
ProDevTM WorkShop: Debugger
Reference Manual

007–4567–001

COPYRIGHT
© 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any
manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIS, and IRIX are registered trademarks and IRIS Graphics Library, ProDev, and GL are
trademarks of Silicon Graphics, Inc. MIPSpro is a trademark of MIPS Technolgies, Inc., and is used under license by Silicon Graphics,
Inc. UNIX and the X device are registered trademarks of The Open Group in the United States and other countries.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

001 September 2002
Original publication. This book used to be included as part of the
ProDev WorkShop: Debugger User’s Guide. It is now a separate
document.

007–4567–001 iii

Contents

About This Manual . xv

Related Publications . xvi

Obtaining Publications . xvi

Conventions . xvii

Reader Comments . xviii

1. Main View Window 1

Primary Components of the Main View Window 1

Admin Menu . 6

Views Menu . 8

Query Menu . 9

Source Menu . 10

Display Menu . 11

Perf Menu . 12

Traps Menu . 13

Fix+Continue Menu . 14

Keyboard Accelerators . 17

Help Menu . 17

PC Menu . 17

2. Additional Views in the Debugger 19

Execution View . 19

Multiprocess Explorer . 19

Status of Processes . 19

Multiprocess Explorer Control Buttons 22

007–4567–001 v

Contents

Multiprocess Explorer Administrative Functions 22

Controlling Preferences . 23

Controlling Multiple Processes 25

Source View . 26

Process Meter . 28

3. Ada-specific Windows 29

Task View . 29

Admin Menu, Task View . 29

Config Menu, Task View . 29

Layout Menu, Task View . 30

Display Menu, Task View . 30

Exception View . 31

Admin Menu, Exception View 32

Config Menu, Exception View 32

Display Menu, Exception View 33

4. X/Motif Analyzer Windows 35

Global Objects . 35

Admin Menu . 35

Examine Menu . 36

Examiner Tabs . 37

Return Button . 37

Breakpoints Examiner . 38

Callback Breakpoints Examiner 40

Event-Handler Breakpoints Examiner 41

Resource-Change Breakpoints Examiner 42

Timeout-Procedure Breakpoints Examiner 42

vi 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Input-Handler Breakpoints Examiner 43

State-Change Breakpoints Examiner 44

X-Event Breakpoints Examiner 45

X-Request Breakpoints Examiner 46

Trace Examiner . 47

Widget Examiner . 49

Tree Examiner . 49

Callback Examiner . 52

Window Examiner . 52

Event Examiner . 52

Graphics Context Examiner . 52

Pixmap Examiner . 53

Widget Class Examiner . 53

5. Managing Traps . 55

Trap Manager . 55

Signal Panel . 57

Syscall Panel . 57

6. Data Examination Windows 59

Array Browser Window . 59

Format Menu . 64

Render Menu . 65

Color Menu . 65

Scale Menu . 67

Examiner Viewer Controls . 68

Examiner Viewer Menu . 70

Call Stack Window . 72

Data View Window . 73

007–4567–001 vii

Contents

Expression View Window . 73

Language Pop-up Menu . 74

Format Pop-up Menu . 74

File Browser Window . 75

Data Explorer Window . 76

Using the Data Explorer Overview Window to Navigate 80

Entering Expressions . 80

Working in the Data Explorer Display Area 81

Data Explorer Display Menu 81

Node Menu . 82

Formatting Fields . 84

Variable Browser Window . 86

Entering Variable Values . 86

Changing Variable Column Widths 86

Viewing Variable Changes . 87

7. Machine-level Debugging Windows 89

The Disassembly View Window 89

Similarities with Main View Window 89

The Disassemble Menu . 89

The Config Menu Preferences Dialog 91

The Register View Window . 92

Changing the Register View Display 94

The Memory View Window . 96

Viewing a Portion of Memory 96

Changing the Contents of a Memory Location 97

Changing the Memory Display Format 97

viii 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Moving around the Memory View Display Area 97

8. Fix+Continue Windows 99

Fix+Continue Status Window . 99

Fix+Continue Message Window 102

Admin Menu . 102

View Menu . 103

Fix+Continue Build Environment Window 103

Changes to Debugger Views . 105

Main View . 105

Command Line Interface . 106

Call Stack . 107

Trap Manager . 107

9. Debugger Command Line 109

Syntax for Commands . 109

10. Blocking Kernel System Calls 125

Index . 129

007–4567–001 ix

Figures

Figure 1-1 The Main View Window 2

Figure 2-1 Multiprocess Explorer: reference by process 20

Figure 2-2 Multiprocess Explorer: reference by status 21

Figure 2-3 Multiprocess Explorer Preferences 23

Figure 2-4 Process Meter . 28

Figure 4-1 Examiner Tabs . 37

Figure 4-2 Breakpoints Examiner Display in the X/Motif Analyzer Window 39

Figure 4-3 Timeout-Procedure Breakpoints Examiner 43

Figure 4-4 X-Event Breakpoints Examiner 45

Figure 4-5 Request Type Selection Dialog 46

Figure 4-6 Trace Examiner . 48

Figure 4-7 Tree Examiner . 50

Figure 4-8 Tree Examiner Window Graphical Buttons 51

Figure 6-1 Array Browser with Display Menu Options 60

Figure 6-2 Subscript Controls Area in the Array Browser 61

Figure 6-3 Array Browser Spreadsheet Area 63

Figure 6-4 Example of Wrapped Array 64

Figure 6-5 Color Exception Portion of Array Browser Window 66

Figure 6-6 Array Browser Graphic Modes 67

Figure 6-7 Examiner Viewer with Controls and Menus 69

Figure 6-8 Examiner Viewer Preference Sheet Dialog 71

Figure 6-9 Expression View Format Popup with Submenus 75

Figure 6-10 File Browser Window 76

007–4567–001 xi

Contents

Figure 6-11 Data Explorer: reference by name 77

Figure 6-12 Data Explorer: names grouped by type 78

Figure 6-13 Data Explorer: common blocks 79

Figure 6-14 Dereference indicator on Data Explorer Preference menu 80

Figure 6-15 Tree and Linked List Arrangements of Structures 82

Figure 7-1 The Disassemble From Address Dialog 90

Figure 7-2 The Disassemble File Dialog 91

Figure 7-3 The Register View Window 93

Figure 7-4 The Register View Preferences Dialog 95

Figure 7-5 The Memory View Window with the Mode Submenu Displayed 96

Figure 8-1 Fix+Continue Status Window 100

Figure 8-2 Fix+Continue Build Environment Window 104

Figure 8-3 Debugger Main View Window 106

Figure 8-4 Command Line Interface with Redefined Function 107

Figure 8-5 Call Stack . 107

Figure 8-6 Trap Manager Window with Redefined Function 108

xii 007–4567–001

Tables

Table 1-1 Fix+Continue Keyboard Accelerators 17

007–4567–001 xiii

About This Manual

This publication documents the ProDev WorkShop Debugger, released with the
ProDev WorkShop tools running on IRIX systems.

The WorkShop Debugger is a source-level debugging tool that allows you to see
program data, monitor program execution, and fix code for Ada (1.4.2 and older
versions), C, C++, Fortran 77, and Fortran 90 programs.

This manual is part of a two-document set that describes the Debugger. This book
serves as a reference guide to the Debugger features and the Debugger command line
options. The other book in the set, the ProDev WorkShop: Debugger User’s Guide
contains user tutorials and other information about using the Debugger. All SGI
documentation is available online at the following URL:

http://docs.sgi.com

This book contains the following chapters:

• Chapter 1, "Main View Window", page 1, describes the menus on the Main View
Window.

• Chapter 2, "Additional Views in the Debugger", page 19, describes other views
that are available from the Debugger, such as the Execution View, Multiprocess
View, and Source View.

• Chapter 3, "Ada-specific Windows", page 29, describes the Task View and the
Exception View windows.

• Chapter 4, "X/Motif Analyzer Windows", page 35, describes the X/Motif Analyzer
windows.

• Chapter 5, "Managing Traps", page 55, describes the Trap Manager windows and
their usage.

• Chapter 6, "Data Examination Windows", page 59, describes the windows used to
examine the data used in your programs.

• Chapter 7, "Machine-level Debugging Windows", page 89, describes the windows
used for machine-level debugging.

• Chapter 8, "Fix+Continue Windows", page 99, describes the windows used for the
Fix+Continue utility.

007–4567–001 xv

About This Manual

• Chapter 9, "Debugger Command Line", page 109, describes the options used with
the Debugger on the command line.

• Chapter 10, "Blocking Kernel System Calls", page 125, describes syscalls that block
continued pthreads.

Related Publications
The following documents contain additional information that may be helpful:

• C Language Reference Manual

• MIPSpro C++ Programmer’s Guide

• MIPSpro C and C++ Pragmas

• ProDev WorkShop: Performance Analyzer User’s Guide

• ProDev WorkShop: Debugger User’s Guide

• ProDev WorkShop: Overview

• ProDev WorkShop: Static Analyzer User’s Guide

• MIPSpro Fortran 77 Language Reference Manual

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

• MIPSpro Fortran 90 Commands and Directives Reference Manual

• dbx User’s Guide

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various
formats are available. This library contains the most recent and most

xvi 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

007–4567–001 xvii

About This Manual

GUI This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog boxes,
menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

xviii 007–4567–001

Chapter 1

Main View Window

This chapter provides an overview of the main menus shown on the Main View
window.

Primary Components of the Main View Window
The Main View window is shown in Figure 1-1.

007–4567–001 1

1: Main View Window

Figure 1-1 The Main View Window

The Main View window contains a menu bar, from which you can perform a number
of actions and launch windows. The screen and menu bar contains the following
items, which are discussed in detail in this chapter:

• "Admin Menu", page 6

• "Views Menu", page 8

2 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• "Query Menu", page 9

• "Source Menu", page 10

• "Display Menu", page 11

• "Perf Menu", page 12

• "Traps Menu", page 13

• "Fix+Continue Menu", page 14

• "Help Menu", page 17

When you start the Debugger with an executable file, the Main View window
displays, loaded with source code, ready to execute your program with your specified
arguments. Most of your debugging work takes place in the Main View window,
which includes the following main areas:

• A menu bar for performing debugger functions.

• A control panel for specifying and controlling program execution.

• A source code display area which displays the code for the program you are
debugging.

• A source filename field which tells gives you the path to the file displayed in the
source code display area.

• A status area for viewing the current status of the program.

• The Debugger command line in which to enter debugging commands.

The Main View window contains the following items:

• Command text field: Displays full pathname of the executable file that you are
currently debugging, including any run-time arguments.

• Debug button: Allows you to toggle among various modes. Right-click on the
Debug button to display the State Indicator menu where the following mode
choices are available:

– Debug runs the Debugger in Debug mode with no performance tools enabled.

– Performance mode causes performance data to be gathered and instrumented
code to be generated for performance analysis while using the Debugger.

007–4567–001 3

1: Main View Window

– Purify mode activates the Purify memory corruption analysis tool. The code
displayed in the Main View window, Source View window, and so forth is
code generated by Purify. (This option appears only if Purify is installed on
your system. Purify is not an SGI product nor is it part of the WorkShop
package. It is a product of Rational Software and is neither available from nor
supported by SGI.)

• The lock (Stay Focused/Follow Interesting) button: If the lock icon is locked, it
indicates that the focus of Main View will attempt to stay focused on this thread.
If the lock is unlocked, the debugger follows the interesting thread.

• All/Single button: If set to All, the Cont, Stop, Step, Next, and Return actions
apply to all processors or threads. If set to Single, then only the currently focused
process or thread will be acted on.

• Cont button: Continues execution of the current process or all processes in the
program. When you click on the Cont button, the program runs either to a
breakpoint exception or to termination. This button is active only after the
running process(es) has stopped. If the program has not been run or has been
killed, the Cont button is grayed out. If the target program has not yet started
executing, use the Run button to start execution.

• Stop button: Stops execution of the current running process(es). This button is
valid only when a process is running; otherwise the button is grayed out. Traps
can also be set to stop the program at a specific location or on a particiular
condition.

• Step button: Executes the code involving a single source line of the current
process. If a function is encountered in the source line, or is the source line in a
subroutine call, the process steps into a function or subroutine call and stops at the
first executable line in the funciton or subroutine. The Next button can be used to
continue to the next source line in the current file. If a trap is encountered while
executing the step into command, the process is stopped where the trap was fire.
The Step button is active only after the running process has stopped; otherwise
the button is grayed out.

When you right-click on the Step button, a menu pops up to allow you to choose
the number of source lines to be stepped. If you choose the N menu entry, a
dialog window is opened to allow you to enter a step value.

• Next button: Executes the code involving a single source line of the current
process. The current process continues to the next source line in the current file,
and does not count any statements in functions that may be encountered in the

4 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

source file. If the source line is a subroutine call, the process stops at the next
source line in the current file. The Step button can be used to step into a function
or subroutine call and stop at the first executable line in the function or
subroutine. If a trap is encounrtered while executing the step over command, the
process is stopped where the trap was fired. The Next button is active only after
the running process(es) has stopped; otherwise the button is grayed out.

When you right-click on the Next button, a menu pops up to allow you to choose
the number of source lines to be stepped. If you choose the N menu entry, a
dialog window is opened to allow you to enter a step value.

• Return button: Continues execution of the process until the current function being
executed returns. The process is stopped immediately upon returning to the
calling function. All code within the current function is executed as usual. If a
breakpoint is encountered, the action is canceled and the process is stopped where
the breakpoint was fired. You can use this button only after the running
process(es) has stopped; otherwise, the button is grayed out. This action is not
allowed if the executable is instrumented for performance analysis.

Note: For IRIX 6.5, this command button always returns all pthreads.

• Sample button: Allows you to collect process state data to be used by the
Performance Analyzer for program evaluation. You can use this button only when
the process(es) is running and the Enable Data Collection mode is set on the
Performance panel; otherwise, the button is grayed out. See the ProDev WorkShop:
Performance Analyzer User’s Guide for details.

• Print button: Prints, in the Source View window, the value of any highlighted
text, or the source pane of the Main View window.

• Kill button: Kills the currently running process or all running processes in your
debug session by sending the process(es) the equivalent of a kill -9 signal. You
can use this button if the process(es) is running or stopped; otherwise the button is
grayed out.

• Run button: Runs the program that you are currently debugging or all programs.
After the initial run, allows you to rerun the program(s) while maintaining any
breakpoints and command line arguments you have set.

• Status area: Displays information about the process that you are debugging, such
as process id, thread id, function name, list of arguments, location of the PC, and
so forth,

007–4567–001 5

1: Main View Window

• Source Code area: Displays the source code for the program that you are currently
debugging.

• Annotation column: Clicking in this area displays information specific to a line
number, such as breakpoints, location of the PC, and so forth.

• File text field: Displays the name of the file shown in the source code area.

The down arrow indicates that a pulldown menu is available. The menu has a list
of files that have recently been accessed and displayed. Clicking on a menu item
displays the corresponding file in the Source View display area.

• Command line area: Area of the Main View window where you can enter
Debugger commands and view line-mode debugger message, and in which
Debugger messages are displayed.

• Show/Hide annotations button: This button is visible only when you run or load
a performance experiment (see the ProDev WorkShop: Performance Analyzer User’s
Guide for more information on the performance tools). This is a toggle button that
shows or hides performance related annotations.

Admin Menu
The Admin menu in the Main View window performs administrative and general
management tasks dealing with processes, windows, and user preferences. The
Admin menu provides the following selections:

• Library Search Path: Controls where the Debugger looks for DSOs when you
invoke the Debugger on an executable or core file. The Library Search Path dialog
allows you to reset the LD_LIBRARY_PATH and _RLD_ROOT environment
variables. You can also reset _RLD_LIST to control the set of DSOs that are used
by the program. See the rld(1) man page for more information on these variables.
Any changes you make to these variables are propagated into Execution View
when you run the program.

There are two ways to open this dialog. First, select Admin > Library Search Path
from the Main View window menu bar, or the Library Search Path dialog opens
automatically if you invoke the Debugger on an executable or core file and it is
unable to find all of the required DSOs. In this case, an annotated list of required
DSOs displays at the top of the dialog box with such status messages as OK,
Error: Cannot find library, or Error: Core file and library
mismatch (which indicates that the Debugger found a DSO that did not match

6 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

the core file). Below this list are three to nine fields in which you can modify the
value of the corresponding named environment variable.

• Remap Path: Opens a dialog that allows you to enter a new pathname.

• Multiprocess Explorer: Displays the Multiprocess Explorer window, which
allows you to control processes and threads. You should note that if you exit from
Multiprocess Explorer, you exit from your debugging session. For additional
information about Multiprocess Explorer, refer to "Multiprocess Explorer", page
19.

• GLdebug: Provides a toggle to turn on GLdebug. GLdebug is a graphical
software tool for debugging application programs that use the IRIS Graphics
Library (GL). GLdebug locates programming errors in executables when GL calls
are used incorrectly.

• Attach/Switch Process: Changes the current process or attaches to a process. You
are queried for the new process ID. You can select one from the list of items
presented, type one in or paste one in from another window. Switching processes
changes the session.

• Load/Switch to Executable: Changes the current executable or loads an
executable. This option also allows you to debug a different core file.

• Detach: Releases the process from the Debugger. This allows you to make changes
to the source code. You must detach the process before you recompile the program.

• Load Settings: Allows you to use the previously saved preference settings from a
file you choose in the Load Settings dialog.

• Save Settings: Allows you to save the current preference settings to an
initialization file used when the Debugger is first started, or any file you choose
through this dialog. These can include such items as window sizes, current views,
window configurations, and so on.

• IconifyIconifies all session views.

• Raise: Brings all session view windows to the foreground and displays any
iconified windows.

• Launch Tool: Allows you to run other WorkShop tools. You can switch to the
other tools by selecting Build Analyzer, Static Analyzer, Performance Analyzer,
or Tester. Selecting Debugger allows you to start another debugging session. If
you have ProDev ProMP (formerly called WorkShop Pro MPF) installed on your
system, the Parallel Analyzer selection is also available.

007–4567–001 7

1: Main View Window

• Close: Closes the Main View window.

• Exit: Closes all views in the session and terminates the session.

Views Menu
The Views menu in Main View window provides the following selections for viewing
the process(es) and their corresponding data:

• Array Browser: Displays values from an array or array-slice in a two-dimensional
spreadsheet and optionally in a three-dimensional representation; that is, a bar
graph, surface, multiple lines, or points in space. These help you pick out bad
data more readily. Arrays can contain up to 100 x 100 elements.

• Call Stack: Displays the call stack along with parameters to the calls. If you
double-click an entry in the stack, you switch the current context to that entry and
you can check the state of variables.

• Data Explorer: Displays data structures in a graphical format. You can
de-reference pointers by double-clicking.

• Data View: brings up a Data Window.

• Disassembly View: Displays assembly code corresponding to the source code.

• Exception View: Displays an Ada-specific window used for exception handling.

• Execution View: Displays the iconified Execution View window, which handles
the input and output of the target process.

• Expression View: Evaluates expressions in Fortran, C, or C++. To enter an
expression, select it in the source code display and paste it into the Expression
View field, using the middle mouse button.

• File Browser: Displays a list of source files and library routines used by the
current executable. Double-click a source file in the list to load it directly into the
source display area in Main View or Source View windows. The Search field
allows you to find files in the list quickly.

• Memory View: Displays the value at a given memory address.

• Multiprocess Explorer: Displays a window which allows you to control processes
and threads.

8 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Process Meter: Monitors the resource usage of a running process without saving
the data. (Used with the Performance Analyzer.)

• Register View: Displays the values stored in the hardware registers for the target
process.

• Signal Panel: Displays the signals that can occur. You can specify which signals
trigger traps and which are to be ignored.

• Source View: Displays source code. Allows you to set traps, perform searches,
and inspect source code without losing information in the Main View window.

• Syscall Panel: Allows you to set traps at the entry to or exit from system calls.

• Task View: Brings up an Ada-specific view that provides task and callstack
information for processes.

• Trap Manager: Allows you to set, edit, and manage traps. The Trap Manager is
used by both the Debugger and the Performance Analyzer.

• Variable Browser: Displays values of local variables and parameters for the
current context.

• X/Motif Analyzer: Provides you with specific debugging support for X/Motif
applications. There are various examiners for different X/Motif objects, such as
widgets and X graphics contexts, that might be difficult or impossible to inspect
using ordinary Debugger functionality.

Query Menu
The Query menu allows you to perform some of the queries available in the Static
Analyzer. These queries are convenient if you have previously built a cvstatic
fileset. However, if you need to build the fileset from scratch, the process becomes
more involved. For complete information about using the Static Analyzer, see the
ProDev WorkShop: Static Analyzer User’s Guide and the cvstatic(1) man page.

With a current fileset, you can double-click any defined entity in the source code,
select the Where Defined? option from the submenu appropriate to its type, and the
source code display area scrolls to the location where the item is defined.

007–4567–001 9

1: Main View Window

Source Menu
The Source menu in the Main View window provides the following selections to
manage source code files:

• Open: Loads a source file.

• Open Recent: Provides you with a popup dialog that gives you a selection of
recently-opened files from which to choose.

• Save: Records changes made during the debugging session to the source file. You
must first select Make Editable, which appears in the Source menu when the file
is read-only.

• Save As: Records changes made during the debugging session to the source file
under a different filename. You must first select Make Editable, which appears in
the Source menu when the file is read-only.

• Save As Text: Records the information in the display area as a text file.

• Insert Source: Inserts the text of a file within your current file. You must first
select Make Editable, which appears in the Source menu when the file is
read-only. You must first select Make Editable, which appears in the Source menu
when the file is read-only.

• Fork Editor: Starts your default editor on the current file. The default editor is
determined by the editorCommand resource in the app-defaults file. The
value of this resource defaults to wsh -c vi +%d, which means run vi in a wsh
window and scroll to the current line. If the editor allows you to specify a starting
line, enter %d in the resource to indicate the new line number.

• Recompile: Displays the Build View window, which allows you to compile the
source code associated with the current executable.

• Make Read Only / Make Editable: Toggles the source code displayed between
read-only and writable states so that you can edit your code.

• Search: Searches for a literal case-sensitive, literal case-insensitive, or regular
expression. After you have set your target and clicked Apply (or pressed Enter),
each instance is marked by a search target indicator in the scroll bar. You can
search forward or backward in the file by clicking the Next and Prev buttons. You
can also click an indicator with the middle mouse button to scroll to that point.
Clicking Reset removes the search target indicators.

10 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Go To Line: Allows you to scroll to a position in the source code by specifying a
line number. Go To Line brings up a dialog box.

You can enter a line number or use the slider at the top of the box to select a line
number. You do not have to display line numbers to use this feature.

• Versioning: Provides access to the configuration management tool, if you have
designated one.

Type the following at the Execution View prompt:

/usr/sbin/cvconfig [rcs | sccs | ptools | clearcase]

Note: You must have root permissions to run cvconfig.

The Versioning submenu appears.

Selecting any submenu option displays a shell in which you can access the
configuration management tool. The following selections are available on the
submenu:

– CheckIn — Saves the source file and checks it into the database as a new
version.

– CheckOut — Recalls the source file from the tool’s database if you have the
proper authority, locks it, and makes it editable.

– UncheckOut — Cancels the checkout, with no changes registered.

Display Menu
The Display menu in the Main View window provides the following selections to
annotate the displayed source code:

• Show Line Numbers/Hide Line Numbers: Displays or hides line numbers in the
annotation column corresponding to the source code.

• Show Toolbar: Allows you to choose the format type for the toolbar. The options
are Text Only, Icons Only, or Icons and Text. Text Only was the only format for
the toolbar prior to release 2.9. Icons Only and Icons and Text are options which
display icon options for more visual debugging.

007–4567–001 11

1: Main View Window

• Show Tooltips/Hide Tooltips: This menu item enables or disables the context
sensitive pop-up help option. Some of the key menu items, buttons, and data
entry areas have pop-up help statements attached to them to give the user hints
on what to use them for or how to use them.

• Preferences: Displays the Annotations Preferences dialog box, which allows you
to show or hide column annotations and menus specific to the different WorkShop
tools. If you have purchased ProDev ProMP, you can display and manipulate loop
indicators. The Performance toggle displays experiment statistics. The Tester
module allows you to see coverage statistics. Turning off the Performance toggle
deletes the performance annotations from the Source View.

• Hide Icons/Show Icons: Hides or displays the annotation column, which is
located to the left of the source code display area.

• Expression Evaluation: Toggles between expression evaluation or auto-evaluation
of expressions

• Show Toolbar: Toggles between showing the toolbar as icons, text, or a
combination of both.

Perf Menu
The Perf (Performance) menu includes the following menu selections:

• Select Task submenu: Allows you to choose the task for your performance
analysis. You may select only one task per performance analysis run. If none of
the given tasks satisfy your requirements, you can choose Custom, which brings
up the configuration dialog open to the General tab. From here, you can design
your own task requirements.

• Examine Results: Launches the Performance Analyzer. For complete information
about the Performance Analyzer, see the ProDev WorkShop: Performance Analyzer
User’s Guide.

• Configs: Brings up the configuration dialog open to the Runtime tab. The dialog
opens with the Experiment Directory text field filled in with a default value. The
Performance Analyzer provides a default directory named test0000. If you use
the default or any other name that ends in four digits, the four digits are used as a
counter and are incremented automatically for each subsequent experiment.

12 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Traps Menu
The Traps menu offers the Set Trap and Clear Trap submenus and the Group Trap
Default and Stop All Default menu options.

The Set Trap submenu offers menus for managing breakpoints and sample points.
The following submenu selections are available:

• Stop: Sets a breakpoint at a designated line in your source code. To set a
breakpoint at a line displayed in the Main View or Source View windows:

1. position the cursor on the appropriate line in the source code display area

2. select the Set Trap submenu

3. choose the Stop option

The preferred method for setting a breakpoint is to click in the annotations area of
the Main View window, across from the line at which you want to set the
breakpoint.

• Stop At Function Exit: Sets a breakpoint at the end of a function. To set a
breakpoint at a function exit, click on the function name in the source code display
area and select the Set Trap submenu, then choose the Stop At Function Exit
option.

• Sample: Sets a sample trap at a line displayed in the Main View or Source View
windows. To set a sample trap:

1. highlight on the appropriate line

2. pull down the Set Trap submenu

3. select the Sample option

• Sample At Function Entry: Sets a sample trap at the beginning of a function. To
set the sample trap, highlight the function name in the source code display area,
then pull down the Set Trap submenu and select the Sample At Function Entry
option.

• Sample At Function Exit: Sets a sample trap at the end of a function. To set the
sample trap, highlight the function name in the source code display area, then pull
down the Set Trap submenu and select the Sample At Function Exit option.

The Clear Trap submenu contains selections that allow you to delete a trap on the
line containing the cursor. You must designate Stop or Sample trap type, since both

007–4567–001 13

1: Main View Window

types can exist at the same location, appearing superimposed on each other. The
following submenu selections are available:

• Stop: Designates the stop trap type.

• Sample: Designates the sample trap type.

The last two menu options allow you to specify the following items:

• Group Trap Default: Interacts with Source View. If set to true, all subsequent
Source View trap requests are group traps. That is, all members of the process
group apply this trap. This option is the same as typing stop pgrp in filename
from the command line. Default is false unless you are using IRIX 6.5 pthreads,
when the implied setting is always true.

• Stop All Default: Interacts with Source View. If set to true, all subsequent Source
View trap requests apply the Stop All command to the trap. That is, whenever
this trap is encountered, all other members of the process group also are stopped.
This option is the same as typing stop all in filename from the command line.
Default is false unless you are using IRIX 6.5 pthreads, when the implied setting is
always true.

If both of the default options are set to true, it is the same as typing stop all pgrp
in filename from the command line.

Fix+Continue Menu
The Fix+Continue menu offers the following menu selections:

• Edit: Allows you to edit text using the Debugger editor.

• External Edit: Allows you to edit text by using an external editor. The default
editor is vi, but can be changed by using the Set Edit Tool pop-up menu in the
Admin menu of the Status window. See "Fix+Continue Status Window", page 99,
for further information.

• Parse and Load: Compiles your modified program and loads it for execution. You
can execute the modified program by clicking on the Run or Continue buttons in
the Main View window.

• Show Difference submenu: Allows you to see the difference between the original
code and your modifications. The submenu options are:

14 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

– For Function: Opens a window that shows you the differences between the
original source and your modified source.

– For File: Opens a window that shows you the differences between the original
source file and your modified version.

– Set Diff Tool : Launches the Fix+Continue Preferences Dialog that allows you
to set the tool that displays code differences. The default is xdiff(1).

• Edited<–>Compiled: Enables or disables your changes. This switch allows you to
see how your application executed before and after the changes you made.

• Save As: Allows you to save your changes to a file. You can save changes to the
current source file (the default) or to a separate file.

• Save All Files: Launches the Save File+Fixes As dialog that allows you to update
the current session and save all the modifications.

• View submenu: Allows you to change to different views. Fix+Continue supports
status, message, and build environment windows. This submenu contains the
following options:

– Status Window: Launches the Fix+Continue Status window. See
"Fix+Continue Status Window", page 99, for more information.

– Message Window: Launches the Fix+Continue Message window. See
"Fix+Continue Message Window", page 102, for more information.

– Build Environment Window: Launches the Fix+Continue Build Environment
window. See "Fix+Continue Build Environment Window", page 103, for more
information.

• Preferences submenu: Allows you to set your Fix+Continue preferences. It
contains the following options:

– Show Preferences: Launches the Fix+Continue Preference Dialog that
displays preferences currently enabled for the session, and allows you to
change the settings. The following preferences are available through the dialog:

• External Editor Command text field that allows you to choose your text
editor. The default is vi.

• File Difference Tool text field allows you to choose the tool to use when
comparing code. The default is xdiff(blank).

007–4567–001 15

1: Main View Window

• Copy Traps On Previous Definition toggle allows you to edit and parse
code. When Fix+Continue copies traps from the old definition to the new
one by mapping old lines to new lines. (This mapping is the same as what
can be generated using the UNIX diff utility.) If Copy Traps On Previous
Definition is on and the mapped line the new definition is modified, then
Fix+Continue will look at the switch.

• Copy Traps Even On Changed Lines toggle causes the debugger to copy
traps onto a mapped line.

• Continue Even If Line Has Changed toggle allows you to edit and compile
code in which your program is currently stopped. Fix+Continue can
continue in the new definition provided some conditions are satisfied. The
line from which the program continues depending on the mapping from the
line in which it stopped. In case it can continue in the new definition from
a line which you have modified, Fix+Continue consults this toggle to
determine whether to continue in the new or old definition. This toggle
allows you to override the default behavior.

• Warn Unfinished Edits Before Run toggle pops up a warning dialog before
a run if you have unfinished edits.

• Warn Unfinished Edits Before Continue toggle pops up a warning dialog
before a continue if you have unfinished edits.

• Save deactivated code during File Save toggle save old code. The
Fix+Continue file save substitutes new definitions in place of old ones. If
you want to save your original functions in the same file, this switch allows
you to save the old (original or compiled) code under an #ifdef. When
you compile, the old code does not get compiled. You can manually edit
the source to use the old definition in any way you desire.

– Reset To Factory Defaults: Sets preferences to the installed defaults.

– Save Preferences: Brings up the File dialog that allows you to save your
preferences to a file.

– Load Preferences: Brings up the File dialog that allows you to load
preferences from a file.

• Cancel Edit: Takes you out of edit mode and cancels any changes you have made.

• Delete Edits: Deletes any modifications that you made.

16 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Keyboard Accelerators

Use the accelerators in Table 1-1 to issue Fix+Continue commands directly from the
keyboard. The accelerators are listed alphabetically by command.

Table 1-1 Fix+Continue Keyboard Accelerators

Command Key Sequence

Cancel Edit Alt+Ctrl+q

Edit Alt+Ctrl+e

Parse And Load Alt+Ctrl+x

Help Menu
The Help menu provides the following options:

• Click for Help: Provides information on the selected window or menu.

• Overview: Provides general information on the current tool.

• Index: Displays the entire list of help topics, alphabetically, hierarchically, or
graphically.

• Keys & Shortcuts: Lists the keys and shortcuts for the current tool.

• Product Information: Provides copyright and version number information on the
tool.

PC Menu
The PC (program counter) menu in previous releases was location on the Main View
menu. As of the WorkShop 2.9.2 release, the PC option is now a dynamic menu and
can be accessed by running an executable file and holding down the right mouse
button on a blank area in the source file. When you do so, the following options
appear:

007–4567–001 17

1: Main View Window

• Continue To: Continues the process to the selected point in the program unless
some other event interrupts. Select a line by clicking on it. The process must be
stopped before you can use Continue To.

• Jump To: Goes directly to a selected point within the same function, jumping over
intervening code. Then the Debugger waits for a command to resume execution.
Select a line by clicking on it.

18 007–4567–001

Chapter 2

Additional Views in the Debugger

This chapter discusses some of the additional views available through the Debugger:
the Execution View, Multiprocess Explorer, Source View, and Process Meter.

Execution View
The Execution View window is a simple shell that allows you to set environment
variables and inspect error messages. If your program is designed to be interactive
using standard I/O, this interaction takes place in the Execution View window. Any
standard I/O that is not redirected by your Target command is displayed in the
Execution View window. Execution View is launched (and iconified) automatically
with the Debugger.

Multiprocess Explorer
WorkShop supports debugging of multiprocess applications, including pthreaded
programs and processes spawned with either fork or sproc commands.

Multiprocess debugging is supported primarily through the Multiprocess Explorer
window. To display this window, select Multiprocess Explorer from the Admin
menu of the Main View window. Multiprocess Explorer window displays a
hierarchical view of your pthreaded application. Pthreaded processes are marked
with a folder icon. Clicking the folder changes the view to show that process’s
pthreads. Clicking on a thread opens a call stack for that thread.

For each process or thread, clicking the right mouse button brings up a menu that
applies to the selected item. This menu is a duplicate of the Process menu. See
"Controlling Multiple Processes", page 25 for more information.

Status of Processes

When the Multiprocess Explorer window comes up, it defaults to a list of the status
of all processes in the process group.

007–4567–001 19

2: Additional Views in the Debugger

Figure 2-1 Multiprocess Explorer: reference by process

This view includes the following information:

• OmpThread: OmpThread number or Rank. The MPI rank number is shown if this
is an OpenMP or MPI application.

• PID: Shows the process identifier (PID).

• executable name: Name of the executable for this process.

• Process Status for the process. This typically matches the process status line of the
Main View.

• Function/PC: Indicates the current function and program counter (PC) for any
stopped processes. This typically matches the process status line of Main View.

If pthreads are present in the process, clicking the open widget to the left of the
Process line displays any pthreads that the process may have and the following
information:

• thread: The thread number for each thread.

• State: Shows pthread state depending on how the preferences are set on the
Multiprocess Explorer menu, brought up by selecting Preferences from the
Config menu and using the Hide Thread State toggle. State is the kernel-level
status and is not displayed by default.

• Status: status is user-level and is always displayed.

20 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

The Multiprocess Explorer also allows viewing by process/thread status. This groups
processes and/or threads at the same status and location under one status node and
reduces the amount of information displayed on the screen when there are very large
numbers of processes and/or threads. This is most useful for large OpenMP and MPI
jobs.

Figure 2-2 Multiprocess Explorer: reference by status

This view includes the following information:

• top level status node: This typically matches the process status line of Main View.
Selecting this node’s open widget opens the Status node to reveal a list of process’
threads that are at this particular status.

• process nodes: the process nodes are directly under the Status nodes and are
displayed as PID:number followed by the executable name for the process.

If a process contains pthreads, toggling the process node widget to the left of the
process number displays the pthreads as thread:number and the pthread state if the
Hide Thread State preference is not selected in the Multiprocess Explorer preferences.

The following Status and State conditions are possible:

007–4567–001 21

2: Additional Views in the Debugger

Status State

Running RUNNING

Stopped RUNNING

Stopped on breakpoint RUNNING (but at a trap pc)

Waiting to terminate JOIN

Thread terminated DEAD

Waiting on kernel READY

Waiting on mutex MUTEX-WAIT

Sleeping in system call RUNNING

Multiprocess Explorer Control Buttons

The Multiprocess Explorer window uses the same control buttons as are in the Main
View window with following exceptions:

• There are no Run, Return, or Print buttons in the Multiprocess Explorer.

• The buttons in this view apply to all processes as a group.

• Using a control button in the Multiprocess Explorer window has the same effect
as clicking the button in each process’s Main View window.

These buttons operate identically to those described for the Main View window with
the All option effect. Refer to "Primary Components of the Main View Window",
page 1, for descriptions of these buttons.

Multiprocess Explorer Administrative Functions

The Admin menu in the Multiprocess Explorer window lets you perform several
administrative functions. Only the Save as Text, Close, and Exit items are described
here. All other options perform as those found in the Admin menu of the Main View
window, described in "Admin Menu", page 6.

• Save as Text: The process status list from in the Multiprocess Explorer window is
saved to the file you select using the Save Text dialog.

22 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Launch Tool: Allows you to run other WorkShop tools. You can switch to the
other tools by selecting Build Analyzer, Static Analyzer, Performance Analyzer,
or Tester. Selecting Debugger allows you to start another debugging session. If
you have ProDev ProMP (formerly called WorkShop Pro MPF) installed on your
system, the Parallel Analyzer selection is also available.

• Remap Path: Opens a dialog that allows you to enter a new pathname.

• Close: Closes the Multiprocess Explorer window only.

• Exit: Exits all views in the session and terminates the session.

Controlling Preferences

The Preferences option in the Config menu brings up the Multiprocess Explorer
Preferences dialog that allows you to control when processes are added to the group
and specifies their behavior. This option also contains a Save option that allows you
to save your preferences. A sample configuration screen is shown below with typical
settings for multiprocess debugging sessions.

Figure 2-3 Multiprocess Explorer Preferences

007–4567–001 23

2: Additional Views in the Debugger

The Multiprocess Explorer preference options are:

• Stack Depth: Allows you to set how many lines of the call stack should be
displayed when opening the call stack. Default is 10.

• Display Callstacks: Allows you to specify that processes and threads in the
Multiprocess Explorer window are opened to display their call stacks. This is
useful if you have very large numbers of processes and/or threads and you would
like to search all the call stacks for a particular name or address. The default is off.

• Display threads: Allows you to specify if the process node is always opened to
display pthreads (if a process had pthreads). Default is off.

• Attach to forked processes: Automatically attaches new processes spawned by the
fork command to the group. (Note that processes spawned by sproc are always
attached.) Default is off.

• Copy traps to forked processes: Copies traps you have set in the parent process
to new forked processes automatically. Alternatively, if you create parent traps
with Trap Manager and specify pgrp, then the children inherit these traps
automatically, regardless of the state of this flag. Default is off.

• Copy traps to sproc’d processes: Copies traps you have set in the parent process
to new sproc’d processes automatically. As in the previous option, if you create
parent traps with the Trap Manager and specify pgrp, the children inherit these
traps automatically, whether this flag is set or not. Default is on.

• Resume parent after fork: Restarts the parent process automatically when a child
is forked. Default is on.

• Resume child after attach on fork: Restarts the new forked process
automatically when it is attached. If this option is left off, a new process stops as
soon as it is attached. Default is on.

• Resume parent after sproc: Restarts the parent process automatically when a child
is sproc’d. Default is on.

• Resume child after attach on sproc: Restarts the new sproc’d process
automatically when it is attached. If this option is left off, a new process stops as
soon as it is attached. Default is on.

• Combine threads at same location: Applies a collapsing algorithm to display
threads stopped at the same location at the same time. (It is possible for threads to
arrive at the same location through different logical routes.) Default is on.

24 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Hide Thread State: Displays thread state, which is the kernel-level status. Default
is to hide the thread state.

• Show/Hide Buttons: When this option is ON, the Continue All, Stop All, Step
Into All, Step Over All, Sample All, and Kill All buttons appear near the top of
the Multiprocess Explorer window.

Controlling Multiple Processes

The Process menu of the Multiprocess Explorer allows you to control processes and
threads. The Process menu has the following options:

Change focus to this entry

Opens a dialog that allows you to switch the process or thread
currently focused on in the Main View window to the process or
thread selected in the Multiprocess Explorer window. Selecting a call
stack entry changes the Main View window’s focus to that process or
thread and positions the cvmain window at the offset of the selected
call stack.

Create a new window

Brings up a new Main View window for the selected process or
thread.

Goto

Opens a dialog box that allows you to enter the name of a thread on
which focus should be switched. This is useful when multiple
threads, all at the same location, are collapsed into a single line.
While Change focus to this entry always takes you to the first thread,
Goto allows you to jump to any thread.

Add

Opens a dialog in which you can select from a list of process ids.
Selecting a process id (PID) in the dialog and pressing OK causes the
process to be attached and added into the Multiprocess Explorer
window’s list of processes.

Remove

After you select a process/thread (by highlighting it), click on
Remove to remove it from the list of processes in the Multiprocess

007–4567–001 25

2: Additional Views in the Debugger

Explorer window. A process in a sproc share group cannot be
removed from the process group.

Many of these menu options are available via dynamic menus. Clicking and holding
the right mouse button down shows the actions available on a popup menu. Quickly
clicking down on the right mouse button gives the default action.

Source View
The Source View window is brought up by choosing Views > Source View from the
Main View window menu bar. By default, a copy of the source on display in the
Main View window source pane is displayed in this window.

The Source View menu bar contains selections duplicated from the Main View
window: Display, Traps, and Fix+Continue. Each of these menus has the same
functionality as its counterpart in the Main View window (see "Main View", page
105). The only new menu selection is the File menu described below:

• Open: Launches the Open dialog that allows you to choose a file to load into
Source View.

• Open Recent: Lists recent files that have been opened previously.

• Save: Records changes made to the file during the current debugging session. You
must first select Make Editable from this File menu when the file is read only.

• Save As: Records changes made during the debugging session to the source file
under a different file name, the name of which you can enter or select using the
Save As Text dialog.

• Save As Text: Records information in the display area as a text file, the name of
which you can enter or select using the Save As Text dialog.

• Open Separate: Launches the Open Separate dialog that allows you to create a
new Source View with the contents of a different source file.

• Insert File: Inserts the text of a file within your current file. This item description
is available only if the file is editable. The Make Editable item description from
this File menu can be used to switch the file from read only.

• Clone: Clones the current window.

26 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Fork Editor: Starts your default editor on the current file. The default editor is
determined by the editorCommand resource in the app-defaults file. The
value of this resource defaults to wsh -c vi +%d, which means run vi in a wsh
window and scroll to the current line. If the editor allows you to specify a starting
line, enter %d in the resource to indicate the new line number.

• Recompile: Displays the Build View window that allows you to compile the
source code associated with the current executable.

• Make Editable: Toggles the source code displayed between (Read Only) and
(Editable) so that you can edit your code.

• Search: Searches for a literal case-sensitive, literal case-insensitive, or regular
expression. After you have set your target and clicked Apply (or pressed Enter),
each instance is marked by a search target indicator in the scroll bar. You can
search forward or backward in the file by clicking the Next or the Prev button.
You can also click an indicator with the middle mouse button to scroll to that
point. Clicking Reset removes the search target indicators.

• Go To Line: Launches the Go To Line dialog that allows you to go to a specific
line in the source. You can type in the line, or select the line number via the slider
bar.

• Versioning: Provides access to the configuration management tool, if you have
designated one.

The cvconfig script allows you to designate ClearCase, RCS or SCCS. Type the
following:

/usr/sbin/cvconfig [rcs | sccs | ptools | clearcase]

You must have root permissions to run cvconfig.

Selecting any option displays a shell in which you can access the configuration
management tool. The selections in the submenu are:

– CheckIn — Saves the source file and checks it into the database as a new
version.

– CheckOut — Recalls the source file from the tool’s database if you have the
proper authority, locks it, and makes it editable.

– UncheckOut — Cancels the checkout, with no changes registered.

• Close: Dismisses the Source View window.

007–4567–001 27

2: Additional Views in the Debugger

Process Meter
The Process Meter window is brought up by choosing Views > Process Meter from
the Main View menu bar. The Process Meter monitors resource usage of a running
process without saving the data. Figure 2-4, page 28, shows the Process Meter in its
default configuration (with only the User Time and Sys Time fields active).

Figure 2-4 Process Meter

The Process Meter contains its own menu bar that contains the Admin, Charts, Scale,
and Help menus. The Admin menu is the same as that described in "Admin Menu,
Task View", page 29. The Help menu is the same as that described in "Help Menu",
page 17. The other menus are described in the following list:

• Charts Menu: The Charts menu contains a set of toggles that allow you to choose
which charts are displayed in the Process Meter window. You can display as
many charts simultaneously as you wish. The following choices are available:

User/Sys Time (the default)
Major/Minor Faults
Context Switches
Bytes Read/Written
Read/Write Sys Calls
Other Sys Calls
Total Sys Calls
Signals
Process Size

• Scale Menu: The Scale menu allows you to set the time scale for the processes
displayed in the Process Meter window. A menu allows you to choose a time
scale from 2 seconds to 10 minutes.

28 007–4567–001

Chapter 3

Ada-specific Windows

This chapter discusses the Task View and Exception View windows that are specific
to Ada code.

Task View
Select Views > Task View from the Main View window menu bar to call up the Task
View window. The Task View window is an Ada-specific view that provides you
with task and call stack information. If you do not have Ada installed on your
system, the Task View menu option of the Views menu is grayed out.

The Task View menu bar contains the Admin, Config, Layout, Display, and Help
menus. The Help menu is the same as that described in "Help Menu", page 17. Other
menus are described in the following sections.

Admin Menu, Task View

The Admin menu contains the following options:

• Active: This toggle activates the current window in a set of cloned windows.

• Clone: Creates a clone of the current window. This action is not supported in the
current release, and the option is grayed out.

• Save As Text: Launches the Save Text dialog. This dialog allows you to save your
current session as text in a file you designate.

• Close: Closes the current window.

Config Menu, Task View

The Config menu contains the Preferences option, which launches the Task View
Preference dialog that allows you to set maximum call stack depth shown in Task
View. Default depth is 32 frames.

007–4567–001 29

3: Ada-specific Windows

Layout Menu, Task View

The Layout menu contains the following toggles:

• Task List: Causes only the CallStack View to be shown.

• Single Task: Causes only the Process Display to be shown.

Display Menu, Task View

The Display menu is divided into the Task List Format and Callstack Format
sections. The Task List Format toggle buttons control which buttons appear in the
toggle sort list, as well as what information is displayed in the Process Display area.
The Callstack Format toggles control the amount of information to be displayed in
the Callstack Display area of theTask View window.

The Task View Display menu contains the following toggles:

• Thread/task: Displays thread/task number. This toggle is active by default.

• Status: Displays process status. This toggle is active by default.

• PID: Displays PID number.

• Location: Displays routine name and location in the current source file.

• Arg Values: Allows you to set the argument values in the Callback Display. This
toggle is active by default.

• Arg Names: Allows you to set the argument names in the Callback Display. This
toggle is active by default.

• Arg Types: Allows you to display argument types in the Callback Display.

• PC: Allows you to set the program counter (PC) in Task View.

In addition to menus, Task View also contains the following items from which you
can select to vary the display:

• Sort toggles: Allows you to sort the process list by Thread, Name, State, Pid, or
Location, depending on which of the buttons is active. Default selection is Thread.

• Process display tabs: Allows you to view a list of tasks or details of the currently
running (highlighted) task.

30 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Callstack display tabs: Allows you to view all call stack information or call stack
details of the currently selected process.

Exception View
Select Views > Exception View from the Main View window menu bar to display the
Exception View window. Exception View is an Ada-specific view that allows you to
set traps on exceptions and control exception handling. This view works only if the
Ada compiler is installed. By default, this view displays only the following
predefined Ada exceptions:

• Constraint errors

• Program errors

• Storage errors

• Tasking errors

In addition, a single breakpoint is set on any unhandled exception.

The Stop boxes toggle on and off to indicate whether a trap is active.

The When control menus allow you to determine when an exception trap fires. The
following choices are available:

• Always: Stops any time the exception is raised.

• WhenOthers: Stops when caught by a when others handler rather than an
explicit handler or when unhandled.

• Unhandled: Stops when the exception is unhandled.

In the un-labeled text field at the bottom right of the window you can enter a single,
fully qualified Ada exception name or a single, fully qualified Ada unit name.
Depending on whether the add, remove, or find mode is active; pressing Enter
causes one of the following actions to occur:

• add mode:

– Single exception: Adds single exception to the exception list

– Library unit name: Adds all exceptions found in that library unit name to the
exception list

007–4567–001 31

3: Ada-specific Windows

• remove mode:

– Single exception: Removes single exception from the exception list

– Library unit name: removes all exceptions found in that library unit name
from the exception list

• set mode

• clear mode

• find mode:

– Single exception: positions top of the exception list to single exception

– Library unit name: positions top of the exception list to the first exception
found in given library unit name

Admin Menu, Exception View

The Admin menu has the following options:

• Active: Activates the current window in a set of cloned windows.

• Clone: Creates a clone of the current window.

• Save As Text: Launches the Save Text dialog. This dialog allows you to save your
current session as text in a file you designate.

• Close: Closes the current window.

Config Menu, Exception View

The Config menu has the following options:

• Load Exceptions: Opens the Load User Defined Exceptions dialog that allows
you to add additional exceptions to the predefined Ada exceptions.

• Save Exceptions: Opens the Save User Defined Exceptions dialog that allows you
to save any user-defined exceptions to the predefined Ada exceptions.

32 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Display Menu, Exception View

The Display menu has the following options:

• Delete All: Deletes all exception traps.

• Clear All Traps: Clears all exception traps. Clearing traps is not the same as
deleting traps. Clearing only temporarily affects traps while deleting removes
them permanently.

• Reset All Buttons: Resets all button actions.

007–4567–001 33

Chapter 4

X/Motif Analyzer Windows

The X/Motif Analyzer provides specific debugging support for X/Motif applications.
There are various examiners for different X/Motif objects, such as widgets and X
Window System graphics context, that might be difficult or impossible to inspect
using ordinary debugger functionality. See ProDev WorkShop: Debugger User’s Guide
for a comprehensive discussion and tutorial regarding the X/Motif Analyzer.

To access the X/Motif Analyzer window, pull down the Views menu and select
X/Motif Analyzer.

Global Objects
Though the X/Motif Analyzer is made up of several different examiner windows, a
number of objects, such as the Admin menu, Examine menu, Help menu and several
text bars, remain constant throughout window changes. The following examiners are
available and discussed:

• "Breakpoints Examiner", page 38

• "Trace Examiner", page 47

• "Widget Examiner", page 49

• "Tree Examiner", page 49

• "Callback Examiner", page 52

• "Window Examiner", page 52

• "Event Examiner", page 52

• "Graphics Context Examiner", page 52

• "Pixmap Examiner", page 53

• "Widget Class Examiner", page 53

Admin Menu

The Admin menu offers the following menu selections:

007–4567–001 35

4: X/Motif Analyzer Windows

• Active: Activates the current window in a set of cloned windows. In the current
release, this toggle is always active.

• Clone: Creates a clone of the current window. This action is not supported in the
current release and the option is grayed out.

• Save As Text: Launches the Save Text dialog. This dialog allows you to save your
current session as text in a file you designate. This selection is not available for
examiners that are graphical displays, such as the Breakpoints Examiner, the Tree
Examiner, and the Pixmap Examiner.

• Close: Closes the current window.

Examine Menu

The Examine menu offers the following options:

• Selection: Selects the currently highlighted object for examination. You must first
highlight the name of an object before you select this option.

• Widget: Uses the current selection as input to the widget examiner, then opens
that examiner (see "Widget Examiner", page 49, for information).

• Widget Tree: Switches the window view to the widget tree examiner (see "Tree
Examiner", page 49, for information).

• Widget Class: Switches the window view to the widget class examiner (see
"Widget Class Examiner", page 53, for information).

• Window: Switches the window view to the window examiner (see "Window
Examiner", page 52, for information).

• X Event: Switches the window view to the X Event examiner (see "Event
Examiner", page 52, for information).

• X Graphics Context: Switches the window view to the X graphics context
examiner (see "Graphics Context Examiner", page 52, for information).

• X Pixmap: Switches the window view to the X pixmap examiner (see "Pixmap
Examiner", page 53, for information).

36 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Examiner Tabs

In addition to access through the Examine menu, each examiner can be accessed
through a tab at the bottom of each view (see Figure 4-1).

Figure 4-1 Examiner Tabs

When first launched, the X/Motif Analyzer has the following four tabs from
left-to-right:

• Breakpoints

• Trace

• Widget

• Tree

As you select other examiners through the Examine menu, new tabs are added for
the new examiners.

To delete a tab:

1. Select the tab you want to delete.

2. Right-click and select Remove Examiner from the pop-up menu.

The selected tab disappears.

Note: You can not remove the first four tabs.

The X/Motif Analyzer also brings up new examiner windows whenever they are
needed. Click on the collapsed tabs to the right to display them.

Return Button

Both the Widget and Name text fields have return buttons (see Figure 4-2, page 39)
just to the right. Clicking these buttons causes the X/Motif Analyzer to respond

007–4567–001 37

4: X/Motif Analyzer Windows

exactly as if you had pressed Return on your keyboard.Only the Breakpoint
Examiner and Widget Examiner have a Return button.

Breakpoints Examiner
The Breakpoints examiner is not really an examiner, but a control area where you can
set widget-level breakpoints. The breakpoints examiner is divided into three areas
(see Figure 4-2, page 39):

• The widget specification area that contains the same information as that in the
Widget examiner. You can select a widget address, name, or class in this area, as
well as move to the widgets parents or children, or select a widget in the
application. In cases where the breakpoint type does not apply to widgets (for
example, input-handler breakpoints), this area is blank.

• The parameter specification area, the contents of which vary according to the type
of breakpoint you are setting. For example, for callback breakpoints, this area
contains the callback name and client data; for event-handler breakpoints, it
contains the event type and the client data, and so on.

• The breakpoint area, which contains the breakpoint name, a search field, and the
Add, Modify, Delete, and Step To buttons. Because the Search text field and the
four buttons appearing in the Breakpoints area function the same way no matter
which Breakpoint Type is selected, descriptions for these items are included here,
and are not described in each of the remaining subsections. These are:

– Search text field: Allows you to perform a text search through your
breakpoints.

– Add button: Allows you to add a new breakpoint.

– Modify button: Allows you to change the selected breakpoint’s settings.

– Delete button: Deletes the selected breakpoint.

– Step To button: Allows you to step to the next condition. Step To creates a
temporary breakpoint, resumes the process, and waits until the process stops.
This temporary breakpoint acts exactly like an ordinary breakpoint, save that
the Step To button automatically resumes the process and puts up a busy
cursor until the condition becomes true.

38 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Return button

Widget

specification

Parameter

specification

Breakpoints

Figure 4-2 Breakpoints Examiner Display in the X/Motif Analyzer Window

The control area has eight different breakpoint types that it can examine. These types
are set through the Breakpoint Type options. The following Breakpoint Type options
are available:

• Callback: Widget callback installed by XtAddCallback. Parameters include
callback name and client_data XtPointer value. See "Callback Breakpoints
Examiner", page 40, for more information.

• Event-Handler: Widget event handler installed by XtAddEventHandler.
Parameters include X event type and client_data XtPointer value. See
"Event-Handler Breakpoints Examiner", page 41, for more information.

007–4567–001 39

4: X/Motif Analyzer Windows

• Resource-Change: Resource change caused by XtSetValues or XtVaSetValues.
Parameters include resource name and resource value, both strings. See
"Resource-Change Breakpoints Examiner", page 42, for more information.

• Timeout-Procedure: Timeout callback installed by XtAppAddTimeOut.
Parameters include client_data XtPointer value. See "Timeout-Procedure
Breakpoints Examiner", page 42, for more information.

• Input-Handler: Input callback installed by XtAppAddInput. Parameters include
client_data XtPointer value. See "Input-Handler Breakpoints Examiner",
page 43, for more information.

• State-Change: Various widget state changes (for example, managed or realized).
Parameters include widget state. See "State-Change Breakpoints Examiner", page
44, for more information.

• X-Event: X event received by target application. Parameters include X event type.
See "X-Event Breakpoints Examiner", page 45, for more information.

• X-Request: X request received by target application. Parameters include X request
type. See "X-Request Breakpoints Examiner", page 46, for more information.

Callback Breakpoints Examiner

When the Callback option of the Breakpoint Type option button in the Breakpoints
Examiner is selected, the Callback Breakpoints Examiner is displayed.

The Callback Breakpoints examiner contains the following items:

• Widget text field: Allows you to choose a widget to examine by entering the
widget address.

• Name text field: Allows you to choose a widget to examine by entering the
widget name.

• Class text field: Allows you to choose a widget to examine by entering the
widget’s class. Leave the field blank or enter Any to select all widgets.

• Parent text field: Allows you to move to the parent of the currently selected
widget.

• Previous button: Moves you to the previously selected widget.

40 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Children button: Shows you the widget’s children (it is grayed out if the selected
widget cannot have children).

• Select button: Allows you to select the widget in the target process.

• Breakpoint Type option button: Allows you to select the type of breakpoint you
wish to set. In this section, Callback is selected.

• Clear button: Clears all the current breakpoint selections and text fields.

• Callback Name text field: Allows you to set the Name of the callback for the
breakpoint.

• Client_Data text field: Allows you to pass and get back pointer values for
Client_Data.

Event-Handler Breakpoints Examiner

When the Event-Handler option of the Breakpoint Type option button in the
Breakpoint Examiner is selected, then Event-Handler examiner appears.

The Event-Handler Breakpoints examiner contains the following items:

• Widget text field: Allows you to choose a widget to examine by entering the
widget address.

• Name text field: Allows you to choose a widget to examine by entering the
widget name.

• Class text field: Allows you to choose a widget to examine by entering the
widget’s class. Leave the field blank or enter Any to select all widgets.

• Parent text field: Allows you to move the parent of the currently selected widget.

• Previous button; Moves you to the previously selected widget.

• Children button: Shows you the widget’s children (it is grayed out if the selected
widget cannot have children).

• Select button: Allows you to select the widget in the target process.

• Breakpoint Type option button: Allows you to select the type of breakpoint you
wish to set. In this section, Event-Handler is selected.

• Clear button: Clears all the current breakpoint selections and text fields.

007–4567–001 41

4: X/Motif Analyzer Windows

• Event Type option button: Allows you to set the event type for a given breakpoint.

• Client_Data text field: Allows you to pass and get back pointer values for the
Client_Data.

Resource-Change Breakpoints Examiner

When the Resource-Change option of the Breakpoint Type option button in the
Breakpoint Examiner is selected, the examiner appears.

The Resource-Change Breakpoints examiner contains the following items:

• Widget text field: Allows you to choose a widget to examine by entering the
widget address.

• Name text field: Allows you to choose a widget to examine by entering the
widget name.

• Class text field: Allows you to choose a widget to examine by entering the
widget’s class. Leave the field blank or enter Any to select all widgets.

• Parent text field: Allows you to move the parent of the currently selected widget.

• Previous button: Moves you to the previously selected widget.

• Children button: Shows you the widget’s children (it is grayed out if the selected
widget cannot have children).

• Select button: Allows you to select the widget in the target process.

• Breakpoint Type option button: Allows you to select the type of breakpoint you
wish to set. In this section, Resource-Change is selected.

• Clear button: Clears all the current breakpoint selections and text fields.

• Resource Name text field: Allows you to set the resource name for the breakpoint.

• Resource Value text field: Allows you to set the resource value for the breakpoint.

Timeout-Procedure Breakpoints Examiner

When the Timeout Procedure option of the Breakpoint Type option button in the
Breakpoint Examiner is selected, the examiner appears as shown in Figure 4-3.

42 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Figure 4-3 Timeout-Procedure Breakpoints Examiner

The Timeout-Procedure Breakpoints examiner contains the following items:

• Breakpoint Type option button: Allows you to select the type of breakpoint you
wish to set. In this section, Timeout-Procedure is selected.

• Clear button: Clears all the current breakpoint selections and text fields.

• Client_Data text field: Allows you to pass in and get back pointer values for the
Client_Data.

Input-Handler Breakpoints Examiner

When the Input-Handler option of the Breakpoint Type option button in the
Breakpoint Examiner is selected, the examiner appears.

007–4567–001 43

4: X/Motif Analyzer Windows

The Input-Handler Breakpoints examiner contains the following items:

• Breakpoint Type option button: Allows you to select the type of breakpoint you
wish to set. In this section, Input-Handler is selected.

• Clear button: Clears all the current breakpoint selections and text fields.

• Client_Data text field: Allows you to pass in and get back pointer values for the
Client_Data.

State-Change Breakpoints Examiner

When the State-Change option of the Breakpoint Type option button in the
Breakpoint Examiner is selected, the examiner appears.

The State-Change Breakpoints examiner contains the following items:

• Widget text field: Allows you to choose a widget to examine by entering the
widget address.

• Name text field: Allows you to choose a widget to examine by entering the
widget name.

• Class text field: Allows you to choose a widget to examine by entering the
widget’s class. Leave the field blank or enter Any to select all widgets.

• Parent button: Allows you to move the parent of the currently selected widget.

• Previous button: Moves you to the previously selected widget.

• Children button: Shows you the widget’s children (it is grayed out if the selected
widget cannot have children).

• Select button: Allows you to select the widget in the target process.

• Breakpoint Type option button: Allows you to select the type of breakpoint you
wish to set. In this section, State-Change is selected.

• Clear button: Clears all the current breakpoint selections and text fields.

• State Type option button: Allows you to set the state change type for a given
breakpoint.

44 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

X-Event Breakpoints Examiner

When you select the X-Event option of the Breakpoint Type option button in the
Breakpoint Examiner, the examiner appears as shown in Figure 4-4.

Figure 4-4 X-Event Breakpoints Examiner

The X-Event Breakpoints examiner contains the following items:

• Breakpoint Type button: Allows you to select the type of breakpoint you wish to
set. In this section, X-Event is selected.

• Clear button: Clears all the current breakpoint selections and text fields.

• Event Type button: Allows you to set the event type for a given breakpoint.

• Window ID text field: Allows you to set the Window ID value for the breakpoint.

007–4567–001 45

4: X/Motif Analyzer Windows

X-Request Breakpoints Examiner

When the X-Request option of the Breakpoint Type option button in the Breakpoint
Examiner is selected, the examiner appears.

The X-Request Breakpoints examiner contains the following items:

• Breakpoint Type option button: Allows you to select the type of breakpoint you
wish to set. In this section, X-Request is selected.

• Clear button: Clears all the current breakpoint selections and text fields.

• Request Type button: Launches the Request Type Selection dialog (see Figure
4-5). This dialog allows you to select the type of X-Request used for your
breakpoint. The information displayed is in outline form; selecting a given item
selects all its subitems. For example, if you select Window-Category,
CreateWindow, ChangeWindowAttributes, GetWindowAttributes, and so
on are also selected.

Figure 4-5 Request Type Selection Dialog

46 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Trace Examiner
The Trace examiner (see Figure 4-6, page 48) is a control area where you can trace the
execution of your application and collect the following date:

• X Server Events

• X Server Requests

• Widget Event Dispatch Information

• Widget Resource Changes (through XtSetValues)

• Widget State Changes (create, destroy, manage, realize, and unmanage)

• Xt Callbacks (widget, event handler, work proc, timeout, input, and
signal)

007–4567–001 47

4: X/Motif Analyzer Windows

Figure 4-6 Trace Examiner

The Trace examiner contains the following items:

• Collect Trace toggle: Allows you to turn the tracing on and off.

• File text field: Allows you to select the file name for the trace. If no file is selected,
a default filename for the trace is chosen.

• Search text field: Allows you to perform an incremental, textural search for the
trace list.

• Filter button: Launches a dialog that allows you to select the trace entry types you
want displayed in the list.

• Clear File button: Erases the trace file. Any subsequent trace information goes to
the beginning of the file.

48 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Widget Examiner
The Widget examiner displays the internal Xt widget structure, as well as the Xt
inheritance implementation using nested C constructs.

The Widget examiner contains the following items:

• Widget text field; Allows you to choose a widget to examine by entering the
widget address.

• Name text field: Allows you to choose a widget to examine by entering the
widget name.

• Parent button: Allows you to move the parent of the currently selected widget.

• Previous button: Moves you to the previously selected widget.

• Children button: Shows you the widget’s children. (It is grayed out if the selected
widget does not have children.)

• Select button: Allows you to select the widget in the target process.

Tree Examiner
The Tree examiner (see Figure 4-7) displays the widget hierarchy.

007–4567–001 49

4: X/Motif Analyzer Windows

Figure 4-7 Tree Examiner

You can double-click a node to view that widget in the Widget examiner.

If the Tree examiner is currently selected, it does not automatically fetch the current
widget tree each time the process stops. To force retrieval of the widget tree, select
another examiner and then go back to the Tree examiner. Or, click on the Tree tab.

The graphical buttons across the bottom of the Tree Examiner window from
left-to-right have the following functions.

50 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button (disabled)

Realign button

Rotate button

Search button

Figure 4-8 Tree Examiner Window Graphical Buttons

• Zoom percentage indicator: Click on this indicator to bring up a submenu from
which you can select a different percentage.

• Zoom Out button: Decreases the zoom percentage.

• Zoom In button: Increases the zoom percentage.

• Overview button: Shows the entire tree structure in another window along with
an indication of which portion of the tree is currently being displayed in the
full-sized Tree Examiner window.

• Multiple Arcs button: This button shows/hides multiple connections between
nodes on the graph. For example, if main calls foo several times, you see a line
(arc) for all calls made.

• Realign button: This button resets the graph back to its original configuration
(before you began working with it). Also, hidden nodes reappear.

• Rotate button: Change the format of the window from up-down to left-right, or
vice-versa.

• Search button: Search for text in the tree using a Widget Hierarchy Search Text
window.

• Widget View Type Option button: Click on this indicator to change the kind of
information being displayed in the nodes of the tree. This brings up a submenu
which allows you to choose Name, Class, ID (widget address) or Window
(indicate <gadget> or address).

007–4567–001 51

4: X/Motif Analyzer Windows

Callback Examiner
The Callback examiner automatically appears when the process is stopped
somewhere in a callback. It first displays the callstack frame. Then it displays
information about the widget in the callback. Finally, it displays the proper callback
structure contained in the call_data argument to the callback procedure, based on the
widget type and the callback name.

Window Examiner
The Window examiner displays window attributes for an X window and the parent
and children window IDs. These attributes are returned by
XGetWindowAttributes, with decoding of the visual structure, enums, and masks.

The Window examiner contains the Window text field that displays the address of the
window that is being examined. You may change to a different window by entering a
new address and pressing Enter.

Event Examiner
The Event examiner displays the event structure for an XEvent pointer. The proper
XEvent union member is used, and enums and masks are decoded.

The Event examiner contains the X Event text field, which displays the address of the
X event that is being examined. You may change to a different X event by entering a
new address and pressing Enter.

Graphics Context Examiner
The Graphics Context examiner displays the X graphics context attributes that are
cached by Xlib in the form of an XGCValues structure. Enums and masks are
decoded.

The Graphics Context examiner contains the GC text field that displays the address of
the graphics context that is being examined. You may change to a different context by
entering a new address and pressing Enter.

52 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Pixmap Examiner
The Pixmap examiner displays basic attributes of an X pixmap, like size and depth. It
also attempts to provide an ASCII display of small pixmaps, using the units digit of
the pixel values.

The Pixmap examiner displays the contents of an X pixmap. To specify an X pixmap
identifier, enter a numeric expression in the top text field of the window. Then, use
default as the colormap identifier to specify the default X colormap for your screen.
In the pixmap display, left-click on a pixel to see the pixel value, position, and
red-green-blue intensities.

Widget Class Examiner
The Widget Class examiner displays the Xt widget class structure, as well as the Xt
inheritance implementation using nested C constructs.

The Widget Class examiner contains the W Class text field, which displays the
address of the widget class that is being examined. You may change to a different
widget class by entering a new address and pressing Enter.

007–4567–001 53

Chapter 5

Managing Traps

In addition to setting traps by using the command line, the Views menu of the Main
View window provides you with three views specific to trap management:

• Trap Manager

• Signal Panel

• Syscall Panel

Call up the Trap Manager window from the Main View window menu bar as follows
by selecting Trap Manager from the Views menu.

Trap Manager
The Trap Manager allows you to set, edit, and manage traps (used in both the
Debugger and Performance Analyzer).

The Trap Manager window contains the following items (besides the menu bar,
which is discussed below):

• Trap text field: Contains a description of the trap.

• Condition text field: Contains the condition of the trap.

• Cycle Count text field: Displays the current cycle count.

• Current Count text field: Displays the current trap count.

• Full button: Allows you to toggle between display of full and partial path names.

• Modify button: Allows you to change the selected breakpoint’s settings.

• Add button: Allows you to add a new breakpoint.

• Clear button: Clears all the current breakpoint selections and text fields.

• Delete button: Deletes the selected breakpoint.

• Active label: If selected with a check mark, the trap is enabled.

007–4567–001 55

5: Managing Traps

• Trap display area: Contains a description of each trap, and a toggle to indicate
whether or not the trap is active.

• Search text field: Allows you to perform an incremental textual search for the trap
list.

The Trap Manager window has a menu bar which contains the Admin, Config,
Traps, Display, and Help menus. The Admin menu is the same as that described in
"Admin Menu, Task View", page 29. The Help menu is the same as that described in
"Help Menu", page 17. The other menus are described in the following list:

• The Config menu contains the following items:

– Load Traps: Brings up the File dialog allowing you to load the traps from a file.

– Save Traps: Brings up the File dialog allowing you to save the current traps to
a file.

• The Traps menu has options that allow you to set traps under a number of
conditions. The following conditions are available:

– At Source Line: Highlight a line in the Main View window’s source pane
before selecting this option to set a breakpoint at the selected line.

– Entry Function: Highlight a function name in the Main View window’s source
pane before selecting this option to set a breakpoint at the entry to the function.

– Exit Function: Highlight a function name in the Main View window’s source
pane before selection this option to set a breakpoint at the exit from the
function.

– Stop Trap Default: Causes a trap created to be a “stop” trap. Toggles with the
Sample Trap Default.

– Sample Trap Default: Causes a trap created to be a “sample” trap. Toggles
with the Stop Trap Default.

– Group Trap Default: ON/OFF toggle to cause a trap created to have the
“pgrp” option.

– Stop All Default: ON/OFF toggle to cause a trap created to have the All
option.

• The Display menu contains the Delete All optoin, which deletes all traps from the
trap list.

56 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Signal Panel
The Signal Panel displays the signals that can occur. You can specify which signals
trigger traps and which are to be ignored.

The Signal Panel contains an Admin menu (described in "Admin Menu, Task View",
page 29) and a Help menu (described in "Help Menu", page 17). Each signal trigger
trap in the display has a toggle associated with it. In addition, the panel has a Search
text field.

Note: When debugging IRIX 6.5 pthreads, the Signal Panel is inaccessible if more
than one thread is active.

Syscall Panel
The Syscall Panel allows you to set traps at the entry to or exit from system calls.

The Syscall Panel contains an Admin menu (described in "Admin Menu, Task View",
page 29) and a Help menu (described in "Help Menu", page 17). Each system call in
the display has two toggles associated with it: one to set a trap on entry, one to set a
trap on exit. In addition, the panel has a Search text field.

007–4567–001 57

Chapter 6

Data Examination Windows

There are several windows that are used primarily to examine your program’s data:

• "Array Browser Window", page 59

• "Call Stack Window", page 72

• "Data View Window", page 73

• "Expression View Window", page 73

• "File Browser Window", page 75

• "Data Explorer Window", page 76

• "Variable Browser Window", page 86

Array Browser Window
To examine numeric, pointer, or character string data in an array variable, select Array
Browser from the Views menu at a point in the process where the variable is present.
The Array Browser allows you to view elements in a multi-dimensional array (up to
100 x 100 elements), presented in a spreadsheet and graphically, if desired.

007–4567–001 59

6: Data Examination Windows

Array specification
area

Subscript control
area

Graphical display
area

Spreadsheet area
Current element

Figure 6-1 Array Browser with Display Menu Options

Note: The Render, Color, and Scale tear-off menus are available only if you are have
an SGI workstation with Open Inventor installed on it.

The array specification area allows you to specify the variable and its dimensions. It
consists of the following fields:

• Array : Allows you to enter the name of the array variable. This entry is
language-dependent.

60 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

For Fortran, the expression may be an array or a dummy array variable name. If
the last dimension of the array is unspecified (*), a subscript value of 1 is assumed
initially.

For C and C++, the entry may be an array or a pointer. If pointers are used, the
expression is treated as though it were a single element, in which case you need to
use the subscript controls to see more than the first element.

• Indexing Expression : The expression used to view an element in the array. It is
filled in automatically when you specify an array to view.

The expression supplied is language-specific. It represents the indexing expression
used in the language to access a particular element. The subscripts are specified
by special indexing variables ($i, $j, $k, and so forth) that can be manipulated in
the subscript controls area.

The Subscript Controls area allows you to control which elements in the variable are
displayed and allows you to shift the current element. The number of dimensions in
the array governs the number of controls that are displayed. A close-up view of the
subscript controls area appears in Figure 6-2.

Row/column toggles
Index identifiers
Index values
Index sliders
Index minimums
Index maximums
Step indicators

Figure 6-2 Subscript Controls Area in the Array Browser

The Subscript Controls area provides the following features:

• Row/column toggles: Controls whether an index variable represents rows or
columns (or neither) in the spreadsheet area. You are not limited by the number of

007–4567–001 61

6: Data Examination Windows

dimensions of an array, but you can only view a two-dimensional orthogonal slice
of the array at a time.

• Index identifiers: Indicates to which subscript the controls in the row refer.

• Index values: Shows the value of the subscript for the element currently in the
focus cell. You can enter a different value if you wish.

• Index sliders: Lets you move the focus cell along the particular dimension.

• Index minimums: Identifies the beginning visible element in that particular
dimension.

• Index maximums: Identifies the last visible element in that particular dimension.
If you have an unspecified array, you can use this field to specify the last element
in the vector to be displayed in the spreadsheet.

• Step indicators: Specifies the increment between adjacent elements in the
dimension to be displayed. A value of 1 displays consecutive data. Specifying
some n greater than 1 allows you to display every n element in a vector.

• Control area scroll bars: Allows you to expose hidden portions of the subscript
control area if your window is not large enough for viewing all of the controls.

The spreadsheet area is where numeric data is displayed. It can show two dimensions
at a time (indicated in the upper left corner of the matrix). The column indexes run
along the top of the matrix and the row indexes are displayed along the left column.
The spreadsheet area has scroll bars for viewing data elements not currently visible in
the viewing area. Figure 6-3, page 63, shows a close-up of the spreadsheet area.

62 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Current element value field

Current element identifier

Column indexes

Current element

Row indexes

Element values

Figure 6-3 Array Browser Spreadsheet Area

The current element is highlighted by a colored rectangle in the spreadsheet area. Its
corresponding expression is shown in the current element identifier field, and the
value is shown in the current element value field.

The Spreadsheet menu allows you to change the appearance of data in the
spreadsheet area. It provides these selections:

• Column Width: Allows you to specify the width of the spreadsheet cells in terms
of characters. For instance, a value of 12 indicates that 12 characters, including
punctuation and digits are viewable.

• Wrapped Display: Allows you to display a single dimension of an array wrapped
around the entire spreadsheet area. The index value for an element is determined
by adding the appropriate row index and column index values.

Figure 6-4, page 64, shows an example of a wrapped array. There is only one
index $i. The current cell is element 4 in the array (by adding 3 and +1).

007–4567–001 63

6: Data Examination Windows

Current
cell

Figure 6-4 Example of Wrapped Array

• Auto Fit Data: If enabled, automatically resizes the spreadsheet cell to fit the
maximum size of the data to be displayed. If this is enabled, then the Column
Width is disabled. This option is on by default.

Format Menu

The Format menu displays a separate menu that you allows you to display the
elements in the following formats:

• Default toggle: Toggles the default format.

• Value submenu: Contains the following display toggles for formatted values:

Decimal
Unsigned
Octal
Hex
Float
Exponential
Char
String
Wide Character

• Type: Allows listing by data type.

• Bit Size: Allows listing by bit size.

The graphical display area presents array data in a three-dimensional graph in one of
the following formats:

• Surface (polyhedron)

64 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Bar chart

• Points

• Multiple lines (array vectors)

Render Menu

The Render tear-off menu is available only if you are have an SGI workstation with
Open Inventor installed on it.

You select the graphical display mode through the Render menu. The Render menu
has the following options:

• Surface: Exhibits the data as a solid using the data values as vertices in a
polyhedron.

• Bar Chart: Presents the data values as 3-D bar charts.

• Points: Simply plots the data values in 3-D space.

• Multi Line: Plots and connects the data values in each row.

• None: Allows you to display with no graphical display, in effect turning off
graphical display mode.

Color Menu

The Color tear-off menu is available only if you are have an SGI workstation with
Open Inventor installed on it.

If the Color menu is grayed out when the Array Browser window first opens, select
the Surface option of the Render menu. The Color menu provides the following
options:

• Monotone Ramp: Displays the data values in a single tone, with lower numbers
being darker and higher values lighter in tone.

• Hue Ramp: Displays the data values in a spectrum of colors ranging from blue
(lowest values) through green, yellow, orange, and red (highest values).

• Exception: Allows you to flag certain conditions by color, usually for the purpose
of spotting bad data. When you select Exception, the controls shown in Figure 6-5,
page 66 appear in the window.

007–4567–001 65

6: Data Examination Windows

Figure 6-5 Color Exception Portion of Array Browser Window

Thus, you can highlight data values less than or greater than specified values,
values of plus or minus infinity, values of plus or minus underflow, zero values,
and NaN (not a number) values.

66 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Surface rendering Bar chart rendering

Point rendering Multiple line rendering

Figure 6-6 Array Browser Graphic Modes

Scale Menu

Note: The Scale tear-off menu is available only if you are have an SGI workstation
with Open Inventor installed on it.

If the Scale menu is grayed out when the Array Browser window first opens, select
the Surface option of the Render menu.

The Scale menu provides options for changing the ratio of the z-dimension, which
represents the value of the element. The number on the left represents the value of
the x and y-dimensions (which are always the same as each other). The number on
the right is the z-dimension.

Manipulating the z-dimension affects the ease of spotting differences in values. If
your data is scattered over a narrow range of values, you may wish to heighten the
graph by selecting 10:1 as your scale; this exaggerates the values in the z-dimension.
If your data is in a wide range, selecting 1:2 or 1:10 as the scale minimizes the
differences, flattening the graph.

007–4567–001 67

6: Data Examination Windows

Examiner Viewer Controls

Note: The Examiner Viewer is available only if you are have an SGI workstation with
Open Inventor installed on it.

The graphical display uses controls and menus from Examiner Viewer. Examiner
Viewer is based on a camera metaphor and borrows terms from the film industry,
such as zoom and dolly, in naming its controls. The graphical display area of the
window is shown in Figure 6-7, page 69, with its main controls and menus. Note that
the buttons on the upper right side of the graphical display area may not be visible if
the area is too small; you can expose them by moving either the upper or lower sash
to enlarge the display area. (The lines between the window panes include a small box
to the right. Click-drag this box to change the size of the panes.)

Examiner Viewer provides these controls for viewing the graph. The right side
buttons provide the following actions:

• view mode: Toggles between a view-only mode (closed eye) and manipulation
mode (open eye).

In view-only mode, the cursor appears as an arrow and the graph cannot be
moved. Clicking on a portion of the graph selects the corresponding array element
in the spreadsheet.

In manipulation mode, the cursor appears as a hand and you can move the graph.
Dragging the graph with the left mouse button down moves the graph in any
direction as if it were in a trackball; a quick movement spins the graph. Dragging
the graph with the left mouse button and the Ctrl key rolls (rotates) the graph in
the plane of the screen. Dragging the graph with the middle mouse button moves
it without changing the viewing angle.

If you drag the graph with both the left and middle mouse buttons down, the
graph appears to move into or out of the window (this is the same as the dolly
thumbwheel, which is described in this section).

68 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

x rotation
control

y rotation
control

Zoom control
and readout

Dolly
control

View mode

Help

Home

Set home

View all

Seek

Figure 6-7 Examiner Viewer with Controls and Menus

007–4567–001 69

6: Data Examination Windows

• help: Runs a special help system containing Inventor Viewer information.

• home: Repositions the graph in its original viewing position.

• set home: Changes the home (original viewing) position for subsequent use of the
home button.

• view all: Repositions the display area so that the entire graph is visible.

• seek: Provides a special cursor that allows you to reposition the graph in the
center of the display area or allows you to center the view on a point you select
with the cursor. See Seek to point <or object> in the Preferences dialog box.

The following controls let you move the graphic display:

• x rotation thumbwheel: Rotates the graph around its x-axis.

• y rotation thumbwheel: Rotates the graph around its y-axis.

• dolly thumbwheel: Changes the size of the graph and adjusts the angles to
maintain perspective. The dolly control simulates moving the viewing camera
back and forth with respect to the graph.

Examiner Viewer Menu

You access the Examiner Viewer menu by holding down the right mouse button in
the graphical display area. The Examiner Viewer menu provides the following
options (see Figure 6-7, page 69 for illustration):

• Functions: Displays a submenu with the selections Help, Home, Set Home, View
All, and Seek, which are the same as the right mouse button controls described in
the previous section, and the Copy View and Paste View selections. These operate
like standard copy and paste editing commands, enabling you to transfer graphs.

• Draw Style: Displays a submenu that controls how the graph is displayed. The
top group of options, from as is to bounding box (no depth) control how the
graph is displayed when it is static. These override any Render menu selections.

The middle (move...)group of options control how the graph is displayed while
in motion.

The last three options, single, double, and interactive, refer to buffering techniques
used in moving the graph. These affect the smoothness of the movement.

70 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Viewing: The same as the view mode button described in the previous section.
When it is off, you can select points from the graph to display in the spreadsheet
but cannot move the graph. When on, it allows you to manipulate the graph.

• Decoration: Displays the right side buttons when it is on and hides them when it
is off.

• Headlight: Controls the shadow effect on the graph. When it is on, the light
appears to come from the camera.

• Preferences: Causes the Examiner Viewer Preferences Sheet dialog to display.

Figure 6-8 Examiner Viewer Preference Sheet Dialog

The Examiner Viewer Preference Sheet dialog provides the following options:

007–4567–001 71

6: Data Examination Windows

• Seek animation time: Allows you to specify the time it takes for the graph to be
repositioned after you change the seek point. Set to 0 for instant seek. See also
Seek to point <or object>.

• Seek to point <or object>: Seek to point uses the picked point and surface
normal to align the camera.

Seek to object uses only the object center to align the camera.

• Seek distance wheel: This wheel controls how close to the camera the object
appears. This distance can be either an absolute distance or a percentage of the
distance to the picked point.

• Camera Zoom slider: This slider allows you to set (in degrees) the camera height
angle (only perspective camera). If you wish, you may set this value in the field
immediately to the right of the slider.

• Zoom slider ranges from: Range is 1.0 to 140.0 by default, but you can reset this if
you wish.

• Auto clipping planes: Centers the graph in your view if enabled. If disabled, it
allows you to move the graph out of view at either end of the z-axis. This is
useful if you wish to focus on data above or below a set value.

• Stereo Viewing: This may be turned on to see the scene in stereo (special glasses
required). The offset between the left and right eye can be specified using the
camera rotation thumbwheel.

• Enable spin automation: When selected, you can cause the camera to continue
spinning. To animate, left-click and drag in the direction of your desired spin,
then release while spinning. The graph spins as if by a trackball. To stop, left-click
anywhere.

• Show point of rotation axes: Displays a set of three axes. You can move the
graph around the x and y axes using the thumbwheel controls described in the
previous section. When this option is on, you can set the size of the axes in pixels.

Call Stack Window
The Call Stack window displays call stack entries when a process has stopped.

The source display in the Main View window has two special annotations that are
synchronized with the Call Stack:

72 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• The location of the current program state is indicated by a large arrow representing
the PC. The source line to which the arrow points is highlighted (usually in green).

• The location of the call to the item selected in the Call Stack window is indicated
by a small arrow representing the current context. The source line becomes
highlighted (usually in blue-green).

The Call Stack contains its own menu bar, which contains the Admin, Config,
Display, and Help menus. The Admin menu is the same as that described in "Admin
Menu, Task View", page 29. The Help menu is the same as that described in "Help
Menu", page 17. The other menus are described in the following list:

• The Config menu contains the Preferences option, which launches the Call Stack
Preferences dialog that allows you the option of setting the maximum depth of
the Call Stack.

• The Display menu contains the following toggles which change what is displayed
in each entry of the Call Stack in addition to the subroutine/function name:

– Arg Values: Allows you to display argument values. Default is on.

– Arg Names: Allows you to display argument names. Default is on.

– Arg Types: Allows you to display argument types. Default is off.

– Location: Allows you to display function location. Default is on.

– PC: Allows you to display the program counter (PC). Default is off.

Data View Window
The Data View opens a window that allows you to display variables and their values
in the source code.

Expression View Window
Expression View displays a collection of expressions that are evaluated each time the
process stops or the context changes.

In addition to the items on the menu bar, the window has two pop-up menus: the
Language menu and the Format menu. The Admin menu is the same as that
described in "Admin Menu, Task View", page 29. The Help menu is the same as that

007–4567–001 73

6: Data Examination Windows

described in "Help Menu", page 17. The other menus are described in the following
list:

• The Config menu contains the following options:

– Load Expressions: Launches the Load Expressions dialog box that allows you
to choose source file from which to load your expressions.

– Save Expressions: Launches the Save Expressions dialog box that allows you
to choose a file to which you can save your expressions.

• The Display menu contains the following options:

– Format All, which allows you to change the default values. See "Format
Pop-up Menu", page 74 for a description of format options.

– Clear All option which clears all fields in the view.

Language Pop-up Menu

The Language pop-up menu contains three buttons that allow you to select one of
three languages for evaluation: C, C++, or Fortran. The Language pop-up is invoked
by holding down the right mouse button while the cursor is in the Expression column.

Format Pop-up Menu

The Format pop-up menu is displayed by holding down the right mouse button in
the Result column.

74 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Figure 6-9 Expression View Format Popup with Submenus

The Format popup contains the following options:

• Default: Sets the format to the default values.

• Value: Displays a submenu from which you can select a value of Decimal,
Unsigned, Octal, Hex, Exponential, Float, Char, String, or Wide Character type.

• Type: Displays a submenu from which you can select a type of Decimal, Octal, or
Hex.

• Bit size: Sets the format to Bit Size.

File Browser Window
The File Browser window displays a list of source files used by the current
executable. Double-click on a file in the list to load it into the source display area in

007–4567–001 75

6: Data Examination Windows

the Main View or Source View windows. Some files may be listed due to
subroutines/functions being resolved from system libraries. If you select such a file,
you may get the following message:

Unable to find file <xxx.c>

This is because the source for system library routines may not be stored on your
system.

The Search field allows you to find files in the list.

Figure 6-10 File Browser Window

The File Browser contains an Admin menu (described in "Admin Menu, Task View",
page 29) and a Help menu (described in "Help Menu", page 17). In addition, the
browser has a Search field.

Data Explorer Window
The Data Explorer window allows you to examine variables, data structures, Fortran
common blocks, and the relationships of the data within them. It displays complex
data structures as separate graphical objects, using arrows to indicate relationships.
The variable list on the right is a list of local variable available to be displayed for the

76 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

current stack frame of the current process/thread. The list can display as one of the
following:

A sorted list of local variables:

Figure 6-11 Data Explorer: reference by name

007–4567–001 77

6: Data Examination Windows

Names grouped by type:

Figure 6-12 Data Explorer: names grouped by type

78 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Common blocks, if the current frame is part of a Fortran application:

Figure 6-13 Data Explorer: common blocks

A data name is entered in the Expression field or selected by a left or right mouse
click on a name in the variable list to the left of the object display area. It then
appears as an object or set of objects in the display area in the lower portion of the
window. The variable list represents local variables for the current process frame.
Other variables that are not of local scope (for example, globals) can be entered into
the Expression field. Each data item has a header identifying the data, color coded by
data type. Below the header are two columns: the left displays the field name and the
right displays the field’s value. If a displayed data item exceeds the size of the Data
Explorer window, scroll bars appear.

The Admin menu contains options for selecting the active structure, cloning
structures, saving them as text, and closing the Data Explorer window.

The other menus in this window contain options that allow you to change the way
data is displayed. The following data-display menus are available:

• Config: Provides options for saving and reusing type-specific formats and
expressions. You can also set preferences regarding how objects of a given type
are to be displayed.

007–4567–001 79

6: Data Examination Windows

• Display: Provides display options for all objects in the display area.

• Node: Provides options for selected objects in the display area only.

The Format menu appears in the structure header display area. It allows you to
change or reformat a specific value in the result column. To access this pop-up menu,
hold down the right mouse button while the cursor is over the result column.

Using the Data Explorer Overview Window to Navigate

WorkShop provides the Data Explorer Overview window (from the Show Overview
option in the Display menu) as another way to navigate around the display.

This window is a reduced-scale view of the requested structures. The structures are
represented by solid rectangles color-coded by data type. The relative position of the
currently visible area is represented by a transparent rectangle. This rectangle can be
dragged (using the left mouse button) to change the display of the Data Explorer.
Clicking the left mouse button in an area of this window repositions the currently
visible area.

Entering Expressions

The Data Explorer accepts any valid expression. If the result type is simple, a
structure displays showing the type and value. If the result type is a pointer, the
pointer value and type are displayed (if the Data Explorer preference item is set, it is
automatically de-referenced until a non-pointer type is reached).

Figure 6-14 Dereference indicator on Data Explorer Preference menu

If the result type is a structure or union, an object is displayed showing the structures’
fields and their values. After the expression is entered, the Expression field clears.
The Data Explorer can display unrelated structures at the same time; you simply
enter new structures by using the Expression field.

The Expression field is also used to enter strings used in searches.

80 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Working in the Data Explorer Display Area

Within the display area, you select objects by clicking in the node headers. Shift-clicks
add the selected object to the current selection. You can drag selected objects using
the middle mouse button.

Clicking the right button while the cursor is in the right column of an object displays
the Format menu, which is used to change the display. You can set a default format
or request that results be displayed by value, type, address, or size in bits.

Holding down the right button in the header of an object brings up the Node pop-up
menu, which is the same as the Node menu in the menu bar. It is used to change the
way selected objects are displayed. When you left-click in the header of an object, it
turns on the resizer, which allows you to change the size of the object. You see a
small square (handle) at the upper-right and lower-left corners. Left-click-drag the
handle to resize the object. Middle-click–drag the handle to move the object.

Arrows show relationships among the displayed structures. If a member field is not
visible in a structure, its arrow tail is displayed at the top or bottom of the scrolling
area for fields. Otherwise, its tail is adjacent to its field.

Double-clicking a value field (right column) for a pointer changes the display so that
the data structure it points to is displayed.

Data Explorer Display Menu

The Display menu controls the way structures appear in the display area. The
Display menu provides the following options:

• Display: Determines contents of the display. The Display option has the
following two options:

– Expression — Displays the structure of the expression entered in the
Expression field.

– Selection — Displays the structure based on the text you have selected in the
source code pane in the Main View window.

• Arrange: Rearranges the currently selected nodes. Arrange has the following two
options: (See Figure 6-15, page 82.)

– Tree — Arranges nodes into a tree-type formation, that is, the hierarchy
descends from left to right and child structures are shown as branches to the
right of the parent.

007–4567–001 81

6: Data Examination Windows

– Linked List — Arranges nodes into a linked list formation, that is, horizontally.

Tree arrangement

Linked list arrangement

Child
node

Next
node

Child
node

Child
node

Next
node

First
node

Parent
node

Figure 6-15 Tree and Linked List Arrangements of Structures

• Search: Allows you to select structures in the display area that contain the string
specified in the Expression field. Search has the following four options:

– Name — Selects structures whose names contain the specified string.

– Type — Selects structures whose types contain the specified string.

– Field Name — Selects structures that have a field whose name contains the
specified string.

– Value — Selects structures that have a field value containing the specified
string.

– Update: Explicitly updates the displayed structures. This happens
automatically in the current Data Explorer when the process stops. This can be
used in an inactive Data Explorer to update it. It can also be used to update
the display after changes have been made in other Debugger views.

– Show Overview: Brings up the Data Explorer Overview window.

– Clear All: Clears all structures from the display area.

Node Menu

The Node menu gives you options that apply to currently selected objects.

82 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

The following menu items are available:

• State: Controls the display of nodes. There are three options:

– Iconic — Displays the node header only.

– Normal — Uses the default chart display but hides those fields selected to be
invisible.

– Detail — Uses the default chart display and shows all fields.

• Geometry: Manages graphical objects in the display area. There are four options:

– Minimize — Sets the vertical size of an object to the default minimum number
of fields. The initial default is four fields but can be changed through either the
Formatting selection from the Node menu or the Preferences selection from
the Config menu.

– Maximize — Displays the object as large vertically as necessary to fit all of the
fields.

– Raise — Raises the selected object(s) to the top of the display.

– Lower — Lowers the selected object(s) to the bottom of the display.

• Select: Allows you to select objects in various ways. There are six options:

– Parents — Selects all objects that have pointers pointing to a selected object.

– Children — Selects all objects pointed to by any fields in a selected object.

– Ancestors — Selects all objects pointed to a selected object or pointing to an
object that has a descendant pointing to a selected object.

– Descendant — Selects all objects pointed to by any fields in a selected object or
pointed to by any children of a selected object.

– Family — Selects all ancestors and descendants of a selected object.

– All — Selects all objects.

• Other Views: Brings up other view options, such as Expression View, Data
Explorer, etc.

• Formatting: Brings up the type formatting dialog for this type.

• Dereference Ptrs: Dereferences any pointers in selected objects.

007–4567–001 83

6: Data Examination Windows

• Pattern Layout: Displays selected structures that are connected by pointers to
position related structures in the same way.

• Remove: Removes selected object from the display.

Formatting Fields

Each field in a data structure has certain display characteristics. These can be specified
for all objects in the Data Explorer Preferences dialog box or for type-specific objects
only in the Data Explorer Type Formatting dialog box. To display the Data Explorer
Preferences dialog box, select Preferences from the Config menu.

The dialog has the following fields:

• Default Structure Field Count: Sets the number of fields to be displayed initially.

• Default Structure Width: The width in pixels of the object.

• Default Iconic Width; The width in pixels of the object when it is in iconic form.

• Automatic Dereference Limit: Limits the number of structures that are
automatically dereferenced.

• Dereference Ptrs By Default: Toggles automatic dereferencing on and off.

• Use dbx Style Evaluation: Toggles to use a dbx evaluation.

To bring up the Data Explorer Type Formatting dialog box, select the set of structures
under consideration and select Node Formatting from the Node menu.

The dialog box has the following fields:

• Type Name: Displays the current data type.

• Default Field Count: Lists number of fields to be displayed initially for objects of
that type.

• Default Structure Width: Displays the width in pixels of the object.

• Default Iconic Width: Displays the width in pixels of the object when it is in
iconic form.

• Default State: Brings up a pop-up menu that allows you to specify whether
structures are first displayed as icons (Iconic), with the minimum number of fields
displayed (Normal) or with all fields displayed (Detail).

84 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• Type Color: Provides a submenu for color coding. It allows you to select a color
for the header and overview rectangles for objects of a given type.

For structure and union types, the list box shows all the fields with their types. For
each field, you can change the result format to one of the following types:

• Default

• Decimal

• Unsigned

• Octal

• Hex

• Float

• Exponential

• Char

• String

• Wide Character

• Type

• Dec addr

• Oct addr

• Hex addr

• Bit Size

You can also specify whether a field is visible in normal state, and if it is a pointer
field, whether it should be automatically dereferenced.

After you specify the format for this type, you can apply it to any combination of the
following through the toggle buttons in the bottom left portion of the window:

• Selected instances

• All existing instances

• Any future instances of this type

007–4567–001 85

6: Data Examination Windows

Variable Browser Window
The Variable Browser window allows you to view and change the values of local
variables and arguments at a specific point in a process. (Global variables can be
viewed or changed using Expression View or the Evaluate Expression selection from
the Data menu for one-shot evaluations.) In addition to providing values, the
Variable Browser is useful for getting a quick list of the local variables in a scope
without having to search for their names..

Typically, you inspect variable values at the following points:

• At a breakpoint

• At a frame in a call stack

• As you step through a process

A useful technique is to set a trap at the entry to a function and inspect the values of
the variables there. Some variables may be in an uninitialized state at that point. You
can then step through the function and make sure that no uninitialized variables are
used inadvertently.

Note: In programs compiled by using the -n32 -g compiler options, you cannot
click on or print an unused variable as you could when using the -o32 -g options.

Entering Variable Values

The Variable Browser allows you to change the values of variables in the window.
You simply enter the new value in the result column and press Enter. Thus, you can
force new values into the process and see their effect.

Changing Variable Column Widths

By using the sash between the columns, you can adjust the relative widths of the
Variable and Result columns. For example, you may wish to adjust for short variable
names and long result values.

86 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Viewing Variable Changes

The Debugger views that are involved with variables (that is, the Variable Browser
and Expression View) have indicators that show when the variable has changed since
the last breakpoint. If you click the indicator, you can view the previous value.

007–4567–001 87

Chapter 7

Machine-level Debugging Windows

The Debugger offers three views useful in debugging at the machine level: the
Disassembly View, Register View, and Memory View.

The Disassembly View Window
The Disassembly View window allows you to look at machine-level code rather than
source-level code. A typical Disassembly View window is brought up by selecting
Disassembly View from the Main View window menu bar.

Similarities with Main View Window

At the top of the window are the same process control buttons as those in the Main
View window. They behave the same way except for Step Into and Step Over, which
do machine-level instruction stepping instead of source-level. Remember that you can
select the number of steps by holding down the right mouse button over the Step
Into and Step Over buttons.

The Admin, Display, and Traps items on the menu bar basically work same as their
counterparts in the Main View window.

The Disassemble menu is discussed in "The Disassemble Menu", page 89. The
Preferences selection from the Config menu is discussed in "The Config Menu
Preferences Dialog", page 91.

You can set traps either by using the Traps menu or by clicking in the annotation
column to the left of the source display area that contains the disassembled code.

The Disassemble Menu

The Disassemble menu allows you to display disassembled code. It contains the
following items:

• Address: Allows you to disassemble a specified number of lines, starting from a
specified source line address (see Figure 7-1).

007–4567–001 89

7: Machine-level Debugging Windows

Figure 7-1 The Disassemble From Address Dialog

• Function: Allows you to disassemble a specified number of lines, starting from
the beginning address of a specified function name.

• File: Allows you to disassemble a specified number of lines, starting from the
address corresponding to a specified line number in a specified file (refer to Figure
7-2, page 91). If you have a current selection in the Main View window or the
Source View window, its file and cursor position are used as the default file name
and line number, respectively.

90 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Figure 7-2 The Disassemble File Dialog

The Config Menu Preferences Dialog

Selecting Preferences from the Config menu brings up the Disassembly View
Preferences dialog box so that you can select the display preferences you desire.

The dialog box provides you with the following options:

• Number of instructions to disassemble: Controls the default number of
disassembly lines shown when the process stops. This number appears in the
dialog boxes selected from the Disassemble menu. The default is all instructions,
indicating that the entire function will be disassembled.

• Minimum lines around current instruction: Controls the display of the
disassembled code, enabling you to view at least the specified number of
instructions before and after the current instruction.

• Register name display format: Controls how register names are displayed. The
available modes are Hardware, Compiler, and Assembler.

• Show embedded source annotation: When ON, displays source and disassembly
statements interleaved. When OFF, displays disassembly statements only.

• Show source file and line number: Displays the filename and file position along
with each machine instruction.

007–4567–001 91

7: Machine-level Debugging Windows

• Show function name and line number; Displays the function name and file
position along with each machine instruction.

• Show machine address: Displays the memory address of each machine
instruction.

• Show instruction value: Displays the instruction word along with each machine
instruction.

• Show jal targets numerically: Controls whether the target address of a jal
instruction is displayed as a hex address or symbolic label.

• Show supplemental address info (pixie, cord, original): Displays additional
address information. This may be used to set address breakpoints in the Main
View command window for corded or pixified code.

The Register View Window
Register View window allows you to examine and modify register values. You bring
it up by selecting Register View from the Views menu in the Main View window.
Figure 7-3, page 93, shows a typical Register View window that has been resized to
show all available registers.

The Register View window displays each register with its current value. A question
mark (?) displayed immediately before a register value signifies that the value is
suspect; it may not be valid for the current frame. This can occur if a register is not
saved across a function call. A colored marker indicates that a register value has
changed since the last time the process stopped.

92 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Current register value field Modify button

Current register
field

General register
display area

Special register
display area

Floating register
display area

Double register
display area

Figure 7-3 The Register View Window

The major features of the Register View window are the following:

• Current register field: Identifies the currently selected register. You can switch to a
different register by entering its name (either by hardware name or by alias) in
this field and pressing Enter. You can also switch registers by clicking on the
new register in the display area.

• Current register value field: Shows the contents of the selected register. You can
assign a new value to a register by entering either a literal or an expression into

007–4567–001 93

7: Machine-level Debugging Windows

the Value field. You then click on the Modify button to change the value or press
Enter.

• Register display area: Shows the registers organized into four groups: general,
special, floating, and double. Note that the general registers are identified by both
their hardware and software names. For systems with 32–bit processors (O2s, for
example), double precision registers represent a pair of floating-point registers. For
systems with 64–bit processors (Origin2000s, for example), float registers are not
displayed at all. Floating-point calculations are done in double precision registers.

Note: The special registers p0, p1, and p2 do not appear in Figure 7-3, page 93. These
are used for instrumentation and appear only when instrumentation has taken place.

Changing the Register View Display

The Preferences selection in the Config menu allows you to change the Register
View display. It brings up the Register View Preferences dialog box (see Figure 7-4,
page 95).

The register display toggle buttons let you specify which types of registers are to be
displayed by default.

94 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Display toggle
area

Register
formatting
area

Figure 7-4 The Register View Preferences Dialog

The register formatting area allows you to select formats for any of the registers.

The default fields in the top row let you change defaults for the four major types,
which are set as follows:

• General registers — hexadecimal

• Special registers — hexadecimal

• Float registers — floating point

• Double registers — floating point

The rows in the register formatting area let you change the modes for the individual
registers.

007–4567–001 95

7: Machine-level Debugging Windows

The Memory View Window
The Memory View window allows you to examine and modify memory. A typical
Memory View window appears in Figure 7-5, page 96.

Current address
field

Current address
value field

Memory display
area

Memory address column
Memory contents

Display control buttons

Figure 7-5 The Memory View Window with the Mode Submenu Displayed

Viewing a Portion of Memory

To view a portion of memory, enter the beginning memory location in the Address
field. You can enter the literal value or an expression that evaluates to an integer
address. These address specifications must be in the language of the current process
as indicated by the call stack frame. The syntax of this expression depends upon the
language of the program. For example, you can enter 0x7fff4000+4 as the memory
address when stopped in a C function or enter $7fff4000+4 as the equivalent for a
Fortran routine. Press Enter while the cursor is in the field or click the View button
to display the contents of that location and the subsequent locations in the display

96 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

area. This also displays the contents of the first address in the Value field where it
can be modified.

The memory display area shows the contents of individual byte addresses. The
column at the left of the display shows the first address in the row. The contents at
that address are shown immediately to its right, followed by the contents of the next
seven byte locations. If you enlarge the Memory View window, you can see
additional rows of memory.

Changing the Contents of a Memory Location

To change the contents of a memory location, you select the address to be changed,
either by direct entry or by clicking on the byte value in the display area. You can
enter a single value or a sequence of hex byte values separated by spaces (for
example, 00 3a 07 b2) in the Value field. You can also enter a quoted string to
change a consecutive range of values to the ASCII values of that string. Pressing
Enter while the cursor is in the Value field or clicking the Modify button substitutes
the new value(s) starting at the specified location.

Changing the Memory Display Format

The Mode menu allows you to change the format of the value field and byte locations
to either decimal, octal, hex, or ASCII.

Moving around the Memory View Display Area

The four control buttons at the upper right of the window help you move around the
display area. These buttons are:

• Up: Moves displayed bytes up a single row.

• Down: Moves displayed bytes down a single row.

• Page UpP Moves displayed bytes upward by as many rows as are currently
displayed.

• Page Down: Moves displayed bytes downward by as many rows as are currently
displayed.

007–4567–001 97

Chapter 8

Fix+Continue Windows

The Fix+Continue utility interacts with several Debugger windows. The Main View
and Source View windows access the Fix+Continue utility from the menu bars. The
standard output results of running redefined code are displayed in the Execution
View window (refer to "Changes to Debugger Views", page 105).

Special line numbers (in decimal notation) applied to redefined functions appear in
several views.

Note: Fix+Continue functionality within the debugger is limited to C++ programs
compiled with the -o32 compiler option.

The following windows, devoted entirely to Fix+Continue functions, can be brought
up by selecting Fix+Continue > View from the Main View window menu bar:

• Status Window

• Message Window

• Build Environment Window

This chapter describes Fix+Continue menu selections and windows.

The Fix+Continue menu is available from the Main View menu bar. The menu
selections operate on the selected code or the file shown in the Source View window.
The Fix+Continue menu is also available from Source View window and from the
Fix+Continue Status window.

Fix+Continue Status Window
The Fix+Continue Status window (see Figure 8-1, page 100) provides you with a
summary of the modifications you have made during your session. It also allows you
quick access to your modifications and somewhat expanded menu options.

007–4567–001 99

8: Fix+Continue Windows

Function list

Function ID #

Function status

Function name

Filename for
function

Figure 8-1 Fix+Continue Status Window

The function ID number, status, name, and file name are displayed in the window.
Double-clicking a line in the window brings up the corresponding source in the
Debugger main window.

The following menus and options are available:

• The Admin menu contains an option for closing the window.

• The View menu contains options for sorting information in the window and
displaying file names.

– Sort Status View: Sorts the information in the status view according to the
field currently selected.

– Show Long Filenames: Toggles among absolute (long) path names or base
names.

• The Fix+Continue menu available from the Fix+Continue Status window is
somewhat different from that available through the Debugger Main View. It
contains a number of options and submenus that are described below. These
options and submenus are active on the item you select in the source pane of the
Main View window. Before using this menu, you should select an item by clicking
on it. The following options and submenus are available:

100 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

– External Editor: Allows you to edit with an external editor such as vi, rather
than the Debugger’s default editor.

– Parse And Load: Parses your modified code and loads it for execution. You
can execute the modified code by clicking on the Run or Continue command
buttons in the Main View window.

– Update All Files: Launches the Save File+Fixes As dialog that allows you to
update the current session while saving all the modifications to the appropriate
files.

– Show Difference submenu: Allows you to show the difference between the
original source and your modified code. You can show the difference in the
code in one of the two following ways:

• For Function — Shows the differences for the current function only.

• For File — Shows the differences for the entire file that contains the current
function.

– Enable submenu: Allows you to enable the changes in your modified code in
one of the following ways:

• Function — Enables the changes in the current function.

• Functions in File — Enables the changes to the current function in its own
file.

• All Functions — Enables the changes to all functions in the modified code.

– Disable submenu: Has the same menu choices as the Enable submenu, but
disables rather than enables.

– Save submenu: Allows you to save your code changes to a file. You can save
the changes in one of the following ways:

• Function — Launches the File dialog, allowing you to save only the current
function to a file.

• File — Launches the Save File+Fixes As pop-up window allowing you to
save the entire file that contains the current function.

– Delete submenu: Has the same menu choices as the Save submenu, but
deletes rather than saves.

– Show submenu: Allows you to launch any of the following windows:

007–4567–001 101

8: Fix+Continue Windows

• Message Window — Launches a Fix+Continue Error Messages window
for the selected item. See "Fix+Continue Message Window", page 102, for
more details.

• Build Env for File — Launches a Fix+Continue Build Environment
window for the file shown in the Source View window. See "Fix+Continue
Build Environment Window", page 103, for more details on the
Fix+Continue Build Environment window.

• Default Build Env — Launches the Fix+Continue Build Environment
window to show the options that are to be used in cases where they could
not be obtained from the target. See "Fix+Continue Build Environment
Window", page 103, for details on the Fix+Continue Build Environment
window.

Fix+Continue Message Window
The Fix+Continue Message window contains a list of errors and other system
messages that pertain to your source modifications, parses, and attempts to run your
modified source.

You can highlight the source line where the error occurred by double-clicking the
appropriate line in the window. The Fix+Continue Message window contains the
following buttons:

• Clear: Clears all the parsing errors and warnings.

• Next: Puts a check mark on the next unchecked error warning entry in the parse
messages. It displays the corresponding file and line in the Source view,
highlighting it according to the type of error or warning. The Next option does
not work after all the entries in the messages are ticked.

• Rescan: Erases all the ticks, so that you can rescan all the error warnings from the
beginning.

Admin Menu

The Admin menu allows you to perform either of the following operations:

• Clear All: Clears all messages in the window.

• Close: Closes the window.

102 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

View Menu

The View menu allows you to set any of the following toggles:

• Show Warnings: Causes compile warnings to be displayed in the parse errors list.

• Append Parse Messages: Causes parse messages to be appended to the parse
errors list.

• Append Load Messages: Causes load messages to be appended to the load errors
list.

Fix+Continue Build Environment Window
This section describes the Fix+Continue Build Environment window (see Figure 8-2,
page 104). The Fix+Continue Build Environment window provides you with the
build information for your source code in your current environment. It displays the
command that was used to build your executable and the name of the file that
contains the function that you currently have selected.

007–4567–001 103

8: Fix+Continue Windows

Clear button

Set button

Unset button

Done button

Cancel button

Filter button

OK button

Figure 8-2 Fix+Continue Build Environment Window

The compiler and associated flags that were used to compile the file are normally
gathered from the target. You can use this window to make any changes to these flags.

The window allows you to select your build environment setting through the Build
Environment Setting toggle that contains the following two options:

• Default: Sets the build environment to default that is displayed in the window.

• File Specific: Sets the build environment to that of the file that contains the
currently selected function. You can change the file by clicking the Select File
button, which launches the File dialog.

104 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

The Fix+Continue Build Environment window also contains the following buttons:

• Select File: Launches the File dialog and allows you to select a file from which to
set the build environment.

• Clear: Clears the window.

• Set: Sets the build environment to what is displayed in the window.

• Unset: Unsets the build environment.

• Done: Dismisses the window.

Changes to Debugger Views
When you use Fix+Continue, views change to show redefined functions or stopped
lines containing redefined functions.

Main View

All Fix+Continue actions are available through the Fix+Continue menu on the Main
View window. See Figure 8-3, page 106, for details.

007–4567–001 105

8: Fix+Continue Windows

Source
view

Editable
function

Decimal
notation

Fix and
Continue
menu

Annotated
scroll
bar

Source
code
status
indicator

Figure 8-3 Debugger Main View Window

You can select commands from the Fix+Continue menu or enter them at the
Debugger command line. The source code status is Read Only. Color coding shows
the differences between editable code, enabled redefinitions, disabled definitions, and
breakpoints. Line numbers in redefined functions have decimal notation that is used
for every reference to the line number. The integer portion of the decimal is the same
as the first line of the function. This ensures that compiled source code line numbers
remain unchanged.

Command Line Interface

The Debugger command line interface accepts Fix+Continue commands and reports
status involving redefined functions or files. Figure 8-4, page 107, shows a function

106 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

successfully redefined using the command line. Change id 1 was previously redefined
and assigned the number 1.

Specify function with
Change id 1

Figure 8-4 Command Line Interface with Redefined Function

Call Stack

The Call Stack recognizes redefined functions. It uses the decimal notation for line
numbers, as shown in Figure 8-5.

Decimal notation for line number

Figure 8-5 Call Stack

Trap Manager

The Trap Manager recognizes redefined functions. It uses the decimal notation for
line numbers, as shown in Figure 8-6, page 108.

007–4567–001 107

8: Fix+Continue Windows

Decimal notation
for line numbers

Figure 8-6 Trap Manager Window with Redefined Function

108 007–4567–001

Chapter 9

Debugger Command Line

You can debug programs by entering dbx-style commands at the cvd> prompt found
at the bottom of the Main View window (see Figure 1-1, page 2). For more
information, refer to the dbx User’s Guide.

In the following text, F+C indicates that the command also applies to Fix+Continue
code. In F+C code, line numbers are expressed in decimal notation (for example, 5.3
indicates that line 5 is the start of a function in the original source code and 3 is line 3
of that function in F+C). See Chapter 8, "Fix+Continue Windows", page 99 and
information about Fix+Continue in the ProDev WorkShop: Debugger User’s Guide for
more details.

Note: Only applications compiled with -32 and -n32 options can use Fix+Continue
features.

Syntax for Commands
The syntax for the debugging commands is as follows:

add_source [filename: [line_number] [,line_number]]

F+C

For C and C++ only, when compiled with -o32.

Prompts you to add source code lines (for example, add_source
"fmain.c":15.2). line_number must be within the body of a
function. Entering a period (.) specifies the end of your input. The
source lines you provide are added after the specified line. This
command returns an ID existing or new, depending on whether the
function affected has already been changed or not. The resulting new
definition of the function is executed on its entry next time. See also
delete_source and replace_source.

alias [shortform command]

Lists all aliases without arguments. With arguments, it assigns
command to shortform.

007–4567–001 109

9: Debugger Command Line

assign expression1=expression2

Assigns expression2 to expression1.

attach pid

Attaches to specified process ID (pid).

call function_name[argument, argument]

Executes the specified function with any arguments supplied. The
syntax of the call should be that of the source language of the
application in use, such as C, C++, or Fortran.

catch [signal_name | all]

With no arguments, lists signals to be breakpointed. If a signal is
specified, it is added to the list. If all is specified, the debuggert
traps all signals.

clearcalls

Cancels interactive function calls that are currently active (that is,
interactive function calls that are stopped on a breakpoint or
watchpoint).

cont in function_name

Continues execution from the current line to the entry to the specified
function.

cont to line_number

Continues execution from the current line until the specified line, if
there is not an intervening breakpoint to stop execution.

continue [all]

Continues executing a program, or all processes, after a breakpoint.
You can use both c and cont as aliases for continue.

continue [signal]

Sends specified signal and continues executing a program after a
breakpoint.

110 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

corefile [filename]

With no arguments, reports whether data referencing commands
reference a core file. If so, displays the current core file. With filename
provided, specifies core file to be debugged.

delete [all | [bp_number] ,[bpp_number], ...]

Deletes all breakpoint(s). The all option deletes all breakpoints.

delete_changes [[func_spec | -all] | [-file filename]]

F+C

For C and C++ only when compiled with -o32.

Deletes changes corresponding to the selected functions (for example,
delete_changes getNumbers -file fmain.c). Once IDs are
deleted, you cannot use the IDs again because the IDs associated with
the selected functions are released. The default is -all. See also
save_changes.

delete_source [filename: [line_number] [,line_number]]

F+C

For C and C++ only, when compiled with -o32.

Deletes the given line(s) if line_number or ,line_number (range) is
within the body of a function. An example is:

delete_source "fmain.c":8.6,8.7

This command returns an ID existing or new, depending on whether
the function affected has already been changed or not. The resulting
new definition of the function is executed on its entry next time.

delete bp_number [,bp_number, ...]

Deletes the specified breakpoint numbered bp_number, as obtained
from the status command.

detach

Detaches from the current process.

007–4567–001 111

9: Debugger Command Line

disable all

Deactivates all traps.

disable_changes [[func_spec | -all] | [-file filename]]

F+C

For C and C++ only, when compiled with -o32.

Disables specified changes for selected functions (for example,
disable_changes getNumbers -file fmain.c. Nothing
happens if the selected function is already disabled. The compiled
definition of the function is executed on its next entry. You can
invoke this command when the process is stopped or on a running
process when a function entry breakpoint is set.

disable bp_number [,bp_number, ...]

Deactivates the specified breakpoint numbered bp_number, as
obtained from the status command.

display [expression, ...]

With expression, adds expression to the list of expressions displayed
whenever the process stops. With no arguments, lists all expressions.
See undisplay to delete an expression.

down [number]

Moves down the specified number of frames in the call stack. down
moves away from the direction of the caller toward the most deeply
nested function called..

dump

Prints local variable values in the visible scopes in the currently active
function..

enable all

Reactivates all inactive breakpoints.

enable_changes [func_spec | -all] | [-file filename]

F+C

112 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

For C and C++ only when compiled with -o32.

Enables specified changes for selected functions (for example,
enable_changes getNumbers -file fmain.c). Nothing
happens if the selected function is already enabled. The latest
accepted definition of the function is redefined on its next entry. You
can invoke this command when the process is stopped or on a
running process when a function entry breakpoint is set.

enable bp_number [[,bp_number, ...]

Reactivates the specified breakpoint numbered bp_number, as shown
by the status command.

expression/[count] [format] or expression, [count] / [format]

Prints the contents of the memory address specified by expression,
according to the specified format. count represents the number of
formatted items. The following format options are available:

d Prints a 16-bit word in decimal.

D Prints a 32-bit word in decimal.

o Prints a 16-bit word in octal.

O Prints a 32-bit word in octal.

x Prints a 16-bit word in hexadecimal.

X Prints a 32-bit word in hexadecimal.

b Prints a byte in octal.

c Prints a byte as a character.

s Prints a string of characters that ends in
a null byte.

f Prints a single-precision real number
(32-bit floating point).

g Prints a double-precision real number
(64-bit floating point).

file [filename]

Displays the name of the current or specified file (filename). If a file is
specified, it becomes the current file.

007–4567–001 113

9: Debugger Command Line

func [func_name]

Moves to the source code corresponding to the specified frame in the
call stack or to the function in the executable if not on the stack.

givenfile [filename]

With no arguments, displays name of current object file. With
filename, specifies the executable to be debugged.

goto linenumber

Skips over lines going directly to the specified line number in the
current routine. Unlike dbx(1), cvd(1) does not begin execution at the
specified line.

help

Displays syntax information for the cvd command.

ignore[signal_name | all]

With no arguments, lists those signals not to be
breakpointed/trapped. If a signal is specified, this command removes
it from the list of signals to be breakpointed/trapped. If all is
specified, ignores all signals.

kill[pid | all]

Kills the specified process currently controlled by the Debugger or
kills all processes.

list [from-line[:line_count]][,to_line]|[function_name]

Lists source lines beginning at line number from-line. If no additional
argument is specified, the default for line_count is 10. If line_count is
specified, a total of line_count lines are listed. If function_name is
specified, the lines from the given function are listed.

list_changes [func_spec | -all] | [-file filename]

F+C

Lists one or more lines using the following syntax:

change_id isEnabled filename function_spec

114 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

For example:

4 enabled foo.c foo
8 disabled A.c++ A::bingo

The default is list_changes -all.

next [int]

Steps over the specified number of source lines. This command does
not step into procedures. The default is one line.

nexti [int]

Steps over the specified number of machine instructions. This
command does not step into procedures. The default is one
instruction.

print expression [,expression, ...]

Prints the value of the specified expression(s). If the expression is a
character pointer or array, both the string and address print. Uuse p
as an alias.

printd expression [,expression, ...]

Prints the value of the specified expression(s) in decimal format. Use
pd as an alias.

printf string [,expression1 [, expression2,]...]

Prints the value(s) of the specified expression(s) in the format
specified by the string string. The printf command supports all
formats of the IRIX printf command except %s. For a list of
formats, see the printf(1) man page.

printo expression [,expression, ...]

Prints the value of the specified expression(s) in octal format. You can
use po as an alias.

printregs

Prints the contents of all of the registers.

007–4567–001 115

9: Debugger Command Line

printx expression [,expression, ...]

Prints the value of the specified expression(s) in hexadecimal format.
Use px as an alias.

privateProject

Used when running multiple cvd sessions simultaneously. This
prevents one cvd session from being confused with anotoher cvd
session.

pwd

Displays the current directory.

quit

Exits the debugging session.

redefine [func_spec [-edit | -read] filename [line_number,line_number]]

F+C

For C and C++ only.

Specifies a new body for a function. The new definition is checked,
and errors (if any) are printed. The new function body is redefined
on the next function entry. Breakpoints (if set) on the old definition
are put on the new definition based on their relative line number
position from the beginning of the function definition. (Note that
some breakpoints may not make it to the new definition.) You can
invoke this command when the process is stopped or on a running
process when a function entry breakpoint is set. There are three ways
to provide a new definition:

• -edit pops up an editor of your choice containing the current
definition of the function. The specification of the new definition
is complete when you exit the editor. You may not leave the
editor open.

• -read takes the contents of the file specified (within the line
numbers if given) as the new function definition.

116 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

• No option allows you to type in replacement code from the next
line. A period in the first column on a fresh line terminates the
definition. For example:

redefine getNums

"/usr/fmain.c’’:8.1> {

"/usr/fmain.c’’:8.2> printf(‘‘In getNums.\n’’);

"/usr/fmain.c’’:8.3> }

"/usr/fmain.c’’:8.4> .

replace_source [filename: [line_number] [,line_number]]

F+C

For C and C++ only when compiled with -o32.)

Prompts you to type in replacement source if line_number or
,line_number (range) is within the body of a function. The source lines
you provide replace the specified line(s). An example is:
replace_source "fmain.c":12. This command returns an
existing or new id depending on whether the function affected has
already been changed or not. The resulting new definition of the
function is executed on its entry next time. See also add_source and
delete_source.

rerun

Runs the program again using the same arguments.

return

Continues executing the current procedure and returns to the next
sequential line in the calling function.

run [[all] | argument_list]

Runs the program(s). If an argument_list is specified, it is used as the
arguments to be supplied to the program.

runtime_check func_spec [-options key [key,...]]

F+C

For C and C++ only when compiled with -o32.

007–4567–001 117

9: Debugger Command Line

Enables all run-time checking options by default. If -options is
specified, then run-time checking is restricted to the keys. The result
of the runtime checks are printed the next time the specified function
(func_spec) is entered. You can invoke this command on a stopped or
a running process.

save_changes {func_spec| {-file filename}} [-[w|a]] filename_to_save

F+C

For C and C++ only when compiled with -o32.

Saves (enabled or disabled) function redefinitions or an entire file to
another file (filename_to_save). The following example shows how to
save a function definition:

save_changes getNumbers getNumbersFunc

If you specify the -file option, then before saving to
filename_to_save, all function changes are applied to the compiled
source of the file (with the condition that the file has had only its
functions redefined, and has not been edited since the last build). An
example of saving an entire file is the following:

save_changes -file fmain.c fmain.c

The -w option replaces the filename_to_save. The -a option appends to
the filename_to_save. An example of adding a function to a file is the
following:

save_changes -file fmain.c -a fmain.c

See also delete_changes.

setbuildenv [filename] compiler-flag-list

F+C

For C and C++ only, when compiled with -o32.

Overrides default build environment flags (compiler options).
Without filename, the flags are passed along with -c -g flags to the
compiler for any function in any file except those set separately with
setbuildenv. An example is the following:

setbuildenv -DnameA -Idir

118 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

If filename is given, this command sets separate flags specifically for
that file. For example, consider the following:

setbuildenv "fermat.c" -DnameB -Ianotherdir

See also unsetbuildenv.

sh [shell_command]

Calls a shell if no arguments; otherwise, executes the specified shell
command.

showbuildenv [filename]

F+C

For C and C++ only, when compiled with -o32.

Lists all the build environment flags set. showbuildenv with a
filename lists any build environment specifications that have been set
separately with setbuildenv "filename".

show_changes [func_spec | -all |[-file filename]]

F+C

For C and C++ only, when compiled with -o32.

Prints the code of all enabled redefinitions of the specified function(s).
The default is show_changes -all. See also enable_changes
and disable_changes.

show_diff [func_spec | [-file filename]]

F+C

For C and C++ only, when compiled with -o32.

Launches a xdiff comparing the compiled source and its latest
redefinition for the specified function. If -file filename is specified,
xdiff shows the difference between the compiled file and the file
with all redefinitions applied to the compiled source of the file (with
the condition that the file has had only its functions redefined, and
has not been edited since the last build).

007–4567–001 119

9: Debugger Command Line

showthread [full] [thread] [number | all]

Shows brief status information about threads. If full is specified,
prints full status information. You can request status information for
a specific thread by number or you can request information for all
threads. The thread qualifier does not affect command output. It is
effectively a ’noise’ word here, though allowed for consistency with
other commands where the thread qualifier is needed to specify a
particiular thread.

source filename

Executes commands in the specified file as if those commands were
typed on the command line..

status

Displays a list of currently set breakpoints and traces.

step [int]

Steps the specified number of source lines. This command steps into
procedures. The default is one line.

stepi [int]

Steps the specified number of machine instructions. This command
steps into procedures. The default is one instruction.

stop [all | pgrp] in [filename]

If set to all, stops all members of the specified process group
whenever the trap is encountered. If set to pgrp, all members of the
process group apply the trap.

stop at [file] [filename] [line] [line_number] [if expression]

Sets a breakpoint at the specified line in the specified file. If the if
option is used, the breakpoint fires only if expression is true. If
specified, the file name must be enclosed in double-quotation marks.
As an example, to specify a stop at line 5 in myfile.c, the syntax is:

stop at "myfile.c":5

120 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

stop exception [all | item]}

Sets a breakpoint on all C++ exceptions or exceptions that throw the
base type item. Do not include complex expressions using operators
such as * and & in your type specification for an exception breakpoint.

stop exception [all | [item] [, item]]

Sets a breakpoint on all C++ exceptions or exceptions that either have
no handler or are caught by an unexpected handler. If you specify
item, stops on exceptions that throw the base type item. Do not
include complex expressions using operators such as * and & in your
type specification for an exception breakpoint.

stop in [filename:] function_name [if expression]

Sets a breakpoint at the entry to the specified function. If the if
option is used, then the breakpoint fires only if expression is true. If
the filename is given, the function is assumed to be in that file’s scope.
If specified, the filename must be enclosed in double-quotation marks.
As an example, to specify a stop in function func1 in myfile.f
only if n is 20, the syntax is:

stop in "myfile.f":func1 if n .eq. 20

syscall [catch | ignore] [call | return] [sys_call_name | all]

The catch option adds a system call to the list of system calls to be
breakpointed. The ignore option removes a system call from the
system call breakpoint list. The call option specifies the entry to the
system call and return signifies the return from the call.

trace [[[variable] at filename] | line_number | function_name] [if expression]

Traces the specified variable. You can specify a file and/or test
condition. You can also specify a line number or a function where the
trace is to take place. If expression is allowed, only a variable, line
number, or function name is typed (that is, trace if ==3 is not
allowed).

unalias aliasname

Cancels the alias specified as aliasname.

007–4567–001 121

9: Debugger Command Line

undisplay [[displaynumber, ...]

Stops display of expression with specified displaynumber when the
process stops. Removes the expression from the display list.

unsetbuildenv[filename]

F+C

For C and C++ only, when compiled with -o32.

Disregards the default build environment flags if specified earlier. For
all functions in files that don’t have an overriding build environment,
unsetbuildenv passes only the -c and -g flags.

If filename is given, this command disregards the build environment
flags specified for the file earlier. Further redefinition of the functions
in the file use the default build environment flags, if set. See also
setbuildenv.

up [number]

Moves up the specified number of frames in the call stack. up moves
in the direction of the caller.

use [path]

Uses the specified path to search for source files.

watch identifier [write | read]

Causes program to stop when the identifier is written or read,
depending on whether write or read is specified. If neither is
specified, the default is write.

whatis identifier

Displays the type information of the specified variable or function.

when at [filename] [line_number] [command] [command] ...

When your program reaches the specified line_number, the commands
specified are executed (the program resumes execution automatically).

122 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

when in [filename] function_name [command] [command] ...

When your program enters the specified function, the commands
specified are executed before the program resumes execution.

which [identifier]

Displays the qualification of the specified variable.

where [thread | thread-id] [n]

Performs a stack trace showing the activation levels of a program or,
optionally, of the specified thread. You can obtain thread-ids from the
first column of output of the showthread command. n is the
number of levels for the output.

007–4567–001 123

Chapter 10

Blocking Kernel System Calls

The following are the kernel system calls (syscalls) that actually block continued
pthreads. There are numerous library routines, such as printf, that can use one of
these blocking system calls.

It would be impractical here to list all library routines which utilize a blocking syscall.
Nevertheless, as a user you should know, for example, that if you call the printf
library routine it eventually calls writev(), a blocking system call, and thus may
block continued pthreads.

accept

accept a connection on a socket

close

close a file descriptor

creat

create a new file or rewrite an existing one

dmi

SGI specific. Used to implement the interface defined in X/Open
document Systems Management: Data Storage Managment (XDSM) API.

fcntl

File and descriptor control. Provides for control over open descriptors.

fsync

synchronize a file’s in-memory state with that on the physical medium

getmsg / getpmsg

get next message off a stream

ioctl

Control device. Performs a variety of control functions on devices
and streams.

007–4567–001 125

10: Blocking Kernel System Calls

lockf

Record locking on files. Allows sections of a file to be locked.

mq_open

open/create a message queue

msgsnd / msgrcv

message send and message receive

msync

synchronize memory with physical storage

nanosleep

high resolution sleep

open

open for reading and writing

pause

suspend process until signal is received

poll

input/output multiplexing

putmsg / putpmsg

send a message on a stream

read / readv / pread

read from a file

recv / recvfrom / recvmsg

receive a message from a socket

select

synchronous I/O multiplexing

126 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

semget / semctl / semop

semaphore handling

send / sendto / sendmsg

send a message from a socket

sginap

times sleep and processor yield function

write / writev / pwrite

write on a file

007–4567–001 127

Index

A

accept syscall that blocks continued pthreads, 125
active toggle, 29, 36
Ada windows description

Task View, 29
add_source filename, dbx-style command, 109
Address, selection in disassemble menu, 90
Admin menu, 100

general description, 6
Library search path, 6

admin menu
active toggle, 36
clone, 36

alias, dbx-style command, 110
Arrange, selection in Data Explorer display

menu, 81
Array browser

general description, 60
Array Browser, selection in views menu, 8
Array field in array browser, 61
array subscripts, 61
array variables, 60
assign, dbx-style command, 110
At Source Line, Traps menu option, 56
Attach to forked processes, Multiprocess

Explorer preferences option, 24
attach, dbx-style command, 110
Attach/Switch process..., selection in admin

menu, 7
Auto Fit Data, selection in array browser display

menu, 64
Automatic dereference limit, field in Data

Explorer preferences box, 84

B

Build environment window, 103

C

Call stack, 72
Call Stack with Fix+Continue, 107
Call Stack, selection in views menu, 8
call, dbx-style command, 110
callback breakpoints examiner, 40
callback examiner, 52
catch, dbx-style command, 110
Clear all, selection in Data Explorer display

menu, 82
clearcalls, dbx-style command, 110
Click for help, selection in help menu, 17
clone current window, 29, 36
close current window, 29, 36
close syscall that blocks continued pthreads, 125
Close, selection in admin menu, 8
Column width, selection in array browser

display menu, 63
Combine threads at same location, Multiprocess

Explorer preferences option, 25
command line interface with Fix+Continue, 106
Config menu in Data Explorer, 80
cont in, dbx-style command, 110
cont to, dbx-style command, 110
continue signal, dbx-style command, 111
Continue Even If Line Has Changed, toggle in

Fix+Continue Preferences dialog, 16
Continue to, selection in disassembly view pc

menu, 89
Continue to, selection in pc menu, 18
continue, dbx-style command, 110

007–4567–001 129

Index

Copy Traps Even on Changed Lines, toggle in
Fix+Continue Preferences dialog, 16

Copy Traps On Previous Definition, toggle in
Fix+Continue Preferences dialog, 16

Copy traps to forked processes, Multiprocess
Explorer preferences option, 24

Copy traps to sproc’d processes, Multiprocess
Explorer preferences option, 24

corefile, dbx-style command, 111
creat syscall that blocks continued pthreads, 125

D

Data Explorer
general description, 77

Data Explorer, selection in views menu, 8
dbx commands, 109
Debugger

Call Stack with Fix+Continue, 107
changes to views with Fix+Continue, 105
command line interface with Fix+Continue, 106
Main View window with Fix+Continue, 105
Trap Manager with Fix+Continue, 107

Debugger Command Line, 109
Debugger command line, 3
Debugger views, 72
Default field count, field in Data Explorer type

formatting, 84
Default iconic width, field in Data Explorer

preferences box, 84
Default iconic width, field in Data Explorer type

formatting box, 84
Default state, field in Data Explorer type

formatting box, 85
Default structure field count, field in Data

Explorer preferences box, 84
Default structure width, field in Data Explorer

preferences box, 84
Default structure width, field in Data Explorer

type formatting box, 84
delete all, dbx-style command, 111

delete trap, dbx-style command, 111
delete_changes, dbx-style command, 111
delete_source, dbx-style command, 111
Dereference ptrs by default, field in Data

Explorer preferences box, 84
Dereference ptrs, selection in Data Explorer node

menu, 84
detach, dbx-style command, 112
Detach, selection in admin menu, 7
Detail, selection in Data Explorer submenu, 83
disable all, dbx-style command, 112
disable, dbx-style command, 112
disable_changes, dbx–style command, 112
Disassemble File Dialog, 91
Disassemble Function Dialog, 90
Disassemble menu in disassembly view, 89
Disassembly View

Preferences, , 89, 91
Disassembly View, selection in views menu, 8
display area in Data Explorer, 81
Display callstacks, Multiprocess Explorer

preferences option, 24
Display menu

in Main View window, 11
Display menu in Data Explorer, 80
Display threads, Multiprocess Explorer

preferences option, 24
display, dbx-style command, 112
Display, selection in Data Explorer display

menu, 81
dmi syscall that blocks continued pthreads, 125
down, dbx-style command, 112
dump, dbx-style command, 112

E

enable all, dbx-style command, 112
enable trap, dbx-style command, 113
enable_changes, dbx-style command, 113
Entry Function, Traps menu option, 56

130 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Error messages window, 102
event examiner, 52
event-handler breakpoints examiner, 41
examine menu, 36
examiner

breakpoints, 38
callback, 52
callback breakpoints, 40
event, 52
event-handler breakpoints, 41
graphics context (GC), 52
input-handler breakpoints, 43
pixmap, 53
resource-change breakpoints, 42
state-change breakpoints, 44
timeout-procedure breakpoints, 42
trace, 47
tree, 50
widget, 49
widget class, 53
window, 52
X-event breakpoints, 45

Exception View description, 31
Exception View, selection in views menu, 8
Execution View description, 19
Execution View, selection in views menu, 8
Exit Function, Traps menu option, 56
Exit, selection in admin menu, 8
Expression column in expression view, 74
expression count, dbx-style command, 113
Expression field in Data Explorer, 81
Expression View, selection in views menu, 8
Expression, selection in Data Explorer display

submenu, 81
External Editor Command, text field in

Fix+Continue Preferences dialog, 15

F

fcntl syscall that blocks continued pthreads, 125
File Browser, selection in views menu, 8

file dbx-style command, 114
File Difference Tool, text field in Fix+Continue

Preferences dialog, 15
File menu, source view, 26
“File”, selection in disassemble menu, 91
Fix+Continue

Build environment window, 103
Error message window, 102
GUI, 99
keyboard accelerators, 17
menu selections and operations, 14
Session, 101
Show Difference submenu, 15
Status window, 99
View submenu, 15

Fix+Continue menu, 100
Fork Editor, selection in Source menu, 10
Format menu in expression view, 73, 75
Format menu in variable browser, 86
Formatting Fields in Data Explorer, , 84
frames, 72
fsync syscall that blocks continued pthreads, 125
func dbx-style command, 114
Function, selection in disassemble menu, 90

G

Geometry, selection in Data Explorer node
menu, 83

getmsg syscall that blocks continued pthreads, 125
getpmsg syscall that blocks continued pthreads, 125
givenfile dbx-style command, 114
GLdebug, 7
GLdebug, selection in admin menu, 7
Go To Line, selection in Source menu, 11
goto dbx-style command, 114
Goto dialog box, 11
graphics context (GC) examiner, 52
Group Trap Default, Traps menu option, 56

007–4567–001 131

Index

H

Help menu, 17
Hide Icons, selection in Display menu, 12
Hide Line Numbers, selection in display menu, 11
Hide Thread Status , Multiprocess Explorer

preferences option, 25
Hide Tooltips selection in display menu, 12

I

Iconic, selection in Data Explorer submenu, 83
Iconify, selection in admin menu, 7
ignore dbx-style command, 114
index identifiers in array browser, 62
index maximum specification in array browser, 62
index minimum specification in array browser, 62
index sliders in array browser, 62
index values in array browser, 62
Index, selection in help menu, 17
Indexing expression field in array browser, 61
input-handler breakpoints examiner, 44
Insert source, selection in Source menu, 10
interface, command line, 106
ioctl syscall that blocks continued pthreads, 125

J

Jump to, selection in disassembly view pc menu, 89
Jump to, selection in pc menu, 19

K

keyboard accelerators in Fix+Continue, 17
Keys & shortcuts, selection in help menu, 17
kill dbx-style command, 114

L

Language menu in expression view, 73, 74
Language menu in variable browser, 86
Launch, selection in admin menu, 8
Launch, selection in Multiprocess menu, 23
Library search path dialog box, 6
Linked list, selection in Data Explorer display

menu, 82
list dbx-style command, 114
list_changes, dbx-style command, 115
Load settings, selection in admin menu, 7
Load/Switch to Executable, selection in admin

menu, 7
lockf syscall that blocks continued pthreads, 126

M

Main View window, 105
Display menu, 11

Make Editable, selection in Source menu, 10
Make Read Only, selection in Source menu, 10
Maximize, selection in Data Explorer node

submenu, 83
Memory view, 96
Memory view mode menu, 97
Memory View, selection in views menu, 8
menu selections and operations

Fix+Continue, 14
Message window

Admin menu, 102
buttons, 102
View menu, 103

Messages window, 102
Minimize, selection in Data Explorer node

submenu, 83
Minimum lines around current instruction field

in disassembly view preferences box, 91
mq_open syscall that blocks continued

pthreads, 126

132 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

msgrcv syscall that blocks continued pthreads, 126
msgsnd syscall that blocks continued pthreads, 126
msync syscall that blocks continued pthreads, 126
Multiprocess Explorer description, 19

administrative functions, 22
control buttons, 22
preferences, 23

Multiprocess Explorer preferences options
Attach to forked processes, 24
Combine threads at same location, 25
Copy traps to forked processes, 24
Copy traps to sproc’d processes, 24
Display callstacks, 24
Display threads, 24
Hide thread state, 25
Resume child after attach on fork, 24
Resume child after attach on sproc, 24
Resume parent after fork, 24
Resume parent after sproc, 24
Show/Hide buttons, 25
Stack Depth, 24

Multiprocess View, selection in admin menu, 7

N

nanosleep syscall that blocks continued
pthreads, 126

next dbx-style command, 115
nexti dbx-style command, 115
Node menu in Data Explorer, 79, 80
Node pop-up menu in Data Explorer, 81
Normal, selection in structure node submenu, 83
Number of instructions to disassemble field in

disassembly view preferences box, 91

O

Open Recent, selection in Source menu, 10
open syscall that blocks continued pthreads, 126
Open, selection in Source menu, 10

Overview, selection in help menu, 17

P

Pattern layout, selection in Data Explorer node
menu, 84

pause syscall that blocks continued pthreads, 126
PC menu in disassembly view, 89
pixmap examiner, 53
poll syscall that blocks continued pthreads, 126
pread syscall that blocks continued pthreads, 126
print expression dbx-style command, 115
printd expression dbx-style command, 115
printf expression dbx-style command, 115
printo expression dbx-style command, 115
printregs dbx-style command, 116
printx expression dbx-style command, 116
privateProject dbx-style command, 116
Process menu description, 25
Process Meter description, 28

Charts menu, 28
Scale menu, 29

Process Meter, selection in views menu, 9
Product information, selection in help menu, 17
pthreads

syscalls which block continued pthreads, 125
putmsg syscall that blocks continued pthreads, 126
putpmsg syscall that blocks continued

pthreads, 126
pwd dbx-style command, 116
pwrite syscall that blocks continued pthreads, 127

Q

quit dbx-style command, 116

007–4567–001 133

Index

R

Raise, selection in admin menu, 7
Raise, selection in Data Explorer node submenu, 83
read syscall that blocks continued pthreads, 126
readv syscall that blocks continued pthreads, 126
Recompile, selection in the Source menu, 10
recv syscall that blocks continued pthreads, 126
recvfrom syscall that blocks continued

pthreads, 126
recvmsg syscall that blocks continued pthreads, 126
redefine dbx-style command, 116
Register name display format field in

disassembly view preferences box, 91
Register view, 92
Register view formatting, 95
Register view preferences dialog box, 95
Register view window, 93
Register View, selection in views menu, 9
Remove, selection in Data Explorer node menu, 84
replace_source, dbx-style command, 117
rerun, dbx-style command, 117
Reset To Factory Defaults, toggle in

Fix+Continue Preferences dialog, 16
resource-change breakpoints examiner, 42
Result column in expression view, 75
Resume child after attach on fork, Multiprocess

Explorer preferences option, 24
Resume child after attach on sproc, Multiprocess

Explorer preferences option, 24
Resume parent after fork, Multiprocess Explorer

preferences option, 24
Resume parent after sproc, Multiprocess Explorer

preferences option, 24
return dbx-style command, 117
row/column toggles in array browser, 62
run dbx-style command, 117
runtime_check, dbx-style command, 118

S

Sample At Function Entry, 13
Sample at function exit, selection in traps

submenu, 13
Sample Trap Default, Traps menu option, 56
Save as selection in Source menu, 10
save as text, 29, 36
Save as text, selection in Source menu, 10
Save deactivated code during File Save, toggle in

Fix+Continue Preferences dialog, 16
Save settings, selection in admin menu, 7
Save, selection in Source menu, 10
save_changes, dbx-style command, 118
“Search”, selection in Data Explorer display

menu, 82
Search, selection in Source menu, 11
select syscall that blocks continued pthreads, 126
Select, selection in Data Explorer node menu, 83
selection, 36
selection in Data Explorer display menu, 81
semctl syscall that blocks continued pthreads, 127
semget syscall that blocks continued pthreads, 127
semop syscall that blocks continued pthreads, 127
send syscall that blocks continued pthreads, 127
sendmsg syscall that blocks continued

pthreads, 127
sendto syscall that blocks continued pthreads, 127
Session submenu, 101
Set trap, selection in traps menu, 13
setbuildenv, dbx-style command, 119
sginap syscall that blocks continued pthreads, 127
sh dbx-style command, 119
Show Difference submenu, 15
Show embedded source annotation field in

disassembly view preferences box, 91
Show Icons, selection in Display menu, 12
Show instruction value field in disassembly view

preferences box, 92
Show jal target numerically field in disassembly

view preferences box, 92

134 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

Show Line Numbers selection in display menu, 11
Show machine address field in disassembly view

preferences box, 92
Show overview, selection in Data Explorer

display menu, 82
Show source file and line number field in

disassembly view preferences box, 92
Show supplemental address info (pixie, cord,

original) field in disassembly view
preferences box, 92

Show Toolbar selection in display menu, 12
Show Tooltips selection in display menu, 12
show_changes, dbx-style command, 119
show_diff, dbx-style command, 120
showbuildenv, dbx-style command, 119
showthread dbx-style command, 120
Signal Panel, selection in views menu, 9
source dbx-style command, 120
Source view

File menu, 26
Source View description, 26
Source View, selection in views menu, 9
spreadsheet area in array browser, 62
Stack Depth, Multiprocess Explorer preferences

option, 24
stack frames, 72
State, selection in Data Explorer node menu, 83
state-change breakpoints examiner, 44
status dbx-style command, 120
Status window, 99

Admin menu, 100
Fix+Continue menu, 100
View menu, 100

step dbx-style command, 120
step indicators in array browser, 62
Step into button in disassembly view, 89
Step over button in disassembly view, 89
stepi dbx-style command, 120
Stop All Default, Traps menu option, 56
stop at dbx-style command, 121
Stop at function exit, selection in traps submenu, 13
stop dbx-style command, 120

stop exception, dbx-style command, 121
stop in, dbx-style command, 121
Stop Trap Default, Traps menu option, 56
subscripts

array, 61
Switch process dialog box, 7
syscall dbx-style command, 121
Syscall Panel, selection in views menu, 9
syscalls

which block continued pthreads, 125
system calls

which block continued pthreads, 125

T

tabs, X/Motif Analyzer examiner, 37
Task View admin menu

active toggle, 29
clone, 29
close, 29
save as text, 29

Task View config menu, 29
Task View display menu, 30
Task View layout menu, 30
Task View window description, 29
Task View, selection in views menu, 9
timeout procedure breakpoints examiner, 42
trace dbx-style command, 121
trace examiner, 47
Trap Manager with Fix+Continue, 107
Trap Manager, selection in views menu, 9
Traps Manager “Traps” menu options

At Source Line, 56
Entry Function, 56
Exit Function, 56
Group Trap Default, 56
Sample Trap Default, 56
Stop All Default, 56
Stop Trap Default, 56

tree examiner, 49

007–4567–001 135

Index

Tree, selection in Data Explorer display
submenu, 82

Type color, field in Data Explorer tydpe
formatting box, 85

Type name, field in Data Explorer type
formatting box, 84

U

unalias dbx-style command, 122
undisplay dbx-style command, 122
unsetbuildenv, dbx-style command, 122
up, dbx-style command, 122
Update, selection in Data Explorer display

menu, 82
use, dbx-style command, 122

V

Variable browser
general description, 86

Variable Browser, selection in views menu, 9
variables

compiled with -n32 -g, 86
unused, 86

Versioning, selection in Source menu, 11
view changes in debugger, 105
View menu, 100
View submenu, 15
view, call stack, 107
Views menu in the Main View window, 8

W

Warn Unfinished Edits Before Continue, toggle in
Fix+Continue Preferences dialog, 16

Warn Unfinished Edits Before Run, toggle in
Fix+Continue Preferences dialog, 16

watch, dbx-style command, 122

whatis dbx-style command, 122
when at, dbx-style command, 123
when in, dbx-style command, 123
where, dbx-style command, 125
which, dbx-style command, 123
widget class examiner, 53
widget class menu item, 36
widget examiner, 49
widget item, 36
widget tree menu item, 36
window examiner, 52
Wrapped display, selection in array browser

display menu, 63
write syscall that blocks continued pthreads, 127
writev syscall that blocks continued pthreads, 127

X

X event menu item, 36
X graphics context menu item, 36
X pixmap menu item, 36
X-event breakpoints examiner, 45
X/Motif Analyzer

global objects description, 35
X/Motif Analyzer admin menu, 35

close, 36
save as text, 36

X/Motif Analyzer breakpoint type option
button, 39

X/Motif Analyzer breakpoints examiner, 38
callback, 40
event-handler, 41
input-handler, 43
resource-change, 42
state-change, 44
timeout-procedure, 42
X-event, 45
X-Request Breakpoints Examiner, 46

X/Motif Analyzer callback examiner, 52
X/Motif Analyzer event examiner, 52

136 007–4567–001

ProDevTM WorkShop: Debugger Reference Manual

X/Motif Analyzer examine menu
selection, 36
widget, 36
widget class, 36
widget tree, 36
X event, 36
X graphics context, 36
X pixmap, 37

X/Motif Analyzer examiner tabs, 37
X/Motif Analyzer graphics context (GC)

examiner, 52
X/Motif Analyzer pixmap examiner, 53

X/Motif Analyzer trace examiner, 47
X/Motif Analyzer tree examiner, 49

graphical buttons, 51
X/Motif Analyzer widget class examiner, 53
X/Motif Analyzer widget examiner, 49
X/Motif Analyzer window examiner, 52
X/Motif Analyzer window menu item

examine menu
window, 36

X/Motif Analyzer windows description, 35
X/Motif Analyzer, selection in views menu, 9

007–4567–001 137

	Table of Contents
	List of Figures
	List of Tables

	About This Manual
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Main View Window
	Primary Components of the Main View Window
	Admin Menu
	Views Menu
	Query Menu
	Source Menu
	Display Menu
	Perf Menu
	Traps Menu
	Fix+Continue Menu
	Keyboard Accelerators

	Help Menu
	PC Menu

	2. Additional Views in the Debugger
	Execution View
	Multiprocess Explorer
	Status of Processes
	Multiprocess Explorer Control Buttons
	Multiprocess Explorer Administrative Functions
	Controlling Preferences
	Controlling Multiple Processes

	Source View
	Process Meter

	3. Ada-specific Windows
	Task View
	Admin Menu, Task View
	Config Menu, Task View
	Layout Menu, Task View
	Display Menu, Task View

	Exception View
	Admin Menu, Exception View
	Config Menu, Exception View
	Display Menu, Exception View

	4. X/Motif Analyzer Windows
	Global Objects
	Admin Menu
	Examine Menu
	Examiner Tabs
	Return Button

	Breakpoints Examiner
	Callback Breakpoints Examiner
	Event-Handler Breakpoints Examiner
	Resource-Change Breakpoints Examiner
	Timeout-Procedure Breakpoints Examiner
	Input-Handler Breakpoints Examiner
	State-Change Breakpoints Examiner
	X-Event Breakpoints Examiner
	X-Request Breakpoints Examiner

	Trace Examiner
	Widget Examiner
	Tree Examiner
	Callback Examiner
	Window Examiner
	Event Examiner
	Graphics Context Examiner
	Pixmap Examiner
	Widget Class Examiner

	5. Managing Traps
	Trap Manager
	Signal Panel
	Syscall Panel

	6. Data Examination Windows
	Array Browser Window
	Format Menu
	Render Menu
	Color Menu
	Scale Menu
	Examiner Viewer Controls
	Examiner Viewer Menu

	Call Stack Window
	Data View Window
	Expression View Window
	Language Pop-up Menu
	Format Pop-up Menu

	File Browser Window
	Data Explorer Window
	Using the Data Explorer Overview Window to Navigate
	Entering Expressions
	Working in the Data Explorer Display Area
	Data Explorer Display Menu
	Node Menu
	Formatting Fields

	Variable Browser Window
	Entering Variable Values
	Changing Variable Column Widths
	Viewing Variable Changes

	7. Machine-level Debugging Windows
	The Disassembly View Window
	Similarities with Main View Window
	The Disassemble Menu
	The Config Menu Preferences Dialog

	The Register View Window
	Changing the Register View Display

	The Memory View Window
	Viewing a Portion of Memory
	Changing the Contents of a Memory Location
	Changing the Memory Display Format
	Moving around the Memory View Display Area

	8. Fix+Continue Windows
	Fix+Continue Status Window
	Fix+Continue Message Window
	Admin Menu
	View Menu

	Fix+Continue Build Environment Window
	Changes to Debugger Views
	Main View
	Command Line Interface
	Call Stack
	Trap Manager

	9. Debugger Command Line
	Syntax for Commands

	10. Blocking Kernel System Calls
	Index

