SGI® InfiniteStorage TPSSM Software Concepts Guide

CONTRIBUTORS

Written by Jenn Byrnes, Steven Levine Illustrated by Chrystie Danzer Edited by Susan Wilkening Production by Karen Jacobson

Engineering contributions by Bill Andrews, Marty Castilla, Robert Novak, Henry Ortiz, and Sammy Wilborn.

COPYRIGHT

© 2002-2005 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS

Silicon Graphics, SGI, the SGI logo, and IRIX are registered trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide.

AIX is a trademark of IBM. HP-UX is a trademark of Hewlett-Packard Company. Linux is a registered trademark of Linus Torvalds. Red Hat is a registered trademark of Red Hat, Inc. Solaris is a registered trademark of Sun Microsystem, Inc. Windows and Windows NT are registered trademarks of Microsoft Corporation in the United States and/or other countries. The program product(s) described in this book is a licensed product of LSI Logic Corporation. LSI Logic and SYM are registered trademarks and RAID Manager and SYMplicity are trademarks of LSI Logic Corporation. All other trademarks mentioned herein are the property of their respective owners.

What's New in This Guide

New Features Documented

This update contains the following:

- Documentation of the Task Assistant Launch Pad feature
- Documentation of support for the SGI InfiniteStorage TP9700 RAID

007-4749-001 iii

Record of Revision

Version	Description
001	February 2005
	Original publication.

007-4749-001 v

Contents

	Record of Revision	V
	Figures	V
	Tables	X
	About This Guide	d
	Software and Hardware Terminology	ij
	Related Publications	ij
	Obtaining Publications	V
	Conventions	V
	Reader Comments	V
1.	Storage Array Management Architecture and Software Components.	1
	Major Hardware Components	1
	Physical Components of a Storage Array	3
	Logical Components of a Storage Array	4
	Storage Partitioning	4
	Network Management of Storage Arrays	5
	Network Management Connectivity	5
	Types of Network Management Connections	6
	Directly Managed Storage Arrays	7
	Host-Agent Managed Storage Arrays	7
	Major Software Components	8

007-4749-001 vii

	Client Software Windows							. 9
	Enterprise Management Window							. 10
	Device Tree		٠					. 12
	Device Table						٠	. 14
	Enterprise Management Window Menus							. 14
	Enterprise Management Window Toolbar							. 15
	Array Management Window							. 16
	Array Management Window Tabs							. 18
	Array Management Window Menu Options .							. 19
	Array Management Window Toolbar Options							. 21
2.	Configuring Storage Arrays				•			. 23
	Protecting Your Data							. 23
	Software Redundancy							. 23
	Use Remote Volume Mirroring							. 24
	Create a Snapcopy Volume							. 24
	RAID Levels and Data Redundancy							. 24
	Hardware Redundancy							. 27
	Protect Data in the Controller Cache Memory.							. 27
	Configure Hot Spare Drives							. 29
	Enable a Background Media Scan							. 29
	Use Available Channel Protection When Possible	e						. 29
	Storage Array Password Protection							. 30
	Password Failure Reporting and Lockout							. 30
	Creating Volumes and Storage Partitions							. 31
	Configuring Storage Array Capacity into Volumes							. 32
	Register the Volume with the Operating System							. 32
	Dynamic Volume Expansion (DVE)							. 33
	Mappings View							. 34
	Storage Partitioning							. 37
	Storage Partitioning Example							. 38
	Major Steps to Create Storage Partitions							. 39
	Heterogeneous Hosts							. 42
	Heterogeneous Hosts Example							. 43

viii 007-4749-001

Maintaining Storage Arrays in the Management Domain	•	•	•	•			. 4	15
Monitoring the Health of Storage Arrays							. 4	15
Storage Array Status Icons							. 4	ŀ7
Event Monitor							. 4	18
Alert Notifications							. 5	51
Customer Support Alert Notifications							. 5	52
Problem Notification							. 5	53
Recovering from Storage Array Problems							. 5	55
Recovery Guru Example							. 5	56
Tuning Storage Arrays							. 6	50
Task Reference							6	(2

007-4749-001 ix

3.	Remote Volume Mirroring
	Feature Concepts and Requirements
	Introduction to Remote Volume Mirroring.
	Primary and Secondary Volumes
	Mirror Repository Volumes
	Mirror Relationships
	Data Replication
	Link Interruptions or Secondary Volume Errors
	Connectivity and Input/Output
	Fibre Channel Fabric Configurations
	Volume Ownership
	Distance Between Primary and Secondary Storage Array
	General Performance Considerations
	Using Other Premium Features and Remote Volume Mirroring
	Storage Partitioning
	Snapcopy Volumes
	Performing Defragment Operations
	Hardware and Software Requirements
	Hardware Requirements
	Software Requirements
	Recommended Configurations
	Highest Availability Campus Configuration
	Campus Configuration
	Intra-Site Configuration
	Hardware and Software Checklist
	Hardware Checklist
	Software Checklist

x 007-4749-001

Hardware and Software Installation	92
Pre-Installation Requirements	92
Site Preparation	92
Hardware and Software Requirements	92
Switch Zoning Overview	93
Hardware Installation	95
Highest Availability Campus Configuration	96
Campus Configuration	105
Intra-Site Configuration	112
Software Installation	119
Verifying Installation and Configuration	120
Using the Remote Volume Mirroring Premium Feature	121
Enabling and Activating the Remote Volume Mirroring Feature	122
Determining Remote Volume Mirroring Feature Status	122
Enabling the Remote Volume Mirroring Feature	124
Activating the Remote Volume Mirroring Feature	124
Creating Mirror Relationships	126
Creating Volumes for Mirror Relationships	127
Creating a Mirror Relationship Using the Create Remote Volume Mirror Wizard	127
Maintaining Mirror Relationships	129
Viewing Mirror Relationship Details	130
Changing the Synchronization Priority Level	131
Removing Mirror Relationships	132
Deleting Primary or Secondary Volumes	133
Deactivating and Disabling the Remote Volume Mirroring Feature	134
Deactivating the Remote Volume Mirroring Feature	134
Disabling the Remote Volume Mirroring Feature	134

007-4749-001 xi

Disaster Recovery					135
Planning for Disaster Recovery					135
Backing Up Critical Data					135
Preparing the Secondary Storage Array					136
Ensuring Failover Protection Using Host Clustering Softv	vare				136
Disaster Preparation Checklist					137
Recovering from Switch Failures					137
Recovering from Storage System Failures					138
Entire Site Failover Procedure					139
Rebuilding a Damaged Site					140
Re-creating a Mirror Relationship					140
Reversing the Roles of Primary and Secondary Volumes					141
Changing a Secondary Volume to a Primary Volume .					142
Changing a Primary Volume to a Secondary Volume .					142
Troubleshooting					143
General Troubleshooting					144
Inappropriate Fibre Channel Fabric Configurations					151
Storage Array Component Failures					152
General Switch Troubleshooting					153
Remote Volume Mirroring Critical Events					154
Controller Firmware Version 5.30 and 5.40 Upgrades					156

xii 007-4749-001

4.	The Volume Copy Premium Feature	59
	Volume Copy Concepts	59
	Introduction to the Volume Copy Premium Feature	59
	Source Volumes	60
	Target Volumes	60
	Creating a Volume Copy	61
	Volume Copy and Persistent Reservations	63
	Storage Array Performance	63
	Interaction of Volume Copy and Other Premium Features	65
	Storage Partitioning	65
	Snapshot Volume	67
	Remote Volume Mirroring	67
	Role Reversals	69
	Restrictions	70
	Using the Volume Copy Premium Feature	71
	Enabling the Volume Copy Premium Feature	71
	Creating a Volume Copy	72
	Selecting or Creating a Target Volume	72
	Selecting a Source Volume	74
	Viewing Drives	76
	Creating a Volume Copy Using the Create Copy Wizard	77
	Locating Associated Volumes	81
	Viewing Volume Copy Properties	82
	Managing Volume Copies with Copy Manager	84
	Re-Copying a Volume	86
	Stopping a Volume Copy	88
	Removing Copy Pairs	89
	Changing Copy Priority	90
	Setting Target Volume Permissions	92
	Disabling Target Volume Read-Only	92
	Enabling Target Volume Read-Only	93

007-4749-001 xiii

Volume Copy Scenarios												194
Copying Data for Improved Access												194
Restoring Snapshot Volume Data to	th	e Ba	ase	Vol	lum	ıe						200
Data Backup and Restoration .												210
Creating a Backup Copy												210
Recovering from a Backup Cop	y											216
Troubleshooting											٠	218
General Troubleshooting												218
Volume Copy Critical Events .	•											223
Glossary of Volume Copy Terms												223
Index.			_									229

xiv 007-4749-001

Figures

Figure 1-1	Physical Components of a Storage Array	3
Figure 1-2	I/O Data Connection	6
Figure 1-3	Network Management Connections	6
Figure 1-4	Enterprise Management Window	ç
Figure 1-5	Array Management Window	10
Figure 1-6	Enterprise Management Window	12
Figure 1-7	Device Tree with a Management Domain	13
Figure 1-8	Array Management Window	18
Figure 2-1	Mappings View Window	34
Figure 2-2	Storage Partitioning Example	39
Figure 2-3	Defining Hosts and Host Groups in the Topology View 4	42
Figure 2-4	Host Port Definitions Dialog	43
Figure 2-5	Heterogeneous Hosts Example	44
Figure 2-6	Monitoring the Health of Storage Arrays Using the Enterprise	
	Management Window	
Figure 2-7	Event Monitor Configuration	49
Figure 2-8	Event Monitor Example	5(
Figure 2-9	Problem Notification in the Array Management Window 5	54
Figure 2-10	Recovery Guru Toolbar Button	55
Figure 2-11	Recovery Guru Window	57
Figure 2-12	Status Changes During Example Recovery Operation	58
Figure 2-13	Status Changes When an Example Recovery Operation Completes . 5	59
Figure 3-1	Primary and Secondary Volumes Displayed in the Array	
ga. 0 0 .	Management Window	71
Figure 3-2		

007-4749-001 xv

Figure 3-4	Mirrored Volume Pair in Unsynchronized Status	. 75
Figure 3-5	Mirrored Volume Pair in Synchronization-in-Progress Status	. 75
Figure 3-6	Controller A as Controller Owner	. 77
Figure 3-7	Controller B as Controller Owner	. 78
Figure 3-8	Storage Partitioning Example	. 81
Figure 3-9	Snapcopy Volume Included in a Mirror Relationship	. 82
Figure 3-10	Snapcopy Volume Associated with Primary Volume Accounting	. 83
Figure 3-11	Snapcopy Volume Failure Because of Role Reversal	. 84
Figure 3-12	Highest Availability Campus Configuration	. 87
Figure 3-13	Campus Configuration	. 88
Figure 3-14	Intra-Site Configuration	. 89
Figure 3-15	Switch Zoning in Cascaded and Non-Cascaded Fibre Channel Switches	. 94
Figure 3-16	Highest Availability Campus Configuration	. 97
Figure 3-17	Switch Zoning for the Highest Availability Campus Configuration	. 99
Figure 3-18	Host Bus Adapter Connections to Fibre Channel Switches	103
Figure 3-19	Storage Array Connections to Fibre Channel Switches	104
Figure 3-20	Connecting Switches over a Remote Network to Complete Fabric Environments	105
Figure 3-21	Campus Configurations	106
Figure 3-22	Switch Zoning for the Campus Configuration	107
Figure 3-23	Host Bus Adapter Connections to Fibre Channel Switches	110
Figure 3-24	Storage Array Connections to Fibre Channel Switches	111
Figure 3-25	Connecting Switches over a Remote Network to Complete the Fabric Environment.	112
Figure 3-26	Intra-Site Configuration	113
Figure 3-27	Switch Zoning for the Intra-Site Configuration	114
Figure 3-28	Primary Host Bus Adapter Connections to Fibre Channel Switches	117
Figure 3-29	Secondary Host Bus Adapter Connections to Fibre Channel Switches	117
Figure 3-30	Primary Storage Array Connections to Fibre Channel Switches .	118
Figure 3-31	Secondary Storage Array Connections to Fibre Channel Switches	119
Figure 3-32	Remote Volume Mirroring Feature Status	122
Figure 3-33	Synchronizing (Left) and Optimal (Right) Mirror Relationship .	129

xvi 007-4749-001

Figure 4-1	Creating a Volume Copy
Figure 4-2	Select Target Volume and Copy Priority Dialog
Figure 4-3	Change Copy Priority Dialog
Figure 4-4	Storage Partitioning Example
Figure 4-5	Primary Volume Included in a Volume Copy
Figure 4-6	Enabling the Volume Copy Premium Feature
Figure 4-7	Renaming the Target Volume
Figure 4-8	Selecting a Source Volume
Figure 4-9	Examples of the View Drives Dialog
Figure 4-10	Create Copy Wizard - Introduction Dialog
Figure 4-11	Create Copy - Select Target Volume and Copy Priority Dialog179
Figure 4-12	Create Copy Wizard - Preview Dialog
Figure 4-13	Copy Started Dialog
Figure 4-14	Volume Properties Dialog
Figure 4-15	Copy Manager Dialog
Figure 4-16	Re-Copy Dialog
Figure 4-17	Re-Copying a Volume
Figure 4-18	Stopping a Volume Copy
Figure 4-19	Change Copy Priority Dialog
Figure 4-20	Disabling the Target Volume's Read-Only Attribute
Figure 4-21	Storage Array Midwest Example
Figure 4-22	Creating the Target Volume Finance-Copy
Figure 4-23	Creating a Volume Copy of Finance
Figure 4-24	Viewing the Volume Copy Status in the Copy Manager
Figure 4-25	Defining an Additional Volume-to-LUN Mapping for the Target
	Volume
Figure 4-26	Storage Array Midwest Example
Figure 4-27	Creating Target Volume Finance-Target
Figure 4-28	Creating a Volume Copy
Figure 4-29	Viewing the Volume Copy Status in the Copy Manager
Figure 4-30	Disabling the Snapshot Volume
Figure 4-31	Creating a Volume Copy of Finance-Target
Figure 4-32	Viewing the Volume Copy Status in the Copy Manager

007-4749-001 xvii

Figure 4-33	Defining an Additional Volume-to-LUN Mapping for the	
	Base Volume	209
Figure 4-34	Storage Array Midwest Example	211
Figure 4-35	Creating a Snapshot Volume of Finance	212
Figure 4-36	Creating the Target Volume Finance-Target	213
Figure 4-37	Creating a Volume Copy the Snapshot Volume Finance-Copy	214
Figure 4-38	Viewing the Status of the Volume Copy in the Copy Manager	215
Figure 4-39	Disabling Snapshot Volume Finance-Source	216

xviii 007-4749-001

Tables

Table i	Terminology Change Reference xxi	i
Table 1-1	Major Hardware Components	2
Table 1-2	Physical Components of a Storage Array	3
Table 1-3	Logical Components of a Storage Array	4
Table 1-4	Major Software Components	3
Table 1-5	Enterprise Management Window Menus	4
Table 1-6	Enterprise Management Window Toolbar Buttons	5
Table 1-7	Array Management Window Tabs	9
Table 1-8	Array Management Window Menus	O
Table 1-9	Array Management Window Toolbar Buttons	1
Table 2-1	RAID Level Configurations	6
Table 2-2	Creating Volumes from Unconfigured or Free Capacity	2
Table 2-3	Mappings View Tab	5
Table 2-4	Volume-to-LUN Terminology	5
Table 2-5	Storage Array Status Indications	7
Table 2-6	Tuning Options in Array Management Window	O
Table 2-7	Task Reference: Populating a Management Domain	3
Table 2-8	Task Reference: Storage Array Configuration 64	4
Table 2-9	Task Reference: Performance and Tuning 68	5
Table 2-10	Task Reference: Event Notification 60	6
Table 2-11	Task Reference: Recovering From Problems 60	6
Table 2-12	Task Reference: Miscellaneous System Administration 65	7
Table 3-1	Hardware Checklist	0
Table 3-2	Software Checklist	1
Table 3-3	Highest Availability Campus Configuration Connections 99	9
Table 3-4	Campus Configuration Connections	8
Table 3-5	Intra-Site Configuration Connections	4
Table 3-6	Disaster Preparation Checklist	7

007-4749-001 xix

About This Guide

This guide explains the terminology and features of the Total Performance Storage System Manager (TPSSM) software for SGI InfiniteStorage TP9300 RAID, SGI InfiniteStorage TP9500 RAID, and SGI InfiniteStorage TP9700 RAID. This guide is written primarily for the system administrator.

Note: This guide provides the conceptual framework necessary for understanding the storage management software, but it does not contain specific procedures. See the online Help systems for detailed storage management procedures.

To fully understand this document, you should be familiar with basic networking concepts and terminology.

This guide contains the following chapters:

- Chapter 1, "Storage Array Management Architecture and Software Components", describes the major hardware components in the TPSSM storage management architecture and introduces the storage management software.
- Chapter 2, "Configuring Storage Arrays", describes various storage array configuration options to maximize data availability and outlines the high-level steps to configure available storage array capacity into volumes and storage partitions.
- Chapter 3, "Remote Volume Mirroring", describes Storage Manager Remote Volume Mirroring.
- Chapter 4, "The Volume Copy Premium Feature", describes basic Volume Copy
 premium feature concepts, and describes how information is copied between
 volumes within a single storage array and how other premium features can be used
 in conjunction with the Volume Copy premium feature.

007-4749-001 xxi

Software and Hardware Terminology

There have been terminology changes between the current version of the storage management software and previous versions. Also, there have been terminology changes in the accompanying controller and drive enclosure documentation. See Table i if you are upgrading storage array hardware and migrating from earlier storage management software versions.

Table i Terminology Change Reference

Old Term	New Term
RAID Module	storage array
LUNa	volume
drive group	volume group
remaining capacity	free capacity
unassigned capacity	unconfigured capacity
drive module	drive enclosure
controller module	controller enclosure
battery CRU	battery canister
ESM CRU	environmental card canister
fan CRU	fan canister
power supply CRU	power supply canister
LED	indicator light

a. Logical unit number (LUN) is still used in this version of the storage management software. It is a logical address that the host uses to access a particular volume.

Related Publications

This guide is part of a documentation set. Other documentation in the set includes:

xxii 007-4749-001

- SGI TP9500 RAID Installation and Upgrade Guide This guide gives complete
 instructions on how to unpack, install, and configure the SGI TP9500 and its
 components. It also contains upgrade information.
- SGI InfiniteStorage TP9700 RAID Installation and Upgrade Guide This guide gives complete instructions on how to unpack, install, and configure the SGI TP9700 and its components. It also contains upgrade information.
- SGI InfiniteStorage TP9500 and SGI InfiniteStorage TP9700 RAID User's Guide for controller and drive enclosure hardware. This guide provides installation and site requirements, installation instructions, product overviews, and information about component routine maintenance, operation, troubleshooting, and replacement.
- *SGI InfiniteStorage TPSSM Administration Guide* for the storage management software specific to the IRIX and Linux operating environment. This book helps you:
 - Determine the hardware and software required to install the storage management software.
 - Integrate the necessary hardware components into your network.
 - Install the storage management software.
 - Upgrade controller firmware and configuration settings, if necessary.
 - Identify storage management features unique to the IRIX and Linux operating environment.

When you have completed the tasks in the *SGI InfiniteStorage TPSSM Administration Guide*, you will want to refer to these information resources:

- Enterprise Management window Help. Use this online Help system to learn more about working with the management domain.
- *Array Management window Help*. Use this online Help system to learn more about managing storage arrays.

Note: The Help systems contain operating information common to all operating environments. Therefore, you will want to refer to the *SGI InfiniteStorage TPSSM Administration Guide* for information specific to the IRIX and Linux operating environments.

007-4749-001 xxiii

Obtaining Publications

To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://docs.sgi.com

Conventions

The following conventions are used throughout this document:

Convention	Meaning
command	This fixed-space font denotes literal items such as commands, files, routines, path names, signals, messages, and programming language structures.
variable	Italic typeface denotes variable entries and words or concepts being defined. Italic typeface is also used for book titles.
user input	This bold, fixed-space font denotes literal items that the user enters in interactive sessions. Output is shown in nonbold, fixed-space font.
	Brackets enclose optional portions of a command or directive line.
	Ellipses indicate that a preceding element can be repeated.
GUI element	This font denotes the names of graphical user interface (GUI) elements such as windows, screens, dialog boxes, menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments

If you have comments about the technical accuracy, content, or organization of this document, please tell us. Be sure to include the title and document number of the manual with your comments. (Online, the document number is located in the front matter of the manual. In printed manuals, the document number is located at the bottom of each page.)

xxiv 007-4749-001

You can contact us in any of the following ways:

Send e-mail to the following address:

techpubs@sgi.com

- Use the Feedback option on the webpage of the Technical Publications Library at: http://docs.sgi.com
- Contact your customer service representative and ask that an incident be filed in the SGI incident tracking system.
- Send mail to the following address:

Technical Publications SGI 1500 Crittenden Lane Mountain View, California 94043-1351

• Send a fax to the attention of "Technical Publications" at +1 650 932 0801.

We value your comments and will respond to them promptly.

007-4749-001 xxv

Storage Array Management Architecture and Software Components

This chapter describes the major hardware components in the Total Performance Storage System Manager (TPSSM) architecture and the physical and logical components of a storage array. This chapter also introduces the storage management software and describes how storage arrays are managed using this software.

The storage management software may be installed on personal computers or workstations, called storage management stations, anywhere on the corporate network. You send storage management commands from these storage management stations over an Ethernet network to the controllers in the storage array. The commands are either sent directly to the controllers through Ethernet connections on the back of the controllers (directly managed method) or through an Ethernet connection on the host (host-agent managed method). See "Types of Network Management Connections" on page 6 for more details.

The controller firmware executes the storage management commands, and you use the storage management software (which is called the client software) to manage the storage arrays.

Note: You can install the client software on either the host or a GUI workstation. The storage commands will be sent over the host I/O data connection (when connected in-band) or through TCP/IP over the network (when connected directly).

Major Hardware Components

Table 1-1 lists the major hardware components that are involved in the TPSSM storage management architecture. For a detailed description of the network setup requirements,

007-4749-001

see the appropriate hardware site preparation and installation guides for each component.

 Table 1-1
 Major Hardware Components

Hardware Component	Description
Storage array	Managed by the storage management software and consists of both physical components (such as drives, controllers, fans, and power supplies) and logical components (such as volume groups and volumes).
	See "Physical Components of a Storage Array" on page 3 and "Logical Components of a Storage Array" on page 4 for more information.
Storage management station	Computer you use to manage storage arrays on the network.
Network management station (optional)	Console with installed SNMP-compliant network management software that receives and processes information about managed network devices using SNMP (Simple Network Messaging Protocol).
BOOTP or BOOTP-compliant DHCP server	Used to assign static network-specific information such as an IP address and host name for each controller. This server is not required if you are going to manage all of the storage arrays through the I/O connection using a host-agent. For more information, see "Types of Network Management Connections" on page 6
Host	Computer, running one or more applications, that accesses the storage array over a fibre channel I/O data connection.

2 007-4749-001

Physical Components of a Storage Array

The physical components that are typically found in a storage array are shown in Figure 1-1 and described in Table 1-2. In some newer hardware, the configuration or location might be slightly modified, but the type and use of the components remains the same.

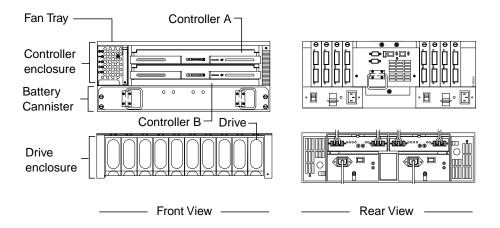


Figure 1-1 Physical Components of a Storage Array

Table 1-2 describes the physical components shown in Figure 1-1.

Table 1-2 Physical Components of a Storage Array

Component	Description
Controller	Board and firmware that controls the drives and implements the storage management functions.
Controller enclosure	One or more controllers, power supply canisters, fan canisters, and other supporting components in a single enclosure.
Drive	Electro-magnetic mechanical device providing the physical data storage media.
Drive enclosure	Set of drives, power supply canisters, fan canisters, environmental card canisters, and other supporting components in a single enclosure.

007-4749-001 3

Logical Components of a Storage Array

The drives in the storage array provide the physical storage capacity for application data. Use the storage management software to configure the physical capacity into logical components (volume groups and volumes) as described in Table 1-3.

Table 1-3 Logical Components of a Storage Array

Component	Description
Volume group	Set of drives that are logically grouped together by the controllers in a storage array. Each volume group is assigned an appropriate RAID level to meet application needs for data availability and I/O performance. The RAID level is a volume group parameter, not a volume parameter.
Volume	Logical object that is the basic structure you create on the storage array to store data. One or more volumes are configured across a volume group, and each volume is seen by the operating system as one drive.
Free capacity	Contiguous region of unused capacity on a designated volume group. The space can be used to create one or more volumes.
<u></u> ,	Note : In the Logical view of the Array Management window, free capacity is displayed as Free Capacity nodes (see Figure 1-8 on page 18). Multiple Free Capacity nodes can exist on a volume group.
Unconfigured capacity	Capacity that is present in the storage array from drives that have not been assigned to a volume group. The space can be used to create new volume groups and volumes.
	Note : In the Logical view of the Array Management window, unconfigured capacity is shown as an Unconfigured Capacity node.

Storage Partitioning

Storage partitioning allows you to configure a single storage array as multiple virtual storage arrays up to the maximum value enabled. A *storage partition* is a logical grouping of one or more storage array volumes. Access to a storage partition can be restricted to particular hosts or groups of hosts by defining a set of volume-to-LUN mappings. A *volume-to-LUN mapping* allows you to define what host or host group will have access to a particular volume in the storage array.

4 007-4749-001

For more information on creating storage partitions, see "Storage Partitioning" on page 37.

Network Management of Storage Arrays

Storage array management activities include:

- Setting up a management domain, which is a collection of storage arrays to manage.
- Configuring destinations to receive alert messages for critical problems concerning one or more storage arrays in a management domain.
- Configuring available storage array capacity into logical volumes to maximize data availability and optimize application performance.
- Granting various hosts in your storage enterprise access to storage partitions (defined in "Storage Partitioning" on page 37).
- Monitoring storage arrays in the management domain for problems or conditions that require attention.
- Recovering from storage array problems to maximize data availability.
- Tuning for optimal application performance.

To perform these management activities, you use the client software on the storage management station or host to instruct the controllers in the storage array. These commands are sent over the network. The following section describes network management connectivity.

Network Management Connectivity

A storage array receives data from the application host over fibre channel *I/O data connections* (also called *I/O* data paths), shown in Figure 1-2.

007-4749-001 5

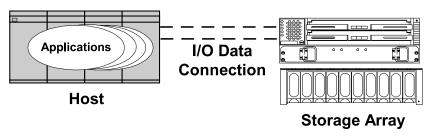


Figure 1-2 I/O Data Connection

Storage management commands are sent from storage management stations over an Ethernet network to the storage array. The connection between the storage management station and the storage array controller, shown in Figure 1-3, is called the *network management connection*. Two kinds of network management connections are described in "Types of Network Management Connections" on page 6.

Network Management Connection Corporate network Storage Array Management Station

Figure 1-3 Network Management Connections

Types of Network Management Connections

The software allows two different types of network management connections to a storage array: direct or host-agent.

For increased connectivity, you can manage a storage array using a variety of network management connections (direct only, host-agent only, or multiple host-agents). A direct and host-agent combination is also allowed, but is not recommended because the result

6 007-4749-001

would be three Ethernet connections (one to each controller and one through the host). When you configure multiple network management connections to a storage array, the storage management software is aware of each connection. When you open an Array Management window and you have multiple connections configured, the software automatically chooses a connection. If a particular connection does not respond, the software tries all other configured network management connections to that storage array.

Directly Managed Storage Arrays

The directly managed method allows you to send storage management commands to the controllers in the storage array directly over the network through each controller's Ethernet connection. To manage the storage array through these Ethernet connections, attach cables from the Ethernet connections on the storage array to the network, define each controller's IP address (or optionally, each controller's host name), and then use the Enterprise Management window to add the storage array to the management domain. This form of RAID management is also referred to as "out-of-band" management.

For more information about directly managed storage arrays, see the SGI InfiniteStorage TPSSM Administration Guide.

Host-Agent Managed Storage Arrays

The host-agent managed method allows you to send storage management commands through the network connection to a host rather than through the Ethernet connections to each controller. A TPSSM storage management software component installed on the host, called a host-agent, receives the requests from the storage management station and sends them to the controllers in the storage array through the fibre channel I/O connection. The communication between the storage management station and the controllers is done through a special volume configured by controllers called an *access volume*. This volume uses one of the available logical unit numbers (LUNs), typically ID 31. See Table 1-4 on page 8 for a description of the host-agent software. This form of RAID management is also referred to as "in-band" management

After you install the host-agent software on the host, add the host to the management domain in order to also add any storage arrays attached to that host. For more information about populating a management domain, see "Related Publications" on page xxii.

007-4749-001 7

For more information about host-agent managed storage arrays, see the *SGI InfiniteStorage TPSSM Administration Guide*.

Major Software Components

The TPSSM storage management software consists of three major components, described in Table 1-4.

Table 1-4Major Software Components

Component	Description
TPSSM Client	You can install the client software in one of two locations: (1) on a storage management station, or (2) on a host. See the <i>SGI InfiniteStorage TPSSM Administration Guide</i> for details.
	For more information, see "Client Software Windows" on page 9
TPSSM Agent	The host-agent software can be installed on one or more hosts connected to the storage arrays. The host-agent, along with the network connection on the host, provides a network management connection to the storage array. Instead of using the individual Ethernet connections on each controller, the storage management station can communicate with a storage array through the host that has host-agent management software installed.
	The host-agent receives requests from the storage management station through the network connection to the host and sends them to the controllers in the storage array through the Fibre Channel I/O connection. The communication between the storage management station and the controllers requires a special volume configured by the controllers called an <i>access volume</i> . This volume uses one of the logical unit numbers (LUNs) available on the host.
	It is recommended that you install the host-agent software on all host computers, even if you intend to manage the storage array directly over the network. You can stop the host-agent software from running by using an operating system-specific method. See the SGI InfiniteStorage TPSSM Administration Guide for details.
TPSSM Util	The util package software contains the tpssmdevices utility that correlates the volumes you create using the storage management software with their operating system device names. See the SGI InfiniteStorage TPSSM Administration Guide for details.

8 007-4749-001

Client Software Windows

The client software has two main windows: the **Enterprise Management** window, shown in Figure 1-4, and the **Array Management** window, shown in Figure 1-5.

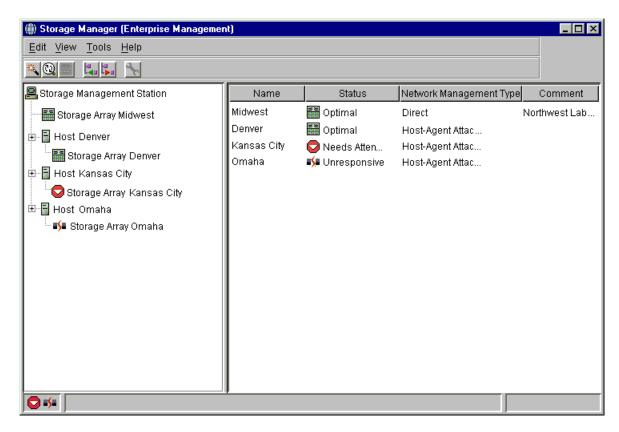


Figure 1-4 Enterprise Management Window

007-4749-001

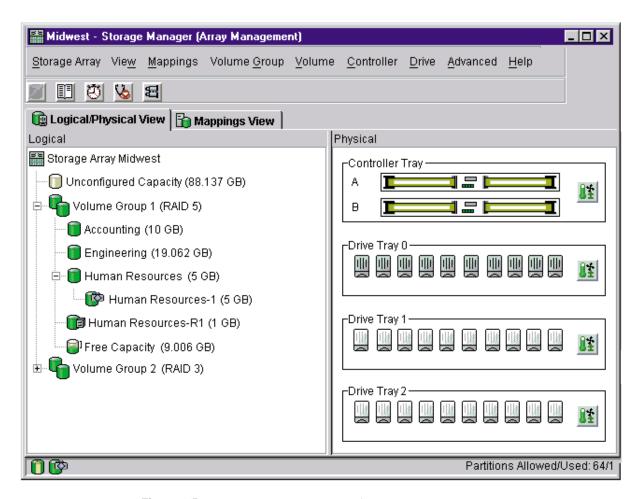


Figure 1-5 Array Management Window

Enterprise Management Window

The **Enterprise Management** window, shown in Figure 1-6, is the first window to appear when you start the software. You use the **Enterprise Management** window to:

 Add and discover the storage arrays you want to manage (see "Related Publications" on page xxii).

10 007-4749-001

- Provide a comprehensive view of all storage arrays in the management domain.
- Perform batch storage array management tasks using the Script Editor.
- Configure destinations (e-mail and/or SNMP traps) to receive alert notifications for non-optimal storage arrays.

Note: A local configuration file named emwdata.bin stores all information about the management domain, including the storage arrays you have added and the e-mail or SNMP destinations you have configured. This user-specific configuration file allows each system administrator to create his or her own unique view of the devices in the management domain, without affecting the information shown to other system administrators.

To receive critical alert notifications, the **Enterprise Management** window must be running (it can be minimized).

After adding storage arrays, you use the **Enterprise Management** window primarily to monitor the storage arrays in the management domain for the Needs Attention status and for alert notification of critical errors affecting the storage arrays. When you are notified of a non-optimal storage array status in the **Enterprise Management** window, you can start an **Array Management** window specific to the affected storage array to learn more detailed information about the storage array condition. You can also use the **Array Management** window to perform recovery or other management tasks. For more information, see "Monitoring the Health of Storage Arrays" on page 45.

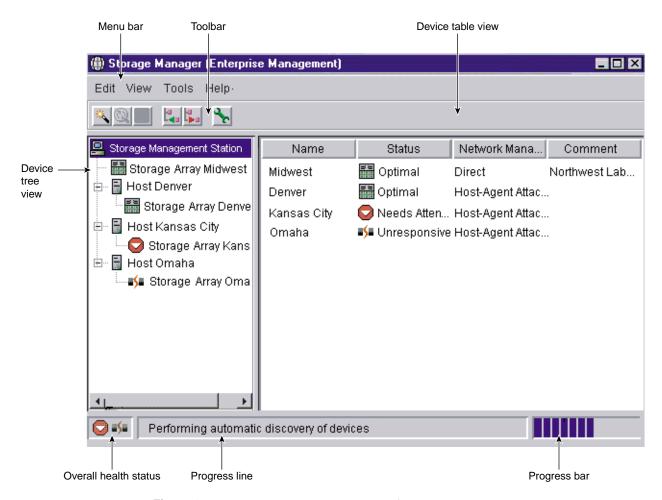
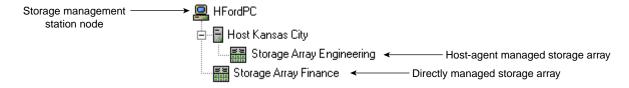



Figure 1-6 Enterprise Management Window

Device Tree

The Device Tree provides a tree-structured view of nodes in the management domain. The storage management station node is the root node and represents the storage management station sending the storage management commands. The Device Tree displays the configured management domain. You add hosts running host-agent software and storage arrays to the management domain, and they are shown in the Device Tree as child nodes of the storage management station node.

The **Enterprise Management** window Device Tree displays the management domain. Figure 1-7 shows an example Device Tree.

Figure 1-7 Device Tree with a Management Domain

You can use either of two ways to populate a management domain:

- Use the Automatic Discovery option to detect directly managed and host-agent managed storage arrays on the local subnetwork and add them to the management domain. The Enterprise Management window detects host-agent managed storage arrays by first locating the hosts that provide network management connections to the storage arrays. Then the host appears in the Device Tree along with its associated storage arrays.
- 2. Use the Add Device option to manually add directly managed and host-agent managed storage arrays to the management domain. For a directly managed storage array, enter a host name or IP address for each controller in the storage array. For a host-agent managed storage array, enter a name or IP address for the host that is attached to the storage array.

Note: When you discover or add storage arrays to a management domain, they are initially shown as <unnamed> in the Device Tree and Device Table. Select each unnamed storage array, open the **Array Management** window, and use the **Storage Array** > **Rename** option to name the storage array.

A check 🏕 appears next to each node in the Device Tree View where alert nofication has been set/enabled.

For more information on populating a management domain, see the **Enterprise Management** window Help.

007-4749-001

Device Table

The Device Table lists the name, status, management type (direct or host-agent), and comments you have entered for storage arrays. (See Figure 1-6 on page 12.)

For more information about using the Device Table, see the **Enterprise Management** window Help.

Enterprise Management Window Menus

The **Enterprise Management** window menus on the menu bar are described in Table 1-5.

 Table 1-5
 Enterprise Management Window Menus

Menu	Description
Edit	Allows you to add or remove devices from the management domain, configure alert destinations, or add a comment to the Device Table about a storage array.
	Important : The storage management software sends critical alerts (using SNMP trap messages) to an NMS destination that you specify using the Edit > Alert > Destinations option in the Enterprise Management window. For the critical alerts to be sent, the Enterprise Management software must be running (the window can be minimized).
View	Allows you to sort the entries in the Device Table by Name, Status, Management Type, or Comment. You can also open the Task Assistant Launch Pad (TALP) from this menu.
	This menu also shows <i>Partially Managed Devices</i> , which are storage arrays that contain two controllers. However, only one controller of the pair is communicated with to perform storage management operations.
	For more information on partially managed storage arrays, see the Enterprise Management window Help.
Tools	Allows you to automatically discover devices on the same subnetwork or rescan to find storage arrays newly attached to a host. You can also update the event monitor, open an Array Management window to manage a selected storage array, open the Script Editor to perform batch management tasks, and load a saved configuration file.
Help	Allows you to view the Help system and software version and copyright information for the Enterprise Management software.

For more information about using the Enterprise Management window menu options, see the Enterprise Management window Help.

Enterprise Management Window Toolbar

The Enterprise Management window toolbar buttons are described in Table 1-6.

 Table 1-6
 Enterprise Management Window Toolbar Buttons

Toolbar Button	Description
Automatically detect new devices	Activates the Automatic Discovery option that detects hosts and storage arrays on the local subnetwork and adds them to the management domain.
Rescan selected host for new devices	Activates the Rescan option that discovers storage arrays newly attached to the selected host. After physically adding new storage arrays, restart the host-agent software so that it can recognize the new devices before selecting this button.
	Note : This option is available only when you select a host in the Device Tree.
Display Task Assistant Launch Pad	Select this toolbar button to display the Task Assistant Launch Pad (TALP). The TALP provides a central dialog from which you can access common administrative tasks, such as adding a storage array or naming a storage array.
Synchronize Event Monitor	Synchronizes the event monitor with any changes made in the Enterprise Management window, such as adding or removing devices or adding alerts.
_	Note: This option is available only if the configurations of the Enterprise Management window and the event monitor are not synchronized.
Add host/device	Opens the Add Device dialog for manually adding hosts or storage array controllers to the management domain.

 Table 1-6
 Enterprise Management Window Toolbar Buttons (continued)

Toolbar Button	Description
Remove host/device	Removes the selected storage array or the selected host and its attached storage arrays from the management domain.
	Note: This option is available only when you select a storage array in the Device Tree or Device Table, or a host in the Device Tree.
Launch an Array Management window	Opens an Array Management window for the selected storage array.
*	Note : This option is available only when you select a storage array in the Device Tree or Device Table.

See Figure 1-6 on page 12 for an example of the **Enterprise Management** window toolbar. For more information on using the toolbar options, see the **Enterprise Management** window Help.

Array Management Window

The **Array Management** window is used to configure and maintain the logical and physical components of a storage array and to view and define volume-to-LUN mappings. See Figure 1-8 on page 18.

The **Array Management** window is specific to an individual storage array; therefore, you can only manage a single storage array within an **Array Management** window. However, you can start other **Array Management** windows from the **Enterprise Management** window to manage multiple storage arrays simultaneously.

The storage management software supports firmware version 5.40 and all firmware versions 4.01 through 5.3*x*. For maximum system stability, the recommended minimum is firmware version 5.30.*xx*.*xx*. However, to access all the features of version 8.40 of the storage management software, you must upgrade to firmware version 5.40.

Note: Depending on your version of storage array software management, the views, menu options, and functionality may differ from the information presented in this document.

The features of a particular release of firmware will be accessible when an **Array Management** window is launched from the **Enterprise Management** window to manage a storage array. For example, you manage two storage arrays using this software; one storage array has firmware version 5.40 and the other has firmware version 4.01. When you launch an **Array Management** window for a particular storage array, the correct **Array Management** window version is used. The storage array with firmware version 5.40 will use version 4.01 of the storage management software while the storage array with firmware version 4.01 will use version 7.1x. You can verify the version you are currently using by selecting **Help** > **About** in the **Array Management** window.

This bundling of previous versions of the **Array Management** window provides the flexibility of upgrading the firmware only on selected storage arrays instead of having to perform an upgrade on all storage arrays at once.

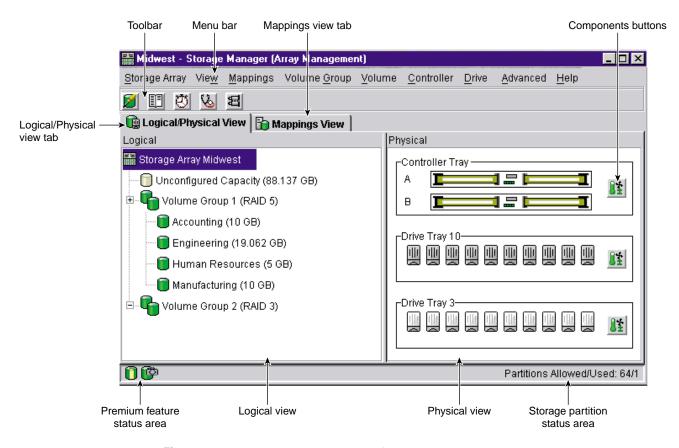


Figure 1-8 Array Management Window

Array Management Window Tabs

The Array Management window has two tabs: Logical/Physical View and Mappings View, which are described in Table 1-7. See Figure 1-8 on page 18. The tabs display information about the logical components (volume and volume groups), physical

components (controllers and drives), topological elements (host groups, hosts, host ports), and volume-to-LUN mappings in a storage array.

 Table 1-7
 Array Management Window Tabs

Tab	Description
Logical/Physical View	The Array Management window Logical/Physical View contains two panes: the Logical view and the Physical view.
	The Logical view in the left pane of Figure 1-8 on page 18 shows the organization of storage array capacity into volume groups and volumes.
	The Physical view in the right pane of Figure 1-8 on page 18 shows the physical devices in the storage array, such as command enclosure and drive enclosure components. Selection of a volume or other entity in the Logical view shows you the associated physical components in the Physical view.
	A Components button in every enclosure presents the status of all enclosure components and shows the temperature status of the enclosure.
Mappings View	The Mappings View of the Array Management window contains two panes: the Topology view and the Defined Mappings view. For details, see "Mappings View" on page 34.
	The Topology view provides a tree-structured view of logical nodes related to storage partitions.
	The Defined Mappings detail view displays the mappings associated with the selected node in the Topology view.

For more specific information about the **Logical/Physical View**, **Components** button, or **Mappings View**, see the **Array Management** window Help.

Array Management Window Menu Options

The **Array Management** window menus on the menu bar are described in Table 1-8 on page 20. The menus are used to perform storage management operations for a selected

007-4749-001

storage array or for selected components within a storage array. See Figure 1-8 on page 18 for an example of the **Array Management** window menus.

 Table 1-8
 Array Management Window Menus

Menu	Description
Storage Array	Allows you to perform the following storage array management operations: locating functions (locating the storage array or a specific drive channel by flashing indicator lights), configuring the storage array, enabling premium features, starting Recovery Guru, monitoring performance, downloading firmware and NVSRAM files, changing various settings, setting controller clocks, redistributing volumes, running Read Link Status diagnostics, activating or deactivating the remote volume mirroring premium feature, and renaming storage arrays.
View	Allows you to open the Task Assistant Launch Pad (TALP), change the display from the Logical/Physical View to the Mappings View , view Associated Components for a selected node, find a particlar node in the Logical or Topology view, locate an associated node in the tree, or access the Event Log or the Storage Array Profile.
Mappings	Allows you to make changes to or retrieve details about mappings associated with a selected node. The options are the following: Define, Change, Move, Replace Host Port, Show All Host Port Information, Delete, and Rename.
Volume Group	Allows you to perform the following volume group storage management operations: creating or locating volumes, changing the RAID level, changing controller ownership, adding free capacity (drives), defragmenting free capacity, placing controllers online or offline, initializing a volume group, reviving a volume group, checking redundancy, or deleting a volume group.
Volume	Allows you to perform the following volume storage management operations: creating volumes; changing ownership or segment size; increasing capacity; initializing, deleting, or renaming a volume; creating or disabling a snapcopy volume; creating a remote volume mirror; or viewing volume properties.
Controller	Allows you to perform the following controller storage management operations: placing a controller online or offline, enabling or disabling date transfer (I/O), changing the controller mode to active, changing the preferred loop ID, running diagnostics, or viewing controller properties.
Drive	Allows you to perform the following drive storage management operations: locating a drive; assigning or unassigning a hot spare; failing, reconstructing, reviving or initializing a drive; or viewing drive properties.

Table 1-8	Array Management Window Menus (continued)	
Menu	Description	
Advanced	Presents maintenance options, which should only be used under the guidance of technical support:	
	Downloading Drive Firmware and Mode Pages, and ESM firmware Capture State Information Reset Controller Persistent Reservations (Not used by SGI)	
Help	Displays the Help system, a reference of all Recovery Guru procedures, and software version and copyright information for the Array Management software.	

For more information about using the **Array Management** window menu options, see the **Array Management** window Help.

Array Management Window Toolbar Options

The **Array Management** window toolbar buttons are used to create new volumes or volume groups, monitor performance, view events, recover from failures, and locate a particular node. Each toolbar button is described in Table 1-9. See Figure 1-8 on page 18 for an example of the **Array Management** window toolbar.

 Table 1-9
 Array Management Window Toolbar Buttons

Toolbar button	Description
Create new volumes (and volume groups, if applicable)	Allows you to create volume groups and volumes. Note: You must select either a Free Capacity node or an Unconfigured Capacity node in the Logical view before this option is available. If you select a Free Capacity node, the option is called Create New Volumes. If you select an Unconfigured Capacity node, the option is called Create New Volume Groups/Volumes.
View diagnostic event log	Opens the Event Log Viewer. Note: This log is for customer support use.

 Table 1-9
 Array Management Window Toolbar Buttons (continued)

Toolbar button	Description
Monitor performance	Opens the Performance Monitor.
Display Task Assistant Launch Pad	Select this toolbar button to display the Task Assistant Launch Pad (TALP). The TALP provides a central dialog from which you can access common administrative tasks, such as configuring a storage array or defining a host.
Recover from failures	Opens the Recovery Guru . Note : If the storage array is in the Needs Attention state, the Recovery Guru toolbar button flashes.
Find node in tree	Starts the Find dialog that allows you to search for a particular node in the Logical/Physical View or Mappings View of the Array Management window.

For more information on using the toolbar options, see the **Array Management** window Help.

Configuring Storage Arrays

This chapter describes various storage array configuration options to maximize data availability. It also outlines the high-level steps to configure available storage array capacity into volumes and storage partitions.

Protecting Your Data

The storage arrays are designed to be reliable and feature redundant drives, controllers, power supplies, and fans. This hardware redundancy keeps the storage array working if a component fails. In addition, you can use the storage management software to implement the data protection strategies described in the following sections:

- "Software Redundancy" on page 23
- "RAID Levels and Data Redundancy" on page 24
- "Hardware Redundancy" on page 27
- "Storage Array Password Protection" on page 30

For conceptual information and detailed procedures for the strategies describes, see "Learn About Data Protection Strategies" in the Array Management window online help.

Software Redundancy

The storage management software has two premium features that provide data protection strategies. Remote Volume Mirroring is used to create an online, real-time replication of data between storage arrays over a remote distance, while Snapcopy Volume Creation provides a way to more efficiently copy data either for backup or for application testing.

The following sections provide a brief overview of the premium features used for data protection strategies.

Use Remote Volume Mirroring

When you create a remote volume mirror, a mirrored volume pair is created, which consists of a primary volume on a primary storage array and a second volume on a secondary storage array. When the mirror relationship is first created, data from the primary volume is copied in its entirety to the secondary volume. The secondary volume maintains a mirror (or copy) of the data from its associated primary volume. In the event of a disaster or catastrophic failure at the primary site, a manual role reversal can be performed by the system administrator to promote the secondary volume to a primary role. Hosts will then be able to access the newly promoted volume and business operations can continue.

Create a Snapcopy Volume

A snapcopy volume is a point-in-time image of a volume. It is the logical equivalent of a complete physical copy, but you create it much more quickly and it requires less disk space.

Typically, a snapcopy volume is created so that an application, such as a backup application, can access the snapcopy volume and read the data while the base volume remains online and user-accessible. When the backup completes, the snapcopy volume is no longer needed. You can also create several snapcopy volumes of a base volume and write data to the snapcopy volumes to perform testing and analysis. For example, before upgrading a database management system, snapcopy volumes can be used to test different configurations. The performance data provided by the storage management software can also be used to help decide how to configure the live database system.

RAID Levels and Data Redundancy

RAID is an acronym for Redundant Array of Independent Disks. It describes a storage solution in which the same data or information about the data (parity) is stored in different places on multiple hard disks. By placing data on multiple disks, I/O operations overlap and performance improves. If a disk drive in a volume group fails, the redundant or parity data can be used to regenerate the user data on replacement disk drives.

RAID relies on a series of configurations, called levels, to determine how user and redundancy data is written and retrieved from the drives. This storage management software offers four formal RAID level configurations: RAID levels 0, 1, 3, and 5.

Table 2-1 on page 26 describes these configurations. Each level provides different performance and protection features.

RAID levels 1, 3, and 5 write redundancy data to the drive media for fault tolerance. The redundancy data might be a copy of the data (mirrored) or an error-correcting code derived from the data. If a drive fails, the redundancy data can be used to quickly reconstruct information.

Note: You configure a single RAID level across a single volume group. All redundancy data for that volume group is stored within the volume group. The capacity of the volume group is the aggregate capacity of the member drives, minus the capacity reserved for redundancy data. The amount of capacity needed for redundancy depends on the RAID level used.

Table 2-1	RAID Level Con	figurations
RAID Level	Short Description	Detailed Description
RAID 0	Non-redundant, Striping Mode	RAID 0 offers high performance, but does not provide any data redundancy. It stripes data across all of the drives in the volume group.
		RAID 0 is not recommended for high availability needs. It is better for non-critical data.
		If a single drive fails in the volume group, all associated volumes fail and all data is lost.
RAID 1	Striping/Mirroring Mode	RAID 1 offers high performance and uses disk mirroring to make an exact copy from one drive to another drive.
		When more than 2 drives are used, RAID 1 is also called RAID 10 or 0+1 (indicating striping and mirroring). In this situation, data is striped across half the drives, which are then mirrored. For example, when there are 4 drives, data is striped across two drives and mirrored on the other two. Because the data is mirrored, you can never have an odd number of disks in a RAID member.
		RAID 1 offers the best data availability, but only half of the drives in the volume group are available for user data.
		If a single drive fails in a RAID 1 volume group, all associated volumes become degraded, but the mirror drive still allows the data to be accessed.
		RAID 1 can survive multiple drive failures as long as no more than one failure exists per mirrored pair. If a drive-pair fails in a RAID 1 volume group, all associated volumes fail and all data is lost.

 Table 2-1
 RAID Level Configurations (continued)

RAID Level	Short Description	Detailed Description
RAID 3	High Bandwidth Mode	User data and redundant information (parity) is striped across the drives. The equivalent of one drive's worth of capacity is used for redundant information.
		RAID 3 is good for large data transfers in applications such as multimedia or medical imaging that write and read large sequential chunks of data.
		If a single drive fails in a RAID 3 volume group, all associated volumes become degraded, but the redundant information still allows the data to be accessed. If two or more drives fail in a RAID 3 volume group, all associated volumes fail and all data is lost.
RAID 5	High I/O Mode	User data and redundant information (parity) is striped across the drives. The equivalent of one drive's worth of capacity is used for redundant information.
		RAID 5 is good for multi-user environments such as database or filesystem storage in which typical I/O size is small and there is a high proportion of read activity.
		If a single drive fails in a RAID 5 volume group, all associated volumes become degraded, but the redundant information still allows the data to be accessed. If two or more drives fail in a RAID 5 volume group, all associated volumes fail and all data is lost.

Hardware Redundancy

Data protection strategies provided by the storage system hardware include cache memory, hot spare drives, background media scans, and channel protection.

Protect Data in the Controller Cache Memory

Caution: Sometimes write caching is disabled when batteries are low or discharged. If you enable a parameter called Write Caching Without Batteries on a volume, write caching continues even when batteries in the controller enclosure or array enclosure are

discharged. If you do not have a Universal Power Supply (UPS) for power protection, do not enable this parameter because data in the cache will be lost during a power outage when the controller enclosure or array enclosure does not have working batteries.

Write caching can increase I/O performance during data transfers. Caching also increases the risk for data loss if a controller (or its memory) fails while unwritten data resides in cache memory. Use write cache mirroring to protect data during a controller or cache memory failure. When you enable write cache mirroring, cached data is mirrored across two redundant controllers with the same cache size. The data written to the cache memory of one controller is also written to the cache memory of the other controller. Therefore, if one controller fails, the other can complete all outstanding write operations. Enable the Write Cache Mirroring parameter for each volume by using the Volume > Properties option in the Array Management window.

To prevent data loss or corruption, the controller periodically writes cache data to disk (flushes the cache). When the amount of unwritten data in cache reaches a certain level, called a *start percentage*, or when data has been in cache for a predetermined amount of time, the software signals the controller to write the data to disk. The controller writes to disk until the amount of data in cache drops to a *stop percentage* level. Start and stop percentages can be configured by the user. For example, you can specify that the controller start flushing the cache when the cache reaches 80% full and stop flushing the cache when the cache reaches 16% full.

For maximum data protection, you can choose low start and stop percentages. However, in both cases this increases the chance that data needed for a host read will not be in the cache, which decreases the cache hit percentage (described in Table 2-6 on page 60), and therefore the I/O request rate (also described in Table 2-6 on page 60). Choosing low start and stop percentages also increases the number of disk writes necessary to maintain the cache level, increasing system overhead and further decreasing performance.

If a power outage occurs, data in the cache that has not been written to the drive media will be lost, even if it is mirrored to the cache memory of both controllers. For protection against this occurrence, batteries in the controller enclosures and array enclosures protect the cache against power outages. Change the controller enclosure and array enclosure batteries at the recommended time intervals. The TPSSM storage management software features a battery age clock you can set when you replace a battery. This clock keeps track of the age (in days) of the battery so you know when it is time to replace the battery. You will receive a critical alert notification when the battery is nearing expiration and when it has reached expiration.

For more information about controller enclosure batteries or the UPS, see the *SGI InfiniteStorage TP9500 and SGI InfiniteStorage TP9700 RAID User's Guide.*

Configure Hot Spare Drives

A valuable strategy to keep data available is to assign available drives in the storage array as hot spare drives. A *hot spare* is a drive containing no data that acts as a standby in the storage array in case a drive fails in a RAID 1, 3, or 5 volume. The hot spare drive adds another level of protection to the storage array.

If a drive fails in the storage array, the hot spare is automatically substituted for the failed drive without requiring a physical swap. If the hot spare drive is available when a drive fails, the controller will use redundancy data to reconstruct the data from the failed drive to the hot spare drive. When you have physically replaced the failed drive, the data from the hot spare is copied back to the replacement drive. This is called *copyback*.

If you do not have a hot spare, you can still replace a failed disk drive while the storage array is operating. If the drive is part of a RAID 1, 3, or 5 volume group, the controller will use redundancy data to automatically reconstruct the data from the failed drive to the replacement drive. This is called *reconstruction*.

Enable a Background Media Scan

A *media scan* is a background process performed by the controllers to provide error detection on the drive media. A media scan detects errors and reports them to the Event Log.

The media scan must be enabled for the entire storage array as well as enabled on each volume.

The media scan runs on all volumes in the storage array for which it has been enabled. The advantage of enabling the media scan process is that the process can find media errors before they disrupt normal drive reads and writes. The media scan process scans all volume data to verify that it can be accessed and, if you enable a *redundancy check*, scans the volume redundancy data at the same time.

Use Available Channel Protection When Possible

In a SCSI environment, whether or not the volume group candidate has channel protection depends on the RAID level of the volume group and how many drives are

present on any single drive channel. For example, a RAID 5 volume group would not have channel protection if more than one drive was present on a single drive channel.

In a Fibre Channel environment, channel protection is usually present for any volume group candidate because when the storage array is properly cabled there are two redundant arbitrated loops for each drive.

Storage Array Password Protection

Caution: Executing destructive commands on a storage array can cause serious damage, including data loss. Without password protection, **all** options are available within this storage management software.

The storage management software provides a number of security features to protect data, including generation numbering to prevent replay attacks. Hashing and encryption are employed to guard against client spoofing and snooping.

For added security, you can configure a password for each storage array you manage. Because the password is stored on the storage array, each storage array that you want to be password protected will need a password. A specified password protects any options that the controller firmware deems destructive. These options include any functions that change the state of the storage array such as creation of volumes, modification of cache settings, and so on.

After the password has been set on the storage array, you will be prompted for that password the first time you attempt a destructive operation in the Array Management Window. You will be asked for the password only once during a single management session.

Note: If you forget the password, contact technical support.

Password Failure Reporting and Lockout

For storage arrays with password and alert notifications configured, any attempts to access the storage array without the correct password will be reported. If a password is

entered incorrectly, an information major event log (MEL) event is logged, indicating that an invalid password or no password has been entered.

If the password is entered incorrectly 10 times within 10 minutes, both controllers will enter lockout mode. The lockout mode will last for 10 minutes, during which time both controllers will deny any attempts to enter a password to access the storage array.

Note: if the controllers are reset, the password failure counter will be cleared and access to the storage array can be attempted again. If the password is entered incorrectly after 10 minutes, the controllers will re-enter lockout mode.

A critical MEL event will be logged to the event log, indicating that the controllers have entered lockout mode. After the 10 minute lockout period has elapsed, the controllers will reset the password failure counter and unlock themselves.

Creating Volumes and Storage Partitions

When configuring a storage array, consider appropriate data protection strategies as well as how the total storage capacity will be organized into volumes and shared among hosts in the storage enterprise.

Configuring Storage Array Capacity into Volumes

You can configure volumes from either unconfigured capacity or free capacity in a storage array as described in Table 2-2.

Table 2-2 Creating Volumes from Unconfigured or Free Capacity

If you create the volume from	Then perform this activity
Unconfigured Capacity	First define the volume group, specifying two parameters: RAID level and capacity. (Capacity refers to how large you want the volume group to be, that is, how many drives to include in the volume group.)
	Next, specify the volume parameters for the first volume on the volume group. Parameters include volume name, expected usage, segment size, desired capacity, controller ownership, and volume-to-LUN mapping preference.
	The expected usage parameter allows you to select an optimal segment size for the application that will use this storage volume. If you select either file system, database, or multimedia, and then you select Based on Expected Usage for segment size, you can optimize the segment size without knowing which specific segment size value to set.
	For a description of the Volume-to-LUN Mapping Preference parameter see "Related Publications" on page xxii
Free Capacity	Because free capacity resides only on an existing volume group, the overall capacity (that is, the number of drives) and RAID level were already specified.
	Therefore, you only need to specify the volume parameters (volume name, usage, desired capacity, controller ownership, and volume-to-LUN mapping preference).
	Note : You can add free capacity to a volume group by using the Volume Group > Add Free Capacity option.

Register the Volume with the Operating System

After creating all volumes and assigning volume-to-LUN mappings, the host-based scsiha and ioconfig utilities are used to register the volume with the operating system. The host-based tpssmdevices utility is used to associate the mapping between

the physical device name and the volume name. See "Storage Partitioning" on page 37 for more information.

Dynamic Volume Expansion (DVE)

Caution: Increasing the capacity of a standard volume is only supported on certain operating systems. If volume capacity is increased on a host operating system that is unsupported, the expanded capacity will be unusable, and you cannot restore the original volume capacity.

Volume capacity of standard volumes and snapcopy repository volumes is increased by using Dynamic Volume Expansion (DVE). This feature expands the capacity of an existing volume by either using a volume's free capacity on an existing volume group, or by adding unconfigured capacity (new or unassigned drives) to the volume group. You can expand a volume dynamically without losing access to it or to any other volumes.

Increasing the capacity of a snapshot repository volume does not increase the capacity of the associated snapcopy volume. However, unless the capacity of the base volume is also increased, it is not necessary to increase the size of the snapcopy volume. The snapcopy volume's capacity is always based on the capacity of the base volume at the time the snapcopy volume is created.

You cannot add storage capacity to a volume if:

- One or more hot spare drives are in use in the volume.
- The volume has a non-optimal status.
- Any volume in the volume group is in any state of modification.
- The controller that owns this volume is in the process of adding capacity to another volume. (Each controller can add capacity to only one volume at a time.)
- No free capacity exists in the volume group, and no unconfigured capacity is available to add to the volume group.
- No unconfigured capacity (in the form of drives) is available to add to the volume group.

Mappings View

The **Mappings View** tab is used to define the storage topology elements (host groups, hosts, host ports, and so on), to define volume-to-LUN mappings, and to view Storage Partitioning and heterogeneous host information. The **Mappings View** tab has two views, **Topology** view and **Defined Mappings** view, shown in Figure 2-1 and described in Table 2-3.

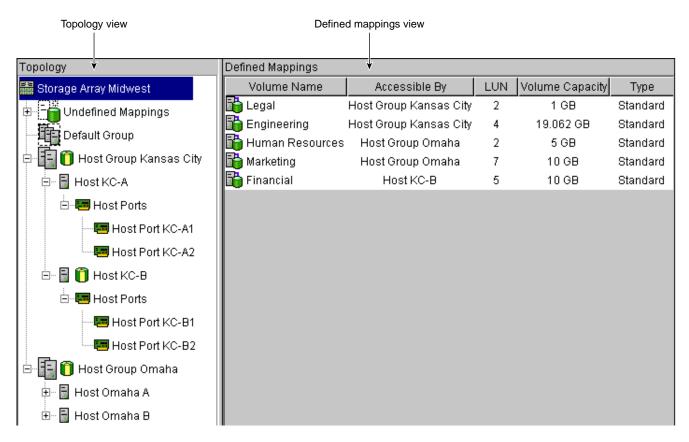


Figure 2-1 Mappings View Window

Table 2-3	Mappings View Tab
View	Description
Topology	Shows defined topological elements (host groups, hosts, and host ports), undefined mappings (volumes that have been created but do not have a defined volume-to-LUN mapping), and the Default Group.
Defined Mappings	Displays the volume-to-LUN mappings in a storage array in table form. Information is displayed about the volumes: topological entities that can access the volume, volume name, volume capacity, and LUN number associated with the volume.

Table 2-4 on page 35 describes the topological elements displayed in the **Mappings View** window in Figure 2-1 on page 34.

 Table 2-4
 Volume-to-LUN Terminology

Term	Description
Storage Partitioning Topology	A collection of nodes (default group, host groups, hosts, and host ports) shown in the Topology view of the Mappings View tab.
	You must define the various topological elements if you want to define specific volume-to-LUN mappings and storage partitions for host groups or hosts.
Default Group	A node in the Topology view that designates all host groups, hosts, and host ports that: (1) have no specific volume-to-LUN mappings and (2) share access to any volumes that were automatically assigned default LUN mappings by the controller firmware during volume creation.
Host Group	An optional topological element that you define if you want to designate a collection of hosts that will share access to the same volumes. The host group is a logical entity.
Host	A computer that is attached to the storage array and accesses various volumes on the storage array through its host ports (host bus adapters). You can define specific volume-to-LUN mappings to an individual host or assign the host to a host group that shares access to one or more volumes using the Define Host Wizard

Table 2-4 Volume-to-LUN Terminology (continued)

Term Description

Host Port

The physical connection that allows a host to gain access to the volumes in the storage array. When the host bus adapter only has one physical connection (host port), the terms host port and host bus adapter are synonymous.

Host ports can be automatically detected by the storage management software after the storage array has been connected and powered-up. Therefore, if you want to define specific volume-to-LUN mappings for a particular host or create storage partitions, you must define the host's associated host ports.

Initially, all detected host ports belong to the Default Group. Therefore, if during volume creation, you had a LUN automatically assigned to a volume, that volume will be accessible by any of the host ports in the Default Group. If you have the Storage Partitioning feature enabled, then you should always choose to map the volume later using the options in the **Mappings View** so that a LUN is not automatically assigned to a volume during volume creation.

Use the host bus adapter utility to find the World Wide Name (WWN) of the host port. (This is the host port identifier shown in the **Define New Host Port** dialog in the **Mappings View**.) The WWNs for the host ports on a particular host are used to define the host ports and associate them with a particular host using the **Define New Host Port** dialog. If necessary, see your operating system or host bus adapter documentation for more information.

If a host port is moved, any volume-to-LUN mappings must be re-mapped. Access to your data will be lost until this is done.

Logical Unit Number (LUN)

The number a host uses to access a volume on a storage array. Each host has its own LUN address space. Therefore, the same LUN may be used by different hosts to access different volumes on the storage array. However, a volume can only be mapped to a single LUN. A volume cannot be mapped to more than one host group or host.

For example, Figure 2-5 on page 44 shows that Host Group KC may access Volume Legal using LUN 2 and Host Group Omaha may access Volume H Resources also using LUN 2.

 Table 2-4
 Volume-to-LUN Terminology (continued)

Term	Description
Default Volume-to-LUN mapping	During volume creation, you can specify that you want to have the software assign a LUN automatically to the volume or that you want to map a LUN to the volume later. If you have the Storage Partitioning feature enabled, then you should always choose to map the volume later using the options in the Mappings View so that a LUN is not automatically assigned to a volume during volume creation. Any volumes that are given automatic (default) volume-to-LUN mappings can be accessed by all host groups or hosts that do not have specific volume-to-LUN mappings. These host groups and hosts are shown as part of the Default Group in the Topology view of the Mappings View.
Specific Volume-to-LUN mapping	A specific volume-to-LUN mapping occurs when you select a defined host group or host in the Topology view and select the Storage Partitioning Wizard or Define Additional Mapping option to assign a volume a specific LUN (volume-to-LUN mapping). This designates that only the selected host group or host has access to that particular volume through the assigned LUN. You can define one or more specific volume-to-LUN mappings for a host group or host. The Storage Partitioning feature must be enabled to create specific mappings.

Storage Partitioning

Storage Partitioning is a premium feature of the storage management software and must be enabled either by you or your storage vendor.

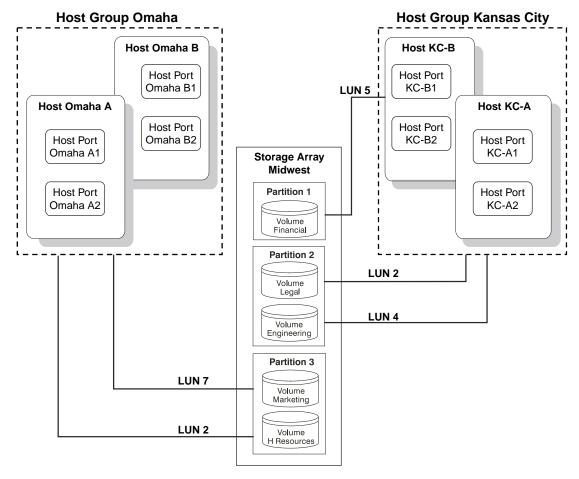
A storage partition is a logical entity consisting of one or more storage array volumes that can be shared among hosts, which may be part of a host group or accessed by a single host. A storage partition is created when you define a single host or a collection of hosts, called a host group, and then define a volume-to-LUN mapping. This mapping defines what host or host group will have access to a particular volume in your storage array. Hosts and host groups can only access data through assigned volume-to-LUN mappings. Each volume can be mapped to one storage partition.

Storage partitions can quickly be created with the **Storage Partitioning Wizard**. The Wizard contains the major steps required to specify which hosts, volumes, and associated logical unit numbers (LUNs) will be included in the partition.

A maximum of 256 volumes per partition for controllers with firmware 5.40 and later or 32 volumes per partition for controllers with firmware earlier than 5.40 can be defined;

this is limited to the total number of volumes on your storage array. A maximum of 64 storage partitions can be supported by the storage management software. The software can further support up to two host ports in each host and up to eight ports in each host group, allowing a four-way cluster of dual-adapter hosts. After the total storage capacity is configured into volumes, those volumes need to be shared among hosts in the storage array. Storage Partitioning allows hosts with the same or different operating systems (heterogeneous hosts) to share access to a storage array.

Storage Partitioning Example


In the example shown in Figure 2-2, four hosts (Omaha A and B and KC-A and B) are connected to Storage Array Midwest. Host KC-B has exclusive access to Volume Financial. Hosts KC-A and KC-B (Host Group Kansas City) share access to Volumes Legal and Engineering, and Omaha A and Omaha B (Host Group Omaha) share access to Volumes Marketing and H Resources. So, three storage partitions were configured.

The first partition is composed of Volume Financial. This volume is accessed by Host KC-B using LUN 5. Even though Host KC-B is part of the logical Host Group Kansas City, Host KC-A cannot access this volume because the volume-to-LUN mapping was created with Host KC-B rather than the Host Group Kansas City.

The second partition consists of Volumes Legal and Engineering. This volume-to-LUN mapping was created using Host Group Kansas City. These volumes are accessed by Hosts KC-A and KC-B in Host Group Kansas City using both LUNs 2 and 4.

The third partition consists of Volumes Marketing and H Resources. This volume-to-LUN mapping was created using Host Group Omaha. These volumes are accessed by Hosts Omaha A and Omaha B in Host Group Omaha using both LUNs 7 and 2.

Note: A host gains access to the volumes on the storage array through the physical host ports residing on the installed host bus adapters. To ensure redundant paths to each volume, it is recommended that each host have at least two host ports.

Figure 2-2 Storage Partitioning Example

The next section explains how this example was configured.

Major Steps to Create Storage Partitions

Creating storage partitions involves the following three major steps:

- 1. Create volumes on the storage array.
- 2. Define storage partitions topology (host groups, hosts, and host ports).
- 3. Define volume-to-LUN mappings.

Note: The three major steps provide a basis for understanding what storage partitions are and how to create them. For specific, detailed procedures, see the **Array Management** window Help system.

Create Volumes on the Storage Array

As part of the volume creation, specify one of two volume-to-LUN mapping settings:

- Automatic If you are not using Storage Partitioning, specify this setting. The
 Automatic setting specifies that a LUN be automatically assigned to the volume
 using the next available LUN within the Default Group. This setting will grant
 volume access to host groups or hosts that have no specific volume-to-LUN
 mappings (designated by the Default Group in the Topology view).
- Map later with Storage Partitioning If you are using Storage Partitioning, specify
 this setting. The Map later setting specifies that a LUN not be assigned to the
 volume during volume creation. This setting allows definition of a specific
 volume-to-LUN mapping and creation of storage partitions.

Define Storage Partitions Topology

Storage partition topology is reconfigurable. You can do the following:

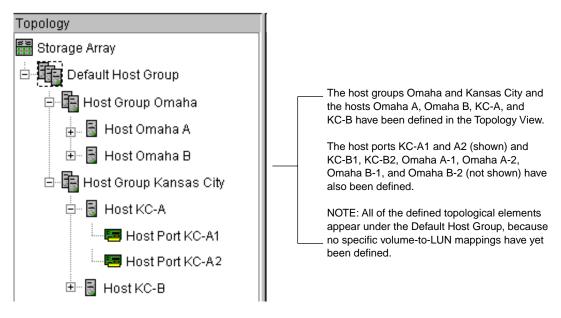
- Move a host port
- Replace a host port
- Move a host from one host group into another host group
- Delete a host group, host, or host port
- Rename a host group, host, or host port
- Change a volume-to-LUN mapping
- Define additional volume-to-LUN mappings

Define Volume-to-LUN Mappings

The last step is to grant access to one or more volumes to a defined host group or host. You do this by defining specific volume-to-LUN mappings using the **Storage Partitioning Wizard**. Each host group or host is granted a unique view of partitioned storage.

Note: Only one volume-to-LUN mapping is allowed per volume. To grant volume access to more than one host, you must first group the hosts together into a logical host group. Then you can grant volume access to that host group, thereby allowing the hosts in the host group to share access to the volume.

Because each host has its own LUN address space, you can use the same LUN in more than one volume-to-LUN mapping, as long as that LUN is available for use by each particular host participating in the mapping.


You can only define new volume-to-LUN mappings for volumes that currently have no mappings (that is, they do not have default mappings or specific mappings).

Volume-to-LUN mappings are shared between controllers in the storage array.

Each host group or host that you define is granted a unique view of partitioned storage. A defined host group or host can access either:

- Volumes with default volume-to-LUN mappings The host group or host is part of the Default Group.
- Volumes to which they have been granted access through a specific volume-to-LUN mapping – The host group or host will be part of a storage partition.

In the example in Figure 2-3, none of the topological elements have had specific volume-to-LUN mappings defined. Therefore, they appear under (as part of) the default host group and can access any volumes that have been assigned default LUNs (default volume-to-LUN mappings).

Figure 2-3 Defining Hosts and Host Groups in the **Topology** View

If you define specific volume-to-LUN mappings for any of the host groups or hosts, they no longer appear under the default host group; they move to under the root node, marked storage array. Also, they can no longer access volumes with default volume-to-LUN mappings. Either a host group or host can access volumes with default mappings or specific mappings, but not both.

Heterogeneous Hosts

The heterogeneous hosts portion of the Storage Partitioning feature allows hosts running different operating systems to access a single storage array. To specify different operating systems for attached hosts, you must specify the appropriate host type when you define the host ports for each host.

Host types can be completely different operating systems, such as Solaris and Windows NT, or variants of the same operating system, such as Windows NT clustered and Windows NT non-clustered. When a host type is specified, it allows the controllers in the

storage array to tailor their behavior (such as LUN reporting and error conditions) depending on the operating system or variant of the host sending the information.

Heterogeneous Hosts Example

Note: Heterogeneous host settings are only available with Storage Partitioning enabled. In Figure 2-5 on page 44, the Storage Partitioning feature is enabled.

In a heterogeneous environment, you must set each host type to the appropriate operating system during host port definition (Figure 2-4). By doing this, the firmware on each controller can respond correctly for that host's operating system.

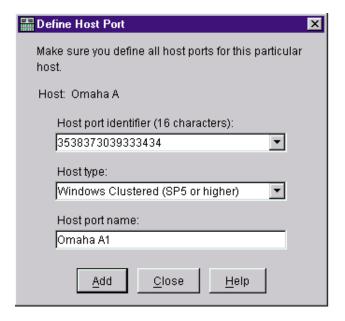
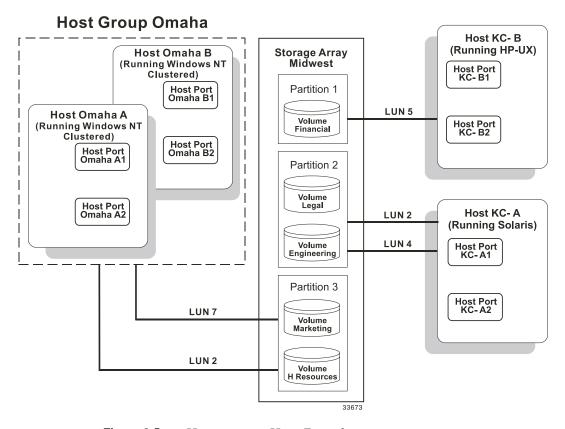



Figure 2-4 Host Port Definitions Dialog

In the example shown in Figure 2-5 on page 44, heterogeneous hosts have been defined on Storage Array Midwest. Four hosts (Omaha A and B and KC-A and B) are connected to Storage Array Midwest. Hosts Omaha A and Omaha B share access to Volumes Marketing and HResources. Host KC-A has exclusive access to Volumes Legal and Engineering, and Host KC-B has exclusive access to Volume Financial. So, three storage

partitions have been configured. Because there are four hosts running three different operating systems, the appropriate host types must be defined for each host port to support these heterogeneous hosts.

After you define the host type for each host port, you can display the host port's host type in the **Topology** view by placing your cursor over the specific host port; a tooltip will display the associated host type.

Figure 2-5 Heterogeneous Hosts Example

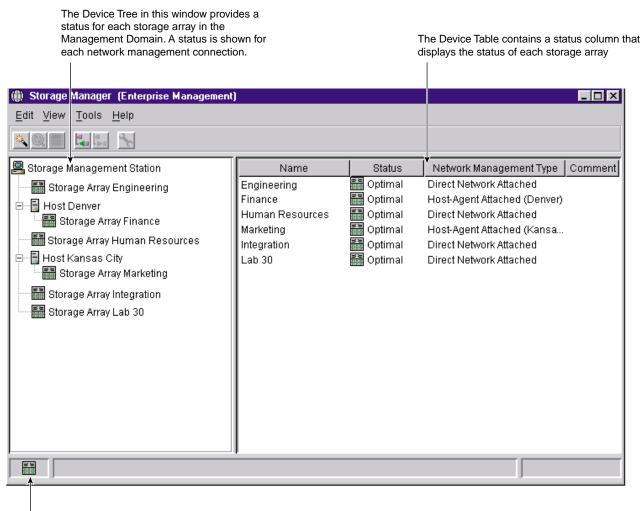
Maintaining Storage Arrays in the Management Domain

This section describes the maintenance of storage arrays in the management domain, which includes the following activities.

Use the **Enterprise Management** window to:

- Monitor the health of the storage arrays, as explained in the next section.
- Configure alert notifications using the event monitor (see "Event Monitor" on page 48 or the **Enterprise Management** window Help).

Note: To receive critical alerts, the **Enterprise Management** window must be running (it can be minimized).


Use the **Array Management** window to:

- Monitor the individual logical and physical components in an individual storage array (as explained in the Array Management window Help).
- Recover from storage array problems (as explained in "Recovering from Storage Array Problems" on page 55).
- Monitor storage array performance and tune performance, if necessary, (as explained in "Tuning Storage Arrays" on page 60).

Monitoring the Health of Storage Arrays

Note: The **Enterprise Management** window or the event monitor must be running to receive notification of critical events for the storage arrays. In addition, alert notifications must be configured in the **Enterprise Management** window.

The **Enterprise Management** window provides a summary of the conditions of all known storage arrays in the management domain. Appropriate status indicators will be shown in the Device Tree, the Device Table, and in the health summary status area in the lower-left corner of the **Enterprise Management** window, as shown in Figure 2-6.

The Overall Health Status is a consolidated health status for all of the known storage arrays in the Management Domain

Figure 2-6 Monitoring the Health of Storage Arrays Using the Enterprise Management Window

Storage Array Status Icons

Table 2-5 provides information about the storage array status icons that display as follows:

- In the Device Tree, Device Table, and Overall Health Status areas of the **Enterprise**Management window.
- As the root node of the **Logical** view tree in the **Array Management** window.

 Table 2-5
 Storage Array Status Indications

Status	lcon	Indication
Optimal	38 *****	Every component in the storage array is in the desired working condition.
Needs Attention	•	A problem with a storage array requires intervention to correct. To correct the problem, you should start the Array Management window for the particular storage array and then use Recovery Guru to pinpoint the cause of the problem and obtain appropriate instructions.
Fixing	*	A Needs Attention condition has been corrected and the storage array is currently transitioning to an Optimal state (for example, a reconstruction operation is in progress). A Fixing status requires no action unless you want to check on the progress of the operation in the Array Management window.
		Note : Some recovery actions cause the storage array state to change directly from Needs Attention to Optimal, without an interim state of Fixing. The Fixing status icon is not displayed in the Overall Health Status area (Optimal is displayed instead).

 Table 2-5
 Storage Array Status Indications (continued)

Status	lcon	Indication
Unresponsive	uşu	The storage management station cannot communicate with the only controller or both controllers over its network management connection to the storage array.
		Note : The Unresponsive icon is not displayed in the Logical view of the Array Management window. If the Array Management window is open and the storage array becomes Unresponsive, the last known state (Optimal, Needs Attention, or Fixing) is shown.
Contacting Device	ĬQ.	You have started the Enterprise Management window and the storage management software is establishing contact with the storage array.
		Note : This status is not displayed in the Logical view of the Array Management window.

Event Monitor

The event monitor runs continuously in the background monitoring activity on a storage array and checking for critical problems (for example, impending drive failures or failed controllers). If the event monitor detects any critical problems, it can notify a remote system using e-mail and/or simple network management protocol (SNMP) trap messages whenever the **Enterprise Management** window is not running.

The event monitor is a separate program bundled with the client software and must be installed with the storage management software. The client/event monitor is installed on a storage management station or host connected to the storage arrays. For continuous monitoring, install the event monitor on a computer that runs 24 hours a day. Even if you choose not to install the event monitor, alert notifications must still be configured on the computer where the client software is installed, because alerts will be sent as long as the **Enterprise Management** window is running.

Figure 2-7 shows how the event monitor and the **Enterprise Management** window client software send alerts to a remote system. The storage management station contains a file with the name of the storage array being monitored and the address where alerts will be sent. The alerts and errors that occur on the storage array are continuously being monitored by the client software and the event monitor. The event monitor takes over for

Client (enterprise management window)

Alerts

Remote system

Event monitor

Host

the client after the client software package is shut down. When an event is detected, a notification is sent to the remote system.

Figure 2-7 Event Monitor Configuration

Because the event monitor and the **Enterprise Management** window share the information to send alert messages, the **Enterprise Management** window contains some visual cues to assist in the event monitor installation and synchronization. The parts of the **Enterprise Management** window that are related to event monitoring are shown in Figure 2-7.

Using the event monitor involves three key steps:

1. Install the client software.

The event monitor is packaged with the client software and installs automatically with the client software. It is recommended that you run the event monitor on one machine that will run continuously. To prevent receipt of duplicate alert notifications of the same critical event on a storage array, disable the event monitor on all but one storage management station.

You must have administrative permissions to install software on the computer where the event monitor will reside. After the storage management software has been installed, the icon shown in Figure 2-8 will be present in the lower-left corner of the **Enterprise Management** window.

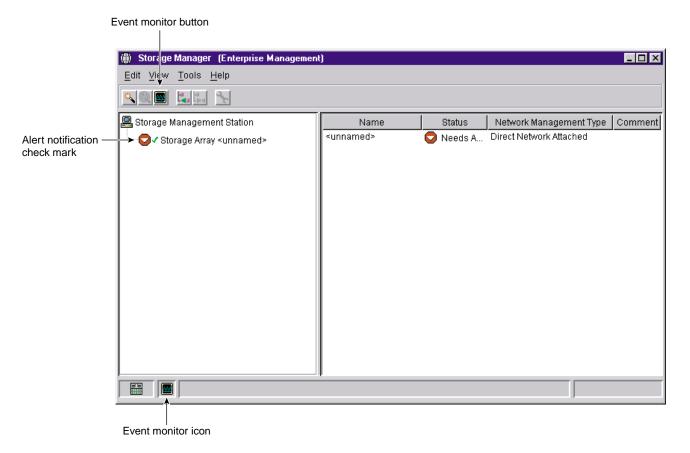


Figure 2-8 Event Monitor Example

2. Set up the alert destinations for the storage arrays you want to monitor from the **Enterprise Management** window.

A check mark indicates where the alert is set (storage management station, host, or storage array). When a critical problem occurs on the storage array, the event monitor will send a notification to the appropriate alert destinations that were specified.

3. Synchronize the **Enterprise Management** window and the event monitor. After it has been installed, the event monitor continues to monitor storage arrays and send alerts as long as it continues to run. If you make a configuration change in the **Enterprise Management** window, such as adding or removing a storage array or setting additional alert destinations, you should manually synchronize the **Enterprise Management** window and the event monitor.

Alert Notifications

Alert notification settings must be configured to receive e-mail or SNMP notifications if a critical event occurs on a storage array. The notification displays a summary of the critical event and details about the affected storage array, including:

- Name of the affected storage array
- Host IP address (only for a storage array managed through a host-agent)
- Host name/ID (shown as directly managed if the storage array is managed through each controller's Ethernet connection)
- Event error type related to an Event Log entry
- Date and time when the event occurred
- Brief description of the event

Note: To set up alert notifications using SNMP traps, you must copy and compile a management information base (MIB) file on the designated network management station. See the *SGI TP9500 RAID Installation and Upgrade Guide* or the *SGI InfiniteStorage TP9700 RAID Installation and Upgrade Guide* for more information.

Configuring Alert Notifications

- 1. Select a node in the **Enterprise Management** window that will display alert notifications for the storage arrays you want to monitor. You can set the alert notifications at any level:
 - Every storage array in the management domain

- Every storage array attached and managed through a particular host
- An individual storage array
- 2. Configure e-mail destinations, if desired. You must provide a mail server name and an e-mail sender address for the e-mail addresses to work.
- 3. Configure SNMP trap destinations, if desired. The SNMP trap destination is the IP address or the host name of a station running an SNMP service, such as a Network Management Station.

Customer Support Alert Notifications

Use the **Edit** > **Alert** option in the **Enterprise Management** window to configure the system to send e-mail notifications to a specified customer support group if a critical event occurs on one of the storage arrays. After it is properly set up, the e-mail alert notification includes a summary of the critical event, detailed information about the affected storage array, and custom contact information.

Note: If you do not configure this feature, the e-mail alert notification will contain only a summary of the critical event.

Configuring the Customer Support Alert Notification

- Create a text file containing the contact information you want to send to the customer support group. For example, include the names and pager numbers of the network administrators.
- Name the file userdata.txt and save it in the home directory (for example, Winnt\profiles\ or usr\) on the client machine that is used to manage the storage array.

Note: This may be your host machine if you installed the client software on the host.

3. Configure the alert notifications by selecting the appropriate node in the Device Tree and then selecting Edit > Alert > Destinations. Specify the e-mail address of the customer support organization. For more information on selecting nodes for alert notifications, see "Configuring E-Mail and SNMP Alert Notification Settings" in the Enterprise Management window Help system.

Note: Remember to set up the mail server and sender address by selecting **Edit** > **Alert** > **Global Settings**.

Problem Notification

Note: The **Enterprise Management** window or the event monitor must be running (it can be minimized) for critical alert notifications to be sent. In addition, you must have configured the alert notifications in the **Enterprise Management** window.

Use the **Recovery Guru** to help troubleshoot storage array problems. Where necessary, use the hardware documentation in conjunction with the recovery steps to replace failed components.

When you monitor a storage array, there are several indicators of a storage array failure:

- A Needs Attention storage array icon is displayed in the following:
 - Overall Health Status area, Device Tree View, and Device Table of the Enterprise Management window.
 - Logical view of the Array Management window.
- The **Recovery Guru** toolbar button in the **Array Management** window changes from an Optimal to a Needs Attention status and flashes.
- Non-optimal component icons are displayed in the Array Management window Logical/Physical View.
- You receive critical SNMP or e-mail notifications.
- Hardware fault lights are displayed.

In Figure 2-9, the **Array Management** window for storage array Engineering shows indications of a components problem and a Needs Attention status in the **Logical/Physical View**.

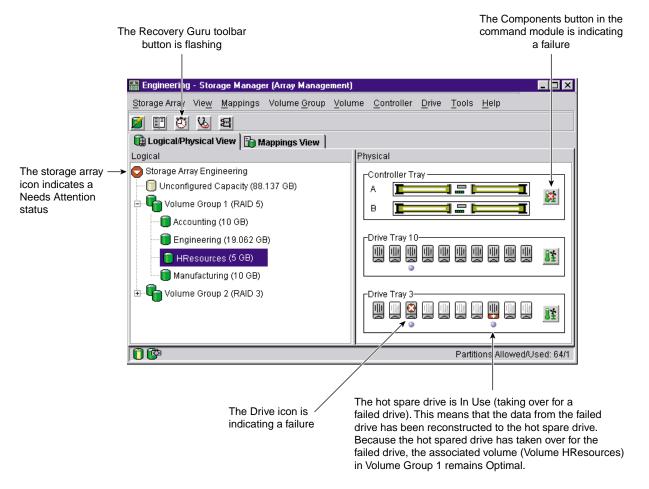


Figure 2-9 Problem Notification in the Array Management Window

You may also receive failure notifications about this storage array at a network storage management station or in e-mail. In addition, hardware fault lights display on the affected controller and drive enclosures.

Recovering from Storage Array Problems

The **Recovery Guru** is a component of the **Array Management** window in the TPSSM client package. The **Recovery Guru** diagnoses storage array problems and recommends recovery procedures to fix the problems. To display the **Recovery Guru**, select the **Recovery Guru** toolbar button in the **Array Management** window, called out in Figure 2-10, or select the **Storage Array** > **Recovery Guru** menu option.

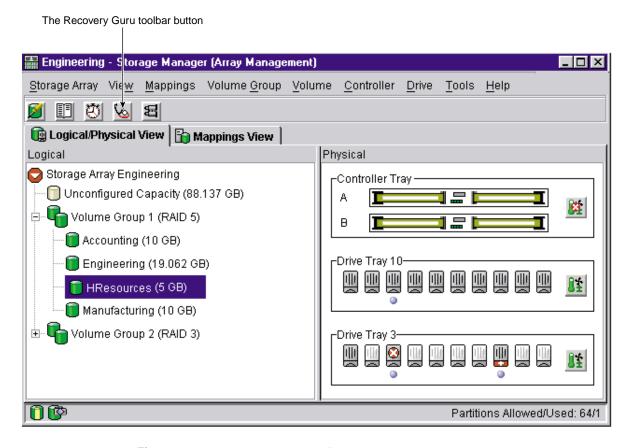


Figure 2-10 Recovery Guru Toolbar Button

Recovery Guru Example

The **Recovery Guru** window, as shown in Figure 2-11, is divided into three areas: **Summary**, **Details**, and **Recovery Procedure**. The **Summary** area lists storage array problems. The **Details** area displays informatin about the selected problem in the **Summary** area. The **Recovery Procedure** area lists the appropriate steps to follow for the selected problem in the **Summary** area.

For example, in Figure 2-11, the **Summary** area shows that there are two different failures in this storage array: a hot spare in use and a failed battery canister. The **Details** area shows that in Volume HResources, a hot spare drive in tray 10, slot 6 has replaced a failed drive in tray 3, slot 7. The **Recovery Procedure** area explains the cause of the problem selected in the **Summary** area, and describes the appropriate procedures needed to recover from this failure.

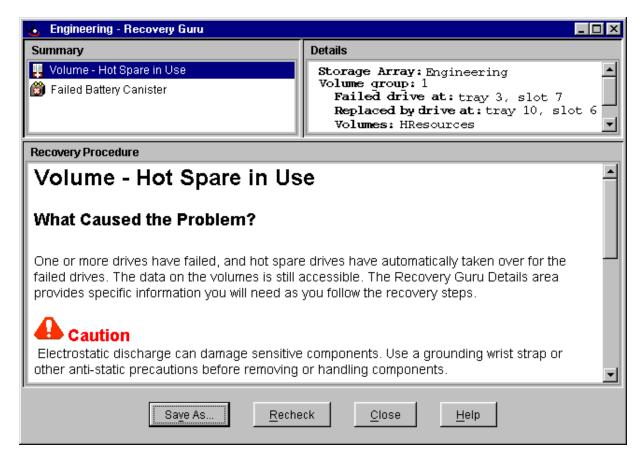


Figure 2-11 Recovery Guru Window

As you follow the recovery procedure to replace the failed drive, the storage array status changes to Fixing, the associated volume (HResources) status changes to Degraded-Modification in Progress, and the replaced drive status changes to Replaced. The data that was reconstructed to the hot spare drive is now being copied back to the replaced drive. These changes are shown in Figure 2-12.

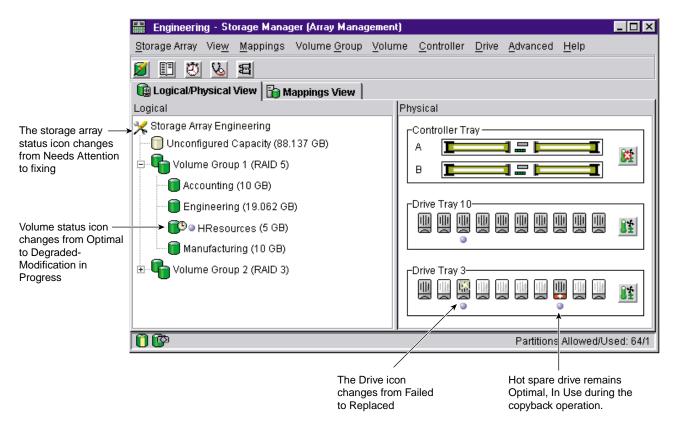


Figure 2-12 Status Changes During Example Recovery Operation

When the copyback operation is finished, the status icons change to reflect the optimal status of the components, as shown in Figure 2-13.

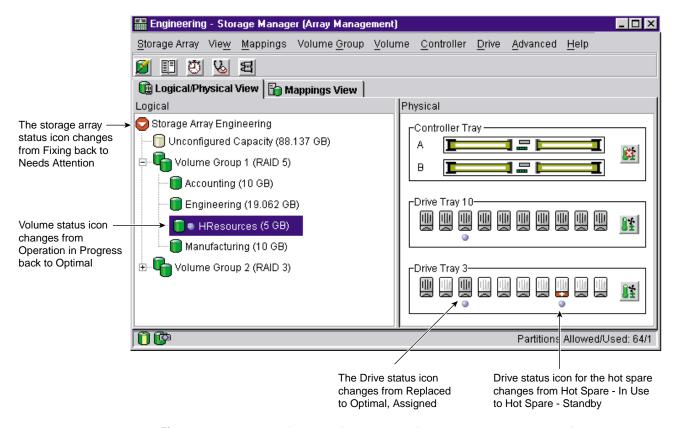


Figure 2-13 Status Changes When an Example Recovery Operation Completes

After you fix the failed drive in the drive enclosure, the following changes occur:

- The Storage Array icon in the **Logical** view returns to Optimal.
- The Storage Array icon in the **Enterprise Management** window changes from a Needs Attention status to an Optimal status.
- The **Recovery Guru** button stops blinking.

Note: For the **Recovery Guru** buttom to register Optimal status, the failed battery must also be replaced.

Tuning Storage Arrays

In general, when you are configuring a storage array, the default values should provide optimal performance. However, if you want to tune the storage array after initial configuration, several options are available in the **Array Management** window for optimizing storage array and application performance. These tuning options are described in Table 2-6.

Note: You can perform any of the tuning operations while the storage array is processing I/O.

 Table 2-6
 Tuning Options in Array Management Window

Option	Description
Storage Array > Monitor Performance	Use this option to monitor storage array performance in real-time and save performance data to a file for later analysis. You can specify the volumes and/or controllers to monitor and the polling interval.
	Data provided from a session includes I/O load, cache hit percentage, how your I/O is allocated between reads and writes, transfer rates and I/O request rates for the volumes being monitored or for the entire storage array.
	- The <i>cache hit percentage</i> is the percentage of reads that are serviced with data from the cache rather than requiring a read from disk.
	- A <i>transfer rate</i> is the amount of data in kilobytes per second that moves through the I/O data path (also called throughput).
	- An $\emph{I/O}$ request rate is the average number of $\emph{I/O}$ requests serviced per second.
	For more information, see the Array Management window Help.
Storage Array > Change Cache Settings	Use this option to specify the start flush and stop flush parameters (expressed in percentage of cache memory that contains unwritten data) and the cache block size for the storage array.
	Low start and stop flush percentages increase data safety but decrease the cache hit percentage and therefore the I/O request rate.
	For more information, see "Protect Data in the Controller Cache Memory" on page 27 and the Array Management window Help.

Table 2-6 Tuning Options in Array Management Window (continued)

Option Description Volume Group > Use this option to change the RAID level of a volume group when Change RAID Level either of the following occurs: 1. The application read or write percentages on a volume indicate that its current RAID level may not be appropriate for desired performance. 2. You want to change the volume group's redundancy (such as changing from RAID 0 to RAID 5). Applications with a high read percentage perform very well using RAID 5 volumes because of the outstanding read performance of the RAID 5 configuration. However, applications with a low read percentage (write-intensive) do not perform as well on RAID 5 volumes because of the way a controller writes data and redundancy data to the drives in a RAID 5 volume group. If there is a low percentage of read activity relative to write activity, you might consider changing the RAID level of a volume group from RAID 5 to RAID 1 for faster performance. Volume Group > If a particular controller has considerably more I/O activity than Change Ownership expected, consider moving a volume group to the other controller in the storage array by using this option. Volume > Change A *segment* is the amount of data in kilobytes that the controller writes Segment Size on a single drive in a volume before writing data on the next drive. When you create a volume, the default segment size is normally a good choice for the expected volume usage you specify. If volume usage is different than expected, use the Volume > Change Segment **Size** option to change the segment size of a volume. In a read-intensive application environment with random I/O access patterns, make sure the segment size is large enough to minimize the number of drives needed to satisfy an I/O request. This leaves other drives available to satisfy other requests. A volume group data stripe is the segment size multiplied by the number of drives in the volume group used for I/O. In a single-user environment with sequential I/O access patterns, performance is optimized when a single I/O request can be serviced with a single volume group data stripe. In this case, multiple disks are used for the

same request, but each disk is only accessed once.

Table 2-6 Tuning Options in Array Management Window (continued)

Option Description **Volume > Properties** Use this option to set following three tuning parameters: Write caching Cache read-ahead - Volume Modification Priority Write caching. To maximize I/O request rates, enable write-caching on a volume. Write caching frees an application to continue after writing to the controller cache memory, a faster operation than a disk write. The cache memory is flushed to disk when it contains a percentage of unwritten data you specify using the Storage Array > Cache Settings option. Cache read-ahead. If an individual volume is experiencing a low cache hit percentage, consider enabling cache read-ahead (or prefetch) for that volume. Cache read-ahead can increase the cache hit percentage for a sequential I/O workload. If cache read-ahead is enabled, the cache reads the data from the disk. But in addition to the requested data, the cache also fetches more data, usually from adjacent data blocks on the drive. This feature increases the chance that a future request for data could be fulfilled from the cache rather than requiring a disk access. The cache read-ahead multiplier values specify the multiplier to use for determining how many additional data blocks are read into cache. Choosing a higher cache read-ahead multiplier can increase the cache hit percentage for volumes with sequential I/O access patterns. (In the case of a random I/O pattern, the optimal multiplier is zero.) Volume modification priority. This defines how much processing time is allocated for volume modification operations versus system performance. The higher the priority, the faster that volume modification operations are completed but the slower I/O is serviced.

Volume modification operations include reconstruction, copyback, initialization, defragmentation, change of RAID level, and change of

62 007-4749-001

segment size.

 Table 2-6
 Tuning Options in Array Management Window (continued)

Option	Description
Volume > Properties	You set the modification priority for each volume by using a slider bar on the Volume > Properties dialog. There are five relative settings on the reconstruction rate slider bar, ranging from Lowest to Highest. The actual speed of each setting is determined by the controller. Choose the Lowest setting to maximize the I/O request rate. If the controller is idle (not servicing any I/O), it will ignore the individual volume rate settings and process volume modification operations as quickly as possible.

Task Reference

There are two separate Help systems, one in the **Enterprise Management** window and one in the **Array Management** window. These are distinct Help systems that can only be accessed when you are in the appropriate window. Table 2-7 is a task-based index to the appropriate Help system.

 Table 2-7
 Task Reference: Populating a Management Domain

To perform this task	Use this option	See the Help system in
Adding a comment for a storage array	Edit > Comment	Enterprise Management window
Automatically discovering devices	Tools > Automatic Discovery	Enterprise Management window
Discovering newly attached host-agent managed storage arrays	Tools > Rescan	Enterprise Management window
Manually adding a device	Edit > Add Device	Enterprise Management window
Removing a device	Edit > Remove Device	Enterprise Management window

Table 2-8 describes the Storage Array Configuration Help system.

 Table 2-8
 Task Reference: Storage Array Configuration

To perform this task	Use this option	See the Help system in
Using the Script Editor	Tools > Execute Script	Enterprise Management window
Adding free capacity to a volume group	Volume Group > Add Free Capacity	Array Management window
Assigning/unassigning a hot spare drive	Drive > Assign Hot Spare and Drive > Deassign Hot Spare	Array Management window
Changing the enclosure order in the Physical view	Configure > enclosure Order	Array Management window
Consolidating free capacity on a volume group	Volume Group > Defragment	Array Management window
Creating a volume from free capacity	Configure > Create Volume	Array Management window
Creating a volume group and volumes from unconfigured capacity	Configure > Create Volume Group/Volume	Array Management window
Creating storage partitions	Configure > Topology/ Storage Partitioning	Array Management window
Downloading an NVSRAM configuration file	Storage Array > Download > NVSRAM	Array Management window
Downloading firmware to the controllers in a storage array	Storage Array > Download > Firmware	Array Management window
Increasing the unconfigured capacity of a storage array (deleting a volume group)	Volume Group > Delete	Array Management window
Increasing the free capacity of a storage array (deleting a volume)	Volume > Delete	Array Management window

 Table 2-8
 Task Reference: Storage Array Configuration (continued)

To perform this task	Use this option	See the Help system in
Performing an automatic configuration	Configure > Automatic Configuration	Array Management window
Resetting a configuration	Configure > Reset Configuration	Array Management window

Table 2-9 describes the Performance and Tuning Help system.

 Table 2-9
 Task Reference: Performance and Tuning

To perform this task	Use this option	See the Help system in
Changing cache settings on a storage array	Storage Array > Change Cache Settings	Array Management window
Changing cache settings on an individual volume	Volume > Properties	Array Management window
Changing media scan settings on a storage array	Storage Array > Change Media Scan Settings	Array Management window
Changing media scan settings on an individual volume	Volume > Properties	Array Management window
Changing the controller ownership of a volume group	Volume Group > Change Ownership	Array Management window
Changing the modification priority on an individual volume	Volume > Properties	Array Management window
Changing the RAID level of a volume group	Volume Group > Change RAID Level	Array Management window
Changing the segment size of a volume	Volume > Change Segment Size	Array Management window
Monitoring performance	Storage Array > Monitor Performance	Array Management window

Table 2-10 describes the Event Notification Help system.

Table 2-10 Task Reference: Event Notification

To perform this task	Use this option	See the Help system in
Interpreting an email or SNMP trap message	Not applicable	Enterprise Management window
Specifying and validating email and SNMP destinations for alert notifications	Edit > Alert > Destinations	Enterprise Management window
Specifying management domain global email alert settings	Edit > Alert > Global Settings	Enterprise Management window
Viewing and interpreting events stored in the Event Log	Storage Array > View Event Log	Array Management window

Table 2-11 describes the Recovering From Problems Help system.

 Table 2-11
 Task Reference: Recovering From Problems

To perform this task	Use this option	See the Help system in
Correcting a partially managed device	View > Partially Managed Devices	Enterprise Management window
Recovering a corrupted configuration file	Not applicable	Enterprise Management window
Recovering from an Unresponsive storage array	Not applicable	Enterprise Management window
Checking redundancy information on a volume group	Volume Group > Check Redundancy	Array Management window
Failing a drive	Drive > Fail	Array Management window
Identifying when to use Recovery Guru	Not applicable	Array Management window

 Table 2-11
 Task Reference: Recovering From Problems (continued)

To perform this task	Use this option	See the Help system in
Initializing drives, volumes, or volume groups	Drive > Initialize Volume > Initialize Volume Group > Initialize	Array Management window
Interpreting and using Recovery Guru information and procedures	Storage Array > Recovery Guru	Array Management window
Moving volume groups back to their preferred controller owners	Storage Array > Redistribute Volume Groups	Array Management window
Placing a controller in active or passive mode	Controller > Change Mode	Array Management window
Placing a controller online or offline	Controller > Place Online or Offline	Array Management window
Reconstructing a drive	Drive > Reconstruct	Array Management window
Reviving a drive	Drive > Revive	Array Management window

Table 2-12 describes the Miscellaneous System Administration Help system.

 Table 2-12
 Task Reference: Miscellaneous System Administration

To perform this task	Use this option	See the Help system in
Changing a password for a storage array	Storage Array > Change Password	Array Management window
Listing logical and physical components associated with a controller or drive	Controller > List Associated Components Drive > List Associated Components	Array Management window
Locating a storage array, volume group, or drive by flashing indicator lights	Storage Array > Locate Volume Group > Locate Drive > Locate	Array Management window
Renaming a storage array or volume	Storage Array > Rename Volume > Rename	Array Management window

 Table 2-12
 Task Reference: Miscellaneous System Administration (continued)

To perform this task	Use this option	See the Help system in
Synchronizing storage array controller clocks with the storage management station	Storage Array > Set Controller Clocks	Array Management window
Viewing a description of all components and properties of a storage array	Storage Array > Profile	Array Management window
Viewing volume, controller, or drive characteristics	Volume > Properties Controller > Properties Drive > Properties	Array Management window

Remote Volume Mirroring

This chapter includes the following sections:

- "Feature Concepts and Requirements" on page 69
- "Hardware and Software Installation" on page 92
- "Using the Remote Volume Mirroring Premium Feature" on page 121
- "Disaster Recovery" on page 135
- "Troubleshooting" on page 143

Feature Concepts and Requirements

This section introduces the following basic concepts and requirements of the Remote Volume Mirroring feature:

- "Introduction to Remote Volume Mirroring" on page 69
- "Data Replication" on page 73
- "Connectivity and Input/Output" on page 76
- "Using Other Premium Features and Remote Volume Mirroring" on page 80
- "Hardware and Software Requirements" on page 85
- "Recommended Configurations" on page 86
- "Hardware and Software Checklist" on page 90

Introduction to Remote Volume Mirroring

The Remote Volume Mirroring premium feature is used for online, real-time replication of data between storage arrays over a remote distance. In the event of a disaster or

catastrophic failure at one storage array, you can promote a second storage array to take over responsibility for computing services.

This section introduces you to primary, secondary, and mirror repository volumes, and describes how they interact to replicate data between storage arrays using the Remote Volume Mirroring feature.

Primary and Secondary Volumes

When you create a remote volume mirror, a mirrored volume pair is created and consists of a primary volume at a primary storage array and a secondary volume at a secondary storage array. A standard volume may only be included in one mirrored volume pair. There can be up to 32 defined mirrors on a TP9500 storage array and up to 64 defined mirrors on a TP9700 storage array.

The primary volume is the volume that accepts host I/O and stores application data. When the mirror relationship is first created, data from the primary volume is copied in its entirety to the secondary volume. This process is known as a full synchronization and is directed by the controller owner of the primary volume. During a full synchronization, the primary volume remains fully accessible for all normal I/O operations.

The controller owner of the primary volume initiates remote writes to the secondary volume to keep the data on the two volumes synchronized. Whenever the data on the primary volume and the secondary volume becomes unsynchronized, the controller owner of the primary volume initiates a full synchronization.

The secondary volume maintains a mirror (or copy) of the data on its associated primary volume. The controller owner of the secondary volume receives remote writes from the primary volume controller owner, but will not accept host read or write requests.

The secondary volume remains unavailable to host applications while mirroring is underway. In the event of a disaster or catastrophic failure of the primary site, a role reversal can be performed to promote the secondary volume to a primary role. Hosts will then be able to access the newly promoted volume and business operations can continue.

Figure 3-1 shows the primary and secondary volumes displayed in the **Array Management** window for the primary storage array and the secondary storage array.

Secondary storage array

🏨 Logical/Physical View 🛍 Logical/Physical View Logical Logical 렀 Storage Array Primary Site Storage Array Secondary Site 🗾 Unconfigured Capacity (8.44 GB) 🗐 Unconfigured Capacity (8.44 GB). Volume Group 1 (RAID 5) Volume Group 1 (RAID 5) Mirror Repository 1 (0.004 GB) Mirror Repository 1 (0.004 GB). Mirror Repository 2 (0.004 GB) 📵 Mirror Repository 2 (0.004 GB). Free Capacity (10.873 GB) []]Free Capacity (10.873 GB). Primary Volume (5 GB/ 0 GB usable) Secondary Volume (5 GB/ 0 GB usable) Secondary Volume 63116 Both the primary and secondary volumes are Only the secondary volume is displayed in displayed in the Array Management Window the Array Management Window for the for the primary storage array. secondary storage array.

Figure 3-1 Primary and Secondary Volumes Displayed in the Array
Management Window

Mirror Repository Volumes

Primary storage array

A mirror repository volume is a special volume in the storage array created as a resource for the controller owner of the primary volume in a Remote Volume Mirror. The controller stores mirroring information on this volume, including information about remote writes that are not yet complete. The controller can use this information to recover from controller resets and accidental powering-down of storage arrays.

When you activate the Remote Volume Mirroring premium feature on the storage array, you create two mirror repository volumes, one for each controller in the storage array. An individual mirror repository volume is not needed for each Remote Volume Mirror.

When you create the mirror repository volumes, you specify the location of the volumes. You can either use existing free capacity or you can create a volume group for the volumes from unconfigured capacity and then specify the RAID level.

Figure 3-2 shows the mirror repository volumes displayed in the **Array Management** window for the primary storage array.

Because of the critical nature of the data being stored, the RAID level of mirror repository volumes must not be RAID 0 (for data striping). The required size of each volume is 4 MB, or 8 MB total for both mirror repository volumes of a dual controller array.

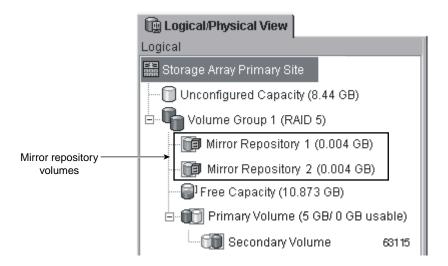
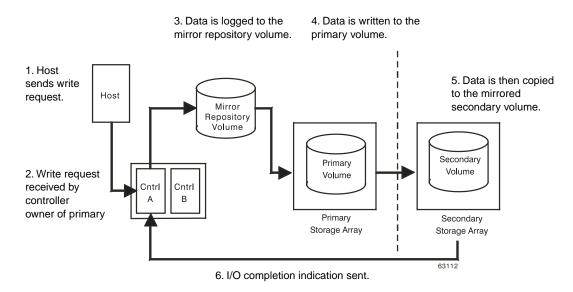


Figure 3-2 Mirror Repository Volumes Displayed in the Array Management Window

Mirror Relationships

Prior to creating a mirror relationship, the Remote Volume Mirroring premium feature must be enabled on both the primary and secondary storage arrays. A secondary volume candidate must be created on the secondary site if one does not already exist and must be a standard volume of equal or greater capacity than the associated primary volume.

When secondary volume candidates are available, a mirror relationship can be established in the storage management software by identifying the storage array containing the primary volume and the storage array containing the secondary volume.


When the mirror relationship is first created, a full synchronization automatically occurs, with data from the primary volume copied in its entirety to the secondary volume. For more information on creating mirror relationships, see "Creating Mirror Relationships" on page 126.

Data Replication

Data replication between the primary volume and the secondary volume is managed by the controllers and is transparent to host machines and applications. This section describes how data is replicated between storage arrays participating in Remote Volume Mirroring and the actions taken by the controller owner of the primary volume if a link interruption occurs between storage arrays.

When the controller owner of the primary volume receives a write request from a host, the controller first logs information about the write to a mirror repository volume, then writes the data to the primary volume. The controller then initiates a remote write operation to copy the affected data blocks to the secondary volume at the secondary storage array.

After the host write request has been written to the primary volume and the data has been successfully copied to the secondary volume, the controller removes the log record on the mirror repository volume and sends an I/O completion indication back to the host system. See Figure 3-3 for a graphical representation of the data replication process.

Figure 3-3 Data Replication between Storage Arrays

Because the controller does not send the I/O completion to the host until the data has been copied to both the primary and secondary volumes, this mirroring operation is called synchronous.

When a read request is received from a host system, the controller owner of the primary volume handles the request normally and no communication takes place between the primary and secondary storage arrays.

Link Interruptions or Secondary Volume Errors

When processing write requests, the primary controller may be able to write to the primary volume, but a link interruption prevents communication with the remote secondary controller.

In this case, the remote write cannot complete to the secondary volume and the primary and secondary volumes are no longer correctly mirrored. The primary controller transitions the mirrored pair into an Unsynchronized status and sends an I/O completion to the primary host, as shown in Figure 3-4. The primary host can continue to write to the primary volume but remote writes will not take place.

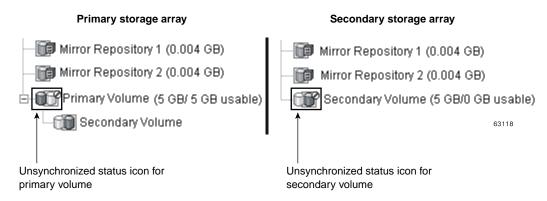
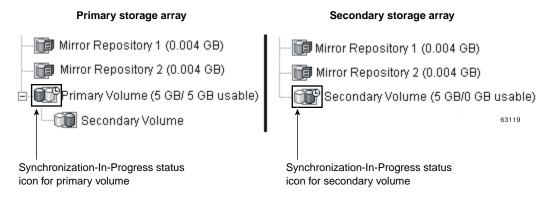



Figure 3-4 Mirrored Volume Pair in Unsynchronized Status

When connectivity is restored between the controller owner of the primary volume and the controller owner of the secondary volume, a full synchronization will automatically take place. The mirrored pair will then transition from an Unsynchronized status to a Synchronization-in-Progress status, as shown in Figure 3-5.

Figure 3-5 Mirrored Volume Pair in Synchronization-in-Progress Status

The primary controller will also mark the mirrored pair as Unsynchronized when a volume error on the secondary side prevents the remote write from completing. For example, an offline or a failed secondary volume can cause the Remote Volume Mirror to become Unsynchronized. When the volume error is corrected (the secondary volume is placed online or recovered to an Optimal status), then a full synchronization

automatically begins, and the mirrored pair transitions to a Synchronization-in-Progress status.

For more information on Remote Volume Mirroring statuses, see "Using the Remote Volume Mirroring Premium Feature" on page 121.

Connectivity and Input/Output

The Remote Volume Mirroring feature requires a dedicated host port for mirroring data between storage arrays. This section describes the typical configurations used to connect storage arrays for Remote Volume Mirroring, controller ownership of volumes within storage arrays, the maximum storage array distance permitted, and some general performance considerations.

Once the Remote Volume Mirroring feature has been activated, one Fibre Channel host-side I/O port on each controller is solely dedicated to mirroring operations. For example, in the primary storage array, controller ports A2 and B2 are dedicated to mirroring operations. In the secondary storage array, controller ports A2 and B2 are also dedicated to mirroring operations.

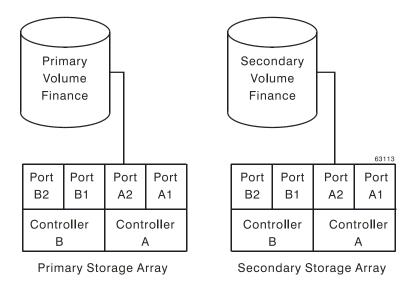
Any host-initiated I/O operations will not be accepted by the dedicated port, and any requests received on this dedicated port will only be accepted from another controller participating in the mirror relationship.

Controller ports dedicated to Remote Volume Mirroring must be attached to a Fibre Channel fabric environment with support for the Directory Service and Name Service interfaces.

Fibre Channel Fabric Configurations

Three Fibre Channel fabric configurations are supported in this version of the storage management software. The level of redundancy available will depend on the type of configuration selected.

- Highest Availability Campus Configuration A fully redundant configuration, which consists of a primary storage array and a secondary storage array. For more information, see "Highest Availability Campus Configuration" on page 86.
- Campus Configuration A lower-cost configuration, which consists of a primary storage array and a secondary storage array. For more information, see "Campus Configuration" on page 88.


• Intra-Site Configuration – Lowest-cost configuration, where the primary storage array and secondary storage array are located within the same site. For more information, see "Intra-Site Configuration" on page 89.

For instructions on how to configure storage arrays, see "Hardware and Software Installation" on page 92.

Volume Ownership

The controller owner of the primary volume will only attempt to communicate with its mirrored controller in the secondary storage array. As shown in Figure 3-6, Controller A in the primary storage array only attempts communication with Controller A in the secondary storage array.

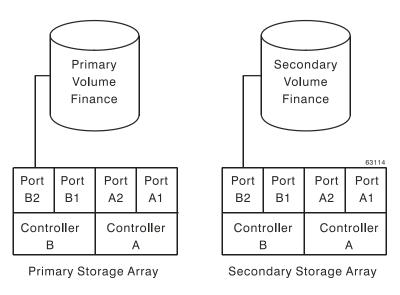

The controller (A or B) that owns the primary volume determines the controller owner of the secondary volume. If the primary volume is owned by Controller A on the primary storage array, the secondary volume is therefore owned by Controller A on the secondary storage array. If primary Controller A cannot communicate with secondary Controller A, no controller ownership changes take place.

Figure 3-6 Controller A as Controller Owner

When an I/O path error causes a volume ownership change on the primary storage array, or if the storage administrator changes the controller owner of the primary volume, the next remote write processed will automatically trigger an ownership change on the secondary storage array.

As shown in Figure 3-7, if a primary volume is owned by Controller A and the controller owner is changed to Controller B, the next remote write will change the controller owner of the secondary volume from Controller A to Controller B.

Figure 3-7 Controller B as Controller Owner

Because controller ownership changes on the secondary storage array are controlled by the primary controller, they do not require any special intervention and cannot be manually changed by the storage administrator.

Distance Between Primary and Secondary Storage Array

The maximum distance permitted between storage arrays participating in a mirror relationship is governed by the distance limits of the Fibre Channel links. Using standard Single-Mode Fiber technology, a maximum link distance of 10 km between storage arrays can be achieved.

Note: Specialized third-party products allow for greater distances to be supported between storage arrays in a Fibre Channel environment. However, in this version of the storage management software, distances between storage arrays have been tested and verified up to 10 km.

General Performance Considerations

The following general performance considerations should be noted when creating Remote Volume Mirrors.

 The controller owner of a primary volume performs a full synchronization in the background while processing local I/O writes to the primary volume and associated remote writes to the secondary volume. Because the full synchronization diverts controller processing resources from I/O activity, it can have a performance impact to the host application.

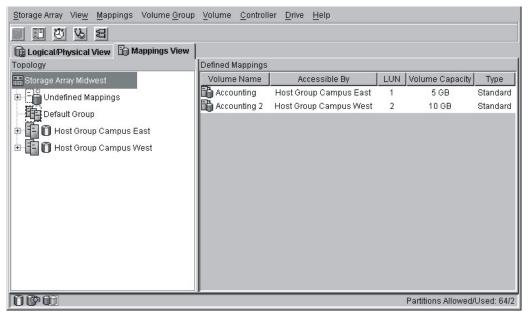
To reduce the performance impact, you can set the Synchronization Priority Level to determine how the controller owner will prioritize the full synchronization relative to other I/O activity. The following are some basic guidelines to setting the Synchronization Priority Level.

- A full synchronization at the Lowest Synchronization Priority Level will take approximately eight times as long as a full synchronization at the Highest Synchronization Priority Level.
- A full synchronization at the Low Synchronization Priority Level will take approximately six times as long as a full synchronization at the Highest Synchronization Priority Level.
- A full synchronization at the Medium Synchronization Priority Level will take approximately three and a half times as long as a full synchronization at the Highest Synchronization Priority Level.
- A full synchronization at the High Synchronization Priority Level will take approximately twice as long as a full synchronization at the Highest Synchronization Priority Level.

For more information on setting the Synchronization Priority Level, see "Using the Remote Volume Mirroring Premium Feature" on page 121.

 When the mirrored volume pair is in a Synchronization-in-Progress status, all host write data is copied to the remote system in processing the I/O. Both controller I/O

- bandwidth and I/O latency can affect host write performance. Host read performance is not affected by the mirroring relationship.
- The time that it takes for data to be copied from the primary volume to the secondary volume may impact overall performance and is primarily because of the delay and overhead of copying data to the Remote Volume Mirror. Some delay may also occur because of the limit to the number of simultaneous writes.


Using Other Premium Features and Remote Volume Mirroring

This section describes how the Remote Volume Mirroring premium feature can be used in conjunction with other premium features available in this version of the storage management software.

Storage Partitioning

Storage Partitioning is a premium feature that enables hosts to share access to volumes in a storage array. A storage partition is created when you define a collection of hosts (a host group) or a single host and then define a volume-to-logical unit number (LUN) mapping. This mapping allows you to define what host group or host will have access to a particular volume in the storage array.

Figure 3-8 shows the **Mappings View** of the **Array Management** window, where Primary Volume Accounting has been included in a partition accessible by Host Group Campus East, and Secondary Volume Accounting 2 has been included in a partition accessible by Host Group Campus West.

63117

Figure 3-8 Storage Partitioning Example

The storage partition definitions for the primary and secondary storage arrays are independent of each other. If these definitions are put in place while the volume is in a secondary role, it will reduce the administrative effort associated with site recovery if it becomes necessary to promote the volume to a primary role. For more information on defining storage partitions, see the **Array Management** window online help.

Snapcopy Volumes

A snapcopy volume is a point-in-time image of a volume and is typically created so that an application, such as a backup application, can access the snapcopy volume and read the data while the base volume remains online and accessible to hosts.

The volume for which the point-in-time image is created is known as the base volume and must be a standard volume in the storage array. For the Remote Volume Mirroring feature, the base volume of a snapcopy volume is permitted to be a candidate for the primary volume in a mirror relationship. The snapcopy repository volume stores

information about all data altered since the snapcopy was created. Figure 3-9 shows the primary volume (also the base volume for the snapcopy volume), the secondary volume, and the snapcopy volume in the **Array Management** window for the primary storage array.

Note: The secondary volume of a mirror relationship **cannot** be a base volume with an associated snapcopy volume.

Secondary volumes are restricted from being the base volume for a snapcopy volume because any full synchronization process would fill the snapcopy repository volume, resulting in a failed snapcopy volume.

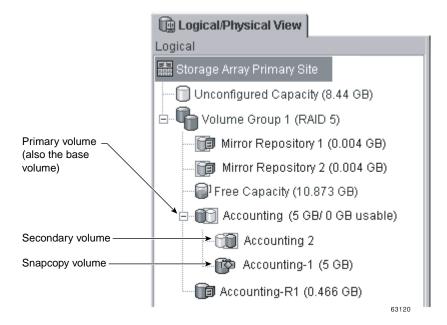


Figure 3-9 Snapcopy Volume Included in a Mirror Relationship

Snapcopy Volume Failure

In this version of the storage management software, snapcopy volumes based on the primary volume of a mirrored volume pair are permitted.

If a role reversal is performed and the primary volume is demoted to the secondary volume role, all snapcopy volumes associated with the demoted primary volume will be failed.

Note: A secondary volume **cannot** be selected to be the base volume of a snapcopy volume.

As shown in Figure 3-10, Primary Volume Accounting and Secondary Volume Accounting 2 are displayed in the **Logical** view of the **Array Management** window for the primary storage array. A snapcopy volume of Primary Volume Accounting has been created.

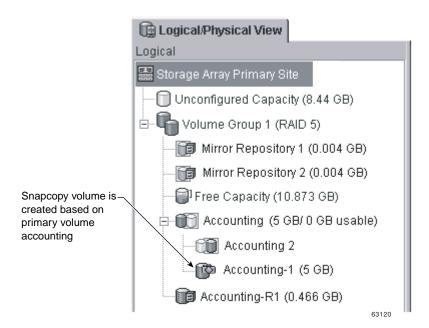


Figure 3-10 Snapcopy Volume Associated with Primary Volume Accounting

If a role reversal is performed, Primary Volume Accounting is demoted to a secondary role and the snapcopy volume fails, as shown in Figure 3-11. This is because the Secondary Volume Accounting 2 is now considered as the base volume of the snapcopy volume, which is not permitted.

007-4749-001

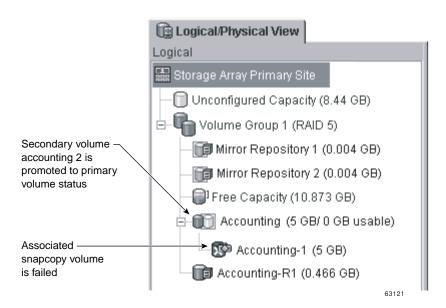


Figure 3-11 Snapcopy Volume Failure Because of Role Reversal

If a snapcopy volume fails as the result of a role reversal, you will need to perform another role reversal to promote the secondary volume back to a primary role. After the role reversal is complete, the snapcopy volume will return to an Optimal status. For more information, see "Troubleshooting" on page 143.

Performing Defragment Operations

Using an operating system-specific defragment utility to perform a defragment operation on a base volume with an associated snapshot volume will cause a copy-on-write of every data block in the base volume. This can cause the snapshot repository to fill before the defragment operation is completed. As a result, the snapshot volume will fail or host writes will fail to the base volume, depending on the Snapshot Volume Full condition that was originally set for the snapshot volume.

To prevent this from occurring, ensure that the snapshot repository volume's capacity is set to at least 105% of the size of the base volume before using a defragment utility. This is the minimum size needed to support a copy-on-write of every data block in the base volume, which will occur as a result of a defragment operation.

Hardware and Software Requirements

This section describes the minimum hardware requirements for the Remote Volume Mirroring feature. A list of the certified host bus adapters for each operating system is provided.

The minimum software requirements for the Remote Volume Mirroring feature are provided, together with the host operating systems certified for use with this version of the storage management software.

Hardware Requirements

The following are the minimum hardware requirements needed when configuring your system to use the Remote Volume Mirroring premium feature. The list includes components that are supplementary to the standard required for a basic storage array environment as described in the SGI TP9500 RAID Installation and Upgrade Guide and the SGI InfiniteStorage TP9700 RAID Installation and Upgrade Guide.

- Minimum of two multi-ported storage arrays
- RAID controllers with two or more host ports
- Switches These devices are used to connect multiple hosts with multiple storage arrays in a controlled environment. Multiple switches can be connected over a distance up to 10 km (6.25 miles) to create a fabric environment.

The certified switches for use with the Remote Volume Mirroring feature are as follows.

- Brocade Silkworm 2400 8-port, 1 Gigabit/sec (Highest Availability Campus Configuration and Intra-Site Configuration only)
- Brocade Silkworm 2800 16-port, 1 Gigabit/sec
- Brocade Silkworm 3800 16-port, 2 Gigabit/sec
- Brocade Silkworm 3200 8-port, 2 Gigabit/sec
- Short or Medium Range Fibre Channel Cables To connect the hosts and storage arrays to the switches.
- Long Range Fibre Channel Cables (Campus Configurations only) These cables are up to 10 km (6.25 miles) in length. These are used to connect Fibre Channel switches to complete long distance fabrics.

Software Requirements

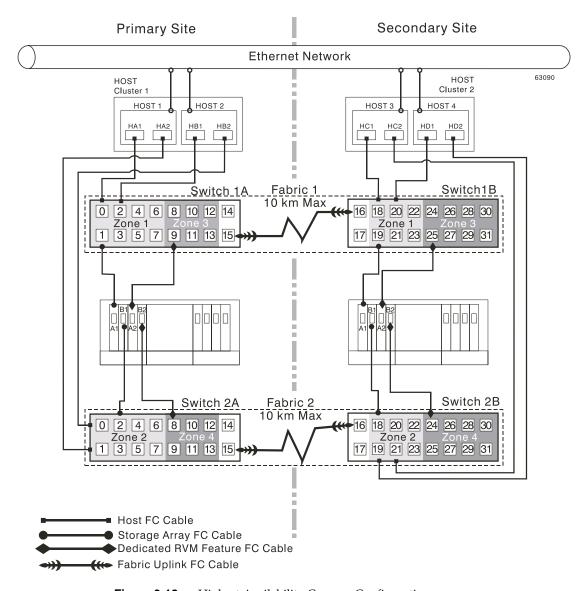
The following are the minimum software requirements needed when configuring your system to use the Remote Volume Mirroring premium feature.

- Total Performance Storage System Manager for Version 8.40 or later
- Controller Firmware Version System Manager
- Remote Volume Mirroring Feature Key

Certified Host Operating Systems

Hosts accessing mirrored volumes should be running one of the following certified operating systems when using the Remote Volume Mirroring feature:

- Windows NT 4.0 SP 6a Server Edition
- Windows 2000 SP 2
- Windows 98
- Solaris 2.6, 2.7 (Solaris 7), 2.8 (Solaris 8)
- HP-UX 11.0 or later
- Linux (Red Hat 6.x)
- Netware 5.1
- IRIX 6.5.14 or later
- AIX 4.3.3 or later


Recommended Configurations

This section describes the key configurations supported for Remote Volume Mirroring in this version of the storage management software. The level of redundancy will be determined by the type of configuration chosen.

Highest Availability Campus Configuration

The Highest Availability Campus Configuration is a fully redundant configuration, and consists of two storage arrays and four switches connected using a Fibre Channel fabric as shown in Figure 3-12. The primary storage array and secondary storage array may have a maximum connection distance of up to 10 km (or 6.25 miles).

For detailed instructions on setting up this configuration, see "Hardware and Software Installation" on page 92.

Figure 3-12 Highest Availability Campus Configuration

Campus Configuration

The Campus Configuration is a lower-cost configuration and consists of two storage arrays and two switches, connected using a Fibre Channel fabric as shown in Figure 3-13. The primary storage array and secondary storage array may have a maximum connection distance of up to 10 km (or 6.25 miles).

For detailed instructions on setting up this configuration, see "Hardware and Software Installation" on page 92.

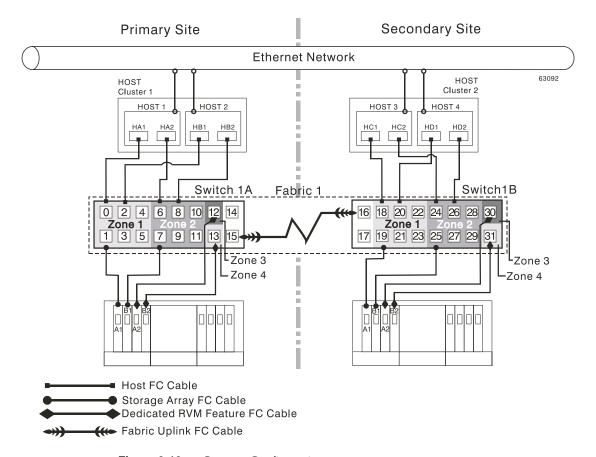


Figure 3-13 Campus Configuration

Intra-Site Configuration

The Intra-Site Configuration is the lowest-cost configuration which consists of two storage arrays and two switches, connected using a Fibre Channel fabric as shown in Figure 3-14. The primary storage array and secondary storage array may have a maximum connection distance of up to 500 m (or 0.32 miles) and would typically be located in the same building or in the same room.

For detailed instructions on setting up this configuration, see "Hardware and Software Installation" on page 92.

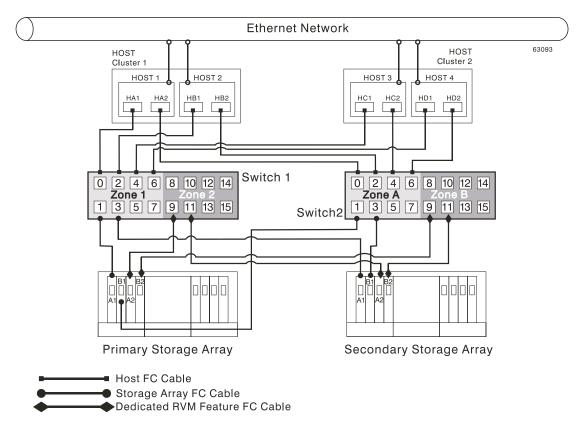


Figure 3-14 Intra-Site Configuration

007-4749-001

Hardware and Software Checklist

Complete the following checklists to ensure that all the required hardware and software components have been configured properly.

Hardware Checklist

Complete the tasks in Table 3-1 before starting the storage management software.

Table 3-1 Hardware Checklist

Та	sk Description	Validation Activity
1.	Ensure that the minimum hardware requirements have been met.	Completed.
	For a complete list of the hardware requirements, see "Hardware Requirements" on page 85	
2.	Ensure your primary and secondary storage arrays have been properly configured.	Completed.
	See the SGI TP9500 RAID Installation and Upgrade Guide and the SGI InfiniteStorage TP9700 RAID Installation and Upgrade Guide for storage array configuration information.	
3.	Ensure that your switches and cables have been properly configured.	Completed.
	For more information on configuring switches for use with the Remote Volume Mirroring feature, see "Hardware and Software Installation" on page 92	

Software Checklist

Complete the tasks in Table 3-2 before establishing mirror relationships in your storage arrays.

 Table 3-2
 Software Checklist

Та	sk Description	Validation Activity
1.	Ensure that data on the primary and secondary storage arrays participating in Remote Volume Mirroring have been backed up.	Completed.
2.	Ensure that the correct version of firmware and storage management software has been installed.	Completed.
	For more information on upgrading firmware or installing the storage management software, see "Hardware and Software Installation" on page 92	
3.	Ensure that the Remote Volume Mirroring premium feature has been enabled on both the primary and secondary storage arrays.	Completed.
	For more information on enabling premium features, see "Hardware and Software Installation" on page 92 or the Array Management window online help.	
4.	Ensure that the Remote Volume Mirroring feature has been activated and that a mirror repository volume has been created for each controller on the primary storage array.	Completed.
	For more information on activating the Remote Volume Mirroring feature, see "Using the Remote Volume Mirroring Premium Feature" on page 121	
5.	Ensure that the required primary and secondary volumes have been created on the primary and secondary storage arrays.	Completed.
	For more information on establishing a mirror relationship, see "Using the Remote Volume Mirroring Premium Feature" on page 121	

Hardware and Software Installation

This section presents information necessary to install hardware and software to run the Remote Volume Mirroring premium feature. The beginning of the section explores the steps that need to be completed before any hardware or software installation. Next, hardware installation procedures are presented, followed by software installation procedures. This section is to be followed sequentially, from start to end.

- "Pre-Installation Requirements" on page 92
- "Hardware Installation" on page 95
- "Software Installation" on page 119

Pre-Installation Requirements

This section provides necessary pre-installation information, such as site preparation, hardware and software requirements, and concepts that should be reviewed and completed before beginning any hardware or software installation procedures.

Site Preparation

The Remote Volume Mirroring feature utilizes Fibre Channel switches creating a fabric environment for data replication. These switches require only minimal additional site preparation requirements beyond basic storage array operation.

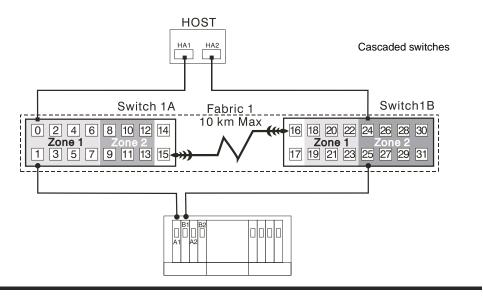
For basic site preparation considerations including the use of Fibre Channel cables and connections, see the SGI InfiniteStorage TP95000 and SGI Infinite Storage TP9700 RAID User's Guide.

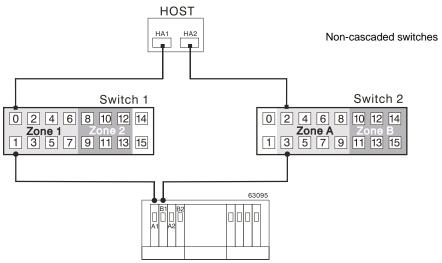
For additional site preparation considerations concerning the Fibre Channel switches, including power requirements and physical dimensions/requirements, see the documentation provided by the switch manufacturer.

Hardware and Software Requirements

Ensure that all of the required hardware and software are available before proceeding. For a list of requirements, see "Hardware and Software Installation" on page 92.

Switch Zoning Overview


Because of possible restrictions at the host level, the supported Remote Volume Mirroring configurations contain Fibre Channel switches zoned so a single host adapter can access only one controller per storage array. Additionally, all configurations utilize a separate zone for the ports reserved for the Remote Volume Mirroring feature.


Note: The uplink port that connects (cascades) switches within a fabric should not be zoned.

Switch zoning configurations are typically set up using management software provided by the manufacturer of the Fibre Channel switch. This software should be included with the materials provided when the switch was purchased.

When two or more Fibre Channel switches are cascaded together, the switch management software will combine the ports for all switches that are linked. For example, if two 16-port Fibre Channel switches are cascaded with a physical connection using a Fibre Channel cable, the switch management software will show ports 0 through 31 participating in the fabric rather than 2 switches each with ports 0 through 15. Therefore, a zone that is created containing any of these ports can exist on multiple cascaded switches.

In Figure 3-15, the top set of switches are on the same network and cascaded, therefore Zone 1 is the same zone on Switch 1A as Zone 1 on Switch 1B. The bottom set of switches are on the same network, but are not cascaded. Even though both contain a Zone 1 (shown as Zone A in Switch 2), these zones are independent of each other.

Figure 3-15 Switch Zoning in Cascaded and Non-Cascaded Fibre Channel Switches

For more information about Fibre Channel switch zoning or setting up a zone configuration, see the manufacturer's documentation provided with the switch.

Due to the varying Remote Volume Mirroring configurations, the switch zone settings are presented preceding each configuration illustration in this chapter.

Hardware Installation

This section describes the procedures necessary to properly connect and configure one or more storage arrays for use with the Remote Volume Mirroring feature.

The configurations covered in this section are as follows.

- Highest Availability Campus Configuration This is the recommended configuration for the Remote Volume Mirroring feature. Four total switches (two at each site) provide for complete redundancy in the Fibre Channel switches and fabrics in addition to all storage array components and hosts. There is no single point of failure in this configuration. To begin installing hardware for this configuration, go to the next section, "Highest Availability Campus Configuration" on page 86.
- Campus Configuration This configuration is not fully redundant because the number of Fibre Channel switches is reduced from four to two and the number of fabrics from two to one. Consequently, this makes the switches and fabrics a single point of failure. A switch failure does not usually result in a loss of data, but does affect data synchronization until the error is corrected. Therefore, the Highest Availability Campus Configuration is the recommended configuration because data synchronization can continue for any single switch failure. This configuration essentially allows the minimum required components to successfully operate the Remote Volume Mirroring premium feature between two sites up to 10 km (6.25 miles). To begin installing hardware for this configuration, go to "Campus Configuration" on page 88.
- Intra-Site Configuration This configuration is similar to the Campus Configuration because there are only two switches. However, no multiple-switch fabrics exist in this configuration. Since all hosts and storage arrays are in proximity of both Fibre Channel switches, full redundancy can be obtained within the site since each controller path is connected to a different switch. Despite being a fully redundant configuration, the Highest Availability Campus Configuration is still recommended because of disaster recovery implications. The single site creates a single point of failure if a disaster affects the entire site. To begin installing hardware for this configuration, go to "Intra-Site Configuration" on page 89.

For a list of required materials to complete any hardware installation, see "Hardware and Software Installation" on page 92.

Highest Availability Campus Configuration

Note: The Highest Availability Campus Configuration is the recommended configuration for the Remote Volume Mirroring feature.

This configuration has two Fibre Channel switches at both the primary and secondary sites to provide for complete failover and redundancy for failures in Fibre Channel switches and cables, in addition to any host or storage array failure. Two Fibre Channel switches at each site also provide redundancy to the local site in addition to a fully redundant remote configuration. There is no single point of failure in the hardware components.

Figure 3-16 shows the Highest Availability Campus Configuration after installation is complete.

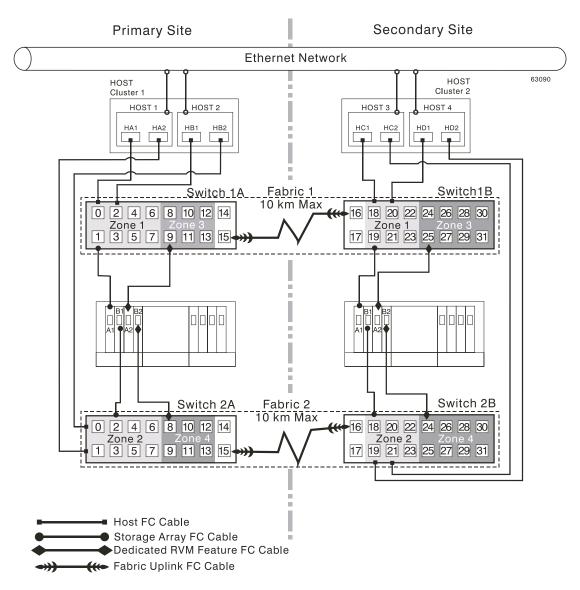
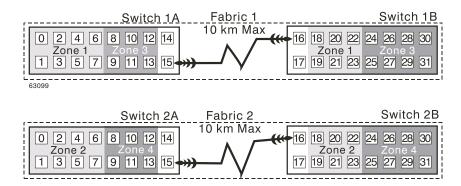


Figure 3-16 Highest Availability Campus Configuration

Switch Zoning for the Highest Availability Campus Configuration


This configuration allows for a separate zone for each reserved port for the Remote Volume Mirroring feature.

The switches do not need to be zoned exactly as presented in this configuration. However, the following are requirements when zoning switches for the Highest Availability Campus Configuration.

- There will be a total of four zones in this configuration.
 - Zones 1 and 3 will exist on Fabric 1 (Switch 1A at the primary Site, and Switch 1B at the secondary site).
 - Zones 2 and 4 will exist on Fabric 2 (Switch 2A at the primary Site, and Switch 2B at the secondary site).
- Configure the zones on the switch so that there is one port per zone for a storage array connection and one port per zone for each host.
- The uplink port must not be zoned on any Fibre Channel switch.
- Switches are zoned so that a single host adapter can access only one controller per storage array.

The switches in Figure 3-17 contain 16 ports each, which leaves many unused ports per switch. The remaining ports can be distributed among the other zones. However, it is recommended that most remaining ports be assigned to the zones containing the host connections (Zones 1 and 2 in Figure 3-17). This will allow easy set up for additional hosts to connect to the environment.

Figure 3-17 shows how the four switches are zoned for the Highest Availability Campus Configuration.

Figure 3-17 Switch Zoning for the Highest Availability Campus Configuration

Given the requirements and the zoning shown in Figure 3-17, ensure that all four switches are properly zoned before proceeding. For more information on Zoning switches, see "Switch Zoning Overview" on page 93.

Cabling for the Highest Availability Campus Configuration

Table 3-3 is provided for a convenient reference of port connections.

Table 3-3 Highest Availability Campus Configuration Connections

Site	Switch	Zone	Port	Connect To/From
Primary	1A	1	0	Host 1, HBA 1 (HA1)
Primary	1A	1	1	Controller Port A1
Primary	1A	1	2	Additional Host, HBA 1 (Optional)
Primary	1A	1	3	Additional Host, HBA 1 (Optional)
Primary	1A	1	4	Additional Host, HBA 1 (Optional)
Primary	1A	1	5	Additional Host, HBA 1 (Optional)
Primary	1A	1	6	Additional Host, HBA 1 (Optional)
Primary	1A	1	7	Additional Host, HBA 1 (Optional)
Primary	1A	3	8	Unused

 Table 3-3
 Highest Availability Campus Configuration Connections (continued)

	8			samp as comigaration contineed on (community)
Site	Switch	Zone	Port	Connect To/From
Primary	1A	3	9	Controller Port A2 (Dedicated RVM Port)
Primary	1A	3	10	Unused
Primary	1A	3	11	Unused
Primary	1A	3	12	Unused
Primary	1A	3	13	Unused
Primary	1A	None	14	Spare (May be added to either Zone)
Primary	1A	None	15	Uplink with Switch 1B
Primary	2A	2	0	Host 2, HBA 2 (HB2)
Primary	2A	2	1	Host 1, HBA 2 (HB2)
Primary	2A	2	2	Controller Port B1
Primary	2A	2	3	Additional Host, HBA 2 (Optional)
Primary	2A	2	4	Additional Host, HBA 2 (Optional)
Primary	2A	2	5	Additional Host, HBA 2 (Optional)
Primary	2A	2	6	Additional Host, HBA 2 (Optional)
Primary	2A	2	7	Additional Host, HBA 2 (Optional)
Primary	2A	4	8	Controller Port B2 (Dedicated RVM Port)
Primary	2A	4	9	Unused
Primary	2A	4	10	Unused
Primary	2A	4	11	Unused
Primary	2A	4	12	Unused
Primary	2A	4	13	Unused
Primary	2A	None	14	Spare (May be added to either Zone)
Primary	2A	None	15	Uplink with Switch 2B
Secondary	1B	None	16	Uplink with Switch 1A

 Table 3-3
 Highest Availability Campus Configuration Connections (continued)

	O		,	1 0
Site	Switch	Zone	Port	Connect To/From
Secondary	1B	None	17	Spare (May be added to either Zone)
Secondary	1B	1	18	Host 3, HBA 1 (HC1)
Secondary	1B	1	19	Controller Port A1
Secondary	1B	1	20	Host 4, HBA 1 (HD1)
Secondary	1B	1	21	Additional Host, HBA 1 (Optional)
Secondary	1B	1	22	Additional Host, HBA 1 (Optional)
Secondary	1B	1	23	Additional Host, HBA 1 (Optional)
Secondary	1B	3	24	Unused
Secondary	1B	3	25	Controller Port A2 (Dedicated RVM Port)
Secondary	1B	3	26	Unused
Secondary	1B	3	27	Unused
Secondary	1B	3	28	Unused
Secondary	1B	3	29	Unused
Secondary	1B	3	30	Unused
Secondary	1B	3	31	Unused
Secondary	2B	None	16	Uplink with Switch 2A
Secondary	2B	None	17	Spare (May be added to either Zone)
Secondary	2B	2	18	Controller Port B1
Secondary	2B	2	19	Host 4, HBA 2 (HD2)
Secondary	2B	2	20	Additional Host, HBA 2 (Optional)
Secondary	2B	2	21	Host 3, HBA 2 (HC2)
Secondary	2B	2	22	Additional Host, HBA 2 (Optional)
Secondary	2B	2	23	Additional Host, HBA 2 (Optional)
Secondary	2B	4	24	Controller Port B2 (Dedicated RVM Port)

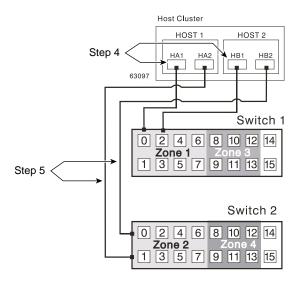
 Table 3-3
 Highest Availability Campus Configuration Connections (continued)

Site	Switch	Zone	Port	Connect To/From
Secondary	2B	4	25	Unused
Secondary	2B	4	26	Unused
Secondary	2B	4	27	Unused
Secondary	2B	4	28	Unused
Secondary	2B	4	29	Unused
Secondary	2B	4	30	Unused
Secondary	2B	4	31	Unused

Note: Begin the installation at the primary site. Repeat these steps for the secondary site when instructed to do so.

After the four Fibre Channel Switches are properly zoned, complete the following procedure to set up the Highest Availability Campus Configuration for the Remote Volume Mirroring feature.

Note: All connections are completed using Fibre Channel cables of appropriate length.


- 1. Is Remote Volume Mirroring feature equipment being added to an existing storage array environment?
 - Yes Stop I/O from all hosts before proceeding. Go to 2.
 - No This is a new storage array installation. Go to 3.
- 2. Power down all storage arrays, hosts, Fibre Channel switches, and all other equipment in the storage array environment.
- 3. Ensure that cabling between all controller enclosures and drive enclosures is complete as presented in the *SGI InfiniteStorage TP95000 and SGI Infinite Storage TP9700 RAID User's Guide*.

Note: Depending on which site is being configured, Switch 1 represents Switch 1A for the primary site, and Switch 1B for the secondary site. This applies to Switch 2 as well.

4. Connect the primary host bus adapter (Hx1) for each local host to an available port in Zone 1 of Switch 1 (Figure 3-18).

Note: The cables can be connected to any port in the proper zone of the switch.

5. Connect the secondary host bus adapter (Hx2) for each host at this site to an available port in Zone 2 of Switch 2 (Figure 3-18).

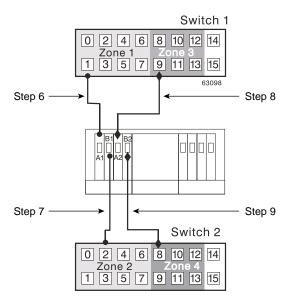
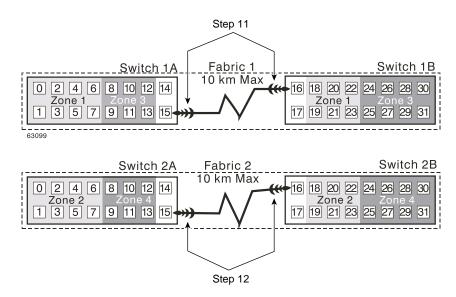


Figure 3-18 Host Bus Adapter Connections to Fibre Channel Switches

- 6. Connect controller port A1 of the storage array to an available port in Zone 1 of Switch 1 (Figure 3-19).
- 7. Connect controller port B1 of the storage array to an available port in Zone 2 of Switch 2 (Figure 3-19).
- 8. Connect controller port A2 of the storage array to an available port in Zone 3 of Switch 1 (Figure 3-19).


9. Connect controller port B2 of the storage array to an available port in Zone 4 of Switch 2 (Figure 3-19).

Note: Controller ports A2 and B2 are reserved for mirror relationship synchronization upon activation of the Remote Volume Mirroring feature. For more information, see "Connectivity and Input/Output" on page 76.

Figure 3-19 Storage Array Connections to Fibre Channel Switches

- 10. The primary site cabling is now complete. Is the secondary site cabling complete?
 - No Repeat steps 1 through 9 for the secondary site.
 - Yes Go to step 11.
- 11. Complete the fabric environment for Switch 1 by connecting Switch 1A with Switch 1B. Connect each end of a long range Fibre Channel cable (up to 10 km in length) to an unzoned port in each switch (Figure 3-20).
- 12. Repeat step 11 for Switch 2A and 2B to complete the fabric environment for Switch 2 (Figure 3-20).

Figure 3-20 Connecting Switches over a Remote Network to Complete Fabric Environments

- 13. Cabling for the Highest Availability Campus Configuration is complete. Repeat 4 through 10 for any additional storage arrays that exist in the same cabinet that will use the Remote Volume Mirroring feature.
- 14. Power up all storage arrays, hosts, Fibre Channel switches, and any other hardware at both sites that was powered down in 2.
- 15. Hardware installation is complete. The next step will be to configure the storage management software to support mirror relationships. Go to "Software Installation" on page 119.

Campus Configuration

This configuration offers the same functionality as the Highest Availability Campus Configuration, but contains only one switch at each site, rather than two. The configuration is still redundant for host bus adapters, controllers, and Remote Volume Mirroring ports, but is a single point of failure for switches. If a switch at either site fails, the Remote Volume Mirroring Feature cannot function. For this reason, the Highest Availability Campus Configuration is highly recommended for total environment redundancy.

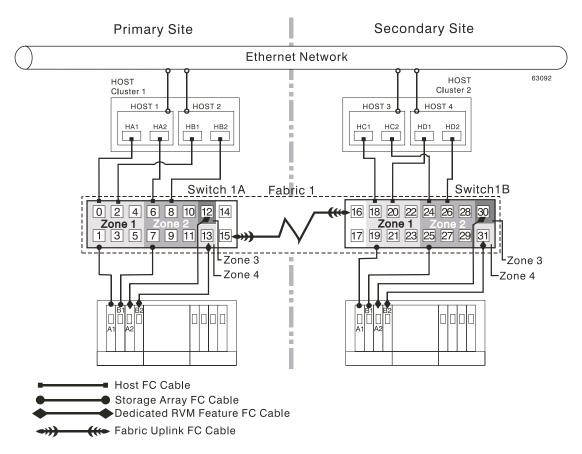
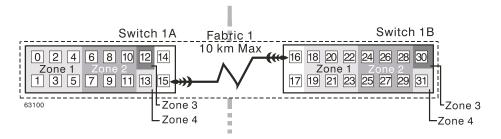


Figure 3-21 shows the Campus Configuration after installation is complete.

Figure 3-21 Campus Configurations

Switch Zoning for the Campus Configuration


This configuration allows for a separate zone for each reserved port for the Remote Volume Mirroring feature.

The switches do not need to be zoned exactly as presented in this configuration. However, the following are requirements when zoning switches for the Campus Configuration.

- There will be a total of four zones in this configuration.
 - All zones will exist on Fabric 1 (Switch 1A at the primary site, and Switch 1B at the secondary site).
 - Zones 3 and 4 will be reserved for the dedicated Remote Volume Mirroring Feature connections.
- Configure the zones on the switches so that there is one port per zone for a storage array connection and one port per zone for each host.
- The uplink port must not be zoned on either Fibre Channel switch.
- Switches are zoned so that a single host adapter can access only one controller per storage array.

The switches in Figure 3-22 contain 16 ports each, which leaves many unused ports per switch. The remaining ports can be distributed among the other zones. However, it is recommended that most remaining ports be assigned to the zones containing the host connections (Zone 1 in Figure 3-22). This will allow easy set up for additional hosts to connect to the environment.

Figure 3-22 shows how the two switches are zoned for the Campus Configuration.

Figure 3-22 Switch Zoning for the Campus Configuration

Given the requirements and the zoning example shown in Figure 3-22, ensure that both switches are properly zoned before proceeding. For more information on Zoning switches, see "Switch Zoning Overview" on page 93.

Cabling for the Campus Configuration

Table 3-4 is provided for a convenient reference of port connections.

 Table 3-4
 Campus Configuration Connections

Site	Switch	Zone	Port	Connect To/From
Primary	1A	1	0	Host 1, HBA 1 (HA1)
Primary	1A	1	1	Controller Port A1
Primary	1A	1	2	Host 2, HBA 1 (HB1)
Primary	1A	1	3	Additional Host, HBA 1 (Optional)
Primary	1A	1	4	Additional Host, HBA 1 (Optional)
Primary	1A	1	5	Additional Host, HBA 1 (Optional)
Primary	1A	2	6	Host 1, HBA 2 (HA2)
Primary	1A	2	7	Controller Port B1
Primary	1A	2	8	Host 2, HBA 2 (HB2)
Primary	1A	2	9	Additional Host, HBA 2 (Optional)
Primary	1A	2	10	Additional Host, HBA 2 (Optional)
Primary	1A	2	11	Additional Host, HBA 2 (Optional)
Primary	1A	3	12	Controller Port B2 (Dedicated RVM Port)
Primary	1A	4	13	Controller Port B2 (Dedicated RVM Port)
Primary	1A	None	14	Spare (May be added to any Zone)
Primary	1A	None	15	Uplink with Switch 1B
Secondary	1B	None	16	Uplink with Switch 1A
Secondary	1B	None	17	Spare (May be added to any Zone)
Secondary	1B	1	18	Host 3, HBA 1 (HC1)
Secondary	1B	1	19	Controller Port A1
Secondary	1B	1	20	Host 4, HBA 1 (HD1)

 Table 3-4
 Campus Configuration Connections (continued)

Site	Switch	Zone	Port	Connect To/From
Secondary	1B	1	21	Additional Host, HBA 1 (Optional)
Secondary	1B	1	22	Additional Host, HBA 1 (Optional)
Secondary	1B	1	23	Additional Host, HBA 1 (Optional)
Secondary	1B	2	24	Host 3, HBA 2 (HC2)
Secondary	1B	2	25	Controller Port B1
Secondary	1B	2	26	Host 4, HBA 2 (HD2)
Secondary	1B	2	27	Additional Host, HBA 2 (Optional)
Secondary	1B	2	28	Additional Host, HBA 2 (Optional)
Secondary	1B	2	29	Additional Host, HBA 2 (Optional)
Secondary	1B	3	30	Controller Port A2 (Dedicated RVM Port)
Secondary	1B	4	31	Controller Port B2 (Dedicated RVM Port)

Note: Begin the installation at the primary site. Repeat these steps for the secondary site when instructed to do so.

After both Fibre Channel Switches are properly zoned, complete the following procedure to set up the Campus Configuration for the Remote Volume Mirroring feature.

Note: All connections are completed using Fibre Channel cables of appropriate length.

- 1. Is Remote Volume Mirroring feature equipment being added to an existing storage array environment?
 - Yes Stop I/O from all hosts before proceeding. Go to step 2.
 - No This is a new storage array installation. Go to step 3.
- 2. Power down all storage arrays, hosts, Fibre Channel switches, and all other equipment in the storage array environment.

3. Ensure that basic cabling between all controller enclosures and drive enclosures is complete as presented in the SGI InfiniteStorage TP95000 and SGI Infinite Storage TP9700 RAID User's Guide.

Note: Depending on which site is being configured, Switch 1 represents Switch 1A for the primary site, and Switch 1B for the secondary site.

4. Connect the primary host bus adapter (Hx1) for each host at this site to an available port in Zone 1 of Switch 1 (Figure 3-23).

Note: The cables can be connected to **any** port in the proper zone of the switch.

5. Connect the secondary host bus adapter (Hx2) for each host at this site to an available port in Zone 2 of Switch 1 (Figure 3-23).

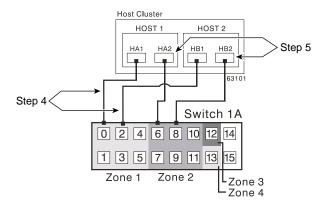


Figure 3-23 Host Bus Adapter Connections to Fibre Channel Switches

- 6. Connect controller port A1 of the storage array to an available port in Zone 1 of Switch 1 (Figure 3-24).
- 7. Connect controller port B1 of the storage array to an available port in Zone 2 of Switch 1 (Figure 3-24).
- 8. Connect controller port A2 of the storage array to an available port in Zone 3 of Switch 1 (Figure 3-24).

9. Connect controller port B2 of the storage array to an available port in Zone 4 of Switch 1 (Figure 3-24).

Note: Controller ports A2 and B2 are reserved for mirror relationship synchronization upon activation of the Remote Volume Mirroring feature. For more information, see "Connectivity and Input/Output" on page 76.

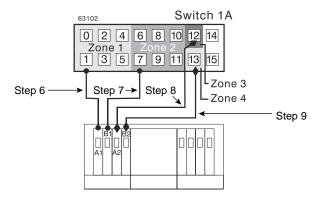
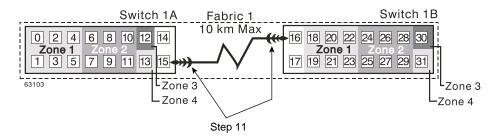



Figure 3-24 Storage Array Connections to Fibre Channel Switches

- 10. The primary site cabling is now complete. Is the secondary site cabling complete?
 - No Repeat steps 1 through 9 for the secondary site.
 - Yes Go to step 11.
- 11. Complete Fabric 1 by connecting Switch 1A with Switch 1B. Connect each end of a long range Fibre Channel cable (up to 10 km in length) to an unzoned port in each switch (Figure 3-25).

Figure 3-25 Connecting Switches over a Remote Network to Complete the Fabric Environment

- 12. Cabling for the Campus Configuration is complete. Repeat steps 4 through 10 for any additional storage arrays that exist in the same cabinet that will use the Remote Volume Mirroring feature.
- 13. Power up all storage arrays, hosts, Fibre Channel switches, and any other hardware at both sites that was powered down in step 2.
- 14. Hardware installation is complete. The next step will be to configure the storage management software to support mirror relationships. Go to "Software Installation" on page 119.

Intra-Site Configuration

This configuration is used in environments where a long distance fabric is not required because of the close proximity of the hosts and storage arrays. The configuration is still redundant for host bus adapters, controllers, Remote Volume Mirroring ports, and switches, but is a single point of failure for the site since all equipment can be destroyed by the same disaster. For this reason, the Highest Availability Campus Configuration is highly recommended for total environment redundancy.

Note: A switch failure in this configuration does not affect data access, however, an unsynchronized mirror state may occur as a result.

Figure 3-26 shows the Intra-Site Configuration after installation is complete.

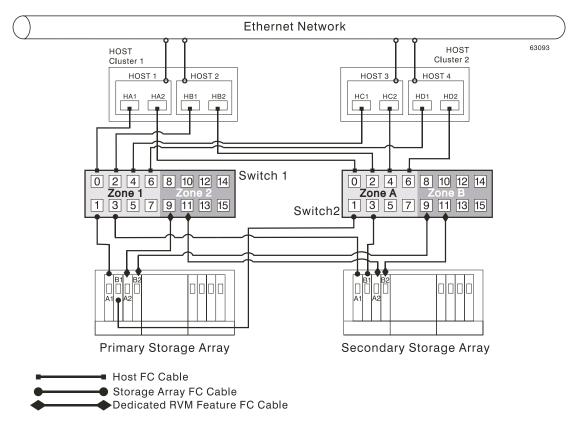


Figure 3-26 Intra-Site Configuration

Switch Zoning for the Intra-Site Configuration

This configuration is designed for switch redundancy. However, the switches are not cascaded, and are therefore independent of each other. The switches do not need to be zoned exactly as presented in this configuration. However, the following are requirements when zoning switches for the Intra-Site Configuration.

Note: Switch 2 contains Zones A and B to show that there is no relationship between Switch 1 and Switch 2, contrary to the other configurations.

There will be a total of four zones in this configuration.

- Zones 1 and 2 will exist on Switch 1.
- Zones A and B will exist on Switch 2.
- Configure the zones on the switch so that there is one port per zone for a storage array connection and one port per zone for each host.
- Switches are zoned so that a single host adapter can only access one controller per storage array.

The switches in Figure 3-27 contain 16 ports each, which leaves many unused ports per switch. The remaining ports can be distributed among the other zones. However, it is recommended that most remaining ports be assigned to the zones containing the host connections (Zone 1 and Zone A in Figure 3-27). This will allow easy set up for additional hosts to connect to the environment.

In this example, the switches use half of the ports for each zone for simplicity, although Zone 2 and Zone B require less ports.

Figure 3-27 Switch Zoning for the Intra-Site Configuration

Given the requirements and the zoning example shown in Figure 3-27, ensure both switches are properly zoned before proceeding. For more information on zoning switches, see "Switch Zoning Overview" on page 93.

Cabling for the Intra-Site Configuration

Table 3-5 is provided for a convenient reference of port connections.

Table 3-5 Intra-Site Configuration Connections

Site	Switch	Zone	Port	Connect To/From
Primary	1	1	0	Host 1, HBA 1 (HA1)
Primary	1	1	1	Controller Port A1 (Primary Storage Array)
Primary	1	1	2	Host 2, HBA 1 (HB1)

 Table 3-5
 Intra-Site Configuration Connections (continued)

	0 1/ 1	_		
Site	Switch	Zone	Port	Connect To/From
Primary	1	1	3	Controller Port A1 (Secondary Storage Array)
Primary	1	1	4	Host 3, HBA 1 (HC1)
Primary	1	1	5	Additional Host, HBA 1 (Optional)
Primary	1	1	6	Host 4, HBA 1 (HD1)
Primary	1	1	7	Additional Host, HBA 1 (Optional)
Primary	1	2	8	Unused
Primary	1	2	9	Controller Port A2 (Primary Storage Array - Dedicated RVM Port)
Primary	1	2	10	Unused
Primary	1	2	11	Controller Port A2 (Secondary Storage Array - Dedicated RVM Port)
Primary	1	2	12	Unused
Primary	1	2	13	Unused
Primary	1	2	14	Unused
Primary	1	2	15	Unused
Secondary	2	A	0	Host 1, HBA 2 (HA2)
Secondary	2	A	1	Controller Port B1 (Primary Storage Array)
Secondary	2	A	2	Host 2, HBA 2 (HB2)
Secondary	2	A	3	Controller Port B1 (Secondary Storage Array)
Secondary	2	A	4	Host 3, HBA 2 (HC2)
Secondary	2	A	5	Additional Host, HBA 2 (Optional)
Secondary	2	A	6	Host 4, HBA 2 (HD2)
Secondary	2	A	7	Additional Host, HBA 2 (Optional)
Secondary	2	В	8	Unused
Secondary	2	В	9	Controller Port B2 (Primary Storage Array - Dedicated RVM Port)
Secondary	2	В	10	Unused

Table 3-5 Intra-Site Configuration Connections (continued)

Site	Switch	Zone	Port	Connect To/From
Secondary	2	В	11	Controller Port B2 (Secondary Storage Array - Dedicated RVM Port)
Secondary	2	В	12	Unused
Secondary	2	В	13	Unused
Secondary	2	В	14	Unused
Secondary	2	В	15	Unused

After both Fibre Channel Switches are properly zoned, complete the following procedure to set up the Intra-Site Configuration for the Remote Volume Mirroring feature.

Note: All connections are completed using Fibre Channel cables of appropriate length.

- 1. Is Remote Volume Mirroring feature equipment being added to an existing storage array environment?
 - Yes Stop I/O from all hosts before proceeding. Go to step 2.
 - No This is a new storage array installation. Go to step 3.
- 2. Power down all storage arrays, hosts, Fibre Channel switches, and all other equipment in the storage array environment.
- 3. Ensure that basic cabling between all controller enclosures and drive enclosures is complete on both storage arrays as presented in the SGI InfiniteStorage TP95000 and SGI Infinite Storage TP9700 RAID User's Guide.
- 4. Connect the primary host bus adapter for each host (Hx1) to an available port in Zone 1 of Switch 1 (Figure 3-28).

Note: The cables can be connected to **any** port in the proper zone of the switch.

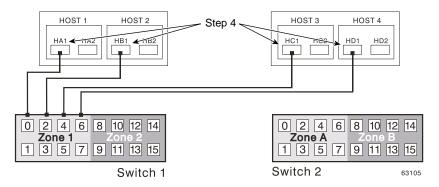
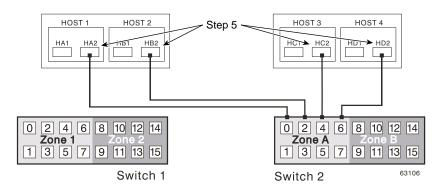



Figure 3-28 Primary Host Bus Adapter Connections to Fibre Channel Switches

5. Connect the secondary host bus adapter (Hx2) for each host to an available port in Zone A of Switch 2 (Figure 3-29).

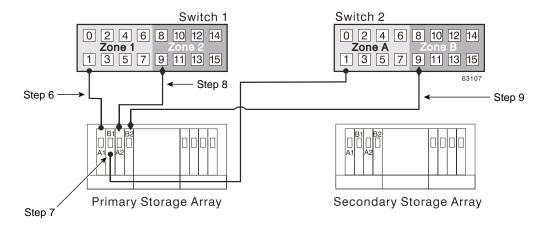


Figure 3-29 Secondary Host Bus Adapter Connections to Fibre Channel Switches

- 6. Connect controller port A1 of the primary storage array to an available port in Zone 1 of Switch 1 (Figure 3-30).
- 7. Connect controller port B1 of the primary storage array to an available port in Zone A of Switch 2 (Figure 3-30).
- 8. Connect controller port A2 of the primary storage array to an available port in Zone 2 of Switch 1 (Figure 3-30).

9. Connect controller port B2 of the primary storage array to an available port in Zone B of Switch 2 (Figure 3-30).

Note: Controller Ports A2 and B2 are reserved for mirror relationship synchronization upon activation of the Remote Volume Mirroring feature. For more information, see "Connectivity and Input/Output" on page 76.

Figure 3-30 Primary Storage Array Connections to Fibre Channel Switches

- 10. Connect controller port A1 of the secondary storage array to an available port in Zone 1 of Switch 1 (Figure 3-31).
- 11. Connect controller port B1 of the secondary storage array to an available port in Zone A of Switch 2 (Figure 3-31).
- 12. Connect controller port A2 of the secondary storage array to an available port in Zone 2 of Switch 1 (Figure 3-31).
- 13. Connect controller port B2 of the secondary storage array to an available port in Zone B of Switch 2 (Figure 3-31).



Figure 3-31 Secondary Storage Array Connections to Fibre Channel Switches

- 14. Cabling for the Intra-Site Configuration is complete. Repeat steps 4 through 13 for any additional storage arrays that exist in the same cabinet that will use the Remote Volume Mirroring feature.
- 15. Power up all storage arrays, hosts, Fibre Channel switches, and any other hardware that was powered down in step 2.
- 16. Hardware installation is complete. The next step will be to configure the storage management software to support mirror relationships. Go to "Software Installation" on page 119.

Software Installation

The Remote Volume Mirroring premium feature is automatically included as part of the Total Performance Storage System Manager version 8.3*x* installation. However, the feature is not enabled or activated by default after installation.

Note: All storage arrays participating in mirror relationships must have firmware version 5.3*x* or later installed.

For more information about installing Total Performance Storage System Manager version 8.3*x* and later, see the *SGI InfiniteStorage TPSSM Administration Guide*.

For more information about enabling or activating the Remote Volume Mirroring premium feature, see "Enabling and Activating the Remote Volume Mirroring Feature" on page 122.

Verifying Installation and Configuration

All hardware and software is now set up to support mirror relationships through the Remote Volume Mirroring feature. However, before creating mirror relationships, ensure that all required components are working properly.

Complete the following procedure for each storage array that will participate in any aspect of a mirror relationship to verify correct configuration.

1. Start the storage management software.

For more information about starting the storage management software, see the *SGI InfiniteStorage TPSSM Administration Guide* for operating system specific procedures.

- 2. Is this the first time the storage management software has been started?
 - Yes Go to step 3.
 - No Go to step 4.
- 3. Start the storage management software (for the first time).
 - a. Select **OK** when prompted for Automatic Discovery of devices.
 - Ensure that all storage arrays designated to participate in mirror relationships are displayed in the Device Tree view of the Enterprise Management window.

Note: If the storage arrays do not appear, see "Troubleshooting" on page 143.

- 4. Start the storage management software (not for the first time).
 - a. From the Enterprise Management window, select Tools > Automatic Discovery.
 - b. Select OK.
 - Verify that all storage arrays designated to participate in mirror relationships are displayed in the Device Tree view of the Enterprise Management window.
 - d. If the storage arrays do not appear, see "Troubleshooting" on page 143.

- 5. From the **Enterprise Management** window, select a storage array that will participate in mirror relationships.
- 6. Select **Tools** > **Manage Device** to open the **Array Management** window for that storage array.
- 7. From the **Array Management** window, select **Help > About**.
- 8. Verify that the version of the storage management software is 8.3x or later. If this requirement is not met, see the *SGI TP9500 RAID Installation and Upgrade Guide* and the *SGI InfiniteStorage TP9700 RAID Installation and Upgrade Guide* for storage management software upgrade procedures.
- 9. Select **OK**.
- 10. From the Array Management window, select View > Storage Array Profile.
- 11. Under the **All** tab, verify that the current firmware version is 5.3*x* or later. Select **Close**.
- 12. Observe the Remote Mirroring premium feature icon in the premium feature status area. The icon represents a Disabled/Deactivated status of the Remote Volume Mirroring feature.

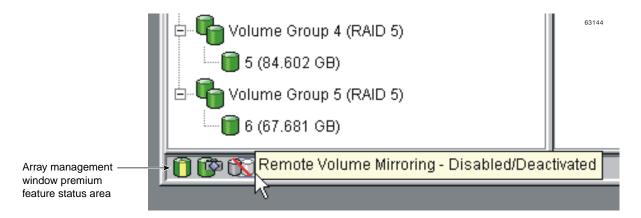
To begin working with Mirror Relationships, go to "Using the Remote Volume Mirroring Premium Feature" on page 121.

Using the Remote Volume Mirroring Premium Feature

This section consists of procedures necessary to perform the major tasks associated with the Remote Volume Mirroring feature. The section is organized sequentially; after the feature has been enabled and activated, mirror relationships can be created and then maintained. The final subsection is provided for reference only and may be required when a mirror relationship is no longer needed.

- "Enabling and Activating the Remote Volume Mirroring Feature" on page 122
- "Creating Mirror Relationships" on page 126
- "Maintaining Mirror Relationships" on page 129
- "Deactivating and Disabling the Remote Volume Mirroring Feature" on page 134

Enabling and Activating the Remote Volume Mirroring Feature


The Remote Volume Mirroring premium feature must be enabled and activated before any mirror relationships can be created. First, determine the status of the Remote Volume Mirroring feature. After determining the status, the feature will need to be enabled and activated in order to perform all functions of the Remote Volume Mirroring feature.

Determining Remote Volume Mirroring Feature Status

There are four possible statuses of the Remote Volume Mirroring feature: Disabled/Deactivated, Disabled/Activated, Enabled/Deactivated, and Enabled/Activated.

Note: The Remote Volume Mirroring feature must be in an Enabled/Activated state on the secondary storage array as well as the primary storage array to utilize all the functionality of the feature.

The current status can be determined by hovering the mouse pointer over the Remote Volume Mirroring feature icon in the premium feature status area of the **Array Management** window, as shown in Figure 3-32.

Figure 3-32 Remote Volume Mirroring Feature Status

Note: The Remote Volume Mirroring feature status for the primary storage array is managed independently from the secondary storage array. To determine the status for both storage arrays, select each storage array independently, then determine the status.

The status of the Remote Volume Mirroring feature is one of the following.

- **Disabled/Deactivated** No functions of the Remote Volume Mirroring feature can be performed. Full Remote Volume Mirroring feature functionality is not available until the feature is enabled and activated. The icon for this state is displayed in the premium feature status area as a cylinder with a mirrored reflection. The icon has a red slash through it to show it is disabled, and is greyed out to show it is deactivated. An example of this state is illustrated in Figure 3-32. For more information about enabling the Remote Volume Mirroring feature, see "Enabling the Remote Volume Mirroring Feature" on page 124. To activate the feature, see "Activating the Remote Volume Mirroring Feature" on page 124.
- **Disabled/Activated** The Remote Volume Mirroring feature is disabled, preventing new mirror relationships from being created. However, any pre-existing mirror relationships can be maintained with all functions of the Remote Volume Mirroring feature. The icon displayed for this state is similar to the Disabled/Deactivated state, because the red slash remains to show the feature is disabled. However, the cylinder and its reflection now appear green to show the feature is active. For more information about enabling the Remote Volume Mirroring feature, see "Enabling the Remote Volume Mirroring Feature" on page 124.
- Enabled/Deactivated The Remote Volume Mirroring feature is enabled, but not activated. The icon displayed for this state is similar to the Disabled/Deactivated state, because the cylinder and its reflection remain grey. However, the red slash no longer appears, therefore, the feature is enabled. To activate the feature, see "Activating the Remote Volume Mirroring Feature" on page 124.
- Enabled/Activated The Remote Volume Mirroring feature is enabled and active.
 Mirror relationships can be created and maintained. The icon for this state is
 displayed in the premium feature status area as a green cylinder with a mirrored
 reflection. For more information about creating a mirror relationship, see "Creating
 Mirror Relationships" on page 126.

Enabling the Remote Volume Mirroring Feature

If the current status of the Remote Volume Mirroring feature is Disabled/Deactivated or Disabled/Activated, complete the following to enable the Remote Volume Mirroring feature.

1. From the Array Management window, select Storage Array > Premium Features > Enable.

The **Select Feature Key File** dialog is displayed.

Note: The **Select Feature Key File** dialog filters for files with the .key extension.

- 2. Select the folder in which you placed the generated key file.
- 3. Select the appropriate key file, and then select **OK**.

The **Enable Premium Feature** dialog is displayed.

Select Yes.

The Remote Volume Mirroring premium feature is now enabled. The icon in the premium feature status area no longer displays a red slash. To further verify the status of the feature, select **Storage Array** > **Premium Features** > **List**.

- 5. Repeat step 1 through step 4 for the secondary storage array and any additional storage array that will participate in the Remote Volume Mirroring Feature.
- 6. Has the Remote Volume Mirroring feature been activated on both primary and secondary storage arrays?
 - No Go to "Activating the Remote Volume Mirroring Feature" on page 124.
 - Yes Go to "Creating Mirror Relationships" on page 126.

Activating the Remote Volume Mirroring Feature

Activating the Remote Volume Mirroring feature prepares the storage array to create and configure mirror relationships. After the feature is activated, the secondary ports for each controller are reserved and dedicated to Remote Volume Mirroring feature usage. In addition, a mirror repository volume is automatically created for each controller in the storage array.

If the current status of the Remote Volume Mirroring feature is Enabled/Deactivated, complete the following to activate the premium feature.

1. From the Array Management window, select Storage Array > Remote Volume Mirroring > Activate.

The Activate Remote Volume Mirroring - Introduction dialog is displayed.

Note: Select **Back** at any time to change information in previous dialogs.

- 2. Decide where the mirror repository volumes will reside. Select one of the following.
 - Use free capacity on existing volume group If this option is selected, then a corresponding volume group must be selected as well.
 - a. Select a volume group.
 - b. Select **Next**.
 - c. Go to step 6.
 - Create a new volume group using unconfigured capacity If this option is selected, more information must be collected about the new volume group. Go to step 3.
- 3. In the **Create New Volume Group** dialog, select the RAID level for the new volume group.
- 4. Under the drive selection choices, select one of the following.
 - Automatic The drives are chosen automatically according to available capacity.
 - Manual This option gives the user the option to specify which drives contain the mirror repository volume.

Note: If the RAID level for the new volume group is RAID 1, then the number of drives must be an even number. If an odd number of drives is selected, an error message will display when **Apply** is selected.

Note: RAID 0 is not an option, therefore, the number of drives selected must always be greater than one for all RAID levels.

Note: RAID 3 and 5 require a minimum of 3 drives.

- Select the desired drives. Multiple drives can be selected by pressing Ctrl+click.
- b. Select Apply.
- 5. Select **Next**.
- 6. Review the information in the **Preview** dialog, then select **Finish** if all information is satisfactory.
- 7. Is the storage array password protected?
 - Yes Go to step 8.
 - No Go to step 9.
- 8. Enter the password and select **OK**.
- 9. Review the information in the Completed dialog, then select OK to finish the Remote Volume Mirroring feature activation.
 - The Remote Volume Mirroring premium feature is now activated. The icon in the premium feature status area changes from grey to green.
- 10. Repeat step 1 through step 9 for the secondary storage array and any additional storage array that will participate in the Remote Volume Mirroring Feature.
- 11. Has the Remote Volume Mirroring feature been enabled on both primary and secondary storage arrays?
 - No Go to "Enabling the Remote Volume Mirroring Feature" on page 124.
 - Yes Go to "Creating Mirror Relationships" on page 126.

Creating Mirror Relationships

The Remote Volume Mirroring premium feature should be enabled and activated prior to creating mirror relationships. After the feature is enabled and activated, the secondary host ports on the storage arrays are reserved for data synchronization between a primary and secondary volume of a mirror relationship, and mirror relationships can be created.

This subsection will present information for the following topics.

- How to create volumes to be a primary or secondary volume in a mirror relationship, if not already created.
- How to use the **Create Remote Volume Mirror Wizard** to create mirror relationships.
- How to view mirror relationship configuration details.

Creating Volumes for Mirror Relationships

Before any mirror relationships can be created, volumes must exist at both the primary and secondary sites. The volume residing in the primary storage array is the primary volume. Similarly, the volume residing in the secondary storage array is the secondary volume.

If a primary volume does not exist, one will need to be created on the primary storage array.

If a secondary volume does not exist, one will need to be created on the secondary storage array.

Consider the following when creating the secondary volume:

- The secondary volume must be of equal or greater size than the primary volume.
- The RAID level of the secondary volume does not have to be the same as the primary volume.

For more information about creating volumes, see the **Array Management** window online help.

When adequate volumes exist at both sites, mirror relationships can be created using the **Remote Volume Mirror Wizard**.

Creating a Mirror Relationship Using the Create Remote Volume Mirror Wizard

The **Create Remote Volume Mirror Wizard** allows a user to create a mirror relationship between a primary volume and a secondary volume.

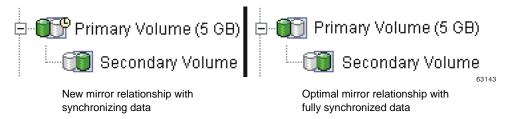
- 1. Before beginning the wizard, ensure the following requirements are met.
 - The Remote Volume Mirroring premium feature is enabled on both storage arrays in which the primary and secondary volumes will reside.

- The Remote Volume Mirroring feature is activated on both arrays.
- The storage arrays are connected through a proper Fibre Channel fabric configuration.
- The secondary volume is RAID level 0, 1, 3, or 5, and is of equal or greater size than the primary volume.
- 2. In the **Logical/Physical View** of the **Array Management** window, select the volume that will be the primary volume in the mirror relationship.
- 3. Select Volume > Remote Volume Mirroring > Create.

The **Create Remote Volume Mirror** dialog is displayed stating requirements similar to those mentioned at the beginning of this section.

- 4. Select Next.
- 5. Perform the procedure in the **Select Remote Storage Array** dialog.
 - a. Select the proper storage array.
 - Select Next.
- 6. Select the volume that will be the secondary volume in the mirror relationship.
- Select Next.
- 8. Select the Synchronization Priority Level.

Note: For more information about the Synchronization Priority Level, see "Changing the Synchronization Priority Level" on page 131.


- Select Finish.
- 10. If the remote storage array is password protected, proceed to step 10, otherwise, go to step 11.
- 11. Enter the password and select **OK**.
- 12. Create another mirror relationship?
 - Yes Complete the following steps:
 - a. Select the volume that will become the next primary volume.
 - Select Next.
 - c. Repeat steps 4 through 10 for each additional mirror relationship.

- No Go to step 12.
- 13. Review the information in the **Completed** dialog, then select **OK** to complete the **Create Remote Volume Mirror Wizard**.

The primary and secondary volumes are now displayed with the mirror relationship icons, which will change slightly upon completion of the data synchronization. The amount of time for the data to be synchronized between the two volumes varies proportionally to the size of the volume being mirrored. After the synchronization is complete, the icons will change to the optimal state mirror relationship icons.

Note: To view all icons associated with the Remote Volume Mirroring feature and obtain a description of their purpose, refer to the **Array Management** window online help.

Figure 3-33 shows how the icons appear during and after data synchronization.

Figure 3-33 Synchronizing (Left) and Optimal (Right) Mirror Relationship

14. The next step is maintaining the mirror relationship. Go to "Maintaining Mirror Relationships" on page 129.

Maintaining Mirror Relationships

Once a mirror relationship is active, certain attributes of the relationship can be modified at any time. This section describes how to view information about the mirror relationship, change the synchronization priority level, remove a mirror relationship, and delete volumes participating in a mirror relationship.

Viewing Mirror Relationship Details

The mirror relationship that exists between the primary volume and the secondary volume can be examined by various methods, including: the **Storage Array Profile**, the **Mirroring Properties** dialog, and the **View Associated Components** dialog.

The Storage Array Profile

The **Storage Array Profile** is the most efficient way to view information about any or all components of the storage array. Details for all volumes, including the primary, secondary, and mirror repository volumes can all be easily viewed through the **Storage Array Profile** simultaneously. The **Storage Array Profile** also contains specific information for components associated with mirror relationships.

Complete the following procedure to display a **Storage Array Profile**.

- 1. From the Array Management window select View > Storage Array Profile.
- 2. Select the **Volumes** tab.
 - a. To view information about the mirror relationships that exist on this storage array, select the **Mirrors** tab.
 - b. To view information about the mirror repository volume, select the **Repositories** tab.

Note: All information shown in the **Storage Array Profile** can be saved as a .txt file by selecting the **Save as** button. The **Save Profile** dialog that is displayed will have the option of saving the current window, multiple windows, or the entire **Storage Array Profile**.

The Mirroring Properties Dialog

The **Mirroring Properties** dialog displays all the physical characteristics of a single volume in the mirror relationship. The dialog displays the same information as the **Storage Array Profile** for the selected volume, but is specific to that volume. In addition, the synchronization progress is displayed if the selected volume is synchronizing data with another volume in a mirror relationship.

Note: Use the following procedure to view the synchronization progress of a recently created mirror relationship.

Complete the following procedure for each volume that needs to be examined in the mirror relationship.

- 1. Select the primary or secondary volume.
- 2. Select **Volume** > **Properties**.
- 3. Select the **Mirroring** tab.

The View Associated Components Dialog

The **View Associated Components** dialog provides a more graphical representation of the volumes participating in the mirror relationship. In addition, more detail is given for all components, rather than only the selected volume.

Complete the following procedure to view all associated components in a mirror relationship, including primary, secondary, and mirror repository volumes.

- 1. Select the primary or secondary volume in a mirror relationship.
- 2. Select **View** > **Associated Components**.

The View Associated Components dialog is displayed.

Changing the Synchronization Priority Level

The Synchronization Priority Level of a mirror relationship defines the amount of system resources used to synchronize the data between the primary and secondary volumes of a mirror relationship. If the highest priority level is selected for a mirror relationship, the data synchronization uses a high amount of system resources to perform the full synchronization, but may decrease performance for host I/O, including other mirror relationships. Conversely, if the lowest synchronization level is selected, there is less impact on complete system performance, but the full synchronization may be slower.

To change the Synchronization Priority Level for a mirror relationship, complete the following procedure.

- 1. In the **Logical/Physical View** of the **Array Management** window, select a primary volume of a mirror relationship.
- 2. Select Volume > Remote Volume Mirroring > Change > Synchronization Priority.
 - The **Change Synchronization Priority** dialog is displayed. The primary volume chosen in step 1 is selected by default in the **Select Volumes** selection area.
- Select one or more volumes using the Select All button, Ctrl+click, or Shift+click.
- 4. Select the synchronization priority level by moving the slider bar. The five levels are Lowest, Low, Medium, High, and Highest. All selected volumes will change to the same synchronization priority level.
- Select OK.
- 6. Select **Yes** when the **Confirmation** dialog is displayed.
- 7. Select **OK** when the **Completed** dialog is displayed.

Removing Mirror Relationships

Removing a mirror relationship between a primary and secondary volume does not affect any of the existing data on either volume. The link between the volumes is removed, but the primary volume still continues normal I/O operation. This action can be performed for backup routines, particularly from the secondary volume. A mirror relationship between the two volumes can be re-created unless one of the volumes is deleted.

To remove a mirror relationship between two volumes, complete the following procedure.

- 1. From the **Array Management** window, select a local primary volume or local secondary volume of a mirror relationship.
- 2. Select Volume > Remote Volume Mirroring > Remove Mirror Relationship.
 - The **Remove Mirror Relationship** dialog appears displaying all mirror relationships associated with this storage array.
- 3. Select one or more mirror relationships to remove using the **Select All** button, Ctrl+click, or Shift+click.
- 4. Carefully review the information presented in the Confirmation dialog.
- Select Yes.

Deleting Primary or Secondary Volumes

Deleting a volume participating in a mirror relationship removes the mirror relationship and completely deletes the volume from the storage array. The mirror relationship cannot be redefined until a new volume is created or an alternate volume is chosen to replace the deleted volume.

To delete a primary or secondary volume from a mirror relationship, complete the following procedure.

Note: This action permanently removes data from the selected volume.

- From the Array Management window, select the primary or secondary volume that will be deleted.
- 2. Select Volume > Delete.

The following information is displayed in the **Delete Remote Volume Mirror** dialog.

Caution: Carefully review the following information before proceeding with step 3.

Deleting this volume will destroy all data on it, remove the mirror relationship that exists between it and its associated volume in the mirror pair, and increase the Free Capacity on the volume group.

NOTE: The Data on the associated volume will not be deleted.

Stop all ${\ensuremath{\text{I}}}/{0}$ and unmount any file systems on this volume before proceeding

IMPORTANT: If you see system error messages related to this deleted volume, you may need to reboot your host system to permanently remove any information about this volume.

Are you sure you want to continue?

- 3. Type **Yes** in the text area to delete the volume.
- 4. Select **OK**.

Deactivating and Disabling the Remote Volume Mirroring Feature

If no mirror relationships exist and the Remote Volume Mirroring feature is no longer required, then deactivating the feature will reestablish normal use of dedicated ports on both storage arrays and delete both mirror repository volumes.

The Remote Volume Mirroring feature can also be disabled. When the feature is in the Disabled/Active state, previously existing mirrors can still be maintained and managed, however, new mirror relationships cannot be created. When in the Disabled/Deactivated state, no Remote Volume Mirroring feature activity can occur.

Deactivating the Remote Volume Mirroring Feature

To change the Remote Volume Mirroring feature status from Enabled/Activated to Enabled/Deactivated or from Disabled/Activated to Disabled/Deactivated, complete the following procedure.

Caution: This procedure will delete all mirror repository volumes on the current storage array.

- 1. Verify that all mirror relationships have been removed. For more information, see "Removing Mirror Relationships" on page 132.
- 2. Select Storage Array > Remote Volume Mirroring > Deactivate.
- 3. Carefully review the information presented in the **Confirmation** dialog.
- 4. Select **Yes**.

Disabling the Remote Volume Mirroring Feature

To change the Remote Volume Mirroring feature status from Enabled/Deactivated to Disabled/Deactivated or from Enabled/Activated to Disabled/Activated, complete the following procedure.

- From the Array Management window, select Storage Array > Premium Features > Disable.
- Select Remote Volume Mirroring.
- Select OK.
- 4. Carefully review the information presented in the Confirmation dialog.
- 5. Select **Yes**.

Disaster Recovery

This section describes the actions to take to prepare for a disaster and the actions to take if a hardware component or complete site failure should occur.

As businesses require the ability to access critical data round-the-clock with little or no downtime, system administrators are required to ensure that critical data is safeguarded against potential disasters whether natural or man-made.

In preparing for a potential disaster, system administrators need to develop a disaster recovery plan that describes the procedures devised to prevent and prepare for disasters, and proposed actions for responding to and recovering from disasters if they occur.

- "Planning for Disaster Recovery" on page 135
- "Recovering from Switch Failures" on page 137
- "Recovering from Storage System Failures" on page 138
- "Reversing the Roles of Primary and Secondary Volumes" on page 141

Planning for Disaster Recovery

This section provides information on the steps that should be undertaken in preparation for a possible disaster or catastrophic failure. Preparation steps discussed include backing up critical data prior to and during Remote Volume Mirroring, using host clustering software for failover protection, and preparing the secondary storage array that will participate in the Remote Volume Mirror.

The Remote Volume Mirroring checklist should be completed to ensure that your primary and secondary storage arrays are prepared correctly.

Backing Up Critical Data

Backing up critical data regularly is vital insurance against disasters or catastrophic failure. Backups should be performed regardless of whether the Remote Volume Mirroring feature is in use.

A backup of all critical data on both the primary and secondary storage arrays participating in Remote Volume Mirroring should be performed prior to creating a

Remote Volume Mirror. Periodic backups of the primary storage array should be carried out after Remote Volume Mirrors are in use.

Backups to tape or disk can be made while I/O continues using the Snapcopy Volume premium feature, which captures a point-in-time image of a volume. For more information on using snapcopy volumes, see "Snapcopy Volumes" on page 81 or the **Array Management** window online help.

Preparing the Secondary Storage Array

When preparing for a potential disaster, ensure the secondary storage array, to which the data is being mirrored, is structured in the same manner as the primary storage array.

Prior to creating a Remote Volume Mirror, you will need to prepare your secondary storage array to ensure that storage partitions are defined and ready to function if secondary storage array volumes are promoted to primary roles.

Defining Storage Partitioning

The Storage Partitioning premium feature allows you to define which hosts have access to which volumes on the storage array and at what logical unit number. When configuring your secondary storage array, replicate the storage partitions that were previously defined on the primary storage array. This will ensure that after a role reversal is carried out, hosts will be able to access their required data.

For more information on Storage Partitioning, see "Using Other Premium Features and Remote Volume Mirroring" on page 80 or the **Array Management** window online help.

Ensuring Failover Protection Using Host Clustering Software

Host failover clustering is a process in which the operating system and application software work together to provide continuous availability in the event of an application failure, hardware failure, or operating-system error. Software products that support remote failover may refer to global or geographic cluster management.

The Remote Volume Mirroring feature can be used in conjunction with remote host failover to provide complete redundancy of host systems and storage arrays. If a disaster occurs at the primary storage array, hosts at the secondary storage array will take over processing and initiate a role change to the secondary storage array.

Remote failover is not a requirement for a disaster recovery plan. Depending on the requirements for how quickly operations must be functioning at Optimal status again, mirroring the storage arrays and depending on manual startup of the remote hosts may be acceptable.

Disaster Preparation Checklist

The checklist in Table 3-6 should be completed in preparation for disaster recovery. Complete the steps listed to ensure access to mirrored data is possible in the event of a disaster or catastrophic failure.

 Table 3-6
 Disaster Preparation Checklist

Task Description		Validation Activity
1.	Ensure that all critical data has been backed up on both the primary and secondary storage arrays.	Completed.
2.	Ensure that Storage Partitioning is in place on the secondary storage array. This will reduce any lag time when promoting a secondary volume to the primary volume role.	Completed.
	For more information on setting up Storage Partitioning, see the Array Management window online help.	
3.	If possible, ensure that the your host clustering software is configured to allow host failover between the primary storage array and secondary storage array participating in Remote Volume Mirroring.	Completed.
	For more information, see your host clustering software documentation.	

Recovering from Switch Failures

The Campus Configuration is the only configuration where each switch is a single point of failure. In all other configurations, if a switch fails, at least one other switch is configured to be an alternate path for all I/O. The single switch at each site is not only responsible for the communication between the two sites for the Remote Volume Mirroring feature, but for all host to storage array I/O as well.

If a switch fails in the Campus Configuration, the system administrator should decide whether or not to do a complete site failover. This decision should be based on the immediate availability of a backup switch or the time it will take to receive a replacement.

If a replacement switch is not readily available, one of the following temporary scenarios will need to occur until the switch can be replaced.

- Direct connection between hosts and storage arrays This will bypass the switch
 and allow normal I/O to continue. All mirror relationships will be suspended until
 a normal configuration is resumed. Since the storage arrays have a finite number of
 host connections, all hosts may not be able to access the storage array. For
 information on how to directly connect hosts and storage arrays, see the SGI
 InfiniteStorage TP95000 and SGI Infinite Storage TP9700 RAID User's Guide.
- Entire Site Failover The switch at the primary site has failed, however, the switch
 at the secondary site is still functional, which allows all hosts to access the switch
 and storage arrays. Mirror relationships will be suspended until the primary
 storage array is recovered. If a complete site failover is needed to continue normal
 operations, see "Entire Site Failover Procedure" on page 139.

Recovering from Storage System Failures

This section provides procedures for recovering storage systems where one of the following situations has occurred:

- The primary storage array is damaged or destroyed.
- Entire primary site is damaged or destroyed.

Both situations require a complete site failover from the primary site to the secondary site so that business operations can continue. For a secondary site failure, no site failover is necessary. If the primary volume is not damaged, then a full synchronization will occur when the site is recovered. If the primary storage array is damaged, follow the procedure in "Rebuilding a Damaged Site" on page 140.

Note: The procedures in this section should be completed in the order presented to ensure that the affected site or storage array is recovered successfully.

Entire Site Failover Procedure

Entire site failover is necessary when an event occurs that inhibits normal operation to the primary site for an extended period of time.

- Manually reverse the role of the secondary volume of the mirror relationship to the primary role. For more information, see "Reversing the Roles of Primary and Secondary Volumes" on page 141.
- 2. Have all hosts at the secondary site been properly configured for host failover?
 - Yes Go to step 4.
 - No Go to step 3.
- 3. Reinstall host cluster software and reconfigure settings as needed. For more information about installing and configuring host cluster software, refer to the documentation provided with the software.
- 4. Has Storage Partitioning been pre-configured so that proper hosts can access appropriate volumes?
 - Yes Go to step 6.
 - No Go to step 5.
- 5. Configure the storage partitioning so that host to volume access is identical to the primary site configuration. For more information about setting up storage partitioning, see "Using Other Premium Features and Remote Volume Mirroring" on page 80.
- 6. Resume normal operation with the secondary site acting as a new, fully-functioning primary site.
 - The entire site failover is complete. The primary site must now be reconfigured and the Remote Volume Mirroring environment must be re-created. The next step will depend on the resulting status of the storage array from the disaster.
- 7. Is the storage array and all the contained data recovered and fully operational?
 - Yes Go to "Re-creating a Mirror Relationship" on page 140.
 - No Go to "Rebuilding a Damaged Site" on page 140.

Rebuilding a Damaged Site

If a disaster occurs to the primary or secondary site that renders the storage array or all data on the storage array irreparable, then the site needs to be rebuilt with new equipment.

Complete the following procedure to rebuild a damaged site:

- Obtain new storage arrays and any hosts and equipment needed to properly use the Remote Volume Mirroring feature. It is recommended that the new equipment have equal or greater hardware and software specifications than the damaged equipment.
- 2. Depending on the configuration, complete the switch zoning and hardware installation procedure as presented in "Hardware and Software Installation" on page 92 for this site only.
- 3. Create a volume to replace the mirrored volume damaged on the original storage array. The new volume should be identical to the specifications of the previously damaged volume.
- 4. Ensure storage partitioning is properly defined so that it may take over normal operation from the secondary site. For more information on setting up storage partitioning, see "Using Other Premium Features and Remote Volume Mirroring" on page 80.
- 5. Ensure the host cluster software is properly configured so that the hosts can take over I/O from the secondary site hosts. For more information about installing and configuring host cluster software, refer to the documentation provided with the software.
- 6. The damaged site is now ready to support mirror relationships. Go to "Re-creating a Mirror Relationship" on page 140.

Re-creating a Mirror Relationship

After the damaged site is back online and properly configured, mirror relationships can be resumed by completing the following procedure.

- From the undamaged site, remove all mirror relationships that existed prior to the disaster.
- 2. From the undamaged site, create a mirror relationship using the volume on the recovered primary site as the secondary volume. For more information, see "Maintaining Mirror Relationships" on page 129.

- 3. Ensure storage partitioning is properly defined on the recovered primary site so that it may take over normal operation from the secondary site. For more information on setting up storage partitioning, see "Using Other Premium Features and Remote Volume Mirroring" on page 80.
- 4. Ensure the host cluster software is properly configured so that the hosts at the recovered primary site can take over I/O from the secondary site hosts. For more information about installing and configuring host cluster software, see the documentation provided with the software.
- 5. Perform a role reversal so that the recovered primary site now possesses the active primary volume, and the secondary volume now exists on the secondary site. For more information, see "Reversing the Roles of Primary and Secondary Volumes" on page 141.

The Remote Volume Mirroring configuration is now ready.

Reversing the Roles of Primary and Secondary Volumes

A role reversal is the act of promoting the secondary volume to be the primary volume within the mirrored volume pair, and demoting the primary volume to be the secondary volume.

A role reversal may be performed using one of the following methods:

- Changing a secondary mirrored volume to a primary volume This option
 promotes the selected secondary volume to become the primary volume of the
 mirrored pair and would be used when a catastrophic failure has occurred. For
 step-by-step instructions, see "Changing a Secondary Volume to a Primary Volume"
 on page 142.
- Changing a primary mirrored volume to a secondary volume This option demotes
 the selected primary volume to become the secondary volume of the mirrored pair
 and would be used during normal operating conditions. For step-by-step
 instructions, see "Changing a Primary Volume to a Secondary Volume" on page 142.

Role reversals may also be performed using the set command in the Script Editor or the command line interface. For more information, see the **Enterprise Management** window online help.

Changing a Secondary Volume to a Primary Volume

A secondary volume is typically promoted to a primary volume role when a catastrophic failure has occurred to the storage array that contains the primary volume, and the secondary volume needs to be promoted so that hosts can access data and business operations can continue.

This option is not available unless the Remote Volume Mirroring premium feature has been activated.

Note: When the secondary volume becomes a primary volume, any hosts that are mapped to the volume through a volume-to-LUN mapping will now be able to read or write to the volume.

If a communication problem between the secondary and primary sites prevents the demotion of the remote primary volume, an error message is displayed. However, you are given the opportunity to proceed with the promotion of the secondary volume, even though this will lead to a dual-primary condition.

To promote a secondary volume to a primary role:

- Select the secondary volume in the Logical view, then select Volume > Remote Mirroring > Change > Role to Primary.
 - The Change to Primary dialog is displayed.
- 2. Select **Yes**. The secondary volume is promoted to be the primary volume role in the Remote Volume Mirror.

After the controller owner of the primary volume can be contacted, the primary volume is automatically demoted back to be the secondary role in the mirror relationship.

Changing a Primary Volume to a Secondary Volume

Changing a primary volume to a secondary role is used for role reversals during normal operating conditions. You can also use this option during a **Recovery Guru** procedure when a dual-primary condition occurs.

This option is not available unless the Remote Volume Mirroring premium feature has been activated.

Note: Any hosts that are accessing the primary volume through a volume-to-LUN mapping will no longer be able to read or write to the volume. When the primary volume becomes a secondary volume, only remote writes initiated by the primary controller will be written to the volume.

If a communication problem between the primary and secondary sites prevents the promotion of the secondary volume, an error message is displayed. However, you are given the opportunity to proceed with the demotion of the primary volume, even though this will lead to a dual-secondary condition.

If the selected primary volume has associated snapcopy volumes, demoting this volume to a secondary role will cause the associated snapcopy volumes to fail.

To demote a primary volume to a secondary role:

- Select the primary volume in the Logical view, then select Volume > Remote Mirroring > Change > Role to Secondary.
 - The **Change to Secondary** dialog is displayed.
- Select Yes. The primary volume is demoted to be the secondary volume in the Remote Volume Mirror.

Once the controller owner of the secondary volume can be contacted, the secondary volume is automatically promoted back to the primary volume in the mirror relationship.

Troubleshooting

This chapter provides information about troubleshooting some of the more commonly encountered problems when using the Remote Volume Mirroring feature.

Troubleshooting topics include the following:

- "General Troubleshooting" on page 144
- "Inappropriate Fibre Channel Fabric Configurations" on page 151
- "Storage Array Component Failures" on page 152
- "General Switch Troubleshooting" on page 153

- "Remote Volume Mirroring Critical Events" on page 154
- "Controller Firmware Version 5.30 and 5.40 Upgrades" on page 156

Locate the section that directly relates to your problem or consult the section describing general troubleshooting techniques. If your problem is not discussed in any of the sections in this chapter, contact technical support.

General Troubleshooting

This subsection describes some of the typical problems that may be encountered when using the Remote Volume Mirroring premium feature. The information is presented in order from the time the feature is enabled and activated, to problems that may be encountered completing typical tasks when using the Remote Volume Mirroring feature.

Information about the probable cause and recommended resolution for each problem is provided. If your problem is not addressed in this section, see the remaining subsections in this section before contacting technical support.

 The Remote Volume Mirroring menu options in the Array Management window are greyed out and unavailable.

Cause:

The Remote Volume Mirroring premium feature is not enabled or activated.

Resolution:

- 1. Enable the Remote Volume Mirroring premium feature. A feature key file is required to enable premium features. If one has not been supplied, contact your storage supplier.
- 2. Activate the Remote Volume Mirroring feature.

For step-by-step instructions on enabling and activating the Remote Volume Mirroring feature, see "Enabling and Activating the Remote Volume Mirroring Feature" on page 122 or the **Array Management** window online help.

• The Remote Volume Mirroring icon in the premium feature status area is greyed out with a red line.

Cause:

The Remote Volume Mirroring premium feature is not enabled or activated.

Resolution:

- Enable the Remote Volume Mirroring premium feature. A feature key file is required to enable premium features. If one has not been supplied, contact your storage supplier.
- 2. Activate the Remote Volume Mirroring feature.

For step-by-step instructions on enabling and activating the Remote Volume Mirroring feature, see "Enabling and Activating the Remote Volume Mirroring Feature" on page 122 or the **Array Management** window online help.

 When creating a Remote Volume Mirror, an error message listing the code INVALID_MIRROR_CANDIDATE_VOL is received.

Cause:

The secondary volume candidate was participating in a mirror relationship with a different volume on this storage array. The mirror relationship was successfully removed from the other storage array. However, a communication error prevented the successful removal of the mirror relationship on this storage array.

A volume on this storage array still has a mirror relationship with the secondary volume candidate.

Resolution:

- Select the View > Storage Array Profile option, then select the Volumes tab and the Mirrors tab.
- Locate the volume that is still participating in the mirror relationship with the secondary volume candidate and remove the mirror relationship. For step-by-step instructions, see "Removing Mirror Relationships" on page 132 or the Array Management window online help.
- 3. Re-create the intended Remote Volume Mirror using the original candidate volumes. For step-by-step instructions, see "Creating a Mirror Relationship Using the Create Remote Volume Mirror Wizard" on page 127 or the **Array Management** window online help.
- The primary volume is showing a Synchronization-in-Progress status.

Cause:

A full synchronization, between the primary and secondary volumes participating in a mirror relationship, is in progress. All data on the primary volume is being copied in its entirety to its associated secondary volume.

Resolution:

Wait for the full synchronization to complete. After it has finished copying data from the primary volume to the secondary volume, the mirrored volume pair transitions to a Synchronized status.

For more information on monitoring the status of a Remote Volume Mirror, see the **Array Management** window online help.

 Both the primary and secondary volumes are displayed as being the primary volume.

Cause:

A disaster or catastrophic failure has occurred on the storage array containing the primary volume, and the secondary volume has been promoted to the primary volume role.

The primary storage array is now operational, but unreachable because of a link failure. A forced promotion of the secondary volume has resulted in both the primary and secondary volumes viewing themselves in the primary volume role.

Resolution:

- From the Array Management window of the primary site, select the primary volume.
- 2. Select Volume > Remote Volume Mirroring > Remove Mirror Relationship.

Note: The mirror relationship for the secondary volume will not be removed if there is a connection problem between the storage arrays. If the mirror relationship still exists at the secondary site, repeat steps 1 and 2 for the secondary volume from the secondary site **Array Management** window.

- 3. Re-create the mirror relationship by completing "Creating a Mirror Relationship Using the Create Remote Volume Mirror Wizard" on page 127.
- Both the primary and secondary volumes are displayed as being the secondary volume.

Cause:

In response to a dual primary volume condition, a role reversal was carried out and the primary volume was demoted to the secondary volume role.

The secondary storage array is operational, but unreachable because of a link failure. The forced demotion of the primary volume has resulted in both the primary and secondary volumes viewing themselves in the secondary volume role.

Resolution:

- 1. From the **Array Management** window of the primary site, select the local secondary volume.
- 2. Select Volume > Remote Volume Mirroring > Remove Mirror Relationship.

Note: The mirror relationship for the secondary site will not be removed if there is a connection problem between the storage arrays. If the mirror relationship still exists at the secondary site, repeat steps 1 and two for the secondary volume from the secondary site **Array Management** window.

- 3. Re-create the mirror relationship by completing "Creating a Mirror Relationship Using the Create Remote Volume Mirror Wizard" on page 127.
- The primary volume/secondary volume is displayed as being a Missing Volume.

Cause:

A physical hard drive on which a Remote Volume Mirror depends (primary volume, secondary volume) has been removed, and the volume is now displayed under the Missing Volumes node in the **Logical** view of the **Array Management** window.

Resolution:

- If missing volumes are detected because drives have been accidentally removed, or are detected as missing because of a loss of power to the drive enclosures, recovery of these volumes is possible by:
- 1. Re-inserting the drives back into the drive enclosure.
- 2. Ensuring that the drive enclosure's power supplies are properly connected to an operating power source and have an Optimal status.

For more information, see Recovery Guru or contact technical support.

If the missing volume is no longer required, it may be deleted.

Note: Deleting a missing volume is a permanent action. Any associated volumes or volume-to-LUN mappings will also be deleted. For more information, see the **Recovery Guru** or the **Array Management** window online help.

• The mirror relationship was removed successfully from the primary side, but not from the secondary side.

Cause:

When removing a mirror relationship, a link failure occurred between the primary and secondary storage arrays, and an error message was displayed.

The **Array Management** window for the primary storage array indicates that the mirror relationship has been removed successfully, however, the **Array Management** window for the secondary storage array indicates that the mirror relationship still exists.

Resolution:

Open the **Array Management** window for the secondary storage array and remove the mirror relationship.

For step-by-step instructions, see "Removing Mirror Relationships" on page 132 or the **Array Management** window online help.

• The mirror relationship was removed successfully from the secondary side, but not from the primary side.

Cause:

When removing a mirror relationship, a link failure occurred between the primary and secondary storage arrays.

The **Array Management** window for the secondary storage array indicates that the mirror relationship has been removed successfully, however, the **Array Management** window for the primary storage array indicates that the mirror relationship still exists, with the primary volume showing an Unresponsive status.

Resolution:

Open the **Array Management** window for the primary storage array and remove the mirror relationship.

For step-by-step instructions, see "Removing Mirror Relationships" on page 132 or the **Array Management** window online help.

• The primary volume is showing an Unsynchronized status.

Cause:

The Remote Volume Mirror is in an Unsynchronized status because the data mirrored between the primary volume and secondary volume is no longer identical. Typical causes for this status include link errors, a failed primary volume or secondary volume, or a dual primary or dual secondary error condition.

While the Remote Volume Mirror is in an Unsynchronized status, no mirroring activity will take place.

Resolution:

Once the controller owner of the primary volume can communicate with the controller owner of the secondary volume and the volume is online and optimal, a full synchronization will automatically take place. When a full synchronization begins, the Remote Volume Mirror transitions to a Synchronization-in-Progress status.

For information on monitoring the status of a Remote Volume Mirror, see the **Array Management** window online help.

• Error message indicates that the Remote Volume Mirroring premium feature is out of compliance.

Cause:

The Remote Volume Mirroring premium feature is out of compliance. This normally occurs if a volume group with volumes participating in Remote Volume Mirroring, has been moved into the primary storage array and one of the following conditions now exists:

- The Remote Volume Mirroring premium feature is not enabled on the selected storage array.
- The Remote Volume Mirroring feature is enabled, but the current number of Remote Volume Mirrors created on the primary storage array exceeds the number of mirror relationships allowed for this storage array.

Resolution:

 If the Remote Volume Mirroring feature is not enabled for the primary storage array:

- 1. Obtain a feature key for this feature from your storage supplier.
- Enable the Remote Volume Mirroring premium feature. For step-by-step instructions, see "Creating a Mirror Relationship Using the Create Remote Volume Mirror Wizard" on page 127 or the Array Management window online help.
- If the Remote Volume Mirroring feature is enabled, but the current number of mirror relationships on the storage array exceeds the number of mirror relationships allowed for the storage array, reduce the number of mirror relationships to equal or less than the number of mirror relationships allowed. There can be up to 32 defined mirrors on an SGI TP9500 storage array and up to 64 defined mirrors on an SGI TP9700 storage array.

For step-by step instructions, see "Removing Mirror Relationships" on page 132 or the **Array Management** window online help.

• The remote volume candidate is unresponsive and cannot be updated.

Cause:

The primary storage array is unable to notify the secondary storage array that its world wide name (WWN) has changed.

This may be the result of a controller in the primary storage array being swapped or removed. Storage array recovery procedures that result in configurations being reset could also cause a change to the WWN.

The first write to the primary volume will cause the mirrored volume pair to transition into an Unsynchronized status.

Resolution:

- Remove all the existing mirror relationships from the primary storage array. For step-by-step instructions, see "Removing Mirror Relationships" on page 132 or the Array Management window online help.
- 2. Re-establish the required mirror relationships. For step-by step instructions, see "Creating a Mirror Relationship Using the Create Remote Volume Mirror Wizard" on page 127 or the **Array Management** window online help.

Inappropriate Fibre Channel Fabric Configurations

This subsection describes Fibre Channel fabric configuration problems that may be encountered after you have configured your storage arrays and have activated and enabled the Remote Volume Mirroring feature.

Information about the probable cause and recommended resolution for each problem is provided. If your problem is not addressed in this section, see the remaining subsections in this section before contacting technical support.

• The primary volume is unable to contact the Fibre Channel fabric.

Cause:

Typically, this error occurs because of a failed Fibre Channel fabric or because of cabling between the primary and secondary storage arrays participating in a Remote Volume Mirror.

Resolution:

- If the Fibre Channel fabric has failed:
- Repair or replace the failed fabric.
- If the Fibre Channel fabric is operational:

Check the configurations cabling. The cable should not go through a hub or be connected directly between storage arrays. Ensure that the cable is attached through a switch.

For step-by-step instructions on configuring storage arrays for Remote Volume Mirroring, see "Hardware and Software Installation" on page 92.

• The primary volume is unable to communicate with the secondary storage array. The primary storage array can still communicate with the fabric.

Cause:

Typically, this error occurs when the secondary storage array has lost power or when network problems exist between the secondary storage array and the fabric.

Resolution:

- Secondary storage array has no power:
- If the secondary storage array has no power and is not operational, restore power to the storage array. For information on powering on storage arrays, see your hardware documentation.

- Secondary storage array has power and is operational:
- Check the network status. Ensure the secondary storage array is visible on the network. Ensure the cables are correctly connected. For step-by-step instructions on configuring storage arrays for Remote Volume Mirroring, see "Hardware and Software Installation" on page 92.

Storage Array Component Failures

This subsection describes the impact of physical or logical storage array component failures on Remote Volume Mirroring functionality.

Information about the probable cause and recommended resolution for each problem is provided. If your problem is not addressed in this section, see the remaining subsections in this section before contacting technical support.

 Following a role reversal, a snapcopy volume created for a primary volume indicates that it has failed.

Cause:

The base volume for the snapcopy volume is a primary volume involved in a mirror relationship. A role reversal was performed, demoting the primary volume to secondary volume status, resulting in a snapcopy volume on the secondary volume.

The base volume for a snapcopy volume cannot be a candidate for the secondary volume role in a Remote Volume Mirror, and the snapcopy volume is therefore failed.

Resolution:

Perform a role reversal to promote the secondary volume to the primary volume role. After the role reversal is complete, the snapcopy volume will return to Optimal status.

For step-by-step instructions, see "Changing a Secondary Volume to a Primary Volume" on page 142 or the **Array Management** window online help.

The primary storage array controller indicates that it has failed.

Cause:

Failure of the owning controller on the primary storage array will typically cause the associated multi-path driver on the attached host system to transfer ownership of the alternate controller on the primary storage array.

When this occurs, the alternate controller on the primary storage array will begin forwarding newly-written data to its peer on the secondary storage array. The secondary controller will take ownership of the volume from its (secondary) peer controller. This is a reactive event, which occurs because of the arrival of a write request from the primary storage array to the non-owning controller on the secondary storage array.

Resolution:

Allow the ownership transfer to complete. Operations will continue in a normal fashion, with the alternate (typically the non-preferred) controller on the primary storage array interacting with the alternate controller on the secondary storage array.

Failure of the non-owning controller on the primary storage array will have no direct impact on the status of any Remote Volume Mirrors.

• The secondary storage array controller indicates that it has failed.

Cause:

One of the following scenarios has occurred:

- Controller A on the secondary storage array has failed, while Controller A is the owner of the primary volume.
- Controller B on the secondary storage array has failed while Controller B is the owner of the primary volume.

In both scenarios, the mirrored volume pair transitions to the Unsynchronized status.

Resolution:

Restore the failed controller. For detailed recovery procedures, see the **Recovery Guru**.

Upon restoration of the failed controller, the primary storage array will automatically transition to a Synchronizing status to restore coherency between the volumes.

General Switch Troubleshooting

This subsection describes some common switch-related problems that may be encountered when using the Remote Volume Mirroring feature. The troubleshooting information provided relates to switches supported for use with this version of the

storage management software. For a list of supported switches, see "Feature Concepts and Requirements" on page 69.

Information about the probable cause and recommended resolution for each problem is provided. If your problem is not addressed in this section, see the remaining subsections in this section before contacting technical support.

 Host is unable to detect primary and secondary storage arrays participating in Remote Volume Mirroring.

Cause:

When two or more switches are cascaded together and have the same Domain ID, hosts will be unable to locate the target device. Each switch must have a unique Domain ID when attempting to cascade two switches together.

Resolution:

Change the Domain ID of one or more of your switches, ensuring that each one is unique. The Domain ID should be a unique number between 1 and 239, which is used to identify the switch to a Fibre Channel fabric.

For more information on setting a Domain ID, see your switch user documentation.

Remote Volume Mirroring Critical Events

Critical Major Event Log (MEL) events are generated when an error occurs that can affect data availability or results in a degraded mode of operation. The storage management software responds by alerting the appropriate administrators using e-mail, SNMP trap, or other configured mechanisms.

Because administrative action is required to correct the problem, the storage array will generally enter a Needs Attention status. This causes the appropriate indications to be presented through the storage management software and an associated **Recovery Guru** procedure to be displayed when requested by the end user.

The following provides a description of critical MEL events, with a brief explanation of what caused the event to trigger, and the recommended resolution. If your problem is not addressed in this section, see the remaining sections in this chapter before contacting technical support.

Mirrored pair becomes unsynchronized.

Cause:

This event is logged when a Remote Volume Mirror transitions to an Unsynchronized status, from either a Synchronization-in-Progress or Optimal status.

Resolution:

See the associated **Recovery Guru** message for specific recovery procedures.

• Dual-role conflict detected.

Cause:

This event is logged when a dual-role conflict is detected, and is typically the result of a role reversal. Since both sides of the mirrored volume pair are in the same primary or secondary volume role, both the primary and secondary storage arrays will report this MEL event.

Resolution:

See the associated **Recovery Guru** message for specific recovery procedures.

• Communication error with the secondary volume on the secondary, remote storage array.

Cause:

This event is logged when an interruption in the link that cannot be recovered by the firmware Fibre Channel driver is detected. Error codes and recovery procedures will assist the user in finding the exact cause of the communication problem between storage arrays participating in a mirror relationship.

Resolution:

See the associated **Recovery Guru** message for specific recovery procedures.

• World wide name (WWN) change notification failed.

Cause:

This event is logged when a storage array detects during start-up processing that its world wide name (WWN) has changed. The WWN can only change if both controllers of the array are exchanged while the array is powered off.

When the firmware detects this name change, it attempts to notify any remote storage array that had previously been participating in a mirroring relationship with any volume on the array.

Resolution:

See the associated **Recovery Guru** message for specific recovery procedures.

Controller Firmware Version 5.30 and 5.40 Upgrades

The Remote Volume Mirroring feature is designed so that it is not necessary for the primary storage array and the secondary storage to be running exactly the same controller firmware level. All inter-controller operations (including those needed for propagation of newly-written data from the primary volume to the secondary volume) have been implemented so as to support mixed firmware levels to the greatest extent possible. This allows firmware upgrades to be performed on both the primary and secondary storage arrays without any loss of data.

This subsection describes the procedure that should be followed for upgrading controller firmware (version 5.30 and later), to ensure that the Remote Volume Mirroring features works as intended. The preferred sequence for performing firmware upgrades on storage arrays participating in mirror relationships is detailed below.

Note: Depending on your storage array platform, you may not be able to select controller firmware version 5.40 and later.

Note: By following this sequence, it is possible to avoid transitions of the mirrored volume pair to an Unsynchronized status, avoiding the need for a full resynchronization afterwards.

- 1. Stop I/O to applications that operate on all affected primary volumes temporarily inactive.
- 2. Download firmware to the secondary storage array.
- 3. Resume application access to primary volumes. There will be a period of time after this step where the primary storage array is operating with a different firmware level than the secondary storage array, but the inter-controller protocols for data replication will support such interactions.
- 4. Download firmware to the primary storage array.
- 5. Resume all I/O operations that were stopped in step 1.

It should be noted that some configuration operations, such as establishment of new mirrors and modification of mirror parameters, may not be allowed between storage arrays that have different firmware levels, and will result in error messages being received. However, the key data availability operations, including promotion from the secondary volume to the primary volume, will be allowed in such circumstances.

The Volume Copy Premium Feature

This chapter includes the following sections:

- "Volume Copy Concepts" on page 159
- "Using the Volume Copy Premium Feature" on page 171
- "Volume Copy Scenarios" on page 194
- "Troubleshooting" on page 218
- "Glossary of Volume Copy Terms" on page 223

Volume Copy Concepts

This section introduces basic Volume Copy premium feature concepts, and describes how information is copied between volumes within a single storage array and how other premium features can be used in conjunction with the Volume Copy premium feature.

Introduction to the Volume Copy Premium Feature

The Volume Copy premium feature is used to copy data from one volume (the source) to another volume (the target) in a single storage array. This feature can be used to back up data, to copy data from volume groups that use smaller capacity drives to volume groups using greater capacity drives, or to restore snapshot volume data to the associated base volume.

This section introduces you to source volume and target volumes, and describes how they interact to copy data from one volume to another volume within a single storage array.

Note: Examples have been used throughout this chapter and the remainder of the guide to provide further explanation.

Source Volumes

When you create a volume copy, a copy pair is created, which consists of a source volume and a target volume that are located on the same storage array.

The source volume is the volume that accepts host I/O and stores data. The source volume can be a standard volume, snapshot volume, base volume of a snapshot volume, or a Remote Volume Mirror primary volume.

When a volume copy is started, data from the source volume is copied in its entirety to the target volume. The source volume is available for read I/O activity only while a volume copy has a status of In Progress, Pending, or Failed.

After the volume copy completes, the source volume becomes available to host applications for write requests. The target volume automatically becomes read-only to hosts, and write requests to the target volume will be rejected.

The Read-Only attribute can be changed after the volume copy is completed or has been stopped. For more information about the Read-Only attribute, refer to "Setting Target Volume Permissions" on page 192.

Target Volumes

Caution: A volume copy will overwrite data on the target volume. Ensure that you no longer need the data, or have backed up the data on the target volume, before starting a volume copy.

A target volume contains a copy of the data from the source volume. The target volume can be a standard volume, the base volume of a Failed or Disabled snapshot volume, or a Remote Volume Mirror primary volume.

When a volume copy is started, data from the source volume is copied in its entirety to the target volume.

While the volume copy has a status of In Progress, Pending, or Failed, read and write requests to the target volume will be rejected by the controllers. After the volume copy completes, the target volume automatically becomes read-only to hosts, and write requests to the target volume will be rejected.

The Read-Only attribute can be changed after the volume copy has completed or has been stopped. For more information about the Read-Only attribute, refer to "Setting Target Volume Permissions" on page 192.

Creating a Volume Copy

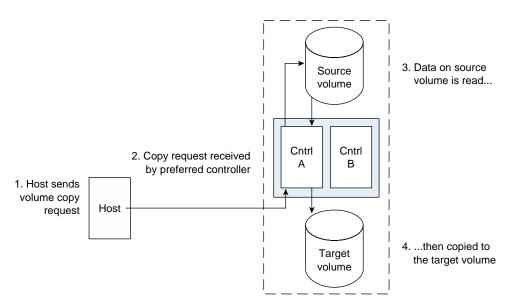
Creating a volume copy (copying data from the source volume to the target volume) is managed by the controllers and is transparent to host machines and applications. This section describes how data is copied using the storage management software, and the actions taken by the controllers during a volume copy.

The Create Copy Wizard guides you through the process of creating a new volume copy. The first dialog in the Wizard is the **Introduction** dialog, which allows you to select a source volume from the list of valid source volumes on the storage array.

The next dialog in the Create Copy Wizard is the **Select Target Volume** and **Copy Priority** dialog. It allows you to select the target volume for the volume copy and set the copy priority. The copy priority determines how much of the controller's resources are used to complete the volume copy versus fulfill I/O activity.

The **Preview** dialog is the final dialog in the Wizard. It provides an overview of the selected source volume, target volume, and copy priority for the volume copy.

When you have completed the Wizard dialogs, the volume copy starts and the preferred controller of the source volume reads data from the source volume and writes it to the target volume, as shown in Figure 4-1 on page 162. **Operation in Progress** icons are displayed on the source volume and target volume while the volume copy is completing.


While a volume copy has a status of In Progress, Pending, or Failed:

- The source volume is available for read I/O activity only
- The target volume is not available for read or write I/O activity

After the volume copy has completed:

- The source volume is available for both read and write I/O activity
- The target volume is available for read I/O activity, unless the Read-Only attribute has been disabled. For more information about setting the target volume's Read-Only attribute, refer to "Setting Target Volume Permissions" on page 192.

Note: A maximum of eight volume copies can be In Progress at one time. If more than eight volume copies are created, they will have a status of Pending until one of the volume copies with a status of In Progress completes.

Figure 4-1 Creating a Volume Copy

While a volume copy is In Progress, the same controller must own both the source volume and target volume. If the same controller does not own both the source volume and target volume prior to the volume copy being created, ownership of the target volume is automatically transferred to the controller owner of the source volume.

When the volume copy is completed or is stopped, ownership of the target volume is restored to its preferred controller. If ownership of the source volume is changed during the volume copy, ownership of the target volume is also changed.

Volume Copy and Persistent Reservations

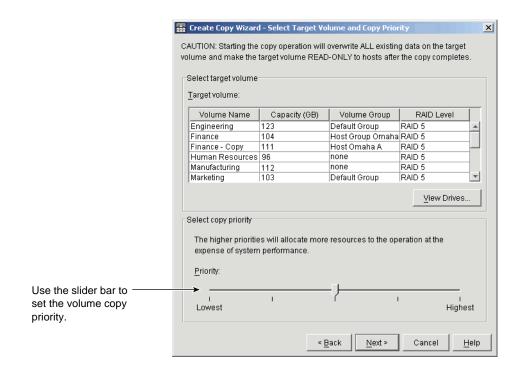
Note: Standard volumes holding a legacy or persistent reservation will not be available in the **Create Copy Wizard - Introduction** dialog or **Create Copy Wizard - Select Target** and **Set Copy Priority** dialog.

Persistent reservations are configured and managed through the server cluster software, and prevent other hosts from accessing the reserved volume.

Unlike other types of reservations, a persistent reservation reserves host access to the volume across multiple host ports, providing various levels of access control. The **Persistent Reservations** option enables you to query the storage array about registered host ports and reservations, and will retain reservation details in the event of a storage array power loss.

For more information about persistent reservations, refer to the **Array Management** window online help.

Storage Array Performance


During a volume copy, the storage array's resources may be diverted from processing I/O activity to completing a volume copy, which may affect the storage array's overall performance.

Several factors contribute to the storage array's performance, including I/O activity, volume RAID level, volume configuration (number of drives in the volume groups and cache parameters), and volume type (snapshot volumes may take more time to copy than standard volumes).

When you create a new volume copy, you will define the copy priority to determine how much controller processing time is allocated for a volume copy versus I/O activity.

There are five relative settings ranging from Lowest to Highest. The Highest priority rate supports the volume copy, but I/O activity may be affected. The Lowest priority rate supports I/O activity, but the volume copy will take longer.

The copy priority can be specified before the volume copy begins in the Select Target Volume and Copy Priority dialog of the Create Copy Wizard, as shown in Figure 4-2.

Figure 4-2 Select Target Volume and Copy Priority Dialog

While the volume copy is In Progress or after it has completed, the priority can be set in the **Change Copy Priority** dialog, as shown in Figure 4-3. The copy priority can also be specified in the **Re-Copy** dialog when a new volume copy for an existing copy pair is created.

For more information about the Re-Copy dialog, see "Re-Copying a Volume" on page 186.

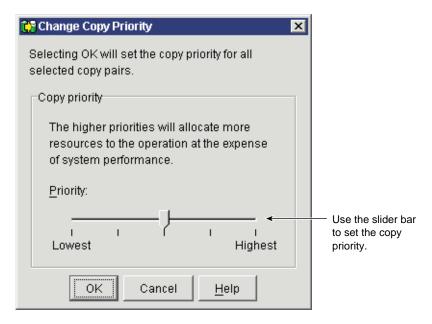


Figure 4-3 Change Copy Priority Dialog

Interaction of Volume Copy and Other Premium Features

This section describes how the Volume Copy premium feature can be used in conjunction with other premium features available in this version of the storage management software. Premium features covered in this section include Storage Partitioning, Snapshot, and Remote Volume Mirroring.

Storage Partitioning

Storage Partitioning is a premium feature that enables hosts to share access to volumes in a storage array. A storage partition is created when you define a collection of hosts (a host group) or a single host and then define a volume-to-LUN (Logical Unit Number) mapping.

This mapping allows you to define what host group or host will have access to a particular volume in the storage array.

Figure 4-4 shows the Mappings View of the **Array Management** window where the source volume Finance has been included in a partition accessible by Host Omaha A, and the target volume Finance-Copy has been included in a partition accessible by Host Omaha B.

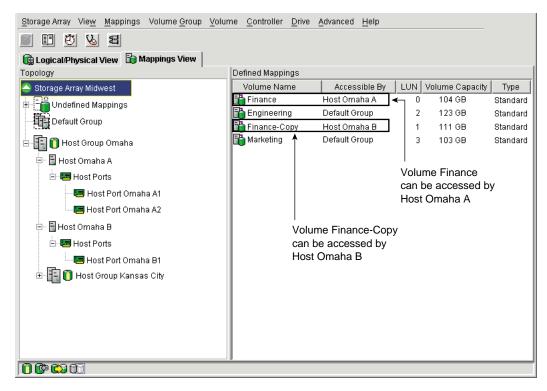


Figure 4-4 Storage Partitioning Example

After a volume copy has been created, the target volume automatically becomes read-only to hosts to ensure that the data is preserved. Hosts that have been mapped to a target volume will not have write access to the volume, and any attempt to write to the read-only target volume will result in a host I/O error.

If you want hosts to have write access to the data on the target volume, use the Copy Manager to disable the Read-Only attribute for the target volume. For more information about changing the target volume Read-Only attribute, see "Setting Target Volume Permissions" on page 192.

Snapshot Volume

A snapshot volume is a point-in-time image of a standard volume and is typically created so that an application, such as a backup application, can access the snapshot volume and read the data while the base volume remains online and accessible to hosts.

Snapshot volumes can be selected as the source volume for a volume copy. This is one of the best ways to use this feature, as it enables complete backups without any impact to the storage array I/O.

Note: If you choose the base volume of a snapshot volume as your target volume, you must disable all snapshot volumes associated with the base volume before you can select it as a target volume. For more information about disabling snapshot volumes, see "Volume Copy Scenarios" on page 194.

When you create a snapshot volume, a snapshot repository volume is automatically created. The snapshot repository volume stores information about the data that has changed since the snapshot volume was created. Snapshot repository volumes cannot be selected as a source volume or target volume in a volume copy.

The Snapshot Volume premium feature can be used in conjunction with the Volume Copy premium feature to back up data on the same storage array, and to restore the data on the snapshot volume back to its original base volume. For more information about volume copy usage scenario's, see "Volume Copy Scenarios" on page 194.

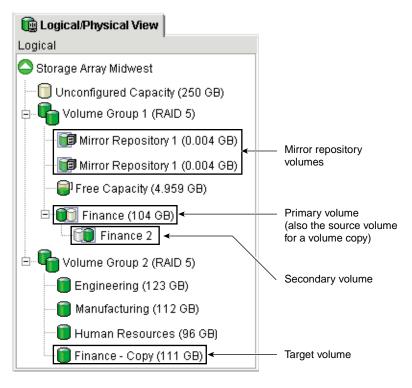
Remote Volume Mirroring

The Remote Volume Mirroring premium feature is used for online, real-time replication of data between storage arrays over a remote distance. In the event of a disaster or a catastrophic failure of one storage array, you can promote a second storage array to take over responsibility for computing services.

When you create a Remote Volume Mirror, a mirrored volume pair is created, consisting of a primary volume at the primary storage array and a secondary volume at a secondary, remotely located storage array.

The primary volume is the volume that accepts host I/O and stores data. When the mirror relationship is initially created, data from the primary volume is copied in its entirety to the secondary volume. This process is known as a full synchronization and is

directed by the controller owner of the primary volume. During a full synchronization, the primary volume remains fully accessible for all normal I/O activity.


The controller owner of the primary volume initiates remote writes to the secondary volume to keep the data on the two volumes synchronized. Whenever the data on the primary volume and the secondary volume becomes unsynchronized, the controller owner of the primary volume initiates a full synchronization.

The secondary volume maintains a mirror of the data on its associated primary volume. The controller owner of the secondary volume receives remote writes from the primary volume controller owner, but will not accept host read or write requests.

The secondary volume remains unavailable to host applications while mirroring is underway. In the event of a disaster or catastrophic failure at the primary site, you can perform a role reversal to promote the secondary volume to a primary role. Hosts will then be able to access the newly promoted volume and business operations can continue. For more information about performing a role reversals, see "Role Reversals" on page 169.

A primary volume participating in a Remote Volume Mirror can be selected as the source volume for a volume copy, as shown in Figure 4-5. A secondary volume participating in a Remote Volume Mirror cannot be selected a source volume or target volume and will not be available in the Create Copy Wizard when you create a volume copy.

For more information about the Remote Volume Mirroring premium feature, refer to the **Array Management** window online help.

Figure 4-5 Primary Volume Included in a Volume Copy

Role Reversals

A role reversal is the act of promoting the secondary volume to be the primary volume of the mirrored volume pair, and demoting the primary volume to be the secondary volume.

In the event of a disaster at the storage array containing the primary volume, you can fail over to the secondary site by performing a role reversal to promote the secondary volume to the primary volume role. This will allow hosts to continue accessing data and business operations to continue.

A role reversal may be performed using one of the following methods:

 Change a secondary volume to a primary volume by selecting the Volume >> Remote Volume Mirroring >>Change >> Role to Primary option.

This option promotes the selected secondary volume to become the primary volume of the mirrored pair, and would be used when a catastrophic failure has occurred. For step-by-step instructions, refer to the **Array Management** window online help.

Change a primary volume to a secondary volume by selecting the Volume >> Remote Volume Mirroring >> Change >> Role to Secondary option.

This option demotes the selected primary volume to become the secondary volume, and would be used during normal operating conditions. For step-by-step instructions, refer to the **Array Management** window online help.

If the primary volume is selected as the source volume for a volume copy, any volume copies that have a status of In Progress or Pending when the role reversal takes place will fail and cannot be started again until the primary volume is demoted back to its original Remote Volume Mirror secondary volume role.

If the primary storage array is recovered but is unreachable due to a link failure, a forced promotion of the secondary volume will result in both the primary and secondary volumes viewing themselves in the primary volume role (dual-primary condition). If this occurs, the volume copy in which the primary volume is participating will be unaffected by the role change.

Restrictions

The following restrictions apply to the source volume, target volume, and storage array:

- While a volume copy has a status of In Progress, Pending, or Failed, the source volume will be available for read I/O activity only. After the volume copy completes, read and write I/O activity to the source volume will be permitted.
- A volume can be selected as a target volume for only one volume copy at a time.
- The maximum allowable number of volume copies per storage array is dependent upon your storage array's configuration. Contact technical support for more information.
- A volume that is reserved by the host cannot be selected as a source volume or target volume.
- A volume with a status of Failed cannot be used as a source volume or target volume.
- A volume with a status of Degraded cannot be used as a target volume.

 A volume participating in a modification operation cannot be selected as a source volume or target volume. Modification operations include Dynamic Capacity Expansion (DCC), Dynamic RAID Level Migration (DRM), Dynamic Segment Sizing (DSS), Dynamic Volume Expansion (DVE), and defragmenting a volume.

Using the Volume Copy Premium Feature

This section provides step-by-step procedures for enabling the Volume Copy premium feature, creating volume copies, viewing volume copy properties, and managing volume copies using the Copy Manager.

Enabling the Volume Copy Premium Feature

Before you can begin creating volume copies, you will need to enable the Volume Copy premium feature. To complete this procedure, you will need to obtain a Feature Key File from your storage supplier.

1. From the Array Management window, select **Storage Array** >> **Premium Features** >> **Enable**.

The **Select Feature Key File** dialog is displayed.


Note: The Select Feature Key File dialog filters for files with the *.key extension.

- 2. Select the folder in which you placed the feature key file.
- 3. Select the appropriate feature key file, and then select **OK**.

The **Enable Premium Feature** dialog box is displayed.

4. Select Yes.

The Volume Copy premium feature is now enabled. The icon in the premium feature status area is no longer displayed with a red slash. To further verify the status of the feature, select **Storage Array** >> **Premium Features** >> **List**.

Figure 4-6 Enabling the Volume Copy Premium Feature

If the Volume Copy premium feature is disabled, but volume copy pairs exist, all of the options in the Copy Manager (stop copy, remove copy pairs, start copy, enable and disable read-only) will still be available. However, you will not be permitted to create any new volume copies.

Creating a Volume Copy

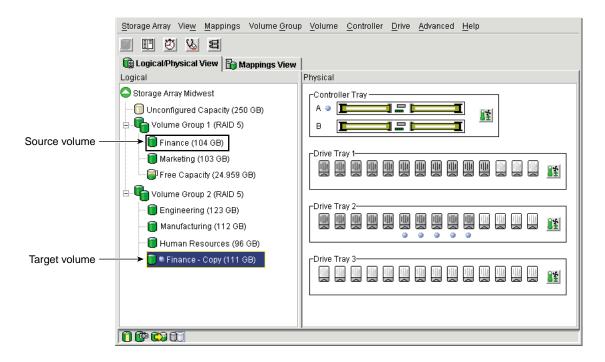
This section introduces you to selecting or creating a target volume, selecting the source volume, creating the volume copy, and managing the volume copy using the Copy Manager.

Selecting or Creating a Target Volume

Caution: A volume copy will overwrite data on the target volume. Ensure that you no longer need the data, or have backed up the data on the target volume, before starting a volume copy.

Before creating a volume copy, ensure that a suitable target volume exists on the storage array, or create a new target volume specifically for the volume copy. Only valid target volumes with a capacity equal to or greater than the source volume will be displayed in the **Create Copy Wizard - Select Target Volume and Copy Priority** dialog, in alphanumeric order.

The following are valid target volumes and will be displayed in the **Create Copy Wizard** - **Select Target Volume and Copy Priority** dialog:


- Standard volume
- Base volume of a disabled or failed snapshot volume
- Primary volume participating in a Remote Volume Mirror

The following are not valid target volumes and will not be displayed in the **Create Copy Wizard - Select Target Volume and Copy Priority** dialog:

- Base volume of an active snapshot volume
- Snapshot volume
- Mirror repository volume
- Snapshot repository volume
- Secondary volume in a Remote Volume Mirror
- Failed volume
- Missing volume
- A volume with a status of Degraded
- A volume currently in a modification operation
- A volume holding a legacy or persistent reservation
- A volume that is a source volume or target volume in another volume copy that has a status of In Progress, Pending, or Failed

To make locating the target volume in the Logical View easier, ensure that you add "target" or "copy" to the target volume's name, as shown in Figure 4-7. For example, if the source volume name is Finance, name the target volume Finance-Copy. That way you can quickly identify the source volumes and target volumes available on the storage array.

Once the volume copy has completed, the target volume automatically becomes read-only to hosts. Any write requests to the target volume will be rejected, unless you disable the Read-Only attribute in the Copy Manager. For more information about disabling the target volume's Read-Only attribute, see "Setting Target Volume Permissions" on page 192.

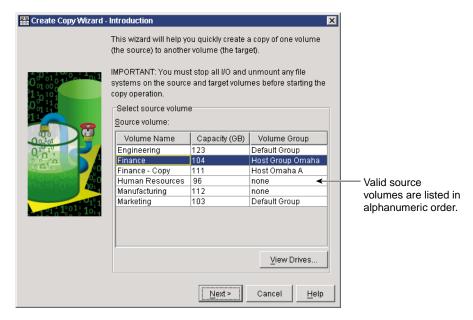
Figure 4-7 Renaming the Target Volume

Selecting a Source Volume

The first dialog of the Create Copy Wizard allows you to choose the source volume from which data will be copied. A source volume is a standard volume that accepts host I/O and stores data.

Note: If the volume you selected is not a valid source volume, the Create Copy Wizard will not be displayed. You will need to select a valid volume to begin the Wizard.

When the volume copy is started, data from the source volume is copied in its entirety to the target volume. While a volume copy has a status of In Progress, Pending, or Failed, the source volume will be available for read I/O activity only. After the volume copy completes or is stopped, read and write access to the source volume will be permitted.

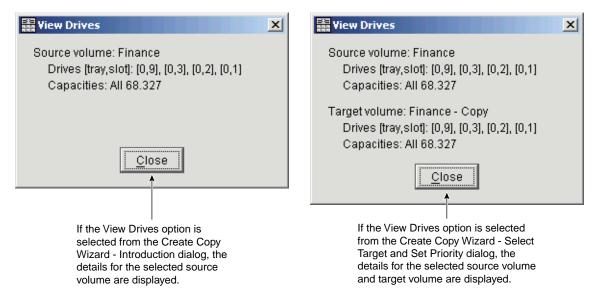

The following are valid source volumes and will be displayed in the **Create Copy Wizard** - **Introduction** dialog:

- Standard volume
- Snapshot volume
- Base volume of a snapshot volume
- Primary volume participating in a Remote Volume Mirror

The following are not valid source volumes and will not be displayed in the **Create Copy Wizard - Introduction** dialog:

- Secondary volume participating in a Remote Volume Mirror
- Snapshot repository volume
- Mirror repository volume
- Failed volume
- Missing volume
- A volume currently in a modification operation
- A volume holding a legacy or persistent reservation
- A volume that is a source volume or target volume in another volume copy that has a status of In Progress, Pending, or Failed

After you have started the Create Copy Wizard, all of the valid source volumes on the storage array are displayed in a table in alphanumeric order, based on volume capacity, as shown in Figure 4-8.


Figure 4-8 Selecting a Source Volume

Viewing Drives

The **View Drives** dialog displays the drive tray, slot, and capacity information for the selected source volume or target volume. The **View Drives** dialog is available in the **Create Copy Wizard - Introduction** and **Create Copy Wizard - Select Target Volume** dialogs.

Content for this dialog will automatically update dynamically if you select a different source volume or target volume in the **Copy Wizard** dialog while the **View Drives** dialog is open.

The information presented in the **View Drives** dialog can be used to copy high-access volumes to different volume groups for increased accessibility, or to copy volumes to a volume group that uses drives with a greater capacity.

Figure 4-9 Examples of the View Drives Dialog

Creating a Volume Copy Using the Create Copy Wizard

The Create Copy Wizard allows you to create a full copy of a source volume, overwriting any existing data on the target volume. To create a volume copy, complete the following steps.

- 1. Stop all I/O activity to the source volume and target volume.
- 2. Unmount any filesystems on the source volume and target volume, if applicable.
- 3. In the **Logical View** of the **Array Management** window, select the volume that will be the source volume for the volume copy.
- 4. **Select Volume >> Copy >> Create** from the menu.

The **Create Copy Wizard - Introductio**n dialog is displayed, as shown in Figure 4-10.

Note: If the volume you selected is not a valid source volume, the Create Copy Wizard will not be displayed. You will need to select a valid volume to begin the Wizard.

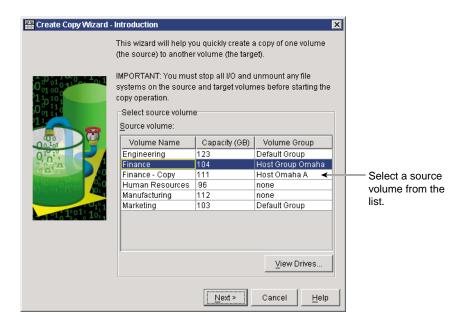


Figure 4-10 Create Copy Wizard - Introduction Dialog

5. Select **Next**.

The Create Copy Wizard - Select Target Volume and Copy Priority dialog is displayed, as shown in Figure 4-11.

Caution: A volume copy will overwrite data on the target volume. Ensure that you no longer need the data, or have backed up the data on the target volume, before starting a volume copy.

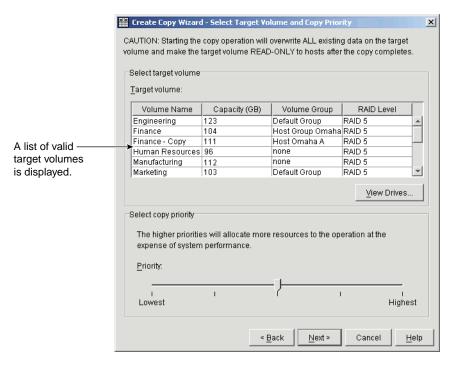


Figure 4-11 Create Copy - Select Target Volume and Copy Priority Dialog

6. Select the target volume from the list of available volumes.

Only valid target volumes are listed, with the volume closest in size to the source volume highlighted.

Note: If you select a target volume with a capacity similar to the source volume, you will reduce the risk of having unusable space on the target volume after the volume copy completes.

7. Set the copy priority for the volume copy.

The higher priorities will allocate more resources to the volume copy at the expense of the storage array's performance.

8. Select **Next**.

The **Create Copy Wizard - Preview** dialog is displayed, as shown in Figure 4-12. The source volume and target volume you selected are displayed, together with the selected copy priority.

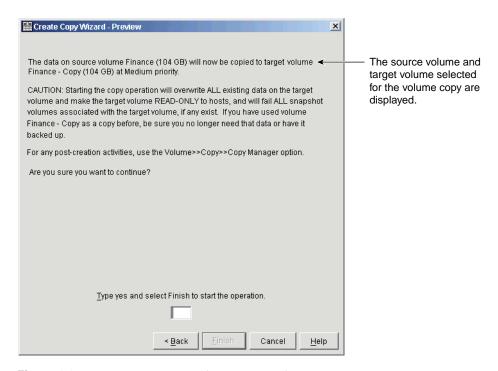


Figure 4-12 Create Copy Wizard - Preview Dialog

9. Review the information displayed in the **Preview** dialog. Type Yes and select **Finish** to start the volume copy.

The **Copy Started** dialog is displayed, verifying that the volume copy has started, as shown in Figure 4-13. This dialog also gives you the option to create a new volume copy or exit the Wizard.

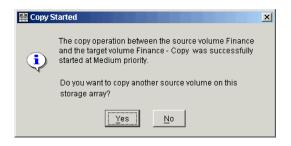


Figure 4-13 Copy Started Dialog

- 10. Choose one of the following, based on whether you want to create another volume copy:
 - Yes create a new volume copy.
 - No exit the Wizard and return the Logical/Physical view.
- 11. Remount any filesystems on the source volume and target volume.

Locating Associated Volumes

The Go To option can be used to quickly jump to an associated source volume or target volume displayed in the **Logical View** of the **Array Management** window.

Note: This option is available only if the Volume Copy premium feature has been enabled, or if volume copies currently exist on the storage array. It is not accessible using the **Mappings View** of the **Array Management** window.

To locate an associated source volume or target volume, complete the following steps.

- 1. Select a source volume or target volume in the **Logical View** of the **Array Management** window.
- 2. Choose one of the following, based on the volume type selected:
 - Source volume Select the View >> Go To >> Target Volume menu option
 The selection jumps to the associated target volume in the Logical View of the Array Management WIndow

• Target volume – Select the View >> Go To >> Source Volume menu option
The selection jumps to the associated source volume in the Logical View of the Array Management window.

Viewing Volume Copy Properties

The **Volume Properties** dialog enables you to view information about a selected source volume or target volume.

This dialog displays the role, copy status, copy priority, start timestamp, completion timestamp, the target volume's read-only attribute setting, the source volume or target volume World Wide Name (WWN), and if the volume copy is in progress, a progress bar with the estimated completion time for the volume copy is displayed.

To view the volume copy properties for a source volume or target volume, complete the following steps.

- 1. Select the source volume or target volume in the **Logical View** of the **Array Management** window.
- 2. Select **Volume >> Properties** to display the **Volume Properties** dialog, as shown in Figure 4-14.

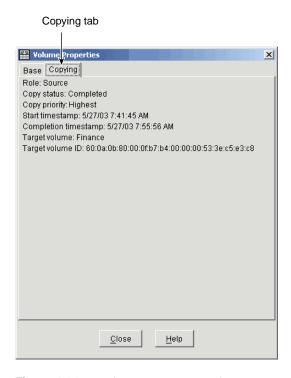


Figure 4-14 Volume Properties Dialog

3. Select the **Copying** tab.

The **Copy Properties** tab is displayed. The volume properties displayed include:

- Role: Source or Target
- Copy Status: Pending, In Progress, Completed, Stopped, Failed
- Copy Priority: Lowest, Low, Medium, High, Highest
- Start Timestamp: MM/DD/YY HH/MM/SS
- Completion Timestamp: MM/DD/YY HH/MM/SS
- Read-Only: Enabled/Disabled (only if target volume is selected)
- Source/Target Volume: Volume Name
- Source/Target Volume ID: WWN (World Wide Name)

4. Select **Close** to exit the dialog.

If a volume is participating in more than one volume copy (can be a source volume for one volume copy and the target volume for another volume copy), the details will be repeated for each associated copy pair.

Managing Volume Copies with Copy Manager

The **Copy Manager** dialog, launched from the **Array Management** window, monitors the progress of a volume copy and allows you to manage volume copies while they are in progress and after they have been created.

Information is displayed for all the volume copies on the storage array, including the source volume from which data is being copied, the target volume for the copied data, the status of the volume copy, a timestamp for any completed volume copies, and the volume copy priority that was assigned to the volume copy, as shown in Figure 4-15.

The source volume and target volume for a single volume copy are known as a *copy pair*.

Note: A maximum of eight volume copies can have a status of In Progress at one time. If more than eight volume copies are created, they will each have a status of Pending until one of the volume copies with a status of In Progress completes.



Figure 4-15 Copy Manager Dialog

The progress of the volume copy is displayed in the status bar at the bottom of the **Copy Manager** dialog as a percentage, with an estimation of the time remaining for the volume copy to complete. The total number of volume copies on the storage array is also displayed in the status bar at the bottom of the **Copy Manager** dialog.

The Copy Manager can be used to re-copy a volume copy, stop a volume copy with a status of In Progress, remove copy pairs (which removes associated volume copy configuration information from the storage array), change the volume copy priority, and disable the target volume's Read-Only attribute.

To manage a volume copy using the Copy Manager, complete the following steps.

- Select Volume >> Copy >> Copy Manager.
 The Copy Manager dialog is displayed.
- 2. Select a copy pair in the table by clicking on a specific copy pair.
- Select an option from the pull-down menu bar to manage the highlighted volume copy.

The Copy Manager automatically refreshes when the information for a volume copy changes, and will poll the storage array at regular intervals when a volume copy has a status of In Progress to display the most accurate information possible.

Re-Copying a Volume

Caution: This option will overwrite existing data on the target volume and make the target volume read-only to hosts. This option will fail all snapshot volumes associated with the target volume, if any exist.

The Re-Copy option enables you to create a new volume copy for a previously defined copy pair that may have been Stopped, Failed, or has Completed. This option can be used for creating scheduled, complete backups of the target volume that can then be copied to tape drive for off-site storage.

After starting the Re-Copy option, the data on the source volume is copied in its entirety to the target volume.

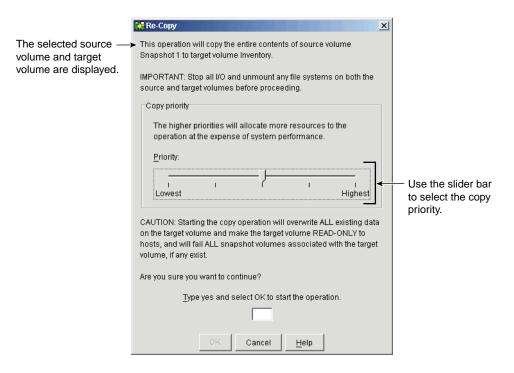
You can also set the copy priority for the volume copy at this time. The higher priorities will allocate storage array resources to the volume copy at the expense of the storage array's performance.

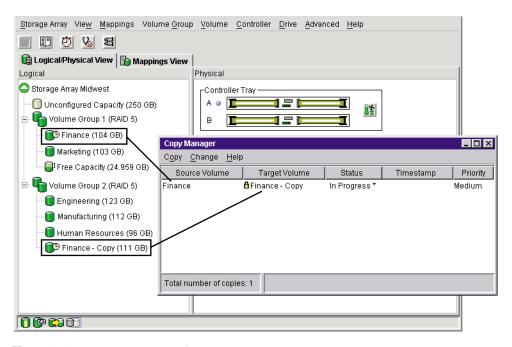
To create a new volume copy for an existing copy pair, complete the following steps.

- 1. Stop all I/O to the source volume and target volume.
- 2. Unmount any filesystems on the source volume and target volume, if applicable.
- Select Volume >> Copy >> Copy Manager.
 The Copy Manager dialog is displayed.

Note: Only one copy pair at a time can be selected to be re-copied.

- 4. Select the copy pair in the table by clicking on a specific copy pair.
- Select Copy >> Re-Copy from the Copy Manager menu.
 The Re-Copy dialog is displayed, as shown in Figure 4-16.




Figure 4-16 Re-Copy Dialog

6. Set the copy priority, as needed.

This setting defines how much of the system resources are used to complete a volume copy versus fulfill I/O requests. There are five relative settings ranging from Lowest to Highest. The Highest priority rate supports the volume copy, but I/O activity may be affected. The Lowest priority rate supports I/O activity, but the volume copy will take longer.

7. Type Yes and select **OK**.

The volume copy begins. The volume copy has a status of In Progress or Pending in the Copy Manager, as shown in Figure 4-17. In the **Logical View**, Operation in Progress icons are displayed on the source volume and target volume.

Figure 4-17 Re-Copying a Volume

Stopping a Volume Copy

The Stop Copy option allows you to stop a volume copy that has a status of In Progress, Pending, or Failed.

Using this option on a volume copy with a status of Failed clears the Needs Attention status displayed for the storage array in the **Logical View** of the **Array Management** window.

After the volume copy has been stopped, the Re-Copy option can be used to create a new volume copy using the original copy pair. For information about recreating a volume copy, see "Re-Copying a Volume" on page 186.

To stop a volume copy, complete the following steps.

Select Volume >> Copy >> Copy Manager, as shown in Figure 4-18.
 The Copy Manager dialog is displayed.

- 2. Select the copy pair in the table by clicking on a specific copy pair.
- 3. Select **Copy** >> **Stop** from the **Copy Manager** menu.

The Stop Copy dialog is displayed.

Note: When the volume copy is stopped, all mapped hosts will have write access to the source volume. If data is written to the source volume, the data on the target volume will no longer match the data on the source volume.

4. Select **Yes** to stop the volume copy for the selected volumes.

The volume copy is displayed in the Copy Manager with a status of Stopped.

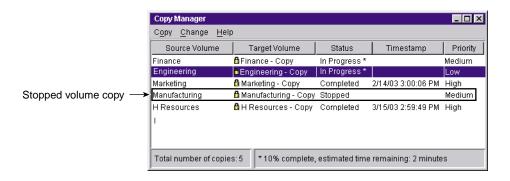


Figure 4-18 Stopping a Volume Copy

Removing Copy Pairs

The Remove Copy Pairs option allows you to remove one or more volume copies from the Copy Manager. Any volume copy-related information for the source volume and target volume is removed from the **Volume Properties** and **Storage Array Profile** dialogs.

After the volume copy is removed from the Copy Manager, the target volume can be selected as a source volume or target volume for a new volume copy.

Removing a volume copy from the Copy Manager also permanently removes the Read-Only attribute for the target volume.

Note: If the volume copy has a status of In Progress, you must stop the volume copy before you can remove the copy pair from the Copy Manager dialog.

To remove volume copies from the Copy Manager, complete the following steps.

- Select Volume >> Copy >> Copy Manager.
 The Copy Manager dialog is displayed.
- 2. Select one or more copy pairs in the table.
- Select Copy >> Remove Copy Pairs from the Copy Manager menu.
 The Remove Copy Pairs dialog is displayed.
- 4. Select **Yes** to permanently remove the copy pair from the Copy Manager.

Note: The data on the source volume or target volume is not deleted.

Changing Copy Priority

The **Change Copy Priority** dialog allows you to set the rate at which the volume copy completes, as shown in Figure 4-19. The copy priority setting defines how much of the storage array's resources are used to complete a volume copy versus fulfill I/O requests.

There are five relative settings ranging from Lowest to Highest. The Highest priority rate supports the volume copy, but I/O activity may be affected. The Lowest priority rate supports I/O activity, but the volume copy will take longer.

You can change the copy priority for a copy pair before the volume copy begins, while the volume copy has a status of In Progress, or after the volume copy has completed when recreating a volume copy using the Re-Copy option.

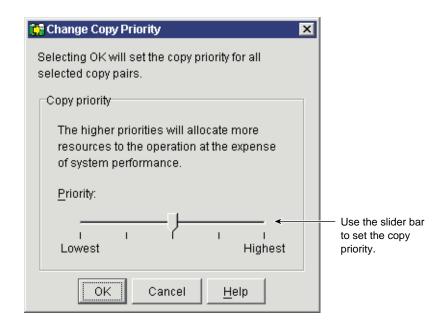


Figure 4-19 Change Copy Priority Dialog

To change the copy priority for a volume copy, complete the following steps.

- Select Volume >> Copy >> Copy Manager.
 The Copy Manager dialog is displayed.
- 2. Select the copy pair in the table by clicking on a specific copy pair.
- Select Change >> Copy Priority from the Copy Manager menu.
 The Change Copy Priority dialog is displayed.
- 4. In the **Copy Priority** section, use the slider bar to select the appropriate copy priority, as shown in Figure 4-19.
- 5. There are five choices: Lowest, Low, Medium, High, and Highest. These settings are shown with five marks on the slider bar. The Lowest and Highest settings are labeled. The higher the setting, the larger the impact to system performance.
- 6. Select OK.

The Change Copy Priority - Progress dialog is displayed.

7. Select **OK**.

The copy priority for the selected volume copy is changed.

Setting Target Volume Permissions

Read and write requests to the target volume will be rejected while the volume copy has a status of In Progress, Pending, or Failed.

After the volume copy has completed, the target volume automatically becomes read-only to hosts. You may want to keep the Read-Only attribute enabled in order to preserve the data on the target volume.

Examples of when you may want to keep the Read-Only attribute enabled include:

- If you are using the target volume for backup purposes
- If you are copying data from one volume group to a larger volume group for greater accessibility
- If you are planning to use the data on the target volume to copy back to the base volume in case of a disabled or failed snapshot volume

If you decide to allow host write access to the data on the target volume after the volume copy is completed, use the Copy Manager to disable the Read-Only attribute for the target volume.

Disabling Target Volume Read-Only

The Disable Read-Only option allows you to change the target volume permissions, allowing host read and write access to the target volume after the volume copy is completed.

To disable the Read-Only attribute for the target volume, complete the following steps.

- Select Volume >> Copy >> Copy Manager.
 The Copy Manager dialog is displayed.
- 2. Select the copy pair in the table by clicking on a specific copy pair.
- Select Change >> Target Volume Permissions >> Disable Read-Only from the Copy Manager menu.

The Read-Only attribute for the target volume is disabled, and the lock icon displayed next to the target volume in the Copy Manager is removed, as shown in Figure 4-20. Write requests are allowed to the target volume.

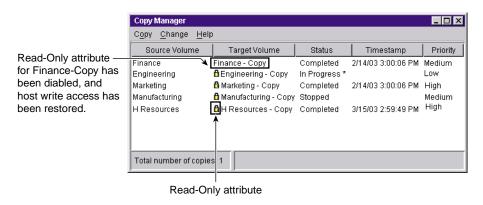


Figure 4-20 Disabling the Target Volume's Read-Only Attribute

Enabling Target Volume Read-Only

The Enable Read-Only option allows you to change the target volume permissions, preventing host write access to the target volume after the volume copy is completed, or prior to starting the volume copy.

To enable the Read-Only attribute for the target volume, complete the following steps.

- Select Volume >> Copy >> Copy Manager.
 The Copy Manager dialog is displayed.
- 2. Select the copy pair in the table by clicking on a specific copy pair.
- Select Change >> Target Volume Permissions >> Enable Read-Only from the Copy Manager menu.

The Read-Only attribute for the target volume is enabled, and the lock icon is displayed next to the selected target volume. Write requests to the target volume are rejected.

Volume Copy Scenarios

This chapter describes three key usage scenarios for the Volume Copy premium feature and the major tasks associated with each scenario.

Using the Volume Copy premium feature, you will be able to relocate data for better performance, create complete copies for backups, and be able to restore snapshot volume data.

Copying Data for Improved Access

As your storage requirements for a volume change, the Volume Copy premium feature can be used to copy data to a volume in a volume group that uses greater capacity drives within the same storage array.

Copying data for greater access allows you to move data to greater capacity drives (73GB to 146 GB), drives with a higher data-transfer rate (1 Gb/s to 2 Gb/s), or drives utilizing new technologies for higher performance.

In the following example, Storage Array Midwest consists of a command module and threedrive modules: Drive Modules 1 and 2 contain fourteen 73GB drives, and Drive Module 3 contains fourteen 146GB drives.

Volume Finance is associated with the drives in slot 3 on Drive Module 1 and slot 3 in Drive Module 2. To improve efficient access to the data on Finance, a volume copy will be created to copy the data to drives on Drive Module 3, as shown in Figure 4-21).

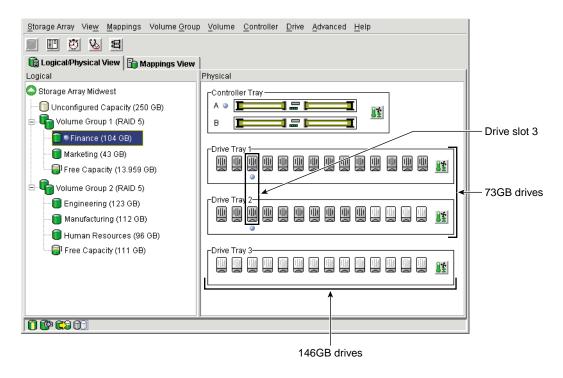
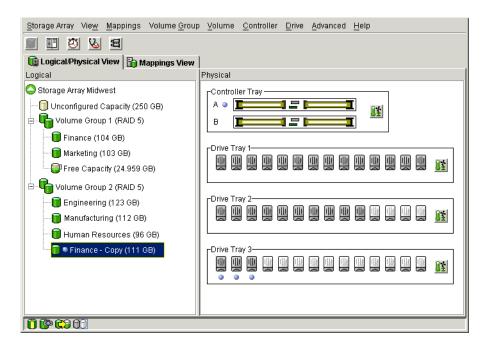
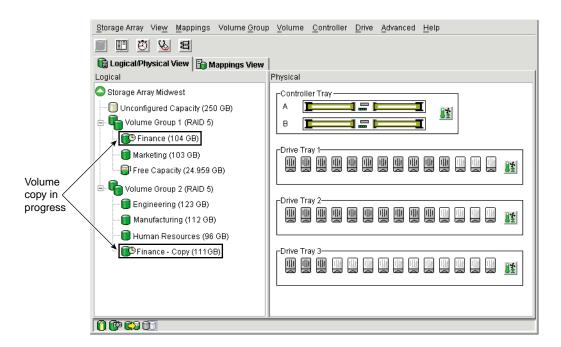



Figure 4-21 Storage Array Midwest Example

To copy data to a volume in a volume group using greater capacity drives, complete the following steps.

- 1. Use the Create Volume Wizard to create a new volume with the required parameters (RAID level, overall capacity, number of drives) on a volume group associated with the greater capacity drives, as shown in Figure 4-22. This will be the *target volume* for the volume copy.
 - Select the Free Capacity node on Volume Group 2.
 - b. Select **Volume >> Create** to display the Create Volume Wizard.
 - c. Follow the directions on each Wizard dialog, and select **Next** when you are ready to move to the next dialog.

Note: To make locating the target volume in the Logical View easier, ensure that you add "target" or "copy" to the target volume's name. For more information about creating a standard volume, refer to the **Array Management** window online help.


Figure 4-22 Creating the Target Volume Finance-Copy

- 2. Stop all I/O activity to the source volume.
- 3. Unmount any file systems on the source volume and target volume.
- 4. Delete the volume-to-LUN mapping for the source volume. Ensure that you record the LUN number used to provide access to the source volume. You will need this in step 8 when you define a volume-to-LUN mapping for the target volume.
 - a. From the Mappings View select the source volume, and then select Mappings>> Delete to display a confirmation dialog.
 - b. Select **Yes** to delete the selected volume-to-LUN mapping and close the **Delete** confirmation dialog.

The volume-to-LUN mapping is deleted and the source volume is moved back under the Undefined Mappings node in the **Mappings View**.

- 5. Use the Create Copy Wizard to create a new volume copy. as shown in Figure 4-23.
 - c. Select **Volume** >> **Copy** >> **Create** to display the **Create Copy Wizard Introduction** dialog. The source volume will be highlighted in the table.
 - d. Follow the directions on each Wizard dialog, and select **Next** when you are ready to move to the next dialog.

Select the volume you created in step 1 as the target volume.

Figure 4-23 Creating a Volume Copy of Finance

6. Select **Volume** >> **Copy** >> **Copy** Manager to open the Copy Manager to view the status of the volume copy, as shown in Figure 4-24.

Note: Wait until the volume copy has completed successfully before attempting to use the target volume

7. Select the copy pair in the Copy Manager, and then select **Copy> Remove Copy Pairs** to remove the copy from the table.

The Read-Only attribute for the target volume is also removed, enabling hosts read and write access.

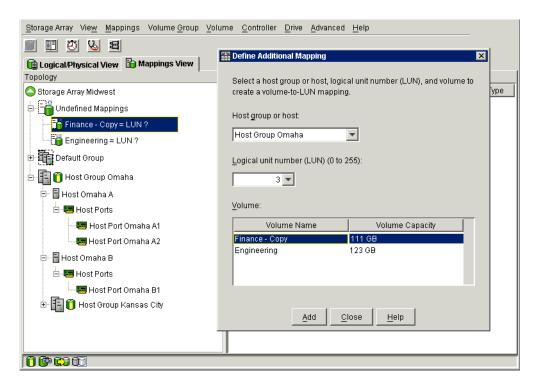



Figure 4-24 Viewing the Volume Copy Status in the Copy Manager

- 8. Define an additional mapping for the target volume (containing the copied data) by mapping it to the original host, using the LUN recorded in step 4, as shown in Figure 4-25.
 - a. From the **Topology** pane of the **Mappings View**, select the target volume, and then select **Mappings** >> **Define** >> **Additional Mapping**.
 - The **Define Additional Mapping dialog** is displayed.
 - b. Select the same host and LUN used for the source volume, and then choose the target volume from the list of available volumes.
 - Select Add to define the additional mapping.

Figure 4-25 Defining an Additional Volume-to-LUN Mapping for the Target Volume

9. Run the following utilities to register the additional volume-to-LUN mapping with the host operating system.

As root, issue the following commands:

a. # scsiha -p bus_numberFor example, enter scsiha -p 2 6 7

b. # ioconfig -f /hw

This assigns logical ontroller numbers to all devices in the I/O subsystem.

For more information about the scsiha and ioconfig utilities, see the scsiha(1m) and the ioconfig(1m) man pages.

10. Run the tpssmdevices utility to ensure that the volume name and the physical device name (assigned by the operating system) correspond.

For more information about the tpssmdevices utility, refer to the SGI InfiniteStorage TPSSM Administration Guide.

- 11. Remount any file systems on the source volume and target volume.
- 12. Restart I/O activity to the source volume and target volume.
- 13. Delete the original source volume, if needed.

It may be desirable to maintain the original source volume for a period of time in case you need to access the data from that volume.

Restoring Snapshot Volume Data to the Base Volume

The Volume Copy premium feature enables you to restore data from a snapshot volume to its original base volume. After a volume copy has been created, it may become apparent, due to possible corruption or data loss, that the data on the snapshot volume is preferred to the data on its associated base volume.

If you need to restore data to the base volume from its associated snapshot volume, the Volume Copy premium feature can be used to copy the data from the snapshot volume to the base volume.

In the following example, on Storage Array Midwest, volume Finance contains business critical data. A point-in-time snapshot copy was created for backup purposes, as shown in Figure 4-26. After the backup was created, data on the original base volume was accidentally deleted or corrupted.

The data from the snapshot volume is now preferred to the data on the base volume, and can be restored to the original base volume using the Volume Copy premium feature.

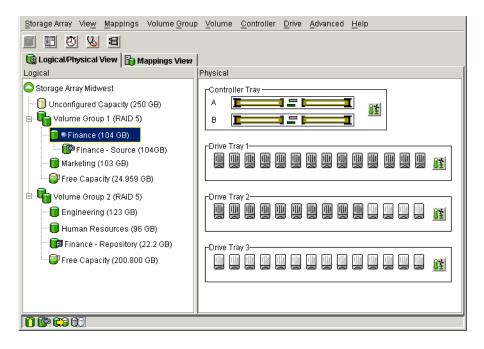
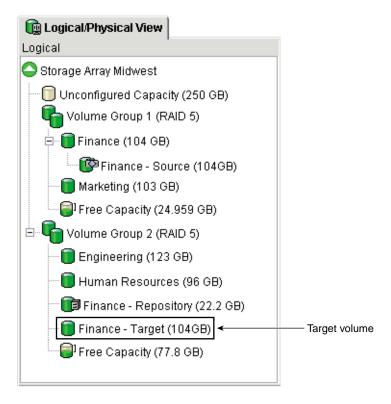


Figure 4-26 Storage Array Midwest Example

To copy the data on an existing snapshot volume back to its associated base volume, complete the following steps.


Note: This procedure assumes that a snapshot volume has already been created.

- 1. Stop all I/O activity to the base volume.
- 2. Unmount any file systems on the base volume.
- 3. If a suitable target volume has not already been created, create a standard volume with a capacity equal to the capacity of the base volume of the snapshot volume, as shown in Figure 4-27.
 - a. Select a volume group's Free Capacity node or the storage array's Unconfigured Capacity node, and then select **Volume** >> **Create**.

The Create Volume Wizard is displayed.

b. Follow the directions on each Wizard dialog, and select **Next** when you are ready to move to the next dialog.

Note: To make locating the target volume in the Logical View easier, ensure that you add "target" or "copy" to the volume name. For more information about creating a standard volume, refer to the **Array Management** window online help.

Figure 4-27 Creating Target Volume Finance-Target

- 4. Use the Create Copy Wizard to create a new volume copy between the snapshot volume and the target volume, as shown in Figure 4-28.
 - a. Select the snapshot volume, and then select Volume >> Copy >> Create.

- The **Create Copy Wizard Introduction** dialog is displayed, and the source volume is highlighted in the table.
- b. Follow the directions on each Wizard dialog, and select **Next** when you are ready to move to the next dialog.

Figure 4-28 Creating a Volume Copy

5. Select **Volume** >> **Copy** >> **Copy** Manager to open the Copy Manager to view the status of the volume copy, as shown in Figure 4-29.

Note: Wait until the volume copy has completed successfully before attempting to use the target volume.

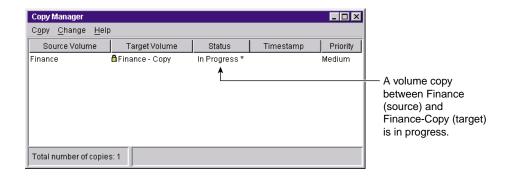


Figure 4-29 Viewing the Volume Copy Status in the Copy Manager

6. Select the copy pair in the Copy Manager and select **Copy** >> **Remove Copy Pairs** to remove the copy pair from the table.

The Read-Only attribute for the target volume is also removed, enabling hosts to have read and write access to the target volume.

- 7. Remove the volume-to-LUN mapping for the base volume (Finance). Ensure that you record the LUN number used to provide access to the base volume. You will need this in step 13 when you define a volume-to-LUN mapping for the target volume.
 - a. From the **Mappings View** select the base volume, and then select **Mappings >> Remove**.

A confirmation dialog is displayed.

b. Select **Yes**.

The volume-to-LUN mapping is removed, and the base volume is moved back under the Undefined Mappings node in the **Topology View**.

8. Run the following utilities to register the additional volume-to-LUN mapping with the host operating system.

As root, issue the following commands:

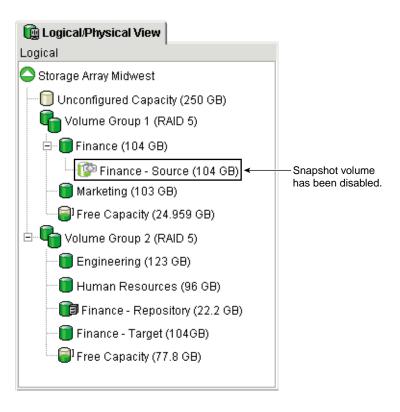
a. # scsiha -p bus_numberFor example, enter scsiha -p 2 6 7

b. # ioconfig -f /hw

This assigns logical ontroller numbers to all devices in the I/O subsystem.

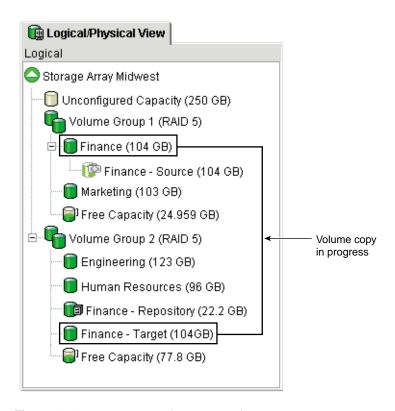
For more information about the scsiha and ioconfig utilities, see the scsiha(1m) and the ioconfig(1m) man pages.

9. Disable the snapshot volume to allow the base volume to become a valid target volume for the volume copy, as shown in Figure 4-30.


Note: If the base volume has multiple associated snapshot volumes, you will need to disable all the associated snapshot volumes before the base volume can be selected as a valid target volume.

Select the snapshot volume in the Logical View, and then select View >> Snapshot >> Disable.

The **Disable Snapshot Volume** dialog is displayed.


b. Type Yes in the text field and select **OK**.

The snapshot volume is disabled and copy-on-write activity to the snapshot repository volume is stopped until the snapshot volume is recreated.

Figure 4-30 Disabling the Snapshot Volume

- 10. Use the Create Copy Wizard to create a new volume copy between the target volume and the original base volume to restore the data to the base volume (Finance), as shown in Figure 4-31.
 - Select the target volume from the previous volume copy, and then select Volume >> Copy >> Create.
 - The Create Copy Wizard Introduction dialog is displayed.
 - b. Follow the directions on each Wizard dialog, and select **Next** when you are ready to move to the next dialog.

Figure 4-31 Creating a Volume Copy of Finance-Target

11. Select **Volume** >> **Copy** >> **Copy** Manager to open the Copy Manager to view the status of the volume copy, as shown in Figure 4-32.

Note: Wait until the volume copy has completed successfully before attempting to use the target volume.

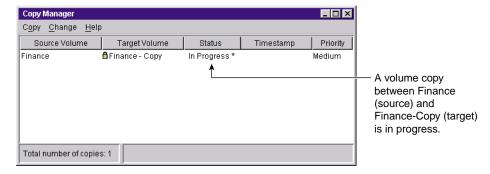


Figure 4-32 Viewing the Volume Copy Status in the Copy Manager

- 12. Select the copy pair in the Copy Manager and select **Copy** >> **Remove Copy Pairs** to remove the copy pair from the table.
 - The Read-Only attribute for the target volume is also removed, enabling hosts to have write access to the target volume.
- 13. Define a volume-to-LUN mapping for the base volume (containing the copied data) by mapping it to the original host using the LUN recorded in step 7, as shown in Figure 4-33.
 - a. From the Topology pane of the Mappings View, select the target volume and then select Mappings >> Define >> Additional Mapping.
 - The **Define Additional Mapping** dialog displayed.
 - b. Select the same host and LUN used for the base volume, and then choose the target volume from the list of available volumes.
 - c. Click **Add** to define the additional mapping.

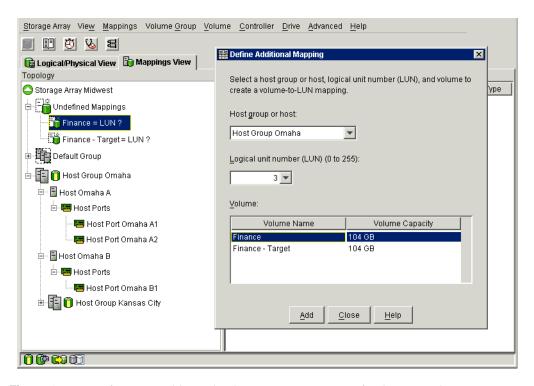


Figure 4-33 Defining an Additional Volume-to-LUN Mapping for the Base Volume

14. Run the following utilities to register the additional volume-to-LUN mapping with the host operating system.

As root, issue the following commands:

- a. # scsiha -p bus_number

 For example, enter scsiha -p 2 6 7
- b. # ioconfig -f /hw

This assigns logical ontroller numbers to all devices in the I/O subsystem.

For more information about the scsiha and ioconfig utilities, see the scsiha(1m) and the ioconfig(1m) man pages.

15. Run the tpssmdevices utility to ensure that the volume name and the physical device name (assigned by the operating system) correspond.

For more information about the tpssmdevices utility, refer to the SGI InfiniteStorage TPSSM Administration Guide.

- 16. If you need a new point-in-time image of the data on the base volume, recreate the snapshot volume you disabled in step 9.
 - a. Select **Volume** >> **Snapshot** >> **Create**.
 - The **Create Snapshot Volume Wizard Introduction** dialog is displayed.
 - b. Follow the directions on each Wizard dialog, and select Next when you are ready to move to the next dialog.
- 17. Remount any file systems on the base volume and target volume.
- 18. Restart I/O activity to the base volume.

Data Backup and Restoration

The Volume Copy premium feature allows you to create a backup of a volume by copying data from one volume (source) to another volume (target) in the same storage array, minimizing the time that the source volume is unavailable to host writes.

The target volume can then be used as a backup for the source volume, as a resource for system testing, or to copy data to another device such as a tape drive or other media.

Creating a Backup Copy

The following example details how to back up data on your storage array using the Volume Copy premium feature.

In this example, on Storage Array Midwest, volume Finance contains data that needs to be backed up. The backup will be created on the storage array, and eventually transferred to a tape drive for off-site storage.

The source volume's actual capacity is 104 GB, as shown in Figure 4-34. Using the Volume Copy premium feature, a complete copy of Finance will be created and stored on the storage array as a backup of the base volume.

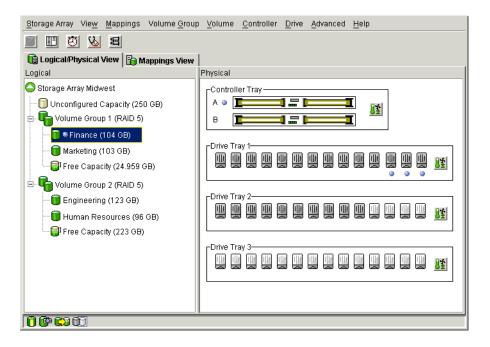
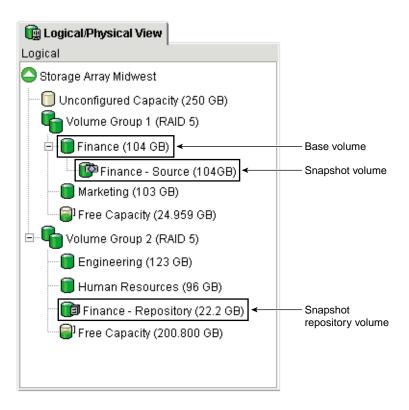
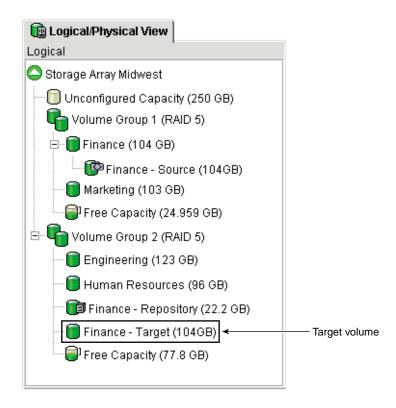



Figure 4-34 Storage Array Midwest Example

To copy data from the base volume to the target volume, which can then be used to back up data to a drive tape or some other media, complete the following steps.

- 1. Stop all I/O activity to the base volume (Finance).
- 2. Unmount any filesystems on the base volume.
- 3. Select the base volume (Finance) in the **Logical View** of the **Array Management** window.
- 4. Use the Create Snapshot Volume Wizard to create a snapshot volume, as shown in Figure 4-35.
 - a. Select Volume >> Snapshot >> Create.
 The Create Snapshot Volume Wizard Introduction dialog is displayed.
 - b. Follow the directions on each Wizard dialog, and select **Next** when you are ready to move to the next dialog.


Figure 4-35 Creating a Snapshot Volume of Finance

- 5. Remount any file systems on the base volume.
- 6. Restart I/O activity to the base volume.
 - Finance is now available for host read and write access. The snapshot volume created in step 4 can now be selected as the source volume for the volume copy.
- 7. If a target volume has not already been created, create a standard volume with a capacity equal to or greater than the snapshot volume's capacity, as shown in Figure 4-36.
 - a. Select a volume group's Free Capacity node or the storage array's Unconfigured Capacity node, and then select **Volume >> Create**.

The Create Volume Wizard is displayed.

b. Follow the directions on each Wizard dialog, and select **Next** when you are ready to move to the next dialog.

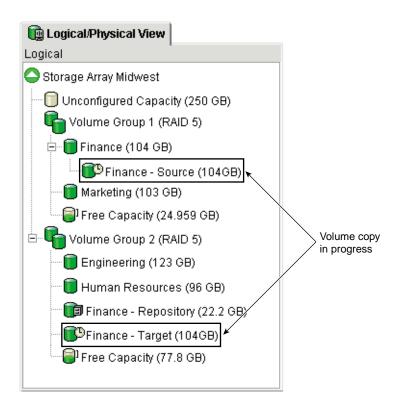

Note: To make locating the target volume in the Logical View easier, ensure that you add "target" or "copy" to the target volume name. For more information about creating a standard volume, refer to the **Array Management** window online help.

Figure 4-36 Creating the Target Volume Finance-Target

- 8. Use the Create Copy Wizard to create a new volume copy, using the snapshot volume as the source volume and the volume you created in step 7 as the target volume, as shown in Figure 4-37.
 - a. Select the snapshot volume, then select **Volume >> Copy >> Create**.

- The **Create Copy Wizard Introduction** dialog is displayed, with the snapshot volume highlighted in the table.
- b. Follow the directions on each Wizard dialog, and select **Next** when you are ready to move to the next dialog.

Figure 4-37 Creating a Volume Copy the Snapshot Volume Finance-Copy

9. Select **Volume** >> **Copy** >> **Copy** Manager to open the Copy Manager to view the status of the volume copy, as shown in Figure 4-38.

Note: Wait until the volume copy has completed successfully before attempting to use the target volume.

10. Select the copy pair in the Copy Manager, and select **Copy >> Remove Copy Pairs** to remove the copy pair from the table.

The Read-Only attribute for the target volume is also removed, enabling hosts to have write access to the target volume.

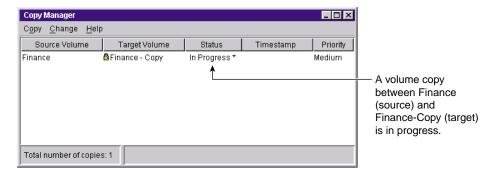


Figure 4-38 Viewing the Status of the Volume Copy in the Copy Manager

- 11. Disable the snapshot volume to stop any further copy-on-write activity to its associated snapshot repository volume, as shown in Figure 4-39.
 - a. Select the snapshot volume in the Logical View, and then select **Volume >> Snapshot >> Disable**.

The **Disable Snapshot Volume** dialog is displayed.

b. Type Yes in the text field, and then select \mathbf{OK} .

The snapshot volume is disabled, and copy-on-write activity to the snapshot repository volume is stopped until the snapshot volume is recreated.

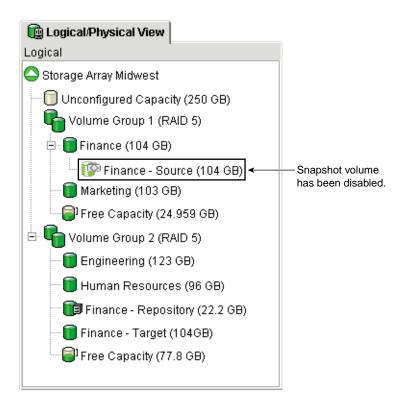


Figure 4-39 Disabling Snapshot Volume Finance-Source

12. The target volume can now be used to back up data to a tape drive (to be stored off-site), for application or system testing, or be retained on the storage array for quick recovery of the data on the base volume (Finance).

Recovering from a Backup Copy

Data can be recovered instantly from the backup volume you created in the previous procedure by simply unmapping the base volume (Finance) from its host, and then mapping the backup volume (Finance - Target) to the same host.

To recover data from Finance - Target, complete the following steps.

- 1. Stop all I/O activity to the base volume (Finance).
- 2. Unmount any file systems on volume Finance.
- 3. Remove the volume-to-LUN mapping for the original base volume (Finance). Ensure that you record the LUN number used to provide access to the base volume. You will need this in step 4 when you define a volume-to-LUN mapping for the target volume.
 - a. From the Mappings View select the base volume, and then select Mappings >> Remove.

A confirmation dialog is displayed.

b. Select Yes.

The volume-to-LUN mapping is removed, and the base volume is moved back under the Undefined Mappings node in the **Topology View**.

4. Run the following utilities to register the additional volume-to-LUN mapping with the host operating system.

As root, issue the following commands:

a. # scsiha -p bus_numberFor example, enter scsiha -p 2 6 7

b. # ioconfig -f /hw

This assigns logical ontroller numbers to all devices in the I/O subsystem.

For more information about the scsiha and ioconfig utilities, see the scsiha(1m) and the ioconfig(1m) man pages.

- 5. Define a volume-to-LUN mapping for the target volume (containing the copied data), using the same LUN as the original base volume, recorded in step 3.
 - a. From the **Topology** pane of the **Mappings View**, select the target volume and then select **Mappings** >> **Define** >> **Additional Mapping**.

Tip: The **Define Additional Mapping** dialog is displayed.

- b. Select the same host and LUN used for the base volume, and then choose the target volume from the list of available volumes.
- c. Click Add to define the additional mapping.

6. Run the following utilities to register the additional volume-to-LUN mapping with the host operating system.

As root, issue the following commands:

a. # scsiha -p bus_number

For example, enter scsiha -p 2 6 7

b. # ioconfig -f /hw

This assigns logical ontroller numbers to all devices in the I/O subsystem.

For more information about the scsiha and ioconfig utilities, see the scsiha(1m) and the ioconfig(1m) man pages.

7. Run the tpssmdevices utility to ensure that the volume name and the physical device name (assigned by the operating system) correspond.

For more information about the tpssmdevices utility, refer to the SGI InfiniteStorage TPSSM Administration Guide.

- 8. Remount any file systems on the target volume.
- 9. Restart I/O activity to the base volume and target volume.

Troubleshooting

This section provides information about troubleshooting some of the more common problems encountered when using the Volume Copy premium feature.

Troubleshooting topics included are general Volume Copy problems and premium feature troubleshooting.

Locate the section that is directly related to your problem, or consult the section describing general troubleshooting techniques. If your problem is not discussed in any of the sections in this chapter, contact technical support.

General Troubleshooting

This section describes some of the typical problems you may encounter when using the Volume Copy premium feature. The information in this section is presented in sequence,

from the time the premium feature is enabled to problems that you may encounter using the Volume Copy premium feature.

Information about the probable cause and recommended resolution for each problem are provided. If your problem is not addressed in this chapter, contact technical support.

The Volume Copy Menu options in the Array Management window are greyed out and unavailable

Cause: The Volume Copy premium feature is not enabled.

Resolution: Enable the Volume Copy premium feature. You must use a Feature Key

File to enable premium features. If one has not been supplied, contact

your storage supplier.

For step-by-step instructions about enabling the Volume Copy premium feature, refer to "Enabling the Volume Copy Premium Feature" on page 171 or

the **Array Management** window online help.

The Volume Copy icon in the premium status area is greyed out with a red line

Cause: The Volume Copy premium feature is not enabled.

Resolution: Enable the Volume Copy premium feature. You must use a Feature Key

File to enable premium features. If one has not been supplied, contact

your storage supplier.

For step-by-step instructions about enabling the Volume Copy premium feature, refer to "Enabling the Volume Copy Premium Feature" on page 171 or the **Array Management** window online help.

The Create Copy option is not available after selecting a source volume in the Logical View

Cause: The volume you have chosen to be the source volume for the volume copy is not a valid source volume.

The following volumes are not valid source volumes and will not appear in the list:

- Remote Volume Mirror secondary volume
- Snapshot repository volume
- Remote Volume Mirror repository volume
- Failed volume

- Missing volume
- A volume currently in a modification operation
- A volume that is reserved by the storage management software
- A volume that is a source volume or target volume in another volume copy with a status of In Progress, Failed, or Pending

Resolution:

Select a valid source volume, which can be a standard volume, snapshot volume, the base volume of a snapshot volume, or a primary volume participating in a Remote Volume Mirror.

The source volume/target volume is displayed as being a Missing Volume

Cause:

A physical drive on which the Volume Copy depends (source volume or target volume) has been removed, and the volume is now displayed under the Missing Volumes node in the **Logical View** of the **Array Management** window.

Resolution:

If missing volumes are detected because drives have accidentally been removed, or are detected as missing because of a power loss to the drive modules, recovery of these volumes is possible by completing the following steps:

- Re-insert the drives into the drive module.
- 2. Ensure that the drive module's power supplies are properly connected to an operating power source and have Optimal status.

For more information about troubleshooting missing volumes, refer to the Recovery Guru or the **Array Management** window online help or contact technical support. If the missing volume is no longer required, it may be deleted.

Caution: Deleting a missing volume is a permanent action. Any associated volumes or volume-to-LUN mappings will also be deleted.

The controller owner for the source volume/target volume changes after the volume copy has completed

Cause:

When the volume copy started, the preferred controller did not have ownership of both the source volume and target volume.

Resolution:

During a volume copy, the same controller must own both the source volume and the target volume. If both volumes do not have the same preferred controller when the volume copy starts, the ownership of the target volume is automatically transferred to the preferred controller of the source volume.

When the volume copy is completed or is stopped, ownership of the target volume is restored to its preferred controller. If ownership of the source volume is changed during the volume copy, ownership of the target volume is also changed.

A volume copy that includes a source volume participating in a Remote Volume Mirror has a status of In Progress, Pending, or Completed, but has failed

Cause: In response to a catastrophic failure at the primary storage array, a role

reversal has occurred. The secondary volume in the mirrored pair was promoted to the primary volume role, while the primary volume was

demoted to the secondary volume role.

Resolution: Once the preferred controller of the primary volume can be contacted, a

role reversal will automatically take place and you can then restart the

volume copy.

For more information about role reversals, refer to "Role Reversals" on

page 169.

Error message indicates that the Volume Copy premium feature is out of compliance

Cause: The Volume Copy Premium Feature is out of compliance.

This normally occurs if a volume group with existing Volume Copies

has been moved into a storage array where the feature is not

authorized, or if you have disabled the feature on a storage array where the feature is authorized, and you have existing volume copies present.

Resolution: If the Volume Copy feature is not authorized for this storage array and

you want to authorize it, or the Volume Copy feature is authorized for this storage array but you have disabled it, complete the following steps

to clear the out of compliance error:

- Obtain a new Feature Key File for this feature, or retrieve the existing Feature Enable Identifier by selecting Storage Array >> Premium Features >> List in the Array Management window.
- 2. Enable the Volume Copy premium feature. For step-by-step instructions, see "Enabling the Volume Copy Premium Feature" on page 171 or the **Array Management** window online help.

If the Volume Copy feature is not authorized for this storage array and you do not want to authorize it, disable the Volume Copy premium feature by selecting the **Storage Array** >> **Premium Features** >> **Disable** option in the **Array Management** window.

For more information about disabling premium features, refer to the **Array Management** window online help.

Error message indicates that the selected source volume has a reservation placed on it

Cause: Volumes configured with a legacy or persistent reservation cannot be selected as a source volume or a target volume for a volume copy.

Resolution: Clear the reservation for the selected volume, and then recreate the volume copy.

- 1. Select **Advanced** >> **Persistent Reservations** to open the **Persistent Reservations** dialog.
- 2. Ensure that the **View Associated Registrations** check box is unselected in the upper left corner of the **Persistent Reservations** dialog.
- Click one or more desired volumes. To select all volumes, click Select All. The selected volumes or all volumes are highlighted, depending on your selection.
- Select Clear.
 The Clear Registrations/Reservations dialog is displayed.
- 5. Type Yes in the confirmation field. The **OK** button becomes enabled.
- 6. Select **OK**, or select **Cancel** to return to the main **Persistent Reservations** dialog without clearing any reservations.

The reservations and registrations associated with the volumes that you have highlighted in the upper pane are cleared.

Volume Copy Critical Events

Critical Major Event Log (MEL) events are generated when an error occurs that can affect data availability or that results in a degraded mode of operation. The storage management software responds by alerting the appropriate administrators via email, SNMP trap, or other configured mechanisms.

Because administrative action is required to correct the problem, the storage array will generally enter a Needs Attention status. This causes the appropriate indications to be presented through the storage management software and an associated Recovery Guru procedure to be displayed when requested.

The following table provides a description of critical MEL events, with a brief explanation of what caused the event, and the recommended resolution. If your critical MEL event is not included in this section, contact technical support.

Event 6600 - Volume Copy Operation Failed

Cause: This event is logged when a Volume Copy with a status of In Progress or

Pending has failed. A Needs Attention status is also reported for the

storage array.

This failure can be caused by a read error on the source volume, a write error on the target volume, or because of a failure that occurred on the

storage array that affects the source volume or target volume.

Resolution: For specific recovery procedures, refer to Recovery Guru.

Glossary of Volume Copy Terms

This section provides definitions of terms that you may encounter when using the Volume Copy feature.

Array Management window (AMW)

The interface from which you can manage a storage array. Use the **Array Management** window to manage and configure physical and logical components, recover from errors, and monitor performance.

Base Volume A volume from which you create a snapshot volume. A base volume

must be a standard volume in the storage array.

Copy Complete

This status is displayed in the Copy Manager signifying that the data on the source volume has been successfully copied to the target volume. This status is accompanied by a timestamp attribute.

Copy Failed

This status is displayed in the Copy Manager when an error occurred during the volume copy. A status of Failed can occur because of a read error from the source volume, a write error to the target volume, or because of a failure on the storage array that affects the source volume or target volume.

A critical event is logged in the Major Event Lot (MEL) and a Needs-Attention icon is displayed.

Copy-In-Progress

This status is displayed in the Copy Manager while data on the source volume is being read and then written to the target volume. While a volume copy has this status, the host has read-only access to the source volume, and read and write requests to the target volume will not take place until the volume copy has completed.

Copy Manager

The Copy Manager is a dialog in the Volume Copy premium feature used to monitor the progress of a volume copy, and to manage all volume copies on a single storage array after they have been created.

Copy-on-Write

A copy-on-write operation occurs the first time any data block is modified on the base volume of a snapshot volume. The point-in-time data you wish to preserve from the snapshot volume is stored on the base volume until the storage array controller receives a write request for the base volume. Before the write occurs, the data blocks to be modified are copied over to the snapshot repository volume for safekeeping.

Copy Pair

A copy pair refers to a source volume and a target volume in a volume copy that are located on the same storage array.

Copy Pending

A volume copy status displayed in the Copy Manager when a volume copy has been created, but system resources do not allow it to start. While in this status, the host has read-only access to the source volume, and read and write requests to the target volume will be rejected until the volume copy has completed.

Copy Priority

This setting defines how much of the system resources are used to complete a volume copy versus fulfill I/O requests. There are five relative settings ranging from Lowest to Highest. The Highest priority rate supports the volume copy, but I/O activity may be affected. The Lowest priority rate supports I/O activity, but the volume copy will take longer.

You can set the copy priority for each volume copy in the Create Copy Wizard or by using the Copy Manager.

Copy Stopped This status is displayed in the Copy Manager immediately after a volume copy is created in the Wizard, or when the volume copy is stopped in the Copy Manager. This status does not occur as a result of a failure.

> While a volume copy has this status, no data is copied between the source volume and target volume.

Enterprise Management window (EMW)

A graphical user interface (GUI) from which a user can manage storage arrays, monitor the health of the storage arrays, configure e-mail and Simple Network Management Protocol (SNMP) alert notifications, launch an appropriate **Array Management** window for a particular storage array, or edit and execute a script to perform batch management tasks.

Feature Key File

The storage array controller uses this file to enable an authorized premium feature. The file contains the Feature Enable Identifier of the storage array for which the premium feature is authorized, and contains generated data about the premium feature.

Missing Volume

A missing volume is a placeholder node displayed in the **Logical View**, indicating that the storage array has detected that drives associated with a volume are no longer accessible. Typically, this is the result of removing drives associated with a volume group or the loss of power to one or more drive trays.

Persistent Reservation

A reservation on a volume that prevents other hosts from accessing the volume. Unlike other types of reservations, a persistent reservation reserves access across multiple host ports, provides various levels of

007-4749-001 225 access control, offers the ability to query the storage array about registered ports and reservations, and optionally, provides for persistence of reservations in the event of a storage array power loss.

Preferred Controller Ownership

The preferred controller ownership of a volume or volume group is the controller of an active-active pair that is designated to own these volumes. The preferred controller owner is the controller that currently owns the volume or volume group.

If the preferred controller is being replaced or is undergoing a firmware download, ownership of the volumes is automatically shifted to the other controller, and that controller becomes the current owner of the volumes. This is considered a routine ownership change and is reported with an informational entry in the event log.

There can also be a forced failover from the preferred controller to the alternate controller because of I/O path errors. This is reported with a critical entry in the event log, and will be reported by the Enterprise Management software to e-mail and SNMP alert destinations.

Premium Feature

A storage array feature that may not be available in the standard configuration of the storage management software.

Use the **Storage Array** >> **Premium Features** >> **Enable** pull-down menu option to enable a premium feature.

Primary Volume

The primary volume in a Remote Volume Mirror is the volume that accepts host I/O and stores application data. The data on a primary volume is replicated to the secondary volume.

Secondary Volume

A secondary volume is used to store data replicated from a primary volume. The controller owner of a secondary volume receives remote writes for the volume from the controller owner of the primary volume. The controller owner of the secondary volume does not accept host read or write requests.

Tpssmdevices

tpssmdevices is a host-based utility used to associate the mapping between a physical device name and a volume name.

Once volumes have been created and volume-to-LUN mappings have been defined, this utility is run to ensure that the volume name and the physical device name (assigned by the operating system) correspond.

Snapshot Repository Volume

A snapshot repository volume is a special volume in the storage array that is created as a resource for a snapshot volume. A snapshot repository volume contains snapshot data and copy-on-write data for a particular snapshot volume.

A snapshot repository volume is not host-addressable, but you can increase its capacity, rename it, specify the action (either failing it or failing writes to the base volume) when it becomes full, or view its capacity or media scan properties.

Snapshot Volume

A snapshot volume is a logical point-in-time image of another volume, called a base volume, in the storage array. A snapshot is the logical equivalent of a complete physical copy, but you create it much more quickly than a physical copy and it requires less disk space.

Because a snapshot is a host-addressable volume, you can perform backups using the snapshot while the base volume remains online and user-accessible. In addition, you can write to the snapshot volume to perform application testing or scenario development and analysis.

Source Volume

A standard volume in a volume copy that accepts host I/O and stores application data. When the volume copy is started, data from the source volume is copied in its entirety to the target volume.

Standard Volume

A logical structure you create on a storage array for data storage.

Storage Array

A storage entity managed by storage management software. A storage array consists of a collection of both physical components (such as drives, controllers, fans, and power supplies) and logical components (such as volume groups and volumes). A storage array can span multiple physical enclosures.

For example, several drive modules connected to a command module constitutes one storage array. A unit that contains drives and a controller in a single enclosure is also considered one storage array. A rackmount subsystem may contain more than one storage array.

Also known as a RAID Module.

Target Volume A standard volume in a volume copy that maintains a copy of the data from the source volume. Read and write requests to the target volume will be rejected while the volume copy has a status of In Progress, Pending, or Failed.

> When a volume copy is started, the data from the source volume is written to the target volume.

A volume copy will overwrite data on the target volume. Ensure that you no longer need the data on the volume, or have backed it up, before starting the volume copy.

Usable Capacity

The minimum of the primary volume and secondary volume actual capacities.

In a given Array Management window, all primary or secondary volumes present in the same storage array display both actual and usable capacity in the Logical View.

Volume

A volume is a logical structure that you create on a storage array for data storage. A volume is defined over a set of drives called a volume group, and has a defined RAID level and capacity. The drive boundaries of the volume group are hidden to the host computer.

Volume Copy

The Volume Copy premium feature is used to copy data from one volume (the source volume) to another volume (the target volume) within a single storage array.

Volume Reservation

A feature of cluster software that allows one or more host ports to reserve a volume and prevent other host ports from accessing the same volume.

228 007-4749-001

Index

A	performance impacts, 28 settings, 28
access volume, 7,8	start flush percentage, 60
Add Device option, 13	start percentage, 28
agent software see host-agent software	stop flush percentage, 60 stop percentage, 28
alert destinations, 45	cache hit percentage
alert notifications, 11	defined, 60 impact from cache flush settings, 28
Array Management window described, 16 failure notification in, 53 functions, 16	cache read-ahead choosing a multiplier, 62 defined, 62
introduction to, 9 monitoring Storage Arrays with, 45 Array Management window Help, xxiii	cache settings, 65 Campus Configuration cabling, 108-112 defined, 76
associated volumes, locating, 181	redundancy characteristics, 88, 95
Automatic Discovery option, 13	Change Copy Priority option, 190 channel protection, 29
В	Components button, 19 configuration
backup copy, creating a, 210	automatic, 65
battery age clock, 27	resetting a, 65
BOOTP or BOOTP-Compliant DHCP Server, 2	configuration file described, 11 recovering a corrupted, 66
C	Contacting Device status, 48
cache block size, 60	controller, 35 defined, 3
cache flush described, 28	listing components associated with, 67 ownership, 65

placing in active or passive mode, 67 placing online or offline, 67 viewing properties, 68	copying data, 159 for improved access, 194 to back up data, 210
controller host side I/O port and read/write requests, 76 dedicated for mirroring, 76, 124, 126, 134 requirements, 76 zoning ports reserved for mirroring, 98 controller module	to restore snapshot volume data, 200 Create Copy Wizard description of, 161 dialogs in the, 161 using the, 177 Create Remete Volume Mirror Wizard, 127
see controller tray	Create Remote Volume Mirror Wizard, 127
controller owner and full synchronization, 70 and remote writes, 70 I/O path errors, 78	critical alerts, 14 critical data, backing up, 135 critical events, 223 Critical Major Event Log (MEL), 154, 223
managing data replication, 73 of secondary volume, 70 prioritization of full synchronization, 79 read requests, 74	D data back up and rectoration, 210
controller ownership, 162	data back up and restoration, 210 data protection strategies, 23
controller resets, 71	Hardware Redundancy, 27
controller tray batteries, 28 defined, 3	data replication and link interruptions, 73 description of, 73
Copy Manager, 184 Change Copy Priority option, 190 Disable Read-Only option, 192 Enable Read-Only option, 192 Re-Copy option, 186 Remove Copy Pairs option, 189 Stop Copy option, 188	process illustration, 73 Default Group, defined as a topological element, 35 default LUN, 35 default volume-to-LUN mapping and volumes, 41 Defined Mappings view, 35
copy pair, description of, 160, 184	device
copy priority, 163 affect on storage array performance, 163 changing the, 190 description of, 163 relative settings for, 163 setting the, 163	automatic discovery of, 63 correcting a partially managed, 66 manually adding, 63 removing, 63 Device Table, 47 Device Tree, 47
Copy Started dialog, 180	directly managed storage array, 7
copyback, 29	disable target volume read-only attribute, 192

Disabled/Activated status	Enabled/Activated status
changing the status, 134	changing the status, 134
defined, 123	defined, 123
Disabled/Deactivated status	Enabled/Deactivated status defined, 123
defined, 123	enabling the premium feature, 171
icon, 121	Enterprise Management window
limitations of, 134	figure, 12
disaster recovery	functions, 10
backing up critical data, 135	introduced, 9
preparation steps, 135	monitoring storage arrays with, 45
drive	status icons displayed in, 47
defined, 3	Enterprise Management window Help, xxiii
failing, 66	entire site failover
initializing, 67	description of, 138
listing components associated with, 67	Event Log, 66
locating, 67	Event Monitor
reconstructing, 67	setting up alert destinations, 50
reviving, 67	synchronizing with Enterprise Management
viewing properties, 68	window, 51
drive group	expected usage, of a volume, 32
see volume group	expected dauge, of a vertaine, e2
drive module	
see drive tray	F
drive tray	
defined, 3	failure notification
Hardware Installation and User Guides, xxiii	in the Array Management window, 53
drives, viewing information for, 176	types of, 53
dual-primary condition, 142, 170	Feature Key File, 124, 171
dual-secondary condition, 143	Fibre Channel fabric configurations
DVE (Dynamic Volume Expansion), also called	defined, 76
increase volume capacity, 33	distance limit, 78
	Fibre Channel switches. See switches
_	finding associated volumes, 181
E	firmware
EL 200	downloading, 64
EL, 223	firmware version
email destinations, 66	for remote volume mirroring, 119
emwdata.bin file, 11	requirements, 86
enable target volume read-only attribute, 193	-

firmware versions supported, 16	host cluster software, 140
Fixing status, 47	host group, defined as a topological element, 35
free capacity, 4	host port, defined as a topological element, 36
adding to a volume group, 32, 64	host type, setting, 43
consolidating on a volume group, 64	host, defined as a topological element, 35
creating volumes from, 64	host-agent managed Storage Array
creating volumes on, 32	described, 7
defined, 4	discovering newly attached, 63
increasing storage array, 64	host-agent software
Free Capacity node, 4	described, 8
full synchronization	where installed, 8
after connectivity is restored, 75 after mirror relationship is created, 73	hot spare drive
defined, 70	assigning, 64
performance considerations, 79	configuring, 29
time to complete, 79	defined, 29
•	unassigning, 64
G	1
general troubleshooting, 218	
Go To option, 181	increase volume capacity, also called Dynamic Volume Expansion (DVE), 33
	indicator lights, 67
Н	Intra-Site Configuration
	cabling, 119
hardware components, 1	defined, 77
Help	redundancy characteristics, 89, 95, 112
task reference, 63	I/O access pattern, 61
using, xxiii	I/O data connection
heterogeneous hosts, overview and example, 42	see I/O data path
Highest Availability Campus Configuration	I/O data path
cabling, 99-105	described, 5
connection table, 99	I/O path error, 78
defined, 76	I/O request rate
redundancy characteristics, 86, 95	defined, 60
host	impact from cache flush settings, 28
defined, 2	modification priority effect on, 63
host bus adapter utility, 36	

L	mirror relationships maintaining, 129
link interruptions, 73	maximum per storage array, 70
locating associated volumes, 181	prerequisites for creating, 72
logical unit number	removing, 132, 148
see LUN	viewing details, 130
Logical view, 47	mirror repository volume
status icon changes, 57, 58	defined, 71
LUN	deleting, 134
address space, 41	information logged to, 73 RAID level of, 72
defined	size of, 72
using in a volume-to-LUN mapping, 41	
see volume	mirrored volume pair, 167
LUN (logical unit number), defined, 36	missing volume, primary or secondary, 147
	modification operations, 62, 171
M	modification priority
M	changing, 65 described, 62
Major Event Log (MEL), 154	effect on I/O request rate, 63
management domain	setting, 63
adding host-agent managed storage arrays to, 7	monitoring progress, 184
configuration file, 11	multimedia applications, 27
defined, 5	multi-user environments, 27
global e-mail alert settings, 66	mant-aser environments, 27
populating, 13	
use of Automatic Discovery, 13	N
management station	
see storage management station, 1	Needs Attention status, 47
managing volume copies, 184	network management connection
Mappings View, overview, 34	combinations of, 7
media scan	defined, 6
changing settings, 65	host-agent, 8
defined, 29	types of, 6
medical imaging applications, 27	Network Management Station
MEL. See Major Event Log	defined, 2 receipt of failure notifications, 54
MEL (Major Event Log), 223	-
mirror relationship. See Remote Volume Mirroring	NVSRAM, downloading, 64

0	R
online Help see Help operating systems, list of certified, 86 Optimal status, 47, 155 orphan mirror, 148 Overall Health Status, 47	RAID 0 described, 26 drive failure consequences, 26 RAID 1 described, 26 drive failure consequences, 26 performance, 61 redundancy, 25
password protection, 30, 67 performance considerations, Remote Volume Mirrors, 79 Performance Monitor, 60, 65 persistent reservations, 163 Physical view changing tray order in, 64 described, 19 status icon changes, 57, 58 power outage, 28 preferred controller owner, 162 premium features Remote Volume Mirroring, 167 Snapshot Volume, 167 Storage Partitioning, 165 Preview dialog, 180	described, 27 drive failure consequences, 27 redundancy, 25 RAID 5 described, 27 drive failure consequences, 27 performance, 61 redundancy, 25 RAID level and drive number constraints, 125 changing, 61, 65 described, 24 for secondary volume, 127, 128 of volume group for mirror repository volumes, 125 use on a volume group, 25 using an appropriate, 24 RAID Module
primary volume, 167 and full synchronization, 70 base volume for a snapcopy, 81 controller ownership changes, 78 creating, 127 defined, 70 ownership of, 77 role reversals, 169 properties, Volume Copy, 182	see Storage Array read percentage, 61 reconstruction, 29 Re-Copy option, 186 Recovery Guru described, 55 identifying when to use, 66 Recovery Procedure, 56 Summary Area, 56

redundancy	S
checking, 66	
data, 24	Script Editor, 11, 64
of Fibre Channel Arbitrated Loops, 30	secondary storage array, 167
of Storage Array hardware, 23	secondary volume, 167
remaining capacity	and host reads and writes, 70
see free capacity	creating, 127
Remote Volume Mirror. See mirror relationships	defined, 70
Remote Volume Mirroring	determining controller ownership, 77
description of, 167	failed, 75
full synchronization, 167	minimum size, 127
primary volume, 167	offline, 75
role reversal, 169	Optimal status, 75
secondary volume, 167	preparing for disaster recovery, 136
Remote Volume Mirroring feature	RAID level, 127, 128
and other premium features, 80	restrictions with snapcopy premium feature, 82
firmware requirements, 86	segment, 61
hardware requirements, 85	segment size
introduction, 69	changing, 61, 65
operating system requirements, 86	selecting an appropriate, 61
out of compliance, 149	site preparation, 92
software installation, 119	snapcopy repository volume, 81
software requirements, 86	snapcopy volume
storage management software requirements, 86	failure due to role reversal, 82-84
troubleshooting, 143	with Remote Volume Mirroring feature, 81
verifying configuration before beginning, 120-121	snapshot repository volume, 167
remote write, 73	Snapshot Volume
Remove Copy Pairs option, 189	description of, 167
removing copy pairs, 189	snapshot repository volume, 167
restoring snapshot volume data, 200	SNMP destinations
restrictions, 170	specifying, 66
role reversal	where stored, 11
description of, 169	SNMP trap message
performing a, 169	interpreting, 66
with snapcopy volumes, 83	use for critical alerts, 2
with Storage Partitioning, 81	software components, 8
	source volume
	properties of a, 182
	selecting a, 174

source volumes, 160	Storage Partitioning, 165
specific volume-to-LUN mapping, 41	overview and example, 37
start percentage, cache flush, 28	topology, 35
status icon	Wizard, 37
changes during a recovery procedure, 58	storage partitioning
changes during recovery procedure, 57	and secondary volumes, 81
Stop Copy option, 188	storage partitioning, description of, 165
stop percentage, cache flush, 28	switch zoning
Storage Array	and switch ports, 98, 107, 114
comment, 63	switches
configuring, 23	cascading, 93
connectivity, 5	list of certified, 85 zoning, 93
defined, 2	
directly managed, 7	Synchronization Priority Level defined, 131
host-agent managed, 7	setting the, 79, 128
indications of failure, 53	_
locating, 67	Synchronization-in-Progress status, 75, 76, 79
logical components, 4 management activities, 5	Synchronizing status, 155
physical components, 3	synchronous mirroring, 74
renaming, 67	
synchronizing clocks, 68	т
tuning options available, 60	1
viewing properties, 68	target volume
storage array component failures, 152	creating a, 172
storage array health, summary of conditions, 45	disable read-only attribute, 192
Storage Array Management, 1	enable read-only attribute, 193
storage management software	properties of a, 182
where installed, 1	recommended capacity of, 172
storage management software requirements, 86	selecting a, 172
storage management station	setting read and write permissions, 192
defined, 2	target volumes, 160
described, 1	task reference, 63
Storage Partition	terminology
creating, 31, 64	functional equivalents, xxii
defined, 4	text formatting conventions, xxii
major steps to creating, 39	topological elements, defined, 35
Topology, 40	Topology view, 35

transfer rate, 60	number of mirror relationships, 70
troubleshooting problems, 218	renaming, 67
	secondary, 167
	sharing access to a, 41
U	snapshot, 167
	snapshot repository, 167
unassigned capacity	viewing properties, 68
see unconfigured capacity	volume-to-LUN settings, 40
unconfigured capacity	volume copies, maximum number allowable, 170
adding to a storage array, 64	Volume Copy
creating volumes from, 64	basic concepts, xxi, 159
creating volumes on, 32	change copy priority, 190
defined, 4	copy priority, 163
Unconfigured Capacity Node, 4	copy status, 185
Understanding guide	critical events, 223 Feature Key File for, 171
how to use, xxi	invalid source volumes, 175
organization, xxi	invalid target volumes, 173
prerequisite knowledge, xxi	maximum number of copies, 162
Unresponsive status	monitoring progress of, 184
defined, 48	premium feature, enabling the, 171
recovery, 66	progress of a, 185
Unsynchronized status, 155	re-copying a, 186
after link interruption, 74	remove copy pairs, 189
uplink port, 98, 107	restrictions, 170
UPS, 27	stopping a, 188
	troubleshooting, 218
	usage scenarios, 194
V	valid source volumes, 175
	valid target volumes, 173
view	viewing properties of, 182
drives, 176	volume group
View Drives dialog, 176	capacity of, 25
volume	defined, 4
and I/O accessibility, 70	deleting, 64
candidates for mirroring, 72	initializing, 67
creating, 31	locating, 67
defined, 4	moving to another controller, 61
initializing, 67	redistributing, 67
missing, 147, 220	volume group data stripe, 61

volume modification priority see modification priority volume-to-LUN mapping, 165 default, 41 defined, 37, 40 preference, 32 shared, 41 specific, 41

W

World Wide Name (WWN) for a source volume, 182 for a target volume, 182 World Wide Name (WWN) updates, 149 write cache mirroring described, 27, 28 how to enable, 27, 28 write caching and data loss, 28 and performance, 28 described, 62 write caching without batteries, 27 WWN (World Wide Name), 36