
OpenGL Multipipe™ SDK White Paper

Introduction

As more and more graphics applications come into the virtual reality arena as a piece of
immersive solutions, application developers face new requirements. Not only do
developers need to take into account high frame rates and low latencies needed for
temporal realism, but also better image quality for visual realism. OpenGL® applications
must improve their performances and must be able to run in increasingly complex
environments that include various input peripherals and projection systems. For
applications initially designed to run on a visual workstation in non-real time and with
keyboard-mouse input, new releases now need to be time-accurate and should be able to
integrate a moving frustum tied to head-tracking peripherals and several rendering
engines (graphics pipes) that provide multiple and wider fields of view. As these types
of evolving environments have numerous parameters, the applications must be
sufficiently flexible and robust to accommodate their demands.

OpenGL Multipipe SDK is an application programming interface (API) designed to help
software developers meet the demands of these new immersive environments. This
product enables the application to take advantage of the scalability provided by
additional pipes and other scalable graphics hardware, as well as to support immersive
environments. OpenGL Multipipe SDK provides the following specific features:

• Run-time configurability

• Run-time scalability

• Integrated support for scalable graphics hardware

• Integrated support for stereo and immersive environments
007-4516-001 1

OpenGL Multipipe™ SDK White Paper
Run-Time Configurability

OpenGL Multipipe SDK allows developers to create applications that run on multiple
platforms ranging from simple visual workstations to large and complex visualization
environments, often based on several pipes for parallel rendering purposes. It
implements a design that largely isolates the application from the graphics resources and
the physical environment. Providing run-time configurability, an application written in
the OpenGL Multipipe SDK programming model can run on a simple desktop platform
or, without any modification or recompilation, in highly complex visualization
environments like an SGI® Reality Center™ facility.

Run-Time Scalability

Graphics-intensive applications often require several pipes in order to achieve a desired
performance. Each pipe contributes to a part of the final rendering. This introduces the
need for a decomposition paradigm and the issue of how the rendering performance
scales with the number of pipes. Rendering in parallel requires the developer to manage
several graphic contexts and then to create tasks or threads, each managing their own
graphic context and sharing the scene to be rendered. OpenGL Multipipe SDK allows a
multipipe applications developer to avoid dealing with such parallel programming
paradigms and offers compound algorithms based on several decomposition types.

Integrated Support for Scalable Graphics Hardware

Scalable graphics hardware such as the SGI Scalable Graphics Compositor and the SGI
Video Digital Multiplexer (DPLEX) can perform some of the compositing functions that
OpenGL Multipipe SDK now provides in software. OpenGL Multipipe SDK is
structured to support such hardware as well as conventional graphics hardware.

Integrated Support for Stereo and Immersive Environments

Along with its scalability features, OpenGL Multipipe SDK has integrated the ability to
exploit the stereo features of your application-display environment without
recompilation. Having the related display characteristics of your environment described
in a configuration file, you can specify at run time whether to run in stereo or mono.
2 007-4516-001

OpenGL Multipipe™ SDK White Paper
In addition, OpenGL Multipipe SDK provides the application with the ability to support
truly immersive environments by using a simple programming interface: the application
only needs to provide real-world information about the position and orientation of the
viewer. OpenGL Multipipe SDK then transparently adapts its left- and right-eye frustum
computations to the actual user’s location.

The ease of configuring your application to accomodate different hardware resources
(graphics pipes and head-tracking devices) and different display areas makes
OpenGL Multipipe SDK ideal for use in immersive environments.

Application Structure

As an application will have to run in different configurations, OpenGL Multipipe SDK
externalizes the configuration management by implementing an ASCII file that is
separate from the other application code. The scene management and data workflow is
separate from scene rendering (management of the graphics resources). Figure 1
illustrates the structure of an application based on OpenGL Multipipe SDK.

Figure 1 OpenGL Multipipe SDK Application Structure

OpenGL Multipipe SDK is available on IRIX® through C language function calls. It is
designed as a thin layer on top of the operating system, X11, OpenGL, and GLX™.

Core application Graphics tasks

Database management
and

Data workflow

Scene rendering
and

Resource management
007-4516-001 3

OpenGL Multipipe™ SDK White Paper
Graphics Environment Description

The OpenGL Multipipe SDK configuration file uses a tree structure to describe the
physical graphics resources. The root of the structure is the whole visualization facility
and the leaves are the physical rendering layouts. Reading this configuration file,
OpenGL Multipipe SDK determines the following:

• What physical pipes it must allocate

• What parallel tasks it must create

• How to synchronize the tasks until the per-view frustum is applied

• The final rendering framebuffer area

A typical structure, defined as a config, is based on following components:

Component Description

Config The whole graphics environment where the application runs. One
configuration can be described per file.

Pipe The physical rendering engine. It is defined by the X™ display-screen
mapping of the graphics hardware in the X11 abstraction scheme. A
config can handle several pipes.

Window A single GLX unit. It retains the X window attributes and GLX visuals
and handles associated graphics context. Thus, it harnesses the base
structure where a task (or thread) will be created for parallel rendering.

Channel A view definition of the scene. It defines a part of the window where the
scene will be drawn. It specifies how the scene will be projected and
displayed. Each channel specification determines the projection
parameters or the physical surface (wall) where the view will be
displayed. Channels defined in the same window render in the same
graphics context.

Projection A physical projection definition. It defines the projection parameters
(field of view, heading, and position) in the physical display
environment.

(Ortho)Wall A physical display surface definition. It defines the rectangular area
issued from the projection.

Compound A decomposition definition. It defines the type of decomposition, source
channels, and destination channel. Compounds can be combined as a
graph of channel parts.
4 007-4516-001

OpenGL Multipipe™ SDK White Paper
A config structure can be graphically represented as in Figure 2.

Figure 2 Configuration File Mapping onto a Reality Center Environment

Figure 2 shows the configuration of an application running on a two-pipe platform, two
windows handling the GLX context, and four channels. Example 1 shows a skeletal
configuration file that describes the environment.

 Reality Center
MPK Configuration

 pipe
X-display
 (stereo)

 pipe
X-display
 (stereo)

 window
GLX drawing area

 window
GLX drawing area

 channel
 GL viewport
Physical Layout

 channel
 GL viewport
Physical Layout

 channel
 GL viewport
Physical Layout

 channel
 GL viewport
Physical Layout
007-4516-001 5

OpenGL Multipipe™ SDK White Paper
Example 1 Skeletal Configuration File

config {
 pipe {
 window {
 viewport [parameters1]
 channel {
 viewport [parameters2]
 .
 .
 .
 }
 }
 }
 pipe {
 window {
 viewport [parameters1]
 channel {
 viewport [parameters2]
 .
 .
 .
 }
 }
 }
}

Displaying Multiple and Wider Fields of View

There are various schemes to address multiple views. Two such schemes are the
following:

• Multiple views per pipe

• Single view per pipe
6 007-4516-001

OpenGL Multipipe™ SDK White Paper
 Multiple Views Per Pipe

The multiple-views-per-pipe scheme dedicates one channel per view, each defined by its
respective frustum, heading, position, and drawing area. Each channel shares the same
graphics context in a window. Each view is drawn in a different area of the same
framebuffer on the same pipe and owns the same GLX visual. The channels of the same
window are drawn sequentially. Often, the framebuffer region corresponding to the view
is output as a video signal and projected as well. Figure 3 illustrates this scheme.

Figure 3 Multiple Views Per Pipe

Single View Per Pipe

The single-view-per-pipe scheme dedicates one pipe per view. In this case, a unique
pipe-window-channel link is created for each view and the views are rendered in parallel
on the pipes. This adds graphics power to the application as the graphics load on each
pipe will be lower. At the same time, the rendering task needs to be distributed over the
pipes accordingly and the resulting draw processes need to be synchronized. Figure 4
illustrates this scheme.

Channel 0 Channel 1 Channel 2

Pipe 0,
Window 0

Framebuffer
content

Physical
environment
007-4516-001 7

OpenGL Multipipe™ SDK White Paper
Figure 4 Single View Per Pipe

In both cases, an application can be dynamically configured to run in mono or stereo
through the configuration file. In the multiple-views-per-pipe scheme, the single
pipe-window GLX visual is set in stereo mode. In the single-view-per-pipe scheme, each
pipe-window GLX visual is set in stereo mode. Stereo mode can also be configured
through scalable rendering, as explained in following sections.

Physical
environment

Pipe 0 - window 0 - channel 0

Pipe 1 - window 0 - channel 0

Pipe 2 - window 0 - channel 0

Config
8 007-4516-001

OpenGL Multipipe™ SDK White Paper
Scalable Rendering

To achieve greater application performance, OpenGL Multipipe SDK allows you to
decompose a global rendering task into smaller tasks and to assign the smaller tasks to
individual pipes. The task division requires a decomposition scheme. In general, a
decomposition scheme sends a scene to render to each pipe, gets back rendered images
from each pipe for further composition, and then renders the final image. Figure 5
illustrates the role of source and destination channels in scalable rendering.

Figure 5 Source and Destination Channels

The following decomposition modes are available and are described in the subsequent
subsections:

• “Frame Decomposition” on page 10

• “Temporal Decomposition” on page 16

• “Multilevel Decomposition” on page 18

Read Read Read Read

Pipe 0

Draw

Source channel 0

Pipe 1

Draw

Source channel 1

Pipe 2

Draw

Source channel 2

Pipe m

Draw

Source channel m

Compound

Destination
channel
007-4516-001 9

OpenGL Multipipe™ SDK White Paper
Each decomposition mode improves performance but the performance gain depends on
the application type and the nature of the performance bottleneck. Four factors are
important in choosing the decomposition scheme judiciously:

Factor Description

Load balancing For a given decomposition, each pipe should execute
roughly the same amount of work since the slowest pipe
dictates the overall performance. Unbalanced
decomposition can seriously affect the scalability.

Scalability of scheme Scalability is the degree to which the performance grows
as the number of graphics resources increases. To
optimize performance, you only add resources to address
the source of the bottleneck. For example, adding more
geometry power to an application limited by pixel fill will
not improve performance.

Latency added Depending on the decomposition scheme, the frame
delay between a user input and the associated frame
output may be greater than one frame. Minimizing this
latency may be critical for some event-driven
applications.

Graphics I/O consumption As typical decomposition involves the reading and
writing of images from the source channels (contributing
channels) to a destination channel. This transfer might
stress the graphics I/O and memory capabilities of the
system.

Frame Decomposition

In frame decomposition, a frame or view is divided into regions, which are, in turn,
assigned to individual source pipes for rendering. Based on the following perspectives,
there are several approaches to dividing the frame into regions:

• screen topology (screen decomposition)

• scene graph primitives (database decomposition)

• eye view (eye decomposition)

Each approach yields a different flavor of frame decomposition.
10 007-4516-001

OpenGL Multipipe™ SDK White Paper
Screen Decomposition

In screen decomposition (also referred to as 2D decomposition), each pipe renders a part
of the screen area. Assembling side to side each image part constitutes the final
rendering. This type of decomposition is used when the intrinsic pixel fill or geometry
capacity of each pipe slows down the application. The scalability depends on the
balancing of the workloads. The model to display needs to be uniformly distributed
across the screen to accommodate a good balancing and, thus, scalability. The graphics
I/O is relatively low, because the traveling source images are small. Figure 6 illustrates
screen decomposition.

Figure 6 Screen Decomposition

Compound
007-4516-001 11

OpenGL Multipipe™ SDK White Paper
Example 2 shows the configuration file specifications for the screen decomposition
illustrated in Figure 6.

Example 2 2D Compound in a Configuration File

compound {
 mode [2D]
 channel "destination"

The top left of "destination" image will be
rendered on "source0"...
 region {
 viewport [0., .5, .5, 1.]
 channel "source0"
 }
The top right of "destination" image will be
rendered on "source1"...
 region {
 viewport [.5, .5, 1., 1.]
 channel "source1"
 }
The bottom left of "destination" image will be
rendered on "source2"...
 region {
 viewport [0., 0., .5, .5]
 channel "source2"
 }
... while "destination" itself takes care of
the bottom right
 region {
 viewport [.5, 0., 1., .5]
 channel "destination"
 }
 }

Database Decomposition

In database (DB) decomposition, the scene is rendered in parallel by dividing it among
the different graphics pipes. Each pipe renders its share of the scene to generate partial
images. These images are then composited by OpenGL Multipipe SDK to generate the
final image in the destination channel. During composition, the application can use
depth testing and/or alpha blending to achieve the desired effect. Database
decomposition allows you to scale both the geometry and the pixel fill performance of
12 007-4516-001

OpenGL Multipipe™ SDK White Paper
the system. In addition, it also scales the texture memory capacity of the system by the
number of pipes.

Figure 7 demonstrates the use of database decomposition in volume rendering. The
volume data is divided equally among the four pipes and the partial images are
composited on the destination channel. In this case, the destination channel (top left
portion of the figure) is also contributing to the rendering as a source channel.

Figure 7 Database Decomposition

Example 3 shows the configuration file specifications for the database decomposition
illustrated in Figure 7.
007-4516-001 13

OpenGL Multipipe™ SDK White Paper
Example 3 DB Compound in a Configuration File

compound {
 mode [DB]
 format [RGBA DEPTH]
 channel “channel”
 region {
 range [0., .25]
 channel “buffer0”
 }
 region {
 range [.25, .5]
 channel “buffer1”
 }
 region {
 range [.5, .75]
 channel “buffer3”
 }

 region {
 range [.75, 1.]
 channel “channel”
 }
 }

Eye Decomposition

Eye decomposition is well-suited for stereo or multiple-view rendering. Each pipe
renders a particular view (left, right, others). The final rendering depends on the type of
display. As illustrated in Figure 8, if stereo is active, then each pipe view fills in the right
or left buffer of the final rendering. This provides good load balancing and scalability,
especially for stereo-view rendering, because the scene content remains similar during
run time.
14 007-4516-001

OpenGL Multipipe™ SDK White Paper
Figure 8 Eye Decomposition

Example 4 shows the configuration file specifications for the eye decomposition
illustrated in Figure 8.

Example 4 Eye Compound in a Configuration File

compound {
 mode [EYE STEREO]
 channel “channel”

 region {
 eye LEFT
 channel “buffer”
 }

 region {
 eye RIGHT
 channel “channel”
 }
}

Head-Mounted-Device (HMD) decomposition is very similar to that of eye
decomposition, except that the head position actually specifies a new origin for the
physical layout of the channels.

Pipe 0

Pipe 1

Compound

Pipe 1 : Left and right buffers
007-4516-001 15

OpenGL Multipipe™ SDK White Paper
Temporal Decomposition

In contrast to frame decomposition, where the focus of load balancing is on dividing the
frame into regions, temporal decomposition balances the workload by scheduling the
work on each pipe in sync with that of the other pipes to produce a steady stream of
rendered frames. The time scheduling rather than the frame division is the focus. There
are two types of temporal decomposition: frame multiplexing and data streaming. The
work done by each pipe largely distinguishes the two.

Frame Multiplexing

Frame multiplexing (also referred to as software DPLEX decomposition) distributes
entire frames to the source pipes over time for parallel processing. The first pipe begins
rendering frame 1, a specified fraction of a frame later the second pipe begins rendering
frame 2, another fraction of a frame later the third pipe begins rendering frame 3, and so
on for all of the pipes.

Figure 9 illustrates frame multiplexing on a four-pipe system.

Figure 9 Frame Multiplexing

Frame: N+1 N+6N+5N+4N+3N+2

dplex::1

dplex::0

dplex::2

channel
16 007-4516-001

OpenGL Multipipe™ SDK White Paper
Frame multiplexing scales globally geometry and pixel fill performance, as the workload
balance between pipes is intrinsically maintained. This scheme has an increased
transport delay inherent to frame synchronization required across the pipes. It produces
a latency of (pipes – 1) frames—that is, there will be a (pipes – 1) frames delay between a
user input and the corresponding output frame.

Frame multiplexing can also be accelerated in hardware using the SGI Video Digital
Multiplexer (DPLEX), which connects pipes together with a bus, thereby avoiding the
image readbacks from the contributing pipes. The pipes are daisy-chained to achieve
reduced latency.

Example 5 shows the configuration file specifications for the screen decomposition
illustrated in Figure 9.

Example 5 Frame Multiplexing Compound in a Configuration File

compound {
 mode [DPLEX]
 channel “channel”

 region { channel “dplex::0” }
 region { channel “dplex::1” }
 region { channel “dplex::2” }
}

Data Streaming

Data streaming (also referred to as 3D decomposition) is similar to database
decomposition in the sense that it allows the application to divide the scene among
multiple pipes and then composite the partial results to give the final rendering. But, in
this case, the composition is done using a series of successive compounds for each frame,
as shown in Figure 10. Like DPLEX decomposition, this scheme also has a latency of
(pipes – 1) frames—that is, there will be a (pipes – 1) frames delay between a user input
and the corresponding output frame.

As shown in Figure 10, this latency is due to successive compounds at each frame. You
must wait for (pipes – 1) frame computations before the final rendering is displayed. Each
compound needs to read only one source image. Consequently, this keeps graphics I/O
consumption low while performance scaling is achieved by pipelining the rendering in
parallel across the pipes.
007-4516-001 17

OpenGL Multipipe™ SDK White Paper
Figure 10 Data Streaming Decomposition

Multilevel Decomposition

OpenGL Multipipe SDK allows you to combine the various decomposition schemes to
fix performance bottlenecks that differ in nature. For example, a combined solution can
use a database and temporal decomposition scheme for optimizing performance but
with a limiting transport delay or can use an eye and database decomposition scheme for
stereo volume rendering.

Figure 11 shows a four-pipe solution using an eye and database decomposition scheme.

Pipe 0 Pipe 1 Pipe 2 Pipe 3

Compound 0Part 0Part 0

Compound 1Part 1Compound 0 + Part 1

Compound 2Part 2Compound 1 + Part 2

Part 3Compound 2 + Part 3 = final rendering
18 007-4516-001

OpenGL Multipipe™ SDK White Paper
Figure 11 Eye-DB Multilevel Decomposition

Example 6 shows the configuration file specifications for the multilevel decomposition
illustrated in Figure 11.

Example 6 Multilevel Compound in a Configuration File

compound {
 mode [EYE]
 channel “right-front”

 region {
 eye LEFT
 compound {
 mode [DB]
 channel “left-front”

 region {
 range [0., .5]
 channel “left-back”
 }
 region {
 range [.5, 1.]
 channel “left-front”
 }
 }

Eye

Framebuffer

Left Right

Left back Right backLeft front Right front

DB DB
007-4516-001 19

OpenGL Multipipe™ SDK White Paper
 }

 region {
 eye RIGHT
 compound {
 mode [DB]
 channel “right-front”

 region {
 range [0., .5]
 channel “right-back”
 }
 region {
 range [.5, 1.]
 channel “right-front”
 }
 }
 }
}

Choosing the Right Decomposition Mode

There are no hard and fast rules for choosing the correct decomposition scheme but the
following are some general guidelines to aid you in selecting a reasonable scheme for
your environment:

2D Use this scheme if your application is fill-limited. You can also scale
geometry performance and texture memory size by using view-frustum
culling techniques.

DB Use this scheme when your application’s frame rendering can be
sequenced into equally consuming phases. This requires being able to
divide your scene into multiple components and then to composite them
correctly. Scalability here can be either on fill, geometry, or graphics
resources (texture) depending on the application. Note that this scheme
introduces added latency.

Eye Use this scheme for stereo viewing.

DPLEX Use this scheme for general load balancing where the application
maintains a reasonably steady frame rate.
20 007-4516-001

OpenGL Multipipe™ SDK White Paper
These are very high-level guidelines that may very well overlap. As noted in the
preceding section “Multilevel Decomposition”, you can combine the various
decomposition modes to fix different performance bottlenecks.

Customized Assembly

OpenGL Multipipe SDK allows you to customize the assembly of the source and
destination channels by providing callbacks that are invoked in the compound traversal.
The application can provide two callbacks that are invoked before (pre-assemble
callback) and after (post-assemble callback) the channel is traversed.

These callbacks can be used, for example, to composite the source channels in a particular
sorted order using a certain blending mode. This is essential for applications like volume
rendering, where the composition must be done in a front-to-back or back-to-front order.
The example shown in Figure 7 uses the preceding technique to ensure correct alpha
blending of the source channels.

Programming Model

The OpenGL Multipipe SDK programming model reflects the “natural” application
framework of OpenGL and adds a thread-safe implementation. In this model, the
application has to provide only function callbacks while the core of OpenGL Multipipe
SDK handles the synchronization and multithreading of rendering processes. Among
other things, it functions as a multithreaded OpenGL Utility Toolkit (GLUT). The
application developer defines a set of callback functions for each of the configuration file
components (pipes, windows, channels, and compound). These functions are executed
appropriately by the tasks (created by the core) during the frame rendering. The core
then is able to manage the scheduling and the synchronization of the tasks. These
callback functions are of several types:

Callback Type Description

Initialization Contributes to component creation (pipes, windows, and channels)
and sets initial parameters values. These callbacks are invoked
when the application calls mpkConfigInit().
007-4516-001 21

OpenGL Multipipe™ SDK White Paper
Update Defines actions to execute during each frame refresh. As they are
executed for each new frame, the code defines how to render the
channels but also the general updates done on the global context
handled by each window. These callbacks are invoked when the
application calls mpkConfigFrame().

Event Specifically for windows, defines an action to execute for a given
input event (mouse, keyboard buttons, and the like).

Along with providing an update-channel callback, OpenGL Multipipe SDK allows you
to provide a clear-channel callback. This callback is invoked before the channel
pre-assemble and update callbacks are invoked.

OpenGL Multipipe SDK takes care that the callbacks receive the correct frame data
pointer depending on their latency. You pass a frame data pointer to each call of
mpkConfigFrame(). The callback set using mpkConfigSetDataFreeCB() is invoked
every frame to free frame data no longer needed for rendering.

Processes are created implicitly for each window and the synchronization occurs inside
a frame generation. The developer can choose the multiprocess mechanism—fork,
sproc, or pthread.

Typical Code Example

Example 7 illustrates the programming model used in OpenGL Multipipe SDK. The
program shows the following critical steps:

1. An initialization phase configuring data and environment ended by
mpkConfigInit()

At this step, all the callback pointers are given to OpenGL Multipipe SDK core
rendering.

2. A loop where mpkConfigFrame() is the core rendering function that calls the right
callback functions

3. A cleanup phase before exit
22 007-4516-001

OpenGL Multipipe™ SDK White Paper
Figure 12 shows these critical steps in the overall program structure.

Figure 12 Program Flowchart

Start application.

Load configuration from
file or create at run time.

Set MPK callbacks and
initialize shared data.

Call
mpkConfigInit () .

Exit
application?

Call
mpkConfigFrame () .

Call
mpkConfigExit () .

Invoke exit callbacks and
free shared data.

Update frame
data.

Stop.

Yes

No
007-4516-001 23

OpenGL Multipipe™ SDK White Paper
Example 7 Sample Program

///
// application structure...
///

main(int argc, char *argv[])
{
 mpkInit();
 MPKConfig *config = mpkConfigLoad(“.mpconfig”);

 mpkConfigSetPipeInitCB(config, ...);
 mpkConfigSetWindowInitCB(config, ...);
 mpkConfigSetChannelInitCB(config, ...);
 mpkConfigSetDataFreeCB(config, ...);

 mpkConfigInit(config);

 while (!exit) {
 ...
 // update database
 ...
 framedata = newFrameData(db);
 mpkConfigFrame(config, framedata);
 }

 mpkConfigSetPipeExitCB(config, ...);
 mpkConfigSetWindowExitCB(config, ...);
 mpkConfigSetChanneExitCB(config, ...);

 mpkConfigExit(config);
}

///
// per-frame data
///

FrameData *newFrameData(Database *db)
{
 // Allocate memory for the frame data
 FrameData *frameData = (FrameData *) mpkMalloc (sizeof(FrameData)
);

 // copy relevant information from database into frame data
 ...
24 007-4516-001

OpenGL Multipipe™ SDK White Paper
 return frameData;
}

void freeFrameData(MPKConfig *config, void *data)
{
 FrameData *frameData = (FrameData *) data;

 // Free the allocated memory
 mpkFree(frameData);
}

Figure 13 illustrates the task scheduling and callback invocations.

Figure 13 Program Execution Model

Window update Window update

Channel update Channel update

Channel update Channel update

Events Events

Window init Window init

Pipe Init

Database update
007-4516-001 25

OpenGL Multipipe™ SDK White Paper
Example 8 shows a one-pipe, one-window configuration file that can be used with the
sample program in Example 7.

Example 8 Sample Configuration File

global {
 MPK_WATTR_PLANES_ALPHA 1
 MPK_DEFAULT_EYE_OFFSET 0.01
}
config
{
 name “Volview: 1-pipe”
 mode mono

 mono [“/usr/gfx/setmon -n 1280x1024_76”, none]
 stereo [“/usr/gfx/setmon -n str_top”, top]
 pipe
 {
 window
 {
 viewport [0, 0, 1.0, 1.0]
 channel
 {
 name “center”
 viewport [0., 0., 1., 1.]
 wall
 {
 bottom_left [-.5, -.5, -1]
 bottom_right [.5, -.5, -1]
 top_left [-.5, .5, -1]
 }
 }
 }
 }
}

26 007-4516-001

OpenGL Multipipe™ SDK White Paper
Download and Use It!

OpenGL Multipipe SDK, which gives application developers the leverage to extend their
products to immersive environments, is free for the downloading. It can be accessed at
the following URL:

http://www.sgi.com/software/multipipe/sdk

You can also find more documentation and resources from this webpage.

©2002, Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, IRIX, and OpenGL are registered trademarks and GL,

GLX, and OpenGL Multipipe are trademarks of Silicon Graphics, Inc. The X device is a registered trademark of The Open Group

in the United States and other countries.
007-4516-001 27

	Introduction
	Run-Time Configurability
	Run-Time Scalability
	Integrated Support for Scalable Graphics Hardware
	Integrated Support for Stereo and Immersive Environments

	Application Structure
	Graphics Environment Description
	Displaying Multiple and Wider Fields of View
	Multiple Views Per Pipe
	Single View Per Pipe

	Scalable Rendering
	Frame Decomposition
	Screen Decomposition
	Database Decomposition
	Eye Decomposition

	Temporal Decomposition
	Frame Multiplexing
	Data Streaming

	Multilevel Decomposition
	Choosing the Right Decomposition Mode
	Customized Assembly

	Programming Model
	Typical Code Example
	Download and Use It!

