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About This Guide

This guide describes the ways in which hardware devices are integrated into and
controlled from an SGI Altix 3000 series system running the Linux operating system.
This guide provides an overview of the unique elements of writing drivers for SGI
systems, a description of the SGI Altix 3000 architecture, and a summary of the SGI
Linux kernel resources.

To write a process-level driver, you must be an experienced C programmer with a
thorough understanding of the use of Linux system services and, of course, detailed
knowledge of the device to be managed.

To write a kernel-level driver, you must be an experienced C programmer who
knows Linux system administration and who understands the concepts of Linux
device management.

Related Resources
The resources listed in this section contain additional information that might be
helpful.

Developer Program

Information and support are available through the SGI Developer Program. To join
the program, contact the Developer Response Center at 800-770-3033 or e-mail
devprogram@sgi.com.

Internet Resources

A great deal of useful material can be found on the Internet. Some starting points are
in the following list.

http://docs.sgi.com SGI technical manuals to read or
download

http://www.pcisig.com Home page of the PCI bus
standardization organization
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About This Guide

Standards Documents

The following documents are the official standard descriptions of buses:

• PCI Local Bus Specification, Version 2.1, available from the PCI Special Interest
Group, P.O. Box 14070, Portland, OR 97214 (fax: 503-234-6762).

• ANSI/IEEE standard 1014-1987 (VME Bus), available from IEEE Customer Service,
445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331.

Additional Reading

The following additional publications are referenced in this manual:

• David Mosberger and Stephane Eranian, IA-64 Linux Kernel Design and
Implementation. Prentice Hall, http: //www.phptr.com. ISBN 0–13–061014–3.

• Alessandro Rubini and Jonathan Corbet, Linux Device Drivers. Second edition, June
2001. O’Reilly, 0–59600–008–1, order number: 0081. Also available at
http://www.xml.com/ldd/chapter/book/index.html.

• Tom Shanley, PCI-X System Architecture. First edition, 2001. Mindshare Inc.
Addison-Wesley, ISBN 0-2-1-72682-3.

• Tom Shanley and Don Anderson, PCI System Architecture. Third edition.
Mindshare Inc.

• Intel IA-64 Architecture Software Developer’s Manual. Volume 2, Revision 1.1, July
2000, document number: 245318-002.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.
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• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man title on a command line.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.
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Chapter 1

Introduction

This document provides a description of issues that affect Linux device drivers
executing on SGI Altix 3000 series systems. SGI Altix 3000 systems use a
global-address-space cache-coherent multiprocessor that can scale up to 512
processors in a cache-coherent domain. For more information on system components,
see "System Components", page 7.

This document does not provide a tutorial on how to write a Linux device driver on
this or any other Linux platform, but assumes that you can write a Linux device
driver. It provides information you need for porting a Linux device driver, rewriting
a Linux device driver, or writing a new Linux device driver for this platform. If you
have never written a Linux device driver, you should start with Linux Device Drivers,
second edition. This book provides an excellent background, with many examples,
for writing a Linux device driver. Similarly, the book, IA-64 Linux Kernel Design and
Implementation, provides details on the implementation of IA-64 Linux on the Intel
Itanium family of processors, which is the architecture on which the SGI Altix 3000 is
based. Authors and publishers of these books are listed in the Preface (“About This
Guide”).

!
Caution: Drivers developed by using the information contained in this guide are the
responsibility of the user. SGI does not extend any warranty to devices not officially
supported by SGI. For information on devices officially supported on SGI and the
support terms associated with them, see your support agreement.

Topics discussed in this document are as follows:

• Chapter 2, "Architecture", page 7

• Chapter 3, "PCI-X Device Attachment", page 31

• Chapter 4, "PCI System Initialization ", page 41

• Chapter 5, "Finding Your PCI Device", page 45

• Chapter 6, "PCI/PCI-X Configuration Space", page 51

• Chapter 7, "PCI-X I/O and Memory Resources", page 55

• Chapter 8, "PCI-X Interrupt Mechanism", page 69
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• Chapter 9, "PCI-X Direct Memory Access (DMA)", page 71

• Chapter 10, "Device Driver Memory Usage", page 81

• Chapter 11, "Time Management", page 87

• Chapter 12, "Building Linux Kernels and Modules", page 89

• Appendix A, "Memory Operation Ordering on SGI Altix 3000 Systems", page 95

Legacy Functionality
Certain “legacy” methods are available to device drivers on other Linux systems that
SGI Altix 3000 systems do not support (for example, using legacy I/O port numbers 0
through 64K, reading and using peripheral component interconnect (PCI)
configuration base address registers (BARs) or interrupt requests (IRQs) directly from
the card’s configuration space, and so on). Drivers that use legacy methods are not
portable and they will not execute correctly on SGI Altix 3000 systems.

The SGI Altix 3000 system does not always impose upon a Linux device driver the
use of additional or different sets of Linux DKIs to function correctly on this platform.
However, the SGI Altix 3000 system is a large, complex system, and for drivers to
successfully invoke the full parallelism of the hardware and hence achieve optimal
performance, it might well be necessary to invoke services and paradigms that are not
available in the standard Linux DKI. For specific information, see your SGI support
representative.

SGI Altix 3000 systems, which run Linux, provide the same I/O capabilities as the
SGI Origin 3000 series systems, which run IRIX, except for the Intel processor and the
little endian platform. The following list describes the legacy functionalities that are
not available on the SGI Altix 3000 platform.

Legacy
Functionality

Description

I/O ports SGI Altix 3000 I/O subsystems do not support legacy
I/O ports from either the Linux kernel or user level
applications. If you use legacy I/O port numbers 0 –
65K in I/O port macros such as inb() and outb(),
the system will generate an exception.

Expansion ROM SGI Altix 3000 systems do not read and execute basic
input/output systems (BIOS) in expansion read-only
memory (ROM), even if the ROM is present. Drivers
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and cards that depend on initialization by these BIOS
might not function correctly on this platform. All
initialization must be done by the drivers when the
Linux kernel calls them to initialize.

RAM VGA video
memory

SGI Altix 3000 systems do not support legacy video
random access memory (RAM).

IRQs in PCI
configuration space

SGI Altix 3000 systems provide IRQs greater than 256.
The device driver cannot use the IRQ byte in the PCI
configuration space. Device drivers are required to
retrieve the IRQ number initialized by the kernel for
that device in the pci_dev structure.

Base Address Registers SGI Altix 3000 I/O subsystem PCI bridges cannot
generate a "dual address" cycle for programmable I/O
addresses on the PCI-X bus. As such, only 32 bits of the
BARs can be initialized. However, the platform also
requires a PIO address to be 64 bits wide. As such, the
values in the BARs are not the same as the addresses
that the device driver uses on the CPU. The addresses
on the CPU have been mapped.

Reading the BAR and using it in any I/O macros will
cause an exception. PCI-X I/O and memory addresses
for the devices are provided in the pci_dev structure.
These values are already mapped and using them will
correctly target the relevent PCI-X device.

Peripheral buses The only peripheral buses that SGI Altix 3000 systems
support are PCI-X buses. SGI Altix 3000 systems do not
support traditional legacy I/O space such as I/O ports.
PCI-X I/O resource space and memory resource space
are presented to the device driver as uncached virtual
addresses. For more details, see Chapter 3, "PCI-X
Device Attachment", page 31.

Special Architectural Considerations
The following sections describe special architectural characteristics of SGI Altix 3000
systems.
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Programmable I/O Write Operations

Programmable I/O (PIO) write operations on SGI Altix 3000 I/O subsystems can be
cached in various components of the system, from the CPU to the PCI-X bridges. PIO
write requests from the same CPU are guaranteed to be issued in program order.
However, they are not synchronous. PIO write operations on this platform are posted.
To guarantee that PIO write operations have completed, device drivers are required to
push all prior PIO write operations out to the device by issuing a PIO read operation
to the same controller after the last write operation before releasing a semaphore.
This will prevent another CPU from acquiring the semaphore and having its PIO
transactions complete before the previous holder of the semaphore.

PIO access and system memory access use different paths and hardware components
on SGI Altix 3000 I/O subsystems. A get/release operation on a memory-based
lock can complete before a PIO write request.

You are strongly advised to program device drivers to flush all relevent PIO write
operations with a PIO read operation to the same controller prior to releasing the
relevent memory-based locks.

PIO write operation caching is a performance feature. Making each PIO write
operation synchronous incurs unneccessary performance penalty. Other Linux based
platforms also require the device driver to explicitly execute PIO write flushing for
correct operation.

Direct Memory Access

SGI Altix 3000 I/O subsystems provide support for posted direct memory access
(DMA). With posted DMA capability, the host bridge can respond to the requester
that the request is complete prior to actually transferring the data to target memory.
This is a performance feature.

Device Interrupts and Posted DMAs

SGI Altix 3000 I/O subsystems use the interrupt mechanism to flush all posted DMA
data to target memory. This is the only mechanism currently available to ensure that
all posted DMAs are flushed into the target memory.
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PIO Reads and Posted DMAs

PCI-X bridge chipsets on SGI Altix 3000 systems do not automatically flush Posted
DMA writes on any PIO reads. For information regarding software flushing of posted
DMA write buffers, see "PIO Read Flushing Posted DMA Buffers", page 66.

007–4520–003 5





Chapter 2

Architecture

This chapter gives an overview of system components and the management of
physical and virtual memory in SGI Altix 3000 series systems, which are based on the
Itanium Processor Family (IPF) of processors. This chapter also provides background
information to help you understand the limitations and special conventions used by
some kernel functions.

The following main topics are covered in this chapter:

• "System Components", page 7

• "System Memory Address Space", page 14

• "Memory Access", page 25

System Components
The SGI Altix 3000 servers are a family of multiprocessor distributed shared memory
(DSM) computer systems. The SGI Altix 3000 systems use a global-address-space
cache-coherent multiprocessor that can scale up to 512 processors in a cache-coherent
domain. The processors are housed in a 3-U high brick called the SC-brick. The
SC-brick contains two processor nodes. A processor node consists of two processors,
each with 1.5- or 3-MB on-chip, private tertiary (L3) cache, connected to the scalable
hub (SHub) ASIC via the front side bus (FSB). The SHub ASIC acts as a crossbar
between the processors, local SDRAM memory, the network interface, and the I/O
interface. Each processor node is interconnected by a NUMAlink 4 channel. The
modularity of the DSM approach combines the advantages of low entry-level cost
with global scalability in processors, memory, and I/O. The SGI Altix 3000 systems
are based on the Intel Itanium 2 processor. The Intel Itanium 2 processor is a 64-bit
processor that is initially offered at 900 MHz clock speed with a 1.5 MB L3 cache size.

007–4520–003 7



2: Architecture

The SGI Altix 3000 has a PCI-X-based I/O system. (For more details on PCI-X
devices, see Chapter 3, "PCI-X Device Attachment", page 31). The I/O components
are housed in an I/O brick. Following are the two types of I/O bricks:

IX-brick An IX-brick consists of six PCI-X buses. One slot is
preloaded with the BaseIO card, plus a drive module
containing a DVD-ROM and one or two system disks.

PX-brick A PX-brick consists of six PCI-X buses, each with two
PCI-X slots.

Figure 2-1, page 9, shows the links between the various bricks of the SGI Altix 3000
system.
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1
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Figure 2-1 Links Between Bricks

The following sections provide additional information of the various system bricks.
These sections describe the following system components:

• Compute/processor node (SC-brick)

• PCI-X with BaseIO (IX-brick)

• PCI-X with expansion (PX-brick)
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Compute/Processor Node (SC-brick)

The SC-brick is a 3U (4.5”), 1U==1.5”, rackmountable enclosure that contains the
following components:

• Two processor nodes, each containing two 64-bit processors with 1.5- or 3-MB
secondary caches.

• Two SHub chipsets.

• Sixteen DIMM slots per SHub; one or two memory banks per four DIMMs.

• Node electronics.

• One L1 controller.

The node electronics, L1 controller, and power regulators are contained on a single
half-panel power board (PCB). The two SHubs, four processors, and processor power
pods are housed on separate half-panel boards. Four memory daughtercards house
the memory DIMMs. Each daughtercard supports eight memory DIMMs. Figure 2-2,
page 11, shows the block diagram of an SC-brick.

Note: All transfer rates in Figure 2-2, page 11, are peak rates.

The $ in Figure 2-2, page 11, means “cache.”
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Figure 2-2 SC-brick Block Diagram

The SC-brick has the following features:

• Two 64-bit processors

• Contains one 1.5- or 3-MB secondary cache per processor (integrated within the
processor)

• Configurable from 2.0 GB to 16 GB of main memory (minimum 8 DIMMs)

• Contains two 6.4-GB/s (each direction) NUMAlink channels

• Contains two 2.4-GB/s (each direction) Xtown2 channels

• Contains one connection port to the L2 controller

• Contains one DB9 console port
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PCI-X with BaseIO (IX-brick)

The IX-brick is actually a PX-brick with a BaseIO card in PCI-X bus Q, slot Q, plus a
drive module. The BaseIO card consists of the following components:

• IOC4 components:

ATA bus connected to DVD-ROM
NVRAM
Real-time clock
Real-time input/output ports
Serial ports
PS/2 keyboard and mouse ports

• Ethernet network chipset

• SCSI controller

Figure 2-3, page 13, shows an IX-brick.
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Figure 2-3 IX-brick (PX-brick with BaseIO Card)

PCI-X with Expansion (PX-brick)

The PX-brick contains six PCI-X buses with two slots per bus to make a total of 12
PCI-X slots. PX-bricks can be connected to the system via two Xtown2 links. The
PX-brick PCI-X expansion is shown in Figure 2-4, page 14.
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System Memory Address Space
SGI Altix 3000 systems support 64-bit mode addressing. This section refers to the
64-bit address spaces provided by the SGI Altix 3000 system microprocessor (see
Figure 2-8, page 21). This architecture uses addresses that are 64-bit unsigned integers
from 0x0000 0000 0000 0000 to 0xFFFF FFFF FFFF FFFF. This is an immense span of
numbers—if it were drawn to a scale of 1 millimeter per terabyte, the drawing would
be 16.8 kilometers long (just over 10 miles).

The following types of space are described in this section:

• Physical address

• Global Memory mapped register (MMR)

• Atomic memory operation (AMO)

• Cacheable memory

• SHub physical address map
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Physical Address Space

This section provides physical address space information that is normally used by
device drivers. SGI Altix 3000 systems support 50-bit physical addressing, as shown
in Figure 2-5, page 15.

63 62 57 40 39

Must be 0 Physical address

1   0

a   a   a   x   x

Cache
algorithm

Uncached
address
spaces

Figure 2-5 Address Decoding for Physical Memory Access

Fields in Figure 2-5, page 15, are defined as follows:

Bits Description

63:50 Unused and reserved for future use. The value of these
bits should always be zero. This leaves 512 terabytes of
addressing for SGI Altix 3000 systems implemented
with SHub.

49:38 Node ID bits. SGI Altix 3000 systems implemented with
SHub support up to 256 processor nodes (512 CPUs per
system). Bit 38 indicates the node type. A value of 0
indicates a processor node. Bit 49 is always 0.

37: 36 Address space (AS). Each SHub is allocated 256 GB of
physical address space. Bits 37:36 divide the 256 GB
into four 64-GB spaces, as follows:

007–4520–003 15



2: Architecture

Bits [37:36] Description

00 Local resource space and
global MMR space

01 GET space

10 AMO space

11 Cacheable memory space

The AS bits are analogous to the uncached attribute bits
of the SGI Origin 3000 series systems; however, since
Itanium 2 processors do not support uncached attribute
bits in the translation lookaside buffer (TLB), physical
address bits are used to perform the equivalent function.

35:0 Node offset. These bits point to a specific byte location
within one of the four 64-GB spaces of the SHub. When
the value of bits 37:36 is 0b00, the 64-GB local resource
space and global MMR space is really split into two
32-GB regions: 32 GB of local resource space and 32 GB
of global MMR space. Bit 35 selects between these two
regions. When the value of bits 37:35 is 0b000, the
request targets the local resource space. When the value
of bits 37:35 is 0b001, the request targets the global
MMR space.

The following sections describe global MMR space, AMO space, and cacheable
memory space.

Global MMR Space

A node’s global memory mapped register (MMR) space provides all processor nodes
in the system with access to a node’s MMRs (see Figure 2-6, page 17). Notice the
position of the global MMR space in the physical address map shown in Figure 2-8,
page 21. Following are the values of the bits for global MMR space:
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Bit Value

49 0

48:38 Node ID (remember, SHubs are even nodes)

37:36 00 (AS bits)

35 1

36 035

Offset0 10Node ID

38 3749

Global MMR space
AS bits

Figure 2-6 Bit Values for Global MMR Space

Note: Programmable I/O addresses reside in this space (for example, SHub systems,
registers set, PCI configuration space, PCI I/O and memory space, I/O brick registers,
and so on).

AMO Space

When the address space (AS) bits are set to 10, the reference is to atomic memory
operation (AMO) space. An AMO read operation (AMOR) or AMO write operation
(AMOW) request is issued to the SHub that is identified by the number in the node ID
(see Figure 2-7, page 18). Notice the position of the AMO space in the physical
address map shown in Figure 2-8, page 21. The node offset bits specify a 36-bit offset
within the SHub address space, as follows:

Bit Value

49 0

48:38 Node ID (remember, SHubs are even nodes)

37:36 10

35:0 Node offset
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36 0

Offset1 0Node ID

38 3749

0

48

Figure 2-7 Bit Values for AMO Space

A number of fetch-and-op style AMOs are supported to optimize common
synchronization primitives such as locks, tickets, and barriers. These AMOs operate
on a read-modify-write basis. AMOs are defined only for word and doubleword data
sizes and are performed using uncached loads and stores to the AMO address space.
In addition, operations are allowed only on the first doubleword of each 64-byte block
(half cache line) in memory. The AMO variable can be accessed either as one 64-bit
AMO variable or as two 32-bit AMO variables.

In the AMO address space, bits 5:3 of the node offset (the three address bits above the
doubleword offset) determine the type of AMO to perform.

The following AMO read operations are supported:

Fetch Simple uncached read of the location.

Fetch and Increment The location’s current value is returned and then the
location’s value is incremented. This operation is
followed by a write operation.

Fetch and Decrement The location’s current value is returned and then the
location’s value is decremented. This operation is
followed by a write operation.

Fetch and Clear The location’s current value is returned and then the
location’s value is cleared. This operation is followed
by a write operation.

The following AMO write operations are supported:

Initialize Simple uncached write of the location.

Increment The location’s value is incremented.

Decrement The location’s value is decremented.

Logical AND Stored data is logically AND’d with the location’s
current value.
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Logical OR Stored data is logically OR’d with the location’s current
value.

Cacheable Memory Space

When the AS bits are set to 11, the reference is to cacheable memory space. A
memory request is issued to the SHub that is identified by the number in the node
ID. The node offset bits specify a 36-bit offset within the SHub address space. UC,
WB, and WC attributes are supported for cacheable memory space. Notice the
position of the cacheable memory space in the physical address map shown in Figure
2-8, page 21. The 36-bit offset within the SHub address space is as follows:

Bit Value

49 0

48:38 Node ID (remember, SHubs are even nodes)

37:36 11 (AS bits)

35:0 Node offset

Note: Direct memory access (DMA) addresses reside in cacheable memory space.

Cache Use

The primary and secondary caches shown in Figure 2-10, page 26, are essential to
CPU performance. There is an order of magnitude difference in the speed of access
between cache memory and main memory. Execution speed remains high only as
long as a very high proportion of memory accesses are satisfied from the primary or
secondary cache.

The use of caches means that there are often multiple copies of data: a copy in main
memory, a copy in the secondary cache (when one is used), and a copy in the
primary cache. Moreover, a multiprocessor system has multiple CPU modules like the
one shown in Figure 2-10, page 26, and there can be copies of the same data in the
cache of each CPU.
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Cache Coherency

The problem of cache coherency is to ensure that all cache copies of data are true
reflections of the data in main memory. Different SGI systems use different hardware
designs to achieve cache coherency.

Multiprocessor systems have more complex cache coherency protection because it is
possible to have data in multiple caches. In an SGI Altix 3000 multiprocessor system,
the hardware ensures that cache coherency is maintained under all conditions,
including DMA input and output, without action by the software.

SHub Physical Address Map

Figure 2-8, page 21 shows the SHub physical address map. The major segments
shown differ in the following characteristics:

• Whether access to an address is mapped; that is, the address is virtual and is
passed through the translation lookaside buffer (TLB) to translate the virtual
address into a physical address

• Whether an address can be accessed when the CPU is operating in user mode or
in kernel mode

• Whether access to an address is cached; that is, looked up in the L1, L2, and L3
caches before it is sent to main memory
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Figure 2-8 SHub Physical Address Map

PIO Addresses and DMA Addresses

Figure 2-12, page 29, is too simple for some devices that are attached through a bus
adapter. A bus adapter connects a bus of a different type to the system bus, as shown
in Figure 2-9, page 22.
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Figure 2-9 Device Access through a Bus Adapter

For example, the PCI/PCI-X bus adapter connects a PCI/PCI-X bus to the Xtalk I/O
interface of SHub. Multiple PCI/PCI-X devices can be plugged into the PCI/PCI-X
bus and use the bus to read and write. The bus adapter translates the PCI/PCI-X bus
protocol into the system Xtalk protocol.

Each PCI/PCI-X bus has address lines that carry the address values used by devices
on that PCI/PCI-X bus. These bus addresses are not related to the physical addresses
used on the system front side bus (FSB). The issue of bus addressing is made
complicated by three facts:

• Bus-master devices independently generate memory-read and memory-write
commands that are intended to access system memory.

• The bus adapter can translate addresses between addresses on the bus it manages,
and different addresses on the system bus it uses.
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• The translation done by the bus adapter can be programmed dynamically
(mapped), and can change from one I/O operation to another.

This subject can be simplified by dividing it into two distinct subjects: PIO
addressing, used by the CPU to access a device, and DMA addressing, used by a bus
master to access memory. These addressing modes need to be treated differently.

PIO Addressing

Programmable I/O (PIO) is the term for a load or store instruction executed by the
CPU that names an I/O device space as its operand. The CPU places a physical
address on the system bus. The bus adapter repeats the read or write command on its
bus, but not necessarily using the same address bits as the CPU put on the system bus.

One task of a bus adapter is to translate between the physical addresses used on the
system bus and the addressing scheme used within the proprietary bus. The address
placed on the target bus is not necessarily the same as the address generated by the
CPU. The translation is done differently with different bus adapters and in different
system models.

With the more sophisticated PCI and PCI-X buses, the translation is dynamic. Both of
these buses support bus address spaces that are as large or larger than the physical
address space of the system bus. It is impossible to hard-wire a translation of the
entire bus address space. Furthermore, SGI Altix 3000 architecture provides multiple
system buses. For more details, see "Address Spaces Supported", page 36.

The PCI/PCI-X resource addresses in the pci_dev structure are PIO mapped
addresses that the device driver can use in their existing state.

PIO Addressing Extension

To use a dynamic PIO address, a device driver can create a software object called a
PIO map that represents that portion of bus address space that contains the device
registers the driver uses. When the driver wants to use the PIO map, the kernel
dynamically sets up a translation from an unused part of physical address space to
the needed part of the bus address space. The driver extracts an address from the PIO
map and uses it as the base for accessing the device registers. This is an extension
that SGI provides.
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DMA Addressing

A bus-master device on the PCI bus can be programmed to perform transfers to or
from memory independently and asynchronously. A bus master is programmed using
PIOs with a starting bus address and a length. The bus master generates a series of
memory-read or memory-write operations to successive addresses. But what bus
addresses should it use in order to store into the proper memory addresses?

The bus adapter translates the addresses used on the proprietary bus to
corresponding addresses on the system bus. As shown in Figure 2-9, page 22, the
operation of a DMA device is as follows:

1. The device places a bus address and data on the PCI or PCI-X bus.

2. The bus adapter translates the address to a meaningful physical address, and
places that address and the data on the system Xtalk I/O link.

3. The memory modules store the data.

The translation of bus virtual to physical addresses is done by the bus adapter and
programmed by the kernel. A device driver requests the kernel to set up a dynamic
mapping from a designated memory buffer to bus addresses. For more information,
see Chapter 9, "PCI-X Direct Memory Access (DMA)", page 71.

Linux device drivers on SGI Altix 3000 systems must use the standard Linux
pci_dma map routines. For more information, see Chapter 9, "PCI-X Direct Memory
Access (DMA)", page 71.

DMA Addressing Extension

The driver calls kernel functions to establish the range of memory addresses that the
bus master device will need to access—typically the address of an I/O buffer. When
the driver calls one of the pci_dma map routines, the kernel sets up the bus adapter
hardware to translate between some range of bus addresses and the desired range of
memory space. The driver uses PIO to program this bus address into the bus master
device registers. SGI software supports 64- and 32-bit DMA addresses. For more
information on 64- and 32-bit DMA map addresses, see Chapter 9, "PCI-X Direct
Memory Access (DMA)", page 71.

Linux Kernel and User Virtual Address Management

The SGI Altix 3000 system uses the same virtual memory manager as any IA-64 Linux
system with ccNUMA and discontiguous memory support. For more information on
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Linux kernel and user virtual address management, see IA-64 Linux Kernel Design and
Implementation.

Memory Access
The following sections describe CPU and device access to memory.

CPU Access to Memory or I/O Address Space

Each SGI computer system has one or more CPU modules and one or more I/O
modules. A CPU reads data from memory or a device by placing an address on a
system bus and receiving data back from the addressed memory or device. An
address can be translated more than once as it passes through multiple layers of I/O
chipsets and bus adapters. Access to memory can also pass through multiple levels of
cache.

CPU Access to Memory

The CPU generates the address of data that it needs—the address of an instruction to
fetch, or the address of an operand of an instruction. It requests the data through a
mechanism that is depicted in simplified form in Figure 2-10, page 26.
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Figure 2-10 CPU Access to Memory

The process is as follows:

1. The address of the needed data is formed in the processor execution or
instruction-fetch unit. Most addresses are then mapped from virtual to real
through the translation lookaside buffer (TLB). Certain ranges of addresses are
not mapped, and bypass the TLB.

2. Most addresses are presented to the L1 cache, a cache in the processor chip. If a
copy of the data with that address is found, it is returned immediately. Certain
address ranges are never cached; these addresses pass directly to the bus.

3. If the L1 cache does not contain the data, the address is presented to the L2 cache.
If it contains a copy of the data, the data is returned immediately. The size and
the architecture of the secondary cache differ from one CPU model to another.

4. If L2 does not contain the data, the address is presented to the L3 cache. The
address is placed on the system bus. The memory module that recognizes the
address places the data on the bus.
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The process in Figure 2-10, page 26 is correct for an SGI Altix 3000 system when the
addressed data is in the local node.

Note: When the address applies to memory in another node, the address passes out
through the connection fabric to a memory module in another node, from which the
data is returned.

CPU Access to I/O Address Space – Programmable I/O (PIO)

The CPU accesses a device register using programmable I/O (PIO), a process illustrated
in Figure 2-11, page 27. Access to device registers is always uncached. It is not
affected by considerations of memory cache coherency in any system (see "Cache
Use", page 19).

1
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and registers

Translation 
lookaside
buffer

Primary
cache

Secondary
cache

System bus

Memory

Processor unit
(IPnn)

Device

MIPS R4X00,
R5000, R8000 or R10000

Figure 2-11 CPU Access to Device Registers (Programmable I/O)
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The process is as follows:

1. The address of the device is formed in the execution unit. It is not usually an
address that is mapped by the TLB.

2. A device address, after mapping if necessary, always falls in one of the ranges
that is not cached, so it passes directly to the system bus.

3. The device or system component (such as SHub) recognizes its physical address
and responds with data.

The PIO process shown in Figure 2-11, page 27, is correct for an SGI Altix 3000
system when the addressed device is attached to the same node. When the device is
attached to a different node, the address passes through the connection fabric to that
node, and the data returns the same way.

Device Access to System Physical Memory Space – Direct Memory Access

Some devices can perform direct memory access (DMA), in which the device itself, not
the CPU, reads or writes data into memory. A device that can perform DMA is called
a bus master because it independently generates a sequence of bus accesses without
help from the CPU.

To read or write a sequence of memory addresses, the bus master has to be told the
proper physical address (bus address) range to use. This is done by using PIO to
store a bus address and length into the device’s registers from the CPU. When the
device has the DMA information, it can access memory through the system bus as
shown in Figure 2-12, page 29.
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Figure 2-12 Device Access to Memory

The process is as follows:

1. The device makes a request on the PCI/PCI-X bus.

2. The PCI/PCI-X bus adapter translates the PCI/PCI-X bus request and generates a
request to the I/O chipset (SHub).

3. The local SHub forwards the request to the requested memory controllers (local
or remote).

4. The memory module stores the data.

In an SGI Altix 3000 system, the device and the memory module can be in different
nodes, with address and data passing through the connection fabric (NUMAlink)
between nodes.

When a device is programmed with an invalid physical address, the result is a bus
error interrupt. The interrupt occurs on some CPU that is enabled for bus error
interrupts. These interrupts are not simple to process for two reasons. First, the CPU
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that receives the interrupt is not necessarily the CPU from which the DMA operation
was programmed. Second, the bus error can occur a long time after the operation was
initiated.
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Chapter 3

PCI-X Device Attachment

The peripheral component interconnect (PCI) bus, initially designed at Intel, is
standardized by the PCI special interest group, a nonprofit consortium of vendors.
PCI-X is the successor to PCI. Both PCI and PCI-X devices can be used on a PCI-X bus.
SGI Altix 3000 system architecture supports the PCI-X bus. All peripheral devices on
SGI Altix 3000 systems are connected via PCI-X buses. The PCI-X bus is designed as a
high-performance local bus to connect peripherals to memory and a microprocessor.

This chapter describes PCI-X implementation in larger architectures such as the SGI
Altix 3000 systems.

For more information about PCI-X system architecture, see PCI-X System Architecture.

PX-brick with BaseIO (IX-brick)
The PX-brick with BaseIO is a Crosstalk-to-PCI-X based I/O subsystem. It has two
1200-MB/s Xtown2 connectors and one or two of them can be used to connect to
SC-bricks. There are 12 PCI slots that are configured on 6 buses and 2 hard disk bays
that support SCSI disk drives and a DVD-ROM. The DVD-ROM is not SCSI; it is
connected through parallel ATA. For peak bandwidth values, see Table 3-1, page 31.
Figure 3-1, page 32, depicts the PX-brick with BaseIO.

Table 3-1 Bandwidth Characteristics of the IX-brick

Description Peak Bandwidth

Xtown2 ports — A and B 1200 MB/s

PCI-X bus frequency:
33 MHz
66 MHz
100 MHz
133 MHz

64–bit mode:
256 MB/s
512 MB/s
800 MB/s
1024 MB/s

Note 1: PCI-X mode achieves a higher percentage of theoretical peak versus PCI
mode.
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Note 2: To run the bus at 133 MHz requires only one card on that bus and it must be
a 133-MHz capable card.

Note3: The IO9 is a 66-MHz PCI card, so bus 1 runs at 66 MHz PCI in the IX-brick.
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Figure 3-1 PX-brick with BaseIO

PX-brick Expansion
The PX-brick has two 1200-MB/s Xtown2 ports that connect SC-bricks. There are 12
PCI slots that are configured on 6 buses. For peak and sustained bandwidth values,
see Table 3-2, page 33. Figure 3-2, page 33, depicts a PX-brick PCI-X expansion.
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Table 3-2 Bandwidth Characteristics of the PX-brick

Description Peak Bandwidth

Xtown2 ports — A and B 1200 MB/s

PCI-X bus frequency:
33 MHz
66 MHz
100 MHz
133 MHz

64–bit mode:
256 MB/s
512 MB/s
800 MB/s
1024 MB/s

Note 1: PCI-X mode achieves a higher percentage of theoretical peak versus PCI
mode.

Note 2: To run the bus at 133 MHz requires only one card on that bus and it must be
a 133-MHz capable card.
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Figure 3-2 PX-brick PCI-X Expansion
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PCI-X Implementation
In SGI Altix 3000 systems, the PCI-X adapter connects to the high-speed XIO bus.
This bridge joins the PCI-X bus into the connection fabric, so that any PCI-X bus can
be addressed from any module, and any PCI-X bus can access memory that is
physically located in any module, as shown in Figure 3-3, page 34.
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Figure 3-3 PCI-X Implementation

Latency and Operation Order

In SGI Altix 3000 systems, the multimedia features have substantial local resources, so
contention with multimedia for the use of main memory is lower. However, these
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systems also have multiple CPUs and multiple layers of address translation, and
these factors can introduce latencies in PCI-X transactions.

It is important to understand that there is no guaranteed order of execution between
separate PCI-X transactions in these systems. There can be multiple hardware layers
between the CPU, memory, and the device. One or more data transactions can be “in
flight” for durations that are significant. For example, suppose that a PCI-X
bus-master device completes the last transfer of a DMA write of data to memory, and
then executes a DMA write to update a status flag elsewhere in memory.

Under circumstances that are unusual but not impossible, the status in memory can
be updated and acted upon by software, while the data transaction is still “in flight”
and has not completely arrived in memory. The same can be true of a programmable
I/O (PIO) read that polls the device. It can return “complete” status from the device
while data sent by DMA has yet to reach memory.

Ordering is guaranteed when interrupts are used. An interrupt handler is not
executed until all writes initiated by the interrupting device have completed.

Configuration Register Initialization

When the Linux kernel scans the PCI-X buses on an SGI Altix 3000 system and finds
an active device, it initializes the device configuration registers as follows:

Command register The enabling bits for I/O access, memory access, and
master are set to 1. Other bits, such as memory write,
invalidate, and fast back-to-back are left at 0.

Cache line size Set at 0x20 (32, 32-bit words, or 128 bytes).

Latency timer Setting depends on bus speed and the device’s
Min_Gnt (minimum grant) register. If the device’s
Min_Gnt value is 0, the latency timer is set to 1
microsecond. Otherwise, it is set to (min_gnt_mult *
Min_Gnt). Values for min_gnt_multdepend on bus
speed, as follows:

Bus Speed min_gnt_mult Value

133 MHz 32

100 MHz 24

66 MHz 16

33 MHz 8
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Base address registers Each register that requests PCI memory or PCI I/O
address space is programmed with a starting address.

Note: This address is valid only for this PCI-X bus.

When attaching a device, the device driver can set any other configuration parameters.

!
Caution: If the driver changes the contents of a base address register, the results are
unpredictable. Do not do this.

Unsupported PCI-X Signals

The following optional signal lines are not supported:

• The LOCK# signal is ignored; atomic access to memory is not supported.

• The cache-snoop signals SBO# and SDONE are ignored. Cache coherency is ensured
by the PCI-X adapter and the memory architecture, with assistance by the driver.

Address Spaces Supported

In SGI Altix 3000 systems, addresses are translated not once but at least twice and
sometimes more often between the CPU and the device, or between the device and
memory. Also, some of the logic for features, such as prefetching and byte-swapping,
is controlled by the use of high-order address bits. There is no simple function on a
physical memory address that yields a PCI-X bus address (nor vice-versa). The device
driver must use the PIO addresses presented in the pci-dev structure. For more
information, see Chapter 7, "PCI-X I/O and Memory Resources", page 55.

It is also necessary for the device driver to call the relevant DMA mapping routines
for DMA addresses (PCI-X bus addresses). For more information, see Chapter 9,
"PCI-X Direct Memory Access (DMA)", page 71.

64-bit Address and Data Support

SGI Altix 3000 systems support 64-bit data transactions. Use of 64-bit data
transactions results in best performance. The PCI-X adapter accepts 64-bit addresses
produced by a bus-master device. The PCI-X adapter does not generate 64-bit
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addresses itself. (This is because the PCI-X adapter generates addresses only to
implement PIO transactions, and PIO targets are always located in 32-bit addresses).

In SGI Altix 3000 systems, the PCI-X adapter implements a standard, 64-bit PCI-X bus
operating as follows:

• One 133-MHz PCI-X card in one slot of the bus with the other slot empty and
configured down.

• Two 100-MHz PCI-X cards or two 66-MHz PCI-X cards on one bus.

• Two 66-MHz PCI cards or two 33-MHz PCI cards on one bus.

• For mixed-speed cards, the PCI-X bus will downgrade to the lowest card speed.

PIO Address Mapping

For PIO purposes, memory space defined by each PCI-X device in its configuration
registers is allocated in the lowest gigabyte of PCI-X address space, below 0x400 0000.
These addresses are allocated dynamically, based on the contents of the configuration
registers of active devices. The I/O address space requested by each PCI-X device in
its configuration registers is also allocated dynamically as the system comes up. For
further information on PIO address use, see Chapter 7, "PCI-X I/O and Memory
Resources", page 55.

DMA Address Mapping

Any part of physical address space can be mapped into PCI-X bus address space for
purposes of DMA access from a PCI-X bus-master device. The SGI Altix 3000 system
architecture uses a 50-bit physical address, of which some bits designate a node
board. The PCI-X adapter sets up a translation between an address in PCI-X memory
space and a physical address, which can refer to a different node from the one to
which the PCI-X bus is attached.

The device driver ensures correct mapping through the use of PCI DMA map routines.

If the PCI-X device supports only 32-bit addresses, DMA addresses can be established
in 32-bit PCI-X space. When this is requested, extra mapping hardware is used to
map a window of 32-bit space into the 50-bit memory space.

!
Caution: The number of mapping registers is limited, so it is possible that a request
for DMA translation could fail.
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Because of the possibility of the failure of a DMA translation request, it is preferable
to use 64-bit DMA mapping when the device supports it. When the device supports
64-bit PCI-X bus addresses for DMA, the PCI-X adapter can use a simpler mapping
method from a 64-bit address into the target 50-bit address, and there is no contention
for mapping hardware. The device driver must request a 64-bit DMA map, and must
program the device with 64-bit values. For further information on DMA mapping, see
Chapter 9, "PCI-X Direct Memory Access (DMA)", page 71.

Bus Arbitration

The PCI-X adapter maintains two priority groups, the real-time group and the
low-priority group. Both groups are arbitrated in round-robin style. Devices in the
real-time group always have priority for use of the bus. There is no kernel interface
for changing the priority of a device.

Interrupt Signal Distribution

Each PCI-X bus contains two unique interrupt signals. The INTA# and INTC# signals
are wired together, and the INTB# and INTD# signals are wired together. A PCI-X
device that uses two distinct signals must use INTA# and INTB#, or INTC# and
INTD#. A device that needs more than two signals can use the additional signal lines,
but such a device must also provide a register from which the device driver can learn
the cause of the interrupt.

The PCI-X bus adapter chip that is used on all SGI Altix 3000 systems has eight input
interrupts. PCI-X cards, however, can implement up to four different interrupts (A, B,
C, and D), which might create a shared condition. Table 3-3, page 38, shows how
interrupts can be shared on an SGI Altix 3000 system.

Table 3-3 Shared Interrupts

PCI-X slots

PCI–X
Interrupt line
A

PCI-X
Interrupt line
B

PCI-X
Interrupt line
C

PCI-X
Interrupt line
D

Slot 0 0 4 0 4

Slot 1 1 5 1 5

Slot 2 2 6 2 6
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PCI-X slots

PCI–X
Interrupt line
A

PCI-X
Interrupt line
B

PCI-X
Interrupt line
C

PCI-X
Interrupt line
D

Slot 3 3 7 3 7

Slot 4 4 0 4 0

Slot 5 5 1 5 1

Slot 6 6 2 6 2

Slot 7 7 3 7 3

For example, if a card in slot 0 uses INTA# and a card in slot 4 uses INTB#, there will
be a conflict. In this case, the interrupt service routines (ISRs) of both cards will be
called when the bridge interrupt pin 0 changes to active. If you try to connect to all
four interrupt lines from the card, you will create a shared condition. This is called
interrupt overloading.

Because SGI Altix 3000 systems support two slots and line A and line C are wired
together and line B and line D are wired together, devices on the same bus will never
share the same interrupt line.
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PCI System Initialization

As part of the Linux kernel boot process, all PCI buses and devices are scanned,
configuration space is initialized, and kernel data structures are created to map to
these devices. This process is initiated well before any PCI device drivers are called to
initialize their devices.

The Linux kernel creates a data structure to map each discovered PCI bus and a PCI
device data structure to map each PCI device on that PCI bus. The following
structures are examples of a pci_bus structure created for each PCI bus (Example
4-1, page 41) and a pci_dev structure created for each PCI device (Example 4-2, page
42), respectively.

Example 4-1 pci_bus structure created for each PCI bus

struct pci_bus {

struct list_head node; /* node in list of buses */

struct pci_bus *parent; /* parent bus this bridge is on */

struct list_head children; /* list of child buses */
struct list_head devices; /* list of devices on this bus */

struct pci_dev *self; /* bridge device as seen by parent */

struct resource *resource[4]; /* address space routed to this bus */

struct pci_ops *ops; /* configuration access functions */
void *sysdata; /* hook for sys-specific extension */

struct proc_dir_entry *procdir; /* directory entry in /proc/bus/pci */

unsigned char number; /* bus number */

unsigned char primary; /* number of primary bridge */

unsigned char secondary; /* number of secondary bridge */
unsigned char subordinate; /* max number of subordinate buses */

char name[48];

unsigned short vendor;

unsigned short device;
unsigned int serial; /* serial number */
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unsigned char pnpver; /* Plug & Play version */
unsigned char productver; /* product version */

unsigned char checksum; /* if zero - checksum passed */

unsigned char pad1;

};

Example 4-2 pci_dev structure created for each PCI device

struct pci_dev {

struct list_head global_list; /* node in list of all PCI devices */

struct list_head bus_list; /* node in per-bus list */
struct pci_bus *bus; /* bus this device is on */

struct pci_bus *subordinate; /* bus this device bridges to */

void *sysdata; /* hook for sys-specific extension */

struct proc_dir_entry *procent; /* device entry in /proc/bus/pci */

unsigned int devfn; /* encoded device & function index */

unsigned short vendor;

unsigned short device;

unsigned short subsystem_vendor;
unsigned short subsystem_device;

unsigned int class; /* 3 bytes: (base,sub,prog-if) */

u8 hdr_type; /* PCI header type (‘multi’ flag masked out) */

u8 rom_base_reg; /* which config register controls the ROM */

struct pci_driver *driver; /* which driver has allocated this device */
void *driver_data; /* data private to the driver */

u64 dma_mask; /* Mask of the bits of bus address this

device implements. Normally this is

0xffffffff. You only need to change

this if your device has broken DMA
or supports 64-bit transfers. */

u32 current_state; /* Current operating state. In ACPI-speak,

this is D0-D3, D0 being fully functional,

and D3 being off. */

/* device is compatible with these IDs */

unsigned short vendor_compatible[DEVICE_COUNT_COMPATIBLE];

unsigned short device_compatible[DEVICE_COUNT_COMPATIBLE];
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/*
* Instead of touching interrupt line and base address registers

* directly, use the values stored here. They might be different!

*/

unsigned int irq;

struct resource resource[DEVICE_COUNT_RESOURCE]; /* I/O, memory, ROMS regions*/
struct resource dma_resource[DEVICE_COUNT_DMA];

struct resource irq_resource[DEVICE_COUNT_IRQ];

char name[80]; /* device name */

char slot_name[8]; /* slot name */

int active; /* ISAPnP: device is active */
int ro; /* ISAPnP: read only */

unsigned short regs; /* ISAPnP: supported registers */

int (*prepare)(struct pci_dev *dev); /* ISAPnP hooks */

int (*activate)(struct pci_dev *dev);
int (*deactivate)(struct pci_dev *dev);

};

A PCI bus is uniquely identified by a PCI bus number (pci_dev.number) A PCI device
is uniquely identified by its device and function number ( pci_dev.devfn) and the bus
it is on (pci_dev.bus->number).

As you can observe from the data structures in Example 4-1, page 41, and Example
4-2, page 42, the PCI buses are linked together and each pci_bus structure is also
linked to its own PCI devices. All the PCI devices are also linked.

At the end of the system PCI initialization, the Linux kernel has the following
initialization status:

• Software representation of each PCI physical bus

• Software representation of each PCI device

• Any required initialization of the PCI configuration space registers, such as base
address registers, and so on
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Chapter 5

Finding Your PCI Device

The SGI Altix 3000 system can support many more PCI-X I/O devices than other
traditional Linux servers. Each PX-brick has 6 PCI-X buses and 12 slots..

When you have more than one PX-brick on your SGI Altix 3000 system, you must be
able to physically and programmatically locate your devices. This chapter provides
the information about physical and logical Linux addresses that you need to find
your PCI-X device.

Physical Location of Your PCI Device
When your PCI device is slotted into a PCI-X slot, it has a physical address. The
components of the physical address are as follows:

• Function number (0 to 7)

• Physical device/slot number on the PCI-X bus (1 or 2)

• PCI-X bus number on the host bridge adapter (1 or 2)

• Host bridge adapter number (also known as widgets) (12, 13, or 15)

• Compute brick slab number (0 or 1)

• Compute brick module identification number

• PX-brick/IX-brick module identification number

Figure 5-1, page 46, shows physical address components.
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Figure 5-1 Physical Address Components

Logical Address of Your PCI Device
When the Linux PCI subsystem encounters your PCI device, it is given a logical
address. The components of the logical address are as follows:

• Function number

• Device number

• Logical PCI bus number
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On SGI Altix 3000 systems, because of the vast number of PCI-X buses that the
system can support, SGI has provided a hardware graph topology that maps all PCI
devices in the system from their Linux logical address to the actual hardware address.
This facility allows you to correctly identify a particular device on the system for any
purpose, one of which may be to find the physical failing component that has been
reported by the system.

During SGI Altix 3000 platform initialization, as the system hardware probes
outwards from the compute bricks to initialize the various components attached to
the system, the system software uses the Linux device filesystem (devfs) to create a
hierachical topology of all the components discovered and initialized.

An example:

/dev/hw/module/001c11/slab/0/Pbrick/xtalk/12/pci-x/0/1

This topology describes the actual hardware location of a specific PCI-X device. The
following section describes how to use this topology information to physically find
your device.

Physically Locating Your PCI Device Information
The /proc/pci file provides a user level display of all PCI devices seen and
initialized by the Linux kernel. Consider the following example:

[root@pumpkin root]# cat /proc/pci

....

Bus 3, device 1, function 0:

Fibre Channel: QLogic Corp. QLA2300 64-bit FC-AL Adapter (#5) (rev 1).

IRQ 567.

Master Capable. Latency=64. Min Gnt=64.
I/O at 0xc00000080fa00000 [0xc00000080fa000ff].

Non-prefetchable 64 bit memory at 0xc00000080fe00000 [0xc00000080fe00fff].

....

Note: The bus number (3) in the preceding example is in decimal notation and the
bus numbers in /dev/hw/linux/bus/pci-x/* are in hexadecimal notation.
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You can locate your device physically from the logical Linux PCI bus number and
device number by using the /proc/pci output. The PCI device in the previous
example is on logical PCI bus 3, device 1. The device number is the same as the slot
number on the PCI bus. Therefore, you can determine that the device is on slot 1 of
that PCI bus.

SGI Altix 3000 systems provide topology information (known as the hwgraph) for all
system components. The hwgraph depicts the connections among these components.
The hwgraph topology information is rooted at /dev/hw. The following example
shows how to find the physical location of your device. It shows the physical location
of Linux bus numbers as provided by the /proc/pci display.

[root@pumpkin root]# ls -al /dev/hw/linux/bus/pci-x/*

lr-xr-xr-x 1 root root 56 Dec 31 1969 /dev/hw/linux/bus/pci-x/1-> ../../

../hw/module/001c27/slab/0/Pbrick/xtalk/12/pci-x/0

lr-xr-xr-x 1 root root 56 Dec 31 1969 /dev/hw/linux/bus/pci-x/2-> ../../
../hw/module/001c27/slab/0/Pbrick/xtalk/12/pci-x/1

lr-xr-xr-x 1 root root 56 Dec 31 1969 /dev/hw/linux/bus/pci-x/3-> ../../

../hw/module/001c27/slab/0/Pbrick/xtalk/15/pci-x/0

lr-xr-xr-x 1 root root 56 Dec 31 1969 /dev/hw/linux/bus/pci-x/4-> ../../

../hw/module/001c27/slab/0/Pbrick/xtalk/15/pci-x/1

Note: The bus numbers in the preceding example are in hexadecimal notation.

The components are defined as follows:

module/001c27 Indicates the module identification number. Each
module on the system has a module identification
number. This number is displayed on the LED on the
front of the module.

/slab/0 Indicates the slab number. Each compute brick has two
slabs (also known as nodes) — slab 0 and slab 1.

Pbrick Indicates the I/O brick type. All IX-bricks and
PX-bricks are identified as Pbrick in the topology.

xtalk/15 Indicates the PCI-X host bridge adapter number. There
are three PCI-X host bridge adapters in each I/O brick.
They are numbered 12, 13, and 15. Each PCI-X host
bridge adapter number is "stamped" at the back of the
I/O brick.
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pci-x/0 Indicates the logical PCI-X bus number on the host
bridge adapter. Each PCI-X host bridge adapter has two
PCI-X buses — bus 1 and bus 2. This number is also
"stamped" on the back panel of the I/O brick.
Unfortunately, the hwgraph assigns the PCI bus
numbers as 0 and 1 instead of 1 and 2. Therefore,
pci-x/0 is actually physical bus 1 and pci-x/1 is
physical bus 2.

To physically locate your device, use the hwgraph topology information, as follows:
If, from the /proc/pci display, your Linux logical bus number is 3, your device
number is 1, and /dev/hw/linux/busnum points at
../../../hw/module/0012c27/slab/0/Pbrick/xtalk/15/pci-x/1, you
know that your device (device 1) is in slot 1, on physical bus number 2 (pcix-x/1),
on PCI-X host bridge adapter number 15, that is connected to slab 0 (node 0) of the
compute brick with module identification number 0012c27.

Programmatically Locating Your PCI Device
PCI services provided by the Linux kernel driver kernel interface (DKI) require a
handle that maps to your PCI device. This handle is actually a pointer to your device
pci_dev structure. Therefore, before the device driver can call the Linux kernel for
any PCI services, it must first locate its PCI device handle.

You can locate the PCI device pci_dev structure by using the following methods:

struct pci_dev *

pci_find_device(unsigned int vendor, unsigned int device,
const struct pci_dev *from)

This routine scans from *from to locate the pci_dev structure that matches the given
vendor and device identification. If *from is NULL, it starts from the beginning of the
pci_dev list. If a match is found, the address of pci_dev is returned in *from.

Other search routines of interest are:

struct pci_dev *pci_find_subsys (unsigned int vendor,

unsigned int device,

unsigned int ss_vendor, unsigned int ss_device,

const struct pci_dev *from);
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struct pci_dev *pci_find_class (unsigned int class,
const struct pci_dev *from);

struct pci_dev *pci_find_slot (unsigned int bus, unsigned int devfn);

The device driver can also scan through the PCI device list by searching the list in
reverse order (see Example 5-1, page 50) and scanning the list in order (see Example
5-2, page 50). The advantage of these scanning mechanisms is that they allow the
device driver to match any attributes required for locating its PCI device.

Example 5-1 Scanning the list in reverse order

#define pci_for_each_dev_reverse(dev)\
for(dev = pci_dev_g(pci_devices.prev); \

dev != pci_dev_g(&pci_devices); \

dev = pci_dev_g(dev->global_list.prev))

Example 5-2 Scanning the list in order

#define pci_for_each_dev(dev) \

for(dev = pci_dev_g(pci_devices.next); \

dev != pci_dev_g(&pci_devices); \

dev = pci_dev_g(dev->global_list.next))
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Chapter 6

PCI/PCI-X Configuration Space

Each PCI/PCI-X device has 256 bytes of configuration address space. Sixty-four bytes
of this area are standardized as shown in Figure 6-1, page 52. For more details
regarding these registers, see PCI-X System Architecture or PCI System Architecture.
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Figure 6-1 PCI-X Configuration Space

On SGI Altix 3000 systems, the following registers in the PCI configuration space
should not be used directly by device drivers:

• Base address registers. These register values are not usable on the CPU as PIO
addresses.

52 007–4520–003



Linux® Device Driver Programmer’s Guide – Porting to SGI® AltixTM 3000 Systems

• Expansion ROM base address registers. SGI Altix 3000 systems do not support
loading and executing basic input/output systems (BIOS) code resident in PCI
ROM. This register is not initialized. Drivers should ensure that all initialization is
performed in the driver.

• Interrupt Line. On legacy systems, this is the IRQ. SGI Altix 3000 systems support
IRQs greater than 8 bits (greater than 256 IRQs). The interrupt line value is not
used on SGI Altix 3000 systems.

Device drivers have to use the addresses and values provided in the pci_dev
structure. For methods of programmatically finding your device pci_dev
information, see Chapter 5, "Finding Your PCI Device", page 45.

You can read and write PCI/PCI-X configuration space for your device by using the
following PCI configuration space routines:

/usr/include/linux/pci.h:

int pci_read_config_byte(struct pci_dev *dev,int where,u8 *ptr);

int pci_read_config_word(struct pci_dev *dev,int where,u16 *ptr);

int pci_read_config_dword(struct pci_dev *dev,int where, u32 *ptr);

int pci_write_config_byte (struct pci_dev *dev,int where, u8 val);

int pci_write_config_word (struct pci_dev *dev,int where, u16 val);

int pci_write_config_word (struct pci_dev *, int where, u32 val);

int pci_write_config_dword (struct pci_dev *dev,int where, u32 val);

Variables are as follows:

Variable Description

*dev Pointer to your device pci_dev structure

where Byte offset into the PCI configuration space of your
device

*ptr Address of the location to store the byte read

val Value to write into the PCI configuration space of your
device
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Chapter 7

PCI-X I/O and Memory Resources

This chapter describes programmable I/O (PIO) architecture, first describing the PIO
address and then describing the flow of PIO operations.

Anatomy of a PIO Address
On SGI Altix 3000 systems, the PIO address that the device driver and CPU
encounter is different from the PCI-X addresses that are initialized on the base
address registers (BARs). PCI-X host bridge adapters on SGI Altix 3000 systems can
generate only single address cycles for PIO read and write operations. This limits the
size of the PCI address on a PCI bus to 32 bits.

PCI-X host adapters on SGI Altix 3000 systems provide a set of device registers that
help maintain PIO attributes. Two of the most common PIO attributes are as follows:

DEV_IO_MEM Enables device memory or I/O space. When set, the
request generated on the PCI bus is for the PCI
memory resource. Otherwise, the request is generated
for the PCI I/O resource.

DEV_OFF Specifies PCI-X address offset bits. These 12 bits replace
bits 31 to 20 of the PIO address that the PCI-X host
bridge adapter obtains from the CPU.

PIO Addresses
The diagram in Figure 7-1, page 56, provides the breakdown of a “mapped” PIO
address as seen by the device driver on the CPU. Note that this address is quite
different from the addresses that are initialized on the BARs.
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Offset
Device
reg #

Widget
#

O100000NASIDC ...

63-60 48-38 37-36 35-32 31-28 27-24 23-20 19-0

Bits [19:0] of
PCI bus address

Device register # (for PCI
bus address bits [31:20] 
& PIO attributes)

Widget # (local PCI bus #)

Big window O

Global MMR space

Address space (AS bits)

Figure 7-1 PIO Address Format

Flow of PIO Operation
The following sections describe the flow of PIO operation to local and remote PCI-X
devices.

Targeting a PCI-X Device on a Local Node

The flow of PIO to a local PCI-X device is depicted in Figure 7-2, page 57. Following
the figure is an explanation of the numbered components.
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PCI-X
Host Bridge

adapter

PCI-X
device

CPU

SHub

FSB

Node Q

1

2

3

4

5

Figure 7-2 PIO to a Local PCI-X Device

1. CPU sees that the address is “uncached.” It forwards the address on the front
side bus (FSB).

2. The SHub receives the request and determines from the NASID (bits 48 to 38) that
it is targeted to itself.

3. The SHub forwards the request to the attached PCI-X host bridge adapter via the
Xtown2 link.

4. The PCI-X host bridge adapter receives the request, parses the addresses, and
places the modified PIO address (PCI-X bus address) on the PCI-X bus.

5. The PCI-X device with the matching BARs responds to the request.
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Targeting a PCI-X Device on a Remote Node

The flow of PIO to a remote PCI-X device is depicted in Figure 7-3, page 58.
Following the figure is an explanation of the numbered components.
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CPU 1

FSB

NUMAlink NUMAlink

Figure 7-3 PIO to a Remote PCI-X Device

1. The CPU places the PIO mapped address on the FSB.

2. The local SHub receives the request and determines from the NASID that it is not
targeted to itself.

3. The local SHub forwards the request via the NUMAlink to the targeted remote
SHub.

4. The PCI-X host bridge adapter receives the request, parses the addresses, and
places the modified PIO Address (PCI-X bus address) on the PCI-X bus.
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5. The PCI-X device with the matching BARs responds to the request.

PIO Address Translation from CPU to PCI Bus
The PIO address that the CPU issues does not look anything like the PCI address on
the targeted base address register (BAR). Consider the following example:

Example 7-1 Address Translation

A PCI-X device has requested for I/O a resouce of 512 bytes. It is connected via
NASID (Node ID) 0x0 and it is on that node’s local PCI bus (widget identifier) 0xe.

At boot time the system has initialized the BARs to 0x1fff_0001. Given the previous
information, the "mapped" PIO address looks like the following to the device driver
and the CPU:

0xc000_0008_0e4f_0000

The diagram in Figure 7-4, page 59, provides the breakdown of an address that the
CPU issues. This is the address you get from the pci_dev structure.

F 0004O0100000

48-38 37-36 35-32 31-28 27-24 23-20 19-0

Bits [19:0] of
PCI bus address

Device register # (for PCI
bus address bits [31:20] 
& PIO attributes)

Host bus adapter # (local PCI bus #)

Big window O

Global MMR space

Address space (AS bits)

e

NASID

Figure 7-4 PIO Address from the CPU
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The targeted PCI-X host bridge adapter gets the PIO address as the following:

0x0e4f_0000

The device register contents of 0x11ff specifies the following:

DEV_IO_MEM == IO
DEV_OFF == 0x1ff

The relevent device register is the one identified by PCI bus widgets 0xe and 0x4.
With this information from the device register for this address, the PCI-X host bridge
adapter places the following PCI-X bus PCI address on widget 0xe as a PCI I/O
transaction (read or write operation):

0x1fff_0000

The PCI-X host bridge adapter strips the 0xe4 (from 0x0e4f_0000 to form 0xf_0000)
and prepends 0x1ff (from the device register DEV_OFF value) to 0xf_0000 to make the
PCI-X bus address 0x1fff_0000. This value matches the value as initialized in the BAR.

Note: Reading the BARs for an address to use as a PIO will definitely not work on
SGI Altix 3000 systems. It might or might not work on any other systems. Most
importantly, it makes your code not portable.

PCI-X PIO Resource Management
Device drivers on SGI Altix 3000 systems must use the PCI resource routines described
in the following sections to obtain either the I/O or memory PIO addresses that are
initialized by the platform. Device drivers must not read or use the BARs directly.

PCI-X I/O Resource Address

Linux provides the following PCI resource interfaces to obtain the PCI I/O resource
address.

To retrieve the start I/O resource address:

pci_resource_start(dev,bar)
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To retrieve the ending address of an I/O resource address:

pci_resource_end(dev,bar)

To obtain the length of an I/O resource address:

pci_resource_len(dev,bar)

For example:

reg_base = pci_resource_start(pdev, 0);

reg_len = pci_resource_len(pdev, 0);
flags = pci_resource_flags(dev,bar);

if (flags & IORESOURCE_IO) {

// This is an I/O resource.

}

PCI-X Memory Resource Address

Linux provides the following PCI resource interfaces to obtain PCI memory resource
addresses.

To retrieve the start memory resource address:

pci_resource_start(dev,bar)

To retrieve the ending address of a memory resource address:

pci_resource_end(dev,bar)

To obtain the length of a memory resource address:

pci_resource_len(dev,bar)

For example:

reg_base = pci_resource_start(pdev, 0);

reg_len = pci_resource_len(pdev, 0);

flags = pci_resource_flags(dev,bar);
if (flags & IORESOURCE_MEM) {

// This is a memory resource.

}
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PCI-X I/O Resource Reservation

It is strongly recommended that device drivers call the following PCI-X resource
reservation routines to ensure that no other drivers are currently using a resource by
mistake.

To reserve a PCI I/O resource region:

request_region(start,n,name)

To reserve a PCI memory resource region:

request_mem_region(start,n,name)

To release the PCI I/O resource:

release_region(start,n);

To release the PCI memory resource region:

release_mem_region(start,n);

For example:

request_region(reg_base, reg_len, "any_id");

.....

release_region(reg_base, reg_len);

PCI-X I/O Resource Use Macros

You should reference PCI-X I/O resource addresses by using the following macros.

Single byte access macros:

inb(address);

outb(value, address);

Single word access macros:

inw(address);

outw(value, address);

Single long access macros:

inl(address);

outl(value, address);
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Multiple byte access macros:

insb(address, value_address, byte_count);
outsb(address, value_address, byte_count);

Multiple word access macros:

insw(address, value_address, word_count);

outsw(address, value_address, word_count);

Multiple long access macros:

insl(address, value_address, long_count);

outsl(address, value_address, long_count);

Note: Even though on SGI Altix 3000 systems, PCI-X I/O resource addresses are
mapped addresses and can be referenced without using any of the macros in the
preceding list, it is recommended that you use these macros so that your code is
portable.

PCI-X Memory Resource Use Macros

PCI-X memory resource addresses should not be used alone. Use the following
platform-independent macros with PCI-X memory resource addresses.

Single byte access macros:

readb(address);

writeb(value, address);

Single word access macros:

readw(address);

writew(value, address);

Single long access macros (4 bytes):

readl(address);

writel(value, address);

Single unsigned long access macros (8 bytes):

readq(address);
writeq(value, address);
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PIO Write (Posted) Synchronization
PIO write operations on SGI Altix 3000 systems can be cached in the various system
components prior to actual arrival at the device. These PIO write operations are
called “posted” operations. To explicitly flush these write operations, the device
driver is required to perform a PIO read operation (also known as a “PIO flush”) after
the last significant PIO write operation.

The need to perform PIO flushes becomes apparent when you consider a
multithreaded driver. Multithreaded drivers use a memory lock for synchronization,
as shown in the example sequence in Table 7-1, page 64.

Table 7-1 Memory Locks

Time CPU 0 CPU 1

n (1) Grab lock (This CPU
wins the race for the lock)

(1) Grab lock (This CPU
must wait, as CPU 0 has
the lock)

n + 1 (2) PIO write of Oxa to
device x

(2) Waiting

n + 2 (3) Release lock (but no
guarantee that #2 has
completed)

(3) Receive lock

n + 3 (4) No activity (4) PIO write of Oxb to
device x

n + 4 (5) Device can receive Oxb
before Oxa

To avoid the releasing of the memory lock before the PIO write has completed, drivers
for SGI Altix 3000 systems can be programmed to issue an additional operation (a read
operation to the same controller, called a PIO flush) to force the data to be delivered
to the device before the memory lock is released and a second thread can issue a read
operation. The sequence shown in Table 7-2, page 65, illustrates the correct usage.
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Table 7-2 Correct Memory Lock Usage

Time CPU 0 CPU 1

n (1) Grab lock (This CPU
wins the race for the lock)

(1) Grab lock (This CPU
must wait, as CPU 0 has
the lock)

n + 1 (2) PIO write of Oxa to
device x

(2) Waiting

n + 2 (3) PIO read to the same
controller
(4) Device receives Oxa

(3) Waiting

n + 3 (5) Release lock (4) Receive lock

n + 4 (6) No activity (5) PIO write of Oxb to
device x
(6) PIO read to the same
controller
(7) Device receives Oxb

Even though at n + 1 CPU 0 issued the PIO write, it does not guarantee that the
device will have received the data (Oxa) before n + 3. Similarly, it does not guarantee
that the PIO write from CPU 1 at n + 3 does not arrive at the device before the
operation that was issued by CPU 0 at n + 1.

Following is a more concrete example from a hypothetical device driver:

...

CPU A: spin_lock_irqsave(&dev_lock, flags)

CPU A: val = readl(my_status);

CPU A: ...

CPU A: writel(newval, ring_ptr);

CPU A: spin_unlock_irqrestore(&dev_lock, flags)
...

CPU B: spin_lock_irqsave(&dev_lock, flags)

CPU B: val = readl(my_status);

CPU B: ...

CPU B: writel(newval2, ring_ptr);
CPU B: spin_unlock_irqrestore(&dev_lock, flags)

...
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In the case above, the device may receive newval2 before it receives newval, which
could cause problems. Following is a fix for the problem:

...

CPU A: spin_lock_irqsave(&dev_lock, flags)

CPU A: val = readl(my_status);

CPU A: ...

CPU A: writel(newval, ring_ptr);

(***The following line fixes the previous problem***)

CPU A: (void)readl(safe_register); /* maybe a config register? */

CPU A: spin_unlock_irqrestore(&dev_lock, flags)

...
CPU B: spin_lock_irqsave(&dev_lock, flags)

CPU B: val = readl(my_status);

CPU B: ...

CPU B: writel(newval2, ring_ptr);

CPU B: (void)readl(safe_register); /* maybe a config register? */
CPU B: spin_unlock_irqrestore(&dev_lock, flags)

Here, the read operations from safe_register cause the I/O chipset to flush any
pending write operations before actually posting the read operation to the chipset,
thus preventing possible data corruption.

For more informaton, see Appendix A, "Memory Operation Ordering on SGI Altix
3000 Systems", page 95.

PIO Read Flushing Posted DMA Buffers
SGI Altix 3000 series system hardware provides the capability to buffer write DMA
buffers. These buffers are flushed only when the device generates an interrupt.

PCI specification requires that any bridge that can buffer DMA write buffers must
ensure that these posted buffers are flushed whenever a PIO read is issued to the
device. Because this specification is not supported on SGI Altix 3000 hardware, all of
the PIO read macros (for example, inX() and readX()) have been enhanced to
perform a DMA write flush before returning to the caller. However, on some devices
and device drivers, this enhancement can cause a negligible performance degradation.
Because of this potential performance implication, a “fast” PIO call procedure is
available. These calls do not perform any DMA write buffer flushing. For devices
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that do not depend on a PIO read to flush posted write DMA buffers, you can use the
following set of interfaces:

sn_inb_fast (unsigned long port)

sn_inw_fast (unsigned long port)

sn_inl_fast (unsigned long port)

sn_readb_fast (void *addr)

sn_readw_fast (void *addr)

sn_readl_fast (void *addr)

These calls are defined in the include/asm-ia64/sn/sn2/io.h file.
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Chapter 8

PCI-X Interrupt Mechanism

This chapter describes the interrupt mechanism for SGI Altix 3000 systems and
provides information about interrupt architecture, interrupt requests (IRQs), and
interrupt registration.

Interrupt Architecture
The interrupt architecture of SGI Altix 3000 systems might differ from other Itanium
platforms. However, the interfaces presented to the device driver are the same. Linux
interrupt support on SGI Altix 3000 systems is no different from support on any other
Intel Itanium 2-based platforms.

Interrupt Request (IRQ) Management
Some aspects of interrupt configuration on the SGI Altix 3000 platform might differ
from those on other Linux platforms. However, as for any Linux platforms,
configuration is performed either in system BIOS or in Linux platform specific code.
Both of these types of codes are transparent to Linux device drivers. Linux device
drivers on SGI Altix 3000 systems install and register their interrupt handlers in
exactly the same way as Linux device drivers on any other Linux platform. The
interrupt flow is as follows:

1. The device pulls its configured interrupt pin (INTA, INTB, and so on).

2. The bridge uses the IRQ number to signal the SHub to interrupt the specified
CPU.

3. The SHub delivers this interrupt with the IRQ number to the targeted CPU.

4. The targeted CPU delivers the interrupt to the driver that is registered with the
IRQ number.

Driver Interrupt Registration
SGI Altix 3000 architecture can support more than 256 interrupt requests (IRQs). The
1-byte field in the PCI configuration register is not sufficient to map all of the possible

007–4520–003 69



8: PCI-X Interrupt Mechanism

IRQs that can exist. Therefore, a device driver that is retrieving the IRQ from the PCI
configuration space for interrupt installation (registration) is not portable to any
platforms that can support more than 256 IRQs. On SGI Altix 3000 systems, you must
not use the contents of the IRQ from the PCI configuration space. The proper
procedure to use is as follows:

1. Get the IRQ number from the pci_dev structure initialized by the Linux PCI
infrastructure during boot.

2. Call the request_irq method with the IRQ obtained in step 1.

Following is an example code sequence:

static void

intr_handler(int irq, void *private_data, struct pt_regs *regs);

my_irq = pci_dev->irq;

request_irq(my_irq, intr_handler,

SA_INTERRUPT | SA_SHIRQ, "My Driver", private_data);

For more information on interrupt handling, see Linux Device Drivers, chapter 9,
“Interrupt Handling.”

!
Caution: An interrupt is the only mechanism in which posted DMA data are flushed
from the PCI-X bridge to target memory.
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Chapter 9

PCI-X Direct Memory Access (DMA)

This chapter describes direct memory access (DMA) architecture, first describing the
flow of DMA from the PCI-X bus into the system, and then describing the DMA
mapped address. Figure 9-1, page 71, and Figure 9-2, page 72, show the targeting of
local and remote node memory, respectively.

PCI-X
Host Bridge

adapter

PCI-X
device

SHub

1

2

3

PCI-X bus

Xtown2 link

I/O interface

Memory

Memory
interface

SHub

Memory

Figure 9-1 DMA to Memory on A Local Node

The flow depicted in Figure 9-1, page 71, is as follows:

007–4520–003 71



9: PCI-X Direct Memory Access (DMA)

1. PCI-X device places the DMA request on the bus.

2. PCI-X host bridge adapter places the DMA request to the directly connected
SHub’s I/O interface.

3. Since this is a request to locally attached memory, the request is satisfied by the
local SHub’s memory.
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PCI-X bus
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Memory
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interface

SHub
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Node 0Node 1Node 2

SHub

Memory
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Figure 9-2 DMA to Memory on A Remote Node

The flow depicted in Figure 9-2, page 72, is as follows:

1. PCI-X device places the DMA request on the PCI-X bus.
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2. PCI-X host bridge adapter forwards the DMA request to the I/O interface on the
directly attached SHub.

3. Because this request is targeted to a remote node’s memory, the I/O interface
(SHub) forwards this request to the remote SHub via the NUMAlink.

4. Remote SHub satisfies request with its memory.

Types of DMA Mappings
SGI Altix 3000 systems support consistent DMA mappings and streaming DMA
mappings. The following sections describe each of these types.

Consistent DMA Mappings

Consistent DMA mappings are synchronous and coherent. These mappings are
usually mapped by the driver at initialization time and unmapped only when the
device is no longer running. Consistent DMA mappings guarantee that the device
and the CPU can access the data in parallel and can see each other’s updates without
explicit software flushing.

Consistent DMA mappings always return a mapped DMA address that is 32-bit single
address cycle (SAC) addressable, regardless of the DMA capability of the device.

Examples of memory areas that require consistent DMA mappings are the following
device driver control structures shared between the host and controller (PCI device):

• Network card DMA ring descriptors

• SCSI adapter mailbox command data structures

Streaming DMA Mappings

Streaming DMA mappings are asynchronous and can be buffered (prefetched) by
various hardware components along the DMA path.

Streaming DMA mappings are usually mapped for one DMA transfer and unmapped
directly after the transfer. The unmap operation usually guarantees that the DMA
data is coherent, but not on SGI Altix 3000 systems.

Examples of memory that can use streaming DMA mappings are as follows:
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• Networking buffers transmitted or received by a device

• Filesystem buffers written or read by a SCSI device

Anatomy of a Mapped DMA Address
On SGI Altix 3000 systems, the mapped DMA address as seen and issued by the
PCI-X device controller can be either 64 bits (dual address cycle (DAC)) or 32 bits
(single address cycle (SAC)). This platform does not support drivers that cannot
handle at least 32-bit DMA addresses. Devices that can handle DMA addresses from
33 bits to 63 bits are assigned 32-bit DMA addresses. Devices that are capable of
handling 64-bit addresses are always assigned 64-bit DMA addresses.

On SGI Altix 3000 systems, the mapped DMA address as seen and issued by the
PCI-X device controller can be either 64 bits (dual address cycle or DAC) or 32 bits
(single address cycle or SAC). This platform supports only devices that are capable of
using 32-bit or greater DMA addresses. Devices that can handle DMA addresses from
33 bits to 63 bits are assigned 32-bit direct- or page-mapped DMA addresses. Devices
that are capable of handling 64-bit addresses are assigned 64-bit DMA addresses for
’streaming’ type mappings (see pci_map_single and pci_map_sg), and 32-bit
DMA addresses for so-called ’consistent’ mappings (see pci_alloc_consistent).

Direct-mapped addressing is per-bus. That is, when a device is on a bus by itself, the
PCI-X bridge chip can be programmed to map 32-bit DMAs by the device into a
particular 2-GB window of system memory. Page-mapped addressing operates on a
per-address basis, which allows the driver to program the device to DMA into
multiple 2-GB windows of system memory. These modes of addressing will be
transparent to the driver, however, and are only described here for informational
purposes. The following sections describe direct mapped DMA addresses and page
mapped DMA addresses, respectively.

Format of 32-bit Direct Mapped DMA Addresses

Figure 9-3, page 75, shows the format of a PCI direct mapped register. Figure 9-4,
page 75, shows the format of a direct mapped DMA address.
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31 16 0

Direct offsetNot used

Figure 9-3 PCI Direct Mapped Register (one per PCI bridge)

31 030

1 Address offset

Figure 9-4 32–bit Direct Mapped Address As Returned by the System

A DMA address is a 32-bit direct mapped DMA address when bit 31 of the 32-bit
DMA address is set. When a DMA address is direct mapped, the actual system
physical address (PCI bus address) is formulated from both the direct map register
and the 32-bit DMA mapped address.

When a direct map register is a 17-bit constant value and when a 32-bit mapped
DMA address is a 31-bit variable value, a 32-bit direct mapped mechanism can map
any 2-GB range of system physical memory space. Figure 9-5, page 75, shows the bits
that comprise a 50-bit system address.

31 16 0

OFFSET

31 030

31 03049 48 47 46

1

Direct mapped 

register

Direct mapped

address

Figure 9-5 50-bit System Memory Address
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In Figure 9-5, page 75, the physical memory space is mapped as follows:

• Bits 30 – 0 from the 32-bit mapped DMA address become bits 30 – 0 of the system
physical address.

• Bits 16 – 0 from the direct mapped register becomes bits 47 – 31 of the system
physical address.

Note: There is only one direct mapped register per PCI-X bus.

Format of 32-bit DMA Page Mapped Addresses

The type is returned by pci_alloc_consistent. The type is also returned by
pci_map_* when pci_dev.dma_mask is les than 64 bits.Figure 9-6, page 76, shows
the format of a 32-bit DMA page mapped address.

ATE Identifier
#

31 30 13 12 11 0

0 1 Page mapped

12 or 14 bits offset
depending on "page size"

Figure 9-6 32-bit DMA Mapped Address

If bit 31 is set, it is a 32-bit direct mapped address. If bit 30 is set, it is a 32-bit page
mapped address.

If the system page size is 4 KB, bits 11 to 0 are the page offset and the address
translation entry (ATE) index is in bits 29 to 12. If the system page size is 16 KB, bits
13 to 0 are the page offset and the ATE index is in bits 29 to 14.

DMA mapped addresses 0x4000_0000 to 0x700_0000 are paged mapped addresses.
This means that the address offset and the DMA attributes come from the targeted
ATE register and direct map register.

DMA mapped addresses 0x8000_0000 to 0xffff_ffff are direct mapped adresses. This
means that the address offset and the DMA attributes come from the device registers
and the direct map register.
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Format of a 64-bit DMA Mapped Adddress

The type is returned by pci_map_* when pci_dev.dma_mask is 64 bits (see
pci_set_dma_mask).Figure 9-7, page 77, shows the format of a 64-bit DMA mapped
address.

63 54 50 0

System memory address

...

DMA attributes

Figure 9-7 64-bit DMA Mapped Address

In 64-bit DMA mapped addresses, bits 63 to 54 are set. These are DMA attributes.
Bits 50 to 0 target the actual system memory location.

!
Caution: Devices asking for 64-bit DMA addresses without the capacity to generate
dual address cycles will cause unknown hangs and data corruption.

PCI-X DMA Address Management
Device drivers should follow these rules when using DMA resources on SGI Altix
3000 systems:

• Query that the platform can support your DMA capability. To determine whether
the system supports the indicated DMA address size, use the following command:

pci_dma_supported(dev, mask);

• Inform the system of your DMA capability. To inform the system that the device
can support a DMA address only up to the indicated size, enter the following
command:

pci_set_dma_mask(dev, mask);

Example:

/* This driver can support up to 64-bit DMA Address. */
if (!pci_set_dma_mask(pdev, (u64) 0xffffffffffffffff)) {

// Yes, system can support 64-bit DMA addresses.
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.. code ..
} else {

// Okay, can system support 32-bit DMA addresses?

err = pci_set_dma_mask(pdev, (u64) 0xffffffff);

if (err) {

// Need to abort as this driver cannot support
// DMA addresses smaller than 32 bits!

.. code ..

}

// Alright, we are running with 32-bit DMA addresses.

.. code ..

}

On SGI Altix 3000 systems, the platform can support either 64-bit or 32-bit DMA
addresses. Cards that can support 32-bit to 63-bit DMA addresses are given 32-bit
DMA addresses. Cards that can support 64-bit DMA addresses are always given
64-bit DMA addresses. Cards that can support only DMA addresses that have less
than 32 bits are not supported on this platform. 32-bit DMA addresses can be used in
dual address cycles as long as bits 63 to 32 are zero.

PCI-X DMA Mapped Routines
On SGI Altix 3000 systems, DMA memories are required to be mapped or unmapped
via the following routines:

For consistent DMA mappings:

void * pci_alloc_consistent(struct pci_dev *hwdev, size_t size, dma_addr_t *dma_handle)

void pci_free_consistent(struct pci_dev *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle)

For streaming DMA mappings:

dma_addr_t pci_map_single(struct pci_dev *hwdev, void *ptr,size_t size, int direction)

void pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr, size_t size, int direction)

int pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg,int nents, int direction)

void pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg,int nents, int direction)

On SGI Altix 3000 platforms, all DMA operations prior to the controller card’s issue
of an interrupt on the PCI-X bus are guaranteed to be "completed and coherent"
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before the interrupt is forwarded to the CPU. In other words, the interrupt "pushes"
any and all DMA cache data out into the system.

On SGI Altix 3000 systems, memory coherency between processor caches and
memory buses is guaranteed, and use of the following routines is unnecessary:

void pci_dma_sync_single(struct pci_dev *hwdev,dma_addr_t dma_handle,size_t size, int direction)

void pci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction)

For more details, see the documentation in the Linux source tree at the following
location:

linux/documentation/DMA-mapping.txt
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Chapter 10

Device Driver Memory Usage

Device drivers can dynamically allocate memory via the many memory management
interfaces that Linux provides. This chapter describes memory interfaces that return
addresses that can be mapped as direct memory access (DMA) addresses.

Device Driver Memory Allocation
Device drivers should never try to use kernel text or data for DMA. It is also
inappropriate to use memory areas allocated via the vmalloc routine as a DMA area,
even though it can be done. The vmalloc routine allows the driver to allocate a large
contiguous virtual address range. However, the address cannot be used as input to
any of the DMA map routines.

Allocating Page Boundary Memory
Device drivers can use the __get_free_page() routine to allocate a page of
memory that can be mapped as a DMA address, as in the following example:

{

char *buf;
buf = (char*) __get_free_page(GFP_KERNEL);

}

This routine returns a value of type unsigned long. Memory is always allocated
from the node that the thread is executing first.

Memory areas allocated via this interface are region 7 addresses and identity mapped
addresses. These kernel virtual addresses can be used as input to any of the PCI
DMA map routines.
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Allocating Page Boundary Memory on Specific Nodes
Device drivers can request memory on a specific node. The rationale for a specific
request would be data placement for performance reasons. If you need to allocate
memory on a specific node, use the following interface:

struct page * alloc_pages_node(int node_id, unsigned int gfp_mask, unsigned int order)

The address returned in struct page * can be used as input to any of the PCI
DMA map routines, as in the following example:

struct page * my_page;

my_page = alloc_pages_node(node_id, gfp_mask, order);

dma_addr = pci_map_single(my_dev, my_page -> virtual, size, direction);

Note: The interface is available only if CONFIG_NUMA is configured on, as in SGI
Altix 3000 systems.

Allocating Byte-Range Memory
Device drivers can ask for memory with any arbitrary length by using the following
routine:

void * kmalloc (size_t size, int flags);

This routine returns region 7 and identity mapped kernel virtual addresses. This
kernel virtual address can also be used as input into any of the PCI mapping routines.

The advantage of this routine is that it provides a single starting virtual and physical
address that is contiguous. However, if the kernel cannot find a contiguous area large
enough, this call will fail.

Accessing the User Memory Area
It is very important for drivers, when reading or writing into the user area, to verify
first that the specified user address is valid. Linux provides two routines that enable
kernel level code for verification.

For verification within the user virtual area:

int access_ok(type, user_address, size);
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For verification when the area is actually mapped with the correct access rights:

int verify_area(type, user_address, size);

Where:

type: VERIFY_READ - Verify for read access

VERIFY_WRITE - Verify for read/write access

user_address: User’s virtual address

size: Size of the area in bytes

The following routines write or read a a single value to or from the user area. The
size of the single value depends on the size of (*pointer):

int put_user(value, pointer)

int get_user(value, pointer)

The following optimized routines write or read the given number of byte count to or
from the user area:

int copy_to_user(user_address, kernel_address, byte_count);

int copy_from_user(kernel_address, user_address, byte_count);

The following routines provide string manipulation from the user area:

long strlen_user(user_address);

long strnlen_user(user_address, count);

long strncpy_from_user(kernel_address, user_address, count);

An important point to note is that all of these user area access routines actually
perform access verification first. The following corresponding set of routines are
available to the driver, which do not perform any access verifications. The names of
these routines are the same as the precedint routines but with a double underscore
(__) prepended.

int __put_user(value, pointer)

int __get_user(value, pointer)

int __copy_to_user(user_address, kernel_address, byte_count)
int __copy_from_user(kernel_address, user_address, byte_count)
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long __strlen_user(user_address)
long __strnlen_user(user_address, count)

long __strncpy_from_user(kernel_address, user_address, count)

Disabling Validity Checking
Sometimes, kernel level routines require calls to system call handlers, as do user level
routines. However, all of these handlers expect addresses in the call to be user
addresses. A kernel level routine calling a system call interface with a kernel virtual
address will definitely fail when the system call interface performs address validation.
For example, the following call will fail when sys_open performs any address
verification:

sys_open("/dev/mydriver_config_file", O_RDONLY, 0);

Linux provides the following set of routines that, in effect, disable address validity
checking:

current_segment = get_fs();

set_fs(active_segment);

The current_segment and active_segment values are either KERNEL_DS or
USER_DS. If the current data segment is KERNEL_DS, the access verification routines
do not perform any verification. If the current data segment is USER_DS, the access
routines verify that the specified user addresses are valid.

Therefore, if your driver requires negation of all address verification, use the
following code:

mm_segment_t current_segment;

current_segment = get_fs(); /* Save current segment */

set_fs(KERNEL_DS);

fd = sys_open("/dev/mydriver_config_file", O_RDONLY, 0);

set_fs(current_segment) /* Restore saved segment */

Directly Mapping User Virtual Addresses
In general, device drivers allocate kernel buffers as intermediate transfer areas to
move data between the user area and an external device. Sometimes, but not always,
it can be more performance-efficient to transfer data directly between the user area
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and the external device, without incurring the additional CPU time for copying
between kernel buffers and the user area, and other such activities. Linux provides
the Kernel IO Buffer (kiobuf) facility, which allows a user area to be mapped to kernel
virtual space. Once this mapping is performed, kernel virtual addresses can be DMA
mapped to allow external devices to write directly into the mapped user area.

kiobuf provides the following interfaces:

• Allocate and free kiobuf structures:

int alloc_kiovec(int number_pages, struct kiobuf **iovec);

void free_kiovec(int number_pages, struct kiobuf **iovec);

• Map/unmap user addresses to kernel virtual addresses:

int map_user_kiobuf(int rw, struct kiobuf *iobuf, unsigned long va, size_t len)

void unmap_kiobuf (struct kiobuf *iobuf)

• Lock the pages in the kiobuf:

int lock_kiovec(int nr, struct kiobuf *iovec[], int wait)
int unlock_kiovec(int nr, struct kiobuf *iovec[])

For more information regarding this feature, see Linux Device Drivers, chapter 13,
“MMap and Dma.”
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Chapter 11

Time Management

All device drivers must eventually deal with issues of time and timing. Chapter 6 of
Linux Device Drivers provides extensive time management information for Linux
drivers. This chapter highlights the SGI Altix 3000 system’s architectural differences
in the interval timer counter (ITC) and provides brief information about execution
delays in drivers.

Interval Timer Counter (ITC)
The ITC register is a free running, 64-bit counter that counts up at a fixed relationship
to the processor clock. To retrieve elapsed cycles, Itanium 2 processors provide this
register to programs via the ia64_get_itc (void) routine. On SGI systems, these
registers are not synchronized among the other CPUs on the system. Callers of this
routine must be very careful that these calls are made within the same CPU. For more
information regarding the ITC register, see the Intel IA-64 Architecture Software
Developer’s Manual, volume 2, “IA-64 System Architecture.”

Synchronized Real Time Clock Register
On SGI Altix 3000 systems, to provide a system wide, synchronized, real time clock
counter, each SHub chipset provides a real time clock register. These registers are
synchronized by software and can be accessed via the following function:

cycles_t get_cycles (void);

Because these registers are synchronized system wide, thread migration between
CPUs for get_cycles() calls is not a problem. The do_gettimeofday() call is also
available for users who need a timeval structure filled.
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Delaying Execution — Short Delay
The Linux kernel also provides the following routines to allow callers to delay for a
specified amount of time:

void udelay (unsigned long usecs)
void mdelay (unsigned long msecs)

The udelay() routine pauses for the specified microsecond while the mdelay()
routine pauses for the specified number of milliseconds. Because these routines
simply spin in the CPU, they should be used only for pausing small amounts of time.

Delaying Execution — Long Delay
If your driver requires longer delays than the delays that the simple udelay() and
mdelay() commands provide, you must use other facilities provided by Linux that
will provide execution of your tasks at a later time without depending on interrupts
or spinning in a loop. Linux provides the following interfaces for this purpose:

• Task queues

• Tasklets

• Kernel timers

For documentation on these features, see Linux Device Drivers, chapter 6, “Flow of
Time.” All of these interfaces are supported on SGI Altix 3000 systems.
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Building Linux Kernels and Modules

This section provides the location of the default configuration file, steps for building
and booting a new Linux kernel on an SGI Altix 3000 series system, and steps for
rebuilding a module. The commands and procedures for recompiling or rebuilding
the Linux kernel are the same as for any other Linux platform.

Default Configuration File
The configuration file used to build the Linux kernel that is running on your SGI
Altix 3000 series system is
/usr/src/linux/arch/ia64/sn/configs/defconfig-sn2. To build a new
kernel, use this configuration file as a base. It should not be necessary to make a new
configuration file.

Building a New Linux Kernel
The steps for building a new kernel are as follows:

cd /usr/src/linux

make clean
cp arch/ia64/sn/configs/defconfig-sn2 .config

make oldconfig

make dep

make vmlinux

Booting Your New Linux Kernel
To boot your new Linux kernel, copy or move vmlinux to /boot/efi and reboot, as
follows:

cp vmlinux /boot/efi/efi/sgi/my_vmlinux

reboot
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Enter the following at the EFI shell command:

elilo my_vmlinux root=/dev/sda3

For more details regarding rebuilding the Linux kernel, see the
/usr/src/linux/README file . This file also contains information on how to
rebuild a new Linux kernel from sources other than those released by SGI that you
have downloaded on your machine.

Rebuilding Modules
To rebuild the modules on your system, use the following commands:

cd /usr/src/linux

make modules

Example output:

make[1]: Entering directory ‘/usr/src/linux-2.4.20/lib’

make -C zlib_deflate modules

make[2]: Entering directory ‘/usr/src/linux-2.4.20/lib/zlib_deflate’

gcc -D__KERNEL__ -I/usr/src/linux-2.4.20/include -Wall -Wstrict-prototypes
-Wno-trigraphs -O2 -fno-strict-aliasing -fno-common -g -fomit-frame-pointer -pipe

-ffixed-r13 -mfixed-range=f10-f15,f32-f127 -falign-functions=32 -DSGI_SN_EXECUTABLE_STACKS

-DBRINGUP -DBRINGUP2 -DMODULE -I /usr/src/linux-2.4.20/lib/zlib_deflate -nostdinc

-iwithprefix include -DKBUILD_BASENAME=deflate -c -o deflate.o deflate.c

gcc -D__KERNEL__ -I/usr/src/linux-2.4.20/include -Wall -Wstrict-prototypes

-Wno-trigraphs -O2 -fno-strict-aliasing -fno-common -g -fomit-frame-pointer -pipe

-ffixed-r13 -mfixed-range=f10-f15,f32-f127 -falign-functions=32 -DSGI_SN_EXECUTABLE_STACKS

-DBRINGUP -DBRINGUP2 -DMODULE -I /usr/src/linux-2.4.20/lib/zlib_deflate -nostdinc

-iwithprefix include -DKBUILD_BASENAME=deftree -c -o deftree.o deftree.c

gcc -D__KERNEL__ -I/usr/src/linux-2.4.20/include -Wall -Wstrict-prototypes

-Wno-trigraphs -O2 -fno-strict-aliasing -fno-common -g -fomit-frame-pointer -pipe

-ffixed-r13 -mfixed-range=f10-f15,f32-f127 -falign-functions=32 -DSGI_SN_EXECUTABLE_STACKS

-DBRINGUP -DBRINGUP2 -DMODULE -I /usr/src/linux-2.4.20/lib/zlib_deflate -nostdinc

-iwithprefix include -DKBUILD_BASENAME=deflate_syms -DEXPORT_SYMTAB -c deflate_syms.c
rm -f zlib_deflate.o

ld -r -o zlib_deflate.o deflate.o deftree.o deflate_syms.o
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To install these newly created modules, use the following command:

make modules_install

The following step copies all the newly created modules to the directory:

/lib/modules/[kernel_version]/

Example output:

make[1]: Entering directory ‘/usr/src/linux-2.4.20/lib’

make -C zlib_deflate modules_install
make[2]: Entering directory ‘/usr/src/linux-2.4.20/lib/zlib_deflate’

mkdir -p /lib/modules/2.4.20-sgi220a31/kernel/lib/zlib_deflate/

cp zlib_deflate.o /lib/modules/2.4.20-sgi220a31/kernel/lib/zlib_deflate/

make[2]: Leaving directory ‘/usr/src/linux-2.4.20/lib/zlib_deflate’

make[1]: Leaving directory ‘/usr/src/linux-2.4.20/lib’

Note: The SGI Altix 3000 series system might come with binary-only release modules.
These modules cannot be remade on your machine.

For more information on Linux kernel modules, see the following link:
http://tldp.org/HOWTO/Module-HOWTO/

Downloading SGI Altix 3000 RPMs
Open source rpms for the SGI Altix 3000 system can be downloaded from
oss.sgi.com. These rpms can be downloaded with your favorite web browser at the
following location:

http://oss.sgi.com/projects/sgi_propack/

You can also download these sources via Anonymous FTP, as follows:

1. % ftp oss.sgi.com

2. % cd /projects/sgi_propack/download/2.2

3. % get kernel-2.4.20-sgi220rp03062622_10017.src.rpm
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If you have the correct directories and also root access set up to manage Red Hat
rpms, you can use the various rpm commands to retrieve and build the sources from
the source rpm. Otherwise, you can use the following procedure:

1. Use the rpm2cpio command to extract the files from the rpm.

2. Use the unzip(1) command to unzip the tar file.

3. Use the tar(1) command to untar the tar file.

4. Perform your build.

The following provides a session trace of the above steps:

cngam@betty cngam]$ cd /mybuild_area

[cngam@betty cngam]$ rpm2cpio kernel-2.4.20-sgi220rp03062622_10017.src.rpm | cpio -iduvm

kernel-2.4.20-ia64.config

linux-2.4.20.tar.gz

linux-common.spec

linux-sn2.spec

module-info

70756 blocks

[cngam@betty cngam]$ gunzip linux-2.4.20.tar.gz

[cngam@betty cngam]$ tar -xvf linux-2.4.20.tar

[cngam@betty cngam]$ find linux | more

linux

linux/COPYING

linux/CREDITS

linux/Documentation

linux/Documentation/00-INDEX

linux/Documentation/BK-usage

linux/Documentation/BK-usage/bk-kernel-howto.txt

linux/Documentation/BK-usage/bk-make-sum

linux/Documentation/BK-usage/bksend

....

linux/fs/ext2/dir.c

linux/fs/ext2/file.c

linux/fs/ext2/fsync.c
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linux/fs/ext2/ialloc.c

*** NOTE: The current archive has the path linux/.. and not linux-2.4.20 for example ***

[cngam@betty cngam]$ cp arch/ia64/sn/configs/defconfig-sn2 .config

[cngam@betty cngam]$ make clean

[cngam@betty cngam]$ make oldconfig

[cngam@betty cngam]$ make dep

[cngam@betty cngam]$ make

You can perform this task on any platform with Itanium processors.

Building New Modules
If you are writing and developing modules for the SGI Altix 3000 system on either an
Altix platform or any other platform with Itanium processors, you can use the steps
outlined in "Downloading SGI Altix 3000 RPMs", page 91 to download the kernel
sources onto your platform and then build and test your modules. You may consider
using the following procedure to build your modules, (The following procedures
assumes that you are using /usr/src/example as the directory of your module
development) as follows:

1. Create a Makefile for 2.4 similar to the following:

obj-m += module_example.o

include $(TOPDIR)/Rules.make

2. Run the make(1) command from any location, as follows:

% make -C /usr/src/linux-2.4.20 SUBDIRS=/usr/src/example modules

An example session is, as follows:

Example session:

[root@rappel linux-2.4.20]# make -C /usr/src/linux-2.4.20 SUBDIRS=/usr/src/example modules

make: Entering directory ‘/usr/src/linux-2.4.20’

make -C /usr/src/example CFLAGS="-D__KERNEL__ -I/usr/src/linux-2.4.20/include -Wall -Wstrict-prototypes -W

no-trigraphs -O2 -fno-strict-aliasing -fno-common -g -fomit-frame-pointer -pipe -ffixed-r13 -mfixed-range=

f10-f15,f32-f127 -falign-functions=32 -DMODULE" MAKING_MODULES=1 modules
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make[1]: Entering directory ‘/usr/src/example’

gcc -D__KERNEL__ -I/usr/src/linux-2.4.20/include -Wall -Wstrict-prototypes -Wno-trigraphs -O2 -fno-strict-a

liasing -fno-common -g -fomit-frame-pointer -pipe -ffixed-r13 -mfixed-range=f10-f15,f32-f127 -falign-funct

ions=32 -DMODULE -nostdinc -iwithprefix include -DKBUILD_BASENAME=module_example -c -o module_example.o m

odule_example.c

make[1]: Leaving directory ‘/usr/src/example’

make: Leaving directory ‘/usr/src/linux-2.4.20’

[root@rappel linux-2.4.20]# ls /usr/src/example

Makefile module_example.c module_example.o

Note: SGI strongly recommends that you use this method because it ensures that
all the appropriate defines and flags are used to build your modules.
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Appendix A

Memory Operation Ordering on SGI Altix 3000
Systems

Memory operation ordering is a complicated set of rules with issues that are not
specific to SGI Altix 3000 systems but rather to any Linux platforms with Intel
Itanium 2-based processors. Similarly, this topic is not related to PIO posted
operations described in "PIO Write (Posted) Synchronization", page 64.

The compiler can reorder instructions and also optimize away instructions that
appear to be superflous or are not used. One technique it might use is to preload
some registers, whose contents might or might not be valid by the time they are
needed and used.

One optimization feature of Intel Itanium 2 processors is that they can reorder
instructions such that some instructions are scheduled and completed not exactly in
the order that they appear in your program. For more information regarding memory
ordering, memory fences, and so on, see the Intel IA-64 Architecture Software
Developer’s Manual, volume 2, chapter 13, “MP Coherence and Synchronisation.”

This appendix describes the following memory operation aspects of SGI Altix 3000
systems:

• Memory ordering

• Release semantics

• Acquire semantics

• Memory fencing

Memory Ordering
Memory load and store operations on SGI Altix 3000 platforms will not necessarily
complete (that is, be visible in memory to other CPUs) in program order. For
example, consider the following code snippet (program order):

1: ld r1=[r2] // r1 = *r2

2: st [r4]=r6 // *r4 = r6

3: ld r8=[r9] // r8 = *r9

4: st [r22]=r3 // *r22 = r3
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This code could actually execute in the following order:

1. Register r1 is set to the value at memory address r2.

2. Register r8 is set to the value at memory address r9.

3. The address in r22 is set to the value in r3.

4. The address in r4 is set to the value in r6.

Note: This is a separate issue from compiler reordering, as it occurs at runtime. This
also assumes that the pointers in question point to non-overlapping addresses. The
kind of reordering shown in the previous example can expose bugs of various types,
some of them very similar to the PIO ordering and coherency issues explained in this
document.

Release Semantics
Using release semantics, the programmer can ensure that all previous memory
accesses are made visible prior to the st.rel process, though subsequent memory
accesses may “float up” above st.rel. For example, consider the following code
sample:

1: st [r1]=r2 // cannot move below 2

2: st.rel [r4]=r6 // will be visible only after 1 is visible
3: ld r8=[r9] // may be reordered

4: st [r22]=r3 // may be reordered

The processor will guarantee that the memory reference on line 1 is visible before the
the st on line 2; that is, the following sequence could be the actual execution order:

1. The address in r1 is set to the value in r2.

2. The address in r22 is set to the value in r3.

3. The address in r4 is set to the value in r6 (will happen after one register r8 is set
to the value at memory address r9).

In other words, no prior memory references (in program order) are allowed to
propagate below a store with release semantics, but memory references following an
st.rel might “float up” above the st.rel instruction.
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Acquire Semantics
Using so-called “acquire” semantics, the programmer can ensure that a load is made
visible before all subsequent data accesses, though previous memory accesses can
propagate below an ld.acq process. For example, consider the following code
sample:

1: ld r44=[r23] // *can* move below 2

2: ld.acq r1=[r2] // will be visible before 3

3: ld r8=[r9] // cannot move above 2
4: st [r4]=r6 // cannot move above 2

5: st [r22]=r3 // cannot move above 2

The processor will ensure that the memory accesses prior to line 3 (in program order)
are made visible before any subsequent accesses. So the following sequence could be
executed by the processor:

1. Register r1 is set to the value at memory address r2 (will happen before 2).

2. Register r8 is set to the value at memory address r9.

3. The address in r4 is set to the value in r6.

4. Register r44 is set to the value at memory address r23.

5. The address in r22 is set to the value in r3.

Memory Fencing
A memory fence acts as a simple, two-way barrier for memory operations. For
example, consider the following snippet:

1: ld r1=[r2] <--\

2: st [r4]=r6 <--- neither can move below 3

3: mf
4: ld.acq r8=[r9] <-- neither can move above 3

5: st [r22]=r3 <----/

Lines 1 and 2 are guaranteed to be visible before any subsequent memory accesses
(like those on lines 4 and 5), and memory accesses following the fence will not be
visible to instructions before the memory fence (in program order).
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See "PCI/PCI-X", 31
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address anatomy, 55
address mapping, 37
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CPU access, 27
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Time management
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