
Reconfigurable Application-Specific
Computing User’s Guide

007-4718-005

CONTRIBUTORS
Compiled and edited by Terry Schultz
Chapter 2, “Altix System Overview” originally written by Mark Schwenden
Engineering contributions by David Anderson, Kenneth Chan, Faye Kasemset, Matthias Fouquet-Lapar, Brian Larson, Chris Lindahl, Bruce

Losure, Alan Mayer, Steve Miller, Amy Mitby, Rebecca Lipon, Dick Riegner, Kaustubh Sanghani, Jason Sylvain, Teruo Utsumi, David Whitney,
and Amir Zeineddini

Illustrated by Chrystie Danzer
Production by Terry Schultz

COPYRIGHT
© 2004, 2005, 2006, 2007, SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is “commercial computer software” provided with restricted rights (except as to included open/free
source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of
worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
SGI, the SGI logo, and Altix are registered trademarks and NUMAflex, NUMAlink, RASC, and SGI ProPack are trademarks of SGI in the United
States and/or other countries worldwide.

Intel and Itanium are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Linux is a registered
trademark of Linus Torvalds, used with permission by Silicon Graphics, Inc. Mitrionics is a trademark of Mitrionics, Inc. Red Hat and all Red
Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. in the United States and other countries. Synplicity and Synplify
Pro are registered trademarks of Synplicity, Inc. UNIX is a registered trademarks of the Open Group in the United States and other countries.
Verilog is a registered trademark of Cadence Design Systems, Inc. Windows is a registered trademark of Microsoft Corporation in the United
States and/or other countries. Xilinx is a registered trademark of Xilinx, Inc.

All other trademarks mentioned herein are the property of their respective owners.

007-4718-005 iii

Record of Revision

Version Description

001 September 2004
Original publication

002 November 2004
Updated to support latest version of RASC software.

003 July 2005
Updated to support a new version of the RASC-brick with increased SRAM
memory and the RASC 1.0 software release.

004 March 2006
Updated to support the blade version of SGI RASC Technology

005 January 2007
Updated to support the RASC 2.1 software release

007-4718-005 v

New Features in This Guide

This revision of the Reconfigurable Application-Specific Computing User’s Guide supports
the RASC 2.1 software release.

Major Documentation Changes

Changes in this guide for this release include the following:

• Reorganized and updated information in Chapter 1, “RASC Introduction”.

• Added information about the new streaming Direct Memory Access engine in
“RASC Core Services Overview” on page 22.

• Described changes to the SRAM interface and arbitration in “SRAM Interface” on
page 34

• Added Fortran90 interface information in “RASC Abstraction Layer Calls” on
page 79.

• Added information about new RASC library calls rasclib_resource_reserve,
rasclib_resource_release, rasclib_resource_configure,
rasclib_resource_return,
rasclib_algorithm_exception_handler_register, and
rasclib_cop_exception_handler_register in “RASC Abstraction Layer
Calls” on page 79.

• Added a new chapter on direct I/O capabilities added to Reconfigurable
Application-Specific Computing (RASC) library (rasclib) Chapter 5, “Direct
I/O”.

• Updates throughout the manual to support the new DMA engine and direct I/O
capabilities.

007-4718-005 vii

Contents

Figures . . xvii

Tables . xix
Related Publications . . xxii

SGI Documentation xxii
Additional Documentation Sites and Useful Reading xxiv

Obtaining SGI Publications xxvi
Conventions . xxvi
Reader Comments . . xxvi

1. RASC Introduction . 1
An Overview of Reconfigurable Computing 1
Silicon Graphics ccNUMA Systems 3
Silicon Graphics Reconfigurable Application-Specific Computing (RASC). 4
Getting Started with RASC Programming 5

Overview of FPGA Programming 5
SGI FPGA Programming Approach 6
Bitstream Development Overview 6
Helpful SGI Tools . . 9

RASC Hardware Overview 9
RASC Software Overview . 12

2. Altix System Overview . . 15
SGI Altix 350 System Overview 15
SGI Altix 450 and Altix 4700 System Overview 17

3. RASC Algorithm FPGA Hardware Design Guide 21
RASC Core Services Overview 22

Core Services Features . 22
Core Services Architecture Overview 23

viii 007-4718-005

Contents

SRM . 24
SXM . 25
Programmed Input/Output Request Engine 25
TNUM Tracker . 25
Request Gate . . 25
Memory Mapped Registers 25
Interrupt Generator 25
Input Direct Memory Access 25
Output Direct Memory Access 25
Memory Controller . 26
Algorithm Block . . 26

Algorithm Run Modes . . 26
Algorithm Interfaces . 27

Algorithm Control Interface 27
Algorithm Defined Registers 28

Algorithm Defined Register Configuration 29
Algorithm Defined Register Usage 29

Streaming Direct Memory Access 30
Input Streaming DMA Engine 30
Start Input Stream . 30
End input stream . . 31
Output Stream . 32
Start Output Stream 32
End Output Stream . 33
Streaming DMA Extractor Statements 34

Debug Register Interface 34
SRAM Interface . . 34

Arbitration . . 35
Handshaking Methodologies. 36

Using Busy Signal. . 36
Using SRAM Crediting Scheme 36

Additional 64-bit SRAM Port. 37
Address Offsets . 37

Contents

007-4718-005 ix

SRAM Read Operation . 38
SRAM Read with Busy Operation 39
SRAM Write with Busy Operation 39

Algorithm Design Details. . 41
Basic Algorithm Control 41
Recommendations for Memory Distribution 44

Input and Output Placement 44
Implementation Options for Debug Mode. 45

Clock Cycle Step Size Mode 45
Variable Step Size Mode. 45

External Memory Write Transaction Control 46
Example Write Transaction Timing Diagram. 46
External Memory Read Transaction Control 47
Example Read Transaction Timing Diagram 47

Designing an Algorithm for Multibuffering 48
Purpose . 48
Definitions . 49
Hardware Support . 50
Software Responsibilities 51

Passing Parameters to Algorithm Block 52
Small Parameters. . 52
Parameter Arrays . 52

Recommended Coding Guidelines for Meeting Internal Timing Requirements 54
Connecting Internal Signals to the Debugger 54

RASC FPGA Design Integration 55
Design Hierarchy . . 56
FPGA Clock Domains . 57

Core Clock Domain 57
Algorithm Clock Domain 57
SSP Clock Domain . 58
QDR-II SRAM Clock Domains 59

Resets . . 59
Algorithm Synthesis-time Parameters 60

x 007-4718-005

Contents

Algorithm Clock Speed 60
SRAM Port Usage. . 60

Simulating the Design . . 62
Intent of the Sample Test Bench 62
Sample Test Bench Setup 62

Compiling the Sample Test Bench 63
Running a Diagnostic. 64
Viewing Waveform Results 66

Writing a Diagnostic . . 67
Sample Test Bench Constants and Dependencies 72
Sample Test Bench Utilities 74
 . . 75

4. RASC Abstraction Layer . . 77
RASC Abstraction Layer Overview 77
RASC Abstraction Layer Calls 79

rasclib_resource_reserve Function 81
rasclib_resource_release Function 83
rasclib_resource_ configure Function 84
rasclib_resource_ return Function 85
rasclib_resource_alloc Function 86
rasclib_resource_free Function 87
rasclib_algorithm_open Function 88
rasclib_algorithm_send Function 89
rasclib_algorithm_get_num_cops Function. 90
rasclib_algorithm_receive Function 91
rasclib_algorithm_go Function 92
rasclib_algorithm_commit Function. 93
rasclib_algorithm_wait Function. 94
rasclib_algorithm_close Function 95
rasclib_algorithm_reg_multi_cast Function 96
rasclib_algorithm_reg_read Function 97
rasclib_algorithm_reg_write Function 99
rasclib_algorithm_exception_handler_register Function 101

Contents

007-4718-005 xi

rasclib_cop_open Function 102
rasclib_cop_send Function 103
rasclib_cop_receive Function 104
rasclib_cop_go Function106
rasclib_cop_commit Function 107
rasclib_cop_wait Function 109
rasclib_cop_close Function 110
rasclib_cop_reg_read Function 111
rasclib_cop_reg_write Function112
rasclib_cop_ exception_handler_register Function 114
rasclib_perror Function 115
rasclib_error_dump Function 116

How the RASC Abstraction Layer Works 116

5. Direct I/O . .121

6. RASC Algorithm FPGA Implementation Guide123
Implementation Overview .124

Summary of the Implementation Flow124
Supported Tools and OS Versions 125

Installation and Setup . .126
SGI Altix System Installation 126
PC Installation. .126
Implementation Constraint Files 128

Synthesis Using Synplify Pro 128
Synthesis Using XST128
ISE (User Constraint File) 129

Adding Extractor Directives to the Source Code 130
Inserting Extractor Comments 131
Example of Comments in a Verilog, VHDL, or header File 132

Implementation with Pre-synthesized Core 134
Makefile.local Customizations 136
Synthesis Project Customization 136

Synplify Pro . .137

xii 007-4718-005

Contents

XST . . 137
Makefile Targets . 137

Full-chip Implementation 138
Makefile.local Customizations 139
Synthesis Project Customization 139

Implementation File Descriptions 139

7. Running and Debugging Your Application 141
Loading the Bitstream . . 141
RASC Device Manager. . 142

RASC Device Manager Overview 143
RASC Device Manager Structure 144
Using the Device Manager Command (devmgr) 144

Add a Bitstream To the Bitstream registry 145
Delete a Bitstream From the Bitstream registry 145
List the Contents of a Bitstream registry 145
Update an Algorithm in the Bitstream registry 146
List the FPGAs in the Inventory. 146
Mark an FPGA as Available or Unavailable 147
Turn Debugging On or Off 148
Device Manager Load FPGA Command 148
Device Manager Reload FPGA Command. 149
Device Manager Version Information 150

Device Manager Server Command 150
Using the Device Manager Server (devmgr_server) Command 151
Device Manager Logging Facility 151

Using the GNU Project Debugger (GDB) 152
GDB Commands . . 153

fpgaactive . . 153
set fpga fpganum 154
fpgaregisters . . 154
info fpga . 154
fpgastep . 154
fpgacont . 155

Contents

007-4718-005 xiii

fpgatrace . .155
Registers . .155
Values and Stepping . .156
FPGA Run Status . .156
Changes To GDB Commands 157

8. RASC Examples and Tutorials 159
System Requirements . .159
Prerequisites .160
Tutorial Overview . .160
Simple Algorithm Tutorial .161

Overview . .161
Application .162
Coding Techniques: Verilog163

Overview . .163
Integrating with Core Services 163
Extractor Comments165

Coding Techniques: VHDL Algorithm166
Overview . .166
Integrating with Core Services 167
Extractor Comments167

Compiling for Simulation 168
Building an Implementation. 169
Transferring to the Altix Platform 170
Verification using GDB 170

Data Flow Algorithm Tutorial 173
Application .173
Loading the Tutorial . .173
Integrating with Core Services 175

Extractor Comments175
Compiling for Simulation 175
Building an Implementation. 176
Transferring to the Altix Platform 177
Verification Using GDB 177

xiv 007-4718-005

Contents

Streaming DMA Algorithm Tutorial 179
Application . . 180
Loading the Tutorial 180
Integrating with Core Services 182

Extractor Comments 182
Compiling for Simulation. 182
Building an Implementation 183
Transferring to the Altix Platform 184
Verification Using GDB 184

A. Device Driver . . 185
FPGA Core Services . 185

Control and Status Registers 185
Interrupts . 185

Driver Application Programming Interface (API) 186
Input Direct Memory Access 186
Output Direct Memory Access 187
Function Control . . 187

Example Use of Device Driver 187

B. SSP Stub User’s Guide . 195
Introduction to SSP Stub 195
Recommended Reading . 195
Verification Environment and Testbench 196

Verification Environment 196
Sample Test Bench. . 196

SSP Stub File Descriptions 197
Compiling and Running a Test 199

SSP Stub Commands . 201
Packet Commands. . 202

Command Fields 202
Send Commands 204
Receive Commands 205

Other Commands . . 207

Contents

007-4718-005 xv

Command Summary . .208
Comments . .209

Sample Diagnostic . .209
Using the Stub . .215

C. How Extractor Works . .217
Extractor Script. .217
Core Services Configuration File. 218
Algorithm Configuration File 223

Index .227

007-4718-005 xvii

Figures

Figure 1-1 Reconfigurable Computer 2
Figure 1-2 Bitstream Development 7
Figure 1-3 Bitstream Development with High-level Tools 8
Figure 1-4 RASC FPGA Functional Block Diagram 10
Figure 1-5 RASC Blade Hardware 12
Figure 1-6 RASC Software Overview 13
Figure 2-1 Example of SGI Altix 350 Rack Systems 16
Figure 2-2 Altix 4700 Blade, Individual Rack Unit, and Rack 19
Figure 3-1 Block Diagram of the RASC Core Services 24
Figure 3-2 Algorithm Defined Registers (ADR) Interface Usage 29
Figure 3-3 Start of Input Stream Transaction 31
Figure 3-4 End of Input Stream Transaction 31
Figure 3-5 Start of Output Stream Transaction 33
Figure 3-6 End of Output Stream Transaction 33
Figure 3-7 SRAM Read Operation. 39
Figure 3-8 SRAM Read with Busy. 39
Figure 3-9 SRAM Write with Busy Assertion 40
Figure 3-10 Example of a Continuous, Normal Mode Algorithm Run 42
Figure 3-11 Hardware Accelerated Algorithm Design Flow 43
Figure 3-12 Clock Cycle Stepping Mode Example 45
Figure 3-13 Variable Step Size Mode Example 46
Figure 3-14 Single, and Multiple Write Commands 47
Figure 3-15 Single Read Transaction 48
Figure 3-16 Multiple Read Transaction 48
Figure 3-17 Instance Hierarchy of the RASC FPGA Design 56
Figure 3-18 Core Clock and Algorithm Clock Source 58
Figure 3-19 Sample vcdplus.vpd Waveform in Virsim 67

xviii 007-4718-005

Figures

Figure 4-1 Abstraction Layer Software Block Diagram 78
Figure 6-1 RASC FPGA Implementation Flow 124
Figure 8-1 Simple Algorithm for Verilog 162
Figure 8-2 Simple Algorithm for Verilog andVHDL. 164
Figure 8-3 Simple Algorithm for Verilog and VHDL 166
Figure 8-4 Data Flow Algorithm 174
Figure 8-5 Streaming DMA Algorithm 181

007-4718-005 xix

Tables

Table 3-1 Algorithm Control Interface Signals 27
Table 3-2 ADR Signal Definitions 28
Table 3-3 Input Streaming DMA Engine Signal Definitions 30
Table 3-4 Output Stream Signal Definitions 32
Table 3-5 Debug Register Definition 34
Table 3-6 SRAM Interface Signal Definition 37
Table 3-7 Sample Testbench Algorithms and Commands. 66
Table 3-8 Files in the sample_tb directory 73
Table 4-1 Abstraction Layer Function Definitions - Summary 79
Table 6-1 Supported Implementation Tools 125
Table 6-2 Environment Variables Required for Bundle Environment . . .127
Table 6-3 Top Level Directory Descriptions 127
Table 6-4 Synthesis Constraint Files Provided 128
Table 6-5 Implementation Constraint Files Provided 129
Table 6-6 Extractor Comment Fields 132
Table 6-7 Common Makefile.local Variable Settings 136
Table 6-8 Makefile Targets 138
Table 6-9 Required Full Chip Makefile Variable Settings139
Table 6-10 Commonly Referenced Files 140
Table A-1 Device Driver API System Calls 186
Table B-1 Packet Types used by SSP202
Table C-1 Core Services Configuration File Fields218
Table C-2 Algorithm Configuration File Fields223

007-4718-005 xxi

About This Guide

The SGI reconfigurable application-specific software computing (RASC) program
delivers scalable, configurable computing elements for the SGI Altix family of servers
and superclusters.

This guide provides information about RASC and covers the following topics:

• Chapter 1, “RASC Introduction”

• Chapter 2, “Altix System Overview”

• Chapter 3, “RASC Algorithm FPGA Hardware Design Guide”

• Chapter 4, “RASC Abstraction Layer”

• Chapter 6, “RASC Algorithm FPGA Implementation Guide”

• Chapter 7, “Running and Debugging Your Application”

• Chapter 8, “RASC Examples and Tutorials”

• Appendix A, “Device Driver”

• Appendix B, “SSP Stub User’s Guide”

• Appendix C, “How Extractor Works”

xxii 007-4718-005

About This Guide

Related Publications

Documents listed in this section contain additional information that might be helpful, as
follows:

• “SGI Documentation” on page xxii

• “Additional Documentation Sites and Useful Reading” on page xxiv

SGI Documentation

The following documentation is available for the SGI Altix family of servers and
superclusters and is available from the online SGI Technical Publications Library:

• SGI ProPack 5 for Linux Start Here
Provides information about the SGI ProPack for Linux release including
information about major new features, software installation, and product support.

• SGI ProPack 5 for Linux Release Notes
Provide the latest information about software and documentation in this release.
The release notes are on the SGI ProPack for Linux Documentation CD in the root
directory, in a file named README.TXT.

• Linux Device Driver Programmer’s Guide- Porting to SGI Altix Systems
Provides information on programming, integrating, and controlling drivers.

• Porting IRIX Applications to SGI Altix Platforms: SGI ProPack for Linux
Provides information about porting an application to the SGI Altix platform.

• Message Passing Toolkit (MPT) User’s Guide
Describes industry-standard message passing protocol optimized for SGI
computers.

• Performance Co-Pilot for IA-64 Linux User’s and Administrator’s Guide
Describes the Performance Co-Pilot (PCP) software package of advanced
performance tools for SGI systems running the Linux operating system.

• Linux Configuration and Operations Guide
Provides information on how to perform system configuration and operations for
SGI ProPack servers.

• Linux Resource Administration Guide

About This Guide

007-4718-005 xxiii

Provides a reference for people who manage the operation of SGI ProPack servers
and contains information needed in the administration of various system resource
management features such as Comprehensive System Accounting (CSA), Array
Services, CPU memory sets and scheduling, and the Cpuset System.

• SGI Altix 350 System User’s Guide
Provides an overview of the Altix 350 system components, and it describes how to
set up and operate this system.

• SGI Altix 350 Quick Start Guide
Guides a knowledgeable user through the installation, setup, and simple
configuration of most SGI Altix 350 systems.

• SGI Altix 3700 Bx2 User’s Guide
This guide provides an overview of the architecture and descriptions of the major
components that compose the SGI Altix 3700 Bx2 family of servers. It also provides
the standard procedures for powering on and powering off the system, basic
troubleshooting information, and important safety and regulatory specifications.

• SGI Altix 450 System User’s Guide
This guide provides an overview of the architecture and descriptions of the major
components that compose the SGI Altix 450 system. It also provides the standard
procedures for powering on and powering off the system, basic troubleshooting
information, and important safety and regulatory specifications.

• SGI Altix 4700 System User’s Guide
This guide provides an overview of the architecture and descriptions of the major
components that compose the SGI Altix 4700 family of servers. It also provides the
standard procedures for powering on and powering off the system, basic
troubleshooting information, and important safety and regulatory specifications.

• Silicon Graphics Prism Visualization System User’s Guide
Provides an overview of the Silicon Graphics Prism Visualization System
components and it describes how to set up and operate this system.

• SGIconsole 2.1 Start Here
Provides an introduction to SGIconsole and information about setting up and
configuring SGIconsole hardware and software.

• Console Manager for SGIconsole Administrator’s Guide
Provides information about the Console Manager software graphical interface
allows you to control multiple SGI servers, SGI partitioned systems, and large
single-system image servers.

• SGI L1 and L2 Controller Software User’s Guide

xxiv 007-4718-005

About This Guide

Describes how to use the L1 and L2 controller commands at your system console to
monitor and manage the SGI Altix 3000 and SGI Altix 4000 family of servers and
superclusters.

• XFS for Linux Administration
Describes XFS, an open-source, fast recovery, journaling filesystem that provides
direct I/O support, space preallocation, access control lists, quotas, and other
commercial file system features.

• XVM Volume Manager Administrator’s Guide
Describes the configuration and administration of XVM logical volumes
using the XVM Volume Manager.

• Event Manager User Guide
Provides information about the Event Manger application that collects event
information from other applications. This document describes the Event Manager
application, the application programming interface that you can use to access it, the
procedures that you can use to communicate with it from another application, and
the commands that you can use to control it.

• Embedded Support Partner User Guide
Provides information about using the Embedded Support Partner (ESP) software
suite to monitor events, set up proactive notification, and generate reports. This
revision of the document describes ESP version 3.0, which is the first version of ESP
that supports the Linux operating system.

• Linux Application Tuning Guide
Provides information about tuning application programs on SGI Altix systems.
Application programs include Fortran and C programs written on SGI Linux
systems with the compilers provided by Intel.

• SCSL User’s Guide
Provides information about the scientific libraries on SGI Altix systems and SGI
IRIX systems. Topics include discussions about BLAS, LAPACK, and FFT routines.

Additional Documentation Sites and Useful Reading

The following sites and books may be useful:

• Xilinx Development System Reference Guide

About This Guide

007-4718-005 xxv

This manual provides a bitstream generation workflow diagram and detailed
description of all the files generated and used in the workflow and the tools that
create and use these files. It is available at http://www.xilinx.com/. Click on the
Documentation link. Under Design Tools Documentation, select Software
Manuals. For the RASC 2.0 release, reference the 6.x Softare Manuals.

• Verilog Quick Start, A Practical Guide to Simulation and Synthesis in Verilog, Third
Edition, James M. Lee, Copyright 2002 by Kluwer Academic Publishers

• Verilog HDL Synthesis, A Practical Primer, J. Bhasker, Copyright 1998 by Lucent
Technologies and published by Star Galaxy Publishing.

• A Verilog HDL Primer, J. Bhasker, Second Edition, Copyright 1997, 1999 by Lucent
Technologies and published by Star Galaxy Publishing.

xxvi 007-4718-005

About This Guide

Obtaining SGI Publications

You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• You can view man pages by typing man <title> on a command line.

Conventions

The following conventions are used throughout this publication:

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

Convention Meaning

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures. Angle brackets <> are sometimes used in tables to save
space.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user input This bold, fixed-space font denotes literal items that the user enters in
interactive sessions. (Output is shown in nonbold, fixed-space font.)

manpage(x) Man page section identifiers appear in parentheses after man page
names.

GUI element This font denotes the names of graphical user interface (GUI) elements
such as windows, screens, dialog boxes, menus, toolbars, icons,
buttons, boxes, fields, and lists.

About This Guide

007-4718-005 xxvii

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1140 East Arques Avenue
Sunnyvale , CA 94085-4602

SGI values your comments and will respond to them promptly.

007-4718-005 1

Chapter 1

1. RASC Introduction

This chapter provides an introduction to Reconfigurable Computing (RC) including
challenges in design and implementation of RC systems, an introduction to SGI’s system
platform and an overview of SGI’s Reconfigurable Application Specific Computing
(RASC). It covers the following topics:

• “An Overview of Reconfigurable Computing” on page 1

• “Silicon Graphics ccNUMA Systems” on page 3

• “Silicon Graphics Reconfigurable Application-Specific Computing (RASC)” on
page 4

• “Getting Started with RASC Programming” on page 5

• “RASC Hardware Overview” on page 9

• “RASC Software Overview” on page 12

An Overview of Reconfigurable Computing

Reconfigurable computing is defined as a computer having hardware that can be
reconfigured to implement application-specific functions (see Figure 1-1). The basic
concept of a reconfigurable computer (RC) was proposed in the 1960s, but only in the last
decade has an RC been feasible. RC systems combine microprocessors and
programmable logic devices, typically field programmable gate arrays (FPGAs), into a
single system. Reconfigurable computing allows applications to map computationally
dense code to hardware. This mapping often provides orders of magnitude
improvements in speed while decreasing power and space requirements.

2 007-4718-005

1: RASC Introduction

.

Figure 1-1 Reconfigurable Computer

As defined above, RC uses programmable FPGAs. Current FPGA technology provides
more than 10 million logic elements, internal clock rates over 200MHz, and pin toggle
rates approaching 10Gb/s. With these large devices, the scope of applications that can
target an FPGA has dramatically increased. The challenges to using FPGAs effectively
fall into two categories: ease of use and performance. Ease of use issues include the
following:

• Methodology of generating the “program” or bitstream for the FPGA

• Ability to debug an application running on both the microprocessor and FPGA

• Interface between the application and the system or Application Programming
Interface (API)

Performance issues include the following:

• Data movement (bandwidth) between microprocessors and FPGAs

• Latency of communication between microprocessors and FPGAs

• Scalability of the system topology

Historically, programming an FPGA required a hardware design engineer.
(Non-hardware designers can program FPGAs with the newer tools described in
“Getting Started with RASC Programming” on page 5). Typically, an algorithm was
hand translated into a Hardware Description Language (HDL), verified by
human-generated HDL tests, synthesized into logic elements, physically placed in the
FPGA and then analyzed for speed of operation. If errors occurred, these design and
verification steps were repeated. This iterative process is conducive for semiconductor
chip design, but it impedes the rapid proto-typing and solution oriented goals of
application-specific programming.

Microprocessor

Memory Controller

Reconfigurable
Element

Disk
Controller

Network
Controller

I/O Channel

Silicon Graphics ccNUMA Systems

007-4718-005 3

Debugging FPGAs requires specialized logic to be inserted into register transfer level
(RTL) code. Then, FPGA-specific tools, along with typical microprocessor debug
methods, are used to analyze anomalies in application behavior.

Lastly, users are hampered by the lack of standardized application interfaces. This
deficiency forces recoding when hardware or platform upgrades become available--a
time-consuming and error-inducing process.

Performance is the fundamental reason for using RC systems. By mapping algorithms to
hardware, designers can tailor not only the computational components, but also perform
data flow optimization to match the algorithm. Today’s FPGAs provide over a terabyte
per second of memory bandwidth from small on chip memories as well as tens of billions
of operations per second. Transferring data to the FPGA and receiving the results poses
a difficult challenge to RC system designers. In addition to bandwidth, efficient use of
FPGA resources requires low latency communication between the host microprocessor
and the FPGAs. When low latency is achieved, scaling and optimization across multiple
computational elements can occur, often called load balancing.

Although challenges abound, RC systems allow users to explore solutions that are not
viable in today’s limited computing environments. The benefits in size, speed, and
power alone make RC systems a necessity.

Silicon Graphics ccNUMA Systems

SGI was founded in 1982 based on Stanford University’s research in accelerating a
specific application, three dimensional graphics. SGI pioneered acceleration of graphics
through hardware setting records and providing technological capabilities that were
impossible without specialized computational elements. Tackling difficult problems
required a supercomputer with capabilities that were not available from other computer
vendors. SGI chose to develop its own large scale supercomputer with the features
needed to drive graphics. The development of large scale single system image (SSI)
machines was also pioneered at SGI. From the early days systems such as Power Series,
Challenge, and Power Challenge defined large shared bus SSI systems, but the focus
continued to be on providing the high bandwidth and scaling that was needed to drive
graphics applications. To transcend the 36 microprocessor Challenge Series systems,
conventional single backplane architectures were not sufficient. SGI returned again to its
roots at Stanford University and the Distributed Architecture for Shared (DASH)
memory project. The original concepts for cache coherent non-uniform memory access
(ccNUMA) architecture are based on the DASH memory project. The ccNUMA

4 007-4718-005

1: RASC Introduction

architecture allows for distributed memory through the use of a directory-based
coherency scheme, removing the need for large common busses like those in the
Challenge systems. Without the restrictions of a single bus, bandwidth for the system
increased by orders of magnitude, while latency was reduced. This architecture has
allowed SGI to set new records for system scalability including 1024 CPU SSI, 1TB/s
Streams benchmark performance, and many others.

The SGI Altix system is the only fourth generation Distributed Shared Memory (DSM)
machine using a NUMA architecture that is connected by a high–bandwidth,
low–latency interconnect. In keeping with ever increasing demands, Altix allows
independent scaling for CPUs, memory, Graphics Processing Units (GPU), I/O
interfaces, and specialized processors. The NUMAlink interconnect allows Altix to scale
to thousands of CPUs, terabytes of memory, hundreds of I/O channels, hundreds of
graphics processors and thousands of application-specific devices.

SGI uses NUMAlink on all of its ccNUMA systems. NUMAlink 4 is a third generation
fabric that supports topologies starting at basic rings. With the addition of routers,
meshes, hypercubes, modified hypercubes and full fat tree topologies can be built. The
protocol and fabric allows the topology to be matched to the workload as needed. By
using the high bandwidth, low latency interconnect, SGI has a flexible and powerful
platform to deliver optimized solutions for HPC.

Silicon Graphics Reconfigurable Application-Specific Computing (RASC)

The RASC program leverages more than 20 years of SGI experience accelerating
algorithms in hardware. Rather than using relatively fixed implementations, such as
graphics processing units (GPUs), RASC uses FPGA technology to develop a
full-featured reconfigurable computer. The RASC program also addresses the ease of use
and performance issues present in typical RC environments.

To address performance issues, RASC connects FPGAs into the NUMAlink fabric
making them a peer to the microprocessor and providing both high bandwidth and low
latency. By attaching the FPGA devices to the NUMAlink interconnect, RASC places the
FPGA resources inside the coherency domain of the computer system. This placement
allows the FPGAs extremely high bandwidth (up to 6.4GB/s/FPGA), low latency, and
hardware barriers. These features enable both extreme performance and scalability. The
RASC product also provides system infrastructure to manage and reprogram the
contents of the FPGA quickly for reuse of resources.

Getting Started with RASC Programming

007-4718-005 5

RASC defines a set of APIs through the RASC Abstraction Layer (RASCAL). The
abstraction layer can abstract the hardware to provide deep and wide scaling or direct
and specific control over each hardware element in the system. In addition RASC
provides a FPGA-aware version of GNU Debugger (GDB) that is based on the standard
Linux version of GDB with extensions for managing multiple FPGAs. The RASC debug
environment does not require learning new tool sets to quickly debug an accelerated
application.

RASC supports the common hardware description languages (HDLs) for generating
algorithms. RASC provides templates for Verilog- and VHDL-based algorithms. Several
3rd-party high-level language tool vendors are developing RASC interfaces and
templates to use in place of traditional hardware design languages.

Getting Started with RASC Programming

This section provides an overview of RASC programming and covers these topics:

• “Overview of FPGA Programming” on page 5

• “SGI FPGA Programming Approach” on page 6

• “Bitstream Development Overview” on page 6

• “Helpful SGI Tools” on page 9

Overview of FPGA Programming

FPGA programming is a fairly complex task when using the main FPGA programming
languages, VHDL and Verilog, directly. They require an electrical engineering
background and the understanding of timing constraints; that is, the time it takes for an
electrical signal to travel on the chips, delays introduced by buffers, and so on. For
example, the blank FPGA has physical connection from the memory pins to FPGA I/O
pins. You need a protocol like QDR-II that specifies memory transfer rates for the dual
in-line memory modules connected to the memory pins.

Low-level abstractions allow an application to read a memory location without
understanding the underlying hardware. SGI RASC calls this functionality Core Services
(for more information, see “Algorithm Interfaces” on page 27). These low-level
abstractions can almost be thought of as the basic input/output system (BIOS) of the
RASC unit.

6 007-4718-005

1: RASC Introduction

Currently, FPGAs are running at clock speeds of about 200 MHz. This may seem slow
compared to an Itanium processor; however, the FPGA can be optimized for specific
algorithms and potentially performs several hundreds or thousands of operations in
parallel.

Programming high-performance computing applications in VHDL and/or Verilog is
extremely time-consuming and resource-intensive and probably best left to very
advanced users. However, high-level tools provided by vendors such as Mitrionics, Inc.
are available.

These tools produce VHDL or Verilog code (potentially thousands of lines for even a
small code fragment). This code then has to be synthesized (compiled) into a netlist. This
netlist then is used by a place and route program to implement the physical layout on the
FPGAs.

SGI FPGA Programming Approach

A summary of the SGI approach to FPGA programming is, as follows: (see Figure 1-2 on
page 7 and Figure 1-3 on page 8)

• Write an application in C programming language for system microprocessor

• Identify computation intense routine(s)

• Generate a bitstream using Core Services and language of choice

• Replace routines with RASC abstraction layer (rasclib) calls that support both a C
and Fortran90 interface

• Run your application and debug with GDB (see “Helpful SGI Tools” on page 9)

The RASC tutorial (see “Tutorial Overview” on page 160) steps you through the entire
RASC design flow: integrating the algorithm with Core Services; simulating behavior on
the algorithm interfaces; synthesizing the algorithm code; generating a bitstream;
transferring that bitstream and metadata to the Altix platform; executing an application;
and using GDB to debug an application on the Altix system and FPGA simultaneously.

Bitstream Development Overview

In this guide, implementation flow (bitstream development) refers to the comprehensive
run of the extractor, synthesis, and Xilinx ISE tools that turn the Verilog or VHDL source

Getting Started with RASC Programming

007-4718-005 7

into a binary bitstream and configuration file that can be downloaded into the RASC
Algorithm FPGA (for more information, see “Summary of the Implementation Flow” on
page 124).

Figure 1-2 shows bitstream development on an IA-32 Linux platform for an Altix RASC
hardware. The RASC Abstraction Layer (rasclib) provides an application
programming interface (API) for the kernel device driver and the RASC hardware. It is
intended to provide a similar level of support for application development as the
standard open/close/read/write/ioctl calls for IO peripheral. For more on the RASC
Abstraction Layer, see Chapter 4, “RASC Abstraction Layer”.

Figure 1-2 Bitstream Development

Figure 1-3 shows bitstream development using third-party development tools. (see “SGI
FPGA Programming Approach” on page 6)

Behavioral simulation
(VCS)

Static timing analysis
(ISE timing analyzer)

Real-time
verification

(gdb)

Design Verification
IA-32 Linux®

machine

Altix®

server

Design entry
(Verilog, VHDL)

Design synthesis
(XST, Synplify Pro)

Design
implementation

(ISE)

Metadata
processing
(Python)

Device programming
(RASC TM abstraction layer,

device manager, device driver)

.v, .vhd

.v, .vhd .v, .vhd

.edf, .ngc

.bin, .ll
.cfg

.ncd, .pcf

.c

8 007-4718-005

1: RASC Introduction

Figure 1-3 Bitstream Development with High-level Tools

Synplify Pro is a synthesis product developed by Synplicity, Inc. For more information,
click on the Literature link on the top of the homepage at www.synplicity.com.

Xilinx Synthesis Technology (XST) is a synthesis product developed by Xilinx, Inc.
Information on XST is available at http://www.xilinx.com/.

The Xilinx Development System Reference Guide provides a bitstream generation workflow
diagram and detailed description of all the files generated and used in the workflow and
the tools that create and use these files. From the Xilinix, Inc. homepage, Click on the
Documentation link. Under Design Tools Documentation, select Software Manuals.

For the RASC 2.1 release, reference the 6.x Software Manuals.

For additional documentation that you may find helpful, see “Additional
Documentation Sites and Useful Reading” on page xxiv.

Behavioral simulation
(VCS)

Static timing analysis
(ISE timing analyzer)

Real-time
verification

(gdb)

Design Verification
IA-32 Linux®

machine

Altix®

server

HLL design entry
(Mitrion C)

Design synthesis
supports

(XST, Synplify Pro)

Design
implementation

(ISE)

Metadata
processing
(Python)

Device programming
(RASC TM abstraction layer,

device manager, device driver)

.v, .vhd

.v, .vhd .v, .vhd

.edif

.ngc

.bin
.cfg

.ncd, .pcf

.c

RTL generation and
integration with core services

RASC Hardware Overview

007-4718-005 9

Helpful SGI Tools

SGI provides a Device Manager for loading bitstreams. It maintains a registry of
algorithm bitstreams that can be loaded and executed using the RASC abstraction layer
(rasclib). The devmgr user command is used to add, delete, and query algorithms in
the registry. For more information on the Device Manager, see “RASC Device Manager”
on page 142.

The SGI RASC environment has a product called gdbfpga that provides extensions to
the GNU Debugger (GDB) command set to handle debugging of one or more FPGAs. An
overview of GDB is, as follows:

• Based on Open Source GNU Debugger (GDB)

• Uses extensions to current command set

• Can debug host application and FPGA

• Provides notification when FPGA starts or stops

• Supplies information on FPGA characteristics

• Can "single-step" or "run N steps" of the algorithm

• Dumps data regarding the set of "registers" that are visible when the FPGA is active

For more information on debugging in the RASC environment, see “Using the GNU
Project Debugger (GDB)” on page 152.

RASC Hardware Overview

The initial RASC hardware implementation used SGI’s first generation peer attached I/O
brick for the base hardware. The RASC hardware module is based on an
application-specific integrated circuit (ASIC) called TIO. TIO attaches to the Altix system
NUMAlink interconnect directly instead of being driven from a compute node using the
XIO channel. TIO supports two PCI-X busses, an AGP-8X bus, and the Scalable System
Port (SSP) port that is used to connect the Field Programmable Gate Array (FPGA) to the
rest of the Altix system for the RASC program. The RASC module contains a card with
the co-processor (COP) FPGA device as shown Figure 1-4.

10 007-4718-005

1: RASC Introduction

Figure 1-4 RASC FPGA Functional Block Diagram

The FPGA is connected to an SGI Altix system via the SSP port on the TIO ASIC. It is
loaded with a bitstream that contains two major functional blocks:

• The reprogrammable algorithm

• The Core Services that facilitate running the algorithm

TIO

72 72
SSP

NUMAlink connectors

PCI
33 MHz

Select MAP
Configuration Port

SRAM

Loader FPGA

36

36

36

36

36

36

Algorithm FPGASRAM

36

36 SRAM

SRAM

3.2GB/s Read
3.2GB/s Write
6.4GB/s Aggregate

Host Bandwidth to Local Memory

Algorithm Bandwidth to Local Memory 8GB/s Read
8GB/s Write
16GB/s Aggregate

36

36 SRAM

RASC Hardware Overview

007-4718-005 11

For more information on the RASC FPGA, see Chapter 3, “RASC Algorithm FPGA
Hardware Design Guide”.

For more information on the Altix system topology and a general overview of the Altix
350 system architecture, see Chapter 2, “Altix System Overview”.

RASC hardware implementation for SGI Altix 4700 systems is based on blade packaging
as shown in Figure 1-5. For an overview of the Altix 4700 system, see “SGI Altix 450 and
Altix 4700 System Overview” on page 17.

The RASC hardware blade contains two computational FPGAs, two TIO ASICs, and a
loader FPGA for loading bitstreams into the computational FPGAs. The computational
FPGAs connect directly into the NUMAlink fabric via SSP ports on the TIO ASICS. The
new RASC blade has high-performance FPGAs with 200K logic cells and increased

12 007-4718-005

1: RASC Introduction

memory resources with 10 synchronous static RAM dual in-line memory modules
(SSRAM DIMMs).

Figure 1-5 RASC Blade Hardware

For legacy systems, optional brick packaging is available for the latest RASC hardware.

RASC Software Overview

Figure 1-6 shows an overview of the RASC software.

8MB QDR SRAM DIMM 4

8MB QDR SRAM DIMM 3

8MB QDR SRAM DIMM 2

8MB QDR SRAM DIMM 1

8MB QDR SRAM DIMM 0

Algorithm
FPGA

TIO
ASICNI1 SSP

3.2 GB/s
each

direction

3.2 GB/s
each

direction

1.6 GB/s each direction

External
NL4

connector

8MB QDR SRAM DIMM 4

8MB QDR SRAM DIMM 3

8MB QDR SRAM DIMM 2

8MB QDR SRAM DIMM 1

8MB QDR SRAM DIMM 0

Algorithm
FPGA

TIO
ASICNI0 SSP

3.2 GB/s
each

direction

3.2 GB/s
each

direction

1.6 GB/s each direction

External
NL4

connector

NI1

NI0

Loader
FPGA

PROM

RASC Software Overview

007-4718-005 13

Major software components are, as follows:

• Standard Linux GNU debugger with FPGA extensions

• Download utilities

• Abstraction layer library

• Device Manager

• Algorithm device driver

• Download driver

• Linux kernel

• COP (TIO, Algorithm FPGA, memory, download FPGA)

This software is described in detail in this manual in the chapters that follow.

Figure 1-6 RASC Software Overview

App 2
Device

manager

Algorithm layer

Cop layer Dev lib

Application space

Library space

Kernel driver

Loader FPGA

App 1

OS

Hardware

Download
driver

Algorithm
FPGA

devmgr

007-4718-005 15

Chapter 2

2. Altix System Overview

This chapter provides an overview of the physical and architectural aspects of your SGI
Altix 350 system or SGI Altix 4700 system. This chapter includes the following sections:

• “SGI Altix 350 System Overview” on page 15

• “SGI Altix 450 and Altix 4700 System Overview” on page 17

Note: This chapter provides an overview of the SGI Altix 350 system. For more
information on this system, see the SGI Altix 350 System User’s Guide available on the SGI
Technical Publications Library. It provides a detailed overview of the SGI Altix 350
system components and it describes how to set up and operate the system. For an
overview of SGI ProPack software and installation and upgrade information, see the SGI
ProPack 5 for Linux Start Here.

SGI Altix 350 System Overview

The Altix 350 system advances the SGI NUMAflex approach to mid-range modular
computing. It is designed to deliver maximum sustained performance in a compact
system footprint. Independent scaling of computational power, I/O bandwidth, and
in-rack storage lets you configure a system to meet your unique computational needs.
The small footprint and highly modular design of the Altix 350 system makes it ideal for
high computational throughput, media streaming, or complex data management.

The Altix 350 system can be expanded from a standalone single-module system with 2GB
of memory and 4 PCI/PCI-X slots to a high-performance system that contains 32
processors, one or two routers, up to 192 GB of memory, and 64 PCI/PCI-X slots. For
most configurations, the Altix 350 system is housed in one 17U rack or one 39U rack as
shown in Figure 2-1; however, for small system configurations, the Altix 350 system can
be placed on a table top.

16 007-4718-005

2: Altix System Overview

Systems that are housed in 17U racks have a maximum weight of approximately 610 lb
(277 kg). The maximum weight of systems that are housed in 39U racks is approximately
1,366 lb (620 kg). The racks have casters that enable you to remove the system from the
shipping container and roll it to its placement at your site.

See Chapter 1, “Installation and Operation,” in the SGI Altix 350 System User’s Guide for
more information about installing your system. Check with your SGI service
representative for additional physical planning documentation that may be available.

Figure 2-1 Example of SGI Altix 350 Rack Systems

The Altix 350 system is based on the SGI NUMAflex architecture, which is a
shared-memory system architecture that is the basis of SGI HPC servers and
supercomputers. The NUMAflex architecture is specifically engineered to provide
technical professionals with superior performance and scalability in a design that is easy
to deploy, program, and manage. It has the following features:

Shared access of processors, memory, and I/O. The Super Hub (SHub) ASICs and the
NUMAlink-4 interconnect functions of the NUMAflex architecture enable applications
to share processors, memory, and I/O devices.

17U rack

39U rack

SGI Altix 450 and Altix 4700 System Overview

007-4718-005 17

• Each SHub ASIC in the system acts as a memory controller between processors and
memory for both local and remote memory references.

• The NUMAlink interconnect channels information between all the modules in the
system to create a single contiguous memory in the system of up to 384 GB and
enables every processor in a system direct access to every I/O slot in the system.

Together, the SHub ASICs and the NUMAlink interconnect enable efficient access to
processors, local and remote memory, and I/O devices without the bottlenecks
associated with switches, backplanes, and other commodity interconnect technologies.

System scalability. The NUMAflex architecture incorporates a low-latency,
high-bandwidth interconnect that is designed to maintain performance as you scale
system computing, I/O, and storage functions. For example, the computing dimension
in some system configurations can range from 1 to 32 processors in a single system image
(SSI).

Efficient resource management. The NUMAflex architecture is designed to run complex
models and, because the entire memory space is shared, large models can fit into
memory with no programming restrictions. Rather than waiting for all of the processors
to complete their assigned tasks, the system dynamically reallocates memory, resulting
in faster time to solution.

SGI Altix 450 and Altix 4700 System Overview

Note: This chapter provides a brief overview of the SGI Altix 4700 series system. For
more information on this system, see the SGI Altix 4700 System User’s Guide available on
the SGI Technical Publications Library. It provides a detailed overview of the SGI Altix
4700 system components and it describes how to set up and operate the system. For an
overview of the SGI Altix 450 system, see Chapter 3, “System Overview” in the SGI Altix
450 System User’s Guide.

The Altix 4700 series is a family of multiprocessor distributed shared memory (DSM)
computer systems that currently scales from 8 to 512 CPU sockets (up to 1,024 processor
cores) and can accommodate up to 6TB of globally shared memory in a single system
while delivering a teraflop of performance in a small-footprint rack.

18 007-4718-005

2: Altix System Overview

The SGI Altix 450 currently scales from 2 to 76 cores as a cache-coherent single system
image (SSI). For an overview of the SGI Altix 450 system, see Chapter 3, “System
Overview” in the SGI Altix 450 System User’s Guide.

Future releases will scale to larger processor counts for single system image (SSI)
applications. Contact your SGI sales or service representative for the most current
information on this topic.

In a DSM system, each processor board contains memory that it shares with the other
processors in the system. Because the DSM system is modular, it combines the
advantages of low entry-level cost with global scalability in processors, memory, and
I/O. You can install and operate the Altix 4700 series system in a rack in your lab or
server room. Each 42U SGI rack holds from one to four 10U high enclosures that support
up to ten processor and I/O sub modules known as "blades." These blades are single
printed circuit boards (PCBs) with ASICS, processors, and memory components
mounted on a mechanical carrier. The blades slide directly in and out of the Altix 4700
1RU enclosures. Each individual rack unit (IRU) is 10U in height (see Figure 2-2).

SGI Altix 450 and Altix 4700 System Overview

007-4718-005 19

Figure 2-2 Altix 4700 Blade, Individual Rack Unit, and Rack

Note: An Altix 4700 system can support up to eight RASC blades per single system
image. Current configuration rules require two compute blades for every RASC blade in
your system.

The Altix 4700 computer system is based on a distributed shared memory (DSM)
architecture. The system uses a global-address-space, cache-coherent multiprocessor that

Blade

Rack
(Contains 4 IRUs)

B
la

de
 s

lo
t 5

B
la

de
 s

lo
t 6

B
la

de
 s

lo
t 7

B
la

de
 s

lo
t 8

B
la

de
 s

lo
t 9

B
la

de
 s

lo
t 0

B
la

de
 s

lo
t 1

B
la

de
 s

lo
t 2

B
la

de
 s

lo
t 3

B
la

de
 s

lo
t 4

F
ill

er
 p

an
el

F
ill

er
 p

an
el

Individual Rack Unit (IRU)
(Contains 10 blades)

20 007-4718-005

2: Altix System Overview

scales up to sixty four Intel 64-bit processors in a single rack. Because it is modular, the
DSM combines the advantages of lower entry cost with the ability to scale processors,
memory, and I/O independently to a maximum of 512 processors on a single-system
image (SSI). Larger SSI configurations may be offered in the future, contact your SGI sales
or service representative for information.

The system architecture for the Altix 4700 system is a fourth-generation NUMAflex DSM
architecture known as NUMAlink-4. In the NUMAlink-4 architecture, all processors and
memory are tied together into a single logical system with special crossbar switches
(routers). This combination of processors, memory, and crossbar switches constitute the
interconnect fabric called NUMAlink. There are four router switches in each 10U IRU
enclosure.

The basic expansion building block for the NUMAlink interconnect is the processor
node; each processor node consists of a Super-Hub (SHub) ASIC and one or two 64-bit
processors with three levels of on-chip secondary caches. The Intel 64-bit processors are
connected to the SHub ASIC via a single high-speed front side bus.

The SHub ASIC is the heart of the processor and memory node blade technology. This
specialized ASIC acts as a crossbar between the processors, local SDRAM memory, the
network interface, and the I/O interface. The SHub ASIC memory interface enables any
processor in the system to access the memory of all processors in the system. Its I/O
interface connects processors to system I/O, which allows every processor in a system
direct access to every I/O slot in the system.

Another component of the NUMAlink-4 architecture is the router ASIC. The router ASIC
is a custom designed 8-port crossbar ASIC. Using the router ASICs with a highly
specialized backplane or NUMAlink-4 cables provides a high-bandwidth, extremely
low-latency interconnect between all processor, I/O, and other option blades within the
system.

007-4718-005 21

Chapter 3

3. RASC Algorithm FPGA Hardware Design Guide

This chapter describes how to implement the algorithm that you have identified as a
candidate for acceleration and provides a hardware reference for the RASC Algorithm
Field Programmable Gate Array (FPGA) hardware. It covers the following topics:

• “RASC Core Services Overview” on page 22

• “Algorithm Interfaces” on page 27

• “Algorithm Design Details” on page 41

• “RASC FPGA Design Integration” on page 55

• “Simulating the Design” on page 62

22 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

RASC Core Services Overview

Figure 3-1 shows a block diagram of RASC Core Services. The Core Services is made up
of all the functional blocks excluding the algorithm block. Core Services is user
independent and is pre-synthesized. The algorithm block is specific to the user algorithm
and evolves through the RASC design flow. In the RASC 2.1 release, Core Services has
new features that increase the bandwidth and reduce the latency as perceived by the
algorithm. The components of Core Services are described in “Core Services Architecture
Overview” on page 23.

The RASC algorithm FPGA is a Xilinx Virtex 4 LX200 part (XC4VLX200-FF1513-10). It is
connected to an SGI Altix system via the SSP port on the TIO ASIC and loaded with a
bitstream that contains two major functional blocks:

• The reprogrammable Algorithm Block

• The Core Services Block that facilitates running the algorithm.

Core Services Features

Core Services is the key component of RASC which facilitates execution of the user
algorithm in the algorithm block. It helps in synchronizing the I/O, memory, and
Algorithm Block operations. This section describes the services provided by the Core
Services Block of the RASC FPGA. These features include:

• Scalable System Port (SSP) Implementation: physical interface and protocol

• Global Clock Generation and Control

• Independent read and write ports to each of the three logical or five physical
random access memories (SRAMs)

• Single-step and multi-step control of the Algorithm Logic

• Independent direct memory access (DMA) engines for read and write data

• Both block DMA and stream DMA are supported (for more information on stream
DMA see Chapter 5, “Direct I/O”)

• Programmed Input/Output (PIO) access to algorithm’s Debug port and algorithm
defined registers

• Control and Status registers

RASC Core Services Overview

007-4718-005 23

• Host and FPGA process synchronization capabilities, including interrupts and
atomic memory operations (AMOs).

Core Services Architecture Overview

The Core Services in the RASC 2.1 release have new direct memory access streaming
capabilities that increases bandwidth and reduce latency as perceived by the algorithm.
This describes the components of Core Services as shown in Figure 3-1.

24 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Figure 3-1 Block Diagram of the RASC Core Services

SRM

The SSP Receive Module (SRM) is the receive logic for the Scalable System Port (SSP).

SRM

SXM

DS
PIO req
engine

REQ
gate

MMR

PIO path

Int gen

Rd DMA

SB13

SB12

SB11

SB10

Input DMA

Wr DMA

SB03

SB02

SB01

SB00

Output DMA

Algorithm
block

Mem
intf

Mem ctrl

Bank0

Bank1

Bank2

Bank3

Bank4

TNUM
tracker

RSP
path for

ds pio req

Key
Data flow

Control

RASC Core Services Overview

007-4718-005 25

SXM

The SSP Transmit Module (SXM) is the transmit logic for the SSP.

Programmed Input/Output Request Engine

The Programmed Input/Output (PIO) request engine handles the host write and read
requests for individual 64-bit values.

TNUM Tracker

The TNUM tracker assigns and tracks transaction IDs within the FPGA.

Request Gate

This logic assembles the SSP packet for FPGA write and read from main memory
requests.

Memory Mapped Registers

The memory mapped register (MMR) block houses and handles the registers used to
control and use the FPGA.

Interrupt Generator

The interrupt generator assembles the proper packet data to interrupt the host in the case
of a direct memory access (DMA) done or alg_done, for example.

Input Direct Memory Access

The input direct memory access (DMA) block is comprised of up to four stream DMA
engines that target the algorithm for the data coming in from main memory and a block
DMA read engine that targets SRAM for the data coming in from main memory.

Output Direct Memory Access

The output DMA block is comprised of up to four stream DMA engines that take data
directly from the algorithm and target main memory and a block DMA write engine that
takes data from SRAM and targets main memory.

26 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Memory Controller

The Memory Controller handles the memory interfaces and is responsible for arbitrating
between sources and destinations. It provides a generic interface to the algorithm for
accessing on-board memory.

Algorithm Block

The algorithm block is the application specific, user defined code that performs the
desired calculation.

Algorithm Run Modes

The Core Services Logic provides the mechanism for application and debugger software
to run the Algorithm Block in one of two modes: Normal Mode or Debug Mode. In
Normal Mode, the algorithm is enabled to run and allowed to run to completion
uninterrupted. In Debug Mode, the algorithm is enabled to run but forced to execute in
blocks of one or more steps, allowing the user to stall the algorithm at intermediate
points in the execution and query intermediate internal values. A step could be as small
as one Algorithm Block clock cycle, or an adhoc size defined by Algorithm Block logic.
Core Services Logic continues to run more or less normally regardless if in Normal or
Debug Mode. For a description of how the Algorithm Block can use the debug mode
hooks, see the “Algorithm Interfaces” on page 27.

Algorithm Interfaces

007-4718-005 27

Algorithm Interfaces

This section defines the interface signals between the Algorithm Block and the Core
Services Block and algorithm defined registers (ARDs). It covers the following topics:

• “Algorithm Control Interface” on page 27

• “Algorithm Defined Registers” on page 28

• “Streaming Direct Memory Access” on page 30

• “Debug Register Interface” on page 34

• “SRAM Interface” on page 34

Algorithm Control Interface

There are control signals to enable the smooth transition of control from Core Services to
the algorithm and back. These signals are listed and explained in Table 3-1.

Table 3-1 Algorithm Control Interface Signals

Signals Direction Description

alg_clk input The Algorithm Clock is available at frequencies of 50, 66,
100, and 200MHz. The clock is gated, synchronous and
phase aligned to the core_clk used in the Algorithm
Block. The clock frequency is determined by a macro
defined at synthesis of the FPGA bitstream. The clock is
driven on global clock buffers for low skew routing.

alg_rst input Resets the algorithm logic. The algorithm logic is always
put into reset for four clock cycles before triggering it to
execute.

step_flag output Step boundary indicator flag. For every clock cycle, the
step_flag is asserted, it signals to Core Services that one
step has been completed. The Core Services logic ignores
this signal when the algorithm is not run in debug mode.

alg_done output Set when the algorithm has finished processing. This can
either be set and held until the algorithm is reset or pulsed.
When alg_done is asserted, clk will become inactive the
following clock cycle. The signal alg_done must clear when
alg_rst is asserted.

28 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Algorithm Defined Registers

The Algorithm Defined Registers (ADRs) are now bidirectional, that is, they can be read
or written to by the algorithm. Previously, ADRs could be read and written to by the host;
they could only be read by the algorithm. Now the ADRs can be read and/or written to
by both the host and algorithm. This now gives a simple mechanism for an algorithm to
forward information to future invocations of the algorithm. The first signal is the same
as in previous releases. The next four signals are new. The write capability overlaps the
debug registers up to RASC 2.1.

There are now hooks to implement from zero to 64 ADRs. By default, eight ADRs are
included. If a different number is required, you need to change the
user_space_wrapper and alg_block_top configuration files. The ADR signal
definitions are provided in Table 3-2.

Table 3-2 ADR Signal Definitions

Signals Direction Description

alg_def_reg<n>[63:0] input Current value of ADR n

alg_def_reg_updated_n input Asserted one clock cycle when alg_def_reg<n>
is updated by the host. Can be left unconnected if
not used.

alg_def_reg_polled_n input .Asserted one clock cycle whenalg_def_reg<n>
is read (polled) by the host. Can be left
unconnected if not used.

alg_def_reg_write_n output Assert this signal to write to alg_def_reg<n>.
The signal alg_def_reg<n>_wr_data must be
valid. The value will appear in alg_def_reg<n>
the next clock cycle. A simultaneous write from the
host supersedes this operation and this write will
be ignored. In the event this happens,
alg_def_reg<n>_updated will be asserted the
following cycle.

alg_def_reg<n>_wr_data[63:0] output Value to write to alg_def_reg<n> when
alg_def_reg_<n>_write is asserted.

Algorithm Interfaces

007-4718-005 29

Algorithm Defined Register Configuration

The following Verilog macros must be defined in the alg.h file. By setting the first
macro, up to 64 ADRs can be defined. Note that a setting other than 8 requires changes
to user_space_wrapper and alg_block_top.v configuration files. The remaining
macros are bit masks that allow you to optimize by restricting usage, for example,
making the ADR read-only by the host. The macros are, as follows:

// number of ADRs to implement
‘define ADR_REG_NUM 8

// bit mask to specify which ADRs to implement
‘define ADR_REG_IN_USE ‘ADR_REG_NUM’hff

// bit mask to specify which ADRs are read-only by alg
‘define ALG_ADR_READ_ONLY ‘ADR_REG_NUM’hff

// bit mask to specify which ADRs are read-only by host
‘define HOST_ADR_READ_ONLY ‘ADR_REG_NUM’h00

// bit mask to specify which ADRs are write-only by host
‘define HOST_ADR_WRITE_ONLY ‘ADR_REG_NUM’h00

Algorithm Defined Register Usage

The host first writes to alg_def_reg<n>, then reads it. Subsequently, the algorithm
does a write (see Figure 3-2). These signals represent what the algorithm sees as a result
of both host initiated actions and algorithm initiated actions.

Figure 3-2 Algorithm Defined Registers (ADR) Interface Usage

clk

alg_def_reg<n>[63:0]

alg_def_reg_updated<n>

alg_def_reg_polled<n>

alg_def_reg_write<n>

alg_def_reg<n>_wr_data D2

D1D0 D2D1

30 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Streaming Direct Memory Access

This section describes streaming direct memory access (DMA) Sand covers the following
topics:

• “Input Streaming DMA Engine” on page 30

• “Start Input Stream” on page 30

• “End input stream” on page 31

• “Output Stream” on page 32

• “Start Output Stream” on page 32

• “End Output Stream” on page 33

• “Streaming DMA Extractor Statements” on page 34

Input Streaming DMA Engine

Table 3-3 shows the signal definitions of the input streaming DMA engine.

Start Input Stream

This timing diagram shows the sequence to start an input stream (see Figure 3-3).

Table 3-3 Input Streaming DMA Engine Signal Definitions

Signals Direction Description

strm_in_<n>_data_vld input When asserted, strm_in_<n>_data is valid.

strm_in_<n>_data[127:0] input Input stream data. Valid when
strm_in_<n>_data_vld is asserted.

 strm_in_<n>_rd_en output Assert this signal to read from the input stream buffer. If
there is no data in the buffer, this signal has no effect. If
the input stream is to be treated as a FIFO, this signal can
be used as a pop signal. The logic, when it sees an
asserted strm_in_<n>rd_en signal, will deliver the
next datum if and only if data is available. Otherwise,
the signal is ignored.

Algorithm Interfaces

007-4718-005 31

Figure 3-3 Start of Input Stream Transaction

End input stream

This timing diagram shows the end of an input stream (see Figure 3-4). There is a two
cycle latency between rd_en and data_vld signals.

Figure 3-4 End of Input Stream Transaction

clk

strm_in_<n>_data_vld

strm_in_<n>_data[127:0]

strm_in_<n>_rd_en

D0 D1 D2 D3 D4 D5

clk

strm_in_<n>_data_vld

strm_in_<n>_data[127:0]

strm_in_<n>_rd_en

D6 D7D3 D4 D5

32 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Output Stream

Table 3-4 contains signal definitions for the output stream DMA engines. There are four
instantiations of the engine.

Start Output Stream

This timing diagram shows the sequence to start an output stream (see Figure 3-5). It
begins with indicating the address and byte count. Also shown is the flow control
necessary when the output stream becomes busy.

Table 3-4 Output Stream Signal Definitions

Signals Direct Description

strm_out_<n>_busy input When asserted, the buffer in output stream logic is full.
strm_out_<n>_data_vldmust be deasserted within
two cycles.

strm_out_<n>_almost_busy input When first asserted, it may become necessary to deassert
strm_out_<n>_data_vld within 256 cycles.

strm_out_<n>_flushed input All previously sent data has been flushed to memory.

strm_out_<n>_data_vld output Assert when strm_out_<n>_ad_out is valid. This
signal should not be asserted if strm_out_<n>_flush
was previously asserted and
strm_out_<n>_flushed has not yet been asserted.

strm_out_<n>_data_last output Assert at the end of an output stream at the last assertion
of or after the deassertion of
strm_out_<n>_data_vld. If the number of cycles
strm_out_<n>_data_vld has been asserted is not a
multiple of eight, the last data will be padded with zeros
so a multiple of 128 bytes (0x80) is written to host
memory.

strm_out_<n>_flush output Assert at the end of an output stream at or after the
assertion of strm_out_<n>_data_last. This signal
is used to guarantee data previously delivered to the
output stream has been sent to host memory.
strm_out_<n>_data_vld should not be asserted
until strm_out_<n>_flushed been asserted.

strm_out_<n>_ad[127:0] output System address, byte count, or data.

Algorithm Interfaces

007-4718-005 33

Figure 3-5 Start of Output Stream Transaction

End Output Stream

Figure 3-6 shows the end of an output stream. Note that the flush signal can be asserted
any time during or after the final assertion of strm_out_<n>_data_vld.

Figure 3-6 End of Output Stream Transaction

clk

strm_out_<n>_busy

strm_out_<n>_almost_busy

strm_out_<n>_flushed

strm_out_<n>_data_vld

strm_out_<n>_data_flush

strm_out_<n>_ad_out[127:0] D0 D1 D2 D3 DATA D17 D18 D19

clk

strm_out_<n>_busy

strm_out_<n>_almost_busy

strm_out_<n>_flushed

strm_out_<n>_data_vld

strm_out_<n>_data_flush

strm_out_<n>_ad_out[127:0] DY DZDX

34 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Streaming DMA Extractor Statements

The extractor statements for DMA streaming are in the form of // extractor
stream:<stream_name> <direction> <stride>, as follows:

// extractor stream:input_stream in 8
// extractor stream:output_stream out 8

A stride is the minimum size (in bytes) of a piece of data that is guaranteed to not have
dependencies with other same-sized blocks of data in the input stream. A stride of 0
means that no such data exists and that the input stream may not be broken apart and
spread across FPGAs. A stride boundary is the boundary at which the input stream may
be broken to be spread across multiple FPGAs.

Debug Register Interface

There now are hooks to implement from zero to 64 debug registers. By default, sixty-four
debug registers are included. If you require a different number, you must make changes
to user_space_wrapper and alg_block_top.

SRAM Interface

This section describes the SRAM interface and covers the following topics:

• “Arbitration” on page 35

• “Handshaking Methodologies” on page 36

• “Additional 64-bit SRAM Port” on page 37

• “Address Offsets” on page 37

Table 3-5 Debug Register Definition

Signal Name Direction Description

Debug<n>[63:0] output Current Value of Debug n

SRAM Interface

007-4718-005 35

Arbitration

The arbitration has changed in the RASC 2.1 release. The algorithm may now run
concurrent to the Core Services. This means that you must be careful when assigning the
ports at the SRAM interface. When designing an algorithm, you can no longer rely on
inherent arbitration that comes from running the master (algorithm or Core Services),
exclusively.

If a situation is created, where a particular external SRAM port is being accessed by Core
Services (via some host action such as a DMA or PIO) and also by the algorithm
simultaneously, causing an access conflict, the behavior under RASC 2.1 release differs
from prior releases. Under RASC 2.1, Core Services and the algorithm now must go
through arbitration to gain access to the port when an access conflict exists. Previously,
the algorithm had access to the port whenever it desired and Core Services was denied
access until the resource was free. Under the 2.1 release, if you schedule an
implementation where an access conflict to a port can occur, you must design your
algorithm implementation to handle the arbitration activity that can now occur. If you
schedule your implementation where no access conflict can occur, no accommodations
must be implemented to deal with the arbitration.

You can still assign the ports to avoid any arbitration by using extractor statements and
directives.

You may assign ports in the alg.h file through ‘define statements. An example of
allowing the algorithm to read from SRAM Bank 0 and write to SRAM Bank 1 is, as
follows:

//
// Specify SRAM ports for algorithm //
//
‘define alg_uses_sram0_rd
‘define alg_uses_sram1_wr

You may also define the port usage for Core Services. This is done through extractor
statements in the Verilog. An example of assigning the Core Services the write port of
SRAM Bank 0 and the read port of SRAM Bank 1 is, as follows:

// A multiple-source error is generated if a destination output is
targeted
// by more than one input source. (captured in the bit 0 of debug
register 9)
//
// extractor CS: 1.0

36 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

// extractor VERSION:19.1
// extractor SRAM:op_in0 1024 64 sram[0] 0 in u stream
// extractor SRAM:res0 1024 64 sram[1] 0 out u stream

For a more detailed discussion of the extractor statements, please see “Adding Extractor
Directives to the Source Code” on page 130.

Handshaking Methodologies

There are two handshaking techniques available. You may use either the busy signal
methodology or the crediting scheme. Only one method is used on each interface and
you may select one method for one interface and the other method for a second interface.

If, however, it is guaranteed that the algorithm and DMA will never use the same SRAM
port, neither of the schemes described below are required.

Using Busy Signal

The busy signal method is a straight forward back pressure method to indicate to the
algorithm that it must stall its SRAM write queue until the SRAM is available. This is
signaled by the SRAM interface by asserting the mem_<n>_rd_busy or
mem_<n>_wr_busy signal with a high value.

The algorithm must deassert the mem_<n>_rd_cmd_vld and mem_<n>_wr_cmd_vld
signal two clocks after the interface asserts busy and may not assert it until the busy
signal is no longer asserted.

Using SRAM Crediting Scheme

The interface indicates that space is available for a 128-bit transfer by pulsing the
mem_<n>_rd_fifo_cred or mem_<n>_wr_fifo_cred signal high for one clock
period. For example, after reset if the SRAM can handle sixteen (16) 128-bit transfers, the
interface asserts the proper credit signal for sixteen (16) clocks. Furthermore, as a
previously full buffer slot is freed, a credit is sent back to the algorithm indicating that
there is room for another transfer.

In the crediting scheme, the algorithm must maintain a credit counter and it must not
send data when there are no credits available. Credit overflow and underflow are the
responsibility of the algorithm designer.

SRAM Interface

007-4718-005 37

Additional 64-bit SRAM Port

The RASC 2.1 release provides a single 64-bit SRAM interface to the algorithm for
algorithm defined storage. In the RASC 2.1 release, this is a non-arbitrated interface to
which only the algorithm has access. The two(2) 128-bit banks provided in previous
versions of Core Services remain, but there is additional arbitration. Core Services and
the algorithm can now simultaneously access the same SRAM resource, and both expect
to have access to it based upon the Core Services implemented arbitration scheme (see
“Arbitration” on page 35).

Address Offsets

The address offsets of the alg_mem_<n>_offset macro have been changed from bits
9:0 to 23:14. Bits 31:24 are ignored.

Table 3-6 SRAM Interface Signal Definition

Signals Direction Descriptions

mem_<n>_rd_cmd_vld output When asserted, mem_<n>_rd_addr is valid. Some
number of cycles later rd_data_vld and rd_data will
be asserted with valid data. After the assertion of
mem_<n>_rd_busy, this signal must be deasserted within
two cycles.

mem_<n>_wr_cmd_vld output When asserted, mem_<n>_wr_addr, mem_<n>_wr_be,
and mem_<n>_wr_data are valid. After the assertion of
mem_<n>_wr_busy, this signal must be deasserted within
two cycles.

mem_<n>_rd_busy input When asserted, this signal indicates the
mem_<n>_rd_cmd_vld signal must be deasserted within
two cycles.

mem_<n>_wr_busy input When asserted, this signal indicates the
mem_<n>_wr_cmd_vld signal must be deasserted within
two cycles.

38 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

SRAM Read Operation

Figure 3-7 shows a read of four cycles, no busy.

mem_<n>_rd_fifo_cred input This signal is asserted for one clock period for each
available location in the command FIFO. After reset, the
core services will assert mem_<n>_rd_fifo_cred for the
number of locations available. As commands enter the
FIFO, algorithm decrements its credit counter. The core
services will assert mem_<n>_rd_fifo_cred following
the processing of the command, and the algorithm will
increment its credit counter acknowledging the available
location.

mem_<n>_wr_fifo_cred input Identical to the mem_<n>_rd_fifo_cred signal, but for
writes.

mem_<n>_wr_be[15:0 or 7:0] output This signal is used to indicate a write enable for each byte.
Bit 0 indicates the lowest byte. mem_<n>_wr_data[7:0]
is valid and bit 15 indicates
mem_<n>_wr_data[127:120] is valid.

mem_<n>_rd_addr[23:0] output This signal indicates the byte address for a memory read or
write request. The lower four bits must be zero.

mem_<n>_wr_addr[23:0] output This signal indicates the byte address for a memory read or
write request. The lower four bits must be zero.

mem_<n>_wr_data[127:0 or
63:0]

output This signal is the data for a memory write access.

mem_<n>_rd_data_vld input When asserted, mem_<n>_rd_data is valid.

mem_<n>_rd_data[127:0 or
63:0]

input Data from a previous read request. Data is returned in the
order requested.

mem_<n>_error input When asserted, this signal indicates an uncorrectable read
data errors occurred during a memory access.

Table 3-6 SRAM Interface Signal Definition

Signals Direction Descriptions

SRAM Interface

007-4718-005 39

Figure 3-7 SRAM Read Operation

SRAM Read with Busy Operation

Figure 3-8 shows a read of eight cycles with busy. Note that mem_<n>_rd_cmd_vld
must be deasserted two cycles after assertion of busy.

Figure 3-8 SRAM Read with Busy

SRAM Write with Busy Operation

Figure 3-9 shows a write of eight cycles with busy. Note that mem_<n>_wr_cmd_vld
must be deasserted two cycles after assertion of busy.

clk

mem_<n>_rd_cmd_vld

mem_<n>_rd_addr

mem_<n>_rd_busy

mem_<n>_rd_data_vld

mem_<n>_rd_data

A0 A1 A2 A3

D0 D1 D2 D3

clk

mem_<n>_rd_cmd_vld

mem_<n>_rd_addr

mem_<n>_rd_busy

mem_<n>_rd_data_vld

mem_<n>_rd_data

A0 A1 A2 A3 A4 A5 A6 A7

40 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Figure 3-9 SRAM Write with Busy Assertion

clk1

mem_<n>_wr_cmd_vld

mem_<n>_wr_addr

mem_<n>_wr_be

mem_<n>_wr_data

mem_<n>_wr_busy

A0 A1 A2 A3 A4 A5 A6 A7

BE0 BE1 BE2 BE3 BE4 BE5 BE6 BE7

D0 D1 D2 D3 D4 D5 D6 D7

Algorithm Design Details

007-4718-005 41

Algorithm Design Details

This section provides information that the algorithm designer needs to implement the
hardware accelerated algorithm within the FPGA and the Core Services Block
framework. It covers the following topics:

• “Basic Algorithm Control” on page 41

• “Recommendations for Memory Distribution” on page 44

• “Implementation Options for Debug Mode” on page 45

• “External Memory Write Transaction Control” on page 46

• “External Memory Read Transaction Control” on page 47

• “Designing an Algorithm for Multibuffering” on page 48

• “Passing Parameters to Algorithm Block” on page 52

• “Recommended Coding Guidelines for Meeting Internal Timing Requirements” on
page 54

• “Connecting Internal Signals to the Debugger” on page 54

Basic Algorithm Control

This section covers the general algorithm control sequence during a normal algorithm
run (a run without breakpoints). Figure 3-10 illustrates such a sequence. The algorithm
clock begins to toggle and the algorithm is put into reset for 4 algorithm clock cycles
before triggering a new iteration of the algorithm.

When the algorithm is done, it can either be set and held until the algorithm is reset or pulsed.
Once asserted, one more algorithm clock cycle will be generated. At this point, the
algorithm is done and no further algorithm clock pulses will be generated for this
iteration. The user can then read the state of the algorithm block via the debug registers.
The next time the algorithm is triggered by software, the reset sequence will start all over
again. When there are no breakpoints, the activity of the step_flag signal is ignored.
There are two resets, as follows:

• core_rst for Core Services (used only in Core Services) controlled by
Programmed Input/Output requests (PIOs) to the TIO ASIC (see Figure 1-4 on
page 10 and Figure 1-5 on page 12)

42 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

• alg_rst for a portion of Core Services and the Algorithm Block controlled by
writing alg_go and alg_clr in CM_CONTROL

For more information on resets, see “Resets” on page 59.

This particular example (Figure 3-10) holds step_flag high, the method for clock based
stepping.

Figure 3-10 Example of a Continuous, Normal Mode Algorithm Run

An overview of the hardware algorithm design steps is presented in Figure 3-11.

clk

step_flag_out

alg_done

rst

Algorithm Design Details

007-4718-005 43

Figure 3-11 Hardware Accelerated Algorithm Design Flow

Connect debug signals and
algorithm defined registers

Choose operand and result
memory allocation

Choose debug implementation
strategy

Design main algorithm
control

Design interface to used
memory ports

Integrate specific algorithm
function

Instantiate all submodules
under alg_block_top.v/vhd

(Optional)
Run basic simulation

Generate extractor
comments

Run FPGA
implementation

Test in hardware

44 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Recommendations for Memory Distribution

The RASC FPGA gives the algorithm access to five banks of up to 40MB SRAM (see
Figure 1-5 on page 12). This section discusses the considerations for algorithm designers
when deciding how to distribute input operands and parameters and output results
among the available SRAM banks.

Input and Output Placement

The primary recommendation for data distribution is to organize algorithm inputs and
outputs on separate SRAM banks. In other words, if bank 0 is used for input data, it
should not also be used for output data and vice versa (by splitting the SRAM into two
logical halves, for example). The motivation for this guideline comes from the fact that
when an algorithm accesses a particular bank’s read or write port, it blocks access to the
DMA engine that wants to unload finished results or load new operands.

To avoid multiple arbitration cycles that add to read and write latency when designing
an algorithm, see “Arbitration” on page 35, that describes how arbitration has changed
in the RASC 2.1 release from prior releases.

In order for the hardware accelerated algorithm to run efficiently on large data sets, it is
recommended to overlap data loading and unloading with algorithm execution. To do
this successfully, the algorithm designer needs to start with an SRAM layout of algorithm
operands and results that allows each bank to be simultaneously accessed by the
algorithm for one direction (read or write) and a DMA engine for the other direction
(write or read).

Algorithm Design Details

007-4718-005 45

Implementation Options for Debug Mode

The Algorithm can implement two different forms of Debug Mode, based on
convenience or the desired granularity of step size: clock cycle based stepping or variable
(ad hoc) stepping. The differences between the two determine the step size, or how long
the algorithm will run when triggered to step once. There are also implementation
differences for the step size variants. Currently, only one type of debug mode is
supported at a time.

Clock Cycle Step Size Mode

Clock cycle based stepping means that the step size is one clock (clk) cycle. This method
is easily implemented in RTL-based algorithms by tying the step_flag output
(set_flag_out) to one (logic high). The step counter used by the debugger is 16 bits,
so the maximum number of clock cycles that can be stepped in one debugger command
is 2^16-1 = 65,535. An example of this mode is shown in Figure 3-12. The figure shows
rst asserted for four rising clk edges. Note that you can rely on reset (rst) being
asserted for longer than one cycle.

Note that since the Algorithm Block cannot detect when clk has stopped, the effect of
stepping is transparent to the Algorithm Block.

Figure 3-12 Clock Cycle Stepping Mode Example

Variable Step Size Mode

Another approach for implementing debugging is to assert step_flag at points of
interest rather than every clock cycle, which makes the step size a variable number of
clock cycles. One example of this method would be to use step_flag as an output of
the last state of the FSM. Another example would be for the user to put in a “trigger” for
when an internal counter or state machine reaches a specific value (with an

clk

rst

step_flag_out

alg_done

46 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

indeterminate number of clock cycle steps in between). In this case, step_flag is tied
to the trigger so that the algorithm can break at a designated point.

The ad hoc nature of this approach requires the Algorithm to define and notify Core
Services of step boundaries with the step_flag signal. The clk signal will not stop
toggling during the same clock cycle that the step_flag signal is asserted; it will turn
off on the following clock cycle. See the timing diagram in Figure 3-13.

Figure 3-13 Variable Step Size Mode Example

External Memory Write Transaction Control

The process of using a write port involves the following step (example given for SRAM0
alone):

When the address, data and byte enables are valid for a write, assert
mem_<n>_wr_cmd_vld (reoccurring phase)

Example Write Transaction Timing Diagram

Figure 3-14 shows single and back-to-back write commands.

clk

rst

step_flag_out

alg_done

Algorithm Design Details

007-4718-005 47

Figure 3-14 Single, and Multiple Write Commands

External Memory Read Transaction Control

The process of using a read port involves the following steps (example given for SRAM0
alone):

1. When the address is valid for a read, assert mem_<n>_rd_cmd_vld (reoccurring
phase). This step can be repeated while waiting for data (back-to-back burst reads).
The Algorithm can issue one quad-word (16 byte) read command every clk cycle
per bank.

2. The read data will return on the bus mem_<n>_rd_data[127:0] several clock
cycles later in the order it was requested (mem_<n>_rd_cmd_vld indicates that the
read data is valid). The observed read latency from the Algorithm’s perspective will
vary based on the clock period ratio between alg_clk and core_clk. Read
latency is nominally 10 core_clk cycles; burst read commands are recommended
for optimal read performance.

The algorithm should use the provided read data valid signal to determine when
read data is valid and not attempt to count data cycles for expected latency.

Example Read Transaction Timing Diagram

Figure 3-15 and Figure 3-16 show single and back-to-back read commands.

clk

mem_<n>_wr_addr

mem_<n>_wr_be

mem_<n>_wr_cmd_vld

mem_<n>_wr_data

rst

X A0

B0

D0

A1

B1

D1

B2

D2

A3

B3

D3

A4

B4

D4

A5

B5

D5

X

X

X

X

X

X

X

X

A2

48 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Figure 3-15 Single Read Transaction

Figure 3-16 Multiple Read Transaction

Designing an Algorithm for Multibuffering

Purpose

Many applications targeted for hardware acceleration have large input and output data
sets that will need to be segmented to fit subsets into the RASC-brick’s or RASC blade’s
external SRAM banks at any given time (a total of 40MB are available). Certain
applications have large input data sets that have the same processing performed on
subsets and only require that new input data be available in order to maintain

clk

 mem_<n>_rd_addr

mem_<n>_rd_cmd_vld

mem_<n>_rd_cmd_vld

mem_<n>_rd_data

rst

X A0

D0X

X

X

clk

mem_<n>_rd_addr

mem_<n>_rd_cmd_vl

mem_<n>_rd_cmd_vld

mem_<n>_rd_data

rst

X A0

D0X

X

XD1

A1

Algorithm Design Details

007-4718-005 49

continuous processing. These requirements bring up the notion of multibuffering of a
large data set through an algorithm. Multibuffering data provides a continuous and
parallel flow of data to and from the algorithm. Multibuffering provides the means to
sequentially load data, execute, and unload a block of data in a loop one at a time.

In order for the hardware accelerated algorithm to run efficiently on large data sets, it is
recommended to overlap data loading and unloading with algorithm execution. To do
this successfully, start with an SRAM layout of algorithm operands and results that
complies with the recommendations for memory distribution. The input and output data
needs to be segmented into at least two segments per SRAM bank so that the Algorithm
Block can execute on one segment while the next data segment is loaded by the Read
DMA Engine and the previous output data segment is unloaded by the Write DMA
Engine (ping-pong buffer effect). The SRAM bank can be segmented into any number of
segments, as the algorithm and application designers best see fit.

Definitions

• algorithm iteration

One run of the algorithm; the operation that the algorithm performs between the
time alg_rst is deasserted until the alg_done flag is asserted. Successive iterations
require software to retrigger the algorithm.

• segment / segment size

The amount of memory needed on a particular SRAM bank for an algorithm
iteration, round up to the nearest power of 2. One segment could include multiple
input operands or multiple output operands, with spaces of unused memory within
the segment if desired. A segment does not include fixed parameters that are
applied to multiple algorithm iterations.

A multibuffered segment must be at most 1/2 of the SRAM bank’s size. The
minimum segment size is 16KB (but not all 16KB need to be used). Different SRAM
banks can have different segment sizes according to the sizes and number of
operands / results that reside on a particular SRAM bank.

alg_mem_0_offset[23:14] and alg_mem_1_offset[23:14]

Inputs to the Algorithm Block that specify for each SRAM the starting address of
the current data segment. When used, these inputs get mapped to the Algorithm
Block’s SRAM address bits [23:14] (byte aligned address). The actual number of bits
that are used for the mapping is determined by the segment size. If the segment size

50 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

is 16KB, all 10 bits are mapped to SRAM address bits [23:14]. If the segment size is
512 KB, only bits [23:19] are mapped to SRAM address bits [23:19]. If the segment
size is 8MB, only bit [23] is mapped to SRAM address bit [23].

Hardware Support

In order to support multibuffering, an algorithm should allow the upper bit(s) of its read
and write SRAM addresses to be programmable via the alg_mem*_offset inputs. The
offset inputs come from an internal FPGA register within the Core Services Block,
accessible by the software layer. The offset inputs are 10 bits each, and can map to bits
[23:14] of the corresponding SRAM address. Only the bits that correspond to the segment
offset are used for a particular algorithm/application. For example, if the segment size is
32 KB, which leads to 512 segments in the 16MB bank, only the upper 9 of the 10 offset
bits are used. Example Register Transfer Level (RTL) code for this configuration is shown
below:

reg [23:15] mem0_rd_segment_addr;
reg [14:0] mem0_rd_laddr;
wire [23:0] mem0_rd_addr;

// Read pointer
always @(posedge clk)
begin
// Fixed upper address bits [23:15] per iteration
if (rst) mem0_rd_segment_addr_sram0 <= alg_mem0_offset[23:15];
// Counter for lower address bits [14:0]
if (rst)
mem0_rd_laddr <= 15’h000;
else if (rd_advance_en)
mem0_rd_laddr <= mem0_rd_laddr + 15’h10;
end

assign mem0_rd_addr = {mem0_rd_segment_addr, mem0_rd_laddr};

The algorithm must define a legal segment size between the minimum and maximum
allowable sizes, and only operate on and generate one segment worth of data per
iteration.

Special extractor directives are required to pass information about the algorithm’s data
layout and multibuffering capabilities to the software layer. The software layer requires
a declaration of the input and output data arrays on each SRAM bank, with attributes

Algorithm Design Details

007-4718-005 51

size, type, and buffer-ability defined. The declarations are provided as extractor
directives, or comments in the Verilog or VHDL source code. The following example
comments are used to declare two 16KB input data arrays located on SRAM 0, and one
non-multibuffering input parameter array, also located on SRAM 0:

##Array name
of elements in array
Bit width of element
SRAM location
Byte offset (within given SRAM)
Direction
Type
Stream flag
// extractor SRAM:input_a 2048 64 sram[0] 0x000000 in unsigned stream
// extractor SRAM:input_b 2048 64 sram[0] 0x004000 in unsigned stream
// extractor SRAM:param_i 512 64 sram[0] 0xffc000 in unsigned fixed

Note: In the code example above, stream is in the context of multibuffering. The
stream data type is an historical anachronism and thus still appears in extractor
directive code.

For arrays that are defined as buffered, the byte offset provided in the extractor
comments is used to establish the data placement within a particular segment. In the
declaration, the byte offset is given at the lowest segment address. For fixed arrays, the
byte offset is the absolute placement of the data within the SRAM.

Further details on extractor comments can be found in Chapter 6, “RASC Algorithm
FPGA Implementation Guide”

Software Responsibilities

Software uses configuration information derived from extractor directives to move the
current active segment on each run of the algorithm. Software changes the values of
alg_mem_0_offset[23:14] and alg_mem_1_offset[23:14] for each run of the
algorithm and similarly moves the DMA engines’ input and output memory regions
based on the current active segment.

52 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Passing Parameters to Algorithm Block

This section describes the ways that variable parameters can get passed to the algorithm.
For the purposes of this document, a parameter is distinguished from the general input
data in that it can be fixed over multiple runs of the algorithm and does not require
reloading. It is assumed that input data changes more often than parameters.

Small Parameters

The method used to pass variable parameters depends on the size and number of the
required parameters. For a small number of 1-8 byte-sized parameters, the Algorithm
Block can associate parameters with up to 64 Algorithm Defined Registers. The
Algorithm Defined Registers are 64 optional registers that exist within the SSP memory
mapped register region whose current values are inputs to the Algorithm Block (by
default only the first eight of the following are defined: alg_def_reg<n>[63:0]
where <n> is an integer 0-63). The Algorithm Block can assign reset (default) values for
the parameters by tying the output signals alg_def_reg<n>_wr_data[63:0], and
allow the host application to change them.

Parameter Arrays

When an algorithm requires larger fixed parameters, portions of the SRAM banks can be
used to hold the parameter data. This portion of the SRAM needs to be reserved for
parameter data and kept unused by input data, so parameters need to be considered in
the initial memory allocation decisions. Just as with small parameters, the mapping of
parameter data to SRAM addresses is specified with extractor comments. The template
and an example is provided below; further details are in the “Adding Extractor
Directives to the Source Code” on page 130. In the provided example, a 1024-element
parameter matrix (8KB) is mapped to the upper 8KB of SRAM0, which starts at address
0xFFE000. The type is unsigned and the array is fixed, which denotes that it is a
parameter array and not as variable as an input data array (the other option is “stream”).

// extractor SRAM:<parameter array name> <number of elements in array>
<bit width of elements> <sram bank> <offset byte address into sram> in
<data type of array> fixed

// extractor SRAM:param_matrix0 1024 64 sram[0] 0xFFE000 in u fixed

Another use of declaring a fixed array in one of the SRAMs could be for a dedicated
scratch pad space. The only drawback to using SRAM memory for scratch pad space is
that an algorithm normally writes and then reads back scratch pad data. This usage

Algorithm Design Details

007-4718-005 53

model violates the multibuffering rule requiring an algorithm to dedicating each SRAM
bank for either inputs or outputs. If you have a free SRAM bank that you do not need for
inputs or outputs, this violation can be avoided and the multibuffering model can be
maintained. If you have a free SRAM that is not being used for anything else, then you
do not even have to add an extractor directive. An extractor directive is necessary if the
SRAM bank is being used for other purposes so that software does not overwrite your
scratch pad space. An extractor directive is also necessary to be able to access the scratch
pad space from the debugger (reads and writes), so in general, an extractor directive is
recommended.

Note that if you violate the multibuffering model for SRAM direction allocation, data
will not be corrupted but the benefit of multibuffering will not occur because data
transfer and algorithm execution cannot be overlapped. A template and an example is
provided below for writing an extractor comment for a scratch pad space is, as follows:

54 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

// extractor SRAM:<scratch_pad_array_name>
 <number of elements in array>
 <bit width of elements>
 <sram bank>
 <offset byte address into sram>
 inout
 <data type of array>
 <signed / unsigned>
 fixed

// extractor SRAM:scratch1 1024 64 sram[2] 0x000000 inout u fixed

Recommended Coding Guidelines for Meeting Internal Timing Requirements

These guidelines are suggestions for achieving 200 MHz timing, when possible (not
including floating point operations or use of multipliers).

1. Flop all outputs of the algorithm block, especially critical outputs, such as
step_flag.

2. Flop and replicate the rst input if needed to distribute it as a high fanout signal.

3. Flop the inputs mem_0_rd_data_vld and mem_0_rd_data before performing
combinatorial logic on the data or data valid signals.

4. The general rule to abide by when trying to code a design that passes timing at 200
MHz is this: do not give PAR (the place and route tool) any tough decisions on
placement where it would be difficult to find a good location. If a critical signal
loads logic in multiple blocks, replicate it so that PAR does not have to try to
optimize placement of the driving flop relative to the various loading blocks. You
may have to add synthesis directives to prevent the synthesis tool from “optimizing
out” your manually replicated flops. As far as possible, do not have a flop drive
combinational logic in one block that then loads additional combinational logic in
another block (such as Core Services), unless they can be physically grouped to
adjacent locations, or in the worst case, minimize the total number of logic levels.

Connecting Internal Signals to the Debugger

This section shows how to make signals internal to the Algorithm Block viewable by the
FPGA-enabled GNU Debugger (GDB) software. The Algorithm Block has up to 64
debugger output ports, each 64-bits wide. In order to make internal signals visible, the
algorithm code should connect signals of interest to these outputs ports. To ease the

RASC FPGA Design Integration

007-4718-005 55

timing issues on paths coming from the Algorithm Block, it is suggested to feed
reregistered outputs to the debug outputs. Several examples are shown below:

assign debug0 = 64’h0000_000c_0000_0003; //[63:32] alg#, [31:0] rev#

In the above example, the outputs are tied, so it is not important to register the outputs.

always @(posedge clk)
 debug1 <= {32’h0, running_pop_count};

Since the intermediate value running_pop_count is also loaded by internal Algorithm
Block logic, it is recommended to flop debug register 1 rather than use a wire connection.
This helps isolate the loads of running_pop_count and reduce the number of
constraints on the place and route program.

Besides connections to the debug port, the algorithm has to contain extractor comments
that will pass the debug information to the software layer. Debug outputs use the
REG_OUT type of extractor comment. The extractor comment tells the software layer
what the mapping will be for internal signals to the corresponding debug address
location. Examples are as follows:

// extractor REG_OUT:rev_id 32 u debug_port[0][31:0]

and

// extractor REG_OUT:running_pop_count 32 u debug_port[1][31:0]

The general format is:

REG_OUT:<signal name> <signal bit width> <type:unsigned/signed> <debug
port connection>[<bit range>]

RASC FPGA Design Integration

This section discusses additional details, including locations of the Algorithm Block in
the design hierarchy, and global FPGA logic, such as clocks and resets. It covers the
following topics:

• “Design Hierarchy” on page 56

• “FPGA Clock Domains” on page 57

• “Resets” on page 59

56 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Design Hierarchy

Figure 3-17 shows the instance hierarchy of the RASC FPGA design. The top-of-chip is a
wrapper module called acs_top. The instances in the top level include I/O buffer
wrappers, clock resources wrappers, and the two major subdivisions of the logic design:
acs_core, the pre-synthesized Core Services logic, and the user_space_wrapper,
the top-level wrapper for the user/algorithm logic. As the algorithm application writer,
you should begin the algorithm design using alg_block_top as the top level of the
algorithm. The other instances within user_space_wrapper are small parts of Core
Services resources that are left to be resynthesized based on their use and fanout within
the algorithm logic. These include reset fanout logic and the debug port multiplexor.

Figure 3-17 Instance Hierarchy of the RASC FPGA Design

The Algorithm / Core Services interface as defined in the section entitled “Algorithm
Interfaces” on page 27, consist of the input and output signals defined for the module
alg_block_top.

acs_core.v

sram_io.v

sram_clk_gen.v

ssp_io.v

ssp_clk_gen.v

virtual_pins.v

acs_adr.v

acs_debug_reg.v

alg_block_top.v

acs_top.v
user_space_wrapper.v

RASC FPGA Design Integration

007-4718-005 57

FPGA Clock Domains

This section describes the clock domains within the RASC Field Programmable Gate
Array (FPGA), with a focus on the algorithm clock domain used by the Algorithm Block
logic. There are two major domains: core clock and algorithm clock. However, the two
domains are not completely asynchronous. They may either both be 200 MHz and phase
aligned, or the algorithm clock can have a 50, 66, or 100 MHz and the clocks will be phase
/ edge-aligned (that is, a rising edge of the algorithm clock will correspond to a rising
edge of the core clock).

This section covers the following topics:

• “Core Clock Domain” on page 57

• “Algorithm Clock Domain” on page 57

• “SSP Clock Domain” on page 58

• “QDR-II SRAM Clock Domains” on page 59

Core Clock Domain

The core clock has a fixed clock rate of 200 MHz. It is the main clock used within the Core
Services Block. It is derived from the input control clock on the Scalable System Port
(SSP) interface. The input clock is used as the clock input to the core clock digital clock
manager (DCM) module. The clk0 output of the DCM is driven onto a low-skew global
clock buffer (BUFG) and from there is routed to core_clk domain registers as well as the
feedback of the DCM for fine phase adjustments. In the place and route report, this clock
is labelled core_clk.

Algorithm Clock Domain

The algorithm clock rate is selectable through the use of macro definitions. Speeds of 50,
66, 100, and 200 MHz can be selected. For speeds slower than 200 MHz, the DCM clock
divider in the Xilinx Virtex 4 FPGA is used to create the specified clock signal. Figure 3-18
shows a block diagram of the logic used to create the clock signals.

Macro definitions are used to select between the clk0 and clkdv outputs of the DCM to
drive the BUFGCE clock buffer, which in turn drives the clk signal in the Algorithm
Block via the alg_clk signal.

58 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

The signal alg_clk_enable (not shown) generated by Core Services gates alg_clk.
By gating the clock, the signal toggles only when the Algorithm Block is active. In the
place and route clock report, this clock is labelled alg_clk.

When clkdv is used to drive the algorithm clock, the phase relationship between the core
clock and the algorithm clock is determined by the Virtex 4 parameter CLKOUT_PHASE,
which specifies the phase relationship between the DCM outputs of the same DCM. For
Virtex 4 FPGAs, this parameters is specified as +/- 140 ps. Although the Xilinx timing
tools do not take the CLKOUT_PHASE into account directly during analysis, an additional
140 ps has been added as input clock jitter to force the tools to correctly check paths
crossing the core_clk and alg_clk domains. Any phase difference that is derived from the
varying routes between the DCM outputs and the BUFG / BUFGCE elements as well as
the clock tree fanouts are automatically considered by the Xilinx timing tools.

Core clock domain signals in the Core Services Block that communicate with the
Algorithm Block, which is entirely in the alg_clk domain, have been designed to
transition on the rising edge ofalg_clk, even whenalg_clk is run slower than the rate
of core_clk.

Figure 3-18 Core Clock and Algorithm Clock Source

SSP Clock Domain

Besides the core clock domain, which is equivalent to the Scalable System Port (SSP)
control group domain, there are four data group clock domains within the SSP source
synchronous receiver and transmitter logic. These four groups have a determined phase

BUFGCore DCM
IBUF

clkin

clkfb

BUFGCE

BUFG

clk270

clkdv

dk0

core_clk_270

alg_clk

core_clk

ssp_ctrl_gclk

RASC FPGA Design Integration

007-4718-005 59

relationship between one another: each group is separated by a nominal 250 ps shift to
reduce simultaneous switching noise on the SSP interface. In the place and route clock
report, these clocks are labelled int_grp1_clk - int_grp4_clk.

QDR-II SRAM Clock Domains

The QDR-II SRAM module interfaces, a part of Core Services, uses five additional clock
domains: one receive clock for each external SRAM (for a total of four, one for each
physical SRAM component), and one common data transmit clock, which is a quarter
clock cycle early relative to the core_clk. In the place and route clock report, these
clocks are labelled bank0_sram_rcv_clk, bank1_sram_rcv_clk,
bank2_sram_rcv_clk, bank3_sram_rcv_clk, and core_clk270.

Resets

This section describes the hardware resets in the RASC Field Programmable Gate Array.
The primary reset input to the FPGA is the CM_RESET signal on the SSP port. It is used
as both a clock reset and as the basis of a full-chip control logic reset. When used as a
clock reset, it is used as an asynchronous reset to the DCMs in the design. A full-chip
logic reset is generated based on the assertion of CM_RESET or the de-assertion of any of
the DCM locked signals. There is a circuit in Core Services that generates a synchronous
core_rst signal, synchronous to the core clock domain. This reset is used throughout
the control logic in Core Services.

The Algorithm Block receives a different reset generated by the Core Services’ Algorithm
Controller sub-module. The Algorithm Block receives a reset that is synchronous to the
algorithm clock. After a full-chip reset, the Algorithm Block’s reset input will remain
asserted even after core_rst is removed. When the algorithm is started by software for
the first time, the algorithm reset is removed. This is to allow for debug testing of internal
signals after the algorithm completes. When software restarts the algorithm for another
run (by setting the ALG_GO bit in the CM_CONTROLRegister), the Algorithm Block will be
held in reset for a total of 4 algorithm clock cycles, and then the algorithm reset will be
released to allow the Algorithm Block to execute.

To summarize: the Algorithm Block is held in reset until its first use. Each time the
algorithm is triggered to execute, the Algorithm Block will be held in reset for 4 clock
cycles.

60 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Algorithm Synthesis-time Parameters

This section describes the parameters to be specified by the algorithm designer in order
to set the clock rate of the algorithm clock and to enable access to specific SRAM banks.

These synthesis-time parameters are specified in a Verilog include file called alg.h and
are used by the top-level of design hierarchy. An example of this header file can be found
in $RASC/example/alg_simple_v/alg.h.

Algorithm Clock Speed

The algorithm clock rate can be set at 50, 66, 100, or 200 MHz.

The following is a portion from the above example include file that selects the clock
speed. This shows the four macros used to specify an algorithm clock speed.

//
// Specify clock speed of algorithm //
//
// Only one of the below four should be uncommented

// For 200 MHz
 ‘define alg_clk_5ns

// For 100 MHz
// ‘define alg_clk_10ns

// For 66 MHz
// ‘define alg_clk_15ns

// For 50 MHz
// ‘define alg_clk_20ns

One and only one of the above four macros must be defined. Here the macro to set the
algorithm clock rate to 200 MHz is defined and uncommented whereas the other macros
are left undefined.

SRAM Port Usage

In order for the Algorithm Block to have access to a given SRAM port, the corresponding
macro must be defined in alg.h.

RASC FPGA Design Integration

007-4718-005 61

The following portion from the include file enables access to SRAM ports.

//
// Specify SRAM ports for algorithm use //
//

‘define alg_uses_sram0_rd
//‘define alg_uses_sram0_wr
//‘define alg_uses_sram1_rd
‘define alg_uses_sram1_wr

All, some, or none of these macros can be defined. In this example, the read port for
SRAM bank 0 and the write port for SRAM bank 1 are enabled, while the write port for
SRAM bank 0 and the read port for SRAM bank 1 cannot be used by the Algorithm Block.

The DMA engines and the Algorithm block can operate concurrently, but the algorithm
must deal with arbitration. For more information on arbitration, see “Arbitration” on
page 35.

If you want the make include process to include the 5th bank, the following needs to be
included in Makefile.local file:

Define if QDRII SRAM Bank2 Interface is used
 SRAM_2=1

The macro for USE_MEM_2 in alg.h needs to be uncommented, as in:

// Comment out unused memories below
‘define USE_MEM_0
‘define USE_MEM_1
‘define USE_MEM_2

The first two define statements, of course, can be commented out.

Optionally, you can add the following to your implementation file so the synthesizer is
aware of the logic at the interface to acs_core and therefore, may make it easier for the
synthesizer to make timing:

implementataions/<alg name>/<alg name>.prj: add_file
"$RASC/pd/acs_core_5th/acs_core.edf"

62 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Simulating the Design

This section provides a reference on how to simulate the Algorithm using the provided
SSP Stub, sample test bench, and VCS simulator. It covers the following topics:

• “Intent of the Sample Test Bench” on page 62

• “Sample Test Bench Setup” on page 62

• “Running a Diagnostic” on page 64

• “Writing a Diagnostic” on page 67

• “Sample Test Bench Constants and Dependencies” on page 72

• “Sample Test Bench Utilities” on page 74

Intent of the Sample Test Bench

The Sample Test Bench (also called sample_tb) is a basic simulation environment for
users to do sandbox testing of their algorithm code. The Sample Test Bench is provided
as an optional intermediate step between writing an algorithm and loading the algorithm
into RASC hardware. It is intended to help insure that the algorithm will function on a
basic level (for example, a single algorithm iteration) prior to debugging a bitstream in
hardware.

Sample Test Bench Setup

The sample test bench is designed for use with VCS. For use with other simulators, the
user should modify the sample test bench along with associated scripts and makefiles.

A primary component of the sample test bench, the SSP Stub, consists predominantly of
Verilog modules, although it also includes PLI calls to functions written in C code. The
stub is instantiated in a sample Verilog test bench along with the Algorithm FPGA. The
files for this test bench are in the directory, $RASC/dv/sample_tb/. In this directory
you will find the following Verilog modules and other files:

• top.v: The top level of the sample test bench containing the Algorithm FPGA
design (Core Services and the user’s algorithm), SSP Stub, SRAM simulation
models, and clock generator.

Simulating the Design

007-4718-005 63

• ssp_stub.v: Top level Verilog of the SSP Stub which passes signals to and from
conversion modules. More information on submodules, PLI calls, and C functions
that comprise the SSP Stub can be found in the “SSP Stub User’s Guide” section of
this document.

• init_sram0_good_parity.dat, init_sram1_good_parity.dat,
init_sram2_good_parity.dat, init_sram3_good_parity.dat,
init_sram4_good_parity.dat: These SRAM initialization files contain data
which is automatically loaded into the respective SRAM simulation models at the
beginning of simulation. The data is in a format which the SRAM simulation model
uses (one bit of parity per byte of data is shifted in with the data). These default files
can be overridden by the user on the command line at runtime.

• final_sram0.dat, final_sram1.dat, final_sram2.dat,
final_sram3.dat, final_sram4.dat: These files contain data extracted from
the respective SRAM simulation models at the end of simulation. These default files
can be overridden by the user on the command line at runtime.

• timescale.v: This file contains the Verilog timescale of each of the components
of the SSP Stub, as well as the algorithm FPGA design files. It is required that the
algorithm being simulated makes use of the same timescale as the rest of the design.

In order to use the sample test bench, your VCS environment variables should be set up
as follows:

Environment Variables for VCS
setenv VCS_HOME <your_vcs_install_directory>
setenv VCSPLIDIR $VCS_HOME/<your_vcs_pli_directory>
setenv PATH $PATH\:$VCS_HOME/bin

Compiling the Sample Test Bench

Compiling the sample test bench is done using the Makefile provided. In order to
compile the sample testbench including the SSP Stub and the algorithm Core Services
logic, an algorithm must be specified (See the following note).

Note: The Makefile in the sample_tb directory uses the $ALG_DIR environment
variable. This defaults to $RASC/examples though it can be modified by the user. The
design files of the algorithm you specify must be in a directory under the $ALG_DIR
path.

64 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

If the algorithm is written in VDHL, set the HDL_LANG environment to vhdl, as follows:

% setenv HDL_LANG vhdl

Otherwise, the algorithm is considered to be written in Verilog.

The algorithm you are building is specified on the command line. To compile the design
with your algorithm, change directory to $RASC/dv/sample_tb and enter:

% make ALG=<your_algorithm>

where <your_algorithm> is the directory name where the algorithm design files are. When
no algorithm is specified, the default is ALG=alg_simple_v.

To remove older compiled copies of the testbench, type:

% make clean

Running a Diagnostic

To run a diagnostic on your algorithm, call the Makefile in the sample_tb directory
using the “run” target and specifying which diag to run. The following is the usage and
options of the “run” target:

% make run DIAG=diag_filename ALG=your_agorithm
SRAM0_IN=sram0_input_file SRAM1_IN=sram1_input_file
SRAM2_IN=sram2_input_file SRAM3_IN=sram3_input_file
SRAM4_IN=sram4_input_file
SRAM0_OUT=sram0_output_file SRAM1_OUT=sram1_output_file
SRAM2_OUT=sram2_output_file SRAM3_OUT=sram3_output_file
SRAM4_OUT=sram4_output_file

The diag_file specifies the diagnostic to be run and should be relative to the current
directory. Again, the algorithm must be specified using the ALG=your_algorithm
command line option. If none is specified, the runtime command uses same default as
above (ALG=alg_simple_v). Specifying ALG this way allows the user to reuse the same
diagnostic for multiple algorithms. The contents of each SRAM at the end of simulation
will be dumped into .dat files that can be user-specified. If they are not specified, they
default to:

init_sram0_good_parity.dat
init_sram1_good_parity.dat
init_sram2_good_parity.dat
init_sram3_good_parity.dat
init_sram4_good_parity.dat

Simulating the Design

007-4718-005 65

final_sram0.dat
final_sram1.dat
final_sram2.dat
final_sram3.dat
final_sram4.dat

Note that there are five input and five output SRAM data files while the design is
implemented for two logical SRAMs. Each of the logical SRAMs 0-4 are implemented as
two separate physical SRAMs in the sample testbench. The sram0* and sram1* files
correspond to the first logical SRAM while sram2*, sram3*, and sram 4*correspond to the
second logical SRAM.

By specifying the SRAM input and output files the user can skip the DMA process for
quick verification of the algorithm. This shortens the diagnostic run time, makes for less
complex diagnostics, and allows the user to ignore core services as it has already been
verified by SGI. The option of utilizing the DMA engines in simulation is included for
completeness but should not be necessary for typical algorithm verification.

The association of SRAM0_IN and SRAM0_OUT with physical memory is, as follows:

mem0[127:64] -> qdr_sram_bank1.SMEM -> init_sram1_*.dat, final_sram1.dat
mem0[63:0] -> qdr_sram_bank0.SMEM -> init_sram0_*.dat, final_sram0.dat
mem1[127:64] -> qdr_sram_bank3.SMEM -> init_sram3_*.dat, final_sram3.dat
mem1[63:0] -> qdr_sram_bank4.SMEM -> init_sram2_*.dat, final_sram2.dat
mem2[63:0] -> qdr_sram_bank2.SMEM -> init_sram4_*.dat, final_sram4.dat

As the diagnostic runs, it will output status to the screen and to an output file named
<diag_filename>.<your_algorithm>.run.log. When the stub receives an unexpected
packet, it will output the following information in order: the command for the next
expected packet, SSP fields of the expected packet, the command translation (if one
exists) for the received packet, and the SSP fields of the received packet. This log file will
appear in the same directory in which that the diagnostic is located.

66 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Table 3-7 shows a summary of the algorithms, diagnostics, and commands provided
with the sample testbench.

Viewing Waveform Results

Each time a diagnostic is run, a file namedvcdplus.vpd is generated in thesample_tb
directory. This file can be input to Virsim for viewing the waveform. Since this file is
generally large, it is overwritten for each diagnostic run. To save the waveform for a
given diagnostic, copy the corresponding vcdplus.vpd file to a new name.

To view the waveform saved in the vcdplus.vpd file, use the following command:

% vcs -RPP vcdplus.vpd

A sample configuration file sample_tb/basic.cfg is provided for use when viewing
waveforms in Virsim. It contains a limited number of relevant signals on the SSP
interface, SRAM interfaces, and inside the design. Figure 3-19 shows a sample
vcdplus.vpd waveform in Virsim.

Table 3-7 Sample Testbench Algorithms and Commands

Algorithm Name Diagnostic Compile and Run Commands

alg_simple_v diags/alg_simple_v make ALG=alg_simple_v
make run DIAG=diags/alg_simple_v ALG=alg_simple_v

alg_data_flow_v diags/alg_data_flow_v make ALG=alg_data_flow_v

make run DIAG=diags/alg_data_flow_v ALG=alg_data_flow_v

Simulating the Design

007-4718-005 67

Figure 3-19 Sample vcdplus.vpd Waveform in Virsim

Writing a Diagnostic

The SSP Stub retrieves instructions through a text input file, the diagnostic. The SSP Stub
parses this file at each semicolon to extract commands that the Stub executes. Many of
the allowed commands in a diagnostic correspond to SSP packet types. There are other
commands that the SSP Stub supports for diagnostic writing and debugging. The
primary components of the diagnostic file are: packet commands, debugging commands,
and comments.

It is important to note that most SSP packets come in pairs: a request and a response. For
these types of packets, the request command and response command must be listed
sequentially in a diagnostic. This method of keeping requests and response paired is
used by the stub to associate request and response packets with the corresponding
transaction number (TNUM). For more information on SSP packet types, see the Scalable
System Port Specification. Also, when running the DMA engines, all transactions related
to that sequence of events should be grouped together. See Appendix B, “SSP Stub User’s
Guide” for more details on diagnostic writing and using the SSP stub.

The code listed below comprises a diagnostic that exercises the basic functionality of the
algorithm FPGA outlined in the following steps:

68 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

• Initializes the algorithm FPGA Core Services (primarily MMR Writes)

• Executes DMA Reads to send data to the FPGA (stored in SRAM)

• Starts the Algorithm (d = a & b | c) and polls the memory mapped registers
(MMRs) to see when the Algorithm is done

• Executes DMA Writes to retrieve the Algorithm’s results

• Checks the error status in the MMRs to verify that no errors were flagged.

The example diagnostic provided below is intended as a template that may be edited to
match the user’s algorithm.

####### Initialization packets. #######
Arm regs by setting the REARM_STAT_REGS bit in the CM_CONTROL reg
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000000600f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

Clear the CM_ERROR_STATUS register by writing all zeroes.
snd_wr_req (PIO, DW, 3, 0x00000000000060, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, 3, 0);

Enable CM_ERROR_DETAIL_* regs by writing all zeroes to CM_ERROR_DETAIL_1.
snd_wr_req (PIO, DW, ANY, 0x00000000000010, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

Enable desired interrupt notification in the CM_ERROR_INTERRUPT_ENABLE
register.
snd_wr_req (PIO, DW, 4, 0x00000000000070, 0xFFFFFFFFFFFFFFFF);
rcv_wr_rsp (PIO, DW, 4, 0);

Set up the Interrupt Destination Register.
snd_wr_req (PIO, DW, ANY, 0x00000000000038, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

print "\n\nWait for SRAM bank calibration to complete.\n\n";

Poll CM_STATUS for bits 51, 57, 58, 59, & 63.
poll (0x8, 63, 300);

print "\n\n*******Initialization finished\n\n";

####### Configure DMA Engines and Algorithm. #######

####### Configure the Read DMA Engine Registers. #######
print "\n\n*******Configure Read DMA Engine. Tell it to fill 32 cache lines
of data.\n\n";

RD_DMA_CTRL register.
snd_wr_req (PIO, DW, ANY, 0x00000000000110, 0x0000000000100020);
rcv_wr_rsp (PIO, DW, ANY, 0);

RD DMA addresses.
snd_wr_req (PIO, DW, ANY, 0x00000000000100, 0x0000000000100000);

Simulating the Design

007-4718-005 69

rcv_wr_rsp (PIO, DW, ANY, 0);
snd_wr_req (PIO, DW, ANY, 0x00000000000108, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

RD AMO address.
snd_wr_req (PIO, DW, ANY, 0x00000000000118, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

RD_DMA_DEST_INT
snd_wr_req (PIO, DW, ANY, 0x00000000000120, 0x0000000200002000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Configure the Write DMA Engine Registers. #######
print "\n\n*******Configure Write DMA Engine.\n\n";

Write to the WR_DMA_CTRL register.
snd_wr_req (PIO, DW, ANY, 0x00000000000210, 0x0000000000100020);
rcv_wr_rsp (PIO, DW, ANY, 0);

WR_DMA_SYS_ADDR
snd_wr_req (PIO, DW, ANY, 0x00000000000200, 0x0000000000100000);
rcv_wr_rsp (PIO, DW, ANY, 0);

WR_DMA_LOC_ADDR
snd_wr_req (PIO, DW, ANY, 0x00000000000208, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

WR_DMA_AMO_DEST
snd_wr_req (PIO, DW, ANY, 0x00000000000218, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

WR_DMA_INT_DEST
snd_wr_req (PIO, DW, ANY, 0x00000000000220, 0x0000000400004000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Configure the Algorithm Registers. #######
print "\n\n*******Configure Algorithm Registers\n\n";

snd_wr_req (PIO, DW, ANY, 0x00000000000300, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

snd_wr_req (PIO, DW, ANY, 0x00000000000308, 0x0000000600006000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Start Read DMA Engine for Read DMA 1 #######
print "\n\n*******Start Read DMA Engine for SRAM0\n\n";

Set Bit 36 of the CM_CONTROL Reg to 1.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000001400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

1 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100000);
snd_rd_rsp (MEM, FCL, ANY, 0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,

70 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF);

Other Read DMA Transactions omitted here

32 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100F80);
snd_rd_rsp (MEM, FCL, ANY, 0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF);

print "\n\n*******Polling for DMA RD-SRAM0 done (bit 42 of CM_STATUS).\n\n";
poll (0x8, 42, 20);
print "\n\n*******Done storing data in SRAM 0.\n\n";

####### Reconfigure DMA Engine for Read DMA 2 #######

RD_DMA_SYS_ADDR
snd_wr_req (PIO, DW, ANY, 0x00000000000100, 0x0000000000100000);
rcv_wr_rsp (PIO, DW, ANY, 0);

RD_DMA_LOC_ADDR
snd_wr_req (PIO, DW, ANY, 0x00000000000108, 0x0000000000200000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Start Read DMA Engine for Read DMA 2 #######
print "\n\n*******Start Read DMA Engine for SRAM1\n\n";

Set Bit 36 of the CM_CONTROL Reg to 1.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000001400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

1 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100000);
snd_rd_rsp (MEM, FCL, ANY, 0, 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0);

Other Read DMA Transactions omitted here

32 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100F80);
snd_rd_rsp (MEM, FCL, ANY, 0, 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0);

Simulating the Design

007-4718-005 71

print "\n\n*******Polling for DMA RD-SRAM1 done (bit 42 of CM_STATUS).\n\n";
poll (0x8, 42, 200);
print "\n\n*******Done storing data in SRAM 1.\n\n";

####### Reconfigure DMA Engine for Read DMA 3 #######

RD DMA addresses.
snd_wr_req (PIO, DW, ANY, 0x00000000000100, 0x0000000000100000);
rcv_wr_rsp (PIO, DW, ANY, 0);
snd_wr_req (PIO, DW, ANY, 0x00000000000108, 0x0000000000400000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Start Read DMA Engine for Read DMA 3 #######
print "\n\n*******Start Read DMA Engine for SRAM2\n\n";

Set Bit 36 of the CM_CONTROL Reg to 1.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000001400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

1 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100000);
snd_rd_rsp (MEM, FCL, ANY, 0, 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C);

Other Read DMA Transactions omitted here

32 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100F80);
snd_rd_rsp (MEM, FCL, ANY, 0, 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C);

print "\n\n*******Polling for DMA RD-SRAM2 done (bit 42 of CM_STATUS).\n\n";
poll (0x8, 42, 200);
print "\n\n*******Done storing data in SRAM 2.\n\n";

####### Start the Algorithm #######

Set bit 38 of CM Control Register to 1 to start algorithm.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000004400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

print "\n\n*******Started Algorithm.\n\n";

Poll for ALG_DONE bit in CM_STATUS.
poll (0x8, 48, 2000);
print "\n\n*******Algorithm Finished.\n\n";

####### Start Write DMA Engine. #######

72 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

Set bit 37 of CM Control Register to 1 to start Write DMA Engine.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000002400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

print "\n\n*******Started Write DMA Engine.\n\n";

1 of 32
rcv_wr_req (MEM, FCL, ANY, 0x00000000100000, 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC);
snd_wr_rsp (MEM, FCL, ANY, 0);

Other Write DMA Transactions omitted here

32 of 32
rcv_wr_req (MEM, FCL, ANY, 0x00000000100F80, 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC,0xDCACBCECDCACBCEC);
snd_wr_rsp (MEM, FCL, ANY, 0);

print "\n\n*******Polling for DMA WR-SRAM0 done (bit 45 of CM_STATUS).\n\n";
poll (0x8, 45, 200);
print "\n\n*******Done retrieving data from SRAM 0.\n\n";

####### Finish Up ######

dma_clear(). Set bits 39, 40, and 41 to 1 in CM_CONTROL.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000038400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

finalcheck_ccc() Check CACHE_RD_DMA_FSM.
snd_rd_req (PIO, DW, ANY, 0x00000000000130);
rcv_rd_rsp (PIO, DW, ANY, 0, 0x0000000000400000);

print "Reading the Error Status Register to insure no errors were
logged.\n";
snd_rd_req (PIO, DW, ANY, 0x00000000000060);
rcv_rd_rsp (PIO, DW, ANY, 0, 0x0000000000000000);

Sample Test Bench Constants and Dependencies

Various constants and definitions for the sample test bench are contained within the
following files:

• ssp_defines.h (internal stub variables)

Simulating the Design

007-4718-005 73

• user_const.h (user modifiable)

Table 3-8 lists the files in the sample_tb directory with their function and calls
dependencies.

Table 3-8 Files in the sample_tb directory

File Functions Dependent On

start_ssp.c start_ssp() queue_pkt.h, setup_pkt.h,
send_rcv_flits.h

send_rcv_flits.h send_rcv_flits(), send_flit(),
rcv_flit(),snd_poll(), rcv_poll(), finish_ssp()

setup_pkt.h, process_pkt.h,
get_fields.h, snd_rcv_fns.h

queue_pkt.h queue_pkt(string), q_string_it(token,
pkt_string),strtok_checked(s1, s2)

 --

setup_pkt.h setup_pkt(snd_rcv) snd_rcv_fns.h

snd_rcv_fns.h snd_wr_req(pio_mem_n, size, tnum, addr,
data, pkt), snd_rd_req(pio_mem_n, size, tnum,
addr, pkt), snd_wr_rsp(pio_mem_n, size,
tnum, error, pkt), snd_rd_rsp(pio_mem_n,
size, tnum, error, data), snd_amo_rsp(tnum,
error, pkt), inv_flush(tnum, pkt),
rcv_wr_rsp(pio_mem_n, size, tnum, error,
pkt), rcv_rd_rsp(pio_mem_n, size, tnum, error,
data, pkt), rcv_wr_req(pio_mem_n, size, tnum,
addr, data, pkt), rcv_rd_req(pio_mem_n, size,
tnum, addr, pkt),rcv_amo_req(tnum, addr,
data, pkt)

construct_pkt.h

construct_pkt.h construct_pkt(type, tnum, address, data, error,
pkt, to_from_n), pkt_size(type)

make_command.h

make_command.h make_command(type, tnum, error, to_from_n) --

get_fields.h get_fields(type), f_string_it(token) --

process_pkt.h process_pkt(type) --

Sample Test Bench Utilities

The sample test bench includes utilities that help in generating and interpreting
diagnostic data. To compile these files into executables, run the following command:

% gcc -c file_name -o executable name

The utilities provided include the following:

• convert_sram_to_dw.c

This program takes a standard SRAM input/output file (e.g. final_sram0.dat),
and converts it to a more readable version consisting of one SGI double word
(64-bits) of data per line. It assumes that the input file is made up of 36-bit words
containing parity bits. This utility is helpful when trying to interpret results from
the stub output files.

Use: convert_sram_to_dw input_file [output_file]

Default output file: convert_sram_to_dw_output.dat

• convert_dw_to_sram_good_parity.c

This program takes a file containing one SGI double word (64-bits) of data per line,
calculates parity and outputs a file that can be loaded into SRAM for simulation
(36-bits of data with parity per line). It assumes the input file contains the correct
number of lines to fill the SRAM. This utility is useful when you want to input
specific data to an SRAM and skip the DMA process in simulation.

Use: convert_dw_to_sram_good_parity input_file [output_file]

Default output file: convert_dw_to_sram_good_parity_output.dat.

• command_fields.c

This program takes an SSP command word, splits it into its SSP fields and outputs
the SSP field information to the screen. The utility provides this data in the same
format as the get_fields.h function in the SSP stub. This feature is potentially
useful in debugging from the Virsim viewer.

Use: command_fields 32-bit_hex_value

• check_alg_data_flow.c

This program uses the SRAM output file to check data against input data. It takes
data input from init_sram0_good_parity.dat and
init_sram1_good_parity.dat, removes parity, and performs a byte-sort on
this data (byte-sorts each 8 byte quantity as done by alg_data_flow_v). The

Simulating the Design

007-4718-005 75

program compares the result to the data in the final_sram2.dat and
final_sram3.dat files (with parity removed). As the comparisons are done,
the program prints the byte-sorted input data on the left and the results from the
final data on the right. If there are differences in the data, it prints "ERROR" on the
corresponding line. The program exits after it finding a finite number of errors
(adjustable in the source code).

• check_alg_simple.c

This file is an example of a program that uses the SRAM output data file to check
data against input data. It takes the SRAM0 and SRAM1 input data in
init_sram0_good_parity.dat and init_sram1_good_parity.dat and
calculates the results of a A & B | C. It then compares its expected data to the data in
the files final_sram2.dat and final_sram3.dat (the default output for
SRAM2 and SRAM3, respectively). As it proceeds, it prints out the results of each
double word result D: on the left, what it expects based on the input data, on the
right, what it is seeing in the final results. If there are discrepancies in the data, it
prints "ERROR" on the line in question.

The code is set to exit after it finds 64 errors, but this number can be raised or
lowered easily (line 60).

76 007-4718-005

3: RASC Algorithm FPGA Hardware Design Guide

007-4718-005 77

Chapter 4

4. RASC Abstraction Layer

This section describes the Reconfigurable Application-Specific Computing (RASC)
Abstraction Layer and covers the following topics:

• “RASC Abstraction Layer Overview” on page 77

• “RASC Abstraction Layer Calls” on page 79

• “How the RASC Abstraction Layer Works” on page 116

RASC Abstraction Layer Overview

The RASC Abstraction Layer provides an application programming interface (API) for
the kernel device driver and the RASC hardware. It provides a similar level of support
for application development as the standard open/close/read/write/ioctl calls for IO
peripherals.

The Abstraction Layer is actually implemented as two layers. The lowest level is the COP
(Co-Processor) level. This provides calls to function individual devices. The upper level,
which is built on top of the COP level, is the algorithm level. Here, the application treats
a collection of devices as a single, logical algorithm implementation. The Abstraction
Layer manages data movement to and from the devices, spreading work across multiple
devices to implement scaling.

As an application develops, you must decide which level you are programming to. They
are mutually exclusive. You can use one or the other, but never both.

Figure 4-1 illustrates the interactions between the pieces and layers of the system.

78 007-4718-005

4: RASC Abstraction Layer

Figure 4-1 Abstraction Layer Software Block Diagram

App 2
Device

manager

Algorithm layer

Cop layer Dev lib

Application space

Library space

Kernel driver

Loader FPGA

App 1

OS

Hardware

Download
driver

Algorithm
FPGA

devmgr

RASC Abstraction Layer Calls

007-4718-005 79

RASC Abstraction Layer Calls

Function entry points can be called from either C or Fortran90 software language
modules. The same basic entry point names are used for both languages; except that, the
Fortran90 interfaces have the _F suffix appended to the C name. Fortran90 names are, of
course, case insensitive. The same information must be passed to either the C or
Fortran90 functions, however, basic differences in the languages may require slightly
different formats for the argument lists. Both languages return the same values from a
function call.

All function prototypes, data structures, and constants are defined in the rasclib.h.
file for C calls or in the rasclib_definitions.mod file for Fortran90 calls.

Table 4-1 contains a summary of the abstraction layer function definitions.

Table 4-1 Abstraction Layer Function Definitions - Summary

Function Description

rasclib_resource_reserve Sends a request to the device manager to
reserve a number of devices for the calling
application.

rasclib_resource_release Releases the reservation on a number of devices
and then moves the devices from the reservation
pool to the free pool.

rasclib_resource_configure Loads the given bitstream into a device and
marks the device as in use.

rasclib_resource_return Returns a configured device to its reservation
pool.

rasclib_resource_alloc Sends a request to the device manager to
allocate/reserve devices for the application. This
routine has been deprecated and will be removed in
a future RASC release. You should use
rasclib_resource_reserve and
rasclib_resource_configure in its
place.

80 007-4718-005

4: RASC Abstraction Layer

rasclib_resource_free Returns devices to the device manager’s free pool.
This routine has been deprecated and will be
removed in a future RASC release. You should use
rasclib_resource_return and
rasclib_resource_release in its place.

rasclib_algorithm_open Notifies the rasclib library that the user wants to
use all of the reserved devices loaded with the
bitstream associated with al_id as a single logical
device.

rasclib_algorithm_send Queues up a command that will move data from
host memory to the device input buffer identified
by algo_array_id.

rasclib_algorithm_get_num_cops Returns the number of physical devices that are
participating in the algorithm.

rasclib_algorithm_receive Queues up a command that will move data from
the device output buffer to host memory.

rasclib_algorithm_go Queues up a command to tell the bitstream
compute engine to begin computation.

rasclib_algorithm_commit Causes the rasclib library to send all queued
commands to the kernel driver for execution on the
device.

rasclib_algorithm_wait Blocks until all commands that have been sent to
the driver have completed execution.

rasclib_algorithm_close Releases all host resources associated with the
algorithm.

rasclib_algorithm_reg_multi_cast Writes the same data word to all FPGAs that
constitute the algorithm.

rasclib_algorithm_reg_read Reads data from the registers of the FPGAs.

rasclib_algorithm_reg_write Writes data to the registers of the FPGAs.

rasclib_algorithm_exception_hand
ler_register

Registers an application exception handler for
application-defined FPGA logic exception events

Table 4-1 Abstraction Layer Function Definitions - Summary (continued)

Function Description

RASC Abstraction Layer Calls

007-4718-005 81

rasclib_resource_reserve Function

The rasclib_resource_reserve function is, as follows:

SYNOPSIS

C:

int rasclib_resource_reserve(int ncops, const char *reserve_name);

rasclib_cop_open Notifies rasclib that the user wants to use one of
the reserved devices loaded with the bitstream
associated with al_id.

rasclib_cop_send Queues up a command that will move data from
host memory to the device input buffer identified
by algo_array_id.

rasclib_cop_receive Queues up a command that will move data from
the device output buffer to host memory.

rasclib_cop_go Queues up a command to tell the bitstream
compute engine to begin computation.

rasclib_cop_commit Causes rasclib to send all queued commands to
the kernel driver for execution on the device

rasclib_cop_wait Blocks until all commands that have been sent to
the kernel driver have completed execution.

rasclib_cop_close Releases all host resources associated with the
algorithm.

rasclib_cop_reg_read Reads data from the FPGA register.

rasclib_cop_reg_write Writes data to the FPGA register.

rasclib_cop_exception_handler_re
gister

Registers an application exception handler for
application-defined FPGA logic exception events.

rasclib_perror Prints error message.

rasclib_error_dump Prints all error messages.

Table 4-1 Abstraction Layer Function Definitions - Summary (continued)

Function Description

82 007-4718-005

4: RASC Abstraction Layer

Fortran90:

INTERFACE
 FUNCTION RASCLIB_RESOURCE_RESERVE_F(NCOPS, RESERVE_NAME)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_RESOURCE_RESERVE_F
 INTEGER(KIND=4), INTENT(IN) :: NCOPS
 CHARACTER(LEN=*), INTENT(IN) :: RESERVE_NAME
 END FUNCTION RASCLIB_RESOURCE_RESERVE_F
END INTERFACE

DESCRIPTION

rasclib_resource_reserve() sends a request to the device manager to reserve a
number of devices for the calling application. The application must make only a single
call to rasclib_resource_alloc() (though this is not enforced) to avoid deadlock
conditions.

ncops is the number of devices to reserve. reserve_name is the name that the device
manager will give to the reservation pool that contains the reserved devices. If
reserve_name is NULL, rasclib will generate a reservation pool name with the
following call:

snprintf(resrv_name, sizeof(resrv_name), "app_%d", getpid());

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_MULTI_ALLOC if rasclib_resource_reserve() is called when
there is a current reservation with devices still un-released.

Returns RASCLIB_NODEVICE_REQUESTED if ncops == 0

Returns RASCLIB_RESERVE_FAILED if the device manager cannot satisfy the
reservation request.

RASC Abstraction Layer Calls

007-4718-005 83

rasclib_resource_release Function

The rasclib_resource_release is, as follows:

SYNOPSIS

C:

int rasclib_resource_release(int ncops, const char *reserve_name);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_RESOURCE_RELEASE_F(NCOPS, RESERVE_NAME)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_RESOURCE_RELEASE_F
 INTEGER(KIND=4), INTENT(IN) :: NCOPS
 CHARACTER(LEN=*), INTENT(IN) :: RESERVE_NAME
 END FUNCTION RASCLIB_RESOURCE_RELEASE_F
END INTERFACE

DESCRIPTION

rasclib_resource_release() releases the reservation on a number of devices. That
is, it moves devices from the reservation pool to the free pool.

ncops is the number of devices to release.

reserve_name is a character string and is the name of the reservation pool from which
to release. If reserve_name is NULL, then a reserve name is constructed by rasclib
using the following function call:

snprintf(resrv_name, sizeof(resrv_name), "app_%d", getpid());

There must be a reservation pool with this name for release to work.

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_RELEASE_FAILED if the device manager cannot satisfy the request.

84 007-4718-005

4: RASC Abstraction Layer

rasclib_resource_ configure Function

The rasclib_resource_configure function is, as follows:

SYNOPSIS

C:

int rasclib_resource_configure(const char * al_id, int ncops, const
char *reserve_name);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_RESOURCE_CONFIGURE_F(AL_ID, NCOPS, RESERVE_NAME)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_RESOURCE_CONFIGURE_F
 CHARACTER(LEN=*), INTENT(IN) :: AL_ID
 INTEGER(KIND=4), INTENT(IN) :: NCOPS
 CHARACTER(LEN=*), INTENT(IN) :: RESERVE_NAME
 END FUNCTION RASCLIB_RESOURCE_CONFIGURE_F
END INTERFACE

DESCRIPTION

rasclib_resource_configure() loads the given bitstream into a device and marks
the device as in use.

al_id is the algorithm identifier as presented to the device manager at bitstream
registration time.

ncops is the number of devices to be loaded with the given bitstream.

reserve_name is a char pointer that gives the name of the reservation pool from which
to choose the device to be loaded. If reserve_name is NULL, rasclib will build a
reservation pool name using the following call:

snprintf(resrv_name, sizeof(resrv_name), "app_%d", getpid());

There must be a reservation pool with the given name for the configure to succeed.

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

RASC Abstraction Layer Calls

007-4718-005 85

Returns RASCLIB_ALLOCATION_FAILED if the device manager cannot satisfy the
request.

rasclib_resource_ return Function

The rasclib_resource_return function is, as follows:

SYNOPSIS

C:

int rasclib_resource_return(const char *al_id, int ncops);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_RESOURCE_RETURN_F(AL_ID, NCOPS)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_RESOURCE_RETURN_F
 CHARACTER(LEN=*), INTENT(IN) :: AL_ID
 INTEGER(KIND=4), INTENT(IN) :: NCOPS
 END FUNCTION RASCLIB_RESOURCE_RETURN_F
END INTERFACE

DESCRIPTION

rasclib_resource_return() returns a configured device to its reservation pool. It is
still reserved, but can no longer be used by the application until it is again configured.

al_id is the algorithm identifier as presented to the device manager at bitstream
registration time.

ncops is the number of devices that are loaded with the given bitstream that will be
returned to their reservation pool.

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_FREE_FAILED if the device manager cannot satisfy the request.

86 007-4718-005

4: RASC Abstraction Layer

rasclib_resource_alloc Function

Note: This routine has been deprecated and will be removed in a future RASC release.
You should use rasclib_resource_reserve and
rasclib_resource_configure in its place.

The rasclib_resource_alloc function is, as follows:

SYNOPSIS

C:

int rasclib_resource_alloc(rasclib_algorithm_request_t *al_request, int
num_cops);

Fortran90:

No Fortran interface declaration exists.

Use rasclib_resource_reserve_f and rasclib_resource_configure_f in
place of this function.

DESCRIPTION

rasclib_resource_alloc() sends a request to the device manager to
allocate/reserve devices for the application. The application must make only a single call
to rasclib_resource_alloc() (though this is not enforced) to avoid deadlock
conditions.

al_request is a pointer to an array ofrasclib_algorithm_request_t requests. A
rasclib_algorithm_request_t is defined as:

typedef struct rasclib_algorithm_request_s {
char * algorithm_id;
int num_devices;
 }rasclib_algorithm_request_t;

Thealgorithm_id identifies which bitstream should be loaded. It is given to the device
manager at bitstream registration and can be obtained from the device manager user
interface.

RASC Abstraction Layer Calls

007-4718-005 87

The num_devices argument tells the device manager how many devices should be
loaded with the bitstream.

num_cops is the number of elements in the array of requests.

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_NODEVICE_REQUESTED if no devices are requested.

Returns RASCLIB_RESERVE_FAILED if the device reservation fails.

Returns RASCLIB_ALLOCATION_FAILED if the device allocation fails.

rasclib_resource_free Function

Note: This routine has been deprecated and will be removed in a future RASC release.
You should use rasclib_resource_return and rasclib_resource_release in
its place.

The rasclib_resource_free function is, as follows:

SYNOPSIS

C:

int rasclib_resource_free(rasclib_algorithm_request_t *al_request, int
num_cops);

Fortran90:

No Fortran interface declaration exists.

Use rasclib_resource_return_f and rasclib_resource_release_f in place
of this function.

DESCRIPTION

88 007-4718-005

4: RASC Abstraction Layer

rasclib_resource_free() returns devices to the device manager’s free pool. The
arguments and their meaning are the same as the rasclib_resource_alloc()
function.

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

rasclib_algorithm_open Function

The rasclib_algorithm_open function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_open(rasclib_algorithm_id_t al_id,io_control);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_OPEN_F(AL_ID, IO_CONTROL)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_OPEN_F
 CHARACTER(LEN=*), INTENT(IN) :: AL_ID
 INTEGER(KIND=4), INTENT(IN) :: IO_CONTROL
 END FUNCTION RASCLIB_ALGORITHM_OPEN_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_open() notifies rasclib that the user wants to use all of the
reserved devices loaded with the bitstream associated with al_id as a single logical
device. The rasclib library initializes all necessary data structures and returns a small
integer referred to as an algorithm descriptor. This is similar in concept to a UNIX file
descriptor. It is used internally in the library to identify a particular algorithm.

al_id is the same as the algorithm id in the allocate and free routines.

io_control indicates the mode of data transfer that is performed. Permitted values are
RASCLIB_BUFFERED_IO or RASCLIB_DIRECT_IO.

RASC Abstraction Layer Calls

007-4718-005 89

DIAGNOSTICS

Returns RASCLIB_FAIL on failure, an algorithm descriptor (which is greater than or
equal to zero) on success.

rasclib_algorithm_send Function

The rasclib_algorithm_send function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_send(int algo_desc, rasclib_algo_array_id_t
algo_array_id, void *buf, int count);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_SEND_F(ALGO_DESC, ALGO_ARRAY_ID, BUF, COUNT)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_SEND_F
 INTEGER(KIND=4), INTENT(IN) :: ALGO_DESC
 CHARACTER(LEN=*), INTENT(IN) :: ALGO_ARRAY_ID
 CHARACTER(LEN=*), INTENT(IN) :: BUF
 INTEGER(KIND=4), INTENT(IN) :: COUNT
 END FUNCTION RASCLIB_ALGORITHM_SEND_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_send() queues up a command that will move data from host
memory to the device input buffer identified by algo_array_id.

algo_desc is the value returned by the rasclib_algorithm_open() function .

algo_array_id identifies the input data area and is specified in the configuration file
associated with the bitstream.

buf is a pointer to the data in host memory.

90 007-4718-005

4: RASC Abstraction Layer

count is the number of bytes in the data. Count must be an integral multiple of the size
of the data area on the device.

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_ARRAY_NOTFOUND if the input array name cannot be found in the
configuration data.

Returns RASCLIB_READONLY_SRAMwhen it is asked to send data to a read-only SRAM.

Returns RASCLIB_ASYMETRIC_DATAwhen the data size of the send and receive do not
match up.

rasclib_algorithm_get_num_cops Function

The rasclib_algorithm_get_num_cops function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_get_num_cops(int al_desc);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_GET_NUM_COPS_F(AL_DESC)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_GET_NUM_COPS_F
 INTEGER(KIND=4), INTENT(IN) :: AL_DESC
 END FUNCTION RASCLIB_ALGORITHM_GET_NUM_COPS_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_get_num_cops gets the number of COPs that are participating
in the algorithm referred to by al_desc.

RASC Abstraction Layer Calls

007-4718-005 91

DIAGNOSTICS

Returns the number of COPs involved in the algorithm or RASCLIB_FAIL on failure.

rasclib_algorithm_receive Function

The rasclib_algorithm_receive function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_receive(int algo_desc, rasclib_algo_array_id_t
algo_array_id, void *buf, int count);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_RECEIVE_F(ALGO_DESC, ALGO_ARRAY_ID, BUF, COUNT)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_RECEIVE_F
 INTEGER(KIND=4), INTENT(IN) :: ALGO_DESC
 CHARACTER(LEN=*), INTENT(IN) :: ALGO_ARRAY_ID
 CHARACTER(LEN=*), INTENT(OUT) :: BUF
 INTEGER(KIND=4), INTENT(IN) :: COUNT
 END FUNCTION RASCLIB_ALGORITHM_RECEIVE_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_receive() queues up a command that will move data from the
device output buffer to host memory.

algo_desc is the value returned by the rasclib_algorithm_open() function.

algo_array_id identifies the output data area and is specified in the configuration file
associated with the bitstream.

buf is a pointer to the data buffer in host memory that will receive the data.

count is the number of bytes in the data. Count must be an integral multiple of the size
of the data area on the device.

92 007-4718-005

4: RASC Abstraction Layer

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_ARRAY_NOTFOUND if the input array name cannot be found in the
configuration data.

Returns RASCLIB_WRITEONLY_SRAMwhen it is asked to receive data from a write-only
SRAM.

Returns RASCLIB_ASYMETRIC_DATAwhen the data size of the send and receive do not
match up.

rasclib_algorithm_go Function

The rasclib_algorithm_go function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_go(int al_desc);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_GO_F(AL_DESC)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_GO_F
 INTEGER(KIND=4), INTENT(IN) :: AL_DESC
 END FUNCTION RASCLIB_ALGORITHM_GO_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_go() issues a command to tell the bitstream compute engine to
begin computation.

al_desc is the value returned by rasclib_algorithm_open().

RASC Abstraction Layer Calls

007-4718-005 93

DIAGNOSTICS

Returns RASCLIB_FAIL on failure, RASCLIB_SUCCESS on success.

rasclib_algorithm_commit Function

The rasclib_algorithm_commit function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_commit(int al_desc,
void(*rasclib_algo_callback)(int, char*, unsigned long));

Fortran90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_COMMIT_F(AL_DESC, RASCLIB_ALGO_CALLBACK) RESULT (RES)
 IMPLICIT NONE
 INTEGER(KIND=4), INTENT(IN) :: AL_DESC
 EXTERNAL :: RASCLIB_ALGO_CALLBACK
 OPTIONAL :: RASCLIB_ALGO_CALLBACK
 INTEGER(KIND=4) :: RES
 END FUNCTION RASCLIB_ALGORITHM_COMMIT_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_commit() causes rasclib to send all queued commands to the
kernel driver for execution on the device. The commands are sent as a single command
list. Until a commit is done, all user buffers are still in use and may not be reused without
the (almost certain) risk of data corruption.

al_desc is the value returned by rasclib_algorithm_open().

rasclib_algo_callback is a function provided by the user to handle situations such
as data overruns or data underruns. It is called by rasclib when user intervention is
required. Currently, it is not called, therefore, this parameter should always be NULL.

DIAGNOSTICS

94 007-4718-005

4: RASC Abstraction Layer

Returns RASCLIB_FAIL on failure, RASCLIB_SUCCESS on success.

rasclib_algorithm_wait Function

The rasclib_algorithm_wait function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_wait(int al_desc);

Fortan90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_WAIT_F(AL_DESC)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_WAIT_F
 INTEGER(KIND=4), INTENT(IN) :: AL_DESC
 END FUNCTION RASCLIB_ALGORITHM_WAIT_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_wait() blocks until all commands that have been sent to the
driver have completed execution. There is an implied commit associated with the wait.
That is, before the thread of execution waits, it sends all queued commands to the kernel
driver for execution (see rasclib_algorithm_commit). After the wait call returns, all
outstanding data transfers have occurred and the application may do any buffer
management that it may require.

al_desc is the value returned by the rasclib_algorithm_open() function.

DIAGNOSTICS

Returns RASCLIB_FAIL on failure, RASCLIB_SUCCESS on success.

RASC Abstraction Layer Calls

007-4718-005 95

rasclib_algorithm_close Function

The rasclib_algorithm_close function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_close(int al_desc);

Fortan90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_CLOSE_F(AL_DESC)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_CLOSE_F
 INTEGER(KIND=4), INTENT(IN) :: AL_DESC
 END FUNCTION RASCLIB_ALGORITHM_CLOSE_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_close() releases all host resources associated with the
algorithm. It does not release any allocated devices (see rasclib_resource_free).

al_desc is the value returned by the rasclib_algorithm_open() function.

DIAGNOSTICS

Returns the value of al_desc.

96 007-4718-005

4: RASC Abstraction Layer

rasclib_algorithm_reg_multi_cast Function

The rasclib_algorithm_reg_multi_cast function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_reg_multi_cast(int al_desc, char *alg_reg,
unsigned long *data, int ndata_elements, unsigned flags);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_REG_MULTI_CAST_F(AL_DESC, ALG_REG, DATA, NDATA_ELEMENTS, FLAGS)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_REG_MULTI_CAST_F
 INTEGER(KIND=4), INTENT(IN) :: AL_DESC
 CHARACTER(LEN=*), INTENT(IN) :: ALG_REG
 INTEGER(KIND=8), DIMENSION(*), INTENT(IN) :: DATA
 INTEGER(KIND=4), INTENT(IN) :: NDATA_ELEMENTS
 INTEGER(KIND=4), INTENT(IN) :: FLAGS
 END FUNCTION RASCLIB_ALGORITHM_REG_MULTI_CAST_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_reg_multi_cast sends the same data to all of the FPGAs that
implement the algorithm.

al_desc is the algorithm descriptor returned from the rasclib_algorithm_open
function.

alg_reg is the name of the register.

data is a pointer to the data to be written to the register.

flags can be either RASCLIB_QCMD or RASCLIB_IMMED_CMD.

If flags is RASCLIB_QCMD, the command is queued in rasclib to be sent to the
driver to be executed in order within the command list.

If flags is RASCLIB_IMMED_CMD, the register writes are done before
rasclib_algorithm_reg_multi_cast returns to the user.

RASC Abstraction Layer Calls

007-4718-005 97

The rasclib_algorithm_reg_multi_cast function supports fat registers. A fat
register is register that spans multiple FPGA registers. Their length in bits must be an
integral multiple of 64 and they must begin at the beginning of a physical register.
Therefore, a fat register exactly spans an integral number of physical registers. It is
assumed that the data array supplied is large enough to hold all the data for a fat register.
The rasclib library does not support partial reads or writes to fat registers.

DIAGNOSTICS

Returns RASCLIB_SUCCESS. Exits with exit status RASCLIB_MALLOC_FAILED if
rasclib cannot allocate memory.

rasclib_algorithm_reg_read Function

The rasclib_algorithm_reg_read function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_reg_read(int al_desc, char *alg_reg, unsigned
long *data, int ndata_elements, unsigned flags);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_REG_READ_F(AL_DESC, ALG_REG, DATA, NDATA_ELEMENTS, FLAGS)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_REG_READ_F
 INTEGER(KIND=4), INTENT(IN) :: AL_DESC
 CHARACTER(LEN=*), INTENT(IN) :: ALG_REG
 INTEGER(KIND=8), DIMENSION(*), INTENT(OUT) :: DATA
 INTEGER(KIND=4), INTENT(IN) :: NDATA_ELEMENTS
 INTEGER(KIND=4), INTENT(IN) :: FLAGS
 END FUNCTION RASCLIB_ALGORITHM_REG_READ_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_reg_read reads a register from each of the FPGAs that
implement an algorithm.

98 007-4718-005

4: RASC Abstraction Layer

It is assumed that there is enough space in the array pointed to by data to handle all of
the data. See “rasclib_algorithm_get_num_cops Function” on page 90.

al_desc is the algorithm descriptor returned from the rasclib_algorithm_open
function.

alg_reg is the name of the register.

data is a pointer to the data where the data read from the register will be placed.

flags can be either RASCLIB_QCMD or RASCLIB_IMMED_CMD.

If flags is RASCLIB_QCMD, the command is queued in rasclib to be sent to the
driver to be executed in order within the command list.

If flags is RASCLIB_IMMED_CMD, the register reads are done before
rasclib_algorithm_reg_read returns to the user.

The rasclib_algorithm_reg_read function supports fat registers. A fat register is
register that spans multiple FPGA registers. Their length in bits must be an integral
multiple of 64 and they must begin at the beginning of a physical register. Therefore, a
fat register exactly spans an integral number of physical registers. It is assumed that the
data array supplied is large enough to hold all the data for a fat register. The rasclib
library does not support partial reads or writes to fat registers

DIAGNOSTICS

Returns RASCLIB_SUCCESS.

Returns RASCLIB_NO_REG_DATA: Couldn’t find the named register in
config file

Returns RASCLIB_DATA_SIZE_ERROR: Size mismatch in register access
request

Returns RASCLIB_INVAL_FLAG: Invalid flag passed to rasclib routine

RASC Abstraction Layer Calls

007-4718-005 99

rasclib_algorithm_reg_write Function

The rasclib_algorithm_reg_write function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_reg_write(int al_desc, char *alg_reg, unsigned
long *data, int ndata_elements, unsigned flags);

Fortan90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_REG_WRITE_F(AL_DESC, ALG_REG, DATA, NDATA_ELEMENTS, FLAGS)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_ALGORITHM_REG_WRITE_F
 INTEGER(KIND=4), INTENT(IN) :: AL_DESC
 CHARACTER(LEN=*), INTENT(IN) :: ALG_REG
 INTEGER(KIND=8), DIMENSION(*), INTENT(IN) :: DATA
 INTEGER(KIND=4), INTENT(IN) :: NDATA_ELEMENTS
 INTEGER(KIND=4), INTENT(IN) :: FLAGS
 END FUNCTION RASCLIB_ALGORITHM_REG_WRITE_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_reg_write writes the supplied data to the FPGAs that
implement the algorithm. It is assumed that there is enough data supplied to satisfy one
register write for each FPGA in the algorithm (see “rasclib_algorithm_get_num_cops
Function” on page 90).

al_desc is the algorithm descriptor returned from the rasclib_algorithm_open
function.

alg_reg is the name of the register.

data is a pointer to the data to be written to the register.

flags can be either RASCLIB_QCMD or RASCLIB_IMMED_CMD.

If flags is RASCLIB_QCMD, the command is queued in rasclib to be sent to the
driver to be executed in order within the command list.

100 007-4718-005

4: RASC Abstraction Layer

If flags is RASCLIB_IMMED_CMD, the register writes are done before
rasclib_algorithm_reg_write returns to the user.

The rasclib_algorithm_reg_write function supports fat registers. A fat register is
a register that spans multiple FPGA registers. Their length in bits must be an integral
multiple of 64 and they must begin at the beginning of a physical register. Therefore, a
fat register exactly spans an integral number of physical registers. It is assumed that the
data array supplied is large enough to hold all the data for fat register. The rasclib
library does not support partial reads or writes to fat registers

DIAGNOSTICS

Returns RASCLIB_SUCCESS.

Returns RASCLIB_NO_REG_DATA: Couldn’t find the named register in
config file

Returns RASCLIB_DATA_SIZE_ERROR: Size mismatch in register access
request

Returns RASCLIB_INVAL_FLAG: Invalid flag passed to rasclib routine

RASC Abstraction Layer Calls

007-4718-005 101

rasclib_algorithm_exception_handler_register Function

The rasclib_algorithm_exception_handler_register function is, as follows:

SYNOPSIS

C:

int rasclib_algorithm_exception_handler_register(int algo_desc, int
(*exception_handler)(void))

Fortran90:

INTERFACE
 FUNCTION RASCLIB_ALGORITHM_EXCEPTION_REGISTER_F(AL_DESC, EXCEPTION_HANDLER) RESULT (RES)
 IMPLICIT NONE
 INTEGER(KIND=4), INTENT(IN) :: AL_DESC
 EXTERNAL :: EXCEPTION_HANDLER
 INTEGER(KIND=4) :: RES
 END FUNCTION RASCLIB_ALGORITHM_EXCEPTION_REGISTER_F
END INTERFACE

DESCRIPTION

rasclib_algorithm_exception_handler_register function registers an
application exception handler that will be invoked when the FPGA logic drives the
ALG_EVENT0 signal.

It is intended for application-defined FPGA logic exception events.

The FPGA logic is paused for the duration of the exception processing. The exception
handler returns 0 if the FPGA logic can continue or 1 to stop the current logic run.

The algorithm registration function registers the handler for each FPGA represented by
algo_desc.

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_UNSUPPORTED if Core Services does not support exception
processing. This is the case for releases prior to the RASC 2.1 release.

102 007-4718-005

4: RASC Abstraction Layer

rasclib_cop_open Function

The rasclib_cop_open function is, as follows:

SYNOPSIS

C:

int rasclib_cop_open(rasclib_algorithm_id_t as_id,io_control);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_COP_OPEN_F(AS_ID, IO_CONTROL)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_COP_OPEN_F
 CHARACTER(LEN=*), INTENT(IN) :: AS_ID
 INTEGER(KIND=4), INTENT(IN) :: IO_CONTROL
 END FUNCTION RASCLIB_COP_OPEN_F
END INTERFACE

DESCRIPTION

rasclib_cop_open() notifies rasclib that the user wants to use one of the reserved
devices loaded with the bitstream associated with al_id. The rasclib library
initializes all necessary data structures and returns a small integer referred to as an COP
descriptor. This is similar in concept to a UNIX file descriptor. It is used internally in the
library to identify a particular COP.

al_id is the same as the algorithm ID in the allocate and free routines.

io_control indicates the mode of data transfer that is performed. Permitted values are
RASCLIB_BUFFERED_IO or RASCLIB_DIRECT_IO.

DIAGNOSTICS

Returns a cop_desc > 0 on success.

Returns RASCLIB_NO_HANDLE if no cop handle can be found for alg_id.

Returns RASCLIB_NO_DESC_NUM if no descriptor can be found.

Returns RASCLIB_DEV_OPEN_FAILED if an open system call failed.

RASC Abstraction Layer Calls

007-4718-005 103

Returns RASCLIB_MALLOC_FAILED if a malloc call failed.

rasclib_cop_send Function

The rasclib_cop_send function is, as follows:

SYNOPSIS

C:

int rasclib_cop_send(int cop_desc, rasclib_algo_array_id_t
algo_array_id, void *buf, int count);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_COP_SEND_F(COP_DESC, ALGO_ARRAY_ID, BUF, COUNT)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_COP_SEND_F
 INTEGER(KIND=4), INTENT(IN) :: COP_DESC
 CHARACTER(LEN=*), INTENT(IN) :: ALGO_ARRAY_ID
 CHARACTER(LEN=*), INTENT(IN) :: BUF
 INTEGER(KIND=4), INTENT(IN) :: COUNT
 END FUNCTION RASCLIB_COP_SEND_F
END INTERFAC

DESCRIPTION

rasclib_cop_send() queues up a command that will move data from host memory to
the device input buffer identified by algo_array_id.

cop_desc is the value returned by rasclib_cop_open().

algo_array_id identifies the input data area and is specified in the configuration file
associated with the bitstream.

buf is a pointer to the data in host memory.

count is the number of bytes in the data. Count must be equal to the size of the data area
on the device.

104 007-4718-005

4: RASC Abstraction Layer

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_NO_DESC if cop_desc cannot be translated into a descriptor pointer.

Returns RASCLIB_MALLOC_FAILED if a malloc call failed.

Returns RASCLIB_NO_ARRAY if the input array name cannot be found in the
configuration data.

Returns RASCLIB_READONLY_SRAMwhen it is asked to send data to a read-only SRAM.

Returns RASCLIB_SIZE_MISMATCH if the input size does not match the SRAM buffer
size.

rasclib_cop_receive Function

The rasclib_cop_receive function is, as follows:

SYNOPSIS

C:

int rasclib_cop_receive(int cop_desc, rasclib_algo_array_id_t
algo_array_id, void *buf, int count);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_COP_RECEIVE_F(COP_DESC, ALGO_ARRAY_ID, BUF, COUNT)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_COP_RECEIVE_F
 INTEGER(KIND=4), INTENT(IN) :: COP_DESC
 CHARACTER(LEN=*), INTENT(IN) :: ALGO_ARRAY_ID
 CHARACTER(LEN=*), INTENT(OUT) :: BUF
 INTEGER(KIND=4), INTENT(IN) :: COUNT
 END FUNCTION RASCLIB_COP_RECEIVE_F
END INTERFACE

RASC Abstraction Layer Calls

007-4718-005 105

DESCRIPTION

rasclib_cop_receive() queues up a command that will move data from the device
output buffer to host memory.

cop_desc is the value returned by rasclib_cop_open().

algo_array_id identifies the output data area and is specified in the configuration file
associated with the bitstream.

buf is a pointer to the data buffer in host memory that will receive the data.

count is the number of bytes in the data. Count must be equal to the size of the data area
on the device.

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_NO_DESC if cop_desc cannot be translated into a descriptor pointer.

Returns RASCLIB_MALLOC_FAILED if a malloc call failed.

Returns RASCLIB_NO_ARRAY if the input array name cannot be found in the
configuration data.

Returns RASCLIB_WRITEONLY_SRAMwhen it is asked to receive data from a write-only
SRAM.

Returns RASCLIB_SIZE_MISMATCH if the input size does not match the SRAM buffer
size.

106 007-4718-005

4: RASC Abstraction Layer

rasclib_cop_go Function

The rasclib_cop_go function is, as follows:

SYNOPSIS

C:

int rasclib_cop_go(int cop_desc);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_COP_GO_F(COP_DESC)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_COP_GO_F
 INTEGER(KIND=4), INTENT(IN) :: COP_DESC
 END FUNCTION RASCLIB_COP_GO_F
END INTERFACE

DESCRIPTION

rasclib_cop_go() issues a command to tell the bitstream compute engine to begin
computation.

cop_desc is the value returned by rasclib_cop_open().

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_MALLOC_FAILED if a malloc call failed.

RASC Abstraction Layer Calls

007-4718-005 107

rasclib_cop_commit Function

The rasclib_cop_commit function is, as follows:

SYNOPSIS

C:

int rasclib_cop_commit(int cop_desc, void(*rasclib_cop_callback(int,
char*, unsigned long, char *buf);

Fortran90

INTERFACE
 FUNCTION RASCLIB_COP_COMMIT_F(COP_DESC, RASCLIB_COP_CALLBACK) RESULT (RES)
 IMPLICIT NONE
 INTEGER(KIND=4), INTENT(IN) :: COP_DESC
 EXTERNAL :: RASCLIB_COP_CALLBACK
 OPTIONAL :: RASCLIB_COP_CALLBACK
 INTEGER(KIND=4) :: RES
 END FUNCTION RASCLIB_COP_COMMIT_F
END INTERFACE

DESCRIPTION

rasclib_cop_commit() causes the rasclib library to send all queued commands to
the kernel driver for execution on the device. The commands are sent as a single
command list. Until a commit call is done, all user buffers are still in use and may not be
reused without the (almost certain) risk of data corruption.

cop_desc is the value returned by rasclib_cop_open().

rasclib_cop_callback is a function provided by the user to handle situations such
as data overruns or data underruns. This callback is ONLY called for streaming DMA
engines, never for block DMAs. The status argument contains either
RASCLIB_STREAM_SEND_COMPLETE or RASCLIB_STREAM_RECEIVE_COMPLETE.
TheRASCLIB_STREAM_SEND_COMPLETE argument says that a stream, identified by the
second argument, has completed a SEND call. The
RASCLIB_STREAM_RECEIVE_COMPLETE arguement says that a stream, identified by
the second argument, has completed a RECEIVE call. The function should always return
either RASCLIB_CALLBACK_NORMAL (for a normal return) or
RASCLIB_CALLBACK_UNREGISTER (to unregister the callback so that no further calls

108 007-4718-005

4: RASC Abstraction Layer

will be made). Below is a simple example, for informational purposes only, that
illustrates how the callback is used:

pthread_mutex_t callback_lock = PTHREAD_MUTEX_INITIALIZER;

int alg12_callback(int cop_desc, char *name, char *buf, unsigned long
status) {
 int i;
 char *p = buf;
 static done_wr = 0, done_rd = 0;

 pthread_mutex_lock(&callback_lock);
 if (done_rd && done_wr){
 pthread_mutex_unlock(&callback_lock);
 return RASCLIB_CALLBACK_UNREGISTER;
 }
 buf += (SIZE/2 * sizeof(unsigned long));
 if (status == RASCLIB_STREAM_SEND_COMPLETE) {

rasclib_cop_send(cop_desc, name, buf, (SIZE/2 *
sizeof(unsigned long)));
 rasclib_cop_commit(cop_desc, alg12_callback);
 done_rd = 1;
 } else {
 rasclib_cop_receive(cop_desc, name, buf, (SIZE/2 *
sizeof(unsigned long)));
 rasclib_cop_commit(cop_desc, alg12_callback);
 done_wr = 1;
 }
 pthread_mutex_unlock(&callback_lock);
 return RASCLIB_CALLBACK_NORMAL;
}

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_NO_DESC if cop_desc cannot be translated into a descriptor pointer.

Returns RASCLIB_MALLOC_FAILED if a malloc call failed.

RASC Abstraction Layer Calls

007-4718-005 109

rasclib_cop_wait Function

The rasclib_cop_wait function is, as follows:

SYNOPSIS

C:

int rasclib_cop_wait(int cop_desc);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_COP_WAIT_F(COP_DESC)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_COP_WAIT_F
 INTEGER(KIND=4), INTENT(IN) :: COP_DESC
 END FUNCTION RASCLIB_COP_WAIT_F
END INTERFACE

DESCRIPTION

rasclib_cop_wait() blocks until all commands that have been sent to the kernel driver
have completed execution. There is an implied commit associated with the wait. That is,
before the thread of execution waits, it sends all queued commands to the kernel driver
for execution (see rasclib_cop_commit). After the wait call returns, all outstanding
data transfers have occurred and the application may do any buffer management that it
may require.

cop_desc is the value returned by rasclib_cop_open().

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_NO_DESC if cop_desc cannot be translated into a descriptor pointer.

Returns RASCLIB_MALLOC_FAILED if a malloc call failed.

110 007-4718-005

4: RASC Abstraction Layer

rasclib_cop_close Function

The rasclib_cop_close function is, as follows:

SYNOPSIS

C:

int rasclib_cop_close(int cop_desc);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_COP_CLOSE_F(COP_DESC)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_COP_CLOSE_F
 INTEGER(KIND=4), INTENT(IN) :: COP_DESC
 END FUNCTION RASCLIB_COP_CLOSE_F
END INTERFACE

DESCRIPTION

rasclib_cop_close() releases all host resources associated with the algorithm. It does
not release any allocated devices (see rasclib_resource_free).

DIAGNOSTICS

cop_desc is the value returned by rasclib_cop_open().

RASC Abstraction Layer Calls

007-4718-005 111

rasclib_cop_reg_read Function

The rasclib_cop_reg_read function is, as follows:

SYNOPSIS

C:

int rasclib_cop_reg_read(int cop_desc, char *alg_reg, unsigned long
*data, int ndata_elements, unsigned flags);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_COP_REG_READ_F(COP_DESC, ALG_REG, DATA, NDATA_ELEMENTS, FLAGS)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_COP_REG_READ_F
 INTEGER(KIND=4), INTENT(IN) :: COP_DESC
 CHARACTER(LEN=*), INTENT(IN) :: ALG_REG
 INTEGER(KIND=8), DIMENSION(*), INTENT(OUT) :: DATA
 INTEGER(KIND=4), INTENT(IN) :: NDATA_ELEMENTS
 INTEGER(KIND=4), INTENT(IN) :: FLAGS
 END FUNCTION RASCLIB_COP_REG_READ_F
END INTERFACE

DESCRIPTION

rasclib_cop_reg_read() reads a register from a single FPGA, as specified by
cop_desc.

It is assumed that there is enough space in the array pointed to by data to handle all of
the data.

cop_desc is the cop descriptor returned from the rasclib_cop_open function.

alg_reg is the name of the register.

data is a pointer to the data where the data read from the register will be placed.

flags can be either RASCLIB_QCMD or RASCLIB_IMMED_CMD.

If flags is RASCLIB_QCMD, the command is queued in rasclib to be sent to the
driver to be executed in order within the command list.

112 007-4718-005

4: RASC Abstraction Layer

If flags is RASCLIB_IMMED_CMD, the register reads are done before
rasclib_cop_reg_read returns to the user.

The rasclib_cop_reg_read function supports fat registers. A fat register is register
that spans multiple FPGA registers. Their length in bits must be an integral multiple of
64 and they must begin at the beginning of a physical register. Therefore, a fat register
exactly spans an integral number of physical registers. It is assumed that the data array
supplied is large enough to hold all the data for a fat register. The rasclib library does
not support partial reads or writes to fat registers

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_INVAL_FLAG if the flag value is invalid.

rasclib_cop_reg_write Function

The rasclib_cop_reg_write function is, as follows:

SYNOPSIS

C:

int rasclib_cop_reg_write(int cop_desc, char *alg_reg, unsigned long
*data, int ndata_elements, unsigned flags);

Fortran90:

INTERFACE
 FUNCTION RASCLIB_COP_REG_WRITE_F(COP_DESC, ALG_REG, DATA, NDATA_ELEMENTS, FLAGS)
 IMPLICIT NONE
 INTEGER(KIND=4) :: RASCLIB_COP_REG_WRITE_F
 NTEGER(KIND=4), INTENT(IN) :: COP_DESC
 CHARACTER(LEN=*), INTENT(IN) :: ALG_REG
 INTEGER(KIND=8), DIMENSION(*), INTENT(IN) :: DATA
 INTEGER(KIND=4), INTENT(IN) :: NDATA_ELEMENTS
 INTEGER(KIND=4), INTENT(IN) :: FLAGS
 END FUNCTION RASCLIB_COP_REG_WRITE_F
END INTERFACE

RASC Abstraction Layer Calls

007-4718-005 113

DESCRIPTION

rasclib_cop_reg_write() writes to a register of a single FPGA, as specified by
cop_desc.

It is assumed that there is enough space in the array pointed to by data to fill the register.

cop_desc is the cop descriptor returned from the rasclib_cop_open function.

alg_reg is the name of the register.

data is a pointer to the data area where the data to be written resides.

flags can be either RASCLIB_QCMD or RASCLIB_IMMED_CMD.

If flags is RASCLIB_QCMD, the command is queued in rasclib to be sent to the
driver to be executed in order within the command list.

If flags is RASCLIB_IMMED_CMD, the register reads are done before
rasclib_cop_reg_write returns to the user.

The rasclib_cop_reg_write function supports fat registers. A fat register is register
that spans multiple FPGA registers. Their length in bits must be an integral multiple of
64 and they must begin at the beginning of a physical register. Therefore, a fat register
exactly spans an integral number of physical registers. It is assumed that the data array
supplied is large enough to hold all the data for fat register. The rasclib library does
not support partial reads or writes to fat registers

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_INVAL_FLAG if the flag value is invalid.

114 007-4718-005

4: RASC Abstraction Layer

rasclib_cop_ exception_handler_register Function

The rasclib_cop_exception_handler_register function is, as follows:

SYNOPSIS

C:

int rasclib_cop_exception_handler_register(int cop_desc, int
(*exception_handler)(void))

Fortran90:

INTERFACE
 FUNCTION RASCLIB_COP_EXCEPTION_REGISTER_F(COP_DESC, EXCEPTION_HANDLER) RESULT (RES)
 IMPLICIT NONE
 INTEGER(KIND=4), INTENT(IN) :: COP_DESC
 EXTERNAL :: EXCEPTION_HANDLER
 INTEGER(KIND=4) :: RES
 END FUNCTION RASCLIB_COP_EXCEPTION_REGISTER_F
END INTERFACE

DESCRIPTION

rasclib_cop_exception_handler_register function registers an application
exception handler that is invoked when the FPGA logic drives the ALG_EVENT0 signal.

It is intended for application-defined FPGA logic exception events.

The FPGA logic is paused for the duration of the exception processing. The exception
handler returns 0 if the FPGA logic can continue or 1 to stop the current logic run.

The algorithm registration function registers the handler for each FPGA represented by
cop_desc.

DIAGNOSTICS

Returns RASCLIB_SUCCESS when all goes well.

Returns RASCLIB_UNSUPPORTED if Core Services does not support exception
processing. This is the case for releases prior to the RASC 2.1 release.

RASC Abstraction Layer Calls

007-4718-005 115

rasclib_perror Function

The rasclib_perror function is, as follows:

SYNOPSIS

C:

void rasclib_perror(char *string, int ecode);

Fortran90:

INTERFACE
 SUBROUTINE RASCLIB_PERROR_F(STRING, ECODE)
 IMPLICIT NONE
 CHARACTER(LEN=*), INTENT(IN) :: STRING
 INTEGER(KIND=4), INTENT(IN) :: ECODE
 END SUBROUTINE RASCLIB_PERROR_F
ENDINTERFACE

DESCRIPTION

rasclib_perror prints an error string and a description of the error code.

string is a descriptive character string supplied by the caller.

ecode is an error code returned by a rasclib routine.

116 007-4718-005

4: RASC Abstraction Layer

rasclib_error_dump Function

The rasclib_error_dump function is, as follows:

SYNOPSIS

C:

void rasclib_error_dump(void);

Fortran90:

INTERFACE
 SUBROUTINE RASCLIB_ERROR_DUMP_F
 IMPLICIT NONE
 END SUBROUTINE RASCLIB_ERROR_DUMP_F
END INTERFACE

DESCRIPTION

rasclib_error_dump prints the last three errors detected by rasclib. The rasclib
library maintains a number of three-deep circular buffer of errors encountered by
rasclib. One is a global buffer, one is associated with each algorithm, and one is
associated with each co-processor (cop). rasclib_error_dump first prints the global
errors, then the algorithm errors, and then the cop errors.

How the RASC Abstraction Layer Works

The rasclib library provides an asynchronous interface to the FPGA devices. That is,
each call into the interface to perform some action on the device (get, put, go) queues the
command to the RASC abstraction layer. Commands are not actually sent to the driver
(and, thus, to the device) until a commit call is done. At commit call time, all queued
commands are sent to the driver as a list of commands. The driver sends the commands
to the device. This takes advantage of any parallelism that may be available in the DMA
engines or compute section. The user application cannot make any assumptions as to
when the committed commands have finished executing. The user application must
execute a wait call to make sure all committed commands have finished. The wait call
blocks until all outstanding commands have completed. When the wait call returns, all
user data buffers have either been completely read from or completely filled, depending
on their use.

How the RASC Abstraction Layer Works

007-4718-005 117

The algorithm layer also exists for ease of use. The application can reserve as many
devices as it can get with the allocate call, then allow the abstraction layer to use them
as efficiently as it can, spreading the data across as many devices as there are available
and looping over the devices until all the data is consumed. The primary purpose is
related to the above. By spreading the data across all the devices, the abstraction layer
implements wide scaling. That is, multiple devices participate in the calculation in
parallel. Deep scaling, or chaining the output of one device to the input of another device
without having to stage the data through host memory, is left for later.

The input/output data buffers are assumed to be at least 16 KBs in size. Currently, user
data requests to the algorithm layer are assumed to be an integral multiple of the data
buffer in size and user data requests to the COP layer are assumed to be exactly the size
of the data buffer.

So, given the above, here is how it all works. Assume a C-like program:

unsigned long A[SIZE],B[SIZE],C[SIZE];
main() {
 comput(A,B,C);
}

Where A and B are inputs to some function and C is the output. If the developer were to
implement the function “compute” in an FPGA, then he would transform the above to:

unsigned long A[SIZE],B[SIZE],C[SIZE];
main() {

int al_desc,
int num_devices = N;
int res;

res = rasclib_resource_reserve(num_devices, NULL);
if (res != RASCLIB_SUCCESS) {
 fprintf(stderr,"reserve failed at %d: %d\n", __LINE__, res);
 rasclib_perror("reserve", res);
 return 1;
}

res = rasclib_resource_configure("compute", num_devices, NULL);
if (res != RASCLIB_SUCCESS) {
 fprintf(stderr,"configure failed at %d: %d\n", __LINE__, res);
 rasclib_perror("configure", res);
 return 1;
}

118 007-4718-005

4: RASC Abstraction Layer

al_desc = rasclib_algorithm_open("compute");
if (al_desc == RASCLIB_FAIL) {
 exit(1);
 }

if (rasclib_algorithm_send(al_desc, "input_one", A, SIZE *
sizeof(unsigned long)) != RASCLIB_SUCCESS) {
 exit(1);
 }

 if (rasclib_algorithm_send(al_desc, "input_two", B, SIZE *
sizeof(unsigned long)) != RASCLIB_SUCCESS) {
 exit(1);
 }

 if (rasclib_algorithm_go(al_desc) != RASCLIB_SUCCESS) {
 exit(1);
 }

 if (rasclib_algorithm_receive(al_desc, "output", C, SIZE *
sizeof(unsigned long)) != RASCLIB_SUCCESS) {
 exit(1);
 }

 if (rasclib_algorithm_commit(al_desc) != RASCLIB_SUCCESS) {
 exit(1);
 }

 if (rasclib_algorithm_wait(al_desc) != RASCLIB_SUCCESS) {
 exit(1);
 }
 rasclib_resource_return("compute", num_devices);
 rasclib_resource_release(num_devices, NULL);
}

The rasclib_resource_reserve and rasclib_resource_configure calls
reserve and configure devices through the device manager. The application must request
all of the devices it needs for the life of the application in one call or deadlocks may result.
The rasclib_algorithm_open tells the abstraction layer to allocate all necessary
internal data structures for a logical algorithm. The two rasclib_algorithm_send
calls pull data down to the input data areas on the COP. The rasclib_algorithm_go
starts execution of the COP. The rasclib_algorithm_receive call pushes the result
back out to host memory. The rasclib_algorithm_commit causes all of the
commands that have been queued up by the previous four calls to be sent to the devices.

How the RASC Abstraction Layer Works

007-4718-005 119

The data is broken up on data area size boundaries and spread out over all available
COPs. The rasclib_algorithm_wait blocks until all the command that were sent to
all of the devices are complete, then returns.

The rasclib_resource_return and rasclib_resource_release calls tell the
device manager that the application is done with the devices and that they can be
allocated to other applications.

007-4718-005 121

Chapter 5

5. Direct I/O

Direct I/O capabilities in the Reconfigurable Application-Specific Computing (RASC)
library (rasclib) allows the driver to send data directly from the user space buffers to
the RASC coprocessor, without an intervening kernel copy. The main advantage of direct
I/O is improved performance.

The direct I/O driver requires that all user buffers be aligned on a 128 byte (128B)
cacheline boundary. Furthermore, the buffers must be an even multiple of a 128B
cacheline in size. The buffers must be mapped onto contiguous (or as contiguous as
possible) physical memory. The physical memory that implements the buffer must have
no more than 64 instances of memory discontinuity. All send and receive operations
must be direct or all operations must be indirect. Mixed I/O mode is not supported.

The rasclib_open call has a new argument, as follows:

int rasclib_cop_open(char * as_id, unsigned flags)

or

int rasclib_algorithm_open(char * al_id, unsigned flags)

The flags argument can be passed either the RASCLIB_BUFFERED_IO or
RASCLIB_DIRECT_IO flag.

If rasclib_open call is passed RASCLIB_BUFFERED_IO, everything works, as
previously, with the kernel space copy of the user buffer to a kernel direct memory access
(DMA) buffer.

If rasclib_open call is passed RASCLIB_DIRECT_IO, the driver performs direct I/O,
enforcing the above restrictions on all send /receive operations associated with this
device or algorithm.

In addition, rasclib now supports a memory allocation utility that allocates memory
that satisfies the driver restrictions. It does this by allocating memory from the
hugepages.

122 007-4718-005

5: Direct I/O

In order to use these routines, you must have your system administrator enable the
hugetlbfs configuration option. The following commands can be run very shortly after
boot (or as part of the init process):

echo 16 > /proc/sys/vm/nr_hugepages
echo 1 > /proc/sys/fs/shm-use-hugepages
echo 1 > /proc/sys/fs/mmap-use-hugepages; mount none -t hugetlbfs /mnt/hugetlb

The first line sets the number of hugepages. The value of 16 is an example. In a
production environment, you will need to change that value to suit their system. The last
line mounts the hugetlbfs filesystem. In the example, it is mounted at
/mnt/hugetlb. You can mount it anywhere rasclib can find it. If it is not mounted,
the allocation fails.

For more information on hugepages, see
/usr/src/linux-2.6.x.x/Documentation/vm/hugetlbpage.txt.

The rasclib function calls for hugepages are, as follows:

void * rasclib_huge_alloc(long size)

void rasclib_huge_free(void *p)

void rasclib_huge_clear()

The rasclib_huge_alloc() function allocates size bytes and returns a void *
(pointer) to the resulting pages. The size argument is rounded up to the next 128B
cacheline. It returns a number less than zero (which can be passed to
rasclib_perror()) on failure.

The rasclib_huge_free() function frees the pointer argument it is passed. The space
is returned to the internal free list, it is not unmapped. It is coalesced, if possible.

The rasclib_huge_clear() function unmaps all hugepages that have been allocated,
whether they have been free’ed or not. Use this routine only when you are finished
using hugepages.

For more information on rasclib, see Chapter 4, “RASC Abstraction Layer”.

007-4718-005 123

Chapter 6

6. RASC Algorithm FPGA Implementation Guide

This chapter describes how to generate a bitstream and the associated configuration files
for the RASC Algorithm FPGA once the Algorithm Block design has been completed.
Instructions for installation, setup, and implementation are included along with
examples to demonstrate different implementation flows. The implementation flow
begins with a completed HDL design and ends with generating the <alg_name>.bin file,
which is used by the Loader FPGA to configure the Algorithm FPGA. Other
implementation flow outputs are the files user_space.cfg and
core_services.cfg, which are used by the software abstraction layer to recognize the
algorithm.

This chapter contains the following sections:

• “Implementation Overview” on page 124

• “Installation and Setup” on page 126

• “Adding Extractor Directives to the Source Code” on page 130

• “Implementation with Pre-synthesized Core” on page 134

• “Full-chip Implementation” on page 138

• “Implementation File Descriptions” on page 139

124 007-4718-005

6: RASC Algorithm FPGA Implementation Guide

Implementation Overview

This section provides an overview of the RASC Algorithm FPGA implementation
process. It covers the following topics:

• “Summary of the Implementation Flow” on page 124

• “Supported Tools and OS Versions” on page 125

Summary of the Implementation Flow

In this document, implementation flow refers to the comprehensive run of the extractor,
synthesis, and Xilinx ISE tools that turn the Verilog or VHDL source into a binary
bitstream and configuration file that can be downloaded into the RASC Algorithm
FPGA. There are several stages to this process, but the implementation flow has been
encapsulated in a Makefile flow for ease of use.

Figure 6-1 RASC FPGA Implementation Flow

There are two supported ways to create a bitstream. The first method, and recommended
for most cases, is to implement the Algorithm FPGA using our pre-synthesized Core

Add extractor
directives

Setup tools

Setup project

HDL files

<alg_name>.bin

Run synthesis

Run ISE

Run extractor

Transfer to Altix
machine; file

renaming is OKuser_space.cfg
core_services.cfg

Implementation Overview

007-4718-005 125

Services Block EDIF netlist. This allows faster synthesis time and easy trials of multiple
algorithms.

The second method, which allows more optimization between the Core Services and the
Algorithm Block, is to synthesize from the top-down, including re-synthesis of the Core
Services Block source codes.

Supported Tools and OS Versions

The supported flow has been tested using the tool versions and operating system shown
in Table 6-1.

SGI suggests that you consult the reference documentation associated with the
supported tools of your choice for the details on tool setup.

• ISE Software Manuals

http://www.xilinx.com/support/sw_manuals/xilinx8/index.htm

• Synplify Pro Documentation

http://www.synplicity.com/literature/index.html

Table 6-1 Supported Implementation Tools

Tool Version

OS Red Hat Enterprise Linux 3.0 (or later)

Shell Bash or tcsh

Python Python 2.4 or higher

Synthesis Synplicity Synplify Pro 8.6.2

ISE Xilinx ISE 8.2i, Service Pack 3

126 007-4718-005

6: RASC Algorithm FPGA Implementation Guide

Installation and Setup

SGI Altix System Installation

RASC software is distributed either on a CD-ROM or through file transfer protocol (FTP).
If an International Standards Organization (ISO) file is received through FTP, put it in a
convenient directory in the SGI Altix system. If the directory/mnt/cdromdoes not exist,
create that directory with the following command:

mkdir /mnt/cdrom

At the directory where the ISO file is saved, execute the following command:

mount -o loop iso_file_name /mnt/cdrom

The CD-ROM image will be visible in the directory /mnt/cdrom.

On the CD-ROM image, there will be one or more files with the extension .rpm and a
readme.txt file. Read the readme.txt file for further instructions for installing the
software.

PC Installation

This section describes the installation and setup of the RASC Algorithm FPGA
Developer’s Bundle. Please note that the Xilinx ISE tools and the synthesis tool of choice
must be installed on an IA-32 Linux system and each user must have the associated
environment variables defined for their use.

The RASC Algorithm FPGA Developer’s Bundle comes as a tar.gz file. This tar.gz
file is available in the Altix system after the rasc-xxx.ia64.rpm is installed. It is in the
directory /usr/share/rasc/ia32_dev_env. Run the executable
ia32_dev_env_install and read the license agreement. Agree to the agreement to
extract the file ia_32_dev_env. Transfer this file to a directory in the PC. If there is an
older version of the bundle software, remove it. Unzip the tar.gz file using the
following command:

tar -zxvf file_name

Installation and Setup

007-4718-005 127

The Developer’s Bundle requires setting one additional environment variable, RASC, to
identify the Bundle installation directory to the supporting Makefiles (see Table 6-2).

The directory hierarchy within the RASC Algorithm FPGA Developer’s Bundle is shown
in the README file at the top level. A description of the top level directories included in
the Bundle is shown in Table 6-3.

When the Developer’s Bundle is installed and the $RASC variable is set, the user can
proceed to experiment with the example implementations.

Table 6-2 Environment Variables Required for Bundle Environment

Name Description

RASC RASC Algorithm FPGA Developer’s Bundle Installation Directory

XILINX Xilinx tools installation directory

SYNPLIFY Synplify Installation directory

LIB Required Synplify variable

Table 6-3 Top Level Directory Descriptions

Directory Description

examples Contains subdirectores with example algorithm source code and
implementation files.

design Contains Verilog source codes for the top-level FPGA wrapper and the
Core Services Block modules.

pd Additional files needed for physical design / implementation: synthesis
and ISE constraint files, the pre-synthesized Core Services Block netlist
and the macros needed for re-synthesis of the Core Services Block.

implementations Contains template files for running the bitstream implementation flow
(Makefiles and project files).

dv Functional simulation components: testbench with SSP stub and
QDR2-SRAM models, example diagnostic stimulus code, and scripts
for VCS simulator.

128 007-4718-005

6: RASC Algorithm FPGA Implementation Guide

Implementation Constraint Files

Synthesis Using Synplify Pro

A synthesis constraint file (.sdc) is provided for use with the Synplify Pro tool. It is used
to provide additional inputs to the synthesis tool on desired mapping, netlist formats,
and post-synthesis timing estimates.

The synthesis constraint file specified in the <alg_name>.prj is added to the generated
full_<alg_name>.prj synthesis project file created by Makefile build process. If a
user desires to add constraints for portions of the Algorithm Block, this can be done by
editing the .sdc file manually or through the associated synthesis GUI.

The synthesis constraint files are located under the install directory at
$RASC/pd/constraints/synthesis.

Synthesis Using XST

A script file (.scr) is provided for use with the XST tool. An XST script is a set of various
options used to run synthesis. It is utilized to control various aspects of the synthesis
process to meet your design goals or obtain the best implementation of your design.

The synthesis script is used along with the synthesis project file <alg_name>_xst.prj.
If a user desires to add constraints for portions of the Algorithm Block, this can be done
by creating an .xcf file. To specify the XCF file in the script, use the -uc switch with run
command.

The XST script file should be located under the synthesis project directory of each
algorithm.

Table 6-4 Synthesis Constraint Files Provided

File Synthesis Tool Description

acs_top.sdc Synplify Pro Basic synthesis constraint file

<alg_name>_xst.scr XST General (global) constraints

Installation and Setup

007-4718-005 129

ISE (User Constraint File)

A top level user constraint file (ASCII) needs to be used with the ISE tools to guide
placement and routing and to achieve timing-driven placement results. The UCF file is
generated from separate constraint files (see Table 6-5) located in the directory
$RASC/pd/constraints/ise.

The constraint file should always be included in the design, and the provided constraints
should not be modified. However, a user can add to the constraint file to put in
constraints related to the Algorithm Block. If a user desires to rename the constraint file,
the file name change also needs to be applied to the Makefile.local by adding a new
variable CURR_UCF_FILE. An alternate directory location can be modified by adding
the UCF_DIR variable in Makefile.local.

The constraint file provided in the Bundle provides the following types of constraints:

• Period specifications for all internal clock signals, both for the Core Services Block
and the Algorithm Block

• I/O Pad placement constraints and I/O standard settings

• Setup and hold constraints for input pads

• DCM attributes settings

• Cross clock domain path constraints

Table 6-5 Implementation Constraint Files Provided

File Description

ssp.ucf Timing constraints and I/O assignments

virtual_gnd.ucf Virtual ground I/O assignments

prohibit.ucf Prohibit constraints for specific sites

qdr_bank0.ucf,
qdr_bank1.ucf,
...,
qdr_bank4.ucf,
and qdr_misc.ucf

Location and specific constraints for QDR banks

130 007-4718-005

6: RASC Algorithm FPGA Implementation Guide

• BUFG and DCM placement constraints

All constraints are written in the Xilinx-specified User Constraint File format.

An example of a constraint file is, as follows:

--# Set the current user constraint file for ISE
UCF_FILE_LIST=./alg_cmu_dft_n16k_w32_local.ucf
${UCF_DIR}/virtual_gnd.ucf ${UCF_DIR}/ssp.ucf ${UCF_DIR}/prohibit.ucf
${UCF_DIR}/qdr_bank0.ucf ${UCF_DIR}/qdr_bank1.ucf
${UCF_DIR}/qdr_bank2.ucf ${UCF_DIR}/qdr_bank3.ucf
${UCF_DIR}/qdr_bank4.ucf ${UCF_DIR}/qdr_misc.ucf

The ./alg_cmu_dft_n16k_w32_local.ucf file contains these statements that are
currently commented-out:

#INST
"u_user_space_wrapper/u_alg_block_top/u_calc_control/u_dft/*/FIFOinst*/fifo*"
LOC=RAMB16_X2Y0:RAMB16_X6Y47;

INST
"u_user_space_wrapper/u_alg_block_top/u_calc_control/u_dft/instList699/instList2221/instrc222
6/instList2235/instParallelWithControl2243/seu2313/FIFOinst2318/fifo*"
 LOC=RAMB16_X3Y0:RAMB16_X6Y47;

INST
"u_user_space_wrapper/u_alg_block_top/u_calc_control/u_dft/instList699/instrc2222/instList234
6/instParallelWithControl2347/seu2362/FIFOinst2367/fifo*"
 LOC=RAMB16_X3Y0:RAMB16_X6Y47;

Adding Extractor Directives to the Source Code

Symbol table information is required for GDB to correctly display internal FPGA values
and for the RASC Abstraction Layer (RASCAL) to communicate parameters and data
that should be written to and read from the SRAM banks and internal registers. A python
script called extractor parses all the Verilog, VHDL, and header files in an arbitrary
algorithm directory that is passed as an argument. The user specifies the top level
algorithm directory by setting the ALG_DIR variable in the Makefile.local file, to be
discussed later. When the extractor script is called, it generates two configuration files
that communicate the necessary information for the RASCAL and GNU source-level
debugger (GDB) to communicate with the hardware correctly.

Adding Extractor Directives to the Source Code

007-4718-005 131

The extractor script parses comment lines that contain special extractor directives from
within source and header files in the algorithm directory. There is a template in the
examplesdirectory, in addition to full examples for each of the example algorithms. The
comment fields can be located in one or more files below the directory specified in the
second argument to the extractor call.

The command to run the extractor has been automated in the Makefile flow discussed in
detail later. The user does not need to run extractor at the command line, but can issue
the make extractor command after the Makefiles have been set up.

Inserting Extractor Comments

The comment fields that need to be inserted within the algorithm source or header code
are: core services version, algorithm version, sram (denoting where data will be read from
and written to on the sram interface), register in (for parameters set through an
application writer’s code), and register out (for a section of code that needs to be mapped
to a debug register).

The comments can be located anywhere within a Verilog, VHDL or header file. They can
have Verilog or VHDL syntax (“//” or “- -” respectively). Extractor comments begin with
the tag “//extractor” in the source file. The general format is shown below.

//extractor <type>:[<value/specifier1> ... <value/specifierN>] (Verilog)

- - extractor <type>:[<value/specifier1> ... <value/specifierN>] (VHDL)

For details on each extractor comment, see Table 6-6.

132 007-4718-005

6: RASC Algorithm FPGA Implementation Guide

Example of Comments in a Verilog, VHDL, or header File

Table 6-6 Extractor Comment Fields

Type Description Value Example

CS Core Services Version:

Tag detailing which
iteration of core services
was used in this
bitstream.

<version>.<revision> //extractor CS:0.7

VERSION Algorithm Version:

Tag for the type and
version number of the
algorithm in this
bitstream. This is user
defined but it should
match the first register in
the debug space (see
Chapter 3, “RASC
Algorithm FPGA
Hardware Design
Guide”for more details.)

<version>.<revision> //extractor VERSION:0.12

SRAM Array:

Tag for the SRAM inputs
and outputs to the
algorithms.

<array name>

<number of elements in array>

<bit-width of each element>

<SRAM bank for array>

<starting byte offset>

<array direction: in | out |internal>

<data type for array elements:

u=unsigned>

<array use attribute: stream | fixed>

//extractor SRAM:a_in 512
64 sram[0] 0x0000 in u
stream

REG_IN register in:

Tag for the registers that
are PIO written as
specified by the
application and where
the value will be mapped
in the address space.

<register name>

<bit width of register>

<data type for element>

<alg_def_reg mapping>

<bit range mapping of alg_def_reg>

//extractor REG_IN:match
32 u alg_def_reg[0][31:0]

Adding Extractor Directives to the Source Code

007-4718-005 133

A sample of the comments that might be included within a source file is:

// extractor VERSION: 6.3
// extractor CS: 1.0
// extractor SRAM:a_in 2048 64 sram[0] 0x0000 in u stream
// extractor SRAM:b_in 2048 64 sram[0] 0x4000 in u stream
// extractor SRAM:c_in 2048 64 sram[0] 0x8000 in u stream
// extractor SRAM:d_out 2048 64 sram[1] 0x0000 out u stream
// extractor REG_OUT:alg_id 32 u debug_port[0][63:32]
// extractor REG_OUT:alg_rev 32 u debug_port[0][31:0]
// extractor REG_OUT:rd_addr 64 u debug_port[1]
// extractor REG_OUT:rd_data_sram0_lo 64 u debug_port[2]
// extractor REG_OUT:rd_data_sram0_hi 64 u debug_port[3]
// extractor REG_OUT:wr_addr 64 u debug_port[4]
// extractor REG_OUT:wr_data_sram1_lo 64 u debug_port[5]
// extractor REG_OUT:wr_data_sram1_hi 64 u debug_port[6]
// extractor REG_OUT:cntl_sigs 64 u debug_port[7]

REG_OUT register out:

Tag for the registers that
are PIO written or read
by the application or the
debugger and where the
value will be mapped in
the address space.

<register name>

<bit width of register>

<data type for element>

<debug port mapping>

<bit range mapping of debug_port>

//extractor REG_OUT: a 16
u debug_port[1]
debug_port[1] [15:0]

stream:input_stream stream in tag <stream_name> <direction> <stride> // extractor
stream:input_stream in 8

stream:output_stream stream out tag <stream_name> <direction> <stride> // extractor
stream:output_stream out 8

Table 6-6 Extractor Comment Fields (continued)

Type Description Value Example

134 007-4718-005

6: RASC Algorithm FPGA Implementation Guide

Implementation with Pre-synthesized Core

The first recommended implementation flow uses the pre-synthesized version of the
Core Services Block. The bulk of the Core Services Block (excluding clocking, resets, and
I/O) has been pre-synthesized and has soft-fixed source code (we do not support
customer modifications). The implementation time could be significantly reduced by
using the pre-synthesized core, but results vary depending on the loading of signals
between the Algorithm Block and the Core Services Block. We suggest that you first try
this method, and if timing is not met due to loading issues on the Algorithm Block / Core
Services interface, re-synthesize the full design from scratch (discussed later).

With the RASC 2.1 release, two EDIF files are provided. The pre-synthesized Core
Services Block that is located under the install directory at$RASC/pd//acs_core.edf
does not instantiate the mem_2 interface.

The EDIF file that is located at $RASC/pd/acs_core_5th/acs_core.edf does
instantiate the mem_2 interface.

When you synthesize the full FPGA, the synthesis project views the acs_core.v file as a
black box, and the NGDBUILD tool will stitch in acs_core.edf in its place.

Each algorithm project will have its own associated implementation project directory,
which can be located anywhere in the directory space of the user. The user customizes
template Makefiles and synthesis project files to run the desired bitstream generation
flow. Each project directory must contain the following three files, the first two provided
in the $RASC/implementations/templates directory:

• Makefile (linked or copied from the templates directory).

This Makefile contains general definitions and targets necessary to run the synthesis
and ISE tools. It includes the Makefile.local file. This file is meant to be linked into
each new algorithm project directory. Customizations should be added to
Makefile.local; it is recommended to keep this file common between all projects.

• Makefile.local

This included Makefile allows custom definitions and targets for each algorithm
project. Here you can define the synthesis project name, specify different constraint
files, and override tool options.

• Synthesis Project File

– Synplify Pro <alg_name>.prj.

Implementation with Pre-synthesized Core

007-4718-005 135

This file defines the algorithm source files and synthesis tool options. This is
where you need to add / modify the paths to the algorithm code. The Synplify
Pro project file is a TCL script, which can also be opened and run by the GUI
version of the synthesis tools. Read the synthesis tool documentation for more
information on the TCL commands available. You will notice that the template
synthesis project file does not contain any source files for the Core Services
Block. All Core Services files are stored in another file in the templates directory,
acs.files. The Makefile flow combines acs.files with the synthesis
project file of the user to create a complete synthesis project (renamed as
full_<alg_name>.prj). If you are creating a synthesis project from scratch or
not using the Makefile flow, you will need to copy acs.files into your synthesis
project.

– XST <alg_name>_xst.prj.

This file only defines the algorithm source files. This is where you need to add /
modify the pointers to the algorithm code. The synthesis options are included
in a separate script file <alg_name>_xst.scr which can be opened and run by
the synthesis tools.

Examples of each of these required files are located in the templates directory, as well as
the included example algorithm implementation project directories:

$RASC/examples/<alg_name>/impl

An example of the steps for setting up a new implementation directory is, as follows:

% cd my_dir
% mkdir my_alg
% mkdir my_alg/impl
% cd my_alg/impl
% ln -s $RASC/implementations/templates/Makefile Makefile
% cp $RASC/implementations/templates/Makefile.local Makefile.local
% cp $RASC/implementations/templates/synplify_template.prj

my_alg.prj
% ls -lat

2748 Aug 27 11:42 my_alg.prj
1433 Aug 27 11:42 Makefile.local
21 Aug 27 11:42 Makefile ->
../../../implementations/templates/Makefile

Edit my_alg.prj to set the variable ALG_DIR to $RASC/examples/my_alg/impl.

136 007-4718-005

6: RASC Algorithm FPGA Implementation Guide

Makefile.local Customizations

Any Makefile variables you want to redefine can be changed using the
Makefile.localfile. This allows each project you create to use the same base Makefile,
but have project-specific customizations in a separate file. The key Makefile variables
that are commonly redefined for each project are listed here. Default settings are
provided with the Makefile.local version in the templates directory.

Synthesis Project Customization

Table 6-7 shows common Makefile.local variable settings.

Table 6-7 Common Makefile.local Variable Settings

Variable Example Definition

ALG_DIR $RASC/examples
/alg_simple

Pointer to top level algorithm directory.
This is a full path, not a relative path.

SYNTHESIS_PROJ <any name>, e.g.,
alg_simple_hc

Name of the synthesis project; the base
filename to Synplify’s *.prj file.

SYNTHESIS_DIR <any relative path
directory>, e.g.
rev_1

Output directory for synthesis and
implementation flow, relative to project’s
implementation directory.

DEFAULT_SYNTHESIS_TOOL synplify_pro,
ise_xst

Specify synthesis tool to use for default
make flow

SYN_RESULT_EXT edf, ngc Specify the synthesis tool’s output file
extension

LOCAL_SOURCE_DIR <any full path list of
directories>

List of directories of additional
edf/sources related to the algorithm that
need to be read by ngdbuild (default:
none).

MAP_OPTIONS, PAR_OPTIONS Any ISE allowed
options

Set ISE tool options for a specific run.

UCF_DIR, CURR_UCF_FILE,
etc.

Additional variables to override the
Makefile settings

Implementation with Pre-synthesized Core

007-4718-005 137

Synplify Pro

The Synplify Pro tool uses a <alg_name>.prj file to specify the HDL files for synthesis
and other compiler, mapping, and output options. When creating a new project for a new
algorithm, the algorithm related files need to be added to the project file so that the
synthesis tool knows which algorithm to compile. The user should specify the location
of the files alg_block_top.v and alg.h, along with any submodules. For example, if
you are compiling an algorithm whose two source files alg_block_top.v and
sort_byte.v are located under $RASC/examples/alg_simple_v/, you would
need to add the following lines to the project file:

add_file -verilog "$RASC/examples/alg_simple_v/alg_block_top.v"
add_file -verilog "$RASC/examples/alg_simple_v/sort_byte.v”

Please note that for some projects it is useful to read the EDIF netlist of Core Services
Block during the synthesis. To do that add the following line to the project file:

add_file -edif "$RASC/pd/acs_core/acs_core.edf"

XST

The XST tool uses a <alg_name>_xst.prj file to specify the HDL files for synthesis and
creates Xilinx specific netlist files called ngc files. All other compiler (for example,
verilog include directories), synthesis, and output options are included in a separate
script file <alg_name>_xst.scr. When creating a new project for a new algorithm, the
algorithm related files need to be added to the project file so that the synthesis tool knows
which algorithm to compile. The user should specify the location of the files
alg_block_top.v and alg.h, along with any submodules. For example, if you are
compiling an algorithm whose source file alg_block_top.v is located under
$RASC/examples/alg_simple_v/, you would need to add its full or relative path to
the project file:

verilog work "../../example/alg_simple_v/alg_block_top.v"

Makefile Targets

After the Makefile, Makefile.local, and synthesis project file are set up and
customized, the next step is to run the make command to generate the bitstream and
configuration files for download to the RASC hardware.

FPGA implementation comprises many sub-steps such as synthesis, ngdbuild, map,
place-and-route, bitgen, and timing analysis. The user can choose to run the entire flow

138 007-4718-005

6: RASC Algorithm FPGA Implementation Guide

or individual subsections based on the Makefile target. If no target is specified, the full
implementation flow is executed:

% cd $RASC/implementations/alg_simple_v
% make all

Other available targets are described in Table 6-8. The default command is make all.

Full-chip Implementation

A full-chip implementation refers to synthesis of the entire FPGA design, including a
re-synthesis of the Core Services Block. The implementation steps for this flow are similar

Table 6-8 Makefile Targets

Command Line Description

make all Runs extractor, synthesis and ISE tools, results in the <alg_name>.bin
and related .cfg files, ready to download to FPGA. This is the default
make target.

make extractor Run the Extractor script to generate the configuration files based on the
source code comments,

make
synplify_pro

Run Synplify Pro tool alone. Results in EDF file.

make amplify Run Amplify tool alone. Results in EDF file.

make ise_xst Run XST tool alone. Results in NGC file.

make oneloop Run ISE tools, does not rerun synthesis. Performs 1 PAR iteration.
Results in NCD output

make ngdbuild Run NGDBUILD alone.

make map Run MAP alone.

make par Run PAR alone.

make trce Run TRACE (static timing analysis) alone.

make bitgen Run BITGEN alone.

make clean Remove all intermediate and output files.

Implementation File Descriptions

007-4718-005 139

to those for the flow using the pre-synthesized Core Services Block netlist, with
differences specified in the Makefile.local and the synthesis project file.

Makefile.local Customizations

When synthesizing the full FPGA, including a re-synthesis of the Core Services Block, we
only support the use of Synplify Pro. The Core Services Block design has been optimized
for use with these tools and results from using another synthesis tool will not likely
achieve the same quality-of-results and timing closure. Therefore, theMakefile.local
for the full chip project must use the following Makefile variable settings (see Table 6-9).

Synthesis Project Customization

A synthesis option must be set to allow the Core Services Block to be re-synthesized. This
option is in the form of a Verilog compiler directive, which can be added to the synthesis
project file with the following TCL command:

set_option -hdl_define -set RESYNTHESIZE_CS=1

This option is commented in the <alg_name>.prj and must be uncommented by the
user desiring to re-synthesize the Core Services Block. The rest of the synthesis project
should be the same as described earlier.

Implementation File Descriptions

Table 6-10 includes the commonly referenced files. The synthesis and ISE tools use a lot
of intermediate files. To find out more information about files not discussed here, please
consult the on-line reference guides mentioned above.

Table 6-9 Required Full Chip Makefile Variable Settings

Variable Possibilities

DEFAULT_SYNTHESIS_TOOL synplify_pro

SYN_RESULT_EXT edf

140 007-4718-005

6: RASC Algorithm FPGA Implementation Guide

Table 6-10 Commonly Referenced Files

Name Type Produced By Description

.bin Binary Bitgen Contains only configuration data for the FPGA. The .bin
has no header like the .bit file. Meant for input to
non-Xilinx tools such as the FPGA Loader Device Driver.

.bit Binary Bitgen Contains proprietary header information as well as
configuration data. Meant for input to other Xilinx tools
such as PROMGen and Impact.

.cfg ASCII Extractor Configuration file used by the Abstraction Layer software
to recognize features of the Algorithm and Core Services.

.edif ASCII Synplify Pro Synthesis Tool EDIF Netlist.

.ngc ASCII XST Synthesis Tool NGC Netlist.

NCD Data Map, PAR Flat physical design database. After PAR, this is the
database file with the full placed-and-routed design.

NCF ASCII Synplify Pro Synthesis Tool Constraint file produced by the Synplify Pro synthesis
tool to be associated with the EDIF file of the same name.

.prj ASCII User or Synthesis Tool Synthesis Project definition file.

.sdc ASCII User (text editor) /
Synthesis tools GUI
(Synplify Pro or Amplify)

Provides directives and attributes for the synthesis tool to
use while it is compiling the design

TWR ASCII Trace Timing report file. Provides details on failing timing
paths.

TWX XML Trace Timing report file, with the same information as TWR but
can be opened by the Timing Analyzer tool.

.ucf ASCII User (text editor) / ISE
Constraints Editor or PACE

User-specified logic constraints file. Constrains pinout,
placement and timing constraints.

007-4713-005 141

Chapter 7

7. Running and Debugging Your Application

This chapter describes how to run and debug your application and covers the following
topics:

• “Loading the Bitstream” on page 141

• “RASC Device Manager” on page 142

• “Using the GNU Project Debugger (GDB)” on page 152

Loading the Bitstream

The Device Manager (devmgr) maintains a bitstream registry of algorithm bitstreams
that can be loaded and executed using the RASC abstraction layer. The devmgr user
command is used to add, delete, and query algorithms in the bitstream registry. An
algorithm is identified by its user supplied name and consists of a set of files, as follows:

• Algorithm bitstream

• Configuration file for the algorithm bitstream

• Core services configuration file

All of these files must be accessible by the devmgr user command when the algorithm is
added to the bitstream registry.

The devmgr user command executes on the target Altix system, but the algorithm
bitstream and configuration files are built on a PC using one of several FPGA
development tools.

Note: For detailed information using the devmgr user command, see “RASC Device
Manager” on page 142.

To make the algorithm files available to the devmgr command, perform the following:

142 007-4713-005

7: Running and Debugging Your Application

1. Prepare to FTP three files from the PC to the Altix system.

• The files can reside anywhere on the Altix system that can be accessed by the
devmgr command. A convenient location is, as follows:

/usr/share/rasc/bitstream/your_algorithm_directory

• Create the bitstream and optionally a user specific subdirectory in
/usr/src/RASC, if they do not already exist on the Altix system.

2. Execute the FTP command from the PC to transfer the algorithm bitstream, its
configuration file, and the core services configuration file to the user generated
subdirectory.

3. Login to the Altix system and execute the devmgr user command to add the
algorithm to the bitstream registry giving the algorithm a user supplied name. All
references to the bitstream in the bitstream registry is made using this name. Note
that the bitstream file suffix must be *.bin and the configuration files suffix must
be *.cfg.

For example, assume that an algorithm bitstream and configuration files have been
FTP’d to the Altix system in subdirectory dog. A list of the files in dog could look
like the following:

/usr/share/rasc/bitstream/dog/spot.bin
/usr/share/rasc/bitstream/dog/spot.cfg
/usr/share/rasc/bitstream/dog/core_services.cfg

4. This devmgr command could be executed on the Altix system to add the algorithm
to the bitstream registry with the name bark, as follows:

devmgr -a -n bark -b /usr/share/rasc/bitstream/dog/spot.bin

Notice that the full path name of the bitstream must be specified. If the algorithm
bitstream configuration file is not called spot.cfg, the devmgr -c option must
also specify the full path name of the algorithm configuration file. Similarly, if the
core services file is not core_services.cfg, the -s option must specify its full
path name.

RASC Device Manager

This section provides detailed information on using the Device Manager (devmgr)
software and covers the following topics:

• “RASC Device Manager Overview” on page 143

RASC Device Manager

007-4713-005 143

• “RASC Device Manager Structure” on page 144

• “Using the Device Manager Command (devmgr)” on page 144

• “Device Manager Server Command” on page 150

• “Using the Device Manager Server (devmgr_server) Command” on page 151

• “Device Manager Logging Facility” on page 151

RASC Device Manager Overview

The RASC Device Manager (devmgr) maintains a bitstream registry and a FPGA
hardware inventory. You can add, delete, and list bitstreams in the bitstream registry
using the devmgr command and can allocate available FPGAs by making requests using
the RASC abstraction layer software. You can also use the devmgr command to list the
FPGAs in the inventory.

You can manually load an algorithm into an FPGA on demand using the devmgr user
command -l option.

You can use the devmgr -r option to direct the Device Manager to always reload an
algorithm into an FPGA, even when that FPGA is already loaded with the current
version of the requested algorithm.

When an FPGA is allocated to a user, the requested bitstream is loaded into those FPGAs.
Allocation requests must be made using abstraction software (see Chapter 4, “RASC
Abstraction Layer” for specific API calls) and are passed to the device manager.

Each entry in the bitstream registry is identified by the name, which is limited to 63
characters, that is assigned by the user when the bitstream is added to the bitstream
registry. The entry also includes copies of the bitstream binary file, the bitstream
configuration file, and the cores services configuration file. The location of these files on
the local machine is also specified by the user when the entry is added.

You can use the devmgr -m unavail option to mark an FPGA device node as
unavailable for application allocation. You can use the devmgr -m avail option to
mark an FPGA device node as available for application allocation.

The devmgr -v option shows the devmgr command build date and time. This
information can be helpful when diagnosing Device Manager software problems.

144 007-4713-005

7: Running and Debugging Your Application

RASC Device Manager Structure

The Device Manager is structured as client and server components that communicate
over a TCP/IP connection. Both the devmgr user command and the services requested
by the abstraction layer interface with the client side of the device manager. The
bitstream registry management and FPGA allocation and loader services occur on the
server side. Before a bitstream can be added to the bitstream registry, all of the bitstream
files must exist on the machine where the server is running.

Using the Device Manager Command (devmgr)

The devmgr user command requires one action argument that may require additional
arguments, and accepts an optional client debugging argument. The command actions
are, as follows:

• “Add a Bitstream To the Bitstream registry” on page 145

• “Delete a Bitstream From the Bitstream registry” on page 145

• “List the Contents of a Bitstream registry” on page 145

• “Update an Algorithm in the Bitstream registry” on page 146

• “List the FPGAs in the Inventory” on page 146

• “Mark an FPGA as Available or Unavailable” on page 147

• “Turn Debugging On or Off” on page 148

• “Device Manager Load FPGA Command” on page 148

• “Device Manager Reload FPGA Command” on page 149

• “Device Manager Version Information” on page 150

Guidelines for using the devmgr command are, as follows:

• The add and delete actions require a bitstream registry entry name; the add action
also requires the binary bitstream file name, which must have the ".bin" suffix.

• If the bitstream configuration file name is not specified, it defaults to the bitstream
file basename with a ".cfg" suffix in the same directory as the binary bitstream file.

RASC Device Manager

007-4713-005 145

• If the cores services file name is not specified, it defaults to "core_services.cfg"
in the same directory as the binary bitstream file.

Add a Bitstream To the Bitstream registry

The devmgr command syntax to add a bitstream to the bitstream registry is, as follows:

devmgr -a -n algorithm name -b bitstream file name [-c bitstream config file name]
[-s core services config file name] [-y on | off]

The devmgr command accepts the following options:

-a Adds an entry to the bitstream registry.

-n algorithm name Names an entry in the bitstream registry.

-b bitstream file name Indicates the location of the bitstream file.

-c bitstream config file name Indicates the location of the configuration file.

-s core services config file name Indicates the location of the core services config file.

-y on | off Turns client debugging on or off.

Delete a Bitstream From the Bitstream registry

The devmgr command syntax to delete a bitstream from the bitstream registry is, as
follows:

devmgr -d -n algorithm name [-y on | off]

The devmgr command accepts the following options:

-d Deletes an entry from the bitstream registry.

-n algorithm name Identifies the name of an entry in the bitstream registry.

-y on | off Turns client debugging on or off.

List the Contents of a Bitstream registry

The devmgr command syntax to list a specific entry or all entries in the bitstream registry
is, as follows:

devmgr -q [-n algorithm name][-y on | off]

The devmgr command accepts the following options:

146 007-4713-005

7: Running and Debugging Your Application

-q Lists all entries in the bitstream registry.

-n algorithm name List a specific algorithm in the bitstream registry.

-y on | off Turns client debugging on or off.

Update an Algorithm in the Bitstream registry

You can use the -u option to update an existing algorithm in the Device Manager
bitstream registry with a new version of the bitstream file, bitstream configuration file,
and core services configuration file. All three files are replaced in the bitstream registry
with the new files specified with the command. The -u option is logically equivalent to
a -d option followed by the -a option, where both options specify the same algorithm
name.

After a successful update of an algorithm in the bitstream registry, any FPGAs currently
loaded with the same algorithm name will be reloaded with the new version of the
algorithm the next time that FPGA is allocated.

The devmgr command syntax to update an algorithm in the bitstream registry is, as
follows:

devmgr -u -n algorithm name -b bitstream file name [-c bitstream config file name]
[-s core services config file name] [-y on | off]

The devmgr command accepts the following options:

-u Updates the entry in the bitstream registry.

-n algorithm name Names an entry in the bitstream registry.

-b bitstream file name Indicates the location of the bitstream file.

-c bitstream config file name Indicates the location of the configuration file.

-s core services config file name Indicates the location of the core services config file.

-y on | off Turns client debugging on or off.

List the FPGAs in the Inventory

You can use the devmgr command to list the FPGAs in the inventory. The list indicates
whether the FPGA is available or in use, the system node where the FPGA resides (its
device node ID), part number, and manufacture (mfg) number. FPGAs that are in use also

RASC Device Manager

007-4713-005 147

list the Linux process ID (pid) and Pthread thread ID (thread id) of the current FPGA
user, and the name of the algorithm currently loaded in to the FPGA.

The devmgr command syntax to list a specific entry or all entries in the FPGA inventory
is, as follows:

devmgr -i [-N odd integer][-y on | off]

The devmgr command accepts the following options:

-i Lists all entries in the inventory.

-N odd integer List the specific FPGA device node ID.

-y on | off Turns client debugging on or off.

Mark an FPGA as Available or Unavailable

You can mark an FPGA device node as unavailable for use by an application with the
devmgr -m unavail option. If the FPGA is currently in use, the mark action will remain
pending until the FPGA is freed; then the FPGA is marked as unavailable.

The devmgr -m avail option marks an FPGA device node as available for allocation by
an application.

You must specify the target FPGA device node ID using the -N option whenever you use
the devmgr -m option.

You can use the devmgr -i option to display the availability of an FPGA device (see
“List the FPGAs in the Inventory” on page 146).

The devmgr command syntax to to mark an FPGA device as available or unavailable is,
as follows:

devmgr -m avail | unavail -N odd integer [-y on | off]

The devmgr command accepts the following options:

-m avail | unavail Marks an FPGA device node as available or unavailable for use.

-N odd integer Specifies the target FPGA device node ID.

-y on | off Turns client debugging on or off.

148 007-4713-005

7: Running and Debugging Your Application

Turn Debugging On or Off

The devmgr command syntax to turn server or client debugging on or off is, as follows:

devmgr -x on | off [-y on | off]

The devmgr command accepts the following options:

-x on | off Turns server debugging on or off.

-y on | off Turns client debugging on or off.

Device Manager server and client debugging can also be turned on or off using
environment variables. This is the only way to control Device Manager client debugging
for RASC applications. The devmgr_server command -x and -y options override any
environment variable settings. The devmgr_server command is used to start the server
component of the device manager. For more information on the devmgr_server
command, see “Device Manager Server Command” on page 150.

To turn client debugging on or off, set the RASC_DEVMGR_CLIENT_DEBUG variable, as
follows (for the Korn shell):

export RASC_DEVMGR_CLIENT_DEBUG=on
export RASC_DEVMGR_CLIENT_DEBUG=ON

export RASC_DEVMGR_CLIENT_DEBUG=off
export RASC_DEVMGR_CLIENT_DEBUG=OFF

To turn server debugging on or off set the RASC_DEVMGR_SERVER_DEBUG variable, as
follows (for the Korn shell):

export RASC_DEVMGR_SERVER_DEBUG=on
export RASC_DEVMGR_SERVER_DEBUG=ON

export RASC_DEVMGR_SERVER_DEBUG=off
export RASC_DEVMGR_SERVER_DEBUG=OFF

Device Manager Load FPGA Command

You can manually load an algorithm into an FPGA on demand using the devmgr user
command -l option. Usually the algorithm is automatically loaded into the FPGA by the
RASC abstraction layer as part of the co–processor (COP) allocation request. FPGAs
loaded by the abstraction layer are marked as in use until the RASC abstraction layer
frees the FPGA. FPGAs manually loaded using the devmgr command are not marked in

RASC Device Manager

007-4713-005 149

use and their algorithm can be immediately changed by another user command or the
RASC abstraction layer after the devmgr command terminates.

The -l option requires an algorithm name specified with the -n option and a system
node ID identifying the FPGA location with the -N option.

Note: Note that I/O nodes, including FPGA nodes, are always an odd number. Use the
devmgr command with the -i option to view the FPGA inventory and their node IDs.

The devmgr command syntax to manually load an FPGA with an algorithm is, as
follows:

devmgr -l -N FPGA odd numbered node ID -n algorithm name [-y on | off]

The devmgr command accepts the following options:

-l Loads this FPGA with this algorithm.

-N FPGA odd numbered node ID FPGA device odd numbered node ID.

-y on | off Turns client debugging on or off.

Device Manager Reload FPGA Command

By default, the Device Manager only loads an algorithm into an FPGA under the
following conditions:

• The FPGA is not already loaded with the requested algorithm, that is, the name of
the algorithm loaded in the FPGA is not the same as the requested algorithm name.

• A newer version of the algorithm is available in the bitstream registry.

Otherwise, the FPGA is not loaded, eliminating the latency needed to load the FPGA.

You can use the -r option to direct the Device Manager to always reload an algorithm into
an FPGA, even when that FPGA is already loaded with the current version of the
requested algorithm. Always reloading an FPGA can be useful when debugging a
suspected hardware or software FPGA load problem. Specify on to enable always reload
an FPGA and off to only reload an FPGA when needed.

To determine whether the always reload option is on or off, use the devmgr -i
command.

150 007-4713-005

7: Running and Debugging Your Application

The devmgr command syntax to always reload an FPGA or only reload an FPGA when
it is needed is, as follows:

devmgr -r on | off [-y on | off]

The devmgr command accepts the following options:

-r on | off Turns the always reload an FPGA action on or off.

-y on | off Turns client debugging on or off.

Device Manager Version Information

You can use the devmgr -v option to show the build date and time of the devmgr
command. This information can help you diagnose Device Manager software problems.

The devmgr command syntax to show version information is, as follows:

devmgr -v [-y on | off]

The devmgr command accepts the following options:

-v Shows devmgr version information.

-y on | off Turns client debugging on or off.

Device Manager Server Command

The Device Manager includes a server component that manages the algorithm bitstream
registry, allocates and frees FPGA devices from its inventory, and loads algorithm
bitstreams into the FPGAs. The devmgr_server command is used to start the server
component of the device manager.

Both devmgr user command and abstraction layer requests are sent over a TCP
connection to the server to be processed, and the response is sent back over the same
connection to the requester.

By default, the server listens for incoming connection requests on port number 9999. The
port number can be changed by the system administrator by adding a port definition to
the TCP/IP services file. Usually this file is located, as follows:

/etc/services

An example of how to change the listening port to 9998 is, as follows:

RASC Device Manager

007-4713-005 151

rasc_devmgr 9998/tcp # RASC Device Manager Server

Note: After you make a port number change, you must restart the server (see the “Using
the Device Manager Server (devmgr_server) Command”).

Using the Device Manager Server (devmgr_server) Command

After changing a port number as described in “Device Manager Server Command”, the
server must be started before any requests can be processed. The devmgr_server
command is used to start the server component of the device manager. The debug option
enables server initialization debugging, which cannot be done using the devmgr
command with the -x on action. By the time a devmgr command can request that server
debugging be turned on, the server initialization has already completed.

The devmgr_server command syntax is, as follows:

devmgr_server [-x on | off]

where the -x option turns server debugging on or off. The default setting is off.

Device Manager Logging Facility

The Device Manager client and server provides an optional logging facility that tracks
Device Manager requests and responses. Client or server logging is independently
enabled by specifying the log file name using an environment variable. Log entries are
time stamped and marked with the owning process and thread identifiers. The server log
entries also include the process and thread identifiers of the client.

A summary of client application Device Manager activity can be obtained by enabling
client logging for the application. Each client should use its own log file by specifying a
unique file name for its log. This makes finding and browsing the log for a particular
application easier.

The current working directory of the device manager’s server is always root. Unless a
path is specified, the server log file is created in the root directory.

To enable client logging set the RASC_DEVMGR_CLIENT_LOG variable to the name of the
file that is to contain the client log entries, as shown below for the Korn shell:

152 007-4713-005

7: Running and Debugging Your Application

export RASC_DEVMGR_CLIENT_LOG=client_log_file_name

To disable client logging, unset the RASC_DEVMGR_CLIENT_LOG variable, as shown
below for the Korn shell:

unset RASC_DEVMGR_CLIENT_LOG

To enable server logging set the RASC_DEVMGR_SERVER_LOG variable to the name of
the file that is to contain the server log entries, as shown below for the Korn shell:

export RASC_DEVMGR_SERVER_LOG=server_log_file_name

To disable server logging, unset the RASC_DEVMGR_SERVER_LOG variable, as shown
below for the Korn shell:

unset RASC_DEVMGR_SERVER_LOG

Using the GNU Project Debugger (GDB)

This document describes extensions to the GNU Debugger (GDB) command set to
handle debugging of one or more FPGAs. Normal GDB commands and facilities are
unchanged.

Brackets [] are used in this chapter to indicate that the value is optional. The [] here is
not something a GDB user types; it is a syntactic convention used in this document to
express an optional command field.

We use N here to indicate a number such as 0 or 1. The FPGA number is assigned by GDB
when the FPGA is opened (loaded into the GDB command session). The first FPGA
opened is assigned number zero, the next is assigned one, and so on. Numbers are not
reused. GDB interacts with the RASC abstraction layer to implement several of the GDB
features documented below. The N FPGA number is not the same as the cop_desc
integer assigned in a user’s application (that cop_desc integer is printed in the ’info
fpga’ output).

Some FPGA data is treated as if it were in registers. Such things use GDB normal register
syntax, so one types a prefix $ (and GDB shows a prefix $) to the data name. Other FPGA
data is treated as variables or arrays and normal C-like language syntax is used.

Using the GNU Project Debugger (GDB)

007-4713-005 153

Note: For this release, GDB FPGA (gdbfpga) does NOT support DMA stream_in and
stream_out functionality described in “Streaming Direct Memory Access” on page 30.

GDB Commands

The commands added to GDB unique to RASC are, as follows:

• fpgaactive [on/off]

• set fpga fpganum = N

• info fpgaregisters [regname]

• info fr (alias for ’info fpgregisters’)

• info fpga

• fpgastep

• fpgacont

• fpgatrace [on/off]

Examples of standard commands and expressions with special meanings for FPGAs are,
as follows:

print $a_0
print a_in[12]

where the RASC configuration has specified a_0 as being in the Debug Port Interfaceof
the Algorithm Block, and a_in is an array in an SRAM (possibly N buffered).

These are FPGA-specific and visible only when actively stepping an FPGA. For more
information, see “Adding Extractor Directives to the Source Code” on page 130.

fpgaactive

The syntax for the fpgaactive command is, as follows:

fpgaactive [on,off]

With no operands, shows the activity-state (on or off) of the current FPGA. Defaults to
off, meaning FPGA is inactive and registers are invisible. The RASC Abstraction layer

154 007-4713-005

7: Running and Debugging Your Application

normally maintains the off/on state when you load GDB FPGA with an executable that
allocates an FPGA. The state can be set on or off manually (in GDB, not the device) with
an optional operand of on or off, however, doing so is not useful, and could break an
application.

set fpga fpganum

The syntax for the fpganum command is, as follows:

set fpga fpganum = N

This sets the current fpga number. This value provides an identity so when there are
multiple FPGAs one knows which one is being acted/reported on. The N is the FPGA
number assigned by GDB, not the cop_desc integer set in the application executable.
The FPGA number is not ’recycled’ in a GDB session.

fpgaregisters

The syntax for the fpgaregisters command is, as follows:

info fpgaregisters [regname]

Prints the list of register names and values for the current FPGA. If regname is given
prints just that register name and value. It ignores normal processor registers.

info fpga

The syntax for the info fpga command is, as follows:

info fpga [full] [N]

This reports information about the FPGA set in use. That is, it displays overview
information about each FPGA. The full option expands the information shown. The N
option restricts output to a specfic FPGA (N being the GDB-assigned FPGA number).

fpgastep

The syntax for the fpgastep command is, as follows:

fpgastep [N]

Using the GNU Project Debugger (GDB)

007-4713-005 155

This command does a single step by default. The N option tells GDB to step the FPGA N
steps. Because hardware does the N steps, N steps go as fast as a single step.

fpgacont

The syntax for the fpgacont command is, as follows:

fpgacont

Sets the current FPGA running to completion.

fpgatrace

The syntax for the fpgatrace command is, as follows:

fpgatrace [on/off]

You can use the fpgatrace to dynamically report FPGA use.

Turn fpga start/stop tracking (reporting) on or off. With no operands this reports
the current state of tracking. With tracking on, each start/stop of an FPGA prints a short
line giving the FPGA configuration file name, GDB number, and the ID assigned by the
application. It has not escaped our attention that the mechanism could be elaborated to
provide detailed information live or to a postprocessing tool to aid in understanding
when multiple FPGAs are in use or the FPGA use is otherwise complicated.

Registers

FPGA values that have been mapped to debug ports and labelled by extractor directives
are visible as if in the processor register set. If the user space configuration file say it is an
output register (using a REG_OUT extractor directive) , then (when the FPGA is active)
the command ’print $a’ will print that register.

You must specifiy a register as REG_IN or REG_OUT. The register can be defined as R,W,
or RW, but on a bit basis, a direction must be defined.

The requirements for this operation are that the register name is unique per FPGA
register and across the entire set of register names in the processor. The FPGA registers
are an extended set appended to the processor registers. It is important to note that these
registers are only visible when the FPGA is active. This is a normal GDB construct with
an FPGA aware extension and it adheres to all typical register syntax.

156 007-4713-005

7: Running and Debugging Your Application

Values and Stepping

When an FPGA is running one may want to see the internal values if one is stepping the
FPGA. Internal values that are exposed depends on the following:

• FPGA programming

• What the FPGA version of core-services supports

• What the device can do

• Linux device driver support

As with normal language programming, there is ’stepping’as known at the hardware
level, and ’stepping’ at a higher level. This is particularly relevant for a device like an
FPGA because whether a given value is even ’current’ or ’valid’ depends on details of the
FPGA state. The device program exposes ’step points’ that are meaningful at a software
level. Programming to the interface ensures values are meaningful at those step points,
and those step points are what is iterated fpgastep. Some device programs may not
expose such logical-step points and for those device programs values printed via GDB
will be more difficult to interpret sensibly (since it is not possible to print the entire FPGA
internal state).

FPGA Run Status

When the GDB break command is used on an application executable that is enabled with
RASC API calls, rasclib_brkpt_start() and rasclib_brkpt_done() functions,
the GDB inserts break points when an FPGA is started or done, respectively.

To be able to see the FPGA state when alg_done occurs, you would expect to set
rasclib_brkpt_done. However, you actually have to first set
rasclib_brkpt_start. If you do not do so, you will not be able to see any of the
FPGA registers when you hit rasclib_brkpt_done. The sequence is similar to the
following:

break rasclib_brkpt_start

break rasclib_brkpt_done

handle SIGUSR1 nostop pass noprint

run

-> stop at rasclib_brkpt_start and probe registers as desired

Using the GNU Project Debugger (GDB)

007-4713-005 157

fpgacont

->stop at rasclib_brkpt_done and probe registers as desired

delete

cont

-> success

An alternative method of determining FPGA run status is the fpgatrace on command
that reports details of FPGA starts and stops with more detail than the break command.

Changes To GDB Commands

The gdb cont command has a new side effect in gdbfpga of implying fpgacont on all
FPGAs on which you can apply the fpgastep or fpgacont commands. The side effect
makes cont get the entire application running as you would expect no matter what state
FPGAs are in.

007-4718-005 159

Chapter 8

8. RASC Examples and Tutorials

The chapter contains Reconfigurable Application-Specific Computing Software (RASC)
examples and tutorials and covers these topics:

• “System Requirements” on page 159

• “Prerequisites” on page 160

• “Tutorial Overview” on page 160

• “Simple Algorithm Tutorial” on page 161

• “Data Flow Algorithm Tutorial” on page 173

• “Streaming DMA Algorithm Tutorial” on page 179

System Requirements

For design, synthesis and bitstream generation you need the following

• PC with 1 GHz or greater clock speed

• At least 8 Gbytes random access memory (RAM)

• Red Hat Linux Enterprise version 3.0 or later

• Xilinx ISE development tools (version 8.2i, Service Pack 3 or higher)

• Optional: High-level language compiler.

• Optional: 3rd party FPGA synthesis software supporting Xilinx FPGAs (such as,
Synplicity Synplify Pro 8.6.2 or later)

• Optional: 3rd party HDL simulation software

For bitstream download, algorithm acceleration, and real-time verification you need the
following:

• One Altix system

160 007-4718-005

8: RASC Examples and Tutorials

• One or more RASC bricks or blades

• SGI ProPack 5 for Linux

• RASC software module

• A network connection to the PC detailed earlier

Prerequisites

The information and tutorials in this Examples and Tutorials section of the User Guide
assume that you have previously installed and familiarized yourself with the Xilinx ISE
tools and all optional software. It is also assumed that you have read the Chapter 6,
“RASC Algorithm FPGA Implementation Guide” and Chapter 7, “Running and
Debugging Your Application” and that you have some experience with Verilog and/or
VHDL.

Additional background information (not from SGI) is available in the following:

• Xilinx ISE Software Manuals and Help

http://toolbox.xilinx.com/docsan/xilinx6/books/manuals.pdf

• Synplicity’s Synplify Pro User Guide and Tutorial

http://www.synplicity.com/literature/pdf/synpro_ug_1001.pdf

Tutorial Overview

The following tutorials illustrate the implementation details of the algorithm
programming interface using two different algorithms. During the following sections
you will learn how to integrate algorithms into the RASC brick or RASC blade that are
written in hardware description languages (HDLs). You will also see a subset of the
optimizations that can be made for RASC implementations.

For both algorithms we will step through the entire RASC design flow: integrating the
algorithm with core service; simulating behavior on the algorithm interfaces;
synthesizing the algorithm code; generating a bitstream; transferring that bitstream and
metadata to the Altix platform; executing an application; and using GDB to debug an
application on the Altix system and FPGA simultaneously.

Simple Algorithm Tutorial

007-4718-005 161

These tutorials only illustrate a subset of the options available for implementing an
algorithm on RASC. For more details, see Chapter 3, “RASC Algorithm FPGA Hardware
Design Guide” and Chapter 6, “RASC Algorithm FPGA Implementation Guide”.

The Verilog example codes are on your IA32 system because Verilog codes are compiled
by using Xilinx XST which runs on the IA32 system. The example application C codes are
compiled by the C compiler which runs on your Alitx system.

Simple Algorithm Tutorial

Overview

The first algorithm we will use to describe the interfaces and various programming
templates for RASC is (d = a & b | c). This simple algorithm allows you to compare
coding options and analyze optimization techniques. This section steps through
integrating an algorithm written in Verilog and VHDL. Then it will demonstrate
simulation, synthesis, bitstream generation, platform transfer, running and debugging
the application. These steps are the same for this algorithm regardless of the coding
technique used.

Figure 8-1 contains a diagram of the algorithm and its memory patterns.

162 007-4718-005

8: RASC Examples and Tutorials

Figure 8-1 Simple Algorithm for Verilog

Application

The application that runs (d = a & b | c) on the Altix platform is fairly simple. The
following code demonstrates the RASC Abstraction Layer calls that are required to
utilize the RASC-brick as a Co-Processing (COP) unit. The application also runs the
algorithm on the Altix box to verify its results. The application C code is on your Altix
system at the following location:

/usr/share/rasc/examples/alg6.c

This simple application runs quickly on an Altix machine, although it is not optimized C
code. Please note that this application is not chosen to emphasize the optimizations

Array A

Array B

Array C

SRAM 0Byte address

0x00000

0x03FFF
0x04000

0x07FFF
0x08000

0x0BFFF

Array D

SRAM 1
0x00000

0x03FFF

Algorithm read

Algorithm write

temp_b(i)

d(i)

f_rd_data_sram0(i)

temp_a(i)

Simple Algorithm Tutorial

007-4718-005 163

available from acceleration in hardware, but rather to compare and contrast the various
programming methods for RASC. As you work through the tutorials for the different
languages, there will be similarities and differences that highlight advantages of one
methodology versus another. For a more computationally intensive example, please see
the Data Flow Algorithm in VHDL and Verilog later in this chapter.

Coding Techniques: Verilog

Overview

First we will analyze how to write a Verilog version of (d = a & b | c) for RASC. It is
important to note that the source code for this example allows for multi-buffering.

Integrating with Core Services

Begin by loading the hardware description file for the Verilog algorithm,
alg_block_top.v, into your text editor. Change directory to
$RASC/examples/alg_simple_v and select alg_block_top.v.

This file is the top level module for the algorithm. The other file that is required for this
and all other implementation is the file alg.h. This Verilog version of (d= a & b | c) reads
a from the first address in SRAM 0, b from the 16384th address of SRAM 0, c from the
32768th address in SRAM 0, and then it writes out the resulting value, d, to the first
address of SRAM 1. Arrays a, b, c, and d are 2048 elements long where each element is a
64-bit unsigned integer, and all the arrays are enabled for multi-buffering by the RASC
Abstraction Layer. The version of the algorithm, read data, write data, read address,
write address, and control signals are all brought out to debug mux registers.

Figure 8-2 contains a diagram of the algorithm and its memory access patterns.

164 007-4718-005

8: RASC Examples and Tutorials

Figure 8-2 Simple Algorithm for Verilog andVHDL

The source code is available on your IA32 system at the following location:

$RASC/examples/alg_simple_v/alg_block_top.v

Note: The handshaking methodologies (see “Handshaking Methodologies” on page 36)
are not used here since it is assumed SRAM port access conflicts will never occur between
the algorithm and DMA.

Array A

Array B

Array C

SRAM 0Byte address

0x00000

0x03FFF
0x04000

0x07FFF
0x08000

0x0BFFF

Array D

SRAM 1
0x00000

0x03FFF

Algorithm read

Algorithm write

temp_b(i)

d(i)

f_rd_data_sram0(i)

temp_a(i)

Simple Algorithm Tutorial

007-4718-005 165

Extractor Comments

Other important source code considerations include adding the extractor comments that
are required for accurate data movement and debugger control by RASClib. A python
script called extractor parses all the Verilog, VHDL, and header files in your algorithm
directory to generate the symbol tables required by GDB and to communicate to the
abstraction layer the data that should be written and read from the SRAM banks.

Comment fields to generate the configuration files for the algorithm are inserted in these
examples. There is a template in the alg_core directory, and several examples. The
comment fields can be located in any file in or below the directory specified as the second
argument to the extractor call (see Chapter 6, “RASC Algorithm FPGA Implementation
Guide” for more detail on how to specify the makefile target). The fields are core services
version, algorithm version, SRAM denoting where data will be read from and written to
on the SRAM interface, register in for parameters set through an application writer’s
code, or register out for a section of code that needs to be mapped to a debug register.

The debug comments for metadata parsing in this file are:
// extractor VERSION: 6.3
// extractor CS: 2.1
// extractor SRAM:a_in 2048 64 sram[0] 0x0000 in u stream
// extractor SRAM:b_in 2048 64 sram[0] 0x4000 in u stream
// extractor SRAM:c_in 2048 64 sram[0] 0x8000 in u stream
// extractor SRAM:d_out 2048 64 sram[1] 0x0000 out u stream
// extractor REG_IN:op_length1 10 u alg_def_reg[0][9:0]
// extractor REG_OUT:alg_id 32 u debug_port[0][63:32]
// extractor REG_OUT:alg_rev 32 u debug_port[0][31:0]
// extractor REG_OUT:rd_addr 64 u debug_port[1]
// extractor REG_OUT:rd_data_sram0_lo 64 u debug_port[2]
// extractor REG_OUT:rd_data_sram0_hi 64 u debug_port[3]
// extractor REG_OUT:wr_addr 64 u debug_port[4]
// extractor REG_OUT:wr_data_sram1_lo 64 u debug_port[5]
// extractor REG_OUT:wr_data_sram1_hi 64 u debug_port[6]
// extractor REG_OUT:cntl_sigs 64 u debug_port[7]
// extractor REG_OUT:dummy_param0_out 16 u debug_port[8][15:0]
// extractor REG_OUT:dummy_param1_out 16 u debug_port[8][31:16]
// extractor REG_OUT:dummy_param2_out 16 u debug_port[8][47:32]
// extractor REG_OUT:dummy_param3_out 16 u debug_port[8][63:48]

These comments are located within alg_block_top.v in this case, but they can be
anywhere within the algorithm hierarchy as a header or source file. The core services tag
helps describe which version of core services was used in generating a bitstream, this is
useful with debugging. The version tag allows the user to understand from their GDB
session which algorithm and revision he or she has loaded. The register out tag
(REG_OUT) specifies registers that are pulled out to the debug mux. The SRAM tag is to
describe arrays that are written to or read from the SRAM banks by the algorithm. For
more information, see Chapter 6, “RASC Algorithm FPGA Implementation Guide”.

166 007-4718-005

8: RASC Examples and Tutorials

Coding Techniques: VHDL Algorithm

Overview

Now we will analyze how to write a VHDL version of (d = a & b | c) for RASC. This
source code also allows for multi-buffering.

Figure 8-3 contains a diagram of the algorithm and its memory patterns.

Figure 8-3 Simple Algorithm for Verilog and VHDL

Array A

Array B

Array C

SRAM 0Byte address

0x00000

0x03FFF
0x04000

0x07FFF
0x08000

0x0BFFF

Array D

SRAM 1
0x00000

0x03FFF

Algorithm read

Algorithm write

temp_b(i)

d(i)

f_rd_data_sram0(i)

temp_a(i)

Simple Algorithm Tutorial

007-4718-005 167

Integrating with Core Services

Begin by loading the hardware description file for the VHDL algorithm,
alg_block_top.vhd, into your text editor. Change directory to
$RASC/examples/alg_simple_vhd where you will see alg_block_top.v and
alg_block.vhd.

These files are the top level module and computation block, respectively. This VHDL
version of (d = a & b | c) reads a from the first address in SRAM 0, b from the 16384th
address of SRAM 0, c from the 32768th address in SRAM 0, and then it writes out the
resulting value, d, to the first address of SRAM 1. Arrays a, b, c, and d are 2048 elements
long where each element is a 64-bit unsigned integer, and all the arrays are enabled for
multi-buffering by the RASC Abstraction Layer. The version of the algorithm, read data,
write data, read address, and write address for the algorithm are all brought out to debug
mux registers.

The source for the alg_block_top.v file is similar in this instance to the verilog
version of (d = a & b | c), except that it performs no calculation. Instead, it wraps the
alg_block.vhd so it can speak to the user_space_wrapper.v that instantiates it.
There is no reason why a computation block needs to be wrapped in a Verilog module.
In this case it was done for convenience.

Note: The handshaking methodologies (see “Handshaking Methodologies” on page 36)
are not used here since it is assumed SRAM port access conflicts will never occur between
the algorithm and DMA.

Extractor Comments

Other important source code considerations include adding the extractor comments that
are required for accurate data movement and debugger control. A python script called
extractor parses all the Verilog, VHDL, and header files in your algorithm directory to
generate the symbol tables required by GDB and to communicate to the abstraction layer
the data that should be written and read from the SRAM banks.

Comment fields to generate the configuration files for the algorithm are provided in this
example for alg_block_top.v. There is a template in the alg_core directory, and
several examples. The comment fields that can be located anywhere below the directory
specified in the second argument to the extractor call (see Chapter 6, “RASC Algorithm
FPGA Implementation Guide” for more detail on how to specify the makefile target). The

168 007-4718-005

8: RASC Examples and Tutorials

fields are core services version, algorithm version, SRAM denoting where data will be
read from and written to on the SRAM interface, register in for parameters set through
an application writer’s code, or register out for a section of code that needs to be mapped
to a debug register.

The debug comments for metadata parsing in this file are embedded in the VHDL code.
They appear as:
-- extractor VERSION: 9.1
-- extractor SRAM:a_in 2048 64 sram[0] 0x0000 in u stream
-- extractor SRAM:b_in 2048 64 sram[0] 0x4000 in u stream
-- extractor SRAM:c_in 2048 64 sram[0] 0x8000 in u stream
-- extractor SRAM:d_out 2048 64 sram[1] 0x0000 out u stream
-- extractor REG_OUT:version 64 u debug_port[0]
-- extractor REG_OUT:rd_addr 64 u debug_port[1]
-- extractor REG_OUT:rd_data_sram0_lo 64 u debug_port[2]
-- extractor REG_OUT:rd_data_sram0_hi 64 u debug_port[3]
-- extractor REG_OUT:wr_addr 64 u debug_port[4]
-- extractor REG_OUT:wr_data_sram1_lo 64 u debug_port[5]
-- extractor REG_OUT:wr_data_sram1_hi 64 u debug_port[6]

These comments are located within alg_simple.vhd in this case, but they can be
anywhere within the algorithm hierarchy as a header or source file. The core services tag
helps describe what version of core services was used in generating a bitstream. This
information is useful when debugging. The version tag allows the user to understand
from his GDB session which algorithm and revision he has loaded. The register out tag
(REG_OUT) specifies registers that are mapped to the debug mux. The SRAM tag is to
describe arrays that are written to or read from the SRAM banks by the algorithm.

Compiling for Simulation

To build the generic SSP stub test bench for the Verilog version of the simple algorithm,
change to the $RASC/dv/sample_tb directory. At the prompt, enter the following:

% make ALG=alg_simple_v

If you do not enter the ALG tag, the makefile will default to compiling for
alg_simple_v.

To run the diagnostic alg_simple_v, at the prompt, enter the following:

% make run DIAG=diags/alg_simple_v ALG=alg_simple_v

As with the case in building the test bench, the ALG tag default is alg_simple and it
needs to be overwritten for the data flow algorithm.

Simple Algorithm Tutorial

007-4718-005 169

The SRAM mapping with physical memory is, as follows:
mem0[127:64] -> qdr_sram_bank1.SMEM -> init_sram1_*.dat, final_sram1.dat
mem0[63:0] -> qdr_sram_bank0.SMEM -> init_sram0_*.dat, final_sram0.dat
mem1[127:64] -> qdr_sram_bank3.SMEM -> init_sram3_*.dat, final_sram3.dat
mem1[63:0] -> qdr_sram_bank4.SMEM -> init_sram2_*.dat, final_sram2.dat
mem2[63:0] -> qdr_sram_bank2.SMEM -> init_sram4_*.dat, final_sram4.dat

These can all be overwritten on the command line.

By specifying the SRAM input files, the user can skip the DMA process for the purposes
of testing the algorithm, providing a fast check for the algorithm without verifying the
DMA engines of core services.

You can also use a simple C program called check_alg_simple.c to verify the test
results; build and run it to analyze the initial and final SRAM simulation contents.

Running a diag through this test bench produces results in four formats:

• *vcdplus.vpd* - this file contains the simulation results for the run.

• *terminal output* - the status of the test is output to the screen as the it runs,
notifying the user of packets sent/received.

• *log file* - the output to the screen is also stored in the
logfile:<diag_name>.<alg_name>.run.log (for example,
dma_alg_simple_v.alg_simple_v.run.log)

• *sram output files* - at the end of simulation (when the diag finishes because it has
been successful, an incorrect packet has been received, or time-out has occurred),
the contents of of all SRAMS are dumped to the corresponding .dat output files
(the defaults or user-specified files).

Building an Implementation

When the algorithm has been integrated and verified, it is time to build an
implementation.

Change directories to $RASC/implementations/alg_simple_*/

To synthesize the design type, make synplify or make xst. This is set up to utilize
the black-boxed version of core services and should synthesize faster.

170 007-4718-005

8: RASC Examples and Tutorials

To generate the required metadata information for the abstraction layer and the
debugger, you need to run the extractor script on your file. The physical design makefile
includes a make extractor target for this purpose. When it is executed, it will generate
two configuration files--one describing core services, and one describing the algorithm
behavior.

To execute the ISE foundation tools and run the extractor script on the file type make all.
This will take approximately one to two hours due to the complex mapping and place
and route algorithms executed by the ISE tools. Please note that the details of setting up
your own project are described in Chapter 6, “RASC Algorithm FPGA Implementation
Guide”.

Transferring to the Altix Platform

To transfer to the Altix platform, you must add your RASC design implementation into
the Device Manager registry. This transfer must occur regardless of the algorithm
generation method.

1. Use FTP to move the algorithm files from the PC to the /usr/share/rasc/bitstreams
directory on the Altix machine:

$RASC/implementations/alg_simple_*/rev_1/alg_simple_v.bin

$RASC/implementations/alg_simple_*/<core_services>.cfg

$RASC/implementations/alg_simple_*/<user_space>.cfg

2. Log into the Altix machine and execute the Device Manager user command devmgr

devmgr -a -n alg_simple_v -b alg_simple_v.bin -c <user_space>.cfg -s
<core_services>.cfg

The script will default the bitstream and configuration files to these names, although the
device manager can add files of any name to the registry, so users should feel free to
rename project files as convenient.

Verification using GDB

To run a debug session on this bitstream, you must start the application from a GDB
session window. GDB is enabled with all versions of this algorithm. To run an application
using RASClib, you must execute the extended GDB on the application detailed at the
beginning of this example.

Simple Algorithm Tutorial

007-4718-005 171

% gdbfpga /usr/share/rasc/examples/alg6

GNU gdb 6.3.50.20050510
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "ia64-unknown-linux-gnu"...Using host libthread_db library
"/lib/libthread_db.so.1".

(gdb) break rasclib_brkpt_start
Function "rasclib_brkpt_start" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (rasclib_brkpt_start) pending.
(gdb) break rasclib_brkpt_done
Function "rasclib_brkpt_done" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 2 (rasclib_brkpt_done) pending.
(gdb) handle SIGUSR1 nostop pass noprint
Signal Stop Print Pass to program Description
SIGUSR1 No No Yes User defined signal 1
(gdb) run
Starting program: /usr/share/rasc/examples/alg6
Failed to read a valid object file image from memory.
[Thread debugging using libthread_db enabled]
[New Thread 2305843009292443296 (LWP 24946)]
Breakpoint 3 at 0x2000000000085bb1: file rasclib_debug.c, line 86.
Pending breakpoint "rasclib_brkpt_start" resolved
Breakpoint 4 at 0x2000000000085b82: file rasclib_debug.c, line 104.
Pending breakpoint "rasclib_brkpt_done" resolved[New Thread 2305843009303867984 (LWP 24949)]
[New Thread 2305843009312551504 (LWP 24951)]
fpga config file def reg count (64) of /var/rasc/rasc_registry/alg6/bitstream.cfg exceeds
gdb current maximum of 8, excess ignored
 [Switching to Thread 2305843009292443296 (LWP 24946)]

Breakpoint 3, rasclib_brkpt_start (cop_desc=547920) at rasclib_debug.c:86
86 rasclib_debug.c: No such file or directory.
 in rasclib_debug.c
(gdb) info fpga
fpga 0
 Active : on
 State : ready-to-fpgastep-fpgacont
 Algorithm id : alg6
 Core svc ver : 2.100000
 Algorithm ver: 6.300000
 Algorithm src: v
 Alg. dev :
 Alg. config : /var/rasc/rasc_registry/alg6/bitstream.cfg
 CS version : 2.100000
 CS config : /var/rasc/rasc_registry/alg6/core_services.cfg
 prev step ct : 0
 step ct : 0
 (gdb) info fpgaregisters
 alg_id 0x6 6
 alg_rev 0x3 3
 rd_addr 0x0 0
 rd_data_sram0_lo0xa5a4a3a2a1a09f9e 11935844831330344862
 rd_data_sram0_hi0xadacabaaa9a8a7a6 12514566214034958246
 wr_addr 0x0 0
 wr_data_sram1_lo0xf7f4f7f2f3f0fffe 17867178244532404222
 wr_data_sram1_hi0xfffcfffafbf8fff6 18445899627237015542

172 007-4718-005

8: RASC Examples and Tutorials

cntl_sigs 0x0 0
 dummy_param0_out0x0 0
 dummy_param1_out0x100 256
 dummy_param2_out0x20 32
 dummy_param3_out0x3303 13059
 op_length1 0x3ff 1023
 dummy_param0_in0x0 0
 dummy_param1_in0x100 256
 dummy_param2_in0x20 32
 dummy_param3_
 (gdb) fpgastep 55
 (gdb) info fpgaregisters
 alg_id 0x6 6
 alg_rev 0x3 3
 rd_addr 0x811 2065
 rd_data_sram0_lo0xd5d4d3d2d1d0cfce 15408173127558025166
 rd_data_sram0_hi0xdddcdbdad9d8d7d6 15986894510262638550
 wr_addr 0xd 13
 wr_data_sram1_lo0xd7d6d5d4d3d2d1d0 15552853473234178512
 wr_data_sram1_hi0xdfdedddcdbdad9d8 16131574855938791896
 cntl_sigs 0x3 3
 dummy_param0_out0x0 0
 dummy_param1_out0x100 256
 dummy_param2_out0x20 32
 dummy_param3_out0x3303 13059
 op_length1 0x3ff 1023
 dummy_param0_in0x0 0
 dummy_param1_in0x100 256
 dummy_param2_in0x20 32
 dummy_param3_in0x3303 13059
 (gdb) print $rd_addr
 $1 = 2065
 (gdb) print $wr_addr
 $2 = 13
 (gdb) print /x $rd_data_sram0_lo
 $3 = 0xd5d4d3d2d1d0cfce
 (gdb) print /x a_in[8]
 [Switching to Thread 2305843009292443296 (LWP 24946)]
 $4 = 0x4746454443424140
 (gdb) fpgastep 3
 (gdb) print $rd_addr
 $5 = 2066
 (gdb) print $wr_addr
 $6 = 14
 (gdb) print /x $rd_data_sram0_lo
 $7 = 0xe5e4e3e2e1e0dfde
 (gdb) print /x a_in[8]
 [Switching to Thread 2305843009292443296 (LWP 24946)]
 $8 = 0x4746454443424140
 (gdb) fpgacont
 (gdb) print $rd_addr
 $9 = 3071
 (gdb) print $wr_addr
 $10 = 0
 (gdb) print /x $rd_data_sram0_lo
 $11 = 0xa5a4a3a2a1a09f9e
 (gdb) print /x b_in[3]
 [Switching to Thread 2305843009292443296 (LWP 24946)]
 $12 = 0x1e1d1c1b1a191817
 (gdb) delete
 Delete all breakpoints? (y or n) y
 (gdb) cont

Data Flow Algorithm Tutorial

007-4718-005 173

 Continuing.
 [Thread 2305843009312551504 (LWP 24951) exited]
 success
 Program exited normally.
 (gdb) quit

Many other commands are available. For more information on these commands, see
“Using the GNU Project Debugger (GDB)” on page 152.

Data Flow Algorithm Tutorial

This example algorithm illustrates the optimization considerations for multi-buffering a
complex algorithm on the RASC platform. This section steps you through the design
process for this algorithm with source code in Verilog that steps by clocks.

Application

The application for the data flow algorithm is slightly more complex. This example
creates a 16 KB array, sorts it from most-significant byte to least-significant byte, runs a
string search on the sorted data against a match tag, and then performs a pop count. The
location of application code to perform this operation on both the Altix system and the
FPGA is provided below. The results are compared to verify the algorithm
implementation. The application C code is on your Altix system at the following location:

/usr/share/rasc/examples/alg10.c

Loading the Tutorial

Begin by loading the hardware description files into your text editor. Change directory
to $RASC/examples/alg_data_flow_v/

and you will see several files:

alg_block_top.v, sort_byte.v, string_search.v and pop_cnt.v.

If you look through the files you will see that he data flow algorithm reads 16K bytes of
data from SRAM 0. Then it sorts the bytes of each double-word of the input data from
most significant to least significant byte order. The algorithm writes those results out to
SRAM 1, and then it performs a string search on the sorted data with a 16-bit match string
that is provided by the application writer. The match tags resulting from the string search

174 007-4718-005

8: RASC Examples and Tutorials

are written out to SRAM 1 and a population count is then run on the data. The resulting
population count is written to debug register 1.

Figure 8-4 contains a diagram of the major computational blocks and the memory access
patterns for the data flow algorithm.

Figure 8-4 Data Flow Algorithm

sort_in Array

SRAM 0Byte address

0x00000

0x03FFF

0xFFFFFF

sort_out Array

SRAM 1

0x00000

0x03FFF

Algorithm read

Algorithm write

Algorithm write

string_search

sort_byte

pop_cnt

sort_out(i)

match_tag

match_out(i)

alg_def_reg[15:0]

debug_reg1

match_out Array
0x08000
0x0BFFF

Data Flow Algorithm Tutorial

007-4718-005 175

Integrating with Core Services

Extractor Comments

Extractor comments are inserted in the hierarchy to describe the algorithm. In the
alg_block_top.v file for the data flow algorithm the following comments exist:
// extractor CS:1.0
// extractor VERSION:10.4
// extractor SRAM:data_in 2048 64 sram[0] 0x0000 in u stream
// extractor SRAM:sort_output 2048 64 sram[1] 0x0000 out u stream
// extractor SRAM:bitsearch_match_vector 2048 64 sram[1] 0x8000 out u stream
// extractor REG_IN:match_string 16 u alg_def_reg[0][15:0]
// extractor REG_IN:multi_iter_rst 64 u alg_def_reg[2]
// extractor REG_IN:op_length1 11 u alg_def_reg[1][10:0]
// extractor REG_OUT:version 64 u debug_port[0]
// extractor REG_OUT:running_pop_count 64 u debug_port[1]
// extractor REG_OUT:sort_input 64 u debug_port[2]
// extractor REG_OUT:sort_output 128 u debug_port[3]
// extractor REG_OUT:match_vector 64 u debug_port[5]
// extractor REG_OUT:pipe_vld 64 u debug_port[6]
// extractor REG_OUT:dw_pcnt 64 u debug_port[8]
// extractor REG_OUT:f_pcnt_63_0 64 u debug_port[9]

The core services tag helps describe what version of core services was used in generating
a bitstream which is useful with debugging. The version tag allows the user to
understand from his GDB session which algorithm and revision he has loaded. The
register out tag (REG_OUT) specifies registers that are pulled out to the debug mux. The
SRAM tag is to describe arrays that are written to or read from the SRAM banks by the
algorithm.

Note: The handshaking methodologies (see “Handshaking Methodologies” on page 36)
are not used here since it is assumed SRAM port access conflicts will never occur between
the algorithm and DMA.

Compiling for Simulation

To build the Generic SSP stub test bench for the data flow algorithm change to the
$RASC/dv/sample_tb directory. At the prompt, enter the following:

% make ALG=alg_data_flow_v

If you do not enter the ALG tag, the makefile will default to compiling for
alg_simple_v.

176 007-4718-005

8: RASC Examples and Tutorials

To run the diagnostic alg_data_flow_v, at the prompt, enter the following:

% make run DIAG=diags/alg_data_flow_v ALG=alg_data_flow_v

As with the case in building the test bench, the ALG tag default is alg_simple and it needs
to be overwritten for the data flow algorithm.

The SRAM mapping with physical memory is, as follows:
mem0[127:64] -> qdr_sram_bank1.SMEM -> init_sram1_*.dat, final_sram1.dat
mem0[63:0] -> qdr_sram_bank0.SMEM -> init_sram0_*.dat, final_sram0.dat
mem1[127:64] -> qdr_sram_bank3.SMEM -> init_sram3_*.dat, final_sram3.dat
mem1[63:0] -> qdr_sram_bank4.SMEM -> init_sram2_*.dat, final_sram2.dat
mem2[63:0] -> qdr_sram_bank2.SMEM -> init_sram4_*.dat, final_sram4.dat

These can all be overwritten on the command line.

By specifying the SRAM input files, the user can skip the DMA process for the purposes
of testing the algorithm, providing a fast check for the algorithm without verifying the
DMA engines of core services. You can also use a simple C program called
check_alg_data_flow.c to verify the test results.

Running a diag through this test bench produces results in four formats:

• *vcdplus.vpd* - this file contains the simulation results for the run.

• *terminal output* - the status of the test is output to the screen as the it runs,
notifying the user of packets sent/received.

• *log file* - the output to the screen is also stored in the
logfile:<diag_name>.<alg_name>.run.log (for example,
dma_alg_data_flow_v.alg_data_flow_v.run.log)

• *sram output files* - at the end of simulation (when the diag finishes because it has
been successful, an incorrect packet has been received, or time-out has occurred),
the contents of the 4 SRAMs are dumped to .dat files (the defaults or user-specified
files).

Building an Implementation

When the algorithm has been integrated and verified, it is time to build an
implementation.

Change directories to $RASC/implementations/alg_data_flow_v/

Data Flow Algorithm Tutorial

007-4718-005 177

To synthesize the design type make synplify or make xst. This is set up utilize the
black-boxed version of core services and should synthesize faster.

To generate the required metadata information for the abstraction layer and the
debugger, you need to run the extractor script on your file. The physical design makefile
includes a make extractor target for this purpose. When it is executed, it will generate
two configuration files--one describing core services, and one describing the algorithm
behavior.

To execute the ISE foundation tools and run the extractor script on the file type make all.
This will take approximately one to two hours due to the complex mapping and place
and route algorithms executed by the ISE tools. Please note that the details of setting up
your own project are described in Physical Implementation chapter.

Transferring to the Altix Platform

To transfer to the Altix platform, you must add your RASC design implementation into
the Device Manager Registry by performing following steps:

1. Use FTP to move the algorithm files from the PC to the
/usr/share/rasc/bitstreams/ directory on the Altix machine:

$RASC/implementations/alg_data_flow_v/rev_1/alg_data_flow_v.bin

$RASC/implementations/alg_data_flow_v/<core_services>.cfg

$RASC/inplementations/alg_data_flow_v/<user_space>.cfg

2. Log into the Altix machine and execute the Device Manager user command devmgr

devmgr -a -n alg_data_flow_v -b alg_data_flow_v.bin -c
<user_space>.cfg -s <core_services>.cfg

The script will default the bitstream and configuration files to these names, although the
device manager can add files of any name to the registry, so users should feel free to
rename project files as convenient.

Verification Using GDB

To run a debug session on this bitstream, you must start the application from a GDB
session window. To do that, you must execute the extended GDB on the application
detailed at the beginning of this example.

178 007-4718-005

8: RASC Examples and Tutorials

% gdbfpga /usr/share/rasc/examples/alg10
GNU gdb 6.3.50.20050510
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "ia64-unknown-linux-gnu"...Using host libthread_db library
"/lib/libthread_db.so.1".

(gdb) break rasclib_brkpt_start
Function "rasclib_brkpt_start" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (rasclib_brkpt_start) pending.
(gdb) handle SIGUSR1 nostop pass noprint
Signal Stop Print Pass to program Description
SIGUSR1 No No Yes User defined signal 1
(gdb) run
Starting program: /usr/share/rasc/examples/alg10
Failed to read a valid object file image from memory.
[Thread debugging using libthread_db enabled]
[New Thread 2305843009292443296 (LWP 1157)]
Breakpoint 2 at 0x2000000000085bb1: file rasclib_debug.c, line 86.
Pending breakpoint "rasclib_brkpt_start" resolved
[New Thread 2305843009303867984 (LWP 1160)]
[New Thread 2305843009312551504 (LWP 1169)]
fpga config file def reg count (64) of /var/rasc/rasc_registry/alg10/bitstream.cfg exceeds
gdb current maximum of 8, excess ignored
[Switching to Thread 2305843009292443296 (LWP 1157)]

Breakpoint 2, rasclib_brkpt_start (cop_desc=547920) at rasclib_debug.c:86
86 rasclib_debug.c: No such file or directory.
 in rasclib_debug.c
(gdb) info fpga
fpga 0
 Active : on
 State : ready-to-fpgastep-fpgacont
 Algorithm id : alg10
 Core svc ver : 2.100000
 Algorithm ver: 10.400000
 Algorithm src: v
 Alg. dev :
 Alg. config : /var/rasc/rasc_registry/alg10/bitstream.cfg
 CS version : 2.100000
 CS config : /var/rasc/rasc_registry/alg10/core_services.cfg
 prev step ct : 0
 step ct : 0
(gdb) info fpgaregisters
version 0xa00000001 42949672961
running_pop_count0x0 0
sort_input 0x0 0
sort_output 0x0 0
match_vector 0x0 0
pipe_vld 0x0 0
dw_pcnt 0x0 0
f_pcnt_63_0 0x0 0
test_cnt 0x645900000000 110333414866944
match_string 0x0 0
multi_iter_rst 0x0 0
op_length1 0x0 0
(gdb) fpgastep 5

Streaming DMA Algorithm Tutorial

007-4718-005 179

(gdb) info fpgaregisters
version 0xa00000001 42949672961
running_pop_count0x0 0
sort_input 0x0 0
sort_output 0x0 0
match_vector 0x0 0
pipe_vld 0x0 0
dw_pcnt 0x0 0
f_pcnt_63_0 0x0 0
test_cnt 0x800000004 34359738372
match_string 0x0 0
multi_iter_rst 0x0 0
op_length1 0x0 0
(gdb) fpgastep 3
(gdb) print /x $test_cnt
$1 = 0xb00000007
(gdb) print /x data_in[8]
[Switching to Thread 2305843009292443296 (LWP 1157)]
$2 = 0x67fce141a13ee970
(gdb) fpgastep 6
(gdb) print /x $test_cnt
$3 = 0x110000000d
(gdb) print /x data_in[14]
[Switching to Thread 2305843009292443296 (LWP 1157)]
$4 = 0xbb5cf98961bed875
(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) fpgacont
(gdb) cont
Continuing.
[Thread 2305843009312551504 (LWP 1169) exited]
success sorted
success match_list
popcnts = 10c
HW POP COUNT = 268
SW POP COUNT = 268

Program exited normally.
(gdb) quit

The above commands would execute the application, and then hit the breakpoint
inserted by the rasclib_breakpoint_start function call. At that stage you would
be able to query generic data about the FPGA that is configured in the system. Turning
stepping on, you can view internal registers and arrays within the session at different
steps. Many other commands are available. For more information, see “GDB
Commands” on page 153.

Streaming DMA Algorithm Tutorial

This example algorithm illustrates the use of the streaming DMA feature available to an
algorithm running on the RASC platform. This section steps you through the design
process for this algorithm with source code in Verilog.

180 007-4718-005

8: RASC Examples and Tutorials

Application

The application for the streaming DMA algorithm sends data to the FPGA using an input
stream and receives data from the FPGA using an output stream. This example creates
an array of 512K 8-byte integers and increments each integer by a constant value. The
application sets the number of integers and the increment value in the algorithm, runs
the algorithm, and verifies the results. The location of application code to perform this
operation on both the Altix system and the FPGA is provided below. The results are
compared to verify the algorithm implementation. The application C code is on your
Altix system at the following location:

/usr/share/rasc/examples/alg12_strm.c

Loading the Tutorial

Begin by loading the hardware description files into your text editor. Change directory
to $RASC/examples/alg_dma_stream_v/

and you will see several files:

alg_block_top.v, acs_adr.v, acs_debug_reg.v and
user_space_wrapper.v

If you look through the files, you will see that the streaming DMA algorithm reads the
specified number of integers from the input stream, two values at a time. The algorithm
then increments each integer by the specified value and writes the results, two values at
a time, to the output system.

Figure 8-5 contains a diagram of the major computational blocks and the data access for
the streaming DMA algorithm.

Streaming DMA Algorithm Tutorial

007-4718-005 181

Figure 8-5 Streaming DMA Algorithm

Input stream 0 Output stream 0

+

alg_inc_val
alg_def_reg1 [3:0]

182 007-4718-005

8: RASC Examples and Tutorials

Integrating with Core Services

Extractor Comments

Extractor comments are inserted in the hierarchy to describe the algorithm. In the
alg_block_top.v file for the streams DMA algorithm the following comments exist:

// extractor CS: 2.1
// extractor VERSION:12.3
// extractor STREAM_IN:op_in_strm 0 0
// extractor STREAM_OUT:result_out_strm 0 0 //
// extractor REG_IN:op_length1 18 u alg_def_reg[0][17:0]
// extractor REG_IN:alg_inc_val 4 u alg_def_reg[1][3:0]
// extractor REG_OUT:version 64 u debug_port[0]
// extractor REG_OUT:alg_def0 64 u debug_port[1]
// extractor REG_OUT:alg_def1 64 u debug_port[2]
// extractor REG_OUT:cntl_sigs 64 u debug_port[9]
// extractor REG_OUT:rd_data_lo 64 u debug_port[10]
// extractor REG_OUT:rd_data_hi 64 u debug_port[11]
// extractor REG_OUT:wr_data_lo 64 u debug_port[12]
// extractor REG_OUT:wr_data_hi 64 u debug_port[13]

The core services tag helps describe what version of core services was used in generating
a bitstream which is useful with debugging. The version tag allows the user to track the
algorithm revision using the output from the devmgr -q command. The register out tag
(REG_OUT) specifies registers that are pulled out to the debug mux. The STREAM_IN and
STREAM_OUT tags describe data written to or read from DMA streams.

Compiling for Simulation

To build the Generic SSP stub test bench for the data flow algorithm change to the
$RASC/dv/sample_tb directory. At the prompt, enter the following:

% make ALG=alg_dma_stream_v

If you do not enter the ALG tag, the makefile will default to compiling for
alg_simple_v.

To run the diagnostic alg_dma_stream_v, at the prompt, enter the following:

% make run DIAG=diags/alg_dma_stream_v ALG=alg_dma_stream_v

Streaming DMA Algorithm Tutorial

007-4718-005 183

As with the case in building the test bench, the ALG tag default is alg_simple and it needs
to be overwritten for the streaming DMA algorithm.

The SRAM mapping with physical memory is, as follows:
mem0[127:64] -> qdr_sram_bank1.SMEM -> init_sram1_*.dat, final_sram1.dat
mem0[63:0] -> qdr_sram_bank0.SMEM -> init_sram0_*.dat, final_sram0.dat
mem1[127:64] -> qdr_sram_bank3.SMEM -> init_sram3_*.dat, final_sram3.dat
mem1[63:0] -> qdr_sram_bank4.SMEM -> init_sram2_*.dat, final_sram2.dat
mem2[63:0] -> qdr_sram_bank2.SMEM -> init_sram4_*.dat, final_sram4.dat

 These can all be overwritten on the command line.

Running a diag through this test bench produces results in four formats:

• *vcdplus.vpd* - this file contains the simulation results for the run.

• *terminal output* - the status of the test is output to the screen as the it runs,
notifying the user of packets sent/received.

• *log file* - the output to the screen is also stored in the
logfile:<diag_name>.<alg_name>.run.log (for example,
alg_dma_stream_v.alg_dma_stream_v.run.log)

• Stream output files* - at the end of simulation (when the diag finishes because it has
been successful, an incorrect packet has been received, or time-out has occurred),
the contents of the 4 streams are dumped to .dat files (the defaults or user-specified
files).

Building an Implementation

When the algorithm has been integrated and verified, it is time to build an
implementation.

Change directories to $RASC/implementations/alg_dma_stream_v/

To synthesize the design type make synplify or make xst. This is set up to utilize the
black-boxed version of core services and should synthesize faster.

To generate the required metadata information for the abstraction layer, you need to run
the extractor script on your file. The physical design makefile includes a make extractor
target for this purpose. When it is executed, it will generate two configuration files--one
describing core services, and one describing the algorithm behavior.

184 007-4718-005

8: RASC Examples and Tutorials

To execute the ISE foundation tools and run the extractor script on the file typemakeall.
This will take approximately one to two hours due to the complex mapping and place
and route algorithms executed by the ISE tools. Please note that the details of setting up
your own project are described in Physical Implementation chapter.

Transferring to the Altix Platform

To transfer to the Altix platform, you must add your RASC design implementation into
the Device Manager Registry by performing following steps:

1. Use FTP to move the algorithm files from the PC to the
/usr/share/rasc/bitstreams/ directory on the Altix machine:

$RASC/implementations/alg_dma_stream_v/rev_1/alg_dma_stream_v.bin

$RASC/implementations/alg_dma_stream_v/<core_services>.cfg

$RASC/inplementations/alg_dma_stream_v/<user_space>.cfg

2. Log into the Altix machine and execute the Device Manager user command devmgr

devmgr -a -n alg_dma_stream_v -b alg_dma_stream_v.bin -c
<user_space>.cfg -s <core_services>.cfg

The script will default the bitstream and configuration files to these names, although the
device manager can add files of any name to the registry, so users should feel free to
rename project files as convenient.

Verification Using GDB

The GDB debugger does not support the streaming DMA feature and cannot be used to
debug the alg_dma_stream_v algorithm.

007-4718-005 185

Appendix A

A. Device Driver

This section describes the Field Programmable Gate Arrays (FPGA) core services device
driver and covers the following topics:

• “FPGA Core Services” on page 185

• “Driver Application Programming Interface (API)” on page 186

• “Example Use of Device Driver” on page 187

FPGA Core Services

All FPGAs connected to a TIO in a RASC-brick or a RASC-blade will contain a fixed set
of services or core logic from SGI that control data movement, function initialization and
initiation. These services are spelled out in detail in Chapter 3, “RASC Algorithm FPGA
Hardware Design Guide”.

The FPGA core services device driver is implemented as a character special device driver.
It provides open, close, read, write, ioctl and mmap entry points that allow access to the
core services direct memory access (DMA) engines and registers.

Control and Status Registers

Specific knowledge of the core services memory-mapped registers is not required to use
the core services device driver. The layout of those registers is provide in Chapter 3,
“RASC Algorithm FPGA Hardware Design Guide”.

Interrupts

The device driver uses interrupts for DMA and Algorithm completion. The atomic
memory operation (AMO) features of the RASC-brick will be implemented in a later
revision. All system calls block until complete.

186 007-4718-005

A: Device Driver

Driver Application Programming Interface (API)

The device driver API implements these system calls (see Table A-1):

The character special files used with the device driver are, as follows:

• /dev/RASC/acs/<nasid>/gscr

Used for memory mapping core services memory mapped registers.

• /dev/RASC/acs/<nasid>/sram

Used for all other system calls, for example. reading, writing, and memory mapping
SRAM.

Input Direct Memory Access

The input direct memory access (DMA) block is comprised of four stream DMA engines
that target the algorithm for the data coming in from main memory and a block DMA
read engine that targets SRAM for the data coming in from main memory. For more
information, see “RASC Core Services Overview” on page 22.

Table A-1 Device Driver API System Calls

System Call Description

open() Opens the character-special file. Only one application may have the file
opened at any one time.

close() Closes the character-special file.

read() Reads from the FPGA SDRAM to host memory.

write() Writes from host memory to the FPGA SDRAM.

lseek() Seeks to a specific location in FPGA SDRAM.

mmap() Maps the core services registers or SDRAM into user space.

Example Use of Device Driver

007-4718-005 187

Output Direct Memory Access

The output DMA block is comprised of four stream DMA engines that take data directly
from the algorithm and target main memory and a block DMA write engine that takes
data from SRAM and targets main memory. For more information, see “RASC Core
Services Overview” on page 22.

Function Control

The ioctl command COP_IOCTL_ALGO_START is used to start the algorithm in the
FPGA. Use COP_IOCTL_ALGO_STEP instead of COP_IOCTL_ALGO_START to start the
algorithm but only run a given number of clocks. Successive COP_IOCTL_ALGO_STEP
ioctl calls will move the clock. The COP_IOCTL_ALGO_CONT call is used to drive the
algorithm to completion after stepping.

Upon successful completion, zero is return. Otherwise -1 is returned and errno is set.

Example Use of Device Driver

This section provides an example of using the FPGA core services device driver.

#include "sys/types.h"
#include "stdio.h"
#include "stdlib.h"
#include "unistd.h"
#include "string.h"
#include "fcntl.h"
#include "sys/ioctl.h"

#include "acs.h"

/*
 * FPGA algorithm info.
 *
 * (This is a simple test-only algorithm built largely for software
testing.)
*

 * FPGA algorithm is ’a = a & b | c’.
 * Max number of each operands is 512 64-bit words.
 * Operand ’a’ input starts at word zero of sram0
 * Operand ’b’ input starts at word zero of sram1

188 007-4718-005

A: Device Driver

 * Operand ’c’ input starts at word zero of sram2
 * The results are placed at word zero of sram0 (overwriting
operand a)
 */

typedef unsigned long long uint64_t;

#define RAM_SIZE (2*1024*1024) // individual SRAM size
#define SRAM0 0
#define SRAM1 RAM_SIZE
#define SRAM2 (RAM_SIZE*2)

#define OPERAND_COUNT 512

/* 64-bit words to bytes */
#define W2B(wc) (wc*sizeof(uint64_t))

uint64_t operand_a[OPERAND_COUNT];
uint64_t operand_b[OPERAND_COUNT];
uint64_t operand_c[OPERAND_COUNT];
uint64_t hard_results[OPERAND_COUNT];
uint64_t soft_results[OPERAND_COUNT];

/*
 * host processor version of algorithm
 */
void
soft_algo(uint64_t *r, uint64_t *a, uint64_t *b, uint64_t *c, int
count)
{
 int i;

 for (i=0; i < count; i++)
 r[i] = (a[i] & b[i]) | c[i];
}

/*
 * FPGA version of algorithm
 */
int
hard_algo(uint64_t *r, uint64_t *a, uint64_t *b, uint64_t *c, int
count)
{
 int fd;

Example Use of Device Driver

007-4718-005 189

 int bufsize = W2B(count);
 int n, rv = 0;
 char *path = "/dev/RASC/acs/1/sram";

 /*
 * open core services
 */
 fd = open(path, O_RDWR);
 if (fd < 0) {
 perror("open");
 return -1;
 }

 /*
 * move operand ’a’
 */
 lseek(fd, SRAM0, SEEK_SET);
 n = write(fd, a, bufsize);
 if (n != bufsize) {
 fprintf(stderr, "wrote %d of %d bytes\n", n, bufsize);
 perror("write");
 rv = -2;
 goto exit;
 }

 /*
 * move operand ’b’
 */
 lseek(fd, SRAM1, SEEK_SET);
 n = write(fd, b, bufsize);
 if (n != bufsize) {
 fprintf(stderr, "wrote %d of %d bytes\n", n, bufsize);
 perror("write");
 rv = -3;
 goto exit;
 }

 /*
 * move operand ’c’
 */
 lseek(fd, SRAM2, SEEK_SET);
 n = write(fd, c, bufsize);
 if (n != bufsize) {

 fprintf(stderr, "wrote %d of %d bytes\n", n, bufsize);

190 007-4718-005

A: Device Driver

 perror("write");
 rv = -4;

 goto exit;
 }

 /*
 * start the FPGA algorithm and wait for it to complete
 */
 if (ioctl(fd, COP_IOCTL_ALGO_START, 0) < 0) {
 perror("ioctl");
 rv = -5;
 goto exit;
 }

 /*
 * get the results
 */
 lseek(fd, SRAM0, SEEK_SET);
 n = read(fd, r, bufsize);
 if (n != bufsize) {
 fprintf(stderr, "read %d of %d bytes\n", n, bufsize);
 perror("read");
 rv = -6;
 goto exit;
 }

exit:
 close(fd);

 return rv;
}

void
compare_results(uint64_t *hard_results, uint64_t *soft_results, int
count)
{
 int i;
 int misses = 0;

 for (i=0; i < count; i++)
 if (hard_results[i] != soft_results[i]) {
 if (!misses)

printf("miscompare at %d: got: 0x%llx expected:
0x%llx\n",

Example Use of Device Driver

007-4718-005 191

 i, hard_results[i], soft_results[i]);
 misses++;
 }

 printf("%d result miscompares between algorithms\n", misses);
}

void
operand_set(uint64_t *operand, int operand_count, uint64_t value)
{
 int i;

 for (i=0; i < operand_count; i++)
 *operand++ = value;
}

int
main(int argc, char **argv)

{
 int operand_count, bufsize;
 int n, c;

 uint64_t val_a = ’a’;
 uint64_t val_b = ’b’;
 uint64_t val_c = ’c’;
 int verify = 0;

 operand_count = OPERAND_COUNT;

 while ((c = getopt(argc, argv, "a:b:c:s:v")) != EOF) {
 switch(c) {
 case ’a’:
 val_a = strtoull(optarg, 0, 0);
 break;
 case ’b’:
 val_b = strtoull(optarg, 0, 0);
 break;
 case ’c’:
 val_c = strtoull(optarg, 0, 0);
 break;
 case ’s’:
 operand_count = strtoull(optarg, 0, 0);
 break;

192 007-4718-005

A: Device Driver

 case ’v’:
 verify++;
 break;
 }
 }

 if (operand_count > OPERAND_COUNT || operand_count <= 0) {
 printf("invalid operand_count. ");
 printf("must be: 0 > operand_count <=
OPERAND_COUNT\n");
 return -1;
 }

 /* syscalls & lib functions usually require a byte count */
 bufsize = W2B(operand_count);

 /*
 * initialize input and output buffers
 */
 operand_set(operand_b, operand_count, val_b);
 operand_set(operand_c, operand_count, val_c);
 operand_set(operand_a, operand_count, val_a);
 memset(hard_results, 0x0, bufsize);

 /*
 * optionally generate results on host processor
 */
 if (verify) {
 printf("Starting the software algorithm\n");
 soft_algo(soft_results, operand_a, operand_b,
operand_c,
 operand_count);
 }

 /*
 * run the FPGA algorithm
 */
 printf("Starting the hardware algorithm\n");
 n = hard_algo(hard_results, operand_a, operand_b, operand_c,
 operand_count);
 if (n < 0) {
 printf("hard_algo failed: %d\n", n);
 return -1;
 }

Example Use of Device Driver

007-4718-005 193

 printf("example results:\n 0x%llx & 0x%llx | 0x%llx =
0x%llx\n",
 operand_a[0], operand_b[0], operand_c[0],
hard_results[0]);

 if (verify) {
 compare_results(hard_results, soft_results,
operand_count);
 }

 printf("done\n");

 return 0;
}

007-4718-005 195

Appendix B

B. SSP Stub User’s Guide

Introduction to SSP Stub

The Scalable System Port (SSP) Stub is a verification tool intended to help simulate and
verify an algorithm designed for a RASC Field Programmable Gate Array (FPGA). This
tool has been created to assist in initial testing and debugging of an algorithm in
simulation prior to loading the algorithm onto the FPGA. Used with VCS/Virsim, the
Stub allows the user to simulate sending/receiving SSP packets to/from the RASC FPGA
to transfer data, start and stop the algorithm, and check status. This appendix covers the
following topics:

• “Recommended Reading” on page 195

• “Verification Environment and Testbench” on page 196

• “SSP Stub Commands” on page 201

• “Sample Diagnostic” on page 209

• “Using the Stub” on page 215

Recommended Reading

Related and recommended documents include the following:

• VCS User Guide

• GNU Make Manual (or equivalent text on the Make utility)

The VCS User Guide and GNU Make Manual are available through the world-wide web.

196 007-4718-005

B: SSP Stub User’s Guide

Verification Environment and Testbench

Provided with the SSP Stub is a verification environment and sample testbench. This
consists of the files which make up the SSP Stub as well as supporting files located in a
directory tree. The directory tree, testbench, and sample tests are intended to help you
quickly gain proficiency in creating tests for a specific algorithm. This section covers the
following topics:

• “Verification Environment” on page 196

• “Sample Test Bench” on page 196

• “Compiling and Running a Test” on page 199

Verification Environment

The SSP Stub is intended for use on Verilog designs and is customized for use with the
VCS/Virsim simulator. To insure that SSP Stub and sample testbench function properly,
the following environment variables must be set to the correct directories:

• VCS_HOME (your_vcs_install_directory)

• VCSPLIDIR $VCS_HOME/gui/virsim/linux/vcdplus/vcs (your_vcs_version)

• PATH $PATH\:$VCS_HOME/bin

Sample Test Bench

The SSP Stub consists of Verilog modules as well as PLI calls to functions written in C
code. The stub is instantiated in a sample Verilog testbench along with the RASC FPGA.
The C-code and top-level stub modules are located in the your_root/dv/sample_tb
directory. Here, your_root is the installation directory of the RASC Core Services design
and verification tree. The RASC Core Services modules are located in the design branch
of the tree under the your_root/design directory. The algorithm being tested must be
created in the design branch of the tree, located in the directory
your_root/design/alg_core/alg_name. See existing sample algorithms for exact file
locations. The sample test bench relies on the algorithm to be in this location for
compiling.

The primary Verilog modules in the SSP Stub and other files are listed below. They can
be found in the sample_tb directory.

Verification Environment and Testbench

007-4718-005 197

• top.v: Top level of the Sample Test Bench containing the SSP Stub, Algorithm
FPGA, clock generator, and SRAM instances. Note that there are five physical
SRAM instances in top.v while there are three logical SRAMs. The SRAMs are used
in pairs to form a single logical SRAM. This structure mirrors the real hardware.

• ssp_stub.v: Top level Verilog of the SSP Stub which passes signals to and from
conversion modules.

• init_sram0_good_parity.dat, init_sram2_good_parity.dat,
init_sram1_good_parity.dat, init_sram3_good_parity.dat, and
init_sram3_good_parity.dat: These SRAM initialization files contain data
which is automatically loaded into the respective SRAM simulation models at the
beginning of simulation. The data is in a format which the SRAM simulation model
uses (one bit of parity per byte of data is shifted in with the data). These default files
can be overridden by the user on the command line at runtime.

• final_sram0.dat, final_sram1.dat, final_sram2.dat,
final_sram3.dat, and final_sram4.dat:These files contain data extracted
from the respective SRAM simulation models at the end of simulation. These
default files can be overridden by the user on the command line at runtime.

• timescale.v: This file contains the Verilog timescale of each of the components
of the SSP Stub, as well as the algorithm FPGA design files. It is required that the
algorithm being simulated makes use of the same timescale as the rest of the design.

For simulation, the Verilog timescale of each of the components of the SSP Stub, as well
as the RASC FPGA design files, is set by the timescale.v file in the sample_tb
directory. It is required that the algorithm being simulated makes use of the same
timescale as the rest of the design.

SSP Stub File Descriptions

The SSP Stub consists of the following files:

• ssp_stub.v: Top level Verilog of the SSP Stub which passes signals to and from
conversion modules.

• cx_stub_ssr.v: A component of the SSP Stub which converts the raw 64-bit
Double Data Rate (DDR) flits from the SSP link into 128-bit Single Data Rate (SDR)
flits for use in the stub.

• ssp_rcv_recap.v: A component of the SSP Stub which captures data (from
cx_stub_ssr.v) on rising edge.

198 007-4718-005

B: SSP Stub User’s Guide

• cx_stub_ssd.v: A component of the SSP Stub which converts the 128-bit SDR
data from the stub to 64-bit DDR data for transmitting over the SSP link.

• ssp_sdr_stub.v: A component of the SSP Stub which passes 128-bit data to and
from C-code.

• tio_shrd_ecc_generate.v: A component of the SSP Stubh which generates
ECC bits in accordance with SSP protocol.

• pli.tab: This PLI file links the $start_ssp call from the Verilog to the
start_ssp() routine in C code.

• start_ssp.c: This file directs the initialization of the stub. It opens the diag file,
parses the commands, sets up the packet queues, initializes counters, and calls
send_rcv_flits() to enter the main loop.

• user_const.h: A header file containing user specified constants (e.g. simulation
timeout, maximum size of the input file, maximum number of commands).
Additional constants may be added to this file as needed by the user.

• ssp_defines.h: This header file contains macros for the program, such as the
names of packet types.

• send_rcv_flits.h: This header file contains the main loop function,
send_rcv_flits(), which calls itself once every clock cycle through the
tf_setdelay(5) PLI call [tf_setdelay(time) waits for the specified amount of
time, then calls misctf with input "reason_reactivate"; in the pli.tab file, the
misc function is specified to be sent to "send_rcv_flits"].
send_rcv_flits() runs through the various conditions for sending, receiving,
timing out, printing, delaying, and polling. It uses the function process_pkt to
get information about error packets (in the syntax used for the input diag file) and
the function get_fields to get a breakdown of the command word for logging
purposes. It uses the sub-functions send_flit(), rcv_flit(), snd_poll(), and
rcv_poll() to place data on the outgoing lines and read data off of the incoming
lines. It calls finish_ssp() to print success and exit. send_flit() puts data for
the next flit on the outgoing lines. rcv_flit() takes data from the incoming lines
and stores it after comparing it with expected data. snd_poll() sends out a PIO
8-Byte Read Request packet for a given address. rcv_poll() takes the read
response to a poll request, and checks the bit in question to see if it has been set.

• queue_pkt.h: This file contains the mechanism for reading an input command
line from the diag and converting it into data values representing the packet that
will need to be sent/received OR the information for a print/delay/poll.
queue_pkt(string) goes to tokenizes the input string and extracts data from each
field.q_string_it(token, pkt_string) appends the latest token to the

Verification Environment and Testbench

007-4718-005 199

stored packet string (for logging purposes). strtok_checked(s1, s2) calls
strtok on the inputs and throws an error if the resulting token is NULL when it
should not be.

• setup_pkt.h: This file contains the function setup_pkt(snd_rcv), which
takes care of setting up packets for regular sends and receives (not poll packets),
based on the information stored by queue_pkt(string). It uses the functions in
snd_rcv_fns.h to get the data for each flit, and sets up the remaining fields
individually (head, tail, error, req_dval, rsp_dval).

• snd_rcv_fns.h: This file contains the equivalent of the eleven packet functions
available to the diag, but with an extra field for the pkt[] array which will contain
their results. Each function passes the appropriate type and fields to the
construct_pkt(type, tnum, addr, data, error, pkt, snd_rcv_n)
function.

• construct_pkt.h: This file takes the packet information from snd_rcv_fns.h
and turns it into 64-bit segments of data. construct_pkt(type, tnum, address, data,
error, pkt, to_from_n) takes the input information and creates appropriate data,
storing this data in pkt. pkt_size(type) takes the type and returns a value for the
number of flits in that packet (1, 2, 9, or 10).

• make_command.h: This file takes the type, transaction number, error bit, and
direction of a packet and constructs an SSP command word, which it returns as an
int.

• get_fields.h: This file takes input of the type of packet to deconstruct (i.e.,
send, receive, incoming, poll request, poll response, poll expected) and returns the
command word with its decomposed fields as well as any address or data fields. It
also contains a helper function, f_string_it(token), which appends information to its
destination string (data_fields[]) as it proceeds.

• process_pkt.h: This file takes the type of packet (either incoming or poll
response) and turns the data from that receive packet into a string following the
syntax of the diag file. It has a helper function p_string_it(token) that behaves the
same as f_string_it(token), but stores its data in processed_string[].

Compiling and Running a Test

Compiling the sample testbench is done using the provided Makefile. In order to
compile the sample testbench including the SSP Stub and the RASC Core Services logic,
an algorithm must be specified. This algorithm is specified to the make utility on the

200 007-4718-005

B: SSP Stub User’s Guide

command line, (change directory to the sample_tb directory and enter the following
command) as follows:

% cd your_root/dv/sample_tb

% make ALG=your_algorithm

The Makefile uses your_algorithm to find the directory in the tree where you algorithm
design files exist (for example, ALG=alg0). For the case where no ALG=your_algorithm is
specified, the default algorithm is used from your_root/examples/alg_simple_v. As
mentioned ealier, it is required that user generated algorithms are saved in a
corresponding directory (for example,. your_root/examples/my_alg/*.v).

To run a test, remain in the sample_tb directory and enter the following command:

% make run DIAG=diag_filename ALG=your_algorithm SRAM0_IN=sram0_input_filename
SRAM1_IN=sram1_input_filename SRAM2_IN=sram2_input_filename
SRAM3_IN=sram3_input_filename SRAM0_OUT=sram0_output_filename
SRAM1_OUT=sram1_output_filename SRAM2_OUT=sram2_output_filename
SRAM3_OUT=sram3_output_filename

The diag_filename specifies the diag to be run and should be relative to the current
directory. Again, the algorithm must be specified using the ALG=your_algorithm
command line option. If none is specified, the runtime command uses same default as
above . The ALG option allows the user to reuse the same diag for multiple algorithms.
The input and output data files for the three SRAMs may be specified; if they are not
specified, they default to:

SRAM0_IN=init_sram0_good_parity.dat
SRAM1_IN=init_sram1_good_parity.dat
SRAM2_IN=init_sram2_good_parity.dat
SRAM3_IN=init_sram3_good_parity.dat
SRAM3_IN=init_sram4_good_parity.dat
SRAM0_OUT=final_sram0.dat
SRAM1_OUT=final_sram1.dat
SRAM2_OUT=final_sram2.dat
SRAM3_OUT=final_sram3.dat
SRAM4_OUT=final_sram4.dat

As the test runs, it will output status to the screen and to an output file named
diag_filename.your_algorithm.run.log. This log file will appear in the same directory
that the diagnostic is located in. The contents of each SRAM at the end of simulation will
be dumped into .dat files which can be either the default filenames or user-specified.
Each time a diagnostic is run, the file vcdplus.vpd is generated in the sample_tb
directory. This file can be input to Virsim for viewing the waveform. Since the file

SSP Stub Commands

007-4718-005 201

vcdplus.vpd is generally large, it is overwritten for each diagnostic run. To save the
waveform for a given diagnostic, copy corresponding vcdplus.vpd file to a new name.

To view the waveform saved in the vcdplus.vpd file, use the following command:

% vcs -RPP vcdplus.vpd

When the stub receives an incorrect packet, it will output, in order, the following
information: the command for the next expected packet, SSP fields of the expected
packet, the command translation (if one exists) for the received packet, and the SSP fields
of the received packet.

SSP Stub Commands

The Stub retrieves instructions from a test through a text input file, the diagnostic. The
SSP Stub parses this file at each semicolon to extract commands which the Stub executes.
Many of the allowed commands in a diagnostic correspond to SSP packets. There are
other commands that the SSP Stub supports other commands that are used for diagnostic
writing and debugging. The primary components of the diagnostic file are, packet
commands, other commands, and comments.

It is important to note that most SSP packets come in pairs, a request and a response. For
these types of packets, the request command and response command must be listed
sequentially in a diagnostic. This method of keeping requests and response paired is
used by the stub to associate request and response packets with the corresponding
tnums. Also, when running the DMA engines, all transactions related to that sequence
of events should be grouped together. See the sample diagnostic included later in this
document for an example of how this is done.

202 007-4718-005

B: SSP Stub User’s Guide

Packet Commands

RASC makes use of a subset of the available SSP packet types. The packet types used by
the SSP Stub are included in the table below.

Of the standard SSP packet types listed in the SSP Specification, this stub does NOT
support FPGA-to-Stub Processor Input/Output (PIO) 8-Byte Reads, FPGA-to-Stub
Memory Partial 128-Byte Writes, FPGA-to-Stub PIO Partial 128-Byte Reads or Writes, or
Graphics Writes. It does, however, support all SSP packets that are used or accepted by
the RASC Core Services.

Packet commands begin with the name “snd_” or “rcv_”, contain fields within
parentheses separated by commas, and end with a semicolon, for example:

snd_wr_req(PIO, DW, ANY, 0x0000000000000000, 0x000000000000FFFF);

There are two categories of stub commands: sends and receives. The diagnostic should
specify both the requests and responses it wishes to send as well as the requests and
responses it expects to receive from the FPGA.

Command Fields

Below is a list of the various fields used by packet commands. A list of allowable values
and their corresponding meanings is also included.

Table B-1 Packet Types used by SSP

Type Transaction

Valid
Transactions
Stub to FPGA

Valid
Transactions
FPGA to Stub

Reads PIO 8-Byte Read Yes No

PIO Full 128-Byte Read Yes No

Memory Full 128-Byte Read No Yes

Writes PIO 8-Byte Write Yes Yes

PIO Partial 128-Byte Write Yes No

Memory Full 128-Byte Write No Yes

Invalidate-Cache Flush Invalidate-Cache Flush Yes No

SSP Stub Commands

007-4718-005 203

• Field: PIO/MEM

PIO (Processor Input/Output): Use for read/write requests initiated by the stub,
also used for interrupt packets from the FPGA.

MEM (Memory): Use for read/write requests initiated by the FPGA (except
interrupts).

• Field: Size

DW (Double Word): Use for 8-Byte transactions (MMRs and Interrupts)

FCL (Full Cache-Line): Use for Full 128-Byte transactions (usually DMA’s).

• Field: Tnum

0x0 - 0xff: Correspond to the tnum of a packet.

ANY: Used when any tnum is allowable or when responding with the tnum of the
corresponding request.

For outgoing requests, the tnum may be specified (though overlapping tnums for
the same type of transactions should not be used per the SSP Specifiation). If
“ANY” is specified for an outgoing request, the Stub will assign a tnum
automatically. For incoming responses, the tnum may be specified if the tnum of
the corresponding request was specified; in all other cases, specifying “ANY” will
allow the stub to accept any tnum for the incoming packet.

Also, note that the RASC FPGA will send out PIO Write Requests to the stub with
tnums always in the range 0xf0 - 0xff. The RASC FPGA should not use tnums in
this range for any other purpose.

• Field: Address

Any 64-bit value: Used to specifiy the intended or expected address of a packet
(note that actual addresses are 56-bit values). For all requests, this field specifies the
SRAM, MMR, or Memory address location.

• Field: Data

A list of 64-bit values, dependent on the size specified. Each 64-bit data segment
(from least-significant to most-significant) is separated by a comma. For DWs, there
is just one data segment. For FCLs, there are 16 segments. The sample diagnostic
included later in this document contains examples.

• Field: Error

 0: No error is reported in the header of the SSP packet.

204 007-4718-005

B: SSP Stub User’s Guide

 1: An error is reported/expected in the corresponding packet.

The error field is required for all responses, whether received or sent. The error bit
is one when there has been some error in the transaction; for example, the type of
request may not be valid or the address may be invalid.

Send Commands

snd_wr_req

The syntax of the snd_wr_req function is, as follows:

snd_wr_req(pio_mem_n, size, tnum, addr, data):

The snd_wr_req function is used to send PIO writes to the memory-mapped registers
(MMRs) (8-Byte).

• pio_mem_n = PIO

• size = DW

• tnum = ANY or user-specified

• addr = address of MMR or in SRAM

• data = data to be written

snd_rd_req

The syntax of the snd_rd_req function is, as follows:

snd_rd_req(pio_mem_n, size, tnum, addr):

The snd_rd_req function is used to request PIO reads from the MMRs (8-Byte) and
SRAMs (Full 128-Byte).

• pio_mem_n = PIO

• size = DW or FCL

• tnum = ANY or user-specified

• addr = address of MMR or in SRAM

snd_wr_rsp

The syntax of the snd_wr_rsp function is, as follows:

SSP Stub Commands

007-4718-005 205

snd_wr_rsp(pio_mem_n, size, tnum, error):

The snd_wr_rsp function is used to respond to write requests from the FPGA during
DMAs (Full 128-Byte) and interrupts (8-Byte).

• pio_mem_n = PIO (interrupts) or MEM (DMAs)

• size = DW (interrupts) or FCL (DMAs)

• tnum = ANY or user-specified

• error = 0 or 1

snd_rd_rsp

The syntax of the snd_rd_rsp function is, as follows:

snd_rd_rsp(pio_mem_n, size, tnum, error, data):

The snd_rd_rsp function is used to respond to read requests from the FPGA: DMAs
(Full 128-Byte).

• pio_mem_n = MEM

• size = FCL

• tnum = ANY or user-specified

• error = 0 or 1

• data = 0 if this is an error response, otherwise a list of 16 64-bit data values,
separated by commas.

• tnum = ANY or user-specified

inv_flush

The syntax of the inv_flush function is, as follows:

inv_flush(tnum):

• tnum = ANY or user-specified

Receive Commands

rcv_wr_rsp

The syntax of the rcv_wr_rsp function is, as follows:

206 007-4718-005

B: SSP Stub User’s Guide

rcv_wr_rsp(pio_mem_n, size, tnum, error):

Thercv_wr_rsp function is used to receive write responses from the FPGA (after writes
to MMRs).

• pio_mem_n = PIO

• size = DW

• tnum = ANY or user-specified

• error = 0 or 1

rcv_rd_rsp

The syntax of the rcv_rd_rsp function is, as follows:

rcv_rd_rsp(pio_mem_n, size, tnum, error, data):

The rcv_rd_rsp function is used to receive read responses from the FPGA (after read
requests to the MMRs).

• pio_mem_n = PIO

• size = DW

• tnum = ANY or user-specified

• error = 0 or 1

• data = 0 if an error response, one 64-bit value otherwise

rcv_wr_req

The syntax of the rcv_wr_req function is, as follows:

rcv_wr_req(pio_mem_n, size, tnum, addr, data):

The rcv_wr_req function is used to receive write request from the FPGA (interrupts
and DMA writes).

• pio_mem_n = PIO (interrupts) or MEM (DMAs)

• size = DW (interrupts) or FCL (DMAs)

• tnum = ANY or user-specified

• addr = address specified for interrupts or system memory address (64-bits)

SSP Stub Commands

007-4718-005 207

• data = one 64-bit value for interrupts; 16 64-bit values for DMAs

rcv_rd_req

The syntax of the rcv_rd_req function is, as follows:

rcv_rd_req(pio_mem_n, size, tnum, addr):

The rcv_rd_req function is used to receive read requests from the FPGA (DMA reads).

• pio_mem_n = MEM

• size = FCL

• tnum = ANY or user-specified

• addr = system memory address

Other Commands
print “text”;

The user can output information from the diagnostic through the print command. These
are indicated by the keyword “print” followed by the output text enclosed in quotation
marks and followed by a semicolon:

print “Done initializing registers.\n”;

The stub will output the characters in between the quotation marks verbatim, with three
exceptions: ‘\n’, ‘\t’, and ‘\v’ are treated as “newline,” “horizontal tab,” and “vertical
tab,” respectively. The print command will execute immediately after the command
above it is executed. The SSP Stub will not wait for a print command to be executed
before proceeding with the rest of the diagnostic.

delay(cycles);

The user can specify a specific delay between sending packets. The value specified in the
delay command is the number of 5 ns clock cycles to wait before continuing to execute
commands in the diagnostic. This can be used to wait for the algorithm to execute steps
or finish executing entirely.

poll(address, bit, interval);

208 007-4718-005

B: SSP Stub User’s Guide

The user can specify a bit to read at a specified interval to see if a process is finished (for
example, if the algorithm, DMA read engine, or DMA write engine is complete). The
stub will read the MMR of address on the specified interval until the bit is set to 1

Note: NOTE: If the interval chosen is smaller than the time necessary to complete the
read transaction (approximately 44 clock cycles), the stub will wait until it receives a
response to its last request before proceeding with the next read request (that is, the
actual time between reads may be greater than the specified interval).

• address = address of MMR to be read

• bit = bit in register to be checked

• interval = number of clock cyles in between register reads

Command Summary

The table below provides a summary of packet commands and their possible usages.

Command Packet Type
PIO/
MEM Size Tnum Error Address Data

snd_wr_req PIO 8-Byte
Write Request

PIO DW User-specified
or ANY

- MMR or SRAM Address 1 64-bit value

snd_rd_req PIO 8-Byte
Read Request

PIO DW User-specified
or ANY

- MMR Address -

Memory Full 128-Byte
Read Request

MEM FCL User-specified
or ANY

- SRAM Address -

snd_wr_rsp PIO 8-Byte
Write Response

PIO DW User-specified
or ANY

0 or 1 - -

Memory Full 128-Byte
Write Response

MEM FCL User-specified
or ANY

0 or 1 - -

snd_rd_rsp Memory Full 128-Byte
Read Response

MEM FCL User-specified
or ANY

0 or 1 - 16 64-bit

values

Sample Diagnostic

007-4718-005 209

Comments

Comments are indicated by a ‘#’ sign. The stub will ignore sections of the diagnostic
from the ‘#’ indicator to the end of the line (excluding ‘#’s contained in print statements).

Sample Diagnostic

The code listed below comprises a diagnostic which exercises the basic functionality of
the RASC FPGA outlined in the following steps:

1. Initializes the RASC FPGA Core Services (primarily MMR Writes)

2. Executes DMA Reads to send data to the FPGA

3. Starts the Algorithm (A & B | C) and polls the MMR’s to see when the Algorithm is
done

4. Executes DMA Writes to retrieve the Algorithm’s results

5. Checks the error status in the MMR’s to verify that no errors were flagged.

####### Initialization packets. #######
Arm reigsters by setting the REARM_STAT_REGS bit in the CM_CONTROL register.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000000600f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

inv_flush Invalidate
Cache-Flush Request

- - User-specified
or ANY

- - -

rcv_wr_rsp PIO 8-Byte
Write Response

PIO DW User-specified
or ANY

0 or 1 - -

rcv_rd_rsp PIO 8-Byte
Read Response

PIO DW User-specified
or ANY

0 or 1 - 1 64-bit value

rcv_wr_req PIO 8-Byte
Write Request

PIO DW User-specified
or ANY

- Interrupt Destination
Address

1 64-bit value

Memory 128-Byte
Write Request

MEM FCL User-specified
or ANY

- System Memory Address 16 64-bit
values

rcv_rd_req Memory 128-Byte
Read Request

MEM FCL User-specified
or ANY

- System Memory Address -

210 007-4718-005

B: SSP Stub User’s Guide

Clear the CM_ERROR_STATUS register by writing all zeroes.
snd_wr_req (PIO, DW, 3, 0x00000000000060, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, 3, 0);

Enable CM_ERROR_DETAIL_* regs by writing all zeroes to CM_ERROR_DETAIL_1.
snd_wr_req (PIO, DW, ANY, 0x00000000000010, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

Enable desired interrupt notification in the CM_ERROR_INTERRUPT_ENABLE
register.
snd_wr_req (PIO, DW, 4, 0x00000000000070, 0xFFFFFFFFFFFFFFFF);
rcv_wr_rsp (PIO, DW, 4, 0);

Set up the Interrupt Destination Register.
snd_wr_req (PIO, DW, ANY, 0x00000000000038, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

print "\n\n*******Initialization finished\n\n";

####### Configure DMA Engines and Algorithm. #######

####### Configure the Read DMA Engine Registers. #######
print "\n\n*******Configure Read DMA Engine. Tell it to fill 32 cache lines of
data.\n\n";

RD_DMA_CTRL register.
snd_wr_req (PIO, DW, ANY, 0x00000000000110, 0x0000000000100020);
rcv_wr_rsp (PIO, DW, ANY, 0);

RD DMA System Address.
snd_wr_req (PIO, DW, ANY, 0x00000000000100, 0x0000000000100000);
rcv_wr_rsp (PIO, DW, ANY, 0);

RD DMA Local Address.
snd_wr_req (PIO, DW, ANY, 0x00000000000108, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

RD_DMA_DEST_INT
snd_wr_req (PIO, DW, ANY, 0x00000000000120, 0x0000000200002000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Configure the Write DMA Engine Registers. #######
print "\n\n*******Configure Write DMA Engine.\n\n";

Write to the WR_DMA_CTRL register.
snd_wr_req (PIO, DW, ANY, 0x00000000000210, 0x0000000000100020);

Sample Diagnostic

007-4718-005 211

rcv_wr_rsp (PIO, DW, ANY, 0);

WR_DMA_SYS_ADDR
snd_wr_req (PIO, DW, ANY, 0x00000000000200, 0x0000000000100000);
rcv_wr_rsp (PIO, DW, ANY, 0);

WR_DMA_LOC_ADDR
snd_wr_req (PIO, DW, ANY, 0x00000000000208, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

WR_DMA_INT_DEST
snd_wr_req (PIO, DW, ANY, 0x00000000000220, 0x0000000400004000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Configure the Algorithm Registers. #######
print "\n\n*******Configure Algorithm Registers\n\n";

snd_wr_req (PIO, DW, ANY, 0x00000000000300, 0x0000000000000000);
rcv_wr_rsp (PIO, DW, ANY, 0);

snd_wr_req (PIO, DW, ANY, 0x00000000000308, 0x0000000600006000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Start Read DMA Engine for Read DMA 1 #######
print "\n\n*******Start Read DMA Engine for SRAM0\n\n";

Set Bit 36 of the CM_CONTROL Reg to 1.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000001400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

1 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100000);
snd_rd_rsp (MEM, FCL, ANY, 0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF);

Other Read DMA Transactions omitted here

32 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100F80);
snd_rd_rsp (MEM, FCL, ANY, 0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,

212 007-4718-005

B: SSP Stub User’s Guide

 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF,
 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF);

print "\n\n*******Done storing 32 cache lines of data in SRAM0.\n\n";

print "\n\n*******Polling for DMA RD-SRAM0 done (bit 42 of CM_STATUS).\n\n";
poll (0x8, 42, 20);

####### Reconfigure DMA Engine for Read DMA 2 #######

RD_DMA_SYS_ADDR
snd_wr_req (PIO, DW, ANY, 0x00000000000100, 0x0000000000100000);
rcv_wr_rsp (PIO, DW, ANY, 0);

RD_DMA_LOC_ADDR
snd_wr_req (PIO, DW, ANY, 0x00000000000108, 0x0000000000200000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Start Read DMA Engine for Read DMA 2 #######
print "\n\n*******Start Read DMA Engine for SRAM1\n\n";

Set Bit 36 of the CM_CONTROL Reg to 1.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000001400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

1 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100000);
snd_rd_rsp (MEM, FCL, ANY, 0, 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0);

Other Read DMA Transactions omitted here

32 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100F80);
snd_rd_rsp (MEM, FCL, ANY, 0, 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,

Sample Diagnostic

007-4718-005 213

 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0,
 0xF0F0F0F0F0F0F0F0, 0xF0F0F0F0F0F0F0F0);

print "\n\n*******Done storing 32 cache lines of data in SRAM1.\n\n";

print "\n\n*******Polling for DMA RD-SRAM1 done (bit 42 of CM_STATUS).\n\n";
poll (0x8, 42, 200);

####### Reconfigure DMA Engine for Read DMA 3 #######

RD DMA addresses.
snd_wr_req (PIO, DW, ANY, 0x00000000000100, 0x0000000000100000);
rcv_wr_rsp (PIO, DW, ANY, 0);
snd_wr_req (PIO, DW, ANY, 0x00000000000108, 0x0000000000400000);
rcv_wr_rsp (PIO, DW, ANY, 0);

####### Start Read DMA Engine for Read DMA 3 #######
print "\n\n*******Start Read DMA Engine for SRAM2\n\n";

Set Bit 36 of the CM_CONTROL Reg to 1.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000001400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

1 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100000);
snd_rd_rsp (MEM, FCL, ANY, 0, 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C);

Other Read DMA Transactions omitted here

32 of 32
rcv_rd_req (MEM, FCL, ANY, 0x00000000100F80);
snd_rd_rsp (MEM, FCL, ANY, 0, 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C,
 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C);

214 007-4718-005

B: SSP Stub User’s Guide

print "\n\n*******Done storing 32 cache lines of data in SRAM 3.\n\n";

print "\n\n*******Polling for DMA RD-SRAM2 done (bit 42 of CM_STATUS).\n\n";
poll (0x8, 42, 200);

####### Start the Algorithm #######

Set bit 38 of CM Control Register to 1 to start algorithm.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000004400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

print "\n\n*******Started Algorithm.\n\n";

Poll for ALG_DONE bit in CM_STATUS.
poll (0x8, 48, 200);

####### Start Write DMA Engine. #######

Set bit 37 of CM Control Register to 1 to start Write DMA Engine.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000002400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

print "\n\n*******Started Write DMA Engine.\n\n";

1 of 32
rcv_wr_req (MEM, FCL, ANY, 0x00000000100000, 0xDCACBCECDCACBCEC,
0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC);
snd_wr_rsp (MEM, FCL, ANY, 0);

Other Write DMA Transactions omitted here

32 of 32
rcv_wr_req (MEM, FCL, ANY, 0x00000000100F80, 0xDCACBCECDCACBCEC,
0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC,
 0xDCACBCECDCACBCEC, 0xDCACBCECDCACBCEC);

Using the Stub

007-4718-005 215

snd_wr_rsp (MEM, FCL, ANY, 0);

print "\n\n*******Polling for DMA WR-SRAM0 done (bit 45 of CM_STATUS).\n\n";
poll (0x8, 45, 200);

####### Finish Up ######

dma_clear(). Set bits 39, 40, and 41 to 1 in CM_CONTROL.
snd_wr_req (PIO, DW, ANY, 0x00000000000020, 0x0000038400f00003);
rcv_wr_rsp (PIO, DW, ANY, 0);

finalcheck_ccc() Check CACHE_RD_DMA_FSM.
snd_rd_req (PIO, DW, ANY, 0x00000000000130);
rcv_rd_rsp (PIO, DW, ANY, 0, 0x0000000000400000);

print "Reading the Error Status Register to insure no errors were logged.\n";
snd_rd_req (PIO, DW, ANY, 0x00000000000060);
rcv_rd_rsp (PIO, DW, ANY, 0, 0x0000000000000000);

Using the Stub

Because the SSP Stub is a very simple verification tool intended only for sandbox testing
of new algorithm designs, capabilities and support for this stub are minimal. The main
intent is to provide the user with a means to simulate loading data, running their
algorithm, and reading the results. More comprehensive testing should be done on real
hardware. Due to limitations of the stub, below are some guidelines/rules for writing a
diagnostic which will help the user quickly create functional tests.

• Commands in the stub MUST alternate between request and responses. This
allows the stub to associate transaction pairs and calculate transaction numbers
accordingly.

• Comments operate as follows: when the stub encounters a ‘#’ character, it ignores
all text from that character until it reaches the end of that line. Print statements are
an exception to this rule; if the stub encounters a ‘#’ in between the quotation marks
of a print statement, it does NOT recognize this as a comment.

• A command should ALWAYS be followed by a semicolon.

• The parser checks for the correct number of inputs to a function, but it does NOT
check the validity of these inputs. Misplaced semicolons may also lead to
unpredictable behavior.

216 007-4718-005

B: SSP Stub User’s Guide

• Because the input file is in text format, no mathmatical operations, functions, or
variables are available. The diagnostic writer must know the full data value to be
written to a register.

• Diagnostic files must ALWAYS end with a newline character.

• Always follow a long sequence of DMA transactions with a poll() command of the
WR_DMA_DONE bit or RD_DMA_DONE bit. Enabling Interrupts will help test for the
completion of a long set of transactions.

• Other typical errors include the following:

– diagnostic is too long. If you are running into memory-related errors, try
increasing the FILE_MAX or COMMAND_MAX constants in user_const.h
(number of characters allowed in diagnostic file).

– Timed out while waiting for an operation to complete. If you are timing out
before you receive your algorithm or interrupt, increase TIME_OUT in
user_const.h. If you are timing out during a poll, increase POLL_MAX in
user_const.h.

• Read the Error Status Register at the end of a diagnostic to insure that no
unreported errors were logged during the diagnostic.

5007-4718-005 217

Appendix C

C. How Extractor Works

This section describes how metadata is extracted from source files and how to interpret
the generated configuration files. It covers the following topics:

• “Extractor Script” on page 217

• “Core Services Configuration File” on page 218

• “Algorithm Configuration File” on page 223

Extractor Script

The extractor script extracts necessary configuration information from a user’s register
transfer level (RTL) code.

To use the extractor script, enter the following:

python $RASC/pd/shrd/extractor $RASC/design/top/acs_cm_id.h $ALG_DIR

where $RASC is the installation path to the top of the RASC Core Services tree, and
$ALG_DIR is the top of the algorithm design file tree. These variables can be set in the
physical design makefile. Please see the physical design specifications for further details.

When called from a directory, extractor creates two configuration files:
core_services.cfg and user_space.cfg.

The core_services.cfg file is created from the file that is passed in as the first
command line argument. In the file that is passed as the first argument, extractor
searches the header for the glob that begins with ’core_services_version’ and ends
with ’end:’.

The user_space.cfg file is created from the files in the directory that is passed as the
second argument to extractor. The search includes all *.v, *.h, or *.vhd files in and
below the directory that is passed as the second argument. In those files, extractor
searches for any comments that start with: extractor. Then it searches for the particular

218 007-4718-005

C: How Extractor Works

tag, either CS, VERSION, REG_IN, REG_OUT, or SRAM. The line following these tags is
then stored, manipulated in some cases, and written out to the user_space.cfg
configuration file.

Both configuration files are written to the directory in which the script is called.

Please note that the system extractor is run upon requires a Python 2 interpreter. You can
obtain the interpreter at no cost from www.python.org.

Core Services Configuration File

The format for entries in the core services configuration file is:
<type>:<value>

The various fields for the configuration file are described in detail in Table C-1.

Table C-1 Core Services Configuration File Fields

Type Description Value Example

core_services_version Tag for the version and
revision of core services.

 <version>.<revision> core_services_version:0.7

part_num Tag for the part number that
corresponds to the CM_ID
register in the hardware.

 <hexidecimal part number> part_num:0xF001

mfg_id Tag for the manufacturer’s
identification number that
corresponds to the CM_ID
register in the hardware.

 <hexidecimal manufacturer’s
ID>

mfg_id: 0x1

dma Tag for the number and
direction of the DMA engines.

<number> <direction[0] ...
direction[n-1]>.

For two read and one write
DMA engine,

dma:3 rd rd wr

stream_in Tag for the number and
direction of the DMA engines.

<stream_name>
<identifier0-3>

stream_in: 0 0x001000000

stream_out Tag for the number and
direction of the DMA engines.

<stream_name>
<identifier0-3>

stream_out: 0 0x001800000

Core Services Configuration File

007-4718-005 219

The core services configuration file should have the name core_services.cfg. This
file does not use the ability for the application to write an internal register, so the file
should appear as:

sram[n] Tag for the SRAMs on the
board The address field is from
the DMA perspective; it is not
the PIO space for that SRAM.

 <DMA address for sram ’n’>
<size of sram ’n’ in MB>

 sram[0]:0x00000000000000 2MB

amo Tag for whether or not this
core services is AMO capable

 1 is yes, 0 is no amo:1

interrupt Tag for whether or not this
core services is interrupt
capable

 1 is yes, 0 is no interrupt:1

step Tag for whether or not this
core services is algorithm step
capable.

 1 is yes, 0 is no step:1

mmr Tag for the MMR space. <base register for PIO>
<length of space>
<alignment>

 mmr:0x00000000000000 2KB 64

debug Tag for the Debug space. <base register for PIO>
<length of space>
<alignment>

 debug:0x00000000100000 1MB
64

debug_port[n] Tag for the PIO address of the
debug register that is
associated with debug port ’n’.

<PIO address for the register>
<bit width of the register>

 debug_port[0]:0x0000 64

alg_def_reg[n] Tag for the PIO address for a
register ’n’ that the RASC
application wants to write to
the algorithm

<PIO address for the register>
<bit width of the register>

 alg_def_reg[0]:0x0320 64

end Tag for the end of the file It has no value end:

Table C-1 Core Services Configuration File Fields (continued)

Type Description Value Example

220 007-4718-005

C: How Extractor Works

part_num:0xF005
mfg_id:0x1
sram[0]: 0x00000200000000 16MB
sram[1]: 0x00000300000000 16MB
sram[2]: 0x00000400000000 8MB
stream_in:0 0x001000000
stream_in:1 0x001100000
stream_in:2 0x001200000
stream_in:3 0x001300000
stream_out:0 0x001800000
stream_out:1 0x001900000
stream_out:2 0x001a00000
stream_out:3 0x001b00000
amo:1
interrupt:1
step:1
mmr:0x00000000000000 2KB 64
debug:0x00000000100000 1MB 64
debug_port[0]: 0x00000000001000 64
debug_port[1]: 0x00000000001008 64
debug_port[2]: 0x00000000001010 64
debug_port[3]: 0x00000000001018 64
debug_port[4]: 0x00000000001020 64
debug_port[5]: 0x00000000001028 64
debug_port[6]: 0x00000000001030 64
debug_port[7]: 0x00000000001038 64
debug_port[8]: 0x00000000001040 64
debug_port[9]: 0x00000000001048 64
debug_port[10]: 0x00000000001050 64
debug_port[11]: 0x00000000001058 64
debug_port[12]: 0x00000000001060 64
debug_port[13]: 0x00000000001068 64
debug_port[14]: 0x00000000001070 64
debug_port[15]: 0x00000000001078 64
debug_port[16]: 0x00000000001080 64
debug_port[17]: 0x00000000001088 64
debug_port[18]: 0x00000000001090 64
debug_port[19]: 0x00000000001098 64
debug_port[20]: 0x000000000010A0 64
debug_port[21]: 0x000000000010A8 64
debug_port[22]: 0x000000000010B0 64
debug_port[23]: 0x000000000010B8 64
debug_port[24]: 0x000000000010C0 64
debug_port[25]: 0x000000000010C8 64
debug_port[26]: 0x000000000010D0 64

Core Services Configuration File

007-4718-005 221

debug_port[27]: 0x000000000010D8 64
debug_port[28]: 0x000000000010E0 64
debug_port[29]: 0x000000000010E8 64
debug_port[30]: 0x000000000010F0 64
debug_port[31]: 0x000000000010F8 64
debug_port[32]: 0x00000000001100 64
debug_port[33]: 0x00000000001108 64
debug_port[34]: 0x00000000001110 64
debug_port[35]: 0x00000000001118 64
debug_port[36]: 0x00000000001120 64
debug_port[37]: 0x00000000001128 64
debug_port[38]: 0x00000000001130 64
debug_port[39]: 0x00000000001138 64
debug_port[40]: 0x00000000001140 64
debug_port[41]: 0x00000000001148 64
debug_port[42]: 0x00000000001150 64
debug_port[43]: 0x00000000001158 64
debug_port[44]: 0x00000000001160 64
debug_port[45]: 0x00000000001168 64
debug_port[46]: 0x00000000001170 64
debug_port[47]: 0x00000000001178 64
debug_port[48]: 0x00000000001180 64
debug_port[49]: 0x00000000001188 64
debug_port[50]: 0x00000000001190 64
debug_port[51]: 0x00000000001198 64
debug_port[52]: 0x000000000011A0 64
debug_port[53]: 0x000000000011A8 64
debug_port[54]: 0x000000000011B0 64
debug_port[55]: 0x000000000011B8 64
debug_port[56]: 0x000000000011C0 64
debug_port[57]: 0x000000000011C8 64
debug_port[58]: 0x000000000011D0 64
debug_port[59]: 0x000000000011D8 64
debug_port[60]: 0x000000000011E0 64
debug_port[61]: 0x000000000011E8 64
debug_port[62]: 0x000000000011F0 64
debug_port[63]: 0x000000000011F8 64
alg_def_reg[0]: 0x00000000000000 64
alg_def_reg[1]: 0x00000000000008 64
alg_def_reg[2]: 0x00000000000010 64
alg_def_reg[3]: 0x00000000000018 64
alg_def_reg[4]: 0x00000000000020 64
alg_def_reg[5]: 0x00000000000028 64
alg_def_reg[6]: 0x00000000000030 64
alg_def_reg[7]: 0x00000000000038 64

222 007-4718-005

C: How Extractor Works

alg_def_reg[8]: 0x00000000000040 64
alg_def_reg[9]: 0x00000000000048 64
alg_def_reg[10]: 0x00000000000050 64
alg_def_reg[11]: 0x00000000000058 64
alg_def_reg[12]: 0x00000000000060 64
alg_def_reg[13]: 0x00000000000068 64
alg_def_reg[14]: 0x00000000000070 64
alg_def_reg[15]: 0x00000000000078 64
alg_def_reg[16]: 0x00000000000080 64
alg_def_reg[17]: 0x00000000000088 64
alg_def_reg[18]: 0x00000000000090 64
alg_def_reg[19]: 0x00000000000098 64
alg_def_reg[20]: 0x000000000000a0 64
alg_def_reg[21]: 0x000000000000a8 64
alg_def_reg[22]: 0x000000000000b0 64
alg_def_reg[23]: 0x000000000000b8 64
alg_def_reg[24]: 0x000000000000c0 64
alg_def_reg[25]: 0x000000000000c8 64
alg_def_reg[26]: 0x000000000000d0 64
alg_def_reg[27]: 0x000000000000d8 64
alg_def_reg[28]: 0x000000000000e0 64
alg_def_reg[29]: 0x000000000000e8 64
alg_def_reg[30]: 0x000000000000f0 64
alg_def_reg[31]: 0x000000000000f8 64
alg_def_reg[32]: 0x00000000000100 64
alg_def_reg[33]: 0x00000000000108 64
alg_def_reg[34]: 0x00000000000110 64
alg_def_reg[35]: 0x00000000000118 64
alg_def_reg[36]: 0x00000000000120 64
alg_def_reg[37]: 0x00000000000128 64
alg_def_reg[38]: 0x00000000000130 64
alg_def_reg[39]: 0x00000000000138 64
alg_def_reg[40]: 0x00000000000140 64
alg_def_reg[41]: 0x00000000000148 64
alg_def_reg[42]: 0x00000000000150 64
alg_def_reg[43]: 0x00000000000158 64
alg_def_reg[44]: 0x00000000000160 64
alg_def_reg[45]: 0x00000000000168 64
alg_def_reg[46]: 0x00000000000170 64
alg_def_reg[47]: 0x00000000000178 64
alg_def_reg[48]: 0x00000000000180 64
alg_def_reg[49]: 0x00000000000188 64
alg_def_reg[50]: 0x00000000000190 64
alg_def_reg[51]: 0x00000000000198 64
alg_def_reg[52]: 0x000000000001a0 64

Algorithm Configuration File

007-4718-005 223

alg_def_reg[53]: 0x000000000001a8 64
alg_def_reg[54]: 0x000000000001b0 64
alg_def_reg[55]: 0x000000000001b8 64
alg_def_reg[56]: 0x000000000001c0 64
alg_def_reg[57]: 0x000000000001c8 64
alg_def_reg[58]: 0x000000000001d0 64
alg_def_reg[59]: 0x000000000001d8 64
alg_def_reg[60]: 0x000000000001e0 64
alg_def_reg[61]: 0x000000000001e8 64
alg_def_reg[62]: 0x000000000001f0 64
alg_def_reg[63]: 0x000000000001f8 64
end:

Algorithm Configuration File

The format for entries in the algorithm configuration file is:
<type>:<value>

The various fields for the configuration file are described in detail in Table C-2..

Table C-2 Algorithm Configuration File Fields

Type Description Value Example

core_services_version Tag detailing which iteration of core
services was used in this bitstream.

 <version>
<revision>

 core_services_version:0.7

algorithm_version Tag for the type and version number of
the algorithm in this bitstream. This is
user defined but it should match the first
register in the debug space (see Hardware
Reference for more details.)

 <version>
<revision>

 algorithm_version:0.12

src Tag for source type that generated the
algorithm.

 Verilog by default and
VHDL if ANY .vhd file
exists in the hierarchy

 src:v

224 007-4718-005

C: How Extractor Works

The name of the algorithm configuration file that is generated by the extractor script will
be user_space.cfg. This name can be changed after the script is run at the discretion
of the user. The algorithm configuration file should appear as follows:

core_services_version:0.7
algorithm_version:0.6
src:v
reg:a_0 64 u debug_port[1]
reg:b_0 64 u debug_port[2]
reg:c_0 64 u debug_port[3]
reg:tmp 64 u debug_port[4]
reg:d_0 64 u debug_port[5]
reg:i_0 64 u debug_port[6]

reg Tag for the registers that are PIO written
or read by the application or the debugger
and where the value will be mapped in
the address space.

 <register name> <bit
width of register>
<data type of the
element mapped>
<port mapping to the
application or the
debug relevant debug
register>

reg:a 64 u debug_port[1]

array Tag for the SRAM inputs and outputs to
the algorithm.

 <array name>
<number of elements in
array>

<width of an element in
bits>

<associated SRAM
bank for array>

<byte offset into the
SRAM bank>
<direction of array: in,
out, or internal>

<data type for the
elements in array>

<whether the array is
streaming or fixed>

array:a_in 512 64 sram[0] 0x0000
in u stream

end Tag for the end of the file. It has no value field. end:

Table C-2 Algorithm Configuration File Fields (continued)

Type Description Value Example

Algorithm Configuration File

007-4718-005 225

array:a 512 64 sram[0] 0x00 in u stream
array:b 512 64 sram[1] 0x00 in u stream
array:c 512 64 sram[2] 0x00 in u stream
array:d 512 64 sram[0] 0x00 out u stream
end:

007-4718-005 227

Index

A

Adding extractor directives to source code, 130
Algorithm Block

debug mode, 26
Algorithm block

passing parameters, 52
Algorithm Block modes

normal mode, 26
Algorithm control interface, 27
Algorithm debug mode, 45
Algorithm design details, 41
algorithm inputs and outputs, 44
Algorithm interfaces, 27
Algorithm run modes, 26
Algorithm streaming

algorithm iteration, 49
segment/segment size, 49

Algorithms, diagnostics , and commands, 66

B

Basic algorithm control, 41
Bitstream development overview, 6

C

ccNUMA systems, 3
Clock cycle based stepping, 45

Coding guidelines for timing, 54
Core Services architecture overview, 23
Core Services Block, 22
Core services, FPGA, 185

D

Designing an algorithm for multibuffering, 49
Determining FPGA run status, 156
Determining if an FPGA has run, 156
Device driver, 185

control and status registers, 185
Device driver API, 186
Device driver DMA, 186
Device driver example, 187
Device driver, function control, 187
Device driver, interrupts, 185
Device manager, 142

overview, 143
structure, 144
using, 144

Device manager load command, 148
Driver API, 185

F

FPGA clock domains, 57, 60
FPGA core services, 185

228 007-4718-005

Index

FPGA design integration, 55
FPGA device values and stepping, 156
FPGA programming, 5
FPGA programming approach summary, 6
FPGA registers, 155
FPGA run status, 156

G

GDB commands, 153
GNU Debugger

connecting to internal signals, 54
GNU Debugger (GDB), 152

overview, 9

H

Hardware resets, 59

I

Internal timing requirements, 54

L

Loading the bitstream, 141

M

Manually loading an FPGA, 148
Memory distribution recommendations, 44

P

Passing parameters to the algorithm block, 52

R

RASC Abstraction Layer, 7, 77
functions, 79
how it works, 116

RASC Algorithm Field Programmable Gate Array
(FPGA) hardware, 21

RASC Algorithm FPGA
implementation guide, 123

RASC Algorithm FPGA implementation
flow, 124
Full-chip implementation, 138
installation and setup, 126
Makefile targets, 137
Makefile.local customizations, 136
overview, 124
pre-compiled cores, 134
supported tools, 125

RASC hardware overview, 9
reconfigurable algorithm, 9

RASC overview, 4
RASC Programming, getting started, 5
RASC software overview, 12
RASC tutorial

data flow algorithm, 173, 179
overview, 160
simple algorithm, 161
system requirements, 159

Reconfigurable computing, 1
Run status of an FPGA, 156
Running a diagnostic, 62

007-4718-005 229

Index

S

Sample test bench constants and definitions, 72
Sample test bench setup, 62
Scalable System Port (SSP) Stub, 195

compiling and running a test, 199
packet commands summary, 208
sample testbench, 196
stub commands, 201
verification environment, 196

Simulating the design, 62
SRAM

external memory read transaction control, 47
SRAM external memory write transaction control, 46
Streaming direct memory access (DMA), 30
Streaming DMA, 30

U

Using the device manager, 144
Using the device manager command, 151
Using the GNU Project debugger, 152

V

Variable step size mode, 45
Verilog, VHDL or header file

adding comments, 131
VHDL and Verilog programming languages, 5

W

Writing a diagnostic, 67

	New Features in This Guide
	Figures
	Tables
	About This Guide
	Related Publications
	SGI Documentation
	Additional Documentation Sites and Useful Reading

	Obtaining SGI Publications
	Conventions
	Reader Comments

	RASC Introduction
	An Overview of Reconfigurable Computing
	Silicon Graphics ccNUMA Systems
	Silicon Graphics Reconfigurable Application-Specific Computing (RASC)
	Getting Started with RASC Programming
	Overview of FPGA Programming
	SGI FPGA Programming Approach
	Bitstream Development Overview
	Helpful SGI Tools

	RASC Hardware Overview
	RASC Software Overview

	Altix System Overview
	SGI Altix 350 System Overview
	SGI Altix 450 and Altix 4700 System Overview

	RASC Algorithm FPGA Hardware Design Guide
	RASC Core Services Overview
	Core Services Features
	Core Services Architecture Overview
	SRM
	SXM
	Programmed Input/Output Request Engine
	TNUM Tracker
	Request Gate
	Memory Mapped Registers
	Interrupt Generator
	Input Direct Memory Access
	Output Direct Memory Access
	Memory Controller
	Algorithm Block

	Algorithm Run Modes
	Algorithm Interfaces
	Algorithm Control Interface
	Algorithm Defined Registers
	Algorithm Defined Register Configuration
	Algorithm Defined Register Usage

	Streaming Direct Memory Access
	Input Streaming DMA Engine
	Start Input Stream
	End input stream
	Output Stream
	Start Output Stream
	End Output Stream
	Streaming DMA Extractor Statements

	Debug Register Interface

	SRAM Interface
	Arbitration
	Handshaking Methodologies
	Using Busy Signal
	Using SRAM Crediting Scheme

	Additional 64-bit SRAM Port
	Address Offsets
	SRAM Read Operation
	SRAM Read with Busy Operation
	SRAM Write with Busy Operation

	Algorithm Design Details
	Basic Algorithm Control
	Recommendations for Memory Distribution
	Input and Output Placement

	Implementation Options for Debug Mode
	Clock Cycle Step Size Mode
	Variable Step Size Mode

	External Memory Write Transaction Control
	Example Write Transaction Timing Diagram
	External Memory Read Transaction Control
	Example Read Transaction Timing Diagram

	Designing an Algorithm for Multibuffering
	Purpose
	Definitions
	Hardware Support
	Software Responsibilities

	Passing Parameters to Algorithm Block
	Small Parameters
	Parameter Arrays

	Recommended Coding Guidelines for Meeting Internal Timing Requirements
	Connecting Internal Signals to the Debugger

	RASC FPGA Design Integration
	Design Hierarchy
	FPGA Clock Domains
	Core Clock Domain
	Algorithm Clock Domain
	SSP Clock Domain
	QDR-II SRAM Clock Domains

	Resets
	Algorithm Synthesis-time Parameters
	Algorithm Clock Speed
	SRAM Port Usage

	Simulating the Design
	Intent of the Sample Test Bench
	Sample Test Bench Setup
	Compiling the Sample Test Bench
	Running a Diagnostic
	Viewing Waveform Results

	Writing a Diagnostic
	Sample Test Bench Constants and Dependencies
	Sample Test Bench Utilities

	RASC Abstraction Layer
	RASC Abstraction Layer Overview
	RASC Abstraction Layer Calls
	rasclib_resource_reserve Function
	rasclib_resource_release Function
	rasclib_resource_ configure Function
	rasclib_resource_ return Function
	rasclib_resource_alloc Function
	rasclib_resource_free Function
	rasclib_algorithm_open Function
	rasclib_algorithm_send Function
	rasclib_algorithm_get_num_cops Function
	rasclib_algorithm_receive Function
	rasclib_algorithm_go Function
	rasclib_algorithm_commit Function
	rasclib_algorithm_wait Function
	rasclib_algorithm_close Function
	rasclib_algorithm_reg_multi_cast Function
	rasclib_algorithm_reg_read Function
	rasclib_algorithm_reg_write Function
	rasclib_algorithm_exception_handler_register Function
	rasclib_cop_open Function
	rasclib_cop_send Function
	rasclib_cop_receive Function
	rasclib_cop_go Function
	rasclib_cop_commit Function
	rasclib_cop_wait Function
	rasclib_cop_close Function
	rasclib_cop_reg_read Function
	rasclib_cop_reg_write Function
	rasclib_cop_ exception_handler_register Function
	rasclib_perror Function
	rasclib_error_dump Function

	How the RASC Abstraction Layer Works

	Direct I/O
	RASC Algorithm FPGA Implementation Guide
	Implementation Overview
	Summary of the Implementation Flow
	Supported Tools and OS Versions

	Installation and Setup
	SGI Altix System Installation
	PC Installation
	Implementation Constraint Files
	Synthesis Using Synplify Pro
	Synthesis Using XST
	ISE (User Constraint File)

	Adding Extractor Directives to the Source Code
	Inserting Extractor Comments
	Example of Comments in a Verilog, VHDL, or header File

	Implementation with Pre-synthesized Core
	Makefile.local Customizations
	Synthesis Project Customization
	Synplify Pro
	XST

	Makefile Targets

	Full-chip Implementation
	Makefile.local Customizations
	Synthesis Project Customization

	Implementation File Descriptions

	Running and Debugging Your Application
	Loading the Bitstream
	RASC Device Manager
	RASC Device Manager Overview
	RASC Device Manager Structure
	Using the Device Manager Command (devmgr)
	Add a Bitstream To the Bitstream registry
	Delete a Bitstream From the Bitstream registry
	List the Contents of a Bitstream registry
	Update an Algorithm in the Bitstream registry
	List the FPGAs in the Inventory
	Mark an FPGA as Available or Unavailable
	Turn Debugging On or Off
	Device Manager Load FPGA Command
	Device Manager Reload FPGA Command
	Device Manager Version Information

	Device Manager Server Command
	Using the Device Manager Server (devmgr_server) Command
	Device Manager Logging Facility

	Using the GNU Project Debugger (GDB)
	GDB Commands
	fpgaactive
	set fpga fpganum
	fpgaregisters
	info fpga
	fpgastep
	fpgacont
	fpgatrace

	Registers
	Values and Stepping
	FPGA Run Status
	Changes To GDB Commands

	RASC Examples and Tutorials
	System Requirements
	Prerequisites
	Tutorial Overview
	Simple Algorithm Tutorial
	Overview
	Application
	Coding Techniques: Verilog
	Overview
	Integrating with Core Services
	Extractor Comments

	Coding Techniques: VHDL Algorithm
	Overview
	Integrating with Core Services
	Extractor Comments

	Compiling for Simulation
	Building an Implementation
	Transferring to the Altix Platform
	Verification using GDB

	Data Flow Algorithm Tutorial
	Application
	Loading the Tutorial
	Integrating with Core Services
	Extractor Comments

	Compiling for Simulation
	Building an Implementation
	Transferring to the Altix Platform
	Verification Using GDB

	Streaming DMA Algorithm Tutorial
	Application
	Loading the Tutorial
	Integrating with Core Services
	Extractor Comments

	Compiling for Simulation
	Building an Implementation
	Transferring to the Altix Platform
	Verification Using GDB

	Device Driver
	FPGA Core Services
	Control and Status Registers
	Interrupts

	Driver Application Programming Interface (API)
	Input Direct Memory Access
	Output Direct Memory Access
	Function Control

	Example Use of Device Driver

	SSP Stub User’s Guide
	Introduction to SSP Stub
	Recommended Reading
	Verification Environment and Testbench
	Verification Environment
	Sample Test Bench
	SSP Stub File Descriptions

	Compiling and Running a Test

	SSP Stub Commands
	Packet Commands
	Command Fields
	Send Commands
	Receive Commands

	Other Commands
	Command Summary
	Comments

	Sample Diagnostic
	Using the Stub

	How Extractor Works
	Extractor Script
	Core Services Configuration File
	Algorithm Configuration File

	Index

