and semantics
of the C language as implemented at SGI. It contains an overview of ANSI C,
descriptions of lexical conventions, a discussion of operator conversions, and other
topics covered in the C standard.

• The Standard Template Library Programmer’s Guide contains information about STL.
This documentation is available online at
http://www.sgi.com/Technology/stl.

007–4479–001 7

2: Compilers and Compiler Documentation

In addition to these books, several man pages document the compilers and the
compiler libraries (including cc(1) and cpp(1)).

Other Compilers
SGI provides support for several other programming languages:

• Assembler, which is documented in the MIPSpro Assembly Language Programmer’s
Guide.

• The Pascal Programming Guide

In addition to these books, several man pages document these products (including the
as(1) man page).

The MIPSpro N32/64 Compiling and Performance Tuning Guide discusses writing
assembly code for the N32 and 64–bit systems.

Many of the optimization and performance tools also support the Ada programming
language.

8 007–4479–001

Chapter 3

Debuggers and Debugging Documentation

This chapter discusses the debugging tools available on SGI systems. It contains the
following topics:

• "dbx"

• "ProDevTM WorkShop Debugger", page 10

All documentation mentioned in this chapter is available online or can be ordered. See
the SGI Technical Publications Library at http://techpubs.sgi.com for details.

dbx
dbx is a source level debugger used to debug programs in C, C++, Fortran, and
assembly language. You can use dbx to trace problems in a program at the source
code level, rather than at the machine code level. dbx enables you to control a
program’s execution, symbolically monitoring program control flow, variables, and
memory locations. You can also use dbx to trace the logic and flow of control to
acquaint yourself with a program written by someone else.

dbx provides a robust command language; using that language, you can perform the
following functions:

• examine core dumps

• display and change program variables

• determine variable scope

• control program execution

• debug machine language code

• debug multiprocessed programs

dbx is documented in the dbx User’s Guide. The dbx Quick Reference Card is also
available.

007–4479–001 9

3: Debuggers and Debugging Documentation

ProDevTM WorkShop Debugger
The ProDev WorkShop Debugger is a UNIX source-level debugging tool for SGI MIPS
systems. It displays program data and execution status in real time; it can be used to
debug Ada, C, C++, FORTRAN 77, and Fortran 90 programs.

The Debugger lets you set various types of breakpoints and watchpoints where you
can view data (such as variables, expressions, arrays, etc.) You can use the Views
menu to inspect the following types of data:

• Call Stack, to inspect the call stack at the breakpoints.

• Expression View, to inspect the value of specified expressions.

• Variable Browser, to inspect the values, types, or addresses of variables.

• Structure Browser, to inspect data structures.

• Multiprocess View, to inspect the values of multiple and / or pthreaded processes.

• Array Browser, to inspect the values of an array variable.

• Memory View, to inspect the values in specified memory locations.

• Register View, to inspect registers.

• Disassembly View, to inspect the disassembled code.

The ProDev WorkShop Debugger also includes Fix+Continue, which gives you the
ability to make changes to a program written in C or C++ without having to
recompile and link the entire program before continuing to debug the code. With
Fix+Continue, you can edit a function, parse the new functions, and continue
execution of the program being debugged.

The X/Motif Analyzer in the Debugger provides specific debugging support for
X/Motif applications. You can issue X/Motif analyzer commands graphically from
the X/Motif analyzer subwindow of the Debugger Main Window.

The Debugger is documented in ProDev Workshop: Debugger User’s Guide.

10 007–4479–001

Chapter 4

Optimization, Porting and Tuning Tools and
Documentation

Several different books document how to port code from older versions of compilers
to newer versions, how to tune programs for best use, and how to optimize code for
use on different hardware systems. The books discussed in this chapter focus
primarily on those topics.

In addition to the books discussed in this chapter, the books for each compiling
system also contain information about optimization and tuning. You may wish to
check those books first for information that is specific to your compiling system
before checking the books mentioned here, which are more general in nature.

Optimization and tuning are terms that are often used interchangeably. As used in this
document, both terms mean a focus on exploiting the features of hardware and
software to extract the best performance from the system and the code.

The topic of porting code from older systems is often combined with information
about how to fine-tune that code for the newer systems. Thus, “porting and tuning”
guides often also discuss some optimization topics in the course of discussing tuning.

All documentation mentioned in this chapter is available online or can be ordered. See
the SGI Technical Publications Library at http://techpubs.sgi.com for details.

Optimization Guides
The following books discusses optimization topics in detail (but do not discuss
porting code in any detail):

• The Origin 2000 and Onyx2 Performance Tuning and Optimization Guide describes
tuning and optimization in the context of specific hardware architectures; it
includes the following topics:

– details about the SNO hardware architecture

– SNO memory management

– tuning for a single process

– using basic compiler optimizations

007–4479–001 11

4: Optimization, Porting and Tuning Tools and Documentation

– optimizing cache utilization

– tuning for parallel processing

• The Application Programmer’s I/O Guide discusses features that can affect I/O in
your Fortran program; it includes the following topics:

– Fortran I/O extensions provided by SGI

– the assign environment

– file structures

– using FFIO (Flexible File I/O)

– I/O optimizaton

Porting and Tuning Guides
The following books focus on porting code from older systems and also focus on
tuning issues for that code:

• MIPSpro N32/64 Compiling and Performance Tuning Guide (formerly entitled MIPSpro
Compiling, Debugging, and Performance Tuning Guide) describes the components of
the MIPSpro compiling systems and includes the following topics:

– how to use dynamic shared objects (DSOs)

– how to use interprocedural analysis (IPA) and loop nest optimization (LNO)
for optimization

– how to code 64–bit programs

– how to port code from the older (ucode) 32–bit mode to the N32 and and
64–bit modes

• The MIPSpro N32 ABI Handbook describes the 32–bit Application Binary Interface
(ABI) and includes the following topics:

– ABI overview

– calling convention implementations

– N32 compatibility

12 007–4479–001

Guide to SGITM Compilers and Compiling Tools

– porting issues

– assembly language programming issues

• The MIPS O32 Compiling and Performance Tuning Guide describes how to use tools
to optimize older O32 code; it includes the following topics:

– how to use dynamic shared objects (DSOs)

– how to use performance tools for profiling and pc sampling

– how to optimize performance with object libraries and compiler options

007–4479–001 13

Chapter 5

Performance Analysis Tools and Documentation

Several different products are available to help you analyze your program’s code and
determine where optimization techniques can be applied. Many of these products are
in the ProDevTM WorkShop suite of tools.

This chapter discusses the following topics:

• "ProDevTM WorkShop Performance Analyzer", page 15

• "ProDevTM WorkShop ProMP", page 16

• "ProDevTM Workshop Tester", page 17

• "ProDevTM WorkShop Static Analyzer", page 17

• "SpeedShop", page 18

All documentation mentioned in this chapter is available online or can be ordered.
See the SGI Technical Publications Library at http://techpubs.sgi.com for
details. In addition, the workshop(1) man page lists all man pages used with the
performance tools and provides a summary of each performance tool product.

ProDevTM WorkShop Performance Analyzer
You can use the ProDev WorkShop Performance Analyzer to check your program for
different performance problems. This tool has three major windows that display
performance information:

• The function list area, which shows functions and their performance metrics.

• The system resource usage chart, which shows the mode of the program at any
time.

• The time line, which shows when sample events occur in experiments and
controls the scope of analysis.

To conduct performance analysis, first run an experiment to collect performance data.
You can specify the objective of your experiment through a task menu or with the
SpeedShop ssrun(1) command. The Performance Analyzer reads the required data
and provides charts, tables, and annotated code to help you analyze the results.

007–4479–001 15

5: Performance Analysis Tools and Documentation

There are three general techniques for collecting performance data:

• Counting: this involves counting the exact number of times each function or basic
block has been executed.

• Profiling: the program’s program counter (PC), call stack, and/or resource
consumption are periodically examined and recorded.

• Tracing: events that impact performance, such as reads and writes, system calls,
floating-point exceptions, and memory allocations, reallocations, and frees, can be
traced.

The ProDev WorkShop Performance Analyzer is documented in the ProDev Workshop:
Performance Analyzer User’s Guide.

ProDevTM WorkShop ProMP
ProMP is a companion product to the WorkShop suite of tools. It is used to analyze
programs that have been parallelized. It is integrated with the other WorkShop tools
to let you examine a program’s loops in conjunction with a performance experiment
on either a single processor or a multiprocessor run.

Before using ProMP, you must first compile your program with the appropriate
auto-parallelizing options. The compiler then generates its output files and an
analysis file, which ProMP then reads and analyzes.

The ProMP documentation includes several tutorials to help you learn to use the
product; these tutorials cover the following topics:

• compiling a program for ProMP use

• viewing detailed information about code and loops

• examining loops with obstacles to parallelization

• examining nested loops

• modifying source files and recompiling the code

• using OpenMP directives

• using ProMP with performance data

The ProMP product is documented in the ProDev WorkShop: ProMP User’s Guide.

16 007–4479–001

Guide to SGITM Compilers and Compiling Tools

ProDevTM Workshop Tester
ProDev WorkShop Tester is a quality assurance tool for test coverage over sets of
tests. This product is used by software and test engineers and others involved in the
development, testing, and maintenance of software projects.

WorkShop Tester has the following features:

• it provides visualization of coverage data

• it provides useful measures of test coverage over a set of tests/experiments

• it allows you to view the coverage results of a dynamically shared object (DSO) by
executables that use it

• it provides a comparison of coverage over different program versions

• it provides tracing capabilities for function arcs that go beyond traditional test
coverage tools

There are two versions of Tester: cvcov is the command line version of the test
coverage program and cvxcov is the GUI version of the test coverage program.

Most of the functionality is available from either program, although the graphical
representations of the data are available only from cvxcov, the GUI tool.

The Tester product is documented in the ProDev Workshop: Tester User’s Guide.

ProDevTM WorkShop Static Analyzer
The Static Analyzer is the WorkShop tool for examining the structure of a program’s
source code and the relationships between its parts, such as files, functions, and
variables.

The Static Analyzer shows code structure, including how functions within programs
call each other, where and how variables are defined, how files depend on each other,
where macros are placed, and other structural details. The Static Analyzer is
interactive, so you can quickly locate the portion of code structure that interests you,
or you can step back for an overview. Because the Static Analyzer recognizes the
connections between elements of the source code, you can readily trace how a
proposed change to one element will affect related elements.

The Static Analyzer provides two modes for extracting static analysis data from your
source files:

007–4479–001 17

5: Performance Analysis Tools and Documentation

• Scanner mode: a fast, general-purpose scanner that looks through code with
minimal sensitivity to the programming language. Scanner mode does not require
that your code compile.

• Parser mode: a language-sensitive scanner that can be run at compile time by
setting a switch.

The Static Analyzer is documented in the ProDev Workshop: Static Analyzer User’s
Guide.

SpeedShop
The SpeedShop set of tools help you measure program performance using SpeedShop
commands. These tools allow you to run experiments and generate reports that track
down the sources of performance problems.

SpeedShop consists of a set of commands that can be run in a shell, an application
programming interface (API) to provide some control over data collection, and a
number of libraries to support the commands.

The following SpeedShop commands help you analyze your programs:

• ssusage: Collects information about your program’s use of machine resources.
Output from ssusage can be used to determine where most resources are being
spent.

• ssrun: Allows you to run experiments on a program to collect performance data.
It establishes the environment to capture performance data for an executable,
creates a process from the executable (or from an instrumented version of the
executable) and runs it.

• prof: Analyzes the performance data recorded with ssrun and provides
formatted reports.

The following additional commands are also provided:

• squeeze: Allocates a region of virtual memory and locks the virtual memory
down into real memory, making it unavailable to other processes.

• thrash: Allows you to allocate a block of memory, then access the allocated
memory to explore system paging behavior.

The SpeedShop product is documented in the SpeedShop User’s Guide.

18 007–4479–001

Index

032 tuning guide, 7
64 C compiler, 7

A

Assembler documentation, 8

B

bugs and performance analysis, 2

C

C man pages, 8
C programming language, 7
C/C++ documentation, 7
C/C++ pragmas, 7
compiler documentation, 5
CPU-bound processes, 2

D

dbx, 9
debugging tools

dbx, 9
WorkShop Debugger, 10

directives, 6
DSO, 17
dynamically shared object , 17

E

examining data, 10

F

Fix+Continue, 10
Fortran 77, 7
Fortran 90, 7
Fortran 90 commands, 6
Fortran 90 directives, 6
Fortran 90 languge guide, 6
Fortran compilers, 5

MIPSpro, 5
Fortran man pages, 6

I

I/O optimization, 12
I/O-bound processes, 2

M

memory–bound processes, 2
MIPSpro C/C++, 7
MIPSpro compilers, 5

documentation, 5
MIPSpro FORTRAN 77

documentation, 6
MIPSpro Fortran 77 guide, 6
MIPSpro Fortran 77 language guide, 6
MIPSpro Fortran 90

documentation, 5
MIPSpro man pages, 6

007–4479–001 19

Index

N

n32 C compiler, 7
n32 performance tools, 12

O

o32 C compiler, 7
o32 Fortran compiler, 6
o32 performance tools, 12, 13
older Fortran documentation, 7
optimization documentation

architecture-specific, 11
I/O, 12

other compiling languages, 8

P

performance analysis, 2
bugs, 2
CPU-bound processes, 2
I/O—bound processes, 2
memory–bound processes, 2
program phases, 3
SpeedShop, 18
WorkShop Performance Analyzer, 15
WorkShop ProMP, 16
WorkShop Static Analyzer, 17
WorkShop Tester, 17

Performance Analyzer, 15
performance tools, 15
porting guides, 12
ProDev ProMP, 16
ProDev WorkShop Debugger, 10

Fix+Continue, 10
X/Motif Analyzer, 10

ProDev Workshop Static Analyzer, 17

ProDev WorkShop Tester, 17
prof coommand, 18
program phases and performance analysis, 3

S

SpeedShop
overview, 18

SpeedShop commands, 18
ssrun command, 18
ssusage command, 18
Standard Template Library, 8
Static Analyzer, 17
Static Analyzer modes, 18
STL, 8

T

Tester versions, 17
tuning guides, 12

U

ucode C compiler, 7

V

viewing data, 10

X

X/Motif Analyzer, 10

20 007–4479–001

