
OpenMLTM Media Library Software
Development Kit Programmer’s Guide

007–4504–001

CONTRIBUTORS

Written by Bob Bernard and Tammy Domeier
Illustrated by Chris Wengelski
Edited by Rick Thompson
Production by Glen Traefald
Engineering contributions by Frank Bernard, Beryl Chen, Jeff Hane, Jaya Kanajan, Derek Millar, Michael Pruett, Mike Travis, and Ke Wu

COPYRIGHT
© 2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any
manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics and Linux are registered trademarks and OpenML, SGI and the SGI logo are trademarks of Silicon Graphics, Inc.

DVCPRO is a registered trademark of Panasonic, Inc. Linux is a registered trademark of Linus Torvolds. Windows is a registered
trademark of Microsoft corporation.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

001 November 2001
Supports the 1.0 release of the OpenML Media Library Software
Development Kit (ML).

007–4504–001 iii

Contents

About This Guide . xix

Obtaining Publications . xix

Conventions . xix

Reader Comments . xx

1. Introduction . 1

Terms . 1

Getting Started with the ML . 3

Simple Audio Output Program 3

Step 1: Include the ml.h and mlu.h Files 3

Step 2: Locate a Device . 4

Step 3: Open the Device Output Path 4

Step 4: Set Up the Audio Device Path 5

Step 5: Set Controls on Audio Device Path 6

Step 6: Send Buffer to Device for Processing 6

Step 7: Begin Message Processing 7

Step 8: Receive the Reply Message 7

Step 9: Close the Path . 7

Realistic Audio Output Program 8

Step 1: Open the Device Output Path 8

Step 2: Allocate Buffers . 8

Step 3: Send Buffers to the Open Path 8

Step 4: Begin the Transfer . 9

Step 5: Receive Replies from the Device 10

007–4504–001 v

Contents

Step 6: Refill the Buffer for Further Processing 10

Step 7: End the Transfer . 11

Step 8: Close the Path . 11

Audio/Video Jacks . 11

Opening a Jack . 12

Constructing a Message . 12

Setting Jack Controls . 13

Closing a Jack . 13

2. Parameters . 15

param/value Pairs . 15

Messages . 16

Scalar Values . 16

Set Scalar Values . 16

Get Scalar Values . 17

Array Values . 17

Set the Value of an Array Parameter 17

Get the Size of an Array Parameter 18

Get the Value of an Array Parameter 19

Pointer Values . 19

3. Capabilities . 21

The Capabilities Tree . 21

Utility Functions for Capabilities 22

Manual Access to Capabilities 22

Accessing Capabilities . 23

Query Individual Parameters of Logical Devices 24

Query Parameters Which Describe Parameters 25

vi 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Identification Numbers . 25

System Capabilities . 26

Jack Logical Device Capabilities 29

Path Logical Device Capabilities 32

Transcoder Logical Device Capabilities 34

Pipe Logical Device Capabilities 36

Finding a Parameter in a Capabilities List 37

Obtaining Parameter Capabilities 37

Freeing Capabilities Lists . 41

4. Audio/Visual Paths . 43

Opening a Logical Path . 43

Constructing a Message . 43

Processing Out-of-Band Messages 44

Sending In-Band Messages . 44

Processing In-Band Messages . 45

Processing Exception Events . 46

Processing In-Band Reply Messages 47

Beginning and Ending Transfers 47

Closing a Logical Path . 48

5. Transcoders . 49

Finding a Suitable Transcoder 49

Opening a Logical Transcoder 49

Controlling the Transcoder . 49

Sending Buffers . 51

Starting a Transfer . 51

Changing Controls During a Transfer 52

007–4504–001 vii

Contents

Receiving a Reply Message . 52

Ending Transfers . 52

Closing a Transcoder . 53

Work Functions . 53

Multi-Stream Transcoders . 54

6. Video Parameters . 55

Video Sampling . 55

Progressive Sampling . 55

Interlaced Sampling . 56

Example of Interlaced Sampling 56

Video Parameters . 57

ML_VIDEO_TIMING_INT32 57

Supported Timings . 57

Standard Definition (SD) Timings 58

High Definition (HD) Timings 58

ML_VIDEO_COLORSPACE_INT32 59

Supported Colorspace Values 59

ML_VIDEO_SAMPLING_INT32 59

Supported Sampling Values 59

ML_VIDEO_PRECISION_INT32 60

ML_VIDEO_GENLOCK_SIGNAL_PRESENT_INT32 60

ML_VIDEO_SIGNAL_PRESENT_INT32 60

ML_VIDEO_GENLOCK_SOURCE_TIMING_INT32 60

ML_VIDEO_GENLOCK_TYPE_INT32 60

ML_VIDEO_BRIGHTNESS_INT32 60

ML_VIDEO_CONTRAST_INT32 61

ML_VIDEO_HUE_INT32 . 61

viii 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_VIDEO_SATURATION_INT32 61

ML_VIDEO_RED_SETUP_INT32 61

ML_VIDEO_GREEN_SETUP_INT32 61

ML_VIDEO_BLUE_SETUP_INT32 61

ML_VIDEO_ALPHA_SETUP_INT32 61

ML_VIDEO_H_PHASE_INT32 61

ML_VIDEO_V_PHASE_INT32 62

ML_VIDEO_FLICKER_FILTER_INT32 62

ML_VIDEO_DITHER_FILTER_INT32 62

ML_VIDEO_NOTCH_FILTER_INT32 62

ML_VIDEO_INPUT_DEFAULT_SIGNAL_INT64 62

ML_VIDEO_OUTPUT_DEFAULT_SIGNAL_INT64 62

ML_VIDEO_START_Y_F1_INT32 63

ML_VIDEO_OUTPUT_REPEAT_INT32 63

ML_VIDEO_FILL_Cr_REAL32 63

ML_VIDEO_FILL_Cb_REAL32 63

ML_VIDEO_FILL_RED_REAL32 63

ML_VIDEO_FILL_GREEN_REAL32 64

ML_VIDEO_FILL_BLUE_REAL32 64

ML_VIDEO_START_X_INT32 64

ML_VIDEO_START_Y_F2_INT32 64

ML_VIDEO_WIDTH_INT32 . 64

ML_VIDEO_HEIGHT_F1_INT32 64

ML_VIDEO_HEIGHT_F2_INT32 64

ML_VIDEO_FILL_Y_REAL32 65

ML_VIDEO_FILL_A_REAL32 65

Examples . 65

7. Image Parameters . 67

007–4504–001 ix

Contents

Introduction . 67

Image Buffer Parameters . 69

ML_IMAGE_BUFFER_POINTER 69

ML_IMAGE_WIDTH_INT32 . 70

ML_IMAGE_HEIGHT_1_INT32 70

ML_IMAGE_HEIGHT_2_INT32 70

ML_IMAGE_ROW_BYTES_INT32 70

ML_IMAGE_SKIP_PIXELS_INT32 70

ML_IMAGE_SKIP_ROWS_INT32 70

ML_IMAGE_TEMPORAL_SAMPLING_INT32 71

ML_IMAGE_INTERLEAVE_MODE_INT32 71

ML_IMAGE_DOMINANCE_INT32 71

ML_IMAGE_ORIENTATION_INT32 72

ML_IMAGE_COMPRESSION_INT32 72

ML_IMAGE_SIZE_INT32 . 73

ML_IMAGE_COMPRESSION_FACTOR_REAL32 73

ML_IMAGE_PACKING_INT32 74

ML_IMAGE_COLORSPACE_INT32 76

ML_IMAGE_SAMPLING_INT32 78

ML_SWAP_BYTES_INT32 . 80

8. Audio Parameters . 81

Audio Buffer Layout . 81

Audio Parameters . 83

ML_AUDIO_BUFFER_POINTER 84

ML_AUDIO_FRAME_SIZE_INT32 84

ML_AUDIO_SAMPLE_RATE_REAL64 84

ML_AUDIO_PRECISION_INT32 85

ML_AUDIO_FORMAT_INT32 85

x 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_AUDIO_GAINS_REAL64_ARRAY 86

ML_AUDIO_COMPANDING_INT32 86

ML_AUDIO_CHANNELS_INT32 87

ML_AUDIO_COMPRESSION_INT32 87

Uncompressed Audio Buffer Size Computation 87

9. ML Processing . 89

ML Program Structure . 89

MLstatus Return Value . 91

Device States . 92

Opening a Jack, Path or Xcode 93

Jack Open Parameters . 94

Path Open Parameters . 96

Xcode Open Parameters . 98

Set Controls . 101

Get Controls . 102

Send Controls . 103

Send Buffers . 105

Query Controls . 107

Get Wait Handle . 109

Begin Transfer . 110

XCode Work . 111

Get Message Count . 112

Receive Messsage . 113

Get Returned Parameters . 113

End Transfer . 114

Close Processing . 114

Utility Functions . 115

007–4504–001 xi

Contents

Get Version . 115

Status Name . 115

Message Name . 116

MLpv String Conversion Routines 116

Parameter . 116

Description . 117

Status Return . 118

Examples . 118

10. Synchronization . 121

UST . 121

Get System UST . 121

UST/MSC/ASC Parameters 122

UST/MSC Example . 123

UST/MSC For Input . 123

UST/MSC For Output 124

Predicate Controls . 125

Appendix A. Pixels in Memory 129

Greyscale Examples . 129

8–bit greyscale (1 byte per pixel) 129

Padded 12–bit greyscale (1 short per pixel) 129

RGB Examples . 130

8–bit RGB (3 bytes per pixel) 130

8–bit BGR (3 bytes per pixel) 130

8–bit RGBA (4 bytes per pixel) 130

8–bit ABGR (4 bytes per pixel) 131

10–bit RGB (one 32–bit integer per pixel) 131

xii 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

10–bit RGBA (one 32–bit integer per pixel) 131

12–bit RGBA (6 bytes per pixel) 132

Padded 12–bit RGB (three 16–bit shorts per pixel) 132

Padded 12–bit RGBA (four 16–bit shorts per pixel) 132

CbYCr Examples . 133

8–bit CbYCr (3 bytes per pixel) 133

8–bit CbYCrA (4 bytes per pixel) 133

10–bit CbYCr (one 32–bit integer per pixel) 134

10–bit CbYCrA (one 32–bit integer per pixel) 134

Padded 12–bit CbYCrA (four 16–bit shorts per pixel) 134

422x CbYCr Examples . 135

10–bit 422 CbYCr (5 bytes per 2 pixels) 135

10–bit 422 CbYCr (5 bytes per 2 pixels) 135

Padded 12–bit 422 CbYCr (four 16–bit shorts per 2 pixels) 136

10–bit 4224 CbYCrA (two 32–bit integers per 2 pixels) 136

Appendix B. Common Video Standards 139

Index . 143

007–4504–001 xiii

Figures

Figure 3-1 The Capabilities Tree 22

Figure 6-1 Film at 60 Frames-per-Second 56

Figure 6-2 Video at 60 Frames-per-Second 57

Figure 7-1 General Image Buffer Layout 68

Figure 7-2 Simple Image Buffer Layout 69

Figure 7-3 Field Dominance 72

Figure 8-1 Different Audio Sample Frames 82

Figure 8-2 Layout of an Audio Buffer with 4 Channels 83

Figure B-1 525/60 Timing (NTSC) 139

Figure B-2 625/50 Timing (PAL) 140

Figure B-3 1080i Timing (High Definition) 141

Figure B-4 720p Timing (High Definition) 142

007–4504–001 xv

Tables

Table 3-1 System Capabilities 27

Table 3-2 Physical Device Capabilities 27

Table 3-3 Jack Logical Device Capabilities 29

Table 3-4 Path Logical Device Capabilities 32

Table 3-5 Transcoder Logical Device Capabilities 34

Table 3-6 Pipe Logical Device Capabilities 36

Table 3-7 Parameters returned by mlPvGetCapabilities 38

Table 7-1 Mapping colorspace representation parameters 76

Table 7-2 Effect of sampling and colorspace on component definitions. 79

Table 9-1 Jack, mlOpen Options 95

Table 9-2 mlOpen Options . 96

Table 9-3 mlOpen Options . 98

007–4504–001 xvii

About This Guide

This document provides an introduction to the SGI OpenML Media Library Software
Development Kit (ML). The ML provides a cross-platform library for controlling
digital media hardware. It supports audio and video I/O devices and transcoders.

This document is a general user’s guide, for a more detailed treatment of a particular
function, see the online reference pages for ML.

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://techpubs.sgi.com

Conventions
The following conventions are used throughout this document:

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

007–4504–001 xix

About This Guide

manpage(x) Man page section identifiers appear in parentheses after
man page names.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
Silicon Graphics, Inc.
1600 Amphitheatre Pkwy.
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xx 007–4504–001

Chapter 1

Introduction

This chapter is a quick introduction to the OpenML Media Library Software
Development Kit (henceforth, the ML). It includes a table of terms, followed by an
example audio output program.

To get started with the ML, you should read this chapter, then browse the online
example programs. For an in-depth treatment, consult later chapters as you
experiment with your own programs.

Note: The material in this chapter assumes that the ML is installed on your
workstation, and that you have access to the ML example programs.

Terms
These terms are used throughout this document, and some are used in the ML code.
Read these first to avoid any confusion.

Term Definition

graphics / video In ML, graphics and video are not synonymous:
“graphics” indicates the graphical display used for the
user-interface on a computer; “video” indicates the type
of signal sent to a video cassette recorder, or received
from a camcorder.

capability tree A capability tree is the hierarchy of all ML devices in
the system, and contains information about each ML
device. An application may search a capability tree to
find suitable media devices for operations you wish to
perform.

system The highest level in the capability tree hierarchy. It is
the machine on which your application is running. This
machine is given the name ML_SYSTEM_LOCALHOST.
Each system contains one or more devices.

physical device A device that corresponds to device-dependent
modules in the ML. Typically, each device-dependent

007–4504–001 1

1: Introduction

module supports a set of software transcoders, or a
single piece of hardware. Examples of devices are
audio cards on a PCI bus, DV camcorders on the 1394
bus, or software DV modules. Each device-dependent
module may expose a number of logical devices: jacks,
paths, or transcoders.

jack A logical device that is an interface in/out of the
system. Examples of jacks are composite video
connectors and microphones. Jacks often, but not
necessarily, correspond to a physical connector — in
fact, it is possible for a single ML jack to refer to several
such connectors. It is also possible for a single physical
connector to appear as several logical jacks.

path A logical device that provides logical connections
between memory and jacks. For example, a video
output path transports data from buffers to a video
output jack. Paths are logical entities. Depending on
the device, it is possible for more than one instance of a
path to be open and in use at the same time.

transcoder A transcoder is a logical device that takes data from
buffers via an input pipe or pipes, performs an
operation on the data, and returns the data to another
buffer via an output pipe. The connections from
memory to the transcoder, and from the transcoder to
memory, are called pipes. Example transcoders are DV
compression, or JPEG decompression.

UST Unadjusted System Time. UST is a special system clock
which runs continuously without adjustment. This
clock is used to synchronize media streams.

2 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

MSC Media Stream Count. MSC is a measure of the number
of media samples which have passed though a jack.
This is useful to synchronize media streams.

Getting Started with the ML
Before you begin, you should examine your system with the mlquery(1ml) tool. This
tool prints a list of all supported ML devices on the system. Here is an example
mlquery on the system linux1:

Example 1-1 mlquery Printout

% mlquery

SYSTEM: linux1

DEVICES:

Software DV_MMX Codec [0]
OSS audio device [0]

This printout indicates that there are two installed devices: a software DV transcoder,
and an audio I/O device (which in this case, is built using the Linux OSS driver).
Other options to mlquery allow you to gather more information about the installed
devices; but for now, just knowing their names will suffice.

See the mlquery(1ml) man page for more information.

Simple Audio Output Program
This example program outputs a short beep. To keep it simple, a few details,
primarily error-checking, are skipped. This program only includes the operations
required to produce the beep.

Note: Consult the online example code for more advanced programs.

Step 1: Include the ml.h and mlu.h Files

To begin, you will need the ml.h and mlu.h files. The ML library provides the core
functionality, and the MLU library provides some convenient utility functions built on

007–4504–001 3

1: Introduction

that core. As an application developer, you may choose to use only the core, or you
may find it convenient to utilize the simpler utility functions.

Include the files as follows:

#include <ML/ml.h>

#include <ML/mlu.h>

Step 2: Locate a Device

You must query the capabilities of the system to find a suitable digital media device
with which to perform your audio output task. To do that, you must search the ML
capability tree, which contains information on every ML device on the system.

In your search, you should start at the top of the tree as follows:

1. Query the local system to find the first physical device that matches your desired
device name.

2. Look in that device to find its first output jack.

3. Find an output path that goes through that jack.

In this case, assuming that the device name is being passed in as a command-line
argument, use some of the utility functions to find a suitable output path:

MLint64 devId=0;

MLint64 jackId=0;
MLint64 pathId=0;

mluFindDeviceByName(ML_SYSTEM_LOCALHOST, argv[1], &devId);

mluFindFirstOutputJack(devId, &jackId);

mluFindPathToJack(jackId, &pathId);

Step 3: Open the Device Output Path

An open device output path provides your application with a dedicated connection to
the hardware, and it allocates system resources for use in subsequent operations. The
device path is opened with an open call as follows:

mlOpen(pathId, NULL, &openPath);

4 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

If the open call is successful, you will get an open path identifier. All operations
using that path must use its identifier.

Note: Sometimes an open call can fail due to insufficient resources (typically because
too many applications may already be using the same physical device).

Step 4: Set Up the Audio Device Path

Now you set up the path you just opened for your operation. In this case you will
use signed 16-bit audio samples, with:

• A single (mono) audio channel

• A gain of -12dB

• A sample rate of 44.1kHz

To make those settings, you must construct a controls message to describe them. The
controls message is a list of param/value (MLpv) pairs, where the last entry in the
list is ML_END.

mlpv controls[5];

MLreal64 gain = -12; // decibels

controls[0].param = ML_AUDIO_FORMAT_INT32;

controls[0].value.int32 = ML_FORMAT_S16;

controls[1].param = ML_AUDIO_CHANNELS_INT32;

controls[1].value.int32 = 1;
controls[2].param = ML_AUDIO_GAINS_REAL64_ARRAY;

controls[2].value.pReal64 = &gain

controls[2].length = 1;

controls[3].param = ML_AUDIO_SAMPLE_RATE_REAL64;

controls[3].value.real64 = 44100.0;

controls[4].param = ML_END;

Notice that this message contains both scalar parameters (for example, the number of
audio channels) and an array parameter (the array of audio gains).

007–4504–001 5

1: Introduction

Step 5: Set Controls on Audio Device Path

After the controls message has been constructed, you must set the controls on the
open audio path as follows:

mlSetControls(openPath, controls);

This call makes all the desired control settings and does not return until those settings
have been sent to the hardware. If it returns successfully, it indicates that all of the
control changes have been committed to the device (and you are free to delete or alter
the controls message).

Note: All control changes within a single controls message are processed atomically.
So, either the call succeeds, and they are all applied, or the call fails, and none are
applied.

Assuming that the call succeeded, the path is now set up and ready to receive audio
data.

Step 6: Send Buffer to Device for Processing

This example assumes that you have already allocated a buffer in memory and filled
it with audio samples. To send that buffer to the device for processing, you must first
construct a buffers message that describes it. That message includes both a pointer to
the buffer and the length of the buffer (in bytes):

MLpv msg[2];

msg[0].param = ML_AUDIO_BUFFER_POINTER;

msg[0].value.pByte = ourAudioBuffer;

msg[0].length = sizeof(ourAudioBuffer);
msg[1].param = ML_END;

Then, send the buffers message to the opened path:

mlSendBuffers(openPath, msg);

When the message is sent, it is placed on a queue of messages going to the device.
The send call does very little work: it gives the message a cursory look before
sending it to the device for later processing.

6 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Note: Unlike the set call, the send call does not wait for the device to process the
message, it simply enqueues it and then returns.

Step 7: Begin Message Processing

You must tell the device to start processing enqueued messages. This is done with the
begin transfer call as follows:

mlBeginTransfer(openPath);

You can sleep while the device is busy working on the message as follows:

sleep(5)

This is not the best way to approach this, but it is the simplest. (It will be changed in
the next example.)

Step 8: Receive the Reply Message

As the device processes each message, it generates a reply message which is sent back
to our application. By examining that reply we can confirm that the buffer was
transferred successfully, as follows:

MLint32 messageType;

MLpv* message;

mlReceiveMessage(openPath, &messageType, &Message);

if(messageType == ML_BUFFERS_COMPLETE)

printf("Buffer transferred!\n");

Step 9: Close the Path

Once you have verified that the buffer transferred successfully, you can close the path
as follows:

mlClose(openPath);

007–4504–001 7

1: Introduction

Closing the path ends active transfer and frees any resources allocated when the path
was opened.

Realistic Audio Output Program
The preceding procedure was for a single audio buffer. In this example, you will
process millions of audio samples.

Step 1: Open the Device Output Path

Open the device output path just as in the previous example:

mlOpen(pathId, NULL, &openPath);

Opening the path also allocates memory for the message queues used to communicate
with the device. One of those queues will hold messages sent from our application to
the device, and one will hold replies sent from the device back to our application.

Step 2: Allocate Buffers

If you were only processing a short sound, you could preallocate space for the entire
sound and perform the operation straight from memory. However, for a more general
and efficient solution, you need to allocate space for a small number of buffers, and
reuse each buffer many times to complete the whole transfer.

Here, assume that memory has been allocated for twelve audio buffers, and that those
buffers have been filled with the first few seconds of audio data to be output.

Step 3: Send Buffers to the Open Path

Now send each of the twelve buffers to the open path. Here the queue of messages
between application and device becomes more interesting. The ML enables you to
enqueue all the buffers without the device having even looked at the first one as
follows:

int i;

for(i=0; i<12; i++)

{

MLpv msg[3];

8 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

msg[0].param = ML_IMAGE_BUFFER_POINTER;
msg[0].value.pByte = (MLbyte*)buffers[i];

msg[0].maxLength = imageSize;

msg[1].param = ML_AUDIO_UST_INT64;

msg[1].param = ML_END;

mlSendBuffers(openPath, msg);
}

Notice that each audio buffer is sent in its own message, this is because each message
is processed atomically, and refers to a single instant in time. In addition to the audio
buffer, this message also contains space for an audio Unadjusted System Time (UST)
time stamp. That time stamp will be filled in as the device processes each message. It
will indicate the time at which the first audio sample in each buffer passed out of the
machine.

Step 4: Begin the Transfer

Now you can tell the device to begin the transfer. It reads messages from its input
queue, interprets the buffer parameters within them, and processes those buffers with
the following:

mlBeginTransfer(openPath);

At this point, you can sleep as the device processes the buffers. However, a more
efficient approach is to select the file descriptor for the queue of messages sent from
the device back to your application. In ML terminology, that file descriptor is called a
wait handle on the receive queue:

MLwaitable pathWaitHandle;

mlGetReceiveWaitHandle(openPath, &pathWaitHandle);

Having obtained the wait handle, you can wait for it to fire by using select on
IRIX/Linux, or WaitForSingleObject on Windows as follows:

On IRIX/Linux:

fd_set fdset;
FD_ZERO(&fdset);

FD_SET(pathWaitHandle, &fdset);

select(pathWaitHandle+1, &fdset, NULL, NULL, NULL);

007–4504–001 9

1: Introduction

On Windows:

WaitForSingleObject(pathWaitHandle, INFINITE);

Step 5: Receive Replies from the Device

Once the select call fires, a reply will be waiting. Retrieve the reply from the
receive queue as follows:

MLint32 messageType;
MLpv* replyMessage;

mlReceiveMessage(openPath, &messageType, &replyMessage);

if(messageType == ML_BUFFERS_COMPLETE)

printf("Buffer received!\n");

This reply has the same format and content as the buffers message that was originally
enqueued, plus any blanks in the original message will have been filled in. In this
case, the reply message includes the location of the audio buffer that was transferred,
as well as a UST time stamp indicating when its contents started to flow out of the
machine:

MLbyte* audioBuffer = replyMessage[0].value.pByte;

MLint64 audioUST = replyMessage[1].value.int64;

Note: The UST time stamp is useful to synchronize several different media streams
(for example, to make sure the sounds and pictures of a movie match up).

Step 6: Refill the Buffer for Further Processing

At this point you can refill the buffer with more audio data, and send it back to the
device to be processed again with the following:

mlSendBuffers(openPath, replyMessage);

In this case you are making a small optimization, so rather than construct a whole
new buffers message, simply reuse the reply to your original message.

10 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

At this point you have processed the reply to one buffer. If you wish, you can now go
back to the select call and wait for another reply from the device. This can be
repeated indefinitely.

Step 7: End the Transfer

Once enough buffers have been transferred, you can end the transfer as follows:

mlEndTransfer(openPath);

In addition to ending the transfer, this call performs the following:

• Flushes the queue to the device.

• Aborts any remaining unprocessed messages.

• Returns any replies on the receive queue to the application.

The endTransfer call is a blocking call. When it returns, the queue to the device
will be empty, the device will be idle, and the queue from the device to your
application will contain any remaining replies.

If you wish, at this point, you can send more buffers to the path (see "Step 3: Send
Buffers to the Open Path", page 8).

Step 8: Close the Path

Use the following to close the path:

mlClose(openPath);

Note: This chapter has provided only a quick introduction to an audio output device.
Through a similar interface, the ML also supports audio input, video input, video
output, and memory-to-memory transcoding operations.

Audio/Video Jacks

The OpenML Media Library Library is concerned with three types of interfaces: jacks
for control of external adjustments, paths for audio and video through jacks in/out of
the machine and pipes to/from transcoders. All share common control, buffer, and
queueing mechanisms. In this section these mechanisms are described in the context

007–4504–001 11

1: Introduction

of operating on a jack and its associated path. In subsequent sections, the application
of these mechanisms to transcoders and pipes is discussed.

Opening a Jack

Before setting controls to a jack, a connection must be opened. This is done by calling
mlOpen.

MLstatus mlOpen(const MLint64 objectId, MLpv* options, MLopenid* openId);

A jack is usually an external connection point and most often one end of a path. Jacks
may be shared by many paths or they may have other exclusivity inherent in the
hardware. For example, a common video decoder may have a multiplexed input
shared between composite and S-video. If only one can be in use at a given instance,
then there is an implied exclusiveness between them. Many jacks do not support an
input message queue since an application cannot send data to a jack (it must be sent
via a path). Therefore, the mlSendControls and mlSendBuffers are not supported on a
jack, so that mlSetControls must be used to adjust controls. Typically, the adjustments
on a path affect hardware registers and can be changed while a data transfer is
ongoing (on a path that connects the jack to memory). Examples are brightness and
contrast. Some controls are not adjustable during a data transfer. For example, the
timing of a jack cannot usually be changed while a data transfer is in effect. Reply
messages may be sent by jacks and usually indicate some external condition, such as
sync lost or gained.

Constructing a Message

Messages are arrays of parameters, where the last parameter is always ML_END. For
example, the flicker and notch filters can be adjusted with a message such as the
following:

MLpv message[3];

message[0].param = ML_VIDEO_FLICKER_FILTER_INT32;
message[0].value.int32 = 1;

message[1].param = ML_VIDEO_NOTCH_FILTER_INT32;

message[1].value.int32 = 1;

message[2].param = ML_END

12 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Setting Jack Controls

Since jack controls deal with external conditions and not processing associated with
data transfers, applications use mlSetControls or mlGetControls calls to
manipulate these controls. Here is an example of how the genlock vertical and
horizontal phase can be obtained immediately:

MLpv message[3];

message[0].param = ML_VIDEO_H_PHASE_INT32;

message[1].param = ML_VIDEO_V_PHASE_INT32;

message[2].param = ML_END;
if(mlGetControls(aJackConnection, message)) handleError();

else

printf("Horizontal offset is %d, Vertical offset is %d\n",

message[0].value.int32, message[1].value.int32);

mlSetControls and mlGetControls are blocking calls. If the call succeeds, the
message has been successfully processed. Note that not all controls may be set via
mlSetControls. The access privilege in the param capabilities can be used to verify
when and how controls can be modified.

Closing a Jack

When an application has finished using a jack it may close it with mlClose:

MLstatus mlClose(MLopenid openId);

All controls previously set by this application normally remain in effect though they
may be modified by other applications.

007–4504–001 13

Chapter 2

Parameters

This chapter describes the ML parameter syntax and semantics. These parameters
define a number of variables including control values such as the frame rate or image
width, and the location of data such as a single video field.

param/value Pairs
The fundamental building block of the ML is the param/value pair (MLpv), as
shown here:

typedef struct {

MLint64 param;

MLvalue value;

MLint32 length;

MLint32 maxLength;
} MLpv;

The param is a unique numeric identifier for each parameter; and the value is a
union of several possible types, of which the most common are:

typedef union {

MLint32 int32; /* 32-bit signed integer values */

MLint64 int64; /* 64-bit signed integer values */

MLbyte* pByte; /* pointer to an array of bytes */

MLreal32* real32; /*32-bit floating point value */
MLreal64* real64; /*64-bit floating point value */

MLint32* pInt32; /*pointer to an array of 32-bit signed integer values */

MLint64* pInt64; /*pointer to an array of 64-bit signed integer values */

MLreal32* pReal32; /*pointer to an array of 32-bit floating point values */

MLreal64* pReal64; /*pointer to an array of 64-bit floating point values */
struct_MLpv*pPv; /*pointer to a message of param/value pairs*/

struct_MLpv** ppPv;/*pointer to an array of messages */}MLvalue;

007–4504–001 15

2: Parameters

Messages

In the ML, applications communicate with devices using messages. Each message is a
simple array of param/value pairs; where the last param in the message is
ML_END.

For example, the following is a message that sets image width to 1920 and image
height to 1080:

MLpv controls[3];

controls[0].param = ML_IMAGE_WIDTH_INT32;

controls[0].value.int32 = 1920;

controls[1].param = ML_IMAGE_HEIGHT_INT32;
controls[1].value.int32 = 1080;

controls[2].param = ML_END;

Note: A MLpv ends with the ML_END parameter to indicate completion.

Scalar Values
This section shows you how to set and get scalar values.

Set Scalar Values

To set the values of scalar parameters, you must enter the param and value fields of
each MLpv and send the result to a device. If the value is valid, the returned length
will be 1. If the value is invalid, or if the parameter is not recognized by the device,
an error status will be returned and length will be set to -1.

Note: You do not need to set the length or maxLength fields — they are ignored
when setting scalars. However, on return (mlReceiveMessage) a length parameter
that equals -1 indicates that this parameter was in error.

For example, to set video timing:

MLpv message[2];

message[0].param = ML_VIDEO_TIMING_INT32;

message[0].value.int32 = ML_TIMING_525;

message[1].param = ML_END;

16 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

if(mlSetControls(someOpenVideoPath, message))
fprintf(stderr, "Error, unable to set timing\n");

Get Scalar Values

To get scalar values, you again construct a MLpv list, but here you do not need to set
the value field. As the device processes the MLpv list, it fills in the value and
length fields. If the value is valid, the returned length is 1. If the value is
invalid, or the parameter is not recognized by the device, an error status will be
returned, and length is set to -1.

For example, to get video timing:

MLpv message[2];

message[0].param = ML_VIDEO_TIMING_INT32;

message[1].param = ML_END;
mlGetControls(someOpenVideoPath, message);

if(message[0].length == 1)

printf("Timing is %d\n", message[0].value.int32);

else

fprintf(stderr, "Unable to determine timing\n");

Array Values
An array in the ML is much like an array in C:

• value of the MLpv is a pointer to the first element of the array

• length is the number of valid elements in the array

• maxLength is the total length of the array

Also, each element increases the length of the array by 1, so an array of four 32-bit
integers would require a maxLength of four.

Set the Value of an Array Parameter

To set the value of an array parameter, fill out the param, value, length and
maxLength fields. If the values are valid, the returned length will be unaltered. If

007–4504–001 17

2: Parameters

the values are invalid or if the parameter is not recognized at all by the device, an
error status will be returned and length will be set to -1.

For example:

MLreal64 data[] = { 0, 0.2, 0.4, 0.6, 1.0};

MLpv message[2];

message[0].param = ML_PATH_LUT_REAL64_ARRAY;

message[0].value.pReal64 = data;

message[0].length = sizeof(data)sizeof(MLreal64);

message[1].param = ML_END;
mlSetControls(someOpenPath, message)

Note: You do not need to set the maxLength field — it is ignored when setting an
array parameter.

In the preceding example, you are free to modify the data array at any time before
calling mlSetControls; and you regain that right as soon as mlSetControls
returns.

If you have a multithreaded application, your application must ensure the data array
is not accessed by some other thread while the SetControls call is in progress.

Get the Size of an Array Parameter

To get the size of an array parameter, set maxLength to 0. The device will fill in
maxLength to indicate the minimal array size to hold that value. If the parameter is
not recognized by the device, an error status will be returned, maxLength will be set
to 0, and length will be set to -1.

MLpv message[2];

message[0].param = ML_PATH_LUT_REAL64_ARRAY;

message[0].length = 0;

message[0].maxLength = 0;
message[1].param = ML_END;

mlGetControls(someOpenPath, message);

printf("Size of LUT is %d\n", message[0].maxLength);

18 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Get the Value of an Array Parameter

To get the value of an array parameter, create an array with maxLength entries to
hold the result, and set length to 0. The device will fill in no more than maxLength
array elements and set length to indicate the number of valid entries. If the values
are invalid or if the parameter is not recognized at all by the device, an error status
will be returned and length will be set to -1.

MLint32 data[10];

MLpv message[2];

message[0].param = ML_PATH_LUT_INT32_ARRAY;
message[0].value.pInt32 = data;

message[0].length = 0;

message[0].maxLength = 10;

message[1].param = ML_END;

mlGetControls(someOpenPath, message);
if(message[0].length > 0)

{

printf("Received %d array entries\n", message[0].length);

printf("The first entry is %d\n", data[0]);

}

Note: Your application controls memory allocation. If you want to get the whole
array, but do not know the maximum size, you must query for maxLength first,
allocate space for the result, and then query for the value.

Pointer Values
The distinction between array values and pointer values in the ML is subtle, but
important. Array values are copied when they are passed to or received from a
device. Thus, your application owns the array memory and is nearly always free to
modify or free it.

A pointer parameter is a special type of array parameter that is used to send and
receive data buffers (as arrays of bytes.) Pointer values are not copied. Instead, only
the location of the data is passed to the device. The application sends a buffer by
calling mlSendBuffer. mlSendBuffer places the controls and buffer pointer in the
data payload area and inserts a header on the send queue for the device.

007–4504–001 19

2: Parameters

This is much more efficient, but it imposes a restriction: after a pointer value is given
to a device, that memory cannot be touched until the device has finished processing it.

Note: For efficient processing, all buffers must be pinned in memory.

For example, the following code fragment shows how a pointer parameter might be
initialized to send an image to a video input path:

MLpv message[2];

message[0].param = ML_IMAGE_BUFFER_POINTER;

message[0].value.pByte = someBuffer;

message[0].maxLength = sizeof(someBuffer);

message[1].param = ML_END;

if(mlSendBuffers(someOpenPath, message))
fprintf(stderr, "Error sending buffers\n");

The above SendBuffers call places the message on a queue to be processed by the
device, and then returns. It does not wait for the device to finish with the buffer.
Thus, even after the call to SendBuffers, the device still owns the image buffer. Your
application must not touch that memory until it is notified that processing is complete.

When you send a buffer to be filled, the device uses maxLength to determine how
much it may write, and it returns length set to indicate the amount of the buffer it
actually used.

When you send a buffer for output, the device will interpret the length as the
maximum number of bytes of valid data in the buffer. In this case maxLength is
ignored.

20 007–4504–001

Chapter 3

Capabilities

This chapter describes the ML capabilities tree, the repository of information on all
installed ML devices. The capabilities tree tells you everything from the hardware
location of a physical device, to the range of legal values for supported parameters.

The Capabilities Tree
The capabilities tree forms a hierarchy that describes the installed ML devices in the
following order from top to bottom:

1. Physical system

2. Physical devices

3. Logical devices

4. Supported parameters on the logical devices

See "Terms", page 1 for definitions of the elements of the capabilities tree hierarchy.

007–4504–001 21

3: Capabilities

Figure 3-1 The Capabilities Tree

Utility Functions for Capabilities
To access the capability hierarchy, you may either search the capability tree directly, or
make use of convenient utility functions to perform the search for you. This section
discusses the baseline functionality provided in the core ML library, but you may also
wish to examine the utility library and example code for pre-written alternatives.

Manual Access to Capabilities
Direct access to the ML capabilities tree is via three functions:

Function Call Description

mlGetCapabilities calls the capabilities for a ML object

mlPvGetCapabilities calls the capabilities for a parameter on a given device

22 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

mlFreeCapabilities releases a set of capabilities when you have finished
using them

Accessing Capabilities

The following code examples show you how to query for the capabilities of your
entire capability tree. See "Terms", page 1 for a definition of terms used here.

Note: All objects in the ML are referred to via 64-bit identifying numbers. For
example, the 64-bit id number for the system on which your application is running is
ML_SYSTEM_LOCALHOST.

1. You can get the capabilities of the local system as follows. This will give you a
MLpv list that includes an array of identifiers for all the physical devices installed
on this system:

Example 3-1 Get System Capabilities

MLpv* systemCap;
mlGetCapabilities(ML_SYSTEM_LOCALHOST, &systemCap);

2. Use the following to list the number of physical devices on your system:

Example 3-2 Get Physical Devices

MLpv* deviceIds = mlPvFind(systemCap, ML_SYSTEM_DEVICE_IDS_INT64_ARRAY);

printf("There are %d physical devices\n", deviceIds->length);
if(deviceIds->length > 0)

printf("The first device has id %llx\n", deviceIds->value.pInt64[0]);

mlFreeCapabilities(systemCap);

3. The following is example code to examine a physical device for its supported I/O
paths and transcoders (that is, its logical devices):

Example 3-3 Get Logical Devices

MLpv* deviceCap, *pathIds, *xcodeIds;

mlGetCapabilities(someDeviceId, &deviceCap);

pathIds = mlPvFind(deviceCap, ML_DEVICE_PATH_IDS_INT64_ARRAY);
xcodeIds = mlPvFind(deviceCap, ML_DEVICE_XCODE_IDS_INT64_ARRAY);

printf("Device supports %d i/o paths and %d transcoders\n",

pathIds->length, xcodeIds->length);

007–4504–001 23

3: Capabilities

if (pathIds->length > 0)
printf("The first i/o path has id %llx\n", pathIds->value.pInt64[0]);

mlFreeCapabilities(deviceCap);

4. Descending still further down the capability tree, you can obtain the capabilities
of any particular logical device by again calling mlGetCapabilities. For
example, here you find how many parameters are accepted by a path:

Example 3-4 Get Parameters Accepted by a Path

MLpv* pathCap, *paramIds;

mlGetCapabilities(somePathId, &pathCap);

paramIds = mlPvFind(pathCap, ML_PARAM_IDS_INT64_ARRAY);

printf("Path supports %d parameters\n", paramIds->length);
if (paramIds->length > 0)

printf("The first parameter has id %llx\n",paramIds->value.pInt64[0]);

mlFreeCapabilities(pathCap);

Query Individual Parameters of Logical Devices

At this point, you have descended from the system to the logical device. Still there is
one more level: the parameter. Querying the capabilities of a parameter is subtly
different because the interpretation of parameters in the ML is device-dependent (for
example, the legal values for ML_IMAGE_WIDTH_INT32 may be 1920 on one device
and 720 on another). Thus, you must pass both a logical device ID and a parameter
ID as follows:

Example 3-5 Get Capabilities of a Parameter

MLpv* paramCap, *paramName;

mlGetCapabilities(someLogicalDeviceId, someParamId, ¶mCap);

paramName = mlPvFind(paramCap, ML_NAME_BYTE_ARRAY);

if(paramName != NULL)

printf("Param has name %s\n", (char *) (paramName->value.pByte));
mlFreeCapabilities(paramCap);

24 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Note: Since the name of the parameter is being queried on a particular device, the
above code will work for all parameters. This includes new device-dependent
parameters.

Also, see the mlPvToString reference page for a simpler way to find a parameter
name.

Query Parameters Which Describe Parameters

In addition to obtaining the capabilities of device parameters, you may also obtain the
capabilities of the parameters used to describe capabilities themselves. Since the
capabilities parameters are not device-dependent, deviceID may be left empty in
this case. For example, here we find a text name for the capability parameter
ML_PARENT_ID_INT64:

Example 3-6 Get Capabilities of Parameters that Describe Capabilities

MLpv* paramCap, *paramName;

mlGetCapabilities(0, ML_PARENT_ID_INT64, ¶mCap);

paramName = mlPvFind(paramCap, ML_NAME_BYTE_ARRAY);

if(paramName != NULL)

printf("Param has name %s\n", (char *) (paramName->value.pByte));
mlFreeCapabilities(paramCap);

Again, you can get the same result by using mlPvToString, which itself calls
mlPvGetCapabilities.

Identification Numbers
There are three types of ID numbers in the ML:

ID Number Type Definition

constant These have defined names and may be hard-coded.
They are system-independent. Examples of constant
IDs are ML_SYSTEM_LOCALHOST, and
ML_IMAGE_WIDTH_INT32.

007–4504–001 25

3: Capabilities

static Static IDs are allocated by the ML system as new
hardware is added. They are machine-dependent and
may change after a reboot, or as the system is
reconfigured by adding or removing devices. The static
ID of a device may change if it is removed from the
system and then reconnected.

Note: Static IDs should never be written to a file or
passed between machines.

Examples of static IDs are the physical and logical
device IDs returned in calls to mlGetCapabilities.
If you need to share such information between
machines, you should use the text names
(system-independent) that correspond to the static IDs.

open These IDs are allocated when logical devices are
opened. They are machine-dependent, and have a
limited lifetime — from when mlOpen is called until
mlClose is called.

Note: Open IDs should never be written to a file, or
passed between machines.

Note: You can call mlGetCapabilities (or mlPvGetCapabilities) for any type
of ID, but the list that is returned will always be static.

System Capabilities
The following sections describe the capabilities of each type of ML object. The
capabilities are not necessarily in the order shown. In these tables, the string in the
Parameter column is a shortened form of the full parameter name. The full parameter
name is of the form ML_parameter_type, where parameter and type are the strings listed
in the Parameter and Type columns respectively. For example, the full name of ID is
ML_ID_INT64.

Currently, the only defined physical system ID is ML_SYSTEM_LOCALHOST. When a
system ID is queried, the resulting capabilities list contains the following parameters:

26 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Table 3-1 System Capabilities

Parameter Type Description

ID INT64 Resource ID for this
system

NAME BYTE_ARRAY NULL-terminated ASCII
string containing the
hostname for this system.

SYSTEM_DEVICE_IDS INT64_ARRAY Array of physical device
IDs (these need not be
sorted or sequential). For
more details on a
particular device ID call
mlGetCapabilities. This
array could be of length
zero.

Table 3-2 Physical Device Capabilities

Parameter Type Description

ID INT64 Resource ID for this physical device.

NAME BYTE_ARRAY NULL-terminated ASCII
description of this physical device
(e.g. "HD Video I/O" or
"AVC/1394").

PARENT_ID INT64 Resource ID for the system to which
this physical device is attached.

DEVICE_VERSION INT_32 Version number for this particular
physical device.

007–4504–001 27

3: Capabilities

Parameter Type Description

DEVICE_INDEX BYTE_ARRAY Index string for this physical
device. This is used to distinguish
multiple identical physical devices -
indexes are generated with a
consistent algorithm - identical
machine configurations will have
identical indexes - e.g. plugging a
particular card into the first 64-bit,
66MHz PCI slot in any system will
give the same index number.
Uniquely identifying a device in a
system-independent way requires
using both the name and index.

DEVICE_LOCATION BYTE_ARRAY Physical hardware location of this
physical device (on most platforms
this is the hardware graph entry).
Makes it possible to distinguish
between two devices on the same
I/O bus, and two devices each with
its own I/O bus.

DEVICE_JACK_IDS INT64_ARRAY Array of jack IDs. For more details
on a particular jack ID call
mlGetCapabilities. This array
could be of length zero.

DEVICE_PATH_IDS INT64_ARRAY Array of path IDs. For more details
on a particular path ID call
mlGetCapabilities. This array
could be of length zero.

DEVICE_XCODE_IDS INT64_ARRAY Array of transcoder device IDs
(these need not be sorted or
sequential). For more details on a
particular transcoder ID call
mlGetCapabilities. This array could
be of length zero.

28 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Jack Logical Device Capabilities

The capabilities for a jack logical device contain the following parameters:

Table 3-3 Jack Logical Device Capabilities

Parameter Type Description

ID INT64 Resource ID for this jack.

NAME BYTE_ARRAY NULL-terminated ASCII
description of this jack (e.g.
"Purple S-video").

PARENT_ID INT64 Resource ID for the physical
device to which this jack is
attached.

007–4504–001 29

3: Capabilities

Parameter Type Description

JACK_TYPE INT32 Type of logical jack:
ML_JACK_TYPE_AUDIO
ML_JACK_TYPE_VIDEO
ML_JACK_TYPE_COMPOSITE
ML_JACK_TYPE_SVIDEO
ML_JACK_TYPE_SDI
ML_JACK_TYPE_DUALLINK
ML_JACK_TYPE_GENLOCK
ML_JACK_TYPE_GPI
ML_JACK_TYPE_SERIAL
ML_JACK_TYPE_ANALOG_AUDIO
ML_JACK_TYPE_AES
ML_JACK_TYPE_GFX
ML_JACK_TYPE_AUX
ML_JACK_TYPE_ADAT
Where:
AUDIO is a generic audio jack,
VIDEO is a generic video jack,
COMPOSITE is a composite
video jack, SVIDEO is a SVideo
jack, SDI is a Serial Digital
Interface jack, DUALLINK is a
SDI dual link jack, GENLOCK is a
genlock jack, GPI is a General
Purpose Interface jack, SERIAL
is a generic serial control jack,
ANALOG_AUDIO is an analog
audio jack, AES is a digital AES
standard jack, GFX is a digital
graphics jack, AUX is a generic
auxiliary jack, and ADAT is a
digital ADAT standard jack.

30 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Parameter Type Description

JACK_DIRECTION INT32 Direction of data flow through
this jack. May be:
ML_JACK_DIRECTION_IN
ML_JACK_DIRECTION_OUT
Where:
IN is an input jack with data for
memory and OUT is an output
jack with data from memory.

JACK_COMPONENT
_SIZE

INT32 Maximum number of bits of
resolution per component for the
signal through this jack. Stored
as an integer, so 8 means 8 bits
of resolution.

JACK_PATH_IDS INT64_ARRAY Array of path IDs that may use
this jack. (These need not be
sorted or sequential.) For more
details on a particular path ID,
call mlGetCapabilities. This
array could be of length zero.

PARAM_IDS INT64_ARRAY List of resource IDs for
parameters which may be set
and/or queried on this jack.

OPEN_OPTION_IDS INT64_ARRAY List of resource IDs for open
option parameters which may be
used when this jack is opened

JACK_FEATURES BYTE_ARRAY Double NULL-terminated list of
ASCII features strings. Each
string represents a specific
feature supported by this jack.
Entries are separated by NULL
characters (there are 2 NULLs
after the last string).

007–4504–001 31

3: Capabilities

Path Logical Device Capabilities

The capabilities list for a path logical device contains the following parameters:

Table 3-4 Path Logical Device Capabilities

Parameter Type Resource ID for this path.

ID INT64 Resource ID for this path.

NAME BYTE_ARRAY NULL-terminated ASCII
description of this path (e.g.,
"Memory to S-Video Out").

PARENT_ID INT64 Resource ID for the physical
device on which this path
resides.

PARAM_IDS INT64_ARRAY List of resource IDs for
parameters which may be set
and/or queried on this path.

OPEN_OPTION_IDS INT64_ARRAY List of resource IDs for open
option parameters which may be
used when this path is opened.

PRESET MSG_ARRAY Each entry in the array is a
message (a pointer to the head
of a MLpv list, where the last
entry in the list is ML_END). Each
message provides a single valid
combination of all setable
parameters on this path. In
particular, it should be possible
to call mlSetControls using
any of the entries in this array as
the control’s message. Each path
is obligated to provide at least
one preset.

32 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Parameter Type Resource ID for this path.

PATH_TYPE INT32 Type of this path:
ML_PATH_TYPE_MEM_TO_DEV
ML_PATH_TYPE_DEV_TO_MEM
ML_PATH_TYPE_DEV_TO_DEV
Where: MEM_TO_DEV is a path
from memory to a device,
DEV_TO_MEM is a path from
device to memory and
DEV_TO_DEV is a path from
device to another device.

PATH_COMPONENT
_ALIGNMENT

INT32 The location in memory of the
first byte of a component (either
an audio sample or a video line),
must meet this alignment. Stored
as an integer in units of bytes.

PATH_BUFFER
_ALIGNMENT

INT32 The location in memory of the
first byte of an audio or video
buffer must meet this alignment.
Stored as an integer in units of
bytes

PATH_SRC_JACK_ID INT64 Resource ID for the jack which is
the source of data for this path
(unused if path is of type
ML_PATH_TYPE_MEM_TO_DEV).
For details on the jack ID call
mlGetCapabilities.

007–4504–001 33

3: Capabilities

Parameter Type Resource ID for this path.

PATH_DST_JACK_ID INT64 Resource ID for the jack which is
the destination for data from this
path (unused if path is of type
ML_PATH_TYPE_DEV_TO_MEM).
For details on the jack ID call
mlGetCapabilities.

PATH_FEATURES BYTE_ARRAY Double NULL-terminated list of
ASCII features strings. Each
string represents a specific
feature supported by this path.
Entries are separated by NULL
characters (there are 2 NULLs
after the last string).

Transcoder Logical Device Capabilities

The capabilities list for a transcoder logical device contains the following parameters:

Table 3-5 Transcoder Logical Device Capabilities

Parameter Type Description

ID INT64 Resource ID for this transcoder.

NAME BYTE_ARRAY NULL-terminated ASCII description of
this transcoder (e.g. "Software DV and
DV25").

PARENT_ID INT64 Resource ID for the physical device on
which the transcoder resides.

PARAM_IDS INT64_ARRAY List of resource IDs for parameters
which may be set and/or queried on
this transcoder (May be of length 0).

OPEN_OPTION_IDS INT64_ARRAY List of resource IDs for open option
parameters which may be used when
this xcode is opened

34 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Parameter Type Description

PRESET MSG_ARRAY Each entry in the array is a message (a
pointer to the head of a MLpv list, where
the last entry in the list is ML_END).
Each message provides a single valid
combination of all setable parameters on
a transcoder. In particular, it should be
possible to call mlSetControls using
any of the entries in this array as the
controls message. Each transcoder is
required to provide at least one preset
for each transcoder.

XCODE_ENGINE_TYPE INT32 Type of the engine in this transcoder. At
this time the only defined xcode type is:
ML_XCODE_ENGINE_TYPE_NULL

XCODE
_IMPLEMENTATION
_TYPE

INT32 How this transcoder is implemented:
ML_XCODE_IMPLEMENTATION_TYPE_SW
ML_XCODE_IMPLEMENTATION_TYPE_HW
The implementation of the transcoder
could be in either software (SW) or
hardware (HW).

XCODE
_COMPONENT
_ALIGNMENT

INT32 The location in memory of the first byte
of a component (either an audio sample
or a video pixel), must meet this
alignment. Stored as an integer in units
of bytes.

XCODE
_BUFFER
_ALIGNMENT

INT32 The location in memory of the first byte
of an audio or video buffer must meet
this alignment. Stored as an integer in
units of bytes

XCODE_FEATURES BYTE_ARRAY Double NULL-terminated list of ASCII
features strings. Each string represents a
specific feature supported by this xcode.
Entries are separated by NULL
characters (there are 2 NULLs after the
last string)

007–4504–001 35

3: Capabilities

Parameter Type Description

XCODE_SRC_PIPE_IDS INT64_ARRAY List of pipe IDs from which the
transcode engine may obtain buffers to
be processes.

XCODE_DEST_PIPE_IDS INT64_ARRAY List of pipe IDs from which the
transcode engine may obtain buffers to
be filled with the result of its processing.

Pipe Logical Device Capabilities

The capabilities list for a pipe logical device contains the following parameters:

Table 3-6 Pipe Logical Device Capabilities

Parameter Type Description

ID INT64 Resource ID for this path.

NAME BYTE_ARRAY NULL-terminated ASCII
description of this pipe ("DV
Codec Input Pipe").

PARENT_ID INT64 Resource ID for the transcoder
on which this pipe resides.

36 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Parameter Type Description

PARAM_IDS INT64_ARRAY List of resource IDs for
parameters which may be set
and/or queried on this
transcoder (May be of length
0).

PIPE_TYPE INT32 Type of this pipe:
ML_PIPE_TYPE_MEM_TO_ENGINE
ML_PIPE_TYPE_ENGINE_TO_MEM
MEM_TO_ENGINE is the
trancoder input pipe with data
flow from memory to engine.
ENGINE_TO_MEM is the
transcoder output pipe with
data flow from engine to
memory.

Finding a Parameter in a Capabilities List

A parameter within a message or capabilities list may be found using

MLpv* mlPvFind(MLpv* msg, MLint64 param);

msg points to the first parameter in an ML_END terminated array of parameters and
param is the 64-bit unique identifier of the parameter to be found. mlPvFind returns
the address of the parameter if successful; otherwise it returns NULL.

Obtaining Parameter Capabilities

All objects in ML are referred to via 64–bit identifying numbers. For example, the
64–bit ID number for the system running the application is ML_SYSTEM_LOCALHOST.
Details on the interpretation of a particular device dependent parameter are obtained
using:

MLstatus mlPvGetCapabilities(MLint64 objectId, MLint64 parameterId,
MLpv** capabilities);

objectId is the 64-bit unique identifier for the object whose parameter is being queried.
An example is the openId returned from a call to mlOpen. The status

007–4504–001 37

3: Capabilities

ML_STATUS_INVALID_ID is returned if the specified object ID was invalid.
parameterId is the 64-bit unique identifier for the parameter whose capabilities are
being queried. The status ML_STATUS_INVALID_ARGUMENT is returned if the
capabilities pointer is invalid. Capabilities is a pointer to the head of the resulting
capabilities list. This list should be treated as read-only by the application. If the call
was successful, then the status ml_STATUS_NO_ERROR is returned.

objectid may be either a static ID (obtained from a previous call to
mlGetCapabilities) or an open ID (obtained by calling mlOpen.) Querying the
capabilities of an opened object is identical to querying the capabilities of the
corresponding static object.

It is also possible to get the capabilities of the capabilities parameters themselves.
Those parameters are not tied to any particular object and so the objectId should be 0.

The list returned in capabilities contains the following parameters, though not
necessarily in this order. The string in the Parameter column is a shortened form of
the full parameter name. The full parameter name is of the form ML_parameter_type,
where parameter and type are the strings listed in the Parameter and Type columns
respectively. For example, the full name of ID is ML_ID_INT64

Table 3-7 Parameters returned by mlPvGetCapabilities

Parameter Type Description

ID INT64 Resource ID for this parameter.

NAME BYTE_ARRAY NULL-terminated ASCII name
of this parameter. This is
identical to the enumerated
value. For example, if the value
is ML_XXX, then the name is
"ML_XXX".

PARENT_ID INT64 Resource ID for the logical
device (video path or transcoder
pipe) on which this parameter is
used.

38 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Parameter Type Description

PARAM_TYPE INT32 Type of this parameter:
ML_TYPE_INT32
ML_TYPE_INT32_POINTER
ML_TYPE_INT32_ARRAY
ML_TYPE_INT64
ML_TYPE_INT64_POINTER
ML_TYPE_INT64_ARRAY
ML_TYPE_REAL32
ML_TYPE_REAL32_POINTER
ML_TYPE_REAL32_ARRAY
ML_TYPE_REAL64
ML_TYPE_REAL64_POINTER
ML_TYPE_REAL64_ARRAY
ML_TYPE_BYTE_POINTER
ML_TYPE_BYTE_ARRAY

PARAM_ACCESS INT32 Access controls for this
parameter. Bitwise "or" of the
following flags:
ML_ACCESS_READ
ML_ACCESS_WRITE
ML_ACCESS_OPEN_OPTION
ML_ACCESS_IMMEDIATE(use
in set/get)
ML_ACCESS_QUEUED (usein
send/query)
ML_ACCESS_SEND_BUFFER
(only in mlSendBuffers)
ML_ACCESS_DURING_TRANSFER
ML_ACCESS_PASS_THROUGH
(ignored by device)

PARAM_DEFAULT same type as param Default value for this parameter
of type ML_PARAM_TYPE.
(This parameter may be of
length 0 if there is no default).

007–4504–001 39

3: Capabilities

Parameter Type Description

PARAM_MINS array of same type as
param

Array of minimum values for
this parameter (may be missing
if there are no specified
minimum values). Each set of
min/max values defines one
allowable range of values. If
min equals max then the
allowable range is a single
value. If the length component
is one, there is only one legal
range of values. The length
component will be 0 if there are
no specified minimum values.

PARAM_MAXS array of same type as
param

Array of maximum values for
this parameter. There must be
one entry in this array for each
entry in the PARAM_MINS array.

PARAM_INCREMENT same type as param Legal param values go from min
to max in steps of increment.
The length will be 0 if there are
no specified minimum values.
Otherwise, length will be
non-zero.

40 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Parameter Type Description

PARAM_ENUM_VALUES same type as param Array of enumerated values for
this parameter. The length
component will be 0 if there are
no enumeration values.

PARAM_ENUM_NAMES BYTE_ARRAY Array of enumeration names for
this parameter (must have the
same length as the
PARAM_ENUM_VALUES array).
The array is a double-NULL
terminated list of ASCII strings.
Each string represents a specific
enumeration name
corresponding to the
enumerated value in the same
position in the
PARAM_ENUM_VALUES array.
Entries are separated by NULL
characters (there are 2 NULLs
after the last string).

Freeing Capabilities Lists

A capabilities list capabilities obtained from either mlGetCapabilities or
mlPvGetCapabilities is returned to the system using MLstatus
mlFreeCapabilities (MLpv *capabilities);.

The status ML_STATUS_INVALID_ARGUMENT is returned if the capabilities pointer is
invalid. The ML_STATUS_NO_ERROR is returned if the call was successful.

007–4504–001 41

Chapter 4

Audio/Visual Paths

In the ML, the logical connections between jacks and memory are called paths. For
example, a video output path provides the means to transfer video information from
buffers in memory, through a video output jack.

Opening a Logical Path
Before you send messages to a device, you must open a processing path that goes
through it. This is done by calling mlOpen(3ml) as follows:

MLstatus mlOpen (MLint64 pathId, MLpv* options,

MLopenid* openid);

Think of a path as a logical device - a physical device (for example, a PCI card) may
simultaneously support several such paths. A side effect of opening a path is that
space is allocated for queues of messages from your application to the device and
replies from the device back to your application. All of the messages sent to a queue
share a common payload area and are required to observe a strictly ordered
relationship. That is, if message A is sent before message B, then the reply to A must
arrive before the reply to B.

Constructing a Message
Messages are arrays of parameters, where the last parameter is always ML_END. For
example, set the image width to be 720 and the image height to be 480 as follows:

MLpv message[3];

message[0].param = ML_IMAGE_WIDTH_INT32;
message[0].value.int32 = 720;

message[1].param = ML_IMAGE_HEIGHT_INT32;

message[1].value.int32 = 480;

message[2].param = ML_END

007–4504–001 43

4: Audio/Visual Paths

Processing Out-of-Band Messages
In some cases, an application wishes to influence a device without first waiting for all
previously enqueued messages to be processed. Borrowing a term from UNIX
communications, we term these cases out-of-band messages. They are performed with
the mlSetControls(3ml) or mlGetControls(3ml) calls.

Here is an example of how you can immediately get the width and height of an image:

MLpv message[3];

message[0].param = ML_IMAGE_WIDTH_INT32;

message[1].param = ML_IMAGE_HEIGHT_INT32;
message[2].param = ML_END

if(mlGetControls(somePath, message))

handleError();

else

printf("Image size is %d x %d\n",
message[0].value.int32,

message[1].value.int32);

Out-of-band messages work well for simple sets and queries. They are blocking calls.
If the call succeeds, the message has been successfully processed.

Sending In-Band Messages
Out-of-band messages are appropriate for simple control changes, but they provide
no buffering between your application and the device. For most applications,
processing real-time data will require using a queuing communication model. The
ML supports this with the mlSendControls(3ml), mlSendBuffers(3ml), and
mlReceiveMessage(3ml) calls.

For example, to send a controls message to a device input queue use:

MLstatus mlSendControls(MLopenid openId, MLpv* message);

Devices interpret messages in the order in which they are enqueued. Because of this,
the time relationship is explicit between, for example, video buffers and changes in
video modes.

Note: The send call does not wait for a device to process the message. Rather, it
copies it to the device input queue and then returns.

44 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

When your application sends a message, it is copied into the send queue. The
message is then split between a small fixed header on the input list, and a larger,
variable-sized space in the data area.

Sometimes, there is not enough space in the data area and/or send list for new
messages. In that case the return code indicates that the message was not enqueued.
As a rule, a full input queue is not a problem — it simply indicates that the
application is generating messages faster than the device can process them.

For some devices, the system may use device-specific knowledge to best manage
messaging transactions. For example, when you call sendBuffers the system may
copy the message exactly as described above, or it may send part or all of the
message directly to the hardware. Regardless of what happens, the system always
looks to your application as described here.

Each message you send is guaranteed to result in at least one reply message from the
device. This is how you know when your message is interpreted and what is the
result.

• In the case of control parameters you should check the return message to make
sure your control executed correctly.

• In the case of video buffers, you should allocate buffer space in your application
and then send an indirect reference to that buffer in a message. Once your
application receives a reply message you can be certain the device has completed
your request and finished with the memory, so you are free to reuse it.

Some devices can send messages to advise your application of important events (for
example some video devices can notify you of every vertical retrace). However, no
notification messages will be generated unless and until you explicitly request them.

Processing In-Band Messages
The device processes messages as follows:

Removes the message header from the send queue, processes the message and writes
any response into the payload area. It then places a reply header on the receive queue.

In general, your application must allow space in the message for any reply you expect
to be returned.

007–4504–001 45

4: Audio/Visual Paths

Note: The device performs no memory allocation, but rather uses the memory
allocated when the application enqueued the input message. This is important
because it guarantees there will never be any need for the device to block because it
did not have enough space for the reply.

Processing Exception Events
In some cases an exception event occurs which requires that the device pass a message
back to your application. Your application must explicitly ask for such events.

Possible exception events are:

ML_EVENT_DEVICE_ERROR Device encountered an error and is unable to recover.

ML_EVENT_DEVICE_UNAVAILABLE The device is not available for use.

ML_EVENT_VIDEO_SEQUENCE_LOST A video buffer was not available for an I/O transfer.

ML_EVENT_VIDEO_SYNC_LOST Device lost the output genlock sync signal.
ML_EVENT_VIDEO_SYNC_GAINED Device detected a valid output genlock.

ML_EVENT_VIDEO_SIGNAL_LOST Device lost the video input signal.

ML_EVENT_VIDEO_SIGNAL_GAINED Device detected a valid input video signal.

ML_EVENT_VIDEO_VERTICAL_RETRACE A video vertical retrace occurred.

ML_EVENT_AUDIO_SEQUENCE_LOST An audio buffer was not available for an I/O transfer.
ML_EVENT_AUDIO_SAMPLE_RATE_CHANGED The audio input sampling frequency changed.

If you ask for events, your application must read its receive queue frequently enough
to prevent the device running out of space for messages which you have asked it to
enqueue. If the queue starts to fill up, then the device will enqueue an event message
advising that it is stopping notification of exception events.

Note: The device never needs to allocate space in the data area for reply messages. It
will automatically stop sending notifications of events if the output list starts to fill up.
Space is reserved in the receive queue for a reply to every message your application
enqueues; but if there is insufficient space, attempts to send new messages will fail.

46 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Processing In-Band Reply Messages
To receive a reply message from a device use mlReceiveMessage(3ml) as follows:

MLstatus mlReceiveMessage(MLopenid openId,

MLint32* messageType,

MLpv** reply);

This call returns the earliest unread message sent from the device back to your
application. The messageType parameter indicates why this reply was generated. It
could come from a call to sendControls, sendBuffers, or it could have been
generated spontaneously by the device as the result of an event. The reply pointer is
guaranteed to remain valid until you attempt to receive a subsequent message. This
allows a small optimization — you can read the current message "in place" without
needing to first copy it off the queue. It is acceptable to overwrite a value in a reply
message and then send that as a new message.

Beginning and Ending Transfers
Devices do not begin to process enqueued messages until explicitly instructed to by
an application.

This is done with the mlBeginTransfer(3ml) call:

MLstatus mlBeginTransfer(MLopenid openId);

This call frees the device to begin processing enqueued messages. It also commands
the device to begin generating exception events. Typically, an application will open a
device, enqueue several buffers (priming the input queue) and then call
BeginTransfer. In this way, it avoids the underflow which could otherwise occur if
the application were swapped out immediately after enqueueing the first buffer to the
device.

To stop a transfer, call mlEndTransfer(3ml):

MLstatus mlEndTransfer(mlopenid openId);

This causes the device to do the following:

• Stop processing messages containing buffers

• Flush its input queue

• Stop notification of exception events

007–4504–001 47

4: Audio/Visual Paths

Closing a Logical Path
When your application has finished using an open path, it may close it (see
mlClose(3ml)):

MLstatus mlClose(MLopenId openId);

This causes an implicit EndTransfer on any device with an active transfer. It then
frees any resources used by the device. If you wish to have pending messages
processed prior to closing a device, you must identify a message (perhaps by adding
a piece of user data or by remembering its MSC number) and make sure it is the last
thing you enqueue. When it appears on the output queue, you will know all
messages have been processed. At that point you can close the device.

48 007–4504–001

Chapter 5

Transcoders

A transcoder provides a means to process data in memory. Support for transcoders
may be implemented entirely in software, or it may be performed with hardware
assistance. In either case, the software interfaces are consistent.

Each ML transcoder device consists of the following:

• A transcoder engine which performs the actual processing

• A number of source pipes and destination pipes

The engine takes data from buffers in the source pipes, processes it, and stores the
result in buffers in the destination pipes. Each pipe acts much like a path which
provides two things: a way for your application to send buffers containing bits to be
processed, and a way to send empty buffers to hold the results of that processing.

Finding a Suitable Transcoder
Use mlGetCapabilites(3dm) to obtain details of all transcoders on the system.

Opening a Logical Transcoder
Open a transcoder in much the same way as a path, but using mlOpen(3dm):

MLstatus mlOpen (MLint64 xcodeId, MLpv* options, MLopenid* openid);

When a transcoder is opened, it creates any required source and destination pipes.
Just as for a path, an open transcoder is a logical entity — as such, a single physical
device may support several transcoders simultaneously.

Controlling the Transcoder
The transcoder engine is controlled indirectly through the source and destination
pipes:

• Controls on the source pipe describe what you will be sending the transcoder for
input.

007–4504–001 49

5: Transcoders

• Controls on the destination pipe describe the results you want.

The difference between the source and destination controls dictates what operations
the transcoder should perform.

For example, if the ML_IMAGE_CODING is UNCOMPRESSED on the source and
DVCPRO_50 on the destination, then you are requesting the transcoder to:

• Take uncompressed data from the source pipe.

• Apply a DVCPRO_50 compression.

• Write the results to the destination pipe.

To set controls on a transcoder, construct a controls message as you would for a video
path. The only difference is that you must explicitly direct controls to a particular
pipe. This is done through the ML_SELECT_ID parameter, which directs all following
controls to a particular ID (in this case, the ID of a pipe on the transcoder).

For example, here is code to set image width and height on both the source and
destinations pipes:

Example 5-1 Set Image Width/Height on Pipes

msg[0].param = ML_SELECT_ID_INT64;
msg[0].value.int64 = ML_XCODE_SRC_PIPE;

msg[1].param = ML_IMAGE_WIDTH_INT32;

msg[1].value.int32 = 1920;

msg[2].param = ML_IMAGE_HEIGHT_INT32;

msg[2].value.int32 = 1080;
msg[3].param = ML_SELECT_ID_INT64;

msg[3].value.int64 = ML_XCODE_DST_PIPE;

msg[4].param = ML_IMAGE_WIDTH_INT32;

msg[4].value.int32 = 1920;

msg[5].param = ML_IMAGE_HEIGHT_INT32;
msg[5].value.int32 = 1280;

msg[6].param = ML_END;

mlSetControls(someOpenXcode, msg);

50 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Sending Buffers
Once the controls on a pipe have been set, you may begin to send buffers to it for
processing. Do this with the mlSendBuffers(3dm) call.

Call mlSendBuffers once for all the buffers corresponding to a single instant in
time. For example, if the transcoder expects both an image buffer and an audio
buffer, you must send both in a single sendBuffers call.

For example, here is code to send a source buffer to the source pipe, and a destination
buffer to the destination pipe:

Example 5-2 Send Source/Destination Buffers to Source/Destination Pipes

msg[0].param = ML_SELECT_ID_INT64;
msg[0].value.int64 = ML_XCODE_SRC_PIPE;

msg[1].param = ML_IMAGE_BUFFER_POINTER;

msg[1].value.pByte = srcBuffer;

msg[1].length = srcImageSize;

msg[2].param = ML_SELECT_ID_INT64;
msg[2].value.int64 = ML_XCODE_DST_PIPE;

msg[3].param = ML_IMAGE_BUFFER_POINTER;

msg[3].value.pByte = dstBuffers;

msg[3].maxLength = dstImageSize;

msg[4].param = ML_END;

mlSendBuffer(someOpenXcode, msg);

Starting a Transfer
The sendBuffers call places buffer messages on a pipe queue to the device. You
must then call mlBeginTransfer(3dm) to tell the transcoder engine to start
processing messages.

Note: The beginTransfer call may fail if the source and destination pipe settings
are inconsistent.

007–4504–001 51

5: Transcoders

Changing Controls During a Transfer
During a transfer, you could attempt to change controls by using
mlSetControls(3dm), but this is often undesirable since the effect of the control
change on buffers currently being processed is undefined. A better method is to send
control changes in the same queue as the buffer messages. Do this with the same
mlSendControls(3dm) call as on a path, again using ML_SELECT_ID to direct
particular controls to a particular pipe.

Note: Parameter changes sent with sendControls are guaranteed to only affect
buffers sent with subsequent send calls.

Note: Some hardware transcoders may be unable to accommodate control changes
during a transfer. If in doubt, examine the capabilities of particular parameter to
determine if it may be changed while a transfer is in progress.

In a transcoder, it is possible to get the following exception event:

ML_EVENT_XCODE_FAILED

Transcoder was unable to process data.

Receiving a Reply Message
Whenever you pass buffer pointers to the transcoder (by calling sendBuffers) you
give up all rights to that memory until the transcoder has finished using it. As the
transcoder finishes processing each buffers message, it will enqueue a reply message
back to your application. You may read these reply messages in exactly the same way
as on a path by calling mlReceiveMessage(3dm).

The transcoder queue maintains a strict first-in, first-out ordering. If buffer A is sent
before buffer B, then the reply to A will come before the reply to B. This is
guaranteed even on transcoders which parallelize across multiple physical processors.

Ending Transfers
To end a transfer, call mlEndTransfer(3dm). This is a blocking call which:

52 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

• Allows all buffers currently in the engine to complete

• Marks any remaining messages as “aborted”

By examining the reply to each message, your application can determine whether or
not it was successfully processed.

It is also acceptable to call endTransfer before beginTransfer has been called. In
that case any messages in the queue are aborted and returned to the application.

Note: If you are not interested in the result of any pending buffers, you can simply
close the transcoder without bothering to first end the transfer.

Closing a Transcoder
When your application has finished using a transcoder it may close it, see
mlClose(3dm) :

MLstatus mlClose(MLopenId openId);

This causes an implicit EndTransfer. It then frees any resources used by the device.

Work Functions
In most cases, the difference between hardware and software transcoders is
transparent to an application. Software transcoders may have more options and may
run more slowly, but for many applications these differences are not significant.

One notable difference between hardware and software transcoders is that software
transcoders will attempt to use as much of the available processor time as possible.
This may be undesirable for some applications. To counter this, an application has the
option to do the work of the transcoder itself, in its own thread. This is achieved with
the mlXcodeWork(3dm) function.

If you open a software transcoder while setting the ML_XCODE_MODE_SYNCHRONOUS
option, the transcoder will not spawn any threads and will not do any processing on
its own. To perform a unit of transcoding work, your application must now call the
mlXcodeWork(3dm) function.

007–4504–001 53

5: Transcoders

Note: This only applies to software transcoders, and only if you set the
ML_XCODE_MODE_SYNCHRONOUS option when opening the transcoder.

Multi-Stream Transcoders
This chapter has described the operation of a single-stream transcoder (one in which
all controls/buffers can be sent to the transcoder engine using the ML_SELECT_ID
parameter). Some transcoders, however, particularly those which need to consume
source and destination buffers at different rates, will not work efficiently with this
programming model. For those cases, it is possible to access each transcoder pipe
individually, sending/receiving buffers on the source pipe at a different rate than on
the destination pipe. This will be supported in a future revision of the ML.

54 007–4504–001

Chapter 6

Video Parameters

The processing of a video input/output path is described by two sets of parameters:

• Video parameters describe how to interpret and generate the signal as it arrives
and leaves, as discussed in this chapter.

• Image parameters describe how to write/read the resulting bits to/from the
device (see Chapter 7, "Image Parameters", page 67).

Not all parameters may be supported on a particular video jack or path. Note that
some parameters may be adjusted on both a path and a jack, or may be adjustable on
just one or the other. Use mlGetCapabilities to obtain a list of parameters
supported by a jack or path. In addition, not all values may be supported on a
particular parameter. Use mlPvGetCapabilities to obtain a list of the values
supported by the parameter.

Note: This chapter, as well as Chapter 7, "Image Parameters", page 67 assume a
working knowledge of digital video concepts. Readers unfamiliar with terms like
video timing, 422 or CbYCr may wish to consult a text devoted to this subject. A good
resource is A Technical Introduction to Digital Video, by Charles Poynton, published by
John Wiley & Sons, 1996 (ISBN 0-471-12253-X, hardcover).

Video Sampling
There are two kinds of video sampling, spatial and temporal. Our concern here is
with temporal sampling, of which there are two techniques:

• progressive sampling is frame-based (for example, from film).

• interlaced sampling is field-based.

Progressive Sampling

In progressive, frame-based sampling, a picture at a specified resolution is sampled at
constant rate. Film is a progressive sampling source for video.

007–4504–001 55

6: Video Parameters

Imagine an automatic film advance camera that can take 60 pictures-per-second, with
which you take a series of pictures of a moving ball. Figure 6-1, page 56 shows 10
pictures from that sequence (different colors emphasize the different positions of the
ball in time). The time delay between each picture is a 60th of a second, so this
sequence lasts 1/6th of a second.

Figure 6-1 Film at 60 Frames-per-Second

Interlaced Sampling

Interlaced sampling is more involved than progressive sampling. Here, the video is
sampled in a periodicity of two sample fields, called F1 and F2, such that half of the
display lines of the picture are scanned at a time. Like window blinds, every other
line in a sample field is blank.

Pairs of sample fields are superimposed on each other or “interlaced” to create the
video frame. In the video frame, the sample frames, while consecutive, appear
coincident to the eye. This effect is aided by the persistence of phosphors on the
display screen which hold the impression of the first set of scanned lines as the
second set displays. (This sequence is made visible if you videotape a computer
monitor display.)

Most video signals in use today, including several high-definition video formats, are
field-based (interlaced) rather than frame-based (progressive). In the ML, the value of
the Video Timing parameter ML_VIDEO_TIMING_INT32 defines the specific video
standard, and each standard is defined as progressive or interlaced.

Example of Interlaced Sampling

Suppose you shoot the moving ball with an NTSC video camera. NTSC video has 60
fields-per-second, so you might think that the video camera would record the same
series of pictures as shown in Figure 6-1, page 56, but it does not. The video camera
does record 60 images per second, but each image consists of only half of the scanned

56 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

lines of the complete picture at a given time, as shown in Figure 6-2, page 57, rather
than a filmstrip of 10 complete images.

Note how the image lines alternate between odd- and even-numbered images.

Figure 6-2 Video at 60 Frames-per-Second

Video Parameters
Parameter Purpose

ML_VIDEO_TIMING_INT32 video timing parameter

ML_VIDEO_COLORSPACE_INT32 video colorspace parameter

ML_VIDEO_PRECISION_INT32 video precision parameter

ML_TIMING_UNKNOWN Timing of input signal cannot be
determined.

ML_TIMING_NONE No signal present.

ML_VIDEO_TIMING_INT32

This parameter sets the timing on an input or output video path. Not all timings may
be supported on all devices. On devices which can auto-detect, the timing may be
read-only on input. (Details of supported timings may be obtained by calling
mlPvGetCapabilites on this parameter). Figure B-1, page 139 and Figure B-2,
page 140 illustrate details of the 601 standard.

Supported Timings

Note: See Appendix B, "Common Video Standards", page 139 for diagrams of
common video standards.

007–4504–001 57

6: Video Parameters

These format for these timings are as follows:

ML_TIMING_xxxx_yyyyxzzzz_nnn[i|p|PsF]

where:

xxxx Total number of lines.

yyyy x zzzz Width by height of the active video region (high
definition).

nnn[i|p|PsF] The frame rate, followed by i, p, or PsF to indicate
interlaced, progressive, or segmented Frame,
respectively.

Standard Definition (SD) Timings

ML_TIMING_525 (NTSC)
ML_TIMING_525_SQ_PIX
ML_TIMING_625 (PAL)
ML_TIMING_625_SQ_PIX

High Definition (HD) Timings

ML_TIMING_1125_1920x1080_60p
ML_TIMING_1125_1920x1080_5994p
ML_TIMING_1125_1920x1080_50p
ML_TIMING_1125_1920x1080_60i
ML_TIMING_1125_1920x1080_5994i
ML_TIMING_1125_1920x1080_50i
ML_TIMING_1125_1920x1080_30p
ML_TIMING_1125_1920x1080_2997p
ML_TIMING_1125_1920x1080_25p
ML_TIMING_1125_1920x1080_24p
ML_TIMING_1125_1920x1080_2398p
ML_TIMING_1125_1920x1080_24PsF
ML_TIMING_1125_1920x1080_2398PsF
ML_TIMING_1125_1920x1080_30PsF
ML_TIMING_1125_1920x1080_2997PsF
ML_TIMING_1125_1920x1080_25PsF
ML_TIMING_1250_1920x1080_50p
ML_TIMING_1250_1920x1080_50i
ML_TIMING_1125_1920x1035_60i

58 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_TIMING_1125_1920x1035_5994i
ML_TIMING_750_1280x720_60p
ML_TIMING_750_1280x720_5994p

ML_VIDEO_COLORSPACE_INT32

Sets the colorspace at the video jack. For input paths, this is the colorspace you expect
to receive at the jack. For output paths, it is the colorspace you desire at the jack.

See "ML_IMAGE_COLORSPACE_INT32", page 76 for a detailed description of
colorspace values.

Supported Colorspace Values

ML_COLORSPACE_RGB_601_FULL
ML_COLORSPACE_RGB_601_HEAD
ML_COLORSPACE_CbYCr_601_FULL
ML_COLORSPACE_CbYCr_601_HEAD
ML_COLORSPACE_RGB_240M_FULL
ML_COLORSPACE_RGB_240M_HEAD
ML_COLORSPACE_CbYCr_240M_FULL
ML_COLORSPACE_CbYCr_240M_HEAD
ML_COLORSPACE_RGB_709_FULL
ML_COLORSPACE_RGB_709_HEAD
ML_COLORSPACE_CbYCr_709_FULL
ML_COLORSPACE_CbYCr_709_HEAD

ML_VIDEO_SAMPLING_INT32

Sets the sampling at the video jack. (See "ML_IMAGE_SAMPLING_INT32", page 78 for
a detailed description of sampling values.)

Supported Sampling Values

ML_SAMPLING_422
ML_SAMPLING_4224
ML_SAMPLING_444
ML_SAMPLING_4444

007–4504–001 59

6: Video Parameters

ML_VIDEO_PRECISION_INT32

Sets the precision (number of bits of resolution) in the signal at the jack. This is an
integer. A precision value of 10, indicates a 10-bit signal. A value of 8 indicates an
8-bit signal.

ML_VIDEO_GENLOCK_SIGNAL_PRESENT_INT32

Used to query the incoming genlock signal for an output path. Not all devices may
be able to sense genlock timing, but those that do will support this parameter.
Common values match those for ML_VIDEO_TIMING, with two additions:
ML_TIMING_NONE (there is no signal present) and ML_TIMING_UNKNOWN (the timing
of the genlock cannot be determined).

ML_VIDEO_SIGNAL_PRESENT_INT32

Used to query the incoming signal on an input path. Not all devices may be able to
sense timing, but those that do will support this parameter. Common values match
those for ML_VIDEO_TIMING, with two additions: ML_TIMING_NONE (there is no
signal present) and ML_TIMING_UNKNOWN (the timing of the input signal cannot be
determined).

ML_VIDEO_GENLOCK_SOURCE_TIMING_INT32

Describes the genlock source timing. Only accepted on output paths. Each genlock
source is specified as an output timing on the path and corresponds to the same
timings as available with ML_VIDEO_TIMING_INT32.

ML_VIDEO_GENLOCK_TYPE_INT32

Describes the genlock signal type. Only accepted on output paths. Each genlock type
is specified as either a 32–bit resource Id or ML_VIDEO_GENLOCK_TYPE_INTERNAL.

ML_VIDEO_BRIGHTNESS_INT32

Set or get the video signal brightness.

60 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_VIDEO_CONTRAST_INT32

Set or get the video signal contrast.

ML_VIDEO_HUE_INT32

Set or get the video signal HUE.

ML_VIDEO_SATURATION_INT32

Set or get the video signal color saturation.

ML_VIDEO_RED_SETUP_INT32

Set or get video signal RED channel setup.

ML_VIDEO_GREEN_SETUP_INT32

Set or get the video signal GREEN channel setup.

ML_VIDEO_BLUE_SETUP_INT32

Set or get the video signal BLUE channel setup.

ML_VIDEO_ALPHA_SETUP_INT32

Set or get the video signal ALPHA channel setup.

ML_VIDEO_H_PHASE_INT32

Set or get the video signal horizontal phase genlock offset.

007–4504–001 61

6: Video Parameters

ML_VIDEO_V_PHASE_INT32

Set or get the video signal vertical phase genlock offset.

ML_VIDEO_FLICKER_FILTER_INT32

Set or get the video signal filter.

ML_VIDEO_DITHER_FILTER_INT32

Set or get the video signal dither filter.

ML_VIDEO_NOTCH_FILTER_INT32

Set or get the video signal notch filter.

ML_VIDEO_INPUT_DEFAULT_SIGNAL_INT64

Set or get the video signal default input signal.

ML_VIDEO_OUTPUT_DEFAULT_SIGNAL_INT64

Sets the default signal at the video jack when there is no active output. The only
allowable are:

ML_SIGNAL_NOTHING indicates that output signal shall cease without generation of
sync.

ML_SIGNAL_BLACK indicates that output shall generate a black picture complete with
legal sync values.

ML_SIGNAL_COLORBARS indicates that output should use an internal colorbar
generator.

ML_SIGNAL_INPUT_VIDEO indicates that output should use the default input signal
as a pass through.

62 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_VIDEO_START_Y_F1_INT32

Sets the start vertical location on F1 fields of the video signal. For progressive signals
it specifies the start of every frame.

ML_VIDEO_OUTPUT_REPEAT_INT32

If the application is doing output and fails to provide buffers fast enough (the queue
to the device underflows), then this control determines the device behavior.
Allowable options are:

ML_VIDEO_REPEAT_NONE The device does nothing, usually resulting in black
output.

ML_VIDEO_REPEAT_FIELD The device repeats the last field. For progressive signals
or interleaved formats, this is the same as
ML_VIDEO_REPEAT_FRAME.

ML_VIDEO_REPEAT_FRAME The device repeats the last two fields. This output
capability is device dependent and the allowable
settings should be queried via the get capabilities of the
ML_VIDEO_OUTPUT_REPEAT_INT32 parameter.

ML_VIDEO_FILL_Cr_REAL32

The Cr value for any pixel outside the clipping region. This is a real number: a value
of 0.0 is the minimum legal value, 1.0 is the maximum legal value. Default is 0.

ML_VIDEO_FILL_Cb_REAL32

The Cb value for any pixel outside the clipping region. This is a real number: a value
of 0.0 is the minimum legal value, 1.0 is the maximum legal value. Default is 0.

ML_VIDEO_FILL_RED_REAL32

The red value for any pixel outside the clipping region. This is a real number: a value
of 0.0 is the minimum legal value (black), 1.0 is the maximum legal value. Default is 0.

007–4504–001 63

6: Video Parameters

ML_VIDEO_FILL_GREEN_REAL32

The green value for any pixel outside the clipping region. This is a real number: a
value of 0.0 is the minimum legal value, 1.0 is the maximum legal value. Default is 0.

ML_VIDEO_FILL_BLUE_REAL32

The blue value for any pixel outside the clipping region. This is a real number: a
value of 0.0 is the minimum (fully transparent), 1.0 is the maximum (fully opaque).
Default is 1.0.

ML_VIDEO_START_X_INT32

Sets the start horizontal location on each line of the video signal.

ML_VIDEO_START_Y_F2_INT32

Sets the start vertical location on F2 fields of the video signal. Ignored for progressive
timing signals.

ML_VIDEO_WIDTH_INT32

Sets the horizontal width of the clipping region on each line of the video signal.

ML_VIDEO_HEIGHT_F1_INT32

Sets the vertical height for each F1 field of the video signal. For progressive signals it
specifies the height of every frame.

ML_VIDEO_HEIGHT_F2_INT32

Sets the vertical height for each F2 field of the video signal. For progressive signals, it
always has value 0.

64 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_VIDEO_FILL_Y_REAL32

The luminance value for any pixel outside the clipping region. This is a real number:
a value of 0.0 is the minimum legal value (black), 1.0 is the maximum legal value.
Default is 0.

ML_VIDEO_FILL_A_REAL32

The alpha value for any pixel outside the clipping region. This is a real number: a
value of 0.0 is the minimum (fully transparent), 1.0 is the maximum (fully opaque).
Default is 1.0.

Examples

Here is an example that sets the video timing and colorspace for an HDTV signal:

MLpv message[3]

message[0].param = ML_VIDEO_TIMING_INT32
message[0].value.int32 = ML_TIMING_1125_1920x1080_5994;

message[1].param = ML_VIDEO_COLORSPACE_INT32;

message[1].value.int32 = ML_COLORSPACE_CbYCr_709_HEAD;

message[2].param = ML_END;

mlSetControls(device, message);

007–4504–001 65

Chapter 7

Image Parameters

This chapter describes in detail the ML image parameters and gives examples of the
resulting in-memory pixel formats.

Introduction
An image buffer is memory allocated for a frame or field of pixels. Since the ML itself
does not allocate memory for buffers, the application must do the allocation. This
means that each buffer requires a dedicated memory allocation call (malloc, for
example.)

Buffers must be in contiguous virtual memory and should be pinned in memory for
optimum performance. Once a buffer has been created, the pointer to the buffer is
passed to the ML with the parameter ML_IMAGE_BUFFER_POINTER. Pointer to the
first byte of an image buffer in memory. The buffer address must comply with the
alignment constraints for buffers on the particular path or transcoder to which it is
being sent. See mlGetCapabilities for details on determining alignment
requirements with ML_PATH_BUFFER_ALIGNMENT_INT32. For example, if
ML_PATH_BUFFER_ALIGNMENT_INT32 is 8, this means that the value of the buffer
pointer must be a multiple of 8 bytes. The same applies to
ML_PATH_COMPONENT_ALIGNMENT_INT32 where the beginning of each line (the
first pixel of each line) must be a multiple of the value of the
ML_PATH_COMPONENTALIGNMENT_INT32 parameter.

007–4504–001 67

7: Image Parameters

SKIP_ROWS

SKIP_PIXELS

ROW_BYTES

Width

Height

0

0

Pixel

Image

Image buffer

General Image Buffer Layout

Figure 7-1 General Image Buffer Layout

In Figure 7-1, page 68 an image is mapped into a image buffer in a very general form.

68 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

SKIP_ROWS = 0

SKIP_PIXELS = 0

ROW_BYTES = 0

Width

Height

0

0

Pixel

Image buffer = Image

Simple Image Buffer Layout

Figure 7-2 Simple Image Buffer Layout

Figure 7-2, page 69 shows the more common simple image buffer layout.

Image Buffer Parameters
The following subsections list and describe all image parameters.

ML_IMAGE_BUFFER_POINTER

Pointer to the first byte of an image buffer in memory. The buffer address must
comply with the alignment constraints for buffers on the particular path or transcoder
to which it is being sent. See mlGetCapabilities for details on determining
alignment requirements with ML_PATH_BUFFER_ALIGNMENT_INT32. For example, if
ML_PATH_BUFFER_ALIGNMENT_INT32 is 8, this means that the value of the buffer
pointer must be a multiple of 8 bytes. The same applies to
ML_PATH_COMPONENT_ALIGNMENT_INT32 where the beginning of each line (the
first pixel of each line) must be a multiple of the value of the
ML_PATH_COMPONENT_ALIGNMENT_INT32 parameter.

007–4504–001 69

7: Image Parameters

ML_IMAGE_WIDTH_INT32

The width of the image in pixels.

ML_IMAGE_HEIGHT_1_INT32

For progressive or interleaved buffers (depending on parameter
ML_IMAGE_INTERLEAVE_MODE_INT32), this represents the height of each frame. For
interlaced and non-interleaved signals, this represents the height of each F1 field.
Measured in pixels.

ML_IMAGE_HEIGHT_2_INT32

The height of each F2 field in an interlaced non-interleaved signal. Otherwise it has
value 0.

ML_IMAGE_ROW_BYTES_INT32

The number of bytes along one row of the image buffer. If this value is 0, each row is
exactly ML_IMAGE_WIDTH_INT32 pixels wide. Default is 0.

Note: In physical memory there is no notion of two dimensions, the end of the first
row continues directly at the start of the second row. An image buffer contains either
one frame or one field. For interlaced image data the two fields can be stored in two
separate image buffers or they can be stored in interleaved form in one image buffer.

ML_IMAGE_SKIP_PIXELS_INT32

The number of pixels to skip at the start of each line in the image buffer. Default is 0.
Must be 0 if ML_IMAGE_ROW_BYTES_INT32 is 0. Default is 0.

ML_IMAGE_SKIP_ROWS_INT32

The number of rows to skip at the start of each image buffer. Default is 0.

70 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_IMAGE_TEMPORAL_SAMPLING_INT32

Specifies whether the image source is progressive or interlaced. Set to
ML_TEMPORAL_SAMPLING_FIELD_BASED or
ML_TEMPORAL_SAMPLING_PROGRESSIVE. Default is device-dependent. If the image
data is field based, the parameter ML_IMAGE_INTERLEAVE_MODE_INT32 defines
how the two fields are stored in an image buffer.

ML_IMAGE_INTERLEAVE_MODE_INT32

Only used in interlaced images. This parameter specifies whether the two fields have
been interleaved into a single image (and reside in a single buffer) or are stored in
two separate fields (hence in two separate buffers). Set to
ML_INTERLEAVE_MODE_INTERLEAVED or ML_INTERLEAVE_MODE_SINGLE_FIELD.
This is ignored for signals with progressive timing. Default is interleaved.

In ML_INTERLEAVE_MODE_INTERLEAVED each pair of fields is interleaved into a
single buffer. In this case the parameter ML_IMAGE_HEIGHT_2_INT32 is set to zero.

For ML_INTERLEAVE_MODE_SINGLE_FIELD the two fields are stored separately. This
means that each field has its own image buffer, use ML_IMAGE_HEIGHT_1_INT32 for
the F1 buffer and ML_IMAGE_HEIGHT_2_INT32 for the F2 buffer.

ML_IMAGE_DOMINANCE_INT32

Sets the dominance of the video signal. The allowable values are ML_DOMINANCE_F1
(default), and ML_DOMINANCE_F2. Ignored for progressive signals. Field dominance
defines the order of fields in a frame and can be either F1–dominant or F2-dominant.
F1-dominant specifies a frame as an F1 field followed by an F2 field. F2-dominant
specifies a frame as an F2 field followed by an F1 field. Notice also that for the same
sequent of fields there are two valid interpretations which of the two fields belong
together. Changing the field dominance is most significant when external devices (for
example, a tape deck) can only operate on frame boundaries.

007–4504–001 71

7: Image Parameters

F2 dominant:

F1 dominant:

F1 F2 F1 F2 F1 F2 F1

Time

Figure 7-3 Field Dominance

ML_IMAGE_ORIENTATION_INT32

The orientation of the image.

ML_ORIENTATION_TOP_TO_BOTTOM “natural video order” pixel [0,0] is at the top
left of the image.

ML_ORIENTATION_BOTTOM_TO_TOP ”natural graphics order” pixel [0,0] is at the
bottom left of the image.

ML_IMAGE_COMPRESSION_INT32

An image buffer can also store a compressed image, for example this could be the
output of a codec. If the image data is compressed, then one of the following values
are used:

ML_COMPRESSION_UNCOMPRESSED
ML_COMPRESSION_BASELINE_JPEG
ML_COMPRESSION_DV_625
ML_COMPRESSION_DV_525
ML_COMPRESSION_MPEG2I
ML_COMPRESSION_DVCPRO_625
ML_COMPRESSION_DVCPRO_525
ML_COMPRESSION_DVCPRO50_625
ML_COMPRESSION_DVCPRO50_525
ML_COMPRESSION_MPEG2

If the image data is in uncompressed format the value of this parameter is
ML_COMPRESSION_UNCOMPRESSED.

72 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Note: In case of a compressed bit stream, all parameters that describe the image data
(that is, height, width, color space, etc.) might not be known. The only parameters
that might be known are the compression type ML_IMAGE_COMPRESSION_INT32
and the size of the bit stream ML_IMAGE_SIZE_INT32. The image buffer layout
parameters (ML_IMAGE_SKIP_ROWS, ML_IMAGE_SKIP_PIXELS, and
ML_IMAGE_ROW_BYTES) do not apply to compressed images.

For more infomation on JPEG, refer to W. B. Pennebaker and J. L. Mitchell, JPEG: Still
Image Data Compression Standard, New York, NY: Van Nostrand Reinhold, 1993.

For more information on DV compression, refer to Specification of Consumer-Use
Digital VCRs using 6.3mm magnetic tape.

For more information on DVCPRO and DVCPRO50 compression, refer to SMPTE
314M Television - Data Structure for DV-Based Audio, Data and Compressed Video -
25 and 50 Mb/s.

For more information on MPEG2, refer to ISO/IEC 13818-2 GENERIC CODING OF
MOVING PICTURES AND ASSOCIATED AUDIO: SYSTEMS.

ML_IMAGE_SIZE_INT32

Size of the image buffer in bytes. This is a read-only parameter and is computed in
the device using the current path control settings. This value represents the
worst-case buffer size.

ML_IMAGE_COMPRESSION_FACTOR_REAL32

For compressed images only, this parameter describes desired compression factor. A
value of 1 indicates no compression, a value of x indicates that approximately x
compressed buffers require the same space as 1 uncompressed buffer.

Note: The size of the uncompressed buffer depends on image width, height, packing
and sampling. The default value is implementation-dependent, but should represent
a reasonable trade-off between compression time, quality and bandwidth. x is a
number larger than 1.

007–4504–001 73

7: Image Parameters

ML_IMAGE_PACKING_INT32

For recommendations on packing and component ordering, see Appendix A: "Pixels
in Memory.”

The image packing parameter describes the pixel storage in detail as follows:

ML_PACKING_type_size_order

• type is the base type of each component. Leave blank for an unsigned integer, use
S for a signed integer. (In the future, the ML may also support R for real numbers.)

• size defines the number of bits per component. The size may refer to simple,
padded or complex packings.

For the simplest formats every component is the same size and there is no
additional space between components. Here, a single numeric value specifies the
number of bits per component. The first component consumes the first size bits,
the next consumes the next size bits, and so on. Within each component, the most
significant bits always precede the least-significant bits. For example, a size of 12
means that the first byte in memory has the most significant 8 bits of the first
component, the second byte holds the remainder of the first component and the
most significant 4 bits of the second component, and so on.

Space is only allocated for components which are in use (that depends on the
sampling mode, see later). For these formats the data must always be interpreted
as a sequence of bytes. For example, ML_PACKING_8 describes a packing in which
each component is an unsigned 8–bit quantity. ML_PACKING_S8 describes the
same packing except that each component is a signed 8–bit quantity.

For padded formats, each component is padded and may be treated as a short
2–byte integer. When this occurs, the size takes the form: {bits}in{size}{alignment}
where:

bits is the number of bits of space per component

space is the total size of each component

alignment L or R indicates, respectively, whether the
information is left or right-shifted in that space

In this case, each component in use consumes space bits and those bits must be
interpreted as a short integer. (Unused components consume no space).

74 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

For example, here are some common packings (note that the signed-ness of the
component values does matter):

15 int short 0

Packing +--------------+

12in16R 0000iiiiiiiiiiii

S12in16R ssssiiiiiiiiiiii

12in16L iiiiiiiiiiiipppp

S12in16L iiiiiiiiiiiipppp
S12in16L0 iiiiiiiiiiii0000

where s indicates sign-extension, i indicates the actual component information,
and p indicates padding (replicated from the most significant bits of information).

Note: These bit locations refer to the locations when the 16–bit component has
been loaded into a register as a 16–bit integer quantity.

For the most complex formats, the size of every component is specified explicitly,
and the entire pixel must be treated as a single 4–byte integer. The size takes the
form size1_size2_size3_size4, where size1 is the size of component 1, size2 is the size
of component 2, and so on. In this case, the entire pixel is a single 4–byte integer
of length equal to the sum of the component sizes. Any space allocated to unused
components must be zero-filled. The most common complex packing occurs when
4 components are packed within a 4-byte integer. For example,
ML_PACKING_10_10_10_2 is:

31 int 0

Packing +------------------------------+

10_10_10_2 11111111112222222222333333333344

where 1 is the first component, 2 is the second component, and so on. The bit
locations refer to the locations when this 32–bit pixel is loaded into a register as a
32–bit integer quantity. If only three components were in use (determined from
the sampling), then the space for the fourth component would be zero-filled.

• order is the order of the components in memory. Leave blank for natural ordering
(1,2,3,4), use R for reversed ordering (4,3,2,1). For all other orderings, specify the
component order explicitly. For example, 4123 indicates that the fourth

007–4504–001 75

7: Image Parameters

component is stored first in memory, followed by the remaining three components.
Here, we compare a normal, a reversed, and a 4123 packing:

31 int 0

Packing +------------------------------+

10_10_10_2 11111111112222222222333333333344

10_10_10_2_R 4433333333332222222222111111

10_10_10_2_4123 44111111111122222222223333333333

where 1 is the first component, 2 is the second component, and so on. Since this is
a complex packing, the bit locations refer to the locations when this entire pixel is
loaded into a register as a single integer.

ML_IMAGE_COLORSPACE_INT32

The colorspace parameters describe how to interpret each component. The full
colorspace parameter is:

ML_COLORSPACE_representation_standard_range

where:

• representation is either ML_REPRESENTATION_RGB or
ML_REPRESENTATION_CbYCr.

This controls how to interpret each component. Table 7-1, page 76 shows this
mapping (assuming for now that every component is sampled once per pixel):

Table 7-1 Mapping colorspace representation parameters

Colorspace
Representation

Component 1 Component 2 Component 3 Component 4

RGB Red Green Blue Alpha

CbYCr Cb Y Cr Alpha

76 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Remember, the packing dictates the size and order of the components in memory,
while the colorspace describes what each component represents. For example,
here we show the effect of colorspace and packing combined (again assuming a
4444 sampling, see later).

Color 31 int 0

Standard Packing +------------------------------+

RGB 10_10_10_2 RRRRRRRRRRGGGGGGGGGGBBBBBBBBBBAA

RGB 10_10_10_2_R AABBBBBBBBBBGGGGGGGGGGRRRRRRRRRR
CbYCr 10_10_10_2 bbbbbbbbbbYYYYYYYYYYrrrrrrrrrrAA

CbYCr 10_10_10_2_R AAbbbbbbbbbbYYYYYYYYYYrrrrrrrrrr

• standard indicates how to interpret particular values as actual colors. Choosing a
different standard alters the way the system converts between different color
representations. The current standards supported are Rec. 601, Rec. 709 and
SMPTE 240M.

• range is either FULL, where the smallest and largest values are limited only by the
available packing size, or HEAD, where the smallest and largest values are
somewhat less than the theoretical min/max values to allow some "headroom".
Full range is common in computer graphics. Headroom range is common in
video, particularly when sending video signals over a wire (for example, values
outside the legal component range may be used to mark the start or end of a
video frame). When constructing a colorspace, you must specify a representation,
a standard and a range.

In Rec. 601 video, the black level (blackest black) is 16 for 8–bit video and 64 for
10–bit video, but in computer graphics, 0 is blackest black. If a picture with 16 for
blackest black is displayed by a system that uses 0 as blackest black, the image
colors are all grayed-out as a result of shifting the colors to this new scale.
Similarly, the brightest level is 235 for 8–bit video and 940 for 10–bit video. The
best results are obtained by choosing the correct colorspace.

Example 7-1 ML_COLORSPACE_RGB_709_FULL

ML_COLORSPACE_RGB_709_FULL is shorthand for the following:

ML_REPRESENTATION_RGB
+
ML_STANDARD_709
+
ML_RANGE_FULL

where:

007–4504–001 77

7: Image Parameters

– representation is RGB

– the standard is 709

– full-range data is used

ML_IMAGE_SAMPLING_INT32

The sampling parameters take their names from common terminology in the video
industry. They describe how often each component is sampled for each pixel. In
computer graphics, its normal for every component to be sampled once per pixel, but
in video that need not be the case.

For all RGB colorspaces, the only legal samplings are:

• ML_SAMPLING_444 indicates that the R, G and B components are each sampled
once per pixel, and only the first 3 channels are used. If used with an image
packing that provides space for a fourth component, then those bits should have
value 0 on an input path and will be ignored on an output path.

• ML_SAMPLING_4444 indicates that the R, G, B and A components are sampled
once per pixel.

For all CbYCr colorspaces, the legal samplings include:

• ML_SAMPLING_444 indicates that Cb, Y, and Cr are each sampled once per pixel
and only the first 3 channels are used. If a packing provides space for a 4th
channel then those bits should have value 0.

• ML_SAMPLING_4444 indicates that Cb, Y, Cr and Alpha are each sampled once
per pixel.

• ML_SAMPLING_422 indicates that Y is sampled once per pixel and Cb/Cr are
sampled once per pair of pixels. In this case Cb and Cr are interleaved on
component 1 (Cb is first, Cr is second) and the Y occupies component 2. If used
with an image packing that provides space for a third or fourth component, then
those bits should have value 0 on an input path and will be ignored on an output
path.

• ML_SAMPLING_4224 indicates that Y and Alpha are sampled once per pixel and
Cb/Cr are sampled once per pair of pixels. In this case Cb and Cr are interleaved
on component 1, Y is on component 2, component 3 contains the alpha channel

78 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

and component 4 is not used (and will have value 0 if space is allocated for it in
the packing).

• ML_SAMPLING_411 indicates that Y is sampled once per pixel and Cb/Cr are
sampled once per 4 pixels. In this case Cb, Y is component 2 and Cr occupies
component 3. If used with an image packing that provides space for a 4th
component then those bits should have value 0 on an input path and will be
ignored on an output path.

• ML_SAMPLING_420 indicates that Y is sampled once per pixel and Cb or Cr is
sampled once per pair of pixels on alternate lines. In this case Cb or Cr is
interleaved on component 1 and the Y occupies component 2. If used with an
image packing that provides space for a 3rd or 4th component then those bits
should have value 0 on an input path and will be ignored on an output path.

• ML_SAMPLING_400 indicates that only Y is sampled per pixel (a greyscale image).
Here Y is stored on component 1, all other components are unused. If used with
an image packing that provides space for additional components, then those bits
should have value 0 on an input path and will be ignored on an output path.

• ML_SAMPLING_0004 indicates that only Alpha is sampled per pixel. If used with
an image packing that provides space for additional components, then those bits
should have value 0 on an input path and will be ignored for an output path.

Table 7-2, page 79 shows the combined effect of sampling and colorspace on the
component definitions:

Table 7-2 Effect of sampling and colorspace on component definitions.

Sampling Colorspace
Representation

Comp 1 Comp 2 Comp 3 Comp 4

4444 RGB Red Green Blue Alpha

444 RGB Red Green Blue

0004 RGB Alpha Y Cr Alpha

444 CbYCr Cb Y Cr 0

007–4504–001 79

7: Image Parameters

4224 CbYCr Cb/Cr Y Alpha 0

422
400

CbYCr
CbYCr

Cb/Cr
Y

Y

420 CbYCr Cb/Cr* Y

411 CbYCr Y Cr

0004 CbYCr Alpha

1

ML_SWAP_BYTES_INT32

Parameter ML_IMAGE_SWAP_BYTES may be available on some devices. When set to 0
(the default) this has no effect. When set to 1, the device reorders bytes as a first step
when reading data from memory, and as a final step when writing data to memory.
The exact reordering depends on the packing element size. For simple and padded
packing formats (see packings, below) the element size is the size of each component.
For complex packing formats, the element size is the sum of the four component sizes.

The swap-bytes parameter reorders bits as follows:

Element Size Default ordering Modified ordering

16 bit [15..0] [7..0][15..8]

32 bit [31..0] [7..0][15..8][23..16][31..24]

other [n..0] [n..0] (no change)

1 * Cb and Cr components are multiplexed with Y on alternate lines (not pixels.)

80 007–4504–001

Chapter 8

Audio Parameters

This chapter describes the ML audio parameters and buffers.

Audio Buffer Layout
The digital representation of an audio signal is generated by periodically sampling
the amplitude (voltage) of the audio signal. The samples represent periodic
"snapshots" of the signal amplitude. The sampling rate specifies the number of
samples per second. The audio buffer pointer points to the source or destination data
in an audio buffer for processing a fragment of a media stream. For audio signals, a
fragment typically corresponds to between 10 milliseconds and 1 second of audio
data. An audio buffer is a collection of sample frames. A sample frame is a set of
audio samples that are coincident in time. A sample frame for mono data is a single
sample. A sample frame for stereo data consists of a left-right sample pair.

Stereo samples are interleaved; left-channel samples alternate with right-channel
samples. 4-channel samples are also interleaved, with each frame usually having two
left/right sample pairs, but there can be other arrangements.

007–4504–001 81

8: Audio Parameters

1-channel data

Frame

2-channel data

Frame

4-channel data

Frame

n-channel data

Frame

L R L R

1 2 3 4

1 2 3 n. . .

Figure 8-1 Different Audio Sample Frames

Figure 8-1, page 82 shows the relationship between the number of channels and the
frame size of audio sample data.

82 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Audio Sample

Audio frame

1 2 3 4

Audio buffer

4 Audio Channels

T
im

e
pe

rio
d

T

Figure 8-2 Layout of an Audio Buffer with 4 Channels

Figure 8-2, page 83 shows the layout of an audio buffer in memory.

Audio Parameters
The parameters discussed in the following sections are as follows:

ML_AUDIO_BUFFER_POINTER Pointer to the audio buffer

ML_AUDIO_FRAMESIZE_INT32 Size of a audio sample frame in
bytes

ML_AUDIO_SAMPLE_RATE_REAL64 Sample rate in Hz

ML_AUDIO_PRECISION_INT32 Precision at audio jack

ML_AUDIO_FORMAT_INT32 Format of the data in the audio
buffer

ML_AUDIO_GAINS_REAL64_ARRAY Audio gain controls

ML_AUDIO_COMPANDING_INT32 Sample quantization method

ML_AUDIO_CHANNELS_INT32 Number of audio channels

007–4504–001 83

8: Audio Parameters

ML_AUDIO_COMPRESSION_INT32 Audio compression format

ML_AUDIO_BUFFER_POINTER

A pointer to the first byte of an in-memory audio buffer. The buffer address must
comply with the alignment constraints for buffers on the particular path to which it is
being sent. (See mlGetCapabilities(3ml) for details of determining alignment
requirements).

ML_AUDIO_FRAME_SIZE_INT32

The size of an audio sample frame in bytes. This is a read-only parameter and is
computed in the device using the current path control settings.

ML_AUDIO_SAMPLE_RATE_REAL64

The sample rate of the audio data in Hz. The sample rate is the frequency at which
samples are taken from the analog signal. Sample rates are measured in hertz (Hz). A
sample rate of 1 Hz is equal to one sample per second. For example, when a mono
analog audio signal is digitized at a 44.1 kilohertz (kHz) sample rate, 44,100 digital
samples are generated for every second of the signal. Values are dependent on the
hardware, but are usually between 8,000.0 and 96,000.0. Default is hardware-specific.
Common sample rates are:

8,000.0
16,000.0
32,000.0
44,100.0
48,000.0
96,000.0

The Nyquist theorem defines the minimum sampling frequency required to accurately
represent the information of an analog signal with a given bandwidth. According to
Nyquist, digital audio information is sampled at a frequency that is at least double
the highest interesting analog audio frequency. The sample rate used for
music-quality audio, such as the digital data stored on audio CDs is 44.1 kHz. A 44.1
kHz digital signal can theoretically represent audio frequencies from 0 kHz to 22.05
kHz, which adequately represents sounds within the range of normal human hearing.

84 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Higher sample rates result in higher-quality digital signals; however, the higher the
sample rate, the greater the signal storage requirement.

ML_AUDIO_PRECISION_INT32

The maximum width in bits for an audio sample at the input or output jack. For
example, a value of 16 indicates a 16-bit audio signal. Query only.
ML_AUDIO_PRECISION_INT32 specifies the precision at the Audio I/O jack, whereas
ML_AUDIO_FORMAT_INT32 specifies the packing of the audio samples in the audio
buffer. If ML_AUDIO_FORMAT_INT32 is different than
ML_AUDIO_PRECISION_INT32, the system will convert between the two formats.
Such a conversion might include padding and/or truncation.

ML_AUDIO_FORMAT_INT32

Specifies the format in which audio samples are stored in memory. The interpretation
of format values is:

ML_FORMAT_[type][bits]

• [type] is U for unsigned integer samples, S for signed (2’s compliment) integer
samples, R for real (floating point) samples.

• [bits] is the number of significant bits per sample.

For sample formats in which the number of significant bits is less than the number of
bits in which the sample is stored, the format of the values is:

ML_FORMAT_{type}{bits} in{size}{alignment}

• {size} is the total size used for the sample in memory, in bits.

• {alignment} is either R or L depending on whether the significant bits are right- or
left-shifted within the sample. For example, here are three of the most common
audio buffer formats:

ML_FORMAT_U8 7 char 0
+------+

iiiiiiii

ML_FORMAT_S16 15 short int 0

+--------------+

iiiiiiiiiiiiiiii

007–4504–001 85

8: Audio Parameters

ML_FORMAT_S24in32R 31 int 0
+------------------------------+

ssssssssiiiiiiiiiiiiiiiiiiiiiiii

where s indicates sign-extension, and i indicates the actual component information.
The bit locations refer to the locations when the 8–, 16–, or 32–bit sample has been
loaded into a register as an integer quantity. If the audio data compression parameter
ML_AUDIO_COMPRESSION_INT32 indicates that the audio data is in compressed
form, the ML_AUDIO_FORMAT_INT32 indicates the data type of the samples after
decoding. Common formats are:

ML_FORMAT_U8
ML_FORMAT_S16
ML_FORMAT_S24in32R
ML_FORMAT_R32

Default is hardware-specific.

ML_AUDIO_GAINS_REAL64_ARRAY

The gain factor in decibels (dB) on the given path. There will be a value for each
audio channel. Negative values represent attenuation. Zero represents no change of
the signal. Positive values amplify the signal. A gain of negative infinity indicates
infinite attenuation (mute).

ML_AUDIO_COMPANDING_INT32

Describes the quantization method of the audio sample value. For
ML_COMPANDING_MU_LAW and ML_COMPANDING_A_LAW, the output voltage changes
exponentially with linear sample values changes. The purpose of this method is to
use a wider dynamic volume range with the same number of sample bits.
Companding is a neologism that combines “compressing” and “expanding”. It is
different than Audio Compression, where a set of audio samples are compressed in
order to get a smaller file size.

Common values are:

ML_COMPANDING_NONE (default, if supported by the hardware)
ML_COMPANDING_MU_LAW
ML_COMPANDING_A_LAW

86 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_AUDIO_CHANNELS_INT32

The number of channels of audio data in the buffer. Multi-channel audio data is
always stored interleaved, with the samples for each consecutive audio channel
following one another in sequence. For example, a 4–channel audio stream will have
the form:

123412341234...

where 1 is the sample for the first audio channel, 2 is for the second, and so on.

Common values are:

ML_CHANNELS_MONO
ML_CHANNELS_STEREO
ML_CHANNELS_4
ML_CHANNELS_8

ML_AUDIO_COMPRESSION_INT32

In case the audio data is in compressed form, this parameter specifies the
compression format. The compression format may be an industry standard such as
MPEG-1 audio, or it may be no compression at all.

Common values include the following:

ML_COMPRESSION_UNCOMPRESSED
ML_COMPRESSION_MU_LAW
ML_COMPRESSION_A_LAW
ML_COMPRESSION_IMA_ADPCM
ML_COMPRESSION_MPEG1
ML_COMPRESSION_MPEG2
ML_COMPRESSION_AC3

When the data is uncompressed, the value of this parameter is
ML_COMPRESSION_UNCOMPRESSED.

Uncompressed Audio Buffer Size Computation
The following equation shows how to calculate the number of bytes for an
uncompressed audio buffer given the sample frame size, sampling rate and the time
period representing the audio buffer:

007–4504–001 87

8: Audio Parameters

N = F . R . T

where:

N audio buffer size in bytes

F the number of bytes per audio sample frame
(ML_AUDIO_FRAMESIZE_INT32)

R the sample rate in Hz
(ML_AUDIO_SAMPLE_RATE_REAL64)

T the time period the audio buffer represents in seconds

Example 8-1 Buffer Size Computation

If:

• F is 4 bytes (if packing is S16 and there are two channels)

• R (sample rate) is 44,100 Hz

• T = 40 ms = 0.04 s.

then the resulting buffer size (N) is 7056 bytes.

88 007–4504–001

Chapter 9

ML Processing

The ML library is concerned with two types of interfaces: Paths for digital media
through jacks into and out of the machine, and pipes for digital media to and from
transcoders. Both share common control, buffer, and queueing mechanisms. These
mechanisms are first described in the context of a complete program example.
Subsequently, the individual functions are presented.

ML Program Structure
ML programs are composed of the following structure. Each of the functions are
described later in this chapter (except where noted).

// get list of available mledia devices

mlGetCapabilities(systemid,);

// search the devices to find the desired jack, path, or xcode to open

// (See Chapter 7: ML Capabilities for function description)

mlGetCapabilities(deviceid, & capabilities);

// query the jack, path, or xcode to discover allowable open options and parameters

// (See Chapter 7: ML Capabilities for function description)
mlGetCapabilities(objectid, & capabilities);

// query for individual parameter characteristics

// (See Chapter 7: ML Capabilities for function description)

mlPvGetCapabilities(deviceid,& capabilities);

// free memory associated with any of the above get capabilities:

// (See Chapter 7: ML Capabilities for function description)

mlFreeCapabilities(capabilities);

// open a logical connection tomlhe desired object
mlOpen(objectId, options,);

// get and set any necessary immediate controls

mlGetControls(openid, controls);

mlSetControls(openid, controls);

007–4504–001 89

9: ML Processing

// send any synchronous controls
mlSendControls(openid, controls);

// pre-roll buffers

mlSendBuffers(openid, buffers);

// prepare for asynchronous processing by getting a wait handle

mlGetWaitHandle(openid,);

// start the path or xcode transferring

mlBeginTransfer(openid);

// perform synchronous work

mlXcodeWork(openid);

// check on the status of the queues

mlGetSendMessageCount(openid,);
mlGetReceiveMessageCount(openid,);

// process return messages

mlReceiveMessage(openid,);

// find specific returned parameters
mlPvFind(msg, param);

// repeat mlSendControls, mlSendBuffers, mlXcodeWork, etc. as required

// stop the transfer
mlEndTransfer(openid);

// close the logical connection

mlClose(openid);

// other useful functions:

mlGetVersion(,);

mlGetSystemUST(systemId,);

mlStatusName(status);

mlMessageName(messageType);

90 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

MLstatus Return Value
Note that all ML API functions return an MLstatus value. This provides a consistent
error checking interface. (Certain “Convenience Functions” do not adhere to this
standard.) See descriptions below. The various MLstatus return values are:

ML_STATUS_NO_ERROR

The operation succeeded without error.

ML_STATUS_NO_OPERATION

The function resulted in no operation.

ML_STATUS_OUT_OF_MEMORY

The operation was aborted due to lack of memory resources.

ML_STATUS_INVALID_ID

One of the arguments representing an ID is invalid.

ML_STATUS_INVALID_ARGUMENT

One of the arguments in the function call is invalid.

ML_STATUS_INVALID_VALUE

The value of a parameter is invalid.

ML_STATUS_INVALID_PARAMETER

The specified parameter (“param” field) is invalid for the requested operation.

ML_STATUS_INVALID_CONFIGURATION

Since control messages may be incomplete, and each individual set or send controls
may be valid, there exists a point in time where the processing of buffers must be
accomplished using those aggregate controls. If for some reason, the “combination of
controls” is invalid, the processing is aborted and the
ML_STATUS_INVALID_CONFIGURATION error (for mlSetControls) or the event
(for mlSendControls) is returned

ML_STATUS_RECEIVE_QUEUE_EMPTY

The receive queue was empty when an mlReceiveMessage function was processed.

ML_STATUS_SEND_QUEUE_OVERFLOW

007–4504–001 91

9: ML Processing

Too many mlSendControls and/or mlSendBuffers have been issued.

ML_STATUS_RECEIVE_QUEUE_OVERFLOW

The receive queue will not accept the return message if the current message is
enqueued on the send queue.

ML_STATUS_INSUFFICIENT_RESOURCES

Not all the resources required to complete the operation are available.

ML_STATUS_DEVICE_UNAVAILABLE

The requested device has become unavailable, possibly by being powered down or
removed from the system.

ML_STATUS_ACCESS_DENIED

The requested open access conflicts with a previous access already established or the
requested parameter cannot be modified during the current operation mode.

ML_STATUS_INTERNAL_ERROR

An operation was aborted due to a system or device I/O error.

Device States
For audio and video paths and transcoders, the device transitions through
well-known states, known as Device States. These states are listed below:

ML_DEVICE_STATE_READY

Indicates that the device is in a quiescent state and can accept messages, but will not
process them until it enters the ML_DEVICE_STATE_TRANSFERRING state.

ML_DEVICE_STATE_TRANSFERRING

Indicates that the device has accepted a mlBeginTRansfer and is now processing
messages.

ML_DEVICE_STATE_WAITING

Indicates that the device is currently waiting for an external event such as the
ML_WAIT_FOR_AUDIO_MSC_INT64 predicate control. Messages may still be
enqueued, but will not be processed until the wait condition is removed.

92 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_DEVICE_STATE_ABORTING

Indicates that the device has terminated message processing, usually by accepting a
mlEndTransfer. All messages remaining on the input queue will be flushed to the
output queue with the message type indicating that the message was aborted.
(ML_CONTROLS_ABORTED, ML_QUERY_CONTROLS_ABORTED, and
ML_BUFFERS_ABORTED.)

ML_DEVICE_STATE_FINISHING

Indicates that the device is terminating the transfer, but will complete processing of
the remaining messages in the input queue.

Opening a Jack, Path or Xcode
In order to communicate with a Jack, Path, or Xcode, a connection must be opened. A
physical device (e.g. a PCI card) may simultaneously support several such
connections. These connections are done by calling mlOpen:

MLstatus mlOpen (const MLint64 objectId, MLpv* options,MLopenid* openid);

objectId is the 64-bit unique identifier for the object (jack, path or transcoder) to be
opened. The parameters in options specify the initial configuration of the device to be
opened. These parameters are described in Table 10.1, where the string in the
Parameter column is a shortened form of the full parameter name. The full parameter
name is of the form ML_parameter_type, where parameter and type are the strings
listed in the Parameter and Type columns respectively. For example, the full
parameter name of OPEN_MODE is ML_OPEN_MODE_INT32.

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR

The call succeeded and the handle of the open instance of the object has been
returned in openid.

ML_STATUS_INVALID_ID

The argument objectid is invalid.

ML_STATUS_INVALID_ARGUMENT

007–4504–001 93

9: ML Processing

One of the arguments is otherwise invalid.

ML_STATUS_INVALID_PARAMETER

One of the parameters in the options list is invalid.

ML_STATUS_INVALID_VALUE

One of the parameters in the options list has an invalid value.

ML_STATUS_OUT_OF_MEMORY

Insufficient memory is available to perform the operation, including the space needed
to allocate the queues for messages between the application and the device.

ML_STATUS_INSUFFICIENT_RESOURCES

Some other required resource is not available, possibly by being already in use by this
or another application.

ML_STATUS_DEVICE_UNAVAILABLE

The requested device has gone off-line, possibly by being disconnected.

ML_STATUS_ACCESS_DENIED

The requested open access mode is not available.

ML_STATUS_INTERNAL_ERROR

An operating system error has occurred.

Jack Open Parameters

The following open parameters are supported when opening a jack.

94 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Table 9-1 Jack, mlOpen Options

Parameter Type Description

OPEN_MODE INT32 Application’s intended use for
the device. Defined values are:
ML_MODE_RO for read only
access. ML_MODE_RWS for shared
read/write access.
ML_MODE_RWE for exclusive
access.
The default is defined by the
device’s capabilities.

OPEN
_RECEIVE
_QUEUE_COUNT

INT32 Applications’ preferred size
(number of messages) for the
receive queue. This influences
the amount of memory allocated
for this queue when the device is
opened. Default is
device-dependent A null value
indicates that the application
does not expect to receive any
events from the jack.

OPEN
_EVENT
_PAYLOAD_COUNT

INT32 Application’s preferred size
(number of messages) for the
queue event payload area. This
payload area holds the contents
of event messages on the receive
queue. Default is device
dependent. A null value
indicates that the application
does not expect to receive any
events from the jack.

The ML_OPEN_OPTION_IDS_INT64_ARRAY returned by a mlGetCapabilities call
using the JACK ID, returns a list of these parameters. mlPvGetCapabilities can
then be used to discover allowable values.

007–4504–001 95

9: ML Processing

Path Open Parameters

The following open parameters are supported when opening a path: The
ML_OPEN_OPTION_IDS_INT64_ARRAY

Table 9-2 mlOpen Options

Parameter Type Description

OPEN_MODE INT32 Application’s intended use for
the device. Defined values are:
ML_MODE_RO for read only
access ML_MODE_RWS for shared
read/write access ML_MODE_RWE
for exclusive access.
The default is defined by the
device’s capabilities.

OPEN
_SEND
_QUEUE_COUNT

INT32 Application’s preferred size
(number of messages) for the
send queue. This influences the
amount of memory allocated for
this queue when the device is
opened. Default is
device-dependent.

OPEN
_RECEIVE
_QUEUE_COUNT

INT32 Applications’ preferred size
(number of messages) for the
receive queue. This influences
the amount of memory allocated
for this queue when the device
is opened. Default is
device-dependent

OPEN
_MESSAGE
_PAYLOAD_SIZE

INT32 Application’s preferred size (in
bytes) for the queue message
payload area. The payload area
holds messages on both the send
and receive queues. Default is
device-dependent.

96 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Parameter Type Description

OPEN
_EVENT
_PAYLOAD_COUNT

INT32 Application’s preferred size
(number of messages) for the
queue event payload area. This
payload area holds the contents
of event messages on the receive
queue. Default is
device-dependent.

OPEN
_SEND
_SIGNAL_COUNT

INT32 Application’s preferred
low-water level (number of
empty message slots) in the send
queue. When the device
dequeues a message and causes
the number of empty slots to
exceed this level, then the device
will signal the send queue event.
Default is device-dependent.

007–4504–001 97

9: ML Processing

Xcode Open Parameters

Table 9-3 mlOpen Options

Parameter Type Description

OPEN_MODE INT32 Application’s intended use for
the device. Defined values are:
ML_MODE_RO for read only
access ML_MODE_RWS for shared
read/write access
ML_MODE_RWE for exclusive
access.
The default is defined by the
device’s capabilities.

OPEN
_SEND
_QUEUE_COUNT

INT32 Application’s preferred size
(number of messages) for the
send queue. This influences the
amount of memory allocated for
this queue when the device is
opened. Default is
device-dependent.

OPEN
_RECEIVE
_QUEUE_COUNT

INT32 Applications’ preferred size
(number of messages) for the
receive queue. This influences
the amount of memory allocated
for this queue when the device
is opened. Default is
device-dependent

OPEN
_MESSAGE
_PAYLOAD_SIZE

INT32 Application’s preferred size (in
bytes) for the queue message
payload area. The payload area
holds messages on both the
send and receive queues.
Default is device-dependent.

98 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Parameter Type Description

OPEN
_EVENT
_PAYLOAD_COUNT

INT32 Application’s preferred size
(number of messages) for the
queue event payload area. This
payload area holds the contents
of event messages on the receive
queue. Default is
device-dependent.

OPEN
_SEND
_SIGNAL_COUNT

INT32 Application’s preferred
low-water level (number of
empty message slots) in the
send queue. When the device
dequeues a message and causes
the number of empty slots to
exceed this level, then the device
will signal the send queue event.
Default is device-dependent.

007–4504–001 99

9: ML Processing

Parameter Type Description

OPEN_XCODE_MODE INT32 Application’s preferred mode
for controlling a software
transcoder. This parameter does
not apply to paths.
Defined values are:
ML_XCODE_MODE_SYNCHRONOUS
when processing by a software
transcoder is to be initiated by
the application.
ML_XCODE_MODE_AYNCHRONOUS
when processing by a software
transcoder is to be initiated by
ML.
Default is
ML_XCODE_MODE_ASYNCHRONOUS.

OPEN_XCODE_STREAM INT32 Selects between single and
multi-stream transcoders. In
single stream mode, source and
destination buffers are processed
at the same rate.
In multi-stream mode, the
source and destination pipes
each have their own queue of
buffers and may run at different
rates (this is more complicated
to program, but may be more
efficient for some intra-frame
codecs). Defined values are:
ML_XCODE_STREAM_SINGLE
ML_XCODE_STREAM_MULTI
Default is
ML_XCODE_STREAM_SINGLE
In a future release,
ML_XCODE_STREAM_MULTI
transcoders will be
supported.

100 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Set Controls
Some controls on a logical connection are “asynchronous” in nature and do not affect
an ongoing data transfer. These controls may be set in an “out of band” message
using the mlSetControls operation:

MLstatus mlSetControls(MLopenid openid, MLpv* controls);

openid is the 64-bit unique identifier returned by the mlOpen function. The
controls parameter is a message containing various parameters as described elsewhere
in this document. Note that this call blocks until the device has processed the
message. To identify an invalid value specification, the device will set the length
component of the erroneous MLpv to -1, otherwise the controls array will not be
altered in any way and may be reused. The controls message is not enqueued on the
send queue but instead is sent directly to the device. The device will attempt to
process the message "as soon as possible".

Enqueueing entails a copy operation,

NOTES

This call returns as soon as the control array has been processed. This does not mean
that buffers have been affected by the parameter change. Rather, it means that the
parameters have been validated and sent to the device (i.e. in most cases this means
that they reside in registers).

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR

The control values were set successfully.

ML_STATUS_INVALID_ID

The specified openid is invalid.

ML_STATUS_INVALID_PARAMETER

At least one of the parameters in the controls array was not recognized (the first such
offending control will be marked with length -1, remaining controls will be skipped
and the entire message will be ignored).

ML_STATUS_INVALID_VALUE

007–4504–001 101

9: ML Processing

At least one of the parameters in the controls array has a value which is invalid. This
may be because the parameter value is outside the legal range, or it may be that
parameter value is inconsistent (the entire message will be ignored and the system
will attempt to flag the first offending value by setting the length to -1).

Get Controls
Control on a logical connection may be queried asynchronously to an ongoing
transfer:

MLstatus mlGetControls (MLopenid openid, MLpv* controls);

openid is the identifier, returned by mlOpen, of the jack, path, or transcoder whose
parameters are to be queried. The controls parameter is a message consisting of
parameters to be queried. The device will place its reply in the controls array
argument (overwriting existing values). Control values that were obtained
successfully will have non-negative lengths. GetControls returns the state of the
controls at the time the call is made. If GetControls is called before a control has
been explicitly set, then generally the returned value is undefined (exceptions are
noted in the definitions the controls, see ML_UST).

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR The control values were obtained successfully.

ML_STATUS_INVALID_ID The specified open device id is invalid.

ML_STATUS_INVALID_PARAMETER At least one of the parameters in the controls
array was not recognized (the offending control will be marked with length –1;
remaining controls will still be processed).

ML_STATUS_INVALID_VALUE At least one of the parameters in the controls array
has a value which is invalid (the offending control will be marked with length –1;
remaining controls will still be processed).

102 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Send Controls
Other controls on a logical connection are “synchronous” in nature and do affect the
processing of subsequent data buffers. These controls should be set in an “in band”
message using the mlSendControls operation:

MLstatus mlSendControls(MLopenid openid, MLpv* controls);

openid is the 64-bit unique identifier returned by the mlOpen function. The controls
parameter is a message containing various parameters as described in the preceding
chapters.

The mlSendControls sends a message containing a list of control parameters to a
previously-opened digital media device. These controls are enqueued on the send
queue in sequence with any other messages to that device. Any control changes are
thus guaranteed not to have any effect until all previously enqueued messages have
been processed.

This call returns as soon as the control change has been enqueued to the device. It
does not wait until the control change has actually taken effect.

All the control changes within a single message are considered occur atomically. If
any one control change in the message fails, then the entire message has no effect. A
successful return does not guarantee that resources will be available to support the
requested control change at the time it is processed by the device.

As each message is processed by the device, a reply message will be enqueued for
return to the application. By examining that reply, the application may obtain the
result of attempting to process the requested controls. Note that a device may take an
arbitrarily long time to generate a reply (it may, for example, wait for several
messages before replying to the first). If an application requires an immediate
response, consider using the set controls operation instead.

Enqueueing entails a copy operation, so the application is free to delete/alter the
message array as soon as the call returns. Any error return value indicates the control
change has not been enqueued and will thus have no effect.

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR

The control values were set successfully.

007–4504–001 103

9: ML Processing

ML_STATUS_INVALID_ID

The specified openid is invalid.

ML_STATUS_SEND_QUEUE_OVERFLOW

There was not enough space on the path send queue for this latest message. Try
again later after the device has had time to catch up, or specify a larger send queue
size on open.

ML_STATUS_RECEIVE_QUEUE_OVERFLOW

There is not currently enough space on the receive queue to hold the reply to this
message. Read some replies from the receive queue and then try to send again, or
specify a larger receive queue size on open.

ML_STATUS_INVALID_PARAMETER

At least one of the parameters in the controls array was not recognized (the first such
offending control will be marked with length -1, remaining controls will be skipped
and the entire message will be ignored).

ML_STATUS_INVALID_VALUE

At least one of the parameters in the controls array has a value which is invalid. This
may be because the parameter value is outside the legal range, or it may be that
parameter value is inconsistent (the entire message will be ignored and the system
will attempt to flag the first offending value by setting the length to -1).

RETURN EVENT

The event returned from processing a mlSendControls may be one of the following:

ML_CONTROLS_COMPLETE

The controls were processed without error.

ML_CONTROLS_ABORTED

The processing of the controls were aborted due to another asynchronous event, such
as the mlEndTransfer function was requested.

ML_CONTROLS_FAILED

The processing of the controls failed because the values were not accepted at the time
of processing.

104 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Send Buffers
This function sends a message containing a list of buffers to a previously-opened
digital media device. These buffers are enqueued on the send queue in sequence with
any other messages to that device. All the buffers within a single message are
considered to apply to the same point in time. For example, a single buffers message
could contain image, audio, HANC and VANC buffers, each specified with its own
buffer parameter in the buffers message.

MLstatus mlSendBuffers(MLopenid openid, MLpv* buffers);

openid refers to a previously-opened logical connection as returned from mlOpen,
while buffers is a message containing a list of buffer parameters.

As each message is processed by the path, a reply message will be enqueued for
return to the application. By examining that reply, the application may obtain the
result of attempting to process the buffers.

A successful return value from the mlSendBuffers guarantees only that the requested
buffers have been enqueued to the device. Any error return value indicates the
buffers have not been enqueued and will thus have no effect.

The memory for the buffers is designated by the POINTER value, and is always
owned by the application. However, after a buffer has been sent, it is on loan to the
system and must not be touched by the application. After the buffer has been returned
via ReceiveMessage, then the application is again free to delete and/or modify it.

When sending a buffer to be output, the application must set the buffer length to
indicate the number of valid bytes in the buffer. In this case maxLength is ignored
by the device (it doesn’t matter how much larger the buffer may be, since the device
won’t read past the last valid byte).

When sending a buffer to be filled (on input) the application must set the buffer
maxLength to indicate the maximum number of bytes which may be written by the
device to the buffer. As the device processes the buffer, it will write no more than the
maxLength bytes and then set the returned length to indicate the last byte written.
The maxLength is returned without change. It is acceptable to send the same buffer
multiple times.

Enqueueing entails a copy operation, so the application is free to delete/alter the
message array as soon as the call returns. Any error return value indicates that the
buffer has not been enqueued and will thus have no effect.

STATUS RETURN

007–4504–001 105

9: ML Processing

This function returns one of the following:

ML_STATUS_NO_ERROR

The buffers message was enqueued successfully.

ML_STATUS_INVALID_ID

The specified openid is invalid.

ML_STATUS_SEND_QUEUE_OVERFLOW

There was not enough space on the path send queue for this latest message. Try
again later after the device has had time to catch up, or specify a larger send queue
size on open.

ML_STATUS_RECEIVE_QUEUE_OVERFLOW

There is not currently enough space on the receive queue to hold the reply to this
message. Read some replies from the receive queue and then try to send again, or
specify a larger receive queue size on open.

ML_STATUS_INVALID_PARAMETER

At least one of the parameters in the message was not recognized (the first such
offending control will be marked with length -1, remaining controls will be skipped
and the entire message will be ignored).

ML_STATUS_INVALID_VALUE

At least one of the parameters in the message has a value which is invalid. This may
be because the parameter value is outside the legal range, or it may be that parameter
value is inconsistent (the entire message will be ignored and the system will attempt
to flag the first offending value by setting the length to -1).

RETURN EVENT

The event returned from processing a mlSendControls may be one of the following:

ML_BUFFERS_COMPLETE

The buffers were processed without error.

ML_BUFFERS_ABORTED

The processing of the buffers was aborted due to another asynchronous event, such as
the mlEndTransfer function was requested.

106 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

ML_BUFFERS_FAILED

The processing of the buffers failed because the values were not accepted at the time
of processing. This can occur both because parameters in the buffers message were
invalid or due to the current control settings at the time of processing (because of
previous mlSendControls messages), the processing of buffers would be invalid.
Since preceding control messages may be incomplete, and each of the individual set
or send controls may be valid, there still exists a point in time where the processing of
buffers must be accomplished using those aggregate controls. If for some reason, the
“combination of controls” is invalid, the processing is aborted and the event
ML_BUFFERS_FAILED is returned.

Query Controls
To obtain the control values on a logical connection that are synchronous via an “in
band” message, use the mlQueryControls operation:

MLstatus mlQueryControls(MLopenid openid, MLpv* controls);

openid is the 64-bit unique identifier returned by the mlOpen function. The controls
parameter is a message containing various parameters as described in the preceding
chapters.

The mlQueryControls sends a message containing a list of control parameters to a
previously-opened digital media device. These controls are enqueued on the send
queue in sequence with any other messages to that device. The control values
returned are thus guaranteed to reflect any and all previously enqueued
mlSendControls messages that have been processed.

This call returns as soon as the message has been enqueued to the device. It does not
wait until the control value is available.

As each message is processed by the device, a reply message will be enqueued for
return to the application. By examining that reply, the application may obtain the
result of attempting to process the requested controls. Note that a device may take an
arbitrarily long time to generate a reply (it may, for example, wait for several
messages before replying to the first). If an application requires an immediate
response, consider using the get controls operation instead.

Enqueueing entails a copy operation, so the application is free to delete/alter the
message array as soon as the call returns. Any error return value indicates the control
change has not been enqueued and will thus have no effect.

007–4504–001 107

9: ML Processing

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR

The control values were set successfully.

ML_STATUS_INVALID_ID

The specified openid is invalid.

ML_STATUS_SEND_QUEUE_OVERFLOW

There was not enough space on the path send queue for this latest message. Try
again later after the device has had time to catch up, or specify a larger send queue
size on open.

ML_STATUS_RECEIVE_QUEUE_OVERFLOW

There is not currently enough space on the receive queue to hold the reply to this
message. Read some replies from the receive queue and then try to send again, or
specify a larger receive queue size on open.

ML_STATUS_INVALID_PARAMETER

At least one of the parameters in the controls array was not recognized (the first such
offending control will be marked with length -1, remaining controls will be skipped
and the entire message will be ignored).

RETURN EVENT

The event returned from processing a mlQueryControls may be one of the
following:

ML_QUERY_CONTROLS_COMPLETE

The query controls were processed without error.

ML_QUERY_CONTROLS_ABORTED

The processing of the query controls were aborted due to another asynchronous
event, such as the mlEndTransfer function was requested.

108 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Get Wait Handle
When processing a number of digital media streams asynchronously, there exists a
need for the application to know when processing is required on each individual
stream. The mlGetSendWaitHandle and mlGetReceiveWaitHandle functions are
provided to facilitate this processing:

MLstatus mlGetSendWaitHandle(MLopenid openid, MLwaitable* WaitHandle);

MLstatus mlGetReceiveWaitHandle(MLopenid openid, MLwaitable* WaitHandle);

The openid is a previously-opened digital media object as returned by a mlOpen call
and the WaitHandle is the requested returned wait handle. This function returns an
event handle on which an application may wait. On IRIX, UNIX and Linux,
MLwaitable is a file descriptor for use in select(). On Windows, MLwaitable is a
HANDLE which may be used in the win32 functions WaitForSingleDevice or
WaitForMultipleDevices.

The send queue handle is signaled whenever the device dequeues a message and the
message count drops below a preset level (set by the parameter
ML_OPEN_SEND_SIGNAL_COUNT specified when the object was opened). Thus, if the
send queue is full, an application may wait on this handle for notification that space
is available for additional messages.

The receive queue handle is signaled whenever the device enqueues a reply message.
Thus, if the receive queue is empty, the application may wait on this handle for
notification that additional reply messages are ready.

The returned handles were created when the device was opened and are
automatically destroyed when the path is closed.

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR

The wait handle was obtained successfully.

ML_STATUS_INVALID_ID

The specified open device handle is invalid.

007–4504–001 109

9: ML Processing

Begin Transfer
mlBeginTransfer starts the actual transferring of buffers to the logical media
connection:

MLstatus mlBeginTransfer (MLopen id openid);

The openid is a previously-opened digital media object as returned by an mlOpen
call.

This function begins a continuous transfer on the specified Path or Xcode. It is not
used on a logical connection to a Jack. This call advises the device to begin processing
buffers and returning messages to the application. As stated earlier, sending a buffer
to a device that has not yet begun transfers will cause the send queue to stall until the
transfers have started. Typically applications will open a device, send several buffers
and then call mlBeginTransfer. This call returns as soon as the device has begun
processing transfers. It does not block until the first buffer has been processed. It is
an error to call this function more than once without an intervening call to
mlEndTransfer.

NOTES

The delay between a call to mlBeginTransfer and the transfer of the first buffer is
implementation-dependent. To begin sending data at a particular time, an application
should start the transfer early (enqueueing blank buffers) and use the UST/MSC
mechanism to synchronize the start of real data.

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR

The device agreed to begin transfer on the path.

ML_STATUS_INVALID_ID

The specified open device id is invalid.

ML_STATUS_NO_OPERATION

The call had no effect (transfers have already been started).

110 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

XCode Work
For software-only transcoders opened with the ML_XCODE_MODE_INT32 open option
set to ML_XCODE_MODE_SYNCHRONOUS, this function allows an application to control
exactly when (and in which thread) the processing for that codec takes place.

MLstatus mlXcodeWork(MLopenid openid);

openid refers to a previously-opened digital media transcoder. This function
performs one unit of processing for the specified codec. The processing is done in the
thread of the calling process, and the call does not return until the processing is
complete. For most codecs a "unit of work" is the processing of a single buffer from
the source queue and the writing of a single resulting buffer on the destination queue.

Note: Note - the default behavior for all codecs is for processing to happen
automatically as a side effect of enqueueing messages to the device. This function
only applies to software codecs and only applies if they are opened with the
ML_XCODE_MODE_SYNCHRONOUS open option.

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR

The software transcoder performed one unit of work successfully.

ML_STATUS_INVALID_ID

The specified openid is invalid.

ML_STATUS_NO_OPERATION

There was no work to be done.

RETURN EVENTS

There are no return events associated with this function.

007–4504–001 111

9: ML Processing

Get Message Count
During the processing of messages it is sometimes necessary to inquire as to the
“fullness” of the message queues. These functions provide that capability:

MLstatus mlGetSendMessageCount (MLopenid openid, MLint32* messageCount);

MLstatus mlGetReceiveMessageCount (MLopenid openid, MLint32* messageCount);

openid is a previously-opened digital media object returned by mlOpen.
MessageCount is the resulting returned count.

These functions return a count of the number of messages in the send or receive
queues of a device. The send queue contains messages queued by the application for
processing by the device while the receive queue holds messages which have been
processed and are waiting to be read by the application. A message is considered to
reside in the send queue from the moment it is enqueued by the application until the
moment the device begins processing it. A message resides in the receive queue from
the moment the device enqueues it, until the moment the application dequeues the
corresponding reply message (all messages in the receive queue are counted,
regardless of whether or not they were successfully processed). The message counts
are intended to aid load-balancing in sophisticated applications. They are not a
reliable method for predicting UST/MSC pairs.

Some devices can begin processing one or more following messages before the first
has been completed. Thus, the sum of the send and receive queue counts may be less
than the difference between the number of messages which have enqueued and
dequeued by the application. Note also that the time lag between a message being
removed from the send queue, and the time at which it affects data passing though a
physical jack, is implementation dependent. The message counts are not a reliable
method for timing or synchronizing media streams.

STATUS RETURN

This function returns one of the following: ML_STATUS_NO_ERROR

The message count was obtained successfully.

ML_STATUS_INVALID_ID

The specified open device id is invalid.

112 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Receive Messsage
In order for applications to obtain the results of previous digital media requests, the
mlReceiveMessage function is used.

MLstatus mlReceiveMessage(MLopenid openid, MLint32* messageType, MLpv *reply);

openid is a previously-opened digital media object. messageType is an integer to
be filled in by the device, indicating the type of message received. reply is a pointer
to the head of the reply message.

This function reads the oldest message from the receive queue. The receive queue
holds reply messages sent from a digital media device back to an application.

Messages on the receive queue may be the result of processing a message sent with
mlSendControls, or they may result from processing a message sent with
mlSendBuffers, or they may be generated spontaneously by the device to advise
the application of some exceptional event.

Each message sent with an mlSendBuffers or mlSendControls generates a single
reply message with messageType indicating whether or not the message was
processed successfully and a pointer to a list of parameters holding the reply.

The contents of the reply array are guaranteed to remain valid until the next call to
mlReceiveMessage. It is acceptable for an application to modify the reply and then
send it to the same or to another device by calling mlSendControls or
mlSendBuffers.

Note that, on some devices, triggering of the receive wait handle does not guarantee
that a message is waiting on the receive queue. Thus applications must accept a
status return of ML_STATUS_RECEIVE_QUEUE_EMPTY from an mlReceiveMessage
function.

Get Returned Parameters
In returned messages, the application often wants to query specific parameters. The
mlPvFind convenience function is provided for this use;

MLpv* mlPvFind(MLpv* msg, MLint64 param);

Msg is a message for which the parameter being searched is to be found. The param
argument is the parameter that is being searched.

007–4504–001 113

9: ML Processing

End Transfer
For an application to invoke an orderly shutdown of a digital media stream, the
mlEndTransfer function should be issued.

openid is a previously-opened digital media object.

This function ends a continuous transfer on the specified path or transcoder. This call
advises the device to stop processing buffers and aborts any remaining messages on
its input queue. This is a blocking call. It does not return until transfers have stopped
and any messages remaining on the device input queue have been aborted and
flushed to the device output queue. Calling mlEndTransfer on a device which has
not begun transfers is legal (it still causes the queue to be flushed). Any messages
which are flushed will be marked to indicate they were aborted. Buffer messages are
marked ML_BUFFERS_ABORTED, while controls messages are marked
ML_CONTROLS_ABORTED.

STATUS RETURN

ML_STATUS_NO_ERROR

The device agreed to end transfer on the path.

ML_STATUS_INVALID_ID

The specified open device handle is invalid.

Close Processing
After an application is finished with a digital media connection, it should terminate
that connection. The mlClose function is provided for that use. Note that an
mlClose is implied if an application terminates (for any reason) before an mlClose
function is called. A previously opened digital media object can be closed using:

MLstatus mlClose(MLopenid openid);

openid is the handle of the device to be closed. When a digital media object is
closed, all messages in the message queues of the device are discarded. The device
handle openid becomes invalid; any subsequent attempt to use it to refer to the
closed object will result in an error.

114 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

mlClose returns ML_STATUS_INVALID_ID if openid is invalid. Otherwise it returns
ML_STATUS_NO_ERROR after the device has been closed and associated resources
have been freed.

The pipes opened as a side-effect of opening a transcoder are also closed as a
side-effect of closing a transcoder. Pipes should not be closed explicitly.

Utility Functions
There are a number of other useful functions available in the ML API. They are
described here.

Get Version

MLstatus mlGetVersion(MLint32 majorVersion, MLint32 minorVersion);

Use to obtain the version number for the OpenML Media Library Library. The major
version number is the first digit in the version. For example, the 1.0 release will have
a major number of 1 and a minor number of 0. Changes in major numbers indicate a
potential incompatibility, while changes in minor numbers indicate small
backward-compatible enhancements. Within a particular major version, all the minor
version numbers will start at 0 and increase monotonically. Note that this is the
version number of the ML core library, the version numbers for device-dependent
modules are available in the capabilities list for each physical device.

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR

The version numbers were obtained successfully.

ML_STATUS_INVALID_ARGUMENT

At least one of the pointers passed in is invalid.

Status Name

const char *mlStatusName(MLstatus status);

007–4504–001 115

9: ML Processing

Intended mainly as an aid in debugging, this call converts the integer ML status value
into a C string. The converted string is exactly the same as the status enum. value.
For example, the value ML_STATUS_NO_ERROR, is converted to the string
‘‘ML_STATUS_NO_ERROR’’.

FUNCTION RETURN

This function returns a valid C string, or NULL if the status value is invalid.

Message Name

const char *mlMessageName(MLint32 messageType);

Intended mainly as an aid in debugging, this call converts the integer ML message
type into a C string. The converted string is exactly the same as the message enum
values. For example, the value ML_CONTROLS_FAILED, is converted to the string
"ML_CONTROLS_FAILED".

FUNCTION RETURN

This function returns a valid C string, or NULL if the message value is invalid.

MLpv String Conversion Routines

MLstatus mlPvValueToString(MLint64 objectId, MLpv* pv, char* buffer, MLint32* bufferSize);

MLstatus mlPvParamToString(MLint64 objectId, MLpv* pv,char* buffer, MLint32* bufferSize);

MLstatus mlPvToString(MLint64 objectId, MLpv* pv, char* buffer, MLint32* bufferSize);
MLstatus mlPvValueFromString(MLint64 objectId, const char* buffer,MLint32* bufferSize,

MLpv* pv, MLbyte* arrayData, MLint32 arraySize);

MLstatus mlPvParamFromString(MLint64 objectId, const char* buffer, MLint32* size, MLpv* pv);

MLstatus mlPvFromString(MLint64 objectId, const char* buffer, MLint32* bufferSize, MLpv* pv,

MLbyte* arrayData, MLint32 arraySize);

Parameter

objectID is the 64–bit ID number for the digital media library on which the parameter
is interpreted.

pv is a pointer to the MLpv for use in the conversion.

buffer is a pointer to a buffer to hold the string.

116 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

bufferSize initially contains the size of the buffer (in bytes). Upon completion, this is
overwritten with the actual number of bytes processed.

arrayData is a pointer to a buffer to hold any array data resulting from the conversion.

arraySize initially contains the size of the array buffer (in bytes).

Description

These routines convert between MLpv param/value pairs and strings. They are of
benefit to applications writing lists of parameters to/from files, but are most
commonly used as an aid to debugging.

These routines make use of the parameter capability data (see
mlPvGetCapabilities) to generate and interpret human-readable ASCII strings.

mlPvParamToString converts pv->param into a string. The resulting value for
bufferSize is the length of the string (excluding the terminating ’\0’).

mlPvValueToString converts pv->value into a string. The resulting value for
bufferSize is the length of the string (excluding the terminating ’\0’).

mlPvToString converts the MLpv into a string. It writes the parameter name and
value separated by ’=’. The resulting value for bufferSize is the length of the string
(excluding the terminating ’\0’).

mlPvParamFromString interprets a string as a parameter name and writes the
result in pv->param. It expects the string was created by mlPvParamToString.

mlPvValueFromString interprets a string as the value of a MLpv and writes the
result in pv->value. It expects the string was created by mlPvValueToString. For
scalar parameters, the result is returned in the value field of the MLpv structure and
the array arguments are not used. For array parameters, additional space is required
for the result. In this case, the contents of the array are returned inside the arrayData
buffer and arraySize is set to indicate the number of bytes written.

mlPvFromString interprets a string as a MLpv. It expects the string was created by
mlPvToString.

Note that the interpretation of a param/value pair depends on the parameter, its
value, and the device on which it will be used. Thus, all these functions require both
a param/value pair and a 64-bit device identifier. That identifier may be a static id
(obtained from a call to mlGetCapabilities), it may be the open id of a jack, path

007–4504–001 117

9: ML Processing

or transcoder (obtained from a call to mlOpen), or it may be the id of an open pipe
(obtained by calling mlXcodeGetOpenPipe).

Status Return

These functions return one of the following status codes:

ML_STATUS_NO_ERROR

The conversion was performed successfully.

ML_STATUS_INVALID_ID

The specified id is invalid.

ML_STATUS_INVALID_ARGUMENT

The arguments could not be interpreted correctly. Perhaps the bufferSize or arraySize
is too small to hold the result of the operation.

ML_STATUS_INVALID_PARAMETER

The parameter name is invalid. When converting to a string, the parameter name was
not recognized on this device. When converting from a string, the string could not be
interpreted as a valid parameter for this device.

ML_STATUS_INVALID_VALUE

The parameter value is invalid. When converting to a string, the parameter value was
not recognized on this device. When converting from a string, the string could not be
interpreted as a valid parameter value for this device.

Examples
This example prints the interpretation of a video timing parameter by a
previously-opened video path. Note that the calls could fail if that path did not
accept the particular timing value we have chosen here. Note also that, since the
interpretation is coming from the device, this will work for device-specific parameters.

char buffer[200]; MLpv control;

control.param = ML_VIDEO_TIMING_INT32; control.value =
ML_TIMING_1125_1920x1080_5994i;

118 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

mlPvParamToString(someOpenPath, &control;, buffer, sizeof(buffer));
printf("control.param is %s\n", buffer);

mlPvValueToString(someOpenPath, &control;, buffer, sizeof(buffer));

printf("control.value is %s\n", buffer);

mlPvToString(someOpenPath, &control;, buffer, sizeof(buffer));

printf("control is %s\n", buffer);

The output created by this example would be:

control.param is ML_VIDEO_TIMING_INT32 control.value is
ML_TIMING_1125_1920x1080_5994i control is ML_VIDEO_TIMING_INT32 =
ML_TIMING_1125_1920x1080_5994i

007–4504–001 119

Chapter 10

Synchronization

This chapter describes ML support for synchronizing digital media streams. The
described techniques are designed to enable accurate synchronization even when
there are large (and possibly unpredictable) processing delays.

UST
To timestamp each media stream, some convenient representation for time is needed.
In ML, time is represented by the value of the Unadjusted System Time (UST)
counter. That counter starts 0 when the system is reset, and increases continuously
(without any adjustment) while the system is running.

Each process and/or piece of hardware may have its own view of the system UST
counter. That view is an approximation to the real system UST counter. The
difference between any two views is bounded for any implementation.

Each UST timestamp is a signed 64-bit integer value with units of nanoseconds
representing a recent view of the system UST counter. A current view of the system
UST is obtained by using the mlGetSystemUST function call.

MLstatus mlGetSystemUST(MLint64 systemId, MLint64* ust);

Currently systemId must be ML_SYSTEM_LOCALHOST, otherwise the status
ML_STATUS_INVALID_ID is returned. The resulting UST value is placed at the
address UST. The status ML_STATUS_INVALID_ARGUMENT is returned if UST is
invalid. The status ML_STATUS_NO_ERROR is returned on a successful execution.

Get System UST

MLstatus mlGetSystemUST(systemId,);

Use to obtain the current UST (Universal System Time) on a particular system. At this
time, the only legal system id is ML_SYSTEM_LOCALHOST.

STATUS RETURN

This function returns one of the following:

ML_STATUS_NO_ERROR

007–4504–001 121

10: Synchronization

The system UST was obtained successfully.

ML_STATUS_INVALID_ID

The specified systemid is invalid.

ML_STATUS_INVALID_ARGUMENT

The UST was not returned successfully (perhaps an invalid pointer?).

UST/MSC/ASC Parameters

Basic support for synchronization requires that the application know exactly when
video or audio buffers passed through a jack. In ML this is achieved with the
UST/MSC buffer parameters:

ML_AUDIO_UST_INT64, ML_VIDEO_UST_INT64

The unadjusted system time (UST) is the timestamp for the most recently processed
slot in the audio/video stream. For video devices, the UST time corresponds to the
time at which the field/frame starts to pass through the jack. For audio devices, the
UST time corresponds to the time at which the first sample in the buffer passed
through the jack.

Typically, an application will pass mlSendBuffers a video message containing a
ML_IMAGE_BUFFER, a ML_VIDEO_MSC and a ML_VIDEO_UST (and possibly an
ML_VIDEO_ASC - see below), or an audio message containing a
ML_AUDIO_IMAGE_POINTER, a ML_AUDIO_UST, and a ML_AUDIO_MSC. In some
cases, a message can contain both audio and video parameters.

Each message is processed as a single unit, and a reply is returned to the application
via mlReceiveMessage. That reply will contain the completed buffer and the
UST/MSC(/ASC) corresponding to the time at which the data in the buffers passed in
or out of the jack. Note that, due to hardware buffering on some cards, it is possible to
receive a reply message before the data has finished flowing through an output jack.

ML_AUDIO_MSC_INT64, ML_VIDEO_MSC_INT64

The media stream count (MSC) is the most recently processed slot in the audio/video
stream. This is snapped at the same instant as the UST time described above. Note
that MSC increases by one for each potential slot in the media stream through the
jack. For interlaced video timings, each slot contains one video field, for progressive
timings, each slot contains one video frame. This means that when 2 fields are
interlaced into one frame and sent as one buffer, then the MSC will increment by 2

122 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

(one for each field). Furthermore, the system guarantees that the least significant bit
of the MSC will reflect the state of the Field Bit, being 0 for Field 1 and 1 for Field 2.
For audio, each slot contains one audio frame.

ML_AUDIO_ASC_INT64, ML_VIDEO_ASC_INT64

The application stream count (ASC) is provided to aid the developer in predicting
when the audio or video data will pass through an output jack. See the “UST/MSC
for Output” section below for further information on the use of the ASC parameter.

UST/MSC Example

For example, here we send an audio buffer and video buffer to an I/O path and
request both UST and MSC stamps:

MLpv message[7];

message[0].param = ML_IMAGE_BUFFER_POINTER;
message[0].value.pByte = someImageBuffer;

message[0].length = sizeof(someImageBuffer);

message[0].maxLength = sizeof(someImageBuffer);

message[1].param = ML_VIDEO_UST_INT64;

message[2].param = ML_VIDEO_MSC_INT64;

message[3].param = ML_AUDIO_BUFFER_POINTER;
message[3].value.pByte = someAudioBuffer;

message[3].length = sizeof(someAudioBuffer);

message[3].maxLength = sizeof(someAudioBuffer);

message[4].param = ML_AUDIO_UST_INT64;

message[5].param = ML_AUDIO_MSC_INT64;
message[6].param = ML_END;

mlSendBuffers(device, message);

After the device has processed the buffers, it will enqueue a reply message back to
the application. That reply will be an exact copy of the message sent in, with the
exception that the MSC and UST values will be filled in. (For input, the buffer
parameter length will also be set to the number of bytes written into it). Note that a
mlSendBuffers call can only have one ML_IMAGE_BUFFER_POINTER.

UST/MSC For Input

On input the application can detect if any data is missing by looking for breaks in the
MSC sequence. This could happen if an application did not provide buffers fast
enough to capture all of the signal which arrived at the jack. (An alternative to

007–4504–001 123

10: Synchronization

looking at the MSC numbers, is to turn on the events ML_AUDIO_SEQUENCE_LOST or
ML_VIDEO_SEQUENCE_LOST. Those will fire whenever the queue from application to
device overflows.)

Given the UST/MSC stamps for two different buffers (UST1,MSC1) and
(UST2,MSC2), the input sample rate in samples per nanosecond can be computed as:

sampleRate=
(MSC2�MSC1)

UST2� UST1

Equation 10-1

One common technique for synchronizing different input streams is to start recording
early, stop recording late, and then use the UST/MSC stamps in the recorded data to
find exact points for trimming the input data.

An alternative way to start recording several streams simultaneously is to use
predicate controls (see later).

UST/MSC For Output

On output, the actual output sample rate can be computed in exactly the same way as
the input sample rate:

sampleRate
(MSC2�MSC1)

(UST2 � UST1)

Equation 10-2

Some applications must determine exactly when the next buffer sent to the device
will actually go out the jack. Doing this requires two steps. First, the application must
maintain its own field/frame count. This parameter is called the ASC. The ASC may
start at any desired value and should increase by one for every audio frame or video
field enqueued. (For convenience, the application may wish to associate the ASC with
the buffer by embedding it in the same message. The parameters
ML_AUDIO_ASC_INT32 and ML_VIDEO_ASC_INT32 are provided for this use.)

Now, assume the application knows the (UST,MSC,ASC) for two previously-output
buffers, then the application can detect if there was any underflow by comparing the
number of slots the application thought it had output, with the number of slots which
the system actually output.

if (ASC2 - ASC1) == (MSC2 - MSC1) then all is well.

124 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

Assuming all is well, and that the application knows the current ASC, then the next
data the application enqueues may be predicted to have a system sequence count of:

currentMSC = currentASC + (MSC2�ASC2)

Equation 10-3

and may be predicted to hit the output jack at time:

currentUST = UST 2+
(currentASC �ASC2)

sampleRate

Equation 10-4

Note that the application should periodically recompute the actual sample rate based
on measured MSC/UST values. It is not sufficient to rely on a nominal sample rate
since the actual rate may drift over time.

So, in summary: given the above mechanism, the application knows the UST/MSC
pair for every processed buffer. Using the UST/MSC’s for several processed buffers
we can compute the frame rate. Given a UST/MSC pair in the past, a prediction of
the current MSC, and the frame rate, the application can predict the UST at which the
next buffer to be enqueued will hit the jack.

Predicate Controls

Predicate controls allow an application to insert conditional commands into the queue
to the device. Using these we can pre-program actions, allowing the device to respond
immediately, without needing to wait for a round-trip through the application.

Unlike the UST/MSC timestamps, predicate controls are not required to be supported
on all audio/video devices. To see if they are supported on any particular device,
look for the desired parameter in the list of supported parameters on each path (see
mlGetCapabilities). The simplest predicate controls are:

ML_WAIT_FOR_AUDIO_MSC_INT64 and

ML_WAIT_FOR_VIDEO_MSC_INT64

When the message containing this control reaches the head of the queue it causes the
queue to stall until the specified MSC value has passed. Then that message, and
subsequent messages, are processed as normal.

007–4504–001 125

10: Synchronization

For example, here is code that uses WAIT_FOR_AUDIO_MSC to send a particular
buffer out after a specified stream count:

MLpv message[3];

message[0].param = ML_WAIT_FOR_AUDIO_MSC_INT64;

message[0].value.int64 = someMSCInTheFuture;

message[1].param = ML_AUDIO_BUFFER_POINTER;
message[1].value.pByte = someBuffer;

message[1].value.length = sizeof(someBuffer);

message[2].param = ML_END;

mlSendBuffers(someOpenPath, message);

This places a message on the queue to the path and then immediately returns control
to the application. As the device processes that message, it will pause until the
specified media MSC value has passed before allowing the buffer to flow through the
jack.

Using this technique an application can program several media streams to start
in-sync by simply choosing some MSC count to start in the future.

Note: If both ML_IMAGE_DOMINANCE and ML_WAIT_FOR_VIDEO_MSC controls are
set and do not correspond to the same starting output field order, the
ML_WAIT_FOR_VIDEO_MSC_INT64 control will override
ML_IMAGE_DOMINANCE_INT32 control settings.

Another set of synchronization predicate controls are:

ML_WAIT_FOR_AUDIO_UST_INT64 and ML_WAIT_FOR_VIDEO_UST_INT64

When the message containing this control reaches the head of the queue it causes the
queue to stall until the specified UST value has passed. Then that message, and
subsequent messages, are processed as normal. Note that the accuracy with which the
system is able to implement the WAIT_FOR_UST command is device-dependent - see
device-specific documentation for limitations. For example, here is code that uses
WAIT_FOR_AUDIO_UST to send a particular buffer out after a specified time:

MLpv message[3];

message[0].param = ML_WAIT_FOR_AUDIO_UST_INT64;

message[0].value.int64 = someUSTtimeInTheFuture;

message[1].param = ML_AUDIO_BUFFER_POINTER;

message[1].value.pByte = someBuffer;

message[1].value.length = sizeof(someBuffer);

126 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

message[2].param = ML_END;
mlSendBuffers(someOpenPath, message);

This places a message on the queue to the path and then immediately returns control
to the application. As the device processes that message, it will pause until the
specified video UST time has passed before allowing the buffer to flow through the
jack.

Using this technique an application can program several media streams to start
in-sync by simply choosing some UST time in the future and program each to start at
that time.

ML_IF_VIDEO_UST_LT or

ML_IF_AUDIO_UST_LT

When included in a message, this control will cause the following logical test: if the
UST is less than the specified time, then the entire message is processed as normal.
Otherwise, the entire message is simply skipped.

Regardless of the outcome, any following messages are processed as normal.
Skipping over a message takes time, so there is a limit to how many messages a
device can skip before the delay starts to become noticeable. All media devices will
support skipping at least one message without noticeable delay.

007–4504–001 127

Appendix A

Pixels in Memory

This appendix provides examples of the more common in-memory pixel formats,
along with their corresponding ML parameters.

Greyscale Examples

8–bit greyscale (1 byte per pixel)

byte 0

7 0
+------+

YYYYYYYY

Parameters:

• ML_PACKING_8

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_400

Padded 12–bit greyscale (1 short per pixel)

short 0
15 0

+--------------+

ssssYYYYYYYYYYYY

Parameters:

• ML_PACKING_S12in16R

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_400

007–4504–001 129

A: Pixels in Memory

RGB Examples

8–bit RGB (3 bytes per pixel)

byte 0 byte 1 byte 2
7 0 7 0 7 0

+------+ +------+ +------+

RRRRRRRR GGGGGGGG BBBBBBBB

Parameters:

• ML_PACKING_8

• ML_COLORSPACE_RGB_*

• ML_SAMPLING_444

8–bit BGR (3 bytes per pixel)

byte 0 byte 1 byte 2

7 0 7 0 7 0

+------+ +------+ +------+

BBBBBBBB GGGGGGGG RRRRRRRR

Parameters:

• ML_PACKING_8_R

• ML_COLORSPACE_RGB_*

• ML_SAMPLING_444

8–bit RGBA (4 bytes per pixel)

byte 0 byte 1 byte 2 byte 3

7 0 7 0 7 0 7 0

+------+ +------+ +------+ +------+
RRRRRRRR GGGGGGGG BBBBBBBB AAAAAAAA

Parameters:

• ML_PACKING_8

130 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

• ML_COLORSPACE_RGB_*

• ML_SAMPLING_4444

8–bit ABGR (4 bytes per pixel)

byte 0 byte 1 byte 2 byte3

7 0 7 0 7 0 7 0
+------+ +------+ +------+ +------+

AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR

Parameters:

• ML_PACKING_8_R

• ML_COLORSPACE_RGB_*

• ML_SAMPLING_444

10–bit RGB (one 32–bit integer per pixel)

31 int 0

+------------------------------+

RRRRRRRRRRGGGGGGGGGGBBBBBBBBBB00

Parameters:

• ML_PACKING_10_10_10_2

• ML_COLORSPACE_RGB_*

• ML_SAMPLING_444

10–bit RGBA (one 32–bit integer per pixel)

31 int 0

+------------------------------+

RRRRRRRRRRGGGGGGGGGGBBBBBBBBBBAA

Parameters:

• ML_PACKING_10_10_10_2

007–4504–001 131

A: Pixels in Memory

• ML_COLORSPACE_RGB_*

• ML_SAMPLING_4444

12–bit RGBA (6 bytes per pixel)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5

7 0 7 0 7 0 7 0 7 0 7 0
+------+ +------+ +------+ +------+ +------+ +------+

RRRRRRRR RRRRGGGG GGGGGGGG BBBBBBBB BBBBAAAA AAAAAAAA

Parameters:

• ML_PACKING_S12

• ML_COLORSPACE_RGB_*

• ML_SAMPLING_4444

Padded 12–bit RGB (three 16–bit shorts per pixel)

short 0 short 1 short 2

15 0 15 0 15 0

+--------------+ +--------------+ +--------------+

ssssRRRRRRRRRRRR ssssGGGGGGGGGGGG ssssBBBBBBBBBBBB

Parameters:

• ML_PACKING_S12in16R

• ML_COLORSPACE_RGB_*

• ML_SAMPLING_444

Padded 12–bit RGBA (four 16–bit shorts per pixel)

short 0 short 1 short 2 short 3

15 0 15 0 15 0 15 0

+--------------+ +--------------+ +--------------+ +--------------+

ssssRRRRRRRRRRRR ssssGGGGGGGGGGGG ssssBBBBBBBBBBBB ssssAAAAAAAAAAAA

Parameters:

132 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

• ML_PACKING_S12in16R

• ML_COLORSPACE_RGB_*

• ML_SAMPLING_4444

CbYCr Examples

8–bit CbYCr (3 bytes per pixel)

byte 0 byte 1 byte 2

7 0 7 0 7 0

+------+ +------+ +------+
bbbbbbbb YYYYYYYY rrrrrrrr

Parameters:

• ML_PACKING_8

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_444

8–bit CbYCrA (4 bytes per pixel)

byte 0 byte 1 byte 2 byte 3
7 0 7 0 7 0 7 0

+------+ +------+ +------+ +------+

bbbbbbbb YYYYYYYY rrrrrrrr AAAAAAAA

Parameters:

• ML_PACKING_8

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_4444

007–4504–001 133

A: Pixels in Memory

10–bit CbYCr (one 32–bit integer per pixel)

31 int 0
+------------------------------+

bbbbbbbbbbYYYYYYYYYYrrrrrrrrrr00

Parameters:

• ML_PACKING_10_10_10_2

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_444

10–bit CbYCrA (one 32–bit integer per pixel)

31 int 0
+------------------------------+

bbbbbbbbbbYYYYYYYYYYrrrrrrrrrrAA

Parameters:

• ML_PACKING_10_10_10_2

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_4444

Padded 12–bit CbYCrA (four 16–bit shorts per pixel)

short 0 short 1 short 2 short 3

15 0 15 0 15 0 15 0

+--------------+ +--------------+ +--------------+ +--------------+

ssssbbbbbbbbbbbb ssssYYYYYYYYYYYY ssssrrrrrrrrrrrr ssssAAAAAAAAAAAA

Parameters:

• ML_PACKING_S12in16R

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_4444

134 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

422x CbYCr Examples

10–bit 422 CbYCr (5 bytes per 2 pixels)

byte 0 byte 1 byte 2 byte 3 byte 4
7 0 7 0 7 0 7 0 7 0

+------+ +------+ +------+ +------+ +------+

bbbbbbbb bbYYYYYY YYYYrrrr rrrrrrYY YYYYYYYY

pixel 1

++++++++ ++++++++ ++++++++ ++++++

pixel 2

++++++++ ++ ++++ ++++++++ ++++++++

Parameters:

• ML_PACKING_10

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_422

10–bit 422 CbYCr (5 bytes per 2 pixels)

byte 0 byte 1 byte 2 byte 3 byte 4

7 0 7 0 7 0 7 0 7 0

+------+ +------+ +------+ +------+ +------+
bbbbbbbb bbYYYYYY YYYYrrrr rrrrrrYY YYYYYYYY

pixel 1

++++++++ ++++++++ ++++++++ ++++++

pixel 2

++++++++ ++ ++++ ++++++++ ++++++++

Parameters:

• ML_PACKING_10_R

007–4504–001 135

A: Pixels in Memory

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_422

Padded 12–bit 422 CbYCr (four 16–bit shorts per 2 pixels)

short 0 short 1 short 2 short 3

15 0 15 0 15 0 15 0
+--------------+ +--------------+ +--------------+ +--------------+

ssssbbbbbbbbbbbb ssssYYYYYYYYYYYY ssssrrrrrrrrrrrr ssssYYYYYYYYYYYY

pixel 1

++++++++++++++++ ++++++++++++++++ ++++++++++++++++

pixel 2

++++++++++++++++ ++++++++++++++++ ++++++++++++++++

Parameters:

• ML_PACKING_S12in16R

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_422

10–bit 4224 CbYCrA (two 32–bit integers per 2 pixels)

31 int 0 0 31 int 1 0

+------------------------------+ +------------------------------+

bbbbbbbbbbYYYYYYYYYYAAAAAAAAAA00 rrrrrrrrrrYYYYYYYYYYAAAAAAAAAA00

pixel 1

++++++++++++++++++++++++++++++ ++++++++++

pixel 2

++++++++++ ++++++++++++++++++++++++++++++

Parameters:

• ML_PACKING_10_10_10_2

136 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

• ML_COLORSPACE_CbYCr_*

• ML_SAMPLING_4224

007–4504–001 137

Appendix B

Common Video Standards

2

One line of
active video

Blanking

Optional
blanking

9
10

19
20

Field F1
active video
244 lines

Blanking

Optional
blanking

Field F2
active video
243 lines

720 active pixelsHorizontal
blanking

1

263
264

272
273

282
283

525

21
20

284
283

F1 lines 720 active pixels F2 lines

Fields F1 and F2 interleaved

22

263
262

525
524

487 active
lines

F1
F2

Figure B-1 525/60 Timing (NTSC)

007–4504–001 139

B: Common Video Standards

2

One line of
active video

Blanking

22
23

Field F1
active video
288 lines

Blanking

Field F2
active video
288 lines

720 active pixelsHorizontal
blanking

1

310
311

335
336

623
Blanking624

625

24
23

337
336

F1 lines 720 active pixels F2 lines

Fields F1 and F2 interleaved

25

310
309

625
624

576 active
lines

F1
F2

Figure B-2 625/50 Timing (PAL)

140 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

2

One line of
active video

Blanking

20
21

Field F1
active video
540 lines

Blanking

Field F2
active video
540 lines

1920 active pixelsHorizontal
blanking

1

560
561

583
584

1123
Blanking1124

1125

21

585
584

F1 lines 1920 active pixels F2 lines

Fields F1 and F2 interleaved

22

560
559

1123
1122

1080 active
lines

F2
F1

Figure B-3 1080i Timing (High Definition)
007–4504–001 141

B: Common Video Standards

2

One line of
active video

Blanking

25
26

Field F1
active video
720 lines

1280 active pixelsHorizontal
blanking

1

745
746

Blanking
750

Figure B-4 720p Timing (High Definition)

142 007–4504–001

Index

720p HD timing chart, 142
1080i HD timing chart, 141

A

array parameter
how to get the size of, 18
how to get the value of, 19
how to set the value of, 17

array values, , 17
as distinguished from pointer values, 19

audio buffer layout, 81
audio buffer size computation, 87
audio buffer with 4 channels, 83
audio parameters, 81, 83

ML_AUDIO_BUFFER_POINTER, 84
ML_AUDIO_CHANNELS_INT32, 87
ML_AUDIO_COMPANDING_INT32, 86
ML_AUDIO_COMPRESSION_INT32, 87
ML_AUDIO_FORMAT_INT32, 85
ML_AUDIO_FRAMESIZE_INT32, 84
ML_AUDIO_GAINS_REAL64_ARRAY, 86
ML_AUDIO_PRECISION_INT32, 85
ML_AUDIO_SAMPLE_RATE_REAL64, 84

audio/video transcoders, 49
audio/visual paths, 43

B

beginning and ending transfers, 47
BeginTransfer call, 47, 51
buffer

how to send to device for processing, 6

C

calls
BeginTransfer, 47, 51
Close, 48, 53
EndTransfer, 48, 52, 53
GetCapabilites, 49
GetControls, 17–19
mlBeginTransfer, 7
mlClose, 7
mlSendBuffers, 6
Open, 49
ReceiveMessage, 44, 47
send, 44
SendBuffers, 20, 44, 45, 51
SendControls, 18, 44
SetControls, 17, 52
XcodeWork, 53

capabilities
manual access to, 22
query parameter capabilities, 24
query parameters which describe parameters, 25
utility functions for, 22

capabilities tree, 21
query for capabilities, 23

capability tree, definition, 1
changing controls during a transfer, 52
Close call, 48, 53
closing a logical path, 48
closing a transcoder, 53
colorspace parameter format, 76
common video standards (diagrams), 139
constant identification numbers, 25
controlling the transcoder, 49
controls message, 5

007–4504–001 143

Index

D

definition of ML terms, 1
destination pipes (for audio/video transcoders), 49
device

how to locate, 4
device output path

how to open, 4
device path

how to set controls on, 6
how to set up, 5

E

ending transfers, 52
EndTransfer call, 48, 52, 53
exception events, how processed, 46

F

field dominance, 71
finding a suitable transcoder, 49

G

general image buffer layout, , 68
GetCapabilites call, 49
GetControls call, 17–19
getting started with the ML, , 3
graphics / video, definition and distinction

between, 1

I

identification numbers, 25
image buffer, 67

general layout, , 68
image buffer parameters, 69

ML_IMAGE_BUFFER_POINTER, 69
ML_IMAGE_COLORSPACE_INT32, 76
ML_IMAGE_COMPRESSION_FACTOR_REAL32, 73
ML_IMAGE_COMPRESSION_INT32, 72
ML_IMAGE_DOMINANCE_INT32, 71
ML_IMAGE_HEIGHT_1_INT32, 70
ML_IMAGE_HEIGHT_2_INT32, 70
ML_IMAGE_INTERLEAVE_MODE_INT32, 71
ML_IMAGE_ORIENTATION_INT32, 72
ML_IMAGE_PACKING_INT32, 74
ML_IMAGE_ROW_BYTES_INT32, 70
ML_IMAGE_SAMPLING_INT32, 78
ML_IMAGE_SIZE_INT32, 73
ML_IMAGE_SKIP_PIXELS_INT32, 70
ML_IMAGE_SKIP_ROWS_INT32, 70
ML_IMAGE_TEMPORAL_SAMPLING_INT32, 71
ML_IMAGE_WIDTH_INT32, 70
ML_SWAP_BYTES_INT32, 80

image parameters, 67
in-band messages

how sent, 44
in-band messages, how processed, 45
in-band reply messages, how processed, 47
interlaced sampling, 56

examples, 56

J

jack, definition, 2

L

logical path
how to close, 48
how to open, 43

144 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

M

messages, description, 16
messages, how to construct, 43
ML terms, 1
ML.h file, 3
ML_VIDEO_COLORSPACE_INT32

supported colorspace values, 59
ML_VIDEO_SAMPLING_INT32

supported sampling values, 59
mlBeginTransfer call, 7
mlClose call, 7
MLpv

and scalar parameters, 16
mlquery

system inventory tool, 3
mlSendBuffers call, 6
mlu.h file, 3
multi-stream transcoders, 54

N

NTSC timing chart, , 139

O

Open call, 49
open identification numbers, 26
open path identifier, 5
opening a logical path, 43
opening a logical transcoder, 49
out-of-band messages

definition, 44
how processed, 44

P

PAL timing chart, , 140
path, definition, 2

physical device, definition, 1
pipes (for audio/video transcoders), 49
pixels in memory

422x examples, 135
CbYCr examples, 133
greyscale examples, 129
RGB examples, 130

pointer values, , 19
as distinguished from array values, 19

processing exception events, 46
processing in-band messages, 45
processing in-band reply messages, 47
processing out-of-band messages, 44
program examples

realistic audio output program, 8
simple audio output program, 3

progressive sampling, 55

R

realistic audio output program, 8
Rec 709, 77
ReceiveMessage call, 44, 47
receiving a reply message, 52

S

sample field, 56
sample frame, 81
sampling

interlaced, 56
progressive, 55
temporal and spatial, 55

sampling parameter format, 78
scalar values, , 16

how to get, 17
how to set, , 16

send call, 44
SendBuffers call, 20, 44, 45, 51

007–4504–001 145

Index

SendControls
calls, 18

SendControls call, 18, 44
sending buffers, 51
sending in-band messages, 44
SetControls call, 17, 52
simple audio output program, 3
source pipes (for audio/video transcoders), 49
spatial and temporal sampling, 55
standards

common video standards (diagrams), 139
starting a transfer, 51
static identification numbers, 26
supported timings, 57
synchronization, 121
system, definition, 1

T

temporal and spatial sampling, 55
terms and definitions, 1
time stamp, 9
timing charts

1080i, , 141
525/60 (NTSC), , 139
625/50 (PAL), , 140
720p, , 142

timings, 57
high definition (HD) tmings, 58
standard definition (SD) tmings, 58

tools
mlquery system inventory tool, 3

transcoder, definition, 2
transcoders

and sending buffers, 51
changing controls during a transfer, 52
closing a transcoder, 53
controlling the transcoder, 49
definition, 49
ending transfers, 52
finding a suitable transcoder, 49

multi-stream transcoders, 54
opening a logical transcoder, 49
receiving a reply message, 52
starting a transfer, 51
work functions, 53

transfers, beginning and ending, 47

U

unadjusted system time (UST) time stamp, 9
UST (unadjusted system time) time stamp, 9

V

video / graphics, definition and distinction
between, 1

video field dominance, 71
video frame, 56
video parameters, 55, 57

ML_VIDEO_ALPHA_SETUP_INT32, 61
ML_VIDEO_BLUE_SETUP_INT32, 61
ML_VIDEO_BRIGHTNESS_INT32, 60
ML_VIDEO_COLORSPACE_INT32, 59

supported colorspace values, 59
ML_VIDEO_CONTRAST_INT32, 61
ML_VIDEO_DITHER_FILTER_INT32, 62
ML_VIDEO_FLICKER_FILTER_INT32, 62
ML_VIDEO_GENLOCK_SIGNAL_PRESENT_INT32, 60
ML_VIDEO_GENLOCK_SOURCE_TIMING_INT32, 60
ML_VIDEO_GENLOCK_TYPE_INT32, 60
ML_VIDEO_GREEN_SETUP_INT32, 61
ML_VIDEO_H_PHASE_INT32, 61
ML_VIDEO_HUE_INT32, 61
ML_VIDEO_INPUT_DEFAULT_SIGNAL_INT64, 62
ML_VIDEO_NOTCH_FILTER_INT32, 62
ML_VIDEO_OUTPUT_DEFAULT_SIGNAL_INT64, 62
ML_VIDEO_PRECISION_INT32, 60
ML_VIDEO_RED_SETUP_INT32, 61
ML_VIDEO_SAMPLING_INT32, 59

146 007–4504–001

OpenMLTM Media Library Software Development Kit Programmer’s Guide

supported sampling values, 59
ML_VIDEO_SATURATION_INT32, 61
ML_VIDEO_SIGNAL_PRESENT_INT32, 60
ML_VIDEO_TIMING_INT32, 57
ML_VIDEO_V_PHASE_INT32, 62

video sampling, 55
video standards, common (diagrams), 139

W

work functions for transcoders, 53

X

XcodeWork call, 53

007–4504–001 147

