
DMF 6 Administrator Guide

for SGI® InfiniteStorageTM

007–5484–012

COPYRIGHT
© 2008-2013 Silicon Graphics International Corp. All Rights Reserved; provided portions may be copyright in third parties, as
indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
ArcFiniti, CXFS, IRIX, SGI, SGI InfiniteStorage, SGI OpenVault, SGI Performance Co-Pilot, the SGI logo, Supportfolio, XFS, and
ZeroWatt are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in the United States and
other countries.

AMPEX is a trademark of Ampex Corporation. Atempo and Time Navigator are trademarks or registered trademarks of Atempo S.A.
and Atempo, Inc. DLT is a trademark of Quantum Corporation. EMC and Networker are registered trademarks of EMC Corporation
in the United States or other countries. GNOME is a trademark of the GNOME Foundation. Firefox and the Firefox logo are registered
trademarks of the Mozilla Foundation. HP is a trademark of Hewlett-Packard Company. IBM and MVS are trademarks of
International Business Machines Corporation, registered in many jurisdictions worldwide. Intel and Itanium are trademarks or
registered trademarks of Intel Corporation in the United States and other countries. Lustre is a trademark and Oracle and Java are
registered trademarks of Oracle and/or its affiliates. Internet Explorer, Microsoft, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Linux is a registered trademark of Linus Torvalds in
the U.S. and other countries. MIPSpro is a trademark of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc., in the
United States and/or other countries worldwide. Red Hat and Red Hat Enterprise Linux are registered trademarks of Red Hat, Inc. in
the United States and other countries. Solaris, and Sun are trademarks or registered trademarks of Sun Microsystems, Inc. or its
subsidiaries in the United States and other countries. Novell and SUSE are registered trademarks of Novell, Inc. in the United States
and other countries. UNIX is a registered trademark of the Open Group in the United States and other countries. All other trademarks
mentioned herein are the property of their respective owners.

New Features in this Guide

This revision includes the following changes:

• Support for Oracle StorageTek T10000D tape cartridges. See "Device Block-Size
Defaults and Bandwidth" on page 215.

• Support for logical block protection (also known as data integrity validation) on
Oracle’s StorageTek T10000C and later models. This feature provides a checksum
for data validation and places it at the end of the tape block. This feature requires
the following new configuration parameters:

– CHECKSUM_TYPE specifies the type of checksum algorithm to use when writing
new tapes. Any parallel data-mover nodes that use tapes in this volume group
must be running a version of the DMF software that supports this checksum
type.

– LOGICAL_BLOCK_PROTECTION specifies whether logical block protection
should be turned on when reading and writing tapes.

See "volumegroup Object Parameters" on page 319.

• Clarifications to Chapter 1, "Introduction to DMF" on page 1.

• New configuration file parameters:

– AGGRESSIVE_HVFY parameter specifies whether or not DMF will set the hvfy
flag on volumes in the VOL database for an expanded set of error conditions.
See "drivegroup Object Parameters" on page 306.

– VOL_MSG_TIME parameter specifies, in seconds, the minimum interval
between operator notifications for low–volume and no-volume conditions for a
VG or an AG. See:

• "volumegroup Object Parameters" on page 319

• "allocationgroup Object Parameters" on page 339

• "volumegroup Object Example with an AG" on page 329

• New configuration file object:

007–5484–012 iii

New Features in this Guide

– An allocationgroup object is optional and is used if you want to change
the default value of the VOL_MSG_TIME parameter for an AG. See
"allocationgroup Object" on page 338.

• "Use an Appropriate Filesystem for a Disk MSP" on page 104

• "Suppressing RSCN" on page 134

iv 007–5484–012

Record of Revision

Version Description

001 December 2008
Original publication. Supports DMF 4.0 in SGI® InfiniteStorage
Software Platform (ISSP) 1.5.

002 March 2009
Supports DMF 4.1 in ISSP 1.6.

003 June 2009
Supports DMF 4.2 in ISSP 1.7.

004 September 2009
Supports DMF 4.3 in ISSP 1.8.

005 January 2010
Supports DMF 5.0 in ISSP 2.0.

006 June 2010
Supports DMF 5.1 in ISSP 2.1.

007 September 2010
Supports DMF 5.2 in ISSP 2.2.

008 January 2011
Supports DMF 5.3 in ISSP 2.3.

009 October 2011
Supports DMF 5.5 in ISSP 2.5.

010 April 2012
Supports DMF 5.6 in ISSP 2.6.

011 April 2013
Supports DMF 6.0 in ISSP 3.0.

012 November 2013
Supports DMF 6.1 in ISSP 3.1.

007–5484–012 v

Contents

About This Guide . xli

Related Publications . xli

Man Pages . xli

User Commands . xli

File Formats . xlii

Administrator Commands . xlii

Obtaining Publications . xliii

Conventions . xliii

Reader Comments . xliv

1. Introduction to DMF 1

DMF Features . 1

Automatic Monitoring of Filesystem Space 2

Easy and Constant Availability of Data 5

Partial-State Files . 5

Safety and Scalability . 6

Site-Defined Migration Policies 7

A Variety of Migration Targets 7

Support for Fileserving Applications 8

DMF Manager Web Interface 9

Easy Access to User Commands on DMF Clients 12

High Availability . 12

SOAP Web Service . 12

Direct Archiving . 12

007–5484–012 vii

Contents

Mounting Services . 13

Out-of-Library Tapes . 13

How DMF Works . 13

DMF File State Concepts . 14

DMF Mechanisms . 15

Multiple Storage Tiers . 18

Two Tiers using LS Disk MSP, or FTP MSP 18

Three Tiers using DCM MSP 20

Three Tiers using Fast-Mount Cache 24

Migration Process . 27

Recall of File Data . 27

Fast-Mount Cache Overview 28

Temporary and Permanent Targets 28

How Fast-Mount Cache Differs from a DCM MSP 29

Fast-Mount Cache Implementation 30

Appropriate Use of Fast-Mount Cache 30

DMF Server Functions . 30

Parallel Data-Mover Option Overview 31

DMF Databases . 35

Ensuring Data Integrity . 36

DMF Architecture . 36

Migrate Groups . 40

DMF Capacity . 40

Requirements . 41

Server Node Requirements 41

Parallel Data-Mover Node Requirements 42

Mounting Service Requirements 42

viii 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

License Requirements . 42

DMAPI Requirement . 42

SAN Switch Zoning or Separate SAN Fabric Requirement 43

DMF Manager Requirements 43

DMF SOAP Requirements . 44

DMF Direct Archiving Requirements 44

Fast-Mount Cache Requirements 44

Administration Tasks . 45

Initial Planning . 45

Installation and Configuration 46

Recurring Administrative Duties 46

Free-Space Management 47

File Ranking . 47

Offline Data Management 47

Data Integrity and Reliability 48

Commands Overview . 49

User Commands . 50

Licensing Commands . 51

Configuration Commands 51

DMF Daemon and Related Commands 52

Space Management Commands 54

LS Commands . 54

Disk MSP Command . 55

DCM MSP Commands . 55

Other Commands . 56

2. DMF Licensing . 59

DMF License Types . 59

007–5484–012 ix

Contents

Anticipating Your DMF Data Capacity Requirements 61

Displaying Current DMF Data Capacity Use 63

Parallel Data-Mover Option and Licensing 64

Mounting Services and Licensing 65

Gathering the Host Information 65

Obtaining the License Keys . 65

Installing the License Keys . 66

Verifying the License Keys . 66

DMF Manager Licenses Panel 66

dmflicense . 67

lk_verify . 68

For More Information About Licensing 69

3. DMF Best Practices . 71

Installation, Upgrade, and Downgrade Best Practices 71

Use the Correct Mix of Software Releases 71

Do Not Use YaST to Configure Network Services 72

Upgrade Nodes in the Correct Order 73

Take Appropriate Steps when Upgrading DMF 73

Contact SGI Support to Downgrade After Using OpenVaultTM 4.0 or Later 76

Configuration Best Practices . 76

Follow all DMF Requirements 78

Use Supported Libraries and Tape Drives 78

Use Sufficiently Fast Filesystems 78

Configure Passwordless SSH 79

Configure DMF Administrative Directories Appropriately 79

Overview of DMF Administrative Directories 79

x 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Sizing Guidelines . 81

HOME_DIR Size . 83

JOURNAL_DIR Size . 84

SPOOL_DIR Size . 84

TMP_DIR Size . 84

MOVE_FS Performance and Size 84

mkfs and mount Parameters 85

Safely Make Changes to the DMF Configuration 85

Make and Mount the Required Filesystems First 86

Use Sample DMF Configuration Files 86

Back Up the DMF Configuration 87

Stop DMF Before Making Changes 87

Always Validate Your Changes 88

Use Inode-Resident Extended Attributes and 256–byte Inodes 88

Limit Path Segment Extension Records 88

Do Not Change Script Names 88

Configure DMF Appropriately with CXFSTM 89

Improve Drive Performance with an Appropriate VG Zone Size 90

Add HBA Drivers to the initrd Image 91

Set RECALL_NOTIFICATION_RATE to 0 if CXFS Range Tokens are Disabled 91

Set the xinetd tcpmux instances Parameter Appropriately 92

Avoid Unintentional File Recall by Filesystem Browsers 92

Configure Appropriately for SGI 400 VTL or COPAN MAID Shelves 93

Use Migrate Groups Appropriately 95

Use Fast-Mount Cache Appropriately 97

Ensure that the Cache Copy is Recalled First 99

Use a Task Group to Run dmmigrate Periodically 99

007–5484–012 xi

Contents

Restrict the Size of the Alerts and Performance Records Databases 101

Prevent Stalled-Recovery Timeout in a Non-HA Environment 102

Use Appropriate Tape Barcodes 102

Use dmarchive to Copy Unmanaged Archive File Data to Secondary Storage 102

Use an Appropriate Filesystem for a Disk MSP 104

Use Corresponding Drive-Group Names in OpenVault and DMF 104

Use a Private Network Interface in a Parallel Environment 104

Modify Partial-State Capability with Care 105

Administrative Best Practices . 105

Use a Time Synchronization Application 106

Monitor DMF Daily . 107

Migrate Multiple Copies of a File 107

Determine the Backup Requirements for Your Site 107

Site-Specific Factors to Consider for Backups 107

Number of Backup Tapes Required (Physical Tapes and SGI 400 VTL) 108

Space Required for the Daily Backup (COPAN MAID) 108

Back Up Migrated Filesystems and DMF Databases 109

Retain Log and Journal Files Between Full Backups 109

Run Certain Commands Only on a Copy of the DMF Databases 109

Be Aware of Differences in an HA Environment 110

Start Site-Specific Configuration Parameters and Stanzas with “LOCAL_” 110

Use TMF Tracing . 110

Run dmcollect If You Suspect a Problem 110

Modify Settings If Providing File Access via Samba 111

Disable Journaling When Loading an Empty Database 112

Use Sufficient Network Bandwidth for Socket Merges 112

Temporarily Disable Components Before Maintenance 112

xii 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Gracefully Stop the SGI 400 VTL 113

Reload STK ACSLS Cartridges Properly 113

Disable Zone Reclaim to Avoid System Stalls 113

Set Volume Size If You Want to Use Capacity Features 113

Monitor the Size of the PCP Metrics Archive 115

Be Aware that API Commands Change Without Notice 115

Be Aware of Memory-Mapping Issues 115

Use a Task to Perform Hard-Deletes Periodically 116

Enable the Enhanced-NFS RPC Corruption Workaround Parameter if Needed 116

Use the Appropriate Tool to Load Volumes to an Existing Environment 117

Configure Fibre Channel Switches and Zones Appropriately 117

Ensure that You Follow the Switch Requirements 117

Segregate Tape and Disk HBAs 118

Suppress Change Notification for Switch Ports Connected to Nodes 118

Use N-port Topology for LSI Ports Used with Tape Drives 118

Avoid Bottlenecks when Tape Drives and Host Port Speeds Do Not Match 118

Best Practices for Optional Tasks 120

Balance Data Among Libraries 121

Prevent Recalls From Waiting for a Busy Volume 122

4. Installing and Configuring the DMF Environment 123

Overview of the Installation and Configuration Steps 123

Installation and Configuration Considerations 125

ISSP DMF Software . 126

DMF Client Configurations and xinetd 127

Filesystem Mount Options . 127

Mounting Service Considerations 127

007–5484–012 xiii

Contents

Inode Size Configuration . 128

Daemon Database Record Length 130

Interprocess Communication Parameters 132

Automated Maintenance Tasks 132

Networking Considerations for Parallel Data-Mover Option 133

Passwordless SSH Configuration for DMF 133

Suppressing RSCN . 134

QLogic® Fibre Channel Switch 135

Starting and Stopping the DMF Environment 138

Automatic Start After Reboot 138

Preventing Automatic Start After Reboot 139

Explicit Start . 139

Explicit Stop . 140

Using Out-of-Library Tapes . 141

TMF and Out-of-Library Tapes 141

OpenVault and Out-of-Library Tapes 141

Customizing DMF . 142

File Tagging . 143

Site-Defined Policies . 144

Site-Defined Client Port Assignment in a Secure Environment 144

Importing Data From Other HSMs 145

5. DMF Manager . 147

Accessing DMF Manager . 148

Getting Started with DMF Manager 148

Running Observer Mode or admin Mode 151

Observer Mode Functionality 151

xiv 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

admin Mode Functionality 152

admin Mode Access . 153

Getting More Information in DMF Manager 154

Setting Panel Preferences . 157

Refreshing the View . 158

Managing Licenses and Data Capacity with DMF Manager 159

Adding New Licenses . 159

Deleting Existing Licenses . 160

Viewing the Installed Licenses 161

Showing Current DMF Usage and Licensed Capacity 161

Showing Remaining Storage Capacity 162

Configuring DMF with DMF Manager 166

Limitations to the DMF Configuration Capability 167

Showing All Configured Objects 167

Setting Up a New DMF Configuration File 168

Copying an Object . 171

Modifying an Object . 173

Creating a New Object . 173

Deleting an Object . 174

Validating Your Changes . 174

Saving Your Configuration Changes 174

Exiting the Temporary Configuration without Saving 175

Displaying DMF Configuration File Parameters 175

Starting and Stopping DMF and the Mounting Service 176

Discovering DMF Problems . 177

Filtering Alerts . 181

007–5484–012 xv

Contents

Seeing Relationships Among DMF Components 183

Managing Volumes . 185

Managing Libraries . 188

Displaying DMF Manager Tasks 189

Monitoring DMF Performance Statistics 189

Using the Statistics Panels . 190

Metrics Collection . 191

DMF Activity . 191

Overview of DMF Activity Reports 191

Key to DMF Activity Reports 192

Example of DMF Activity Report 193

DMF Resources . 194

Programs that Update the DMF Resources Reports 195

Filesystem Folder . 195

Libraries Report . 197

Drive Group Folder . 198

Volume Group Folder . 200

DCM MSP Folder . 201

DMF I/O . 203

Displaying Node Status . 208

6. DMF Configuration File 211

Configuration Objects Overview 211

Stanza Format . 213

Units of Measure . 215

Device Block-Size Defaults and Bandwidth 215

base Object . 216

base Object Name . 217

xvi 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

base Object Parameters . 217

base Object Examples . 224

base Object for Basic DMF 225

base Object for DMF with the Parallel Data-Mover Option 225

base Object for DMF with the Parallel Data-Mover Option in an HA Cluster . . . 227

dmdaemon Object . 228

dmdaemon Object Name . 228

dmdaemon Object Parameters 228

dmdaemon Object Example 231

node Object . 232

node Object Name . 232

node Object Parameters . 232

node Object Examples . 234

node Objects for the Parallel Data-Mover Option 234

node Objects for the Parallel Data-Mover Option in an HA Cluster 235

services Object . 236

services Object Name . 236

services Object Parameters 236

services Object Examples 238

services object for the Parallel Data-Mover Option 238

services Object for the Parallel Data-Mover Option in an HA Cluster 239

taskgroup Object . 240

Overview of the Tasks . 240

Details About Backup Tasks 244

taskgroup Object Name . 245

taskgroup Object Parameters 245

007–5484–012 xvii

Contents

taskgroup Object Examples 258

taskgroup Object Example for Tape-Based Backup Tasks 258

taskgroup Object Example for Disk-Based Backup Tasks 260

taskgroup Object Example for Third-Party Backup Tasks 260

taskgroup Object Example for Daemon Tasks 261

taskgroup Object Example for Node Tasks 264

taskgroup Object Example for Fast-Mount Cache Tasks 264

taskgroup Object Example for Fast-Mount Cache Tasks Using File Retention . . . 265

taskgroup Object Example for Periodic dmmigrate Tasks 266

taskgroup Object Example for Removing Alerts 266

taskgroup Object Example for Removing Performance Records 267

device Object . 267

device Object Name . 267

device Object Parameters . 267

filesystem Object . 269

filesystem Object Name 270

filesystem Object Parameters 270

filesystem Object Examples 275

filesystem Object for a DMF-Managed Filesystem 275

filesystem Object for DMF Direct Archiving 276

policy Object . 276

Functions of policy Parameters 277

Automated Space Management Overview 277

File Weighting Overview 278

MSP/VG Selection Overview 278

Rules for policy Parameters 278

DMF-Managed Filesystem Rules 278

xviii 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DCM MSP STORE_DIRECTORY Rules 279

policy Object Name . 280

DMF-Managed Filesystem policy Parameters 280

Automated Space Management Parameters for a DMF-Managed Filesystem 280

File Weighting Parameters for a DMF-Managed Filesystem 283

MSP/VG Selection Parameters for a DMF-Managed Filesystem 286

DCM MSP STORE_DIRECTORY policy Parameters 287

Automated Space Management Parameters for a DCM MSP STORE_DIRECTORY . . 287

File Weighting Parameters for a DCM MSP STORE_DIRECTORY 289

VG Selection Parameters for a DCM MSP STORE_DIRECTORY 291

when Clause . 292

ranges Clause . 295

policy Configuration Examples 297

Automated Space-Management Example 297

Automated Space-Management Using Ranges Example 298

MSP/VG Selection Example 300

fastmountcache Object . 301

fastmountcache Object Name 301

fastmountcache Object Parameters 301

fastmountcache Object Examples 301

fastmountcache with an MG 301

fastmountcache with a Mix of Members 302

LS Objects . 302

libraryserver Object . 303

libraryserver Object Name 303

libraryserver Object Parameters 303

drivegroup Object . 305

007–5484–012 xix

Contents

drivegroup Object Name 306

drivegroup Object Parameters 306

volumegroup Object . 318

volumegroup Object Name 318

volumegroup Object Parameters 319

volumegroup Object Example with an AG 329

migrategroup Object . 331

migrategroup Object Name 332

migrategroup Object Parameters 332

migrategroup Object Example with Multiple MGs 335

Single migrategroup Object Example Using the ROUND_ROBIN_BY_BYTES Strategy 336

migrategroup Object Example Using the ROUND_ROBIN_BY_FILES Strategy . . 336

resourcescheduler Object 336

resourcescheduler Object Name 337

resourcescheduler Object Parameters 337

resourcewatcher Object 338

resourcewatcher Object Name 338

resourcewatcher Object Parameters 338

allocationgroup Object 338

allocationgroup Object Name 339

allocationgroup Object Parameters 339

Examples of Configuring an LS 339

LS with a Resource Watcher, Two DGs, and an AG 340

LS for Fast-Mount Cache 343

LS Tasks . 345

Overview of LS Tasks . 345

LS taskgroup Object with One VG 347

xx 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

LS taskgroup Object with Multiple VGs 348

LS Database Records . 348

MSP Objects . 350

msp Object Name . 350

FTP msp Object . 350

FTP msp Object Parameters 350

FTP msp Object Example 355

Disk msp Object . 356

Disk msp Object Parameters 356

Disk msp Object Example 360

DCM msp Object . 360

DCM msp Object Parameters 360

DCM msp Object Example 366

Summary of the Configuration File Parameters 368

7. Parallel Data-Mover Option Configuration 379

Parallel Data-Mover Option Configuration Procedure 379

Determining the State of Parallel Data-Mover nodes 382

Disabling Parallel Data-Mover Nodes 383

Reenabling Parallel Data-Mover Nodes 383

8. Mounting Service Configuration Tasks 385

OpenVault Configuration Tasks 385

Initially Configure the OpenVault Server 386

Configure OpenVault for DMF Use 388

Configure OpenVault for Each Parallel Data-Mover Node 392

Configure OpenVault on the DMF Server If on a Different Host 396

007–5484–012 xxi

Contents

Configure OpenVault for a Drive Group 396

TMF Configuration Tasks . 399

9. Message Log Files . 401

10. Automated Space Management 403

The dmfsmon Daemon and dmfsfree Command 403

Generating the Candidate List 404

Selection of Migration Candidates 405

Space Management and the DCM MSP 407

Automated Space Management Log File 407

11. The DMF Daemon 409

Daemon Processing . 409

Daemon Database and dmdadm 411

Overview of the Daemon Database and dmdadm 411

dmdadm Directives . 412

dmdadm Field and Format Keywords 414

dmdadm Text Field Order . 418

Daemon Logs and Journals . 419

12. The DMF Lock Manager 421

dmlockmgr Communication and Log Files 421

dmlockmgr Individual Transaction Log Files 423

13. Media-Specific Processes and Library Servers 425

LS Operations . 426

LS Directories . 427

Media Concepts . 427

CAT Records . 430

xxii 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

VOL Records . 430

LS Journals . 431

LS Logs . 432

Volume Merging . 436

dmcatadm Command . 437

dmcatadm Directives . 438

dmcatadm Keywords . 441

dmcatadm Text Field Order 446

dmvoladm Command . 447

dmvoladm Overview . 447

dmvoladm Directives . 448

dmvoladm Field Keywords 450

dmvoladm Text Field Order 456

dmvoladm Examples . 457

dmatread Command . 460

dmatsnf Command . 461

dmaudit verifymsp Command 461

FTP MSP . 462

FTP MSP Processing of Requests 462

FTP MSP Activity Log . 463

FTP MSP Messages . 464

Disk MSP . 465

Disk MSP Processing of Requests 465

Disk MSP Activity Log . 466

DCM MSP . 466

dmdskvfy Command . 467

Moving Migrated Data . 467

LS Error Analysis and Avoidance 468

007–5484–012 xxiii

Contents

LS Drive Scheduling . 470

LS Status Monitoring . 470

14. DMF Maintenance and Recovery 473

Retaining Old DMF Daemon Log Files 473

Retaining Old DMF Daemon Journal Files 474

Cleaning Up Obsolete Database Entries 474

Backups and DMF . 475

DMF-Managed Filesystems 475

Using SGI xfsdump and xfsrestore with Migrated Files 476

Ensuring Accuracy with xfsdump 477

Backing Up and Restoring Files without the DMF Scripts 478

Filesystem Consistency with xfsrestore 478

Using DMF-aware Third-Party Backup Packages 479

Optimizing Backups of Filesystems 480

Storage Used by an FTP MSP or a Standard Disk MSP 482

Filesystems Used by a DCM 482

DMF’s Private Filesystems . 483

Using dmfill . 484

Database Recovery . 484

Database Backups . 484

Database Recovery Procedures 485

Viewing Drive Statistics . 488

Temporarily Disabling Components 490

Disable an OpenVault DCP 491

Disable an OpenVault Drive 492

Disable an OpenVault Library 493

xxiv 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Disable a TMF Drive . 495

Stop the COPAN VTL . 496

15. DMF SOAP Server 497

Overview of DMF SOAP . 497

Accessing the DMF SOAP and WSDL 499

Starting and Stopping the DMF SOAP Service 499

Starting the dmfsoap Service 499

Preventing Automatic Start of dmfsoap After Reboot 500

Explicitly Stopping dmfsoap 500

Security/Authentication . 500

DMF SOAP Sample Client Files 500

16. Troubleshooting . 505

Filesystem Errors . 506

Unable to Use the dmi Mount Option 508

EOT Error . 508

Tape Drive Not Claimed by ts 508

Drive Entry Does Not Correspond to an Existing Drive (OpenVault) 508

Drive Does Not Exist (TMF) . 509

DMF Manager Errors . 509

DMF Statistics are Unavailable Error Message 509

DMF Statistics Graphs are Empty 511

OpenVault Library Is Missing 511

Delay In Accessing Files in an SMB/CIFS Network Share 511

Operations Timeout or Abort on Windows® 512

Windows Explorer Hangs . 512

Poor Migration Performance . 512

007–5484–012 xxv

Contents

Remote Connection Failures . 512

YaST2 Disk Space Warning . 513

Linux CXFS Clients Cannot Mount DMF-Managed Filesystems 513

Using SGI Knowledgebase . 513

Reporting Problems to SGI . 513

Appendix A. Messages 515

dmcatadm Message Interpretation 515

dmvoladm Message Interpretation 517

Appendix B. DMF User Library libdmfusr.so 519

Overview of the Distributed Command Feature and libdmfusr.so 519

Considerations for IRIX® . 522

libdmfusr.so Library Versioning 522

libdmfusr.so.2 Data Types 524

DmuAllErrors_t . 524

DmuAttr_t . 525

DmuByteRange_t . 526

DmuByteRanges_t . 526

DmuCompletion_t . 530

DmuCopyRange_t . 530

DmuCopyRanges_t . 531

DmuErrHandler_f . 532

DmuErrInfo_t . 532

DmuError_t . 533

DmuEvents_t . 533

DmuFhandle_t . 534

DmuFsysInfo_t . 534

DmuFullRegbuf_t . 535

xxvi 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DmuFullstat_t . 535

DmuPriority_t . 536

DmuRegion_t . 537

DmuRegionbuf_t . 537

DmuReplyOrder_t . 537

DmuReplyType_t . 538

DmuSeverity_t . 538

DmuVolGroup_t . 539

DmuVolGroups_t . 539

User-Accessible API Subroutines for libdmfusr.so.2 540

Context-Manipulation Subroutines 540

DmuCreateContext() Subroutine 540

DmuChangedDirectory() Subroutine 542

DmuDestroyContext() Subroutine 542

Filesystem-Information Subroutine 543

DMF File-Request Subroutines 544

copy File Requests . 545

archive File Requests . 547

fullstat Requests . 549

put File Requests . 551

get File Requests . 554

settag File Requests . 556

Request-Completion Subroutines 559

DmuAwaitReplies() Subroutine 559

DmuFullstatCompletion() Subroutine 560

DmuGetNextReply() Subroutine 561

DmuGetThisReply() Subroutine 563

007–5484–012 xxvii

Contents

Appendix C. Site-Defined Policy Subroutines and the sitelib.so Library 565

Overview of Site-Defined Policy Subroutines 565

Getting Started with Custom Subroutines 566

Considerations for Writing Custom Subroutines 568

sitelib.so Data Types . 569

DmaContext_t . 569

DmaFrom_t . 570

DmaIdentity_t . 570

DmaLogLevel_t . 572

DmaRealm_t . 572

DmaRecallType_t . 572

SiteFncMap_t . 573

Site-Defined Policy Subroutines 573

SiteArchiveFile() . 573

SiteCreateContext() . 575

SiteDestroyContext() . 576

SiteKernRecall() . 576

SitePutFile() . 578

SiteWhen() . 580

Helper Subroutines for sitelib.so 582

DmaConfigStanzaExists() 582

DmaGetConfigBool() . 583

DmaGetConfigFloat() . 584

DmaGetConfigInt() . 585

DmaGetConfigList() . 586

DmaGetConfigStanza() . 587

DmaGetConfigString() . 588

DmaGetContextFlags() . 589

xxviii 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DmaGetCookie() . 589

DmaGetDaemonMigGroups() 590

DmaGetDaemonVolAndMigGroups() 590

DmaGetDaemonVolGroups() 591

DmaGetMigGroupMembers() 591

DmaGetProgramIdentity() 592

DmaGetUserIdentity() . 592

DmaSendLogFmtMessage() 593

DmaSendUserFmtMessage() 594

DmaSetCookie() . 595

Appendix D. Third-Party Backup Package Configuration 597

EMC® LEGATO NetWorker® . 597

Atempo® Time NavigatorTM . 599

Appendix E. Converting from IRIX DMF to Linux® DMF 601

Appendix F. Considerations for Partial-State Files 605

Performance Cost Due to Lack of Linux Kernel Support 605

Inability to Fulfill Exact Byte Range Requests 606

Appendix G. Case Study: Impact of Zone Size on Tape Performance . . 607

Appendix H. Historical Feature Information 609

End of Life for the Tape Autoloader API with DMF 2.6.3 609

DMF Directory Structure Prior to DMF Release 2.8 609

End of Life for the Tape MSP after DMF 3.0 610

DMF User Library (libdmfusr.so) Update in DMF 3.1 610

Downgrading and the Site-Tag Feature Introduced in DMF 3.1 611

007–5484–012 xxix

Contents

Downgrading and the Partial-State File Feature Introduced in DMF 3.2 612

dmaudit(8) Changes in DMF 3.2 613

Logfile Changes in DMF 3.2 . 613

Possible DMF Database Lock Manager Incompatibility On Upgrades as of DMF 3.8.3 . . 614

Appendix I. Using dmmaint to Install Licenses and Configure DMF . . 615

Overview of dmmaint . 615

Installing the DMF License . 617

Using dmmaint to Define the Configuration File 617

Glossary . 619

Index . 669

xxx 007–5484–012

Figures

Figure 1-1 DMF Cycle . 2

Figure 1-2 Free-Space Minimum Threshold 4

Figure 1-3 DMF Manager . 11

Figure 1-4 DMF Mechanisms: Before Migrating with DMF 16

Figure 1-5 DMF Mechanisms: After Migrating Data and Freeing Space 17

Figure 1-6 LS, Disk MSP, or FTP MSP: Migrating File Data 19

Figure 1-7 LS, Disk MSP, or FTP MSP: Freeing and Recalling File Data 20

Figure 1-8 DCM MSP: Migrating File Data 22

Figure 1-9 DCM MSP: Freeing and Recalling File Data 23

Figure 1-10 Fast-Mount Cache: Migrating File Data 25

Figure 1-11 Fast-Mount Cache: Freeing and Recalling File Data 26

Figure 1-12 Basic DMF in an NFS Environment 32

Figure 1-13 Basic DMF in a CXFS Environment 32

Figure 1-14 DMF with the Parallel Data-Mover Option in a CXFS Environment . . . 34

Figure 1-15 Basic DMF Architecture 37

Figure 1-16 LS Architecture 38

Figure 2-1 DMF Licenses . 61

Figure 2-2 Data that Counts Towards the Capacity License 63

Figure 2-3 Licenses . 67

Figure 3-1 Archiving Files from an Unmanaged Archive Filesystem to Secondary Storage 103

Figure 3-2 DMF Direct Archiving 103

Figure 5-1 DMF Manager Overview Panel 150

Figure 5-2 Overview Key to Symbols 155

007–5484–012 xxxi

Contents

Figure 5-3 Displaying Information About an Icon 156

Figure 5-4 “What Is ...” Information 157

Figure 5-5 DMF Manager Overview Preferences Panel 158

Figure 5-6 Adding a License Key in DMF Manager 160

Figure 5-7 DMF Current Usage and License Capacity 162

Figure 5-8 DMF Capacity . 163

Figure 5-9 Remaining DMF Capacity 165

Figure 5-10 Temporary Workspace for a Preconfigured DCM MSP Sample 169

Figure 5-11 Naming a Copied Object 172

Figure 5-12 DMF Configuration Parameters in DMF Manager 176

Figure 5-13 DMF Manager Showing Problems in the DMF System 177

Figure 5-14 Alerts Key . 178

Figure 5-15 Unfiltered Alerts 179

Figure 5-16 DMF Manager Alerts Panel and Help Information 180

Figure 5-17 Define Filters for Alerts 181

Figure 5-18 Adding Another Filter Rule 182

Figure 5-19 Filtered Alerts . 183

Figure 5-20 Relationships Among DMF Components 184

Figure 5-21 DMF Manager Volumes Panel 185

Figure 5-22 Changing Hold Flags in DMF Manager 187

Figure 5-23 DMF Activity . 194

Figure 5-24 Filesystem Resource Graph 197

Figure 5-25 Drive Group Resource Information 199

Figure 5-26 Volume Group Resource Graph 201

Figure 5-27 DCM MSP Resource Graph 203

Figure 5-28 DMF I/O Custom Chart Creation 206

xxxii 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-29 DMF I/O . 207

Figure 5-30 Node State . 208

Figure 5-31 Node Details . 210

Figure 6-1 Concepts of Free-Space Minimum and Target 282

Figure 10-1 Relationship of Automated Space Management Targets 406

Figure 13-1 Media Concepts 429

Figure 15-1 DMF SOAP . 498

007–5484–012 xxxiii

Tables

Table 2-1 Data-Capacity License Amounts 60

Table 3-1 Minimum Sizes for DMF Directories 83

Table 3-2 Tools to Load Volumes to an Existing DMF/OpenVault Environment . . . 117

Table 4-1 Default Maximum File Regions for XFS and CXFS Filesystems 129

Table 5-1 DMF Manager Panel Menus 149

Table 6-1 Automated Maintenance Task Summary 241

Table 6-2 Backup Parameters According to Method 244

Table 6-3 NAME_FORMAT Strings 354

Table 6-4 DMF Configuration File Parameters 368

Table 9-1 Message Types and Levels 402

Table 12-1 dmlockmgr Token Files 422

007–5484–012 xxxv

Examples

Example 6-1 base Object for Basic DMF 225

Example 6-2 base Object for DMF with the Parallel Data-Mover Option 225

Example 6-3 base Object for DMF with the Parallel Data-Mover Option in an HA Cluster 227

Example 6-4 dmdaemon object 231

Example 6-5 node Objects for the Parallel Data-Mover Option 234

Example 6-6 node Objects for DMF with the Parallel Data-Mover Option in an HA Cluster 235

Example 6-7 services object for the Parallel Data-Mover Option 238

Example 6-8 services Object for the Parallel Data-Mover Option in an HA Cluster . . 239

Example 6-9 taskgroup Object for Tape-Based Backup Tasks 258

Example 6-10 taskgroup Object for Disk-Based Backup Tasks 260

Example 6-11 taskgroup Object for Third-Party Backup Tasks 260

Example 6-12 taskgroup Object for Daemon Tasks 261

Example 6-13 taskgroup Object for Node Tasks with the Parallel Data-Mover Option . 264

Example 6-14 taskgroup Object for Fast-Mount Cache 264

Example 6-15 taskgroup Object for Fast-Mount Cache Using File Retention 265

Example 6-16 taskgroup Object for Periodic dmmigrate Example 266

Example 6-17 taskgroup Object for Removing Alerts 266

Example 6-18 taskgroup Object for Removing Performance Records 267

Example 6-19 filesystem Object for a DMF-Managed Filesystem 275

Example 6-20 filesystem Object for DMF Direct Archiving 276

Example 6-21 policy Object for Automated Space Management 297

Example 6-22 policy Object for Automated Space Management Using Ranges . . . 299

Example 6-23 policy Object for an MSP/VG 300

007–5484–012 xxxvii

Contents

Example 6-24 fastmountcache with an MG 301

Example 6-25 fastmountcache with a Mix of Members 302

Example 6-26 volumegroup example with an AG 330

Example 6-27 migrategroup Object with Multiple MGs 335

Example 6-28 Single migrategroupUsing the ROUND_ROBIN_BY_BYTES Strategy . . 336

Example 6-29 migrategroup Using the SEQUENTIAL Strategy 336

Example 6-30 libraryserver Object with a Resource Watcher, Two DGs, and an AG . 340

Example 6-31 libraryserver and Associated Objects for Fast-Mount Cache 343

Example 6-32 taskgroup Object for LS with One VG 347

Example 6-33 msp Object for an FTP MSP 355

Example 6-34 msp Object for a Disk MSP 360

Example 6-35 Configuration Stanzas Associated with a DCM MSP 366

Example 13-1 LS Statistics Messages 434

Example 13-2 dmcatadm list Directive 444

Example 13-3 dmvoladm update Directive 457

Example 13-4 dmvoladm list Directive to Show Information for Multiple VSNs . . . 457

Example 13-5 dmvoladm list Directive to Show Volumes with a Specific Flag . . . 457

Example 13-6 dmvoladm list Directive to Customize a List of Fields 458

Example 13-7 dmvoladm list Directive to Show Multiple Flags 459

Example 13-8 dmvoladm list Directive to Display Volumes Assigned to a VG . . . 460

Example 13-9 Restoring Hard-deleted Files Using dmatread 460

Example 14-1 Database Recovery 486

Example E-1 IRIX to Linux Conversion (Single LS) 604

xxxviii 007–5484–012

Procedures

Procedure 4-1 Configuring the DMF Environment 123

Procedure 4-2 Configuring the Daemon Database Record Length 130

Procedure 6-1 Creating LS Database Records 349

Procedure 7-1 Configuring DMF for the Parallel Data-Mover Option 379

Procedure 8-1 Configuring OpenVault for a Drive Group 396

Procedure 14-1 Recovering the Databases 485

Procedure E-1 Converting from IRIX DMF to Linux DMF 601

007–5484–012 xxxix

About This Guide

This publication documents administration of the Data Migration Facility (DMF)
environment.

Related Publications
For information about this release, see the SGI

®
InfiniteStorage

TM

Software Platform
(ISSP) release notes (README.txt) and the DMF release notes (README_DMF.txt).

The DMF 6 Filesystem Audit Guide for SGI InfiniteStorage describes how to solve
problems with DMF should you encounter them.

Also see:

• COPAN MAID for DMF Quick Start Guide

• CXFS 7 Administrator Guide for SGI InfiniteStorage

• CXFS 7 Client-Only Guide for SGI InfiniteStorage

• High Availability Guide for SGI InfiniteStorage

• OpenVault Administrator Guide for SGI InfiniteStorage

• SGI 400 VTL for DMF Quick Start Guide

• TMF 6 Administrator Guide for SGI InfiniteStorage

• XVM Volume Manager Administrator Guide

Man Pages
DMF provides man pages for user commands, file formats, and administrator
commands.

User Commands

Man pages are available for the following DMF user commands:

007–5484–012 xli

About This Guide

dmarchive(1)
dmattr(1)
dmcapacity(1)
dmcopy(1)

dmdu(1)
dmfind(1)
dmget(1)

dmls(1)
dmput(1)
dmtag(1)

dmversion(1)
sgi_dmdu(1)
sgi_dmfind(1)
sgi_dmls(1)

File Formats

Man pages are available for the following DMF file formats:

dmf.conf(5)
trxj(5)

Administrator Commands

Man pages are available for the following DMF administrator commands:

dmatread(8)
dmatsnf(8)
dmatvfy(8)
dmaudit(8)
dmcatadm(8)
dmcheck(8)
dmclripc(8)
dmcollect(8)
dmconfig(8)
dmcopan(8)
dmdadm(8)
dmdate(8)

dmdbcheck(8)
dmdbrecover(8)
dmdidle(8)
dmdskfree(8)
dmdskvfy(8)
dmdstat(8)
dmdstop(8)
dmdump(8)
dmdumpj(8)
dmemptytape(8)
dmfdaemon(8)

dmfill(8)
dmflicense(8)
dmfsfree(8)
dmfsmon(8)
dmhdelete(8)
dmlockmgr(8)
dmmigrate(8)
dmmove(8)
dmmvtree(8)
dmnode_admin(8)
dmov_keyfile(8)

dmov_loadtapes(8)
dmov_makecarts(8)
dmscanfs(8)
dmselect(8)
dmsnap(8)
dmsort(8)
dmstat(8)
dmtapestat(8)
dmunput(8)
dmusage(8)
dmusrcmd(8)
dmvoladm(8)
dmxfsprune(8)

xlii 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dmxfsrestore(8) sitelibverify(8)

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, man pages, and other information.

• You can view man pages by typing man title at a command line.

• The /docs directory on the ISSP DVD or in the SupportfolioTM download
directory contains the following:

– The ISSP release note: /docs/README.txt

– DMF release notes: /docs/README_DMF.txt

– A complete list of the packages and their location on the media:
/docs/RPMS.txt

– The packages and their respective licenses: /docs/PACKAGE_LICENSES.txt

• The release notes and manuals are provided in the noarch/sgi-isspdocs RPM
and will be installed on the system into the following location:

/usr/share/doc/packages/sgi-issp-ISSPVERSION/TITLE

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage (x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

007–5484–012 xliii

About This Guide

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in either of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system:

http://www.sgi.com/support/supportcenters.html

SGI values your comments and will respond to them promptly.

xliv 007–5484–012

Chapter 1

Introduction to DMF

This chapter provides an overview of the SGI® InfiniteStorage Data Migration Facility
(DMF). It discusses the following:

• "DMF Features" on page 1

• "How DMF Works" on page 13

• "Requirements" on page 41

• "Administration Tasks" on page 45

DMF Features
DMF transparently moves file data from high-performance but expensive disk to
levels of decreased-performance but inexpensive media known as secondary storage.
This lets you cost-effectively maintain a seemingly infinite amount of data without
sacrificing accessibility for users.

This section discusses the following features of DMF:

• "Automatic Monitoring of Filesystem Space" on page 2

• "Easy and Constant Availability of Data" on page 5

• "Partial-State Files" on page 5

• "Safety and Scalability" on page 6

• "Site-Defined Migration Policies" on page 7

• "A Variety of Migration Targets" on page 7

• "Support for Fileserving Applications" on page 8

• "DMF Manager Web Interface" on page 9

• "Easy Access to User Commands on DMF Clients" on page 12

• "High Availability" on page 12

• "SOAP Web Service" on page 12

007–5484–012 1

1: Introduction to DMF

• "Direct Archiving" on page 12

• "Mounting Services" on page 13

• "Out-of-Library Tapes" on page 13

Automatic Monitoring of Filesystem Space

A DMF-managed filesystem is an XFS or CXFS filesystem mounted with the Data
Management Application Programming Interface (DMAPI) enabled and for which DMF
can migrate and/or recall migrated data. DMF continuously monitors DMF-managed
filesystems on high-performance disk so that it can maintain a certain amount of free
space in those filesystems. This free space permits the creation of new files and the
recall of previously migrated files. Figure 1-1 describes the concept of the DMF
migration cycle between the DMF-managed filesystem and the secondary storage.

Create/Recall
Create new files in the
DMF-managed filesystem
on high-performance disk
and recall previously
migrated files

Copy
Copy file data to
secondary storage

Monitor
Monitor the free-space
minimum threshold
of the DMF-managed
filesystem

Free
Free least-recently accessed
file data blocks in the
DMF-managed
filesystem

Figure 1-1 DMF Cycle

2 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DMF automatically detects a drop below the free-space threshold. DMF then
transparently moves file data from the DMF-managed filesystem to the secondary
storage by freeing the data blocks of files that have already been migrated. File
migration occurs in two stages:

• Stage One: A file’s data is copied (migrated) to secondary storage.

• Stage Two: After the copy is secure, the file is eligible to have its data blocks
released. This occurs only after a minimum free-space threshold is reached or
when a manual request to free a file’s disk blocks is made via the dmput -r
command. DMF choses file data to free according to site-defined policies
involving size an access time.

For example, Figure 1-2 shows a configuration where DMF will free the data blocks of
less-recently accessed files (such as represented by the letter “A”) to empty the
DMF-managed filesystem well below the threshold as new files are added or as
previously migrated files (such as represented by the letters “B” and “E”) are recalled.
Despite the movement of data, all content is accessible all of the time.

Note: When configured according to best practices, DMF makes two copies of
migrated data for safety reasons. Data will be recalled from a second copy only if
necessary. For simplicity, Figure 1-2 does not show the second copy of file data.

007–5484–012 3

1: Introduction to DMF

Data Blocks on
High-Performance Disk

Data Blocks on
Secondary Storage

Time 1:
DMF migrates data to
secondary storage
(makes 2 copies)
on a periodic basis

C
B
A

A B C

Time 2:
New files added to the
DMF-managed
filesystem cause it to
exceed the free-space
threshold

H
G
F
E
D
C
B
A

A B C D E F G H

Time 3:
DMF frees data blocks for
the oldest migrated files
until the filesystem is well
below the threshold

A B C D E F G H

H
G

Time 4:
Newly added files and
recalled files cause the
threshold to be exceeded

A B C D E F G H I J K
B
E
F
K
J
I
H
G

Time 5:
DMF frees data blocks for
the oldest migrated files
until the filesystem is well
below the threshold

A B C D E F G H I J K

B
E

Free-space
minimum

Free-space
minimum

Free-space
minimum

Free-space
minimum

Free-space
minimum

Figure 1-2 Free-Space Minimum Threshold

4 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Easy and Constant Availability of Data

In general, only the most timely data resides on the higher-performance disk; DMF
automatically migrates less timely data to secondary storage. However, all of the data
always appears to be online to users and applications using normal access methods,
regardless of the data’s actual location.

Although DMF moves file data, it leaves file metadata in place so that users can access
files without knowing the actual location of the data. Metadata consists of items such
as index nodes (inodes) and directory structure. Migrated files appear as normal files
to users and are always easily accessible via high-performance network connections.

Because migrated files remain cataloged in their original directories, users and
applications never need to know where the data actually resides; they can access any
migrated file using normal processes. In fact, when drilling into directories or listing
their contents using standard POSIX-compliant commands, a user cannot determine
the location of file data within the storage tier; determining the data’s actual residence
requires special commands or command options.

A file whose data blocks have been freed is considered from the DMF perspective to
be offline and its data blocks are therefore available for new active data, either new
files or recalled files. However, from the user perspective, the file always appears to
be online because the inodes and directories remain in the DMF-managed filesystem,
allowing users to access the file by normal means.

The only difference users might notice when accessing a file whose data blocks have
been freed is a delay in response time, because the data must be retrieved from
secondary storage. From the user’s perspective, all data always appears to be
available online, regardless of its actual location.

Partial-State Files

DMF-managed files can have multiple distinct file regions with different residency
states. A region is a contiguous range of bytes that have the same residency state. A
file that has more than one region is called a partial-state file. A file that is in a static
state (that is, not currently being migrated or unmigrated) can have one region that is
in the DMF-managed filesystem for immediate access and another region that is
offline and must be recalled in order to be accessed.

Partial-state files provide the following capabilities:

• Accelerated access to first byte, which allows you to access the beginning of an
offline file before the entire file has been recalled.

007–5484–012 5

1: Introduction to DMF

• Partial-state file online retention, which allows you to keep a specific region of a file
online while freeing the rest of it (for example, if you wanted to keep just the
beginning of a file online). See "ranges Clause" on page 295.

• Partial-state file recall, which allows you to recall a specific region of a file without
recalling the entire file. For more information, see the dmput(1) and dmget(1) man
pages.

For additional details, see:

• "Modify Partial-State Capability with Care" on page 105

• "dmdaemon Object Parameters" on page 228

• Appendix F, "Considerations for Partial-State Files" on page 605

Safety and Scalability

DMF transports large volumes of data on behalf of many users and has evolved to
satisfy customer requirements for scalability and the safety of data:

• When you configure DMF using best practices, DMF creates at least two
permanent copies of the data in order to prevent file data loss in the event that a
migrated copy is lost. See "Ensuring Data Integrity" on page 36.

• Because system interrupts and occasional storage device failures cannot be
avoided, it is essential that the integrity of data be verifiable. Therefore, DMF also
provides tools necessary to validate your storage environment. See "Commands
Overview" on page 49.

• The DMF Parallel Data-Mover Option lets you scale the DMF I/O capacity in
cost-effective increments. A data mover is a node running processes that migrate
and recall data to secondary storage. In the basic DMF product, the DMF server
incorporates the functionality of an integrated data-mover node. The Parallel
Data-Mover Option allows the DMF system to reside on a single server and
minimizing the cost of a DMF implementation. For users with higher throughput
requirements, this option allows multiple data movers to operate in parallel,
increasing data throughput and enhancing resiliency. The parallel data-mover
node’s dedicated function is to move data to and from secondary storage. See
"Parallel Data-Mover Option Overview" on page 31.

6 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Site-Defined Migration Policies

As a DMF administrator, you determine how disk space capacity is handled by doing
the following:

• Selecting the filesystems that DMF will manage

• Specifying the amount of free space that will be maintained on each filesystem

• Ranking file-selection criteria, such as file size and file age

DMF selects files for migration and frees data blocks of already migrated files based
on site-defined criteria that are specified in a migration policy. For example, a
migration policy does the following:

• Makes the specified number of copies of migrated data. DMF places those copies
on separate secondary-storage targets. SGI recommends that you create at least
two permanent copies, in order to prevent file data loss in the event that one copy
is damaged.

• Migrates the data at the times specified or when the specified free-space minimum
threshold is exceeded.

• Optionally keeps a small amount of data in the DMF-managed filesystem for each
file, even after migration (for use by file managers, in order to avoid unnecessary
recall of a file due to directory browsing).

• Maintains a specified percentage of the DMF-managed filesystem free for new
data (either new files or recalled files). When the filesystem reaches this threshold,
DMF will free the already-migrated data blocks until the specified percentage of
the filesystem is free, normally selecting files by size and last-access time.

A Variety of Migration Targets

DMF can migrate data to the following:

• Fibre Channel tapes and tape libraries that are supported by the OpenVault or
TMF mounting services

• SCSI low-voltage differential (LVD) tapes and tape libraries

007–5484–012 7

1: Introduction to DMF

Note: If you have a high-voltage differential (HVD) tape or tape library that you
want to use for DMF, you must contact SGI Professional Services for assistance in
obtaining the appropriate HVD-LVD converter.

The LVD requirement is only for tapes and tape libraries. It does not apply to
HVD disk.

• Disk

• Another server (via NFS or FTP)

• COPAN RAID sets:

– COPAN massive array of idle disks (MAID) (ZeroWattTM disk)

– SGI 400 virtual tape library (VTL)

You can also use disk or COPAN RAID sets as a cache in conjunction with another
migration target to provide multiple levels of migration; see "Multiple Storage Tiers"
on page 18.

Support for Fileserving Applications

DMF supports a range of storage-management applications. In some environments,
DMF is used strictly to manage highly stressed online disk resources. In other
environments, it is also used as an organizational tool for safely managing large
amounts of data. In all environments, DMF scales to the storage application and to
the characteristics of the available storage devices.

DMF interoperates with the following:

• Standard data export services such as Network File System (NFS) and File
Transfer Protocol (FTP)

• XFS® filesystems

• CXFSTM clustered filesystems

• Microsoft® Server Message Block (SMB), which is also known as the Common
Internet File System (CIFS), as used by Samba when fileserving to Windows®

systems

8 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

By combining these services with DMF, you can configure an SGI system as a
high-performance fileserver.

DMF Manager Web Interface

DMF provides a set of graphical and command-line tools to help you configure,
monitor, and manage the DMF system. DMF Manager is a web-based tool you can use
to do the following:

• Configure DMF

• Install DMF licenses

• Display status of the DMF environment

• Start and stop DMF processes, even in a high-availability environment

• Deal with day-to-day DMF operational issues

• Focus on work flow

• Display performance metrics, including filesystem throughput and volume usage

• Create custom reports

• Change recall priorities

• Accommodate tape volumes that are physically not in the tape library (see "Using
Out-of-Library Tapes" on page 141)

DMF Manager is useful for all DMF customers from enterprise to high-performance
computing and is available via the Firefox® and Internet Explorer® web browsers.

At a glance, you can see if DMF is operating properly. An icon in the upper-right
corner indicates if DMF is up (green) or down (upside down and red). If DMF
requires attention, DMF Manager makes actions available to identify and resolve
problems. The tool volunteers information and provides context-sensitive online help.
DMF Manager also displays performance statistics, allowing you to monitor DMF
activity, filesystems, and hardware.

Figure 1-3 is an example of the Overview panel. It shows status of the DMF
environment, including the following:

• DMF is up (green icon)

007–5484–012 9

1: Introduction to DMF

• There are some warnings that may require action (yellow icon)

• The /dmi_fs2 filesystem is related to the volume1 and volume2 volume groups
(VGs)

10 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Relationships

Messages
about DMF

Filesystem
icon

Click
to log in/out

DMF statusProblem on
volume

Panel tabs
(right-click

to see menu)

Menu bar
(click to

see menu)

DMF status

Figure 1-3 DMF Manager

For details, see:

• "DMF Manager Requirements" on page 43

007–5484–012 11

1: Introduction to DMF

• Chapter 5, "DMF Manager" on page 147

Easy Access to User Commands on DMF Clients

Several DMF user commands are available natively on DMF clients running any of
the following operating systems (see the DMF release notes for the specific versions
that are supported):

• SGI IRIX®

• Apple® Mac OS X®

• Red Hat® Enterprise Linux® (RHEL)

• SUSE® Linux® Enterprise Server (SLES)

• SunTM SolarisTM

For more details, see "User Commands" on page 50.

High Availability

You can run DMF in a high-availability (HA) cluster.

!
Caution: This will require some configuration requirements and administrative
procedures (such as starting/stopping DMF) that differ from the information in this
DMF guide. For more information about DMF and HA, see High Availability Guide for
SGI InfiniteStorage.

SOAP Web Service

DMF provides access to a subset of the DMF client functions via the DMF Simple
Object Access Protocol (SOAP) web service. For more information, see Chapter 15,
"DMF SOAP Server" on page 497.

Direct Archiving

You can use the direct archiving feature to manually copy file data from an unmanaged
POSIX filesystem (such as a LustreTM filesystem) directly to secondary storage by

12 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

configuring the filesystem for archive use in the DMF configuration file and using
the dmarchive(1) command. Such a filesystem is known as an unmanaged archive
filesystem. When using this feature, DMF copies the file data to secondary storage
while placing the metadata in a visible DMF-managed filesystem. See "Use
dmarchive to Copy Unmanaged Archive File Data to Secondary Storage" on page
102.

Mounting Services

When you purchase DMF, you also receive the following mounting services:

• OpenVault storage library management facility, applicable to SLES or RHEL. See
OpenVault Administrator Guide for SGI InfiniteStorage.

• Tape Management Facility (TMF), applicable to SLES only. See TMF 6
Administrator Guide for SGI InfiniteStorage.

Out-of-Library Tapes

When OpenVault is the mounting service, DMF will try to retrieve data from an
in-library volume before requesting that an out-of-library tape be imported. See
"Using Out-of-Library Tapes" on page 141.

How DMF Works
This section discusses the following:

• "DMF File State Concepts" on page 14

• "DMF Mechanisms" on page 15

• "Multiple Storage Tiers" on page 18

• "Migration Process" on page 27

• "Recall of File Data" on page 27

• "Fast-Mount Cache Overview" on page 28

• "DMF Server Functions" on page 30

• "Parallel Data-Mover Option Overview" on page 31

007–5484–012 13

1: Introduction to DMF

• "DMF Databases" on page 35

• "Ensuring Data Integrity" on page 36

• "DMF Architecture" on page 36

• "Migrate Groups" on page 40

• "DMF Capacity" on page 40

DMF File State Concepts

DMF uses the following terminology with regard to the state of a file in a
DMF-managed filesystem:

• Regular file (REG) is a file residing only on the high-performance disk in the
DMF-managed filesystem.

• Migrating file (MIG) is a file whose copies on secondary storage are in progress.

• Migrated file is a file that has one or more complete copies on secondary storage
and no pending or incomplete offline copies. A migrated file is one of the
following from the DMF-perspective:

– Dual-state file (DUL) is a file whose data resides both on the high-performance
disk and on secondary storage

– Offline file (OFL) is a file whose data is no longer on the high-performance disk
(the data is offline from the DMF perspective, but from the user perspective the
data always appears to be available online)

– Unmigrating file (UNM) is a previously offline file in the process of being recalled
to the high-performance disk

– Partial-state file (PAR) is a file with some combination of dual-state, offline,
and/or unmigrating regions

When a file is first migrated, DMF copies the data to secondary storage but may not
immediately free the data in the DMF-managed filesystem on the high-performance
disk. During this period, the file is considered to be dual-state because it resides in
both locations. Like a regular file, a migrated file has an inode. An offline file or a
partial-state file requires the intervention of the DMF daemon to access its offline
data; a dual-state file is accessed directly from the original that still exists in the
DMF-managed filesystem.

14 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The operating system informs the DMF daemon when a migrated file is modified. If
anything is written to a migrated file, the offline copy is no longer valid, and the file
becomes a regular file until it is migrated again.

If you are using DMF direct archiving to copy files from a filesystem that is not
DMF-managed, archiving files are files where the original resides on an unmanaged
archive filesystem (one not managed by DMF, such as Lustre) and whose offline
copies are in progress. When the process completes, the files are offline files.

DMF Mechanisms

The migration process is managed by a daemon-like component called a library server
(LS) or media-specific process (MSP):

• LS (dmatls) transfers data to and from the following types of volumes:

– Magnetic tape in a tape library (also known as a robotic library or silo)

– RAID sets in a COPAN MAID system1

– Virtual tapes in an SGI 400 VTL system

• FTP MSP (dmftpmsp) uses the file transfer protocol to transfer data to and from
disks of another system on the network.

• Disk MSP (dmdskmsp) uses a filesystem mounted on the DMF server itself as the
location on which to store/recall file data. See "Use an Appropriate Filesystem for
a Disk MSP" on page 104.

• Disk cache manager (DCM) MSP is the disk MSP configured for n–tier capability by
using a dedicated filesystem as a cache. DMF can manage the disk MSP’s storage
filesystem and further migrate it to tape or MAID, thereby using a slower and
less-expensive dedicated filesystem as a cache to improve the performance when
recalling files. DCM MSP configuration generally first migrates data to cache on
(for example) serial ATA (SATA) disk and then at a later time migrates the data
from the SATA disk to permanent storage on physical tape. The filesystem used
by the DCM MSP must be a local XFS or CXFS filesystem.

• Fast-mount cache is a special configuration of an LS volume group that
simultaneously migrates data to a temporary copy on the cache target (such as
COPAN MAID) with rapid mount and positioning characteristics and to

1 For historical reasons, these volumes are sometimes referred to as tapes in command output and documentation.

007–5484–012 15

1: Introduction to DMF

permanent copies on the other targets (such as physical tape). This configuration
provides similar functionality to a DCM but does not downwardly migrate data
from the cache tier; in this configuration, an entire volume on the cache can be
freed immediately when the fullness threshold is reached. See "Fast-Mount Cache
Overview" on page 28.

A site can use any combination of LS, disk MSP, FTP MSP, DCM MSP, or fast-mount
cache; they are not mutually exclusive.

Figure 1-4 and Figure 1-5 summarize these concepts and "Multiple Storage Tiers" on
page 18, provides more details and illustrations.

Before DMF
DMF perspective: regular file
User perspective: online file

High-performance
disk

inode

data

Figure 1-4 DMF Mechanisms: Before Migrating with DMF

16 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

After DMF
DMF perspective: offline file
User perspective: online file

data

Secondary
storage
on low-cost
disk

FTP MSP

Secondary
storage on
another
server

Disk MSP

inode

inode

DCM

data

Disk cache
on low-cost
disk

data
Secondary
storage
on tape

inode

High-performance
disk

High-performance
disk

LS for COPAN

Secondary
storage
on COPAN MAID
or SGI 400 VTL

inode

data

High-performance
disk

Fast-mount cache

Temporary
cache on
COPAN MAID
or SGI 400 VTL

inode

data

High-performance
disk

data
Secondary
storage
on tape

High-performance
disk

LS for tape

data
Secondary
storage
on tape

inode

High-performance
disk

data

Figure 1-5 DMF Mechanisms: After Migrating Data and Freeing Space

007–5484–012 17

1: Introduction to DMF

Multiple Storage Tiers

The various DMF mechanisms provide multiple storage tiers:

• "Two Tiers using LS Disk MSP, or FTP MSP" on page 18

• "Three Tiers using DCM MSP" on page 20

• "Three Tiers using Fast-Mount Cache" on page 24

The figures in the following subsections show the use of multiple tiers and the
concepts of DMF data migration and data recall (in which file data is copied from the
DMF-managed filesystem to the secondary storage, but the inode remains in place in
the DMF-managed filesystem).

Note: For simplicity, the figures in this chapter do not address a permanent second
copy. Data will be recalled from a second copy only if necessary.

Two Tiers using LS Disk MSP, or FTP MSP

LS, disk MSP, and FTP MSP provide two tiers of migration:

• Tier-1: DMF-managed filesystem on high-performance disk

• Tier-2: Permanent secondary storage on COPAN MAID, SGI 400 VTL, tape library,
or other disk

Figure 1-6 and Figure 1-7 show an example of the process where tier–2 of storage
could be COPAN MAID, SGI 400 VTL, physical tape, or disk. These figures describe
the use of an LS, a disk MSP, or an FTP MSP.

18 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Before migrating

DMF perspective: regular file
User perspective: online file

Secondary storage
tier-2

MAID/VTL/Tape/Disk

High-performance disk

DMF-managed filesystem
tier-1

inode

data

High-performance disk

DMF-managed filesystem
tier-1

After migrating

DMF perspective: dual-state file
User perspective: online file

MAID/VTL/Tape/Disk

Secondary storage
tier-2

Migrate file
data

inode

data

Figure 1-6 LS, Disk MSP, or FTP MSP: Migrating File Data

007–5484–012 19

1: Introduction to DMF

High-performance disk

DMF-managed filesystem
tier-1

Recalling file data

DMF perspective: unmigrating file
User perspective: online file

MAID/VTL/Tape/Disk

Secondary storage
tier-2

Recall file

data

inode

High-performance disk

After freeing space

DMF perspective: offline file
User perspective: online file

MAID/VTL/Tape/Disk

data

inode

Secondary storage
tier-2

DMF-managed filesystem
tier-1

Figure 1-7 LS, Disk MSP, or FTP MSP: Freeing and Recalling File Data

Three Tiers using DCM MSP

DCM MSP provides three tiers of migration:

• Tier-1: DMF-managed filesystem on high-performance disk

20 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• Tier-2: Cache on high-capacity, low-cost disk that will downwardly migrate and
free data on a file basis

• Tier-3: Permanent secondary storage on COPAN MAID, SGI 400 VTL, or tape
library

Figure 1-8 and Figure 1-9 show an example of the process using three tiers of storage
with a DCM, where the secondary storage moves first to lower-performance but
less-expensive disk, then to inexpensive tape. The file will be recalled from disk cache
as long as it resides there because it is faster than recalling from tape.

007–5484–012 21

1: Introduction to DMF

Before migrating

DMF perspective: regular file
User perspective: online file

High-performance disk

DMF-managed filesystem
tier-1

After migrating

DMF perspective: dual-state file
User perspective: online file

MAID/VTL/Tape

Secondary storage
tier-3

Migrate file

data

inode

Disk cache
high-capacity, low-cost,
lower-performace disk

Secondary storage
tier-2data

data

Migrate file

Secondary storage
tier-3

MAID/VTL/Tape

High-performance disk

DMF-managed filesystem
tier-1

inode

Secondary storage
tier-2

Disk cache
high-capacity, low-cost,
lower-performace disk

data

Figure 1-8 DCM MSP: Migrating File Data

22 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Recalling file data
from cache

DMF perspective: unmigrating file
User perspective: online file

Secondary storage
tier-3

MAID/VTL/Tape

High-performance disk

DMF-managed filesystem
tier-1

inode

High-performance disk

DMF-managed filesystem
tier-1

Recalling file data
if not on cache

DMF perspective: unmigrating file
User perspective: online file

MAID/VTL/Tape

Secondary storage
tier-3

data

inode

Disk cache
high-capacity, low-cost,
lower-performace disk

Secondary storage
tier-2

data

Recall file

Secondary storage
tier-2

Disk cache
high-capacity, low-cost,
lower-performace disk

data

After freeing space

DMF perspective: offline file
User perspective: online file

Secondary storage
tier-3

MAID/VTL/Tape

High-performance disk

DMF-managed filesystem
tier-1

inode

data

Secondary storage
tier-2

Disk cache
high-capacity, low-cost,
lower-performace disk

data

Recall file

Figure 1-9 DCM MSP: Freeing and Recalling File Data

007–5484–012 23

1: Introduction to DMF

Three Tiers using Fast-Mount Cache

Fast-mount cache provides three tiers of migration:

• Tier-1: DMF-managed filesystem on high-performance disk

• Tier-2: Cache on COPAN MAID that will be freed on a volume basis (no
downward migration)

• Tier-3: Permanent secondary storage on a tape library

Figure 1-10 and Figure 1-11 show an example of the process using three tiers of
storage with a fast-mount cache configuration, where a copy of the data is
simultaneously placed in COPAN MAID (tier-2) and on physical tape (tier-3). The file
will be recalled from the COPAN MAID cache as long as it resides there because it is
faster than recalling from tape.

Note: Unlike the DCM, this method does not migrate data from the cache to tier-3;
therefore, volumes on the cache can be freed immediately when the fullness threshold
is reached.

For more information, see "Fast-Mount Cache Overview" on page 28.

24 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Before migrating

DMF perspective: regular file
User perspective: online file

Cache storage
tier-2

MAID

High-performance disk

DMF-managed filesystem
tier-1

inode

data

High-performance disk

DMF-managed filesystem
tier-1

After migrating

DMF perspective: dual-state file
User perspective: online file

MAID

Cache storage
tier-2

Migrate file
data

inode

data

Permanent copy
tier-3

Tape

Permanent copy
tier-3

Tape

data
Migrate file

Figure 1-10 Fast-Mount Cache: Migrating File Data

007–5484–012 25

1: Introduction to DMF

Recalling file data
from cache

DMF perspective: unmigrating file
User perspective: online file

After freeing space

DMF perspective: offline file
User perspective: online file

High-performance disk

DMF-managed filesystem
tier-1

MAID

Cache storage
tier-2

data

inode

Permanent copy
tier-3

Tape

data

High-performance disk

DMF-managed filesystem
tier-1

MAID

Cache storage
tier-2

data

inode

Permanent copy
tier-3

Tape

data

Recalling file data
after freeing the cache volume

DMF perspective: unmigrating file
User perspective: online file

High-performance disk

DMF-managed filesystem
tier-1

MAID

Cache storage
tier-2

inode

Permanent copy
tier-3

Tape

data
Recall file

Recall file

Figure 1-11 Fast-Mount Cache: Freeing and Recalling File Data

26 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Migration Process

You choose both the percentage of the filesystem to migrate and the amount of free
space. You as the administrator can manually trigger file migration or file owners can
issue manual migration requests.

A file is migrated when the automated space management controller dmfsfree(8)
selects the file or when an owner requests that the file be migrated by using the
dmput(1) command.

When the daemon receives a request to migrate a file, it does the following:

1. Adjusts the state of the file.

2. Ensures that the necessary MSPs/VGs are active.

3. Sends a request to the MSPs/VGs, who in turn copy data to the secondary
storage media.

When the MSPs/VGs have completed the offline copies, the daemon marks the file as
migrated in its database and changes the file to dual-state. If the user specifies the
dmput -r option, or if dmfsfree requests that the file’s space be released, the
daemon releases the data blocks and changes the file state to offline. For more
information, see the dmput(1) man page.

Note: DMF does not migrate pipes, directories, or UNIX® or Linux special files.

Recall of File Data

Data is provided to the user from the appropriate location:

• If a user accesses a dual-state file, the data comes directly from the
high-performance disk as normal, providing the fastest access.

• After the data blocks on the DMF-managed filesystem are freed, DMF
automatically recalls the file’s data from the secondary storage when the user
accesses the file, placing the data back on the DMF-managed filesystem; at this
point, the file once again becomes a dual-state file. (If the user then changes the
file, it returns to being a regular file.)

When a migrated file must be recalled, a request is made to the DMF daemon. The
daemon selects an MSP/VG from its internal list and sends that MSP/VG a request to

007–5484–012 27

1: Introduction to DMF

recall a copy of the file. If more than one MSP/VG has a copy, the first one in the list
is used. (The list is created from the configuration file.)

Note: A file’s data blocks on the DMF-managed filesystem can only be freed after the
data has been copied to secondary storage.

If you recall more files than the DMF-managed filesystem can currently contain, DMF
migrates other files and will free the data blocks of already-migrated files (according
to site-specific policies) until the filesystem is once again well below the free-space
minimum threshold.

Fast-Mount Cache Overview

This section discusses the following:

• "Temporary and Permanent Targets" on page 28

• "How Fast-Mount Cache Differs from a DCM MSP" on page 29

• "Fast-Mount Cache Implementation" on page 30

• "Appropriate Use of Fast-Mount Cache" on page 30

Temporary and Permanent Targets

You can use a migration target with rapid mount and positioning characteristics in
conjunction with other permanent migration targets in a fast-mount cache
configuration. For example, consider the following:

• COPAN MAID is faster than physical tapes, but its storage size is finite

• A physical tape library has an effectively unlimited storage capacity because you
can eject full tapes and replace them with empty tapes, but recalling data from
tape is slower than recalling data from COPAN MAID

The combination of these two targets in a fast-mount cache configuration results in
faster recall performance for recently created offline files while also providing secure
long-term storage.

28 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

How Fast-Mount Cache Differs from a DCM MSP

A fast-mount cache is similar to a DCM MSP in that both provide fast recall of
migrated files in the cache tier (tier-2). However, they have following important
differences:

• DCM MSP:

– Can be configured to downwardly migrate data from tier–2 to tier–3 as the
data ages

– Only requires that one initial copy be made, although two copies are
recommended to prevent data loss (the copy in cache can be downwardly
migrated to permanent secondary storage on tier-3)

– Deletes data from tier-2 on an individual file basis

– Data on tier–2 may not be immediately recoverable when space is needed if the
data does not already have a copy in tier–3 (causing a delay if space is needed
quickly)

• Fast-mount cache:

– Does not downwardly migrate data from tier–2 to tier–3

– Always requires that at least two initial copies be made (a temporary copy to
the cache and a permanent copy to the secondary storage on tier-3)

– Deletes data from tier-2 on a volume basis (that is, all files in the volume are
deleted at the same time)

– Tier-2 can be freed immediately when the free-space threshold is reached,
without further operational effort

Note: SGI always recommends that you migrate at least two copies to permanent
storage targets in order to prevent file data loss in the event that a migrated copy is
damaged. When using a fast-mount cache, SGI therefore recommends that you
migrate at least three copies (one copy to the cache on tier-2 and two copies to
permanent storage targets at the tier-3 level).

007–5484–012 29

1: Introduction to DMF

Fast-Mount Cache Implementation

To implement a fast-mount cache, you must configure DMF to make all permanent
copies of the data (tier-3 storage on other MSPs/VGs) at the same time as the
temporary copy (tier-2 storage on the MGs/VGs in the fast-mount cache).

You must also configure a task to empty the fast-mount cache when it reaches the
configurable free-space threshold. DMF immediately empties the oldest full volumes,
defined as those with the oldest write dates. Because at least one copy of the data
exists elsewhere (most likely on a physical tape), there is no need to wait for the data
in the fast-mount cache to migrate to a lower tier (unlike a DCM MSP). Therefore, the
freeing of space on the fast-mount cache is very fast because it requires no movement
of data.

Figure 1-10 on page 25 and Figure 1-11 on page 26 summarize the concepts of
migrating and recalling file data in a fast-mount cache configuration using COPAN
MAID as an example.

Also see "Use Fast-Mount Cache Appropriately" on page 97.

Appropriate Use of Fast-Mount Cache

The fast-mount cache configuration is most appropriate for sites that have a high
turnover of often-accessed data, where the most recently migrated files are also the
most likely to be recalled.

All files on a volume being freed are deleted without regard to their size or last access
time. That might mean that a file that is still being actively recalled on a fairly regular
basis must be recalled from a VG with slower mount and position characteristics. You
can minimize this issue by setting optional configuration parameters so that recently
accessed files are copied to another volume within the fast-mount cache before any
volumes are freed, using a separate scratch directory, but there may be an associated
performance impact.

DMF Server Functions

The DMF server always provides the following services:

• DMF administration (see "Administration Tasks" on page 45)

• Backups

30 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• All I/O for data transfer to and from disks that is associated with FTP, disk, or
DCM MSPs (see "How DMF Works" on page 13)

• By default, a portion of I/O for data transer to and from secondary storage (using
its integrated data-mover functionality)

Parallel Data-Mover Option Overview

The individual processes that migrate and recall data are known as data-mover
processes. Nodes that run data-mover processes are data movers; this may include the
DMF server node if it is configured to use the integrated data-mover functionality and, if
you have purchased the Parallel Data-Mover Option, the parallel data-mover nodes. The
DMF server and the parallel data-mover nodes can each run multiple data-mover
processes.

As shown in Figure 1-12, the basic DMF product (that is, without the Parallel
Data-Mover Option) runs data-mover processes on the DMF server. This allows the
DMF control system to reside on a single server and minimizes the cost of a DMF
implementation. Additional nodes can be installed with DMF client software (see
"DMF Manager Web Interface" on page 9).

Figure 1-13 shows DMF in a CXFS clustered filesystem environment.

Note: All nodes connect to a network. For simplicity, the network and DMF clients
are not shown in the following figures.

007–5484–012 31

1: Introduction to DMF

FC switch

Secondary
storage

NFS client

Integrated
data-mover
functionality

DMF server

Storage Infrastructure User Workload

High-performance
disk

Figure 1-12 Basic DMF in an NFS Environment

FC switch

CXFS server-capable
administration node

CXFS client-only
node

DMF server

NFS client

Storage Infrastructure User Workload

Integrated
data-mover
functionality

Secondary
storage

High-performance
disk

Figure 1-13 Basic DMF in a CXFS Environment

32 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

For users with higher throughput requirements, the Parallel Data-Mover Option
allows additional data movers to operate in parallel with the integrated data-mover
functionality on the DMF server, increasing data throughput and enhancing resiliency.

The parallel data-mover node’s dedicated function is to move data from the
DMF-managed filesystem to secondary storage or from secondary storage back into
the DMF-managed filesystem. Offloading the majority of I/O from the integrated
data-mover functionality on the DMF server improves I/O throughput performance.

Because multiple parallel data-mover nodes can be used to move data, DMF can scale
its I/O throughput capabilities. When one parallel data-mover node hits its peak
throughput capabilities, you can add more parallel data-mover nodes to the
configuration as needed to improve I/O performance. Each parallel data-mover node
can improve overall DMF performance by up to its maximum performance. For
example, if you have parallel data-mover nodes that each provide up to a 2–GB/s
increase, then having a configuration with three of these parallel data-mover nodes
would provide a net increase of up to 6 GB/s. Additional drives and filesystem
bandwidth may be required to realize the benefit from additional parallel data-mover
nodes.

Basic DMF can run in an environment with or without CXFS. If DMF is managing a
CXFS filesystem, DMF will ensure that the filesystem’s CXFS metadata server is on
the same machine as the DMF server and will use metadata server relocation if
necessary to achieve that configuration (see "Configure DMF Appropriately with
CXFSTM" on page 89). With the Parallel Data-Mover Option, DMF must always run in
a CXFS environment. The parallel data-mover nodes are SGI x86_64 machines that
are installed with the SGI DMF Parallel Data Mover software package, which
includes the required underlying CXFS software.

Note: From the CXFS cluster point of view, a DMF parallel data-mover node is a
CXFS client-only node and therefore counts towards the total number of CXFS cluster
nodes. However, the parallel data-mover nodes must be dedicated to DMF
data-mover activities; they cannot perform any other functions that would be normal
for CXFS client-only nodes.

The parallel data-mover node has specific hardware requirements and must access the
secondary storage media on a port that is not used by CXFS. See "SAN Switch Zoning
or Separate SAN Fabric Requirement" on page 43.

If you choose the DMF Parallel Data-Mover Option, you must use OpenVault for
those drive groups (DGs) that contain drives on parallel data-mover nodes.

007–5484–012 33

1: Introduction to DMF

Figure 1-14 shows the concept of DMF using parallel data-mover nodes in a CXFS
cluster with only one server-capable administration node.

NFS client

FC switch

CXFS client-only
nodeCXFS client-only

node
(restricted activity)

DMF parallel
data-mover node 1

CXFS client-only
node

(restricted activity)

DMF parallel
data-mover node 2

CXFS server-capable
administration node

DMF server

CXFS metadata
server

Storage Infrastructure User Workload

Integrated
data-mover
functionality

Secondary
storage

High-performance
disk

Figure 1-14 DMF with the Parallel Data-Mover Option in a CXFS Environment

In a configuration with the Parallel Data-Mover Option, the DMF server still provides
the services listed in "DMF Server Functions" on page 30.

34 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

For more information, see Chapter 7, "Parallel Data-Mover Option Configuration" on
page 379.

DMF Databases

The DMF daemon keeps track of migrated files in the daemon database. The key to
each file is its bit-file identifier (BFID). For each migrated file, the daemon assigns a
BFID that is stored in the file’s inode. There is a daemon database record for each
copy of a migrated file.

The daemon database also contains information such as the following:

• The MSP/VG name

• The MSP/VG key for each copy of a migrated file

When you use an MSP, the daemon database contains all of the information required
to track a migrated file.

If you use an LS, there is also the LS database, which contains two tables of records:

• Catalog (CAT) records track the location of migrated data on volumes. There is one
CAT record for each migrated copy of a file. If a migrated copy is divided
between multiple volumes, there will be a CAT record for each portion or chunk.

• Volume (VOL) records contain information about the volumes. There is one VOL
record for each volume.

Detailed information about the daemon and LS databases and their associated utilities
is provided in "CAT Records" on page 430 and "VOL Records" on page 430.

Note: The databases consist of multiple files. However, these are not text files and
cannot be updated by standard utility programs. See "Database Backups" on page 484.

There are also databases for DMF Manager performance records and alerts.

For information about the OpenVault database, see OpenVault Administrator Guide for
SGI InfiniteStorage.

007–5484–012 35

1: Introduction to DMF

Ensuring Data Integrity

DMF provides capabilities to ensure the integrity of offline data. For example, you can
have multiple MSPs/VGs with each managing its own pool of volumes. Therefore,
you can configure DMF to copy filesystem data to multiple offline locations.

DMF stores data that originates in a CXFS or XFS filesystem. Each object stored
corresponds to a file in the native filesystem. When a user deletes a file, the inode for
that file is removed from the filesystem. Deleting a file that has been migrated begins
the process of invalidating the offline image of that file. In the LS, this eventually
creates a gap in the volume. To ensure effective use of media, the LS provides a
mechanism for reclaiming space lost to invalid data. This process is called volume
merging.

Much of the work done by DMF involves transaction processing that is recorded in
databases. The DMF databases provide for full transaction journaling and employ
two-phase commit technology. The combination of these two features ensures that
DMF applies only whole transactions to its databases. Additionally, in the event of an
unscheduled system interrupt, it is always possible to replay the database journals in
order to restore consistency between the DMF databases and the filesystem. DMF
utilities also allow you to verify the general integrity of the DMF databases
themselves. See "Administration Tasks" on page 45 for more information.

DMF Architecture

DMF consists of the DMF daemon and one or more MSPs or LSs. The DMF daemon
accepts requests to migrate filesystem data from the DMF administrator or from
users. It also communicates with the operating system kernel to maintain a file’s
migration state in that file’s inode.

The DMF daemon is responsible for dispensing a unique BFID for each file that is
migrated. The daemon also determines the destination of migration data and forms
requests to the appropriate MSP/LS to make offline copies.

The MSP/LS accepts requests from the DMF daemon. For outbound data, the LS
accrues requests until the amount of data justifies a volume mount. Requests for data
retrieval are satisfied as they arrive. When multiple retrieval requests involve the
same volume, all file data is retrieved in a single pass across the volume.

DMF uses the DMAPI kernel interface defined by the Data Management Interface
Group (DMIG). DMAPI is also supported by X/Open, where it is known as the
XDSM standard.

36 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 1-15 illustrates the basic DMF architecture. Figure 1-16 shows the architecture
of the LS.

Control

Data

TMF or
OpenVault

Offline data
storage

DMF administration
interface

 Space management
 Audit

DMF
databases

Kernel

DMAPI

LS

LS administration
interface

 Volume merge
 Volume entry

DMF daemon

Native
user data

DMF attribute

Figure 1-15 Basic DMF Architecture

007–5484–012 37

1: Introduction to DMF

DMF daemon
(dmfdaemon)

Resource
watcher

Resource
scheduler

Allocation
group

Standard
resource
scheduler
algorithm

Drive
group

Write child
(dmatwc)

Library server
(dmatls)

Read child
(dmatrc)

Volume
group

Figure 1-16 LS Architecture

There is one LS process (dmatls) per library, which maintains a database that all of
its components share. The entities in the shaded boxes in Figure 1-16 are internal
components of the dmatls process. Their functions are as follows:

Drive group (DG) The DG is responsible for the management of a group
of interchangeable drives located in the library. These
drives can be used by multiple VGs (see volume group
below) and by non-DMF processes, such as backups
and interactive users. However, in the latter cases, the
DG has no management involvement; the mounting
service (TMF or OpenVault) is responsible for ensuring
that these possibly competing uses of the drives do not
interfere with each other.

38 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The main tasks of the DG are to:

• Monitor I/O for errors

• Attempt to classify the errors as volume, drive, or
mounting service problems

• Take preventive action

Volume group (VG) The VG holds at most one copy of a migrated file in a
pool of volumes, of which it has exclusive use. It can
use only the drives managed by a single DG.

Allocation group (AG) An AG is a pool of volumes that are transferred to a
VG as needed and are returned to the pool when
empty, subject to VG configuration parameters.
Normally, an AG is configured to serve multiple VGs.
Use of an AG is optional. When empty volumes are
added to DMF, they may be assigned to an AG via the
dmvoladm(8) command.

Resource scheduler In a busy environment, it is common for the number of
drives requested by VGs to exceed the number
available. The purpose of the resource scheduler is to
decide which VGs should have first access to drives as
they become available and to advise the DG of the
result. The DMF administrator can configure the
resource scheduler to meet site requirements.

Standard resource
scheduler algorithm

This routine is an internal component of the dmatls
process. Standard algorithms are provided with DMF.

Resource watcher The resource watcher monitors the activity of the other
components and frequently updates files that contain
data of use to the administrator. These are usually
HTML files viewable by a web browser, but can also be
text files designed for use by awk or perl scripts.

The dmatrc and dmatwc processes are called the read children and write children.
They are created by VGs to perform the actual reading and writing of volumes.
Unlike most of the other DMF processes that run indefinitely, these processes are
created as needed, and are terminated when their specific work has been completed.

Media transports and robotic automounters are also key components of all DMF
installations. Generally, DMF can be used with any transport and automounter that is

007–5484–012 39

1: Introduction to DMF

supported by either OpenVault or TMF. Additionally, DMF supports absolute block
positioning, a media transport capability that allows rapid positioning to an absolute
block address on the volume. When this capability is provided by the transport,
positioning speed is often three times faster than that obtained when reading the
volume to the specified position.

Migrate Groups

A migrate group (MG) is a logical collection of MSPs and VGs that you combine into a
set in order to have a single destination for a migrate request. A migration request to
the MG will result in the copying of the file to exactly one MSP/VG that is a member
of the MG.

You define an MG by adding the migrategroup object to the DMF configuration
file. You can use the defined name of the MG in DMF policies and commands, similar
to the way in which you use the names of VGs/MSPs. See:

• "Use Migrate Groups Appropriately" on page 95

• "Balance Data Among Libraries" on page 121

• "migrategroup Object" on page 331

DMF Capacity

The capacity of DMF is measured in several ways, as follows:

• Total number of files. The daemon database can contain approximately 4 billion
entries, and there is one database entry for each copy of a file that DMF manages.
Therefore, if there are two copies of each DMF-managed file, DMF can
theoretically manage approximately 2 billion files. The number of files that can be
supported with best performance will vary depending upon the workload.

• Total amount of data. Capacity in data volume is limited only by the physical
environment and the density of media.

• Total amount of data moved between online and offline media. The number of
drives configured for DMF, the number of tape channels, and the number of disk
channels all figure highly in the effective bandwidth. In general, DMF provides
full-channel performance to both tape and disk.

40 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• Storage capacity. DMF can support any file that can be created on the CXFS or
XFS filesystem being managed.

DMF has evolved in production-oriented, customer environments. It is designed to
make full use of parallel and asynchronous operations, and to consume minimal
system overhead while it executes, even in busy environments in which files are
constantly moving online or offline. Exceptions to this rule will occasionally occur
during infrequent maintenance operations when a full scan of filesystems or
databases is performed.

Requirements

Note: See the InfiniteStorage Software Platform (ISSP) release note and the DMF
release note for the supported kernels, update levels, service pack levels, software
versions, libraries, and tape devices.

This section discusses the following:

• "Server Node Requirements" on page 41

• "Parallel Data-Mover Node Requirements" on page 42

• "Mounting Service Requirements" on page 42

• "License Requirements" on page 42

• "DMAPI Requirement" on page 42

• "SAN Switch Zoning or Separate SAN Fabric Requirement" on page 43

• "DMF Manager Requirements" on page 43

• "DMF SOAP Requirements" on page 44

• "DMF Direct Archiving Requirements" on page 44

• "Fast-Mount Cache Requirements" on page 44

Server Node Requirements

A DMF server node requires the following:

007–5484–012 41

1: Introduction to DMF

• SGI x86_64 hardware

• One of the following operating systems as documented in the ISSP release note:

– Red Hat Enterprise Linux (RHEL)

– SUSE Linux Enterprise Server (SLES)

• DMF server software and associated products distributed with the ISSP release

Parallel Data-Mover Node Requirements

DMF parallel data-mover nodes require the following:

• SGI x86_64 hardware

• Same operating system as the DMF server and CXFS metadata server

• DMF parallel data-mover node software (which includes the required underlying
CXFS client-only software)

If you use the Parallel Data-Mover Option, you must use OpenVault for those DGs
that contain drives on parallel data-mover nodes. See "Parallel Data-Mover Option
Overview" on page 31.

Mounting Service Requirements

OpenVault requires ksh, not pdksh.

TMF has no DMF-specific requirements.

License Requirements

DMF is a licensed product. See Chapter 2, "DMF Licensing" on page 59.

DMAPI Requirement

For filesystems to be managed by DMF, they must be mounted with the DMAPI
interface enabled. See "Filesystem Mount Options" on page 127.

42 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

SAN Switch Zoning or Separate SAN Fabric Requirement

Drives must be visible only from the active DMF server, the passive DMF server (if
applicable), and the parallel data-mover nodes. The drives must not be visible to any
other nodes. You must use one of the following:

• Independent switches (in a separate SAN fabric)

• Independent switch zones for CXFS/XVM volume paths and DMF drive paths

Warning: If the drives are visible to any other nodes, such as CXFS client-only nodes
(other than those that are dedicated to being parallel data-mover nodes), data can
become corrupted or overwritten.

DMF requires independent paths to drives so that they are not fenced by CXFS. The
ports for the drive paths on the switch must be masked from fencing in a CXFS
configuration.

XVM must not fail over CXFS filesystem I/O to the paths visible through the
tape/disk HBA ports when Fibre Channel port fencing occurs.

DMF Manager Requirements

DMF Manager has the following requirements:

• The DMF Manager software is installed on the DMF server node.

• One of the following web browsers:

– Firefox 3.6 and later (Firefox is the preferred browser)

– Internet Explorer 7.n (7.0 or newer) and Internet Explorer 8

Note: DMF Manager might also work other browsers, but its functionality is not
tested.

• Before saving or applying configuration changes, you must make and mount the
filesystems used for the DMF administrative directories. See "Configure DMF
Administrative Directories Appropriately" on page 79.

007–5484–012 43

1: Introduction to DMF

DMF SOAP Requirements

To use the DMF SOAP service capability, the software must be installed on the DMF
server node.

DMF Direct Archiving Requirements

DMF direct archiving has the following requirements:

• The unmanaged archive filesystem must be visible and mounted in the same
location on the DMF server and any DMF parallel data-mover nodes. (The DMF
server need not be the server of the unmanaged archive filesystem; for example,
the DMF server need not be the Lustre server.)

• The unmanaged archive filesystem must be visible to DMF clients from which you
want to run the dmarchive(1) command, but may have the filesystem mounted
on a different mount point.

• The unmanaged archive filesystem must be mounted on the DMF server and any
DMF parallel data-mover nodes so that the root user is able to access the
filesystem with root privileges (that is, with root squashing disabled).

• The unmanaged archive filesystem must be fast enough to permit efficient
streaming to/from secondary storage. If this is not the case, the speed could be so
slow as to render DMF useless; in that situation, copying the file to a
DMF-managed filesystem via cp(1) and migrating the file may be a better option.

If a filesystem does not meet these requirements, do not add it to the DMF
configuration file as an unmanaged archive filesystem.

Fast-Mount Cache Requirements

The fast-mount cache feature requires the following at a minimum:

• Migrating at least two copies simultaneously, one temporary copy to the cache
(such as COPAN MAID) and at least one permanent copy to another target (such
as physical tape).

44 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: SGI always recommends that you migrate at least two copies to permanent
storage targets in order to prevent file data loss in the event that a migrated copy
is damaged. When using a fast-mount cache, SGI therefore recommends that you
migrate at least three copies (one to the cache and two to permanent storage
targets).

• Configuring a task to empty the cache.

See "Use Fast-Mount Cache Appropriately" on page 97.

Administration Tasks
This section discusses the following aspects of DMF administration:

• "Initial Planning" on page 45

• "Installation and Configuration" on page 46

• "Recurring Administrative Duties" on page 46

• "Commands Overview" on page 49

Initial Planning

DMF manages two primary resources:

• Free space on DMF-managed filesystems

• Pools of secondary-storage media

You can configure DMF to manage those resources in a variety of environments,
including the following:

• Support of batch and interactive processing in a general-purpose environment
with limited disk space

• Dedicated fileservers

• Lights-out operations

When planning to use DMF, you must do the following:

007–5484–012 45

1: Introduction to DMF

• Evaluate the environment in which DMF will run.

• Plan for a certain capacity, both in the number of files and in the amount of data

• Estimate the rate at which you will be moving data between the DMF store of
data and the native filesystem

• Select autoloaders and media transports that are suitable for the data volume and
delivery rates you anticipate

Installation and Configuration

You will install the DMF server software (which includes the software for TMF and
OpenVault) from the ISSP media.

To configure DMF, you must define a set of parameters in the DMF configuration file,
typically by using a sample file as a starting point. See:

• "Configuration Best Practices" on page 76

• Chapter 4, "Installing and Configuring the DMF Environment" on page 123

To make site-specific modifications to DMF, see "Customizing DMF" on page 142.

For a detailed example of configuring using COPAN cabinets, see:

• COPAN MAID for DMF Quick Start Guide

• SGI 400 VTL for DMF Quick Start Guide

Recurring Administrative Duties

DMF requires that you perform recurring administrative duties in the following areas:

• "Free-Space Management" on page 47

• "File Ranking" on page 47

• "Offline Data Management" on page 47

• "Data Integrity and Reliability" on page 48

46 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: You can use tasks that automate these duties. A task is a process initiated on a
time schedule that you determine, similar to a cron(1) job. Tasks are defined with
configuration file parameters and are described in detail in "taskgroup Object" on
page 240 and "LS Tasks" on page 345.

Free-Space Management

You must decide how much free space to maintain on each managed filesystem. DMF
has the ability to monitor filesystem capacity and to initiate file migration and the
freeing of space when free space falls below the prescribed thresholds. See Chapter
10, "Automated Space Management" on page 403.

File Ranking

You must decide which files are most important as migration candidates. When DMF
migrates and frees files, it selects files based on criteria you chose. The ordered list of
files is called the candidate list. Whenever DMF responds to a critical space threshold,
it builds a new migration candidate list for the filesystem that reached the threshold.
See "Generating the Candidate List" on page 404.

Offline Data Management

DMF offers the ability to migrate data to multiple locations. Each location is managed
by a separate MSP/VG and is usually constrained to a specific type of medium.

Complex strategies are possible when using multiple MSPs, LSs, or VGs. For
example, short files can be migrated to a device with rapid mount times, while long
files can be routed to a device with extremely high density.

You can describe criteria for MSP/VG selection. When setting up a VG, you assign a
pool of volumes for use by that VG. The dmvoladm(8) utility provides management
of the VG media pools.

You can configure DMF to automatically merge volumes that are becoming sparse.
With this configuration (using the run_merge_tapes.sh task for either disk or
tape), the media pool is merged on a regular basis in order to reclaim unusable space.

Recording media eventually becomes unreliable. Sometimes, media transports
become misaligned so that a volume written on one cannot be read from another. The
following utilities support management of failing media:

007–5484–012 47

1: Introduction to DMF

• dmatread(8) recovers data

• dmatsnf(8) verifies LS volume integrity

Additionally, the volume merge process built into the LS is capable of effectively
recovering data from failed media.

Chapter 13, "Media-Specific Processes and Library Servers" on page 425, provides
more information on administration.

Data Integrity and Reliability

To maintain the integrity and reliability of data managed by DMF, you must do the
following:

• Run backups. DMF moves only the data associated with files, not the file inodes
or directories, so you must still run filesystem backups in order to preserve the
metadata associated with migrated files and their directories. You can configure
DMF to automatically run backups of your DMF-managed filesystems. See "Back
Up Migrated Filesystems and DMF Databases" on page 109.

The xfsdump(8) and xfsrestore(8) utilities are aware of migrated files. The
xfsdump utility can be configured to dump the data blocks for a file only if it has
not yet been migrated. Files that are dual-state, partial-state, or offline have only
their inodes backed up.

You can establish a policy of migrating 100% of the files in the DMF-managed
filesystems before starting a backup, thereby leaving only a small amount of data
that must be dumped. This practice can greatly increase the availability of the
machine on which DMF is running because, generally, backup commands must be
executed in a quiet environment.

You can configure the run_full_dump.sh and run_partial_dump.sh tasks to
ensure that all files have been migrated. These tasks can be configured to run
when the environment is quiet.

• Configure DMF to automatically run dmaudit to examine the consistency and
integrity of the databases it uses. DMF databases record all information about
stored data. The DMF databases must be synchronized with the filesystems that
DMF manages. Much of the work done by DMF ensures that the DMF databases
remain aligned with the filesystems.

You can configure DMF to periodically copy the databases to other devices on the
system to protect them from loss (using the run_copy_databases.sh task).

48 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

This task also uses the dmdbcheck utility to ensure the integrity of the databases
before saving them.

DMF uses journal files to record database transactions. Journals can be replayed in
the event of an unscheduled system interrupt that causes database corruption.
You must ensure that journals are retained in a safe place until a full backup of the
DMF databases can be performed.

You can configure the run_remove_logs.sh and run_remove_journals.sh
tasks to automatically remove old logs and journals, which will prevent the DMF
SPOOL_DIR and JOURNAL_DIR directories from overflowing.

• Configure the run_hard_deletes.sh task to automatically remove database
entries whose files will never be restored from backup media. See "Cleaning Up
Obsolete Database Entries" on page 474.

Commands Overview

The DMF administrator has access to a wide variety of commands for controlling
DMF. This section discusses the following:

• "User Commands" on page 50

• "Licensing Commands" on page 51

• "Configuration Commands" on page 51

• "DMF Daemon and Related Commands" on page 52

• "Space Management Commands" on page 54

• "LS Commands" on page 54

• "Disk MSP Command" on page 55

• "DCM MSP Commands" on page 55

• "Other Commands" on page 56

Note: The functionality of some of these commands can be affected by site-defined
policies; see "Customizing DMF" on page 142.

The FTP MSP uses no special commands, utilities, or databases.

007–5484–012 49

1: Introduction to DMF

User Commands

End users can run the following commands on DMF clients to affect the manual
storing and retrieval of their data:

Command Description

dmarchive(1) Directly copies data between DMF secondary storage
and a POSIX filesystem that is not managed by DMF,
such as Lustre. It is intended to streamline a work flow
in which users work in an unmanaged archive
filesystem and later want to archive a copy of their data
via DMF.

dmattr(1) Displays whether files are migrated or not by returning
a specified set of DMF attributes (for use in shell
scripts).

dmcapacity(1) Displays an estimate of the remaining storage capacity
for each VG in each LS. You can optionally choose to
report the data formatted into XML or HTML.

dmcopy(1) Copies all or part of the data from a migrated file to an
online file.

dmdu(1) Displays the number of blocks contained in specified
files and directories on a DMF-managed filesystem.

dmfind(1) Displays whether files are migrated or not by searching
through files in a directory hierarchy.

dmget(1) Recalls the specified files.

dmls(1) Displays whether files are migrated or not by listing the
contents of a directory.

dmoper(1) Displays outstanding requests for operator intervention.

dmput(1) Migrates the specified files.

dmtag(1) Allows a site-assigned 32-bit integer to be associated
with a specific file (which can be tested in the when
clause of particular configuration parameters and in
site-defined policies).

50 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dmversion(1) Displays the version number of the currently installed
DMF software.

The DMF libdmfusr.so user library lets you write your own site-defined DMF user
commands that use the same application program interface (API) as the above DMF
user commands. See Appendix B, "DMF User Library libdmfusr.so" on page 519.

Also see Chapter 15, "DMF SOAP Server" on page 497.

Licensing Commands

The following commands help you to manage DMF licenses:

Command Description

dmusage(8) Displays information about the capacity allowed by the
DMF licenses and the amount of data that DMF is
currently managing against those licenses.

dmflicense(8) Prints DMF license information.

Configuration Commands

The DMF configuration file (/etc/dmf/dmf.conf) contains configuration objects and
associated configuration parameters that control the way DMF operates. By changing
the values associated with these objects and parameters, you can control the behavior
of DMF. To modify the configuration file, you can use DMF manager. For information
about configuration, see:

• Chapter 4, "Installing and Configuring the DMF Environment" on page 123

• "Overview of the Installation and Configuration Steps" on page 123

• Chapter 5, "DMF Manager" on page 147

• Chapter 6, "DMF Configuration File" on page 211

• Chapter 7, "Parallel Data-Mover Option Configuration" on page 379

The following man pages are also related to the configuration file:

Man page Description

dmf.conf(5) Describes the DMF configuration objects and
parameters in detail.

007–5484–012 51

1: Introduction to DMF

dmconfig(8) Prints DMF configuration parameters to standard
output.

For detailed examples of configuring using COPAN cabinets, see:

• COPAN MAID for DMF Quick Start Guide

• SGI 400 VTL for DMF Quick Start Guide

DMF Daemon and Related Commands

The DMF daemon, dmfdaemon(8), communicates with the kernel through a device
driver and receives backup and recall requests from users through a socket. The
daemon activates the appropriate MSPs and LSs for file migration and recall,
maintaining communication with them through unnamed pipes. It also changes the
state of inodes as they pass through each phase of the migration and recall process.
In addition, the daemon maintains a database containing entries for every migrated
file on the system. Updates to database entries are logged in a journal file for
recovery. See Chapter 11, "The DMF Daemon" on page 409, for a detailed description
of the DMF daemon.

!
Caution: If used improperly, commands that make changes to the daemon database
can cause data to be lost.

The following administrator commands are related to dmfdaemon and the daemon
database:

Command Description

dmaudit(8) Reports discrepancies between filesystems and the
daemon database. This command is executed
automatically if you configure the run_audit.sh task.

dmcheck(8) Checks the DMF installation and configuration and
reports any problems.

dmdadm(8) Performs daemon database administrative functions,
such as viewing individual database records.

dmdbcheck(8) Checks the consistency of a database by validating the
location and key values associated with each record and
key in the data and key files (also an LS command). If
you configure the run_copy_database.sh task, this

52 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

command is executed automatically as part of the task.
The consistency check is completed before the DMF
databases are saved.

Note: See "Run Certain Commands Only on a Copy of
the DMF Databases" on page 109.

dmdbrecover(8) Applies journal records to a restored backup copy of
the daemon database or LS database in order to create
an up-to-date sane database.

dmdidle(8) Causes files in pending requests to be flushed to
secondary storage, even if this means forcing only a
small amount of data to a volume.

dmdstat(8) Indicates to the caller the current status of dmfdaemon.

dmdstop(8) Causes dmfdaemon to shut down.

dmfdaemon(8) Starts the DMF daemon. The preferred method in a
non-HA environment is to use the following command:

dmfserver# service dmf start

For instructions about starting and stopping DMF and
the mounting service in an HA environment, see High
Availability Guide for SGI InfiniteStorage.

dmhdelete(8) Deletes expired daemon database entries and releases
corresponding MSP/VG space, resulting in logically less
active data. This command is executed automatically if
you configure the run_hard_deletes.sh task.

dmmigrate(8) Migrates regular files that match specified criteria in the
specified filesystems, leaving them as dual-state. This
utility is often used to migrate files before running
backups of a filesystem, hence minimizing the size of
the backup image. It may also be used in a DCM MSP
environment to force cache files to be copied to
secondary storage if necessary.

dmsnap(8) Copies the daemon database and the LS database to a
specified location. If you configure the

007–5484–012 53

1: Introduction to DMF

run_copy_database.sh task, this command is
executed automatically as part of the task.

Space Management Commands

The following commands are associated with automated space management, which
allows DMF to maintain a specified level of free space on a filesystem through
automatic file migration:

Command Description

dmfsfree(8) Attempts to bring the free space and migrated space of
a filesystem into compliance with configured values.

dmfsmon(8) Monitors the free space levels in filesystems configured
with automated space management enabled (auto) and
lets you maintain a specified level of free space.

dmscanfs(8) Scans DMF filesystems or DCM MSP caches and prints
status information to stdout.

See Chapter 10, "Automated Space Management" on page 403, for details.

LS Commands

The following commands manage the CAT and VOL records for the LS:

Command Description

dmcatadm(8) Provides maintenance and recovery services for the
CAT records in the LS database.

dmvoladm(8) Provides maintenance and recovery services for the
VOL records in the LS database, including the selection
of volumes for merge operations.

Most data transfers to and from secondary storage are performed by components
internal to the LS. However, the following commands can read LS volumes directly:

Command Description

dmatread(8) Copies data directly from LS volumes to disk.

dmatsnf(8) Audits and verifies the format of LS volumes.

54 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The following commands check for inconsistencies in the LS database:

Command Description

dmatvfy(8) Verifies the contents of the LS database against the
daemon database. This command is executed
automatically if you configure the run_audit.sh task.

dmdbcheck(8) Checks the consistency of a database by validating the
location and key values associated with each record
and key in the data and key files.

Disk MSP Command

The following command supports the disk MSP:

Command Description

dmdskvfy(8) Verifies disk MSP file copies against the daemon
database.

DCM MSP Commands

The following commands support the DCM MSP:

Command Description

dmdskfree(8) Manages file space within the disk cache and as needed
migrates files to a lower tier and/or removes them from
the disk cache.

dmdskvfy(8) Verifies disk MSP file copies against the daemon
database.

007–5484–012 55

1: Introduction to DMF

Other Commands

The following commands are also available:

Command Description

dmclripc(8) Frees system interprocess communication (IPC)
resources and token files used by dmlockmgr and its
clients when abnormal termination prevents orderly
exit processing.

dmcollect(8) Collects relevant details for problem analysis when
DMF is not functioning properly. You should run this
command before submitting a bug report to SGI
Support, should this ever be necessary.

dmcopan(8) Provides detail about a COPAN MAID volume serial
number (VSN) and its associated metadata.

dmdate(8) Performs calculations on dates for administrative
support scripts.

dmdump(8) Creates a text copy of an inactive database file or a text
copy of an inactive complete daemon database.

Note: See "Run Certain Commands Only on a Copy of
the DMF Databases" on page 109.

dmdumpj(8) Creates a text copy of DMF journal transactions.

dmfill(8) Recalls migrated files to fill a percentage of a filesystem.
This command is mainly used in conjunction with
backup and restore commands to return a corrupted
filesystem to a previously known valid state.

dmlockmgr(8) Invokes the database lock manager. The lock manager
is an independent process that communicates with all
applications that use the DMF databases, mediates
record lock requests, and facilitates the automatic
transaction recovery mechanism.

dmmove(8) Moves copies of a migrated file’s data to the specified
MSPs/VGs.

56 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dmmvtree(8) Moves files from one DMF-managed filesystem to
another without requiring that file data be recalled.

dmov_keyfile(8) Creates the file of DMF OpenVault keys, ensuring that
the contents of the file are semantically correct and have
the correct file permissions. This command removes
any DMF keys in the file for the OpenVault server
system and adds new keys at the front of the file.

dmov_loadtapes(8) Scans a library for volumes not imported into the
OpenVault database and allows the user to select a
portion of them to be used by a VG. The selected
volumes are imported into the OpenVault database,
assigned to the DMF application, and added to the LS
database. This command can perform the equivalent
actions for the filesystem backup scripts; just use the
name of the associated task group instead of the name
of a VG.

dmov_makecarts(8) Makes the volumes in one or more LS databases
accessible through OpenVault by importing into the
OpenVault database any volumes unknown to it and by
registering all volumes to the DMF application not yet
so assigned. This command can perform the equivalent
actions for the filesystem backup scripts; just use the
name of the associated task group instead of the name
of a VG.

dmselect(8) Selects migrated files based on given criteria. The
output of this command can be used as input to
dmmove(8).

dmsort(8) Sorts files of blocked records.

dmstat(8) Displays a variety of status information about DMF,
including details about the requests currently being
processed by the daemon, statistics about requests that
have been processed since the daemon last started, and
details of current drive usage by VGs.

dmtapestat(8) Displays drive metrics for the entire DMF installation.
You execute this command as root from the DMF
server.

007–5484–012 57

1: Introduction to DMF

dmunput(8) Removes files from DMF management by first recalling
them to dual-state if necessary and then converting
them to regular files, reversing the effect of a dmput
command. You execute this command as root.

dmxfsrestore(8) Calls the xfsrestore(8) command to restore files
backed up to volumes that were produced by DMF
administrative maintenance scripts.

tsreport(8)

Displays information about tape drive errors, alerts,
and usage when the ts tape driver is used. The
tsreport command is included in the apd RPM.

58 007–5484–012

Chapter 2

DMF Licensing

This chapter discusses the following:

• "DMF License Types" on page 59

• "Anticipating Your DMF Data Capacity Requirements" on page 61

• "Displaying Current DMF Data Capacity Use" on page 63

• "Parallel Data-Mover Option and Licensing" on page 64

• "Mounting Services and Licensing" on page 65

• "Gathering the Host Information" on page 65

• "Obtaining the License Keys" on page 65

• "Installing the License Keys" on page 66

• "Verifying the License Keys" on page 66

• "For More Information About Licensing" on page 69

DMF License Types
DMF uses software licensing based on SGI License Keys (LK). A production DMF
environment requires that the following licenses are installed on the DMF server
node: 1

• DMF server capability license.

• One or more DMF Parallel Data-Mover Option capability licenses (if applicable)

• One or more cumulative DMF data-capacity licenses (base and optional incremental),
available in different amounts, as shown in Table 2-1.

1 To support training and functional demonstrations, DMF will run on a server with no license at all up to a maximum
stored capacity of 1 TB without TMF or OpenVault.

007–5484–012 59

2: DMF Licensing

At least one base data-capacity license is required. If multiple base data-capacity
licenses are installed, they are additive.

In order to install an incremental data-capacity license, the total data capacity
amount already installed (base plus incremental) must equal or exceed the amount
of the new incremental amount. For example, to install a new 100TB+ incremental
license, the environment must already be licensed for a total of 100 TB, which could
be accomplished by several licensing methods, including any of the following:

– One 100TB base license

– One 10TB base license plus nine 10TB+ incremental licenses

– Two 10TB base licenses plus eight 10TB+ incremental licenses

Note: Some combinations are more cost-effective than others. For details about
acquiring the proper set of licenses for your site, contact SGI Support.

Table 2-1 Data-Capacity License Amounts

Base Data-Capacity Amount Incremental Data-Capacity Amount

10TB 10TB+

100TB 100TB+

1PB 1PB+

10PB

In a high-availability (HA) environment, the passive DMF server requires the
following licenses: a DMF HA capability license and a set of Parallel Data-Mover
Option licenses and DMF data-capacity licenses equivalent to those on the active
DMF server. For example, an HA DMF environment using two parallel data-mover
nodes and an amount of DMF-managed data that requires two data-capacity licenses
would require the following, as shown in Figure 2-1:

• Active DMF server:

– 1 DMF server capability license

– 2 Parallel Data mover Option capability licenses

60 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

– 2 DMF data-capacity licenses

• Passive DMF server:

– 1 DMF HA capability license

– 2 Parallel Data-Mover Option capability licenses

– 2 DMF data-capacity licenses

Active DMF server

DMF server capability

PDMO capability
PDMO capability

DMF data capacity
DMF data capacity

Passive DMF server

DMF HA capability

PDMO capability
PDMO capability

DMF data capacity
DMF data capacity

Parallel data mover node 1

(no DMF license installed)

Parallel data mover node 2

(no DMF license installed)

DMF client

(no DMF license installed)

Figure 2-1 DMF Licenses

Anticipating Your DMF Data Capacity Requirements
You must install sufficient data-capacity licenses to cover all of the copies that you
want to migrate to secondary storage using any of the following:

• Disk cache manager (DCM) media-specific process (MSP)

• Disk MSP

• Volume group (VG) in a library server (LS)

007–5484–012 61

2: DMF Licensing

Note: Data migrated by an FTP MSP does not count towards the DMF data-capacity
license.

The amount of data that resides in the online DMF-managed filesystem is not
included in the calculation. When files are dual-state (where the data resides both on
online disk and on secondary storage), only the data that has been migrated to
secondary storage counts towards the license.

For example, suppose you have 20 TB of data on the DMF-managed filesystem that
you want to migrate:

• If you want to have three copies of the data (stored offline in VGs vg1 and vg2 of
LS ls1 and in disk MSP msp1), you will need a data-capacity license that will
cover at least 60 TB of data (20 TB x 3 copies = 60 TB).

• If you were to make a fourth copy using an FTP MSP ftp1, you would still only
need to cover 60 TB of data because the amount managed by the FTP MSP is not
charged against the license.

Figure 2-2 describes the situation where four copies of the data are made (10 TB are
offline and 10 TB are dual-state), and 2 TB is never to be migrated, according to the
site’s policies.

62 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Copy 4 in ftp1
20 TB

(no capacity
license needed)

Copy 3 in msp1
20 TB

Copy 2 in vg2
20 TB

Copy 1 in vg1
20 TB

20 TB x 3 = 60-TB capacity license needed
Online
10 TB
online
(dual state)

and 2 TB
never migrated

Primary Filesystem Secondary Storage

(no capacity
license needed)

Figure 2-2 Data that Counts Towards the Capacity License

For details about acquiring the proper set of licenses for your site, contact SGI Support.

Displaying Current DMF Data Capacity Use
The dmusage(8) command shows the managed capacity allowed by the DMF

licenses that are installed on the DMF server and compares that capacity limit to the
amount of migrated data that DMF is currently managing in any DCM MSPs, disk
MSPs, and LSs. (Data managed by an FTP MSP does not count towards the
data-capacity license and is therefore not displayed by dmusage.)

For example:

dmusage -v

Store Type Name Bytes

---------- ---- -----

Disk MSP dskmsp 126357504
Library Server ls 132702298976

Total bytes managed 132828656480

DMF license capacity 21100000000000000 (21100TB)

007–5484–012 63

2: DMF Licensing

Note: In the DCM and disk MSP calculation, if the STORE_DIRECTORY configuration
parameter defined for that MSP does not define the root directory of a filesystem, or
if other subdirectories of that filesystem are used by other users or processes to store
data, the amount of data that DMF is managing that is currently being charged to that
MSP may exceed the actual amount of data being managed by that MSP.

The DMF daemon compares the amount of data that DMF is currently managing
against the licensed capacity and takes action if the following thresholds are exceeded:

• At 95%, the daemon will send a warning alert once per day.

• At 100%, the daemon will send a critical alert once per day. DMF will continue to
function and will recall any data that has already been migrated, but further
migrations will not be allowed. The daemon will check once every 2 minutes to
see if the usage once again becomes legal (below capacity). This can be achieved
by either of the following:

– Deleting managed data

– Adding one or more capacity licenses in order to increase the cumulative
capacity total to the new desired limit.

Note: In order to install an incremental capacity license, the total capacity
amount already installed (base plus incremental) must equal or exceed the
amount of the new incremental amount. See "DMF License Types" on page 59.

The daemon will issue another alert when the usage once again becomes legal
(below capacity).

Parallel Data-Mover Option and Licensing
Each active parallel data-mover node requires a corresponding license on the DMF
server. DMF will allow as many DMF parallel data-mover nodes to become active at
one time as there are DMF parallel data mover licenses in the DMF server’s license
file. (However, a parallel data mover license is not required for the DMF server’s
integrated data mover functionality.) No license is installed on the parallel
data-mover node itself.

64 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Mounting Services and Licensing
Use of the TMF or OpenVault mounting service requires DMF licenses.

Gathering the Host Information
When you order DMF, you will receive entitlement IDs for the licenses you
purchased. You must submit the system host ID, host name, and entitlement IDs
when requesting your permanent DMF license keys.

To obtain the host information for a server, view the Licenses panel in DMF Manager.
See "Managing Licenses and Data Capacity with DMF Manager" on page 159.

You could also execute the following command:

/usr/sbin/lk_hostid

For example, the following shows that the serial number is 000423d5fd92 and the
license ID is 23d5fd92:

/usr/sbin/lk_hostid

000423d5fd92 23d5fd92 socket=1 core=2 processor=2

#---
#The above is the default selected by lk_hostid. See below for additional

#hostid pairs.

#---

#Interface SN LI Driver (Comment)

#---
eth0 000423d5fd92 23d5fd92 e1000

eth1 000423d5fd93 23d5fd93 e1000

Obtaining the License Keys
To obtain your DMF license keys, see information provided in your customer letter
and the following web page:

http://www.sgi.com/support/licensing

007–5484–012 65

2: DMF Licensing

Installing the License Keys
To install the license keys, copy them into the /etc/lk/keys.dat file or use the
Licenses panel in DMF Manager to add the licenses (see "Adding New Licenses" on
page 159).

Verifying the License Keys
You can verify your licenses in the following ways:

• "DMF Manager Licenses Panel" on page 66

• "dmflicense" on page 67

• "lk_verify" on page 68

DMF Manager Licenses Panel

You can view the Licenses panel in DMF Manager to determine the validity of the
licenses, as shown in Figure 2-3. You must log in as the Admin user to DMF Manger
in order to change licenses.

66 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 2-3 Licenses

For more information, see "Managing Licenses and Data Capacity with DMF
Manager" on page 159.

dmflicense

You can use the dmflicense(8) command to verify the license keys. To see more
output, use the -v option. For example:

dmflicense -v

File /etc/lk/keys.dat, line 6 is a valid DMF_SERVER license

007–5484–012 67

2: DMF Licensing

File /etc/lk/keys.dat, line 24 is a valid DMF_PDMO license
File /etc/lk/keys.dat, line 29 is a valid DMF_PDMO license

File /etc/lk/keys.dat, line 12 is a valid DMF_CAPACITY TB=100 license

File /etc/lk/keys.dat, line 18 is a valid DMF_CAPACITY TB=100+ license

Valid DMF license found.

DMF capacity is 200TB.

lk_verify

You can use the lk_verify(1) command with the -A option to verify LK licenses. To
see more output, use the -v option (you can use multiple times to display more
output). For example:

lk_verify -A -vvv

lk_check All All : total found=4

1 /etc/lk/keys.dat:004 product=DMF_SERVER, version=6.000, count=0, begDate=1360172384, \

expDate=0, licenseID=48bbb244, key=QPGc978utPAnG05MJPQ5l8sbjgSX3QE5, \

info=’DMF 6.X Server’, vendor=’Silicon Graphics International’, \

ref_id=’270506’

Verdict: SUCCESS. Nodelock. Uncounted.

Available since today.

No End Date.

Attribute 1 of 3 : info=DMF 6.X Server

Attribute 2 of 3 : vendor=Silicon Graphics International

Attribute 3 of 3 : ref_id=270506

2 /etc/lk/keys.dat:009 product=DMF_HA, version=6.000, count=0, begDate=1360172520, \

expDate=0, licenseID=48bbb244, key=CT7LtCI/C8vYc2JwS6k5BlYoeSVHDKsm, \

info=’DMF 6.X HA’,vendor=’Silicon Graphics International’, ref_id=’270507’

Verdict: SUCCESS. Nodelock. Uncounted.

Available since today.

No End Date.

Attribute 1 of 3 : info=DMF 6.X HA

Attribute 2 of 3 : vendor=Silicon Graphics International

Attribute 3 of 3 : ref_id=270507

68 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

3 /etc/lk/keys.dat:014 product=DMF_PDMO, version=6.000, count=0, begDate=1360172608, \

expDate=0, licenseID=48bbb244, key=C8goMD0VwCtdIa8XIsbw94gidnYs+zIC, \

info=’DMF 6.X PDMO 1’,attr=’NODE 1’, vendor=’Silicon Graphics International’, \

ref_id=’270508’

Verdict: SUCCESS. Nodelock. Uncounted.

Available since today.

No End Date.

Attribute 1 of 4 : info=DMF 6.X PDMO 1

Attribute 2 of 4 : attr=NODE 1

Attribute 3 of 4 : vendor=Silicon Graphics International

Attribute 4 of 4 : ref_id=270508

4 /etc/lk/keys.dat:020 product=DMF_CAPACITY, version=6.000, count=0, begDate=1360172697, \

expDate=0, licenseID=48bbb244, key=rn6Jiu3C2yZN8c0SNot5hq/1HSh6wuS9, \

info=’DMF 6.X 10TB Base’,attr=’TB=10’, \

vendor=’Silicon Graphics International’,ref_id=’270509’

Verdict: SUCCESS. Nodelock. Uncounted.

Available since today.

No End Date.

Attribute 1 of 4 : info=DMF 6.X 10TB Base

Attribute 2 of 4 : attr=TB=10

Attribute 3 of 4 : vendor=Silicon Graphics International

Attribute 4 of 4 : ref_id=270509

lk_check All All : total matched=4

For More Information About Licensing
To request software keys or information about software licensing, see the following
web page:

http://www.sgi.com/support/licensing

If you do not have access to the web, contact your local Customer Support Center.

007–5484–012 69

Chapter 3

DMF Best Practices

This chapter discusses the following:

• "Installation, Upgrade, and Downgrade Best Practices" on page 71

• "Configuration Best Practices" on page 76

• "Administrative Best Practices" on page 105

• "Best Practices for Optional Tasks" on page 120

Installation, Upgrade, and Downgrade Best Practices
This section discusses the following:

• "Use the Correct Mix of Software Releases" on page 71

• "Do Not Use YaST to Configure Network Services" on page 72

• "Upgrade Nodes in the Correct Order" on page 73

• "Take Appropriate Steps when Upgrading DMF" on page 73

• "Contact SGI Support to Downgrade After Using OpenVaultTM 4.0 or Later" on
page 76

Use the Correct Mix of Software Releases

In a production system, the active DMF server, the passive DMF server (in a
high-availability environment), and any DMF parallel data-mover nodes should run
the same versions of the following, as supported by a given InfiniteStorage Software
Platform (ISSP) release:

• Operating system

• DMF

• CXFS (in a system with parallel data-mover nodes)

For details, see the ISSP release notes.

007–5484–012 71

3: DMF Best Practices

To support upgrading without having to take down the whole environment, nodes
can temporarily run different releases during the upgrade process, as provided by the
CXFS rolling upgrade procedure.

!
Caution: You must upgrade all CXFS server-capable administration nodes before
upgrading any CXFS client-only nodes (including any parallel data-mover nodes,
which are CXFS client-only nodes). Client-only nodes can temporarily run an earlier
release than the server-capable administration nodes, during the upgrade process.
Client-only nodes can never run a later release than the server-capable administration
nodes.

Operating a cluster with client-only nodes running a mixture of older and newer
CXFS versions may result in a performance loss. Relocation to a server-capable
administration node that is running an older CXFS version is not supported.

Although CXFS client-only nodes (including DMF parallel data-mover nodes) that are
not upgraded might continue to operate without problems, new functionality may not
be enabled until all nodes are upgraded; SGI does not provide support for any
problems encountered on the nodes that are not upgraded.

For details, see the section about CXFS release versions and rolling upgrades in the
CXFS 7 Administrator Guide for SGI InfiniteStorage.

Do Not Use YaST to Configure Network Services

If you try to configure network services using YaST and you are using DHCP, YaST
will modify the /etc/hosts file to include the following entry, where hostname is
the name of your machine:

127.0.0.2 hostname hostname

The above line will prevent ov_admin(8) from working because there cannot be
multiple IP addresses defined for the DMF server hostname. You will see an error
such as the following:

The OpenVault server name "hostname" matches this host’s hostname,

but network packets for this hosts’s IP address:

127.0.0.2

are not being accepted by any installed ethernet card, so there appears
to be a problem with the configuration of /etc/hosts. Please correct

this problem before continuing.

72 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

If you are using OpenVault, you should do one of the following:

• Remove the 127.0.0.2 line from the /etc/hosts file prior to configuring
OpenVault

• Do not use YaST to configure network services

Upgrade Nodes in the Correct Order

You should upgrade nodes in the following order:

1. Passive DMF server (if using HA)

2. OpenVault server

3. Active DMF server

4. Parallel data-mover nodes (if used)

5. DMF clients

Take Appropriate Steps when Upgrading DMF

Note: If you are upgrading from DMF 3.9 or earlier, see the information about
upgrade caveats in the ISSP release note for more information.

To perform an upgrade, do the following:

1. Read the ISSP release note, DMF release note, and any late-breaking caveats on
Supportfolio. Pay particular attention to any installation and upgrade caveats.

2. Stop all applications that are writing data to the DMF-managed filesystems.

3. Save the established DMF and mounting service configurations to an external
storage medium.

007–5484–012 73

3: DMF Best Practices

4. Ensure that DMF is stopped. In an HA environment, see High Availability Guide
for SGI InfiniteStorage. In a non-HA environment, execute the following:

service dmf stop

!
Caution: For instructions about starting and stopping DMF and the mounting
service in an HA environment, see High Availability Guide for SGI InfiniteStorage.

5. Ensure that the applicable mounting service is stopped. In a non-HA
environment, execute the following:

• TMF:

service tmf stop

• OpenVault:

service openvault stop

6. If the DMF administrative directories are in XFS filesystems, make a copy of the
fstab(5) file. For example:

cp /etc/fstab /myupgrade/fstab

7. Make a copy of the following:

a. The DMF configuration file dmf.conf. For example:

cp /etc/dmf/dmf.conf /myupgrade/dmf.conf

b. The mounting service configuration information:

• TMF: copy the tmf.config file to a safe location. For example:

cp /etc/tmf/tmf.config /myupgrade/tmf.config

• OpenVault (if the OpenVault configuration is set up on the boot partition
and not under a DMF administrative directory): create a compressed file
of the OpenVault configuration directory /var/opt/openvault. For
example:

cd /var/opt
/bin/tar cf /myupgrade/somefile.tar openvault/*

74 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

/usr/bin/compress /myupgrade/somefile.tar

c. Networking files for exports(5), auto.master(5), and resolve.conf(5).
For example:

cp /etc/exports /myupgrade/exports

cp /etc/auto.master /myupgrade/auto.master

cp /etc/resolv.conf /myupgrade/resolv.conf

8. Upgrade the operating system software to the level supported by the version of
DMF that you are upgrading to, paying particular attention to any installation
and upgrade caveats in the release notes and any late-breaking caveats on
Supportfolio.

9. If your DMF administrative directories are in XFS filesystems, do the following:

Note: To avoid copying the fstab information from a previous partition, do not
copy the saved /myupgrade/fstab file to the new /etc directory in the
upgraded system.

a. Use the cat(1) command to view the previous fstab file:

cat /myupgrade/fstab

The following is an example of how DMF administrative directories could be
set up within /etc/fstab:

/dev/lxvm/home /dmf/home xfs defaults 0 0

/dev/lxvm/journals /dmf/journals xfs defaults 0 0

/dev/lxvm/move /move_fs xfs dmi,mtpt=/move_fs 0 0

/dev/lxvm/spool /dmf/spool xfs defaults 0 0

/dev/lxvm/cache /dmf/cache xfs dmi,mtpt=/dmf/cache 0 0
/dev/lxvm/tmp /dmf/tmp xfs defaults 0 0

/dev/lxvm/dmfusr1 /dmfusr1 xfs dmi,mtpt=/dmfusr1 0 0

/dev/lxvm/dmfusr3 /dmfusr3 xfs dmi,mtpt=/dmfusr3 0 0

b. Verify the existence of the matching XFS devices on the upgraded system by
using the ls(1) command:

ls -al /dev/lxvm*

007–5484–012 75

3: DMF Best Practices

c. Copy and paste the DMF administrative directory entry lines (those that
contain /dmf/directoryname) from the copy of the fstab file
(/myupgrade/fstab) into the new /etc/fstab for the upgraded system.

10. Reestablish the files and directories copied in step 7 above to their normal
locations on the upgrade system. For example:

cp /myupgrade/dmf.conf /etc/dmf/dmf.conf

cp /myupgrade/exports /etc/exports

cp /myupgrade/auto.master /etc/auto.master

cp /myupgrade/resolv.conf /etc/resolv.conf

If TMF, also:

cp /myupgrade/tmf.config /etc/tmf/tmf.config

If OpenVault (and if the OpenVault configuration is set up on the boot partition
and not under a DMF administrative directory), also do the following, for
example:

cd /var/opt

/bin/tar xf /myupgrade/somefile.tar.Z

11. Follow upgrade instructions in the ISSP release note to update the DMF and
mounting service software.

12. Run the dmcheck(8) command, which will identify any issues with using your
existing DMF configuration file with the upgraded software.

Contact SGI Support to Downgrade After Using OpenVault TM 4.0 or Later

If you are running OpenVault and want to downgrade after using OpenVault 4.0 or
later, you must contact SGI support for assistance.

Configuration Best Practices
This section discusses the following:

• "Follow all DMF Requirements" on page 78

• "Use Supported Libraries and Tape Drives" on page 78

• "Use Sufficiently Fast Filesystems" on page 78

76 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "Configure Passwordless SSH" on page 79

• "Configure DMF Administrative Directories Appropriately" on page 79

• "Safely Make Changes to the DMF Configuration" on page 85

• "Use Inode-Resident Extended Attributes and 256–byte Inodes" on page 88

• "Limit Path Segment Extension Records" on page 88

• "Do Not Change Script Names" on page 88

• "Configure DMF Appropriately with CXFSTM" on page 89

• "Improve Drive Performance with an Appropriate VG Zone Size" on page 90

• "Add HBA Drivers to the initrd Image" on page 91

• "Set RECALL_NOTIFICATION_RATE to 0 if CXFS Range Tokens are Disabled" on
page 91

• "Set the xinetd tcpmux instances Parameter Appropriately" on page 92

• "Avoid Unintentional File Recall by Filesystem Browsers" on page 92

• "Configure Appropriately for SGI 400 VTL or COPAN MAID Shelves" on page 93

• "Use Migrate Groups Appropriately" on page 95

• "Use Fast-Mount Cache Appropriately" on page 97

• "Ensure that the Cache Copy is Recalled First" on page 99

• "Use a Task Group to Run dmmigrate Periodically" on page 99

• "Restrict the Size of the Alerts and Performance Records Databases" on page 101

• "Prevent Stalled-Recovery Timeout in a Non-HA Environment" on page 102

• "Use Appropriate Tape Barcodes" on page 102

• "Use dmarchive to Copy Unmanaged Archive File Data to Secondary Storage" on
page 102

• "Use an Appropriate Filesystem for a Disk MSP" on page 104

• "Use Corresponding Drive-Group Names in OpenVault and DMF" on page 104

• "Use a Private Network Interface in a Parallel Environment" on page 104

007–5484–012 77

3: DMF Best Practices

• "Modify Partial-State Capability with Care" on page 105

Follow all DMF Requirements

Ensure that you follow all of the requirements for DMF listed in "Requirements" on
page 41:

• "Server Node Requirements" on page 41

• "Parallel Data-Mover Node Requirements" on page 42

• "Mounting Service Requirements" on page 42

• "License Requirements" on page 42

• "DMAPI Requirement" on page 42

• "SAN Switch Zoning or Separate SAN Fabric Requirement" on page 43

• "DMF Manager Requirements" on page 43

• "DMF SOAP Requirements" on page 44

• "DMF Direct Archiving Requirements" on page 44

• "Fast-Mount Cache Requirements" on page 44

Use Supported Libraries and Tape Drives

For the list of supported TMF and OpenVault libraries and supported tape drives, see
the DMF release notes.

Use Sufficiently Fast Filesystems

A filesystem on which DMF operates must be fast-enough to permit efficient
streaming to/from all secondary storage media. This is particularly important for
tape drives, because slow I/O can lead to increased wear on the drive and cartridges
(due to excessive stopping and starting of the drive heads).

78 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Configure Passwordless SSH

If you are running DMF in an HA environment or using the Parallel Data-Mover
Option, you should configure passwordless secure shell (SSH) so that DMF can
properly gather, distribute, and display information. See "Passwordless SSH
Configuration for DMF" on page 133.

Configure DMF Administrative Directories Appropriately

This section discusses the following:

• "Overview of DMF Administrative Directories" on page 79

• "Sizing Guidelines" on page 81

• "mkfs and mount Parameters" on page 85

Overview of DMF Administrative Directories

The DMF server uses the DMF administrative directories to store its databases, log files,
journal files, and temporary files. You will place these directories on a
general-purpose RAID storage system.

Note: A DMF administrative directory must not be in a DMF-managed filesystem.

In a production system, SGI in most cases recommends that you restrict these
directories to DMF use and make them the mountpoint of a filesystem, in order to
limit the loss of data in the case of a filesystem failure.

You specify the location of these directories by using the parameters in the DMF
configuration file:

• Directories required to be dedicated to DMF use and to be a filesystem
mountpoint:

– (If used) MOVE_FS optionally specifies one or more scratch directories (such as
/move_fs) that are used by dmmove(8) to move files between media-specific
processes (MSPs) or volume groups (VGs). You must specify a value for
MOVE_FS if you intend to use the dmmove command. The best practice when
using MOVE_FS is for it to be dedicated to the dmmove function.

007–5484–012 79

3: DMF Best Practices

Note: You must mount MOVE_FS with the dmi,mtpt=/MOVE_FS option.

– (If used) STORE_DIRECTORY for a DCM MSP optionally specifies the directory
(such as /dmf/dcm_name_store) that is used to hold files for a DCM MSP
(there is one STORE_DIRECTORY parameter for each DCM MSP).

Note: You must mount STORE_DIRECTORY for a DCM MSP with the
dirsync option in order to ensure the integrity and consistency of
STORE_DIRECTORY with the DMF daemon database in the event of a system
crash.

• Directories recommended to be dedicated to DMF use and to be a filesystem
mountpoint:

– HOME_DIR specifies the base pathname (such as /dmf/home) for directories in
which the DMF daemon database, library server (LS) database, and related files
reside.

– SPOOL_DIR specifies the base pathname (such as /dmf/spool) for directories
in which DMF log files are kept.

– JOURNAL_DIR specifies the base pathname (such as /dmf/journals) for
directories in which the journal files for the daemon database and LS database
will be written.

– TMP_DIR specifies the base pathname (such as /dmf/tmp) for directories in
which DMF puts temporary files for its own internal use.

– (If used) CACHE_DIR specifies the directory (such as /dmf/cache) in which the
VG stores chunks while merging them from sparse volumes.

– (If used) STORE_DIRECTORY for a disk MSP optionally specifies the directory
(such as /dmf/dskmsp_name_store) that is used to hold files for a disk MSP
(there is one STORE_DIRECTORY parameter for each disk MSP).

Note: You must mount STORE_DIRECTORY for a disk MSP with the dirsync
option in order to ensure the integrity and consistency of STORE_DIRECTORY
with the DMF daemon database in the event of a system crash.

80 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

– (If used) DUMP_DESTINATION specifies the directory (such as /dmf/backups)
in which to store backups (only applies for disk-based backups).

• Additional directories:

– DATABASE_COPIES specifies one or more directories (such as
/dir1/database_copies and /dir2/database_copies) into which the
run_copy_databases.sh task will place a copy of the DMF databases.

To provide the best chance for database recovery, HOME_DIR must be on a different
physical device from JOURNAL_DIR. When using the Parallel Data-Mover Option,
the following must be CXFS filesystems or be in CXFS filesystems:

HOME_DIR
SPOOL_DIR
TMP_DIR
MOVE_FS
CACHE_DIR (if used)
STORE_DIRECTORY in a DCM MSP

Note: By default, the DMF daemon requires that a DMF administrative directory does
not reside in the root filesystem. For testing or demonstration purposes, you can
override this requirement for all but MOVE_FS and a DCM MSP
STORE_DIRECTORY by using the ADMDIR_IN_ROOTFS parameter; however, SGI
does not recommend overriding the requirement for a production system. See "base
Object Parameters" on page 217.

Sizing Guidelines

Note: You must evaluate these guidelines in terms of the specifics at your site,
rounding up to allow margin for error.

The following sections provide guidelines for sizing the filesystems that DMF requires:

• "HOME_DIR Size" on page 83

• "JOURNAL_DIR Size" on page 84

• "SPOOL_DIR Size" on page 84

• "TMP_DIR Size" on page 84

007–5484–012 81

3: DMF Best Practices

• "MOVE_FS Performance and Size" on page 84

82 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

In general, these filesystems should be sized in terms of gigabytes. Table 3-1 shows
the minimum recommended sizes.

Table 3-1 Minimum Sizes for DMF Directories

Directory Minimum Recommended Size (GB)

HOME_DIR 500

JOURNAL_DIR 75

SPOOL_DIR 200

TMP_DIR 500

MOVE_FS Capacity of one new volume

For individual guidelines and requirements for each directory, see the specific
parameter descriptions in Chapter 6, "DMF Configuration File" on page 211.

See also "Safely Make Changes to the DMF Configuration" on page 85.

HOME_DIR Size

The HOME_DIR filesystem will require approximately the following:

• The daemon and LS databases require approximately 500 MB per 1 million
migrated files, per DMF copy. If you make two copies, they would require
approximately 1 GB (that is, 500 MB x 2).

• An alerts database of 1 MB can hold approximately 5,400 records.

• A performance records database of 1 MB can hold approximately 5,130 records

You can purge old records after specified period of time. See "Restrict the Size of the
Alerts and Performance Records Databases" on page 101.

Note: Other database information (such as the OpenVault server database in an HA
configuration) requires an insignificant amount of space in comparison.

007–5484–012 83

3: DMF Best Practices

JOURNAL_DIR Size

The JOURNAL_DIR filesystem will require approximately 500 MB per 1 million
database operations (such as migrate, recall, and hard delete). You can set the
JOURNAL_RETENTION parameter to purge old journals after a period of time. The
absolute minimum JOURNAL_RETENTION value should be the time since the last
successful backup of the DMF databases.

SPOOL_DIR Size

The SPOOL_DIR filesystem will require approximately 1 MB per 500 DMF requests.
You can set the LOG_RETENTION parameter to purge old logs after a period of time.

TMP_DIR Size

The TMP_DIR filesystem is used for various temporary storage needs for DMF, such
as the following:

• If you do not have a dedicated CACHE_DIR, cache merges will use TMP_DIR. The
libraryserver object’s CACHE_SPACE parameter controls how much space is
used for cache merges.

• If backups are being done to tape, a temporary snapshot of the DMF databases is
stored in TMP_DIR before being written to tape. (See HOME_DIR for database size.)

• The run_filesystem_scan.sh task places its output file in TMP_DIR by
default. This file is approximately 150 MB for every 1 million files contained in the
DMF-managed filesystems.

MOVE_FS Performance and Size

The MOVE_FS filesystem should have performance characteristics similar to the
primary DMF-managed filesystems because DMF will follow the same rules for drive
utilization as defined in the drive groups (DGs) and VGs (DRIVE_MAXIMUM and
MAX_PUT_CHILDREN) when moving large numbers of files. A MOVE_FS filesystem
with slower bandwidth than what DRIVE_MAXIMUM and MAX_PUT_CHILDREN are
tuned for may become overloaded with DMF requests. In extreme cases, DMF can
become backlogged on the MOVE_FS filesystem and delay the processing of user
requests.

The size of the MOVE_FS filesystem should be approximately the capacity of a data
cartridge, including compression, times the MAX_PUT_CHILDREN value.

84 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

For example:

500 GB native capacity * 1.6 compression * 3 drives = 2.4 TB

mkfs and mount Parameters

Tuning the XFS log is important for performance, especially on the MOVE_FS
filesystem (which will have heavy metadata activity from the quantity of small files
that pass through it).

SGI recommends the following options to tune the XFS log:

• mkfs.xfs options:

-i attr=2 -l version=2,sunit=512,size=128m

• mount options:

logbufs=8,logbsize=256k

By default, XFS creates inode numbers that occupy no more than 32 bits of
significance. You should not use the inode64 option for the MOVE_FS filesystem
because DMF places all files being moved in a single directory (such as
MOVE_FS/.dmfprivate/unmigdir), and inode64 will try to create all files in the
same filesystem allocation group, which may not be ideal. The default (equivalent to
inode32) will place each file in the next filesystem allocation group and spread the
work around the filesystem.

The defaults for the filesystem allocation group size and number are usually sufficient.

Also see the following:

• "Filesystem Mount Options" on page 127

• "Linux CXFS Clients Cannot Mount DMF-Managed Filesystems" on page 513

• The mount(8) and mkfs.xfs(8) man pages

Safely Make Changes to the DMF Configuration

This section discusses the following:

• "Make and Mount the Required Filesystems First" on page 86

• "Use Sample DMF Configuration Files" on page 86

007–5484–012 85

3: DMF Best Practices

• "Back Up the DMF Configuration" on page 87

• "Stop DMF Before Making Changes" on page 87

• "Always Validate Your Changes" on page 88

Make and Mount the Required Filesystems First

You should make and mount the filesystems required for the DMF administrative
directories before making configuration changes. If you try to apply configuration
changes without having the filesystems referred to in the configuration file in place,
you will get errors. See "Configure DMF Administrative Directories Appropriately"
on page 79

Use Sample DMF Configuration Files

DMF is shipped with sample configuration files in the following directory:

/usr/share/doc/dmf-release/info/sample

The sample files use a variety of MSPs and LSs for different purposes:

• dmf.conf.copan_maid (COPAN massive array of idle disks)

• dmf.conf.copan_vtl (SGI 400 virtual tape library)1

• dmf.conf.dsk (disk MSP)

• dmf.conf.dcm (disk cache manager MSP)

• dmf.conf.fmc (fast-mount cache, such as for COPAN MAID in conjunction with
a physical tape library)

• dmf.conf.ftp (FTP MSP)

• dmf.conf.ls (LS)

• dmf.conf.parallel (Parallel Data-Mover Option)

You can edit these files via a file editor such as vi(1) or DMF Manager (see "Setting
Up a New DMF Configuration File" on page 168). You should always validate your
changes; see "Always Validate Your Changes" on page 88.

1 For historic reasons, the SGI 400 VTL is sometimes referred to as COPAN in literals and the graphical user interfaces.

86 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

You can use the information in Chapter 6, "DMF Configuration File" on page 211, and
in the dmf.conf(5) man page to customize your configuration.

Back Up the DMF Configuration

After you have initially successfully configured DMF, make a backup copy of the
DMF configuration file (/etc/dmf/dmf.conf) so that you can return to it in case of
failure. If you are using DMF Manager, it will automatically make a time-stamped
backup for you.

If you have an existing configuration, you should ensure that a good backup copy of
the DMF configuration file exists before making any configuration changes.

Stop DMF Before Making Changes

It is safest to make changes to the DMF configuration while DMF is stopped. (For
instructions about starting and stopping DMF and the mounting service in an HA
environment, see High Availability Guide for SGI InfiniteStorage.) If you choose to make
changes while DMF is running, be very cautious.

Warning: Never change pathnames or server names in base object parameters or
add, delete, or change the order of migrategroup stanzas while DMF is running;
making changes of this type can result in data corruption or data loss.

Do not change the following parameters while DMF is running:

ADMDIR_IN_ROOTFS
CACHE_DIR
COPAN_VSNS
DRIVE_GROUPS
EXPORT_METRICS
GROUP_MEMBERS
LICENSE_FILE
LS_NAMES
MSP_NAMES
MULTIPLIER
OV_KEY_FILE
OV_SERVER
ROTATION_STRATEGY
SERVER_NAME
SERVICES_PORT

007–5484–012 87

3: DMF Best Practices

SPOOL_DIR
TMP_DIR
VOLUME_GROUPS

Before making changes to any parameter, see the information about it in Chapter 6,
"DMF Configuration File" on page 211.

Always Validate Your Changes

SGI recommends that you always verify any configuration changes you make:

• When using DMF Manager to make changes, select the following to verify the
changes:

Overview
> Configuration ...

> Validate Current Configuration

• When using a file editing tool such as vi to directly edit the DMF configuration
file, you should run the dmcheck(8) command after making changes.

Use Inode-Resident Extended Attributes and 256–byte Inodes

SGI recommends that you configure your filesystems so that the extended attribute
used by DMF is always inode-resident and that you use 256–byte inodes and the
default attr2 (-i attr=2 option to mkfs.xfs) when possible. See "Inode Size
Configuration" on page 128.

Limit Path Segment Extension Records

You should configure your database record length to minimize the number of records
that require a path segment extension record. See "Daemon Database Record Length"
on page 130.

Do Not Change Script Names

Do not change the pathnames or script names of the DMF administrative tasks. For
more information, see "Automated Maintenance Tasks" on page 132.

88 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Configure DMF Appropriately with CXFS TM

DMF must make all of its DMAPI interface calls through the CXFS active metadata
server. The CXFS client nodes do not provide a DMAPI interface to CXFS mounted
filesystems. A CXFS client routes all of its communication to DMF through the
metadata server. This generally requires that DMF run on the CXFS metadata server.
If DMF is managing a CXFS filesystem, DMF will ensure that the filesystem’s CXFS
metadata server is the DMF server and will use metadata server relocation if
necessary to achieve that configuration.

Note: DMF data-mover processes must run only on the DMF server node and any
parallel data-mover nodes. Do not run data-mover processes on CXFS standby
metadata server nodes.

To use DMF with CXFS, do the following:

• For server-capable administration nodes, install the sgi-dmapi and
sgi-xfsprogs packages from the ISSP release. These are part of the software for
the DMF server and DMF parallel data mover. The DMF software will
automatically enable DMAPI, which is required to use the dmi mount option.

For CXFS client-only nodes, no additional software is required.

• When using the Parallel Data-Mover Option, install the software for the DMF
parallel data mover, which includes the required underlying CXFS client-only
software. (From the CXFS cluster point of view, the DMF parallel data-mover
node is a CXFS client-only node but one that is dedicated to DMF data mover
activities.) For more information, see:

– "Parallel Data-Mover Option Overview" on page 31

– "Parallel Data-Mover Option Configuration Procedure" on page 379

• Use the dmi option when mounting a filesystem to be managed.

• Start DMF on the CXFS active metadata server for each filesystem to be managed.

See also "SAN Switch Zoning or Separate SAN Fabric Requirement" on page 43.

For more information about CXFS, see:

• CXFS 7 Administrator Guide for SGI InfiniteStorage

• CXFS 7 Client-Only Guide for SGI InfiniteStorage

007–5484–012 89

3: DMF Best Practices

Improve Drive Performance with an Appropriate VG Zone Size

When using an LS, it is critical that the zone size you specify for the VG (the
ZONE_SIZE parameter) is appropriate for the media speed and average data
compression rate at your site. A value that is too small can cause poor write
performance because a volume mark is written at the end of each zone; a value that is
too large can reduce parallelism when migrating files.

The optimal zone size depends upon several site-specific factors. Answering the
following questions will help you determine the correct zone size for your site:

• How long does it take the drive to flush data to media?

Note: Different drive types have different bandwidths, and the same drive type
can have different bandwidths with different cartridge types.

• How fast can the drive write data?

• What is the average data compression rate? If your data compresses well, the zone
size should be larger; if the data does not compress well, the zone size should be
smaller.

A good zone size is one where the time spent flushing data to media is not a
significant amount of the total I/O time. For increased write performance, choose a
zone size such that the average time to write a volume mark for the drive type is a
small percentage (such as 5%) of the time to write a zone at the drive’s native rate.

For example, suppose the following:

• The drive requires 2 seconds to flush the data to tape

• The drive writes data at 120 MB/s

• The average compression rate is 2 to 1

In order to waste no more than 5% of the full bandwidth of the drive flushing data to
media, the ZONE_SIZE value in this case must be large enough to hold 40 seconds
(2 seconds / 0.05) worth of data in each zone. Because the drive writes at about
120 MB/s, then 40*120=4800 MB of data that can be written in 40 seconds. Not
considering compression, a good preliminary ZONE_SIZE value is therefore 5g (5 GB).

Because the example site has a compression rate of 2 to 1, the preliminary
ZONE_SIZE value should be multiplied by 2; the resulting ZONE_SIZE value should

90 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

be 10g (10 GB), which is how much data will get written in 40 seconds while still
keeping the flush waste within 5% of the total bandwidth.

Note: The zone size influences the required cache space. The value for the
CACHE_SPACE parameter should be at least twice the value used for ZONE_SIZE.
Increasing the ZONE_SIZE value without also increasing CACHE_SPACE could cause
volume merging to become inefficient. Volume merges could have problems if the
ZONE_SIZE value is larger than the CACHE_SPACE value. For more information
about CACHE_SPACE, see "libraryserver Object Parameters" on page 303.

For more information about zone size, see the following:

• ZONE_SIZE parameter in "volumegroup Object" on page 318

• "Media Concepts" on page 427

• Appendix G, "Case Study: Impact of Zone Size on Tape Performance" on page 607

Add HBA Drivers to the initrd Image

The ts tape drive reads HBA information from sysfs just after being loaded in
order to discover controller information. To ensure that this information is available
when ts loads, SGI recommends that you add the HBA drivers to the initrd image
so that they load early in the boot process. Do the following:

1. Add the HBA driver to the INITRD_MODULES line in the
/etc/sysconfig/kernel file. For example, to add the driver QLogic
QLA2200, you would include qla2xxx in the INITRD_MODULES line.

2. Create the initial RAM disk image so that it contains your modification:

mkinitrd

3. Reboot the DMF server.

Set RECALL_NOTIFICATION_RATE to 0 if CXFS Range Tokens are Disabled

In a CXFS environment if CXFS range tokens are disabled (which is the default), you
should specify a value of 0 for the DMF configuration parameter
RECALL_NOTIFICATION_RATE in order to avoid token thrashing, which can result in
poor I/O transfer rates.

007–5484–012 91

3: DMF Best Practices

Using 0 can slightly improve recall performance in cases where users do not need to
access files while they are coming online. (In this case, dmatrc does not have to stop
and do an fsync every 30 seconds during the recall.) The optimum setting of
RECALL_NOTIFICATION_RATE is dependent on many factors and must be
determined by trial and error. See "dmdaemon Object" on page 228.

Set the xinetd tcpmux instances Parameter Appropriately

You must use a sufficient setting for the tcpmux instances parameter in either the
/etc/xinetd.conf file or the /etc/xinetd.d/tcpmux file.

Each remote DMF client command will consume one instance of a tcpmux service
while it is active. For that reason, SGI recommends that you add the instances
parameter to /etc/xinetd.d/tcpmux rather than increasing the instances
parameter in /etc/xinetd.conf.

Determining the correct setting of this parameter depends on what the maximum
number of simultaneous remote DMF user commands might be combined with any
other xinetd tcpmux services that will be used. See the xinetd(8) man page for
more information on setting the parameter.

Additionally, it is important that the tcpmux service is not disabled. If the following
configuration line exists in /etc/xinetd.d/tcpmux, remove it:

disable = yes

Avoid Unintentional File Recall by Filesystem Browsers

Graphical user interface (GUI) filesystem browsers (such as Windows Explorer,
GNOMETM Nautilus / File Manager) can unintentionally cause files to be recalled
because they read the first few blocks of the file in order to show the correct icon in
the view screen:

• Windows Explorer: if you follow the directions in "Modify Settings If Providing
File Access via Samba" on page 111, you can avoid this problem for Windows
Explorer.

• Nautilus and other filesystem browsers: these filesystem browsers may have
settings to prevent them from reading the file for thumbnail icons, but testing is
still required because the browser may still read the file for other reasons. Also,
file browser behavior may change in future releases, so you must retest after
upgrading. You should do one of the following for these filesystem browsers:

92 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

– Do not use GUI filesystem browsers on a DMF-managed filesystem.

– Set the DMF policy to keep the number of kilobytes permanently on disk
required by your filesystem browser, to allow the reading activity to happen
without recalling files. Do the following:

1. Determine how many kilobytes are read by your filesystem browser.

2. Verify that the partial-files feature is enabled (see PARTIAL_STATE_FILES
in "dmdaemon Object" on page 228).

3. Use the ranges clause to keep the required number of bytes of each file
online. See:

• "ranges Clause" on page 295

• "Automated Space-Management Example" on page 297, and
"Automated Space-Management Using Ranges Example" on page 298

4. Repeat the above steps as needed after upgrading the filesystem browser.

See also:

• "Partial-State Files" on page 5

• Appendix F, "Considerations for Partial-State Files" on page 605

Configure Appropriately for SGI 400 VTL or COPAN MAID Shelves

You can use SGI 400 VTL shelves COPAN MAID shelves either as permanent storage
or as a fast-mount cache. For initial configuration, see:

• COPAN MAID for DMF Quick Start Guide

• SGI 400 VTL for DMF Quick Start Guide

To use DMF with SGI 400 VTL shelves or COPAN shelves, do the following:

• Within reason, create smaller volumes, so that hard-deletes will free-up volumes
without requiring merges. In general, a larger number of smaller-sized volumes
will result in fewer partially-full volumes in the DMF database (and therefore
more room for new data). This can potentially provide faster recalls of migrated
data because there are more volumes available for reading and writing (you
cannot simultaneously write to and read from the same volume). However, you
do not want to use volumes that are unreasonably small, as that might cause

007–5484–012 93

3: DMF Best Practices

excessive mounts and unmounts. For size recommendations, see the Quick Start
for your system.

• Set the volume size, so that you can use the dmcapacity(8) command or its
display in DMF Manager to accurately estimate the remaining capacity of the
volumes on the COPAN shelves. See "Set Volume Size If You Want to Use
Capacity Features" on page 113.

• Use the sample DMF configuration files:

– For permanent storage, use dmf.conf.copan_maid or
dmf.conf.copan_vtl.

– For fast-mount cache, use dmf.conf.fmc. See "Use Fast-Mount Cache
Appropriately" on page 97.

Each sample file does the following:

– Uses one OpenVault library control program (LCP) per shelf

– Uses a shelf with a single DG and a single VG.

– Uses one or more migrate groups to combine multiple COPAN shelves into a
single destination for a migration request

• Set the following parameters, which apply particularly to COPAN shelves,
appropriately according to the information in Chapter 6, "DMF Configuration File"
on page 211:

COPAN_VSNS
MAX_PUT_CHILDREN
RESERVED_VOLUMES
ZONE_SIZE

Note: For COPAN shelves, a larger number for MAX_PUT_CHILDREN may provide
more total write bandwidth, but the bandwidth increases will diminish rapidly
with additional children and all of the children will write more slowly. For
COPAN MAID, use a MAX_PUT_CHILDREN value in the range 2-6; for SGI 400
VTL, use a MAX_PUT_CHILDREN value in the range 2-4.

If creating backups via xfsdump to disk for COPAN MAID, also set the following
parameters appropriately:

94 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

COMPRESSION_TYPE
DUMP_COMPRESS
DUMP_CONCURRENCY
DUMP_DESTINATION
DUMP_MIRRORS

• For COPAN MAID, use one VG per shelf.

Use Migrate Groups Appropriately

If you use migrate groups (MGs), do the following:

• Do not specify overlapping MSPs, VGs, or MGs on the same MSP/VG selection
parameter. You must ensure that the statement expands to a set of
non-overlapping MSPs and VGs when all of the MG members are considered. See:

– "MSP/VG Selection Parameters for a DMF-Managed Filesystem" on page 286

– "VG Selection Parameters for a DCM MSP STORE_DIRECTORY" on page 291

• Never add, delete, or change the order or contents of migrategroup stanzas
while DMF is running.

• If you want to use a DCM or FTP MSP as a group member of an MG with a
sequential rotation strategy, it should be the last group member listed (because
DCM and FTP MSPs are never marked as full by DMF). See "migrategroup
Object" on page 331.

• Do not include an MSP or VG that uses the IMPORT_ONLY parameter (meaning
that the MSP/VG is used only for recalls) in a migrategroup stanza. The
dmcheck command will flag this situation as an error.

• If you specify a ROTATION_STRATEGY of SEQUENTIAL, all GROUP_MEMBERS
except the last should be able to report when they are full:

– For a disk MSP, you should specify FULL_THRESHOLD_BYTES.

– For a VG, you should specify a non-zero value for RESERVED_VOLUMES.

– Because a DCM or FTP MSP never reports that it is full, if used it must be the
last member in the GROUP_MEMBER list.

For more information, see:

007–5484–012 95

3: DMF Best Practices

– "Configure Appropriately for SGI 400 VTL or COPAN MAID Shelves" on page
93

– "volumegroup Object" on page 318

– "Disk msp Object" on page 356

96 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Use Fast-Mount Cache Appropriately

Using a fast-mount cache (such as COPAN MAID) in conjunction with other
permanent migration targets (such as VGs in a physical tape library) is appropriate if
your site has a high turnover of relevant data and therefore the most recently
migrated files are also the most likely to be recalled.

To use fast-mount cache, do the following:

• Define a fastmountcache object for each logically separate fast-mount cache. By
using multiple logical fast-mount caches, you can account for differences in the
following characteristics:

– The percentage of free volumes that must be available (minimum and target
values)

– File retention policies

– Physical library residency

• Set the CACHE_MEMBERS parameter to name one or more migrategroup and
volumegroup objects that constitute the fast-mount cache. The type of object you
name will control what DMF considers when determining whether the
free-volume threshold has been reached and the number of volumes to therefore
be freed (see FREE_VOLUME_MINIMUM and FREE_VOLUME_TARGET below):

– If you name a migrategroup object, DMF will consider the total number of
volumes that constitute that MG

– If you name a volumegroup object, DMF will consider only the number of
volumes that constitute that VG

• Set the following volumegroup object parameters:

– Set RESERVED_VOLUMES:

• 0 (the default) for a VG that is an independent member of a fast-mount
cache (that is, the VG is listed in CACHE_MEMBERS)

• 1 for every VG that is part of an MG that is a member of a fast-mount
cache (that is, the MG is listed in CACHE_MEMBERS)

– Set MERGE_THRESHOLD to 0 for any VG that is part of a fast-mount cache
(whether it is the MG or the VG that is listed in CACHE_MEMBERS)

007–5484–012 97

3: DMF Best Practices

– Do not assign an ALLOCATION_GROUP parameter to any VG that is part of a
fast-mount cache (whether it is the MG or the VG that is listed in
CACHE_MEMBERS)

• Ensure that the fast-mount cache is the first target chosen. See "Ensure that the
Cache Copy is Recalled First" on page 99.

• Define two other VGs/MSPs (such as on physical tape) as permanent storage
locations into which file data is copied at the time of initial migration, along with
the fast-mount cache location. These VGs and MSPs must not be on a DCM MSP
or on another fast-mount cache.

Note: One other VG/MSP is the minimum requirement, but SGI recommends two
so that the recommended two migrated copies will remain after the copy in the
fast-mount cache has been deleted.

• Do not schedule merging tasks for the volumegroup or migrategroup objects
that represent the fast-mount cache.

• If two separate fast-mount caches are configured, do not configure any policies
that would result in a file being migrated to more than one fast-mount cache.

• Define a taskgroup object for the fast-mount cache with a RUN_TASK object for
the run_fmc_free.sh script and the following parameters:

– Required to free the volume when full:

FREE_VOLUME_MINIMUM
FREE_VOLUME_TARGET

Note: Because the volumes can be freed immediately, normally you want to set
the above to relatively low values. You must set FREE_VOLUME_MINIMUM so
that it is less than FREE_VOLUME_TARGET.

– Optional to ensure that recently accessed files are copied to another volume in
the fast-mount cache before the original volume is emptied (which can result in
lower performance):

FILE_RETENTION_DAYS

98 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

– Optional to minimize the competition for disk space by the MOVE_FS scratch
filesystem when using FILE_RETENTION_DAYS:

FMC_MOVEFS

See:

• "dmdaemon Object Parameters" on page 228

• "taskgroup Object Parameters" on page 245

• "taskgroup Object Example for Fast-Mount Cache Tasks" on page 264

• "drivegroup Object Parameters" on page 306

• "volumegroup Object" on page 318

• "LS for Fast-Mount Cache" on page 343

Ensure that the Cache Copy is Recalled First

The fast-mount cache and DCM MSP copies must be used for recall before any other
copy in order to take advantage of their faster recall characteristics. To achieve this,
you must correctly specify the order of parameter values in the DMF configuration
file. Do the following:

• List any DCM MSP names first for the LS_NAMES parameter

• List any fast-mount cache LS, DG, and VG names first for the LS_NAMES,
DRIVE_GROUPS, and VOLUME_GROUPS parameters, respectively

For more information, see Chapter 6, "DMF Configuration File" on page 211.

Use a Task Group to Run dmmigrate Periodically

Sites whose workflow involves ingesting many files throughout the day in an
unpredicatable pattern may find that relying on dmfsfree(8) alone to migrate these
files in insufficient. There may be many files that require migration just prior to
running the daily xfsdump(8) task, and there may be many new files that require
migration.

To avoid these problems, you can use a taskgroup object that calls the
run_dmmigrate.sh script to run the dmmigrate(8) command on a regular basis
throughout the day to cut down on the amount of work needed prior to an xfsdump

007–5484–012 99

3: DMF Best Practices

run. The object that calls the task group determines the scope of the migration and
the location of the associated log messages

• If you reference the task from the dmdaemon object, dmmigrate will be run on all
filesystems defined with automatic space management enabled. The log messages
generated by the script will appear in the dmdlog file.

• If you reference the task from either a filesystem object or a DCM msp object,
dmmigrate will migrate data from that object only. Each object can reference the
same or different taskgroup objects. The log messages generated by the script will
appear in the autolog file if the task is called from a filesystem object or in
the appropriate msploģ file if called from a DCM msp object.

Note: If the same taskgroup is referenced by multiple objects, then there will be
separate dmmigrate commands running simultaneously for multiple objects. This
may result in an unwanted spike in migration requests sent to the daemon.

You can modify the operation of dmmigrate by using the following configuration
parameters in the taskgroup object to specify that it will be run with particular
dmmigrate command-line options:

DMMIGRATE_MINIMUM_AGE (-m minutes)
DMMIGRATE_TRICKLE (-t)
DMMIGRATE_VERBOSE (-v)
DMMIGRATE_WAIT (-w)

Note: When enabled, DMMIGRATE_TRICKLE (ON by default) only limits the number
of requests submitted at a time by an individual dmmigrate command. If you define
multiple taskgroup objects containing the run_dmmigrate.sh script that are
scheduled to run with overlapping times, it is still possible to flood the DMF daemon
with migration requests even if DMMIGRATE_TRICKLE is enabled. Therefore, SGI
recommends that you to call the taskgroup object containing the
run_dmmigrate.sh script from the dmdaemon object in order to migrate files in all
DMF-managed filesystems with a single command.

For more information about these parameters, see:

• "taskgroup Object Parameters" on page 245

• "taskgroup Object Example for Periodic dmmigrate Tasks" on page 266

100 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• The dmmigrate(8) man page

Restrict the Size of the Alerts and Performance Records Databases

You should configure tasks to automatically purge old records from the alerts and
performance databases, based on the age of the records and the size of the databases:

• run_remove_alerts.sh removes records from the alerts database according to
the following parameters:

ALERT_RETENTION
MAX_ALERTDB_SIZE
REMALERT_PARAMS

• run_remove_perf.sh removes records from the performance database
according to the following parameters:

PERF_RETENTION
MAX_PERFDB_SIZE
REMPERF_PARAMS

Note: If you configure a task group to run the above scripts, then you must specify at
least one of the retention or database-size parameters. For example, if you specify a
task group containing run_remove_alerts.sh but you do not include either the
ALERT_RETENTION or the MAX_ALERTDB_SIZE parameter, you will get an error.

The sample configuration files provide task groups with recommended starting values:

• An age of 4 weeks for alert and performance records

• A maximum alerts database size of 100 MB

• A maximum performance database size of 256 MB

However, you should modify these values as necessary for your site. SGI
recommends that the alerts and performance databases each be less than 512 MB. For
approximate size requirements, see "HOME_DIR Size"

See:

• "Overview of the Tasks" on page 240

• "taskgroup Object Parameters" on page 245

007–5484–012 101

3: DMF Best Practices

• "taskgroup Object Example for Removing Alerts" on page 266

• "taskgroup Object Example for Removing Performance Records" on page 267

Prevent Stalled-Recovery Timeout in a Non-HA Environment

If you use CXFS and DMF in a non-HA environment, you must disable the
stalled-recovery timeout feature for all potential CXFS metadata servers of
DMF-managed filesystems. This will prevent a standby metadata server from
experiencing a recovery timeout while waiting for DMF to be manually started.

For example, add the following lines to the
/etc/modprobe.d/sgi-cxfs-xvm.conf file on all potential CXFS metadata
servers for the DMF-managed filesystems:

Disable recovery timeout feature to allow for

manual startup of DMF on the standby MDS during recovery

options sgi-cell cxfs_recovery_timeout_stalled=0

See the information about the cxfs_recovery_timeout_stalled system tunable
parameter in the CXFS 7 Administrator Guide for SGI InfiniteStorage.

Use Appropriate Tape Barcodes

A tape library must be set up to report 8–character barcodes to OpenVault: the first 6
characters provide a unique volume serial number (VSN) and the final 2 characters
indicate the media type (such as L5, which indicates LT05 media). Many libraries
report 8 characters by default, but some libraries may require modification; for details,
see the information about supported libraries and tape drives in the DMF release note.

Use dmarchive to Copy Unmanaged Archive File Data to Secondary Storage

For a POSIX filesystem that is not DMF-managed (such as Lustre filesystem) you can
manually copy files directly to secondary storage via DMF by using
the dmarchive(1) command. DMF copies the file data to secondary storage while
placing the metadata in a visible DMF-managed filesystem, as shown in Figure 3-1.

102 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Unmanaged
filesystem

(such as Lustre)

Secondary storage

Primary work area
file data

DMF filesystem
(copy or
retrieve)

dmarchive

metadata

Figure 3-1 Archiving Files from an Unmanaged Archive Filesystem to Secondary Storage

Figure 3-2 shows that the Lustre server is serving the /lustrefs/work filesystem,
which is mounted on both the DMF server and the DMF client, allowing you to run
the dmarchive command. The DMF server is managing the /dmf filesystem, which
is NFS-mounted at /mnt/dmfusr1 on the DMF client.

FC switch

Storage Infrastructure User Workload

DMF server
 /lustrefs/work
 /dmf

Lustre server
 /lustrefs/work

DMF client
 /lustrefs/work
 /mnt/dmfusr1

Online
high-performance
disk

Figure 3-2 DMF Direct Archiving

Without the dmarchive command, you would have to first manually copy the file to
a DMF-managed filesystem and then manually migrate the files. For example:

dmfclient% cp -a /lustrefs/work /mnt/dmfusr1

dmfclient% dmput /mnt/dmfusr1/work/*

007–5484–012 103

3: DMF Best Practices

However, using dmarchive on a DMF client, you can achieve the same results with a
single command:

dmfclient% dmarchive -a /lustrefs/work /mnt/dmfusr1

Using dmarchive, the file data will be copied directly to DMF secondary storage and
the file metadata will be copied to the specified DMF-managed filesystem (/dmf) .
The dmarchive command recursively copies the entire directory structure (similar to
cp -a), so the metadata will reside in /dmf/work.

On retrieval, the data is copied directly from DMF secondary storage to the
unmanaged archive filesystem. The dmarchive method is therefore more efficient
because it requires less time, bandwidth, and filesystem capacity.

Use an Appropriate Filesystem for a Disk MSP

If you use a disk MSP, the filesystem should be local for best performance and
reliability.

A remote filesystem mounted through NFS or a similar file-sharing protocol is
appropriate when testing or when transitioning to a DMF environment.

Use Corresponding Drive-Group Names in OpenVault and DMF

OpenVault and DMF each have a group of interchangeable devices known as a drive
group. Despite their use of the same terminology, a DMF drive group is different from
an OpenVault drive group, and need not use the same name. However, to avoid
confusion, SGI recommends that you use corresponding names for the DMF drive
group and the OpenVault drive group whenever possible.

Use a Private Network Interface in a Parallel Environment

To prevent the possibility of external attack when using the Parallel Data-Mover
Option, do the following:

• Set the INTERFACE and MERGE_INTERFACE parameters to a private network. See
"node Object Parameters" on page 232.

• Do not use port scanners on the private network.

104 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Modify Partial-State Capability with Care

The partial-state file capability is turned on by default and an appropriate default
maximum number of regions is calculated at filesystem mount time.

You can use the MAX_MANAGED_REGIONS parameter to configure the maximum
number of file regions on a per-filesystem basis, but you should use this parameter
cautiously. If set capriciously, filesystem scan times can increase greatly. For details
about using MAX_MANAGED_REGIONS, see "filesystem Object" on page 269.

To turn off the partial-state file feature, set the PARTIAL_STATE_FILES daemon
configuration parameter to off. See "dmdaemon Object Parameters" on page 228.

For additional details, see Appendix F, "Considerations for Partial-State Files" on page
605.

Administrative Best Practices
This section discusses the following:

• "Use a Time Synchronization Application" on page 106

• "Monitor DMF Daily" on page 107

• "Migrate Multiple Copies of a File" on page 107

• "Determine the Backup Requirements for Your Site" on page 107

• "Run Certain Commands Only on a Copy of the DMF Databases" on page 109

• "Be Aware of Differences in an HA Environment" on page 110

• "Start Site-Specific Configuration Parameters and Stanzas with “LOCAL_”" on page
110

• "Use TMF Tracing" on page 110

• "Run dmcollect If You Suspect a Problem" on page 110

• "Modify Settings If Providing File Access via Samba" on page 111

• "Disable Journaling When Loading an Empty Database" on page 112

• "Use Sufficient Network Bandwidth for Socket Merges" on page 112

007–5484–012 105

3: DMF Best Practices

• "Temporarily Disable Components Before Maintenance" on page 112

• "Gracefully Stop the SGI 400 VTL" on page 113

• "Reload STK ACSLS Cartridges Properly" on page 113

• "Disable Zone Reclaim to Avoid System Stalls" on page 113

• "Set Volume Size If You Want to Use Capacity Features" on page 113

• "Monitor the Size of the PCP Metrics Archive" on page 115

• "Be Aware that API Commands Change Without Notice" on page 115

• "Be Aware of Memory-Mapping Issues" on page 115

• "Use a Task to Perform Hard-Deletes Periodically" on page 116

• "Enable the Enhanced-NFS RPC Corruption Workaround Parameter if Needed" on
page 116

• "Use the Appropriate Tool to Load Volumes to an Existing Environment" on page
117

• "Configure Fibre Channel Switches and Zones Appropriately" on page 117

Use a Time Synchronization Application

You must ensure that all nodes that can manage DMF and OpenVault operations have
consistent time and time-zone settings. This includes the following:

• DMF server

• Passive DMF server (in an HA configuration)

• Parallel data-mover nodes (if using the Parallel Data-Mover Option)

• OpenVault server (if different from the DMF server)

SGI recommends that you use a time synchronization application on these nodes and
that you force synchronization at every boot. For example, if you use Network Time
Protocol (NTP), you should set the following in /etc/sysconfig/ntp:

NTPD_FORCE_SYNC_ON_STARTUP="yes"

106 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Monitor DMF Daily

You should monitor DMF on a daily basis to ensure that it is operating properly and
that you find any problems in time to retrieve data.

DMF provides a number of automated tasks that you can configure to generate
reports about errors, activity, and status. Additionally, some serious error conditions
generate email messages. Examining this information on a timely basis is important
to ensure that DMF is operating properly and to diagnose potential problems.

Migrate Multiple Copies of a File

When you migrate a file in a DMF configuration, make at least two permanent copies
of it on separate media to prevent file data loss in the event that a migrated copy is
lost.

Note: Because the fast-mount cache configuration requires at least two copies (one to
the temporary cache and one to a permanent storage target), SGI therefore
recommends that you migrate at least three copies for this configuration (one to the
temporary cache and two to permanent storage targets). See "Use Fast-Mount Cache
Appropriately" on page 97.

Determine the Backup Requirements for Your Site

This section discusses the following:

• "Site-Specific Factors to Consider for Backups" on page 107

• "Number of Backup Tapes Required (Physical Tapes and SGI 400 VTL)" on page
108

• "Back Up Migrated Filesystems and DMF Databases" on page 109

• "Retain Log and Journal Files Between Full Backups" on page 109

Site-Specific Factors to Consider for Backups

Backup requirements depend upon a number of very site-specific factors, including
the following:

007–5484–012 107

3: DMF Best Practices

• The amount of data that is migrated and the amount of data that is not migrated
at the time a backup takes place

• The number of inodes

• The size of the DMF databases (see "HOME_DIR Size" on page 83)

• The backup methodology for using full and/or partial backups

• The retention period for backups

Number of Backup Tapes Required (Physical Tapes and SGI 400 VTL)

The number of physical or virtual backup tapes that will be used depends upon the
retention period and the information in "Site-Specific Factors to Consider for Backups"
on page 107.

Tapes are recycled after the retention period is completed, therefore you must have
more backup tapes than are required to fulfill the retention period (at least one extra
tape). Assuming that backups are done daily, the minimum number of tapes required
is:

Retention_Period_In_Days + 1 = #_Backup_Tapes

For example, using a retention period of 4 weeks (28 days):

28 + 1 = 29 tapes

So long as each day’s backup can fit onto one tape, this means that at a minimum 29
backup tapes are required, assuming that backups are performed each day.

Note: You should monitor the backup report daily to verify that there are sufficient
tapes available for future backups. If it turns out that a given day requires multiple
backup tapes for the set of backups for that day’s backup, you must empty previously
used backup tapes or add more backup tapes.

Space Required for the Daily Backup (COPAN MAID)

The amount of space that your site will required for the backups created by each day’s
backup depends upon the information discussed in "Site-Specific Factors to Consider
for Backups" on page 107. This amount is the Dump_Space_Needed_Per_Day value.

108 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The approximate formula for the amount of disk space that you must reserve for
backups is:

Dump_Space_Needed_Per_Day * (Retention_Period_In_Days + 1) = Reserved_Space

You can allocate the Reserved_Space on a reserved portion of the RAID set that is not
managed by DMF). If you prefer, you could allocate space on physical tapes instead.
For more information, see COPAN MAID for DMF Quick Start Guide.

Back Up Migrated Filesystems and DMF Databases

When using DMF, you must still perform regular backups to protect unmigrated files,
inodes, and directory structures; DMF moves only the data associated with files, not
the file inodes or directories. You can configure DMF to automatically run backups of
your DMF-managed filesystems.

You can use the following tasks

You must also back up the daemon database and the LS database regularly using the
run_copy_databases.sh task.

See:

• "Administration Tasks" on page 45

• "taskgroup Object" on page 240

• "Backups and DMF" on page 475

Retain Log and Journal Files Between Full Backups

You must retain DMF log and journal files between full backups of the DMF
databases. After a full backup, you may remove old journal and log files to prevent
the spool directory from filling. You can use the run_remove_logs.sh and
run_remove_journals.sh tasks to schedule automatic removal of the old files
after the backup completes. See "taskgroup Object" on page 240.

Run Certain Commands Only on a Copy of the DMF Databases

You should run the following commands only on a copy of the DMF databases:

• dmdbcheck(8)

• dmdump(8)

007–5484–012 109

3: DMF Best Practices

If you run these commands on an active database (that is, on a database located in
the HOME_DIR directory while DMF is running), the results of the commands will be
unreliable because DMF may be actively changing the data while the command is
running.

Be Aware of Differences in an HA Environment

If you run DMF in a high-availability (HA) cluster, some configuration requirements
and administrative procedures differ from the information in this guide. For example,
in an HA environment you must first remove HA control of the resource group before
stopping DMF. For more information, see High Availability Guide for SGI InfiniteStorage.

Start Site-Specific Configuration Parameters and Stanzas with “ LOCAL_”

If you choose to add site-specific parameters or object stanzas to the DMF
configuration file, you should begin the parameter name or stanza name with
“LOCAL_” (such as LOCAL_MYPARAM) so that the names will not cause conflict with
future SGI DMF parameters and stanzas.

Use TMF Tracing

Each TMF process writes debugging information to its own trace file, located in the
directory specified by the trace_directory parameter in the TMF configuration
file /etc/tmf/tmf.config. If you use TMF, you should leave TMF tracing on so
that this debugging information is available if problems occur.

The trace files are circular, meaning they only contain the most recent activity from a
TMF process. To change the amount of history available in a trace file, modify the
trace_file_size configuration parameter.

When TMF is restarted, any trace files from the previous instance of TMF are moved
to the directory specified in trace_save_directory.

For more information, see TMF 6 Administrator Guide for SGI InfiniteStorage.

110 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Run dmcollect If You Suspect a Problem

As soon as you suspect a problem with DMF, run the dmcollect(8) command to
gather the relevant information about your DMF environment that will help you and
SGI analyze the problem.

Note: Take care to enter the correct number of previous days from which to gather
information, so that logs containing the first signs of trouble are included in the
collection.

For example, the will collect data for today only (0 previous days):

server# dmcollect -b 0

If the problem started the previous day, you would want to collect data from that day
as well (1 previous day):

server# dmcollect -b 1

Specify a larger number of prior days to cover a longer time period, as required.

Also see Chapter 16, "Troubleshooting" on page 505.

Modify Settings If Providing File Access via Samba

You can avoid an unnecessary Windows SMB request timeout by setting the
SessTimeout parameter to a value appropriate for a DMF environment, such as
300 seconds. This is especially important for slower mounting/positioning libraries
and tape drives. For details, see the following website:

http://technet.microsoft.com/en-au/library/cc938292.aspx

The Windows Explorer desktop can show which files in an SMB/CIFS network share
are in a fully or partially offline state. If so enabled, Windows Explorer overlays a
small black clock on top of a migrated file’s normal icon; the black clock symbol
indicates that there may be a delay in accessing the contents of the file. (This feature
is disabled by default.)

To enable this feature, do the following:

1. Install the sgi-samba RPMs from ISSP.

007–5484–012 111

3: DMF Best Practices

Note: This feature is not available in community Samba.

2. Add the following line to the Samba configuration file /etc/samba/smb.conf
on the DMF server:

dmapi support = Yes

3. Restart the smb daemon on the DMF server:

!
Caution: For instructions about starting and stopping DMF and the mounting
service in an HA environment, see High Availability Guide for SGI InfiniteStorage.

server# service smb restart

For more information, see the smb.conf(5) man page.

Disable Journaling When Loading an Empty Database

If you are loading an empty database, you should disable journaling in order to
eliminate unnecessary overhead. To do this, use the -j option to the dmdadm(8) and
dmcatadm(8) commands. For example:

dmdadm -j -u -c "load /dmf/scratch/daemon.txt"

dmcatadm -j -m ls -u -c "load /dmf/scratch/ls_cat_txt" > /dmf/tmp/load.ls.db.out 2>&1

Use Sufficient Network Bandwidth for Socket Merges

If you perform a merge using a socket, you must ensure that the network has
sufficient bandwidth. For more information, contact SGI technical support.

Temporarily Disable Components Before Maintenance

Before you perform maintenance on tape drives, a tape library, or COPAN shelf, you
can perform steps that will allow DMF to quit using the component. You can then
verify that the component is currently unused and will no longer accept new work.
See "Temporarily Disabling Components" on page 490.

112 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Gracefully Stop the SGI 400 VTL

Before stopping the SGI 400 VTL, you should ensure that DMF is not using any of its
virtual tape drives and then stop the OpenVault LCPs associated with the SGI 400
VTL. See "Stop the COPAN VTL" on page 496.

Reload STK ACSLS Cartridges Properly

After you load tape cartridges into a StorageTek tape library controlled by Automated
Cartridge System Library Software (ACSLS) via the cartridge access port, you must
manually cancel all prior ACSLS enter requests. This will allow OpenVault to
update the DMF database.

Disable Zone Reclaim to Avoid System Stalls

Note: For large NUMA systems, whose typical workload is HPC applications, you
should consider whether the benefits of memory locality outweigh the cost of
memory reclaim.

To avoid transient system stalls on most DMF servers, you should disable zone
reclaim by adding the following line to the /etc/sysctl.conf file:

vm.zone_reclaim_mode = 0

To make this change take effect, enter the following:

sysctl -p

For more information about this kernel parameter, refer to the
Documentation/sysct/vm.txt file in the Linux kernel source.

Set Volume Size If You Want to Use Capacity Features

If you want to use features such as the dmcapacity(8) command and its display via
DMF Manager (which are particularly useful features for COPAN MAID and SGI 400
VTL), you should set the size of volumes in the DMF database. Do one of following:

• Use the -s tapesize option to dmov_loadtapes(8) when loading new volumes to
set the size in bytes. For example:

007–5484–012 113

3: DMF Best Practices

dmov_loadtapes -t Ultrium4-800 -l C00 -s 20000000000 dump_tasks

• Use the dmvoladm(8) command with the update directive to modify the ts field
to set the size in bytes. For example:

dmvoladm -m vtl_ls -c "update C00X1Z tapesize 20000000000"

• Specify the cartridge size on the Add Volumes dialog in DMF Manager to set the
size in bytes. See "Managing Volumes" on page 185.

114 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Monitor the Size of the PCP Metrics Archive

PCP continuously gathers DMF performance metrics for display in DMF Manager.
These metrics are stored in /var/lib/pcp-storage/archives.

Note: In an HA environment, the PCP metrics archive is stored in the directory
specified by the dmfman_setup_ha script. For more information, see the section
about configuring DMF for HA in High Availability Guide for SGI InfiniteStorage.

Each month, DMF performs a data-reduction process on the metrics gathered for the
month. This reduces the size of the archives while retaining a consistent amount of
information. Although the size of the archive has a bounded maximum, this can still
be quite large depending on the configuration of the server and how many clients
access it. For example, a server with a large number of filesystems could generate up
to 100 Mbytes of archives per day. You should initially allow around 2 GB of space in
/var/lib/pcp-storage/archives for archive storage and monitor the actual
usage for the first few weeks of operation.

Be Aware that API Commands Change Without Notice

DMF uses several undocumented commands as an internal API layer. These
commands can change or be removed without notice.

Note: If you require functionality that is not provided by the standard set of
documented DMF administrator and user commands, contact SGI Support to suggest
a request for enhancement.

Be Aware of Memory-Mapping Issues

On Linux nodes, memory-mapping an offline file in a DMF filesystem may cause
other processes such as ps(1) to block while DMF is making the file online.

There are also memory-mapping issues with CXFS clients running RHEL or Windows;
for more information, see the CXFS 7 Administrator Guide for SGI InfiniteStorage.

007–5484–012 115

3: DMF Best Practices

Use a Task to Perform Hard-Deletes Periodically

To avoid reaching the maximum DMF database size (4 billion records), you should
configure the run_hard_deletes.sh task to periodically delete database records
that have become eligible for hard-deletion. Otherwise, the daemon database can
continue to grow in size as obsolete records accumulate.

See:

• "taskgroup Object" on page 240

• "Cleaning Up Obsolete Database Entries" on page 474

Enable the Enhanced-NFS RPC Corruption Workaround Parameter if Needed

A Linux NFS-client data corruption bug was fixed in Linux kernel version 2.6.37 with
commit ID f5fc3c50c99a7df2bf908dfe66f112d35178ee07. If you are running
Linux NFS clients with a prior release, you must avoid the problem by using a
system-tunable kernel parameter that is available in enhanced NFS. Contact your
Linux NFS client OS distribution provider to determine whether or not you must
make this change.

Note: Enabling the parameter can have a negative impact on benchmarking and code
compiles over NFS. Therefore, the parameter is disabled (set to 0) by default. You
should enable it only if the kernel version on any of your Linux NFS clients contains
the corruption bug.

If required, the parameter that you must enable (set to 1) on the enhanced-NFS server
is nfsd_workaround_nfs3_xdr_readres_corruption. Do the following:

1. Add the following line to the /etc/modprobe.conf file on the enhanded-NFS
server:

options nfsd nfsd_workaround_nfs3_xdr_readres_corruption=1

2. Reboot the enhanced-NFS server.

For more information about the bug and the enhanced-NFS
nfsd_workaround_nfs3_xdr_readres_corruption parameter, see the section
about enhanced NFS in the ISSP release note.

116 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Use the Appropriate Tool to Load Volumes to an Existing Environment

Table 3-2 describes the tools you should use to load volumes to an existing DMF and
OpenVault environment.

Table 3-2 Tools to Load Volumes to an Existing DMF/OpenVault Environment

Volumes Already in DMF?
Volumes Already in
OpenVault? Tool to Use

No No dmov_loadtapes

Yes No dmov_makecarts

No Yes dmvoladm

Configure Fibre Channel Switches and Zones Appropriately

You must configure Fibre Channel switches appropriately to ensure that tapes will not
be inappropriately overwritten, potentially resulting in data loss. This is particularly
important when using the Parallel Data-Mover Option. This section discusses the
following:

• "Ensure that You Follow the Switch Requirements" on page 117

• "Segregate Tape and Disk HBAs" on page 118

• "Suppress Change Notification for Switch Ports Connected to Nodes" on page 118

• "Use N-port Topology for LSI Ports Used with Tape Drives" on page 118

• "Avoid Bottlenecks when Tape Drives and Host Port Speeds Do Not Match" on
page 118

Ensure that You Follow the Switch Requirements

See "SAN Switch Zoning or Separate SAN Fabric Requirement" on page 43.

007–5484–012 117

3: DMF Best Practices

Segregate Tape and Disk HBAs

Never mix tape and disk access via the same HBA port. SGI also recommends that
you do not mix tape and disk access on a given multiport card; this recommendation
may not apply to some newer multiport cards.

Use separate physical SAN switches or switch zoning to logically separate tape and
disk SAN fabrics. See "SAN Switch Zoning or Separate SAN Fabric Requirement" on
page 43.

Suppress Change Notification for Switch Ports Connected to Nodes

To prevent unnecessary interruptions in the cluster, enable the suppression of change
notification if the port is connected to a host HBA and disable the suppression for all
other ports. See:

• "Suppressing RSCN" on page 134

• "QLogic® Fibre Channel Switch" on page 135

Use N-port Topology for LSI Ports Used with Tape Drives

During error recovery, a bus reset will cause the LSI Fibre Channel port to renegotiate
its connection with the Fibre Channel switch. This renegotiation can result in the LSI
host port acquiring a different port ID. Should this happen, reservation conflicts or
errors that result in the tape driving transitioning to swdn can occur. To avoid this
problem, use lsiutil to set the link topology to N-port for all LSI Fibre Channel
ports used with tape drives, which eliminates the possibility that the host adapter
port could acquire a different port ID.

Avoid Bottlenecks when Tape Drives and Host Port Speeds Do Not Match

Note: This section does not apply to STK drives. For those drives, the only control is
the size of the tape drive I/O request, which DMF determines. STK 4–Gbit adapters
perform at approximately 200 MB/s.

If you have one 4-Gbit host port and are writing data to multiple 2-Gbit tape drives,
the aggregate desired bandwidth on the host port is greater than the data rate of the
Fibre Channel (FC) adapters on the tape drives. This can cause the switch’s frame
buffers to fill up, causing the switch to stop accepting data from the 4-Gbit HBA,
dropping the effective data rate close to that of a 2-Gbit HBA.

118 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

You can correct this situation by changing the maximum burst size (burst_size) for
the tape drive. The maximum burst size specifies the maximum amount of data that
the port can transfer during a single operation. It should be double the switch port
buffering (after unit conversions, because maximum burst size is in units of 512
bytes). For example, a Brocade 4100 switch has at least 32 KB of buffering per port, so
you would start with a value of 128.

Note: Determining the optimum value for burst_size depends upon many
site-specific factors, including HBA speed, switch speed, tape speed, and number of
tapes per port; it may take some trial-and-error to set optimally. SGI suggests
beginning by using a value of 64 or 128, which have been shown to improve results
without negative impact.

Before changing the maximum burst size, ensure that you have stopped DMF, APD,
and the TMF or OpenVault mounting service.

If you have installed the optional sdparm RPM from RHEL or SLES, you can use the
sdparm command to set the burst size:

sdparm -t fcp --set MBS=burstsize /dev/sgNN

You can test the effects of changing the burst size by doing the following:

1. Ensure that the services for DMF, APD, and the TMF or OpenVault are stopped.
(In an HA environment, see High Availability Guide for SGI InfiniteStorage.)

2. Ensure you have two 2–Gbit tape drives on 4–Gbit FC switch with one 4–Gbit
host connection.

3. Set the maximum burst size to 0 (no limit) on both drives. For example:

sdparm -t fcp --set MBS=0 /dev/sg0

4. Load scratch tapes on the drives.

5. Enter the following for each drive separately and then both drives in parallel and
monitor performance with SGI Performance Co-PilotTM (PCPTM) or an FC switch
tool:

dd if=/dev/zero of=/dev/ts/... bs=256k

6. Change maximum burst size. For example, to set it to 128:

sdparm -t fcp --set MBS=128 /dev/sg0

007–5484–012 119

3: DMF Best Practices

7. Enter the following for each drive separately and then both drives in parallel and
monitor performance with PCP or an FC switch tool:

dd if=/dev/zero of=/dev/ts/... bs=256k

To determine the current maximum burst size, use the sginfo -D command. For
example:

sginfo -D /dev/sg0

Disconnect-Reconnect mode page (0x2)

Buffer full ratio 0

Buffer empty ratio 0
Bus Inactivity Limit (SAS: 100us) 0

Disconnect Time Limit 0

Connect Time Limit (SAS: 100us) 0

Maximum Burst Size 128

EMDP 0
Fair Arbitration (fcp:faa,fab,fac) 0

DIMM 0

DTDC 0

First Burst Size 0

You can also use the sdparm --get command. For example:

sdparm -t fcp --get MBS /dev/sg0

For more information about sdparm, see:

http://freshmeat.net/projects/sdparm/

http://dag.wieers.com/rpm/packages/sdparm/

Best Practices for Optional Tasks
This section discusses the following:

• "Balance Data Among Libraries" on page 121

• "Prevent Recalls From Waiting for a Busy Volume" on page 122

120 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Balance Data Among Libraries

If you want to balance migrated data among libraries, you can use configurations
such as the following:

• Suppose you have two libraries and you want to make two copies of the migrated
data. You would use a VG for each library (lib1vg and lib2vg) and the
following statement for VG selection:

SELECT_VG lib1vg lib2vg

One copy would go to each library.

See "MSP/VG Selection Parameters for a DMF-Managed Filesystem" on page 286.

• Suppose you have four libraries and you want to make two copies of the migrated
data. You can use two migrate groups, each with two VGs, and a rotation strategy
of ROUND_ROBIN_BY_BYTES:

mg1

lib1vg
lib2vg

mg2

lib3vg

lib4vg

You would use the following statement for VG selection:

SELECT_VG mg1 mg2

One copy of would go to either lib1vg or lib2vg, the other copy would go to
either lib3vg or lib4vg.

For more information, see:

– "Migrate Groups" on page 40

– "Use Migrate Groups Appropriately" on page 95

– "migrategroup Object Example with Multiple MGs" on page 335

007–5484–012 121

3: DMF Best Practices

Prevent Recalls From Waiting for a Busy Volume

If you want to prevent recall requests from waiting for a volume that is busy because
it is being written to, you can use the configuration parameters FORWARD_RECALLS
and GET_WAIT_TIME in the volumegroup stanza.

For example, to allow DMF to continue writing to the volume for only up to 1 hour
(3600 seconds) after receiving a recall request and to direct recall requests to another
VG if this VG is writing to the volume, you would include the following parameters:

GET_WAIT_TIME 3600

FORWARD_RECALLS ON

For more information about these parameters, see "volumegroup Object" on page 318.

122 007–5484–012

Chapter 4

Installing and Configuring the DMF Environment

This chapter discusses the following:

• "Overview of the Installation and Configuration Steps" on page 123

• "Installation and Configuration Considerations" on page 125

• "Starting and Stopping the DMF Environment" on page 138

• "Using Out-of-Library Tapes" on page 141

• "Customizing DMF" on page 142

• "Importing Data From Other HSMs " on page 145

Overview of the Installation and Configuration Steps
To install and configure the DMF environment, perform the following steps:

Note: Also see:

• COPAN MAID for DMF Quick Start Guide
• SGI 400 VTL for DMF Quick Start Guide

Procedure 4-1 Configuring the DMF Environment

1. Read "Installation and Configuration Considerations" on page 125.

2. Install the DMF server software (which includes the software for TMF and
OpenVault) according to the instructions in the SGI InfiniteStorage Software
Platform release note and any late-breaking caveats posted to Supportfolio:

https://support.sgi.com

See "ISSP DMF Software" on page 126.

3. Determine the DMF drive groups that you want to use.

007–5484–012 123

4: Installing and Configuring the DMF Environment

4. Configure the TMF or OpenVault mounting service (if used) according to the
following documentation:

• TMF 6 Administrator Guide for SGI InfiniteStorage

• OpenVault Administrator Guide for SGI InfiniteStorage

5. Determine how you want to complete periodic maintenance tasks. See
"Automated Maintenance Tasks" on page 132.

6. Make and mount the filesystems required for the DMF administrative directories.
See "Configure DMF Administrative Directories Appropriately" on page 79.

7. Install the DMF license (and optional DMF Parallel Data-Mover Option license)
on the primary DMF server and the passive DMF server (if applicable). See
Chapter 2, "DMF Licensing" on page 59 and "Managing Licenses and Data
Capacity with DMF Manager" on page 159.

Note: Nodes running DMF client software do not require a DMF license.

8. Create or modify your configuration file and define objects for the following:

• Pathname and file size parameters necessary for DMF operation (the base
object)

• DMF daemon

• Daemon maintenance tasks

• Filesystems

• Automated space management

• Media-specific process (MSP) or library server (LS)

• MSP/LS maintenance tasks

See "Configuring DMF with DMF Manager" on page 166.

Also see "Configuration Objects Overview" on page 211.

124 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

9. Verify the configuration by selecting the following in DMF Manager, select the
following:

Overview
> Configuration ...

> Validate Current Configuration

If there are errors, fix them and repeat the validation until there are no errors.

10. If you are using the DMF Parallel Data-Mover Option, see "Parallel Data-Mover
Option Configuration Procedure" on page 379 and the SGI InfiniteStorage Software
Platform release note.

11. Start the DMF environment. See "Starting and Stopping the DMF Environment"
on page 138.

12. If you want to install the DMF client packages on other systems, see the SGI
InfiniteStorage Software Platform release note and the client installation
DMF.Install instructions. Also see "DMF Client Configurations and xinetd"
on page 127.

To administer and monitor DMF, see Chapter 5, "DMF Manager" on page 147.

Installation and Configuration Considerations
This section discusses the configuration considerations that will affect your system:

• "ISSP DMF Software" on page 126

• "DMF Client Configurations and xinetd" on page 127

• "Filesystem Mount Options" on page 127

• "Mounting Service Considerations" on page 127

• "Inode Size Configuration" on page 128

• "Daemon Database Record Length" on page 130

• "Interprocess Communication Parameters" on page 132

• "Automated Maintenance Tasks" on page 132

• "Networking Considerations for Parallel Data-Mover Option" on page 133

007–5484–012 125

4: Installing and Configuring the DMF Environment

• "Passwordless SSH Configuration for DMF" on page 133

• "Suppressing RSCN" on page 134

• "QLogic® Fibre Channel Switch" on page 135

ISSP DMF Software

The ISSP release includes the following DMF software:

• DMF Server, which provides:

– The full set of DMF server functionality, including the DMF daemon,
infrastructure, user and administrator commands, and all man pages. This
applies to SGI x86_64 servers running the operating system as specified in the
ISSP and DMF release notes. You should install this software only on those
machines that can be the DMF server.

– Client installers, which download the client software onto the DMF server so
that you can later transfer the DMF client software to the DMF client nodes.
The client packages are installed along with their installation instructions on
the DMF server in the following directory:

/opt/dmf/client-dist/DMFversion/clientOS&architecture

The client software contains a limited set of user commands, libraries, and man
pages. This applies to all supported operating systems. You should install this
software on machines from which you want to give users access to DMF user
commands, such as dmput and dmget.

• DMF Parallel Data-Mover, which provides the infrastructure for parallel
data-mover nodes to move data offline and retrieve it, plus the required
underlying CXFS client-only software.

Only one of groups of software can be installed on a given machine.

126 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DMF Client Configurations and xinetd

If your configuration includes DMF client platforms, you must ensure that the DMF
server is running the xinetd(8) daemon. The xinetd daemon is enabled by default.
If it has been disabled, you must reenable it at boot time via the following command:

dmfserver# chkconfig xinetd on

If xinetd is not running, you can start it immediately via the following command:

dmfserver# /usr/sbin/xinetd

See also "Set the xinetd tcpmux instances Parameter Appropriately" on page 92.

Filesystem Mount Options

Data Management API (DMAPI) is the mechanism between the kernel and the XFS or
CXFS filesystem for passing file management requests between the kernel and DMF.
Ensure that you have installed DMAPI and the appropriate patches.

For filesystems to be managed by DMF, they must be mounted with the DMAPI
interface enabled. Failure to enable DMAPI for DMF-managed filesystems will result
in a configuration error.

Do the following:

1. Use the following command:

mount -o dmi -o mtpt=mountpoint

2. Add dmi,mtpt=mountpoint to the fourth field in the fstab entry.

For more information, see:

• "mkfs and mount Parameters" on page 85

• The mount(8) and fstab(5) man pages

Mounting Service Considerations

Mounting services are available through OpenVault or the Tape Management Facility
(TMF)

007–5484–012 127

4: Installing and Configuring the DMF Environment

The LS checks the availability of the mounting service when it is started and after
each occurrence in which an LS data-mover process was unable to reserve its drive.
The data-mover process may be either:

• A write child that migrates data to secondary storage

• A read child that recalls data from secondary storage

If the mounting service is unavailable, the LS does not start any new child processes:

• For OpenVault, the LS sends an e-mail message to the administrator, asking that
OpenVault be started. It then periodically polls OpenVault until it becomes
available, at which time child processes are again allowed to run.

• For TMF, the LS attempts to initiate tmdaemon if it is not up (based on the exit
status of tmstat) and waits until a TMF device in the configuration
pending state is configured up before it resumes processing. If TMF cannot be
started or if no devices are configured up, the LS sends e-mail to the administrator
and polls TMF until a drive becomes available.

You can use MAX_MS_RESTARTS to configure the number of automatic restarts.

See also Chapter 8, "Mounting Service Configuration Tasks" on page 385

Inode Size Configuration

In DMF-managed filesystems and disk cache manager (DCM) MSP
STORE_DIRECTORY filesystems, DMF state information is kept within a filesystem
structure called an extended attribute.

Extended attributes can be either inside the inode or in attribute blocks associated
with the inode. DMF runs much faster when the extended attribute is inside the
inode, because this minimizes the number of disk references that are required to
determine DMF information. In certain circumstances, there can be a large
performance difference between an inode-resident extended attribute and a
non-resident extended attribute.

The size of inodes within a filesystem impacts how much room is available inside the
inode for storing extended attributes. Smaller inode sizes have much less room
available for attributes. Likewise, the legacy inode attribute format (-i attr=1
option to mkfs.xfs) results in less available extended attribute space than does the
current default format (-i attr=2 option).

128 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

SGI recommends that you configure your filesystems so that the extended attribute is
always inode-resident. Whenever both 256-byte and 512-byte inode sizes will work,
you should use the 256-byte inode size (-i size=256 option to mkfs.xfs) because
the inode scans will be up to twice as fast. SGI also highly recommends that you use
attr2 (-i attr=2 option) when possible if it allows 256-byte inode sizes to be used.

For optimal performance, you should create any DCM MSP filesystems with 256-byte
inode sizes and attr2 attribute format. (For other filesystems for DMF
administrative directories, the inode size does not matter.) For best performance, you
should use 512-byte inode sizes for DMF-managed filesystems only under the
following circumstances:

• If users require other XFS attributes such as ACLs or other user-specified attributes

• If the filesystem will have large numbers of partial-state files with more
partial-state regions than will fit in a 256-byte inode

If you must have a 512–byte inode size for a DMF-managed filesystem, you can do so
by using the Linux mkfs.xfs command with the -i size=512 option. (Filesystems
that already exist must be backed up, recreated, and restored.)

Table 4-1 summarizes the relationship among the inode size, attr type, and file
regions.

Table 4-1 Default Maximum File Regions for XFS and CXFS Filesystems

Size of inode attr Type
Default Maximum
Number of File Regions

256 1 (Not recommended)

256 2 2

512 or greater 1 8

512 or greater 2 11

For more information about setting the inode size and the attr type, see the
mkfs.xfs(8) and mount(8) man pages.

007–5484–012 129

4: Installing and Configuring the DMF Environment

Daemon Database Record Length

A daemon database entry contains one or more fixed-length records:

• The base record (dbrec), which consists of several fields, including the path field

• Zero or more path segment extension (pathseg) records

If the value that is returned to the daemon by the MSP/LS (such as the pathname
resulting from the NAME_FORMAT value template in an FTP or disk msp object) can fit
into the path field of the daemon’s dbrec record, DMF does not require pathseg
records. If the MSP/LS supplies a path value that is longer than the path field, DMF
creates one or more pathseg records to accommodate the extra space.

The default size of the path field of the dbrec is 34 characters. This size allows the
default paths returned by dmatls, dmdskmsp, and dmftpmsp to fit in the path field
of dbrec as long as the user name portion of the dmftpmsp or dmdskmsp default
path (username/bit_file_identifier) is 8 characters or fewer. If you choose to use a value
for NAME_FORMAT that results in longer pathnames, you may want to resize the path
field in dbrec in order to increase performance.

The default size of the path field in the pathseg record is 64. For MSP path values
that are just slightly over the size of the dbrec path field, this will result in a large
amount of wasted space for each record that overflows into the pathseg record. The
ideal situation would be to have as few pathseg records as possible, because
retrieving pathseg records slows down the retrieval of daemon database records.

The size of the path field in the daemon dbrec record can be configured at any time
before or after installation. (The same holds true for any installation that might be
using the dmftpmsp or dmdskmsp with a different path-generating algorithm or any
other MSP that supplies a path longer than 34 characters to the daemon.)

Procedure 4-2 Configuring the Daemon Database Record Length

The steps to configure the daemon database entry length are as follows:

1. If dmfdaemon is running, ensure that DMF is stopped. In an HA environment,
see High Availability Guide for SGI InfiniteStorage. In a non-HA environment,
execute the following:

service dmf stop

130 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

!
Caution: For instructions about starting and stopping DMF and the mounting
service in an HA environment, see High Availability Guide for SGI InfiniteStorage.

2. If a daemon database already exists, perform the following commands:

cd HOME_DIR/daemon
dmdump -c . > textfile
cp dbrec* pathseg* dmd_db.dbd backup_dir
rm dbrec* pathseg* dmd_db.dbd

Where:

• HOME_DIR is the value of HOME_DIR returned by the dmconfig base
command

• textfile is the name of a file that will contain the text representation of the
current daemon database

• backup_dir is the name of the directory that will hold the old version of the
daemon database

3. Change to the rdm directory:

cd /usr/lib/dmf/rdm

4. Back up the dmd_db.dbd and dmd_db.ddl files that reside in
/usr/lib/dmf/rdm. This will aid in disaster recovery if something goes wrong.

5. Edit dmd_db.ddl to set the new path field lengths for the dbrec and/or
pathseg records.

6. Regenerate the new daemon database definition, as follows:

/usr/lib/dmf/support/dmddlp -drsx dmd_db.ddl

7. Back up the new versions of dmd_db.dbd and dmd_db.ddl for future reference
or disaster recovery.

007–5484–012 131

4: Installing and Configuring the DMF Environment

8. If the daemon database was backed up to text (to textfile in step 2), enter the
following commands:

cd HOME_DIR/daemon
dmdadm -u -c "load textfile"

9. If the daemon was running in step 1, ensure that the dmf service is restarted. In
an on-HA environment, execute the following:

service dmf start

Interprocess Communication Parameters

Ensure that the following interprocess communication kernel configuration
parameters are set equal to or greater than the default before running DMF:

MSGMAX
MSGMNI

For more information, execute info ipc and see the sysctl(8) and msgop(2) man
pages.

Automated Maintenance Tasks

DMF lets you configure parameters for completing periodic maintenance tasks such
as the following:

• Making backups (full or partial) of DMF-managed filesystems to tape or disk

• Making backups of DMF databases to disk

• Removing old log files and old journal files

• Monitoring DMF logs for errors

• Monitoring the status of volumes in LSs

• Running hard deletes

• Running dmaudit(8)

• Merging volumes that have become sparse (and stopping this process at a
specified time)

132 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Each of these tasks can be configured in the DMF configuration file
(/etc/dmf/dmf.conf) through the use of TASK_GROUPS parameters for the DMF
daemon and the LS. The tasks are then defined as objects.

For each task you configure, a time expression defines when the task should be done
and a script file is executed at that time. The tasks are provided in the
/usr/lib/dmf directory.

The automated tasks are described in "taskgroup Object" on page 240.

Networking Considerations for Parallel Data-Mover Option

The parallel data-mover nodes communicate with the DMF and OpenVault servers
over the network. By default, they use the IP addresses that are associated with the
system hostnames. Additionally, depending on your configuration, it is possible that
socket merging can occur between hosts. By default, this feature uses the same
network as other DMF communication traffic.

It is possible to configure DMF to use an alternative network for general
communication between DMF nodes as well as an alternative network for socket
merges. See "node Object" on page 232.

If you use an alternative network for DMF communication, the OpenVault server
must listen on the same network; in this case, the name you specify for the initial
OpenVault prompt (that asks you to supply the name where OpenVault will be
listening) will be different from the hostname of the DMF server. See comment 2 in
"Initially Configure the OpenVault Server" on page 386.

Passwordless SSH Configuration for DMF

If configured, DMF will use passwordless secure shell (SSH) to do the following.

• Transfer a copy of disk-based backups to one or more remote directories (using the
optional DUMP_MIRRORS DMF configuration file)

• Simplify the use of the dmatsnf(8) and dmatread (8) commands to verify the
integrity of the library server (LS) volumes and recover data from them for a
configuration where not all volumes are mountable on the DMF server

• When in an active-active HA configuration with parallel data-mover nodes, DMF
Manager can represent the status of both mover nodes

007–5484–012 133

4: Installing and Configuring the DMF Environment

• Gather troubleshooting data via the dmcollect(8) command from all potential
DMF servers and parallel data-mover nodes.

You must set up SSH keys so that the local root user can log in to the remote host as
a remote user without a password. Do the following:

1. Generate RSA authentication keys for the root user on the DMF server, if the
keys do not already exist. Be sure that you do not enter a passphrase when
prompted (just press Enter).

dmfserver# ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa.

Your public key has been saved in /root/.ssh/id_rsa.pub.

...

2. Install the identity information on all nodes on which passwordless SSH access is
required. For example:

• To provide access for the DMF server on two parallel data-mover nodes pdm1
and pdm2:

dmfserver# ssh-copy-id -i ~/.ssh/id_rsa.pub root@pdm1
dmfserver# ssh-copy-id -i ~/.ssh/id_rsa.pub root@pdm2

• To provide access when using a remote host that has directories in which DMF
will place a copy of disk-based backups (DUMP_MIRRORS):

dmfserver# ssh-copy-id -i ~/.ssh/id_rsa.pub user@remotehost

See the ssh-keygen(1) and ssh-copy-id(1) man pages for details.

Suppressing RSCN

Enable (turn ON) registered state change notification (RSCN) suppression if the port is
connected to a host HBA or disable (turn OFF) suppression for all other ports. Use
the portcfgshow command to display the current settings.

Use the following command on the switch:

switch> portcfg rscnsupr [Slot/]Port[-Range] --enable|--disable

134 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

For example, suppose that ports 4 through 7 go from the switch to nodes in the cluster.
You would enter the following to enable RSCN suppression for ports 4 through 7:

switch> portcfg rscnsupr 4-7 --enable

switch> portcfgshow

Locked L_Port

Locked G_Port

Disabled E_Port

ISL R_RDY Mode
RSCN Suppressed ON ON ON ON

Persistent Disable.. ON ON ON .. ON ON ON ON ON ON ON ON

NPIV capability ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON

QLogic ® Fibre Channel Switch

All QLogic Fibre Channel (FC) switches contained within the SAN fabric must have
the appropriate QLogic firmware installed.

For more information, see the QLogic SANbox2-64 Switch Management User’s Guide.

!
Caution: The admin state is required for I/O fencing. To avoid interference with
fencing, release admin mode as soon as possible. Do not leave admin mode sessions
open.

The default port configuration on a QLogic 9200 FC switch is not compatible with the
DMF environment. To use the appropriate port configuration, change the following
parameters:

LinkSpeed Set to the appropriate value, such as 2 for 2 GB/s. (In
some cases, Auto does not function properly.)

PortType Enter the appropriate type, usually F. (You cannot use
the GL autonegotiated mode.)

NoClose Set to True to prevent the Fibre Channel circuit from
shutting down during a host reboot.

007–5484–012 135

4: Installing and Configuring the DMF Environment

IOStreamGuard Set to Enable if the port is connected to a host HBA or
to Disable if for all other ports. (You cannot use Auto
mode because most HBAs cannot negotiate this.)

To modify these parameters, use the admin command. For example, for a port
connected to an SGI UV® 100 system:

SANbox #> admin start

SANbox (admin) #> config edit

The config named default is being edited.

SANbox (admin-config) #> set config port 31

A list of attributes with formatting and current values will follow.
Enter a new value or simply press the ENTER key to accept the current value.

If you wish to terminate this process before reaching the end of the list

press ’q’ or ’Q’ and the ENTER key to do so.

Configuring Port Number: 31

AdminState (1=Online, 2=Offline, 3=Diagnostics, 4=Down) [Online]

LinkSpeed (1=1Gb/s, 2=2Gb/s, 4=4Gb/s, A=Auto) [Auto] 2

PortType (GL / G / F / FL / Donor) [GL] F

SymPortName (string, max=32 chars) [Port31] UV100
ALFairness (True / False) [False]

DeviceScanEnable (True / False) [True]

ForceOfflineRSCN (True / False) [False]

ARB_FF (True / False) [False]

InteropCredit (decimal value, 0-255) [0]
ExtCredit (dec value, increments of 15, non-loop only) [0]

FANEnable (True / False) [True]

AutoPerfTuning (True / False) [True]

MSEnable (True / False) [True]

NoClose (True / False) [False] True
IOStreamGuard (Enable / Disable / Auto) [Auto] Enable

PDISCPingEnable (True / False) [True]

Finished configuring attributes.

This configuration must be saved (see config save command) and

136 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

activated (see config activate command) before it can take effect.
To discard this configuration use the config cancel command.

....

SANbox (admin-config) #> config save

The config named default has been saved.

SANbox (admin) #> config activate

The currently active configuration will be activated.

Please confirm (y/n): [n] y

SANbox (admin) #> admin end

SANbox #> show config port 31

Configuration Name: default

Port Number: 31

AdminState Online

LinkSpeed 2Gb/s
PortType F

SymbolicName UV100

ALFairness False

DeviceScanEnabled True

ForceOfflineRSCN False
ARB_FF False

InteropCredit 0

ExtCredit 0

FANEnabled True

AutoPerfTuning True
MSEnabled True

NoClose True

IOStreamGuard Enabled

PDISCPingEnabled True

007–5484–012 137

4: Installing and Configuring the DMF Environment

Starting and Stopping the DMF Environment
This section discusses the following:

• "Automatic Start After Reboot" on page 138

• "Preventing Automatic Start After Reboot" on page 139

• "Explicit Start" on page 139

• "Explicit Stop" on page 140

For more information about the mounting services, see:

• TMF 6 Administrator Guide for SGI InfiniteStorage

• OpenVault Administrator Guide for SGI InfiniteStorage

!
Caution: In an HA environment, procedures differ. For example, you must first
remove HA control of the resource group before stopping DMF and the mounting
service. See High Availability Guide for SGI InfiniteStorage.

Automatic Start After Reboot

Note: For instructions about starting and stopping DMF and the mounting service in
an HA environment, see High Availability Guide for SGI InfiniteStorage

To enable automatic startup of the DMF environment, execute the
following chkconfig(8) commands as root on indicated nodes in a non-HA
environment:

1. DMF server:

dmfserver# chkconfig pcp on

dmfserver# chkconfig pcp-storage on (optional)
dmfserver# chkconfig tmf on (if TMF)
dmfserver# chkconfig openvault on (if OpenVault)
dmfserver# chkconfig dmf on

dmfserver# chkconfig dmfman on (optional)
dmfserver# chkconfig dmfsoap on (optional)

138 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

2. Parallel data-mover nodes:

mover# chkconfig openvault on
mover# chkconfig dmf_mover on

Preventing Automatic Start After Reboot

Note: For instructions about starting and stopping DMF and the mounting service in
an HA environment, see High Availability Guide for SGI InfiniteStorage.

To prevent automatic startup of the DMF environment, execute the following
chkconfig(8) commands as root on the indicated nodes in a non-HA environment:

1. DMF server:

dmfserver# chkconfig dmfsoap off

dmfserver# chkconfig dmfman off

dmfserver# chkconfig dmf off
dmfserver# chkconfig openvault off (if OpenVault)
dmfserver# chkconfig tmf off (if TMF)

2. Parallel data-mover nodes:

mover# chkconfig dmf_mover off

mover# chkconfig openvault off

Explicit Start

Note: For instructions about starting and stopping DMF and the mounting service in
an HA environment, see High Availability Guide for SGI InfiniteStorage.

To start the DMF environment daemons explicitly, execute the following on the
indicated nodes in a non-HA environment:

1. DMF server:

dmfserver# service pcp start

dmfserver# service pcp-storage start (optional)
dmfserver# service tmf start (if TMF)
dmfserver# service openvault start (if OpenVault)

007–5484–012 139

4: Installing and Configuring the DMF Environment

2. Parallel data-mover nodes:

mover# service openvault start

3. DMF server:

dmfserver# service dmf start

4. Parallel data-mover nodes:

mover# service dmf_mover start

5. DMF server:

dmfserver# service dmfman start (optional)
dmfserver# service dmfsoap start (optional)

Explicit Stop

Note: For instructions about starting and stopping DMF and the mounting service in
an HA environment, see High Availability Guide for SGI InfiniteStorage.

To stop the DMF environment daemons explicitly, execute the following on the
indicated nodes in a non-HA environment:

1. DMF server:

dmfserver# service dmfsoap stop (if started)
dmfserver# service dmfman stop (if started)

2. Parallel data-mover nodes:

mover# service dmf_mover stop

Note: Executing service dmf_mover stop on a mover node will cause
existing data-mover processes to exit after the LS notices this change, which may
take up to two minutes. The existing data-mover processes may exit in the
middle of recalling or migrating a file; this work will be reassigned to other
data-mover processes.

3. DMF server:

dmfserver# service dmf stop

140 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

4. Parallel data-mover nodes:

mover# service openvault stop

5. DMF server:

dmfserver# service openvault stop (if OpenVault)
dmfserver# service tmf stop (if TMF)
dmfserver# service pcp-storage stop (if started)
dmfserver# service pcp stop

Using Out-of-Library Tapes
The mechanism for handling tape volumes that are physically not in the tape library
varies depending on the mounting service:

• "TMF and Out-of-Library Tapes" on page 141

• "OpenVault and Out-of-Library Tapes" on page 141

TMF and Out-of-Library Tapes

When TMF is the mounting service, the msgd(8) command displays requests to import
volumes. With TMF, DMF has no knowledge of what tapes are out of the library.

OpenVault and Out-of-Library Tapes

When OpenVault is the mounting service and a recall request is made for a tape that
is physically not in the library, DMF will first try to read from copies on other
volumes before it requests that the out-of-library tape be imported. If the reads from
all other copies fail (for example, because their volumes are locked with the hlock
flag), then DMF will request that the tape be imported.

DMF will wait to read from volumes being written to before requesting that a tape be
imported; this occurs whether or not the FORWARD_RECALLS configuration parameter
is set to ON (see "volumegroup Object" on page 318).

DMF will request that the tape be imported before waiting for a copy in a library that
has been permanently disabled with ov_library -D; see the ov_library(8) man
page.

007–5484–012 141

4: Installing and Configuring the DMF Environment

When a tape must be imported, DMF will send an email and issue an alert; you can
use the dmoper(1) command to display these requests.

Example scenarios using volume groups named vgA, vgB, and vgC:

• Suppose that:

– vgA contains the primary copy but is not in the library

– vgB contains a secondary copy

– FORWARD_RECALLS is configured OFF (the default)

– The OpenVault library is enabled

In this case, DMF will first try to recall from vgB. If that fails (for example, if
vgB’s hold flags do not permit its use), then DMF will ask that the tape belonging
to vgA be imported.

• Suppose that:

– vgA contains the primary copy but its library is permanently disabled via the
ov_library -D command

– vgB contains a secondary copy whose tape is not in the library

– vgC holds a tertiary copy but its tape is currently being written to

– FORWARD_RECALLS is configured ON for all three VGs

In this case, DMF will wait for the tape in vgC to become available. If that recall
fails, then DMF will ask that the tape in vgB be imported. If that recall also fails,
then DMF will wait for the library containing vgA to be enabled.

With OpenVault, also note the following:

• Tapes that are not in the library are not eligible for migrations or merging. See the
hextern flag in "dmvoladm Directives" on page 448 for more information.

• The tapes that contain volume serial numbers used for backup tasks (as specified
by the DUMP_TAPES configuration parameter) may not be out of the library.

Customizing DMF
You can modify the default behavior of DMF as follows:

142 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "File Tagging" on page 143

• "Site-Defined Policies" on page 144

• "Site-Defined Client Port Assignment in a Secure Environment" on page 144

File Tagging

File tagging allows an arbitrary 32-bit integer to be associated with specific files so that
they can be subsequently identified and acted upon. The specific values are chosen
by the site; they have no meaning to DMF.

Non-root users may only set or change a tag value on files that they own, but the
root user may do this on any files. The files may or may not have been previously
migrated.

To set a tag, use the dmtag(1) command or the libdmfusr.so library. For example:

% dmtag -t 42 myfile

To view the tag set for a given file, use the dmtag or dmattr commands. For
example:

% dmtag myfile

42 myfile

% dmattr -a sitetag myfile
42

You can test a file’s tag in the when clause of the following configuration parameters
by using the keyword sitetag:

AGE_WEIGHT
CACHE_AGE_WEIGHT
CACHE_SPACE_WEIGHT
SELECT_LOWER_VG
SELECT_MSP
SELECT_VG
SPACE_WEIGHT

For example:

SELECT_VG fasttape when sitetag = 42

You can also access it in site-defined policies, as described below.

007–5484–012 143

4: Installing and Configuring the DMF Environment

For more information, see the dmtag(1) man page.

Site-Defined Policies

Site-defined policies allow you to do site-specific modifications by writing your own
library of C++ functions that DMF will consult when making decisions about its
operation. For example, you could write a policy that decides at migration time
which volume group (VG) or MSP an individual file should be sent to, using selection
criteria that are specific to your site.

Note: If you customize DMF, you should inform your users so that they can predict
how the user commands will work with your policies in place. You can add error,
warning, and informational messages for commands so that the user will understand
why the behavior of the command differs from the default.

For information about the aspects of DMF that you can modify, see Appendix C,
"Site-Defined Policy Subroutines and the sitelib.so Library" on page 565.

Site-Defined Client Port Assignment in a Secure Environment

If you have a secure environment and if you require more than 512 active connections
between DMF clients and the DMF server, you can specify that DMF assign a specific
range of TCP ports.

!
Caution: If the environment is not secure, do not use this feature.

When a user executes a remote DMF client command, the user-command mechanism
initiates a trusted setuid root dmusrcmd(8) process on the client. This dmusrcmd
process performs all of the access validation required to send the user request the
DMF server. By default, the remote dmusrcmd process verifies that it connects to the
original client dmusrcmd process via a reserved port number in the range 512-1023;
these port numbers are only available to trusted (root) processes. If all of those ports
are in use, the dmusrcmd process will block until one of the trusted ports is free.

If your environment is secure (and therefore assigning a port that is not reserved for a
trusted process is acceptable) and you require more than 512 active ports, you can
create a /usr/lib/dmf/dmf_client_ports file on every potential DMF server
and every DMF client. The file on the potential DMF servers must contain every port

144 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

on which a client is allowed to connect, and the file on each DMF client must contain
the ports that client is allowed to access. The file must be owned by root and have
an access mode of 0600.

You can use a range to specify the permitted ports. The format of the file is one or
more lines as follows:

start_port_number:end_port_number

The start_port_number value must be greater than or equal to 512 and must be less
than or equal to end_port_number. The order of the lines in the file is significant in
that dmusrcmd will start attempting to assign port numbers with the first line and
process the lines in the order they appear in the file.

For example:

• To assign ports in the range 5000–6000:

5000:6000

• To first assign ports in the range 7000–8000 and then assign ports in the range
5000–6000 (and never assign ports in the range 6001–6999):

7000:8000

5000:6000

If the file exists but is empty, dmusrcmd will not attempt to bind to any particular
port numbers, but will use the non-secure port that is assigned to it by the kernel.

If the file does not exist, the default behavior of only assigning ports 512-1023 will be
enforced.

Importing Data From Other HSMs
DMF has utilities to assist with importing data from filesystems managed by other
hierarchical storage management (HSM) packages into DMF, provided that the
filesystems to be imported are accessible via FTP or as local or NFS-mounted
filesystems. These tools are not distributed with the DMF product. They are for use
only by qualified SGI Professional Services personnel who assist sites doing
conversions. For more information, contact SGI Professional Services.

007–5484–012 145

Chapter 5

DMF Manager

This chapter discusses the following:

• "Accessing DMF Manager" on page 148

• "Getting Started with DMF Manager" on page 148

• "Running Observer Mode or admin Mode" on page 151

• "Getting More Information in DMF Manager" on page 154

• "Setting Panel Preferences" on page 157

• "Refreshing the View" on page 158

• "Managing Licenses and Data Capacity with DMF Manager" on page 159

• "Configuring DMF with DMF Manager" on page 166

• "Displaying DMF Configuration File Parameters" on page 175

• "Starting and Stopping DMF and the Mounting Service" on page 176

• "Discovering DMF Problems" on page 177

• "Filtering Alerts" on page 181

• "Seeing Relationships Among DMF Components" on page 183

• "Managing Volumes" on page 185

• "Managing Libraries" on page 188

• "Displaying DMF Manager Tasks" on page 189

• "Monitoring DMF Performance Statistics" on page 189

• "Displaying Node Status" on page 208

007–5484–012 147

5: DMF Manager

Accessing DMF Manager
To access DMF Manager, do the following:

1. Point your browser to the following secure address:

https://YOUR_DMF_SERVER:11109

2. Accept the security certificate.

Note: DMF Manager generates its own SSL certificates, rather than having the
SSL certificates signed by a commercial certificate authority. Therefore, the
certificate warning is safe to ignore.

Also see "Running Observer Mode or admin Mode" on page 151.

Getting Started with DMF Manager
DMF Manager lets you configure DMF, install licenses, view the current state of your
DMF system, and make operational.

When you initially open DMF Manager, you will see the Overview panel, which
displays a high-level graphical view of the DMF environment and status for each DMF
component, as shown in Figure 5-1. You can also configure DMF from this panel.

Each menu bar selection provides access to a DMF Manager panel, described in Table
5-1. To open a panel, click on the panel name in the menu. Right-click on the tab title
to see its menu. Each panel has a key for its symbols.

Note: Some DMF Manager windows do not automatically update; choose the Refresh
menu item to update an existing view.

148 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Table 5-1 DMF Manager Panel Menus

Menu Bar Item Panel Name Description

Configuration Overview High-level graphical view of the DMF environment, status
for each DMF component, and configuration capability

Parameters Details about the current parameter settings in the DMF
configuration file and status for each DMF component

Licenses Information about installed DMF, CXFS, and SGI
Management Center licenses and the ability to add and
delete licenses (when logged in as admin)

Storage Volumes Status of volumes: physical tapes, SGI 400 virtual tape
library (VTL) virtual tapes, and COPAN massive array of
idle disks (MAID) volumes

Libraries Status of libraries

Messages Reports Daily activity reports

Alerts Informational messages, warnings, and critical errors

DMF Manager Tasks Status of commands issued via DMF Manager that may
take time to complete

Statistics DMF Resources Current and historical reports about the state and the
performance of the DMF filesystems and hardware

DMF Activity Current and historical reports about the state and the
performance of the DMF requests and throughput

DMF I/O Statistics about how DMF is using data and various kinds
of specific media

Help Getting Started This section

Admin Guide This manual

About DMF Manager Version and copyright information about the tool

007–5484–012 149

5: DMF Manager

Messages
about DMF

Filesystem
icon

Click
to log in/out

DMF statusProblem on
volume

Panel tabs
(right-click

to see menu)

Menu bar
(click to

see menu)

DMF status

Figure 5-1 DMF Manager Overview Panel

Some panels have expandable folders. Click on the + symbol to expand a folder or on
the — symbol to contract it, or use the Expand All and Collapse All buttons. Click
on a report name to display the associated graphs. For example, see Figure 5-21 on
page 185.

150 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Running Observer Mode or admin Mode
You can run DMF Manager in observer mode (the default) or you can log in to admin
mode for more functionality, as described in the following sections:

• "Observer Mode Functionality" on page 151

• "admin Mode Functionality" on page 152

• "admin Mode Access" on page 153

Observer Mode Functionality

In the default observer mode in DMF Manager, you can do the following:

• View the state of DMF and the mounting service. See:

– "Getting Started with DMF Manager" on page 148

– "Discovering DMF Problems" on page 177

• View the fullness of each DMF-managed filesystem. See:

– "Getting Started with DMF Manager" on page 148

– "Discovering DMF Problems" on page 177

• View the licensed capacity. See "Showing Current DMF Usage and Licensed
Capacity" on page 161.

• View installed DMF, CXFS, XVM, and SGI Management Center licenses and the
system information required to request a new license. See "Managing Licenses and
Data Capacity with DMF Manager" on page 159.

• View DMF’s configuration. See "Displaying DMF Configuration File Parameters"
on page 175.

• View relationships among DMF components. See "Seeing Relationships Among
DMF Components" on page 183.

• Get context-sensitive help and view the DMF administration guide. See "Getting
More Information in DMF Manager" on page 154.

007–5484–012 151

5: DMF Manager

• View information about volumes:

– View each volume’s status and fullness

– Sort which volumes to view

– Display dump tapes (physical tapes and SGI 400 VTL virtual tapes)

– View the status of each drive

– Temporarily create a user-defined query

Note: Saving the query requires admin mode. See "admin Mode Functionality"
on page 152.

See:

– "Getting Started with DMF Manager" on page 148

– "Managing Volumes" on page 185

• View the daily reports (with history) and DMF alerts. See "Discovering DMF
Problems" on page 177.

• View the long-running DMF Manager tasks (those currently executing and a
history of executed tasks). See "Displaying DMF Manager Tasks" on page 189.

• View current and historical reports about DMF activity and resources. See
"Monitoring DMF Performance Statistics" on page 189.

admin Mode Functionality

If you log in to admin mode, you can perform the following additional tasks:

• Add licenses to or delete licenses from the /etc/lk/keys.dat system license
file or the DMF license file specified by the LICENSE_FILE configuration
parameter (see "base Object Parameters" on page 217).

• Start/stop DMF and the mounting service. See "Starting and Stopping DMF and
the Mounting Service" on page 176.

• Create or modify the DMF configuration. See "Configuring DMF with DMF
Manager" on page 166.

152 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• Manage volumes (physical tapes, SGI 400 VTL virtual tapes, and COPAN MAID
volumes):

– Change the hold flags

– Manually mark a volume as sparse, meaning containing blank or inactive areas
after data has been deleted. (The data from a sparse volume will be later
moved to another volume via volume merging, the mechanism provided by the
LS for copying active data from volumes that contain largely obsolete data to
volumes that contain mostly active data.) For more information, see "Volume
Merging" on page 436.

Note: Merging is not appropriate for a volume configured as a fast-mount
cache.

– Empty a damaged volume of all useful data and restore another copy in the
volume group (VG)

– Eject physical tape cartridges from the tape library

– Load physical tape cartridges into the tape library and configure them for
DMF’s use with OpenVault

– Read data to verify the volume’s integrity

– Enable/disable drives

See "Managing Volumes" on page 185.

• Acknowledge DMF alerts. See "Discovering DMF Problems" on page 177.

• Control long-running DMF Managed tasks (acknowledge, suspend/resume, or
kill). See "Displaying DMF Manager Tasks" on page 189.

admin Mode Access

To log in to DMF Manager as the admin user, click the Log In button in the
upper-right corner of the window, as shown in Figure 5-1 on page 150.

The default admin password is INSECURE. You should change the admin password
and only provide it to those persons who you want to make administrative changes.
(After you change the admin password, you cannot administratively set it to
INSECURE again.)

007–5484–012 153

5: DMF Manager

Note: If you are upgrading from a release prior to DMF 5.4, the admin password will
be reset to INSECURE. You should change the admin password to a site-specific value
after upgrading.

Getting More Information in DMF Manager
Each panel that uses icons has a key for its symbols, available via the Show Key
menu selection. Figure 5-2 shows the key to icons on the Overview panel.

154 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-2 Overview Key to Symbols

To display information about an object, you can move the mouse button over the
object, as shown for the burn server in Figure 5-3.

007–5484–012 155

5: DMF Manager

Figure 5-3 Displaying Information About an Icon

To get more information about any item, right-click on it and select the What is this?
option. For example, Figure 5-4 shows the help text for the Alerts icon.

156 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-4 “What Is ...” Information

Each panel also has a What is ’PanelName’? menu selection.

For a quick-start to using DMF Manager, select the following from the menu bar:

Help
> Getting Started

To access the DMF administrator guide (this manual), select the following:

Help
> Admin Guide

Setting Panel Preferences
Each DMF Manager panel (other than the Help panels) has a Set PanelName
Preferences menu item that allows you to vary what is shown on the panel, how it
behaves, and how often it is refreshed (see "Refreshing the View" on page 158).

For example, Figure 5-5 shows the preferences that you can set for the Overview
panel.

007–5484–012 157

5: DMF Manager

Figure 5-5 DMF Manager Overview Preferences Panel

Refreshing the View
Some DMF Manager panels refresh automatically by default but others do not. To
refresh a panel, choose the Refresh PanelName menu item.

!
Caution: If you refresh the Overview panel while in configuration mode, any
changes that have been made but not saved or applied will be lost and you will exit
from configuration mode.

158 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

You can use Set PanelName Preferences menu to set an automatic refresh interval for
individual panels. See "Setting Panel Preferences" on page 157.

Note: A refresh interval that is too short can cause contention between the DMF server
and the browser. On heavily used systems, some displays may not be refreshed at
extremely low intervals because the time to gather the information exceeds the refresh
time. In such cases, you will only see a refresh as often as one can be completed.

Managing Licenses and Data Capacity with DMF Manager
This section discusses the following:

• "Adding New Licenses" on page 159

• "Deleting Existing Licenses" on page 160

• "Viewing the Installed Licenses" on page 161

• "Showing Current DMF Usage and Licensed Capacity" on page 161

• "Showing Remaining Storage Capacity" on page 162

For more information, see Chapter 2, "DMF Licensing" on page 59.

Adding New Licenses

To add one or more a new licenses, do the following:

1. Gather the required host information by viewing the Licenses panel. For more
information, see "Gathering the Host Information" on page 65.

2. Obtain the required keys from SGI. See "Obtaining the License Keys" on page 65.

3. Log in to DMF Manager as admin.

4. Paste the keys into the text-entry area of the Licenses panel, highlighted in Figure
5-6.

5. Click the Add license button.

007–5484–012 159

5: DMF Manager

Figure 5-6 Adding a License Key in DMF Manager

In a DMF server HA configuration, you can add licenses to all potential DMF servers.
Select the node to be acted on by choosing its name from the Showing license from
/etc/lk/keys.dat on prompt.

Deleting Existing Licenses

To delete one or more existing licenses, do the following:

1. Log in to DMF Manager as admin.

160 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

2. Select the licenses you want to delete by clicking their check boxes.

3. Right-click anywhere in the table and select Delete selected licenses.

In an HA configuration, you can delete licenses from all potential DMF servers in the
HA cluster. Select the node to be acted on by choosing its name from the Showing
license from /etc/lk/keys.dat on prompt.

Viewing the Installed Licenses

To see the currently installed licenses for the server running DMF Manager, select:

Configuration
> Licenses

The Licenses panel lists the currently installed DMF, CXFS, XVM, and SGI
Management Center licenses. By default, the licenses display in the same order in
which they appear in the /etc/lk/keys.dat file. You can sort the table by clicking
on the desired column header. To resize a column, select the boundary divider in the
table header.

In an HA configuration, you can view licenses from all potential DMF servers in the
HA cluster. Select the node to be acted on by choosing its name from the Showing
license from /etc/lk/keys.dat on prompt.

Showing Current DMF Usage and Licensed Capacity

To determine the current DMF usage and licensed capacity, right-click on the DMF
icon in the Overview panel and select Show Usage....

This displays the amount of active and soft-deleted data currently being managed by
DMF, broken down into the number of bytes managed by each library server, disk
media-specific process (MSP), and disk cache manager (DCM) MSP. It also compares
the total number of bytes currently managed to the total capacity permitted by the
installed DMF licenses, and displays the resulting number of additional bytes that
DMF can manage.

For example, Figure 5-7 shows that DMF is managing only a small fraction of the
number of bytes for which it is licensed, and that the stk9710 LS is managing the
fewest number of bytes.

007–5484–012 161

5: DMF Manager

Figure 5-7 DMF Current Usage and License Capacity

You can also display this information by selecting the following:

Configuration
> Licenses

> Show Usage...

Showing Remaining Storage Capacity

To display the total capacity, an estimate of the current total migrated data that is
active, and an estimate of the writable space that is currently available, right-click on
the DMF icon in the Overview panel and select Show Capacity. For example, Figure
5-8 shows the reports for two library servers.

162 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-8 DMF Capacity

Note: To see accurate estimates, you must first set the size of each volume accurately.
For details, see the dmvoladm(8) man page.

This displays an estimate of the remaining storage capacity for each volume group in
each LS. It reports the following totals for all volumes in the listed VGs and LSs (data
compression of data is not taken into account):

Field Description

Volume Group The name of volume group

007–5484–012 163

5: DMF Manager

Size The total capacity in megabytes (MB)

Active The total migrated data (in MB) that may be recalled
(also represented as a percentage)

Avail The total writable space (in MB) on all volumes within
the VG or LS (also represented as a percentage)

Locked volumes are noted and an informational message highlights their number for
each LS.

For example, Figure 5-9 shows that the C00_vg0 and C00_vg0 VGs are almost full
and therefore there might not be any more space available for migrations because
they each have 2 volumes reserved for merges (set by the RESERVED_VOLUMES
parameter, see "volumegroup Object" on page 318).

164 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-9 Remaining DMF Capacity

To display more information, such as volume size, select:

Volumes
> Set Volumes Preferences

To see details about specific volumes, select:

Storage
> Volumes

007–5484–012 165

5: DMF Manager

Check the desired items to display.

There may be additional space that can be reclaimed from data that was written and
has since been hard deleted. For more information, see "Volume Merging" on page
436.

For more information about how the calculations are made, see the dmcapacity(8)
man page.

Configuring DMF with DMF Manager
You can establish and edit the DMF configuration by logging in as the admin user
and using the Overview panel. If you make a change to the configuration, the
background color will change to gray wallpaper displaying “Configuration mode”,
indicating that you must save or cancel your changes.

This section discusses the following:

• "Limitations to the DMF Configuration Capability" on page 167

• "Showing All Configured Objects" on page 167

• "Setting Up a New DMF Configuration File" on page 168

• "Copying an Object" on page 171

• "Modifying an Object" on page 173

• "Creating a New Object" on page 173

• "Deleting an Object" on page 174

• "Validating Your Changes" on page 174

• "Saving Your Configuration Changes" on page 174

• "Exiting the Temporary Configuration without Saving" on page 175

166 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Limitations to the DMF Configuration Capability

The configuration capability in DMF Manager has the following limitations:

• Comments are not permitted in the configuration file created or modified by DMF
Manager. If you edit an existing configuration file that has comments and save the
file, the comments will be deleted from the updated configuration file.

Note: The original DMF configuration file, including the comments, will be
preserved in a time-stamped copy (/etc/dmf/dmf.conf.TIMESTAMP).

• Adding site-specific objects or site-specific parameters is not supported (if
site-specific items already exist in the DMF configuration file, they are preserved).

• DMF Manager cannot detect if multiple users have logged in as admin and are
therefore capable of overwriting each other’s changes. At any given time, only one
user should log in as admin and make configuration changes.

Showing All Configured Objects

To see all currently configured objects, select:

Overview
> Configure...

> Show All Configured Objects

By default, all currently configured objects will also be shown after you make a
configuration change and select Continue.

After you either save or cancel the configuration changes, the icons that are displayed
will return to the preferences you have set. See "Setting Panel Preferences" on page
157.

007–5484–012 167

5: DMF Manager

Setting Up a New DMF Configuration File

To create a new DMF configuration file, select one of the preconfigured samples:

Overview
> Configure ...

> Pre-Configured
> sample_name

You can also access this menu by right-clicking anywhere in the Overview panel.

The preconfigured items provide a starting point of objects that you can modify with
specific information for your site. For example, Figure 5-10 shows the icons that will
appear after you select DCM MSP Sample. The gray wallpaper indicates that the
sample file has been loaded. The errors displayed will disappear after you validate
the configuration.

168 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-10 Temporary Workspace for a Preconfigured DCM MSP Sample

The DCM MSP Sample selection includes the following objects:

• base object and dmdaemon object (represented by the DMF shield icon):

• filesystem object named /dmi_fs

• msp object named dcm_msp configured for a DCM MSP

• libraryserver object name ls

007–5484–012 169

5: DMF Manager

• drivegroup object name dg0

• volumegroup objects named vg1a, vg1b, vg1c

• taskgroup objects named daemon_tasks, dump_tasks, ls_tasks, and
dcm_tasks

• policy objects named space_policy, dcm_policy, and vg_policyconfigured
for automated space management and MSP selection

For more information about these objects and their parameters, see Chapter 6, "DMF
Configuration File" on page 211.

You can then modify the sample configuration as needed. See:

• "Copying an Object" on page 171

• "Modifying an Object" on page 173

• "Creating a New Object" on page 173

• "Deleting an Object" on page 174

• "Validating Your Changes" on page 174

• "Saving Your Configuration Changes" on page 174

To exit a preconfigured sample without saving any of your changes, select:

Overview
> Configure...

> Cancel Configuration

170 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Copying an Object

To copy an object, right-click on it and select:

Configure ...
> Copy

Then name the new object and enter the values you desire for the object’s parameters.
For example, Figure 5-11 shows naming a copied filesystem object /dmi_fs2.

Note: Many parameters have default values, but these are not necessarily shown in
the DMF Manager windows. Only those parameters with explicitly specified values
are shown by DMF Manager and added to the configuration file. If a parameter has
no value specified, its default value is assumed.

007–5484–012 171

5: DMF Manager

Figure 5-11 Naming a Copied Object

172 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

To get more information a parameter, right-click on it and select the What is this?
option. See "Getting More Information in DMF Manager" on page 154.

To make your changes appear in the Overview display, select Continue. To
permanently save your changes, see "Saving Your Configuration Changes" on page
174.

Modifying an Object

To edit the parameters for an existing object, right-click on it and select:

Configure ...
> Modify

Then enter the values you desire for the parameters shown. To get more information
a parameter, right-click on it and select the What is this? option. See "Getting More
Information in DMF Manager" on page 154.

To rename an object, delete it and create a new object. See:

• "Copying an Object" on page 171

• "Creating a New Object" on page 173

• "Deleting an Object" on page 174

To make your changes in the temporary configuration view, select Continue. To
permanently save your changes, see "Saving Your Configuration Changes" on page
174.

Creating a New Object

To create a new object, right-click on blank space anywhere in the Overview panel and
select the object. Also see "Setting Up a New DMF Configuration File" on page 168.

You can also right-click on an existing object and create another empty object of the
same type by selecting:

Configure ...
> Add New

007–5484–012 173

5: DMF Manager

Then name the object and enter the values you desire for the parameters shown. To
get more information a parameter, right-click on it and select the What is this?
option. See "Getting More Information in DMF Manager" on page 154.

To make your changes appear in the Overview display, select Continue. To
permanently save your changes, see "Saving Your Configuration Changes" on page
174. Also see "Exiting the Temporary Configuration without Saving" on page 175.

Deleting an Object

To delete an object, right-click on it and select:

Configure ...
> Delete

Validating Your Changes

To verify that your changes to the temporary configuration are valid, select the
following:

Overview
> Configure ...

> Validate Configuration

Saving Your Configuration Changes

To make your changes appear in the Overview display for this DMF Manager
session, click Continue after creating or modifying an object. (This does not change
the DMF configuration file.)

To save the temporary configuration so that you can work on it later, select:

Overview
> Configure ...

> Save Temporary Configuration

To permanently save your changes and apply them to the DMF configuration file, do
the following:

1. Verify that your changes are valid. See "Validating Your Changes" on page 174.

174 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

2. Select:

Overview
> Configure ...

> Apply Configuration

Exiting the Temporary Configuration without Saving

To exit the temporary configuration entirely without saving any of your changes,
select:

Overview
> Configure...

> Cancel Configuration

The Configure menu is also available by right-clicking within the Overview display.
If you refresh the screen, the temporary configuration will also be canceled.

Displaying DMF Configuration File Parameters
The following menu bar selection displays the contents of the DMF configuration file:

Configuration
> Parameters

For example, Figure 5-12 shows the configuration parameters for a drive group. For
information about any individual parameter, right-click on it and select the What is
option.

007–5484–012 175

5: DMF Manager

Figure 5-12 DMF Configuration Parameters in DMF Manager

Starting and Stopping DMF and the Mounting Service
To start or stop DMF and the mounting service, do the following:

1. Log in as the admin user.

2. Right-click on the DMF icon in the Overview panel.

3. Select the desired action.

176 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Discovering DMF Problems
DMF Manager denotes issues by adding a red or yellow icon next to the component
that is experiencing problems. For example, Figure 5-13 shows that although DMF is
still running, there is a potential problem. To investigate, hover the mouse over the
shield icon to display pop-up help that details the warning.

Figure 5-13 DMF Manager Showing Problems in the DMF System

007–5484–012 177

5: DMF Manager

For more information, right-click the Alerts icon flag and select Show Alerts... or
choose the following from the menu bar:

Messages
> Alerts

Either action will open the Alerts panel, which displays the unacknowledged alerts
(by default, grouped by date and message) with the following sortable fields:

• Time is the date and time at which a particular alert was issued (by default, alerts
are sorted by time from most recent to oldest)

• Alert Message is the notice, warning, or critical error reported during the
operation of DMF

• Priority is an icon as shown in Figure 5-14 that represents the severity of the alert

• Host is the node that issues the alert

• Count is the number of times this particular alert has been issued within one
calendar day

Note: By default, identical alerts are grouped and only the time that the last alert
was issued is displayed. To view all alerts and their corresponding time stamps,
deselect the Group identical alerts within a day box in the Alerts Preferences
panel.

Figure 5-14 Alerts Key

Figure 5-15 shows an example of unfiltered alerts.

178 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-15 Unfiltered Alerts

007–5484–012 179

5: DMF Manager

For more information about an alert, select it and choose Help on this alert, such as
shown in Figure 5-16. To customize the display, see "Filtering Alerts" on page 181.

Figure 5-16 DMF Manager Alerts Panel and Help Information

If you are logged in, you can acknowledge selected alerts or clear all alerts. See
"Running Observer Mode or admin Mode" on page 151.

180 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

You can also use the following panel to view daily activity reports (those containing
critical log errors show red warning symbols):

Messages
> Reports

Filtering Alerts
You can customize the Alerts display by applying one or more filters.

For example, to show critical errors and warnings about OpenVault sent on December
5, you could establish three filters:

1. Click in the filter bar, as shown in Figure 5-17.

Click on the filter bar beneath
a column header to create a filter

Figure 5-17 Define Filters for Alerts

2. Rule 1:

• For Column, select Time

007–5484–012 181

5: DMF Manager

Note: If you click in the filter bar below a column header, the column name
will be selected automatically in the Filter dialog.

• For Condition, select is

• For Value, select December 5

3. Click the green plus sign to add another rule, as shown in Figure 5-18.

Figure 5-18 Adding Another Filter Rule

4. Rule 2:

• For Column, select Priority

• For Condition, select is less than

• For Value, select 3

5. Click the green plus sign to add another rule.

182 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

6. Rule 3:

• For Column, select Alert Message

• For Condition select contains

• For Value, enter openvault

7. Click Filter to apply the rules. The display would then reduce to that shown in
Figure 5-19.

Figure 5-19 Filtered Alerts

Seeing Relationships Among DMF Components
To see the relationships among DMF components, click on a component icon in the
Overview panel and select its Show Relationships menu item. Figure 5-20 shows the
relationships for the ftp1 FTP MSP.

To remove the relationship lines, click Hide Relationships.

007–5484–012 183

5: DMF Manager

Figure 5-20 Relationships Among DMF Components

184 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Managing Volumes
To manage volumes, select the following:

Storage
> Volumes

Figure 5-21 shows an example.

Figure 5-21 DMF Manager Volumes Panel

007–5484–012 185

5: DMF Manager

You can filter the volumes displayed, similar to the information in "Filtering Alerts"
on page 181.

When logged in, you can also perform the following actions for selected volumes:

• Change the Hold Flag (hflag), shown in Figure 5-22, sets the hold flag values on
individual volumes. Click the On column to enable a flag or click the Off column
to disable a flag. For more information about the hold flags, click the Help button
or select the What is menu for the flags displayed in the Volumes panel.

186 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Select on
or off

Select which
flags to set

Figure 5-22 Changing Hold Flags in DMF Manager

007–5484–012 187

5: DMF Manager

• Merge Data Off Volume marks a volume as a candidate to be merged with
another volume, thereby recovering space that was lost due to holes in the volume
from deleted data (a sparse volume). These operations will be performed when
appropriate. This is the preferred way to move data off of a volume.

Note: Merging is not appropriate for a volume configured as a fast-mount cache.

• Empty Damaged Volume forces data to immediately move to another volume.

Note: Use this as a last resort. You should first try Merge Data Off Volume.

• Eject Tape removes the selected physical tape cartridges from the tape library but
keeps their tape IDs (volume serial numbers, or VSNs) in the VG. (In some cases,
this command may cause a door to be unlocked, requiring a human operator to
physically extract the cartridge from the library.) This only applies to physical
tapes managed by OpenVault.

• Verify Volume Integrity runs a verification to make sure that the data on the
volume is readable.

See "Running Observer Mode or admin Mode" on page 151.

You can also use the following menu bar selection to add volumes that are managed
by OpenVault:

Volumes
> Add Volumes ...

Managing Libraries
To view the status of libraries, choose the following from the menu bar:

Storage
> Libraries

If you are logged in to DMF Manager, you can enable or disable the selected libraries.
See "Running Observer Mode or admin Mode" on page 151.

188 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Displaying DMF Manager Tasks
A given DMF Manager task may require issuing a set of DMF commands, and these
commands may take some time to execute. The following panel displays the
long-running DMF Manager tasks that have been issued but not yet acknowledged:

Messages
> DMF Manager Tasks

When logged in, you can choose to show the tasks logs or acknowledge,
suspend/resume, or kill each selected DMF command, as appropriate. See "Running
Observer Mode or admin Mode" on page 151.

Monitoring DMF Performance Statistics
The Statistics menu provides current and historical views of DMF activity and
resources. This section discusses the following:

• "Using the Statistics Panels" on page 190

• "Metrics Collection" on page 191

• "DMF Activity" on page 191

• "DMF Resources" on page 194

• "DMF I/O" on page 203

Note: To see all of the available statistics via DMF Manager, you must set the
EXPORT_METRICS configuration parameter to ON. Do not change this parameter
while DMF is running; to change the value, you must stop and restart DMF. See
"base Object" on page 216.

007–5484–012 189

5: DMF Manager

Using the Statistics Panels

The DMF Resources and DMF Activity panels of the Statistics menu are divided
into the following areas:

• Report tree

• Graphs

• Key

To resize an area, drag the divider lines to the left or right.

Expandable folders in the tree (such as Requests) contain reports (such as Requests
Summary) and subfolders (such as Filesystem Requests). Click on the + symbol to
expand a folder or on the — symbol to contract it, or use the Expand All and
Collapse All buttons. Click on a report name to display the associated graphs.

Each graph is scaled according to the maximum value in each graph. To scale all of
the graphs with a common maximum value, check Scale graphs equally at the top of
the tree.

White space within a graph means that nothing happened during that time period, or
data was unavailable. This does not indicate an error condition.

DMF Manager distinguishes between the following:

• Current metrics are either drawn live from the server or are taken from the last few
minutes of the metric archives

• Historic metrics are taken exclusively from the metric archives

DMF Manager is able to display historical information for the following time periods:

• Last hour

• Last day (the previous 24 hours)

• Last month (the previous 30 days)

Note: Some DMF configuration parameters use multipliers that are powers of 1000,
such as KB, MB, and GB. However, the DMF Activity, DMF Resources, and
DMF I/O panels use multipliers that are powers of 1024, such as kiB, MiB, and GiB.
In particular, this means that 1 MiB/s is 220 = 1048576 bytes per second.

190 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Metrics Collection

SGI Performance Co-PilotTM continuously gathers performance metrics for the
DMF Activity and DMF Resources panels. See "Monitor the Size of the PCP Metrics
Archive" on page 115.

The DMF data movers (the DMF server and any parallel data-mover nodes) collect
the metrics displayed in the DMF I/O panel. See "Monitor the Size of the PCP
Metrics Archive" on page 115.

DMF Activity

This section discusses the following:

• "Overview of DMF Activity Reports" on page 191

• "Key to DMF Activity Reports" on page 192

• "Example of DMF Activity Report" on page 193

Overview of DMF Activity Reports

The reports in the DMF Activity panel show user-generated DMF activity:

• Requests reports show the number of requests being worked on

• Throughput reports show the rate of data throughput resulting from those requests

Note: Values shown are averaged over the previous few minutes, so they are not
necessarily integers as would be expected. This process also causes a slight delay in
the display, which means that the values of DMF Activity reports do not necessarily
match the current activity on the system, as seen in the DMF log files.

The following types of requests are reflected in these reports:

• Requests from the user to the DMF daemon. These are presented as an aggregate
across the DMF server, and on a per-filesystem basis, using the label of Filesystem.

• Requests from the DMF daemon to the subordinate daemons that manage the
secondary storage (a back-end request).

Sometimes, there is a 1:1 correspondence between a daemon request and a back-end
request (such as when a file is being recalled from secondary storage back to the

007–5484–012 191

5: DMF Manager

DMF-managed filesystem), but this is frequently not the case. For example, migrating
a newly created file to secondary storage will result in one back-end request per copy,
but deleting a migrated file results in a single daemon request but no back-end
request at that time. Volume merges may cause a lot of activity within a VG but none
at the daemon level.

In the Summary reports, the different types of requests are not distinguished from
each other. However, if you zoom in (via one of the subfolders, such as DCM MSP),
the resulting report shows the broad categories as well as by filesystem or by
secondary storage group, as appropriate.

Note: Some DMF configuration parameters use multipliers that are powers of 1000,
such as KB, MB, and GB. However, the DMF Activity and DMF Resources panels
use multipliers that are powers of 1024, such as kiB, MiB, and GiB. In particular, this
means that 1 MiB/s is 220 = 1048576 bytes per second.

Key to DMF Activity Reports

Each report under the DMF Activity tab shows an instantaneous pending-requests
graph and history graphs showing the following color-coded amounts of pending
requests:

Note: The exact definitions vary by report. For more a more precise description for a
given graph, click on a Key label to see its online help.

• Summary reports:

Key Description

Filesystem requests Number of all daemon requests that are pending

VG & MSP requests Number of VG, DCM MSP, FTP MSP, and disk MSP
requests that are pending

Last hour average Marker that shows the average number of pending
requests during the last hour

Last day average Marker that shows the average number of pending
requests during the last 24 hours

192 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• Aggregate and individual reports:

Key Description

Administrative Number of daemon requests that are pending or
throughput for such requests

Migrations Number of migration-related requests that are
pending or throughput for such requests

Recalls & copies Number of requests to recall/copy data or
throughput for such requests

Merges Number of merge requests that are pending or
throughput for such requests (for VGs only)

Other user activity Number of other requests related to user actions
(such as daemon remove requests or DCM cancel
requests) or throughput for such requests

Example of DMF Activity Report

Figure 5-23 is an example of a filesystem throughput report. It shows that the
primary activity for the /dmfusr filesystem are migrations, with a smaller number of
recalls and copies.

007–5484–012 193

5: DMF Manager

Figure 5-23 DMF Activity

DMF Resources

The DMF Resources panel shows how DMF is using its filesystems and hardware, as
described in the following sections:

• "Programs that Update the DMF Resources Reports" on page 195

• "Filesystem Folder" on page 195

• "Libraries Report" on page 197

• "Drive Group Folder" on page 198

194 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "Volume Group Folder" on page 200

• "DCM MSP Folder" on page 201

Programs that Update the DMF Resources Reports

The reports in the DMF Resources panel are updated at the interval specified in the
DMF Resources Preferences menu item by those DMF programs that scan the
filesystem inodes:

dmaudit
dmdadm
dmdskfree
dmfsfree
dmhdelete
dmscanfs
dmselect

Filesystem Folder

Each report under Filesystem shows an instantaneous occupancy graph and history
graphs showing the following color-coded amounts of space in the managed
filesystem:

Key Description

Free Free space

Not migrated Space used by files that are not migrated, such as
regular files, files that will never be migrated, and files
in the process of migration

Dual- & partial-state Space used by dual-state files (files where the data
resides both on online disk and on secondary storage)
and partial-state files (files where the data resides both
on online disk and on secondary storage)

For more information about file states, see "DMF File State Concepts" on page 14.

The reports also display the following values:

Offline The amount of space used in secondary storage for files
in the managed filesystem

007–5484–012 195

5: DMF Manager

Oversubscribed The amount of space that is oversubscribed, which is a
ratio of offline space to the total amount of space for a
given DMF filesystem (including space that is free,
space that is occupied by regular files, space that is
occupied by files that are migrated, including dual-state
files), calculated as follows:

offline_space / (free_space + migrated_space + not_migrated_space)

Note: This is a measure of data that could be on disk
but is not at this moment in time, rather than a measure
of the total amount of secondary storage being used.
The fact that a migrated file may have more than one
copy on the secondary storage is not considered.

Typically, the oversubscription ratio is the range of 10:1
to 1000:1, although is can vary considerably from site to
site.

The data presented in the graph is gathered periodically by DMF. The time at which
this information was gathered is displayed at the top of the page. The default
configuration is to update this information once daily (at 12:10 am).

Figure 5-24 is an example of a filesystem resource graph. It shows that the majority of
filesystem space for the /dmfusr filesystem is used by dual-state or partial-state files.
(White space within the graph means that data was unavailable during that time
period.)

196 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-24 Filesystem Resource Graph

Libraries Report

Note: The Libraries report is available only if you are using OpenVault. This folder is
unavailable if you are using TMF.

007–5484–012 197

5: DMF Manager

The Libraries report displays the number of slots that are used by DMF, used by
other applications, and empty, according to information obtained from OpenVault.

Drive Group Folder

The reports in the Drive Group folder provide information for each drive according
to the fields you select in the right-hand column:

• Base, which provide basic information on drive activity

• Current, which provide instantaneous values of drive activity and throughput

• Total, which provide aggregate values of drive activity and throughput

• Averages, which provide averaged values of drive activity and throughput

Note: This information is available only for DMF’s volumes. Any other use, such as
filesystem backups or direct use by users, is not shown.

To display a field in the table, click on its check box in the right-hand column. To
display all fields for a given category, click on the check box for the category name,
such as Base. For more information about a field, right-click on its column header in
the table and select What is.

To sort according to a given column, select the up or down arrow at the upper-right
corner of the column header. If you sort by multiple columns, their order is displayed
in the column header. To remove sorting for a column, click on the X icon.

Figure 5-25 shows that drive lto1 is in the process of mounting.

198 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-25 Drive Group Resource Information

007–5484–012 199

5: DMF Manager

Volume Group Folder

Each report under Volume Group shows the slot usage for this VG (for all libraries),
the allocation group (AG) report (if applicable), and the volume states in an
instantaneous occupancy graph and history graphs showing the following
color-coded amounts of space in the managed filesystem:

The key is as follows:

Key Metrics

Empty Number of empty volumes assigned to DMF

Partial Number of partially-filled volumes assigned to DMF

Merging Number of volumes being merged

Locked Number of volumes waiting for the hlock hold flag to
clear

Waiting to be freed Number of volumes waiting for the hfree hold flag to
clear

Read-only Number of volumes available for reads only (excluding
volumes with the hfull hold flag set)

Unavailable Number of volumes indefinitely unavailable (that is,
those with the hoa operator/administrator hold flag set)

For more information about hold flags, see "dmvoladm Field Keywords" on page 450.

Figure 5-26 is an example of an instantaneous VG resource graph. (White space
within the graph means that data was unavailable during that time period.)

200 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-26 Volume Group Resource Graph

DCM MSP Folder

The reports in the DCM MSP folder show the DCM MSP occupancy. The key is as
follows:

007–5484–012 201

5: DMF Manager

Key Description

Free Amount of space that is free in the DCM
MSPSTORE_DIRECTORY filesystem

Dual-resident Amount of space used in the DCM MSP
STORE_DIRECTORY by dual-resident files

Not dual-resident Amount of space used in the DCM MSP
STORE_DIRECTORY by files that are not dual-resident,
such as incompletely moved files and files that have
been completely moved to the DCM MSP
STORE_DIRECTORY but are not in a lower VG

Note: The DCM MSP reports have similar issues to filesystem reports with regard to
the frequency of updates, as described in "Filesystem Folder" on page 195.

Figure 5-27 is an example of a DCM MSP resource graph. It shows the majority of the
cache disk space is not dual-resident.

202 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-27 DCM MSP Resource Graph

DMF I/O

The DMF I/O panel lets you can create custom charts. One chart can represent
multiple data items. You can group similar charts under a folder to view them on a
single page. To save a chart, select the following:

007–5484–012 203

5: DMF Manager

DMF I/O
> Save current configuration of charts

To return to the previous configuration of charts, select the following:

DMF I/O
> Return to previous configuration of charts

Any DMF user can display, save and overwrite the chart configuration.

Note: To see I/O statistics via DMF Manager from all data movers, ensure that the
PERFTRACE_METRICS configuration parameter is set to ON (the default is OFF). See
"base Object" on page 216.

The DMF I/O panel lets you create custom charts that show how DMF is using data
movers and various kinds of specific media:

• Volumes (physical tapes, SGI 400 VTL virtual tapes, COPAN MAID volumes)

• Drives

• Filesystems (includes archive filesystems, DMF-managed filesystems, and DMF
administrative directories configured by the CACHE_DIR, TMP_DIR, and MOVE_FS
parameters)

• Servers (potential DMF servers)

• Movers (parallel data-mover nodes)

To create a chart, do the following:

1. Click Custom Charts in the left-hand side of the DMF I/O panel. This opens the
Add Customized Chart dialog.

2. Specify the time frame of the chart by selecting one of the following:

• Select time range:

– Enter the starting and ending dates (in month/date/year format, such as
2/27/2013) or use the pull-down calendar

– Enter the time using 24–hour format, (such as 15:59 for 3:59 PM) or use
the pull-down list

204 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• Select last: specify the number and unit of measure (minutes, hours, or days).
For example, to specify the last three hours, enter 3 and select hours.

3. Specify how often the chart should be refreshed (in seconds). This value cannot
be less than 60.

4. Name the folder name that will hold the chart and the individual chart.
Permitted names consist of alphanumeric characters, hyphens, underscores (no
whitespace is allowed).

5. Specify the data to be included in the chart:

Note: The more information you add to a single chart, the longer it will take to
draw the entire chart. To reduce clutter and increase readability and
responsiveness, specify no more than five data items.

You can specify the following:

• Target: specify the type of data to be collected. You can select from the
pull-down list or enter a specific name from the list.

• Hosts: specify the data-mover nodes and DMF server nodes from which to
collect data. You can select from the pull-down list or enter a specific name
from the list.

• Read/Write/Aggregate: For any particular target, select what type of I/O that
you want to track, which can be all of the following:

– Read rate

– Write rate

– Aggregate rate (sum of both read and write I/O)

• To add line to the graph, click Add data item. To remove lines from the
graph, click their check boxes and select Remove selected data items.

Note: The averaging algorithm attempts to represent most idle time periods. The idle
times are excluded from the averages as much as possible.

Figure 5-28 shows an example that creates a chart named chart1 that will display
write data collected for the last 60 minutes for filesystem /dmfusr1 on the host
named vajra.

007–5484–012 205

5: DMF Manager

Figure 5-28 DMF I/O Custom Chart Creation

By default, the chart appears under its group name in the left-hand side of the DMF
I/O panel, as shown in Figure 5-29.

206 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Figure 5-29 DMF I/O

To further manipulate the chart, click the Modify, Refresh, and Remove buttons
above the chart display.

When you exit this DMF Manager session, the chart configurations you created will
be removed. To save your new chart configurations, click Save current configuration
of charts in the DMF I/O panel menu. To go back to the previous set of chart
configurations, click Revert to previous configuration of charts in the panel menu
(only one set is allowed).

To automatically remove old performance records, set the PERF_RETENTION
configuration parameter to OFF and use the run_remove_logs.sh task. See
"taskgroup Object Parameters" on page 245.

Note: An averaging algorithm attempts to represent most idle time periods. The idle
times are excluded from the averages as much as possible.

007–5484–012 207

5: DMF Manager

Displaying Node Status
If you ar running the Parallel Data-Mover Option, you can display the status of a
node from the DMF and (when available) CXFS point of view by hovering the mouse
pointer over the node’s icon, as shown in Figure 5-30.

Figure 5-30 Node State

208 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The states are as follows:

• DMF states:

Active
Inactive
Disabled

• CXFS states such as:

Stable
Establishing membership
Inactive
Disabled

Right-click the icon and select Details... to display more information, including CXFS
mount information for the DMF administrative directories and DMF-managed
filesystems. Items in green font indicate that all is well; items in red font indicate a
problem. Click Help for more information about the fields. Figure 5-31 shows an
example.

Note: In a DMF HA environment, only the active DMF server is displayed.

007–5484–012 209

5: DMF Manager

Figure 5-31 Node Details

210 007–5484–012

Chapter 6

DMF Configuration File

This chapter discusses the following:

• "Configuration Objects Overview" on page 211

• "Stanza Format" on page 213

• "Units of Measure" on page 215

• "Device Block-Size Defaults and Bandwidth" on page 215

• "base Object" on page 216

• "dmdaemon Object" on page 228

• "node Object" on page 232

• "services Object" on page 236

• "taskgroup Object" on page 240

• "device Object" on page 267

• "filesystem Object" on page 269

• "policy Object" on page 276

• "fastmountcache Object" on page 301

• "LS Objects" on page 302

• "MSP Objects" on page 350

• "Summary of the Configuration File Parameters" on page 368

Configuration Objects Overview
The DMF configuration file (/etc/dmf/dmf.conf) defines a set of configuration
objects required by DMF. Each object is defined by a sequence of parameters and
definitions; this sequence is called a stanza. There is one stanza for each object.

The objects defined are as follows:

007–5484–012 211

6: DMF Configuration File

• The base object defines pathname and file size parameters necessary for DMF
operation. See "base Object" on page 216.

• The dmdaemon object defines parameters necessary for dmfdaemon(8) operation.
See "dmdaemon Object" on page 228.

• The node objects defines a host functioning as a data mover when using the
Parallel Data-Mover Option. There is a node object for every system in the DMF
configuration, excluding DMF clients. See "node Object" on page 232.

• The services object defines parameters for dmnode_service and other DMF
services. For DMF configurations using the Parallel Data-Mover Option, multiple
services objects may be defined. For basic DMF configurations, only one
services object may be defined. (The services parameters all have defaults, so
a services object is only required to change those defaults.) See "services
Object" on page 236.

• The taskgroup objects define parameters necessary for automatic completion of
specific maintenance tasks. See "taskgroup Object" on page 240.

• The device objects define parameters necessary for automatic use of tape devices.
Normally, the backup scripts would refer to a DMF drive group (DG) to define
parameters necessary for accessing tape drives, but if they are to use drives that
are not in use by DMF, you can use a device object to define these parameters.
See "device Object" on page 267.

• The filesystem object defines parameters related to DMF’s use of that
filesystem. See "filesystem Object" on page 269.

• The policy objects specify parameters to determine media-specific process (MSP)
or volume group (VG) selection, automated space-management policies, and/or
file weight calculations in automated space management. See "policy Object" on
page 276.

• The fastmountcache object defines the migrate groups (MGs) and independent
VGs (that is, those VGs that are not in an MG) that are members of the fast-mount
cache. See "fastmountcache Object" on page 301.

• The following objects are related to a library server (LS):

– The libraryserver object defines parameters relating to a library for an LS.
See "libraryserver Object Parameters" on page 303.

– The drivegroup object defines parameters relating to a pool of devices in a
specific LS. See "drivegroup Object Parameters" on page 306.

212 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

– The volumegroup object defines parameters relating to a pool of volumes
mountable on the drives of a specific DG that are capable of holding, at most,
one copy of user files. See "volumegroup Object" on page 318.

– The migrategroup object defines parameters that combine a set of MSPs and
VGs into an MG so that they can be used as a single destination for a migrate
request. See "migrategroup Object" on page 331.

– The resourcescheduler object defines parameters relating to the scheduling
of devices in a DG when requests from VGs exceed the number of devices
available. See "resourcescheduler Object Parameters" on page 337.

– The resourcewatcher object defines parameters relating to the production of
files informing the administrator about the status of the LS and its components.
See "resourcewatcher Object Parameters" on page 338.

– The allocationgroup object only applies if an ALLOCATION_GROUP
parameter is specified in the volumegroup object. You should specify the
allocationgroup stanza if you want to change the default value of its
VOL_MSG_TIME parameter. See "allocationgroup Object" on page 338.

• The msp object defines parameters necessary for an MSP’s operation. See:

– "FTP msp Object" on page 350

– "Disk msp Object" on page 356

– "DCM msp Object" on page 360

See also "Use Sample DMF Configuration Files" on page 86.

Stanza Format
A stanza has the following general format:

define object_name
TYPE object_type
parameter value

...

enddef

where:

007–5484–012 213

6: DMF Configuration File

• object_name varies by stanza. Most names are chosen by the system administrator
and may contain up to 8 uppercase or lowercase alphanumeric characters or
underscores; they cannot begin with an underscore or contain any white space.
Some require a specific name (such as base) and some may have longer names.
See the individual object subsections in this chapter for details.

• object_type identifies the type. Each type has a unique type identifier, detailed in
the following subsections.

• parameter is an argument to the object. Each object has a list of potential
parameters, defined later in this chapter.

• values is the value of the parameter. Where a value may be a list, separate the list
items by white space or tabs unless otherwise noted. If the default value of a
given parameter is appropriate for your site, you do not need to specify the
parameter in the DMF configuration file.

The configuration file is case-sensitive with the exception of the following parameter
values, which can appear in uppercase, lowercase, or mixed case:

ON
OFF
YES
NO

TRUE
FALSE
1
0

For simplicity, this chapter only refers to the values ON and OFF.

Lines within the configuration file can be indented for readability and the fields can
be separated by spaces and/or tabs. Blank lines and all text between a hash character
(#) and the end of that line are ignored. Except for comments, any line ending in a
back-slash (\) continues onto the next line.

For a summary of the parameters discussed in this chapter, see Table 6-4 on page 368.
For the most current set of parameters, see the dmf.conf(5) man page.

You can add site-specific parameters to any existing stanza or you can create a new
stanza. You should choose parameter and stanza names that will not cause conflict
with future SGI DMF parameters and stanzas. See "Start Site-Specific Configuration
Parameters and Stanzas with “LOCAL_”" on page 110.

Note: Before placing a new configuration into production, it is important to verify it
by running dmcheck(8). The dmcheck command will point out parameters and
stanzas that it does not recognize.

214 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Units of Measure
Several parameters allow you to specify the unit of measure, which can be any of the
following (all of which are powers of 1000, not 1024):

k or K for thousand (10^3)
m or M for million (10^6)
g or G for billion (10^9)
t or T for trillion (10^12)
p or P for quadrillion (10^15)

Device Block-Size Defaults and Bandwidth
DMF uses the following values as the default BLOCK_SIZE value and as the
bandwidth consumed in relation to the HBA_BANDWIDTH and NODE_BANDWIDTH
values.

Default
Device Block Size Bandwidth

AMPEX DIS/DST 1199840 160000000

COPAN MAID 1048576 160000000

DLT2000 131072 1250000
DLT4000 131072 1500000

DLT7000 131072 5000000

DLT8000 131072 6000000

HP ULTRIUM 2 262144 15000000

HP ULTRIUM 3 524288 80000000
HP ULTRIUM 4 524288 120000000

HP ULTRIUM 5 524288 140000000

HP ULTRIUM 6 524288 160000000

IBM 03590B1A 16384 90000000

IBM 03590E1A 32768 13500000

IBM 03590H1A 16384 13500000
IBM 03592E05 131072 100000000

IBM 03592E06 262144 160000000

IBM 03592E07 524288 250000000

IBM ULTRIUM-TD1 131072 15000000

IBM ULT3580-TD1 131072 15000000

007–5484–012 215

6: DMF Configuration File

IBM ULTRIUM-TD2 262144 30000000
IBM ULT3580-TD2 262144 30000000

IBM ULTRIUM-TD3 262144 80000000

IBM ULT3580-TD3 262144 80000000

IBM ULTRIUM-TD4 524288 120000000

IBM ULT3580-TD4 524288 120000000
IBM ULTRIUM-TD5 524288 140000000

IBM ULTRIUM-HH5 524288 140000000

IBM ULT3580-TD5 524288 140000000

IBM ULT3580-HH5 524288 140000000

IBM ULTRIUM-TD6 524288 160000000

IBM ULTRIUM-HH6 524288 160000000
IBM ULT3580-TD6 524288 160000000

IBM ULT3580-HH6 524288 160000000

QUANTUM SuperDLT1 131072 11000000

QUANTUM SDLT320 131072 16000000

QUANTUM SDLT600 131072 36000000
SEAGATE ULTRIUM 262144 16000000

SONY SDX-700C 131072 12000000

SONY SDZ-100 131072 30000000

SONY SDZ-130 262144 30000000

SONY SDZ-200 524288 45000000

SONY SDZ-230 524288 45000000
STK 9840 126976 10000000

STK T9840B 126976 19000000

STK T9840C 262144 30000000

STK T9840D 262144 30000000

STK T9940A 262144 10000000
STK T9940B 262144 30000000

STK T10000A 524288 120000000

STK T10000B 524288 120000000

STK T10000C 524288 240000000

STK T10000D 524288 300000000
Other devices 65536 160000000

base Object
This section discusses the following:

• "base Object Name" on page 217

216 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "base Object Parameters" on page 217

• "base Object Examples" on page 224

base Object Name

The name of the base object must be base.

base Object Parameters

The base object’s parameters define pathnames and file sizes necessary for DMF
operation. It is expected that you will modify the pathnames, although those
provided will work without modification. All pathnames must be unique.

Warning: Never change pathnames or server names in base object parameters while
DMF is running; making changes of this type can result in data corruption or data
loss.

Parameter Description

TYPE Specifies base (required name for this type of object).
There is no default.

ADMDIR_IN_ROOTFS Specifies which DMF administrative directories can
reside in the root (/) filesystem. By default, the DMF
daemon does not permit a DMF administrative
directory to reside in the root filesystem, which avoids
the situation where a misconfigured or incorrectly
mounted filesystem could fill the root filesystem. You
can override this default action by using the
ADMDIR_IN_ROOTFS parameter to specify a list of
directories. The DMF daemon will abort if the directory
specified by any of the following parameters resides in
the root filesystem but does not appear in the
ADMDIR_IN_ROOTFS list:

• HOME_DIR

• SPOOL_DIR

• JOURNAL_DIR

007–5484–012 217

6: DMF Configuration File

• TMP_DIR

• CACHE_DIR

• Disk MSP STORE_DIRECTORY

Do not change this parameter while DMF is running.

ADMIN_EMAIL Specifies the e-mail address to receive output from
administrative tasks (see "Automated Maintenance
Tasks" on page 132). The mail can include errors,
warnings, and output from any configured tasks. You
can specify a list of addresses. When using the Parallel
Data-Mover Option, data movers (the DMF server node
and the parallel data-mover nodes) may send email to
the ADMIN_EMAIL addresses. Therefore, choose
addresses that can receive email from any data mover
in the configuration.

DIRECT_IO_MAXIMUM_SIZE Specifies the maximum size of I/O requests when using
O_DIRECT I/O to read from any DMF-managed
filesystem or when migrating files down the hierarchy
from the STORE_DIRECTORY of the disk cache
manager (DCM) MSP. DIRECT_IO_MAXIMUM_SIZE is
ignored for a particular filesystem or DCM MSP store
when DIRECT_IO_SIZE is specified in the
configuration stanza for that filesystem or DCM MSP.
The legal range of values is
262144–18446744073709551615. The default is
1048576. By default, the unit of measure is bytes; see
"Units of Measure" on page 215.

EXPORT_METRICS Enables DMF’s use of the common arena for use by
dmstat(8), dmarenadump(8), and other commands.
You can set this parameter to ON or OFF. The default is
OFF. If set to OFF, some statistics in DMF Manager
cannot be displayed. Do not change this parameter
while DMF is running.

HBA_BANDWIDTH (OpenVault only) Specifies the default I/O bandwidth
capacity of an HBA port that is connected to drives on
the node. The value is in bytes per second. All of the
HBA ports connected to drives on a node are assumed

218 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

to have the same bandwidth capacity. If
HBA_BANDWIDTH is not specified anywhere, the default
is 1024000000000000; for more information, see
"Device Block-Size Defaults and Bandwidth" on page
215. For a complete description, see "node Object" on
page 232. An HBA_BANDWIDTH value specified in a
node object overrides the default value specified in the
base object. Also see BANDWIDTH_MULTIPLIER in
"drivegroup Object Parameters" on page 306.

HOME_DIR Specifies the base pathname for directories in which
files related to the daemon database and LS database
reside. This directory must not be in a DMF-managed
filesystem. The best practice is for HOME_DIR to be the
mount point of a filesystem that is used only by DMF.
In this way, it is much less likely that the filesystem will
become full and cause DMF to abort. If you choose to
use HOME_DIR for storing HA files or scripts that
must be visible on a failover platform, you must use
naming conventions that will not likely conflict with
present or future DMF files and you must ensure that
the files do not cause the filesystem to become full.
Performance characteristics of the HOME_DIR
filesystem will impact DMF database transaction
performance and may become a limiting factor in
achievable DMF database transaction rates. When using
the Parallel Data-Mover Option, HOME_DIR must
either be a CXFS filesystem or be in a CXFS filesystem.

For guidelines about the size of HOME_DIR, see
"Configure DMF Administrative Directories
Appropriately" on page 79.

Note: HOME_DIR must be on a separate physical
device from JOURNAL_DIR.

Do not change this parameter while DMF is running.

JOURNAL_DIR Specifies the base pathname for directories in which the
journal files for the daemon database and LS database
will be written. This directory must not be in a

007–5484–012 219

6: DMF Configuration File

DMF-managed filesystem. The best practice is for
JOURNAL_DIR to be the mount point of a filesystem
that is used only by DMF. In this way, it is much less
likely that the filesystem will become full and cause
DMF to abort. The appropriate size of this filesystem is
a function of the expected daily DMF transaction
activity and the number of days that journals are kept.

Note: JOURNAL_DIR must be on a separate physical
device from HOME_DIR.

Do not change this parameter while DMF is running.

JOURNAL_SIZE Specifies the maximum size (in bytes) of the database
journal file before DMF closes it and starts a new file.
The default is 64000000 (or 64m). By default, the unit
of measure is bytes; see "Units of Measure" on page 215.

LICENSE_FILE Specifies the full pathname of the file containing the
licenses used by DMF. The default is
/etc/lk/keys.dat. Do not change this parameter
while DMF is running.

METRICS_RETENTION Specifies the retention time for the DMF tape drive
cumulative metrics. The cumulative metrics are reset to
zero after this interval has passed since the creation of
the arena object. Valid values are integer followed by
one of:

h[ours]
d[ays]
w[eeks]

For example, to specify five days, you could use either
of the following:

METRICS_RETENTION 5d
METRICS_RETENTION 5days

By default, the cumulative metrics will be retained until
the DMF daemon restarts.

220 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: METRICS_RETENTION is used internally by DMF
for its cumulative/averaged metrics and does not
change the duration for which PCP metric archives are
maintained.

NODE_BANDWIDTH (OpenVault only) Specifies the default I/O bandwidth
capacity of the node. If NODE_BANDWIDTH is not
specified anywhere, the default is 1024000000000000;
for more information, see "Device Block-Size Defaults
and Bandwidth" on page 215. For a complete
description, see "node Object" on page 232. A
NODE_BANDWIDTH value specified in a node object
overrides the default value specified in the base object.
Also see BANDWIDTH_MULTIPLIER in "drivegroup
Object Parameters" on page 306.

OV_KEY_FILE (OpenVault only) Specifies the file containing the
OpenVault security keys used by DMF. It is usually
located in HOME_DIR and called ov_keys. There is no
default. When using the Parallel Data-Mover Option,
this file must be visible to the DMF server and all
parallel data-mover nodes, therefore it must be in a
CXFS filesystem. Use dmov_keyfile(8) to create or
update this file. The file should be updated if the
OpenVault server name changes. Do not change this
parameter while DMF is running.

OV_SERVER (OpenVault only) Specifies the name associated with the
IP address on which the OpenVault server is listening.
This should only be set if the OpenVault server is not
on the same system as the DMF server. Do not change
this parameter while DMF is running.

Note: More configuration steps are necessary to
configure DMF to use OpenVault; see "OpenVault
Configuration Tasks" on page 385.

PERFTRACE_METRICS Enables collection of performance tracking information
from DMF. Performance over time of individual

007–5484–012 221

6: DMF Configuration File

components (filesystems, cartridges, tape drives, and so
on) can then be graphically viewed using DMF
Manager. You can set this parameter to ON or OFF. The
default is OFF. If set to OFF, detailed I/O information
will not be recorded by DMF and the I/O panel in DMF
Manager cannot display certain information. See "DMF
I/O" on page 203.

Note: After you change this parameter, you must
restart DMF.

SERVER_NAME Specifies the hostname of the system on which the DMF
server is running. In an HA configuration,
SERVER_NAME must be the HA virtual hostname rather
than the output of the hostname(1) command. This
parameter is only required for HA configurations or
configurations using the Parallel Data-Mover Option.

Note: If you change this parameter, you must copy the
DMF configuration file manually to each parallel
data-mover node and then restart the DMF services.

Do not change this parameter while DMF is running.

SPOOL_DIR Specifies the base pathname for directories in which
DMF log files are kept. This directory must not be in a
DMF-managed filesystem. The best practice is for
SPOOL_DIR to be the mount point of a filesystem that
is used only by DMF. In this way, it is much less likely
that the filesystem will become full and cause DMF to
abort. The appropriate size of this filesystem is a
function of the expected daily DMF transaction activity,
the MESSAGE_LEVEL parameter setting, and the
number of days that logs are kept. When using the
Parallel Data-Mover Option, SPOOL_DIR must either
be a CXFS filesystem or be in a CXFS filesystem. Do
not change this parameter while DMF is running.

TMP_DIR Specifies the base pathname for directories in which
DMF puts temporary files for its own internal use. It is

222 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

also used by DMF commands and scripts and is the
directory used by default by the LS for caching files if
the CACHE_DIR parameter is not defined. This
directory must not be in a DMF-managed filesystem.
The best practice is for TMP_DIR to be the mount point
of a filesystem that is used only by DMF. TMP_DIR
filesystem performance will impact the performance of
many of the internal DMF administrative tasks,
particularly tasks that involve the need to sort DMF
databases. When using the Parallel Data-Mover Option,
TMP_DIR must either be a CXFS filesystem or be in a
CXFS filesystem.

Many DMF operations that do analysis on the DMF
database contents use TMP_DIR as their work directory.
Because most of these involve large buffered I/O, SGI
recommends that you configure TMP_DIR on a fast
disk, with bandwidth at the RAID level. Do not change
this parameter while DMF is running.

VALID_ROOT_HOSTS Specifies hostnames in addition to the DMF server
whose root users may perform tasks such as the
following:

• Specify nondefault priority on DMF commands
(such as dmget) and libdmfusr.so functions

• Specify the MSPs, VGs, and MGs to which files
should be migrated when using the dmput or
dmarchive command, or equivalent
libdmfusr.so functions.

• Override the order of the MSPs, VGs, and MGs from
which to try to recall files on the dmarchive,
dmcopy, dmget, dmmove, and dmunput commands,
or equivalent libdmfusr.so functions, overriding
the default order as defined in the DMF
configuration file.

The root user on the DMF server may always perform
these actions; the DMF server name does not need to be
included in VALID_ROOT_HOSTS. By default, only the

007–5484–012 223

6: DMF Configuration File

root user on the DMF server may perform these
actions.

Note: Customizable policies may cause this behavior to
be overridden.

Changes to VALID_ROOT_HOSTS will take effect
immediately for new requests and after no more than
10 minutes for long-running processes.

When an MSP, LS, daemon, or configuration file object (such as the taskgroup object
named dump_tasks in Example 6-9, page 258) obtains a path such as HOME_DIR
from the configuration file, the actual path used is HOME_DIR plus the
MSP/LS/daemon object name appended as a subdirectory. For example, if HOME_DIR
was set to /dmf/home in the configuration file, and the taskgroup object named
dump_tasks used a value of HOME_DIR/tapes for the DUMP_TAPES parameter, then
the actual path for DUMP_TAPES would resolve to /dmf/home/dump_tasks/tapes.

Note: Do not use automated space management to manage the HOME_DIR,
SPOOL_DIR, or JOURNAL_DIR directories, because DMF daemon processes will
deadlock if files that they are actively using within these directories are migrated. The
dmcheck(8) command reports an error if any of the HOME_DIR, SPOOL_DIR, or
JOURNAL_DIR directories are also configured as DMF-managed filesystems. You
should configure a taskgroup object for daemon tasks to manage old log files and
journal files in these directories. See "taskgroup Object" on page 240 for more
information.

base Object Examples

This section discusses the following examples:

• "base Object for Basic DMF" on page 225

• "base Object for DMF with the Parallel Data-Mover Option" on page 225

• "base Object for DMF with the Parallel Data-Mover Option in an HA Cluster" on
page 227

224 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

base Object for Basic DMF

Example 6-1 base Object for Basic DMF

define base

TYPE base
ADMIN_EMAIL root@dmfserver

HOME_DIR /dmf/home

TMP_DIR /dmf/tmp

SPOOL_DIR /dmf/spool

JOURNAL_DIR /dmf/journals
JOURNAL_SIZE 10m

OV_KEY_FILE /dmf/home/ov_keys

enddef

In the above example:

• A new journal file will be created after the present file reaches 10 million bytes

• The OV_KEY_FILE parameter is necessary if OpenVault is used as the mounting
service

• The OpenVault server is on the same system as the DMF server, so OV_SERVER is
not specified

base Object for DMF with the Parallel Data-Mover Option

Example 6-2 base Object for DMF with the Parallel Data-Mover Option

define base

TYPE base

SERVER_NAME server1

ADMIN_EMAIL root@dmfserver
HOME_DIR /dmf/home

TMP_DIR /dmf/tmp

SPOOL_DIR /dmf/spool

JOURNAL_DIR /dmf/journals

JOURNAL_SIZE 10m
OV_KEY_FILE /dmf/home/ov_keys

enddef

In the above example:

007–5484–012 225

6: DMF Configuration File

• The SERVER_NAME parameter is required when using the Parallel Data-Mover
Option. The hostname of the node that is running DMF is server1. OpenVault is
running on the same system, so OV_SERVER is not specified.

• /dmf/tmp must either be a CXFS filesystem or be in a CXFS filesystem when
using the Parallel Data-Mover Option.

• The /dmf/spool directory must either be a CXFS filesystem or be in a CXFS
filesystem when using the Parallel Data-Mover Option.

• A new journal file will be created after the present file reaches 10 million bytes.

• OpenVault must be configured as the mounting service for drives that are used by
parallel data-mover nodes. The /dmf/home/ov_keys file must be visible to the
DMF server node and all parallel data-mover nodes, therefore it must be in a
CXFS filesystem.

226 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

base Object for DMF with the Parallel Data-Mover Option in an HA Cluster

Example 6-3 base Object for DMF with the Parallel Data-Mover Option in an HA Cluster

define base

TYPE base
SERVER_NAME virtual-server

ADMIN_EMAIL root@dmfserver

HOME_DIR /dmf/home

TMP_DIR /dmf/tmp

SPOOL_DIR /dmf/spool
JOURNAL_DIR /dmf/journals

JOURNAL_SIZE 10m

OV_KEY_FILE /dmf/home/ov_keys

enddef

In the above example:

• The SERVER_NAME parameter is required when using the Parallel Data-Mover
Option. Because this configuration is using HA, it must be set to the HA virtual
hostname (in this case virtual-server).

Note: The INTERFACE parameter in the node objects for the DMF servers must
correspond to SERVER_NAME.

• /dmf/tmp must either be a CXFS filesystem or be in a CXFS filesystem when
using the Parallel Data-Mover Option.

• The /dmf/spool directory must either be a CXFS filesystem or be in a CXFS
filesystem when using the Parallel Data-Mover Option.

• OpenVault must be configured as the mounting service for drives that are used by
parallel data-mover nodes. The /dmf/home/ov_keys file must be visible to the
DMF server and all parallel data-mover nodes, therefore it must be in a CXFS
filesystem.

• The OpenVault server is on the same system as the DMF server, so OV_SERVER is
not specified.

007–5484–012 227

6: DMF Configuration File

dmdaemon Object
This section discusses the following:

• "dmdaemon Object Name" on page 228

• "dmdaemon Object Parameters" on page 228

• "dmdaemon Object Example" on page 231

dmdaemon Object Name

The name of the dmdaemon object is chosen by the administrator and may contain
uppercase or lowercase alphanumeric characters or underscores. It cannot begin with
an underscore or contain any white space.

dmdaemon Object Parameters

The dmdaemon object defines the configuration parameters that are necessary for
operation of the DMF daemon. It is expected that you will modify the values for the
pathnames and MSP names.

Parameter Description

TYPE Specifies dmdaemon (required name for this type of
object). There is no default.

Note: This cannot be specified as dmfdaemon. It must
be dmdaemon.

EXPORT_QUEUE Instructs the daemon to export details of its internal
request queue to SPOOL_DIR/daemon_exports every
two minutes, for use by dmstat(8) and other utilities.
On a busy system, the responsiveness of the daemon
may be improved by disabling this feature. You can set
this parameter to ON or OFF. The default is OFF.

LS_NAMES or
MSP_NAMES

Names the LSs and MSPs used by the DMF daemon.
You must specify either LS_NAMES or MSP_NAMES, but
not both parameters (however, the value of either

228 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

parameter can be a mixture of both LSs and MSPs).
There is no default.

The order of the names is significant. Where there are
multiple copies of the data of migrated files, recalls will
normally be directed to the first-named LS/MSP that is
applicable. If more than one VG within an LS/MSP
contains copies, the order of the names in the
libraryserver object’s DRIVE_GROUPS parameter
and the drivegroup object’s VOLUME_GROUPS
parameter are also significant.

Note: See "Ensure that the Cache Copy is Recalled
First" on page 99.

Do not change these parameters while DMF is running.

MESSAGE_LEVEL Specifies the highest message level that will be written
to the daemon log. It must be an integer in the range
0–6; the higher the number, the more messages written
to the log file. The default is 2. For more information
on message levels, see Chapter 9, "Message Log Files"
on page 401.

MIGRATION_LEVEL Sets the highest level of migration service allowed on
all DMF filesystems (you can configure a lower service
level for a specific filesystem). The value can be:

• auto (automated space management)

• none (no migration)

• user (requests from dmput or dmmigrate only)

The default is auto.

See "policy Object" on page 276 for information about
configuring automated space management.

MOVE_FS Specifies one or more scratch directories that may be
used when moving files between MSPs/VGs. The first
directory name on this parameter is used as the default
if the -f option is not specified on the dmmove(8)

007–5484–012 229

6: DMF Configuration File

command. This directory must not be in a
DMF-managed filesystem. Each directory specified
must be the root of a DMAPI-mounted filesystem
(mounted with dmi,mtpt=/MOVE_FS). You must
specify a value for MOVE_FS if you intend to use the
dmmove command; there is no default. When using the
Parallel Data-Mover Option, MOVE_FS if specified must
be a CXFS filesystem.

The size of MOVE_FS is a function of expected dmmove
activity. MOVE_FS must be mounted when a dmmove
command is run. The best practice when using
MOVE_FS is for it to be dedicated to the dmmove
function. (The dmmove command calculates the
available space in MOVE_FS when selecting move
candidates; if other processes are allocating space in
MOVE_FS, those calculations can become inaccurate,
causing errors.)

PARTIAL_STATE_FILES Enables or disables the DMF daemon’s ability to
produce partial-state files. The possible values are:

• ON, which means that the daemon will correctly
process put and get requests that would result in a
partial-state file. The default is ON.

• OFF, which means that all put and get requests
that require a change to the online status of the file
will result in a file that is completely online or
offline. That is, any put request that makes any part
of the file offline will result in the entire file being
made offline. Any get request that would result in
any part of the file being brought back online will
result in the entire file being brought back online.

RECALL_NOTIFICATION_RATE

Specifies the approximate rate (in seconds) at which
regions of a file being recalled are put online. This
allows for access to part of a file before the entire file is
recalled. The default is 30 seconds. Specify a value of 0
if you want the user process to be blocked until the

230 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

entire recall is complete. The optimum setting of this
parameter is dependent on many factors and must be
determined by trial and error. The actual rate at which
regions being recalled are put online may vary from the
value of RECALL_NOTIFICATION_RATE.

TASK_GROUPS Names the taskgroup objects that contain tasks the
daemon should run. By default, no tasks are run. For
more information, see "taskgroup Object" on page
240. SGI recommends that you use the task groups
specified in the sample configuration files, changing the
parameters as necessary for your site.

dmdaemon Object Example

Example 6-4 dmdaemon object

define daemon

TYPE dmdaemon

MOVE_FS /dmmove_dir

LS_NAMES lib1 ftp2
TASK_GROUPS daemon_tasks dump_tasks

enddef

In the above example:

• The name of the dmdaemon object is daemon.

• The dmmove command will use the /dmmove_dir filesystem as a scratch
filesystem.

• The names of the LSs are lib1 and ftp2.

• The daemon will run the tasks specified by the daemon_tasks and dump_tasks
objects (see Example 6-12, page 261 and Example 6-9, page 258). In the example,
daemon_tasks defines the tasks such as scanning and managing log files and
journal files. The dump_tasks object defines tasks that back up DMF-managed
filesystems.

• The MIGRATION_LEVEL level is not explicitly set, so the default of auto is used.

007–5484–012 231

6: DMF Configuration File

node Object
• "node Object Name" on page 232

• "node Object Parameters" on page 232

• "node Object Examples" on page 234

node Object Name

The name of the node object must be the same as the output of the hostname(1)
command.

node Object Parameters

Note: The node object is only for DMF configurations using the Parallel Data-Mover
Option. Basic DMF configurations do not use the node object.

The name of the node object must match the name returned by hostname(1) on the
system. In a DMF configuration using the Parallel Data-Mover Option, there must be
a node object for the DMF server and every parallel data-mover node. In a DMF
server HA configuration that is using the Parallel Data-Mover Option, the node
objects for the DMF servers will have identical parameter values.

Parameter Description

TYPE Specifies node (required name for this type of object).
There is no default.

HBA_BANDWIDTH (OpenVault only) Specifies the I/O bandwidth capacity
of an HBA port that is connected to drives on the node.
The value is in bytes per second. All of the HBA ports
connected to drives on a node are assumed to have the
same bandwidth capacity. The LS uses this value when
determining which drives to use. The maximum is
1024000000000000. The minimum is 0, which means
that the HBA will not be used.

HBA_BANDWIDTH can also be specified in the base
object, in which case the value there is used as the
default (values specified in a node object override the

232 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

default for that node); see "base Object" on page 216. If
HBA_BANDWIDTH is not specified in the base object, the
default is 1024000000000000. For more information,
see "Device Block-Size Defaults and Bandwidth" on
page 215. Also see BANDWIDTH_MULTIPLIER in
"drivegroup Object Parameters" on page 306.

INTERFACE Specifies the IP address or associated name of this node
to be used for communication between DMF
components. By default, the system hostname will be
used. If this node is a potential DMF server in an HA
configuration, this parameter must match the virtual
hostname used for SERVER_NAME in the base object.
See "Use a Private Network Interface in a Parallel
Environment" on page 104.

MERGE_INTERFACE Specifies the IP address or associated name on this
node to be used when merging sparse volumes via
sockets. The default is to use the same interface used
for other DMF communication (see INTERFACE above).
See "Use a Private Network Interface in a Parallel
Environment" on page 104.

NODE_BANDWIDTH (OpenVault only) Specifies the I/O bandwidth capacity
of this node, in bytes per second. The LS uses this
value to calculate how many drives it can
simultaneously use on a node. The maximum is
1024000000000000. The minimum is 0, which means
that the node will not be used.

NODE_BANDWIDTH can also be specified in the base
object, in which case the value there is used as the
default (values specified in a node object override the
default for that node); see "base Object" on page 216. If
NODE_BANDWIDTH is not specified in the base object,
the default is 1024000000000000. For more
information, see "Device Block-Size Defaults and
Bandwidth" on page 215. Also see
BANDWIDTH_MULTIPLIER in "drivegroup Object
Parameters" on page 306.

SERVICES Specifies the name of the services object used to
configure DMF services on this node. Multiple nodes
may refer to the same services object. For
node-specific configuration, each node can refer to a
different services object. If no SERVICES parameter
is defined, the default values for the services object
parameters are used.

007–5484–012 233

6: DMF Configuration File

node Object Examples

This section discusses the following examples:

• "node Objects for the Parallel Data-Mover Option" on page 234

• "node Objects for the Parallel Data-Mover Option in an HA Cluster" on page 235

node Objects for the Parallel Data-Mover Option

Example 6-5 node Objects for the Parallel Data-Mover Option

define server1

TYPE node

INTERFACE server1-dmfnet
SERVICES server1_services

enddef

define pdm1

TYPE node
INTERFACE pdm1-dmfnet

SERVICES pdm1_services

enddef

In the above example:

• There are two data movers: the DMF server server1 and the parallel data-mover
node pdm1.

• The DMF services on the server1 node use the parameters defined in the
server1_services object. The DMF services on the pdm1 node use the
parameters defined in the pdm1_services object.

• Because INTERFACE is defined, the nodes will communicate on the IP addresses
associated with the hostnames server1-dmfnet and pdm1-dmfnet. (If
INTERFACE was not defined, they would communicate using server1 and pdm1.)

234 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

node Objects for the Parallel Data-Mover Option in an HA Cluster

Example 6-6 node Objects for DMF with the Parallel Data-Mover Option in an HA Cluster

define server1

TYPE node
INTERFACE virtual-server

SERVICES dmfserver_services

enddef

define server2
TYPE node

INTERFACE virtual-server

SERVICES dmfserver_services

enddef

define pdm1
TYPE node

SERVICES pdm1_services

enddef

In the above example:

• The following nodes are data movers:

– Either the potential DMF server server1 or the potential DMF server
server2 (for example, server1 could be the active DMF server and
server2 could be the passive DMF server)

– The parallel data-mover node pdm1

Note: At any given time, only one of the potential DMF server nodes (either
server1 or server2) may provide data mover functionality.

• The virtual hostname in the HA cluster is virtual-server. The INTERFACE
parameter is required in an HA cluster for the potential DMF servers and it must
match the value for SERVER_NAME in the base object (see "base Object" on page
216).

• The potential DMF server nodes provide the tasks that are described by the
dmfserver_services object. The parallel data-mover node provides the DMF
services described by the pdm1_services object.

007–5484–012 235

6: DMF Configuration File

• Because server1 and server2 are both potential servers in this HA
configuration, they should specify identical parameters and parameter values.

• The nodes will communicate using the IP addresses associated with the
virtual-server and pdm1 hostnames.

services Object
This section discusses the following:

• "services Object Name" on page 236

• "services Object Parameters" on page 236

• "services Object Examples" on page 238

services Object Name

The name of the services object is chosen by the administrator and may contain
uppercase or lowercase alphanumeric characters or underscores. It cannot begin with
an underscore or contain any white space.

services Object Parameters

The services object defines parameters for dmnode_service and other DMF
services. When using the Parallel Data-Mover Option, multiple services objects
may be defined. For basic DMF configurations, exactly one services object may be
defined. (The services parameters all have defaults, so you only need to define a
services object if you want to change those defaults.)

Parameter Description

TYPE Specifies services (required name for this type of
object). If you include this object, you must specify this
parameter.

MESSAGE_LEVEL Specifies the highest message level that will be written
to the service logs. It must be an integer in the range
0–6; the higher the number, the more messages written
to the log file. The default is 2. For more information

236 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

on message levels, see Chapter 9, "Message Log Files"
on page 401.

NODE_ANNOUNCE_RATE Specifies the rate (in seconds) at which the DMF server
or parallel data-mover node will contact the
dmnode_service on the DMF server to announce its
presence. This also determines the rate at which
configuration changes are propagated to any parallel
data-mover nodes. This value should be less than the
value of NODE_TIMEOUT. The default is 20 seconds.

NODE_TIMEOUT Specifies the number of seconds after which the data
mover functionality on the DMF server or on a parallel
data-mover node will be considered inactive if it has
not contacted the dmnode_service on the DMF
server. This value should be larger than the value of
NODE_ANNOUNCE_RATE. The default is 30 seconds.

SERVICES_PORT Specifies the port number on which DMF starts a
locator service, which DMF uses to locate other DMF
services. It must be an integer in the range 1–65535.
The default is 11108.

Note: If you change this parameter, you must copy the
DMF configuration file manually to each parallel
data-mover node and then restart the DMF services.

Do not change this parameter while DMF is running.

TASK_GROUPS Names the taskgroup objects that contain scripts to be
run on the DMF server and every parallel data-mover
node. (This is unlike the TASK_GROUPS parameters of
other objects, which contain scripts to be run on just the
DMF server.) If you specify this parameter, you must
specify the scripts to be run. For more information, see
"taskgroup Object" on page 240. By default, no tasks
are run. SGI recommends that you use the task groups

007–5484–012 237

6: DMF Configuration File

specified in the sample configuration files, changing the
parameters as necessary for your site.

services Object Examples

This section discusses the following examples:

• "services object for the Parallel Data-Mover Option" on page 238

• "services Object for the Parallel Data-Mover Option in an HA Cluster" on page
239

services object for the Parallel Data-Mover Option

Example 6-7 services object for the Parallel Data-Mover Option

define server1_services

TYPE services
MESSAGE_LEVEL 2

TASK_GROUPS node_tasks

enddef

define pdm1_services
TYPE services

MESSAGE_LEVEL 4

SERVICES_PORT 1111

TASK_GROUPS node_tasks

enddef

In the above example:

• Two services are defined:

– server1_services (which applies to server1, as shown in Example 6-5,
page 234)

– pdm1_services (which applies to pdm1, as also shown in Example 6-5)

• The server1 services will log fewer messages than the pdm1 services.

• The pdm1 services use locator port 1111. The server1 services will use the
default port.

• Both services use the tasks described by the node_tasks object.

238 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

services Object for the Parallel Data-Mover Option in an HA Cluster

Example 6-8 services Object for the Parallel Data-Mover Option in an HA Cluster

define dmfserver_services

TYPE services
MESSAGE_LEVEL 2

TASK_GROUPS servernode_tasks

enddef

define pdm1_services
TYPE services

MESSAGE_LEVEL 4

SERVICES_PORT 1111

TASK_GROUPS movernode_tasks

enddef

In the above example:

• Two services are defined:

– dmfserver_services, which applies to server1 and server2 (as shown
in Example 6-6, page 235)

– pdm1_services, which applies to pdm1 (as shown in Example 6-6)

• The dmfserver_services services will log fewer messages than the pdm1
services.

• The pdm1 services use locator port 1111. The dmfserver_services services
will use the default port.

• The active DMF server (either server1 or server2) will run the tasks defined by
the servernode_tasks object.

• The parallel data-mover node pdm1 will run the tasks defined by the
movernode_tasks object.

007–5484–012 239

6: DMF Configuration File

taskgroup Object
This section discusses the following:

• "Overview of the Tasks" on page 240

• "Details About Backup Tasks" on page 244

• "taskgroup Object Name" on page 245

• "taskgroup Object Parameters" on page 245

• "taskgroup Object Examples" on page 258

Overview of the Tasks

You can configure taskgroup objects to manage how periodic maintenance tasks are
performed. The object that performs the tasks refers to the taskgroup name in its
stanza. You can configure when each task should run. For some of the tasks, you
must provide more information. Table 6-1 summarizes the tasks.

240 007–5484–012

D
M

F
6

A
dm

inistrator
G

uide
for

SG
I

®
InfiniteStorage

T
M

Table 6-1 Automated Maintenance Task Summary

Referencing
Object Type Task Purpose Parameters

dmdaemon run_audit.sh Audit databases

run_copy_databases.sh Back up DMF databases DATABASE_COPIES

run_daily_drive_report.sh Create a report about tape
drives that have indicated
they need cleaning

DRIVETAB

run_daily_report.sh1 Create a report including
information on managed
filesystems (if
run_filesystem_scan.sh
has been run recently) and
DCM MSPs, and all LSs

run_daily_tsreport.sh Create a report containing
the output of the
tsreport command,
which reports tape drive
alerts, errors, and statistics

DRIVETAB
TSREPORT_OPTIONS

run_dmmigrate.sh Run dmmigrate(8) on all
filesystems that are
configured for automated
space management

DMMIGRATE_MINIMUM_AGE
DMMIGRATE_TRICKLE
DMMIGRATE_VERBOSE
DMMIGRATE_WAIT

run_filesystem_scan.sh Run dmscanfs(8) on
filesystems to collect file
information for subsequent
use by other scripts and
programs

SCAN_FILESYSTEMS
SCAN_FOR_DMSTAT
SCAN_OUTPUT
SCAN_PARALLEL
SCAN_PARAMS

1 The run_compact_tape_report.sh and run_tape_report.sh tasks have been superseded by the
run_daily_report.sh task.

007–5484–012
241

6:
D

M
F

C
onfiguration

F
ile

Referencing
Object Type Task Purpose Parameters

run_full_dump.sh
(xfsdump only)

Full backup of filesystems
2

DUMP_COMPRESS
DUMP_CONCURRENCY
DUMP_DATABASE_COPY
DUMP_DESTINATION
DUMP_DEVICE
DUMP_FILE_SYSTEMS
DUMP_FLUSH_DCM_FIRST
DUMP_INVENTORY_COPY
DUMP_MAX_FILESPACE
DUMP_MIGRATE_FIRST
DUMP_MIRRORS
DUMP_RETENTION
DUMP_TAPES
DUMP_VSNS_USED
DUMP_XFSDUMP_PARAMS

run_hard_deletes.sh Hard-delete files that are
no longer on backup media

Uses DUMP_RETENTION

run_partial_dump.sh
(xfsdump only)

Perform a partial backup
of filesystems

Uses parameters set for
run_full_dump.sh

run_remove_alerts.sh Remove old alert records ALERT_RETENTION
MAX_ALERTDB_SIZE
REMALERT_PARAMS

run_remove_journals.sh Remove old journal files JOURNAL_RETENTION

run_remove_logs.sh Remove old log files LOG_RETENTION

run_remove_perf.sh Remove old performance
records

MAX_PERFDB_SIZE
PERF_RETENTION
REMPERF_PARAMS

run_scan_logs.sh Scan recent log files for
errors

drivegroup run_merge_mgr.sh Merge sparse volumes DATA_LIMIT
THRESHOLD
VOLUME_LIMIT

2 For restores, see the dmxfsrestore(8) man page.

242
007–5484–012

D
M

F
6

A
dm

inistrator
G

uide
for

SG
I

®
InfiniteStorage

T
M

Referencing
Object Type Task Purpose Parameters

libraryserver run_merge_stop.sh Stop volume merges for
only those volumes that
were previously marked as
sparse by either the
run_tape_merge.sh or
run_merge_mgr.sh
scripts.

run_fmc_free.sh Free the volumes in the
fast-mount cache that meet
the criteria

FILE_RETENTION_DAYS
FMC_MOVEFS
FREE_VOLUME_MINIMUM
FREE_VOLUME_TARGET

run_tape_merge.sh Merge sparse volumes DATA_LIMIT
THRESHOLD
VOLUME_LIMIT

DCM msp run_dcm_admin.sh Routine DCM MSP
administration

run_dmmigrate.sh Run dmmigrate(8) on the
specified
STORE_DIRECTORY (for
this DCM MSP only)

DMMIGRATE_MINIMUM_AGE
DMMIGRATE_TRICKLE
DMMIGRATE_VERBOSE
DMMIGRATE_WAIT

filesystem run_dmmigrate.sh Run dmmigrate(8) on
the specified filesystem
that are configured for
automated space
management

DMMIGRATE_MINIMUM_AGE
DMMIGRATE_TRICKLE
DMMIGRATE_VERBOSE
DMMIGRATE_WAIT

services run_remove_logs.sh Remove old log files LOG_RETENTION

volumegroup run_fmc_free.sh Free the volumes in the
fast-mount cache that meet
the criteria

FILE_RETENTION_DAYS
FMC_MOVEFS
FREE_VOLUME_MINIMUM
FREE_VOLUME_TARGET

007–5484–012
243

6: DMF Configuration File

Details About Backup Tasks

The configuration of backup tasks depends on whether you wish to use the
xfsdump(8) command or a DMF-aware third-party backup application. When using
xfsdump, you schedule backups in the DMF configuration file and can write backups
to either disk or tape. When using a third-party backup application, you schedule
backups through that application and configure do_predump.sh to run as the
application’s pre-backup command. See "Using DMF-aware Third-Party Backup
Packages" on page 479.

Not all tasks and parameters apply to each backup method. They are marked in Table
6-1 on page 241, and the following sections as appropriate:

xfsdump only (for parameters used for backups via xfsdump to either disk/tape)
xfsdump disk only
xfsdump tape only
third-party only

Table 6-2 lists backup parameters according to method.

Table 6-2 Backup Parameters According to Method

Method Parameters

All Methods DUMP_FILE_SYSTEMS
DUMP_FLUSH_DCM_FIRST
DUMP_MIGRATE_FIRST
DUMP_RETENTION

xfsdump either disk or tape only DUMP_MAX_FILESPACE
DUMP_XFSDUMP_PARAMS

xfsdump disk only DUMP_COMPRESS
DUMP_CONCURRENCY
DUMP_DESTINATION
DUMP_MIRRORS

xfsdump tape only DUMP_DEVICE
DUMP_INVENTORY_COPY
DUMP_TAPES
DUMP_VSNS_USED

Third-party only DUMP_DATABASE_COPY

244 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

When defining a backup task, you must provide information such as:

• Tape and device names

• Retention times for output

• Whether to migrate files before backing up the filesystem

• Locations for inventory files

taskgroup Object Name

The name of the taskgroup object is chosen by the administrator and may contain
uppercase or lowercase alphanumeric characters or underscores. It cannot begin with
an underscore or contain any white space.

taskgroup Object Parameters

The taskgroup object parameters are as follows:

TYPE Specifies taskgroup (required name for this type of
object). There is no default.

ALERT_RETENTION Specifies the age of alert records that are preferred to be
kept when the run_remove_alerts.sh task is run.
The run_remove_alerts.sh task uses but does not
require this parameter. Valid values are an integer
followed by one of:

m[inutes]
h[ours]
d[ays]
w[eeks]

007–5484–012 245

6: DMF Configuration File

Note: The set of records chosen for deletion is the
union of the records that are older than the
ALERT_RETENTION value and the oldest records when
the database reaches the MAX_ALERTDB_SIZE
threshold size:

• If you specify ALERT_RETENTION without
MAX_ALERTDB_SIZE, older records will be deleted
no matter how small the database is

• If you specify MAX_ALERTDB_SIZE without
ALERT_RETENTION, records will be kept no matter
how old they are, so long as the database remains
below the threshold size

• If you specify neither parameter, no records will be
deleted (and REMALERT_PARAMS is ignored)

DATABASE_COPIES Specifies one or more directories into which the
run_copy_databases.sh task will place a copy of
the DMF databases. The run_copy_databases.sh
task copies a snapshot of the current DMF databases to
the directory with the oldest copy. If you specify
multiple directories, you should spread the directories
among multiple disk devices in order to minimize the
chance of losing all copies of the databases. There is no
default. This directory must not be in a DMF-managed
filesystem.

DATA_LIMIT Specifies the maximum amount of data (in bytes) that
should be selected for merging at one time. By default,
there is no limit.

DMMIGRATE_MINIMUM_AGE Specifies the minimum file age to migrate in minutes
(the dmmigrate -m minutes option). The default is 10.
For more information, see the dmmigrate(8) man page.

DMMIGRATE_TRICKLE Specifies whether or not dmmigrate limits the rate at
which an individual dmmigrate command issues
requests, so that it will not dominate the DMF daemon
(the dmmigrate -t option). You can set this
parameter to ON or OFF. The default is ON. For more
information, see the dmmigrate(8) man page.

246 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DMMIGRATE_VERBOSE Specifies whether or not dmmigrate will display how
many files and bytes are migrating (the dmmigrate -v
option). You can set this parameter to ON or OFF. The
default is OFF. For more information, see the
dmmigrate(8) man page.

DMMIGRATE_WAIT Specifies whether or not dmmigrate will wait for all
migrations to complete before exiting (the dmmigrate
-w option). By default, dmmigrate will wait until the
migration requests have been accepted by the DMF
daemon, but not until they are complete. You can set
this parameter to ON or OFF. The default is OFF. For
more information, see the dmmigrate(8) man page.

DRIVETAB Provides the name of a file that is used with the
tsreport --drivetab option, which causes the
run_daily_drive_report and
run_daily_tsreport output to contain the drive
name instead of the device name, making the report
more readable. By default, the device name is reported.

DUMP_COMPRESS (xfsdump disk only) Specifies the compression type and
level to be used with disk-based backups. The
following values are accepted:

OFF No compression (default).

ON Equivalent to gzip:1.

gzip[:level] Use gzip(1) with the
specified compression
level. If you do not
specify level, a value of 1
is used.

bzip2[:level] Use bzip2(1) with the
specified compression
level. If you do not
specify level, a value of 9
is used.

For more information about legal values for level, see
the man page for the compression tool.

007–5484–012 247

6: DMF Configuration File

For example, for a compression level of 3 with bzip2,
you would use the following:

DUMP_COMPRESS bzip2:3

Note: On backups consisting largely of migrated files,
gzip:1 (or ON) gives by far the best performance
without sacrificing compression.

DUMP_CONCURRENCY (xfsdump disk only) Specifies the maximum number of
filesystems that will be backed up simultaneously for
disk-based backups. By default, there is no limit to the
number of filesystems that will be backed up in parallel.

DUMP_DATABASE_COPY (Third-party backup only) Specifies the path to a directory
where a snapshot of the DMF databases will be placed
when do_predump.sh is run. The third-party backup
application should be configured to back up this
directory. By default, a snapshot will not be taken.

DUMP_DESTINATION (xfsdump disk only) Specifies the directory in which to
store disk-based backups. This directory must not be in
a DMF-managed filesystem. If the filesystem is listed in
/etc/fstab and is not mounted when backups or
restores are started (using the noauto mount option), it
will be mounted automatically for the duration of the
operation; if the filesystem is on a COPAN massive
array of idle disks (MAID) RAID set, it must be a local
filesystem and it will consume 1 from the power budget
whenever it is mounted.

DUMP_DEVICE (xfsdump tape only) Specifies the name of the
drivegroup or device object in the configuration file
that defines how to mount the tapes that the backup
tasks will use.

DUMP_FILE_SYSTEMS Specifies one or more filesystems to back up. By
default, the tasks will back up all of the DMF-managed
filesystems configured in the configuration file. Use this
parameter only if your site needs different backup
policies (such as different backup times) for different
filesystems or wishes to back up filesystems that are not
managed by DMF. It is safest not to specify this

248 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

parameter and therefore back up all filesystems
configured for management by DMF.

DUMP_FLUSH_DCM_FIRST Specifies whether or not the dmmigrate command is
run before the backups are done. Running dmmigrate
first ensures that all non-dual-resident files in the DCM
MSP caches are migrated to a lower tier. If
DUMP_MIGRATE_FIRST is also enabled, that is
processed first. You can set this parameter to ON or
OFF. The default is OFF.

DUMP_INVENTORY_COPY (xfsdump tape only) Specifies the pathnames of one or
more directories into which are copied the XFS
inventory files for the backed-up filesystems. If you
specify multiple directories, spreading the directories
among multiple tape devices minimizes the chance of
losing all copies of the inventory. The backup scripts
choose the directory with the oldest inventory copy and
copy the current one to it.

Note: For disk-based backups, copies of the inventory
are maintained in the directory specified by
DUMP_DESTINATION.

DUMP_MAX_FILESPACE (xfsdump only) Specifies the maximum disk space used
for files to be backed up, which may be larger or
smaller than the length of the file. Regular files using
more than this space are silently left out of the backup.
This limit is not applied to migrated files (offline,
dual-state, or partial-state files). This value applies to
all filesystems being dumped except for the backup of
the DMF databases. If you specify a number without a
unit suffix, it will be in bytes by default; see "Units of
Measure" on page 215. By default, there is no limit.

DUMP_MIGRATE_FIRST Specifies whether or not the dmmigrate command is
run before the backups are done. Running dmmigrate
first ensures that all migratable files in the
DMF-managed filesystems are migrated, thus reducing
the amount of backup media space and making it run
much faster. You can set this parameter to ON or OFF.
The default is OFF.

007–5484–012 249

6: DMF Configuration File

DUMP_MIRRORS (xfsdump disk only) Specifies one or more directories in
which to place a copy of disk-based backups. After the
initial copy is made to the DUMP_DESTINATION
directory, a copy will be made in each of the mirror
directories. The directory may be local or remote:

• A local directory is specified by beginning with a ’/’
character. If the filesystem containing this directory
is listed in /etc/fstab and is not mounted when
mirroring begins, it will be mounted automatically
for the duration of the mirror operation.

• A remote directory is specified with the following
syntax:

[user@]host:/path

DMF transers files by using a secure shell (SSH). You
must set up SSH keys so that the local root user can
log in to the remote host as a remote user without a
password. See the ssh-keygen(1) and
ssh-copy-id(1) man pages for details.

DUMP_RETENTION Specifies how long the filesystem backups will be kept
before the tape or disk space is reused. You can specify
this as follows:

• As a single value, in which case all backups older
than the value will be removed (supported for all
methods)

• As a pair of minimum and maximum values
(separated by a space), in which case backups will
be kept for the minimum age and up to the
maximum age as space permits (supported for disk
backups only)

The run_hard_deletes.sh,
run_partial_dump.sh, and run_full_dump.sh
tasks require this parameter. Valid values are an integer
followed by one of:

m[inutes]
h[ours]

250 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

d[ays]
w[eeks]

DUMP_STREAMS (xfsdump disk only) Specifies the number of xfsdump
streams (threads) to use when backing up a filesystem.
Using multiple streams can reduce backup and restore
times. The default is 1 and the maximum is 20

DUMP_TAPES (xfsdump tape only) Specifies the path of a file that
contains tape volume serial numbers (VSNs), one per
line, for the backup tasks to use. A VSN line in the
specified file that begins with a comment character (#)
is considered to be a temporarily disabled VSN that is
unavailable for backups but whose xfsdump inventory
records should be preserved if they exist. Any other
text in the file after a comment character is considered
to be a comment. For example, the file could contain
the following:

VSN001

VSN002 # a comment

the following VSN is temporarily disabled:

VSN003

DUMP_VSNS_USED (xfsdump tape only) Specifies a file in which the VSNs of
tapes that are used are written. By default, /dev/null
is used, effectively disabling this feature.

DUMP_XFSDUMP_PARAMS (xfsdump only) Passes parameters to the xfsdump
program. The value is not checked for validity, so you
should use this parameter with care. Make sure that
there are no conflicts with the xfsdump parameters
generated by the DMF scripts.

FILE_RETENTION_DAYS (Fast-mount cache only) Specifies the access age (in days)
of a file that will be kept in the fast-mount cache during
the process of freeing volumes. Files that have been
accessed in fewer days will be moved onto another
volume in the fast-mount cache. The
run_fmc_free.sh task will use the dmemptytape(8)
command to move those files into another volume
within the fast-mount cache before completely freeing

007–5484–012 251

6: DMF Configuration File

the full volume. By default, all files within the volume
are deleted.

Note: Be aware of the following when specifying this
parameter:

• There may be a significant performance impact on
the run_fmc_free.sh task.

• If the dmmove(8) command is used to move files and
if there is another simultaneous dmmove active that
is using the same MOVE_FS directory, the two
processes will compete for the same disk space
without any knowledge of each other. The result is
that each process may encounter unexpected
ENOSPACE errors. You can use the FMC_MOVEFS
parameter to minimize this problem.

FMC_MOVEFS (Fast-mount cache only) Specifies the specific MOVE_FS
scratch directory to be used by the dmemptytape -f
option when moving files to another volume in the
fast-mount cache, when required by the setting of
FILE_RETENTION_DAYS. Also see MOVE_FS in
"dmdaemon Object Parameters" on page 228.

FMC_NAME (Fast-mount cache only) Specifies the name of the
fastmountcache object. See "fastmountcache
Object Parameters" on page 301.

FREE_VOLUME_MINIMUM (Fast-mount cache only) Specifies the minimum
percentage of free volumes in the fast-mount cache that
must be available. When this threshold is reached,
run_fmc_free.sh begins freeing full volumes in
order to meet the percentage set for
FREE_VOLUME_TARGET. You should set
FREE_VOLUME_MINIMUM so that it is less than the
value for FREE_VOLUME_TARGET.

FREE_VOLUME_TARGET (Fast-mount cache only) Specifies the percentage of free
volumes in the fast-mount cache that
run_fmc_free.sh will try to achieve when the
FREE_VOLUME_MINIMUM threshold is reached.

252 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

JOURNAL_RETENTION Specifies the age of files that will be kept when the
run_remove_journals.sh task removes journals.
The run_remove_journals.sh task requires this
parameter. Valid values are an integer followed by one
of:

m[inutes]
h[ours]
d[ays]
w[eeks]

LOG_RETENTION Specifies the age of files that will be kept when the
run_remove_logs.sh task is run. Valid values are an
integer followed by one of:

m[inutes]
h[ours]
d[ays]
w[eeks]

MAX_ALERTDB_SIZE Specifies the maximum size of the alerts database. The
run_remove_alerts.sh task uses but does not
require this parameter. For more information, see the
Note under ALERT_RETENTION and "Restrict the Size
of the Alerts and Performance Records Databases" on
page 101. By default, the unit of measure is bytes; see
"Units of Measure" on page 215.

MAX_PERFDB_SIZE Specifies the maximum size of the performance
database. For more information, see the Note under
PERF_RETENTION and "Restrict the Size of the Alerts
and Performance Records Databases" on page 101. By
default, the unit of measure is bytes; see "Units of
Measure" on page 215.

PERF_RETENTION Specifies the age of performance records that are
preferred to be kept when the run_remove_perf.sh
task is run. This task uses but does not require this
parameter. Valid values are an integer followed by one
of:

m[inutes]
h[ours]
d[ays]
w[eeks]

007–5484–012 253

6: DMF Configuration File

Note: The set of records chosen for deletion is the union
of the records that are older than the PERF_RETENTION
value and the oldest records when the database reaches
the MAX_PERFDB_SIZE threshold size:

• If you specify PERF_RETENTION without
MAX_ALERTDB_SIZE, older records will be deleted
no matter how small the database is

• If you specify MAX_PERFDB_SIZE without
PERF_RETENTION, records will be kept no matter
how old they are, so long as the database remains
below the threshold size

• If you specify neither parameter, no records will be
deleted (and REMPERF_PARAMS is ignored)

PERF_RETENTION has no relationship to
METRICS_RETENTION, the arena data, or PCP metrics.

REMALERT_PARAMS Specifies additional parameters to be executed by
run_remove_alerts.sh. The only possible value is
-V, which will remove unused space from the alerts
database. By default, no space is removed.

Note: There is a performance penalty commensurate
with the size of the reduction and other activity on the
alerts database.

REMPERF_PARAMS Specifies additional parameters to be executed by
run_remove_perf.sh. The only possible value is -V,
which will remove unused space from the performance
database. By default, no space is removed.

Note: There is a performance penalty commensurate
with the size of the reduction and other activity on the
alerts database.

254 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

RUN_TASK Specifies the tasks to be run. All of the RUN_TASK
parameters have the same syntax in the configuration
file:

RUN_TASK $ADMINDIR/task_name time_expression

The task_name is the script to be executed.

The time_expression defines when a task should be done.
It is a schedule expression that the following form:

[every n period] [at hh:mm[:ss] ...] [on day ...]

n is an integer.

period is one of:

minute[s]
hour[s]
day[s]
week[s]
month[s]

hh:mm:ss is hour, minutes, seconds.

day is a day of the month (1 through 31) or day of the
week (sunday through saturday).

The following are examples of valid time expressions:

at 2:00
at 1:00 on tuesday

every 5 minutes

every day at 1:00

Note: When using an expression that contains both an
every and an at clause, the valid values for period in
the every clause are day[s] or week[s].

If you create your own scripts to be executed via the
RUN_TASK parameter, be aware that DMF will equate
$ADMINDIR to the appropriate directory, which is
/usr/lib/dmf. When the task is run, DMF passes it

007–5484–012 255

6: DMF Configuration File

the name of the object that requested the task and the
name of the task group. The task itself may use the
dmconfig(8) command to obtain further parameters
from either of these objects.

You may comment-out the RUN_TASK parameters for
any tasks you do not want to run.

SCAN_FILESYSTEMS Specifies for the run_filesystem_scan.sh task the
filesystems that dmscanfs(8) will scan. The default is
to scan all DMF-managed filesystems.

SCAN_FOR_DMSTAT Specifies for the run_filesystem_scan.sh task
whether additional output files may be created (ON) or
not (OFF). The default is ON.

If bit-file identifiers (BFIDs) and pathnames are
included in the output file and SCAN_FOR_DMSTAT is
enabled, an additional output file named bfid2path
will be created in the daemon’s SPOOL_DIR directory;
this file is optimized for use by dmstat(8).

If file handles and BFIDs are in the output file and
SCAN_FOR_DMSTAT is enabled, an additional output
file named fhandle2bfid+path will be created in the
daemon’s SPOOL_DIR directory; this file is optimized
for use by dmemptytape(8).

SCAN_OUTPUT Specifies for the run_filesystem_scan.sh task the
name of the file into which dmscanfs will place
output. The default is /tmp/dmscanfs.output.

This file, if it exists, is used by run_daily_report.sh
and dmstat(8) and may be of use to site-written scripts
or programs. Although DMF does not require this file,
the output from run_daily_report.sh and dmstat
will be incomplete if it is unavailable.

SCAN_PARALLEL Specifies for the run_filesystem_scan.sh task
whether dmscanfs will scan filesystems in parallel
(ON) or not (OFF). The default is OFF.

256 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: Enabling this parameter for a daemon task
taskgroup may result in the filesystem scan
completing in a shorter period of time, but it may also
result in the task generating an unacceptable level of
filesystem activity that interferes with user processes.

SCAN_PARAMS Specifies additional dmscanfs parameters for the
run_filesystem_scan.sh task. By default,
dmscanfs is run with the -o stat option, which is
suitable for use with run_daily_report.sh. SGI
recommends that you use the default unless you
require pathnames in the output or plan to use the
dmstat(8) or dmemptytape(8) commands (which
require pathname for some operations); in these cases,
SGI recommends that you set SCAN_PARAMS as follows:

SCAN_PARAMS -o stat,path

If SCAN_PARAMS contains -o all or -o path,
dmscanfs will do a recursive scan of the filesystems,
which is much slower than the regular inode scan but
results in pathnames being included in the output.

Note: SGI recommends that you do not specify the -q
option (which suppresses the dmscanfs header line) as
a value for SCAN_PARAMS because it makes the output
file harder to parse with general-purpose scripts. The
run_daily_report.sh task requires that this header
line be present.

If BFIDs and pathnames are included in the output file
and SCAN_FOR_DMSTAT is enabled, an additional
output file named bfid2path will be created in the
daemon’s SPOOL_DIR directory. The bfid2path file is
optimized for use by dmstat(8).

THRESHOLD Specifies the integer percentage of active data on a
volume. DMF will consider a volume to be sparse when
it has less than this percentage of data that is still active.

007–5484–012 257

6: DMF Configuration File

TSREPORT_OPTIONS Specifies for the run_daily_tsreport.sh task
additional options that will be added to the end of the
tsreport command line. For example, specifying
--host will add an additional column with the
hostname to the report. (This parameter is optional).

VOLUME_LIMIT Specifies the maximum number of volumes that can be
selected for merging at one time. By default, there is no
limit.

taskgroup Object Examples

You can give the taskgroup object any name you like, but do not change the script
names. You may comment-out the RUN_TASK parameters in the sample configuration
files for any tasks you do not want to run. This section discusses the following:

• "taskgroup Object Example for Tape-Based Backup Tasks" on page 258

• "taskgroup Object Example for Disk-Based Backup Tasks" on page 260

• "taskgroup Object Example for Third-Party Backup Tasks" on page 260

• "taskgroup Object Example for Daemon Tasks" on page 261

• "taskgroup Object Example for Node Tasks" on page 264

• "taskgroup Object Example for Fast-Mount Cache Tasks" on page 264

• "taskgroup Object Example for Fast-Mount Cache Tasks Using File Retention" on
page 265

• "taskgroup Object Example for Periodic dmmigrate Tasks" on page 266

• "taskgroup Object Example for Removing Alerts" on page 266

• "taskgroup Object Example for Removing Performance Records" on page 267

taskgroup Object Example for Tape-Based Backup Tasks

Example 6-9 taskgroup Object for Tape-Based Backup Tasks

define dump_tasks
TYPE taskgroup

RUN_TASK $ADMINDIR/run_full_dump.sh on \

258 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

sunday at 00:01
RUN_TASK $ADMINDIR/run_partial_dump.sh on \

monday tuesday wednesday thursday \

friday saturday at 00:01

RUN_TASK $ADMINDIR/run_hard_deletes.sh \

at 23:00
DUMP_TAPES HOME_DIR/tapes

DUMP_RETENTION 4w

DUMP_DEVICE SILO_2

DUMP_MIGRATE_FIRST on

DUMP_INVENTORY_COPY /save/dump_inventory

enddef

In the above example:

• The name of this task group is dump_tasks. This can be any name you like, but
it must be the same as the name provided for the TASK_GROUPS parameter of the
dmdaemon object. See Example 6-4 on page 231.

• The RUN_TASK tasks specify the following:

– The run_full_dump.sh task runs a full backup of DMF-managed filesystems
each week on Sunday morning one minute after midnight.

– The run_partial_dump.sh task backs up only those files in DMF-managed
filesystems that have changed since the time a full backup was completed and
is run each day of the week except Sunday, at one minute after midnight.

– The run_hard_deletes.sh task removes soft-deleted entries from the DMF
databases after the backup-media retention period, in this case 4 weeks. For
more information, see "Cleaning Up Obsolete Database Entries" on page 474.

• The other parameters determine how the data from the filesystem backups will be
managed:

– HOME_DIR is defined in the base object (see "base Object" on page 216). For
example, if HOME_DIR is /dmf/home, then DUMP_TAPES would resolve to
/dmf/home/dump_tasks/tapes.

– The DG that defines how to mount the tapes is SILO_2

– The dmmigrate command will be run before the back ups are taken

– The XFS inventory files will be copied into /save/dump_inventory

007–5484–012 259

6: DMF Configuration File

taskgroup Object Example for Disk-Based Backup Tasks

Example 6-10 taskgroup Object for Disk-Based Backup Tasks

define dump_tasks

TYPE taskgroup
RUN_TASK $ADMINDIR/run_full_dump.sh on \

sunday at 00:01

RUN_TASK $ADMINDIR/run_partial_dump.sh on \

monday tuesday wednesday thursday \

friday saturday at 00:01
RUN_TASK $ADMINDIR/run_hard_deletes.sh \

at 23:00

DUMP_DESTINATION /dmf/backups

DUMP_MIRRORS /mirror1 user@remotehost:/mirror2

DUMP_RETENTION 4w

DUMP_MIGRATE_FIRST yes
DUMP_COMPRESS yes

enddef

The above example is similar to Example 6-9, page 258, except for the following:

• DUMP_DESTINATION rather than DUMP_TAPES specifies the location of the
filesystem and database backup files. /dmf/backups must be a
non-DMF-managed filesystem that is visible from the DMF server.

• Additional copies of the backup files will be placed in the following:

– The /mirror1 directory, which is visible to the DMF server.

– The remote mirror2 directory on the node named remotehost. The root
user on the DMF server must be able to log in to remotehost as user using
passwordless SSH.

• The backup files will be compressed using the default method (gzip -1).

taskgroup Object Example for Third-Party Backup Tasks

Example 6-11 taskgroup Object for Third-Party Backup Tasks

define dump_tasks

TYPE taskgroup
RUN_TASK $ADMINDIR/run_hard_deletes.sh at 23:00

DUMP_RETENTION 4w

260 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DUMP_MIGRATE_FIRST yes

DUMP_FLUSH_DCM_FIRST yes

DUMP_DATABASE_COPY /path/to/db_snapshot

enddef

The above example is similar to Example 6-9, page 258, and Example 6-10, page 260,
but has the following differences:

• The backups are not managed via the dump scripts

• There is a DCM MSP, so the dmmigrate command should be run before the
backups are done

• A snapshot of the DMF databases will be placed in /path/to/db_snapshot
when do_predump.sh is run

taskgroup Object Example for Daemon Tasks

Example 6-12 taskgroup Object for Daemon Tasks

define daemon_tasks
TYPE taskgroup

RUN_TASK $ADMINDIR/run_filesystem_scan.sh at 2:00

RUN_TASK $ADMINDIR/run_daily_report.sh at 3:00

RUN_TASK $ADMINDIR/run_daily_drive_report.sh at 4:00

RUN_TASK $ADMINDIR/run_audit.sh every day at 23:00

RUN_TASK $ADMINDIR/run_scan_logs.sh at 00:01
RUN_TASK $ADMINDIR/run_remove_logs.sh every \

day at 1:00

RUN_TASK $ADMINDIR/run_daily_tsreport.sh every \

day at 5:00

LOG_RETENTION 4w
RUN_TASK $ADMINDIR/run_remove_journals.sh every \

day at 1:00

JOURNAL_RETENTION 4w

RUN_TASK $ADMINDIR/run_copy_databases.sh \

every day at 3:00 12:00 21:00

DATABASE_COPIES /save/dmf_home /alt/dmf_home
enddef

007–5484–012 261

6: DMF Configuration File

In the above example:

• The name of this task group is daemon_tasks. This can be any name you like,
but it must be the same as the name provided for the TASK_GROUPS parameter of
the dmdaemon object. See Example 6-4 on page 231.

• The tasks specify the following:

– At 2:00 AM, the run_filesystem_scan.sh task runs dmscanfs(8) on all
DMF-managed filesystems and writes the output to /tmp/dmscanfs.output
(using the defaults for SCAN_FILESYSTEMS and SCAN_OUTPUT because they
are not specified).

Because SCAN_FOR_DMSTAT (a misnomer) is not specified, its default value of
ON means that the fhandle2bfid+path file will be created in the daemon’s
SPOOL_DIR directory because file handles and BFIDs are in the output file by
default; however, the bfid2path file will not be created because by default
pathnames are not included in the output file.

– At 3:00 AM, the run_daily_report.sh task reports on DCM MSPs and
managed filesystems (if run_filesystem_scan.sh has been run recently)
and on all LSs.

– At 4:00 AM, the run_daily_drive_report.sh task generates a report
showing tape drives that have requested or required cleaning since the report
was last run. If the time that the report was last run cannot be determined, or
if this is the first time that the report was run, the reporting period is the
previous 24 hours.

The report uses information that the program dmtscopy copies from files in
/var/spool/ts/pd/log to the directory SPOOL_DIR/tspdlogs. Only
events from files in SPOOL_DIR/tspdlogs are reported. Information is not
reported from tape drives that are not used with ts.

– The run_audit.sh task runs dmaudit each day at 11:00 PM. If it detects any
errors, the run_audit.sh task mails the errors to the e-mail address defined
by the ADMIN_EMAIL parameter of the base object (described in "base Object"
on page 216).

– The run_scan_logs.sh task scans the DMF log files for errors at 12:01 AM.
If the task finds any errors, it sends e-mail to the e-mail address defined by the
ADMIN_EMAIL parameter of the base object.

262 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

– At 1:00 A.M., the run_remove_logs.sh task will remove logs that are more
than 4 weeks old.

– At 5:00 AM, the run_daily_tsreport.sh task generates a report containing
the output of the tsreport command. The reporting period covers the time
since the task was last run. If that cannot be determined, the reporting period
is the previous 24 hours.

The report uses information that the program dmtscopy copies from files in
/var/spool/ts/pd/log to the directory SPOOL_DIR/tspdlogs. Only
events from files in SPOOL_DIR/tspdlogs are reported. Information is not
reported from tape drives that are not used with ts.

The task uses the following options for the tsreport command:

--noversion
--options
--wide
--tapestats
--drivestats
--errors
--tapealert
--startdate
--starttime

– At 1:00 A.M. the run_remove_journals.sh task removes journals that are
more than 4 weeks old.

Note: The run_remove_journals.sh and run_remove_logs.sh tasks are
not limited to the daemon journals and logs; they also clear the journals and
logs for MSPs/LSs.

– The run_copy_databases.sh task makes a copy of the DMF databases each
day at 3:00 AM, 12:00 noon, and 9:00 PM. The task copies a snapshot of the
current DMF databases to either /save/dmf_home or /alt/dmf_home,
whichever contains the oldest copy. Integrity checks are done on the databases
before the copy is saved. If the checks fail, the copy is not saved, and the task
sends e-mail to the address defined by the ADMIN_EMAIL parameter of the
base object.

007–5484–012 263

6: DMF Configuration File

taskgroup Object Example for Node Tasks

Example 6-13 taskgroup Object for Node Tasks with the Parallel Data-Mover Option

define node_tasks

TYPE taskgroup
RUN_TASK $ADMINDIR/run_remove_logs.sh every day at 1:00

LOG_RETENTION 4w

enddef

In the above example:

• The name of this task group is node_tasks. This can be any name you like, but
it must be the same as the name provided for the TASK_GROUPS parameter of the
services object. See "services Object" on page 236.

• Log files more than 4 weeks old are deleted each day at 1:00 A.M.

When using the Parallel Data-Mover Option, you should define the
run_remove_logs.sh task for the taskgroup that applies to the node object
rather than for the taskgroup that applies to the dmdaemon object.

Note: The run_remove_logs.sh task is the only task available for service
objects.

taskgroup Object Example for Fast-Mount Cache Tasks

Example 6-14 taskgroup Object for Fast-Mount Cache

define fmc_task
TYPE taskgroup

RUN_TASK $ADMINDIR/run_fmc_free.sh at 23:00

FMC_NAME copan_fmc

FREE_VOLUME_MINIMUM 10

FREE_VOLUME_TARGET 20
enddef

In the above example:

• The name of this task group is fmc_task. This can be any name you like, but it
must be the same as the name provided for the TASK_GROUPS parameter of the
dmdaemon object. See "dmdaemon Object" on page 228.

264 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• The name of the fast-mount cache (copan_fmc) must match the name defined for
the fastmountcache object. See "fastmountcache Object" on page 301.

• The run_fmc_free.sh task will be executed each day at 11:00 PM.

• When only 10% of the volumes in the fast-mount cache are free, DMF will free the
volumes with the oldest write dates until 20% of the volumes are free.

taskgroup Object Example for Fast-Mount Cache Tasks Using File Retention

Example 6-15 taskgroup Object for Fast-Mount Cache Using File Retention

define fmc_task
TYPE taskgroup

RUN_TASK $ADMINDIR/run_fmc_free.sh at 23:00

FMC_NAME copan_fmc

FREE_VOLUME_MINIMUM 10

FREE_VOLUME_TARGET 20
FILE_RETENTION_DAYS 3

FMC_MOVEFS /dmf/copanmove

enddef

In the above example:

• The run_fmc_free.sh task will be executed at the same time and using the
same minimum threshold and target as in Example 6-14, page 264.

• Before deleting the data from a given volume, DMF will determine if any files
should be retained in the fast-mount cache. If a volume to be freed contains files
that have been accessed within the last 3 days, DMF will first move those files to
another volume within the VG.

Note: This may have a performance impact.

• If there are files that must be retained, the special scratch directory
/dmf/copanmove will be used. This directory must be defined in the MOVE_FS
parameter in the dmdaemon object. See "dmdaemon Object" on page 228.

007–5484–012 265

6: DMF Configuration File

taskgroup Object Example for Periodic dmmigrate Tasks

Example 6-16 taskgroup Object for Periodic dmmigrate Example

define dmmigrate_task

TYPE taskgroup
RUN_TASK $ADMINDIR/run_dmmigrate.sh every 4 hours

DMMIGRATE_MINIMUM_AGE 25

DMMIGRATE_WAIT ON

enddef

In the above example:

• The name of the task is dmmigrate_task. If this task is called from the
dmdaemon object, it will process all filesystems defined with automatic space
management enabled. If it is called from a specific filesystem or DCM msp
object, it will migrate data from that object only.

• The run_dmmigrate.sh task will run every four hours.

• The minimum age of a file that will be migrated is 25 minutes.

• The task will wait for all migrations to complete before exiting.

taskgroup Object Example for Removing Alerts

Example 6-17 taskgroup Object for Removing Alerts

RUN_TASK $ADMINDIR/run_remove_alerts.sh every day at 1:00
ALERT_RETENTION 4w

MAX_ALERTDB_SIZE 100m

In the above example:

• The run_remove_alerts.sh task will be executed at 1:00 AM every day

• All alerts older than 4 weeks will be removed

• If the database reaches 100 MB, the oldest records will be removed until the
database is smaller than 100 MB

266 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

taskgroup Object Example for Removing Performance Records

Example 6-18 taskgroup Object for Removing Performance Records

RUN_TASK $ADMINDIR/run_remove_perf.sh every day at 1:00

PERF_RETENTION 4w
MAX_PERFDB_SIZE 100m

REMPERF_PARAMS -V

In the above example:

• The run_remove_perf.sh script will be executed at 1:00 AM every day

• All records older than 4 weeks will be removed

• If the database reaches 100 MB, the oldest records will be removed until the
database is smaller than 100 MB

• The unused space in the database will be removed, despite the performance
penalty

device Object
This section discusses the following:

• "device Object Name" on page 267

• "device Object Parameters" on page 267

device Object Name

The name of the device object is chosen by the administrator and may contain
uppercase or lowercase alphanumeric characters or underscores. It cannot begin with
an underscore or contain any white space.

device Object Parameters

Normally, a drivegroup object defines the tape devices to be used by a taskgroup
object (such as the example dump_tasks), with the LS and the backup scripts sharing
the same devices. However, if backups are to use different drives from those in use

007–5484–012 267

6: DMF Configuration File

by DMF, they should be defined by a device object. The parameters you define are
based on the mounting service you intend to use.

Parameter Description

TYPE Specifies device (required name for this type of
object). There is no default.

MOUNT_SERVICE Specifies the mounting service. Possible values are
openvault and tmf. You must use openvault for
those DGs that contain tape drives on parallel
data-mover nodes. The default is openvault.

Note: TMF is not supported on systems running the
Red Hat Enterprise Linux operating system.

MOUNT_SERVICE_GROUP Specifies the name by which the object’s devices are
known to the mounting service:

• OpenVault: use the OpenVault drive group name
that is listed by the ov_drivegroup command. See
"Use Corresponding Drive-Group Names in
OpenVault and DMF" on page 104.

• TMF: use the device group name that would be
used with the -g option on the tmmnt command.
(TMF is not supported on systems running the Red
Hat Enterprise Linux operating system.)

If this parameter is not specified, the device object’s
name is used.

OV_ACCESS_MODES (OpenVault only) Specifies a list of access mode names
that control how data is written to tape. For more
information about the possible values, see the
description of the access option in the ov_mount(8)
man page.

Note: xfsdump does not use this parameter.

OV_INTERCHANGE_MODES (OpenVault only) Specifies a list of interchange mode
values that control how data is written to secondary

268 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

storage. This optional parameter is applied when a
volume is mounted or rewritten. By default, this list is
empty.

Most drives support a value of either compression or
nocompression.

For example, to specify that you want data compressed,
use:

OV_INTERCHANGE_MODES compression

Some drives support additional values. For example,
the T10000C drive also supports the additional values
T10000C, T10000B, and T10000A. For example, if you
have a mixture of T10000C and T10000B drives, you
could use the following to tell the T10000C drives to
write in compressed T10000B format so that both
drives can then later read the same cartridges:

OV_INTERCHANGE_MODES compression T10000B

For more information about the possible values, see the
description of the firstmount option in the
ov_mount(8) man page.

TMF_TMMNT_OPTIONS (TMF only) Specifies command options that should be
added to the tmmnt command when mounting a tape.
Because DMF uses the -Z option to tmmnt, options
controlling block size and label parameters are ignored.
Use -g if the group name is different from the device
object’s name. Use -i to request compression.

filesystem Object
This section discusses the following:

• "filesystem Object Name" on page 270

• "filesystem Object Parameters" on page 270

• "filesystem Object Examples" on page 275

007–5484–012 269

6: DMF Configuration File

filesystem Object Name

The name of the filesystem object is the mount point. It may contain uppercase or
lowercase alphanumeric characters, underscores, and the slash character (/). It cannot
begin with an underscore or contain any white space.

Note: Do not use a symbolic link.

filesystem Object Parameters

You must have a filesystem object for each filesystem on which DMF can operate:

• Managed filesystems are DMAPI-mounted XFS or CXFS filesystems on which DMF
can migrate or recall files. (When using the Parallel Data-Mover Option, they must
be CXFS filesystems.) The object parameters specify the level of migration for the
filesystem, I/O options, and (if applicable) policies for MSP selection, file
weighting, and automatic space management.

• Unmanaged archive filesystems are POSIX filesystems (such as Lustre) that are not
managed by DMF but from which you can efficiently copy files to secondary
storage via the dmarchive(1) command. They do not support space management,
migrations, or recalls. The MIGRATION_LEVEL parameter must be set to
archive. When using the Parallel Data Mover Option, these filesystems should
be mounted on the DMF server and all mover nodes.

The filesystem object parameters are as follows:

Parameter Description

TYPE Specifies filesystem (required name for this type of
object). There is no default.

BUFFERED_IO_SIZE Specifies the size of I/O requests when reading from or
writing to this filesystem using buffered I/O. The legal
range of values is 4096–16777216. The default is
262144. By default, the unit of measure is bytes; see
"Units of Measure" on page 215. However, this
parameter is ignored when recalling files if
USE_UNIFIED_BUFFER is set to ON (which is the
default).

270 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DIRECT_IO_SIZE Specifies the size of I/O requests when reading from
this filesystem using direct I/O. The legal range of
values is 65536–18446744073709551615. The
default value depends on the filesystem’s configuration,
but will not exceed the value of
DIRECT_IO_MAXIMUM_SIZE defined in the base
object (see "base Object" on page 216). By default, the
unit of measure is bytes; see "Units of Measure" on page
215. This parameter is ignored if the filesystem does
not support direct I/O. For more information about
direct I/O, see O_DIRECT in the open(2) man page.

MAX_MANAGED_REGIONS Sets the maximum number of managed regions that
DMF will assign to a file on a per-filesystem basis. You
can set MAX_MANAGED_REGIONS to any number that is
less than the actual number of regions that will fit in a
filesystem attribute. For XFS and CXFS filesystems, that
number is 3275.

By default, DMF allows a DMF attribute to contain the
maximum number of managed regions that will still
allow the attribute to fit completely inside the inode,
based on inode size and attr type. The default value
for a filesystem object that does not have a
MAX_MANAGED_REGIONS parameter is calculated at
filesystem mount time. This value is chosen to ensure
that the DMF attribute will fit inside the inode,
assuming that no other attribute (such as an ACL) is
already occupying the inode’s attribute space. Table 4-1
on page 129, lists the default maximum file regions.
This parameter does not apply to filesystems with a
MIGRATION_LEVEL of archive.

007–5484–012 271

6: DMF Configuration File

!
Caution: You should use MAX_MANAGED_REGIONS
cautiously. If you set this parameter to a value that is
larger than the default maximum (see Table 4-1 on page
129), the DMF attribute may not fit inside the inode. If
there are many files with DMF attributes outside of the
inode, filesystem scan times can increase greatly. To
avoid this problem, SGI recommends that a file that has
exceeded the maximum default file regions be made
offline (that is, having a single region) as soon as
possible after the online data has been accessed.

MESSAGE_LEVEL Specifies the highest message level that will be written
to the automated space management log (autolog). It
must be an integer in the range 0-6; the higher the
number, the more messages written to the log file. The
default is 2. This parameter applies only to filesystems
with a MIGRATION_LEVEL of auto. For more
information on message levels, see Chapter 9, "Message
Log Files" on page 401.

MIGRATION_LEVEL Specifies the level of migration services for the
filesystem. (Recall from offline media is not affected by
the value of MIGRATION_LEVEL.) Valid values are:

• archive (only for DMF direct archiving via the
dmarchive command)

• auto (automated space management)

• none (no migration)

• user (only user-initiated migration using the dmput
or dmmigrate commands)

The migration level actually used for the filesystem is
the lesser of the MIGRATION_LEVEL value for the
dmdaemon object and this value. If you do not want
automated space management for a filesystem, set

272 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

MIGRATION_LEVEL to user or none. The default is
auto.

When using the Parallel Data-Mover Option, all
DMF-managed filesystems (that is, filesystems where
DMF can migrate or recall files) must be CXFS
filesystems.

MIN_ARCHIVE_SIZE Specifies the minimum file size required for the
dmarchive command to copy data directly between an
unmanaged archive filesystem and DMF secondary
storage. Files smaller than this size will instead be
copied between the unmanaged archive filesystem and
a DMF-managed filesystem before being possibly
migrated or recalled from DMF secondary storage. The
legal range of values is 1–18446744073709551615.
The default is 1. By default, the unit of measure is
bytes; see "Units of Measure" on page 215. This
parameter applies only to filesystems with a
MIGRATION_LEVEL value of archive.

MIN_DIRECT_SIZE Determines whether direct or buffered I/O is used
when reading from this filesystem. If the number of
bytes to be read is smaller than the value specified,
buffered I/O is used; otherwise, direct I/O is used. The
legal range of values is 0 (direct I/O is always used)
through 18446744073709551615 (direct I/O is never
used). The default is 0. By default, the unit of measure
is bytes; see "Units of Measure" on page 215. This
parameter is ignored if the filesystem does not support
direct I/O or is a real-time filesystem. For more
information about direct I/O, see O_DIRECT in the
open(2) man page.

Note: Buffered I/O is always used when writing to a
filesystem.

POLICIES Specifies the names of the configuration objects defining
policies for this filesystem. Policies are defined with
policy objects (see "policy Object"). The POLICIES
parameter is required; there is no default value. A

007–5484–012 273

6: DMF Configuration File

policy can be unique to each DMF-managed filesystem
or it can be reused numerous times. This parameter
does not apply to filesystems with a
MIGRATION_LEVEL of archive.

POSIX_FADVISE_SIZE Specifies the number of bytes after which DMF will call
posix_fadvise() with advice
POSIX_FADV_DONTNEED when recalling files. The
minimum is 0, which means that posix_fadvise is
never used. The maximum is
18446744073709551615. The default and
recommended value is 100000000, which will call
posix_fadvise after each 100,000,000 bytes
(approximately) it has written to the file. By default, the
unit of measure is bytes; see "Units of Measure" on
page 215. DMF does not synchronize the file at this
point. If POSIX_FADVISE_SIZE is set to a nonzero
value, DMF will also call posix_fadvise when a
region is made online.

Note: Setting this parameter to a small, nonzero value
may have an adverse affect on performance. See the
posix_fadvise(2) man page for more information.

TASK_GROUPS Names the taskgroup objects that contain tasks the
daemon should run when MIGRATION_LEVEL is set to
auto. By default, no tasks are run. There are no defined
tasks for filesystems in the sample configuration files.

USE_UNIFIED_BUFFER Determines how DMF manages its buffers when
recalling files on this filesystem. The value can be one
of the following:

• ON, which means that DMF will use the same buffer
for reading and writing and BUFFERED_IO_SIZE is
ignored when recalling files. Setting the value to ON
will cause the size of I/O requests to be small when
recalling data from a disk, DCM, or FTP MSP. The
default setting is ON.

• OFF, which means that DMF uses separate buffers
for reading and writing during recall. That is, DMF

274 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

reads data from its backing store (such as tape) into
a buffer and then copies the data into another buffer
for writing. An additional thread for writing is also
used.

filesystem Object Examples

This section discusses the following examples:

• "filesystem Object for a DMF-Managed Filesystem" on page 275

• "filesystem Object for DMF Direct Archiving" on page 276

filesystem Object for a DMF-Managed Filesystem

Example 6-19 defines a filesystem object named /c using default values except as
noted.

Example 6-19 filesystem Object for a DMF-Managed Filesystem

define /c

TYPE filesystem

MIGRATION_LEVEL user

POLICIES fs_msp

enddef

In the above example:

• The define parameter must have a value that is the mount point of the
filesystem you want DMF to manage, in this case /c. Do not use a symbolic link.

• Only user-initiated migration will be used for migration to offline media.

• The migration policy is set by the policy object named fs_msp. See "policy
Object" on page 276.

• The example uses the default value for the following parameters, which also apply
to a filesystem object for a DMF-managed filesystem:

BUFFERED_IO_SIZE
DIRECT_IO_SIZE
MAX_MANAGED_REGIONS
MESSAGE_LEVEL
MIN_DIRECT_SIZE

007–5484–012 275

6: DMF Configuration File

POSIX_FADVISE_SIZE
TASK_GROUPS
USE_UNIFIED_BUFFER

filesystem Object for DMF Direct Archiving

Example 6-20 defines a filesystem object for an unmanaged archive filesystem
named /lustrefs, using default values except as noted:

Example 6-20 filesystem Object for DMF Direct Archiving

define /lustrefs

TYPE filesystem

MIGRATION_LEVEL archive
MIN_ARCHIVE_SIZE 262144

enddef

In the above example:

• The define parameter must have a value that is the mount point of the
unmanaged archive filesystem, in this case /lustrefs. Do not use a symbolic
link.

• File data in /lustrefs can be copied directly to secondary storage by users via
the dmarchive(1) command.

• Files that are smaller than 262,144 bytes are never archived via dmarchive but
instead will be copied to a DMF-managed filesystem before being possibly
migrated or recalled from DMF secondary storage.

• The example uses the default value for the following parameters, which also apply
to a filesystem object for DMF direct archiving:

BUFFERED_IO_SIZE
DIRECT_IO_SIZE
MIN_DIRECT_SIZE
POSIX_FADVISE_SIZE
USE_UNIFIED_BUFFER

policy Object
This section discusses the following:

276 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "Functions of policy Parameters" on page 277

• "Rules for policy Parameters" on page 278

• "policy Object Name" on page 280

• "DMF-Managed Filesystem policy Parameters" on page 280

• "DCM MSP STORE_DIRECTORY policy Parameters" on page 287

• "when Clause" on page 292

• "ranges Clause" on page 295

• "policy Configuration Examples" on page 297

Functions of policy Parameters

A policy object specifies behavior for managing the following:

• A DMF-managed filesystem

• A DCM STORE_DIRECTORY

The policy object parameters specify the following functions:

• "Automated Space Management Overview" on page 277

• "File Weighting Overview" on page 278

• "MSP/VG Selection Overview" on page 278

For details about the parameters, see:

• "DMF-Managed Filesystem policy Parameters" on page 280

• "DCM MSP STORE_DIRECTORY policy Parameters" on page 287

Automated Space Management Overview

DMF lets you automatically monitor filesystems and migrate data as needed to
prevent filesystems from filling. This capability is implemented by the dmfsmon(8)
daemon. After the dmfsmon daemon has been initiated, it will begin to monitor the
DMF-managed filesystem in order to maintain the level of free space specified in the
configuration file.

007–5484–012 277

6: DMF Configuration File

Note: Ideal values for these parameters are highly site-specific, based largely on
filesystem sizes and typical file sizes.

File Weighting Overview

When DMF is conducting automated space management, it derives an ordered list of
files (called a candidate list) and migrates or frees files starting at the top of the list.
The ordering of the candidate list is determined by weighting factors that are defined
by parameters in the configuration file. You can use the file weighting parameters
multiple times to specify that different files should have different weights. For more
details, see Chapter 10, "Automated Space Management" on page 403.

MSP/VG Selection Overview

DMF can be configured to have many MSPs/VGs, including those specified in an MG
(see "migrategroup Object" on page 331).

Each MSP/VG manages its own set of volumes. The MSP/VG selection parameters
let you migrate files with different characteristics to different MSPs/VGs. You can use
the MSP/VG selection parameters multiple times to specify that different files should
have different MSP/VG selection values.

Rules for policy Parameters

This section discusses the following:

• "DMF-Managed Filesystem Rules" on page 278

• "DCM MSP STORE_DIRECTORY Rules" on page 279

DMF-Managed Filesystem Rules

The rules for a policy object that is migrating a DMF-managed filesystem are as
follows:

• The POLICIES parameter for a filesystem object must specify one and only
one MSP/VG selection policy.

• The TYPE parameter is required for any policy object:

278 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Parameter Description

TYPE Specifies policy (required name for this type of object). There is no
default.

• If the MIGRATION_LEVEL parameter for a filesystem object is auto, the
POLICIES parameter for that object must specify one and only one
space-management policy.

• You do not need to specify a weighting policy if the default values are acceptable.

• Providing the above rules are followed, you can have many different combinations
of policies. For example, you could configure one policy that defines all three
categories of policy parameters (automated space management, MSP/VG
selection, and file weighting) and share that policy among all the filesystems, or
you could configure any number of individual MSP/VG selection policies and
space-management policies (including weighting parameters) that you can apply
to one or more filesystems.

DCM MSP STORE_DIRECTORY Rules

The rules for a policy object that is managing a DCM MSP STORE_DIRECTORY are
as follows:

• The TYPE parameter is required for any policy object:

Parameter Description

TYPE Specifies policy (required name for this type of object). There is no
default.

• If the MIGRATION_LEVEL for a filesystem object is auto, the POLICIES
parameter for that object must specify one and only one space-management policy.

• You do not need to specify a weighting policy if the default values are acceptable.

• You can configure one policy that defines all three categories of policy parameters
(automated space management, file weighting, and VG selection) and share that
policy among all the filesystems. Alternatively, you might create a VG selection
policy for all filesystems and a space-management policy (including weighting
parameters) for all filesystems.

007–5484–012 279

6: DMF Configuration File

• The DCM MSP supports the concept of dual-residence, which means that a
cache-resident copy of a migrated file has already been copied to secondary
storage and can therefore be released quickly in order to prevent the cache filling,
without any need to first copy it to secondary storage. It is analogous to a
dual-state file that is managed by the standard disk MSP and has equivalent
policy parameters to control it.

• The age and space weighting parameters refer to the copies in the cache, not the
originals in the managed filesystem.

policy Object Name

The name of the policy object is chosen by the administrator and may contain
uppercase or lowercase alphanumeric characters or underscores. It cannot begin with
an underscore or contain any white space.

DMF-Managed Filesystem policy Parameters

This section discusses the following:

• "Automated Space Management Parameters for a DMF-Managed Filesystem" on
page 280

• "File Weighting Parameters for a DMF-Managed Filesystem" on page 283

• "MSP/VG Selection Parameters for a DMF-Managed Filesystem" on page 286

Automated Space Management Parameters for a DMF-Managed Filesystem

The following parameters control automated space management for a DMF-managed
filesystem:

Parameter Description

FREE_DUALSTATE_FIRST When set to ON, specifies that dmfsfree will first free
dual-state and partial-state files before freeing files it
must migrate. The default is OFF.

FREE_SPACE_DECREMENT Specifies the integer percentage of filesystem space by
which dmfsmon or dmdskmsp will decrement
FREE_SPACE_MINIMUM if it cannot find enough files to
migrate so that the value is reached. The decrement is

280 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

applied until a value is found that can be achieved. If
space later frees up, the FREE_SPACE_MINIMUM is reset
to its original value. Valid values are in the range 1
through the value of FREE_SPACE_TARGET. The
default is 2.

FREE_SPACE_MINIMUM Specifies the minimum integer percentage of the total
filesystem space that dmfsmon tries to maintain as free.
When the available free space reaches or falls below
this threshold value, dmfsmon will begin to migrate
files (freeing data for dual-state files as needed) in order
to meet the percentages set for FREE_SPACE_MINIMUM,
FREE_SPACE_TARGET, and MIGRATION_TARGET. One
and only one of the policy stanzas associated with a
given filesystem stanza should have a
FREE_SPACE_MINIMUM value if the stanza has a
MIGRATION_LEVEL of auto; in this case, there is no
default value.

You should set FREE_SPACE_MINIMUM so that it is less
than the values for FREE_SPACE_TARGET and
MIGRATION_TARGET.

Figure 6-1 describes the concepts of free space and
migration targets, using as an example a minimum
free-space threshold of 10%. For example, if offline files
are recalled or regular files are added to the filesystem
such that only 10% of it is free, DMF will try to reach
the free-space target of 30% by freeing the space
currently held by dual-state files and try to reach the
migration target of 80% by migrating regular files so
that they become dual-state.

007–5484–012 281

6: DMF Configuration File

(Free)

DUL

REG

Free space
0%

Used space
100%

FREE_SPACE_MINIMUM 10%
Hitting this threshold

causes action

FREE_SPACE_TARGET 30%
When the FREE_SPACE_MINIMUM
threshold is reached, DMF will free

this percentage of the filesystem

100%
Free space

0%
Used space

20%

MIGRATION TARGET 80%
When the FREE_SPACE_MINIMUM
threshold is reached, DMF will
make this percentage of the
filesystem free or dual-state

When the FREE_SPACE_MINIMUM
threshold is reached, the result of DMF
attempting to reach the targets is that
up to this percentage of the filesystem
can contain regular files

Figure 6-1 Concepts of Free-Space Minimum and Target

For more details, see Chapter 10, "Automated Space
Management" on page 403.

For the information on how this parameter is used
when automated space management is not configured,
see the dmf.conf(5) man page.

FREE_SPACE_TARGET Specifies the integer percentage of total filesystem space
that dmfsfree or dmdskfree tries to free if free space
reaches or falls below the FREE_SPACE_MINIMUM
threshold. You should set FREE_SPACE_TARGET so
that it is less than MIGRATION_TARGET. One and only
one of the policy stanzas associated with a given
filesystem stanza should have a
FREE_SPACE_TARGET value if the stanza has a

282 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

MIGRATION_LEVEL of auto; in this case, there is no
default value.

MIGRATION_TARGET Specifies the integer percentage of total filesystem space
that dmfsmon tries to maintain as a reserve of space
that is free or occupied by dual-state files. (The online
space occupied by dual-state files can be freed quickly
if free space reaches or falls below
FREE_SPACE_MINIMUM.) One and only one of the
policy stanzas associated with a given filesystem
stanza should have a MIGRATION_TARGET value if the
stanza has a MIGRATION_LEVEL of auto; in this case,
there is no default value.

SITE_SCRIPT Specifies the site-specific script to execute when the
dmfsfree, dmdskfree, or dmfsmon command is run:

• If the script returns a zero exit status, the command
continues its normal processing

• If the script returns a nonzero exit status, the
command returns immediately, using this value as
its own exit status

See dmfsfree(8) or dmdskfree(8) for further details.
This parameter is optional.

For more details, see Chapter 10, "Automated Space Management" on page 403.

See also:

• "Functions of policy Parameters" on page 277

• "DMF-Managed Filesystem Rules" on page 278

File Weighting Parameters for a DMF-Managed Filesystem

The following parameters control file weighting for a DMF-managed filesystem:

007–5484–012 283

6: DMF Configuration File

Parameter Description

AGE_WEIGHT Specifies a floating-point constant and floating-point
multiplier to use when calculating the weight given to a
file’s age, calculated as follows:

constant + (multiplier * file_age_in_days)

The default is a constant of 1 and a multiplier of 1.

The AGE_WEIGHT parameter accepts an optional when
clause, which contains a conditional expression. You
can use this clause to select which files should use the
AGE_WEIGHT values. See "when Clause" on page 292.

The AGE_WEIGHT parameter also accepts an optional
ranges clause, which specifies the ranges of a file for
which the parameter applies. See "ranges Clause" on
page 295.

DMF checks each AGE_WEIGHT parameter in turn, in
the order that they occur in the configuration file. If the
when clause is present and no ranges clause is present,
DMF determines whether the file matches the criteria in
the clause. If no when clause is present, a match is
assumed. If the file matches the criteria, the file weight
is calculated from the parameter values. If they do not
match, the next instance of that parameter is examined.

You can configure a negative value to ensure that
specific files are never automatically migrated. For
example, you might want to set a minimum age for
migration. The following parameter specifies that files
that have been accessed within 1 day are never
automatically migrated:

AGE_WEIGHT -1 0.0 when age <= 1

Note: DMF calculates the age weight and space weight
separately. If either value is less than zero, the file is
not automatically migrated and the file or range is not
automatically freed. Otherwise, the two values are
summed to form the file’s or range’s weight.

284 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

SPACE_WEIGHT Specifies a floating-point constant and floating-point
multiplier to use when calculating the weight given to a
file’s size, calculated as follows:

constant + (multiplier * file_disk_space_in_bytes)

The default is a constant of 0 and a multiplier of 0.

For a partial-state file, file_disk_space_in_bytes is the
amount of space occupied by the file at the time of
evaluation.

The SPACE_WEIGHT parameter accepts an optional
when clause, which contains a conditional expression.
See "when Clause" on page 292.

The SPACE_WEIGHT parameter also accepts an optional
ranges clause, which specifies the ranges of a file for
which the parameter applies. See "ranges Clause" on
page 295.

You can configure a negative value to ensure that
specific files are never automatically migrated. For
example, you might want to set a minimum size for
migration. The following parameter specifies that small
files are never automatically migrated:

SPACE_WEIGHT -1 0 when space <= 4k

Note: DMF calculates the age weight and space weight
separately. If either value is less than zero, the file is
not automatically migrated and the file or range is not
automatically freed. Otherwise, the two values are
summed to form the file’s or range’s weight.

See also:

• "Functions of policy Parameters" on page 277

• "DMF-Managed Filesystem Rules" on page 278

007–5484–012 285

6: DMF Configuration File

MSP/VG Selection Parameters for a DMF-Managed Filesystem

The following parameters control MSP/VG selection for a DMF-managed filesystem:

Parameter Description

SELECT_MSP,
SELECT_VG

Specifies the MSPs, VGs, and MGs to use for migrating
a file. If you use an MG, you must not specify
overlapping MSPs, VGs, or MGs on the same
SELECT_VG and SELECT_MSP statement (taking care to
ensure that the statement expands to a set of
non-overlapping MSPs and VGs when all of the group
members of the MGs are considered). See
"migrategroup Object" on page 331.

Note: The parameters are not used for defining which
MSP/VG to use for recalls; for that, see the definitions
of the LS_NAMES, MSP_NAMES, DRIVE_GROUPS, and
VOLUME_GROUPS parameters.

The SELECT_MSP and SELECT_VG parameters are
equivalent. VGs, disk MSPs, FTP MSPs, and MGs may
be specified by either parameter.

You can list as many MSP/VG/MG names as you have
msp, volumegroup, and migrategroup objects
defined. A copy of the file will be migrated as follows:

• To each MSP/VG listed explicitly

• For each MG listed, to exactly one MSP/VG that is a
member of the MG

The special name none means that the file will not be
migrated.

If no SELECT_MSP or SELECT_VG parameter applies to
a file, it will not be migrated.

The parameters are processed in the order that they
appear in the policy. The first SELECT_MSP or
SELECT_VG statement that applies to the file is honored.

286 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

These parameters allow conditional expressions based
on the value of a file tag. See "Customizing DMF" on
page 142.

The root user on the DMF server can override the
selection specified in these parameters through the use
of dmput -V or with libdmfusr.so calls. If
site–defined policies are in place, they may override
these parameters.

There is no default.

See also:

• "Functions of policy Parameters" on page 277

• "DMF-Managed Filesystem Rules" on page 278

DCM MSP STORE_DIRECTORY policy Parameters

This section discusses the following:

• "Automated Space Management Parameters for a DCM MSP STORE_DIRECTORY"
on page 287

• "File Weighting Parameters for a DCM MSP STORE_DIRECTORY" on page 289

• "VG Selection Parameters for a DCM MSP STORE_DIRECTORY" on page 291

See also "Functions of policy Parameters" on page 277.

Automated Space Management Parameters for a DCM MSP STORE_DIRECTORY

The following parameters control automated space management for a DCM MSP
STORE_DIRECTORY:

Parameter Description

DUALRESIDENCE_TARGET Specifies the integer percentage of DCM MSP cache
capacity that DMF maintains as a reserve of
dual-resident files whose online space can be freed if
free space reaches or falls below
FREE_SPACE_MINIMUM. The dmdskmsp process tries to
ensure that this percentage of the filesystem is copied to

007–5484–012 287

6: DMF Configuration File

secondary storage, is currently being copied to
secondary storage, or is free after it runs dmdskfree to
make space available. This parameter is required for a
DCM MSP; there is no default. (It does not apply to
DMF-managed filesystems.)

FREE_DUALRESIDENT_FIRSTWhen set to ON, specifies that dmdskfree will first
free dual-resident files before freeing files it must
migrate. The default is OFF.

FREE_SPACE_DECREMENT Specifies the integer percentage of filesystem space by
which dmfsmon or dmdskmsp will decrement
FREE_SPACE_MINIMUM if it cannot find enough files to
migrate so that the value is reached. The decrement is
applied until a value is found that can be achieved. If
space later frees up, the FREE_SPACE_MINIMUM is reset
to its original value. Valid values are in the range 1
through the value of FREE_SPACE_TARGET. The
default is 2.

FREE_SPACE_MINIMUM Specifies the minimum integer percentage of the total
filesystem space that the DCM MSP tries to maintain as
free. When the available free space reaches or falls
below this threshold value, dmdskfree will begin to
free dual-resident files and make non-dual-resident files
dual-resident in order to meet the percentages set for
FREE_SPACE_MINIMUM, FREE_SPACE_TARGET, and
DUALRESIDENCE_TARGET.

You should set FREE_SPACE_MINIMUM so that it is less
than the values for FREE_SPACE_TARGET and
DUALRESIDENCE_TARGET. This parameter is required;
there is no default.

For more details, see Chapter 10, "Automated Space
Management" on page 403.

FREE_SPACE_TARGET Specifies the integer percentage of total filesystem space
that dmfsfree or dmdskfree tries to free if free space
reaches or falls below the FREE_SPACE_MINIMUM
threshold. You should set FREE_SPACE_TARGET so
that it is less than DUALRESIDENCE_TARGET. This
parameter is required; there is no default.

288 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

SITE_SCRIPT Specifies the site-specific script to execute when
dmfsfree, dmdskfree, or dmfsmon is run. If it
returns a zero exit status, dmfsfree, dmdskfree, or
dmfsmon continue their normal processing. If nonzero,
they return immediately, using this value as their own
exit status. See dmfsfree(8) or dmdskfree(8) for
further details. This parameter is optional.

See also:

• "DCM MSP STORE_DIRECTORY Rules" on page 279

• "Functions of policy Parameters" on page 277

File Weighting Parameters for a DCM MSP STORE_DIRECTORY

The policy parameters for file weighting are as follows:

Parameter Description

CACHE_AGE_WEIGHT Specifies a floating-point constant and floating-point
multiplier to use when calculating the weight given to a
file’s age, calculated as follows:

constant + (multiplier * file_age_in_days)

The default is a constant of 1 and a multiplier of 1.

Note: This parameter refers to the copies in the cache,
not the originals in the managed filesystem.

The CACHE_AGE_WEIGHT parameter accepts an
optional when clause, which contains a conditional
expression. See "when Clause" on page 292.

Add a when clause to select which files should use
these values. DMF checks each AGE_WEIGHT parameter
in turn, in the order that they occur in the configuration
file. If the when clause is present, DMF determines
whether the file matches the criteria in the clause. If no
when clause is present, a match is assumed. If the file
matches the criteria, the file weight is calculated from

007–5484–012 289

6: DMF Configuration File

the parameter values. If they do not match, the next
instance of that parameter is examined.

You can configure a negative value to ensure that
specific files are never automatically migrated. For
example, you might want to set a minimum age for
migration. The following parameter specifies that files
that have been accessed or modified within 1 day are
never automatically migrated:

CACHE_AGE_WEIGHT -1 0.0 when age <= 1

Note: DMF calculates the age weight and space weight
separately. If either value is less than zero, the file is
not automatically migrated and the file is not
automatically freed. Otherwise, the two values are
summed to form the file’s weight.

CACHE_SPACE_WEIGHT Specifies a floating-point constant and floating-point
multiplier to use when calculating the weight given to a
file’s size, calculated as follows:

constant + (multiplier * file_disk_space_in_bytes)

The default is a constant of 0 and a multiplier of 0.

For a partial-state file, file_disk_space_in_bytes is the
amount of space occupied by the file at the time of
evaluation.

The CACHE_SPACE_WEIGHT parameter accepts an
optional when clause, which contains a conditional
expression. See "when Clause" on page 292.

Configure negative values to ensure that files are never
automatically migrated. For example, you might want
to set a minimum size for migration. The following
parameter specifies that small files are never
automatically migrated:

SPACE_WEIGHT -1 0 when space <= 4k

290 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

See also:

• "Functions of policy Parameters" on page 277

• "DCM MSP STORE_DIRECTORY Rules" on page 279

VG Selection Parameters for a DCM MSP STORE_DIRECTORY

The following parameter controls VG selection for a DCM MSP STORE_DIRECTORY:

Parameter Description

SELECT_LOWER_VG Defines which VGs and MGs should maintain
secondary-storage copies of files in the cache, and
under what conditions that would define
dual-residence. If you use an MG, you must not specify
overlapping VGs or MGs on the same
SELECT_LOWER_VG statement (taking care to ensure
that the statement expands to a set of non-overlapping
VGs when all of the group members of the MGs are
considered (see "migrategroup Object" on page 331).

Note: The parameter is not used for defining which VG
to use for recalls; for that, see the definitions of the
LS_NAMES, MSP_NAMES, DRIVE_GROUPS, and
VOLUME_GROUPS parameters.

You can list as many VG/MG names as you have
volumegroup and migrategroup objects defined. A
copy of the file will be migrated as follows:

• To each VG listed explicitly

• For each MG listed, to exactly one VG that is a
member of the MG

The special name none means that the file will not be
migrated.

If no SELECT_LOWER_VG parameter applies to a file, it
will not be migrated. However, a large number of such
files may impair the effectiveness of the DCM MSP or

007–5484–012 291

6: DMF Configuration File

(in extreme cases) may cause the migration of more
user files in the DMF-managed filesystem to fail.

Parameters are processed in the order that they appear
in the policy.

This parameter allows conditional expressions based on
the value of a file tag. See "Customizing DMF" on page
142.

If site–defined policies are in place, they may override
this parameter.

There is no default.

See also:

• "Functions of policy Parameters" on page 277

• "DCM MSP STORE_DIRECTORY Rules" on page 279

when Clause

The file weighting and MSP/VG selection parameters accept an optional when clause
to restrict the set of files to which that parameter applies. It has the following form:

when expression

expression can include any of the following simple expressions:

Expression Description

age Specifies the number of days since last modification or
last access of the file, whichever is more recent.

gid Specifies the group ID or group name of the file.

sitefn Invokes a site-defined policy function once for each file
being considered, and is replaced by the return code of
the function. This is only applicable to the
AGE_WEIGHT, SPACE_WEIGHT, SELECT_MSP, and
SELECT_VG parameters in a filesystem’s policy
stanza. For more information, see Appendix C,
"Site-Defined Policy Subroutines and the sitelib.so
Library" on page 565.

292 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

sitetag Specifies a site-determined number associated with a
file by the dmtag(1) command, in the range
0–4294967295. For example:

sitetag = 27

sitetag in (20-40, 5000, 4000000000)

size Specifies the logical size of the file, as shown by ls -l.
By default, the unit of measure is bytes; see "Units of
Measure" on page 215.

softdeleted Specifies whether or not the file corresponding to a
cached copy has been soft deleted; only applicable to
the CACHE_AGE_WEIGHT, CACHE_SPACE_WEIGHT, and
SELECT_LOWER_VG parameters in a DCM MSP
policy stanza. Legal values are false and true.

space Specifies the number of bytes the file occupies on disk
(always a multiple of the block size, which may be
larger or smaller than the length of the file). For a
partial-state file, the value used is the space that the file
occupies on disk at the time of evaluation. By default,
the unit of measure is bytes; see "Units of Measure" on
page 215.

007–5484–012 293

6: DMF Configuration File

Note: The space expression references the number of
bytes the file occupies on disk, which may be larger or
smaller than the length of the file. For example, you
might use the following line in a policy:

SELECT_VG none when space < 4096

Your intent would be to restrict files smaller than
4 Kbytes from migrating.

However, this line may actually allow files as small as
1 byte to be migrated, because while the amount of
data in the file is 1 byte, it will take 1 block to hold that
1 byte. If your filesystem uses 4–Kbyte blocks, the
space used by the file is 4096, and it does not match the
policy line.

To ensure that files smaller than 4 Kbytes do not
migrate, use the following line:

SELECT_VG none when space <= 4096

uid Specifies the user ID or user name of the file.

Combine expressions by using and, or, and ().

Use the following operators to specify values:

=
!=
>
<
>=
<=
in

294 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The following are examples of valid expressions:

space < 10m (space used is less than 10 million bytes)
uid <= 123 (file’s user ID is less than or equal to 123)
gid = 55 (file’s group ID is 55)
age >= 15 (file’s age is greater than or equal to 15 days)
space > 1g (space used is greater than 1 billion bytes)
uid in (chris, 10 82-110 200)

(file owner’s user name is chris or
the file owner’s UID is 10, in the range 82-110, or 200)

(gid = 55 or uid <= 123) and age < 5

(file’s age is less than 5 days and its
group ID is 55 or its user ID is less than or equal to 123)

ranges Clause

If partial-state files are enabled on your host (meaning that you have the
PARTIAL_STATE_FILES configuration file parameter set to ON, according to the
information in the DMF release note), you can use the ranges clause to select ranges
of a file. The AGE_WEIGHT and SPACE_WEIGHT parameters accept an optional
ranges clause to restrict the ranges of a file for which a parameter applies. Example
6-22, page 299, shows an example of a policy that contains ranges clauses.

Note: The ranges clause is not valid with the CACHE_AGE_WEIGHT or
CACHE_SPACE_WEIGHT parameters.

The clause has the following form, where byteranges is one or more byte ranges:

ranges byteranges

Each byte range consists of a set of numbers that indicate byte positions. (You can
also use BOF or bof to indicate the first byte in the file and EOF or eof to indicate
the last byte in the file.) Each byte range is separated by a comma and can have one
of the following forms:

• A specification of two byte positions, where first specifies the first byte in the
range and last specifies the last byte in the range:

first:last

007–5484–012 295

6: DMF Configuration File

If unsigned, first and last count from the beginning of the file; if preceded by a
minus sign (-), they count backwards from the end of the file.

The first byte in the file is byte 0 or BOF and the last byte is -0 or EOF. Therefore,
BOF:EOF and 0:-0 both define a range covering the entire file.

For example:

– ranges 0:4095 specifies the first 4096 bytes of the file

– ranges -4095:EOF specifies the last 4096 bytes of the file

• A specification of the size of the range, starting at a given point, where first is a
byte position as above and size is the number of bytes in the range, starting at first:

first+size

For example, the following indicates bytes 20 through 29:

ranges 20+10

If size is preceded by a minus sign, it specifies a range of size bytes ending at first.
For example, the following indicates bytes 11 through 20:

ranges 20+-10

• A specification of the size of the range only (without a colon or plus symbol),
assumed to start at the end of file (when preceded by a minus sign) or beginning
of file:

-size
size

For example, the following specifies the last 20 bytes in the file:

ranges -20

The first, last, or size values can be of the following forms:

• A hexadecimal number: 0xn

• A decimal number with an optional trailing scaling character. The decimal
number may include a decimal point (.) and exponent. The trailing scaling
character may be one of those shown in "Units of Measure" on page 215.

296 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: DMF may round byte ranges and join nearby ranges if necessary. If a range is
given a negative weight, rounding may cause additional bytes to be ineligible for
automated space management.

Do not use a ranges clause when partial-state files are disabled in DMF. Specifying
many ranges for a file is discouraged, as it can cause the time and memory used by
automated space management to grow. DMF has an upper limit on the number of
regions that can exist within a file; this can sometimes cause a range to be given an
effective lower weight than what was specified in the configuration file. This might
happen if the file is already partial-state and the range with largest weight cannot be
made offline (OFL) because that would create too many regions. If the file has too
many regions to make the range offline, but it could be made offline at the same time
as a range with lower weight, it will be given the lower weight. If more than one
range in the middle of a file is not a candidate for automatic migration, the limit on
the number of regions may make it impossible to automatically free other regions of
the file.

policy Configuration Examples

This section discusses the following:

• "Automated Space-Management Example" on page 297

• "Automated Space-Management Using Ranges Example" on page 298

• "MSP/VG Selection Example" on page 300

Automated Space-Management Example

Example 6-21 shows an example of a policy object to configure automated space
management.

Example 6-21 policy Object for Automated Space Management

define fs_space

TYPE policy
MIGRATION_TARGET 50

FREE_SPACE_TARGET 10

FREE_SPACE_MINIMUM 5

FREE_DUALSTATE_FIRST off

007–5484–012 297

6: DMF Configuration File

AGE_WEIGHT 0 0.00 when age < 10

AGE_WEIGHT 1 0.01 when age < 30

AGE_WEIGHT 10 0.05 when age < 120

AGE_WEIGHT 50 0.1

SPACE_WEIGHT 0 0

enddef

In the above example:

• The define parameter must have a value that matches the value previously set in
the POLICIES parameter offilesystem object.

• The automated space management parameters specify that when only 5%
(FREE_SPACE_MINIMUM) of the fs_space filesystem is free, DMF will try to
migrate regular files until 10% (FREE_SPACE_TARGET) of the filesystem is free
and 50% (MIGRATION_TARGET) of the filesystem is either free or has files that are
dual-state. DMF will not free the space of existing dual-state files before beginning
migration of regular files. (See "Automated Space Management Parameters for a
DMF-Managed Filesystem" on page 280.)

DMF checks each AGE_WEIGHT parameter in turn, in the order that they occur in
the configuration file. DMF checks the when clause to see if the file matches the
criteria.

• File migration likelihood increases with the length of time since last access. Files
that have been accessed or modified within the last 10 days have a weight of 0,
making them the least likely to be migrated; files that have not been accessed or
modified in 120 days or more have a far greater weight than all other files.

• The size of the file does not affect migration because all files have SPACE_WEIGHT
of 0.

Automated Space-Management Using Ranges Example

Example 6-22 shows a policy object using ranges, which requires that partial-state
files are enabled on the host (meaning that PARTIAL_STATE_FILES is set to ON and
the appropriate kernel is installed, according to the information in the DMF release
note).

298 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Example 6-22 policy Object for Automated Space Management Using Ranges

define fs2_space
TYPE policy

MIGRATION_TARGET 50

FREE_SPACE_TARGET 10

FREE_SPACE_MINIMUM 5

FREE_DUALSTATE_FIRST off

AGE_WEIGHT -1. 0.00 ranges 0:4095 when uid=624

AGE_WEIGHT -1 0 ranges 0:4095,-4095:EOF when uid=321

AGE_WEIGHT 1 0.01 when age < 30

AGE_WEIGHT 10 0.05 when age < 120

AGE_WEIGHT 50 0.1

SPACE_WEIGHT 0 0

enddef

The above example is similar to Example 6-21, page 297, with the following
differences:

• If a file is owned by UID 624 and is 1004096 bytes long, the first 4096 bytes are
given an AGE_WEIGHT of -1. The remaining 1000000 bytes are given an
AGE_WEIGHT based on the age of the file; based on this weight, automated space
management may select this file to be migrated. DMF migrates the entire file
before changing its state to OFL, DUL, or PAR. Automated space management may
also choose to put the last 1000000 bytes of the file offline based on the weight of
that range; the first 4096 bytes will not be eligible for being put offline by
automated space management.

• If a file is owned by UID 321, the first and last 4096 bytes of it will not be eligible
for being put offline by automated space management, similar to the above
situation.

• If a file is owned by UID 956, the policy in Example 6-22 would give the entire file
an AGE_WEIGHT based on its age.

007–5484–012 299

6: DMF Configuration File

MSP/VG Selection Example

Example 6-23 defines a policy object for an MSP/VG.

Example 6-23 policy Object for an MSP/VG

define fs_msp

TYPE policy
SELECT_MSP none when space < 65536

SELECT_MSP cart1 cart2 when gid = 22

SELECT_MSP cart3 when space >= 10m

SELECT_MSP cart1 when space >= 50m

SELECT_VG cart2

enddef

In the above example:

• The define parameter must match the value that you set previously in the
POLICIES parameter of the filesystem object. See "filesystem Object
Parameters" on page 270.

• The special MSP name none means that files that are smaller than 65,536 bytes
will never be migrated.

• The VG/MSP names (cart1, cart2, cart3) must match the names set in the
LS_NAMES parameter (or else the MSP_NAMES parameter) of the dmdaemon object.
The SELECT_MSP and SELECT_VG parameters are interchangeable, so both can be
used in the same stanza.

• Any file with a group ID of 22 will be sent to both cart1 and cart2

• Smaller files will be sent to cart3 and larger files will be sent to cart1

Note: The order of the SELECT_MSP and SELECT_VG statements is important.
The first SELECT statement that applies to the file is honored. For example, if the
order of the statements above were reversed, a 10–million-byte file would be
migrated to cart1, because the check for greater than or equal to 65,536 bytes
would be done first, and it would be true.

• Any other file that does not meet the above criteria is sent to cart2.

300 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

fastmountcache Object
This section contains the following:

• "fastmountcache Object Name" on page 301

• "fastmountcache Object Parameters" on page 301

• "fastmountcache Object Examples" on page 301

fastmountcache Object Name

The name of the fastmountcache object is chosen by the administrator and may
contain uppercase or lowercase alphanumeric characters or underscores. It cannot
begin with an underscore or contain any white space.

fastmountcache Object Parameters

The fastmountcache object defines the parameters for a fast-mount cache.

Parameter Description

TYPE Specifies fastmountcache (required name for this
type of object). There is no default.

CACHE_MEMBERS Specifies the MGs and independent VGs to be used as a
fast-mount cache.

fastmountcache Object Examples

This section discusses the following examples:

• "fastmountcache with an MG" on page 301

• "fastmountcache with a Mix of Members" on page 302

fastmountcache with an MG

Example 6-24 fastmountcache with an MG

define copan_fmc

TYPE fastmountcache

007–5484–012 301

6: DMF Configuration File

CACHE_MEMBERS mg_fmc
enddef

In the above example:

• The name of the fast-mount cache is copan_fmc.

• The VGs that will be used for the fast-mount cache are part of the mg_fmc MG.

• The volumegroup objects that are part of mg_fmc should use a
RESERVED_VOLUMES setting of 1 to ensure proper rotation among the volumes.

• There must be a taskgroup object configured elsewhere in the configuration file
to free the volumes in the fast-mount cache, and it must reference the taskgroup
object named copan_fmc. See "taskgroup Object" on page 240.

fastmountcache with a Mix of Members

Example 6-25 fastmountcache with a Mix of Members

define copan_fmc

TYPE fastmountcache

CACHE_MEMBERS vg_c00 mg_fmc

enddef

This example is similar to Example 6-24, page 301, except for the following:

• There is a single independent VG (vg_c00) and an MG (mg_fmc) that will be
used for the fast-mount cache.

• The vg_C00 VG should use the default setting of RESERVED_VOLUMES (which is
0) because it should never participate in merging and no rotation is required.

LS Objects
Multiple objects are required to configure an LS. This section discusses the following:

• "libraryserver Object" on page 303

• "drivegroup Object" on page 305

• "volumegroup Object" on page 318

• "migrategroup Object" on page 331

302 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "resourcescheduler Object" on page 336

• "resourcewatcher Object" on page 338

• "allocationgroup Object" on page 338

• "Examples of Configuring an LS" on page 339

• "LS Tasks" on page 345

• "LS Database Records" on page 348

libraryserver Object

This section discusses the following:

• "libraryserver Object Name" on page 303

• "libraryserver Object Parameters" on page 303

libraryserver Object Name

The name of the libraryserver object is chosen by the administrator and may
contain up to 8 uppercase or lowercase alphanumeric characters or underscores. It
cannot begin with an underscore or contain any white space.

libraryserver Object Parameters

The libraryserver object, one for each library, has the following parameters:

Parameters Description

TYPE Specifies libraryserver (required name for this type
of object). There is no default.

CACHE_DIR Specifies the directory in which the VG stores chunks
while merging them from sparse volumes. If you do
not specify this parameter, DMF uses the value of
TMP_DIR from the base object (see "base Object" on
page 216). If you use the Parallel Data-Mover Option
and specify CACHE_DIR, it must either be a CXFS
filesystem or be in a CXFS filesystem. This directory
must not be in a DMF-managed filesystem. Do not
change this parameter while DMF is running.

007–5484–012 303

6: DMF Configuration File

CACHE_SPACE Specifies the amount of disk space that dmatls can use
when merging chunks from sparse volumes. During
merging, small chunks from sparse volumes are cached
on disk before being written to a secondary storage.
The default is 0, which causes all files to be merged via
sockets. By default, the unit of measure is bytes; see
"Units of Measure" on page 215.

The LS can merge volumes more efficiently if it can
stage most of the files to disk.

Note: The zone size influences the required cache space.
See ZONE_SIZE in "volumegroup Object" on page 318.

COMMAND Specifies the binary file to execute in order to initiate
the LS. This value must be dmatls.

COPAN_VSNS (Specify for COPAN only) Specifies if the fourth character
of the VSN indicates the RAID in the COPAN virtual
tape library (VTL) or COPAN MAID that contains the
volume. This specification applies for all VSNs in this
LS. Specifying ON enables this feature; specifying OFF
disables it. The default is OFF. Do not change this
parameter while DMF is running.

DISCONNECT_TIMEOUT Specifies the number of seconds after which the LS will
consider a mover process to have exited if it cannot
communicate with the process. Likewise, mover
processes will use this value to determine if the LS has
exited. The default is 30 seconds.

DRIVE_GROUPS Names one or more drivegroup objects containing
drives that the LS can use for mounting and
unmounting volumes. There is no default.

The order of these names is significant. Where there are
multiple copies of the data of migrated files, recalls will
normally be directed to the first-named DG that is
applicable. If more than one VG within a DG contains
copies, the order of the names on VOLUME_GROUPS
parameters is also relevant. Do not change this
parameter while DMF is running.

304 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: See "Ensure that the Cache Copy is Recalled
First" on page 99.

MAX_CACHE_FILE Specifies the largest chunk (in bytes) that will be merged
using the merge disk cache. Larger files are transferred
directly via a socket from the read child to the write
child. The default is 25% of the CACHE_SPACE value.
Valid values are 0 through the value of CACHE_SPACE.

MESSAGE_LEVEL Specifies the highest message level that will be written
to the LS log, which includes messages from the LS’s
components. It must be an integer in the range 0–6; the
higher the number, the more messages written to the
log file. The default is 2.

RUN_TASK See the description of RUN_TASK in "taskgroup Object
Parameters" on page 245. Also see "Automated
Maintenance Tasks" on page 132.

TASK_GROUPS Names the taskgroup objects that contain tasks the LS
should run. By default, no tasks are run.

WATCHER Names the resource watcher that the LS should run.
The default is no watcher. (A corresponding
resourcewatcher object is required only if the
default parameters are unacceptable. See
"resourcewatcher Object Parameters" on page 338.)

See also "TMF Configuration Tasks" on page 399.

drivegroup Object

This section discusses the following:

• "drivegroup Object Name" on page 306

• "drivegroup Object Parameters" on page 306

007–5484–012 305

6: DMF Configuration File

drivegroup Object Name

The name of the drivegroup object is chosen by the administrator and may contain
up to 8 uppercase or lowercase alphanumeric characters or underscores. It cannot
begin with an underscore or contain any white space.

drivegroup Object Parameters

The drivegroup object, one for each pool of interchangeable drives in a single
library, has the following parameters:

Parameter Description

TYPE Specifies drivegroup (required name for this type of
object). There is no default.

AGGRESSIVE_HVFY Specifies whether or not DMF will set the hvfy flag on
volumes in the VOL database for an expanded set of
error conditions. You can set this parameter to ON or
OFF. The default is OFF (disables).

By default, DMF sets the hvfy flag for a volume in the
VOL database when it determines that there have been
an excessive number of errors while appending to the
volume. (The hvfy flag prevents further writing to that
volume; it must be manually cleared by using the
dmvoladm command or the appropriate DMF Manager
action.) If this parameter is enabled, DMF will also set
the hvfy flag if there have been I/O or positioning
errors in either of the following cases:

• On the last two consecutive mounts, with two
different drives involved

• On three out of the last six mounts, with at least two
different drives involved

Errors that occur while recalling, merging, or migrating,
are counted. DMF may also set hvfy on full tapes
when this parameter is enabled.

BANDWIDTH_MULTIPLIER (OpenVault only) Specifies a floating point number used
to adjust the amount of bandwidth that the LS assumes
a drive in this DG will use. The value is used when

306 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

scheduling drives, which allows the administrator to
adjust for the affects of compression. The default is 1,
which means no compression. The minimum is .1 and
the maximum is 1000. The node object parameters
HBA_BANDWIDTH and NODE_BANDWIDTH are related to
this parameter; see "node Object" on page 232.

BLOCK_SIZE Specifies the maximum block size to use when writing
from the beginning of a volume. The blocksize field
in the database is updated with this value and is later
used when reading or appending to a volume. For
most storage devices, DMF supports block sizes
ranging from 4096 – 2097152 bytes; for COPAN
MAID, DMF supports block sizes ranging from 131072
– 2097152 bytes. DMF uses direct I/O to tapes when
possible. However, direct I/O cannot be used on some
architectures if the block size is larger than 524288
bytes; in this case, DMF uses buffered I/O instead.
DMF always uses buffered I/O for COPAN MAID
devices. For more information, see "Device Block-Size
Defaults and Bandwidth" on page 215. By default, the
unit of measure is bytes; see "Units of Measure" on
page 215.

The default maximum size is dependent on your device
configuration, show in "Device Block-Size Defaults and
Bandwidth" on page 215.

COMPRESSION_TYPE (COPAN MAID only) Specifies the compression type
and level to be used by the write child (dmatwc) mover
process when writing from the beginning of the
volume. The following values are accepted:

snappy Uses the Snappy
compression library.

zlib[:level] Uses the zlib
compression library with
the specified compression
level. See the zlib(3)
man page for a
description of the
compression levels that

007–5484–012 307

6: DMF Configuration File

can be set; 1–9 are valid
values. If you specify
zlib without a value, 1
is the default level.

The compression level is set when an empty volume is
first written and remains unchanged for that volume
until it has been emptied and is rewritten. Compression
and decompression are done by the mover process
(dmatwc or dmatrc) when COPAN MAID is used.

Note: If you specify COMPRESSION_TYPE, you must
also specify compression for the
OV_INTERCHANGE_MODES parameter (below); if you do
not specify compression for
OV_INTERCHANGE_MODES, the default is no
compression.

If OV_INTERCHANGE_MODES specifies compression
but COMPRESSION_TYPE is not specified, the default is
snappy compression.

DRIVE_MAXIMUM Specifies the maximum number of drives that the DG is
allowed to use simultaneously. This may be more or
less than the number of usable drives. The maximum is
100; the default is 100.

If you specify a negative number for this parameter, the
DG will add it to the number of usable drives to derive
the effective maximum. For example, if you specify -2
and there are 10 usable drives, then up to 8 of them can
used by the VGs that belong to this DG. If a drive is
then configured down (meaning that there are 9
usable), up to 7 drives can be used by the VGs.

Note: A given VG can have a lower maximum value if
you specify the DRIVE_MAXIMUM parameter in its
volumegroup stanza. See "volumegroup Object" on
page 318.

308 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DRIVE_SCHEDULER Names the resourcescheduler objects that the DG
should run for the scheduling of drives. The default is
a resource scheduler of default type and parameters.
For the defaults, see "resourcescheduler Object
Parameters" on page 337.

DRIVES_TO_DOWN Specifies an integer value that controls the number of
"bad" drives the DG is allowed to try to configure
down. When more than this number are down,
whether due to the DG or to external influences such as
the system administrator, the DG does not attempt to
disable any more drives. The default of 0 prevents the
DG from disabling any drives.

FADV_SIZE_MAID (COPAN MAID only) Specifies when to call
posix_fadvise() with advice
POSIX_FADV_DONTNEED for COPAN MAID volumes.
When a zone is ended, DMF calls posix_fadvise()
provided that at least FADV_SIZE_MAID bytes have
been written since the last call to posix_fadvise().
The minimum is 0, which means that
posix_fadvise() will never be called, and the
maximum is 18446744073709551615. The default is
100000000. By default, the unit of measure is bytes;
see "Units of Measure" on page 215.

LABEL_TYPE Specifies the label type used when writing volumes
from the beginning. Possible values are:

• al (ANSI label)

• nl (no label)

Note: nl is not recommended for data security
reasons even though it might be slightly faster than
the other values. nl is not allowed with COPAN
MAID.

• sl (standard label for IBM tapes)

The default is al.

007–5484–012 309

6: DMF Configuration File

MAX_MS_RESTARTS Specifies the maximum number of times that DMF can
attempt to restart the mounting service (TMF or
OpenVault) without requiring administrator
intervention. The default and recommended values are
1 for TMF and 0 for OpenVault.

MAX_PUT_CHILDREN Specifies the maximum number of write child (dmatwc)
processes that will be scheduled simultaneously for a
DG. Each dmatwc process uses one drive. By
specifying a process maximum, some drives can be
reserved for recalls, provided that the total number of
usable drives exceeds the process maximum.

You can specify values as follows:

• If the DG DRIVE_MAXIMUM is a positive value, that
value is the maximum value that you can specify for
the DG MAX_PUT_CHILDREN.

• If you specify a negative value for the DG
MAX_PUT_CHILDREN, the DG will add it to the
value of the DG DRIVE_MAXIMUM to derive the
effective maximum number of processes for this DG.
However, this can result in a situation in which files
cannot be migrated even if there are usable drives,
which can lead to filesystems filling.

• If you do not specify this parameter, then each VG
uses its own value of MAX_PUT_CHILDREN.

Note: Even if you specify the DG
MAX_PUT_CHILDREN, a given VG can have a lower
maximum value if you specify the
MAX_PUT_CHILDREN parameter in its
volumegroup stanza. See "volumegroup Object"
on page 318.

For example, if there are 6 usable drives available to the
DG, the DG DRIVE_MAXIMUM is not specified, and the
DG MAX_PUT_CHILDREN is configured to -2, then a
maximum of 4 drives will be used for migrates. But if 4

310 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

drives are then configured down, at that point no
drives can used for migrates.

MOUNT_BLOCKED_TIMEOUT (OpenVault only) Specifies the maximum number of
minutes to wait for a volume to be mounted when
another process is using the drive. When OpenVault is
the mounting service, DMF chooses which drive to use
before starting a mover process. At the time it makes
this choice, the drive is unused. During the small
window between when this choice is made and when
the mount is started, it is possible for a non-mover
process to start using the drive. In that case, the mover
process will block until either the drive becomes unused
or MOUNT_BLOCKED_TIMEOUT minutes have
passed, when the process will be told to exit, and the
work will be scheduled for another drive. The default is
6, the minimum is 4, and the maximum is 35791394.

MOUNT_SERVICE Specifies the mounting service. Possible values are
openvault and tmf. You must use openvault for
those DGs that contain drives on parallel data-mover
nodes. The default is openvault.

Note: TMF is not supported on systems running the
Red Hat Enterprise Linux operating system.

MOUNT_SERVICE_GROUP Specifies the name by which the DG’s devices are
known to the mounting service:

• OpenVault: use the OpenVault drive group name
that is specified by the ov_drivegroup command.

Note: OpenVault and DMF each have a group of
interchangeable devices known as a drive group.
Despite their use of the same terminology, a DMF
drive group is different from an OpenVault drive
group, and need not use the same name.

• TMF: use the device group name that would be
used with the -g option on the tmmnt command.

007–5484–012 311

6: DMF Configuration File

By default, the drivegroup object’s name is used.

MOUNT_TIMEOUT Specifies the maximum number of minutes to wait for a
volume to be mounted. When OpenVault is the
mounting service, the smaller of
MOUNT_BLOCKED_TIMEOUT and
MOUNT_TIMEOUT has precedence when the mount is
blocked because the drive is in use by another process;
MOUNT_TIMEOUT applies to all other cases.

If a mount request waits for longer than this period of
time, the DG attempts to stop and restart provided that
the MAX_MS_RESTARTS parameter allows it. This is
done in an attempt to force the hanging subsystem to
resume normal operation or to fail solidly.

Do not make this value too restrictive, as any non-LS
tape activity (including xfsdump) can legitimately
delay a VG’s volume mount, which could result in this
timeout being exceeded. The maximum is 43920. The
default is 0, which means infinity (that is, forever).

MSG_DELAY Specifies the number of seconds that all drives in the
DG can be down before DMF sends an e-mail message
to the administrator and logs an error message. The
default is 0, which means that as soon as DMF notices
that the mounting service is up and all of the drives are
configured down, it will e-mail a message. This delay
also applies to email messages sent when no drives are
available for migrates, which can happen if
MAX_PUT_CHILDREN in the drivegroup stanza has a
negative value.

MULTITAPE_NODES (Parallel Data-Mover Option and OpenVault only) Restricts
the recall of a file that involves multiple tapes to one of
the specified mover nodes. Without this restriction, if a
given file was split across more than one tape, multiple
mover nodes can simultaneously recall portions of it,
which may cause a performance degradation.

DMF will choose an active and enabled node from this
list. DMF will use only this node to recall multitape
files until the node is no longer both active and

312 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

enabled. Although you can modify the
MULTITAPE_NODES list while DMF is running, it will
not cause DMF to choose a new node. If you delete the
MULTITAPE_NODES list, DMF will eventually stop
restricting the recall capability.

The list may include the DMF server (if it acts as a
mover node) as well as any parallel data-mover nodes.
Use spaces to separate the node names.

For example, if you have four mover nodes
(dmfserver, mover1, mover2, and mover3), and you
want to restrict the recall of multiple tapes files to any
one of them, you could enter the following:

MULTITAPE_NODES mover1 mover2 mover3 dmfserver

Note: If all drives are down or busy on the chosen
node, multitape recalls will wait until at least one drive
is available.

If a multitape file is partial-state with multiple disjoint
offline pieces, recall is not guaranteed to occur only on
the chosen node.

OV_ACCESS_MODES (OpenVault only) Specifies a list of names to be provided
to OpenVault for the accessmode clause when
mounting a volume. These are in addition to the names
that DMF always specifies: variable and rewind. If
you do not specify readwrite, DMF will provide
readonly or readwrite, as appropriate. For more
information about the possible values, see the
description of the access option in the ov_mount(8)
man page.

OV_INTERCHANGE_MODES (OpenVault only) Specifies a list of mode values to be
provided to OpenVault when writing a volume from
the beginning. By default, this list is empty.

Most drives support a value of either compression or
nocompression.

007–5484–012 313

6: DMF Configuration File

For example, to specify that you want data compressed,
use:

OV_INTERCHANGE_MODES compression

Compression/decompression is done by the mover
process (dmatwc or dmatrc) when COPAN MAID is
used.

Note: If you use COPAN MAID and specify
compression, also see the COMPRESSION_TYPE
parameter (above).

Some drives support additional values. For example,
the T10000C drive also supports the additional values
T10000C, T10000B, and T10000A. For example, if you
have a mixture of T10000C and T10000B drives, you
could use the following to tell the T10000C drives to
write in compressed T10000B format so that both
drives can then later read the same cartridges:

OV_INTERCHANGE_MODES compression T10000B

For more information about the possible values, see the
description of the firstmount option in the
ov_mount(8) man page.

POSITIONING Specifies how the volume should be positioned. The
values can be:

• data, which means:

– When writing: use block ID seek capability to
the zone if the block ID is known (the same as
direct)

– When reading: try to determine the block ID of
the data being read and use the block ID seek
capability to position there

• direct, which means use block ID seek capability
to the zone if the block ID is known

314 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• skip, which means use volume-mark skipping to
the zone

The default depends on the type of drive, and is either
direct or data. If data positioning is specified for a
drive whose default is direct, the block ID is
calculated by adding an estimate of the number of
blocks from the start of the zone to the data being
recalled and the block ID of the start of the zone. Not
all drives use this format for block ID.

POSITION_RETRY Specifies the level of retry in the event of a failure
during zone positioning. The values can be:

• none, which means there will be no retry

• lazy, which means the VG retries if a reasonably
fast alternative means of positioning is available
(default)

• aggressive, which means the VG can try more
costly and time-consuming alternatives

If the VG is unable to position to a zone, all recalls for
files with data in that zone are aborted by the VG
(though not by DMF if a copy exists in another VG).

The default is lazy, to give the best overall recall time.
If you are having trouble getting data from a volume,
you might want to try aggressive.

READ_ERR_MAXIMUM Specifies the maximum number of I/O errors that will
be tolerated when recalling a file. The legal range of
values is 2–100000. The default is 5000. The value of
READ_ERR_MAXIMUM should be greater than the value
of READ_ERR_MINIMUM

007–5484–012 315

6: DMF Configuration File

Note: READ_ERR_TIMEOUT, READ_ERR_MINIMUM, and
READ_ERR_MAXIMUM together determine how many
I/O errors will be tolerated when recalling a file. If the
number of consecutive I/O errors is greater than
READ_ERR_MAXIMUM, or if the number of consecutive
I/O errors is greater than READ_ERR_MINIMUM and the
elapsed number of seconds since the first error was
seen is greater than READ_ERR_TIMEOUT, DMF will
stop trying to recall the file from the current VG and
will try to recall another copy (if one exists); otherwise,
the recall will fail.

READ_ERR_MINIMUM Specifies the number of errors (after the
READ_ERR_TIMEOUT value has elapsed) that will cause
DMF to stop trying to recall a file. The legal range of
values is 1–100000. The default is 10. See the
description of READ_ERR_MAXIMUM.

READ_ERR_TIMEOUT Specifies the number of seconds that can elapse since
the first I/O error was seen when recalling a file, after
which DMF will stop trying to recall a file upon
reaching the READ_ERR_MINIMUM value. The legal
values for READ_ERR_TIMEOUT are 30 through 3600
seconds. The default is 600 seconds. See the
description of READ_ERR_MAXIMUM.

READ_IDLE_DELAY Specifies the number of seconds an idle LS read child
(dmatrc) can wait before being told to exit. If other
DMF requests are waiting for a drive, the read child
may be told to exit before READ_IDLE_DELAY seconds
have passed. The default is 5 seconds.

REINSTATE_DRIVE_DELAY Specifies the number of minutes after which a drive
that was configured down by the DG will be
automatically reinstated and made available for use
again. A value of 0 means it should be left disabled
indefinitely. The default is 1440 (one day).

REINSTATE_VOLUME_DELAY Specifies the number of minutes after which a volume
that had its hlock flag set by DMF will be
automatically reinstated and made available for use

316 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

again. A value of 0 means the volume should be left
disabled indefinitely. The default is 1440 (one day).

REWIND_DELAY Specifies the number of seconds an idle LS read child
(dmatrc) can wait before rewinding. If other DMF
requests are waiting for a drive, the read child may
rewind before REWIND_DELAY seconds have passed.
The maximum is the value of READ_IDLE_DELAY. If
READ_IDLE_DELAY is not specified, the maximum is
the default value of READ_IDLE_DELAY. The default is
the minimum of:

{2, READ_IDLE_DELAY/2}

If an idle read child must rewind the volume before the
drive can be used to service other DMF requests, that
will delay the servicing of those requests; therefore you
should use caution when increasing this parameter.

RUN_TASK See the description of RUN_TASK in "taskgroup Object
Parameters" on page 245. Also see "Automated
Maintenance Tasks" on page 132.

TASK_GROUPS Names the taskgroup objects that contain tasks the
DG should run. By default, no tasks are run.

TMF_TMMNT_OPTIONS (TMF only) Specifies command options that should be
added to the tmmnt command when mounting a tape.
DMF uses the -Z option to tmmnt to ignore options
controlling block size and label parameters. Use the
BLOCK_SIZE and LABEL_TYPE DG parameters instead.
There is no need for a -g option here. If it is provided,
it must match the value of the MOUNT_SERVICE_GROUP
parameter. To request compression, use -i. Options
that are ignored are -a, -b, -c, -D, -f, -F, -l, -L, -n,
-o, -O, -p, -P, -q, -R, -t, -T, -U, -v, -V, -w, -x, and
-X.

VERIFY_POSITION Specifies whether the LS write child should (prior to
writing) verify that the volume is correctly positioned
and that the volume was properly terminated by the
last use. You can set this parameter to ON or OFF. The
default is ON (verify).

007–5484–012 317

6: DMF Configuration File

VOLUME_GROUPS Names the volumegroup objects containing volumes
that can be mounted on any of the drives within this
DG. There is no default.

The order of these names is significant. Where there are
multiple copies of the data of migrated files, recalls will
normally be directed to the first-named VG that is
applicable. A given volumegroup object can be listed
in only one drivegroup object.

Do not change this parameter while DMF is running.

Note: See "Ensure that the Cache Copy is Recalled
First" on page 99.

WRITE_CHECKSUM Specifies if blocks should be checksummed before
writing. If a block has a checksum, it is verified when
read. You can set this parameter to ON or OFF. The
default is ON.

See also Procedure 8-1 in "Configure OpenVault for a Drive Group" on page 396.

volumegroup Object

This section discusses the following:

• "volumegroup Object Name" on page 318

• "volumegroup Object Parameters" on page 319

• "volumegroup Object Example with an AG" on page 329

volumegroup Object Name

The name of the volumegroup object is chosen by the administrator and may
contain up to 8 uppercase or lowercase alphanumeric characters or underscores. It
cannot begin with an underscore or contain any white space.

318 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

volumegroup Object Parameters

There must be a volumegroup object for each pool of volumes of the same type. It
must be usable on the drives of the associated DG and capable of holding at most one
copy of user files.

Note: The run_tape_merge.sh and run_merge_stop.sh tasks and their
associated parameters can be specified in the volumegroup object.

A volumegroup object has the following parameters:

Parameter Description

TYPE Specifies volumegroup (required name for this type of
object). There is no default.

ALLOCATION_GROUP Names the allocation group (AG) that serves as a pool
of additional volumes for this VG. The name may
contain up to 8 uppercase or lowercase alphanumeric
characters or underscores; it cannot begin with an
underscore, contain any white space, or be the same as
a volumegroup object name. See "allocationgroup
Object" on page 338 and "volumegroup Object
Example with an AG" on page 329.

ALLOCATION_MAXIMUM Specifies the maximum size in number of volumes to
which a VG can grow by borrowing volumes from its
AG. The minimum is 0 and the maximum and default
are infinity. (That is, the default is that there is no
maximum; the VG can keep borrowing from the AG
until the AG runs out.) If the VG already contains
ALLOCATION_MAXIMUM or more volumes, no
additional volumes are borrowed from the AG. If no
AG is defined, this parameter is meaningless.

ALLOCATION_MINIMUM Specifies the minimum size in number of volumes to
which a VG can shrink by returning volumes to its AG.
The minimum and default are 0 and the maximum is
the value of ALLOCATION_MAXIMUM. If the VG already
contains ALLOCATION_MINIMUM or fewer volumes, no
additional volumes are returned to the AG. If no AG is
defined, this parameter is meaningless.

007–5484–012 319

6: DMF Configuration File

CHECKSUM_TYPE Specifies the type of checksum algorithm to use when
writing new tapes. Possible values are:

• crc32c specifies the CRC32C checksum algorithm,
which is required for the logical block protection
feature (see LOGICAL_BLOCK_PROTECTION below).
You must use the default setting for
WRITE_CHECKSUM (ON) when specifying this value
(see "drivegroup Object Parameters" on page 306).
Any parallel data-mover nodes that use tapes in this
VG must be running a version of the DMF software
that supports this checksum type.

Note: Using crc32c may set the actual size of the
blocks written to the tape to be 4 bytes fewer than
the BLOCK_SIZE value (see "drivegroup Object
Parameters" on page 306).

• legacy (default) specifies the original checksum
algorithm used with DMF

DRIVE_MAXIMUM Specifies the maximum number of drives that this VG
is allowed to use simultaneously. The maximum value
for this parameter is 100; the default is the DG
DRIVE_MAXIMUM (see "drivegroup Object
Parameters" on page 306).

If you specify a negative value for the VG
DRIVE_MAXIMUM, it will be added to the value used for
the DG DRIVE_MAXIMUM and the sum will be the
effective maximum for this VG.

However, the number of drives actually used is the
least of the following:

• The VG DRIVE_MAXIMUM effective value

• The DG DRIVE_MAXIMUM effective value

• The number of usable drives

For example, suppose that the VG DRIVE_MAXIMUM is
-1 and the DG DRIVE_MAXIMUM is -2. If there are 10

320 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

usable drives, then up to 7 of them will be available to
this VG. If a drive is then configured down, at that
point up to 6 will be available to this VG.

FORWARD_RECALLS Specifies whether or not a recall should be directed to
another VG or MSP if the volume required for the recall
is unavailable because it is being written to. If no other
VG or MSP can satisfy the request, it will be handled
by this VG. Use of this parameter may cause additional
volume mounts because the decision whether to
forward a recall depends on whether the volume is
being written at the time the recall request is received.
You can set this parameter to ON or OFF. The default is
OFF.

For more information about the use of this parameter in
conjunction with tapes that have been exported from a
library, see "OpenVault and Out-of-Library Tapes" on
page 141. For more information about recalling from
volumes being written, see GET_WAIT_TIME in
"volumegroup Object Parameters" on page 319.

GET_WAIT_TIME Limits the amount of time (in seconds) that DMF will
continue writing to a volume after receiving a recall
request for that volume. In the case where there is
queued writing work, the process writing to a volume
will stop writing after it has finished a zone, providing
a recall request for the volume has been queued for at
least GET_WAIT_TIME seconds. If socket merges are
taking place, it is possible that a few additional chunks
may be written after the end of the zone before writing
to the volume is stopped (depending on the size of the
chunks). The legal range of values is 600 -
2147483647; the default is 2147483647.

To minimize extra volume mounts and the number of
partial volumes created, do not make this value too
small. Other requests may be queued before the recall
request, therefore it may not proceed immediately after
DMF stops writing to the volume. Also see
FORWARD_RECALLS for more information about
recalling from a volume that is being written.

007–5484–012 321

6: DMF Configuration File

HFREE_TIME Specifies the minimum number of seconds that a
volume no longer containing valid data must remain
unused before the VG overwrites it. The default is
172800 seconds (2 days) and the minimum is 0.

When an LS removes all data from a volume, it sets the
hfree (hold free) flag bit in the volume’s VOL record
in the LS database to prevent that volume from being
immediately reused. The next time that the LS scans
the database for available volumes that can be assigned
to volume groups after HFREE_TIME seconds have
passed, the LS clears the hfree flag, allowing the
volume to be rewritten. If HFREE_TIME is set to 0, the
LS will never clear hfree, so an unused volume will
not be reused until you clear its hfree flag manually.
For a description of how to set and clear the
hfree flag manually, see the dmvoladm man page.

IMPORT_ONLY Specifies if the VG is used for importing only. You can
set this parameter to ON or OFF. The default is OFF. Set
this parameter ON when the data in the VG is being
migrated to another VG, perhaps as part of a media
hardware upgrade. The daemon will not accept
dmput(1), dmmove(8), or dmarchive(1) requests that
specify a VG with this parameter enabled.

When the DMF daemon performs a complete file recall
from an import-only VG and all other DMF copies also
reside in import-only MSPs or VGs, it makes the file a
regular file (rather than a dual-state file) and it
soft-deletes the VG’s copy of the file.

Note: An import-only VG should never be a member
group of a migrategroup stanza.

LOGICAL_BLOCK_PROTECTIONSpecifies whether logical block protection should be
turned on when reading and writing tapes. This feature
applies only to Oracle’s StorageTek T10000C and later
models that support data integrity validation (see the
drive manufacturer’s specifications for the required

322 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

level of firmware). You can set this parameter to ON or
OFF. The default is OFF.

If ON is specified, you must do all of the following:

• Use a supported drive

• Set CHECKSUM_TYPE to crc32c in the
volumegroup stanza

• Use the default setting for WRITE_CHECKSUM (ON)
in the drivegroup stanza (see "drivegroup
Object Parameters" on page 306)

Otherwise, an error message is logged.

MAX_CHUNK_SIZE Specifies the size of the chunk into which the VG should
break up large files as it writes data to secondary
storage. If a file is larger than this size, it is broken up
into pieces of the specified size. Depending on other
activity, more than one write child may be used to write
the data to secondary storage. If MAX_CHUNK_SIZE is 0
(the default), the VG breaks a file into chunks only
when an end-of-volume is reached. By default, the unit
of measure is bytes; see "Units of Measure" on page 215.

MAX_IDLE_PUT_CHILDREN Specifies the maximum number of idle write child
(dmatwc) processes that will be allowed simultaneously
for a VG. The maximum is the value of
MAX_PUT_CHILDREN for the VG. The minimum and
default are 0. If you specify a non-zero value, idle
dmatwc processes will be allowed to stay alive, with a
volume mounted, for a maximum of PUT_IDLE_DELAY
seconds. During this time, if sufficient migrates arrive to
fill a zone, they can be given to an idle dmatwc process.

007–5484–012 323

6: DMF Configuration File

Note: If the drive is needed for other work, there may
be additional delay caused by the time needed to
rewind and unmount the tape associated with the idle
process. There may be times when the number of idle
write children will exceed this value; for example, if
socket merges are occurring or immediately after a
dmatwc process completes a zone. If you configure
MAX_IDLE_PUT_CHILDREN, you must choose its value
and the value of PUT_IDLE_DELAY with the following
in mind:

• OpenVault: DMF can take several minutes to
respond when a drive is needed for some purpose
other than a recall or migrate (for example, for a
dmatsnf or xfsdump request)

• TMF: DMF will not notice that a drive is needed for
another purpose

MAX_PUT_CHILDREN Specifies the maximum number of write child (dmatwc)
processes that will be scheduled simultaneously for this
VG.

The maximum is the DG MAX_PUT_CHILDREN effective
value (if specified) or else the DG DRIVE_MAXIMUM
effective value. The minimum is 1. (A negative value is
invalid.)

The default is the DG MAX_PUT_CHILDREN value, if
specified. If you do not configure the DG
MAX_PUT_CHILDREN, the default is the same as the VG
DRIVE_MAXIMUM value.

However, the number of process actually scheduled is
the least of the following:

• The VG MAX_PUT_CHILDREN effective value

• The DG MAX_PUT_CHILDREN effective value

• The VG DRIVE_MAXIMUM effective value

• The number of usable drives

324 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: Also see "Configure Appropriately for SGI 400
VTL or COPAN MAID Shelves" on page 93.

MERGE_CUTOFF Specifies a limit at which the VG will stop scheduling
volumes for merging. This number refers to the sum of
the active and queued children generated from gets,
puts, and merges. The default value for this option is
the value used by the volumegroup object for
DRIVE_MAXIMUM. This means that if sparse volumes
are available, the VG will create DRIVE_MAXIMUM
number of children, thus using resources efficiently.
However, if any recall requests arrive for that VG, they
will be started before new merges. Setting this number
below DRIVE_MAXIMUM reserves some volumes for
recalls at the expense of merge efficiency. Setting this
number above DRIVE_MAXIMUM increases the priority
of merges relative to recalls. The minimum value is 2.

MERGE_THRESHOLD Specifies the integer percentage of active data on a
volume less than which DMF will consider a volume to
be sparse and allow merging; a value of 0 prohibits
merging. This parameter overrides the THRESHOLD
parameter (defined in a taskgroup stanza) for this
VG, which allows each VG to have a different sparse
volume threshold. If a VG is part of a fast-mount cache,
you must set this parameter to 0. The default is the
THRESHOLD parameter; see "taskgroup Object
Parameters" on page 245.

MIN_VOLUMES Specifies the minimum number of unused volumes that
can exist in the LS database for this VG without
operator notification. If the number of unused volumes
falls below MIN_VOLUMES, the operator is asked to add
new volumes. The minimum is 0, the maximum is
2147483647, and the default is 10. If a VG has an AG
configured, MIN_VOLUMES is applied to the sum of the
number of unused volumes in the VG and in its AG
subject to any ALLOCATION_MAXIMUM restrictions.

007–5484–012 325

6: DMF Configuration File

PUT_IDLE_DELAY Specifies the number of seconds that an idle write child
(dmatwc) process will be allowed to stay alive. The
default value is 30 seconds.

Note: If you configure PUT_IDLE_DELAY, you should
also specify MAX_IDLE_PUT_CHILDREN and consider
the implications of these values on other work that may
be needed for the drive. See the Note under
MAX_IDLE_PUT_CHILDREN.

PUTS_TIME Specifies the minimum number of seconds that a VG
waits after it has requested a drive for a write child
before it tells a lower priority child to go away. The
default is 3600 seconds.

READ_TIME Specifies the interval (in seconds) after which the VG
will evaluate whether a read child should be asked to
go away (even if it is in the middle of recalling a file) so
that a higher priority child can be started. If
READ_TIME is 0, the VG will not do this evaluation.
The default is 0.

RESERVED_VOLUMES Defines the number of remaining empty volumes that
will cause the VG to stop accepting migration requests:

• If merging is required for the VG, the reserved
volumes will be used for merging. Reserving
volumes prevents the situation where all volumes
become full and there are no volumes available for
merging.

• If the VG is in an MG, the requests will be sent to
another VG in the MG. This enables an MG to avoid
queuing requests to a full VG when there are
available volumes in another VG.

Set RESERVED_VOLUMES as follows:

Setting Circumstance

0
(default)

For a VG that is an independent member
of a fast-mount cache (that is, this VG is
listed in the CACHE_MEMBERS parameter,

326 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

see "fastmountcache Object
Parameters" on page 301)

1 For every VG that is part of an MG in a
fast-mount cache configuration (that is,
the MG is listed in CACHE_MEMBERS)

1 or more Either of the following:

• For all VGs except the last in an MG
that is not part of a fast-mount cache
and that has a ROTATION_STRATEGY
of SEQUENTIAL

• For a VG on a COPAN shelf that is
used as permanent storage

Note: If you set this parameter is set to a non-zero
value, you should set EXPORT_METRICS to ON (see
"base Object" on page 216).

RUN_TASK See the description of RUN_TASK in "taskgroup Object
Parameters" on page 245. Also see "Automated
Maintenance Tasks" on page 132.

TASK_GROUPS Names the taskgroup objects that contain tasks the
VG should run. By default, no tasks are run. The only
defined tasks that can be run in a VG taskgroup are
run_tape_merge.sh and run_merge_stop.sh.

TIMEOUT_FLUSH Specifies the number of minutes after which the VG
will flush files to secondary storage, even if the flush
does not produce a full volume zone. The default is
120 minutes.

VOL_MSG_TIME Specifies the minimum interval (in seconds) between
operator notifications for low–volume and no-volume
conditions for this VG. DMF will send at most one
message for each occurrence of a low-volume condition
and one message for each occurrence of a no-volume
condition. Volumes that are actively being used are not
considered available, and so a VG may fall below the
low-volume or no-volume threshold, and then as the

007–5484–012 327

6: DMF Configuration File

volumes are no longer being used, it may rise above the
threshold. This can trigger frequent notifications when
the VG is close to the threshold. You can use this
parameter to reduce the number of messages sent.
Additional notifications may be sent when the VG has
no writable volumes at all or when the number of
empty + partial volumes falls below the threshold. The
default value is 86400 seconds (24 hours), the
minimum value is 0, and the maximum value is
2147483647. Also see the MIN_VOLUMES parameter in
"drivegroup Object" on page 305

ZONE_SIZE Specifies approximately how much data the write child
should put in a zone. The write child adds files and
chunks to a zone until the data written equals or
exceeds this value, at which time it writes a volume
mark and updates the database.

The VG also uses zone size to determine when to start
write children and the number of write children to
start. The default is 50000000 bytes (or 50m). By
default, the unit of measure is bytes; see "Units of
Measure" on page 215. For more information about
zone size, also see "Media Concepts" on page 427.

328 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: It is critical that the zone size is appropriate for
the media speed and average data compression rate at
your site. A value that is too small can cause poor
write performance because a volume mark is written at
the end of each zone; a value that is too large can
reduce parallelism when migrating files. See "Improve
Drive Performance with an Appropriate VG Zone Size"
on page 90.

The zone size influences the required cache space. The
value for the CACHE_SPACE parameter should be at
least twice the value used for ZONE_SIZE. Increasing
the ZONE_SIZE value without also increasing
CACHE_SPACE could cause volume merging to become
inefficient. Merges could have problems if the
ZONE_SIZE value is larger than the CACHE_SPACE
value. For more information about CACHE_SPACE, see
"libraryserver Object Parameters" on page 303.

volumegroup Object Example with an AG

You can include an optional AG to provide a logical pool of additional volumes that
are available to multiple VGs. These volumes will automatically be transferred to a
given VG as they are needed. When free, they can be immediately returned to the
AG, making them eligible for use by another VG. This movement of volumes in and
out of the AG is subject to the restrictions imposed by HFREE_TIME,
ALLOCATION_MAXIMUM and ALLOCATION_MINIMUM.

To identify the AG for given VG, include the ALLOCATION_GROUP parameter within
its volumegroup object. Normally, you will use one AG to serve multiple VGs by
including the same ALLOCATION_GROUP parameter value in the definition of
multiple volumegroup objects.

When you add a group of volumes to the VOL database, you can explicitly assign
them to a specific AG by using the dmvoladm (8) command. If a VG has free
volumes at the time when you add an AG to its stanza, those free volumes will
automatically move into the AG (subject to the restrictions imposed by the
configuration parameters ALLOCATION_MAXIMUM and ALLOCATION_MINIMUM).

007–5484–012 329

6: DMF Configuration File

Note: Any volume that is assigned to an AG must be usable by any of the VGs that
will use the AG. That is, you must ensure that volumes assigned to the AG are
mountable on drives in the same DG as any VG that references the AG.

An ALLOCATION_GROUP name cannot be the same as a volumegroup object name.

A VG must define the ALLOCATION_GROUP option in order to use an AG

Example 6-26 volumegroup example with an AG

Do the following:

1. (Optional) Assign the volumes to the AG when you add them to the VOL
database by using the dmvoladm(8) command:

dmvoladm -l LS -c "create VSNs volgrp AG"

where:

Option Description

LS Specifies the name of the LS that owns the VOL records

VSNs Specifies one VSN or a range of VSNs separated by the hyphen (-)
character

AG Specifies the AG to which VSNs will be assigned

Note: The volgrp field keyword specifies either a VG name or an
AG name.

For example, the following line would assign volumes with the VSNs X04000
through X04010 to the AG ag1:

dmvoladm -l ls1 -c "create X04000-X04010 volgrp ag1"

For more information, see the dmvoladm(8) man page.

2. Include the AG in the DMF configuration file according to the information in
"volumegroup Object" on page 318.

330 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

a. Add the ALLOCATION_GROUP parameter to the volumegroup stanza for
each VG that should use the pool of volumes. For example, the following
extract shows that ag1 will supply volumes to both vg1 and vg2:

define vg1

TYPE volumegroup

ALLOCATION_GROUP ag1

enddef

define vg2

TYPE volumegroup

ALLOCATION_GROUP ag1

enddef

Note: An AG only requires an allocationgroup stanza if you wish to
change its VOL_MSG_TIME setting.

b. Define the ALLOCATION_MAXIMUM and ALLOCATION_MINIMUM parameters
as needed in the volumegroup stanza to restrict the size of the VG.

3. (Optional) To change the minimum interval between operator notifications for
low–volume and no-volume conditions for the AG to 48 hours (172800 seconds),
you could add the optional allocationgroup stanza:

define ag1

TYPE allocationgroup
VOL_MSG_TIME 172800

enddef

For a more complete example, see "LS with a Resource Watcher, Two DGs, and an
AG" on page 340.

migrategroup Object

This section discusses the following:

• "migrategroup Object Name" on page 332

• "migrategroup Object Parameters" on page 332

• "migrategroup Object Example with Multiple MGs" on page 335

007–5484–012 331

6: DMF Configuration File

• "Single migrategroup Object Example Using the ROUND_ROBIN_BY_BYTES
Strategy" on page 336

• "migrategroup Object Example Using the ROUND_ROBIN_BY_FILES Strategy"
on page 336

migrategroup Object Name

The name of the migrategroup object is chosen by the administrator and may
contain up to 8 uppercase or lowercase alphanumeric characters or underscores. It
cannot begin with an underscore or contain any white space.

migrategroup Object Parameters

Warning: Never add, delete, or change the order of migrategroup stanzas while
DMF is running; making changes of this type can result in data corruption or data
loss.

There can be a migrategroup object for each set of MSPs/VGs that you want to
treat as a single migration target.

A migrategroup object has the following parameters:

Parameter Description

TYPE Specifies migrategroup (required name for this type
of object). There is no default.

GROUP_MEMBERS Specifies the list of MSPs/VGs that are members of this
MG. Each migration request will result in exactly one
copy being made to a member MSP/VG. The order of
the group members is significant if you use a
ROTATION_STRATEGY of SEQUENTIAL.

The members must have their own volumegroup or
msp stanzas in the configuration file. See:

• "volumegroup Object" on page 318

• "FTP msp Object" on page 350

• "Disk msp Object" on page 356

332 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "DCM msp Object" on page 360

Do not change this parameter while DMF is running.

Do not include an import-only MSP/VG.

MULTIPLIER Specifies the amount of data to be sent to a group
member relative to the other members listed for
GROUP_MEMBERS when using
ROUND_ROBIN_BY_BYTES or
ROUND_ROBIN_BY_FILES for ROTATION_STRATEGY.
The MULTIPLIER parameter can contain multiple
floating-point values:

• If the number of MULTIPLIER values equals the
number of GROUP_MEMBERS entries, the values will
be used in order for each specified member.

• If there are fewer MULTIPLIER values than
GROUP_MEMBERS entries, the last value will be
repeated for the remaining members.

• If there are more values in MULTIPLIER than there
are entries in GROUP_MEMBERS, the extras are
ignored (and dmcheck will issue a warning).

• If there is no MULTIPLIER parameter, then by
default a value of 1 will be used for each MSP/VG
in GROUP_MEMBERS. This results in an equal
distribution of data among all non-full group
members.

Do not change this parameter while DMF is running.

007–5484–012 333

6: DMF Configuration File

ROTATION_STRATEGY Specifies the method by which a group member is
selected for a migration request. Valid methods are:

• ROUND_ROBIN_BY_BYTES specifies that a certain
number of bytes (defined by MULTIPLIER) are sent
to each non-full MSP/VG member specified in
GROUP_MEMBERS.

• ROUND_ROBIN_BY_FILES specifies that a certain
number of files (defined by MULTIPLIER) are sent
to each non-full MSP/VG member specified in
GROUP_MEMBERS.

• SEQUENTIAL selects the first member in the list that
is not already marked as full. This strategy is the
default.

If ROTATION_STRATEGY is set to SEQUENTIAL, all
GROUP_MEMBERS except the last must be able to report
when they are full:

• For a disk MSP, you should specify
FULL_THRESHOLD_BYTES to a non-zero value.

• For a VG, you should specify RESERVED_VOLUMES.
See the recommendations in "Configure
Appropriately for SGI 400 VTL or COPAN MAID
Shelves" on page 93.

• Because a disk cache manager (DCM) MSP or FTP
MSP never reports that it is full, if used it must be
the last member in the GROUP_MEMBER list.

For more information, see:

• "Configure Appropriately for SGI 400 VTL or
COPAN MAID Shelves" on page 93

• "volumegroup Object" on page 318

• "Disk msp Object" on page 356

Note the following for ROUND_ROBIN_BY_BYTES and
ROUND_ROBIN_BY_FILES:

334 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• The goal of these parameters is to optimize VG
bandwidth.

• The amounts specified are rounded up to a whole
file or byte boundary.

• When an MSP/VG becomes full, its multiplier is
removed from the round-robin calculation and the
files are spread among the remaining non-full
MSPs/VGs. A disk MSP will only report that it is
full when FULL_BYTE_THRESHOLD is configured; a
VG will only report that it is full when
RESERVED_VOLUMES is configured. (FTP MSPs and
DCM MSPs never report that they are full.)

• The statistics for these strategies are stored in the
SPOOL_DIR directory on a per-MG basis and are
persistent in nature.

Do not change this parameter while DMF is running.

Note: VGs only report that they are full when RESERVED_VOLUMES is specified; disk
MSPs only report that they are full when FULL_THRESHOLD_BYTES is specified as a
non-zero value. DCM MSPs and FTP MSPs never report that they are full; therefore, if
a DCM MSP or FTP MSP is to be included as a GROUP_MEMBER in a migrategroup
stanza using SEQUENTIAL for ROTATION_STRATEGY, it must be the last member.

migrategroup Object Example with Multiple MGs

Example 6-27 migrategroup Object with Multiple MGs

define mg1

TYPE migrategroup
ROTATION_STRATEGY ROUND_ROBIN_BY_BYTES

GROUP_MEMBERS vg1 vg2

enddef

define mg2
TYPE migrategroup

ROTATION_STRATEGY ROUND_ROBIN_BY_BYTES

GROUP_MEMBERS vg3 vg4

enddef

007–5484–012 335

6: DMF Configuration File

Example 6-27 defines two MGs, mg1 and mg2.

There is no MULTIPLIER value, so the default value of 1 will be used.

Single migrategroup Object Example Using the ROUND_ROBIN_BY_BYTES Strategy

Example 6-28 Single migrategroupUsing the ROUND_ROBIN_BY_BYTES Strategy

define mg3

TYPE migrategroup

ROTATION_STRATEGY ROUND_ROBIN_BY_BYTES
GROUP_MEMBERS vg1 vg2 vg3 vg4

MULTIPLIER 1 1.5 2 1

enddef

In Example 6-28, vg3 is sent twice as much data as vg1 or vg4, and vg2 is sent 1.5
times as much. If vg3 should become full, dmfdaemon will still send 1.5 times more
data to vg2 than to vg1 and vg4.

migrategroup Object Example Using the ROUND_ROBIN_BY_FILES Strategy

Example 6-29 migrategroup Using the SEQUENTIAL Strategy

define mg5

TYPE migrategroup

ROTATION_STRATEGY SEQUENTIAL
GROUP_MEMBERS copan1 copan2 copan3 copan4 lto1

enddef

In the above example, each MSP will be filled before advancing to the next (that is,
copan1 will be filled before advancing to copan2). After copan4 is filled, any
subsequent data overflows to the lto1 library.

resourcescheduler Object

This section discusses the following:

• "resourcescheduler Object Name" on page 337

• "resourcescheduler Object Parameters" on page 337

336 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

resourcescheduler Object Name

The name of the resourcescheduler object is chosen by the administrator and
may contain up to 8 uppercase or lowercase alphanumeric characters or underscores.
It cannot begin with an underscore or contain any white space.

resourcescheduler Object Parameters

The entries for a resourcescheduler object, one for each DG in a single library,
has the following parameters:

Parameter Description

TYPE Specifies resourcescheduler (required name for this
type of object). There is no default.

ALGORITHM Specifies the resource scheduling algorithm to be used,
one of:

• fifo (“first-in, first out”)

• weighted_roundrobin (default)

If you specify weighted_roundrobin, the following apply:

Parameter Description

PENALTY Modifies the priority of requests from a VG that is not
the next one preferred by the round-robin algorithm. It
is a multiplier in the range 0.0-1.0. Low values
reduce the priority of the requests from a VG, high
values increase the priority of an urgent request from
the VG. The default is 0.7 (an urgent request has a
little more priority than the preferred request).

WEIGHT Assigns a weight to one or more VGs. The ratio of these
weights to each other (within the one DG) determines
the number of opportunities the VG has to obtain drives
when they are needed. The weights are integers in the
range 1–99 and they need not be unique. For efficiency
reasons, small numbers are preferred, especially if large
numbers of VGs are defined. If a given VG appears on
multiple WEIGHT lines, the sum of the weights is used
as the effective weight for that VG. Any VG that does

007–5484–012 337

6: DMF Configuration File

not appear on a WEIGHT line is assigned the default of
5. If there are no WEIGHT lines, all VGs will use this
default, resulting in a strict round-robin behavior.

WEIGHT has the following format:

WEIGHT weight vg1 vg2 ...

resourcewatcher Object

This section discusses the following:

• "resourcewatcher Object Name" on page 338

• "resourcewatcher Object Parameters" on page 338

resourcewatcher Object Name

The name of the resourcewatcher object is chosen by the administrator and may
contain up to 8 uppercase or lowercase alphanumeric characters or underscores. It
cannot begin with an underscore or contain any white space.

resourcewatcher Object Parameters

The resourcewatcher object is needed only if you wish to change its parameter
defaults; a reference to a resource watcher by the libraryserver object is sufficient
to activate it.

The resourcewatcher object has the following parameters:

Parameter Description

TYPE Specifies resourcewatcher (required name for this
type of object). There is no default.

HTML_REFRESH Specifies the refresh rate (in seconds) of the generated
HTML pages. The default is 60.

allocationgroup Object

The allocationgroup object is optional. You should specify it if you want to
change the default value of its parameter. This section discusses the following:

338 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "allocationgroup Object Name" on page 339

• "allocationgroup Object Parameters" on page 339

allocationgroup Object Name

The name of the allocationgroup object is chosen by the administrator and may
contain up to 8 uppercase or lowercase alphanumeric characters or underscores. It
cannot begin with an underscore or contain any white space. It must match the value
of the ALLOCATION_GROUP parameter in the volumegroup stanza; see
"volumegroup Object Parameters" on page 319.

allocationgroup Object Parameters

The allocationgroup object is needed only if you wish to change its parameter
defaults. A reference to an ALLOCATION_GROUP parameter by a volumegroup object
is sufficient to activate an AG.

The allocationgroup object has the following parameters:

Parameter Description

TYPE Specifies allocationgroup (required name for this
type of object). There is no default.

VOL_MSG_TIME Specifies the minimum interval (in seconds) between
operator notifications for low–volume and no-volume
conditions for this AG. DMF will send at most one
message for each occurrence of a low-volume condition
and one message for each occurrence of a no-volume
condition. An AG’s low-volume threshold depends on
the number of unused volumes in the VGs that use it.
You can use this parameter to further reduce the
number of messages sent. The default value is 86400
seconds (24 hours), the minimum value is 0, and the
maximum value is 2147483647.

Examples of Configuring an LS

This section contains the following:

• "LS with a Resource Watcher, Two DGs, and an AG" on page 340

007–5484–012 339

6: DMF Configuration File

• "LS for Fast-Mount Cache" on page 343

LS with a Resource Watcher, Two DGs, and an AG

Example 6-30 defines an LS containing a default resource watcher, two DGs, and one
AG that serves multiple VGs.

Note: Example 6-30 does not use all of the possible options for configuring a
libraryserver object.

Example 6-30 libraryserver Object with a Resource Watcher, Two DGs, and an AG

define ls1
TYPE libraryserver

COMMAND dmatls

DRIVE_GROUPS dg1 dg2

CACHE_SPACE 500m

TASK_GROUPS ls_tasks
WATCHER rw

enddef

define dg1

TYPE drivegroup

VOLUME_GROUPS vg_1 vg_2
MOUNT_SERVICE openvault

MOUNT_SERVICE_GROUP ultrium3grp

OV_INTERCHANGE_MODES compression

DRIVE_SCHEDULER rs

DRIVES_TO_DOWN 2
REINSTATE_DRIVE_DELAY 60

enddef

define dg2

TYPE drivegroup
VOLUME_GROUPS vg_ul4

MOUNT_SERVICE openvault

MOUNT_SERVICE_GROUP ultrium4grp

OV_INTERCHANGE_MODES compression

DRIVES_TO_DOWN 2

REINSTATE_DRIVE_DELAY 60
enddef

340 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

define rs

TYPE resourcescheduler

WEIGHT 10 vg_1

WEIGHT 5 vg_2

enddef

define vg_1

TYPE volumegroup

ALLOCATION_GROUP ag_ult3

enddef

define vg_2

TYPE volumegroup

ALLOCATION_GROUP ag_ult3

DRIVE_MAXIMUM 2

enddef

define vg_ul4

TYPE volumegroup

enddef

In the above example:

• The define value must match the value set previously in the LS_NAMES or
MSP_NAMES parameter of the dmdaemon object.

• COMMAND is set to dmatls, as required.

• There are two DGs, dg1 and dg2:

– dg1 contains two VGs (vg_1 vg_2) sharing an AG. A resource scheduler is
defined to give primary vg_1 twice the priority of secondary vg_2 when
competing for drives. The volumegroup objects are slightly different,
reflecting that vg_2 is usually write-only.

The vg_2 object specifies that it can use at most two tape drives, so that other
drives in the dg1 DG will be immediately available for use by vg_1 when it
needs them.

– dg2 contains a single VG, vg_ul4.

For each VG listed for a VOLUME_GROUPS parameter of a drivegroup object,
there must be a corresponding volumegroup object.

007–5484–012 341

6: DMF Configuration File

• The LS can use 500 million bytes of disk cache space when merging chunks from
sparse volumes.

• The ls_tasks object (defined elsewhere) will specify how periodic maintenance
tasks are completed. For more information, see "LS Tasks" on page 345.

• The rw resource watcher allows observation of LS operation through a web
browser. Assuming that SPOOL_DIR was set in the base object to be
/dmf/spool, the URL is file://dmf/spool/ls/_rw/ls.html. Text files are
generated in the same directory as the HTML files. (You should define a
resourcewatcher object only if you want to change its default parameters. See
"resourcewatcher Object Parameters" on page 338.)

• OpenVault is the mounting service. (Because OpenVault is the default mounting
service, this line could be omitted.)

• For dg1, OpenVault will use the group name ultrium3grp; for dg1, OpenVault
will use the group name ultrium4grp.

• Both drives will be used in compression mode.

• dg1 overrides the default drive scheduler behavior by referring to an object
named rs. The rs object is a resourcescheduler object; it specifies that when
there are more requests for drives than there are drives in the DG, vg_1 (with a
weight of 10) is to be given access twice as often as vg_2 (with a weight of 5).

Note: The ratio of the numbers is important, but the exact values are not; the
values 40 and 20 would have the same affect.

• Each DG can have at most two drives down temporarily for up to 60 minutes; this
allows for recovery from I/O errors if the drives are faulty and will result in an
operation that is more reliable. If a drive goes down, the administrator is e-mailed
so that maintenance can be performed.

• There is an AG for Ultrium 3 tapes called ag_ult3 that is used by VGs vg_1 and
vg_2 (there is no separate configuration stanza for an AG). No AG is defined for
Ultrium 4 tapes in VG vg_ul4. The volumes have been assigned to ag_ult3 by
using the dmvoladm(8) command, as described in "volumegroup Object Example
with an AG" on page 329.

In this case, the volumes will automatically be transferred to either vg_1 or vg_2
as they are needed and can be immediately returned from the VG to the AG
(subject to the restrictions imposed by the configuration parameters

342 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

ALLOCATION_MAXIMUM and ALLOCATION_MINIMUM, which in this case are not
defined and therefore use their default values of no allocation maximum and an
allocation minimum of 0).

LS for Fast-Mount Cache

Example 6-31 shows various extracts from the configuration file that highlight some
of the configuration objects that are specifically associated with the fast-mount cache
feature, using two shelves of a COPAN MAID cabinet as the fast-mount cache in
conjunction with permanent storage on a physical tape library.

Example 6-31 libraryserver and Associated Objects for Fast-Mount Cache

define daemon

TYPE dmdaemon

MIGRATION_LEVEL auto
LS_NAMES copan_ls tape_ls

TASK_GROUPS daemon_tasks dump_tasks fmc_task

MOVE_FS /dmf/move

enddef

define copan_ls

TYPE libraryserver

DRIVE_GROUPS dg_c00 dg_c01

COMMAND dmatls

enddef

define vg_policy

TYPE policy

SELECT_VG mg_fmc mg0 mg1

enddef

define copan_fmc

TYPE fastmountcache

CACHE_MEMBERS mg_fmc

enddef

define mg_fmc

TYPE migrategroup

GROUP_MEMBERS vg_c00 vg_c01

007–5484–012 343

6: DMF Configuration File

ROTATION_STRATEGY ROUND_ROBIN_BY_BYTES
enddef

define dg_c00

TYPE drivegroup

VOLUME_GROUPS vg_c00
MOUNT_SERVICE openvault

MOUNT_SERVICE_GROUP dg_c00

enddef

define vg_c00

TYPE volumegroup
MERGE_THRESHOLD 0

RESERVED_VOLUMES 1

enddef

define fmc_task
TYPE taskgroup

RUN_TASK $ADMINDIR/run_fmc_free.sh at 23:00

FMC_NAME copan_fmc

FREE_VOLUME_MINIMUM 10

FREE_VOLUME_TARGET 20

enddef

In the above example:

• There are two LSs:

– One for the fast-mount cache (copan_ls), which must be listed first

– One for the permanent data copy (tape_ls)

• The dmdaemon object has a task for the fast-mount cache operations (fmc_task).

• There are two DGs (dg_c00 and dg_c01) associated with the LS for the
fast-mount cache.

• The MG for the fast-mount cache (mg_fmc) is included in the VG selection policy
as are two permanent migration targets (mg0 and mg1).

• There is an object of type fastmountcache (named copan_fmc) that has the
mg_fmc MG as the only member.

• The mg_fmc MG contains two VGs (vg_c00 and vg_c01).

344 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• The dg_c00 DG manages pool of drives in the vg_c00 volume.

• Volumes within the vg_c00 VG will never be merged because the
MERGE_THRESHOLD is set to 0, as required for volumes in a fast-mount cache.

• The RESERVED_VOLUMES parameter is set to 1 in vg_c00 to ensure proper
distribution of data, because vg_c00 is part of the mg_fmc MG listed for
CACHE_MEMBERS.

• Volumes in the fast-mount cache VGs (vg_c00 and vg_c01) will be freed as
required by the run_fmc_free.sh task at 11:00 PM each day. When fewer than
10% of the volumes in the fast-mount cache are free, DMF will free the volumes
with the oldest write dates until 20% of the volumes are free. For more
information, see "taskgroup Object Example for Fast-Mount Cache Tasks" on
page 264.

Note: For brevity, this example does not show the definitions for vg_c01, dg_c01.
mg0, mg1, and tape_ls.

LS Tasks

This section discusses the following:

• "Overview of LS Tasks" on page 345

• "LS taskgroup Object with One VG" on page 347

• "LS taskgroup Object with Multiple VGs" on page 348

Overview of LS Tasks

You can configure parameters for how the LS daemon performs the following
maintenance tasks:

• Merging sparse volumes with the run_tape_merge.sh task (for physical tapes,
COPAN VTL virtual tapes, and COPAN MAID volumes), and the THRESHOLD,
VOLUME_LIMIT, and DATA_LIMIT parameters

Note: For a VG used as a fast-mount cache, do not configure merge tasks. See
"Use Fast-Mount Cache Appropriately" on page 97.

007–5484–012 345

6: DMF Configuration File

• Stopping volume merges at a specified time with the run_merge_stop.sh task

Table 6-1 on page 241 provides a summary of automated maintenance tasks. For each
of these tasks, you can configure when the task is run. For merging sparse volumes,
you must provide more information such as what determines that a volume is sparse
and how many volumes can be merged at one time.

Note: The run_remove_journals.sh and run_remove_logs.sh tasks are
configured as part of the taskgroup object for daemon tasks, but these tasks also
clear the journals and logs for MSPs/LSs. These tasks are described in "taskgroup
Object" on page 240.

The run_daily_drive_report.sh, run_daily_tsreport.sh, and
run_daily_report.sh tasks should be configured as part of the taskgroup object
for dmdaemon tasks. This is because there could be multiple LSs for which
run_daily_drive_report.sh and run_daily_tsreport.sh create reports, and
run_daily_report.sh reports on other things besides LS information (such as
information about the DMF-managed filesystems).

346 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

LS taskgroup Object with One VG

Note: When modifying sample RUN_TASK parameters, you can comment out any
tasks you do not want to run, but you should not change the pathnames or task
names, such as $ADMINDIR/run_tape_merge.sh.

Example 6-32 taskgroup Object for LS with One VG

define libraryserver_tasks

TYPE taskgroup
RUN_TASK $ADMINDIR/run_tape_merge.sh on \

monday wednesday friday at 2:00

THRESHOLD 50

VOLUME_LIMIT 20

DATA_LIMIT 5g
RUN_TASK $ADMINDIR/run_merge_stop.sh at 5:00

In the above example:

• The define value must match the value set previously for the TASK_GROUPS
parameter of the libraryserver object. In this case, libraryserver_tasks.

• The run_tape_merge.sh task merges sparse volumes, using the following
criteria to determine that a volume is sparse:

– Its active data is less than 50% (THRESHOLD)

– There is no limit to the number of volumes that can be selected for merging at
one time, because the VOLUME_LIMIT parameter is commented out. (If the
comment character is removed, the limit will be 20 volumes.)

Note: This example uses the run_merge_stop.sh task used to control
volume merging rather than the VOLUME_LIMIT and DATA_LIMIT parameters.

– There is no maximum limit on the amount of data that can be selected for
merging at one time because the DATA_LIMIT parameter is commented out. (If
the comment character is removed, at most 5 GB can be selected for merging at
one time.)

• The run_merge_stop.sh task will shut down volume merging at 5:00 AM
every day. Merge requests that were assigned to mover processes will be allowed
to complete.

007–5484–012 347

6: DMF Configuration File

For more information about RUN_TASK parameter, see "taskgroup Object" on page
240.

LS taskgroup Object with Multiple VGs

For an LS, you can configure volume merging as either of the following:

• As part of the libraryserver object’s TASK_GROUPS parameter. This permits
volumes from any of the VGs in the LS to be marked as sparse. However, this can
lead to drive scheduling and cache usage conflicts.

• As part of a RUN_TASK parameter in the volumegroup object. This avoids the
scheduling and conflict problems, but you must ensure that there is no overlap in
the times that the various merge tasks run. This might become cumbersome when
there are large numbers of VGs configured; in this case, you can use
run_merge_mgr.sh rather than run_tape_merge.sh.

The run_merge_mgr.sh task establishes the needs of the VGs for more volumes,
using their MIN_VOLUMES parameters as a guide to expected requirements. The task
processes the most urgent requests first, minimizing interference with the production
workload. To use this task, do the following:

1. Define a taskgroup object, which is referred to by the drivegroup object (not
the volumegroup or libraryserver object).

2. Specify a RUN_TASK parameter for run_merge_mgr.sh in the taskgroup object
and (optionally) another for run_merge_stop.sh. You can also specify
MESSAGE_LEVEL, THRESHOLD, VOLUME_LIMIT, and DATA_LIMIT parameters.

3. Ensure that the libraryserver object that refers to this DG has a
resourcewatcher object defined via the WATCHER parameter.

4. For each volumegroup object, confirm that the value of its MIN_VOLUMES
parameter is realistic.

LS Database Records

After you have added the LS information to the configuration file, use the
dmvoladm(8) command with the -m option to create any missing directories with the
proper labels and to create volume (VOL) and catalog (CAT) records in the LS
database.

You can follow the steps in Procedure 6-1 for each LS that you have defined.

348 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

!
Caution: Each LS must have a unique set of VSNs.

Procedure 6-1 Creating LS Database Records

The following procedure is shown as an example that assumes you have an LS called
ls1. This LS contains a VG named vg_pri.

1. Enter the following command and it will respond as shown:

% dmvoladm -m ls1

dmvoladm: at rdm_open - created database libsrv_db

adm: 1>

The response is an informational message indicating that dmvoladm could not
open an existing LS database, so it is creating a new and empty one. You should
get this message the first time you use dmvoladm for an LS, but never again. The
next line (adm:1>) is the prompt for dmvoladm directives.

2. Assume that you will use 200 volumes with VSNs VA0001 through VA0200.
After the prompt, enter the following directive:

adm:1> create VA0001-VA0200 vg vg_pri

Note: You are specifying the VG vg_pri for the volumes being added. It is also
valid to specify an AG name instead of a VG name.

After entering this directive, you will receive 200 messages, one for each entry
created, beginning with the following:

VSN VA0001 created.

VSN VA0002 created.

3. List all of the VSNs in the newly created library:

adm:2> list all

4. Complete setting up the LS:

adm:3> quit

007–5484–012 349

6: DMF Configuration File

MSP Objects
This section discusses the following:

• "msp Object Name" on page 350

• "FTP msp Object" on page 350

• "Disk msp Object" on page 356

• "DCM msp Object" on page 360

msp Object Name

The name of an msp object (for an FPT, disk, or DCM MSP) is chosen by the
administrator and may contain and up to 8 uppercase or lowercase alphanumeric
characters or underscores. It cannot begin with an underscore or contain any white
space.

FTP msp Object

This section discusses the following:

• "FTP msp Object Parameters" on page 350

• "FTP msp Object Example" on page 355

FTP msp Object Parameters

To enable a file transfer protocol (FTP) MSP, include a name for it on the MSP_NAMES
or LS_NAMES parameter in the dmdaemon object and define an msp object for it in the
DMF configuration file.

DMF has the capability to use an FTP MSP to convert a non-DMF fileserver to DMF
with a minimal amount of down time for the switch over, and at a site-determined
pace. Contact your customer service representative for information about technical
assistance with fileserver conversion.

The MSP checks the DMF configuration file just before it starts child processes. If the
DMF configuration file changed, it is reread.

An FTP msp object has the following parameters:

350 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Parameter Description

TYPE Specifies msp (required name for this type of object).
There is no default.

CHILD_MAXIMUM Specifies the maximum number of child processes the
MSP is allowed to fork. The legal range of values is
0–100; the default is 4.

If CHILD_MAXIMUM is nonzero, its value must be
greater than the sum of GUARANTEED_DELETES and
GUARANTEED_GETS.

COMMAND Specifies the binary file to execute in order to initiate
this MSP. For the FTP MSP, this value must be
dmftpmsp. There is no default.

FTP_ACCOUNT Specifies the account ID to use on the remote FTP
server. Most FTP servers do not need account
information. By default, no account information is
supplied. When account information is required, its
nature and format will be dictated by the remote host
and will vary from operating system to operating
system.

FTP_COMMAND Specifies an additional command to send to the remote
system. There may be more than one instance of this
parameter. By default, no other commands are sent.

FTP_DIRECTORY Specifies the directory into which files will be placed on
the remote FTP server. There is no default.

FTP_HOST Specifies the domain name or IP address of the remote
node on which files are to be stored. If you use a
domain name with multiple IP addresses, the FTP MSP
tries all of the addresses in order. If the remote system
cannot be reached, the MSP waits 5 minutes and retries
again until it succeeds. There is no default.

FTP_PASSWORD Specifies the file containing the password to use when
migrating files to the remote system. This file must be
owned by root and be only accessible by root. (The
MSP will not operate if the FTP_PASSWORD file is
readable by anyone other than root.) There is no
default.

007–5484–012 351

6: DMF Configuration File

FTP_PORT Specifies the port number of the FTP server on the
remote system. The default is the value configured for
ftp in the services file.

FTP_USER Specifies the user name to use when migrating files to
the remote system. There is no default.

GUARANTEED_DELETES Specifies the number of child processes that are
guaranteed to be available for processing delete
requests. If CHILD_MAXIMUM is nonzero, its value must
be greater than the sum of GUARANTEED_DELETES and
GUARANTEED_GETS. The default is 1.

GUARANTEED_GETS Specifies the number of child processes that are
guaranteed to be available for processing dmget(1)
requests. If CHILD_MAXIMUM is nonzero, its value must
be greater than the sum of GUARANTEED_DELETES and
GUARANTEED_GETS. The default is 1.

IMPORT_DELETE Specifies if the MSP should honor hard-delete requests
from the daemon. (This parameter applies only if
IMPORT_ONLY is set to ON.) You can set this parameter
to ON or OFF. The default is OFF. Set IMPORT_DELETE
to ON if you wish files to be deleted on the destination
system when hard deletes are processed.

IMPORT_ONLY Specifies if the MSP is used for importing only. You can
set this parameter to ON or OFF. The default is OFF. Set
this parameter ON when the data is stored as a bit-for-bit
copy of the file and must be available to DMF as part of
a conversion. The daemon will not accept dmput(1),
dmmove(8), or dmarchive(1) requests that specify an
MSP with this parameter enabled. By default, the MSP
will ignore hard-delete requests when this parameter is
enabled. When the DMF daemon performs a complete
file recall from an import-only MSP and all other DMF
copies also reside in import-only MSPs or VGs, it
makes the file a regular file rather than a dual-state file,
and it soft-deletes the MSP’s copy of the file.

Note: An import-only MSP should never be a member
of a migrategroup stanza.

352 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

MESSAGE_LEVEL Specifies the highest message level that will be written
to the MSP log. It must be an integer in the range 0–6;
the higher the number, the more messages written to
the log file. The default is 2. For more information on
message levels, see Chapter 9, "Message Log Files" on
page 401.

MVS_UNIT Defines the storage device type on an IBM MVSTM

system. You must specify a this parameter when the
destination is an MVS system. Valid values are:

3330
3350
3380
3390

NAME_FORMAT Specifies the strings that form a template to create
names for files stored on remote hosts in the
STORE_DIRECTORY. For a list of possible strings, see
Table 6-3.

The default is %u/%b (username/bfid). This default works
well if the remote host runs an operating system based
on UNIX. The default may not work at all if the remote
host runs an operating system that is not based on
UNIX or if a given user has a large number of files. The
date- and time-related strings allow sites with very
large numbers of files to spread them over a large
number of directories, in order to minimize subsequent
access times.

The NAME_FORMAT must include one of the following:

• %b (which will guarantee a unique filename)

• %2, %3, %4 in some combination

The default size allotted to the NAME_FORMAT value in
the daemon database base record is 34 bytes. This is
large enough to accommodate the default for
NAME_FORMAT if the user name is 8 or fewer characters
(the %b value is always 24 characters). If you choose a
set of strings that will evaluate to a field that is larger
than 34 bytes, you may want to consider increasing the

007–5484–012 353

6: DMF Configuration File

size of this record; see "Daemon Database Record
Length" on page 130.

TASK_GROUPS Names the taskgroup objects that contain tasks the
MSP should run. By default, no tasks are run.

WRITE_CHECKSUM Specifies if the MSP’s copy of the file should be
checksummed before writing. If the file has been
checksummed, it is verified when read. You can set this
parameter to ON or OFF. The default is ON.

Table 6-3 NAME_FORMAT Strings

String Evaluates To

%1 First 32 bits of the bit-file identifier (bfid) in hexadecimal, which are
always 8 pad characters (00000000)

%2 Second 32 bits of the BFID in hexadecimal

%3 Third 32 bits of the BFID in hexadecimal

%4 Fourth 32 bits of the BFID in hexadecimal

%b BFID in hexadecimal (least-significant 24 characters) without the 8 pad
characters found in the 8 most-significant characters of the full BFID

%u User name of the file owner

%U User ID of the file owner

%g Group name of the file

%G Group ID of the file

%% Literal % character

%d Current day of month (2 characters)

%H Current hour (2 characters)

%m Current month (2 digits)

%M Current minute (2 digits)

%S Current second (2 digits)

%y Last two digits of the current year (such as 03 for 2003)

354 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

FTP msp Object Example

Example 6-33 msp Object for an FTP MSP

define ftp

TYPE msp
COMMAND dmftpmsp

FTP_HOST fileserver

FTP_USER dmf

FTP_ACCOUNT dmf.disk

FTP_PASSWORD /dmf/ftp/password
FTP_DIRECTORY ftpmsp

FTP_COMMAND umask 022

enddef

In the above example:

• The string %u/%b will be used as a template to create names for files stored on
remote hosts in the STORE_DIRECTORY (which is the default when
NAME_FORMAT is not specified)

• The define value must match the MSP_NAMES or LS_NAMES parameter of the
dmdaemon object

• The command to initiate the FTP MSP must be dmftpmsp

• The user name for the remote FTP server during session initialization is dmf

• The name of the remote host on which files will be stored is fileserver

• The remote host requires the FTP account information dmf.disk

• The password for the user on the remote host is stored in the file
/dmf/ftp/password

• Files will be placed into the ftpmsp directory on the remote host

• The umask for files created will be set to 022, which removes write permission for
group and other

007–5484–012 355

6: DMF Configuration File

Disk msp Object

This section discusses the following:

• "Disk msp Object Parameters" on page 356

• "Disk msp Object Example" on page 360

Disk msp Object Parameters

Note: The parameters differ for a DCM MSP, which is a disk MSP configured for
n–tier capability. See "DCM msp Object" on page 360.

To enable a disk MSP, include a name for it on the MSP_NAMES or LS_NAMES
parameter in the dmdaemon object and define an msp object for it in the DMF
configuration file.

You can use a disk MSP to convert a non-DMF fileserver to DMF with a minimal
amount of down time for the switch over, and at a site-determined pace. Contact
your customer service representative for information about technical assistance with
fileserver conversion.

A disk msp object has the following parameters:

Parameter Description

TYPE Specifies msp (required name for this type of object).
There is no default.

CHILD_MAXIMUM Specifies the maximum number of child processes the
MSP is allowed to fork. The legal range of values is
0–100. The default is 4.

COMMAND Specifies the binary file to execute in order to initiate
this MSP. For the disk MSP, this value must be
dmdskmsp.

DSK_BUFSIZE Specifies the transfer size in bytes used when reading
from and writing to files within the disk MSP’s
STORE_DIRECTORY. The value must be in the range
4096–16000000 (or 16m). The default is 131072 when
writing and 1000000 when reading. By default, the
unit of measure is bytes; see "Units of Measure" on
page 215.

356 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

FADV_SIZE_MSP Specifies the size of files in the MSP’s
STORE_DIRECTORY for which posix_fadvise()
will be called with advice POSIX_FADV_DONTNEED. If
the file is larger than FADV_SIZE_MSP bytes, the call is
made following migration to the MSP or following
recall of the entire file. The minimum is 0, which
means that posix_fadvise() will always be called,
and the maximum is 9223372036854775807. The
default is 10000000. By default, the unit of measure is
bytes; see "Units of Measure" on page 215.

FULL_THRESHOLD_BYTES Specifies the number of bytes at which point the disk
MSP will tell the DMF daemon that it is full. If 0, the
disk MSP will never report that it is full. If non-zero,
the MSP will report when it is full and will continue to
report full until the number of bytes specified by
FULL_THRESHOLD_BYTES become free. (You can free
bytes by using dmmove(8) or hard-deleting BFIDs.) The
SEQUENTIAL choice for ROTATION_STRATEGY relies
on the disk MSP reporting that it is full (see
"migrategroup Object" on page 331); if the MSP is
part of an MG, setting FULL_THRESHOLD_BYTES to a
non-zero value prevents the MG from sending
migrations to the MSP before enough disk space has
been freed to make the migrations productive. If you
specify a non-zero value, you should also set
EXPORT_METRICS to ON (see "base Object" on page
216). The default is 0.

GUARANTEED_DELETES Specifies the number of child processes that are
guaranteed to be available for processing delete
requests. The default is 1.

GUARANTEED_GETS Specifies the number of child processes that are
guaranteed to be available for processing dmget(1)
requests. The default is 1.

IMPORT_DELETE Specifies if the MSP should honor hard-delete requests
from the daemon. (This parameter only applies if
IMPORT_ONLY is set to ON.) You can set this parameter
to ON or OFF. The default is OFF. Set IMPORT_DELETE
to ON if you want files to be deleted in
STORE_DIRECTORY when hard deletes are processed.

007–5484–012 357

6: DMF Configuration File

IMPORT_ONLY Specifies if the MSP is used for importing only. You can
set this parameter to ON or OFF. The default is OFF. Set
this parameter ON when the data is stored as a
bit-for-bit copy of the file and must be available to DMF
as part of a conversion. The daemon will not accept
dmput(1), dmmove(8), or dmarchive(1) requests that
specify an MSP with this parameter enabled. The MSP
will, by default, ignore hard-delete requests when this
parameter is enabled. When the DMF daemon
performs a complete file recall from an import-only
MSP and all other DMF copies also reside in
import-only MSPs or VGs, it makes the file a regular
file (rather than a dual-state file) and it soft-deletes the
MSP’s copy of the file.

Note: An import-only MSP should never be a member
of a migrategroup stanza.

MESSAGE_LEVEL Specifies the highest message level that will be written
to the MSP log. It must be an integer in the range 0–6;
the higher the number, the more messages written to
the log file. The default is 2. For more information on
message levels, see Chapter 9, "Message Log Files" on
page 401.

NAME_FORMAT Specifies the strings that form a template to create
names for files stored on a remote host in the
STORE_DIRECTORY. For a list of possible strings, see
Table 6-3 on page 354.

The default is %u/%b (username/bfid). This default works
well if the remote host runs an operating system based
on UNIX. The default may not work at all if the remote
host runs an operating system that is not based on
UNIX or if a given user has a large number of files. The
date- and time-related strings allow sites with very
large numbers of files to spread them over a large
number of directories, in order to minimize subsequent
access times.

358 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Using the %b specification will guarantee a unique
filename.

The NAME_FORMAT must include %b or %2, %3, %4 in
some combination.

The default size allotted to the NAME_FORMAT value in
the daemon database base record is 34 bytes. This is
large enough to accommodate the default for
NAME_FORMAT if the user name is 8 or fewer characters
(the %b value is always 24 characters). If you choose a
set of strings that will evaluate to a field that is larger
than 34 bytes, you may want to consider increasing the
size of this record; see "Daemon Database Record
Length" on page 130.

STORE_DIRECTORY Specifies the directory used to hold files for this disk
MSP. This directory must not be in a DMF-managed
filesystem. In order to avoid data corruption in the
event of a system crash, the mount point of this
directory must be mounted with the dirsync option.
See the mount(8) man page for a description of how to
set the dirsync option.

Note: In the calculation used when measuring an
MSP’s actual amount of data stored versus the amount
allowed to be stored by the DMF license, if the
STORE_DIRECTORY parameter defined for that MSP
does not define the root directory of a filesystem, or if
other subdirectories of that filesystem are used by other
users or processes to store data, the amount of stored
capacity being charged to that MSP may exceed the
actual amount of data being managed by that MSP. See
the dmusage(8) man page and "Displaying Current
DMF Data Capacity Use" on page 63.

TASK_GROUPS Names the taskgroup objects that contain tasks the
MSP should run. By default, no tasks are run.

WRITE_CHECKSUM Specifies if the MSP’s copy of the file should be
checksummed before writing. If the file has been

007–5484–012 359

6: DMF Configuration File

checksummed, it is verified when read. You can set this
parameter to ON or OFF. The default is ON.

Disk msp Object Example

Example 6-34 msp Object for a Disk MSP

define dsk

TYPE msp
COMMAND dmdskmsp

CHILD_MAXIMUM 8

GUARANTEED_DELETES 3

GUARANTEED_GETS 3

STORE_DIRECTORY /dmf/dsk_store
enddef

In the above example:

• The define value must match the MSP_NAMES or LS_NAMES parameter of the
dmdaemon object.

• The command to initiate the disk MSP must be dmdskmsp.

• This MSP can fork up to 8 child processes.

• 3 child processes are guaranteed to be available for processing delete and get
requests.

• Files will be stored in /dmf/dsk_store.

DCM msp Object

This section discusses the following:

• "DCM msp Object Parameters" on page 360

• "DCM msp Object Example" on page 366

DCM msp Object Parameters

A DCM MSP is a disk MSP that is configured for n–tier capability. To enable a DCM
MSP, include a name for it on the MSP_NAMES or LS_NAMES parameter in the
dmdaemon object and define an msp object for it in the DMF configuration file.

360 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: The parameters differ for a disk MSP that is not a DCM MSP. See "Disk msp
Object" on page 356.

As with the FTP MSP, you can use a DCM MSP to convert a non-DMF fileserver to
DMF with a minimal amount of down time and at a site-determined pace. Contact
your customer service representative for information about technical assistance with
fileserver conversion.

A DCM msp object has the following parameters:

Parameter Description

TYPE Specifies msp (required name for this type of object).
There is no default.

BUFFERED_IO_SIZE Specifies the size of I/O requests for buffered I/O when
migrating files downward in the hierarchy from
STORE_DIRECTORY of this DCM MSP. The legal range
of values is 4096–16777216. The default is 262144.
By default, the unit of measure is bytes; see "Units of
Measure" on page 215.

CHILD_MAXIMUM Specifies the maximum number of child processes that
the DCM MSP is allowed to fork. The legal range of
values is 0–100. The default is 4.

Note: SGI recommends that you use a larger value than
the default for a DCM MSP.

COMMAND Specifies the binary file to execute in order to initiate
this MSP. For the DCM MSP, this value must be
dmdskmsp.

DIRECT_IO_SIZE Specifies the size of I/O requests for direct I/O when
migrating files downward in the hierarchy from the
STORE_DIRECTORY of this DCM MSP. The legal range
of values is 65536–18446744073709551615. The
default depends on the filesystem, but will not exceed
the value of DIRECT_IO_MAXIMUM_SIZE defined in
the base object (see "base Object" on page 216). By

007–5484–012 361

6: DMF Configuration File

default, the unit of measure is bytes; see "Units of
Measure" on page 215.

For more information about direct I/O, see O_DIRECT
in the open(2) man page.

DSK_BUFSIZE Specifies the transfer size in bytes used when reading
from and writing to files within the DCM MSP
STORE_DIRECTORY. The value must be in the range
4096–16000000 (16 million). The default is 131072
when writing and 1000000 when reading. By default,
the unit of measure is bytes; see "Units of Measure" on
page 215.

FADV_SIZE_MSP Specifies the size of files in the MSP’s
STORE_DIRECTORY for which posix_fadvise()
will be called with advice POSIX_FADV_DONTNEED. If
the file is larger than FADV_SIZE_MSP bytes, the call is
made following migration to the MSP or following
recall of the entire file. The minimum is 0, which
means that posix_fadvise() will always be called,
and the maximum is 9223372036854775807. The
default is 10000000. By default, the unit of measure is
bytes; see "Units of Measure" on page 215.

GUARANTEED_DELETES Specifies the number of child processes that are
guaranteed to be available for processing delete
requests. The default is 1.

GUARANTEED_GETS Specifies the number of child processes that are
guaranteed to be available for processing dmget(1)
requests. The default is 1.

MESSAGE_LEVEL Specifies the highest message level that will be written
to the MSP log. It must be an integer in the range 0–6;
the higher the number, the more messages written to
the log file. The default is 2. For more information on
message levels, see Chapter 9, "Message Log Files" on
page 401.

MIGRATION_LEVEL Specifies the level of migration service for the DCM
MSP. Valid values are:

• auto (automated space management)

362 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• none (no flushing to a lower VG)

• user (only requests from dmmigrate or a manually
invoked dmdskfree)

The default is auto.

MIN_DIRECT_SIZE Determines whether direct or buffered I/O is used
when migrating files downward in the hierarchy from
the STORE_DIRECTORY of this DCM MSP. If the
number of bytes to be read is smaller than the value
specified, buffered I/O is used, otherwise direct I/O is
used. The legal range of values is 0 (direct I/O is
always used) through 18446744073709551615 (direct
I/O is never used). The default is 0. By default, the unit
of measure is bytes; see "Units of Measure" on page 215.

Note: For real-time filesystems, this parameter is
ignored.

For more information about direct I/O, see O_DIRECT
in the open(2) man page.

NAME_FORMAT Specifies the strings that form a template to create
names for files stored on remote hosts in the
STORE_DIRECTORY. For a list of possible strings, see
Table 6-3 on page 354.

The default is %u/%b (username/bfid). This default works
well if the remote host runs an operating system based
on UNIX. The default may not work at all if the remote
host runs an operating system that is not based on
UNIX or if a given user has a large number of files. The
date- and time-related strings allow sites with very
large numbers of files to spread them over a large
number of directories, in order to minimize subsequent
access times.

The NAME_FORMAT must include one of the following:

• %b (which will guarantee a unique filename)

• %2, %3, %4

007–5484–012 363

6: DMF Configuration File

The default size allotted to the NAME_FORMAT value in
the daemon database base record is 34 bytes. This is
large enough to accommodate the default for
NAME_FORMAT if the user name is 8 or fewer characters
(the %b value is always 24 characters). If you choose a
set of strings that will evaluate to a field that is larger
than 34 bytes, you may want to consider increasing the
size of this record; see "Daemon Database Record
Length" on page 130.

POLICIES Specifies the names of the configuration objects defining
policies for this filesystem. The configuration stanza
must contain at least one POLICIES parameter and the
configuration stanza for that parameter must contain a
SELECT_LOWER_VG parameter.

PRIORITY_PERIOD Specifies the number of minutes after which a
migrating file gets special treatment.

Normally, if there is insufficient room in the
STORE_DIRECTORY for a file, the DCM MSP will
attempt to make room, while continuing to store files
that will fit. If a file has not been stored into the
STORE_DIRECTORY within PRIORITY_PERIOD,
however, the DCM MSP will stop trying to store other
files until either sufficient room has been made or it has
determined that room cannot be made. The legal range
of values is 1–2000000; the default is 120 minutes (2
hours).

STORE_DIRECTORY Specifies the directory used to hold files for this DCM
MSP. This directory must not be in a DMF-managed
filesystem. The directory must be the mount point of a
dedicated XFS or CXFS filesystem mounted with
DMAPI enabled. In order to avoid data corruption in
the event of a system crash, this directory must be
mounted with the dirsync option. See the mount(8)
man page for a description of how to set the dirsync
option.

In addition, when using the Parallel Data-Mover
Option, the directory must be a CXFS filesystem. See

364 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

"Filesystem Mount Options" on page 127 for
instructions.

Note: In the calculation used when measuring a DCM
MSP’s actual amount of data stored versus the amount
allowed to be stored by the DMF license, if the
STORE_DIRECTORY parameter defined for that DCM
MSP does not define the root directory of a filesystem,
or if other subdirectories of that filesystem are used by
other users or processes to store data, the amount of
stored capacity being charged to that DCM MSP may
exceed the actual amount of data being managed by
that DCM MSP. See the dmusage(8) command and
"Displaying Current DMF Data Capacity Use" on page
63

TASK_GROUPS Names the taskgroup objects that contain tasks the
DCM MSP should run. By default, no tasks are run.

WRITE_CHECKSUM Specifies if the DCM MSP’s copy of the file should be
checksummed before writing. If the file has been
checksummed, it is verified when read. You can set this
parameter to ON or OFF. The default is ON.

A DCM MSP also requires a task group that runs the run_dcm_admin.sh task
during off-peak hours to perform routine maintenance for the DCM MSP.

When using a DCM MSP, dmdskmsp will not fail if the STORE_DIRECTORY is full.
Instead, it will queue the requests and wait to fulfill them until after dmdskfree has
freed the required space.

007–5484–012 365

6: DMF Configuration File

DCM msp Object Example

Following is a sample of the configuration stanzas with some explanatory notes below.
Many of parameters have defaults and can be omitted if the defaults are appropriate.

Example 6-35 Configuration Stanzas Associated with a DCM MSP

define daemon
TYPE dmdaemon

LS_NAMES dcm_msp ls ### See note 1

... ### See note 2

enddef

define msp_policy
TYPE policy

SELECT_MSP dcm_msp copy2 when space > 4096 ### See note 3

... ### See note 2

enddef

define dcm_msp

TYPE msp

COMMAND dmdskmsp

STORE_DIRECTORY /dmf/dcm_msp_store ### See note 4

CHILD_MAXIMUM 10 ### See note 5
POLICIES dcm_policy

TASK_GROUPS dcm_tasks

enddef

define dcm_policy

TYPE policy ### See note 6
FREE_SPACE_MINIMUM 10

FREE_SPACE_TARGET 70

DUALRESIDENCE_TARGET 90

FREE_SPACE_DECREMENT 1

FREE_DUALRESIDENT_FIRST on
CACHE_AGE_WEIGHT 1 .1

CACHE_SPACE_WEIGHT 1 .1

SELECT_LOWER_VG none when uid = 0

SELECT_LOWER_VG vg1 when space > 1G

SELECT_LOWER_VG vg2
enddef

366 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

define dcm_tasks
TYPE taskgroup

RUN_TASK $ADMINDIR/run_dcm_admin.sh at 22:00:10

enddef

Notes referred to in the preceding example:

1. The DCM MSP must be specified before the LSs that contain its lower VGs.
(Otherwise, all recalls will attempt to come directly from the lower VGs.)

2. Other parameters essential to the use of this stanza but not relevant to the DCM
MSP have been omitted.

3. The DCM MSP and its lower VGs should be considered to act as a single
high-speed VG logically maintaining only one copy of a migrated file. You should
always have a second copy of all migrated files, which is the purpose of copy2 in
this example. It would probably be a tape VG, but could be any type of MSP
other than a DCM MSP.

The copy that resides in the DCM MSP STORE_DIRECTORY is not to be
considered a permanent copy of the file in terms of the safety of the file’s data. It
can be deleted at any time, though never before a copy of it exists in one of the
SELECT_LOWER_VG VGs.

4. The mount point of a dedicated DMAPI-mounted filesystem.

5. Any other parameters applicable to a disk MSP may also be used, with the
exception of IMPORT_ONLY and IMPORT_DELETE.

6. Several parameters in DCM MSP policies have functions that are analogous to
those in disk MSP policies; see "Rules for policy Parameters" on page 278 and
"DMF-Managed Filesystem policy Parameters" on page 280.

007–5484–012 367

6: DMF Configuration File

Summary of the Configuration File Parameters
Table 6-4 alphabetically lists the DMF configuration file parameters discussed in this
chapter.

Table 6-4 DMF Configuration File Parameters

Parameter Section Discussed In

ADMDIR_IN_ROOTFS "base Object" on page 216

ADMIN_EMAIL "base Object" on page 216

AGE_WEIGHT "File Weighting Parameters for a DMF-Managed Filesystem" on page
283

AGGRESSIVE_HVFY "drivegroup Object Parameters" on page 306

ALERT_RETENTION "taskgroup Object" on page 240

ALGORITHM "resourcescheduler Object Parameters" on page 337

ALLOCATION_GROUP "volumegroup Object" on page 318

ALLOCATION_MAXIMUM "volumegroup Object" on page 318

ALLOCATION_MINIMUM "volumegroup Object" on page 318

BANDWIDTH_MULTIPLIER "drivegroup Object Parameters" on page 306

BLOCK_SIZE "drivegroup Object Parameters" on page 306

BUFFERED_IO_SIZE "DCM msp Object" on page 360
"filesystem Object" on page 269

CACHE_AGE_WEIGHT "File Weighting Parameters for a DCM MSP STORE_DIRECTORY" on
page 289

CACHE_DIR "libraryserver Object Parameters" on page 303

CACHE_MEMBERS "fastmountcache Object" on page 301

CACHE_SPACE "libraryserver Object Parameters" on page 303

CACHE_SPACE_WEIGHT "File Weighting Parameters for a DCM MSP STORE_DIRECTORY" on
page 289

CHECKSUM_TYPE "volumegroup Object Parameters" on page 319

368 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Parameter Section Discussed In

CHILD_MAXIMUM "DCM msp Object" on page 360
"Disk msp Object" on page 356
"FTP msp Object" on page 350

COMMAND "DCM msp Object" on page 360
"Disk msp Object" on page 356
"FTP msp Object" on page 350
"libraryserver Object Parameters" on page 303

COMPRESSION_TYPE "drivegroup Object Parameters" on page 306

COPAN_VSNS "libraryserver Object Parameters" on page 303

DATA_LIMIT "taskgroup Object" on page 240

DATABASE_COPIES "taskgroup Object" on page 240

DIRECT_IO_MAXIMUM_SIZE "base Object" on page 216

DIRECT_IO_SIZE "DCM msp Object" on page 360
"filesystem Object" on page 269

DISCONNECT_TIMEOUT "libraryserver Object Parameters" on page 303

DMMIGRATE_MINIMUM_AGE "taskgroup Object" on page 240

DMMIGRATE_TRICKLE "taskgroup Object" on page 240

DMMIGRATE_VERBOSE "taskgroup Object" on page 240

DMMIGRATE_WAIT "taskgroup Object" on page 240

DRIVE_GROUPS "libraryserver Object Parameters" on page 303

DRIVE_MAXIMUM "drivegroup Object Parameters" on page 306
"volumegroup Object" on page 318

DRIVE_SCHEDULER "drivegroup Object Parameters" on page 306
"volumegroup Object" on page 318

DRIVES_TO_DOWN "drivegroup Object Parameters" on page 306

DRIVETAB "taskgroup Object" on page 240

DSK_BUFSIZE "DCM msp Object" on page 360
"Disk msp Object" on page 356

007–5484–012 369

6: DMF Configuration File

Parameter Section Discussed In

DUALRESIDENCE_TARGET "Automated Space Management Parameters for a DCM MSP
STORE_DIRECTORY" on page 287
"DCM msp Object" on page 360

DUMP_COMPRESS "taskgroup Object" on page 240

DUMP_CONCURRENCY "taskgroup Object" on page 240

DUMP_DATABASE_COPY "taskgroup Object" on page 240

DUMP_DESTINATION "taskgroup Object" on page 240

DUMP_DEVICE "taskgroup Object" on page 240

DUMP_FILE_SYSTEMS "taskgroup Object" on page 240

DUMP_FLUSH_DCM_FIRST "taskgroup Object" on page 240

DUMP_INVENTORY_COPY "taskgroup Object" on page 240

DUMP_MAX_FILESPACE "taskgroup Object" on page 240

DUMP_MIGRATE_FIRST "taskgroup Object" on page 240

DUMP_MIRRORS "taskgroup Object" on page 240

DUMP_RETENTION "taskgroup Object" on page 240

DUMP_STREAMS "taskgroup Object" on page 240

DUMP_TAPES "taskgroup Object" on page 240

DUMP_VSNS_USED "taskgroup Object" on page 240

DUMP_XFSDUMP_PARAMS "taskgroup Object" on page 240

EXPORT_METRICS "base Object" on page 216

EXPORT_QUEUE "dmdaemon Object" on page 228

FADV_SIZE_MAID "drivegroup Object Parameters" on page 306

FADV_SIZE_MSP "DCM msp Object" on page 360
"Disk msp Object" on page 356

FORWARD_RECALLS "volumegroup Object" on page 318

FILE_RETENTION_DAYS "taskgroup Object" on page 240

FMC_MOVEFS "taskgroup Object" on page 240

FMC_NAME "taskgroup Object" on page 240

370 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Parameter Section Discussed In

FREE_DUALRESIDENT_FIRST "Automated Space Management Parameters for a DCM MSP
STORE_DIRECTORY" on page 287

FREE_DUALSTATE_FIRST "Automated Space Management Parameters for a DMF-Managed
Filesystem" on page 280

FREE_SPACE_DECREMENT "Automated Space Management Parameters for a DCM MSP
STORE_DIRECTORY" on page 287
"Automated Space Management Parameters for a DMF-Managed
Filesystem" on page 280

FREE_SPACE_MINIMUM "Automated Space Management Parameters for a DCM MSP
STORE_DIRECTORY" on page 287
"Automated Space Management Parameters for a DMF-Managed
Filesystem" on page 280

FREE_SPACE_TARGET "Automated Space Management Parameters for a DCM MSP
STORE_DIRECTORY" on page 287
"Automated Space Management Parameters for a DMF-Managed
Filesystem" on page 280

FREE_VOLUME_MINIMUM "taskgroup Object" on page 240

FREE_VOLUME_TARGET "taskgroup Object" on page 240

FTP_ACCOUNT "FTP msp Object" on page 350

FTP_COMMAND "FTP msp Object" on page 350

FTP_DIRECTORY "FTP msp Object" on page 350

FTP_HOST "FTP msp Object" on page 350

FTP_PASSWORD "FTP msp Object" on page 350

FTP_PORT "FTP msp Object" on page 350

FTP_USER "FTP msp Object" on page 350

FULL_THRESHOLD_BYTES "Disk msp Object" on page 356

GET_WAIT_TIME "volumegroup Object" on page 318

GROUP_MEMBERS "migrategroup Object" on page 331

GUARANTEED_DELETES "DCM msp Object" on page 360
"Disk msp Object" on page 356
"FTP msp Object" on page 350

007–5484–012 371

6: DMF Configuration File

Parameter Section Discussed In

GUARANTEED_GETS "DCM msp Object" on page 360
"Disk msp Object" on page 356
"FTP msp Object" on page 350

HBA_BANDWIDTH "base Object" on page 216
"node Object" on page 232

HFREE_TIME "volumegroup Object" on page 318

HOME_DIR "base Object" on page 216

HTML_REFRESH "resourcewatcher Object Parameters" on page 338

IMPORT_DELETE "Disk msp Object" on page 356
"FTP msp Object" on page 350

IMPORT_ONLY "Disk msp Object" on page 356
"FTP msp Object" on page 350
"volumegroup Object" on page 318

INTERFACE "node Object" on page 232

JOURNAL_DIR "base Object" on page 216

JOURNAL_RETENTION "taskgroup Object" on page 240

JOURNAL_SIZE "base Object" on page 216

LABEL_TYPE "drivegroup Object Parameters" on page 306

LICENSE_FILE "base Object" on page 216

LOG_RETENTION "taskgroup Object" on page 240

LOGICAL_BLOCK_PROTECTION "volumegroup Object Parameters" on page 319

LS_NAMES "dmdaemon Object" on page 228

MAX_ALERTDB_SIZE "taskgroup Object" on page 240

MAX_CACHE_FILE "libraryserver Object Parameters" on page 303

MAX_CHUNK_SIZE "volumegroup Object" on page 318

MAX_IDLE_PUT_CHILDREN "volumegroup Object" on page 318

MAX_MANAGED_REGIONS "filesystem Object" on page 269

MAX_MS_RESTARTS "drivegroup Object Parameters" on page 306

MAX_PERFDB_SIZE "taskgroup Object" on page 240

372 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Parameter Section Discussed In

MAX_PUT_CHILDREN "drivegroup Object Parameters" on page 306
"volumegroup Object" on page 318

MERGE_CUTOFF "volumegroup Object" on page 318

MERGE_INTERFACE "node Object" on page 232

MERGE_THRESHOLD "volumegroup Object" on page 318

MESSAGE_LEVEL "DCM msp Object" on page 360
"Disk msp Object" on page 356
"dmdaemon Object" on page 228
"filesystem Object" on page 269
"FTP msp Object" on page 350
"libraryserver Object Parameters" on page 303
"services Object" on page 236
Chapter 9, "Message Log Files" on page 401

METRICS_RETENTION "base Object" on page 216

MIGRATION_LEVEL "DCM msp Object" on page 360
"Disk msp Object" on page 356
"dmdaemon Object" on page 228
"filesystem Object" on page 269

MIGRATION_TARGET "Automated Space Management Parameters for a DMF-Managed
Filesystem" on page 280

MIN_ARCHIVE_SIZE "filesystem Object" on page 269

MIN_DIRECT_SIZE "DCM msp Object" on page 360
"filesystem Object" on page 269

MIN_VOLUMES "volumegroup Object" on page 318

MOUNT_BLOCKED_TIMEOUT "drivegroup Object Parameters" on page 306

MOUNT_SERVICE "device Object" on page 267
"drivegroup Object Parameters" on page 306

MOUNT_SERVICE_GROUP "device Object" on page 267
"drivegroup Object Parameters" on page 306

MOUNT_TIMEOUT "drivegroup Object Parameters" on page 306

MOVE_FS "dmdaemon Object" on page 228

MSG_DELAY "drivegroup Object Parameters" on page 306

007–5484–012 373

6: DMF Configuration File

Parameter Section Discussed In

MSP_NAMES "dmdaemon Object" on page 228

MULTIPLIER "migrategroup Object" on page 331

MULTITAPE_NODES "drivegroup Object Parameters" on page 306

MVS_UNIT "FTP msp Object" on page 350

NAME_FORMAT "DCM msp Object" on page 360
"Disk msp Object" on page 356
"FTP msp Object" on page 350

NODE_ANNOUNCE_RATE "services Object" on page 236

NODE_BANDWIDTH "base Object" on page 216
"node Object" on page 232

NODE_TIMEOUT "services Object" on page 236

OV_ACCESS_MODES "device Object" on page 267
"drivegroup Object Parameters" on page 306

OV_INTERCHANGE_MODES "device Object" on page 267
"drivegroup Object Parameters" on page 306

OV_KEY_FILE "base Object" on page 216

OV_SERVER "base Object" on page 216

PARTIAL_STATE_FILES "dmdaemon Object" on page 228

PENALTY "resourcescheduler Object Parameters" on page 337

PERF_RETENTION "taskgroup Object" on page 240

PERFTRACE_METRICS "base Object" on page 216

POLICIES "DCM msp Object" on page 360
"filesystem Object" on page 269

POSITION_RETRY "drivegroup Object Parameters" on page 306

POSITIONING "drivegroup Object Parameters" on page 306

POSIX_FADVISE_SIZE "filesystem Object" on page 269

PRIORITY_PERIOD "DCM msp Object" on page 360

PUT_IDLE_DELAY "volumegroup Object" on page 318

PUTS_TIME "volumegroup Object" on page 318

374 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Parameter Section Discussed In

READ_ERR_MAXIMUM "drivegroup Object Parameters" on page 306

READ_ERR_MINIMUM "drivegroup Object Parameters" on page 306

READ_ERR_TIMEOUT "drivegroup Object Parameters" on page 306

READ_IDLE_DELAY "drivegroup Object Parameters" on page 306

READ_TIME "volumegroup Object" on page 318

RECALL_NOTIFICATION_RATE "dmdaemon Object" on page 228

REINSTATE_DRIVE_DELAY "drivegroup Object Parameters" on page 306

REINSTATE_VOLUME_DELAY "drivegroup Object Parameters" on page 306

REMALERT_PARAMS "taskgroup Object" on page 240

REMPERF_PARAMS "taskgroup Object" on page 240

RESERVED_VOLUMES "volumegroup Object" on page 318

REWIND_DELAY "drivegroup Object Parameters" on page 306

ROTATION_STRATEGY "migrategroup Object" on page 331

RUN_TASK "Automated Maintenance Tasks" on page 132
"drivegroup Object Parameters" on page 306
"libraryserver Object Parameters" on page 303
"taskgroup Object" on page 240
"volumegroup Object" on page 318

SCAN_FILESYSTEMS "taskgroup Object" on page 240

SCAN_FOR_DMSTAT "taskgroup Object" on page 240

SCAN_OUTPUT "taskgroup Object" on page 240

SCAN_PARALLEL "taskgroup Object" on page 240

SCAN_PARAMS "taskgroup Object" on page 240

SELECT_LOWER_VG "VG Selection Parameters for a DCM MSP STORE_DIRECTORY" on
page 291

SELECT_MSP "MSP/VG Selection Parameters for a DMF-Managed Filesystem" on
page 286

SELECT_VG "MSP/VG Selection Parameters for a DMF-Managed Filesystem" on
page 286

007–5484–012 375

6: DMF Configuration File

Parameter Section Discussed In

SERVER_NAME "base Object" on page 216

SERVICES "node Object" on page 232

SERVICES_PORT "services Object" on page 236

SITE_SCRIPT "Automated Space Management Parameters for a DCM MSP
STORE_DIRECTORY" on page 287
"Automated Space Management Parameters for a DMF-Managed
Filesystem" on page 280
"DCM msp Object" on page 360

SPACE_WEIGHT "File Weighting Parameters for a DMF-Managed Filesystem" on page
283

SPOOL_DIR "base Object" on page 216

STORE_DIRECTORY "DCM msp Object" on page 360
"Disk msp Object" on page 356

TASK_GROUPS "DCM msp Object" on page 360
"Disk msp Object" on page 356
"dmdaemon Object" on page 228
"drivegroup Object Parameters" on page 306
"filesystem Object" on page 269
"FTP msp Object" on page 350
"libraryserver Object Parameters" on page 303
"services Object" on page 236
"taskgroup Object" on page 240
"volumegroup Object" on page 318

THRESHOLD "taskgroup Object" on page 240

TIMEOUT_FLUSH "volumegroup Object" on page 318

TMF_TMMNT_OPTIONS "device Object" on page 267
"drivegroup Object Parameters" on page 306

TMP_DIR "base Object" on page 216

TSREPORT_OPTIONS "taskgroup Object" on page 240

376 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Parameter Section Discussed In

TYPE "allocationgroup Object Parameters" on page 339
"base Object" on page 216
"DCM msp Object" on page 360
"device Object" on page 267
"Disk msp Object" on page 356
"dmdaemon Object" on page 228
"drivegroup Object Parameters" on page 306
"fastmountcache Object" on page 301
"filesystem Object" on page 269
"FTP msp Object" on page 350
"libraryserver Object Parameters" on page 303
"migrategroup Object" on page 331
"node Object" on page 232
"policy Object" on page 276
"resourcescheduler Object Parameters" on page 337
"resourcewatcher Object Parameters" on page 338
"services Object" on page 236
"taskgroup Object" on page 240
"volumegroup Object" on page 318

USE_UNIFIED_BUFFER "filesystem Object" on page 269

VALID_ROOT_HOSTS "base Object Parameters" on page 217

VERIFY_POSITION "drivegroup Object Parameters" on page 306

VOL_MSG_TIME "volumegroup Object Parameters" on page 319
"allocationgroup Object Parameters" on page 339

VOLUME_GROUPS "drivegroup Object Parameters" on page 306

VOLUME_LIMIT "taskgroup Object" on page 240

WATCHER "libraryserver Object Parameters" on page 303

WEIGHT "resourcescheduler Object Parameters" on page 337

WRITE_CHECKSUM "DCM msp Object" on page 360
"Disk msp Object" on page 356
"drivegroup Object Parameters" on page 306
"FTP msp Object" on page 350

ZONE_SIZE "volumegroup Object" on page 318

007–5484–012 377

Chapter 7

Parallel Data-Mover Option Configuration

This chapter discusses the following:

• "Parallel Data-Mover Option Configuration Procedure" on page 379

• "Determining the State of Parallel Data-Mover nodes" on page 382

• "Disabling Parallel Data-Mover Nodes" on page 383

• "Reenabling Parallel Data-Mover Nodes" on page 383

Parallel Data-Mover Option Configuration Procedure
If you are running DMF with the Parallel Data-Mover Option, do the following:

Procedure 7-1 Configuring DMF for the Parallel Data-Mover Option

1. Configure the DMF configuration file (/etc/dmf/dmf.conf) on the DMF server
according to the instructions in "Configuration Objects Overview" on page 211.
Ensure that a node object is defined in dmf.conf for the parallel data-mover
node that is being added.

2. Copy /etc/dmf/dmf.conf on the DMF server to /etc/dmf/dmf.conf on the
DMF parallel data-mover node.

Note: Do not edit the dmf.conf file on the parallel data-mover node.

3. Install the software for the parallel data mover on the parallel data-mover node.
See the SGI InfiniteStorage Software Platform release note for more information.

4. Configure CXFS according to the instructions in the CXFS 7 Administrator Guide
for SGI InfiniteStorage.

5. Include the DMF parallel data-mover node as a CXFS client, such as by creating
an autoconf rule. For more information, see the section about the autoconf
command in the cxfs_admin chapter of the CXFS administrator guide or the
cxfs_admin(8) man page.

007–5484–012 379

7: Parallel Data-Mover Option Configuration

For example, for two parallel data-mover nodes named pdm1 and pdm2 in a
CXFS cluster named mycluster:

cxfs_admin -c "create autoconf rule_name=pdm1rule policy=allowed \

hostname=pdm1 enable_node=true" -i mycluster

cxfs_admin -c "create autoconf rule_name=pdm2rule policy=allowed \

hostname=pdm2 enable_node=true" -i mycluster

After you have finished creating or modifying all of the desired autoconf rules,
you must unlock all cxfs_admin sessions in order for nodes to be automatically
configured. (The automatic configuration process must have access to the
cxfs_admin lock.)

If a node you refer to in an autoconf rule has previously been part of the CXFS
cluster, or if the node fails to join the CXFS membership, you must reboot the
node.

6. Configure the CXFS filesystems defined by the following DMF configuration
parameters so that they are mounted only on the primary DMF server, the
passive DMF server (if applicable), and each parallel data-mover node:

HOME_DIR
CACHE_DIR
MOVE_FS
TMP_DIR
SPOOL_DIR
STORE_DIRECTORY for a DCM MSP

For more information about these parameters, see "base Object" on page 216.

For example, if the filesystem to be mounted on the directory specified by
CACHE_DIR is on the /dev/cxvm/fscache device, you could specify the
following cxfs_admin commands to restrict it to the CXFS potential metadata
server nodes on which the DMF server can run (say server1 and server2) and
the parallel data-mover nodes (say pdm1 and pdm2):

cxfs_admin -c "create filesystem name=fscache mount_new_nodes=false \

nodes=server1,server2,pdm1,pdm2" -i mycluster

For more information, see the section about the mount command in the
cxfs_admin chapter of the CXFS administrator guide.

380 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

7. If you use a directory other than those listed in step 6 for the OV_KEY_FILE
configuration parameter, ensure that the OpenVault security key file is visible to
the DMF server and all parallel data-mover nodes. See "base Object" on page 216.

8. Configure the DMF-managed filesystems as CXFS filesystems that are mounted
on the DMF server and all of the parallel data-mover nodes. They may also be
mounted on CXFS client-only nodes.

9. On the DMF server, use ov_admin to allow the parallel data-mover node to be a
DCP-enabled OpenVault client machine. Do the following:

a. From the main menu in ov_admin, enter 23 to select Manage OpenVault
Client Machines.

b. Enter 1 to select Activate an OpenVault Client Machine and follow
the prompts. Be sure to answer yes when asked if the machine will run DCPs.

For more information about ov_admin, see the OpenVault Administrator Guide for
SGI InfiniteStorage.

10. On the parallel data-mover node, use ov_admin to configure DCPs for those
drives that it should operate.

11. If not already done, activate a privileged instance and an unprivileged instance of
the dmf application for each parallel data-mover node. See "Configure OpenVault
for DMF Use" on page 388.

12. Verify the DMF configuration; if there are errors, fix them and repeat the
verification until there are no errors. You can do this by using DMF Manager or
the dmcheck(8) script on the DMF server. For more information, see Chapter 5,
"DMF Manager" on page 147.

13. Start the DMF mover service on the parallel data-mover node:

mover# service dmf_mover start

After initial configuration, changes to dmf.conf will normally be propagated to
parallel data-mover nodes automatically while the DMF services are running. Certain
changes, such as changing the SERVER_NAME or SERVICES_PORT of the DMF server,
will require that you manually copy dmf.conf to the parallel data-mover nodes and
then restart the DMF services on those nodes.

007–5484–012 381

7: Parallel Data-Mover Option Configuration

Determining the State of Parallel Data-Mover nodes
To determine the status of a parallel data-mover node, enter the following command
as root:

dmnode_admin -l

For example, showing the state for parallel data-mover nodes jar and zin:

dmnode_admin -l

Node Name State Enabled Active Since Dropouts

jar Inactive Yes - 0

zin Active Yes 2008-Nov-26,12:45:48 0

The node state can be one of the following:

Active The node is connected to the dmnode_service on the
DMF server and is eligible to run data-mover processes.

Inactive The node is not connected to the dmnode_service.

Disabled The node is connected to the dmnode_service but has
been disabled using dmnode_admin. See "Disabling
Parallel Data-Mover Nodes" on page 383.

License Wait The node is connected to the dmnode_service but has
not been made active by dmnode_admin due to the
lack of a sufficient number of DMF parallel data mover
licenses on the server.

The Dropouts field specifies the number of times that the node has transitioned from
Active to Inactive. A non-zero count may indicate a problem with the mover
node or network. This count is reset when dmnode_service is restarted.

Note: If the dmnode_service is not running, the dmnode_admin command will not
function. To restart dmnode_service, enter the following:

service dmf start

382 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Disabling Parallel Data-Mover Nodes
To disable parallel data-mover nodes in order to perform maintenance on the system
or to diagnose a problem, enter the following:

dmnode_admin -d nodename ...

The node will remain disabled across DMF restarts.

The disabled node is no longer eligible to start new data-mover processes.

Existing data-mover processes on the disabled node will be told to exit after the
library server notices this change, which may take up to 2 minutes. The existing
data-mover processes may exit in the middle of recalling or migrating a file; this work
will be reassigned to other data-mover processes. Stopping data-mover processes
with the following command has the same result on existing processes:

service dmf_mover stop

Reenabling Parallel Data-Mover Nodes
To reenable parallel data-mover nodes, making them eligible to run data-mover
processes, enter the following as root:

dmnode_admin -e nodename ...

The node will remain enabled across DMF restarts.

To determine the current state of a node, see "Determining the State of Parallel
Data-Mover nodes" on page 382.

Note: DMF and DMF Manager must be running for the dmnode_admin command to
function.

007–5484–012 383

Chapter 8

Mounting Service Configuration Tasks

This chapter discusses the following:

• "OpenVault Configuration Tasks" on page 385

• "TMF Configuration Tasks" on page 399

OpenVault Configuration Tasks
This section discusses the following:

• "Initially Configure the OpenVault Server" on page 386

• "Configure OpenVault for DMF Use" on page 388

• "Configure OpenVault for Each Parallel Data-Mover Node" on page 392

• "Configure OpenVault on the DMF Server If on a Different Host" on page 396

• "Configure OpenVault for a Drive Group" on page 396

Note: For additional information about COPAN MAID or COPAN VTL and
OpenVault, see:

• COPAN MAID for DMF Quick Start Guide
• SGI 400 VTL for DMF Quick Start Guide

007–5484–012 385

8: Mounting Service Configuration Tasks

Initially Configure the OpenVault Server

Following is an example of the steps you will take to initially configure the OpenVault
server, using an example host named dmfserver as the OpenVault server (typically,
the same host will be the DMF server and the OpenVault server). The characters ###
in the right margin highlight comments related to the steps, which follow the example:

dmfserver# ov_admin ### Step 1

OpenVault Configuration

The general strategy for setting up OpenVault is to

1) configure the OpenVault server

2) configure LCP/DCPs on the server machine

3) configure server for local Applications

4) if needed, configure server for remote LCPs, DCPs, and Applications

5) if needed, install and configure LCP/DCPs on remote machines

6) from the server, for each library setup/import media

Where possible, defaults for each prompt are indicated by [value].

Help text may be obtained by entering ‘?‘ at most prompts.

Some menus will present only the available options depending

upon the software, hardware, or options that are installed.

If you do not see the choice you are looking for, double check

your installation to make sure the items are installed.

Press enter to continue...

There may be multiple OpenVault servers and networks in your area.

Enter the name where the OpenVault server is listening (or will be

listening after it has been configured). This may be the server’s

system hostname, or the hostname of another interface on the server

if an alternative network is being used.

Name where the OpenVault server is (or will be) listening? [dmfserver] ### Step 2

The OpenVault server is not yet configured; would you like to do so now? [Yes] ### Step 3

What port number should the OpenVault server use? [695] ### Step 4

386 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

What security key would you like the admin commands to use? [none] ### Step 5

Waiting for OpenVault to initialize ...

The OpenVault server was successfully started.

Comments:

1. Log in to the system where the OpenVault server will run and invoke the
OpenVault administration tool ov_admin(8). SGI recommends that the
OpenVault server run on the same node as the DMF server.

2. Enter the name associated with the IP address where the OpenVault server will
listen. If OpenVault will be running on the same server as DMF, the OpenVault
server should listen on the same interface used for DMF communications. Enter:

• The server’s virtual hostname if using high availability (HA)

• The hostname used for the server’s INTERFACE parameter (see "node Object"
on page 232) if using the Parallel Data-Mover option with an alternative
network.

• The system hostname if using basic DMF or the Parallel Data-Mover Option
with the default interface

Note: You must set the OV_SERVER parameter in the base object (see "base
Object" on page 216).

3. Enter Yes to configure the OpenVault server.

4. Select a port number for the OpenVault server. Normally, you can use the default.
You must use the same port number when configuring OpenVault on any parallel
data-mover nodes.

5. Optionally provide a security key to prevent unauthorized clients from using the
OpenVault administration commands.

007–5484–012 387

8: Mounting Service Configuration Tasks

Configure OpenVault for DMF Use

You must give DMF permission to connect to OpenVault from various hosts and
make use of drives and volumes by activating instances of the dmf application. The
following example uses a host named dmfserver as the OpenVault server:

1. Add an unprivileged instance and then an privileged instance of the dmf
application:

dmfserver# ov_admin ### Step a

Name where the OpenVault server is listening? [dmfserver] ### Step b

OpenVault Configuration Menu for server "dmfserver"

Configuration on Machines Running LCPs and DCPs

1 - Manage LCPs for locally attached Libraries

2 - Manage DCPs for locally attached Drives

Configuration on Admin-Enabled Machines

11 - Manage Cartridge Groups

12 - Manage Drive Groups

13 - Import Media

Configuration on the OpenVault Server Machine

21 - Manage Applications

22 - Manage OpenVault Client Machines

q - Exit.

Which operation would you like to do: 21 ### Step c

Manage Applications Menu

1 - Create a new Application

2 - Delete an Application

3 - Show all existing Applications

4 - Activate another Application Instance for an existing Application

5 - Deactivate an Application Instance

388 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

6 - Show all activated Application Instances

r - Return to Main Menu.

q - Exit.

Which operation would you like to do: 4 ### Step d

Select the Application for which you want to activate a new Instance

1 - dmf

2 - ov_umsh

r - Return to Previous Menu.

q - Exit.

Which operation would you like to do: 1 ### Step e

Enter the name of the Host where an instance of Application "dmf" will run [dmfserver] * ### Step f

Enter the Application’s instance name or "*" [] * ### Step g

Should this Instance of the Application "dmf" be "privileged"? [No] ### Step h

What security key will the Application use [none] ### Step i

Unprivileged Instance "*" of Application "dmf"

was successfully activated on "dmfserver".

Press enter to continue... ### Step j

Manage Applications Menu

1 - Create a new Application

2 - Delete an Application

3 - Show all existing Applications

4 - Activate another Application Instance for an existing Application

5 - Deactivate an Application Instance

6 - Show all activated Application Instances

007–5484–012 389

8: Mounting Service Configuration Tasks

r - Return to Main Menu.

q - Exit.

Which operation would you like to do: 4 ### Step k

Select the Application for which you want to activate a new Instance

1 - dmf

2 - ov_umsh

r - Return to Previous Menu.

q - Exit.

Which operation would you like to do: 1 ### Step l

Enter the name of the Host where an instance of Application "dmf" will run [dmfserver] * ### Step m

Enter the Application’s instance name or "*" [] * ### Step n

Should this Instance of the Application "dmf" be "privileged"? [No] yes ### Step o

What security key will the Application use [none] ### Step p

Privileged Instance "*" of Application "dmf"

was successfully activated on "dmfserver".

Press enter to continue...

Manage Applications Menu

1 - Create a new Application

2 - Delete an Application

3 - Show all existing Applications

4 - Activate another Application Instance for an existing Application

5 - Deactivate an Application Instance

6 - Show all activated Application Instances

390 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

r - Return to Main Menu.

q - Exit.

Which operation would you like to do: q ### Step q

dmfserver#

Comments:

a. Log in to the OpenVault server and invoke the OpenVault administration tool
ov_admin(8).

b. Enter the name associated with the IP address on which the OpenVault server
is listening.

c. Enter 21 to manage applications.

d. Enter 4 to activate another application instance.

e. Enter 1 to select the application dmf.

f. Enter the wildcard * character to allow the dmf application to be used from
any host. Alternatively, you can repeat these steps to create a privileged and
an unprivileged application instance for each system that DMF runs on (each
DMF server and each parallel data-mover node).

g. Enter the wildcard * for the application instance name.

h. Use the default (No) to create the unprivileged instance.

i. Optionally provide a security key.

j. Press Enter to continue.

k. Enter 4 to activate another application instance.

l. Enter 1 to select the application dmf.

m. Enter the wildcard * character to allow the dmf application to be used from
any host. (See step f.)

n. Enter the wildcard * for the application instance name.

o. Enter yes to make the application privileged.

p. Optionally provide a security key.

007–5484–012 391

8: Mounting Service Configuration Tasks

q. Enter q to exit.

2. Configure the base object for use with OpenVault. For example:

define base
TYPE base

HOME_DIR /dmf/home

.

.

.

OV_KEY_FILE /dmf/home/ov_keys

For more information, see "base Object" on page 216.

3. Use the dmov_keyfile(8) command to create the file defined by the
OV_KEY_FILE parameter. This command will prompt you for the unprivileged
and privileged keys that you defined.

Configure OpenVault for Each Parallel Data-Mover Node

Following is an example of the steps you will take to configure the Parallel
Data-Mover Option. You will repeat these steps on each parallel data-mover node:

1. On the OpenVault server (for example, named dmfserver), activate the parallel
data-mover node (such as mover1) as a client:

dmfserver# ov_admin ### Step 1a

Name where the OpenVault server is (or will be) listening? [dmfserver] ### Step 1b

OpenVault Configuration Menu for server "dmfserver"

Configuration on Machines Running LCPs and DCPs

1 - Manage LCPs for locally attached Libraries

2 - Manage DCPs for locally attached Drives

Configuration on Admin-Enabled Machines

11 - Manage Cartridge Groups

12 - Manage Drive Groups

13 - Import Media

Configuration on the OpenVault Server Machine

392 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

21 - Manage Applications

22 - Manage OpenVault Client Machines

q - Exit.

Which operation would you like to do: 22 ### Step 1c

Manage OpenVault Client Machines Menu

1 - Activate an OpenVault Client Machine

2 - Deactivate an OpenVault Client Machine

3 - Show all OpenVault Client Machines

r - Return to Main Menu.

q - Exit.

Which operation would you like to do: 1 ### Step 1d

Which Client Machine do you want to activate? [] mover1 ### Step 1e

What security key would you like the Client Machine mover1 to use? [none] ### Step 1f

Will DCPs and/or LCPs also be configured to run on "mover1"? [Yes] ### Step 1g

The Client Machine "mover1" was successfully activated.

Press enter to continue...

Manage OpenVault Client Machines Menu

1 - Activate an OpenVault Client Machine

2 - Deactivate an OpenVault Client Machine

3 - Show all OpenVault Client Machines

r - Return to Main Menu.

q - Exit.

Which operation would you like to do: q ### Step 1h

007–5484–012 393

8: Mounting Service Configuration Tasks

Comments:

a. Log in to the OpenVault server and invoke the OpenVault administration tool
ov_admin(8).

b. Enter the name associated with the IP address on which the OpenVault server
is listening.

c. Enter 22 to manage an OpenVault client.

d. Enter 1 to activate a client.

e. Enter the system name of the parallel data-mover node, such as mover1.

f. Optionally provide a security key to protect against clients masquerading as
allowed clients.

g. Press Enter to allow DCPs and LCPs to run on the parallel data-mover node.

h. Enter q to exit.

2. On the parallel data-mover node (for example, mover1), specify the name on
which OpenVault is listening, the port number, and optional security key:

mover1# ov_admin ### Step 2a

OpenVault Configuration

The general strategy for setting up OpenVault is to

1) configure the OpenVault server

2) configure LCP/DCPs on the server machine

3) configure server for local Applications

4) if needed, configure server for remote LCPs, DCPs, and Applications

5) if needed, install and configure LCP/DCPs on remote machines

6) from the server, for each library setup/import media

Where possible, defaults for each prompt are indicated by [value].

Help text may be obtained by entering ‘?‘ at most prompts.

Some menus will present only the available options depending

upon the software, hardware, or options that are installed.

If you do not see the choice you are looking for, double check

your installation to make sure the items are installed.

394 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Press enter to continue...

There may be multiple OpenVault servers and networks in your area.

Enter the name where the OpenVault server is listening (or will be

listening after it has been configured). This may be the server’s

system hostname, or the hostname of another interface on the server

if an alternative network is being used.

Name where the OpenVault server is (or will be) listening? [dmfserver] ### Step 2b

What port number is the OpenVault server on dmfserver using? [695] ### Step 2c

What security key would you like the admin commands to use? [none] ### Step 2d

OpenVault Configuration Menu for server "dmfserver"

Configuration on Machines Running LCPs and DCPs

1 - Manage LCPs for locally attached Libraries

2 - Manage DCPs for locally attached Drives

Configuration on Admin-Enabled Machines

11 - Manage Cartridge Groups

12 - Manage Drive Groups

13 - Import Media

q - Exit.

Which operation would you like to do: q ### Step 2e

Comments:

a. Log in to the parallel data-mover node and invoke the OpenVault
administration tool ov_admin(8).

b. Enter the same name here as you did when initially configuring the
OpenVault server. (This will also be the same value you entered in 1b).

c. Enter the same port here as you did when initially configuring the OpenVault
server (step 4 of "Initially Configure the OpenVault Server" on page 386).

d. If you specified a security key in 1f, enter the same value here.

007–5484–012 395

8: Mounting Service Configuration Tasks

e. Enter q to exit.

Configure OpenVault on the DMF Server If on a Different Host

Note: If the same host is both the OpenVault server and the DMF server, this
procedure is not needed.

If the OpenVault server is on a different host from the DMF server, you must repeat
the steps in "Configure OpenVault for Each Parallel Data-Mover Node" on page 392
on the DMF server host in order to configure it for OpenVault.

Configure OpenVault for a Drive Group

Procedure 8-1 describes the steps you must take to configure OpenVault for a drive
group.

Procedure 8-1 Configuring OpenVault for a Drive Group

Note: The procedure that follows assumes that before you complete the steps
described, the OpenVault server is configured and all drives and libraries are
configured and OpenVault is running. For more information about configuring
OpenVault, see the ov_admin(8) man page and OpenVault Administrator Guide for SGI
InfiniteStorage.

1. Add DMF as a valid application to appropriate cartridge groups.

The ov_admin script allows you to specify the cartridge groups when the DMF
application is created or, after creation of the DMF application, you can choose
the menu option that allows you to manage cartridge groups. For more
information, see the ov_admin(8) man page.

2. Add the DMF application as a valid user to appropriate OpenVault drive groups.
The OpenVault drive groups that DMF uses must contain only fungible drives.
That is, the drives in the OpenVault drive group must have identical
characteristics and accessibility, so that any volume that can be mounted and
written on one of the drives can also be mounted and read on any of the other
drives within the group. Failure to provide identical mounting and accessibility
characteristics to all drives in an OpenVault drive group used by an LS might
result in mount failures.

396 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Choose the appropriate item from the ov_admin menu. If for some reason you
cannot use the ov_admin script, you can enter the command manually, as follows:

ov_drivegroup -a -G drive_group -A dmf

3. Configure the following parameters as needed in the LS’s drivegroup object for
use with OpenVault:

MOUNT_SERVICE

MOUNT_SERVICE_GROUP

OV_INTERCHANGE_MODES

For example:

define dg_c00

TYPE drivegroup

VOLUME_GROUPS vg_c00
MOUNT_SERVICE openvault

MOUNT_SERVICE_GROUP dg_c00

OV_INTERCHANGE_MODES compression

enddef

For more information, see:

• "device Object" on page 267

• "drivegroup Object Parameters" on page 306

4. Make the appropriate cartridges accessible to the allocation groups, VGs, or
filesystem backup scripts by assigning the cartridges to the DMF application in
OpenVault. Do the following:

• To find out which drives are in each drive group:

ov_dumptable -n -d’|’ -c DriveGroupName,DriveName,LibraryName DRIVE
ultrium3grp|drive1|lib1

ultrium3grp|drive2|lib1

ultrium4grp|drive3|lib1

ultrium4grp|drive4|lib1

• To find out which cartridge types each drive can mount:

ov_dumptable -n -d’|’ -c DriveName,CartridgeTypeName DCPCAPABILITY | sort -u

drive1|Ultrium1-100

drive1|Ultrium2-200

007–5484–012 397

8: Mounting Service Configuration Tasks

drive1|Ultrium3-400
drive2|Ultrium1-100

drive2|Ultrium2-200

drive2|Ultrium3-400

drive3|Ultrium2-200

drive3|Ultrium3-400
drive3|Ultrium4-800

drive4|Ultrium2-200

drive4|Ultrium3-400

drive4|Ultrium4-800

In this example, any Ultrium4–800 cartridges can only be used in the
ultrium4grp drive group.

• To find out the possible cartridge groups:

ov_cartgroup -s -A dmf

• Do one of the following to make both DMF and OpenVault aware of the
cartridges to be mounted:

!
Caution: All cartridges that DMF mounts via OpenVault must have the
correct cartridge type. Failure to correctly specify the cartridge type can result
in errors when reading and writing data. Contact your SGI service
representative if you have questions about cartridge type specification.

– If you already have tapes defined in your LS database or in a DUMP_TAPES
file but OpenVault is not aware of them, and every cartridge in the given
LS, VG, or task group is of the same cartridge type, you can tell OpenVault
about these tapes by entering one of the following:

dmov_makecarts [-g cartgroup] [-t carttype] taskgroupnames
dmov_makecarts [-g cartgroup] [-t carttype] lsnames
dmov_makecarts [-g cartgroup] [-t carttype] [-v vg1,vg2] lsname

You can replace any of the references to a VG previously mentioned with
an AG. If the -v parameter is omitted, all VGs and allocation groups in the
specified LS will be processed. Tapes will be added to the file controlling
the run_full_dump.sh and run_partial_dump.sh scripts by
specifying the name of the task group that refers to them.

398 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

– If you have volumes that neither DMF nor OpenVault is aware of, you can
import them by cartridge type into OpenVault and add them to DMF by
VG, AG, or task group by entering one of the following:

dmov_loadtapes [-g cartgroup] [-l library] [-s tapesize] [-t carttype] vgname
dmov_loadtapes [-g cartgroup] [-l library] [-s tapesize] [-t carttype] agname
dmov_loadtapes [-g cartgroup] [-l library] [-s tapesize] [-t carttype] taskgroupname

This command will invoke a vi(1) session. In the vi session, delete any
cartridges that you do not want added to the LS database. All cartridges
that are left in the vi session file must be of the same cartridge type, the
type you specified with the -t option. Volumes will be added to the file
controlling the run_full_dump.sh and run_partial_dump.sh scripts
by specifying the name of the task group which refers to them.

– If neither of the above cases apply, you can manually configure the
cartridges. The following commands can be useful in this effort:

• Use ov_stat to list cartridges in a library. For example:

ov_stat -s -L library

• Use ov_lscarts to list information on cartridges known to
OpenVault. For example:

ov_lscarts -f ’.*’

• Use ov_import and dmvoladm to add the unmanaged cartridges to
OpenVault and DMF, and use vi to edit the task group in the file
specified by the DUMP_TAPES parameter in the taskgroup stanza in
the dmf.conf file.

TMF Configuration Tasks
Use one of the following dmvoladm(8) commands to add tapes to the LS database:

dmvoladm -l lsname -c ’create vsn001-vsn010 vg vgname [ts tapesize]’
dmvoladm -l lsname -c ’create vsn001-vsn010 vg vgname [ts tapesize]’

An AG is specified by the vg option, just like a VG. Specifying the tape size will
allow commands such as dmcapacity(8) and its display in DMF Manager to
accurately estimate the remaining capacity of the volume.

007–5484–012 399

8: Mounting Service Configuration Tasks

There is no special procedure to inform TMF of a tape’s existence. TMF assumes that
every tape it deals with is in the library or can be provided by an operator, as needed.

400 007–5484–012

Chapter 9

Message Log Files

The dmfdaemon, dmlockmgr, dmfsmon, media-specific process (MSP), and library
server (LS) message log files use the same general naming convention and message
format. The filenames for message logs are created using the extension yyyymmdd,
which represents the year, month, and day of file creation.

Each line in a message log file begins with the time the message was issued, an
optional message level, the process ID number, and the name of the program that
issued the message.

The optional message level is described below. The remainder of the line contains
informative or diagnostic information. The following sections provide details about
each of these logs:

• "Automated Space Management Log File" on page 407 for information about
dmfsmon and autolog.yyyymmdd

• "Daemon Logs and Journals" on page 419 for information about dmfdaemon and
dmdlog.yyyymmdd

• "dmlockmgr Communication and Log Files" on page 421 for information about
dmlockmgr and dmlocklog.yyyymmdd

• "LS Logs" on page 432 and "FTP MSP Activity Log" on page 463 for information
about dmatls, dmdskmsp, dmftpmsp, and msplog.yyyymmdd

• Chapter 14, "DMF Maintenance and Recovery" on page 473, for information about
log maintenance

Messages in the dmdlog, dmlocklog, moverlog, and msplog files contain a
2–character field immediately following the time field in each message that is issued.
This feature helps to categorize the messages and can be used to extract error
messages automatically from these logs. Because the only indication of DMF
operational failure may be messages written to the DMF logs, recurring problems can
go undetected if you do not check the logs daily.

Possible message types for autolog, dmdlog, moverlog, msplog, and dmlocklog
are defined in Table 9-1. The table also lists the corresponding message levels in the
configuration file.

007–5484–012 401

9: Message Log Files

Table 9-1 Message Types and Levels

Field Message Type Message Level

-E Error 0

-O Ordinary 0

-I Informative 1

-V Verbose 2

-1 Debug level 1 3

-2 Debug level 2 4

-3 Debug level 3 5

-4 Debug level 4 6

402 007–5484–012

Chapter 10

Automated Space Management

This chapter discusses the following:

• "The dmfsmon Daemon and dmfsfree Command" on page 403

• "Generating the Candidate List" on page 404

• "Selection of Migration Candidates" on page 405

• "Space Management and the DCM MSP" on page 407

• "Automated Space Management Log File" on page 407

The dmfsmon Daemon and dmfsfree Command
The dmfsmon(8) daemon monitors the free-space levels in filesystems configured with
automated space management enabled (auto). When the free space in one of the
filesystems falls below the free-space minimum, dmfsmon invokes dmfsfree(8). The
dmfsfree command attempts to bring the free space and migrated space of a
filesystem into compliance with configured values. You can also invoke dmfsfree
directly.

When the free space in one of the filesystems falls below its minimum, dmfsfree
performs the following steps:

• Scans the filesystem for files that can be migrated and freed or ranges of files that
can be freed. Each of these candidates is assigned a weight. This information is
used to create a list, called a candidate list, that contains an entry for each file or
range and is ordered by weight (largest to smallest).

• Selects enough candidates to bring the free space back up to the desired level.
Files or ranges of files are selected in order from largest weight to smallest.

• Selects enough regular files from the candidate list to achieve the migration target,
the integer percentage of total filesystem space that dmfsmon tries to maintain as a
reserve of space that is free or occupied by dual-state files (whose online space can
be freed quickly) if free space reaches or falls below the free-space minimum
threshold. Files are selected from the candidate list in order from largest weight to
smallest weight.

007–5484–012 403

10: Automated Space Management

The dmfsmon daemon should be running whenever DMF is active. You control
automated space management by setting the filesystem and policy configuration
parameters in the DMF configuration file. The configuration parameters specify
targets for migration and free space as well as one or more policies for weighting.
Only filesystems configured as MIGRATION_LEVEL auto in the configuration file are
included in the space-management process. "policy Object" on page 276, describes
how to configure automated space management.

You can change the migration level of a filesystem by editing the configuration file.

Generating the Candidate List
The first step in the migration process occurs when dmfsmon determines it is time to
invoke dmfsfree, which scans the filesystem and generates the candidate list.
During candidate list generation, the inode of each online file in the specified
filesystem is audited and a weight is computed for it.

A filesystem is associated with a weighting policy in the DMF configuration file. The
applicable weighting policy determines a file’s total weight, or, if a ranges clause is
specified in the configuration file, the range’s total weight. Total file or range weight is
the sum of the AGE_WEIGHT and SPACE_WEIGHT parameters. Defaults are provided
for these parameters, and you can configure either to make a change. You do not need
to configure a weighting policy if the defaults are acceptable, but you should be aware
that the default selects files based on age and not on size. If you want to configure a
policy based on size that ignores file age, you should set AGE_WEIGHT to 0 0

The default weighting policy bases the weight of the file on the time that has passed
since the file was last accessed or modified. Usually, the more recent a file’s access,
the more likely it is to be accessed again.

The candidate list is ordered by total file or range weight (largest to smallest). You
can prevent a file from being automatically migrated by making sure that no ranges
within the file have a positive weight value. You can configure the weighting
parameters to have a negative value to ensure that certain files or ranges are never
automatically freed.

Note: If you use negative weights to exclude files or ranges from migration, you must
ensure that a filesystem does not fill with files or ranges that are never selected for
automatic migration.

404 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

You can use the dmscanfs(8) command to print file information to standard output
(stdout).

Selection of Migration Candidates
The dmfsfree(8) utility processes each ordered candidate list sequentially, seeking
candidates to migrate and possibly free. The extent of the selection process is
governed by values defined for the filesystem in the DMF configuration file as
described in "policy Object" on page 276.

The most essential parameters are as follows:

• FREE_SPACE_MINIMUM

• FREE_SPACE_TARGET

• MIGRATION_TARGET

For more information about these parameters, see:

• "Automated Space Management Parameters for a DMF-Managed Filesystem" on
page 280

• "Automated Space Management Parameters for a DCM MSP STORE_DIRECTORY"
on page 287

When dmfsmon detects that the free space on a filesystem has fallen below the level
you have set as FREE_SPACE_MINIMUM, it invokes dmfsfree to select a sufficient
number of candidates to meet the FREE_SPACE_TARGET. The dmfsfree utility
ensures that these files are migrated and releases their disk blocks. It then selects
additional candidates to meet the MIGRATION_TARGET and migrates them.

Figure 10-1 shows the relationship of automated space management migration targets
to each other. Migration events occur when file activity causes free filesystem space to
drop below FREE_SPACE_MINIMUM. dmfsmon generates a candidate list and begins
to migrate files and free the disk blocks until the FREE_SPACE_TARGET is met, and
then it migrates regular files (creating dual-state files) until the MIGRATION_TARGET
is met.

007–5484–012 405

10: Automated Space Management

Regular files

Dual-state files

Free space

100%

Migration
target

Free space
target

Free space
minimum

0%

File activity

Threshold-driven
migration events

O O OO

F
ile

 s
ys

te
m

 s
pa

ce

Figure 10-1 Relationship of Automated Space Management Targets

If dmfsmon does not find enough files to migrate (because all remaining files are
exempt from migration), it uses another configuration parameter to decrement
FREE_SPACE_MINIMUM.

FREE_SPACE_DECREMENT specifies the percentage of filesystem space by which
dmfsmon will decrement FREE_SPACE_MINIMUM if it cannot find enough files to
migrate to reach FREE_SPACE_MINIMUM. For example, suppose
FREE_SPACE_MINIMUM is set to 10 and FREE_SPACE_DECREMENT is set to 2. If
dmfsmon cannot find enough files to migrate to reach 10% free space, it will
decrement FREE_SPACE_MINIMUM to 8 and try to find enough files to migrate so that
8% of the filesystem is free. If dmfsmon cannot achieve this percentage, it will
decrement FREE_SPACE_MINIMUM to 6. dmfsmon will continue until it reaches a
value for FREE_SPACE_MINIMUM that it can achieve, and it will try to maintain that

406 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

new value. dmfsmon restores FREE_SPACE_MINIMUM to its configured value when it
can be achieved. The default value for FREE_SPACE_DECREMENT is 2.

Note: DMF manages real-time partitions differently than files in a normal partition.
The dmfsfree command can only migrate files in the non-real-time partition; it
ignores files in the real-time partition. Any configuration parameters you set will
apply only to the non-real-time partition. Files in the real-time partition can be
manually migrated with the commands dmget(1), dmput(1), and dmmigrate(8).
Files are retrieved automatically when they are read.

Space Management and the DCM MSP
DMF prevents the disk cache manager (DCM) media-specific process (MSP) cache
from filling by following the same general approach it takes with DMF-managed
filesystems, with the following differences:

• The disk MSP (dmdskmsp) monitors the cache, instead of a separate monitoring
program such as dmfsmon.

• The dmdskfree utility controls the movement of cache files to tape. This is
analogous to dmfsfree.

Note: The DCM MSP uses parameters that are similar to those used for the disk MSP,
although some names are different. See "policy Object" on page 276.

Automated Space Management Log File
All of the space-management commands record their activities in a common log,
autolog.yyyymmdd (where yyyymmdd is the year, month, and day of file creation).
The first space-management command to execute on a given day creates the log file
for that day. This file resides in the directory SPOOL_DIR/daemon_name (The
SPOOL_DIR value is specified by the SPOOL_DIR configuration parameter; see "base
Object" on page 216). The space-management commands create the daemon_name
subdirectory in SPOOL_DIR if it does not already exist. The full pathname of the
common log file follows:

SPOOL_DIR/daemon_name/autolog.yyyymmdd

007–5484–012 407

10: Automated Space Management

Each line in the autolog file begins with the time of message issue, followed by the
name of the host where the message issuer ran, and the process number and program
name of the message issuer. The remainder of the line contains informative or
diagnostic information such as the following:

• Name of the filesystem being processed

• Number of files selected for migration and freeing

• Number of disk blocks that were migrated and freed

• Names of any other DMF commands executed

• Command’s success or failure in meeting the migration and free-space targets

The following excerpt shows the format of an autolog file (line breaks shown here
for readability):

23:39:35:702-V zap 237082-dmfsmon /dmfusr1 - free_space=39.79, minimum=38

23:39:35:702-V zap 237082-dmfsmon /dmfusr3 - free_space=15.48,minimum=15

23:40:55:723-I zap 237082-dmfsmon Started 3409 for execution on /dmfusr3

23:40:56:782-I zap 3409-dmfsfree /dmfusr3 - Number of blocks in the filesystem = 122232448

23:40:56:782-I zap 3409-dmfsfree /dmfusr3 - Number of blocks in the free space target = 24446490 (20%)

23:40:56:782-I zap 3409-dmfsfree /dmfusr3 - Number of blocks currently free = 18287168 (15.0%)

23:40:56:782-I zap 3409-dmfsfree /dmfusr3 - Number of blocks to free = 6159322 (5.0%)

23:40:56:782-I zap 3409-dmfsfree /dmfusr3 - Number of blocks in the migration target = 97785960 (80%)

23:40:56:782-I zap 3409-dmfsfree /dmfusr3 - Number of blocks currently migrated = 74419040 (60.9%)

23:40:56:782-I zap 3409-dmfsfree /dmfusr3 - Number of blocks to migrate = 5079752 (4.2%)

23:40:56:782-I zap 3409-dmfsfree /dmfusr3 - Summary of files: online = 3760, offline = 6537, unmigrating

= 30, partial = 0

23:40:56:782-I zap 3409-dmfsfree /dmfusr3 - Number of candidates = 3629, rejected files = 0, rejected

ranges = 0

23:41:31:150-I zap 3409-dmfsfree /dmfusr3 - Migrated 5104824 blocks in 169 files

23:41:31:150-I zap 3409-dmfsfree /dmfusr3 - Freed 6164480 blocks in 303 files

23:41:31:150-O zap 3409-dmfsfree /dmfusr3 - Exiting: minimum reached - targets met by outstanding requests.

408 007–5484–012

Chapter 11

The DMF Daemon

The DMF daemon, dmfdaemon(8), is the core component of DMF. The daemon
exchanges messages with commands, the kernel, the media-specific processes (MSPs),
and the library servers (LSs).

When DMF is started, the daemon database is automatically initialized. To start the
daemon manually, use the DMF startup script, as follows:

service dmf start

!
Caution: For instructions about starting and stopping DMF and the mounting service
in an HA environment, see High Availability Guide for SGI InfiniteStorage.

Typically, DMF should be initialized as part of the normal system startup procedure
by using a direct call in a system startup script in the /etc/rc2.d directory.

The following sections provide additional information:

• "Daemon Processing" on page 409

• "Daemon Database and dmdadm" on page 411

• "Daemon Logs and Journals" on page 419

Daemon Processing
After initialization, dmfdaemon performs the following steps:

1. Isolates itself as a daemon process.

2. Checks for the existence of other dmfdaemon processes. If another dmfdaemon
exists, the newer one terminates immediately.

3. Initializes the daemon log.

4. Opens the daemon database.

5. Initializes the daemon request socket.

6. Initiates the MSPs and LSs.

007–5484–012 409

11: The DMF Daemon

7. Enters its main request processing.

The daemon uses log files and journal files as described in "Daemon Logs and
Journals" on page 419.

The main request processing section of the DMF daemon consists of the following
sequence:

1. The select(2) system call, which is used to wait for requests or for a default
time-out interval

2. A request dispatch switch to read and process requests detected by the select
call

3. A time processor, which checks activities (such as displaying statistics and
running the administrator tasks) done on a time-interval basis

This processing sequence is repeated until a stop request is received from the
dmdstop(8) command. When a normal termination is received, the MSPs and LSs are
terminated, the daemon database is closed, and the logs are completed.

A typical request to the daemon starts with communication from the requester. The
requester is either the kernel (over the DMF device interface) or a user-level request
(from the command pipe). A user-level command can originate from the automated
space-management commands or from an individual user.

After receipt, the command is dispatched to the appropriate command processor
within the daemon. Usually, this processor must communicate with an MSP or LS
before completing the specified request. The commands are queued within the
daemon and are also queued to a specific group of daemon database entries. All
entries referring to the same file share the same BFID. The command is dormant until
the reply from the MSP/LS is received or the MSP/LS terminates. When command
processing is completed, a final reply is sent to the issuing process, if it still exists.

A final reply usually indicates that the command has completed or an error has
occurred. Often, error responses require that you analyze the daemon log file to
obtain a full explanation of the error. An error response issued immediately usually
results from an invalid or incorrect request (for example, a request to migrate a file
that has no data blocks). A delayed error response usually indicates a database,
daemon, MSP, or LS problem.

410 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Daemon Database and dmdadm

This section discusses the following:

• "Overview of the Daemon Database and dmdadm" on page 411

• "dmdadm Directives" on page 412

• "dmdadm Field and Format Keywords" on page 414

• "dmdadm Text Field Order" on page 418

Overview of the Daemon Database and dmdadm

The daemon database resides in the directory HOME_DIR/daemon_name. The daemon
database contains information about the offline copies of a given file, as well as some
information about the original file. The daemon database also contains the bit-file
identifier (BFID), which is assigned when the file is first migrated.

Other information maintained on a per-entry basis includes the following:

• File size (in bytes)

• MSP or volume group (VG) name and recall path

• Date and time information, including the following:

– Time at which the record was created

– Time at which the record was last updated

– A check time for use by the administrator

– A soft-delete time, indicating when the entry was soft-deleted

• Original device and inode number

• Base portion of the original filename, if known

The dmdadm(8) command provides maintenance services for the daemon database.

dmdadm executes directives from stdin or from the command line when you use the
-c option. All directives start with a directive name followed by one or more
parameters. Parameters may be positional or keyword-value pairs, depending on the
command. White space separates the directive name, keywords, and values.

007–5484–012 411

11: The DMF Daemon

When you are inside the dmdadm interface, you see the following prompt:

adm command_number >

At this point, the command has a 30–minute timeout associated with it. If you do not
enter a response within 30 minutes of the prompt having been displayed, the dmdadm
session terminates with a descriptive message. This behavior on all the database
administrative commands limits the amount of time that an administrator can lock
the daemon and MSP/LS databases from updates.

dmdadm Directives

The dmdadm directives are as follows:

Directive Description

count Displays the number of records that match the expression provided.

create Creates a record.

delete Deletes the specified records.

dump Prints the specified records to standard out in ASCII; each field is
separated by the pipe character (|).

help Displays help.

list Shows the fields of selected records. You may specify which fields are
shown.

load Applies records to the daemon database obtained from running the
dump directive.

quit Stops program execution after flushing any changed database records to
disk. The abbreviation q and the string exit produce the same effect.

set Specifies the fields to be shown in subsequent list directives.

update Modifies the specified records.

The syntax for the dmdadm directives is as follows:

count selection [limit]
create bfid settings
delete selection [limit]
dump selection [limit]
help

412 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

list selection [limit] [format]
load filename
quit (or q or exit)

set format
update selection [limit] to settings...

where:

• The selection parameter specifies the records to be acted upon.

• The limit parameter restricts the records acted upon.

• The bfid parameter for the create directive specifies the bit-file identifier (BFID)
for the record being created.

• The settings parameter for the create and update directives specifies one or
more fields and their values.

• The format parameter selects the way in which output is displayed. Any program
or script that parses the output from this command should explicitly specify a
format; otherwise the default is used, which may change from release to release.

The value for selection can be one of the following:

• A BFID or range of BFIDs

• The keyword all

• A period (.), which recalls the previous selection

• An expression involving any of the above, field value comparisons, and, or, or
parentheses

A field value comparison may use the following to compare a field keyword to an
appropriate value:

< (less than)
> (greater than)
= (equal to)
!= (not equal to)
<= (less than or equal to)
>= (greater than or equal to)

The syntax for selection is as follows:

007–5484–012 413

11: The DMF Daemon

selection ::= or-expr
or-expr ::= and-expr [or or-expr]
and-expr ::= nested-expr [and or-expr]
nested-expr ::= comparison | (or-expr)
comparison ::= bfid-range | field-keyword op field-value
op ::= < | > | = | != | >= | <=
bfid-range ::= bfid [- bfid] | [bfid - [bfid]] | key-macro
key-macro ::= all
field-keyword ::= name or abbreviation of the record field
field-value ::= appropriate value for the field
bfid ::= character representation of the bfid

Thus valid values for selection could be any of the following:

305c74b200000010-305c74b200000029

7fffffff000f4411-
-305c74b2000004c8

all

origsize>1m

. and origage<7d

dmdadm Field and Format Keywords

The field parameter keywords listed below can be used as follows:

• In a selection parameter to select records

• In a settings parameter as part of a keyword-value pair, in order to specify new
values for a field

• In a format parameter

When specifying new values for fields, some of the field keywords are valid only if
you also specify the -u (unsafe) option.

Keyword Description

checkage (ca) The time at which the record was last checked; the
same as checktime, except that it is specified as an age
string (see below). Valid only in unsafe (-u) mode.

414 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

checktime (ct) The time at which the record was last checked; an
integer that reflects raw UNIX or Linux time. Valid
only in unsafe (-u) mode.

deleteage (da) The time at which the record was soft-deleted; the same
as deletetime, except that it is specified as an age
string. Valid only in unsafe (-u) mode.

deletetime (dt) The time at which the record was soft-deleted; an
integer that reflects raw UNIX or Linux time. Valid
only in unsafe (-u) mode.

mspname (mn) The name of the MSP or VG with which the file is
associated; a string of up to 8 characters. Valid only in
unsafe (-u) mode.

mspkey (mk) The string that the MSP or VG can use to recall a
record; a string of up to 50 characters. Valid only in
unsafe (-u) mode.

origage (oa) Time at which the record was created; the same as
origtime, except that it is specified as an age string.

origdevice (od) Original device number of the file; an integer.

originode (oi) Original inode number of the file; an integer.

origname (on) Base portion of the original filename; a string of up to
14 characters.

origsize (os) Original size of the file; an integer.

origtime (ot) Time at which the record was created; an integer that
reflects raw UNIX or Linux time.

origuid (ou) Original user ID of the record; an integer.

updateage (ua) Time at which the record was last updated; the same as
updatetime, except that it is specified as an age string.

updatetime (ut) Time at which the record was last updated; an integer
that reflects raw UNIX or Linux time.

The time field keywords (checktime, deletetime, origtime, and updatetime)
can have one of the following values:

• now

007–5484–012 415

11: The DMF Daemon

• UNIX or Linux raw time (that is, seconds since January 1, 1970)

These keywords display their value as raw time. The value comparison > used with
the date keywords means newer than the value given. For example, >36000 is newer
than 10AM on January 1, 1970, and >852081200 is newer than 10AM on January 1,
1997.

The age field keywords (checkage, deleteage, origage, and updateage) let you
express time as a string. They display their value as an integer followed by the
following:

w (weeks)
d (days)
h (hours)
m (minutes)
s (seconds)

For example, 8w12d7h16m20s means 8 weeks, 12 days, 7 hours, 16 minutes, and 20
seconds old.

The comparison > used with the age keywords means older than the value given
(that is, >5d is older than 5 days).

A limit parameter in a directive restricts the records acted upon. It consists of one of
the following keywords followed by white space and then a value:

Keyword Description

recordlimit (rl) Limits the number of records acted upon to the value
that you specify; an integer.

recordorder (ro) Specifies the order that records are scanned:

• bfid, which specifies that the records are scanned
in BFID order.

• data, which specifies that the records are scanned
in the order in which they are found in the daemon
database data file. data is more efficient for large
databases, although it is essentially unordered.

The format parameter selects a format to use for the display. If, for example, you want
to display fields in a different order than the default or want to include fields that are
not included in the default display, you specify them with the format parameter. The
format parameter in a directive consists of one of the following:

416 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

format default
format keyword
format field-keywords

The format keyword form is intended for parsing by a program or script and
therefore suppresses the headings.

The field-keywords may be delimited by colons or white space; white space requires the
use of quotation marks.

Note: BFID is always included as the first field and need not be specified.

For any field that takes a byte count, you may append one of the following letters (in
either uppercase or lowercase) to the integer to indicate that the value is to be
multiplied (all of which are powers of 1000, not 1024):

k or K for 1 thousand
m or M for 1 million
g or G for 1 billion

The following is sample output from the dmdadm list directive; recordlimit 20
specifies that you want to see only the first 20 records.

adm 3>list all recordlimit 20

BFID ORIG ORIG ORIG MSP MSP

UID SIZE AGE NAME KEY

--
305c74b200000010 20934 69140480 537d silo1 88b49f

305c74b200000013 26444 279290 537d silo1 88b4a2

305c74b200000014 10634 67000 537d silo1 88b4a3

305c74b200000016 10634 284356608 537d silo1 88b4a5

305c74b200000018 10634 1986560 537d silo1 88b4a7

305c74b20000001b 26444 232681 537d silo1 88b4aa
305c74b20000001c 10015 7533688 537d silo1 88b4ab

305c74b200000022 8964 23194990 537d silo1 88b4b1

305c74b200000023 1294 133562368 537d silo1 88b4b2

305c74b200000024 10634 67000 537d silo1 88b4b3

305c74b200000025 10634 284356608 537d silo1 88b4b4
305c74b200000026 10634 1986560 537d silo1 88b4b5

305c74b200000027 1294 1114112 537d silo1 88b4b6

305c74b200000028 10634 25270 537d silo1 88b4b7

305c74b200000029 1294 65077248 537d silo1 88b4b8

007–5484–012 417

11: The DMF Daemon

305c74b20000002b 9244 2740120 537d silo1 88b4ba
305c74b200000064 9335 9272 537d silo1 88b4f3

305c74b200000065 9335 10154 537d silo1 88b4f4

305c74b200000066 9335 4624 537d silo1 88b4f5

305c74b200000067 9335 10155 537d silo1 88b4f6

adm 4>

The following example displays the number of records in the daemon database that
are associated with user ID 11789 and that were updated during the last five days:

adm 3>count origuid=11789 and updateage<5d
72 records found.

dmdadm Text Field Order

The text field order for daemon records generated by the dmdump(8), dmdumpj(8),
and the dump directive in dmdadm is listed below. This is the format expected by the
load directives in dmdadm:

1. bfid

2. origdevice

3. originode

4. origsize

5. origtime

6. updatetime

7. checktime

8. deletetime

9. origuid

10. origname

11. mspname

12. mspkey

418 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

To isolate the mspname and mspkey from the daemon records soft-deleted fewer than
three days ago, use the following command:

dmdadm -c "dump deleteage<3d and deletetime>0" | awk "-F|" ’(print $11,$12}’

Daemon Logs and Journals
The DMF daemon uses log files to track various types of activity. Journal files are
used to track daemon database transactions.

The ASCII log of daemon actions has the following format (SPOOL_DIR refers to the
directory specified by the SPOOL_DIR configuration parameter):

SPOOL_DIR/daemon_name/dmdlog.yyyymmdd

The convention is that yyyy, mm, and dd correspond to the date on which the log file
was created (representing year, month, and day, respectively). Log files are created
automatically by the DMF daemon.

Note: Because the DMF daemon will continue to create log files and journal files
without limit, you must remove obsolete files periodically by configuring the
run_remove_logs and run_remove_journals tasks in the configuration file, as
described in "taskgroup Object" on page 240.

The DMF daemon automatically creates journal files that track daemon database
transactions. They have the following pathname format (JOURNAL_DIR refers to the
directory defined by the JOURNAL_DIR configuration parameter):

JOURNAL_DIR/daemon_name/dmd_db.yyyymmdd[.hhmmss]

Existing journal files are closed and new ones created in two circumstances:

• When the first transaction after midnight occurs

• When the journal file reaches size defined by the JOURNAL_SIZE configuration
parameter

When the first transaction after midnight occurs, the existing open journal file is
closed, and the suffix .235959 is appended to the current filename no matter what
the time (or date) of closing. The closed file represents the last (or only) transaction
log of the date yyyymmdd. A new journal file with the current date is then created.

007–5484–012 419

11: The DMF Daemon

When the journal file reaches JOURNAL_SIZE, the file is closed and the suffix .hhmmss
is added to the name; hh, mm, and ss represent the hour, minute, and second of file
closing. A new journal file with the same date but no time is then created.

For example, the following shows the contents of a JOURNAL_DIR/daemon_name
directory on 15 June 1998:

dmd_db.19980604.235959 dmd_db.19980612.235959

dmd_db.19980605.235959 dmd_db.19980613.145514

dmd_db.19980608.235959 dmd_db.19980613.214233

dmd_db.19980609.235959 dmd_db.19980613.235959
dmd_db.19980610.235959 dmd_db.19980614.235959

dmd_db.19980611.094745 dmd_db.19980615

dmd_db.19980611.101937

dmd_db.19980611.110429

dmd_db.19980611.235959

For every date on which daemon database transactions occurred, there will exist a file
with that date and the suffix .235959, with the exception of an existing open journal
file. Some dates have additional files because the transaction log reached
JOURNAL_SIZE at a specified time and the file was closed.

You can configure daemon_tasks parameters to remove old journal files (using the
run_remove_journals.sh task and the JOURNAL_RETENTION parameter. For
more information, see "taskgroup Object" on page 240.

Warning: If a daemon database becomes corrupt, recovery consists of applying
journals to a backup copy of the database. Database recovery procedures are
described in "Database Recovery" on page 484.

420 007–5484–012

Chapter 12

The DMF Lock Manager

The dmlockmgr(8) process must be executing at all times for any DMF process to
safely access and update a DMF database. The dmlockmgr process and its clients —
such as dmatls, dmfdaemon(8), dmvoladm(8), and dmcatadm(8) — communicate
through files, semaphores, and message queues. There are times when abnormal
process terminations will result in non-orderly exit processing that will leave files
and/or interprocess communication (IPC) resources allocated. As a DMF
administrator, periodically you will want to look for these resources to remove them.

Note: HOME_DIR and SPOOL_DIR refer to the values of the HOME_DIR and
SPOOL_DIR parameter, respectively, in the DMF configuration file. See "base Object"
on page 216.

The dmlockmgr files used by the database utilities are found in several different
places. There are the following types of files:

• "dmlockmgr Communication and Log Files" on page 421

• "dmlockmgr Individual Transaction Log Files" on page 423

dmlockmgr Communication and Log Files
The dmlockmgr communication and activity log files are all found in a directory
formed by HOME_DIR/RDM_LM. The HOME_DIR/RDM_LM and
HOME_DIR/RDM_LM/ftok_files directories contain the token files used to form
the keys that are used to create and access the IPC resources necessary for the
dmlockmgr to communicate with its clients, its standard output file, and the
transaction file.

The dmlockmgr token files have the form shown in Table 12-1 on page 422.

007–5484–012 421

12: The DMF Lock Manager

Table 12-1 dmlockmgr Token Files

File Description

HOME_DIR/RDM_LM/dmlockmgr Used by the dmlockmgr and its clients to access
dmlockmgr’s semaphore and input message queue

HOME_DIR/RDM_LM/ftok_files/ftnnnn Preallocated token files that are not currently in
use. As processes attempt to connect to
dmlockmgr, these files will be used and renamed
as described below. nnnn is a four-digit number
0000-0099.

HOME_DIR/RDM_LM/ftok_files/ftnnnn.xxxpid The renamed version of the preallocated token
files. nnnn is a four-digit number 0000-0099. xxx is
a three-character process identifier with the
following meaning:

• atr = dmatread
• ats = dmatsnf
• cat = dmcatadm
• ddb = dmdadm
• dmd = dmfdaemon
• dmv = dmmove
• hde = dmhdelete
• lfs = dmloadfs
• lib = dmatls
• sel = dmselect
• vol = dmvoladm
pid is the numeric process ID of the process
connected to dmlockmgr.

The IPC resources used by DMF are always released during normal process exit
cleanup. If one of the dmlockmgr client processes dies without removing its message
queue, dmlockmgr will remove that queue when it detects the death of the client.
The token files themselves are periodically cleaned up by the dmlockmgr process.

422 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: Normally, the dmlockmgr process is terminated as part of normal shutdown
procedures. However if you wish to stop dmlockmgr manually, you must use the
following command:

/usr/sbin/dmclripc -u dmlockmgr -z HOME_DIR/RDM_LM

This command will do all of the necessary IPC resource and token file maintenance.

If the dmlockmgr process aborts, all DMF processes must be stopped and restarted in
order to relogin to a new dmlockmgr process. If the dmfdaemon or dmatls
processes abort during a period when the dmlockmgr has died, when they restart
they will attempt to restart the dmlockmgr. The new dmlockmgr process will detect
existing DMF processes that were communicating with the now-dead copy of
dmlockmgr, and it will send a termination message to those DMF processes.

The dmlockmgr maintains a log file that is named as follows, where yyyy, mm, and
dd are the year, month, and day:

HOME_DIR/RDM_LM/dmlocklog.yyyymmdd

The log file is closed and a new one opened at the first log request of a new day,
although these files typically are not large. These log files are removed via the
run_remove_log.sh daemon task command. For more information about
run_remove_log.sh, see "taskgroup Object" on page 240.

dmlockmgr Individual Transaction Log Files
The individual transaction log files have the following form:

prefix.log

where prefix is the same format as the token filename described in Table 12-1 on page
422 as ftnnnn.xxxpid. The prefix associates a log file directly with the token file of the
same name.

Most of these log files will be created in the HOME_DIR under the daemon’s and
library servers’ subdirectories. In almost all cases, the processes that create these log
files will remove them when they exit. However, if a process terminates abnormally,
its log file may not be removed. Transaction log files can sometimes become quite
large, on the order of 10’s of Mbytes. Most of these orphaned log files will be
removed by the daemon as part of its normal operation.

007–5484–012 423

12: The DMF Lock Manager

Several DMF commands allow accessing copies of database files in places other than
the HOME_DIR. If an orphaned log is encountered in a location other than in the
HOME_DIR, it may be removed after it is clear that it is no longer in use. In order to
verify that it is no longer in use, search the HOME_DIR/RDM_LM/ftok_files
directory for a file with the same name as the prefix of the log file. If no such
ftok_files file exists, it is safe to remove the log file.

The transaction activity file, HOME_DIR/RDM_LM/vista.taf, is the transaction log
file that contains information about active transactions in the system. It is used to
facilitate automatic database transaction processing.

!
Caution: Do not delete the HOME_DIR/RDM_LM/vista.taf file.

424 007–5484–012

Chapter 13

Media-Specific Processes and Library Servers

Media-specific processes (MSPs) and library servers (LSs) migrate files from one
media to another:

• The file transfer protocol (FTP) MSP allows the DMF daemon to manage data by
moving it to a remote machine.

• The disk MSP migrates data to a directory that is accessible on the current systems.

• The disk cache manager (DCM) MSP migrates data to a cache disk.

• The tape LS copies files from a disk to a tape or from a tape to a disk. The LS can
manage multiple active copies of a migrated file. The LS contains of one or more
volume groups (VGs). When a file is migrated from disk to tape, the selection
policy can specify that it be copied to more than one VG. Each VG can manage at
most one copy of a migrated file. Each VG has an associated pool of tapes. Data
from more than one VG is never mixed on a tape.

This chapter discusses the following:

• "LS Operations" on page 426

• "FTP MSP" on page 462

• "Disk MSP" on page 465

• "DCM MSP" on page 466

• "dmdskvfy Command" on page 467

• "Moving Migrated Data" on page 467

• "LS Error Analysis and Avoidance" on page 468

• "LS Drive Scheduling" on page 470

• "LS Status Monitoring" on page 470

007–5484–012 425

13: Media-Specific Processes and Library Servers

LS Operations
The LS consists of the following programs:

dmatls
dmatwc
dmatrc

The DMF daemon executes dmatls as a child process. In turn, dmatls executes
dmatwc (the write child) to write data to tape and dmatrc (the read child) to read
data from tape.

The dmatls program maintains the following records in the LS database:

• Catalog (CAT) records, which contain information about the files that the LS
maintains

• Volume (VOL) records, which contain information about the media that the LS uses

The database files are not text files and cannot be updated by standard utility
programs. Detailed information about the database files and their associated utilities
is provided in "CAT Records" on page 430 and "VOL Records" on page 430.

The LS provides a mechanism for copying active data from volumes that contain
largely obsolete data to volumes that contain mostly active data. This process is
referred to as volume merging. Data on LS volumes becomes obsolete when users
delete or modify their files. Volume merging can be configured to occur automatically
(see "LS Tasks" on page 345). It can also be triggered by marking LS volumes as
sparse with the dmvoladm(8) command.

The LS provides the following utilities that read LS volumes directly:

• dmatread(8) copies all or part of a migrated file to disk

• dmatsnf(8) audits and verifies LS volumes

This section discusses the following:

• "LS Directories" on page 427

• "Media Concepts" on page 427

• "CAT Records" on page 430

• "VOL Records" on page 430

• "LS Journals" on page 431

426 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "LS Logs" on page 432

• "Volume Merging" on page 436

• "dmcatadm Command" on page 437

• "dmvoladm Command" on page 447

• "dmatread Command" on page 460

• "dmatsnf Command" on page 461

• "dmaudit verifymsp Command" on page 461

LS Directories

Each instance of the LS needs three types of directories, one for each of the following:

• Database files for CAT and VOL records

• Database journal files

• Log files

Sites define the location of these directories by editing the base object configuration file
parameters HOME_DIR, JOURNAL_DIR, and SPOOL_DIR, whose values are referred to
as HOME_DIR, JOURNAL_DIR, and SPOOL_DIR in this document. A given instance
of the LS creates a subdirectory named after itself in each of these three directories.

For example, if an instance of the LS is called cart1, its database files reside in
directory HOME_DIR/cart1. If another instance of the LS is called cart2, its
database files reside in HOME_DIR/cart2. If an instance of the LS is called cart3,
its database files reside in HOME_DIR/cart3.

Similarly, LS cart1 stores its journal files in directory JOURNAL_DIR/cart1 and its
log files and other working files in SPOOL_DIR/cart1.

Media Concepts

The LS takes full advantage of the capabilities of modern media devices, including
data compression and fast media positioning. To accommodate these capabilities and
to provide recovery from surface or other media defects, dmatls uses a number of
structural concepts built on top of traditional media structure.

007–5484–012 427

13: Media-Specific Processes and Library Servers

The components are as follows:

• The block is the basic structural component of most media technologies. It is the
physical unit of I/O to and from the media. The optimal block size varies with the
device type. For example, the default block size for an STK T10000A tape drive is
524288 bytes.

• A chunk is as much or as little of a user file as fits on the remainder of the media
(see Figure 13-1 on page 429). Thus, every migrated file has at least one, and
sometimes many, chunks. Such a concept is necessary because the capacity of a
volume is unknown until written, both because of natural variation in the medium
itself and because the effect of data compression varies with the data contents.

• A zone is a logical block containing many physical blocks ending with a media
mark. A zone has a target size that is configurable by media type. The default
zone size is 50000000 bytes.

The VG writes chunks into the zone until one of three conditions occurs:

– The zone size is exceeded

– The VG exhausts chunks to write

– The end of media is encountered

Thus, the actual zone size can vary from well below the target size to the entire
volume. A zone never spans physical volumes.

The zone plays several roles:

– The zone size is the amount of data that triggers dmatls to start a process to
write files to secondary storage.

– The LS maintains the beginning of each zone in its database. This allows the
LS to use fast hardware positioning functions to return to the beginning, so
that it can restore the chunks in that zone.

Because getting the media position and writing a media mark can be very costly,
the concept of a zone and the target size provides a way to control the trade offs
between write performance, safety, and recall speed.

Figure 13-1 illustrates the way files are distributed over chunks, zones, and volumes,
depending upon the file size. In this example, the tape with volume serial number
(VSN) VOL001 has two zones and contains six files and part of a seventh. The tapes
with VSNs VOL002 and VOL003 contain the rest of file g. Notice that on VOL001 file

428 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

g is associated with chunk 7, while on the other two tapes it is associated with chunk
1. File g has three VSNs associated with it, and each tape associates the file with a
chunk and zone unique to that tape.

VOL001

Tape mark

Zone 1 Zone 2

File a, chunk 1

File b, chunk 2

File c, chunk 3

File d, chunk 4

File g, chunk 7

File f, chunk 6

File e, chunk 5

VOL002

Zone 1

File g, chunk 1

Tape mark

Tape mark

VOL003

Zone 1

File g, chunk 1

Tape mark

EOT chunk

EOT zone

Tape mark

Tape mark

EOT zone

EOT zone

Tape mark

Figure 13-1 Media Concepts

007–5484–012 429

13: Media-Specific Processes and Library Servers

CAT Records

Catalog (CAT) records store the location of each file chunk in terms of its volume,
zone, and chunk number. The key for these records is the file’s bit-file identifier
(BFID).

Note: You do not explicitly create CAT records; they are created when files migrate.

There are the following files:

CAT Files Description

tpcrdm.dat Contains the catalog data records

tpcrdm.key1.keys,
tpcrdm.key2.keys

Contains the indexes to the catalog data

The libsrv_db.dbd LS database definition file in the same directory describes the
CAT record files and their record structure.

All files are non-ASCII and cannot be maintained by standard utility programs. The
dmcatadm command provides facilities to create, query, and modify CAT records (see
"dmcatadm Command" on page 437).

Note: The ability to create or modify CAT records with dmcatadm is provided
primarily for testing or error recovery purposes. In the normal course of operations,
you would never use this capability.

VOL Records

Volume (VOL) records in the LS database contain information about each volume that
exists in the pool of tapes to be used by dmatls. These records are indexed by the
volume serial number (VSN) of each volume and contain information such as the
following:

• Volume’s type

• Estimated capacity

• Label type

• A number of flags indicating the state of the volume

430 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• VG or allocation group

Note: Unlike CAT records, you must create VOL records before using dmatls for the
first time.

There are the following files:

VOL Files Description

tpvrdm.dat Contains the volume data records

tpvrdm.vsn.keys Contains the indexes to the volume data records

The libsrv_db.dbd LS database definition file in the same directory describes the
VOL record files and their record structure.

The files contain binary data and require special maintenance utilities. The dmvoladm
command provides facilities to create, query, and modify VOL records; for more
information, see "dmvoladm Command" on page 447. Additional database
maintenance utilities are described in "Database Recovery" on page 484.

Note: If you have more than one instance of a VG, you must ensure that the volume
sets for each are mutually exclusive.

LS Journals

Each instance of dmatls protects its database by recording every transaction in a
journal file. Journal file pathnames have the following format:

JOURNAL_DIR/ls_name/libsrv_db.yyyymmdd[.hhmmss]

The LS creates journal files automatically.

Existing journal files are closed and new ones created in two circumstances:

• When the first transaction after midnight occurs

• When the journal file reaches the size defined by the JOURNAL_SIZE
configuration parameter

When the first transaction after midnight occurs, the existing open journal file is
closed and the suffix .235959 is appended to the current filename no matter what

007–5484–012 431

13: Media-Specific Processes and Library Servers

the time (or date) of closing. The closed file represents the last (or only) transaction
log of the date yyyymmdd. A new journal file with the current date is then created.

When the journal file reaches JOURNAL_SIZE, the file is closed and the suffix .hhmmss
is added to the name; hh, mm, and ss represent the hour, minute, and second of file
closing. A new journal file with the same date but no time is then created.

For example, the following shows the contents of a JOURNAL_DIR/ls_name directory
on 15 June 2004:

libsrv_db.20040527.235959 libsrv_db.20040606.235959

libsrv_db.20040528.235959 libsrv_db.20040607.235959

libsrv_db.20040529.235959 libsrv_db.20040608.235959
libsrv_db.20040530.235959 libsrv_db.20040609.235959

libsrv_db.20040531.235959 libsrv_db.20040610.235959

libsrv_db.20040601.235959 libsrv_db.20040611.235959

libsrv_db.20040602.235959 libsrv_db.20040612.235959

libsrv_db.20040603.235959 libsrv_db.20040613.235959
libsrv_db.20040604.235959 libsrv_db.20040614.235959

libsrv_db.20040605.235959 libsrv_db.20040615

For every date on which LS database transactions occurred, there will exist a file with
that date and the suffix .235959, with the exception of an existing open journal file.
Some dates may have additional files because the transaction log reached
JOURNAL_SIZE at a specified time and the file was closed.

You can configure daemon_tasks parameters to remove old journal files (using the
run_remove_journals.sh task and the JOURNAL_RETENTION parameter. For
more information, see "taskgroup Object" on page 240.

If an LS database becomes corrupt, recovery consists of applying the journal files to a
backup copy of the database.

LS Logs

All DMF MSPs and LSs maintain log files named msplog.yyyymmdd in the MSP/LS
spool directory which, by default, is SPOOL_DIR/mspname. SPOOL_DIR is configured
in the base object of the configuration file; mspname is the name of the MSP/LS in the
daemon object of the configuration file; yyyymmdd is the current year, month, and day.

These log files are distinct from the logs maintained by the DMF daemon; however,
some of the messages that occur in the daemon log are responses that the MSP/LS
generates. The content of the log is controlled by the MESSAGE_LEVEL configuration

432 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

parameter. For a description of the levels of logging available, see Table 9-1 on page
402 and the dmf.conf(5) man page.

The msplog.yyyymmdd file is the primary log for the LS and contains most of the
messages. This file is written by dmatls. In addition, dmatrc and dmatwc create a
moverlog.yyyymmdd log file each day in the subdirectory moverlogs/hostname.

This section describes informational statistics provided by the tape log files. These
messages appear in the SPOOL_DIR/msp_name/msplog.yyyymmdd files. Timing
information provided (such as MB transferred per second) should not be used as an
accurate benchmark of actual data transfer rates. This information is provided for
monitoring DMF and should only be used in comparison to similar data provided by
DMF. Text in all uppercase references a parameter defined in the DMF configuration
file. For more information, see Chapter 6, "DMF Configuration File" on page 211, the
comments in the sample configuration file, and the dmf.conf(5) man page.

Note: Because the LS will continue to create log files and journal files without limit,
you must remove obsolete files periodically by configuring the
run_remove_logs.sh and run_remove_journals.sh tasks in the configuration
file, as described in "taskgroup Object" on page 240.

007–5484–012 433

13: Media-Specific Processes and Library Servers

Example 13-1 LS Statistics Messages

The following is an example of LS statistics messages taken from an
msplog.yyyymmdd file. These messages are automatically and periodically issued by
the LS.

08:46:00:404-I zap 237076-dmatls vg1.stats: children=2/2/0/2, btp=672617104/527956913/0, wc=1/2, cwc=?

08:46:00:404-I zap 237076-dmatls vg2.stats: children=0/0/0/2, btp=0/0/0, wc=0/2, cwc=?

08:46:00:404-I zap 237076-dmatls vg1.stats: data put=92957.718 mb, data recalled=24964.680 mb

08:46:00:404-I zap 237076-dmatls vg2.stats: data put=1239.537 mb, data recalled=1120.492 mb

08:46:00:404-I zap 237076-dmatls vg1.stats: Put_File - 0 8900 0 282 0

08:46:00:404-I zap 237076-dmatls vg1.stats: Get_File - 0 1809 0 0 0

08:46:00:404-I zap 237076-dmatls vg1.stats: Delete_File - 0 107618 0 0 0

08:46:00:404-I zap 237076-dmatls vg1.stats: Cancel_Req - 0 282 0 0 0

08:46:00:404-I zap 237076-dmatls vg1.stats: Flushall - 0 5 0 0 0

08:46:00:404-I zap 237076-dmatls vg1.stats: Merge - 44 0 0 0 0

08:46:00:404-I zap 237076-dmatls vg2.stats: Put_File - 0 1850 0 211 0

08:46:00:404-I zap 237076-dmatls vg2.stats: Get_File - 0 68 0 0 0

08:46:00:404-I zap 237076-dmatls vg2.stats: Delete_File - 0 4 0 0 0

08:46:00:404-I zap 237076-dmatls vg2.stats: Cancel_Req - 0 211 0 0 0

08:46:00:404-I zap 237076-dmatls vg2.stats: Flushall - 0 1 1 0 0

08:46:00:404-I zap 237076-dmatls vg1.stats: mc=2, ms=2000000000, mu=679346176, sm=0

The information provided by these entries is defined as follows:

• children=2/2/0/2 represents the total child processes (2), the active child
processes (2), the clean processes running (0), and the current maximum number
of children the VG may have (2). Clean children are used when a dmatrc or
dmatwc process dies without cleaning up.

• btp=672617104/527956913/0 represents the bytes queued for putting
(672617104), the threshold at which to start the next put child (527956913), and
the bytes assigned to socket I/O (0)

• wc=1/2 represents the active write child processes (1) and the configured value of
MAX_PUT_CHILDREN (2)

• cwc=? represents the host name and process ID of the current write child (that is,
the write child that is accepting data to write). ? represents none.

The next set of lines gives the total amount of data put (such as 92957.718 MB) and
recalled (such as 24964.680 MB).

434 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The next set of six lines provide statistics for each type of VG request. Statistics
information is provided only for requests that have been issued since the LS was
started. These lines have the following format:

request_name active successful errors canceled forwards

where:

active Represents the number of requests not yet completed.

successful Represents the number of successfully completed
requests.

error Represents the number of requests that completed with
errors.

canceled Represents the number of canceled requests.

forwards Represents the number of requests that were returned
to the DMF daemon so it could forward them to
another VG. For example, if the volume for a recall
request in the primary VG was not in the library, but a
copy existed in a secondary VG, the primary VG would
return the request to the DMF daemon which would
then forward it to the secondary VG, and the value
displayed in this column would be incremented.

The last set of lines provide the following information:

• mc is the configured value for MERGE_CUTOFF, the cutoff to stop scheduling
media for merging (such as 2)

• ms is the configured value for CACHE_SPACE, the merge cache space available
(such as 2000000000 bytes)

• mu is the merge cache space used (such as 679346176 bytes)

• sm is the number of socket merge children (0)

The LS write child (dmatwc) and read child (dmatrc) also produce statistics
messages in the moverlog file. These messages contain timing statistics whose
format changes from release to release, and they are not documented in this manual.

007–5484–012 435

13: Media-Specific Processes and Library Servers

Volume Merging

Note: Merging is not appropriate for a volume configured as a fast-mount cache.

When users delete or modify their migrated files, the copy that is on secondary
storage becomes obsolete. Over time, some volumes will become entirely empty and
can be reused. However, most volumes experience a gradual increase in the ratio of
obsolete data to active data; such volumes are said to be sparsely populated or sparse.
To reclaim the unused space on these volumes, DMF provides a volume merge facility,
which copies the active data from several sparse volumes to a new volume, thus
freeing the sparse volumes for reuse. Volume merging can be configured to occur
automatically by using the run_merge_tapes.sh (for physical tapes, COPAN VTL
virtual tapes, or COPAN MAID volumes) or run_merge_mgr.sh tasks (see "LS
Tasks" on page 345).

Volume merging can also be done manually. dmatls performs merge operations
whenever sparse volumes and the necessary resources exist at the same time. Use the
dmvoladm select directive to mark VG volumes as sparse. (The select directive
is described in "dmvoladm Command" on page 447.) Because the merge processing
occurs simultaneously with other DMF activities, it is easiest to configure DMF to
automatically perform merges at night or during other periods of relatively low
activity.

The dmatls utility can perform volume-to-volume merging. Volume-to-volume
merging is accomplished by moving data across a socket connection between the LS
read-child and the LS write-child. The benefit of using a socket to transfer data
between volumes is that you do not have to reserve disk space. The drawback to
using a socket for data transfer is the cost of linking the process that performs the
read with the process that performs the write.

In busy environments that have heavy contention for drives, the close coupling
between the socket’s reader and writer can be costly, especially when short files are
being transferred. For large files, the overhead and possible delays in waiting for both
volumes to be mounted is small compared to the benefit of rapid transfer and zero
impact on free disk space. For this reason, you can move small files through a disk
cache and big files through a socket. This process is mediated by the following
configuration parameters:

CACHE_DIR
CACHE_SPACE
MAX_CACHE_FILE
MERGE_CUTOFF

436 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

For more information, see Chapter 6, "DMF Configuration File" on page 211.

Using a small amount of disk space to hold small chunks can have a significant
impact on the total time required to perform merges. The default configuration
options are set to move 100% of merge data across sockets.

Note: It is important to avoid volume merging on more than one VG simultaneously
if they share a device. If you initiate a merge process on more than one VG on the
same device at the same time (either by entering the same time in the DMF
configuration file or by triggering the process manually), both processes will compete
for media transports. When a limited number of media transports are available, a
deadlock can occur. If you chose not to configure DMF to perform merges
automatically by configuring the run_merge_tape.sh or run_merge_mgr.sh
tasks, ensure that your cron jobs that automatically initiate volume merging refrain
from initiating a second merge process until after all previously initiated merges are
complete. You can accomplish this by using the dmvoladm command within the
cron job to check for volumes that have the hsparse flag, as shown in the following
example for an LS with two VGs:

tapes=$(dmvoladm -m ls -c "count hsparse")
if [[-z "$tapes"]]; then

start merge on vg2

dmvoladm -m ls -c "select hfull and threshold<=30 and vg=vg2"

fi

dmcatadm Command

The dmcatadm(8) command provides maintenance services for CAT records.

When you are inside the dmcatadm interface, you see the following prompt:

adm command_number >

At this point, the command has a 30–minute timeout associated with it. If you do not
enter a response within 30 minutes of the prompt having been displayed, the
dmcatadm session terminates with a descriptive message. This behavior on all the
database administrative commands limits the amount of time that an administrator
can lock the daemon database and the LS database from updates.

007–5484–012 437

13: Media-Specific Processes and Library Servers

Note: Most of these facilities, especially the ability to create and modify CAT records
in the LS database, are intended primarily for testing or error recovery purposes.

dmcatadm Directives

The dmcatadm command executes directives from stdin or from the command line
when you use the -c option. All directives start with a directive name followed by
one or more parameters. Parameters may be positional or keyword-value pairs,
depending on the command. White space separates the directive name, keywords,
and values.

The dmcatadm directives are as follows:

Directive Description

count Displays the number of records that match the expression provided.

create Creates a CAT record.

delete Deletes the specified CAT records.

dump Prints the specified CAT records to standard out in ASCII; each field is
separated by the pipe character (|).

help Displays help.

list Shows the fields of selected CAT records. You may specify which fields
are shown.

load Applies records to the LS database obtained from running the dump
directive.

quit Stops program execution after flushing any changed database records to
disk. The abbreviation q and the string exit produce the same effect.

set Specifies the fields to be displayed in subsequent list directives.

update Modifies the specified CAT records.

verify Verifies the LS database against the daemon database.

The first parameter of most directives specifies the records to manipulate, and the
remaining parameters are keyword-value pairs.

438 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The syntax for the dmcatadm directives is summarized as follows:

count selection [limit]
create bfid settings ...
delete selection [limit]
dump selection [limit]
help

list selection [limit] [format]
load filename
quit (or q or exit)

set [format]
update selection [limit] to settings...
verify selection [entries] [vgnames] [limit]

The parameters are as follows:

• The selection parameter specifies the records to be acted upon. The value for
selection can be one of the following:

– A bfid or range of bfids in the form bfid [-] [bfid]. bfid- specifies all records
starting with bfid, and -bfid specifies all records up to bfid.

– The keyword all

– A period (.), which recalls the previous selection

– An expression involving any of the above, field value comparisons, and, or, or
parentheses

A field value comparison may use the following to compare a field keyword to an
appropriate value:

< (less than)
> (greater than)
= (equal to)
!= (not equal to)
<= (less than or equal to)
>= (greater than or equal to)

007–5484–012 439

13: Media-Specific Processes and Library Servers

The syntax for selection is as follows:

selection ::= or-expr
or-expr ::= and-expr [or or-expr]

and-expr ::= nested-expr [and or-expr]

nested-expr ::= comparison | (or-expr)

comparison ::= key-range | field-keyword op field-value
op ::= < | > | = | != | <= | >=

bfid-range ::= bfid [- bfid] | [bfid - [bfid]] | key-macro
key-macro ::= all

field-keyword ::= name or abbreviation of the record field
field-value ::= appropriate value for the field
key ::= character representation of the record bfid

Thus valid selections could be any of the following:

305c74b200000010-305c74b200000029

7fffffff000f4411-
-305c74b2000004c8

all

chunkoffset>0

chunknumber>0 and writeage<5d

. and writeage>4d

vsn=S07638

• The limit parameter restricts the records acted upon.

• The bfid parameter for the create directive specifies the bit-file identifier (BFID)
for the record being created. The value for bfid may be a BFID designator in the
form of a hexadecimal number.

• The settings parameter for the create and update directives specify one or more
fields and their values.

• The format parameter selects the way in which output is displayed. Any program
or script that parses the output from this command should explicitly specify a
format; otherwise the default is used, which may change from release to release.

• The entries parameter specifies a file of daemon database entries.

• The vgnames parameter specifies the names of the VGs associated with the records.

440 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dmcatadm Keywords

You can use the field keywords listed below as part of the following:

• A selection parameter to select records

• A format parameter

• A settings parameter to specify new values for a field, in which case you must
specify a keyword-value pair

A keyword-value pair consists of a keyword followed by white space and then a
value. When specifying new values for fields, some of the keywords are valid only if
you also specify the -u (unsafe) option. The abbreviation for each of the keywords is
given in parenthesis following its name.

Keyword Description

cflags (cf) For future use.

chunkdata (cd) Specifies the actual number of bytes written to tape by
the VG for the chunk. In the case of sparse files, this
field will be smaller than chunklength. This is valid
only in unsafe (-u) mode.

chunklength (cl) The size of the chunk in bytes; an integer. This is valid
only in unsafe (-u) mode.

chunknumber (cn) The ordinal of the chunk on its volume. For example, 1
if the chunk is the first chunk on the volume, 2 if it is
the second, and so on. Not valid as part of a settings
parameter in an update directive.

chunkoffset (co) The byte offset within the file where the chunk begins;
an integer. For example, the first chunk of a file has
chunkoffset 0. If that first chunk is 1,000,000 bytes
long, the second chunk would have chunkoffset
1000000. This is valid only in unsafe (-u) mode.

chunkpos (cp) The block offset within the zone where the chunk
begins — a hexadecimal integer. For example, the first
chunk in a zone has chunkpos 1. A value of 0 means
unknown. Valid only in unsafe (-u) mode.

filesize (fs) The original file size in bytes, an integer. This is valid
only in unsafe (-u) mode.

007–5484–012 441

13: Media-Specific Processes and Library Servers

readage (ra) The date and time when the chunk was last read; the
same as readdate, except specified as age.

readcount (rc) The number of times the chunk has been recalled to
disk; an integer.

readdate (rd) The date and time when the chunk was last read, an
integer that reflects raw UNIX or Linux time.

volgrp (vg) The VG name. This keyword is valid for LSs only. This
keyword is not valid as part of a settings parameter.
Changing this field in an existing record is valid only in
unsafe (-u) mode.

vsn (v) The volume serial numbers; a list of one or more
6-character alphanumeric volume serial numbers
separated by colons (:). This keyword is not valid as
part of a settings parameter in an update directive.

writeage (wa) The date and time when the chunk was written; the
same as writedate, except specified as age. This is
valid only in unsafe (-u) mode.

writedate(wd) The date and time when the chunk was written, an
integer that reflects raw UNIX or Linux time. This is
valid only in unsafe (-u) mode.

zoneblockid (zb) Allows just the block ID portion of the zonepos to be
displayed, returned, or changed. This is valid only in
unsafe (-u) mode.

zonenumber (zn) Allows just the zone number portion of the zonepos to
be displayed, returned, or changed. This is valid only
in unsafe (-u) mode.

zonepos (zp) The physical address of the zone on the volume,
expressed in the form integer/hexadecimal-integer,
designating a zone number and block ID. A value of
zero is used for hexadecimal-integer if no block ID is
known. integer is the same as zonenumber, and
hexadecimal-integer is the same as zoneblockid. This is
valid only in unsafe (-u) mode.

The date field keywords (readdate and writedate) have one of the following
values

442 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• now

• Raw UNIX or Linux time (seconds since January 1, 1970)

These keywords display their value as raw UNIX or Linux time. The value
comparison > used with the date keywords means newer than the value given. For
example, >36000 is newer than 10AM on January 1, 1970, and >852081200 is newer
than 10AM on January 1, 1997.

The age field keywords (readage and writeage) let you express time as age in a
string in a form. They display their value as an integer followed by the following:

w (weeks)
d (days)
h (hours)
m (minutes)
s (seconds)

For example, 8w12d7h16m20s means 8 weeks, 12 days, 7 hours, 16 minutes, and 20
seconds old.

The comparison > used with the age keywords means older than the value given
(that is, >5d is older than 5 days).

The limit parameter in a directive limits the records acted upon. It consists of one of
the following keywords followed by white space and then a value:

Keyword Description

recordlimit (rl) Limits the number of records acted upon to the value
that you specify; an integer.

recordorder (ro) Specifies the order that records are scanned:

• dataspecifies that records are scanned in the order
in which they are stored in the LS database, which
is fastest but essentially unordered

• keyspecifies that records are scanned in ascending
order of the chunk key

• vsn specifies that records are scanned in ascending
order of the chunk VSN

The following keywords specify files of daemon database entries:

007–5484–012 443

13: Media-Specific Processes and Library Servers

Keyword Description

entries (e) Specifies a file of daemon database entries. This
keyword applies to the verify directive and consists
of the word entries (or its abbreviation e) followed
by a string.

vgnames (vn) Specifies the names of the VGs associated with the
record. This keyword applies to the verify directive
and consists of the word vgnames (or its abbreviation
vn) followed by a quoted, space-separated list of names.

The format parameter in a directive consists of the word format followed by white
space and then one of the following:

• The word default

• The word keyword (suppresses the headings and is intended for parsing by a
program or script)

• A list of field keywords, which may be delimited by colons or spaces (spaces
require the use of quoting)

Note: The BFID is always included as the first field and need not be specified.

For any field that takes a byte count, you may append one of the following letters (in
either uppercase or lowercase) to the integer to indicate that the value is to be
multiplied (all of which are powers of 1000, not 1024):

k or K for 1 thousand
m or M for 1 million
g or G for 1 billion

For information about the role of the dmcatadm(8) command in database recovery,
see "Database Recovery" on page 484.

Example 13-2 dmcatadm list Directive

The following is sample output from the dmcatadm list directive. The file with key
3273d5420001e244 has two chunks because it spans two physical tape volumes; the
first chunk contains bytes 0–24821759, and the second chunk bytes 24821760 (the
CHUNK OFFSET) to the end of the file.

444 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

adm 3>list 3273d5420001e242- recordlimit 10

WRITE CHUNK CHUNK CHUNK

KEY AGE OFFSET LENGTH NUM VSN

3273d5420001e242 61d 0 77863935 13 S12940

3273d5420001e244 61d 0 24821760 168 S12936

3273d5420001e244 61d 24821760 23543808 1 S12945

3273d5420001e245 61d 0 51019776 2 S12945

3273d5420001e246 61d 0 45629440 59 S12938

3273d5420001e247 61d 0 35586048 60 S12938

3273d5420001e248 61d 0 9568256 3 S12944

3273d5420001e249 61d 0 14221312 4 S12944

3273d5420001e24a 61d 0 458752 5 S12944

3273d5420001e24b 61d 0 14155776 6 S12944

The following is sample output from the dmcatadm list directive for an LS. The file
with key 3b4b28f2000000000000ae80 has 2 chunks because it was migrated to
two different VGs within this LS. The output from the dmvoladm list directive that
follows shows that VSN 000700 is assigned to the VG named vg8a15, and VSN
000727 is assigned to the VG named vg8a05.

007–5484–012 445

13: Media-Specific Processes and Library Servers

dmcatadm -m ls1

adm 1>list 3b4b28f2000000000000ae80- recordlimit 4

WRITE CHUNK CHUNK CHUNK

KEY AGE OFFSET LENGTH NUM VSN

--

3b4b28f2000000000000ae80 1d 0 2305938 120 000700

3b4b28f2000000000000ae80 4d 0 2305938 32 000727

3b4b28f2000000000000ae82 1d 0 234277 247 003171

3b4b28f2000000000000ae82 1d 0 234277 186 003176

adm 2> quit

dmvoladm -m ls1

adm 1>list vsn=000700

DATA EOT EOT WR/FR

VSN VOLGRP LB DATA LEFT WRITTEN CHUNK ZONE HFLAGS AGE

000700 vg8a15 al 150.280473 233.786093 123 9 ------u-- 1d

adm 2>list vsn=000727

DATA EOT EOT WR/FR

VSN VOLGRP LB DATA LEFT WRITTEN CHUNK ZONE HFLAGS AGE

000727 vg8a05 al 159.107337 200.443980 102 6 --------- 1d

dmcatadm Text Field Order

The text field order for chunk records generated by the dmdump(8), dmdumpj(8), and
the dump directive in dmcatadm is listed below. This is the format expected by the
load directives in dmcatadm:

1. C (indicates the chunk record type)

2. bfid (hexadecimal digits)

3. filesize

4. writedata

5. readdate

6. readcount

446 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

7. chunkoffset

8. chunklength

9. chunkdata

10. chunknumber

11. flags (in octal)

12. zoneposition (zonenumber/zoneblockid) (in hexadecimal)

13. vsn

14. chunkpos (in hexadecimal)

dmvoladm Command

This section discusses the following:

• "dmvoladm Overview" on page 447

• "dmvoladm Directives" on page 448

• "dmvoladm Field Keywords" on page 450

• "dmvoladm Text Field Order" on page 456

• "dmvoladm Examples" on page 457

dmvoladm Overview

The dmvoladm(8) command provides maintenance services for VOL records. In
addition to the creation and modification of volume records, dmvoladm has an
important role in the recovery of VOL records from an LS database checkpoint and is
the mechanism that triggers volume merge activity.

When you are inside the dmvoladm interface, you see the following prompt:

adm command_number >

At this point, the command has a 30–minute timeout associated with it. If you do not
enter a response within 30 minutes of the prompt having been displayed, the
dmvoladm session terminates with a descriptive message. This behavior on all the

007–5484–012 447

13: Media-Specific Processes and Library Servers

database administrative commands limits the amount of time that an administrator
can lock the daemon database and the LS database from updates.

dmvoladm Directives

The dmvoladm command executes directives from stdin or from the command line
when you use the -c option. The syntax is the same as for dmcatadm: a directive
name followed by parameters or paired keywords and values, all separated by white
space.

Directive Description

count Displays the number of records that match the expression provided.

create Creates a VOL record.

delete Deletes the specified VOL records.

dump Prints the specified VOL records to standard output in ASCII. Each field
is separated by the pipe character (|).

help Displays help.

list Shows the fields of selected VOL records. You may specify which fields
are shown.

load Applies VOL records to the LS database obtained from running the
dump directive.

quit Stops program execution after flushing any changed records to disk.
The abbreviation q and the string exit produce the same effect.

repair Causes dmvoladm to adjust the usage information for specified
volumes based on CAT records in the LS database. This directive is
valid only in unsafe (-u) mode.

select Marks selected volumes as being sparse. Equivalent to update
expression to hsparse on.

set Specifies the fields to be shown in subsequent list directives.

update Modifies the specified VOL records.

verify Verifies the LS database against the daemon database.

The syntax for the dmvoladm directives is summarized as follows:

count [limit]
create vsnlist volgrpspec [settings]

448 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

delete selection [limit]
dump selection [limit]
help

list selection [limit] [format]
load filename
quit (or q, or exit)
repair selection
select selection [limit]
set format
update selection [limit] to settings
verify selection

The volgrpspec parameter consists of the keyword volgrp (or vg), followed by a
value for that keyword.

The value for vsnlist may be a single 6-character volume serial number (VSN) or a
range of VSNs separated by the hyphen (-) character. A VSN string is case insensitive
and may consist entirely of letters, entirely of digits, or a series of letters followed by
digits. In a range of VSNs, the first must be lexically less than the second.

The value for selection may be one of the following:

• A vsnlist or range of VSNs in the form vsn[-vsn]. vsn- specifies all records
starting with vsn, and -vsn specifies all records up to vsn.

• A period (.), which recalls the previous selection.

• The name of one of the flags in the keyword list that follows in this section.

• One of the words all, used, empty, or partial or any of the hold flags (hflags),
whose meanings are as follows:

Flag Description

all Specifies all volumes in the LS database

empty Specifies all volumes in which data left is 0

partial Specifies used volumes in which hfull is off

used Specifies all volumes in which data written is not 0

• An expression involving vsnlists, field-value comparisons, and, or, or parentheses.

A field value comparison may use the following to compare a field keyword to an
appropriate value:

007–5484–012 449

13: Media-Specific Processes and Library Servers

< (less than)
> (greater than)
= (equal)
!= (not equal)
<= (less than or equal to)
>= (greater than or equal to)

The syntax for selection is as follows:

selection ::= or-expr
or-expr ::= and-expr [or or-expr]
and-expr ::= nested-expr [and or-expr]

nested-expr ::= comparison | (or-expr)

comparison ::= vsnlist | field-keyword op field-value
op ::= < | > | = | != | >= | <=

vsn-range ::= vsn [- vsn] | [vsn - [vsn]] | key-macro
key-macro ::= all | empty | used | partial | flag(s)
field-keyword ::= name or abbreviation of the record field
field-value ::= appropriate value for the field
vsnlist ::= character representation of the volume serial number

Thus valid selections could be any of the following:

tape01-tape02

tape50-

-vsn900
all

hoa or hro

used and hfull=off

datawritten>0 and hfull=off

. and eotchunk>3000 and (eotchunk<3500 or hfree=on)
hfull and threshold<30

dmvoladm Field Keywords

You can use the field keywords listed below as part of the following:

• A selection parameter to select records

• A format parameter

• A settings parameter to specify new values for a field, in which case you must
specify a keyword-value pair

450 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

A keyword-value pair consists of a keyword followed by white space and then a
value. When specifying new values for fields, some of the keywords are valid only if
you also specify the -u (unsafe) option:

Keyword Description

blocksize (bs) Specifies the data block size in bytes when the tape was
first written; an integer. This keyword is used only
when mounting volumes with existing valid data.
When an empty volume is first written, the VG uses the
default value for the volume type, unless it is
overridden by a value in the BLOCK_SIZE parameter
for the drive group in the DMF configuration file. This
is valid only in unsafe (-u) mode.

chunksleft (cl) Specifies the number of active chunks on the volume;
an integer. This is valid only in unsafe (-u) mode.

dataleft (dl) Specifies the number of bytes of active data on the
volume. You specify this number as an integer, but for
readability purposes it is displayed in megabytes (MB).
This is valid only in unsafe (-u) mode.

datawritten (dw) Specifies the maximum number of bytes ever written to
the volume. You specify this number as an integer, but
for readability purposes it is displayed in MB. This is
valid only in unsafe (-u) mode.

eotblockid (eb) Specifies the block ID of the chunk containing the
end-of-volume marker (historically known as EOT for
end-of-tape); a hexadecimal integer. This is valid only in
unsafe (-u) mode.

eotchunk (ec) Specifies the number of the chunk containing the
end-of-volume marker; an integer. This is valid only in
unsafe (-u) mode.

eotpos (ep) Specifies the absolute position of the end-of-volume
marker zone in the form integer/hexadecimal-integer,
designating a zone number and block ID. A value of
zero is used for hexadecimal-integer if no block ID is
known. integer the same as eotzone, and
hexadecimal-integer is the same as eotblockid. This is
valid only in unsafe (-u) mode.

007–5484–012 451

13: Media-Specific Processes and Library Servers

eotzone (ez) Specifies the number of the zone containing the
end-of-volume marker; an integer. This is valid only in
unsafe (-u) mode.

hflags (hf) Specifies the flags associated with the record. See the
description of flags keywords. Not valid as part of a
settings parameter.

label (lb) Specifies the label type:

• al (ANSI label)

• nl (no label, not allowed for COPAN MAID)

• sl (standard label for IBM tapes)

The default is al.

tapesize (ts) Specifies the estimated capacity in bytes; an integer.
The default is 0. This field must be accurately set in
order to estimate remaining capacity.

threshold (th) Specifies the ratio of dataleft to datawritten as a
percentage. This field is valid only as part of a selection
parameter.

upage (ua) Specifies the date and time of the last update to the
volume’s database record. The same as for update,
except that it is expressed as age. This is not valid as
part of a settings parameter.

update (ud) Specifies the date and time of the last update to the
volume’s database record, expressed as an integer that
reflects raw UNIX or Linux time. This is not valid as
part of a settings parameter.

version (v) Specifies the DMF media format version, an integer.
This is valid only in unsafe (-u) mode.

volgrp (vg) Specifies the VG or allocation group. Changing this
field in an existing record is valid only in unsafe (-u)
mode.

wfage (wa) Specifies the date and time that the volume was written
to or freed for reuse. The same as for wfdate, except
that it is expressed as age. This is valid only in unsafe
(-u) mode.

452 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

wfdate (wd) Specifies the date and time that the volume was written
to or freed for reuse, expressed as an integer that
reflects raw UNIX or Linux time. This is valid only in
unsafe (-u) mode.

The date field keywords (update and wfdate) have a value of one of the following:

• now

• UNIX or Linux raw time (seconds since January 1, 1970)

These keywords display their value as raw time. The value comparison > used with
the date keywords means newer than the value given. For example, >36000 is newer
than 10AM on January 1, 1970, and >852081200 is newer than 10AM on January 1,
1997.

The age field keywords (upage and wfage) let you express time as age as a string.

The age keywords display their value as an integer followed by the following:

w (weeks)
d (days)
h (hours)
m (minutes)
s (seconds)

For example, 8w12d7h16m20s means 8 weeks, 12 days, 7 hours, 16 minutes, and 20
seconds old.

The comparison > used with the age keywords means older than the value given
(that is, >5d is older than 5 days).

The limit parameter in a directive limits the records acted upon. It consists of one of
the following keywords followed by white space and then a value. The abbreviation
for the keyword is given in parentheses following its name, if one exists:

Keyword Description

datalimit (no
abbreviation)

Specifies a value in bytes. The directive stops when the
sum of dataleft of the volumes processed so far
exceeds this value.

recordlimit (rl) Specifies a number of records; an integer. The directive
stops when the number of volumes processed equals
this value.

007–5484–012 453

13: Media-Specific Processes and Library Servers

recordorder (ro) Specifies the order that records are scanned; may be
either data or vsn. vsn specifies that the records are
scanned in ascending order of the chunk VSN. data
specifies that the records are scanned in the order in
which they are found in the LS database, which is
fastest but essentially unordered.

The format parameter in a directive consists of the word format followed by white
space and then one of the following:

• The word default

• The word keyword (which suppresses the headings and is intended for parsing
by a program or script)

• A list of field and or flag keywords that may be delimited by colons or spaces
(spaces require the use of quoting)

The VSN is always included as the first field and need not be specified.

The flag keywords listed below can be used to change the settings of the hold flags
(hflags). They can also be used as part of selection or format parameters:

Keyword Description

herr (he) Indicates an LS database inconsistency for this volume.
It is displayed as e--------.

hextern (hx) (OpenVault only) Indicates that the volume was not in
the library. It is displayed as --------x. This flag
allows read access but not write access. If the hextern
flag is set, the volume cannot be merged. DMF
periodically obtains from OpenVault the list of volumes
that are currently in the library. If a volume is not in
the library, DMF will set its hextern flag; if the
volume is added to the library, DMF will eventually
clear its hextern flag, but up to 75 minutes can pass
before DMF notices this change. This flag does not
apply to COPAN MAID configurations.

hflags (no
abbreviation)

(Not valid as part of a settings parameter.) Shows the
complete set of hold flags as a 9–character string. Each
flag has a specific position and alphabetic value. If the
flag is off, a hyphen(-) is displayed in its position; if the

454 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

flag is on, the alphabetic character is displayed in that
position.

hfree (no
abbreviation)

Indicates that the volume has no active data and is
available for reuse after HFREE_TIME has expired,
displayed as -f-------. See the dmf.conf(5) man
page for information about the HFREE_TIME
configuration parameter. This is valid only in unsafe
(-u) mode.

hfull (hu) Indicates that the volume cannot hold any more data;
displayed as ------u--.

hlock (hl) Indicates that the volume cannot be used for either
input or output. This is a transient condition; the flag
will be cleared by the LS after
REINSTATE_VOLUME_DELAY has expired and at LS
startup. Displayed as ----l----.

hoa (ho) Indicates that the volume is not to be used for either
input or output, displayed as --o------. This value is
only set or cleared by the site administrator.

hro (hr) Indicates that the volume is read-only, displayed as
---r-----; this inhibits the LS from using the volume
for output. This value is only set or cleared by the site
administrator.

hsite1 (h1) Reserved for site use; ignored by DMF. Not normally
displayed; see the dmvoladm(8) man page for details.
hsite2, hsite3, and hsite4 are also available.

hsparse (hs) Indicates that the volume is considered sparse and thus
a candidate for a volume merge operation, displayed as
-------s-.

hvfy (hv) Indicates that this tape should be tested and/or
replaced when next empty; until that time, it is
read-only. Displayed as ----v----. This value is set
by DMF but only cleared by the site administrator.

For any field that takes a byte count, you may append one of the following letters (in
either uppercase or lowercase) to the integer to indicate that the value is to be
multiplied (all of which are powers of 1000, not 1024):

k or K for 1 thousand

007–5484–012 455

13: Media-Specific Processes and Library Servers

m or M for 1 million
g or G for 1 billion

For information about the role of the dmvoladm command in LS database recovery,
see "Database Recovery" on page 484. For details about dmvoladm syntax, see the
man page.

dmvoladm Text Field Order

The text field order for volume records generated by the dmdump(8), dmdumpj(8), and
the dump directive in dmvoladm is listed below. This is the format expected by the
load directives in dmvoladm:

1. V (indicates the volume record type)

2. vsn

3. volgrp

4. lbtype

5. capacity

6. blocksize

7. hflags (in octal)

8. version

9. datawritten

10. eotchunk

11. eotposition (eotzone/eotblockid) (in hexadecimal)

12. dataleft

13. chunksleft

14. wfdate

15. update

16. id (in octal). This field indicates the type of process that last updated the record.

456 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dmvoladm Examples

Example 13-3 dmvoladm update Directive

The following unsets the hlock for C02M02, indicating that the volume can now be
used for either input or output:

adm 8>update C02M02 to hlock off

Example 13-4 dmvoladm list Directive to Show Information for Multiple VSNs

The following example illustrates the default format for the list directive when
using an LS. The column marked HFLAGS uses a format similar to the ls -l
command in that each letter has an assigned position and its presence indicates that
the flag is on. The positions spell out the string eforvlusx, representing herr,
hfree, hoa, hro, hvfy, hlock, hfull, hsparse, and hextern.

adm 1> list 000683-000703

DATA EOT EOT WR/FR

VSN VOLGRP LB DATA LEFT WRITTEN CHUNK ZONE HFLAGS AGE

000683 vg8a01 al 0.000000 0.000000 1 1 --------- 3d

000700 vg8a00 al 267.539255 287.610294 124 7 ------u-- 2d

000701 vg8a00 al 288.342795 308.147798 136 8 ------u-- 2d

000702 vg8a00 al 255.718902 288.302830 120 7 ------u-- 2d

000703 ag8 al 0.000000 0.000000 1 1 --------- 3d

Example 13-5 dmvoladm list Directive to Show Volumes with a Specific Flag

The following example illustrates using the list command to show only volumes
having their hfull flag set:

adm 1>list hfull

DATA EOT EOT WR/FR

VSN VOLGRP LB DATA LEFT WRITTEN CHUNK ZONE HFLAGS AGE

000701 vg8a00 al 288.342795 308.147798 136 8 ------u-- 2d

000702 vg8a00 al 255.718902 288.302830 120 7 ------u-- 2d

000704 vg8a00 al 252.294122 292.271410 119 7 ------u-- 2d

000705 vg8a00 al 250.207666 304.603059 143 7 ------u-- 2d

000706 vg8a00 al 265.213875 289.200534 144 7 ------u-- 2d

000707 vg8a00 al 278.744448 310.408119 140 7 ------u-- 2d

000708 vg8a00 al 260.827748 295.956588 136 7 ------u-- 2d

007–5484–012 457

13: Media-Specific Processes and Library Servers

000709 vg8a00 al 253.481897 283.615678 138 8 ------u-- 2d

000710 vg8a00 al 265.100985 291.243235 141 7 ------u-- 2d

000711 vg8a00 al 276.288446 305.782035 144 7 ------u-- 2d

000712 vg8a00 al 250.415786 275.606243 138 7 ------u-- 2d

000716 vg8a00 al 287.964765 304.321543 144 7 ------u-- 2d

000717 vg8a00 al 280.795058 287.084534 144 7 ------u-- 2d

000718 vg8a00 al 0.000415 300.852018 180 27 ------u-- 3d

003127 vg9a01 al 417.383784 461.535047 209 10 ------u-- 2d

003128 vg9a01 al 427.773679 460.716741 229 11 ------u-- 2d

Example 13-6 dmvoladm list Directive to Customize a List of Fields

The following example shows one way you can customize the list format to show
only the fields that you want to see.

adm 21>list S03232-S03254 format "eotchunk eotzone eotpos"

EOT EOT

VSN CHUNK ZONE EOTPOS

S03232 10 2 2/4294967295

S03233 2 2 2/4294967295

S03234 598 2 2/4294967295

S03235 18 2 2/4294967295
S03236 38 2 2/4294967295

S03237 92 2 2/4294967295

S03238 1 1 1/4294967295

S03239 1 1 1/4294967295

S03240 1 1 1/4294967295

S03241 325 2 2/4294967295
S03242 81 2 2/4294967295

S03243 26 2 2/4294967295

S03244 1 1 1/4294967295

S03245 26 2 2/4294967295

S03246 5 2 2/4294967295
S03247 186 2 2/4294967295

S03248 17 2 2/4294967295

S03249 526 2 2/4294967295

S03250 1 1 1/4294967295

S03251 533 2 2/4294967295
S03252 157 17 17/2147483648

S03253 636 2 2/4294967295

458 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

S03254 38 2 2/4294967295

Another way to accomplish this is to use the set format command with the same
keyword list.

Example 13-7 dmvoladm list Directive to Show Multiple Flags

The following example gives a convenient way to show the setting of multiple flags:

adm 23>list 003232-003254 format "hfree hfull hlock hoa hro"
hfree hfull hlock hoa hro

VSN

003232 off on off off off

003233 off off off off off

003234 off off off off off
003235 off off off off off

003236 off on off off off

003237 off on off off off

003238 off on off off off

003239 off on off off off
003240 off off off off off

003241 off on off off off

003242 off on off off off

003243 off off off off off

003244 off off off off off
003245 off on off off off

003246 off off off off off

003247 off on off off off

003248 off on off off on

003249 on off off off on

003250 on off off off on
003251 on off off off on

003252 on off off off on

003253 off on off off on

003254 off on off off on

007–5484–012 459

13: Media-Specific Processes and Library Servers

Example 13-8 dmvoladm list Directive to Display Volumes Assigned to a VG

The following example shows how to display only those volumes assigned to the VG
named vg9a00.

adm 3>list vg=vg9a00

DATA EOT EOT WR/FR

VSN VOLGRP LB DATA LEFT WRITTEN CHUNK ZONE HFLAGS AGE

003210 vg9a00 al 1.048576 1.048576 3 2 --------- 11d

003282 vg9a00 al 11.534336 11.534336 13 2 --------- 7d

dmatread Command

You can use dmatread(8) to copy all or part of the data from a migrated file back to
disk. You might want to do this if, for example, a user accidentally deleted a file and
did not discover that the deletion had occurred until after the database entries had
been removed by the hard delete procedure. Using backup copies of the databases
from before the hard delete was performed, dmatread can restore the data to disk,
assuming that the tape volume has not been reused in the meantime.

Example 13-9 Restoring Hard-deleted Files Using dmatread

To copy migrated files back to disk, perform the following steps:

1. Determine the BFID of the file you want to restore. You can use backup copies of
dmdlog or your dbrec.dat files, or a restored backup copy of the deleted file’s
inode (and the dmattr command).

2. Using backup copies of the LS database, execute a dmatread(8) command similar
to the following:

dmatread -p /a/dmbackup -B 342984C50000000000084155

342984C50000000000084155 is the BFID of the file to be restored, and
/a/dmbackup is the directory containing the backup copies of the LS database.
Your file will be restored to the current directory as
B342984C50000000000084155.

Note: DMF does not know the original name of the file; you must manually move the
restored data to the appropriate file.

460 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

If you have access to chunk and VSN information for the file to be restored, you can
use the dmatread -c and -v options and avoid using backup copies of the LS
database. In this case, dmatread will issue messages indicating that the chunk is not
found in the current LS database, but it will continue with the request and restore the
file as described in this example.

dmatsnf Command

You can use dmatsnf(8) to verify the readability of the LS volumes or to audit their
contents. The dmatsnf script is a wrapper around the dmatsnfb binary. Both the
script and the binary are installed on the DMF server, but only the binary is installed
on parallel data-mover nodes. In most cases, you will execute dmatsnf. When using
dmatsnf, in most cases you will only need to specify the VSNs, the volume’s volume
group, and the type of reports desired. For more information about how the binary
and script work together, see the dmatsnf(8) man page.

Note: The dmatsnf(8) and dmatread(8) commands verify the integrity of the library
server (LS) volumes on MAID shelves and recover data from them. For those
volumes that are mountable only on a parallel data-mover node, use of these
commands is simplified if there is passwordless ssh(8) connection from the DMF
server to the parallel data-mover node. For more information about these commands,
see their man pages.

You can also use dmatsnf to verify one or more volumes against the LS database or
to generate journal entries, which you can add to the LS database by using the load
directive in dmvoladm and dmcatadm.

You may also generate text database records that you can apply to the LS database
using the load directive in dmcatadm and dmvoladm. You can use the text records
to add the contents of a few volumes to the LS database (however, this is impractical
for large numbers of volumes).

dmaudit verifymsp Command

You can use the verifymsp option of the dmaudit(8) command to check the
consistency of the daemon database and LS database after an MSP, LS, DMF daemon,
or system failure. This command captures the database files and compares the
contents of the daemon database with each LS database. Any problems are reported
to standard output, but no attempt is made to repair them.

007–5484–012 461

13: Media-Specific Processes and Library Servers

You can also perform this function directly using dmatvfy(8) after taking a snapshot.

FTP MSP
The FTP MSP allows the DMF daemon to manage data by moving it to a remote
machine. Data is moved to and from the remote machine with the protocol described
in RFC 959 (FTP). The remote machine must understand this specific protocol.

Note: It is desirable that the remote machine run an operating system based on
UNIX, so that the MSP can create subdirectories to organize the offline data.
However, this is not a requirement.

The FTP MSP does not need a private database to operate; all information necessary to
retrieve offline files is kept in the daemon database, DMF configuration file, and login
information file. The login information file contains configuration information, such
as passwords, that must be kept private. As a safeguard, the MSP will not operate if
the login information file is readable by anyone other than the system administrator.

This section discusses the following:

• "FTP MSP Processing of Requests" on page 462

• "FTP MSP Activity Log" on page 463

• "FTP MSP Messages" on page 464

FTP MSP Processing of Requests

The FTP MSP is always waiting for requests to arrive from the DMF daemon, but, to
improve efficiency, it holds PUT and DELETE requests briefly and groups similar
requests together into a single FTP session. No PUT request will be held longer than
60 seconds. No DELETE request will be held longer than 5 seconds. GET requests are
not held. The MSP will stop holding requests if it has a large amount of work to do
(more than 1024 individual files or 8 MB of data). The FTP MSP also limits the
number of FTP sessions that can be active at once and the rate at which new sessions
can be initiated.

After a request has been held for the appropriate amount of time, it enters a ready
state. Processing usually begins immediately, but may be delayed if resources are not
available.

462 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The following limits affect the maximum number of requests that can be processed:

• An administrator-controlled limit on the maximum number of concurrent FTP
sessions per MSP (CHILD_MAXIMUM).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing delete requests (GUARANTEED_DELETES).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing dmget(1) requests (GUARANTEED_GETS).

• A system-imposed limit of 85 FTP sessions in any 60-second period. This limit is
seldom a concern because of the MSP’s ability to transfer many files in one
session. Because requests are grouped into batches only when resources are
immediately available, GET requests (which are not normally held) are batched
when resources are in short supply.

Requests are processed by forking off a child process. The parent process immediately
resumes waiting for requests to arrive from the DMF daemon. The child process
attempts to initiate an FTP session on the remote FTP server. If the remote machine
has multiple Internet Protocol (IP) addresses, all of them are tried before giving up. If
the child process cannot connect, it waits 5 minutes and tries again until it succeeds.

Once a connection is established, the child process provides any required user name,
password, account, and default directory information to the remote FTP server. PUT,
GET, or DELETE operations are then performed as requested by the DMF daemon.
PUT, GET, or DELETE operations are not intermixed within a batch. If an individual
request does not complete successfully, it does not necessarily cause other requests in
the same batch to fail. Binary transfer mode is used for all data transfer.

The stored files are not verbatim copies of the user files. They are stored using the
same format used to write volumes, and you can use MSP utilities such as dmatread
and dmatsnf to access the data in them.

FTP MSP Activity Log

All DMF MSPs maintain log files named msplog.yyyymmdd in the MSP spool
directory which, by default, is SPOOL_DIR/mspname. SPOOL_DIR is configured in
the base object of the configuration file; mspname is the name of the MSP in the
daemon object of the configuration file; yyyymmdd is the current year, month, and day.

The activity log shows the arrival of new requests, the successful completion of
requests, failed requests, creation and deletion of child processes, and all FTP

007–5484–012 463

13: Media-Specific Processes and Library Servers

transactions. Sensitive information (passwords and account information) does not
appear in the activity log. In addition, the MSP lists the contents of its internal
queues in its activity log if it is given an INTERRUPT signal.

Note: Because the FTP MSP will continue to create log files files without limit, you
must remove obsolete files periodically by configuring the run_remove_logs task in
the configuration file, as described in "taskgroup Object" on page 240.

FTP MSP Messages

The MSP also recognizes and handles the following messages issued from the DMF
daemon:

Message Description

CANCEL Issued when a previously requested action is no longer
necessary, for example, when a file being migrated with
a PUT request is removed. The MSP is able to cancel a
request if it is being held or if it is waiting for
resources. A request that has begun processing cannot
be canceled and will run to normal completion.

FINISH Issued during normal shutdown. When the MSP
receives a FINISH message, it finishes all requested
operations as quickly as it can and then exits.

FLUSHALL Issued in response to the dmdidle(8) command. When
the MSP receives a FLUSHALL message, it finishes all
requested operations as quickly as it can.

!
Caution: If the remote filesystem must be restored to a previous state, inconsistencies
may arise: remote files that reappear after being deleted are never removed, and
remote files that disappear unexpectedly result in data loss. There is presently no way
to detect these inconsistencies. You should avoid situations that require the remote
filesystem to be restored to a previous state.

464 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Disk MSP
The disk MSP (dmdskmsp) migrates data into a directory that is accessed on the
current system. It uses POSIX file interfaces to open, read, write, and close files. The
directory may be NFS-mounted, unless the disk MSP is configured as a disk cache
manager (see "DCM MSP" on page 466). The data is read and written with root
(UID 0) privileges. By default, dmdskmsp stores the data in DMF-blocked format,
which allows the MSP to do the following:

• Keep metadata with a file

• Keep sparse files sparse when they are recalled

• Verify that a file is intact on recall

The disk MSP does not need a private database to operate; all information necessary
to retrieve offline files is kept in the daemon database and DMF configuration file.

The disk MSP may also be used as an import MSP. In this case, it only permits recalls
and copies the data unchanged for a recall.

This section discusses the following:

• "Disk MSP Processing of Requests" on page 465

• "Disk MSP Activity Log" on page 466

Disk MSP Processing of Requests

The disk MSP is always waiting for requests to arrive from the DMF daemon, but, to
improve efficiency, it holds PUT and DELETE requests briefly and groups similar
requests together into a single session. No PUT request will be held longer than 60
seconds. No DELETE request will be held longer than 5 seconds. GET requests are not
held. The MSP will stop holding requests if it has a large amount of work to do
(more than 1024 individual files or 8 MB of data).

After a request has been held for the appropriate amount of time, it enters a ready
state. Processing usually begins immediately, but may be delayed if resources are not
available.

The following administrator-controlled limits affect the maximum number of requests
that can be processed:

• Maximum number of concurrent operations per MSP (CHILD_MAXIMUM)

007–5484–012 465

13: Media-Specific Processes and Library Servers

• Number of child processes that are guaranteed to be available for processing
delete requests (GUARANTEED_DELETES)

• Number of child processes that are guaranteed to be available for processing
dmget(1) requests (GUARANTEED_GETS)

Requests are processed by forking off a child process. The parent process
immediately resumes waiting for requests to arrive from the DMF daemon.

PUT, GET, or DELETE operations are performed as requested by the DMF daemon.
PUT, GET, or DELETE operations are not intermixed within a batch. If an individual
request does not complete successfully, it does not necessarily cause other requests in
the same batch to fail. Binary transfer mode is used for all data transfer.

The stored files are not verbatim copies of the user files. They are stored using the
same format used to write tapes, and you can use MSP utilities such as dmatread
and dmatsnf to access the data in them.

Disk MSP Activity Log

All DMF MSPs maintain log files named msplog.yyyymmdd in the MSP spool
directory which, by default, is SPOOL_DIR/mspname. SPOOL_DIR is configured in the
base object of the configuration file; mspname is the name of the MSP in the daemon
object of the configuration file; yyyymmdd is the current year, month, and day).

The log file shows the arrival of new requests, the successful completion of requests,
failed requests, and creation and deletion of child processes. In addition, the MSP lists
the contents of its internal queues in its activity log if it is given an INTERRUPT signal.

Note: Because the disk MSP will continue to create log files without limit, you must
remove obsolete files periodically by configuring the run_remove_logs task in the
configuration file, as described in "taskgroup Object" on page 240.

DCM MSP
The Disk cache manager (DCM) MSP is the disk MSP configured for n–tier capability
using a dedicated filesystem as a cache. The DCM MSP provides fast access for files
whose activity levels remain high while also providing migration to tape/MAID for
those files requiring less frequent access.

466 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

To allow the disk store that is managed by the disk MSP to function as a dynamically
managed cache (as opposed to a static store), the DCM MSP creates and maintains a
filesystem attribute on each file that is created in the MSP STORE_DIRECTORY. This
attribute is used by the dmdskfree process to evaluate files for downward migration
and for possible removal from the disk cache. For this reason, the DCM MSP
STORE_DIRECTORY must be a local XFS or CXFS filesystem mount point with
DMAPI enabled.

The DCM MSP supports dual-resident state, in which files reside in the cache and also
in a lower VG. This provides the access speed of a disk file, but allows that cache file
to be quickly released without the need to first write it to tape/MAID. This is directly
analogous to the concept of a dual-state file in the standard DMF-managed filesystem.

Automated movement in the opposite direction (from tape/MAID back to the cache)
is not available. Any recalls of files that no longer have copies held in the cache will
come directly from tape/MAID; they are not recalled via the cache and they can only
be restored to the cache by an explicit dmmove(8) command.

dmdskvfy Command
The dmdskvfy command verifies that copies of migrated files in DCM and disk
MSPs are consistent with the daemon database entries that refer to them.

Moving Migrated Data
The dmmove(8) command moves copies of offline or dual-state files to a specified set
of MSPs, VGs, or MGs. The options specified on command line indicate which targets
are to contain migrated copies of a file after the move process is completed. All other
migrated copies are hard-deleted unless you use the dmmove -d to select specific
copies for deletion.

If a file’s migrated state is offline, dmmove recalls the file to disk and then remigrates
it to the specified targets. (The one exception to this is that if a disk cache manager
disk MSP copy exists, the file will be moved directly from that file copy.) The file is
recalled to a scratch filesystem that is specified by the MOVE_FS configuration
parameter. When the migration process is complete, the online copy is removed. If
the file is dual-state, dmmove does not need to recall the file first, but instead uses the
existing online copy.

007–5484–012 467

13: Media-Specific Processes and Library Servers

The dmselect(8) command can be used to determine which files you want to move.
dmselect selects files based on age, size, ownership, and MSP criteria. The output
from the dmselect command can be as input to the dmmove command. The
dmmove command also accepts a list of pathnames as input.

See the dmselect(8) and dmmove(8) man pages for all of the possible options and
further information.

LS Error Analysis and Avoidance
The drive group component of the LS monitors media use, analyzes failures, and uses
this information to avoid future errors.

The drive group component can react to some failures without looking for any
patterns of behavior. Among these are the following:

• Mounting service failure. If the mounting service is TMF, by default, DMF makes
one attempt to restart it. If this attempt does not succeed, DMF notifies the
administrator by e-mail and waits for the administrator’s intervention. When TMF
is back again, DMF resets the auto-restart flag so that if TMF fails again, it will
once again make one attempt to restart it.

If OpenVault is the mounting service, by default, no attempt is made to restart it.
Instead, an e-mail is sent to the administrator.

A site can set the number of automatic restart attempts by using the drive group’s
MAX_MS_RESTARTS configuration parameter, but caution and thorough testing are
advised. There are many possible failure modes for a mounting service, and
automated restarts might not always be appropriate.

• Volume is not in the library. Obviously, this problem will not be fixed by trying
again. To prevent further access, the volume is locked by setting the HLOCK flag,
as described below, and the user requests that triggered the access attempt are
retried on another tape, if possible; otherwise, they are aborted. The administrator
is notified by e-mail.

• For TMF only, a tape mount was cancelled by an operator or administrator.
Although the user requests are retried or aborted, the volume is not disabled. If
the volume were disabled, it would be inaccessible for a period of time (default 24
hours) unless dmvoladm were used to preempt this delay. All operators do not
necessarily have access to the dmvoladm command.

468 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Because the reason for the cancellation is unknown to DMF, repeated requests for
the same volume are quite possible, and the operator might have to cancel each
one.

The drive group handles other types of failure by examining the recent history of the
volume and the drive that was used. The drive group maintains records of past I/O
errors and uses these to control the way it reacts to future errors.

For example, if a tape has been unusable several times in a row, even though different
drives were used, the drive group concludes that the problem most likely involves the
tape rather than the drive. Therefore, it suspends use of that tape, forcing DMF to
migrate to a different tape in that VG or to recall the file from another tape held by a
different VG. This suspension is usually done by setting the HLOCK flag in the tape’s
entry in the VOL record of the LS database. This makes the tape inaccessible to the
VG for both reading and writing until it is automatically cleared after
REINSTATE_VOLUME_DELAY minutes.

If a variety of volumes fail on a specific drive but are usable on other drives, a drive
problem is likely, and the drive can be automatically configured down if permitted by
the administrator’s setting of DRIVES_TO_DOWN to a value higher than its default of
zero. When a drive is configured down in this way, it is configured up again after
REINSTATE_DRIVE_DELAY minutes.

The analyses of drive and volume errors are performed independently of each other;
it is possible for one additional error to result in both the drive and the volume being
disabled.

There are several reasons for reinstating drives and volumes after a delay. The most
important is that the analyses of previous failures might lead to a faulty conclusion in
some situations, such as when DMF is under a very light load, or when multiple
failures occur concurrently. A wrong diagnosis might impact DMF’s performance, and
should not be accepted indefinitely. Disabling a suspected drive or volume for a while
is usually enough to break any repetitive cycles of failure. If such patterns reestablish
themselves when the reinstatement occurs, the drive group will again analyze the
behavior, possibly reaching a different conclusion, and again try to prevent it.

There are some variations from these general reactions. For example, if a tape with
existing data on it is diagnosed as faulty when appending new data, instead of setting
the HLOCK flag, the drive group sets HVFY, which results in the tape being used in a
read-only mode until eventually emptied by merges or hard deletion of its files. At
that time, the administrator may choose to test it and possibly replace or delete it. If
it is to be returned to service, the HVFY flag should be cleared by using dmvoladm.

007–5484–012 469

13: Media-Specific Processes and Library Servers

Full details of these procedures are included in the email sent to the administrator at
the time of the error.

If it is considered desirable to return a volume or drive to service earlier than defined
in the DMF configuration, the appropriate command (dmvoladm, tmconfig, or
ov_drive) can be safely used.

LS Drive Scheduling
When multiple VGs are requesting the use of more drives than exist in the drive
group, the resource scheduler is used to decide which VGs should wait and which
should be assigned the use of the drives.

The resource scheduler is only aware of volume-group activity on the drives in its
drive group. This excludes activity such as XFS backups and direct media use by the
system’s users; this use does not prevent the LS from working properly, although it
might be less than optimal.

LS Status Monitoring
You can observe the performance of the LS in two ways:

• Monitor its log file with a tool like tail -f, which allows an experienced
administrator to follow the flow of events as they happen

• Use the resource watcher component, when enabled by use of the WATCHER
parameter in the libraryserver configuration stanza

The resource watcher is intended to give the administrator a view of the status of an
LS and some of its components. It maintains a set of text files on disk that are
rewritten as events happen. These files can be found in the following directory:

SPOOL_DIR/libraryserverObjectName/_resourcewatcherObjectName

SPOOL_DIR is defined in the DMF configuration file (for example /dmf/spool), as
are the names of the libraryserver and resourcewatcher objects (for example,
lsname and rwname). The easiest way to find the precise path is to look in the LS
log file for messages like the following:

rwname.config_changed: URL of home page is file:/dmf/spool/lsname/_rwname/lsname.html

470 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

This message is issued at DMF startup or whenever the configuration file is altered or
its modification time changes; for example, by using the touch(1) command.

The SPOOL_DIR/lsname/_rwname directory contains files with names ending in
.html, which are automatically refreshing HTML files. You can access these files by
using a browser running on the same machine. The following example shows an LS
page that contains links to drive group pages, and they in turn have links to VG
pages, if the VGs are active at the time:

netscape file:/dmf/spool/lsname/_rwname/lsname.html

If running the browser on the DMF machine is inconvenient, you can include the
directory in your HTTP server configuration to allow those same pages to be accessed
via the web.

This directory also contains files whose names end in .txt, designed to be parsed
with programs like awk. The data format is described by comments within those files
and can be compared with the equivalent HTML files.

If the format of the text ever changes, the version number will change. If the changes
are incompatible with previous usage, the number before the decimal point is altered.
If they are compatible, the number after the decimal point is altered.

An example of compatibility is adding extra fields to the end of existing lines or
adding new lines. Programs using these files should check the version number to
ensure compatibility. Also, it might be useful to check the following:

• DMF version shown by dmversion(1)

• Linux kernel version shown by uname(1)

• Linux distribution version shown by head /etc/*release

007–5484–012 471

Chapter 14

DMF Maintenance and Recovery

This chapter contains the following:

• "Retaining Old DMF Daemon Log Files" on page 473

• "Retaining Old DMF Daemon Journal Files" on page 474

• "Cleaning Up Obsolete Database Entries" on page 474

• "Backups and DMF" on page 475

• "Using dmfill" on page 484

• "Database Recovery" on page 484

• "Viewing Drive Statistics" on page 488

• "Temporarily Disabling Components" on page 490

Retaining Old DMF Daemon Log Files
The DMF daemon generates the SPOOL_DIR/daemon/dmdlog.yyyymmdd log file,
which contains a record of DMF activity and can be useful for problem solving for
several months after creation. All MSPs and LSs generate a
SPOOL_DIR/msp_or_ls_name/msplog.yyyymmdd log file, which also contains useful
information about its activity. The LS also generates
SPOOL_DIR/ls_name/moverlogs/hostname/moverlog.yyyymmdd log files, which
also contain useful information about its activity. These log files should be retained for
a period of some months. Log files more than a year old are probably not very useful.

Do not use DMF to manage the SPOOL_DIR filesystem.

The dmfsmon(8) automated space management daemon generates a log file in
SPOOL_DIR/daemon/autolog.yyyymmdd, which is useful for analyzing problems
related to space management.

To manage the log files, configure the run_remove_logs.sh task, which
automatically deletes old log files according to a policy you set. See "taskgroup
Object" on page 240, for more information.

007–5484–012 473

14: DMF Maintenance and Recovery

Retaining Old DMF Daemon Journal Files
The DMF daemon and the LS generate journal files that are needed to recover
databases in the event of filesystem damage or loss. You also configure DMF to
generate backup copies of those databases on a periodic basis. You need only retain
those journal files that contain records created since the oldest database backup that
you keep. Although in many cases only the most recent database backup copy is
sufficient, SGI recommends that you keep several generations for additional safety.

For example, if you configure DMF to generate daily database backups and retain the
three most recent backup copies, then at the end of 18 July there would be backups
from the 18th, 17th, and 16th. Only the journal files for those dates need be kept for
recovery purposes.

To manage the journal files and the backups, configure the
run_remove_journals.sh and run_copy_databases.sh tasks. These tasks
automatically delete old journal files and generate backups of the databases according
to a policy you set. See "taskgroup Object" on page 240, for more information.

Cleaning Up Obsolete Database Entries
When a file is migrated by DMF, a database record is created for each MSP/VG copy
of the file. When the file is deleted or modified, those records point to copies that no
longer correspond to any file in the filesystem. At this point, DMF tags these records
as soft-deleted.

Soft-deleted database records must remain in the database as long as the original file
might reappear as an offline file as the result of a full or partial filesystem restore.
This amount of time is defined by the DUMP_RETENTION configuration parameter
(see "taskgroup Object Parameters" on page 245).

After soft-deleted records pass the DUMP_RETENTION time, they are obsolete. At
that point, they become candidates for hard-deletion, which permanently removes the
records from the database. This decreases the total number of database records (for
which there is a maximum of 4 billion). See "Use a Task to Perform Hard-Deletes
Periodically" on page 116.

!
Caution: Do not hard-delete a database record until after you are sure that the
corresponding file will never be restored.

474 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Backups and DMF
This section discusses the interrelationships between DMF and backup products:

• "DMF-Managed Filesystems" on page 475

• "Storage Used by an FTP MSP or a Standard Disk MSP" on page 482

• "Filesystems Used by a DCM" on page 482

• "DMF’s Private Filesystems" on page 483

!
Caution: The fact that DMF maintains copies of data on another medium does not
mean that it is a backup system. The copies made by DMF may become inaccessible
if there is a failure and proper backups have not been made.

In addition, although using RAID may protect you against the failure of one disk
spindle, data can still be endangered by software problems, human error, or hardware
failure.

Therefore, backups are essential.

DMF-Managed Filesystems

Many backup and recovery software packages make backup copies of files by
opening and reading them using the standard UNIX or Linux system calls. In a
filesystem managed by DMF, this causes files that are offline to be recalled back to
disk before they can be backed up. If you have a DMF-managed filesystem in which
a high percentage of the files are offline, you may see a large amount of media or
other activity caused by the backup package when it initially does its backups. You
should take this behavior into account when deciding whether or not to use such
backup packages with filesystems managed by DMF.

This section discusses the following:

• "Using SGI xfsdump and xfsrestore with Migrated Files" on page 476

• "Using DMF-aware Third-Party Backup Packages" on page 479

• "Optimizing Backups of Filesystems" on page 480

007–5484–012 475

14: DMF Maintenance and Recovery

Using SGI xfsdump and xfsrestore with Migrated Files

Note: xfsrestore may attempt to read, write, or delete files that are under DMF
management. If this occurs while DMF is not running, the xfsrestore process may
block indefinitely waiting for a DMF event to be completed. If you use xfsrestore
to create or modify files in a filesystem that already contains files managed by DMF,
you are more likely to encounter this issue than if you use xfsrestore to populate
an empty filesystem. To avoid this problem, use xfsrestore while DMF is running.

The xfsdump(8) and xfsrestore(8) commands back up filesystems. These utilities
are designed to perform the backup function quickly and with minimal system
overhead. They operate with DMF in two ways:

• When xfsdump encounters an offline file, it does not cause the associated data to
be recalled. This distinguishes the utility from tar(1) and cpio(1), both of which
cause the file to be recalled when they reference an offline file.

• The dmmigrate(8) command lets you implement a 100% migration policy that
does not interfere with customary management of space thresholds.

The xfsdump command supports the -a option specifically for DMF. If you
specify the -a option, xfsdump will back up DMF dual-state (DUL) files as if they
were offline (OFL) files. That is, when xfsdump detects a file that is backed up by
DMF, it retains only the inode for that file because DMF already has a copy of the
data itself. This dramatically reduces the amount of space needed to back up a
filesystem and it also reduces the time taken to complete the backup, thereby
minimizing the chances of it being inaccurate due to activity elsewhere in the
system. An added advantage of using -a is that files that are actively being
recalled will still be backed up correctly by xfsdump because it does not need to
copy the file’s data bytes to secondary storage.

You can also use dmmigrate to force data copies held only in a disk cache
manager (DCM) MSP cache to be copied to tapes/MAID in the underlying
volume groups (VGs). This removes the need to back up the cache filesystem.

Most installations periodically do a full (level 0) backup of filesystems. Incremental
backups (levels 1 through 9) are done between full backups; these may happen once
per day or several times per day. You can continue this practice after DMF is enabled.
When a file is migrated (or recalled), the inode change time is updated. The inode
change time ensures that the file gets backed up at the time of the next incremental
backup.

476 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

To automatically manage backup media, DMF includes configurable administrative
scripts called run_full_dump.sh and run_partial_dump.sh, which employ
xfsdump to backup to tape or disk. The scripts perform the following actions:

• (optional) Migrates all eligible files to dual-state

• (optional) Copies all eligible DCM MSP files on a DCM MSP system to
dual-residency state

• Performs a database snapshot using dmsnap

• Backs up the directory containing that snapshot

• Backs up other filesystems

• After a successful full backup, frees up old backup media and disk space for
future reuse

DMF also supports a matching wrapper around xfsrestore named dmxfsrestore
to be used when restoring files that were backed up by these scripts. See the
dmxfsrestore(8) man page for more information on running the command.

You can configure tasks in the dump_tasks object to automatically do full and
incremental backups of the DMF-managed filesystems. See "taskgroup Object" on
page 240 for more information.

For more information about parameters, see "Starting and Stopping the DMF
Environment" on page 138.

Sites using OpenVault can add new backup media by using dmov_makecarts
and/or dmov_loadtapes by providing the name of the task group as a parameter.
Sites using TMF do not need any special steps to add new tapes, as TMF does not
record details of which tapes are available to it.

Recycling old backup media is performed automatically after the successful
completion of a full backup. In certain situations, such as running out of backup
media, this pruning must be done manually by running dmxfsprune.

Ensuring Accuracy with xfsdump

The xfsdump program is written such that it assumes backups will only be taken
within filesystems that are not actively changing. xfsdump cannot detect that a file
has changed while it is being backed up, so if a user should modify a file while it is
being read by xfsdump, it is possible for the backup copy of the file to be inaccurate.

007–5484–012 477

14: DMF Maintenance and Recovery

To ensure that all file backup copies are accurate, perform the following steps when
using xfsdump to back up files within a DMF filesystem:

1. Make sure that there is no user activity within the filesystem.

2. Ensure that DMF is not actively migrating files within the filesystem.

3. Run xfsdump, preferably with the -a option.

Backing Up and Restoring Files without the DMF Scripts

If you choose to back up and restore DMF filesystems without using the provided
DMF scripts, there are several items that you must remember:

• The DMF scripts use xfsdump with the -a option to back up only data not
backed up by DMF. You may also wish to consider using the -a option on
xfsdump when backing up DMF filesystems manually.

• Do not use the -A option on either xfsdump or xfsrestore. The -A option
avoids backing up or restoring extended attribute information. DMF information
is stored within files as extended attributes, so if you do use -A, migrated files
restored from that backup media will not be recallable by DMF.

• When restoring migrated files using xfsrestore, you must specify the -D option
in order to guarantee that all DMF-related information is correctly restored.

Filesystem Consistency with xfsrestore

When you restore files, you might be restoring some inodes containing BFIDs that
were soft-deleted since the time the backup was taken. (For information about
soft-deletes, see "Cleaning Up Obsolete Database Entries" on page 474.) dmaudit(8)
will report this as an inconsistency between the filesystem and the daemon database,
indicating that the database entry should not be soft-deleted.

Another form of inconsistency occurs if you happen to duplicate offline or dual-state
files by restoring all or part of an existing directory into another directory. In this
case, dmaudit will report as an inconsistency that two files share the same BFID. If
one of the files is subsequently deleted causing the database entry to be soft-deleted,
the dmaudit-reported inconsistency will change to the type described in the previous
paragraph.

While these dmaudit-reported inconsistencies may seem serious, there is no risk of
losing user data. The dmhdelete(8) program responsible for removing unused

478 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

database entries always first scans all DMF-managed filesystems to make sure that
there are no remaining files that reference the database entries it is about to remove.
It is able to detect either of these inconsistencies and will not remove the database
entries if inconsistencies are found.

Be aware that inconsistencies between a filesystem and the daemon database can
occur as a result of restoring migrated files. It is good practice to run dmaudit after
every restore to correct those inconsistencies.

Using DMF-aware Third-Party Backup Packages

Some third-party backup packages can use a DMF library to perform backups in a
DMF-aware manner. When the DMF-aware feature is enabled, these packages will
not cause offline (OFL) files to be recalled during a backup. Dual-state (DUL) files will
be backed up as if they were offline, which will reduce the time and space needed for
a backup.

To use a DMF-aware third-party backup package to back up DMF filesystems, do the
following:

1. Configure the backup package to include the DMF filesystems in the backups.

2. Enable the DMF-aware feature on those filesystems.

For more information about third-party backup packages, see Appendix D,
"Third-Party Backup Package Configuration" on page 597.

DMF provides a script called do_predump.sh that is meant to be run just prior to a
backup of the DMF filesystems using a third-party backup package. The
do_predump.sh script does the following:

• (Optional) Migrates all eligible files to dual-state

• (Optional on a DCM MSP system) Copies all eligible DCM MSP files to
dual-residency state

• (Optional) Performs a snapshot of the databases by using dmsnap

To use do_predump.sh, do the following:

1. Configure the backup package to run do_predump.sh as the pre-backup
command. For details, see the application-specific information in Appendix D,
"Third-Party Backup Package Configuration" on page 597.

007–5484–012 479

14: DMF Maintenance and Recovery

2. Define a task group in the dmf.conf file that is referred to by the dmdaemon
object. In the supplied configurations, this task group is called dump_tasks.

The parameters do_predump.sh uses are as follows:

• DUMP_DATABASE_COPY

• DUMP_FLUSH_DCM_FIRST

• DUMP_FILE_SYSTEMS

• DUMP_MIGRATE_FIRST

For more information, see "taskgroup Object Parameters" on page 245.

Because hard-deletions normally use the same expiry time as backups,
run_hard_deletes.sh is normally run from the same task group. The
DUMP_RETENTION parameter should match the retention policy of the backup
package. For an example stanza, see Example 6-11, page 260.

Note: Backups and restores must be run from the DMF server.

Only root can perform backups and restores. Although some third-party backup
packages normally allow unprivileged users to restore their own files, unprivileged
users cannot restore their own files from a DMF filesystem because doing so requires
root privilege to set the DMF attribute.

Files backed up from a DMF filesystem should only be restored to a DMF filesystem.
Otherwise, files that are offline (or treated as such) will not be recallable.

Optimizing Backups of Filesystems

You can greatly reduce the amount of time it takes to back up filesystems by
configuring DMF to migrate all files. Do the following:

• Set the DUMP_MIGRATE_FIRST parameter to yes, which specifies that the
dmmigrate command is run before the dumps are done to ensure that all
migratable files in the DMF-managed filesystems are migrated.

• Execute one of the following scripts:

– run_full_dump to perform a full backup of the filesystems

– run_partial_dump to perform a partial backup of the filesystems

480 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

For more information, see "Starting and Stopping the DMF Environment" on page 138.

Migrating all files before performing a backup has the following benefits:

• The backup image will be smaller because it contains just the metadata
information, not the file data itself

• The backup will complete more quickly because:

– It is reading just the metadata

– There is less time spent performing random disk seeks to back up the data of
unmigrated files

For any files that you want to remain permanently on disk (that is, permanently
dual-state), you can assign a negative priority weight to those files, which would
leave the files on disk. The result is that when the filesystem is filled up, DMF will
never free the blocks for these files. The files therefore are always dual-state, ready to
be used. When the filesystem is backed up, the backup facility will recognize that
they are dual-state and therefore back them up as offline. The net effect is that there
is no file data in the backup at all for these files, just their inodes, while keeping the
files always available. In the case of millions of small files, this speed-up of the
backup process can be dramatic. For example, for a filesystem with a large number of
small files (files of up to 64 KB), you could assign the following AGE_WEIGHT value:

AGE_WEIGHT -1 0 when space < 64k

Be aware of the following:

• For extremely small files (under a few hundred bytes), the disk space required for
DMF database entries may exceed the size of the original file. For extremely large
numbers of such files, this issue should be considered.

• The space value in a when clause, as used above, refers to the space the file
occupies on disk, which for sparse files may actually be smaller than the size of
the file as shown by ls -l. The space value will be rounded upward to a
multiple of the disk blocksize defined by mkfs(8); the default is 4096 bytes. For
example, attempting to discriminate between files above or below 1000 bytes
based on their space value is futile because all non-empty files will have a space
value that is a multiple of (typically) 4096 bytes.

If you use negative weights with AGE_WEIGHT or SPACE_WEIGHT, DMF automatic
migration will never free the space for these files but a user can still do a dmput -r
on them to manually free the space.

007–5484–012 481

14: DMF Maintenance and Recovery

However, if you do not want files to migrate for any reason, then you must continue
to use the SELECT_VG method despite the slower and larger backups.

Storage Used by an FTP MSP or a Standard Disk MSP

If you are depending on an FTP MSP or a standard disk MSP to provide copies of
your offline files in order to safeguard your data, then they should also be backed up.

If you use them just to hold extra copies for convenience or to speed data access, they
need not be backed up. But you should consider how you would handle their loss.
You would probably need to remove references to lost copies from the DMF daemon
database, using dmdadm, which can only be done when the daemon is not running.

Filesystems Used by a DCM

A DCM MSP differs from a disk MSP in that it uses DMAPI to manage the files. It
will not operate properly if the files are reloaded by a package that cannot also restore
the DMAPI information associated with each file.

Note: For simplicity, this discussion assumes that the site wishes to keep two copies
of migrated files at all times to guard against media problems. (Keeping only one
copy is considered risky, and keeping more than two copies is frequently impractical.)

The DCM MSP can have one of the following configurations:

• A DCM MSP may be holding an extra copy of files in addition to the normal
number of tape-based or MAID-based copies. That is, after the initial migration
has completed, there will be two lower-tier copies and a third in the cache. The
DCM MSP may easily remove this third copy from the cache after some period of
time, just leaving two lower-tier copies. With this configuration, there is normally
no need to back up the cache filesystem.

• The initial migration could result in one cache copy and one on lower tier. Later
on, when the cache has to be flushed, a second lower-tier copy is written by the
DCM MSP before the cache-resident one is deleted. If the file is hard-deleted before
the cache flushes, the second lower-tier copy will never be made, thereby saving
time and lower-tier space. The tradeoff is that cache-flushing is slower and the
cache filesystem should be backed up; otherwise a media problem in conjunction
with a disk failure would result in data loss. With this configuration, the cache

482 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

filesystem should be backed up. Otherwise, the loss of the cache disk could leave
you with just one copy of data on a lower tier. This is considered to be risky.

For both configurations, any backups require the use of a DMF-aware backup
package (as listed in Appendix D, "Third-Party Backup Package Configuration" on
page 597) to back up the cache.

To use run_full_dump.sh or run_partial_dump.sh to back up any of these
filesystems, include the pathname of its mountpoint in the DUMP_FILE_SYSTEMS
parameter.

DMF’s Private Filesystems

The following DMF private filesystems do not require a DMF-aware backup package:

HOME_DIR
JOURNAL_DIR
SPOOL_DIR
TMP_DIR
CACHE_DIR
MOVE_FS

Take care when backing up the databases in HOME_DIR if there is any DMF activity
going on while the backup is underway, due to the risk of making the copy of the
database while it is being updated. A safe technique is to take a snapshot of the
databases with dmsnap and back up the snapshot. The run_full_dump.sh or
run_partial_dump.sh script does this automatically.

The journal files in JOURNAL_DIR should also be backed up if you keep older
snapshots of the databases that may have to be reloaded and brought up-to-date with
dmdbrecover. Preferably, journals should be backed up when DMF activity (apart
from recalls) is minimal. The run_full_dump.sh and run_partial_dump.sh
scripts and parameters DUMP_MIGRATE_FIRST and DUMP_FLUSH_DCM_FIRST help
achieve this by processing any queued up migration requests immediately before
starting the backup.

SPOOL_DIR contains log files that may be of use for problem diagnosis, as well as
history files controlling things like media error recovery and reporting scripts. The
loss of these files will not endanger user data, although DMF may act a little
differently for a while until it reestablishes them. Back up SPOOL_DIR if you can.

The TMP_DIR, CACHE_DIR, and MOVE_FS filesystems do not require backup.

007–5484–012 483

14: DMF Maintenance and Recovery

To use run_full_dump.sh or run_partial_dump.sh to back up any of these
filesystems, simply include the pathnames of their mountpoints in the
DUMP_FILE_SYSTEMS parameter.

Using dmfill

The dmfill(8) command allows you to fill a restored filesystem to a specified
capacity by recalling offline files. When you execute xfsdump -a, only inodes are
backed up for all files that have been migrated (including dual-state files). Therefore,
when the filesystem is restored, only the inodes are restored, not the data. You can
use dmfill in conjunction with xfsrestore to restore a corrupted filesystem to a
previously valid state. dmfill recalls migrated files in the reverse order of migration
until the requested fill percentage is reached or until there are no more migrated files
left to recall on this filesystem.

Database Recovery
The basic strategy for recovering a lost or damaged DMF database is to recreate it by
applying journal records to a backup copy of the database. For this reason it is
essential that database backup copies and journal files reside on a different physical
device from the production databases; it is also highly desirable that these devices
have different controllers and channels. The following sections discuss the database
recovery strategy in more detail:

• "Database Backups" on page 484

• "Database Recovery Procedures" on page 485

Database Backups

You can configure commands in the run_copy_databases.sh task (in the
dump_tasks object) to automatically generate DMF database backups. See
"taskgroup Object" on page 240, for more information.

484 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

You must back up the following files:

• The daemon database files and definition file in the HOME_DIR/daemon_name
directory:

dbrec.dat
dbrec.keys
pathseg.dat
pathseg.keys
dmd_db.dbd

Each LS database has the following files in the HOME_DIR/ls_name directory:

• CAT records:

tpcrdm.dat
tpcrdm.key1.keys
tpcrdm.key2.keys

• VOL records:

tpvrdm.dat
tpvrdm.vsn.keys

• Database definition file: libsrv_db.dbd

Database Recovery Procedures

The DMF daemon and LS write journal file records for every database transaction.
These files contain binary records that cannot be edited by normal methods and that
must be applied to an existing database with the dmdbrecover(8) command. The
following procedure explains how to recover the daemon database.

Warning: If you are running on multiple LSs, always ensure that you have the correct
journals restored in the correct directories. Recovering a database with incorrect
journals can cause irrecoverable problems.

Procedure 14-1 Recovering the Databases

If you lose a database through disk spindle failure or through some form of external
corruption, use the following procedure to recover it:

007–5484–012 485

14: DMF Maintenance and Recovery

1. Ensure that DMF is stopped. In an HA environment, see High Availability Guide
for SGI InfiniteStorage. In a non-HA environment, execute the following:

service dmf stop

2. Do one of the following depending upon your circumstances:

• If you have configured the run_copy_databases task, restore the files from
the directory with the most recent copy of the databases that were in
HOME_DIR to HOME_DIR/daemon or HOME_DIR/LS_NAME.

• If you have not configured the run_copy_databases task, reload an old
version of the daemon or LS database. Typically, these will be from the most
recent dumps of your filesystem.

3. Ensure that the default JOURNAL_DIR/daemon_name (or JOURNAL_DIR/ls_name)
directory contains all of the time-ordered journal files since the last update of the
older database.

For the daemon, the files are named dmd_db.yyyymmdd[.hhmmss].

For the LS, the journal files are named libsrv_db.yyyymmdd[.hhmmss].

4. Use dmdbrecover to update the old database with the journal entries from
journal files identified in step 3. The following commands result in the recovery
of the daemon and library server databases, assuming the backup copy of the
databases and the journals exist as specified by /etc/dmf/dmf.conf:

dmdbrecover -n daemon_name dmd_db

dmdbrecover -n ls_name libsrv_db

Note: This process may take several hours to complete.

Example 14-1 Database Recovery

Suppose that the filesystem containing HOME_DIR was destroyed on February 1,
2004, and that your most recent backup copy of the daemon database and LS database
is from January 28, 2004. To recover the databases, you would do the following:

1. Stop DMF (in an non-HA environment):

service dmf stop

486 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

2. Ensure that JOURNAL_DIR/daemon_name (or JOURNAL_DIR/ls_name) contains the
following journal files (one or more for each day):

JOURNAL_DIR/daemon_name

dmd_db.20040128.235959

dmd_db.20040129.235959

dmd_db.20040130.235959

dmd_db.20040131.235959

dmd_db.20040201

JOURNAL_DIR/ls_name

libsrv_db.20040128.235959

libsrv_db.20040129.235959
libsrv_db.20040130.235959

libsrv_db.20040131.235959

libsrv_db.20040201

3. Restore databases from January 28, to HOME_DIR/daemon_name and/or
HOME_DIR/ls_name. The following files should be present:

HOME_DIR/daemon_name

dbrec.dat

dbrec.keys

pathseg.dat
pathseg.keys

HOME_DIR/ls_name

tpcrdm.dat

tpcrdm.key1.keys

tpcrdm.key2.keys

tpvrdm.dat

tpcrdm.vsn.keys

4. Update the database files created in the step 3 by using the following commands,
assuming that the name of the daemon database is daemon and the name of the
library server is ls, as defined in /etc/dmf/dmf.conf:

dmdbrecover -n daemon dmd_db

dmdbrecover -n ls libsrv_db

007–5484–012 487

14: DMF Maintenance and Recovery

Note: This process may take several hours to complete.

Viewing Drive Statistics
To view statistics about drives across the DMF environment, you can use the
dmtapestat(8) command as root from the DMF server. By default, dmtapestat
displays the following fields (known as the default field selection list), in ascending
order by drive name:

Field Description

vg Volume group

vsn Volume serial number (VSN)

dg Drive group

drive Drive name

node Node name

pid Process ID

bytes_moved Total number of bytes moved by the drive

op Current drive operation

status Status of the filesystem

488 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

For example, the following output shows that drive C02d00 is idle:

dmtapestat

VG VSN DG DRIVE NODE PID BYTES_MOVED OP STATUS

dg_c02 C02d00 0 0 U Idle

dg_c02 C02d01 0 0 U Idle

dg_c02 C02d02 0 0 U Idle

dg_c02 C02d03 0 0 U Idle

dg_c02 C02d04 0 0 U Idle

dg_c02 C02d05 0 0 U Idle

dg_c02 C02d06 0 0 U Idle

vg_c03 C03W00 dg_c03 C03d00 dignity2 29799 193986560 G Waiting at zone 145

vg_c03 C03S00 dg_c03 C03d01 dignity2 29280 351272960 G Waiting at zone 1654

vg_c03 C03L00 dg_c03 C03d02 dignity2 944 59768832 G Waiting at zone 1407

vg_c03 C03J00 dg_c03 C03d03 dignity2 1934 9437184 G Waiting at zone 36

vg_c03 C03G00 dg_c03 C03d04 dignity2 694 123731968 G Waiting at zone 1687

vg_c03 C03B00 dg_c03 C03d05 dignity2 29536 229638144 G Waiting at zone 1230

vg_c03 C03T00 dg_c03 C03d06 dignity2 677 105906176 G Waiting at zone 321

You can customize the dmtapestat output by providing field names known to the
common arena and using the following options to manipulate the display:

• To add fields to the output, in addition to the default field selection list:

-a field1[,field2...]

• To change the list of fields displayed (overriding the default field selection list):

-c field1[,field2...]

The fields are displayed in the order specified.

• To sort the output by the specified fields:

-s field1[,field2...]

By default, -s sorts in ascending order. To specify descending order for a specific
field, prefix the field with the minus ("-") sign. If you want to include white space,
you must enclose the list of fields with quotation marks.

007–5484–012 489

14: DMF Maintenance and Recovery

For example, to display the pid, drive, and access_time fields with the output
sorted in descending order by process ID, enter the following:

dmtapestat -c pid,drive,access_time -s -pid

PID DRIVE ACCESS_TIME

10491 C03d02 1317251582

10479 C03d05 1317251592

9985 C03d04 1317251572

9485 C03d01 1317251582
8950 C03d03 1317251590

8410 C03d06 1317251585

8384 C03d00 1317251580

0 C02d01 1317213541

0 C02d00 1317223473
0 C02d03 1317216907

0 C02d02 1317223560

0 C02d05 1317223292

0 C02d04 1317213499

0 C02d06 1317223472

For more information about available drive arena fields, see the dmtapestat(8) man
page.

Temporarily Disabling Components
If you are using OpenVault, you can choose to temporarily disable a specific path to a
drive (the drive control program or DCP), individual drives, or the entire library of
drives. When you temporarily disable a drive in OpenVault, a mount request for that
drive will block. (If you permanently disable a drive, a mount will be rejected).

Note: When you disable an OpenVault DCP, drive, or library, new mounts are
immediately disabled but there might be running processes that are already using the
drives. For safety, you must wait for DMF to notice that the component has been
disabled and for those processes to stop before performing maintenance.

This section discusses the following:

• "Disable an OpenVault DCP" on page 491

• "Disable an OpenVault Drive" on page 492

490 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• "Disable an OpenVault Library" on page 493

• "Disable a TMF Drive" on page 495

• "Stop the COPAN VTL" on page 496

Disable an OpenVault DCP

To temporarily disable an individual path to a drive (which still permits new mounts
using other paths to that drive), do the following:

1. Disable the DCP by using the following ov_dcp(8) command:

ov_dcp -T drivename DCPname

For example, to disable the DCP lto1@zap for the lto1 drive when the drive is
not in use (line breaks shown here for readability):

ov_dcp -T lto1 lto1@zap

DCPs:

Drive Name DCP Name DCP Disabled DCP Host DCP Type DCP Priority

DCP Control Path

lto1 lto1@zap temporary zap Ultrium3 1000

/dev/ts/pci0002:00:01.0/fc/50050763120022c4-50050763124022c4/lun0

After some time (up to 6 minutes), DMF will notice this new DCP state and will
shut down any mover children using this DCP.

To permanently disable the path, use the -D option.

Note: The behavior is different for a non-mover process, such as for dmatsnf(8),
dmatread(8), or xfsdump(8). If one of these processes already has a volume

mounted when the DCP/drive/library is disabled, the process will continue to
completion. If using -T and one of these processes specifically asks for a mount
in that drive, the mount will block. (If using -D, the mount will fail.) If a drive is
disabled and one of these processes requests a mount without specifying a
particular drive, it will be directed to an enabled drive in the drive group.

2. Verify that the path you disabled is unused by examining the output from the
following ov_dumptable(8) command:

ov_dumptable -c DriveName,DCPName,DriveStateSoft DRIVE

007–5484–012 491

14: DMF Maintenance and Recovery

Examine the output to verify that the DriveStateSoft field is ready
(indicating the drive is not in use by any DCP). For example:

ov_dumptable -c DriveName,DCPName,DriveStateSoft DRIVE

DriveName DCPName DriveStateSoft

lto1 lto1@zap ready

lto2 lto2@zap ready

If you were then to mount a tape on drive lto1 from a server named ivy, the
command would show the following output, indicating that the lto1@ivy DCP
is being used:

ov_dumptable -c DriveName,DCPName,DriveStateSoft DRIVE
DriveName DCPName DriveStateSoft

lto1 lto1@ivy inuse

lto2 lto2@zap ready

To reenable the DCP, use the -E option.

For more information, see the following man pages:

• ov_dcp(8)

• ov_dumptable(8)

Disable an OpenVault Drive

To temporarily disable one or more drives, do the following:

1. Disable the individual drives by using the ov_drive(8) command:

ov_drive -T drivenames

For example, to disable all drives that have names that begin with drive0:

ov_drive -T drive0*

After some time (up to 6 minutes), DMF will notice this new drive state and will
shut down any mover children using these drives.

Note: The behavior is different for a non-mover process. See the Note above in
"Disable an OpenVault DCP" on page 491.

492 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

To permanently disable a drive, use the -D option instead. For more details, see
the ov_drive(8) man page.

2. Verify that the drives are disabled and unused by examining the output of the
ov_stat(8) command to verify that they have a Disabled state of temporary
and a SoftState of ready:

ov_stat -d

For example, the following output shows that both drive01 and drive02 are
disabled temporarily and are unused (that is, ready to have a tape loaded):

ov_stat -d

Drive Name Group Access Broken Disabled SoftState HardState DCP State Occupied Cartridge PCL

drive01 dg true false temporary ready unloaded ready false

drive02 dg true false temporary ready unloaded ready false

To reenable the drives, use the ov_drive -E option.

For more information, see the following man pages:

• ov_drive(8)

• ov_stat(8)

Disable an OpenVault Library

To disable the entire library, do the following:

1. Disable the library by using one of
the following ov_library(8) command lines. After some time (up to 6
minutes), DMF will notice this new library state and will shut down any mover
children using the drives in this library. For
more details, see the ov_library(8) man page.

Note: The behavior is different for a non-mover process. See the Note above in
"Disable an OpenVault DCP" on page 491.

• If you make copies of files in separate libraries, you can use the following
command to disable the primary library and redirect recalls to the other
library:

ov_library -D libraryname

007–5484–012 493

14: DMF Maintenance and Recovery

For example:

ov_library -D lib2

After you use this command, the ov_stat command will report a Disabled
state of permanent. So long as the other library is not also disabled with the
-D option, recall requests will be forwarded to the other library. Migrate
requests to the disabled library will queue. An OpenVault mount request to
this library (such as if you are using xfsbackup) would fail.

• If there is not another library, use the following command:

ov_library -T libraryname

For example:

ov_library -T lib2

After you use this command, the ov_stat command will report a Disabled
state of temporary.

2. Verify the Disabled state of the library by using the -l option to ov_stat:

ov_stat -l

For example, the following output shows that the lib2 library is temporarily
disabled:

ov_stat -l

Library Name Broken Disabled State LCP State

lib2 false temporary ready ready

3. Verify that all of the drives in the library have a SoftState state of ready (and
are therefore currently unused) by using the ov_stat -d command:

ov_stat -d

For example, the following output shows that although the drives are still
enabled (with a false state for Disabled because only the library was
disabled), they are unused (because the SoftState state is ready):

ov_stat -d

Drive Name Group Access Broken Disabled SoftState HardState DCP State Occupied Cartridge PCL

lto1 dlto true false false ready unloaded ready false

lto2 dlto true false false ready unloaded ready false

494 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

To reenable the library, use the ov_library -E option.

For more information, see the following man pages:

• ov_library(8)

• ov_stat(8)

Disable a TMF Drive

To disable TMF drives, do the following:

1. Disable the drives by using the tmconfig(8) command:

tmconfig drivenames down

For example, to disable the two drives tape01 and tape03:

tmconfig tape01:tape03 down

After some time (up to 6 minutes), DMF will notice this new drive state and will
shut down any mover children using these drives.

Note: The behavior is different for a non-mover process. See the Note above in
"Disable an OpenVault DCP" on page 491.

2. Verify that the drives are unused and have a stat status of down by examining
the output of the tmstat(8) command:

tmstat

For example, the following output shows that both tape01 and tape03 are
down (down in the stat field) and unused (empty user and session fields):

tmstat
user session group a stat device stm rl ivsn evsn blocks

dga - down tape01

dga - down tape03

To reenable the drives, use the tmconfig up command.

For more information, see the following man pages:

• tmconfig(8)

007–5484–012 495

14: DMF Maintenance and Recovery

• tmstat(8)

Stop the COPAN VTL

Following is one way stop COPAN VTL:

1. Disable the COPAN VTL drives gracefully. See "Temporarily Disable Components
Before Maintenance" on page 112.

Do not proceed to the next step until you verify that all of the drives are disabled.

2. Stop the LCPs associated with the COPAN drives:

• If you have only COPAN drives, stop all of the LCPs:

ov_stop lcp

• If you have a mix of COPAN VTLs and physical tape libraries, stop just the
COPAN LCPs:

ov_stop COPAN_LCP1 COPAN_LCP2 ...

For example, if there are four COPAN LCPs named C00-C03:

ov_stop C00 C01 C02 C03

3. When you want to restart the COPAN VTL, restart the LCPs associated with the
COPAN VTL:

• If you have only COPAN drives, start all of the LCPs:

ov_start lcp

• If you have a mix of COPAN VTLs and physical tape libraries, start just the
COPAN LCPs:

ov_start COPAN_LCP1 COPAN_LCP2 ...

For example, if there are four COPAN LCPs named C00-C03:

ov_start C00 C01 C02 C03

4. Reenable the COPAN drives:

ov_drive -E COPAN_drvExpr

496 007–5484–012

Chapter 15

DMF SOAP Server

This chapter discusses the following:

• "Overview of DMF SOAP" on page 497

• "Accessing the DMF SOAP and WSDL" on page 499

• "Starting and Stopping the DMF SOAP Service" on page 499

• "Security/Authentication" on page 500

• "DMF SOAP Sample Client Files" on page 500

Overview of DMF SOAP
DMF provides access to the following functions via the DMF Simple Object Access
Protocol (SOAP) web service:

dmarchive
dmattr
dmget
dmoper
dmput
dmtag
dmversion

Note: A limited set of options are available for these commands via DMF SOAP. For
more information, click on the operation name in the SOAP interface and read the
information under the Documentation heading displayed.

DMF SOAP log files are kept in SPOOL_DIR/dmfsoap.

Figure 15-1 shows an example of the ws_dmattr operation.

007–5484–012 497

15: DMF SOAP Server

Figure 15-1 DMF SOAP

498 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Accessing the DMF SOAP and WSDL
To access DMF SOAP, do the following:

1. Point your browser to the following secure address:

https://YOUR_DMF_SERVER:11110/server.php

2. Accept the security certificate.

Note: DMF SOAP generates its own SSL certificates, rather than having the SSL
certificates signed by a commercial certificate authority. Therefore, the certificate
warning is safe to ignore.

3. Enter the DMF SOAP service (dmfsoap) access password. The default password
is INSECURE.

To change the password to something site-specific (NEWPASSWORD), run the
following command:

htpasswd2 -b -c /usr/share/dmfsoap/passwords/passwds dmfsoap NEWPASSWORD

4. To access the web service definition language (WSDL) definition, click on WSDL
in the interface. Use the brower’s Save As... feature to save the WSDL to a file for
consumption.

Starting and Stopping the DMF SOAP Service
This section discusses the following:

• "Starting the dmfsoap Service" on page 499

• "Preventing Automatic Start of dmfsoap After Reboot" on page 500

• "Explicitly Stopping dmfsoap" on page 500

Starting the dmfsoap Service

The dmfsoap service for DMF SOAP is off by default.

007–5484–012 499

15: DMF SOAP Server

To start the service explicitly, execute the following on the DMF server:

dmfserver# service dmfsoap start

Preventing Automatic Start of dmfsoap After Reboot

To prevent automatic startup of the DMF environment, execute the following
chkconfig(8) commands as root on the DMF server:

dmfserver# chkconfig dmfsoap off

Explicitly Stopping dmfsoap

To stop the DMF environment daemons explicitly, execute the following on the DMF
server:

dmfserver# service dmfsoap stop

Security/Authentication
DMF SOAP uses basic access authentication, via HTTPS, when making a request.
Encapsulated in the request is the user name on the DMF system. DMF SOAP checks
that the user name supplied is a valid and executes the DMF command as that user.
However, no additional authentication is done; the client has complete responsibility
for user authentication.

DMF SOAP Sample Client Files
DMF provides the following sample PHP files via the web interface that you can use
to remotely access the DMF SOAP service:

dmarchive.php
dmattr.php
dmget.php
dmoper.php
dmput.php
dmtag.php
dmversion.php

500 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

These files are installed in the following directory:

/usr/share/doc/dmf-VERSION/info/sample/dmfsoap_client

These files are simply for demonstration purposes. You can copy them the remote
machine from which you want to access the DMF SOAP service and modify as
needed.

!
Caution: There is no security provided by these sample files.

To use the sample files, you must install the following packages:

php5-soap
php-curl
php5-openssl

For more information, see the README file and the comments in the .php files.

For example, the following is the sample file for dmget.php (line breaks added here
for readability):

<?php

#

Copyright 2012 SGI. All rights reserved.

#

This is a simple example SOAP Client interface to the DMF SOAP

Service supporting the dmget interface.

Note: You may need to install the php curl and php openssl

packages on your machine.

Nothing SOAP related yet. Just set up some variables specific

to dmget and parse the command line arguments.

$priority = null;

$getByteRangeArray = array();

$getbyterange_cnt = 0;

$getbyterange = false;

$request = array();

$namesArray = array();

for($i = 0; $i < $argc; $i++) {

if($argv[$i] == ’-h’) {

echo "Usage: php dmget.php WSDL login password username

[-U priority] [-B getbyterange-list] fullpathnametofile1 fullpathnametofile2 \nWhere

007–5484–012 501

15: DMF SOAP Server

getbyterange-list can be a comma separated list (no spaces)\nExamples:\n\tphp dmget.php

https://machine.com:11110/server.php?wsdl dmfsoap INSECURE username

-B 0:4000 /dmf_fs/testfile\n";

exit;

}

if($argv[$i] == ’-B’) {

$i++;

$getbyterange = true;

$values_array = explode(",", $argv[$i]);

foreach($values_array as $value) {

$value_array = explode(":", $value);

$start = $value_array[0];

$end = $value_array[1];

$getByteRangeArray[$getbyterange_cnt] = array(’start’ =>

$start, ’end’ => $end);$getbyterange_cnt = $getbyterange_cnt + 1;

}

continue;

}

if($argv[$i] == ’-U’) {

$i++;

$priority = $argv[$i];

continue;

}

if($i < 5) {

continue;

}

array_push($namesArray, $argv[$i]);

}

Here’s the SOAP work

$wsdl = $argv[1];

$login = $argv[2];

$password = $argv[3];

$username= $argv[4];

$request[’username’]=$username;

$request[’getbyterangeArray’]=$getByteRangeArray;

$request[’priority’]=$priority;

$request[’names’]=$namesArray;

First, initialize the connection.

$client = new SoapClient($wsdl, array(’login’=>$login, ’password’=>$password));

502 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Now make the request

try {

$result = $client->ws_dmget($request);

} catch(SoapFault $fault) {

print("Sorry, $argv[0] returned the following ERROR: ".$fault->faultcode."-".$fault-faultstring."\n")

return;

}

Finally print the results

print_r($result);

?>

007–5484–012 503

Chapter 16

Troubleshooting

This chapter contains the following:

• "Filesystem Errors" on page 506

• "Unable to Use the dmi Mount Option" on page 508

• "EOT Error" on page 508

• "Tape Drive Not Claimed by ts" on page 508

• "Drive Entry Does Not Correspond to an Existing Drive (OpenVault)" on page 508

• "Drive Does Not Exist (TMF)" on page 509

• "DMF Manager Errors" on page 509

• "Delay In Accessing Files in an SMB/CIFS Network Share" on page 511

• "Operations Timeout or Abort on Windows®" on page 512

• "Windows Explorer Hangs" on page 512

• "Poor Migration Performance" on page 512

• "Remote Connection Failures" on page 512

• "YaST2 Disk Space Warning" on page 513

• "Linux CXFS Clients Cannot Mount DMF-Managed Filesystems" on page 513

• "Using SGI Knowledgebase" on page 513

• "Reporting Problems to SGI" on page 513

007–5484–012 505

16: Troubleshooting

Filesystem Errors
If the filesystems required for the DMF administrative directories are not mounted
when you try to apply configuration changes using DMF Manager or when you use
dmcheck, you will see errors such as the following:

ERROR: Directory for JOURNAL_DIR (/dmf_journals/journals) does not exist.
ERROR: MOVE_FS "/dmf/move_fs" must be a filesystem root

ERROR: Filesystem "/dmi_fs" is not mounted.

ERROR: A DCM’s STORE_DIRECTORY (/dmf/dcm_name_store) must be a filesystem root.

ERROR: Filesystem "/" is not a DMAPI filesystem

ERROR: No such directory /dmf_journals/database_copies.
ERROR: OpenVault server is not up or client is misconfigured.

For example, following is the complete output from dmcheck:

dmcheck

Checking DMF installation.

Linux mynode 3.0.31-0.9-default #1 SMP Tue May 22 21:44:30 UTC 2012

(2dc3831) x86_64 x86_64 x86_64 GNU/Linux - mynode
SuSE-release: SUSE Linux Enterprise Server 11 (x86_64)

SuSE-release: VERSION = 11

SuSE-release: PATCHLEVEL = 2

sgi-issp-release: SGI InfiniteStorage Software Platform, version

2.6, Build 706r75.sles11sp2-1207112009
lsb-release:

LSB_VERSION="core-2.0-noarch:core-3.2-noarch:core-4.0-noarch:core-2.0-x86_64:core-3.2-x86_64:core-4.0-x8

DMF version 5.6.0 rpm dmf-5.6.0-sgi260r41.sles11sp2 installed.

Checking DMF config file

Scanning for non-comment lines outside define/enddef pairs
Scanning for DMF parameters without values

Checking all objects for invalid names

Checking base

ERROR: Directory for JOURNAL_DIR (/dmf_journals/journals) does not exist.

Checking daemon
ERROR: MOVE_FS "/dmf/move_fs" must be a filesystem root

Checking policy cache_policy

Checking policy space_policy

Checking policy chooser_policy

506 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Checking policy optional_chooser_policy
Checking filesystem /dmi_fs

ERROR: Filesystem "/dmi_fs" is not mounted.

WARNING: Filesystem "/dmi_fs" inode size of 256 is inefficient for DMF.

Checking filesystem /dmi_fs2

Checking MSP msp
Checking MSP cache (DCM-mode)

ERROR: A DCM’s STORE_DIRECTORY (/dmf/dcm_name_store) must be a filesystem root.

ERROR: Filesystem "/" is not a DMAPI filesystem

Checking MSP cache1 (DCM-mode)

Checking Library Server ov_lib

Checking Resource Watcher rw
Checking Drive Group ov_drv

Checking Volume Group volume1

WARNING: Please consider setting ZONE_SIZE to improve write performance.

See the dmf.conf(5) man page for more information.

Checking Volume Group volume2
Checking Resource Scheduler ov_drvrs

Checking Services dmf_services

Checking Task Group vgtasks

Checking Task Group daemon_tasks

ERROR: No such directory /dmf_journals/database_copies.

Checking Task Group dump_tasks
Checking Task Group library_tasks

Checking Task Group node_tasks

Checking for unreferenced objects

WARNING: Unreferenced watcher rw.

Cross-checking LSs and task groups for duplicate VSNs

Checking other daemons.

Checking OpenVault

ERROR: OpenVault server is not up or client is misconfigured.

Checking chkconfig

7 errors found.

3 warnings found.

To resolve these problems, you must make and mount the filesystems required for the
DMF administrative directories. See:

• "Configure DMF Administrative Directories Appropriately" on page 79

007–5484–012 507

16: Troubleshooting

• "Overview of the Installation and Configuration Steps" on page 123

Unable to Use the dmi Mount Option
By default, DMAPI is turned off on SLES 10 systems. If you try to mount with the
dmi mount option, you will see errors such as the following:

kernel: XFS: unknown mount option [dmi]

See "Linux CXFS Clients Cannot Mount DMF-Managed Filesystems" on page 513.

EOT Error
A message of the following type means that there was no logical end-of-tape (EOT)
mark written to the volume:

05:47:26-E 382537-dmatwc end_tape: NOTE: An EOT was not written to VSN 057751 prior to close

When DMF appends data to a volume, it positions to the EOT chunk in the EOT
zone. Without a valid EOT chunk in the EOT zone, DMF might not be able to append
to the volume; this may eventually cause the HVFY flag to be set. Set the hsparse
flag on the volume to merge all the data off of it.

Tape Drive Not Claimed by ts

If a tape drive is not claimed by ts, see the /var/log/messages file for an
indication as to why ts did not attach to a device.

Drive Entry Does Not Correspond to an Existing Drive (OpenVault)
If OpenVault starts before an HBA has discovered the devices, the devices will be
unusable by OpenVault. In this case, you would see a message similar to the
following:

Drive lto1_3 DCP lto1_3@boom config file scsi: entry does not correspond to an existing drive

You must add the HBA driver to the /etc/sysconfig/kernel file and restart
OpenVault. See "Add HBA Drivers to the initrd Image" on page 91.

508 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Drive Does Not Exist (TMF)
If a drive is not visible to TMF, it may be because an HBA device was not properly
discovered. In this case, there would be a message in
/var/spool/tmf/daemon.stderr such as the following:

File /dev/ts/pci0002:00:01.1/fc/500104f000700269-500104f00070026a/lun0 does not exist

You must add the HBA driver to the /etc/sysconfig/kernel file and restart TMF.
See "Add HBA Drivers to the initrd Image" on page 91.

DMF Manager Errors
This section describes problems you may encounter when monitoring DMF with
DMF Manager:

• "DMF Statistics are Unavailable Error Message" on page 509

• "DMF Statistics Graphs are Empty" on page 511

• "OpenVault Library Is Missing" on page 511

Also see "Filesystem Errors" on page 506.

DMF Statistics are Unavailable Error Message

This screen requires statistics from DMF that are unavailable;

check that DMF is running, including the "pmdadmf2"process.
Make sure the DMF "EXPORT_METRICS" configuration parameter is enabled.

If DMF statistics are unavailable, do the following:

1. Verify that the EXPORT_METRICS parameter in the base object of the
/etc/dmf/dmf.conf file is set to ON.

If it is not, do the following:

!
Caution: Do not modify EXPORT_METRICS while DMF is running.

For instructions about starting and stopping DMF and the mounting service in an
HA environment, see High Availability Guide for SGI InfiniteStorage.

007–5484–012 509

16: Troubleshooting

a. Run the following commands as root to stop DMF:

service dmf stop

b. Set EXPORT_METRICS to ON by editing the file or using DMF Manager.

c. Validate the change by using the dmcheck(8) command or DMF Manager

d. Start DMF:

service dmf start

For more information, see:

• "Modifying an Object" on page 173

• "Validating Your Changes" on page 174

• "Displaying DMF Configuration File Parameters" on page 175

• "base Object" on page 216

2. Check that the data is passing through PCP by running the following command:

pminfo -f dmf2.config.dmversion

For example, the following indicates that all is well:

pminfo -f dmf2.config.dmversion

dmf2.config.dmversion
value "6.0.0"

If no value is available, run the following commands as root to remove and
reinstall the PCP performance metrics domain agents and restart DMF Manager:

cd /var/lib/pcp/pmdas/dmf2

./Remove

./Install

service dmfman restart

510 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DMF Statistics Graphs are Empty

If the DMF Manager graphs are empty but you do not see the error message in "DMF
Statistics are Unavailable Error Message" on page 509, verify that the gmgrd process
is running:

dmfserver# ps -A | grep gmgrd

If it is not, restart the gmgrd process by restarting the pcp-storage service:

dmfserver# service pcp-storage restart

OpenVault Library Is Missing

No OpenVault-controlled library found.

This indicates that OpenVault is not running. Run the following command to verify
that the ov_stat command is available:

ls -lL /usr/bin/ov_stat

-rws--x--x 1 root sys 322304 Jul 22 2005 /usr/bin/ov_stat

If the file permissions are not -rws--x--x as shown above, run the following
command to change the permissions:

chmod 4711 /usr/bin/ov_stat

Delay In Accessing Files in an SMB/CIFS Network Share
If there is a delay in accessing files in an SMB/CIFS network share, it may be because
the files are in a fully or partially offline state. The Windows Explorer desktop can be
enabled to display a small black clock on top of a migrated file’s normal icon; the
black clock symbol indicates that there may be a delay in accessing the contents of the
file. (This feature is disabled by default.) For more information, see "Modify Settings
If Providing File Access via Samba" on page 111.

007–5484–012 511

16: Troubleshooting

Operations Timeout or Abort on Windows ®

Operations such as cp can timeout on Windows systems or abort with the following
message:

couldn’t locate the origin file

This may occur if the SessTimeout parameter is set to a value that is inappropriate
for a DMF environment. See "Modify Settings If Providing File Access via Samba" on
page 111.

Windows Explorer Hangs
If the Windows Explorer hangs and the no response ... message appears in the
Windows main title, it may be because the SessTimeout parameter is set to a value
that is inappropriate for a DMF environment. See "Modify Settings If Providing File
Access via Samba" on page 111.

Poor Migration Performance
If you encounter poor migration performance, you can try to tune DMF’s direct I/O
size by modifying the DIRECT_IO_SIZE parameter for the filesystem object in the
DMF configuration file (/etc/dmf/dmf.conf).

You can also try switching to buffered I/O migration by setting the
MIN_DIRECT_SIZE parameter to a very large value.

See "filesystem Object" on page 269.

Remote Connection Failures
If there are an insufficient number of xinetd tcpmux instances configured, you may
see remote connection failures. If this condition occurs, you will see messages like the
following in the /var/log/xinetd.log file:

10/3/2@13:41:09: FAIL: tcpmux service_limit from=128.162.246.75

To solve this problem, see "Set the xinetd tcpmux instances Parameter
Appropriately" on page 92.

512 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

YaST2 Disk Space Warning
If you try to use YaST2 while RAID sets in the COPAN MAID are mounted by
OpenVault, yast2 displays a graphic that contains the following warning:

Warning: Disk space is running out!

However, the red disk usage shown for filesystems such as
/var/opt/openvault/clients/mounts/copan_C00d02 is expected; it indicates
that the RAID sets are mounted by OpenVault. You can safely click the OK button at
the bottom of the window.

Linux CXFS Clients Cannot Mount DMF-Managed Filesystems
In order for CXFS client-only nodes that are not running DMF software to mount
CXFS filesystems, you must make manual modifications in order to run DMAPI. See
the information about enabling DMAPI for Linux client-only nodes in the CXFS 7
Client-Only Guide for SGI InfiniteStorage.

Using SGI Knowledgebase
If you encounter problems and have an SGI support contract, you can log on to
Supportfolio and access the Knowledgebase tool to help find answers.

To log in to Supportfolio Online, see:

https://support.sgi.com/login

Then click on Search the SGI Knowledgebase and select the type of search you want
to perform.

If you need further assistance, contact SGI Support.

Reporting Problems to SGI
As soon as you suspect a problem with DMF, run the following commands as root
to gather relevant information about your DMF environment that will help you and
SGI analyze the problem:

007–5484–012 513

16: Troubleshooting

• Run the following command on the DMF server and every parallel data-mover
node in order to gather system configuration information:

/usr/sbin/system_info_gather -A -o nodename.out

• Run the following command once on the DMF server to collect information for
today and the specified number of additional days (previous-days must be a
numerical value greater than or equal to 0):

dmcollect previous-days

Note: Take care to enter the correct number of previous days from which to gather
information, so that logs containing the first signs of trouble are included in the
collection.

See the dmcollect(8) man page for additional information.

When you contact SGI Support, you will be provided with information on how and
where to upload the collected information files for SGI analysis.

514 007–5484–012

Appendix A

Messages

This appendix discusses the following:

• "dmcatadm Message Interpretation" on page 515

• "dmvoladm Message Interpretation" on page 517

If you are uncertain about how to correct these errors, contact your customer service
representative.

dmcatadm Message Interpretation
The following lists the meaning of messages associated with the CAT records in the
LS database:

nnn bytes duplicated in volume group name Two or more chunks in the database,
which belong to volume group (VG)
name, contain data from the same region
of the file.

for vsn DMF001 chunk 77 chunkoffset < 0 The chunkoffset value for chunk 77 on
volume serial number (VSN) DMF001 is
obviously bad because it is less than 0.

for vsn DMF001 chunk 77 chunklength < 0 The chunklength value for chunk 77 on
VSN DMF001 is obviously bad because it
is less than 0.

for vsn DMF001 chunk 77 chunknumber < 0 The chunknumber value for chunk 77 on
VSN DMF001 is obviously bad because it
is less than 0.

for vsn DMF001 chunk 77 filesize < 0 The filesize value for chunk 77 on
DMF001 is obviously bad because it is less
than 0.

007–5484–012 515

A: Messages

for vsn DMF001 chunk 77 filesize < chunklength +
chunkoffset

The value of chunklength plus
chunkoffset should be less than or
equal to the filesize. Therefore, one or
more of these values is wrong.

for vsn DMF001 chunk 77 missing or improper vsn The list of VSNs for the chunk is
improperly constructed. The list should
contain one or more six-character names
separated by colons.

for vsn DMF001 chunk 77 zonenumber < 0 The zonenumber value for chunk 77 on
DMF001 is obviously bad because it is less
than 0.

for vsn DMF001 chunk 77 zonenumber > chunknumber Either the zonenumber value or the
chunknumber value for chunk 77 on
DMF001 is wrong, because the
zonenumber is larger than the
chunknumber value. (Each zone contains
at least two chunks, because the
end-of-zone header on the volume counts
as a chunk.)

for vsn DMF001 chunk 77 filesize != file size in
daemon entry (nnn)

The filesize value in the chunk entry is
different from the file size in the daemon
record. If no daemon record was
provided, this message indicates that more
than one chunk exists for the BFID and
that the filesize value is not the same
for all the chunks.

missing from cat db No corresponding CAT record was found
for an existing daemon record.

entry for volume group name missing from daemon db No corresponding daemon record was
found for an existing CAT record.

for volgrp name; no chunk for bytes nnn - nnn There is no chunk that contains the
specified bytes of the file.

516 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dmvoladm Message Interpretation
The following lists the meaning of messages associated with the VOL records in the
LS database.

blocksize is bad The blocksize field for the volume
is less than or equal to 0.

eotpos < largest position in cat (3746) The position for the end-of-volume
(historically known as EOT for
end-of-tape) descriptor on the volume
is less than the largest position of all
the chunk entries for the volume.

chunksleft != number of cat chunks (256) The number of chunks referencing the
volume in the CAT table does not
equal the number of chunks left
recorded in the VOL entry for the
volume.

dataleft != sum of cat chunk lengths (4.562104mb) The sum of the chunks length for
chunks referencing the volume in the
CAT table does not equal the
dataleft value recorded in the VOL
entry for the volume.

dataleft > datawritten The entry shows that more data
remains on the volume than was
written.

eotchunk < chunksleft The entry shows that more chunks
remain on the volume than were
written.

eotchunk < largest chunk in cat (443) The chunk number of the
end-of-volume EOT descriptor on the
volume is less than the largest chunk
number of all the chunk entries for
the volume.

007–5484–012 517

A: Messages

eotzone < largest zone in cat (77) The zone number of the
end-of-volume EOT descriptor on the
volume is less than the largest zone
number of all the chunk entries for
the volume.

missing The volume was found in a chunk
entry from the CAT table but is not in
the VOL table.

tapesize is bad The tapesize field for the volume is
an impossible number.

version is bad The version field for the volume is
not 1 or 3 (for a volume still
containing data written by the old
tape MSP) or 4 (for a volume written
by this MSP).

volume is empty but hfull is on

volume is empty but hsparse is on
When a volume is empty, the hfull
and hsparse hold flags should be
off.

volume is empty but datawritten != 0

volume is empty but eotpos != 1/0
volume is empty but eotchunk != 1

When the hfree hold flag is cleared,
the datawritten field is set to 0, the
eotpos field is set to 1/0, and the
eotchunk is set to 1. The entry is
inconsistent and should be checked.

volume is not empty but hfree is on When a volume contains data, the
hfree hold flag must be off.

volume is not empty and version is n but hfull is off Tapes containing data with a version
value of less than 4 must have hfull
set, because the LS cannot append to
the tape.

volume is not empty and version is n but eotpos != 2/0 Tapes imported from the old MSP
only have one zone of data, so
eotpos must be 2/0.

zonesize is too small The zonesize field for the volume is
an impossible number.

518 007–5484–012

Appendix B

DMF User Library libdmfusr.so

The subroutines that constitute the DMF user-command application program interface
(API) are available to user-written programs by linking to the DMF user library,
libdmfusr.so. Sites can design and write their own custom DMF user commands,
which eliminates the need to use wrapper scripts around the DMF user commands.

This appendix discusses the following:

• "Overview of the Distributed Command Feature and libdmfusr.so" on page 519

• "Considerations for IRIX®" on page 522

• "libdmfusr.so Library Versioning" on page 522

• "libdmfusr.so.2 Data Types" on page 524

• "User-Accessible API Subroutines for libdmfusr.so.2" on page 540

Overview of the Distributed Command Feature and libdmfusr.so

The distributed command feature allows DMF commands to execute on a host other
than the host on which the DMF daemon is running. (This feature was first made
available with DMF 2.7.) A host that imports DMF-managed filesystems from the
DMF daemon host machine can execute the DMF commands locally (see "DMF
Manager Web Interface" on page 9). The distributed command feature requires
tcpmux (RFC 1078).

The DMF user commands communicate with a process named dmusrcmd, which is
executed as setuid root. dmusrcmd performs validity checks and communicates
with the DMF daemon. (In releases prior to DMF 2.7, user commands communicated
directly with the DMF daemon and were installed as setuid root processes.)

007–5484–012 519

B: DMF User Library libdmfusr.so

In order for the DMF user commands to communicate in an efficient and consistent
manner with the dmusrcmd process, they must access the DMF user library, which is
installed in the following location according to platform operating system and
architecture:

Platform DMF User Library Location

irix-n32 /usr/lib32/libdmfusr.so[.n]

irix-64 /usr/lib64/libdmfusr.so[.n]

Linux ia64 /usr/lib/libdmfusr.so[.n]

Note: The old version of libdmfusr is located in
/usr/lib/dmf/libdmfusr_v1 in order to prevent
ldconfig(8) from updating the
/usr/lib/libdmfusr.so symbolic link to point to
the old library. Customers requiring the version 1
library can make use of it with the following steps:

cd /usr/lib/dmf/libdmfusr_v1

ln -s libdmfusr.so.1 libdmfusr.so

export LD_LIBRARY_PATH=/usr/lib/dmf/libdmfusr_v1

Linux x86_64 /usr/lib64/libdmfusr.so[.n]

Solaris /usr/lib/sparcv9/libdmfusr.so[.n]

Mac OS X /usr/lib/libdmfusr.[n].dylib

Each of the DMF user commands is linked to the library for its protocol-based
communications. (The DMF user library became a versioned shared-object library in
DMF 3.1. See "libdmfusr.so Library Versioning" on page 522 for more information
on accessing the correct version of libdmfusr.so.)

The underlying design of the API calls for the user command to make contact with a
dmusrcmd process by creating an opaque context object via a call to the API. This
context is then used as a parameter on each function (put, get, fullstat, or copy).
The context is used by each API subroutine to perform the requested operation and to
correctly return the results of the operation to the command.

In addition to the library, the libdmfusr.H, libdmfcom.H, and dmu_err.h header
files are provided. These files are required for sites to effectively create their own
commands. All header files are installed in /usr/include/dmf. The libdmf*
header files contain all of the object and function prototype definitions required by

520 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

the API subroutine calls. The dmu_err.h file contains all of the API error code
definitions. Along with each error code definition is a text string that is associated
with each of the error codes. This text string is the same message that is generated
automatically when the error occurs as part of the DmuErrInfo_t object (see
"DmuErrInfo_t" on page 532). The text string is included in the file as informational
only, and is not accessible by a program that includes dmu_err.h.

Each type of function request (put, get, fullstat, or copy) can be made via a
synchronous or an asynchronous API subroutine call:

• Synchronous subroutine calls do not return to the caller until the request has
completed, either successfully or unsuccessfully. These synchronous subroutines
return an error object to the caller that can be processed to determine the success
or failure of the call. If an application is making more than one call, these calls
will usually perform less efficiently than their asynchronous counterparts because
of the serial nature of their activity.

• Asynchronous subroutine calls return immediately to the caller. The return codes
of these asynchronous subroutines indicate whether the request was successfully
forwarded to dmusrcmd for processing. A successful return allows the calling
program to continue its own processing in parallel with the processing being
performed by dmusrcmd (or the DMF daemon) to complete the request. If the
request was successfully forwarded, a request ID that is unique within the scope
of the opaque context is returned to the caller. It is the responsibility of the caller
to associate the request ID with the correct completion object (described in
"DmuCompletion_t" on page 530) to determine the eventual result of the original
request.

There are several API subroutine calls for processing asynchronous request
completion objects. The user can choose to do any of the following:

• Be notified when all requests have completed without processing the return status
of each request.

• Process the return status of each request in the order in which they complete.

• Wait synchronously on an individual asynchronous request’s completion by
specifying the request ID on which to wait. By using this method, each request
return status can be processed in the order in which it was sent, known as request
ID order.

The API includes well-defined protocols that it uses to communicate with the
dmusrcmd process. Because these protocols make use of the pthreads(5)

007–5484–012 521

B: DMF User Library libdmfusr.so

mechanism, any user application program making use of the API via libdmfusr.so
must also link to the libpthread.so shared object library via one of the following:

-lpthread compiler option using cc(1) or CC(1)
-lpthread loader option using ld(1) or rld(1)

In many cases, the API subroutines pass the address of an object back to the caller by
setting a ** pointer accordingly. If errors occur and the subroutine is unable to
complete its task, the address returned may be NULL. It is up to the caller to check the
validity of an object’s address before using it in order to avoid causing a SIGSEGV
fault in the application program.

Considerations for IRIX ®

The DMF user library for each IRIX platform (lib32 and lib64) was compiled using
a MIPSproTM compiler. Compiling user applications that call DMF user library API
subroutines with compilers other than MIPSpro compilers may result in
incompatibilities causing load-time or run-time errors.

libdmfusr.so Library Versioning

!
Caution: The old libdmfusr.so.1 version of the DMF library described below will
be removed in a future release. Customers should recompile their applications to use
the new library.

DMF 3.1 introduced a new version of the DMF user library. This new version is not
compatible with the previous library nor with applications that were written and
linked with the previous library. To allow the use of older applications after installing
the current version of DMF and to facilitate upgrading older applications, the current
version of DMF provides both the old version and the new version and introduces a
linking mechanism.

When an application is created and linked with a shared object, the name of the actual
library that the application is ultimately linked with is stored in the executable file
and used at execution time to find a library of the same name for dynamic linking. In
previous releases, the library was named libdmfusr.so. Therefore, all existing DMF
commands and site-developed applications that use the library contain the filename
libdmfusr.so in the executable for linking with the library at execution time.

522 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

A common practice when creating a new version of a library is to add the suffix .n to
the library name, where n is an ever-increasing integer that refers to the current
version number.

Prior to DMF 3.1, the library named libdmfusr.so was an actual library, rather
than a link to a library. The current version of DMF provides the old library (renamed
libdmfusr.so.1) and the new library (named libdmfusr.so.2). All current DMF
user commands (such as dmput) were created and linked with libdmfusr.so.2 and
their executables contain the filename libdmfusr.so.2 for linking with the library.

The libdmfusr.so.1 library is identical to the libdmfusr.so library shipped
prior to DMF 3.1. The current DMF installation process will install a link named
libdmfusr.so that will point to libdmfusr.so.2. If needed, you can change the
link to point to libdmfusr.so.1 in order to satisfy linking for executables built
with a pre-DMF 3.1 libdmfusr.so.

The locations of the libraries and the link have not changed from previous releases (see
"Overview of the Distributed Command Feature and libdmfusr.so" on page 519).

The new libdmfusr.so link provides the following advantages:

• You can use the default setting, which does not require any knowledge about the
latest version of the library. When developing new site applications using the
library, the non-version-specific ld option -ldmfusr will result in the loader
following the link and using the new version of the library, libdmfusr.so.2.
The resulting applications will contain the name libdmfusr.so.2 in their
executable files for dynamic loading.

• You can reset the link to point to libdmfusr.so.1, which allows existing
site-developed applications to continue to work with the older version of the
library. This will not affect any of the DMF user commands because they contain
the name of the new library and make no use of the link at execution time. When
an older application executes, if filename libdmfusr.so is encountered by the
loader and the link points to libdmfusr.so.1, the application will continue to
work exactly as it did before the current DMF installation.

The two uses of the link as described above are mutually exclusive of each other.
Take care when using the link to enable older applications to run with the old library
while at the same time developing new applications using the new library. If the link
points to libdmfusr.so.1 and -ldmfusr is used to create a new application, the
older version of the library will be found and the resulting executable will contain the
filename libdmfusr.so.1 for use at execution time. If older applications are
required to run correctly while new applications are being developed, you must use

007–5484–012 523

B: DMF User Library libdmfusr.so

specific loader command options to ensure that the new applications are linked with
the latest library. This can be done by including the specific library name, such as
libdmfusr.so.2, on the ld or cc command instead of the generic library
specification -ldmfusr.

libdmfusr.so.2 Data Types
The data types described in this section are defined in libdmfusr.H or
libdmfcom.H. For the most up-to-date definitions of each of these types, see the
appropriate file. The following information is provided as a general description and
overall usage outline.

All of the data types defined in this section are C++ objects, and all have constructors
and destructors. Many have copy constructors and some have operator override
functions defined. Please refer to the appropriate .H header file to see what C++
functions are defined for each object in addition to the member functions described in
this section.

DmuAllErrors_t

The DmuAllErrors_t object provides the caller with as much information regarding
errors as is practical. The complex nature of the API and its communications allows
for many types of errors and several locations (processes) in which they can occur.
For example, a request might fail in the API, in the dmusrcmd process, or in the DMF
daemon.

The public member fields and functions of this class are as follows:

entry Specifies a read-only pointer allowing access to all
DmuErrInfo_t entries in the DmuAllErrors_t
internal array.

numErrors() Returns the number of DmuErrInfo_t entries in the
DmuAllErrors_t internal array.

resetErrors() Clears the DmuAllErrors_t internal array.

Following is an example using a DmuAllErrors_t object.

524 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: The following code is a guideline. It may refer to elements of a
DmuAllErrors_t structure that are not defined in your installed version of
libdmfcom.H.

report_errors(DmuAllErrors_t *errs)

{

int i;

if (!errs) {

return;

}

for (i = 0; i < errs->numErrors(); i++) {

fprintf(stdout, "group ’%s’ errcode ’%d’ who ’%s’ "

"severity ’%s’ position ’%s’ host ’%s’ message ’%s’\n",
errs->entry[i].group ? errs->entry[i].group : "NULL",

errs->entry[i].errcode,

DmuLogGetErrWhoImage(errs->entry[i].errwho),

DmuLogGetSeverityImage(errs->entry[i].severity),

errs->entry[i].position ? errs->entry[i].position : "NULL",
errs->entry[i].host ? errs->entry[i].host : "NULL",

errs->entry[i].message ? errs->entry[i].message : "NULL");

}

}

DmuAttr_t

The DmuAttr_t object defines the DMF attribute for a DMF-managed file.

The public member fields and functions of this class are as follows:

bfid Specifies a DmuBfid_t object (defined in
libdmfcom.H) that defines the file’s bitfile-ID (bfid).

dmflags Specifies an integer defining a file’s DMAPI flags.
Currently unused.

dmstate Specifies a dmu_state_t object that defines the file
state. Valid states are:

DMU_ST_DUALSTATE Dual-state

007–5484–012 525

B: DMF User Library libdmfusr.so

DMU_ST_MIGRATING Migrating

DMU_ST_NOMIGR No migration allowed

DMU_ST_OFFLINE Offline

DMU_ST_REGULAR Regular

DMU_ST_UNMIGRATING Unmigrating

fsys Specifies a DmuFileIoMethod_t object (defined in
libdmfcom.H) that defines the file’s filesystem type.

regbuf Specifies a DmuFullRegbuf_t object that defines the
file full region information. See "DmuFullRegbuf_t"
on page 535.

sitetag Defines the file site tag value. See dmtag(1).

version Specifies a DmuFileIoVersion_t object (defined in
libdmfcom.H) that defines the filesystem version.

DmuByteRange_t

The DmuByteRange_t object defines a range of bytes that are to be associated with a
put or get request.

The public member fields and functions of this class are as follows:

start_off Starting offset in bytes of the range in the file.

end_off Ending offset in bytes of the range in the file.

Nonnegative values for start_off or end_off indicate an offset from the beginning
of the file. The first byte in the file has offset 0. Negative values may be used to
indicate an offset from the end of the file. The value -1 indicates the last byte in the
file, -2 is the next-to-last byte, and so on. The range is inclusive, so if start_off
has a value of 2 and end_off has a value of 2, it indicates a range of one byte.

DmuByteRanges_t

The DmuByteRanges_t object defines a set of DmuByteRange_t objects that are to
be associated with a put or get request.

The public member fields and functions of this class are as follows:

526 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

clearByteRange

Clears the specified byte range in the DmuByteRanges_t object. The
clearByteRange() routine is restricted in how it handles negative
offsets, both in the DmuByteRange_t members of the
DmuByteRanges_t class and in its parameters. The following items
give the details of these restrictions. In the following items, start and
end are the parameters to the clearByteRange() routine, using the
following format:

clearByteRange(start,end)

• If start and end exactly match a DmuByteRange_t entry, then that
entry will be cleared. This includes negative numbers.

• If start is 0 and end is -1, all DmuByteRange_t entries will be
cleared. resetByteRanges() is the preferred method for
clearing all ranges.

• If start is positive and end is -1, then:

– All DmuByteRange_t entrys that have a positive start_off
value greater than or equal to start will be cleared

– All DmuByteRange_t entrys that have a positive start_off
value that is less than start and an end_off value of -1 will
be changed to have an end_off value of start-1 (that is, start
minus 1). For example, if DmuByteRanges_t has a single
range, 3:-1, then clearByteRange(4,-1) will leave a
single range, 3:3.

– All DmuByteRange_t entrys that have a positive start_off
value that is less than start and an end_off value that is
greater than start will be changed to have an end_off value of
start-1. For example, if DmuByteRanges_t has a single range
3:9, then clearByteRange(4,-1) will leave a single range
3:3.

• If start and end are both positive and a DmuByteRange_t entry
has positive start_off and end_off values, then the range
specified by start and end is cleared from the DmuByteRange_t.

007–5484–012 527

B: DMF User Library libdmfusr.so

• If start, end, and the start_off and end_off values of a
DmuByteRange_t are all negative, the range specified is cleared
from DmuByteRange_t.

entry

Specifies a read-only pointer allowing access to all DmuByteRange_t
entries in the DmuByteRanges_t internal array.

fromByteRangesImage()

Converts a string that represents a byte range and adds it to the
DmuByteRanges_t object. Strings that represent byte ranges are
described on the dmput(1) man page.

Note: In a string representing a byte range, -0 represents the last
byte in the file; in a DmuByteRange_t object, -1 represents the last
byte in the file.

For example, suppose byteranges is declared as the following:

DmuByteRanges_t byteranges;

Then each of the following statements will add the DmuByteRange_t
object that covers the entire file:

byteranges.setByteRange(0,-1);

byteranges.fromByteRangesImage("0:-0" ,&errstr);

If the byte range overlaps or is adjacent to an existing range in the
array, the items may be coalesced.

numByteRanges()

Returns the number of DmuByteRange_t objects contained in the
entry array.

resetByteRanges()

Resets the number of DmuByteRange_t objects in the array to zero.

rounding

Specifies the rounding method to be used to validate range addresses.
Only DMU_RND_NONE is valid.

528 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

setByteRange()

Adds a new range. If the range being added overlaps or is adjacent
to an existing range in the array, the items may be coalesced. It is
expected that the starting offset not be closer to the end-of-file than
the ending offset. For example, a starting offset of 5 and an ending
offset of 4 is invalid, and the setByteRange() function may not
add it to the array. The setByteRange() function cannot determine
the validity of some ranges, however, and may add ranges that the
put or get request will later ignore.

You can create a valid DmuByteRanges_t object using the default constructor with
or without the new operator, depending on the need. For example:

DmuByteRanges_t ranges;

DmuByteRanges_t *ranges = new DmuByteRanges_t;

The following example creates a DmuByteRanges_t named byteranges, adds a
DmuByteRange_t to it, then prints the entry to stdout:

DmuByteRanges_t byteranges;

int i;

byteranges.rounding = DMU_RND_NONE;

byteranges.setByteRange(0, 4095); /* specifies the first 4096 bytes in the file */

for (i = 0; i < byteranges.numByteRanges(); i++) {
fprintf(stdout,"Starting offset %lld, ending offset %lld\n",

byteranges.entry[i].start_off,

byteranges.entry[i].end_off);

}

The output to stdout would be as follows:

starting offset 0, ending offset 4095

The following example creates a DmuByteRanges_t named b, adds a
DmuByteRange_t to it, then clears a byte range:

DmuByteRanges_t b;

int i;
b.setByteRange(0,40960);

b.clearByteRange(4096,8191);

printf("Num byte ranges %d\n",b.numByteRanges());

for (i = 0; i < b.numByteRanges(); i++)

007–5484–012 529

B: DMF User Library libdmfusr.so

printf("%lld %lld\n",b.entry[i].start_off, b.entry[i].end_off);

The output to stdout would be as follows:

Num byte ranges 2
0 4095

8192 40960

Note: The toByteRangesImage() member function is not yet supported.

DmuCompletion_t

The DmuCompletion_t object is returned by one of the API request completion
subroutines (see "Request-Completion Subroutines" on page 559) with the results of
an asynchronous request.

The public member fields and functions of this class are as follows:

fhandle Specifies the file handle of the file associated with the
request.

reply_code Contains the overall success or failure status of the
request. If this value is DmuNoError, the request was
successful. If not, the allerrors field should be
checked for the appropriate error information.

request_id Associates the completion object with an asynchronous
request that was previously issued. This value
coincides with the request ID value that any of the
asynchronous subroutines return to the user.

request_type Specifies the type of the original request.

ureq_data Specifies a pointer to user request-type specific data.
For a fullstat user request, this will point to a
DmuFullstat_t object. This field has no meaning for
put, get, or copy user requests.

DmuCopyRange_t

The DmuCopyRange_t object defines a range of bytes that are to be associated with a
copy request.

530 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The public member fields and functions of this class are as follows:

dst_offset Specifies the starting offset in bytes in the destination
file to which the copy is sent.

src_length Specifies the length in bytes of the range to be copied.

src_offset Specifies the starting offset in bytes of the range in the
source file to be copied.

DmuCopyRanges_t

The DmuCopyRanges_t class defines an array of DmuCopyRange_t objects that are
to be associated with a copy request.

The public member fields and functions of this class are as follows:

entry Specifies a read-only pointer allowing access to all the
DmuCopyRange_t entries in the array.

numCopyRanges() Returns the number of DmuCopyRange_t objects
contained in the entry array. Only a single range is
supported.

resetCopyRanges() Resets the number of DmuCopyRange_t objects in the
array to zero.

rounding Specifies the rounding method to be used to validate
range addresses. Only DMU_RND_NONE is supported.

setCopyRange Adds a new DmuCopyRange_t object to the array.

Example: Create a DmuCopyRanges_t, add a DmuCopyRange_t to it, then print the
entry to stdout:

DmuCopyRanges_t copyranges;

int i;

copyranges.rounding = DMU_RND_NONE;

copyranges.setCopyRange(0, 4096, 0);

for (i = 0; i < copyranges.numCopyRanges(); i++) {

fprintf(stdout, "source offset %llu, length %llu, "

"destination offset %llu\n",

copyranges.entry[i].src_offset,

007–5484–012 531

B: DMF User Library libdmfusr.so

copyranges.entry[i].src_length,
copyranges.entry[i].dst_offset);

}

DmuErrHandler_f

The DmuErrHandler_f object defines a user-specified error handling subroutine.
Many of the API subroutines may result in the receipt of error information from the
dmusrcmd process or the DMF daemon in the processing of the request. As these
errors are received, they are formatted into a DmuErrInfo_t object (see
"DmuErrInfo_t" on page 532) and are generally returned to the caller either via a
calling parameter or as part of a DmuCompletion_t object.

In addition, however, if the error occurs in the course of processing internal protocol
messages, the DmuErrInfo_t object can also be passed into the DmuErrHandler_f
that the caller defined when the opaque context was created.

As part of the DmuCreateContext() API subroutine call, the caller can specify a
site-defined DmuErrHandler_f subroutine or the caller can use one of the following
API-supplied subroutines:

DmuDefErrHandler Outputs the severity of error and the message
associated with the error to stderr.

DmuNullErrHandler Does nothing with the error.

DmuErrInfo_t

The DmuErrInfo_t object contains the information about a single error occurrence.

The public member fields and functions of this class are as follows:

errcode Specifies an integer value generated by the originating
routine. This code may have many different meanings
for a single value, depending on who the originator is.

errwho Specifies an integer value that describes in more detail
the originator of the error. Use the
DmuLogGetErrWhoImage() subroutine to access a
character string corresponding to this value.

group Defines the originator of the error:

532 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

sgi_dmf (DMF routine)
sgi_dmf_site (site-defined policy routine)

host Specifies a character pointer to a string that contains the
hostname where the error originated.

message Specifies a character pointer to a string that contains the
body of the error message.

position Specifies a character pointer to a string that contains the
position of where the error was generated. For
example, this could be a pointer to a character string
generated using the __FILE__ and __LINE__
cpp(1) macros. This field may be NULL.

severity Specifies an integer value that describes the severity of
the error. Use the DmuLogGetSeverityImage()
subroutine to access a character string corresponding to
this value.

DmuError_t

The DmuError_t object is the type that most of the API subroutines pass as a return
code. The definition DmuNoError is the general success return code.

DmuEvents_t

The DmuEvents_t object defines the various event mask settings that a file may
contain.

Valid settings are defined as the logical OR of any of the following:

DMF_EVENT_DESTROY Generates a kernel event for each destroy request on
the file.

DMF_EVENT_READ Generates a kernel event for each read request on the
file.

DMF_EVENT_TRUNCATE Generates a kernel event for each truncate request on
the file.

007–5484–012 533

B: DMF User Library libdmfusr.so

DMF_EVENT_WRITE Generates a kernel event for each write request on the
file.

DmuFhandle_t

The DmuFhandle_t object contains the ASCII representation of the file fhandle as it
is known on the host on which the file’s filesystem is native.

The public member fields and functions of this class are as follows:

fromFhandleImage() Copies an ASCII file handle image string into the hanp
field.

hanp Specifies a character array containing the file handle.

is_valid() Verifies the validity of the hanp field.

toFhandleImage() Copies the hanp field into a DmuStringImage_t
object.

DmuFsysInfo_t

The DmuFsysInfo_t object contains the subset of DMF filesystem configuration
information that may be relevant to a user command.

The public member functions of this class are as follows:

is_configured() Returns true if the filesystem is defined in the DMF
configuration file, either as a DMF-managed filesystem
or an unmanaged archive filesystem.

is_managed() Returns true if the filesystem is defined in the DMF
configuration file and has a MIGRATION_LEVEL value
other than archive. Files in DMF-managed filesystems
can be used for all libdmfusr.so file request
subroutines (such as put or get), with the exception
that they cannot be the source file of an archive
request (DmuArchiveAsync/DmuArchiveSync).

is_unmanaged() Returns true if the filesystem is defined in the DMF
configuration file and has a MIGRATION_LEVEL value
of archive. Files in unmanaged archive filesystems
can be used as the source of an archive request

534 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

(DmuArchiveAsync/DmuArchiveSync) or the
destination of a copy request
(DmuCopyAsync_2/DmuCopySync_2). (However, see
min_archive_file_size().) Unmanaged archive
filesystems do not support put, get, or settag
requests, and cannot be used as the source of a copy
request.

min_archive_file_size()Specifies the smallest file size that should be submitted
in an archive request for this filesystem, or a copy
request when this filesystem is the destination of the
copy request. This only applies to filesystems for
which is_unmanaged() is true.

DmuFullRegbuf_t

The DmuFullRegbuf_t object defines the DMF fullregion buffer information for
a file.

The public member fields and functions of this class are as follows:

arrcnt Specifies the number of regions in the regions array.

regcnt Specifies the number of regions in the regions array
that are valid. Only 0 and 1 are supported.

regions Specifies a DmuFullRegion_t array. See
"DmuRegion_t" on page 537.

DmuFullstat_t

The DmuFullstat_t object is a user-accessible version of the internal DMF
fullstat object. It contains all of the basic stat(2) information regarding the file,
as well as all of the DMAPI-related fields.

007–5484–012 535

B: DMF User Library libdmfusr.so

The public member fields and functions of this class are as follows:

attr Specifies a DmuAttr_t object that defines the DMF
attribute of the file. See "DmuAttr_t" on page 525.

evmask Specifies a DmuEvents_t object that defines the event
mask for the file. See "DmuEvents_t" on page 533.

host Specifies the hostname where the file is native.

inconsistent Indicates that the DmuFullstat_t object has
inconsistencies in the fields.

is_valid() Returns 1 if the DmuFullstat_t is valid.

mntpt Specifies a DmuOpaque_t object (defined in
libdmfcom.H) defining the mount point of the
filesystem containing the file on host.

regbuf Specifies a DmuRegionbuf_t object that defines the
regions of the file. See "DmuRegionbuf_t" on page 537.

relpath Specifies the relative path of the file in mntpt on host.

stat Specifies a DmuStat_t object that contains the fields
representing those in the stat(5) structure. See the
stat(2) system call.

DmuPriority_t

The DmuPriority_t object defines the priority of the request.

Valid settings are defined as follows:

DMU_DEF_PRIORITY Defines the default priority of the request. You should
use DMU_DEF_PRIORITY in any function calls with a
deferred priority parameter to guarantee forward
compatibility. DMF translates DMU_DEF_PRIORITY to a
default value that is within the range
DMU_MIN_PRIORITY to DMU_MAX_PRIORITY.

DMU_MIN_PRIORITY Defines the minimum priority.

536 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DMU_MAX_PRIORITY Defines the maximum priority.

DmuRegion_t

The DmuRegion_t object defines a file region from address A (rg_offset) to
address B (rg_offset + rg_size) that has a different event mask (described by
rg_flags below) from the regions adjacent to it. When there is more than one
region, the file is partial state.

The public member fields and functions of this class are as follows:

rg_flags Defines the region event flag bitmask. See
"DmuEvents_t" on page 533.

rg_offset Defines the region starting offset in bytes. The start of
the file is byte 0.

rg_size Defines the region size in bytes.

DmuRegionbuf_t

The DmuRegionbuf_t object defines the file region buffer information for a file.

The public member fields and functions of this class are as follows:

arrcnt Specifies the number of regions in the regions array.

regcnt Specifies the number of regions in the regions array
that are valid. Only 0 and 1 are supported.

regions Specifies the DmuRegion_t array. See the
DmuRegion_t description.

DmuReplyOrder_t

The DmuReplyOrder_t object selects the order in which asynchronous replies are to
be returned by the API reply processing subroutines.

Valid settings are defined as follows:

DmuAnyOrder Returns replies in the order the replies are received.

007–5484–012 537

B: DMF User Library libdmfusr.so

DmuReqOrder Returns replies in the order the requests were issued.

DmuReplyType_t

The DmuReplyType_t object is used to select the type of reply that an API can receive
after sending a request. All requests will receive a final reply when the dmusrcmd
process has completed processing the request, whether it was successful or not.

Valid settings are defined as follows:

DmuIntermed Specifies an intermediate reply, an informational
message to alert the caller that the request is being
processed and may not complete for some time. An
example of this is the intermediate reply that is sent
when a put request has been forwarded to an MSP or
LS for processing and the completion reply is deferred
until that operation is complete.

DmuFinal Specifies the final reply for the request.

This definition is used to specify the types of replies that some of the reply processing
subroutines defined below are to consider.

DmuSeverity_t

The DmuSeverity_t object specifies the level of message reporting.

Valid settings are defined as follows:

DmuSevDebug4 Highest level of debug reporting.

DmuSevDebug3 Second-highest level of debug reporting.

DmuSevDebug2 Third-highest level of debug reporting.

DmuSevDebug1 Lowest level of debug reporting.

DmuSevVerbose Verbose message reporting.

DmuSevInform Informative message reporting.

DmuSevWarn Warning message reporting.

538 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DmuSevFatal Error message reporting.

DmuVolGroup_t

The DmuVolGroup_t object defines a volume group (VG) name. As an entry in a
DmuVolGroups_t array, it is used to specify one of the VGs to be used for a DMF
put request. For more information about VGs, see "How DMF Works" on page 13.

The public member field and function of this class is as follows:

vgname Specifies a character pointer to a string containing the
name of a valid VG.

DmuVolGroups_t

The DmuVolGroups_t object defines an array of DmuVolGroup_t objects. This
object is used to specify the list of VGs to which a caller would like a file to be
written in a DMF put request.

The public member fields and functions of this class are as follows:

clearVolGroup() Removes a DmuVolGroup_t object from the internal
DmuVolGroup_t array.

fromVolGroupsImage() Converts a string image of the following format to a
DmuVolGroups_t object:

vgname1 vgname2 ...

The delimiter between multiple vgname values may be
a space, a tab, or a comma.

numVolGroups() Returns the number of DmuVolGroup_t objects in the
internal DmuVolGroup_t array.

resetVolGroups() Clears the internal DmuVolGroup_t array.

setVolGroup() Adds a DmuVolGroup_t object to the internal
DmuVolGroup_t array.

toVolGroupsImage() Converts a DmuVolGroups_t object to a
DmuStringImage_t (defined in libdmfcom.H) in the
following format:

vgname1 vgname2 ...

The delimiter between multiple vgname values may be
a space, a tab, or a comma.

007–5484–012 539

B: DMF User Library libdmfusr.so

User-Accessible API Subroutines for libdmfusr.so.2

This section describes the following types of user-accessible API subroutines:

• "Context-Manipulation Subroutines" on page 540

• "Filesystem-Information Subroutine" on page 543

• "DMF File-Request Subroutines" on page 544

• "Request-Completion Subroutines" on page 559

Context-Manipulation Subroutines

The DmuContext_t object manipulated by the DmuCreateContext(),
DmuDestroyContext(), and DmuChangedDirectory() subroutines is designed to
be completely opaque to the application. The context is used on all API subroutine
calls so that the API can successfully manage user request and reply processing, but
its internal contents are of no interest or use to the application.

You can use multiple DmuContext_t objects within the same process if desired.

DmuCreateContext() Subroutine

The DmuCreateContext() subroutine creates an opaque context for the API to use
to correctly communicate with the dmusrcmd process. This subroutine should be the
first API subroutine called by a DMF user command. Not only is the context created,
but the communication channel to the dmusrcmd process is initialized.

Normally, a context would be used for multiple requests and only destroyed when no
more requests are to be made. Creating and destroying a context for each request is
likely to be inefficient if done frequently.

The prototype is as follows:

extern DmuError_t

DmuCreateContext(

const char *prog_name,

DmuCreateFlags_t create_flags,
DmuSeverity_t severity,

DmuErrHandler_f err_handler,

DmuContext_t *dmuctxt,

pid_t *child_pid,

540 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DmuAllErrors_t *errs)

The parameters are as follows:

child_pid Specifies the process ID (PID) of the child that is forked
and executed to create the dmusrcmd process. This
value is returned to the caller so that the caller is free to
handle the termination of child signals as desired.

create_flags Specifies a DmuCreateFlags_t object (defined in
libdmfusr.H) that specifies create options. The only
valid create_flags option is:

CREATE_CHDIR

Allows change-directory requests
via the DmuChangedDirectory()
routine. See
"DmuChangedDirectory()
Subroutine" on page 542.

dmuctxt Specifies a DmuContext_t object (defined in
libdmfusr.H) that is returned with the address of the
newly created API to be used on all subsequent
subroutine calls that require the program’s API context.

err_handler Specifies a user-defined error handling subroutine. The
DmuErrHandler_f object is defined in libdmfusr.H.
If the err_handler parameter is NULL, the default
error handler DmuDefErrHandler is used. For more
information, see "DmuErrHandler_f" on page 532.

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

prog_name Contains the name of the program. This field can be the
full pathname of the program or some other
representation.

severity Specifies a DmuSeverity_t object that specifies the
level of error reporting. See "DmuSeverity_t" on page
538.

If the DmuCreateContext call completes successfully, it returns DmuNoError.

007–5484–012 541

B: DMF User Library libdmfusr.so

DmuChangedDirectory() Subroutine

The DmuChangedDirectory subroutine changes the current directory of the context.
This subroutine is useful to a process that will be making multiple API file requests
using relative pathnames while the process might also be making chdir(3)
subroutine calls.

When a process makes a chdir call, if the DmuChangedDirectory() subroutine is
called before the next API file request that references a relative pathname is made, the
file reference will be successfully made by the process.

The prototype is as follows:

extern DmuError_t

DmuChangedDirectory(
const DmuContext_t dmuctxt,

const char *new_directory,

DmuAllErrors_t *errs);

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

new_directory Specifies a read-only character pointer to the string
containing the directory path that was passed on the
last chdir(3) subroutine call.

DmuDestroyContext() Subroutine

The DmuDestroyContext() subroutine destroys the API context dmuctxt. The
memory that had been allocated for its use is freed.

The prototype is as follows:

extern DmuError_t
DmuDestroyContext(

DmuContext_t dmuctxt,

DmuAllErrors_t *errs)

542 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The parameters are as follows:

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

Filesystem-Information Subroutine

The DmuFilesysInfo() routine returns DMF configuration information about a
filesystem. The dmarchive(1) command uses this routine to determine whether it
can issue an archive or copy request to the DMF daemon when copying data
between a source and target.

The DmuFilesysInfo() subroutine does not return until the request has either
completed successfully or been aborted due to an error condition.

Upon success, a DmuFsysInfo_t object is transferred to the caller.

The prototype is as follows:

DmuError_t

DmuFilesysInfo(

const DmuContext_t dmuctxt,

const char *dmf_path,
const char *fsys_path,

int flags,

DmuFsysInfo_t *fsys_info,

DmuAllErrors_t *errs);

The parameters are as follows:

dmf_path Specifies a path on a DMF-managed filesystem, used
only for the purposes of locating the DMF server.

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine

007–5484–012 543

B: DMF User Library libdmfusr.so

will use it to return errors. See "DmuAllErrors_t" on
page 524.

flags Specifies one of the flags found in
/usr/lib/dmf/libdmfcom.H as FS_INFO*.

fsys_info Specifies the pointer that will be returned with the
DmuFsysInfo_t object.

fsys_path Specifies a path on the filesystem for which you want
configuration information. It does not need to be on a
DMF-managed filesystem, nor does it need to be a
mount point.

If the routine succeeds, it returns DmuNoError.

DMF File-Request Subroutines

Each of the following subroutines makes a DMF file request:

• "copy File Requests" on page 545

• "archive File Requests" on page 547

• "fullstat Requests" on page 549

• "put File Requests" on page 551

• "get File Requests" on page 554

• "settag File Requests" on page 556

The context parameter that is included in each of these subroutines must have been
already initialized via DmuCreateContext.

544 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

copy File Requests

The DmuCopyAsync_2() and DmuCopySync_2() subroutines perform copy
requests in the manner of the dmcopy(1) command. The dmarchive(1) command
also issues copy requests when copying from files that are in a migrated state in a
DMF-managed filesystem.

The DmuCopyAsync_2() subroutine returns immediately after the copy request has
been forwarded to the dmusrcmd process. If a reply is desired, the caller must
process the reply to this request. See "Request-Completion Subroutines" on page 559.

The DmuCopySync_2() subroutine does not return until the requested copy has
either completed successfully or been aborted due to an error condition.

The prototypes are as follows:

extern DmuError_t
DmuCopyAsync_2(

const DmuContext_t dmuctxt,

const char *srcfile_path,

const char *dstfile_path,

const char *pref_vgmg,
DmuCopyFlags_t copy_flags,

const DmuCopyRanges_t *copyranges,

DmuPriority_t priority,

DmuReqid_t *request_id,

DmuAllErrors_t *errs)

extern DmuError_t

DmuCopySync_2(

const DmuContext_t dmuctxt,

const char *srcfile_path,

const char *dstfile_path,
const char *pref_vgmg,

DmuCopyFlags_t copy_flags,

const DmuCopyRanges_t *copyranges,

DmuPriority_t priority,

DmuAllErrors_t *errs)

The parameters are as follows:

copy_flags Specifies the OR’d value of the following copy
operation flags as defined in libdmfcom.H:

007–5484–012 545

B: DMF User Library libdmfusr.so

• COPY_NONE – No flags specified

• COPY_PRESV_DFILE – Do not truncate the
destination file before the copy operation

• COPY_ADDR_ALIGN – Allow an address in the
destination file that is greater than the size of the file

• COPY_NOWAIT – Return immediately if the daemon
is not available to process the request (do not wait)

copyranges Specifies a pointer to a DmuCopyRanges_t object, as
defined in "DmuCopyRanges_t" on page 531 and in
libdmfcom.H. This object can have only one
DmuCopyRange_t as defined in "DmuCopyRange_t"
on page 530 and in libdmfcom.H.

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

dstfile_path Specifies the pathname of the destination (output) file
for the copy operation. This path must point to a file
that exists or can be created on a filesystem visible from
the DMF server and any parallel data-mover nodes. See
also "DMF Direct Archiving Requirements" on page 44.

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

pref_vgmg Specifies a list of MSP, volume group, or migrate group
names from which the file should be copied if possible.
If the file has a copy in one of the elements in the list,
the DMF daemon will attempt to copy the file first
using that copy, overriding the default copy order as
defined in the DMF configuration file. This option is
only available to the root user.

priority Specifies a DmuPriority_t object (defined in
libdmfcom.H) that defines the request priority.

request_id Specifies a pointer to a DmuReqid_t object (defined in
libdmfcom.H) parameter that will be returned with
the unique request ID of the asynchronous request.

546 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

This value can be used when processing
DmuCompletion_t objects (see "Request-Completion
Subroutines" on page 559).

srcfile_path Specifies the pathname of the source (input) file for the
copy operation. It must be an offline or dual-state
DMF file.

If the subroutine succeeds, it returns DmuNoError.

archive File Requests

The DmuArchiveAsync() and DmuArchiveSync() subroutines perform archive
requests in the manner of the dmarchive(1) command, when dmarchive is
operating in the mode of copying files from an unmanaged archive filesystem to a
DMF-managed filesystem.

The DmuArchiveAsync() subroutine returns immediately after the archive request
has been forwarded to the dmusrcmd process. If a reply is desired, the caller must
process the reply to this request. See "Request-Completion Subroutines" on page 559.

The DmuArchiveSync() subroutine does not return until the requested archive
has either completed successfully or been aborted due to an error condition.

The prototypes are as follows:

extern DmuError_t

DmuArchiveAsync(

const DmuContext_t dmuctxt,
const char *src_path,

const char *dst_path,

const DmuVolGroups_t *volgroups,

int arch_flags,

DmuPriority_t priority,

DmuReqid_t *request_id,
DmuAllErrors_t *errs);

extern DmuError_t

DmuArchiveSync(

const DmuContext_t dmuctxt,
const char *src_path,

const char *dst_path,

const DmuVolGroups_t *volgroups,

007–5484–012 547

B: DMF User Library libdmfusr.so

int arch_flags,
DmuPriority_t priority,

DmuAllErrors_t *errs);

The parameters are as follows:

arch_flags Specifies the OR’d value of the following archive
operation flags as defined in libdmfcom.H:

• ARCH_NONE – No flags specified

• ARCH_NOWAIT – Return immediately if the daemon
is not available to process the request (do not wait)

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

dst_path Specifies the pathname of the destination (output) file
for the archive operation. This path must refer to a
file on a DMF-managed filesystem that either does not
currently exist or exists and is zero-length.

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

priority Specifies a DmuPriority_t object (defined in
libdmfcom.H) that defines the request priority.
(Deferred implementation.)

request_id Specifies a pointer to a DmuReqid_t object (defined in
libdmfcom.H) parameter that will be returned with
the unique request ID of the asynchronous request.
This value can be used when processing
DmuCompletion_t objects (see "Request-Completion
Subroutines" on page 559).

src_path Specifies the pathname of the source (input) file for the
archive operation. It must be a file in a non-DMF
managed filesystem. See "DMF Direct Archiving
Requirements" on page 44.

548 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

volgroups Specifies a pointer to a DmuVolGroups_t object. See
"DmuVolGroups_t" on page 539.

If the subroutine succeeds, it returns DmuNoError.

fullstat Requests

The following subroutines send a fullstat request to the dmusrcmd process:

DmuFullstatByFhandleAsync()
DmuFullstatByFhandleSync()
DmuFullstatByPathAsync()
DmuFullstatByPathSync()

These subroutines have the following things in common:

• The ’Sync’ versions of these subroutines do not return until the DmuFullstat_t
has been received or the request has been aborted due to errors.

• The ’Async’ versions of these subroutines return immediately after successfully
forwarding the fullstat request to the dmusrcmd process. If a reply is desired,
the caller must process the reply to this request. See "Request-Completion
Subroutines" on page 559. That is the only way to actually receive the
DmuFullstat_t object for an ’Async’ fullstat request, however. The
DmuFullstatCompletion() subroutine has been supplied to extract the
fullstat information from a fullstat completion object.

• The ’ByPath’ versions of these subroutines allow the target file to be defined by
its pathname.

• The ’ByFhandle’ versions of these subroutines allow the target file to be defined
by its filesystem handle, the fhandle. These subroutines are valid only when the
command making the call is on the DMF server machine, and they are valid only
when a user has sufficient (root) privileges.

These subroutines can return a successful completion (DmuNoError), but might not
return valid DmuFullstat_t information. The subroutines are designed to return
the normal stat type information regardless of whether a DMAPI fullstat could
be successfully completed. Upon return from these subroutines, the caller can use the
DmuFullstat_t is_valid() member function to verify the validity of the DMAPI
information in the DmuFullstat_t block.

The ultimate result of this request is the transfer of a DmuFullstat_t object to the
caller.

007–5484–012 549

B: DMF User Library libdmfusr.so

The prototypes are as follows:

extern DmuError_t
DmuFullstatByFhandleAsync(

const DmuContext_t dmuctxt,

const DmuFhandle_t *client_fhandle,

DmuReqid_t *request_id,

DmuAllErrors_t *errs)

extern DmuError_t

DmuFullstatByFhandleSync(

const DmuContext_t dmuctxt,

const DmuFhandle_t *client_fhandle,

DmuFullstat_t *dmufullstat,
DmuAllErrors_t *errs)

extern DmuError_t

DmuFullstatByPathAsync(

const DmuContext_t dmuctxt,
const char *path,

DmuReqid_t *request_id,

DmuAllErrors_t *errs)

extern DmuError_t

DmuFullstatByPathSync(
const DmuContext_t dmuctxt,

const char *path,

DmuFullstat_t *dmufullstat,

DmuFhandle_t *fhandle,

DmuAllErrors_t *errs)

The parameters are as follows:

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

dmufullstat Specifies the pointer that will be returned with the
DmuFullstat_t object.

client_fhandle Specifies the DMF filesystem fhandle of the target file.
Valid for use only by a privileged (root) user on the
DMF server machine.

550 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

fhandle Specifies the pointer that will be returned with the
DmuFhandle_t value.

path Specifies the relative or absolute pathname of the target
file.

request_id Specifies a pointer to a DmuReqid_t object (defined in
libdmfcom.H) parameter that will be returned with
the unique request ID of the asynchronous request.
This value can be used when processing
DmuCompletion_t objects (see "Request-Completion
Subroutines" on page 559).

If the subroutine succeeds, it returns DmuNoError.

put File Requests

The following subroutines perform the put DMF request:

DmuPutByFhandleAsync()
DmuPutByFhandleSync()
DmuPutByPathAsync()
DmuPutByPathSync()

These subroutines have the following things in common:

• The ’Sync’ versions do not return until the put request has either completed
successfully, or been aborted due to errors.

• The ’Async’ versions return immediately after successfully forwarding the put
request to the dmusrcmd process. If a reply is desired, the caller must process the
reply to this request. See "Request-Completion Subroutines" on page 559.

• The ’ByPath’ versions allow the target file to be defined by its pathname.

• The ’ByFhandle’ versions allow the target file to be defined by its filesystem
handle, the fhandle. These subroutines are valid only when the command
making the call is on the DMF server machine, and they are valid only when a
user has sufficient (root) privileges.

007–5484–012 551

B: DMF User Library libdmfusr.so

The prototypes are as follows:

extern DmuError_t
DmuPutByFhandleAsync(

const DmuContext_t dmuctxt,

const DmuFhandle_t *client_fhandle,

DmuMigFlags_t mig_flags,

const DmuByteRanges_t *byteranges,

const DmuVolGroups_t *volgroups,
DmuPriority_t priority,

DmuReqid_t *request_id,

DmuAllErrors_t *errs)

extern DmuError_t
DmuPutByFhandleSync(

const DmuContext_t dmuctxt,

const DmuFhandle_t *client_fhandle,

DmuMigFlags_t mig_flags,

const DmuByteRanges_t *byteranges,
const DmuVolGroups_t *volgroups,

DmuPriority_t priority,

DmuAllErrors_t *errs)

extern DmuError_t

DmuPutByPathAsync(
const DmuContext_t dmuctxt,

const char *path,

DmuMigFlags_t mig_flags,

const DmuByteRanges_t *byteranges,

const DmuVolGroups_t *volgroups,
DmuPriority_t priority,

DmuReqid_t *request_id,

DmuAllErrors_t *errs)

extern DmuError_t
DmuPutByPathSync(

const DmuContext_t dmuctxt,

const char *path,

DmuMigFlags_t mig_flags,

const DmuByteRanges_t *byteranges,

const DmuVolGroups_t *volgroups,

552 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DmuPriority_t priority,
DmuAllErrors_t *errs)

The parameters are as follows:

byteranges Specifies a pointer to a DmuByteRanges_t object. See
"DmuByteRanges_t" on page 526.

client_fhandle Specifies the DMF filesystem fhandle of the target file.
Valid for use only by a privileged (root) user on the
DMF server machine.

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

mig_flags Specifies the following migration flags as defined in
libdmfcom.H:

• MIG_FREE – Free the space associated with the file.

• MIG_NONE – No flags specified.

• MIG_NOWAIT – Return immediately if the daemon is
not available to process the request (do not wait)

path Specifies the relative or full pathname of the target file.

priority Specifies a DmuPriority_t object (defined in
libdmfcom.H) that defines the request priority.
(Deferred implementation.)

request_id Specifies a pointer to a DmuReqid_t object (defined in
libdmfcom.H) parameter that will be returned with
the unique request ID of the asynchronous request.
This value can be used when processing
DmuCompletion_t objects (see "Request-Completion
Subroutines" on page 559).

volgroups Specifies a pointer to a DmuVolGroups_t object. See
"DmuVolGroups_t" on page 539.

If the subroutine succeeds, it returns DmuNoError.

007–5484–012 553

B: DMF User Library libdmfusr.so

get File Requests

The following subroutines perform the get DMF request:

DmuGetByFhandleAsync_2()
DmuGetByFhandleSync_2()
DmuGetByPathAsync_2()
DmuGetByPathSync_2()

These subroutines have the following things in common:

• The ’Sync’ versions do not return until the get request has either completed
successfully or has been aborted due to errors.

• The ’Async’ versions return immediately after successfully forwarding the get
request to the dmusrcmd process. If a reply is desired, the caller must process the
reply to this request. See "Request-Completion Subroutines" on page 559.

• The ’ByPath’ versions of these calls allow the target file to be defined by its
pathname.

• The ’ByFhandle’ versions allow the target file to be defined by its filesystem
handle, the fhandle. These subroutines are valid only when the command
making the call is on the DMF server machine, and they are valid only when a
user has sufficient (root) privileges.

The prototypes are as follows:

extern DmuError_t

DmuGetByFhandleAsync_2(

const DmuContext_t dmuctxt,
const DmuFhandle_t *client_fhandle,

int recall_flags,

const DmuByteRanges_t *byteranges, /* may be NULL */

const char *pref_vgmg, /* may be NULL */

DmuPriority_t priority,
DmuReqid_t *request_id,

DmuAllErrors_t *errs);

extern DmuError_t

DmuGetByFhandleSync_2(

const DmuContext_t dmuctxt,
const DmuFhandle_t *client_fhandle,

int recall_flags,

554 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

const DmuByteRanges_t *byteranges, /* may be NULL */
const char *pref_vgmg, /* may be NULL */

DmuPriority_t priority,

DmuAllErrors_t *errs);

extern DmuError_t
DmuGetByPathAsync_2(

const DmuContext_t dmuctxt,

const char *path,

int recall_flags,

const DmuByteRanges_t *byteranges, /* may be NULL */

const char *pref_vgmg, /* may be NULL */
DmuPriority_t priority,

DmuReqid_t *request_id,

DmuAllErrors_t *errs);

extern DmuError_t
DmuGetByPathSync_2(

const DmuContext_t dmuctxt,

const char *path,

int recall_flags,

const DmuByteRanges_t *byteranges, /* may be NULL */

const char *pref_vgmg, /* may be NULL */
DmuPriority_t priority,

DmuAllErrors_t *errs);

The parameters are as follows:

byteranges Specifies a pointer to a DmuByteRanges_t object. See
"DmuByteRanges_t" on page 526.

client_fhandle Specifies the DMF filesystem fhandle of the target file.
Valid for use only by a privileged (root) user on the
DMF server machine.

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

path Specifies the relative or full pathname of the target file.

007–5484–012 555

B: DMF User Library libdmfusr.so

pref_vgmg Specifies a list of MSP, volume group, or migrate group
names from which the files should be recalled if
possible. If a file has a copy in one of the elements in
the list, the DMF daemon will attempt to recall the file
first using that copy, overriding the default recall order
as defined in the DMF configuration file. This option is
only available to the root user.

priority Specifies a DmuPriority_t object (defined in
libdmfcom.H) that defines the request priority.

recall_flags Specifies the following recall flags as defined in
libdmfcom.H:

• RECALL_ATIME - Update the access time of the file.
This parameter is only valid with
DmuGetByPathAsync_2() and
DmuGetByPathSync_2().

• RECALL_NONE – No flags specified

• RECALL_NOWAIT – Return immediately if the
daemon is not available to process the request (do
not wait)

request_id Specifies a pointer to a DmuReqid_t (defined in
libdmfcom.H) parameter that will be returned with
the unique request ID of the asynchronous request.
This value can be used when processing
DmuCompletion_t objects (see "Request-Completion
Subroutines" on page 559).

If the subroutine succeeds, it returns DmuNoError.

settag File Requests

The settag request performs the same functional task as the dmtag(1) command.
The following subroutines perform the settag DMF request:

DmuSettagByFhandleAsync()
DmuSettagByFhandleSync()
DmuSettagByPathAsync()
DmuSettagByPathSync()

These subroutines have the following things in common:

556 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• The ’Sync’ versions do not return until the settag request has either completed
successfully or has been aborted due to errors.

• The ’Async’ versions return immediately after successfully forwarding the settag
request to the dmusrcmd process. If a reply is desired, the caller must process the
reply to this request. See "Request-Completion Subroutines" on page 559.

• The ’ByPath’ versions allow the target file to be defined by its pathname.

• The ’ByFhandle’ versions allow the target file to be defined by its filesystem
handle, the fhandle. These subroutines are valid only when the command
making the call is on the DMF server machine and when a user has sufficient
(root) privileges.

The prototypes are as follows:

extern DmuError_t
DmuSettagByFhandleAsync(

const DmuContext_t dmuctxt,

const DmuFhandle_t *client_fhandle,

DmuSettagFlags_t settag_flags,

DmuSitetag_t sitetag,
DmuPriority_t priority,

DmuReqid_t *request_id,

DmuAllErrors_t *errs)

extern DmuError_t

DmuSettagByFhandleSync(
const DmuContext_t dmuctxt,

const DmuFhandle_t *client_fhandle,

DmuSettagFlags_t settag_flags,

DmuSitetag_t sitetag,

DmuPriority_t priority,
DmuAllErrors_t *errs)

extern DmuError_t

DmuSettagByPathAsync(

const DmuContext_t dmuctxt,
const char *path,

DmuSettagFlags_t settag_flags,

DmuSitetag_t sitetag,

DmuPriority_t priority,

DmuReqid_t *request_id,

007–5484–012 557

B: DMF User Library libdmfusr.so

DmuAllErrors_t *errs)

extern DmuError_t

DmuSettagByPathSync(

const DmuContext_t dmuctxt,

const char *path,
DmuSettagFlags_t settag_flags,

DmuSitetag_t sitetag,

DmuPriority_t priority,

DmuAllErrors_t *errs)

The parameters are as follows:

client_fhandle Specifies the DMF filesystem fhandle of the target file.
Valid for use only by a privileged (root) user on the
DMF server machine.

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

path Specifies the relative or full pathname of the target file.

priority Specifies a DmuPriority_t object (defined in
libdmfcom.H) that defines the request priority.
(Deferred implementation.)

request_id Specifies a pointer to a DmuReqid_t (defined in
libdmfcom.H) parameter that will be returned with
the unique request ID of the asynchronous request.
This value can be used when processing
DmuCompletion_t objects (see "Request-Completion
Subroutines" on page 559).

settag_flags Specifies the following settag flags as defined in
libdmfcom.H:

• SETTAG_NONE – No flags specified

• SETTAG_NOWAIT – Return immediately if the
daemon is not available to process the request (do
not wait)

558 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

sitetag Defines the file site tag value. See dmtag(1).

If the subroutine succeeds, it returns DmuNoError.

Request-Completion Subroutines

The request completion subroutines are provided so that the application can process
the completion events of any asynchronous requests it might have issued. The caller
can choose to process each request’s completion object (DmuCompletion_t) or to be
notified when each request has responded with either an intermediate or final
(completion) reply.

The asynchronous requests described previously along with the following completion
subroutines allow the user to achieve maximum parallelization of the processing of all
requests.

DmuAwaitReplies() Subroutine

The DmuAwaitReplies() subroutine performs a synchronous wait until the number
of outstanding request replies of the type specified is less than or equal to
max_outstanding. This subroutine is called by a user who does not want to
perform individual processing of each outstanding request, but wants to know when
a reply (intermediate or final) has been received for each request that has been sent to
this point.

The prototype is as follows:

extern DmuError_t

DmuAwaitReplies(

const DmuContext_t dmuctxt,
DmuReplyType_t type,

int max_outstanding,

DmuAllErrors_t *errs)

The parameters are as follows:

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

007–5484–012 559

B: DMF User Library libdmfusr.so

max_outstanding Specifies the number of outstanding requests allowed
for which the type reply has not been received before
the subroutine returns. If this parameter is 0, all type
replies will have been received when the subroutine
returns.

type Defines the type of reply to be received. The caller can
wait for an intermediate or final reply for the
outstanding requests.

See the definition of DmuReplyType_t in
"DmuReplyType_t" on page 538 or in libdmfcom.H.

If no errors occurred getting the next reply, this subroutine returns DmuNoError.

DmuFullstatCompletion() Subroutine

The DmuFullstatCompletion() subroutine can be called when asynchronous
fullstat replies are being processed by DmuGetNextReply() or
DmuGetThisReply(). When the reply is received, the DmuCompletion_t object
that is part of the reply can be used as an input parameter to this routine, which will
then extract the DmuFullstat_t object and the DmuFhandle_t objects that are
contained in the DmuCompletion_t object’s ureq_data field.

The prototype is as follows:

extern DmuError_t

DmuFullstatCompletion(
DmuCompletion_t *comp;

DmuFullstat_t *dmufullstat,

DmuFhandle_t *fhandle,

DmuAllErrors_t *errs)

The parameters are as follows:

comp Specifies the DmuCompletion_t object from an
asynchronous fullstat request.

dmufullstat Specifies a pointer to an existing DmuFullstat_t
object. If comp references a successful fullstat
request, dmufullstat will be set to be equal to the
DmuFullstat_t that was returned with the reply.

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine

560 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

will use it to return errors. See "DmuAllErrors_t" on
page 524.

fhandle Specifies a pointer to an existing DmuFhandle_t object.
If comp references a successful fullstat request,
fhandle will be set to be equal to the DmuFhandle_t
that was returned with the reply.

DmuGetNextReply() Subroutine

The DmuGetNextReply() subroutine returns the completion object of the next reply
based on the order specified on the call.

The caller can specify DmuIntermed or DmuFinal for the type parameter. If
DmuIntermed is specified and an intermediate reply is the next reply received and
there are no completed replies available for processing, the comp parameter is not set
(will be NULL) when the subroutine returns. An intermediate reply has no completion
object associated with it; a return of this type is informational only.

This subroutine performs a synchronous wait until a request reply of the type
specified on the call is received. At the time of the call, any reply that has already
been received and is queued for processing is returned immediately.

The prototype is as follows:

extern DmuError_t

DmuGetNextReply(
const DmuContext_t dmuctxt,

DmuReplyOrder_t order,

DmuReplyType_t type,

DmuCompletion_t *comp,

DmuAllErrors_t *errs)

The parameters are as follows:

comp Specifies a pointer to an existing DmuCompletion_t
object. If a reply was available for processing according
to the parameters on the calling subroutine, the
DmuCompletion_t object pointed to by comp will be
set with all of the appropriate values. See
"DmuCompletion_t" on page 530.

If the reply_code field of the comp parameter is not
DmuNoError, the comp->allerrors object will

007–5484–012 561

B: DMF User Library libdmfusr.so

contain the error information needed to determine the
cause of the error.

Note: The errs parameter on the subroutine call does
not contain the error information for the failed request.

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

Note: This object will return errors that occurred while
waiting for or receiving this reply. It does not refer to
the errors that might have occurred during the request
processing that resulted in the reply Those errors are
available in the comp object.

order Defines the order in which the request replies should be
returned. The caller can process the replies in the order
the replies are received (DmuAnyOrder) or in the order
the requests were issued (DmuReqOrder).

See the definition of DmuReplyOrder_t in
"DmuReplyOrder_t" on page 537 or in libdmfcom.H.

type Defines the type of reply to be received. The caller can
wait for an intermediate or final reply for the
outstanding requests. The receipt of an intermediate
reply returns no data.

If no errors occurred getting the next reply, this subroutine returns DmuNoError. If
there are no outstanding requests pending, a return code of DME_DMU_QUEUEEMPTY
is returned. You can use a check for DME_DMU_QUEUEEMPTY to terminate a while
loop based on this subroutine. Any other error return code indicates an error, and the
errs parameter can be processed for the error information.

562 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DmuGetThisReply() Subroutine

The DmuGetThisReply() subroutine returns the completion object of the specified
request. This subroutine performs a synchronous wait until a request reply specified
on the call is received.

The prototype is as follows:

extern DmuError_t

DmuGetThisReply(

const DmuContext_t dmuctxt,

DmuReqid_t request_id,

DmuCompletion_t *comp,
DmuAllErrors_t *errs)

The parameters are as follows:

comp Specifies a pointer to an existing DmuCompletion_t
object. If a reply was available for processing according
to the parameters on the calling subroutine, the
DmuCompletion_t object pointed to by comp will be
set with all of the appropriate values. See
"DmuCompletion_t" on page 530.

The reply_code field of the comp parameter is the
ultimate status of the request. A successful comp has a
reply_code of DmuNoError. If the reply_code of
comp is not DmNoError, the comp->allerrors object
will contain the error information needed to determine
the cause of the error.

Note: The errs parameter on the subroutine call does
not contain the error information for the failed request.

dmuctxt Specifies a DmuContext_t object that was previously
created by DmuCreateContext().

errs Specifies a pointer to a DmuAllErrors_t object. This
value may be NULL. If it is not NULL, the subroutine
will use it to return errors. See "DmuAllErrors_t" on
page 524.

007–5484–012 563

B: DMF User Library libdmfusr.so

Note: This object will return errors that occurred while
waiting for or receiving this reply. It does not refer to
the errors that might have occurred during the request
processing that resulted in the reply Those errors are
available in the comp object.

request_id Specifies the unique request ID of the request for which
the caller wants to wait.

If no errors occurred getting the next reply, this subroutine returns DmuNoError. Any
other error return code indicates an error, and the errs parameter can be processed
for the error information.

564 007–5484–012

Appendix C

Site-Defined Policy Subroutines and the
sitelib.so Library

This appendix provides an overview of the site-defined policy feature and a summary
of the policy subroutines sites may write:

• "Overview of Site-Defined Policy Subroutines" on page 565

• "Getting Started with Custom Subroutines" on page 566

• "Considerations for Writing Custom Subroutines" on page 568

• "sitelib.so Data Types" on page 569

• "Site-Defined Policy Subroutines" on page 573

• "Helper Subroutines for sitelib.so" on page 582

Overview of Site-Defined Policy Subroutines
Site-defined policy subroutines are loaded dynamically by DMF to provide custom
decision-making at key points in its processing. Several DMF processes, including
dmfdaemon, can call subroutines within sitelib.so.

You do not need to use this feature, in which case DMF will function as documented
in the manuals and man pages. But if you wish, you can implement one or more of
these subroutines in order to override DMF’s default behavior.

If you use the site-defined policy feature, you must communicate the policy changes
to your user community; otherwise, they will not be able to predict how the user
commands will work. The man page for any command with a site-defined policy will
state something like the following:

If your site is using the site-defined policy feature, the default behavior may be
overridden. Please check with your administrator for any behavior differences
due to site-defined policies.

You should also consider adding ERROR, WARN, and INFO messages into the reply
stream for commands you customize so that you can routinely return messages to the
user that explain what was changed in their request. Doing so will allows the users to
understand why the behavior was different from what they expected.

007–5484–012 565

C: Site-Defined Policy Subroutines and the sitelib.so Library

The subroutines are written in C++ according to the subroutine prototypes in
/usr/include/dmf/libdmfadm.H. They are placed in a shared-object library
called /usr/lib/dmf/sitelib.so.

The parameters and return values of the subroutines and the name of the
sitelib.so library are fixed and cannot be altered by the site. In general, the
parameters provide all of the information DMF has that is relevant to the purpose of
the subroutine, which is described in the comments preceding each subroutine.

The code within the subroutines performs whatever processing the site wishes. To
assist in several common operations, such as extracting information from the DMF
configuration file, optional helper subroutines are provided in
/usr/include/dmf/libdmfadm.H.

Getting Started with Custom Subroutines
The /usr/share/doc/dmf-*/info/sample directory contains the following files
to demonstrate generating the sitelib.so library:

• sample_sitelib.C contains source code of basic sample subroutines

• sample_sitelib.mk is the associated makefile

Note: If you use these files as a base for implementing subroutines of your own, be
sure to keep them in a different directory and/or rename them to avoid any conflict
when DMF is upgraded and new sample files are installed. For example, you could
rename the files sitelib.c and sitelib.mk.

566 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

For example, to use the basic subroutine example sample_sitelib.C, do the
following:

1. Copy sample_sitelib.C and its associated makefile sample_sitelib.mk
from /usr/share/doc/dmf-*/info/sample to a directory of your own with
names of your own choice.

For example, if you wanted to work in the /tmp/testdmf directory:

$ cp /usr/share/doc/dmf-*/info/sample/sample_sitelib.C /tmp/testdmf/sitelib.C

$ cp /usr/share/doc/dmf-*/info/sample/sample_sitelib.mk /tmp/testdmf/sitelib.mk

2. In the makefile, specify the stem from which the library filename and source code
filename will be derived by editing the value for the SITELIB parameter. For
example, to use a stem of sitelib (that is, sitelib.so for the library and
sitelib.c for the source code file):

SITELIB=sitelib

Note: Although you can set the SITELIB value to something other than
sitelib for testing purposes, when you actually want to run with DMF, it must
be sitelib.

3. Read the comments at the start of each subroutine and alter the supplied code to
suit your requirements. As supplied, each subroutine is disabled. To enable one
or more subroutines, modify the SiteFncMap variable at the bottom of the
source file (in our example, sitelib.C).

Note: The name of the SiteFncMap variable is fixed and cannot be altered.
However, you can change the names of the site-defined subroutines such as
SiteCreateContext().

4. Build the sitelib.so library by using the make(1) command:

$ make -f sitelib.mk

5. Print a list of the subroutines that have been enabled and visually verify that it is
what you expect:

$ make -f sitelib.mk verbose

007–5484–012 567

C: Site-Defined Policy Subroutines and the sitelib.so Library

6. Install the library on a DMF server, which requires you to be the root user:

$ su
make -f sitelib.mk install

Note: You do not need to install sitelib.so on a machine that functions only
as a DMF client.

For subroutines that affect the operation of the DMF daemon, library server, or
MSP, you must wait for a minute or so for the new sitelib.so library to be
noticed. You will see a message in the relevant log file when this happens.

7. Test your new library by monitoring the relevant log file with tail -f while
you present test cases to DMF. You may also find it useful to have a Resource
Watcher configured and running or to use dmstat.

Considerations for Writing Custom Subroutines
As you write your own custom subroutines, be aware of the following:

• The sitelib.so file must be owned by root and must not be writable by
anyone else, for security reasons. If these conditions are not met, DMF will ignore
sitelib.so and use the default behavior.

• The sitelib.so library should not use the stdin, stdout, or stderr files as
this could cause problems for DMF, possibly endangering data. For information
about sending messages to users or to log files, see "DmaSendLogFmtMessage()"
on page 593 and "DmaSendUserFmtMessage()" on page 594.

• If you overwrite the sitelib.so file while it is in use (for example by copying a
new version of your file over the top of the old one), DMF processes may abort or
run improperly. The DMF daemon may or may not be able to restart them
properly.

To update the file, you should do one of the following:

– Use the mv(1) command to move the new file over the top of the old one, so
that any existing DMF processes will continue to use the previous version of
the file, which is now unlinked pending removal. The install target in the
supplied makefile is also a safe way to update the file.

568 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

– Delete the old file with rm(1) before installing the new one using cp, mv, or
make install.

– Shut down DMF while the update takes place.

This warning also applies to changes to the DMF configuration file.

• Site-defined policy subroutines should not call subroutines in libdmfusr.so,
such as DmuSettagByPathSync(). They are free to call member functions of
classes defined in libdmfcom.H, such as DmuVolGroups_t::numVolGroups().

• At times, the site-defined subroutines may be called many times in rapid
succession. They should therefore be as efficient as possible, avoiding any
unnecessary processing, especially of system calls.

For example, when dmfsfree is invoked to prevent a filesystem from filling,
site-defined subroutines may be called one or more times for every file in the
filesystem as dmfsfree prepares its list of candidates prior to migrating and/or
freeing some of them. If the functions are slow, DMF may not be able to react to
the situation in time to prevent the filesystem from filling.

sitelib.so Data Types
The data types described in this section are defined in libdmfadm.H. The
information in this section is provided as a general description and overall usage
outline. Other data types that are referenced in this file are defined in libdmfcom.H;
see Appendix B, "DMF User Library libdmfusr.so" on page 519.

Note: For the most current definitions of these types, see the libdmfadm.H file.

DmaContext_t

The DmaContext_t object stores information for DMF in order to provide continuity
from one subroutine call to the next. It is an opaque object that is created when a
DMF process first loads sitelib.so and it exists until that process unloads it. This
context is provided as a parameter for each of the site-defined policy subroutines.

007–5484–012 569

C: Site-Defined Policy Subroutines and the sitelib.so Library

Site-defined subroutines cannot directly access the information held in the context,
but they can obtain information from it by using the following subroutines:

• "DmaGetContextFlags()" on page 589

• "DmaGetProgramIdentity()" on page 592

• "DmaGetUserIdentity()" on page 592

Site-defined subroutines can also store their own information in the context and
retrieve it on subsequent calls by using the following subroutines:

• "DmaSetCookie()" on page 595

• "DmaGetCookie()" on page 589

DmaFrom_t

The DmaFrom_t object specifies the type of policy statement being evaluated.

There are the following possible values:

DmaFromAgeWeight Indicates that an AGE_WEIGHT policy statement is being
evaluated.

DmaFromSpaceWeight Indicates that a SPACE_WEIGHT policy statement is
being evaluated.

DmaFromVgSelect Indicates that a SELECT_MSP or SELECT_VG policy
statement is being evaluated.

DmaIdentity_t

The DmaIdentity_t object provides information, if known, about the program
calling the site-defined subroutine and the user whose request generated the call.

570 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The public member fields and functions of this class are as follows:

realm_type

Specifies the environment in which the type of data that is contained
in the realm_data field is meaningful.

The following settings are defined:

• DMF_REALM_UNIX means that the unix_1 member of
realm_data contains valid information

• DMF_REALM_UNKNOWN means that realm_data is not reliable

realm_data

Specifies user identity information that is specific to the environment
defined by realm_type. Only the unix_1 member of the union is
defined for the realm_type of DMF_REALM_UNIX.

If the UID and/or GID values are 0xffffffff, the values are not
reliable.

logical_name

Specifies a character string containing the program name of the
process. This may be an absolute or relative pathname. If the value is
unknown, the program name was unavailable.

product_name_and_revision

Specifies a character string containing the product name and revision
(for example, DMF_3.1.0.0).

locale_1

Specifies a character string containing the locale value. See the
locale(1) man page.

host

Specifies a character string containing the host on which the
DmaIdentity_t originated.

pid

Specifies the process ID where the DmaIdentity_t originated.

007–5484–012 571

C: Site-Defined Policy Subroutines and the sitelib.so Library

instance_id

Specifies a further refinement of the PID field. Because a process may
create more than one DmaIdentity_t, this value is incremented by
one for each new DmaIdentity_t.

os_type

Specifies a character string containing a description of the operating
system where the DmaIdentity_t originated.

os_version

Specifies a character string containing a description of the operating
system version where the DmaIdentity_t originated.

cpu_type

Specifies a character string containing a description of the CPU type
where the DmaIdentity_t originated.

Note: Any of the descriptive character strings may be set to unknown if the field’s
true value cannot be determined.

DmaLogLevel_t

The DmaLogLevel_t object specifies the level of a message. The administrator may
select a log level in the DMF configuration file; messages with a less severe level than
what is specified in the configuration file will not appear in the log.

DmaRealm_t

The DmaRealm_t object specifies the realm. Only the UNIX realm is supported.

DmaRecallType_t

The DmaRecallType_t object specifies the type of kernel recall being performed.

572 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

SiteFncMap_t

The SiteFncMap_t object specifies the site subroutine map. The various DMF
processes that can call subroutines in sitelib.so look for a variable named
SiteFncMap, of type SiteFncMap_t, in the sitelib.so library. It then uses the
addresses provided in this variable to find the site-defined subroutines. If the variable
is not found, DMF will not make any calls to subroutines in sitelib.so.

Site-Defined Policy Subroutines
DMF looks for the variable named SiteFncMap, of type SiteFncMap_t, in the
sitelib.so library. It then uses the addresses provided in this variable to find
site-defined subroutines listed in this section. You can provide any number of these
subroutines in the sitelib.so library.

SiteArchiveFile()

The SiteArchiveFile() subroutine allows sites some control over the DMF
archive requests. It is invoked when a dmarchive(1) command is issued to copy
data directly to secondary storage or when one of the following libdmfusr.so
subroutines is called:

DmuArchiveAsync()
DmuArchiveSync()

This subroutine is not called when automated space management migrates a file.

!
Caution: If SiteArchiveFile() is implemented, it takes precedence over any when
clause being used to control MSP, volume group (VG), or migrate group (MG)
selection, whether or not SiteWhen() has been implemented.

If this subroutine returns a value other than DmuNoError, the archive request will
be rejected. The subroutine may not issue log messages, but it can issue messages to
the user.

The prototype is as follows:

typedef DmuError_t (*SiteArchiveFile_f) (

const DmaContext_t dmacontext,

const DmuFullstat_t *fstat,

007–5484–012 573

C: Site-Defined Policy Subroutines and the sitelib.so Library

const char *src_path,
const char *dst_path,

const DmuFhandle_t *dst_fhandle,

const int flags,

const DmuVolGroups_t *policy_volgrps,

const DmuPriority_t user_priority,

const int user_flags,

const DmuVolGroups_t *user_volgrps,

DmuPriority_t *operative_priority,

int *operative_flags,
DmuVolGroups_t *operative_volgrps);

The parameters are as follows:

dmacontext Refers to the context established when sitelib.so
was loaded.

fstat Specifies the DmuFullstat_t information of the target
file for the archive request.

src_path Specifies the pathname of the source file for the
archive request.

dst_path Specifies the pathname of the destination file for the
archive request.

dst_fhandle Specifies the DmuFhandle_t of the destination file for
the archive request.

flags Specifies whether the SiteArchiveFile() subroutine
is called for the first time (0) or is replayed (nonzero).
SiteArchiveFile() can be called multiple times for
the same request. For example, if dmfdaemon is not
running, a dmarchive request will periodically try to
establish a connection with it, and
SiteArchiveFile() may be called. If flags is 0, this
is the first time that SiteArchiveFile() has been
called for a particular request. When a request is
replayed, DMF reevaluates the parameters to
SiteArchiveFile() before calling it.

574 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

policy_volgrps Specifies an input parameter that contains the MSPs,
VGs, and MGs that have been selected by the policy
statements in the DMF configuration file.

user_priority
user_flags
user_volgrps

Contains information entered by the user as a
dmarchive parameter (where supported) or as a
parameter to one of the following libdmfusr.so
subroutines:

DmuArchiveAsync()
DmuArchiveSync()

operative_priority
operative_flags
operative_volgrps

Contains the information that will be used when the
request is made to dmfdaemon. These are all both
input and output parameters. You can alter the
operative_flags and operative_volgrps values.
(Currently, operative_priority is ignored. For
compatibility with future releases of DMF, it is
recommended that you do not alter the value of this
parameter.) If you alter operative_volgrps, take
care that it expands to a non-overlapping set of MSPs
and VGs when all the group members of the MGs are
considered.

SiteCreateContext()

The SiteCreateContext() subroutine provides the opportunity to create a
site-specific setup. It is called when sitelib.so is loaded. If no such setup is
required, it need not be implemented. If this subroutine returns anything other than
DmuNoError, no other subroutines in sitelib.so, including
SiteDestroyContext(), will be called by the current process, unless sitelib.so
is changed and therefore reloaded.

This subroutine may not issue messages to the user because the user details are
unknown at the time it is invoked. If it is invoked by a program with a log file, such

007–5484–012 575

C: Site-Defined Policy Subroutines and the sitelib.so Library

as dmfdaemon, it can issue log messages by calling DmaSendLogFmtMessage().
You can call DmaGetContextFlags() to determine if it can issue log messages.

The prototype is as follows:

typedef DmuError_t (*SiteCreateContext_f)(

const DmaContext_t dmacontext);

The parameter is as follows:

dmacontext Refers to the context established when sitelib.so
was loaded.

SiteDestroyContext()

The SiteDestroyContext() subroutine provides the opportunity for site-specific
cleanup. It is called when sitelib.so is unloaded. If no such cleanup is required, it
need not be implemented. This subroutine may not issue messages to the user
because the user details are no longer valid at the time it is invoked. If it is invoked
by a program with a log file, such as dmfdaemon, it can issue log messages by calling
DmaSendLogFmtMessage(). You can call DmaGetContextFlags() to determine if
it can issue log messages.

The prototype is as follows:

typedef void (*SiteDestroyContext_f)(

const DmaContext_t dmacontext);

The parameter is as follows:

dmacontext Refers to the context established when sitelib.so
was loaded.

SiteKernRecall()

The SiteKernRecall() subroutine allows sites some control over kernel requests to
recall a file. It is invoked when DMF receives a kernel request to recall a file. For
example, a read() system call for a file that is currently in OFL state would result in
SiteKernRecall() being called. The dmget command or the equivalent
libdmfusr.so library call would not result in a call to SiteKernRecall().

576 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

This subroutine may accept or reject the request or change its priority; no other
changes are possible. If the subroutine returns a value other than DmuNoError, the
request will be rejected.

Note: offset and length pertain to the range of the file that the user’s I/O request
referenced, not the byte range that dmfdaemon will actually recall.

The subroutine may not issue messages to the user, but it can issue messages to the
DMF daemon log.

The prototype is as follows:

typedef DmuError_t (*SiteKernRecall_f) (

DmaContext_t dmacontext,

const DmuFullstat_t *fullstat,

const DmuFhandle_t *fhandle,
uint64_t offset,

uint64_t length,

DmaRecallType_t recall_type,

DmuPriority_t *operative_priority);

The parameters are as follows:

dmacontext Refers to the context established when sitelib.so
was loaded.

fullstat Specifies the DmuFullstat_t of the file being recalled.

fhandle Specifies the DmuFhandle_t of the file being recalled.

offset Pertains to the range of the file that the user’s I/O
request referenced.

length Pertains to the length of the file that the user’s I/O
request referenced.

recall_type Specifies the type of recall.

operative_priority Specifies the priority of the operation.
operative_priority is both an input and an output
parameter and you can alter the value. Valid values are
in the range DMU_MIN_PRIORITY to
DMU_MAX_PRIORITY. Higher values imply higher

007–5484–012 577

C: Site-Defined Policy Subroutines and the sitelib.so Library

priority. Only volume groups use priority; disk, DCM,
and FTP MSPs ignore it.

SitePutFile()

The SitePutFile() subroutine allows sites some control over the DMF put
requests. It is invoked when a dmput command is issued or when one of the
following libdmfusr.so subroutines is called:

DmuPutByPathAsync()
DmuPutByPathSync()
DmuPutByFhandleAsync()
DmuPutByFhandleSync()

This subroutine is not called when automated space management migrates a file.

!
Caution: If SitePutFile() is implemented, it takes precedence over any when
clause being used to control MSP, VG, or MG selection, whether or not SiteWhen()
has been implemented.

If this subroutine returns a value other than DmuNoError, the put request will be
rejected. The subroutine may not issue log messages, but it can issue messages to the
user.

The prototype is as follows:

typedef DmuError_t (*SitePutFile_f) (

const DmaContext_t dmacontext,

const DmuFullstat_t *fstat,
const char *path,

const DmuFhandle_t *fhandle,

const int flags,

const DmuVolGroups_t *policy_volgrps,

const DmuPriority_t user_priority,

const int user_flags,

const DmuByteRanges_t *user_byteranges,

const DmuVolGroups_t *user_volgrps,

DmuPriority_t *operative_priority,

578 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

int *operative_flags,
DmuByteRanges_t *operative_byteranges,

DmuVolGroups_t *operative_volgrps);

The parameters are as follows:

dmacontext Refers to the context established when sitelib.so
was loaded.

fstat Specifies the DmuFullstat_t information of the target
file for the put request.

path Specifies the pathname of the target file for the put
request (if known) or NULL.

fhandle Specifies the DmuFhandle_t of the target file for the
put request.

flags Specifies whether the SitePutFile() subroutine is
called for the first time (0) or is replayed (nonzero).
SitePutFile() can be called multiple times for the
same request. For example, if dmfdaemon is not
running, a dmput request will periodically try to
establish a connection with it, and SitePutFile()
may be called. If flags is 0, this is the first time that
SitePutFile() has been called for a particular
request. When a request is replayed, DMF reevaluates
the parameters to SitePutFile() before calling it.

policy_volgrps Specifies an input parameter that contains the MSPs,
VGs, and MGs that have been selected by the policy
statements in the DMF configuration file.

user_priority
user_flags
user_byteranges
user_volgrps

Contains information entered by the user as a dmput
parameter (where supported) or as a parameter to one
of the following libdmfusr.so subroutines:

DmuPutByPathAsync()
DmuPutByPathSync()
DmuPutByFhandleAsync()
DmuPutByFhandleSync()

007–5484–012 579

C: Site-Defined Policy Subroutines and the sitelib.so Library

operative_priority
operative_flags
operative_byteranges
operative_volgrps

Contains the information that will be used when the
request is made to dmfdaemon. These are all both
input and output parameters. You can alter the
operative_flags, operative_byteranges, and
operative_volgrps values. (Currently,
operative_priority is ignored. For compatibility
with future releases of DMF, it is recommended that
you do not alter the value of this parameter.) If you
alter operative_volgrps, take care that it expands to
a non-overlapping set of MSPs and VGs when all the
group members of the MGs are considered.

SiteWhen()

The SiteWhen() subroutine provides the opportunity to supply the value for the
sitefn variable in when clauses in the following parameters:

AGE_WEIGHT
SPACE_WEIGHT
SELECT_MSP
SELECT_VG

This subroutine and the sitefn variable in when clauses are not supported for the
SELECT_LOWER_VG parameter.

!
Caution: If SitePutFile() or SiteArchiveFile() is implemented, it takes
precedence over any when clause being used to control MSP, VG, or MG selection,
whether or not SiteWhen() has been implemented.

For example,

SELECT_VG tp9840 when uid = archive or sitefn = 6

580 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

If this subroutine is unavailable, either because it was not implemented or because the
sitelib.so library is not accessible, the expression using sitefn is evaluated as
being false. Therefore, the example above would be treated as if it were the following:

SELECT_VG tp9840 when uid = archive or false

Or:

SELECT_VG tp9840 when uid = archive

If a policy stanza contains multiple references to sitefn, it is possible that the
subroutine is only called once and the value returned by that call may be used for
several substitutions of sitefn. Therefore, a policy that contains the following will
not necessarily call the subroutine three times:

AGE_WEIGHT -1 0 when sitefn < 10

AGE_WEIGHT 1 .1
SPACE_WEIGHT 1 1e-6 when sitefn != 11

SPACE_WEIGHT 2 1e-9 when sitefn > 19

SPACE_WEIGHT 3.14 1e-12

The subroutine can issue log messages in some circumstances and user messages in
others. You can call DmaGetContextFlags() to determine what kind of messages
are possible.

The prototype is as follows:

typedef int (*SiteWhen_f) (

const DmaContext_t dmacontext,
const DmuFullstat_t *fstat,

const DmuFhandle_t *fhandle,

DmaFrom_t fromtyp);

007–5484–012 581

C: Site-Defined Policy Subroutines and the sitelib.so Library

The parameters are as follows:

dmacontext Refers to the context established when sitelib.so
was loaded.

fstat Specifies the DmuFullstat_t of the file being
evaluated.

fhandle Specifies the DmuFhandle_t of the file being evaluated.

fromtyp Indicates what kind of policy is being evaluated.

Helper Subroutines for sitelib.so

This section describes optional subroutines that may be called from sitelib.so and
are present in the processes that load sitelib.so.

DmaConfigStanzaExists()

The DmaConfigStanzaExists() subroutine checks whether a specified stanza
exists in the DMF configuration file.

Note: Values in the configuration file may change while DMF is running.

582 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The prototype is as follows:

DmaBool_t
DmaConfigStanzaExists(

const DmaContext_t dmacontext,

const char *type,

const char *stanza);

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

type Specifies the type of the stanza being checked.

stanza Specifies the name of the stanza being checked.

For example, if the DMF configuration file contained the following:

define /dmf1

TYPE filesystem

POLICIES space_policy vg_policy

enddef

Then the following call would return true:

DmaConfigStanzaExists(dmacontext, "filesystem","/dmf1");

DmaGetConfigBool()

The DmaGetConfigBool() subroutine extracts parameter values of type DmaBool_t
from the specified stanza in the DMF configuration file. If there is no such parameter
definition or if it exists but with a missing or improper value, then the default is used.

Note: Values in the configuration file may change while DMF is running.

007–5484–012 583

C: Site-Defined Policy Subroutines and the sitelib.so Library

The prototype is as follows:

DmaBool_t
DmaGetConfigBool(

const DmaContext_t dmacontext,

const char *stanza,

const char *param,

DmaBool_t default_val);

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

stanza Specifies the name of the stanza being searched.

param Specifies the name of the parameter for which
DmaGetConfigBool() is searching.

default_val Specifies the value to use if param is not found in
stanza or if param has a missing or invalid value.

DmaGetConfigFloat()

The DmaGetConfigFloat() subroutine extracts parameter values of type float
from the specified stanza in the DMF configuration file. If there is no such parameter
definition or if it exists but with a missing or invalid value, the default is used.

Note: Values in the configuration file may change while DMF is running.

The prototype is as follows:

float

DmaGetConfigFloat(

const DmaContext_t dmacontext,

const char *stanza,

const char *param,

float default_val,
float min,

float max);

584 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

stanza Specifies the name of the stanza being searched.

param Specifies the name of the parameter for which
DmaGetConfigFloat() is searching.

default_val Specifies the value to use if param is not found in
stanza or if param has a missing or invalid value.

min Defines the minimum valid value.

max Defines the maximum valid value.

DmaGetConfigInt()

The DmaGetConfigInt() subroutine extracts parameter values of type int64_t
from the specified stanza in the DMF configuration file. If there is no such parameter
definition or if it exists but with a missing or invalid value, then a default value is
used.

Note: Values in the configuration file may change while DMF is running.

The prototype is as follows:

int64_t

DmaGetConfigInt(

const DmaContext_t dmacontext,

const char *stanza,

const char *param,
int64_t default_val,

int64_t min,

int64_t max);

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

007–5484–012 585

C: Site-Defined Policy Subroutines and the sitelib.so Library

stanza Specifies the name of the stanza being searched.

param Specifies the name of the parameter for which
DmaGetConfigInt() is searching.

default_val Specifies the value to use if param is not found in
stanza or if param has a missing or invalid value.

min Defines the minimum valid value.

max Defines the maximum valid value.

DmaGetConfigList()

The DmaGetConfigList() subroutine returns a pointer to an array of words found
in the parameter in the specified stanza. The items value points to a block of
memory containing an array of string pointers are well as the strings themselves; the
end of the array is marked by a NULL pointer. The block of memory has been
allocated by the malloc() subroutine and can be released with the free()
subroutine if desired. The caller is responsible for releasing this memory.

Note: Values in the configuration file may change while DMF is running.

The prototype is as follows:

DmaBool_t

DmaGetConfigList(

const DmaContext_t dmacontext,
const char *stanza,

const char *param,

char *** items);

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

stanza Specifies the name of the stanza being searched.

param The name of the parameter for which
DmaGetConfigList() is searching.

586 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

items Specifies an output value that points to a block of
memory containing an array of string pointers as well
as the strings themselves; the end of the array is
marked by a NULL pointer.

DmaGetConfigStanza()

The DmaGetConfigStanza() subroutine return a pointer to an array of parameters
and values for the specified stanza in the DMF configuration file. (That is, it provides
the entire stanza, after comments have been removed.) The items value points to a
block of memory containing an array of structures with string pointers as well as the
strings themselves; the end of the array is marked by a NULL pointer. The block of
memory has been allocated by the malloc() subroutine and can be released with the
free() subroutine if desired. The caller is responsible for releasing this memory.

Note: Values in the configuration file may change while DMF is running.

The prototype is as follows:

DmaBool_t

DmaGetConfigStanza(
const DmaContext_t dmacontext,

const char *stanza,

DmaConfigData_t **items);

}

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

stanza Specifies the name of the stanza being searched.

items Specifies an output value that points to a block of
memory containing an array of structures with string

007–5484–012 587

C: Site-Defined Policy Subroutines and the sitelib.so Library

pointers as well as the strings themselves; the end of
the array is marked by a NULL pointer.

DmaGetConfigString()

Extracts a string from the specified stanza in the DMF configuration file and returns
it. If there is no such parameter definition, the default is used. If the parameter exists
but with a missing value, the null string (which is a valid value) is returned.

Note: Values in the configuration file may change while DMF is running.

The prototype is as follows:

void

DmaGetConfigString(

const DmaContext_t dmacontext,
const char *stanza,

const char *param,

const char *default_val,

DmuStringImage_t &result);

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

stanza Specifies the name of the stanza being searched.

param Specifies the name of the parameter for which
DmaGetConfigString() is searching.

default_val Specifies the value to use if param is not found in
stanza. If param is found in stanza but has a
missing value, the null string is returned.

result Specifies an output parameter, containing the result.

588 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DmaGetContextFlags()

The DmaGetContextFlags() subroutine determines if a given subroutine can issue
log messages or issue user messages.

Note: If DmaFlagContextValid() is not set in the return value, no use should be
made of any other bits.

DmaGetContextFlags() can return the following values, which may be OR’d
together:

DmaFlagContextValid Indicates that the context is valid.

DmaFlagLogAvail Indicates that DmaSendLogFmtMessage may be called.

DmaFlagMsgAvail Indicates that DmaSendUserFmtMessage may be
called.

The prototype is as follows:

uint64_t

DmaGetContextFlags(

const DmaContext_t dmacontext);

The parameter is as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

DmaGetCookie()

The DmaGetCookie() subroutine returns the cookie that was stored in dmacontext
by a call to DmaSetCookie(). If a NULL value is returned, either the context is
invalid or the cookie was not set.

The prototype is as follows:

void *

DmaGetCookie(

const DmaContext_t dmacontext);

007–5484–012 589

C: Site-Defined Policy Subroutines and the sitelib.so Library

The parameter is as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

DmaGetDaemonMigGroups()

The DmaGetDaemonMigGroups subroutine returns the list of configured migrate
groups.

The prototype is as follows:

const DmuVolGroups_t *

DmaGetDaemonMigGroups(

const DmaContext_t dmacontext)

The parameter is as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

DmaGetDaemonVolAndMigGroups()

The DmaGetDaemonVolAndMigGroups() subroutine returns the MSPs, VGs, and
MGs that the dmfdaemon is currently configured to use.

Note: Values in the configuration file may change while DMF is running.

The prototype is as follows:

const DmuVolGroups_t *

DmaGetDaemonVolAndMigGroups(

const DmaContext_t dmacontext);

The parameter is as follows:

590 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

DmaGetDaemonVolGroups()

The DmaGetDaemonVolGroups() subroutine returns the MSPs and VGs that the
dmfdaemon is currently configured to use.

Note: Values in the configuration file may change while DMF is running.

The prototype is as follows:

const DmuVolGroups_t *

DmaGetDaemonVolGroups(

const DmaContext_t dmacontext);

The parameter is as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

DmaGetMigGroupMembers()

The DmaGetMigGroupMembers subroutine returns group members of the given
migrate group. The return value must be explicitly released by the caller using the
free() subroutine.

char **

DmaGetMigGroupMembers(

const DmaContext_t dmacontext,

const char *mg_name)

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

007–5484–012 591

C: Site-Defined Policy Subroutines and the sitelib.so Library

mg_name The name of the migrate group

DmaGetProgramIdentity()

The DmaGetProgramIdentity() subroutine returns a pointer to the program
DmaIdentity_t object in the dmacontext parameter.

Note: The program DmaIdentity_t object should not be confused with the user
DmaIdentity_t object that is returned by "DmaGetUserIdentity()" on page 592.
The user identity is usually of much more interest when applying site policies
because it defines who is actually making the request as opposed to what process is
negotiating the site policies.

The prototype is as follows:

const DmaIdentity_t *
DmaGetProgramIdentity(

const DmaContext_t dmacontext);

The parameter is as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

DmaGetUserIdentity()

The DmaGetUserIdentity() subroutine returns a pointer to the user
DmaIdentity_t object in the dmacontext parameter.

The user DmaIdentity_t object contains as much information as could be reliably
gathered regarding the identity of the originator of the request. For example, the user
identity in the SitePutFile() policy subroutine would identify the process (such as
dmput) that made the original DmuPutByPathSync() libdmfusr call.

If DmaGetUserIdentity() is called from within SiteKernRecall(), it will return
the identity of dmfdaemon. The identity of the user who initiated the read request
that caused SiteKernRecall() to be called is unknown to DMF.

Within SiteCreateContext(), the user details may be as yet unknown; therefore,
DmaGetUserIdentity() may return different values than if it is called with the

592 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

same context from another site-defined policy subroutine. In most cases, the user
identity is determined after the call to SiteCreateContext().

Under certain circumstances, some elements of the DmaIdentity_t structure may be
unknown. For example, if a site-defined subroutine is called as a result of a command
entered on a client machine running a release prior to DMF 3.1, some elements of the
user identity may be unknown.

The prototype is as follows:

const DmaIdentity_t *

DmaGetUserIdentity(

const DmaContext_t dmacontext);

The parameter is as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

DmaSendLogFmtMessage()

The DmaSendLogFmtMessage() subroutine formats and issues log messages, if log
messages are possible. The messages will potentially appear in the calling program’s
log depending upon the DmaLogLevel_t of the message and the log level selected
by the administrator in the DMF configuration file. If log messages are not possible,
DmaSendLogFmtMessage() silently discards the message.

The prototype is as follows:

void

DmaSendLogFmtMessage(

const DmaContext_t dmacontext,
DmaLogLevel_t log_level,

const char *name,

const char *format,

...);

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

007–5484–012 593

C: Site-Defined Policy Subroutines and the sitelib.so Library

log_level Specifies the level of the message.

name Specifies a string that is included as part of the log
message.

format Specifies the format for the message that will be printed
in the log. It looks like a printf(3S) format. Do not
include \n as part of the message. If you want to print
more than one line to the log, make multiple calls to
DmaSendLogFmtMessage().

For example, the following will issue an error message to the calling program’s log:

DmaSendLogFmtMessage (dmacontext, DmaLogErr,

"SiteCreateContext", "sitelib.so problem errno %d",
errno);

DmaSendUserFmtMessage()

The DmaSendUserFmtMessage() subroutine formats and sends messages to the
user, if user messages are possible. The messages will potentially appear as output
from commands such as dmput and dmget, depending upon the severity of the
message and the level of message verbosity selected by the user. If user messages are
not possible, DmaSendUserFmtMessage() silently discards the message.

The prototype is as follows:

void

DmaSendUserFmtMessage(

const DmaContext_t dmacontext,

DmuSeverity_t severity,

const char *position,
int err_no,

const char *format,

...);

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter passed as input
to all site-defined policy subroutines, such as
SitePutFile().

severity Specifies the severity of the message.

594 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

position Specifies a string that can be included in the message.
This string may be set to NULL.

err_no Specifies that if err_no is non-zero, the results of
strerror(err_no) will be included in the message.

format Specifies the format for the message that will be sent to
the user. It looks like a printf(3S) format. It is not
necessary to put \n at the end of the message.

DmaSetCookie()

The DmaSetCookie() subroutine stores a pointer to site-defined subroutine
information in dmacontext. This pointer may be retrieved by a call to
DmaGetCookie(). The site-defined subroutines are responsible for memory
management of the space pointed to by the cookie parameter.

The prototype is as follows:

void

DmaSetCookie(

const DmaContext_t dmacontext,
void *cookie);

The parameters are as follows:

dmacontext Specifies the DmaContext_t parameter that is passed
as input to all site-defined policy subroutines, such as
SitePutFile().

cookie Specifies a pointer to information that sitelib.so
subroutines want to retain while the dmacontext is
valid.

007–5484–012 595

Appendix D

Third-Party Backup Package Configuration

The following third-party backup packages are known to be DMF-aware:

• "EMC® LEGATO NetWorker®" on page 597

• "Atempo® Time NavigatorTM" on page 599

EMC® LEGATO NetWorker ®

Note: EMC Networker only operates with Linux standard st tape devices. DMF and
OpenVault only operate with SGI ts tape devices. A given tape drive can be
managed as either an st device or as a ts device, not both. To learn how to use ts
and st tape devices for different tape drives on the same system (where each tape
drive is assigned to one device or the other), see the /etc/ts/README.apd file on
the DMF server.

If OpenVault manages the library for DMF, Networker and OpenVault will each have
their own set of tape devices but they are unaware of each other’s devices. To allow
each software package to access its own set of tape volumes and tape devices, you
must partition the library.

To use EMC LEGATO NetWorker to back up DMF-managed filesystems, add each
filesystem to the NetWorker client’s save set list and enable dmfasm on each
filesystem.

Note: Only root can restore migrated files because DMF uses an extended (system)
attribute owned by root.

You can enable the dmfasm module by creating a file named .nsr in the root
directory of each DMF-managed filesystem. The contents of this file should be the
following, which specifies that dmfasm should be used on all files (including hidden
files) and subdirectories:

+dmfasm: * .?*

007–5484–012 597

D: Third-Party Backup Package Configuration

Note: As of NetWorker 7.1.2, the nwbackup and nwrecover commands do not
include dmfasm, and therefore backups and recovers performed with those
commands will not be DMF-aware. Only the save, savepnpc, and recover
commands use dmfasm.

An alternative method for enabling dmfasm on DMF-managed filesystems is to create
a directive resource using nwadmin. For example, with two DMF-managed filesystems
/dmfusr1 and /dmfusr2, the directive resource would contain the following:

<< /dmfusr1 >> +dmfasm: * .?*
<< /dmfusr2 >> +dmfasm: * .?*

After creating the directive, you must update the NetWorker client’s Directive field
to use the new directive.

See the NetWorker documentation for more information about ASMs, .nsr files, and
directives.

To use DMF’s do_predump.sh script with NetWorker, set up the NetWorker client to
use a precommand as follows:

1. Set the client’s Backup command field to savepnpc.

2. Create a file named /nsr/res/grpname.res, where grpname is the NetWorker
group to which the client belongs. The file should contain the following:

type: savepnpc;

precmd: "/usr/lib/dmf/do_predump.sh daemon dump_tasks";

where:

• daemon is the name of the dmdaemon object in the DMF configuration file

• dump_tasks is the name of the task group specifying parameters related to
backups

Note: DMF’s DUMP_RETENTION parameter should match the value of the NetWorker
client’s Retention Policy parameter.

For more information about Networker, see www.emc.com and the Networker
manuals.

598 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Atempo ® Time Navigator TM

Atempo Time Navigator is high-performance backup and recovery software designed
with intuitive graphical user interfaces (GUIs) to manage data in heterogeneous
environments.

Time Navigator is DMF-aware and supports a broad range of servers and client
operating systems including SGI IRIX and 64-bit Linux running on Intel® Itanium® 2
processors. It also supports a wide range of SAN hardware and tape libraries. Time
Navigator by default uses Atempo’s proprietary Time Navigator protocol for all data
transfers.

To make Time Navigator aware of a DMF-managed filesystem, add a line resembling
the following to the full-Time-Navigator-installation-path/Conf/parameters file,
where /dmfusr is the DMF-managed filesystem:

parameter:bapi_fs=/dmfusr

You can specify more DMF filesystems by adding a similar line for each DMF
filesystem.

Using the Time Navigator GUI, you can define backup classes to select which
directories you want to back up. You can also vary the granularity for backup and
restore, such as file, directory, or class level.

To use DMF’s do_predump.sh script with Time Navigator, set up Time Navigator to
use a precommand as follows:

• In the Advanced settings of the backup strategy, specify the following as the
preprocessing command:

/usr/lib/dmf/do_predump.sh daemon dump_tasks

where:

daemon Name of the dmdaemon object in the DMF configuration file

dump_tasks Name of the task group specifying the parameters related to backups

• Ensure that DMF’s DUMP_RETENTION parameter matches the retention value of
the cartridge pool associated with backing up the DMF filesystem.

For more information about Time Navigator, see www.atempo.com and the Time
Navigator manuals.

007–5484–012 599

Appendix E

Converting from IRIX DMF to Linux ® DMF

Note: This procedure must take place during a planned outage of the systems and
filesystems managed by DMF. It is assumed that sites converting DMF from IRIX to
Linux will obtain the help of SGI customer support. The following documentation is
offered to familiarize you with the necessary steps.

This appendix describes the necessary steps to convert an IRIX DMF system to a
Linux DMF system and provides an example using a single library server (LS).

You cannot copy DMF databases from an IRIX system to a Linux system because of
binary incompatibility. Instead, you must dump the IRIX DMF databases to text on
the IRIX system and load the resulting text file into the databases on the Linux
system. However, you can move DMF-managed filesystems (that is, filesystems
containing user files that DMF has migrated) from an IRIX system to a Linux system.

Procedure E-1 Converting from IRIX DMF to Linux DMF

1. Discontinue all user activity for the duration of the IRIX to Linux conversion
process.

2. If you have a tape MSP, you must convert it to a volume group (VG) in an LS
while still on IRIX using dmmsptols.

Note: The tape MSP is not available in the Linux DMF release.

For more information, see the DMF 3.0 version of the DMF Administrator’s Guide
for SGI InfiniteStorage (007-3681-008).

3. Prepare the DMF databases on the IRIX system:

a. Change the filesystem migration levels in the dmf.conf file to none.

b. Run dmdidle and wait for activity to cease.

c. Use dmsnap to back up the DMF databases.

Alternatively, if time or disk space considerations are critical, it is acceptable
to use the snapshot of the DMF databases that is generated in the

007–5484–012 601

E: Converting from IRIX DMF to Linux® DMF

dmaudit_working_dir as part of step 4 below as the database backup copy,
allowing you to skip this dmsnap step.

4. Audit the DMF databases to ensure that they are valid:

!
Caution: Do not proceed until you have obtained clean results for each step in
turn.

a. Run dmaudit snapshot and resolve all errors before moving on to step 4.b.

b. Run dmatvfy dmaudit_working_dir and resolve all errors before moving on to
step 4.c.

c. Run dmdskvfy against all DCM and disk MSPs and resolve all errors before
moving on to step 5.

For more information, see the dmaudit(8) man page and DMF Filesystem Audit
Guide for SGI InfiniteStorage.

5. Stop DMF on the IRIX system.

!
Caution: If DMF is started again on the IRIX system during or after this
procedure, the databases captured during step 7 might not reflect reality, and loss
of data might result if you use them.

6. Use dmdbcheck to verify the consistency of the DMF databases.

7. Dump all of the DMF databases to text from the snapshot taken in step 3c above.
This should include the daemon database and the CAT and VOL tables for each
LS database. For more information, see the dmdump(8) man page.

8. Sort the daemon and CAT text database records for better overall performance of
the text-record load process. (The time to sort and load will be less than the time
to load unsorted text records when the number of records is in the millions.) Do
the following:

• To sort the daemon text record file, use a command similar to the following,
where tmpdir is a directory in a filesystem with sufficient free space for sort
to complete the sort:

/bin/sort -t"|" -y -T tmpdir -k 1,1 -o sorted_daemontext daemontext

602 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

• To sort the CAT text record file, use a command similar to the following,
where tmpdir is a directory in a filesystem with sufficient free space for sort
to complete the sort:

/bin/sort -t"|" -y -T tmpdir -k 2,2 -o sorted_cattext cattext

For more information, see the sort(1) man page.

9. Set up the /etc/dmf/dmf.conf file on the Linux system. The conversion will
be simpler if you name all of the FTP MSPs, disk MSPs, tape VGs, and LSs with
the same names used on IRIX. This assumes that you do not already have MSPs,
LSs, or VGs with these names on your Linux system.

If you do change the name of an MSP or VG, you must convert the daemon
database. For more information on how to perform this conversion, see the
documentation in the dmconvertdaemon script.

10. Use dmcheck to ensure that your new /etc/dmf/dmf.conf file is valid on the
Linux system.

11. Copy the text versions of the databases (which you created in step 7 and sorted in
step 8) to the Linux system.

12. Load the database files from the text files on the Linux system. Use the following
commands:

Note: If you are loading the text records into an empty database, use the -j
option on the dmdadm(8) and dmcatadm(8) commands to eliminate the
unnecessary overhead of database journal records. If you are loading the records
into a nonempty database, SGI recommends that you make a copy of the database
before running the dmdadm and dmcatadm commands and that you do not use
-j option.

• dmdadm to load the daemon database file

• dmcatadm to load the CAT records for each of the LS databases

• dmvoladm to load the VOL records for each of the LS databases

13. Use dmdbcheck to check the consistency of databases on the Linux system.

14. Move all of the DMF-managed filesystems and DCM MSP filesystems from the
IRIX system to the Linux system:

007–5484–012 603

E: Converting from IRIX DMF to Linux® DMF

• If reusing the existing disks and the IRIX filesystem blocksize is supported by
Linux (512, 1024, 2048, 4096, 8192, or 16384), you can simply move the disks
from the IRIX system to the Linux system.

• If there is a disk resource upgrade or if the IRIX block size greater than what
is supported in Linux, there will be new filesystems built under Linux. The
old data must then be restored to these new filesystems. For information, see
"Using SGI xfsdump and xfsrestore with Migrated Files" on page 476.

15. Start DMF on the Linux system.

16. Run dmaudit to verify the filesystems.

Example E-1 IRIX to Linux Conversion (Single LS)

In the following example, the IRIX system has a single LS named ls1. The example
assumes that the /tmp/dmfdatabases directory has been created, is initially empty,
and contains enough space to accommodate the text versions of the databases. The
example also assumes that the HOME_DIR configuration parameter is set to
/dmf/home on both systems. After completing steps 2 through 6 of Procedure E-1 on
page 601, the daemon database and the CAT and VOL tables of the LS database are
dumped to text, as follows:

$ dmdump -c /dmf/home/daemon > /tmp/dmfdatabases/daemon_txt

$ dmdump /dmf/home/ls1/tpcrdm.dat > /tmp/dmfdatabases/ls1_cat_txt
$ dmdump /dmf/home/ls1/tpvrdm.dat > /tmp/dmfdatabases/ls1_vol_txt

Next, the files in /tmp/dmfdatabases on the IRIX system are copied to
/tmp/dmftxtdb on the Linux system. After creating the DMF configuration file on
the Linux system, the databases are loaded on the Linux system, as follows:

$ dmdadm -u -c "load /tmp/dmftxtdb/daemon_txt"

$ dmcatadm -m ls1 -u -c "load /tmp/dmftxtdb/ls1_cat_txt"

$ dmvoldadm -m ls1 -u -c "load /tmp/dmftxtdb/ls1_vol_txt"

Now dmdbcheck is run to verify the consistency of the databases, as follows:

$ cd /dmf/home/daemon; dmdbcheck -a dmd_db

$ cd /dmf/home/ls1; dmdbcheck -a libsrv_db

604 007–5484–012

Appendix F

Considerations for Partial-State Files

This section discusses the following:

• "Performance Cost Due to Lack of Linux Kernel Support" on page 605

• "Inability to Fulfill Exact Byte Range Requests" on page 606

Performance Cost Due to Lack of Linux Kernel Support
The Linux kernel does not provide underlying support for partial-state files. A
partial-state file looks exactly like an offline file to the filesystem, and so all read
requests for a partial-state file generate a DMF daemon read event, whether the byte
range being read is actually already online or not. The DMF daemon will write an
attribute to a partial-state file that includes the number and boundaries of each region
so that any read event whose byte range is completely contained in an online region
will return immediately to the kernel with no intervening recall. A read event whose
byte range is not completely contained in an online region will result in the entire file
being recalled.

Because there is no underlying support in the Linux kernel, the DMF partial-state file
feature has a performance cost. The kernel cannot detect when a read request could
be satisfied without a read event being generated to the DMF daemon, resulting in
pseudo read events that cannot be absorbed by the system and therefore impact the
system’s performance. A performance degradation will be noticed if thousands of
pseudo read events are being generated in a short period of time.

For example, if a very large file has a very large online region followed by a very
small offline region and a process is doing a sequential read through the file using a
small buffer size, each of the reads for the online region will result in a pseudo read
event until finally a read for the offline region will cause the rest of the file to be
brought back online. A single process doing this kind of operation might not impact
the system, but tens or hundreds of simultaneous similar processes may. In this
situation, it might be better to manually recall the file before doing the read.

Additionally, the pseudo read events will result in DMF daemon log-file entries for
each read, and so the DMF SPOOL_DIR directory may experience a very significant
increase in the amount of disk space that is consumed each day. If this is the case, the
SPOOL_DIR directory will require maintenance (file removal) on a more frequent
basis.

007–5484–012 605

F: Considerations for Partial-State Files

Inability to Fulfill Exact Byte Range Requests
User files can become partial-state either manually or automatically. The manual
method involves using the byte-range parameters on the dmput(1) and dmget(1)
commands. (See the man pages for a full description of the syntax of the byte-range
specifications). You can use these commands to manually control which regions of a
user file should be made online or offline, subject to the restrictions of the underlying
filesystem and the maximum number of regions allowed in that filesystem.

All currently supported filesystems have a restriction that punching a hole in a file (to
make a region offline) must take place on a fixed boundary size, usually on a
4096–byte block boundary. If a user requested an offline region from byte 10000 to
byte 20000, the resulting offline byte range would be from byte 12288 to byte 16384.
Offline regions are rounded inward, which might result in fewer bytes than specified
being made offline, but will never result in more bytes than specified being made
offline.

When requesting online regions, the byte addresses are rounded outward. So in the
10000-20000 byte address example, the resulting online region would be from byte
8192 to byte 20480 based on the idea that it is better to bring some extra bytes online
than to not bring all of the bytes that were requested online.

It is entirely possible that a dmput or dmget request that specifies a byte-range
parameter will result in no action on the file taking place. This is possible if the file is
already in the requested state (just like using dmget on a DUALSTATE file before the
introduction of partial-state files) or if the requested state would result in more than
the maximum number or regions allowed by the filesystem per file. (See the
MAX_MANAGED_REGIONS configuration file parameter in "filesystem Object" on
page 269.) Because of the general inability of DMF to deliver the exact byte ranges
requested, requests that do not deliver exact byte range results do not return an error.
It is up to the caller to determine the exact state of the file after the request.

606 007–5484–012

Appendix G

Case Study: Impact of Zone Size on Tape
Performance

This appendix details an experiment with a 100 MB/s LTO4 drive, which is in the
same performance class as the STK T10000A. The purpose of the test was to show the
cost of having a small zone size (the ZONE_SIZE parameter, see "volumegroup
Object" on page 318).

The moverlog.yyyymmdd log traces show two tests:

• In the first test, we migrated 200 512–MB files to tape using a ZONE_SIZE of 10g
(10 GB). This resulted in 10 zones.

• In the second test, we recalled all the files, changed the ZONE_SIZE to 499m (499
MB), and remigrated the same 200 files. In the second test, each migrated file
became its own zone (200 zones).

In the first test (with a ZONE_SIZE of 10g), the tape drive achieved 118–MB/s per
zone. This is the drive’s full streaming rate. For example, the drive spent 89.6 seconds
doing I/O to the first zone and only 1.48 seconds flushing the first zone:

12:49:54-V 102037-dmatwc process_completed_zone: Zone 1 written, chunks=21, bytes=10752000000

12:49:54-V 102037-dmatwc stats: idle=0.00, mount=32.27, skip=0.00, io=89.60, zone=1.48

12:49:54-V 102037-dmatwc stats: total chunks=21, mb=10752.000000, rate=118.05 mb/s

When the first migration test was complete, the dmatwc final statistics showed that
the drive consistently achieved 114 MB/s, and the effective rate (if you include
mount/unmount/zone/close/rewind time) was 89 MB/s (line breaks shown here for
readability):

13:06:55-I 102037-dmatwc final_stats: idle=107.66, mount=32.27, skip=0.00, io=868.54,

zone=20.84, close=81.29, unmount=34.19

13:06:55-I 102037-dmatwc final_stats: total sec = 1144.78, totalmb=101911.101562, rate=114.59 mb/s, effective

rate=89.02 mb/s

In the second test (with a ZONE_SIZE of 499m), the increased stop/start behavior of
the drive meant that the drive only achieved about half of its native rate, or 67.28
MB/s (line breaks shown here for readability):

13:19:53-V 104013-dmatwc process_completed_zone: Req=4,6dc90 done, chunk=7, zone=4,

chunklength=512000000, bytes=512000000

13:19:53-V 104013-dmatwc process_completed_zone: Zone 4 written, chunks=1, bytes=512000000

007–5484–012 607

G: Case Study: Impact of Zone Size on Tape Performance

13:19:53-V 104013-dmatwc stats: idle=0.01, mount=31.88, skip=0.00, io=23.70, zone=5.93
13:19:53-V 104013-dmatwc stats: total chunks=1, mb=512.000000, rate=67.28 mb/s

When the second migration test was complete, the dmatwc final statistics show that
the drive was only able to achieve 66 MB/s when it was doing I/O. Furthermore,
304.58 seconds were spent just flushing data (versus 20 seconds in the first test). Thus
the effective rate in the second case was only 56 MB/s (line breaks shown here for
readability):

13:48:57-I 104013-dmatwc final_stats: idle=114.54, mount=31.88, skip=0.00, io=1237.52,

zone=304.58, close=82.74, unmount=34.09

13:48:57-I 104013-dmatwc final_stats: total sec = 1805.36, totalmb=102248.742188, rate=66.30 mb/s, effective

rate=56.64 mb/s

Had we done a larger test and written an entire tape in each case, the mount,
unmount, and close (rewind) time would have contributed much less to the effective
bandwidth, and so the numbers would be even more dramatic.

You can obtain the statistics discussed in this appendix from the following log file:

SPOOL_DIR/ls_name/moverlogs/hostname/moverlog.yyyymmdd

For more information, see:

• "Improve Drive Performance with an Appropriate VG Zone Size" on page 90

• "LS Logs" on page 432

608 007–5484–012

Appendix H

Historical Feature Information

This appendix contains the following:

• "End of Life for the Tape Autoloader API with DMF 2.6.3" on page 609

• "DMF Directory Structure Prior to DMF Release 2.8" on page 609

• "End of Life for the Tape MSP after DMF 3.0" on page 610

• "DMF User Library (libdmfusr.so) Update in DMF 3.1" on page 610

• "Downgrading and the Site-Tag Feature Introduced in DMF 3.1" on page 611

• "Downgrading and the Partial-State File Feature Introduced in DMF 3.2" on page
612

• "dmaudit(8) Changes in DMF 3.2" on page 613

• "Logfile Changes in DMF 3.2" on page 613

• "Possible DMF Database Lock Manager Incompatibility On Upgrades as of DMF
3.8.3" on page 614

End of Life for the Tape Autoloader API with DMF 2.6.3
With the release of DMF 2.6.3, DMF dropped support for the tape autoloader API.
DMF supports OpenVault and TMF as tape mounting services. If you have not yet
acquired OpenVault or TMF, do not upgrade to any version of DMF 2.6.3 or later.

DMF Directory Structure Prior to DMF Release 2.8
Beginning with DMF 2.8, DMF no longer supports multiple installed versions of DMF
that can be made active via the dmmaint(8) program. While it is not necessary to
delete any existing pre-2.8 versions of DMF, they will not accessible by the DMF 2.8
or later software and they can be removed at the convenience of the administrator.

The reason for this change is that the pre-2.8 DMF directory hierarchy of
/usr/dmf/dmbase is no longer the target installation directory of DMF. Rather, DMF
2.8 and later binaries, libraries, header files, and man pages are installed directly into

007–5484–012 609

H: Historical Feature Information

the proper system locations and they are accessed directly from those locations
without the use of symbolic file links.

When DMF 2.8 or later is installed, if the symbolic file link /etc/dmf/dmbase exists,
it will be deleted. This link was used in pre-2.8 versions of DMF to access the active
version of DMF, and as such, it was part of the administrators’ initialization
procedure to add this link to their PATH environment variable. Because it is no longer
used in DMF 2.8 and later versions, it could cause an incorrect copy of a DMF
command to be executed if an administrator’s path included the link to be searched
before the normal system binary locations. This way, even if the administrator
neglects to remove the link from the path, it should not make any difference.

End of Life for the Tape MSP after DMF 3.0
DMF 3.0 was the last major release cycle that contained support for the tape MSP. The
dmatmsp command is not included as part of any DMF 3.5 or later package. When
the library server (LS) was introduced in DMF 2.7, the intention was for all existing
tape MSPs to be converted to LSs eventually.

It is mandatory that you complete the conversion from tape MSPs to LSs before
installing DMF 4.0 or later. SGI highly recommends that you install DMF 3.0.1 for the
purpose of doing the conversion because the dmmsptols command in that release is
much more efficient in terms of time and disk space than in any earlier release.

For more information regarding converting tape MSPs to LSs, see Chapter 13,
"Media-Specific Processes and Library Servers" on page 425 or contact SGI Support.

DMF User Library (libdmfusr.so) Update in DMF 3.1
The DMF user library (libdmfusr.so) was modified significantly in DMF 3.1 and is
not backwards compatible with applications written and linked with pre-3.1 versions
of libdmfusr.so. The library’s naming convention has also changed.

This change only impacts sites with site-written applications that link with
libdmfusr.so. Any site that does have any such applications should immediately
refer to Appendix B, "DMF User Library libdmfusr.so" on page 519 to find the
steps required to keep your site applications operational.

610 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Downgrading and the Site-Tag Feature Introduced in DMF 3.1
DMF 3.1 introduced the site tag feature; see dmtag(1). Site tags are stored in the DMF
extended attribute on files. This means that if you have installed and run DMF 3.1 or
later and wish to run an earlier version of DMF (pre-DMF 3.1), you must ensure that
there are no nonzero site tags on files before installing the earlier version of DMF.
Failure to do this will cause errors when running the earlier version of DMF.

Note: Restoring a file that had a site tag from a filesystem backup created while DMF
3.1 or later was running to a system running a pre-3.1 version of DMF is not
recommended, because the attribute will appear invalid to the pre-3.1 version of DMF.

To ensure that there are no nonzero site tags, do the following:

1. While DMF is running, execute the following script to clear all site tags in
DMF-managed filesystems:

/usr/lib/dmf/support/dmcleartag

This command can take some time to run. If there are other DMF requests active
for files whose site tags must be cleared, the request to clear the site tag may be
queued behind the other request.

2. If the dmcleartag script completed without errors, stop DMF.

3. It is possible that a site tag was set on a file while the dmcleartag script was
running, and so there may still be files with nonzero site tags. To verify that there
are no nonzero site tags in the DMF-managed filesystems, run the following script:

/usr/lib/dmf/support/dmanytag

The script will print a message to stderr if any nonzero site tags are found. If
any are found, restart DMF, and repeat step 1. Otherwise, proceed to step 4.

4. Site tags may also be put on files in the DCM or disk MSP STORE_DIRECTORY.
The dmcleartag script run in step 1 will clear the site tags on many of these
files. However, if there are any soft-deleted files in the DCM or disk MSP
STORE_DIRECTORY that have a non-zero site tag, they must be handled while the
DMF daemon is not running. Run the following script to clear the tags on
soft-deleted DCM MSP copies while the dmfdaemon is stopped:

/usr/lib/dmf/support/dmcleardcmtag

007–5484–012 611

H: Historical Feature Information

The DMF attributes should now be in a proper state for running a previous
version of DMF.

Downgrading and the Partial-State File Feature Introduced in DMF 3.2
DMF 3.2 introduced the partial-state file feature. Partial-state (PAR) files are not
handled by earlier versions of DMF. If customers have installed and run DMF 3.2 or
later and then wish to run an earlier version of DMF (pre-DMF 3.2), they must ensure
that there are no partial-state files in the DMF-managed filesystems before installing
the earlier version of DMF. Failure to do this will cause errors when running the
earlier version of DMF.

Follow these steps to ensure that there are no partial-state files:

1. While DMF 3.2 is running, execute the following script to change all partial-state
files in DMF-managed filesystems to be offline:

/usr/lib/dmf/support/dmclearpartial

This command may take some time to run. If there are other DMF requests active
for the partial-state files, the request to make them offline may be queued behind
the other request.

2. If the dmclearpartial script completed without errors, stop DMF.

3. It is possible that a file was changed to partial-state while the dmclearpartial
script was running, and so there may still be partial-state files. Verify that there
are no partial-state files in the DMF-managed filesystems by running the
following script:

/usr/lib/dmf/support/manypartial

This script will print a message to stderr if any partial-state files are found. If
any are found, restart DMF and repeat step 1. Otherwise, proceed to step 4.

4. The partial-state files should now be offline and in a proper state for running a
previous version of DMF. If you are installing a version of DMF prior to DMF 3.1,
you must also ensure that there are no site tags on DMF-managed files. See the
instructions below.

612 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Note: While site tags are being cleared, it is possible that files will be made
partial-state. Before running a version of DMF prior to DMF 3.1, check (while
DMF is stopped) both that there are no partial-state files and that there are no
files with site tags.

dmaudit(8) Changes in DMF 3.2
The format of some of the files that dmaudit writes changed in DMF 3.2. The DMF
3.2 or later version of dmaudit is unable to read the files written by pre-DMF 3.2
versions of dmaudit. This means that after upgrading DMF to version 3.2 or later
from a pre-DMF 3.2 version, the first time you use dmaudit, you must select the
snapshot option before you can use the inspect option.

Logfile Changes in DMF 3.2
A change was made in DMF 3.2 to the way that the DMF daemon and the library
server (LS) and MSPs refer to the daemon request number. This change should make
it easier for administrators to extract all of the pertinent messages from the
SPOOL_DIR logs for a particular request.

In previous releases of DMF, the string Req=xxx could be used to extract some log
messages for daemon request number xxx, but there were some messages in the form
Req=xxx/nnn that would not be found (such as by using the grep(1) command) with
a pattern of Req=xxx.

A change was made to standardize all daemon and LS/MSP log messages to use the
form Req=xxx for all messages. As a result, a log message formerly of the form
Req=xxx/nnn would now take the form Req=xxx,nnn so as to be visible via the grep
pattern Req=xxx. If your site uses these patterns to search DMF SPOOL_DIR logs,
please be advised of this change and update any scripts or procedures accordingly.

007–5484–012 613

H: Historical Feature Information

Possible DMF Database Lock Manager Incompatibility On Upgrades as of
DMF 3.8.3

The DMF 3.8.3 version of DMF introduced decreased DMF database lock manager
delays when processes are making simultaneous lock requests. This code also
introduced a backwards incompatibility between pre-3.8.3 dmlockmgr processes and
post-3.8.3 dmlockmgr clients. If DMF is stopped (as recommended) via
/etc/init.d/dmf stop immediately before installing DMF 3.8.3 or later (in a
non-HA environment), there will be no incompatibility.1

If, however, one of the DMF administrator commands (dmdadm, dmvoladm, or
dmcatadm) is executed after DMF has been stopped and DMF 3.8.3 or later is
installed, new dmlockmgr clients will hang when trying to request database locks
from an older version of dmlockmgr that was executing as the result of the
administrator command.

For this reason, it is important to make sure that DMF, including the dmlockmgr
process, is stopped via /etc/init.d/dmf stop immediately before installing DMF
3.8.3 or later even if the DMF daemon is not running, if you are upgrading from a
pre-3.8.3 version of DMF.

1 In an HA environment, you must first remove HA control of the resource group before stopping DMF and the
mounting service. See the High Availability Guide for SGI InfiniteStorage

614 007–5484–012

Appendix I

Using dmmaint to Install Licenses and Configure
DMF

Note: The dmmaint command is deprecated and will be removed in a future release.
The preferred tool is DMF Manager; see "Configuring DMF with DMF Manager" on
page 166.

On DMF servers, you can use dmmaint to install your DMF licenses and edit the
DMF configuration file. The advantage to using dmmaint rather than a text editor
such as vi is that you can edit the configuration file, verify your changes, and apply
your changes atomically.

This appendix discusses the following:

• "Overview of dmmaint" on page 615

• "Installing the DMF License" on page 617

• "Using dmmaint to Define the Configuration File" on page 617

Overview of dmmaint

To use the dmmaint graphical user interface (GUI), ensure that your DISPLAY
environment variable is defined, and then enter the following command:

/usr/sbin/dmmaint &

Note: If DISPLAY is not defined, dmmaint reverts to line mode, which has menu
selections that are equivalent to the fields and buttons on the graphic user interface.
Line mode is provided for remote log in but is not recommended for general use.

The GUI displays the installed version of DMF. The Help menu provides access to the
dmmaint and dmf.conf man pages.

007–5484–012 615

I: Using dmmaint to Install Licenses and Configure DMF

The GUI buttons are as follows:

Button Description

Configure Lets you customize the DMF configuration file for the
selected version of DMF.

If this is the first time you have configured DMF, a
window appears telling you that there is no
configuration file. You are asked which file you would
like to use as a basis for the new configuration. You
may choose an existing file or one of several sample
files that are preconfigured for different types of
media-specific process (MSP) or the library server (LS).
See "Use Sample DMF Configuration Files" on page 86.

If a configuration file exists, a window appears that
asks if you would like to modify the existing file or use
an alternate file. If you choose an alternate file, you see
the same window that you would see if this were a
new configuration.

After you choose a file to use as a basis, an editing
session is started (in a new window) that displays a
copy of that configuration file. You can make changes
as desired. After exiting from the editor, you are
prompted for confirmation before the original
configuration file is replaced with the edited copy.

For more information on configuration parameters, see
Chapter 6, "DMF Configuration File" on page 211, and
the dmf.conf(5) man page (available from the Help
button).

Inspect Runs the dmcheck(8) program to report errors. You
should run this program after you have created a
configuration file. If there are errors, you can click the
Configure button, make changes, and continue to
alternate between Configure and Inspect until you are
satisfied that the configuration is correct.

Release Note This button displays the DMF release note that is
installed in /usr/share/doc/packages/sgi-issp-
ISSPversion/README_DMF.txt

616 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

License Info Displays the hostname and unique system identifier
(which you need to obtain a DMF server license), the
name of the license file, and a short description of the
state of any DMF license within the file.

Update License Lets you make changes to the license file. An editing
session is started in a new window displaying a copy of
the contents of the license file. You can add or delete
licenses as desired. After you exit the editor, positive
confirmation is requested before the original license file
is replaced by the modified copy. For more information,
see Chapter 2, "DMF Licensing" on page 59.

Installing the DMF License
To install the DMF license, do the following:

1. Select Dependencies to read about the hardware and software requirements that
must be fulfilled before running DMF.

2. If needed, select the Update License button and use the mouse to copy and paste
your license into the file. Close the window. Select License Info and examine the
output to verify that the license is installed correctly.

Using dmmaint to Define the Configuration File
To use dmmaint to configure DMF, do the following:

1. Select Configure to edit the configuration file.

2. Click the Inspect button, which runs dmcheck to report any errors in the
configuration. If there are errors, you can click the Configure button, make
changes, and continue to alternate between Configure and Inspect until you are
satisfied that the configuration is correct.

If you do not want DMF to be automatically started and stopped, see "Starting and
Stopping the DMF Environment" on page 138.

007–5484–012 617

Glossary

accelerated access to first byte

A partial-state file feature capability that allows you to access the beginning of an
offline file before the entire file has been recalled.

active database entry

A daemon database entry whose BFID points to a valid file in the filesystem. See also
BFID and soft-deleted database entry.

active metadata server

A CXFS server-capable administration node chosen from the list of potential metadata
servers. There can be only one active metadata server for any given filesystem. See
also metadata.

active parallel data-mover node

A parallel data mover node that has been enabled using dmnode_admin(8), has not
exceeded the number of parallel data-mover node licenses on the DMF server, and is
connected to the dmnode service on the DMF server. See also parallel data-mover node
and parallel data-mover node license.

ADMDIR_IN_ROOTFS

The list of DMF administrative and store directories that can reside in the root (/)
filesystem. See "base Object" on page 216.

ADMIN_EMAIL

The e-mail address to receive output from administrative tasks. See "base Object" on
page 216.

administrative directories

See DMF administrative directories.

AG

See allocation group.

007–5484–012 619

Glossary

AGE_WEIGHT

A floating-point constant and floating-point multiplier to use when calculating the
weight given to a file’s age (for MSP/VG filesystem). See "File Weighting Parameters
for a DMF-Managed Filesystem" on page 283.

AGGRESSIVE_HVFY

The parameter that specifies whether or not DMF will set the hvfy flag on volumes
in the VOL database for an expanded set of error conditions. See "drivegroup
Object Parameters" on page 306.

ALGORITHM

The resource scheduling algorithm to be used. See "resourcescheduler Object
Parameters" on page 337.

ALERT_RETENTION

Specifies the age of alert records that will be kept. See "taskgroup Object" on page
240.

allocation group

(AG) A pool of volumes that can be transferred to a VG as needed and are returned
to the pool when empty, subject to VG configuration parameters. The
ALLOCATION_GROUP parameter defines a pool of volumes that have been assigned to
the AG via the dmvoladm(8) command. Normally, one allocation group is configured
to serve multiple VGs.

ALLOCATION_GROUP

The parameter that defines the allocation group (AG) that serves as a source of
additional volumes if a VG runs out of volumes. See "volumegroup Object" on page
318.

allocationgroup

The optional configuration object that defines the VOL_MSG_TIME parameter
(required only to change the default setting). See "allocationgroup Object
Parameters" on page 339.

620 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

ALLOCATION_MAXIMUM

The maximum size in number of volumes to which a VG can grow by borrowing
volumes from its allocation group. See "volumegroup Object" on page 318.

ALLOCATION_MINIMUM

The minimum size in number of volumes to which a VG can shrink by returning
volumes to its allocation group. See "volumegroup Object" on page 318.

alternate media

The media onto which migrated data blocks are stored, usually tapes.

automated space management

The combination of utilities that allows DMF to maintain a specified level of free
space on a filesystem through automatic file migration.

BANDWIDTH_MULTIPLIER

(OpenVault only) A floating point number used to adjust the amount of bandwidth
that the LS assumes a drive in the DG will use. See "drivegroup Object Parameters"
on page 306.

base object

The configuration file object that defines the file pathname and size parameters
necessary for DMF operation. See "base Object" on page 216.

basic DMF

DMF without the Parallel Data-Mover Option.

BFID

A unique identifier, assigned to each file during the migration process, that links a
migrated file to its data on alternate media.

BFID set

The collection of database entries and the file associated with a particular bit-file
identifier.

007–5484–012 621

Glossary

BFID-set state

The sum of the states of the components that constitute a bit-file identifier set: the file
state of any file and the state of any database entries (incomplete, complete,
soft-deleted, or active).

bit-file ID

See BFID.

bit-file identifier

See BFID

block

Physical unit of I/O to and from media. The size of a block is determined by the type
of device being written. A block is accompanied by a header identifying the chunk
number, zone number, and its position within the chunk.

BLOCK_SIZE

The maximum block size to use when writing from the beginning of a volume. See
"drivegroup Object Parameters" on page 306.

BUFFERED_IO_SIZE

The size of I/O requests when reading from a filesystem using buffered I/O. See:

• "DCM msp Object" on page 360

• "filesystem Object" on page 269

CACHE_AGE_WEIGHT

The floating-point constant and floating-point multiplier used to calculate the weight
given to a file’s age (for DCM MSP STORE_DIRECTORY). See "File Weighting
Parameters for a DCM MSP STORE_DIRECTORY" on page 289.

CACHE_DIR

The directory in which the VG stores chunks while merging them from sparse
volumes. See "libraryserver Object Parameters" on page 303.

622 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

CACHE_MEMBERS

The single VG or one or more MGs to be used as a fast-mount cache. See
"fastmountcache Object" on page 301.

CACHE_SPACE

The amount of disk space (in bytes) that dmatls can use when merging chunks from
sparse volumes. See "libraryserver Object Parameters" on page 303.

CACHE_SPACE_WEIGHT

The floating-point constant and floating-point multiplier to use to calculate the weight
given to a file’s size (for DCM MSP STORE_DIRECTORY). See "File Weighting
Parameters for a DCM MSP STORE_DIRECTORY" on page 289.

candidate list

A list that contains an entry for each file in a filesystem eligible for migration, or for a
file or range of files that are eligible to be made offline. This list is ordered from
largest file weight (first to be migrated) to smallest. This list is generated and used
internally by dmfsmon(8).

capability license

See server capability license.

capacity license

See data capacity license.

CAT record

An entry in the catalog (CAT) table of the LS database that tracks the location of
migrated data on a volume. There is one CAT record for each migrated copy of a file.
(If a migrated copy of a file is divided onto more than one physical media, there will
be a CAT record for each portion.) See also VOL record.

CAT table

A table in the LS database that contains CAT records. See also VOL table.

007–5484–012 623

Glossary

CHECKSUM_TYPE

The type of checksum algorithm to use when writing new tapes. See "volumegroup
Object Parameters" on page 319.

CHILD_MAXIMUM

The maximum number of child processes that the MSP is allowed to fork. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "FTP msp Object" on page 350

chunk

That portion of a file that fits on the current media volume. Most small files are
written as single chunks. When a migrated file cannot fit onto a single volume, the
file is split into chunks.

client-only node

A node that is installed with the cxfs_client.sw.base software product; it does
not run cluster administration daemons and is not capable of coordinating CXFS
metadata. See also server-capable administration node.

COMMAND

The binary file to execute in order to initiate an MSP or LS. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "FTP msp Object" on page 350

• "libraryserver Object Parameters" on page 303

common arena

A shared-memory region where various DMF processes write configuration
information and metrics about DMF if EXPORT_METRICS is enabled. Performance
Co-Pilot, DMF Manager, dmstat, dmtapestat, and dmarenadump make use of the
common arena.

624 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

complete daemon-database entry

An entry in the daemon database whose path field contains a key returned by its
MSP or VG, indicating that the MSP or VG maintains a valid copy of the file.

compression

The mechanism by which data is reduced as it is written to secondary storage.

COMPRESSION_TYPE

Specifies the compression type level to be used with COPAN MAID when writing
from the beginning of the volume. See "drivegroup Object Parameters" on page 306.

configuration file object

A series of parameter definitions in the DMF configuration file that controls the way
in which DMF operates. By changing the parameters associated with objects, you can
modify the behavior of DMF.

configuration parameter

A string in the DMF configuration file that defines a part of a configuration object. By
changing the values associated with these parameters, you can modify the behavior of
DMF. The parameter serves as the name of the line. Some parameters are reserved
words, some are supplied by the site.

configuration stanza

A sequence of configuration parameters that define a configuration object.

COPAN MAID

Power-efficient long-term data storage based on an enterprise massive array of idle
disks (MAID) platform.

COPAN VTL

Power-efficient long-term data storage based on an enterprise MAID platform using a
virtual tape library (VTL).

007–5484–012 625

Glossary

COPAN_VSNS

A parameter that specifies that the fourth character of the volume serial number
(VSN) indicates the RAID in the COPAN VTL or COPAN MAID that contains the
volume. This specification applies for all VSNs in this library server. See
"libraryserver Object Parameters" on page 303.

CXFS

Clustered XFS, a parallel-access shared clustered filesystem for high-performance
computing environments.

daemon

A program that is run automatically by the system for a specific purpose.

daemon database

A database maintained by the DMF daemon. This database contains information such
as the bit-file identifier, the MSP or VG name, and MSP or VG key for each copy of a
migrated file.

DASD

See direct-access storage device.

data capacity license

One or more cumulative DMF licenses that permit DMF migration, corresponding to
the amount of data that DMF is currently managing. See also server capability license.

data integrity validation

See logical block protection.

DATA_LIMIT

The maximum amount of data (in bytes) that should be selected for merging at one
time. See "taskgroup Object" on page 240.

DATABASE_COPIES

One or more directories into which a copy of the DMF databases will be placed. See
"taskgroup Object" on page 240.

626 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

data mover

A node running data-mover processes to migrate and recall data to secondary storage,
either a DMF server or a parallel data-mover node.

data-mover processes

The individual processes that migrate data (using the write child) and recall data
(using the read child).

data-pointer area

The portion of the inode that points to the file’s data blocks.

device object

The configuration file object that defines parameters for the DMF backup scripts’ use
of tape devices other than those defined by a DG. See "device Object" on page 267.

DCM MSP

The disk cache manager MSP is the disk MSP configured for n–tier capability by using a
dedicated filesystem as a cache. DMF can manage the disk MSP’s storage filesystem
and further migrate it to tape or MAID, thereby using a slower and less-expensive
dedicated filesystem as a cache to improve the performance when recalling files.

DG

See drive group.

DIRECT_IO_MAXIMUM_SIZE

The maximum size of I/O requests when using O_DIRECT I/O to read from any
DMF-managed filesystem or when migrating files down the hierarchy from the
STORE_DIRECTORY of a DCM MSP. See "base Object" on page 216.

DIRECT_IO_SIZE

The size of I/O requests when reading from this filesystem using direct I/O. See:

• "DCM msp Object" on page 360

• "filesystem Object" on page 269

007–5484–012 627

Glossary

DISCONNECT_TIMEOUT

Specifies the number of seconds after which the LS will consider a mover process to
have exited if it cannot communicate with the process. See "libraryserver Object
Parameters" on page 303.

disk cache

Data on secondary storage.

disk cache manager

See DCM MSP.

DMAPI

Data Management Application Programming Interface.

DMF administrative directories

The set of directories in which DMF stores databases, log and journal files, and
temporary files. The DMF configuration file specifies these directories using the
following parameters:

HOME_DIR
JOURNAL_DIR
SPOOL_DIR
TMP_DIR
MOVE_FS
CACHE_DIR
STORE_DIRECTORY

dmdaemon object

The configuration file object that defines parameters necessary for dmfdaemon(8)
operation. See "dmdaemon Object" on page 228.

DMF daemon

The program that accepts requests to migrate data, communicates with the operating
system kernel in order to maintain a file’s migration state, determines the destination
of migrated data, and requests the return of offline copies.

628 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DMF direct archiving

The DMF feature that lets users manually archive files from an unmanaged POSIX
filesystem directly to secondary storage via the dmarchive(1) command. See "Direct
Archiving" on page 12.

DMF-managed filesystem

A DMAPI-mounted XFS or CXFS filesystems for which DMF can migrate and/or
recall migrated data.

DMF-monitored filesystem

A filesystem configured in the DMF configuration file such that DMF will monitor is
fullness and run user-specified tasks, but for which it will not migrate or recall data.

DMF server

A node running the required DMF server software that provides DMF administration,
configuration, and data mover functionality. (When using the Parallel Data-Mover
Option, data mover functionality is optional on the DMF server.)

DMF state

See file state.

DMMIGRATE_MINIMUM_AGE

The parameter that specifies the minimum file age to migrate in minutes (the
dmmigrate -m minutes option). See "taskgroup Object" on page 240.

DMMIGRATE_TRICKLE

The parameter that specifies whether or not dmmigrate limits the rate at which it
issues requests so that it will not dominate the DMF daemon (the dmmigrate -t
option). See "taskgroup Object" on page 240.

DMMIGRATE_VERBOSE

The parameter that specifies whether or not dmmigrate will display how many files
and bytes are migrating (the dmmigrate -v option). See "taskgroup Object" on
page 240.

007–5484–012 629

Glossary

DMMIGRATE_WAIT

The parameter that specifies whether or not dmmigrate will wait for all migrations
to complete before exiting (the dmmigrate -w option). See "taskgroup Object" on
page 240.

drive

A hardware device that reads and writes data to media.

drive group

(DG) One of the components of an LS. The drive group is responsible for the
management of a group of interchangeable drives located in the library. These drives
can be used by multiple VGs and by non-DMF processes, such as backups and
interactive users. The main tasks of the DG are to monitor I/O for errors, to attempt
to classify them (as volume, drive, or mounting service problems), and to take
preventive action. When this document refers to DG, it indicates the DMF drive group.
See also OpenVault drive group.

drivegroup object

The configuration file object that defines a DG, one for each pool of interchangeable
drives in a single library. See "drivegroup Object Parameters" on page 306.

DRIVE_GROUPS

One or more DGs containing drives that the LS can use for mounting and
unmounting volumes. See "libraryserver Object Parameters" on page 303.

DRIVE_MAXIMUM

The maximum number of drives that the DG or an individual VG is allowed to
attempt to use simultaneously. See:

• "drivegroup Object Parameters" on page 306

• "volumegroup Object" on page 318

630 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DRIVE_SCHEDULER

The resource scheduler that the DG should run for the scheduling of drives. See:

• "drivegroup Object Parameters" on page 306

• "volumegroup Object" on page 318

DRIVES_TO_DOWN

An integer value that controls the number of "bad" drives the DG is allowed to try to
configure down. See "drivegroup Object Parameters" on page 306.

DRIVETAB

This optional parameter provides the name of a file that is used with the tsreport
--drivetab option, which causes the run_daily_drive_report and
run_daily_tsreport output to contain the more readable drive name instead of
the device name. See "taskgroup Object" on page 240.

DSK_BUFSIZE

The transfer size in bytes used when reading from and writing to files within the disk
MSP’s STORE_DIRECTORY. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

DUALRESIDENCE_TARGET

The percentage of DCM MSP cache capacity that DMF maintains as a reserve of
dual-state files whose online space can be freed if free space reaches or falls below
FREE_SPACE_MINIMUM (for DCM MSP STORE_DIRECTORY). See:

• "Automated Space Management Parameters for a DCM MSP STORE_DIRECTORY"
on page 287

• "DCM msp Object" on page 360

dual-resident file

A file whose data resides online and offline in both in cache and tape/MAID
(analogous to a dual-state file), for DMF using a DCM MSP.

007–5484–012 631

Glossary

dual-state file

A file whose data resides both online and offline.

DUL

See dual-state file

DUMP_COMPRESS

The compression type and level to be used with disk-based backups (xfsdump disk
only). See "taskgroup Object" on page 240.

DUMP_CONCURRENCY

The maximum number of filesystems that will be dumped simultaneously for
disk-based backups (xfsdump disk only). See "taskgroup Object" on page 240.

DUMP_DATABASE_COPY

The path to a directory where a snapshot of the DMF databases will be placed when
do_predump.sh is run (third-party backup only) See "taskgroup Object" on page
240.

DUMP_DESTINATION

The directory in which to store disk-based backups (xfsdump disk only). See
"taskgroup Object" on page 240.

DUMP_DEVICE

The name of the DG in the configuration file that defines how to mount the tapes that
the backup tasks will use (xfsdump tape only). See "taskgroup Object" on page 240.

DUMP_FILE_SYSTEMS

One or more filesystems to back up. If not specified, the tasks will back up all the
DMF-managed filesystems configured in the configuration file. See "taskgroup
Object" on page 240.

632 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DUMP_FLUSH_DCM_FIRST

Specifies whether or not the dmmigrate command is run before the backups are
done to ensure that all non-dual-resident files in the DCM MSP caches are migrated
to tape/MAID. See "taskgroup Object" on page 240.

DUMP_INVENTORY_COPY

The pathnames of one or more directories into which are copied the XFS inventory
files for the backed-up filesystems (xfsdump tape only). See "taskgroup Object" on
page 240.

DUMP_MAX_FILESPACE

The maximum disk space used for files to be dumped, which may be larger or smaller
than the length of the file (xfsdump only). See "taskgroup Object" on page 240.

DUMP_MIGRATE_FIRST

The parameter that specifies whether or not the dmmigrate command is run before
the backups are done to ensure that all migratable files in the DMF-managed
filesystems are migrated, thus reducing the amount of media space needed for the
dump and making it run much faster. See "taskgroup Object" on page 240.

DUMP_MIRRORS

One or more directories in which to place a copy of disk-based backups (xfsdump
disk only). See "taskgroup Object" on page 240.

DUMP_RETENTION

The length of time that the backups of the filesystem will be kept before the backup
space is reused (xfsdump disk only). See "taskgroup Object" on page 240.

DUMP_STREAMS

The number of xfsdump streams (threads) to use when backing up a filesystem. See
"taskgroup Object" on page 240.

DUMP_TAPES

The path of a file that contains VSNs, one per line, for the backup tasks to use
(xfsdump tape only). See "taskgroup Object" on page 240.

007–5484–012 633

Glossary

DUMP_VSNS_USED

A file in which the VSNs of tapes that are used are written (xfsdump tape only). See
"taskgroup Object" on page 240.

DUMP_XFSDUMP_PARAMS

Passes parameters to the xfsdump program (xfsdump only). See "taskgroup
Object" on page 240.

EOT

End-of-volume marker (historically known as EOT for end-of-tape)

EXPORT_METRICS

Enables DMF’s use of the common arena for use by Performance Co-Pilot (PCP),
dmstat(8), dmarenadump(8), and other commands. See "base Object" on page 216.

EXPORT_QUEUE

Instructs the daemon to export details of its internal request queue to
SPOOL_DIR/daemon_exports every two minutes, for use by dmstat(8) and other
utilities. See "dmdaemon Object" on page 228.

FADV_SIZE_MAID

Specifies when to call posix_fadvise() with advice POSIX_FADV_DONTNEED for
COPAN MAID volumes. See "drivegroup Object Parameters" on page 306.

FADV_SIZE_MSP

Specifies the size of files in the MSP’s STORE_DIRECTORY for which
posix_fadvise() will be called with advice POSIX_FADV_DONTNEED. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

fast-mount cache

A migration target with fast mount/position characteristics (such as COPAN MAID)
that is used in conjunction with another target (such as physical tape). In a
fast-mount cache configuration, DMF simultaneously migrates data to a temporary

634 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

copy on the cache target and to permanent copies on the other targets. This
configuration provides similar functionality to a DCM MSP but does not migrate data
from the cache to tier-3, so volumes on the cache can be freed immediately when the
fullness threshold is reached and volume merging is avoided. A taskgroup object is
required to empty full volumes in the cache after a specified threshold is reached.

FC

Fibre Channel.

fhandle

See file handle.

file

An inode and its associated data blocks; an empty file has an inode but no data blocks.

file handle

The DMAPI identification for a file. You can use the dmscanfs(8), dmattr(1), and
dmfind(1) commands to find file handles.

file state

The migration state of a file as indicated by the dmattr(1) command. A file can be
regular (not migrated), migrating, dual-state, offline, partial-state, unmigrating,
never-migrated, or have an invalid DMF state.

file tag

A site-assigned 32-bit integer associated with a specific file, allowing the file to be
identified and acted upon.

FILE_RETENTION_DAYS

The age (in days) of a file that must not be deleted from the fast-mount cache. See
"taskgroup Object" on page 240.

filesystem object

The configuration file object that defines parameters necessary for migrating files in
that filesystem. See "filesystem Object" on page 269.

007–5484–012 635

Glossary

FMC_MOVEFS

The specific scratch MOVE_FS directory to be used when moving files to be retained in
the fast-mount cache. See "taskgroup Object" on page 240.

FMC_NAME

The name of a fastmountcache object. See "taskgroup Object" on page 240.

FORWARD_RECALLS

The parameter that specifies whether or not a recall should be directed to another VG
or MSP if the volume required for the recall is busy because it is being written to. See
"volumegroup Object" on page 318.

FREE_DUALRESIDENT_FIRST

Specifies whether dmdskfree will first free dual-resident files before freeing files it
must migrate (for DCM MSP STORE_DIRECTORY). See "Automated Space
Management Parameters for a DCM MSP STORE_DIRECTORY" on page 287.

FREE_DUALSTATE_FIRST

Specifies whether or not dmfsfree will first free dual-state and partial-state files
before freeing files it must migrate (for MSP/VG filesystem). See "Automated Space
Management Parameters for a DMF-Managed Filesystem" on page 280.

FREE_SPACE_DECREMENT

The percentage of filesystem space by which dmfsmon or dmdskmsp will decrement
FREE_SPACE_MINIMUM (if it cannot find enough files to migrate) so that the value is
reached. The decrement is applied until a value is found that dmfsmon can achieve.
See:

• "Automated Space Management Parameters for a DCM MSP STORE_DIRECTORY"
on page 287

• "Automated Space Management Parameters for a DMF-Managed Filesystem" on
page 280

636 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

FREE_SPACE_MINIMUM

The minimum integer percentage of the total filesystem space that dmfsmon tries to
maintain as free. See:

• "Automated Space Management Parameters for a DCM MSP STORE_DIRECTORY"
on page 287

• "Automated Space Management Parameters for a DMF-Managed Filesystem" on
page 280

FREE_SPACE_TARGET

The integer percentage of total filesystem space that dmfsfree or dmdskfree tries to
maintain as free if free space reaches or falls below the FREE_SPACE_MINIMUM
threshold. See:

• "Automated Space Management Parameters for a DCM MSP STORE_DIRECTORY"
on page 287

• "Automated Space Management Parameters for a DMF-Managed Filesystem" on
page 280

FREE_VOLUME_MINIMUM

The minimum percentage of free volumes in the COPAN MAID or COPAN VTL
fast-mount cache that will cause run_fmc_free.sh to begin freeing full volumes in
order to meet the percentage set for FREE_VOLUME_TARGET. See "taskgroup Object"
on page 240.

FREE_VOLUME_TARGET

The percentage of volumes in the COPAN MAID or COPAN VTL fast-mount cache
that run_fmc_free.sh tries to free when the FREE_VOLUME_MINIMUM threshold is
reached. See "taskgroup Object" on page 240.

freed file

A file that has been migrated and whose data blocks have been released.

FTP_ACCOUNT

The account ID to use when migrating files to the remote system. See "FTP msp
Object" on page 350.

007–5484–012 637

Glossary

FTP_COMMAND

Additional commands to send to the remote system. See "FTP msp Object" on page
350.

FTP_DIRECTORY

The directory to use on the remote system. See "FTP msp Object" on page 350.

FTP_HOST

The Internet hostname of the remote machine on which files are to be stored. See
"FTP msp Object" on page 350.

FTP MSP

The daemon-like media-specific process (MSP) that copies data blocks onto alternate
media and assigns keys to identify the location of the migrated data using the file
transfer protocol (FTP) to transfer to and from disks of another system on the network.

FTP_PASSWORD

The file containing the password to use when migrating files to the remote system.
This file must be owned by root and be only accessible by root. See "FTP msp
Object" on page 350.

FTP_PORT

The port number of the FTP server on the remote system. See "FTP msp Object" on
page 350.

FTP_USER

The user name to use when migrating files to the remote system. See "FTP msp
Object" on page 350.

FULL_THRESHOLD_BYTES

The parameter that determines whether or not the disk MSP will tell the DMF
daemon when it is full. See "Disk msp Object" on page 356.

638 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

GET_WAIT_TIME

The parameter that limits the amount of time (in seconds) that DMF will continue
writing to a volume after receiving a recall request for that volume. See
"volumegroup Object" on page 318.

GROUP_MEMBERS

The list of VGs and/or MSPs that will be a member of the migrate group. See
"migrategroup Object" on page 331.

GUARANTEED_DELETES

The number of child processes that are guaranteed to be available for processing
delete requests. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "FTP msp Object" on page 350

GUARANTEED_GETS

The number of child processes that are guaranteed to be available for processing
dmget(1) requests. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "FTP msp Object" on page 350

HA

High availability

HA resource

A service, associated with an IP address, that is managed by SUSE Linux Enterprise
High Availability Extension (HA). Also see resource for DMF Manager.

HAE

SUSE Linux Enterprise High Availability Extension.

007–5484–012 639

Glossary

hard-delete

The action of removing a soft-deleted database entry. See also soft-deleted database entry.

HBA_BANDWIDTH

(OpenVault only) The I/O bandwidth capacity of an HBA port that is connected to
tape drives on a node. See:

• "base Object" on page 216

• "node Object" on page 232

HFREE_TIME

The minimum number of seconds that a tape no longer containing valid data must
remain unused before the VG overwrites it. See "volumegroup Object" on page 318.

HOME_DIR

The base pathname for directories in which DMF databases and related files reside.
See "base Object" on page 216.

HTML_REFRESH

The refresh rate (in seconds) of the generated HTML pages. See "resourcewatcher
Object Parameters" on page 338.

IMPORT_DELETE

A parameter that specifies whether the MSP should honor hard-delete requests from
the DMF daemon. See:

• "Disk msp Object" on page 356

• "FTP msp Object" on page 350

IMPORT_ONLY

A parameter that specifies whether the VG/MSP is used only for recalling files. See:

• "Disk msp Object" on page 356

• "FTP msp Object" on page 350

• "volumegroup Object" on page 318

640 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

incomplete daemon-database entry

An entry in the daemon database for an MSP or VG that has not finished copying the
data, and therefore has not yet returned a key. The path field in the database entry is
NULL.

incompletely migrated file

A file that has begun the migration process, but for which one or more copies on
alternate media have not yet been made.

inode

The portion of a file that contains the bit-file identifier, the state field, and the data
pointers.

integrated data mover functionality

The ability of the DMF server to move data. See also parallel data-mover node.

INTERFACE

The IP address or associated name of this node to be used for communication
between DMF components. See "node Object" on page 232.

JOURNAL_DIR

The base pathname for directories in which the daemon database and LS journal files
will be written. See "base Object" on page 216.

JOURNAL_RETENTION

The length of time to keep journals. See "taskgroup Object" on page 240.

JOURNAL_SIZE

The maximum size (in bytes) of the database journal file before DMF closes it and
starts a new file. See "base Object" on page 216.

LABEL_TYPE

The label type used when writing volumes from the beginning. See "drivegroup
Object Parameters" on page 306.

007–5484–012 641

Glossary

library server

(LS) A daemon-like process by which data blocks are copied onto secondary storage
and that maintains the location of the migrated data. Each LS has an associated LS
database with catalog (CAT) and volume (VOL) records. An LS can be configured to
contain one or more DGs.

LCP

Library control program

logical block protection

A mechanism provided by tape drive manufactures to provide a checksum for data
validation at the end of each tape block (also known as data integrity validation).

LOGICAL_BLOCK_PROTECTION

Specifies whether logical block protection should be turned on when reading and
writing tapes. See "volumegroup Object Parameters" on page 319.

LS

See library server.

LS database

The database containing catalog (CAT) and volume (VOL) records associated with a
library server (LS). See also CAT record and VOL record.

libraryserver object

The configuration file object that defines parameters relating to a tape library for an
LS. See "libraryserver Object Parameters" on page 303.

LICENSE_FILE

The full pathname of the file containing the license used by DMF. See "base Object"
on page 216.

LOG_RETENTION

Specifies the age of files that will be kept when the run_remove_logs.sh task is
run. See "taskgroup Object" on page 240.

642 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

LS_NAMES

The library servers used by the DMF daemon. See "dmdaemon Object" on page 228.

MAID

Massive array of idle disks.

managed filesystem

A DMAPI-mounted XFS or CXFS filesystem, configured in a filesystem object in
the DMF configuration file, on which DMF can migrate or recall files. (When using
the Parallel Data Mover Option, it must be CXFS.)

MAX_ALERTDB_SIZE

Specifies the maximum size of the alerts database. See "taskgroup Object" on page
240.

MAX_CACHE_FILE

The largest chunk (in bytes) that will be merged using the merge disk cache. See
"libraryserver Object Parameters" on page 303.

MAX_CHUNK_SIZE

The size (in bytes) of the chunk into which the VG should break up large files as it
writes data to secondary storage. See "volumegroup Object" on page 318.

MAX_IDLE_PUT_CHILDREN

The maximum number of idle write child (dmatwc) processes that will be allowed
simultaneously for a VG. See "volumegroup Object" on page 318.

MAX_DRIVES_PER_NODE

(This parameter has been deprecated and will be ignored.)

MAX_MANAGED_REGIONS

The maximum number of managed regions that DMF will assign to a file on a
per-filesystem basis. You can set MAX_MANAGED_REGIONS to any number that is less
than the actual number of regions that will fit in a filesystem attribute. See
"filesystem Object" on page 269.

007–5484–012 643

Glossary

MAX_MS_RESTARTS

The maximum number of times DMF can attempt to restart the mounting service
(TMF or OpenVault) without requiring administrator intervention. See "drivegroup
Object Parameters" on page 306.

MAX_PERFDB_SIZE

Specifies the maximum size of the performance records database. See "taskgroup
Object" on page 240.

MAX_PUT_CHILDREN

The maximum number of write child (dmatwc) processes that will be scheduled
simultaneously for the DG or an individual VG. See:

• "drivegroup Object Parameters" on page 306

• "volumegroup Object" on page 318

media-specific process

(MSP) The daemon-like process by which data blocks are copied onto alternate media
and that assigns keys to identify the location of the migrated data.

MERGE_CUTOFF

A limit at which the VG will stop scheduling tapes for merging. See "volumegroup
Object" on page 318.

MERGE_INTERFACE

The IP address or associated name on this node to be used when merging sparse
volumes via sockets. See "node Object" on page 232.

MERGE_THRESHOLD

The integer percentage of active data on a volume less than which DMF will consider
a volume to be sparse and allow merging. See "volumegroup Object" on page 318.

merging

See volume merging.

644 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

MESSAGE_LEVEL

The highest message level that will be written to a log file (the higher the number, the
more messages written). See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "dmdaemon Object" on page 228

• "filesystem Object" on page 269

• "FTP msp Object" on page 350

• "libraryserver Object Parameters" on page 303

• "services Object" on page 236

• Chapter 9, "Message Log Files" on page 401

MSG_DELAY

The number of seconds that all drives in the DG can be down before DMF sends an
e-mail message to the administrator and logs an error message. See "drivegroup
Object Parameters" on page 306

metadata

Information that describes a file, such as the file’s name, size, location, and
permissions.

metadata server

The CXFS server-capable administration node that coordinates updating of metadata
on behalf of all nodes in a cluster. There can be multiple potential metadata servers,
but only one is chosen to be the active metadata server for any one filesystem.

METRICS_RETENTION

Specifies the retention time for the DMF cumulative (totals and averages) metrics. See
"base Object" on page 216.

007–5484–012 645

Glossary

migrated file

A file that has one or more complete offline copies and no pending or incomplete
offline copies.

migrate group

A logical collection of VGs or MSPs that you combine into a set in order to have a
single destination for a migrate request. See migrategroup.

migrategroup

The configuration object that combines a set of VGs and MSPs so that they can be
used as a single destination for a migrate request. See "migrategroup Object" on
page 331.

migrating file

A file that has a bit-file identifier but whose offline copies are in progress.

MIGRATION_LEVEL

The highest level of migration service allowed. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "dmdaemon Object" on page 228

• "filesystem Object" on page 269

MIGRATION_TARGET

The integer percentage of total filesystem space that dmfsmon tries to maintain as a
reserve of space that is free or occupied by dual-state files (whose online space can be
freed quickly) if free space reaches or falls below FREE_SPACE_MINIMUM. See
"Automated Space Management Parameters for a DMF-Managed Filesystem" on page
280.

MIN_ARCHIVE_SIZE

Determines whether direct or buffered I/O is used when reading from this filesystem.
See "filesystem Object" on page 269.

646 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

MIN_DIRECT_SIZE

Determines whether direct or buffered I/O is used when reading from this filesystem.
See:

• "DCM msp Object" on page 360

• "filesystem Object" on page 269

• open(2) man page for a description of direct I/O

MIN_VOLUMES

The minimum number of unused volumes that can exist in the LS database for this
VG without operator notification. See "volumegroup Object" on page 318.

MOUNT_BLOCKED_TIMEOUT

The maximum number of minutes to wait for a volume to be mounted when another
process is using the drive. See "drivegroup Object Parameters" on page 306.

MOUNT_SERVICE

The mounting service. See:

• "device Object" on page 267

• "drivegroup Object Parameters" on page 306

MOUNT_SERVICE_GROUP

The name by which the object’s devices are known to the mounting service. See:

• "device Object" on page 267

• "drivegroup Object Parameters" on page 306

MOUNT_TIMEOUT

The maximum number of minutes to wait for a volume to be mounted. See
"drivegroup Object Parameters" on page 306.

MOVE_FS

One or more scratch filesystems used by dmmove(8) to move files between MSPs or
VGs. See "dmdaemon Object" on page 228.

007–5484–012 647

Glossary

MSG_DELAY

The number of seconds that all drives in the DG can be down before an e-mail
message is sent to the administrator and an error message is logged. See
"drivegroup Object Parameters" on page 306.

MSP

The media-specific process (MSP), a daemon-like process by which data blocks are
copied onto alternate media and that assigns keys to identify the location of the
migrated data.

MSP database entry

The daemon database entry for a file that contains the path or key that is used to
inform a particular media-specific process (MSP) where to locate the copy of the file’s
data.

MSP_NAMES

Names the media-specific processes (MSPs) used by the DMF daemon. See
"dmdaemon Object" on page 228.

msp object

The configuration file object that defines parameters necessary for the operation of a
media-specific process. There is one msp object for each MSP. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "FTP msp Object" on page 350

MULTIPLIER

The amount of data to be sent to a group member relative to the other members listed
in GROUP_MEMBERS when using the ROUND_ROBIN_BY_BYTES or
ROUND_ROBIN_BY_FILES for ROTATION_STRATEGY. See "migrategroup Object"
on page 331.

648 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

MULTITAPE_NODES

(Parallel Data-Mover Option and OpenVault only). The parameter that restricts the recall
of a file that involves multiple tapes to one of the specified mover nodes. See
"drivegroup Object Parameters" on page 306.

MVS_UNIT

The storage device type on an MVS system. See "FTP msp Object" on page 350.

NAME_FORMAT

The strings that form a template to create names for files stored on remote machines
in the STORE_DIRECTORY. This parameter is also used by the disk MSP and the
DCM MSP, where it provides a template for filenames in STORE_DIRECTORY. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "FTP msp Object" on page 350

near-line storage

Storage in which tapes are mounted by robot.

NODE_ANNOUNCE_RATE

The rate in seconds at which a node will contact the dmnode_service on the DMF
server to announce its presence. See "services Object" on page 236.

NODE_BANDWIDTH

(OpenVault only) The I/O bandwidth capacity of the node. See:

• "base Object" on page 216

• "node Object" on page 232

NODE_TIMEOUT

The number of seconds after which the data mover functionality on the DMF server
or on a parallel data-mover node will be considered inactive if it has not contacted
the dmnode_service on the DMF server. See "services Object" on page 236.

007–5484–012 649

Glossary

nonmigrated file

A file that does not have a bit-file identifier or any offline copies. See regular file.

offline file

A file whose inode contains a bit-file identifier but whose disk blocks have been
removed. The file’s data exists elsewhere in copies on alternate media.

offline pointer

In MSP and VG processing, a character string that the MSP or VG returns to the
daemon to indicate how a file is to be retrieved.

OpenVault

A storage library management facility that improves how applications can manage,
store, and retrieve removable media.

OpenVault drive group

A group of interchangeable devices. See also DMF drive group.

orphan chunk

An unused area in an LS catalog (CAT) database entry resulting from the removal of
migrated files.

orphan database entry

An unused daemon database entry resulting from the removal of a migrated file
during a period in which the DMF daemon is not running.

OV_ACCESS_MODES

(OpenVault only) The OpenVault access mode. See:

• "device Object" on page 267

• "drivegroup Object Parameters" on page 306

650 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

OV_INTERCHANGE_MODES

(OpenVault only) A list of interchange mode names that control how data is written to
secondary storage. See:

• "device Object" on page 267

• "drivegroup Object Parameters" on page 306

OV_KEY_FILE

(OpenVault only) The file containing the OpenVault keys used by DMF. See "base
Object" on page 216.

OV_SERVER

(OpenVault only) Specifies the name associated with the IP address on which the
OpenVault server is listening. See "base Object" on page 216.

oversubscribe

A ratio of offline space to the total amount of space for a given DMF filesystem
(including space that is free, space that is occupied by regular files, space that is
occupied by files that are migrated, including dual-state files.

parallel data-mover node

A node, installed with DMF data mover software and underlying CXFS client-only
software, that provides dedicated data mover functionality in addition to the DMF
server, increasing data throughput and enhancing resiliency.

parallel data-mover node license

A DMF license installed on the DMF server that permits one parallel data-mover
node to be active when using the Parallel Data-Mover Option. There can be multiple
licenses installed, one for each parallel data-mover node that is active at any one time.
See also parallel data-mover node and Parallel Data Mover Option.

Parallel Data-Mover Option

Optional software and licenses available for purchase that allow you to run parallel
data-mover nodes in order to increase data throughput and enhance resiliency.

007–5484–012 651

Glossary

parameter

See configuration parameter.

partial-state file

A file that has more than one region. DMF allows a file to include up to four distinct
file regions. See also region.

partial-state file online retention

A partial-state file feature capability that allows you to keep a specific region of a file
online while freeing the rest of it (for example, if you wanted to keep just the
beginning of a file online). See also partial-state file.

partial-state file recall

A partial-state file feature capability that allows you to recall a specific region of a file
without recalling the entire file. For more information, see the dmput(1) and
dmget(1) man pages. See also partial-state file.

PARTIAL_STATE_FILES

Enables or disables the DMF daemon’s ability to produce partial-state files. See
"dmdaemon Object" on page 228.

PENALTY

A parameter used to reduce the priority of requests from a VG that is not the next
one preferred by the round-robin algorithm. See "resourcescheduler Object
Parameters" on page 337.

PERF_RETENTION

The length of time to keep performance records. See "taskgroup Object" on page 240.

PERFTRACE_METRICS

Enables or disables collection of performance tracking information from DMF. See
"base Object" on page 216.

652 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

POLICIES

The names of the configuration objects defining policies for this filesystem. See:

• "DCM msp Object" on page 360

• "filesystem Object" on page 269

policy

Rules that tell DMF how to determine MSP or VG selection, automated
space-management policies, and/or file weight calculations.

policy object

The configuration file object that specifies parameters to determine MSP or VG
selection, automated space management policies, and/or file weight calculations in
automated space management. See "policy Object" on page 276.

POSITIONING

How the volume should be positioned. See "drivegroup Object Parameters" on
page 306.

POSITION_RETRY

The level of retry in the event of a failure during zone positioning. See "drivegroup
Object Parameters" on page 306.

POSIX_FADVISE_SIZE

Specifies the number of bytes after which DMF will call posix_fadvise() with
advice POSIX_FADV_DONTNEED when recalling files. See "filesystem Object" on
page 269.

PRIORITY_PERIOD

Specifies the number of minutes after which a migrating file gets special treatment.
See "DCM msp Object" on page 360.

primary filesystem

See DMF-managed filesystem.

007–5484–012 653

Glossary

PUT_IDLE_DELAY

The number of seconds that an idle dmatwc (write child) process will be allowed to
stay alive. See "volumegroup Object" on page 318.

PUTS_TIME

The minimum number of seconds a VG waits after it has requested a drive for a write
child before it tells a lower priority child to go away. See "volumegroup Object" on
page 318.

RAID

Redundant array of independent disks.

raw time

The time in seconds since January 1, 1970.

read child

A data-mover process that recalls data from tape.

READ_ERR_MAXIMUM

The maximum number of I/O errors that will be tolerated when recalling a file. See
"drivegroup Object Parameters" on page 306.

READ_ERR_MINIMUM

The minimum number of I/O errors that will be tolerated when recalling a file. See
"drivegroup Object Parameters" on page 306.

READ_ERR_TIMEOUT

The elapsed number of seconds since the first I/O error was seen. See "drivegroup
Object Parameters" on page 306.

READ_IDLE_DELAY

The number of seconds an idle LS read child (dmatrc) can wait before being told to
exit. See "drivegroup Object Parameters" on page 306.

654 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

READ_TIME

The interval, in seconds, after which the VG will evaluate whether a read child
should be asked to go away (even if it is in the middle of recalling a file) so that a
higher priority child can be started. See "volumegroup Object" on page 318.

recall a file

To request that a migrated file’s data be moved back (unmigrated) onto the filesystem
disk, either by explicitly entering the dmget(1) command or by executing another
command that will open the file, such as the vi(1) command.

RECALL_NOTIFICATION_RATE

The approximate rate, in seconds, at which regions of a file being recalled are put
online. This allows for access to part of a file before the entire file is recalled. See
"dmdaemon Object" on page 228.

region

A contiguous range of bytes that have the same residency state. The range state can
be migrating (MIG), dual-state (DUL), offline (OFL), or unmigrating (UNM).

regular file

A file with no bit-file identifier and no offline copies.

REINSTATE_DRIVE_DELAY

The number of minutes after which a drive that was configured down by the DG will
be automatically reinstated and made available for use again. See "drivegroup
Object Parameters" on page 306.

REINSTATE_VOLUME_DELAY

The number of minutes after which a volume that had its HLOCK flag set by DMF will
be automatically reinstated and made available for use again. See "drivegroup
Object Parameters" on page 306.

REMALERT_PARAMS

Parameters to be executed by run_remove_alerts.sh. See "taskgroup Object" on
page 240.

007–5484–012 655

Glossary

REMPERF_PARAMS

Parameters to be executed by run_remove_perf.sh. See "taskgroup Object" on
page 240.

RESERVED_VOLUMES

Defines the number of volumes that the VG will reserve for volume merging or that
will trigger selection of another volume within a migrate group. See "volumegroup
Object" on page 318.

resource

A resource is a filesystem or hardware component used by DMF. Also see HA resource

resource group

A service, associated with an IP address, that is managed by SUSE Linux Enterprise
High Availability Extension.

resourcescheduler object

The configuration file object that defines parameters relating to scheduling of devices
in a DG when requests from VGs exceed the number of devices available. See
"resourcewatcher Object Parameters" on page 338.

resourcewatcher object

The configuration file object that defines parameters relating to the production of files
informing the administrator about the status of the LS and its components. See
"resourcewatcher Object Parameters" on page 338.

REWIND_DELAY

The number of seconds an idle LS read child (dmatrc) can wait before rewinding.
See "drivegroup Object Parameters" on page 306.

ROTATION_STRATEGY

The method in which migration requests will rotate through the VGs and MSPs that
are members of this group. See "migrategroup Object" on page 331.

656 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

ROUND_ROBIN_BY_BYTES

The ROTATION_STRATEGY value specifying that a certain number of bytes (defined
by MULTIPLIER) are sent to each VG/MSP member specified in GROUP_MEMBERS.
See "migrategroup Object" on page 331.

ROUND_ROBIN_BY_FILES

The ROTATION_STRATEGY value specifying that a certain number of files (defined by
MULTIPLIER) are sent to each VG/MSP member specified in GROUP_MEMBERS. See
"migrategroup Object" on page 331.

RUN_TASK

A DMF maintenance command to be executed. See:

• "Automated Maintenance Tasks" on page 132

• "drivegroup Object Parameters" on page 306

• "libraryserver Object Parameters" on page 303

• "taskgroup Object" on page 240

• "volumegroup Object" on page 318

SCAN_FILESYSTEMS

The parameter that specifies for the run_filesystem_scan.sh script the
filesystems that dmscanfs will scan. See "taskgroup Object" on page 240.

SCAN_FOR_DMSTAT

The parameter that specifies for the run_filesystem_scan.sh script whether
additional output files (bfid2path and/or fhandle2bfid+path) are created, also
depending upon the setting for SCAN_PARAMS. See "taskgroup Object" on page 240.

SCAN_OUTPUT

The parameter that specifies for the run_filesystem_scan.sh script the name of
the file into which dmscanfs will place output. See "taskgroup Object" on page 240.

007–5484–012 657

Glossary

SCAN_PARALLEL

The parameter that specifies for the run_filesystem_scan.sh script whether
dmscanfs will scan filesystems in parallel. See "taskgroup Object" on page 240.

SCAN_PARAMS

The parameter that specifies additional dmscanfs parameters for the
run_filesystem_scan.sh task. See "taskgroup Object" on page 240.

secondary storage

The offline media onto which file data is migrated. See also DMF-managed filesystem.

SELECT_LOWER_VG

Defines which VGs should maintain secondary-storage copies of files in the cache,
and under what conditions that would define dual-residence. (It is not used for
defining which VG to use for recalls; for that, see the definitions of the LS_NAMES,
MSP_NAMES, DRIVE_GROUPS, and VOLUME_GROUPS parameters.) See "VG Selection
Parameters for a DCM MSP STORE_DIRECTORY" on page 291.

SELECT_MSP

The media-specific processes (MSPs) to use for migrating a file. See "MSP/VG
Selection Parameters for a DMF-Managed Filesystem" on page 286.

SELECT_VG

The volume groups (VGs) to use for migrating a file. See "MSP/VG Selection
Parameters for a DMF-Managed Filesystem" on page 286.

SEQUENTIAL

The ROTATION_STRATEGY value specifying that each COPAN shelf will be filled
before advancing to the next shelf.

server capability license

The DMF license that permits DMF migrations to exceed 1 TB when installed in
conjunction with one or more DMF data capacity licenses. See also data capacity
licenses.

658 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

SERVER_NAME

Hostname of the machine on which the DMF server is running (used for HA
configurations or configurations using the DMF Parallel Data Mover Option). See
"base Object" on page 216.

SERVICES

The name of the services object used to configure DMF services on a node when
using the Parallel Data-Mover Option. See "node Object" on page 232.

SERVICES_PORT

The port number on which DMF starts a locator service, which DMF uses to locate
other DMF services. See "services Object" on page 236.

site-defined policy

A site-specific library of C++ functions that DMF will consult when making decisions
about its operation.

SITE_SCRIPT

The site-specific script to execute when dmfsfree, dmdskfree, or dmfsmon is run.
See:

• "Automated Space Management Parameters for a DMF-Managed Filesystem" on
page 280

• "Automated Space Management Parameters for a DCM MSP STORE_DIRECTORY"
on page 287

• "DCM msp Object" on page 360

snapshot

The information about all bit-file identifier sets that is collected and analyzed by
dmaudit(8). The snapshot analysis is available from the report function.

soft-delete

The action of adding a time stamp to the delete field of a daemon database entry.
See also active database entry and soft-deleted database entry.

007–5484–012 659

Glossary

soft-deleted database entry

A daemon database entry whose BFID points to a file that is no longer present in the
DMF-managed filesystem (because it has been modified or removed) but might still
reside on backup media. See also active database entry, BFID, and soft-delete.

SPACE_WEIGHT

The floating-point constant and floating-point multiplier to use to calculate the weight
given to a file’s size (for MSP/VG DMF-managed filesystem). See "File Weighting
Parameters for a DMF-Managed Filesystem" on page 283.

sparse volume

A volume containing only a small amount of active information.

special file

A device file in UNIX or Linux. (DMF never migrates special files.)

SPOOL_DIR

The base pathname for directories in which DMF log files are kept. See "base Object"
on page 216.

standby metadata server node

A CXFS server-capable administration node that is configured as a potential metadata
server for a given filesystem, but does not currently run any applications that will use
that filesystem.

state field

The field in the inode that shows the current migration state of a file.

STORE_DIRECTORY

The directory used to hold files for a DCM or disk MSP. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

660 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

tape block

See block.

tape drive

See drive.

tape chunk

See chunk.

tape merging

See volume merging.

task

A process initiated by the DMF event mechanism. Configuration tasks that allow
certain recurring administrative duties to be automated are defined with
configuration file parameters.

taskgroup

A type in the DMF configuration file for task groups. See "dmdaemon Object" on page
228.

007–5484–012 661

Glossary

TASK_GROUPS

The objects containing tasks that the daemon or LS should run. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "dmdaemon Object" on page 228

• "drivegroup Object Parameters" on page 306

• "filesystem Object" on page 269

• "FTP msp Object" on page 350

• "libraryserver Object Parameters" on page 303

• "services Object" on page 236

• "taskgroup Object" on page 240

• "volumegroup Object" on page 318

THRESHOLD

The percentage of active data on a volume. DMF will consider a volume to be sparse
when it has less than this percentage of data that is still active. See "taskgroup
Object" on page 240.

TIMEOUT_FLUSH

The number of minutes after which the VG will flush files to tape. See
"volumegroup Object" on page 318.

TMF_TMMNT_OPTIONS

Command options that should be added to the tmmnt command when mounting a
tape. See:

• "device Object" on page 267

• "drivegroup Object Parameters" on page 306

662 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

TMP_DIR

The base pathname for DMF directories in which DMF puts temporary files such as
pipes. See "base Object" on page 216.

TSREPORT_OPTIONS

Additional options that the run_daily_tsreport.sh script will add to the end of
the tsreport command line. See "taskgroup Object" on page 240.

007–5484–012 663

Glossary

TYPE

The required name for the object. See:

• "base Object" on page 216

• "DCM msp Object" on page 360

• "device Object" on page 267

• "Disk msp Object" on page 356

• "dmdaemon Object" on page 228

• "drivegroup Object Parameters" on page 306

• "fastmountcache Object" on page 301

• "filesystem Object" on page 269

• "FTP msp Object" on page 350

• "libraryserver Object Parameters" on page 303

• "migrategroup Object" on page 331

• "node Object" on page 232

• "policy Object" on page 276

• "resourcescheduler Object Parameters" on page 337

• "resourcewatcher Object Parameters" on page 338

• "services Object" on page 236

• "taskgroup Object" on page 240

• "volumegroup Object" on page 318

unmanaged archive filesystem

A POSIX filesystem (such as Lustre), configured in a filesystem object in the DMF
configuration file to have a MIGRATION_LEVEL of archive. This type of filesystem
is not managed by DMF but lets you can efficiently copy files to secondary
storage via the dmarchive(1) command.

664 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

unmigratable file

A file that the daemon will never select as a migration candidate.

unmigrate

See recall.

USE_UNIFIED_BUFFER

Determines how DMF manages its buffers when recalling files on this filesystem. See
"filesystem Object" on page 269.

VALID_ROOT_HOSTS

Hosts where the root user can perform certain functions similar to the root user on
the DMF server. See "base Object Parameters" on page 217.

VERIFY_POSITION

A parameter that specifies whether the LS write child should (prior to writing) verify
that the volume is correctly positioned and that the volume was properly terminated
by the last use. See "drivegroup Object Parameters" on page 306.

VG

See volume group.

VOL_MSG_TIME

Specifies, in seconds, the minimum interval between operator notifications for
low–volume and no-volume conditions. See:

• "allocationgroup Object" on page 338

• "allocationgroup Object Parameters" on page 339

volume

In DMF, a logical area of physical tape, virtual tape, or disk such as COPAN MAID
that is used for migrating data.

007–5484–012 665

Glossary

volume group

A volume group is a of component of an LS that is responsible for managing pool of
volumes capable of storing single copies of files. Multiple copies of the same files
require the use of multiple VGs. See also LS.

VOLUME_GROUPS

The VGs containing volumes that can be mounted on any of the drives within this
DG. See "drivegroup Object Parameters" on page 306.

voided BFID-set state

A BFID set state that consists of one or more soft-deleted daemon database entries,
either incomplete or complete. There is no file. See also bit-file identifier and soft-deleted
database entry.

voiding the BFID

The process of removing the BFID from the file inode and soft-deleting all associated
database entries. See also bit-file identifier and soft-deleted database entry.

VOL record

An entry in the volume (VOL) table of the LS database that contains information about
a volume. There is one VOL record for each volume. See also CAT record, VOL table.

VOL table

A table in the LS database that contains VOL records. See also CAT table, VOL record.

volumegroup

The configuration object that defines parameters relating to a pool of volumes
mountable on the drives of a specific DG that are capable of holding, at most, one
copy of files. See "volumegroup Object" on page 318.

VG database entry

The daemon database entry for a file that contains the path or key that is used to
inform a particular VG where to locate the copy of the file’s data.

666 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

VOLUME_LIMIT

The maximum number of volumes that can be selected for merging at one time. See
"taskgroup Object" on page 240.

volume merging

The mechanism provided by the LS for copying active data from volumes that
contain largely obsolete data to volumes that contain mostly active data.

volume serial number

A label that uniquely identifies a specific volume.

VSN

See volume serial number

VTL

Virtual tape library.

WATCHER

The resource watcher that the LS should run. See "libraryserver Object
Parameters" on page 303.

WEIGHT

The parameter that assigns a weighting to one or more VGs. See
"resourcescheduler Object Parameters" on page 337.

WORO

write-once/read-occasionally

007–5484–012 667

Glossary

WRITE_CHECKSUM

The parameter that specifies that a block should be checksummed before writing. See:

• "DCM msp Object" on page 360

• "Disk msp Object" on page 356

• "drivegroup Object Parameters" on page 306

• "FTP msp Object" on page 350

write child

A data-mover process that migrates data to secondary storage.

zone

A logical grouping of chunks. Zones are separated by file marks and are the smallest
block-addressable unit on the volume. The target size of a zone is configurable by
media type.

ZONE_SIZE

The parameter that specifies about how much data the write child should put in a
zone. See "volumegroup Object" on page 318.

668 007–5484–012

Index

?? ??

1PB+ license, 60
10TB+ license, 60
100TB+ license, 60
256b-byte inodes, 88

A

About panel in DMF Manager, 149
absolute block positioning, 40
accelerated access to first byte, 6
active parallel data-mover node, 64
Activity panel in DMF Manager, 149
ADMDIR_IN_ROOTFS, 87, 217
Admin Guide panel in DMF Manager, 149
Admin mode functionality, 152
admin state and fencing, 135
ADMIN_EMAIL, 218
$ADMINDIR, 255
administrative directories, 79
administrative tasks

automated maintenance tasks, 132
best practices, 105
daemon configuration, 240
filesystem backups, 48, 244
maintenance and recovery, 473
overview, 46
tape management, 347

age expression, 292
AGE_WEIGHT, 284, 293, 295, 404, 481, 580
AGGRESSIVE_HVFY, 306
alert records

remove, 242
ALERT_RETENTION, 245
Alerts panel in DMF Manager, 149, 178
ALGORITHM, 337
allocation group, 39
ALLOCATION_GROUP, 319, 329
ALLOCATION_MAXIMUM, 319
ALLOCATION_MINIMUM, 319
allocationgroup

allocationgroup object overview, 213
AMPEX DIS/DST, 215
API commands, 115
application support, 8
architecture, 36
architecture requirements, 42
archive file requests, 547
archives for DMF Manager monitoring, 115
archiving, 5

See "DMF direct archiving", 12, 102
archiving files, 15
Atempo Time Navigator, 599
attr, 129
attr2, 129
autolog file, 401
autolog log file, 407
automated maintenance tasks

daemon configuration, 240
overview, 132

automated space management
administration duties, 47
candidate list generation, 404
commands overview, 54
file exclusion, 404
log, 401
log file, 407
parameters, 280, 287

007–5484–012 669

Index

relationship of targets, 406
selection of migration candidates, 405

automated space management procedure, 297
automatic monitoring, 2
automatic start after reboot, 138
automounters, 40
averages, 198

B

backup package configuration, 479, 597
backups

databases, 109
DMF and backup products, 475
DMF configuration file, 87
filesystems, 109
of daemon database, 264

balance data among libraries, 121
bandwidth and socket merges, 112
BANDWIDTH_MULTIPLIER, 307
base data-capacity license, 59
base metrics, 198
base object

icon in DMF Manager, 169
overview, 212
parameters, 217

basic DMF, 31
batch processing, 45
best practices

administrative, 105
configuration, 76
installation, upgrade, and downgrade, 71

bfid, 418
bit-file identifier (BFID), 36
black clock symbol, 512
BLOCK_SIZE, 307
blocks, 428
blocksize, 517
blocksize keyword, 451
BOF/bof, 295

bottlenecks, 119
BUFFERED_IO_SIZE, 270, 361
burst_size, 119
byte range requests and partial-state files, 606

C

CACHE_AGE_WEIGHT, 289, 293
CACHE_DIR, 80, 87, 303, 380, 483
CACHE_MEMBERS, 301
CACHE_SPACE, 91, 304
CACHE_SPACE_WEIGHT, 290, 293
CANCEL message, 464
cancelling changes, 175
candidate list

creation, 403
generation, 404
terminology, 47

capability license, 59
capacity

determination, 63
DMF, 40
license, 59
overhead and, 40

case study on zone size, 607
CAT record, 35
CAT records

backup, 484
dmatls database and , 426
messages, 515
records and LS database directories, 430

cflags, 441
change notification suppression, 118
checkage, 414
CHECKSUM_TYPE, 320
checktime, 415, 418
CHILD_MAXIMUM, 351, 356, 361
chkconfig, 127, 138, 139
chkconfig for dmfsoap, 500
chunkdata , 441

670 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

chunklength, 441
chunknumber, 441
chunkoffset, 441
chunkpos, 441
chunks, 428
chunksleft, 517
chunksleft keyword, 451
CIFS, 9
client and server subsystems, 126
client commands, 50
client port specification, 144
clients

commands, 50
installation, 125
OS supported, 12

collecting information for problem analysis, 111
COMMAND, 304, 351, 356, 361
commands, 49, 51
commands that are undocumented, 115
commands to run on a copy of the DMF

database, 109
comments and DMF Manager configuration, 167
Common Internet File System (CIFS), 9
COMPRESSION_TYPE, 307
configuration

allocationgroup object, 339
automated space management, 280, 287
backup of, 87
base object, 217
best practices, 76
command overview, 51
considerations, 125
daemon object configuration, 228
DCM, 360
DCM MSP, 365
device object, 267
disk MSP, 356
DMF Manager and, 166
dmmaint and, 617
drivegroup object, 306
dump_tasks, 244

fastmountcache object, 301
file weighting, 283, 289, 297
filesystem object, 270
FTP MSP, 350
initial, 617
libraryserver object, 303
LS objects, 302
LS setup, 348
migrategroup object, 332
msp object

DCM, 360
DCM MSP, 365
disk MSP, 356
FTP MSP, 350

MSP/VG selection, 286, 291, 300
node object, 232
objects, 51, 211
OpenVault, 396
overview, 123
parameters, 51, 368

See also "parameters", 217
policy object, 276
resourcescheduler object, 337
resourcewatcher object, 338
services object, 236
space management parameters, 405
SPOOL_DIR, 419
stanza, 213
stanza format, 213
taskgroup object, 345
verifying, 381
volumegroup object, 319

configuration file samples, 86
Configuration menu in DMF Manager, 149
configuration pending message, 128
Configuration tab in DMF Manager, 149
Configure button, 616
context manipulation subroutines, 540
converting data from other HSMs, 145
converting from IRIX DMF to Linux DMF, 601
COPAN

007–5484–012 671

Index

configuration best practices, 93
COPAN MAID

fast-mount cache and, 97
COPAN MAID VSN, 56
COPAN RAID set, 8
COPAN VTL stopping, 496
COPAN_VSNS, 87, 304
copy file requests, 545
count directive, 412, 438, 448
cpio file recall, 476
create directive, 412, 438, 448
current metrics, 198
custom I/O performance charts, 203
customizable policies

See "site-defined policies", 144
customizing DMF, 143
CXFS

basic DMF figure, 31
DMF and, 89
parallel data-mover nodes and, 33
RECALL_NOTIFICATION_RATE and, 91
support for, 8

cxfs_admin, 380
cxfs_recovery_timeout_stalled, 102

D

daemon
commands overview, 52
configuration parameters, 228
configuring automated maintenance tasks, 240
dmd_db.dbd, 485
log, 401
logs and journals, 419
object

See "dmdaemon object", 212
processing, 409
shutdown, 410
startup, 409
tasks, 240

data integrity, 36
administrative tasks and, 48
copying filesystem data, 244
overview, 36

data reduction process and DMF Manager, 115
data reliability

administrative tasks and, 48
copying daemon database, 264
copying filesystem data, 244

data-capability license, 59
data-mover process, 31
DATA_LIMIT, 242, 243, 246, 347
database daemon, 35
database journal files, 421
database loading and journaling, 112
database lock manager incompatibility, 614
DATABASE_COPIES, 241, 246, 264
databases, 35

audit, 241
automated verification task, 262
automating copying for reliability, 264
back up, 241
backup, 484
configuring automated tasks, 264
daemon, 485
directory location, 411
dmcatadm, 515
dmdadm and, 411
dmvoladm message, 517
example of recovery, 486
LS recovery, 485
record length, 130
recovery, 485, 486
See "daemon database", 130
selection, 484
size of databases, 83

dataleft, 517
dataleft keyword, 451
datalimit, 453
datawritten keyword, 451
dbrec.dat file, 485

672 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dbrec.keys file, 485
DCM

administration, 243
configuration, 360

DCM disk caches, 202
DCM MSP

commands, 55
configuration, 365
disk MSP and, 466
filesystems and, 482
terminology, 15

DCM STORE_DIRECTORY rules, 279
DCP disabling, 491
dd, 119
delay icon on Windows systems, 111
delay in accessing files, 511
delete directive, 412, 438, 448
deleteage, 415
deletetime, 415, 418
delimiter in configuration file, 214
device block-size defaults and bandwidth, 215
device object

overview, 212
parameters, 267

DHCP and YaST, 72
direct archiving

See "DMF direct archiving", 12, 102
DIRECT_IO_MAXIMUM_SIZE, 218
DIRECT_IO_SIZE, 271, 361
directories not migrated by DMF, 27
directory structure prior to DMF 2.8, 609
dirsync and STORE_DIRECTORY, 80
disable components

COPAN VTL, 496
DCP, 491
library, 493
OpenVault drive, 492
TMF drive, 495

DISCONNECT_TIMEOUT, 304
disk cache manager

See "DCM MSP", 466

disk MSP
command, 55
configuration, 356
log files, 466
overview, 465
request processing, 465
terminology, 15
verification, 467

disk space capacity, 7
DISPLAY environment variable, 615
distributed commands, 519
DLT, 215
DmaConfigStanzaExists(), 582
DmaContext_t, 569
DmaFrom_t, 570
DmaGetConfigBool(), 583
DmaGetConfigFloat(), 584
DmaGetConfigInt(), 585
DmaGetConfigList(), 586
DmaGetConfigStanza(), 587
DmaGetConfigString(), 588
DmaGetContextFlags(), 589
DmaGetCookie(), 589
DmaGetDaemonMigGroups, 590
DmaGetDaemonVolAndMigGroups(), 590
DmaGetDaemonVolGroups(), 591
DmaGetMigGroupMembers, 591
DmaGetProgramIdentity(), 592
DmaGetUserIdentity(), 592
DmaIdentity_t, 570
DmaLogLevel_t, 572
dmanytag, 611
DMAPI

automatically enabled, 89
kernel interface, 37
mount options, 127
requirement, 42

DMAPI on SLES 10, 508
DMAPI_PROBE, 513
dmarchive, 13, 44, 50, 102, 270, 543
dmarchive.php, 500

007–5484–012 673

Index

DmaRealm_t, 572
DmaRecallType_t, 573
DmaSendLogFmtMessage(), 593
DmaSendUserFmtMessage(), 594
DmaSetCookie(), 595
dmatls

journal files, 431
library server terminology, 15
log files, 432
LS operations, 426
VOL records, 430

dmatrc, 39, 426
dmatread, 54, 426, 460
dmatsnf, 54, 426, 461
dmattr, 50
dmattr.php, 500
dmatvfy, 55
dmatwc, 39, 426
dmaudit

changes in DMF 3.2, 613
summary, 52
verifymsp, 461

dmcapacity, 50
dmcatadm

directives, 438
example of list directive, 444
field keywords, 441
interface, 437
keywords, 441
limit keywords, 443
summary, 54
text field order, 446

dmcheck, 52, 381, 506
dmcleardcmtag, 611
dmclearpartial, 612
dmcleartag, 611
dmclripc, 56
dmcollect, 56, 111, 513
dmconfig, 52
dmcopan, 56
dmcopy, 50

dmd_db journal file, 419
dmd_db.dbd, 485
dmdadm

directives, 411, 412
example of list directive, 417
field keywords, 414
format keyword, 416
format keywords, 414
limit keywords, 416
selection expression, 413
summary, 52
text field order, 418

dmdadm –j, 112
dmdaemon object

associated task scripts, 241
icon in DMF Manager, 169
overview, 212
parameters, 228

dmdate, 56
dmdbcheck, 49, 52, 55, 109
dmdbrecover, 53, 485
dmdidle, 53
dmdlog log, 401
dmdlog log file, 409, 419
dmdskfree, 55
dmdskmsp, 15, 465
dmdskvfy, 55, 467
dmdstat, 53
dmdstop, 53, 410
dmdu, 50
dmdump

run only on a copy of the DMF database, 109
summary, 56
text field order, 456

dmdumpj, 56
DMF

archiving overview, 18
cycle, 2
migration, 7

DMF Activity panel in DMF Manager, 149
DMF administrative directories, 79

674 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

DMF direct archiving
API subroutines, 547
archive file requests, 547
configuration file and, 270
DmuFilesysInfo(), 543
filesystem object and, 270
overview, 12, 102
requirements, 44
SiteArchiveFile() policy subroutine, 573

DMF I/O panel in DMF Manager, 149
DMF Manager

About panel, 149
access password, 148
accessing the GUI, 148
acknowledge a command, 189
Activity panel, 149, 191
Admin Guide panel, 149
Admin mode functionality, 152
admin password, 153
Alerts panel, 149, 178
archives, 115, 191
browser support, 43
checkpoint a command, 189
configuration file parameter display, 175
Configuration menu, 149
Configuration tab, 149
configuring DMF, 166

creating a new object, 173
deleting an object, 174
exiting configuration mode, 175
limitations, 167
new configuration file, 168
object menu, 168
saving changes, 174
show all objects, 167
templates, 168
validating changes, 174

copying an object, 171
DCM MSP monitoring, 201
DMF Activity panel, 149, 190
DMF I/O panel, 149

DMF Manager Tasks panel, 149
DMF Resources panel, 149, 190
drive state, 198
error messages, 509
filesystem monitoring, 195
Getting Started, 157
Getting Started panel, 149
help, 154
Help menu, 149
hold flags, 187
I/O panel, 149
I/O statistics, 204
installing/deleting licenses, 159
introduction, 9
key to symbols, 155
kill a command, 189
library management, 188
Library panel, 149
library usage, 198
license capacity, 161
Licenses panel, 149
login, 153
menu bar, 148
Messages tab, 149
metrics, 115, 191
modifying an object, 173
monitoring performance, 189
node state, 208
OpenVault library is missing, 511
Overview panel, 9, 148, 149
Parameters panel, 149, 176
password to access the GUI, 148
password to make administrative changes, 153
preferences, 157
problem discovery, 177
quick start, 157
refreshing the view, 158
relationships among DMF components, 9, 183
Reports panel, 149, 181
requirements, 43
Resources panel, 149

007–5484–012 675

Index

resources statistics, 194
resume a command, 189
starting/stopping DMF, 176
starting/stopping the mounting service, 176
statistics, 509
Statistics menu, 190
Statistics tab, 149
Storage tab, 149
tasks, 189
tips for using, 148
troubleshooting, 509
URLs for, 148
user-generated activity, 191
Volumes panel, 149, 185
“what is” help, 157

DMF Manager Tasks panel in DMF Manager, 149
DMF mover service, 381
DMF Resources panel in DMF Manager, 149
DMF SOAP

See "SOAP", 497
DMF statistics are unavailable, 509
DMF user library

See "user library (libdmfusr.so)", 519
DMF-aware backup packages, 479, 597
DMF-managed filesystem policy parameters, 280
DMF-managed filesystem rules, 278
dmf.conf

See "“configuration” and “parameters”", 52
dmf.conf.copan_maid, 86
dmf.conf.copan_vtl, 86
dmf.conf.dcm, 86
dmf.conf.dsk, 86
dmf.conf.fmc, 86
dmf.conf.ftp, 86
dmf.conf.ls, 86
dmf.conf.parallel, 86
dmf_client_ports, 144
dmfdaemon, 53, 409
dmfill, 56, 484
dmfind, 50
dmflicense, 51, 67

dmfsfree, 54, 403
dmfsmon, 54, 280, 287, 403–405
dmfsoap, 499
dmfsoap stop, 500
dmftpmsp, 15, 350, 462
dmfusr.so, 611
dmget, 50
dmget.php, 500
dmhdelete, 53
dmi, 89, 508
dmi mount option, 89
DMIG, 37
dmlocklog log, 401
dmlockmgr

abort, 423
communication and log files, 421
continuous execution, 421
database journal files, 421
interprocess communication, 422
log, 401
overview, 56
transaction log files, 421, 423

dmls, 50
dmmaint

configuration file definition, 617
Configure button, 616
GUI, 615
Inspect button, 616
License Info button, 617
multiple active versions of DMF, 609
overview, 615
Release Note button, 616
Update License button, 617

dmmigrate
file backup, 476
summary, 53

dmmigrate periodic task, 99
DMMIGRATE_MINIMUM_AGE, 246
DMMIGRATE_TRICKLE, 246
DMMIGRATE_VERBOSE, 247
DMMIGRATE_WAIT, 247

676 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dmmove, 56, 230, 467
dmmvtree, 57
dmnode_admin, 382
dmoper, 50, 142
dmoper.php, 500
dmov_keyfile, 57, 392
dmov_loadtapes, 57, 399
dmov_makecarts, 57, 398
dmput, 50
dmput.php, 500
dmscanfs, 54, 241, 405
dmselect, 57, 468
dmsnap, 53
dmsort, 57
dmstat, 57
dmtag, 50, 611
dmtag.php, 500
dmtapestat, 57
DMU_DEF_PRIORITY, 536
DMU_MAX_PRIORITY, 537
DMU_MIN_PRIORITY, 536
DmuAllErrors_t, 524
DmuArchiveAsync(), 547
DmuArchiveSync(), 547
DmuAttr_t, 525
DmuAwaitReplies(), 559
DmuByteRange_t, 526
DmuByteRanges_t, 526
DmuChangedDirectory(), 542
DmuCompletion_t, 530
DmuCopyAsync_2(), 545
DmuCopyRange_t, 530
DmuCopyRanges_t, 531
DmuCopySync_2(), 545
DmuCreateContext(), 540
DmuDestroyContext(), 542
DmuErrHandler_f, 532
DmuErrInfo_t, 532
DmuError_t, 533
DmuEvents_t, 533
DmuFhandle_t, 534

DmuFilesysInfo(), 543
DmuFsysInfo_t, 534
DmuFullRegbuf_t, 535
DmuFullstat_t, 535
DmuFullstatByFhandleAsync(), 549
DmuFullstatByFhandleSync(), 549
DmuFullstatByPathAsync(), 549
DmuFullstatByPathSync(), 549
DmuFullstatCompletion(), 560
DmuGetByFhandleAsync_2(), 554
DmuGetByFhandleSync_2(), 554
DmuGetByPathAsync_2(), 554
DmuGetByPathSync_2(), 554
DmuGetNextReply(), 561
DmuGetThisReply(), 563
dmunput, 58
DmuPriority_t, 536
DmuPutByFhandleAsync(), 551, 578
DmuPutByFhandleSync(), 551, 578
DmuPutByPathAsync(), 551, 578
DmuPutByPathSync(), 551, 578
DmuRegion_t, 537
DmuRegionbuf_t, 537
DmuReplyOrder_t, 537
DmuReplyType_t, 538
dmusage, 51, 63
DmuSettagByFhandleAsync(), 556
DmuSettagByFhandleSync(), 556
DmuSettagByPathAsync(), 556
DmuSettagByPathSync(), 556
DmuSeverity_t, 538
DmuVolGroup_t, 539
DmuVolGroups_t, 539
dmversion, 51
dmversion.php, 501
dmvoladm

directives, 448
examples of list directive, 457
field keywords, 451
format keywords, 454
limit keywords, 453

007–5484–012 677

Index

select directive, 436
summary, 54
text field order, 456
VOL records and, 431

dmxfsrestore, 58
do_predump.sh

NetWorker, 598
snapshot location, 248
summary, 479
Time Navigator, 599

downgrade
best practices, 71, 76
partial-state file feature and, 612

drive disabling, 492
drive does not exist, 509
drive entry error, 508
drive group

object, 212
OpenVault and, 396
terminology, 38
TMF tapes and, 399

drive visibility, 43
DRIVE_GROUPS, 87, 99, 304
DRIVE_MAXIMUM, 84, 308, 320
DRIVE_SCHEDULER, 309
drivegroup, 99
drivegroup object

overview, 212
parameters, 306

drives
performance improvements, 90
zone size and, 90

DRIVES_TO_DOWN, 309
DRIVETAB, 247
DSK_BUFSIZE, 356, 362
DSO, 39
dual-residence, 280
dual-resident state, 467
dual-state file, 18, 27

file migration and, 3
terminology, 14

xfsdump and, 476
DUALRESIDENCE_TARGET, 287
dump directive, 412, 438, 448
dump utilities, 48
DUMP_COMPRESS, 242, 247
DUMP_CONCURRENCY, 242, 248
DUMP_DATABASE_COPY, 242, 248, 480
DUMP_DESTINATION, 242, 248
DUMP_DEVICE, 242, 248
DUMP_FILE_SYSTEMS, 242, 249, 480
DUMP_FLUSH_DCM_FIRST, 242, 249, 480, 483
DUMP_INVENTORY_COPY, 242, 249
DUMP_MAX_FILESPACE, 242, 249
DUMP_MIGRATE_FIRST, 242, 250, 480, 483
DUMP_MIRRORS, 134, 242, 250
DUMP_RETENTION

NetWorker, 598
run_full_dump.sh, 242
run_hard_deletes.sh, 242
summary, 250
Time Navigator, 599

DUMP_STREAMS
summary, 251

DUMP_TAPES, 142, 242, 251
dump_tasks, 244
DUMP_VSNS_USED, 242, 251
DUMP_XFSDUMP_PARAMS, 242, 251
Dynamic Shared Object library, 39

E

EMC NetWorker, 597
empty damaged volume in DMF Manager, 188
empty graphs, 511
end of life

tape autoloader API, 609
tape MSP, 610

enhanced-NFS RPC corruption, 116
entitlement ID, 65
entries keyword, 444

678 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

EOF, 296
EOT error, 508
eotblockid keyword, 451
eotchunk, 517
eotchunk keyword, 451
eotpos, 517
eotpos keyword, 452
eotzone, 518
eotzone keyword, 452
error messages in DMF Manager, 149
error reports and tapes, 347
/etc/dmf/dmbase, 610
/etc/dmf/dmf.conf, 368, 509
/etc/lk/keys.dat, 66
/etc/tmf/tmf.config, 110
/etc/xinetd.conf, 92
/etc/xinetd.d/tcpmux, 92
explicit start, 139
explicit start dmfsoap, 500
explicit stop, 140
EXPORT_METRICS, 87, 218, 509
EXPORT_QUEUE, 228
extended attribute structure, 128
extension records, 88

F

fabric, 43
FADV_SIZE_MAID, 309
FADV_SIZE_MSP, 357, 362
fast-mount cache

configuration best practices, 97
definition, 16
diagrams, 24
merging and, 98
multiple migration copies and, 107
overview, 28
requirements, 44

fastmountcache, 97
fastmountcache object

overview, 212
parameters, 301

feature history, 609
file concepts, 14
file hard deletion, 242
file migration

See "migration", 3, 404
file ranking, 47
file recall, 27
file regions, 5
file request subroutines, 544
file tagging, 143
file weighting, 278, 283, 289, 297
FILE_RETENTION_DAYS, 98, 243, 251
filesize keyword, 442
filesystem errors, 506
filesystem information subroutine, 543
filesystem object

overview, 212
parameters, 270

filesystems
back up, 242
conversion, 357, 362
DCM MSP and, 482
dmdskmsp, 357, 362
dmftpmsp, 352
migrate, 241, 243
mount options, 127
report on, 241
scan, 241

filters, 181
FINISH message, 464
Firefox and DMF Manager, 9, 43
flag keywords, 454
FLUSHALL message, 464
FMC

See "fast-mount cache", 44
FMC_MOVEFS, 99, 243, 252
FMC_NAME, 252
format keyword, 417, 444
FORWARD_RECALLS, 142, 321

007–5484–012 679

Index

free space management, 7, 47
free-space minimum threshold, 2, 7
FREE_DUALRESIDENT_FIRST, 288
FREE_DUALSTATE_FIRST, 280
FREE_SPACE_DECREMENT, 280, 288, 406
FREE_SPACE_MINIMUM, 281, 288, 405
FREE_SPACE_TARGET, 282, 288
FREE_VOLUME_MINIMUM, 98, 243, 252
FREE_VOLUME_TARGET, 98, 243, 252
FTP, 8
FTP MSP

log files, 463
messages, 464
msp object for, 350
overview, 462
request processing, 462
terminology, 15

FTP_ACCOUNT, 351
FTP_COMMAND, 351
FTP_DIRECTORY, 351
FTP_HOST, 351
FTP_PASSWORD, 351
FTP_PORT, 352
FTP_USER, 352
FULL_THRESHOLD_BYTES, 357
fullstat requests, 549

G

get file requests, 554
GET_WAIT_TIME, 321
Getting Started panel in DMF Manager, 149
gid expression, 292
gmgrd, 511
gray background in DMF Manager, 169
GROUP_MEMBERS, 87, 332
GUARANTEED_DELETES, 352, 357, 362
GUARANTEED_GETS, 352, 357, 362
GUI

See "DMF Manager", 9

H

h1, 455
HA

differences in administration and
configuration, 110

DMF support, 12
license requirements, 60

HAE
See "HA", 12

hard-deleted files
maintenance/recovery, 474
run_hard_deletes.sh task, 242

hardware requirements, 41
HBA drivers, 91
HBA_BANDWIDTH, 218, 232
he, 454
help directive, 412, 438, 448
Help menu in DMF Manager, 149
helper subroutines for sitelib.so, 582
herr, 454
hexadecimal number, 296
hextern, 142, 454
hf, 452
hflags, 452, 455
hfree, 455
HFREE_TIME, 322
hfull, 455
hierarchical storage management, 5
high availability

See "HA", 12
historical feature information, 609
hl, 455
hlock, 455
ho, 455
hoa, 455
hold flags, 187, 451
HOME_DIR, 80, 83, 219, 380, 427, 483
host port speeds and tape drives, 118
HP ULTRIUM, 215
hr, 455

680 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

hro, 455
hs, 455
hsite*, 455
HSM conversion to DMF, 145
HSM data import, 145
hsparse, 455
HTML_REFRESH, 338
hu, 455
hv, 455
HVD disk, 8
hvfy, 455
hx, 454

I

I/O panel in DMF Manager, 149
IBM 03590, 215
IBM TS1140, 215
IBM ULT3580, 215
IBM ULTRIUM, 215
IMPORT_DELETE, 352, 357
IMPORT_ONLY, 322, 352, 358
importing data from other HSMs, 145
incremental data-capacity license, 59
initial configuration, 617
initial planning, 45
initrd, 91
INITRD_MODULES, 91
inode and DMF, 15
inode size, 128
inode-resident extended attributes, 88
inodes, 5
Inspect button, 616
inst, 139, 140, 500
installation, 126

best practices, 71
client installers on DMF server, 126
considerations, 125
ISSP release, 126
overview, 123

procedure, 123
installation source, 46
instances parameter, 92
integrated data-mover functionality, 33
INTERFACE, 233
Internet Explorer and DMF Manager, 9, 43
interoperability, 8
interprocess communication (IPC), 132, 421, 422
introduction to DMF, 1
IOStreamGuard, 136
IRIX

client platform, 12
conversion to Linux, 601
DMF user library location, 520

irix-64, 520
irix-n32, 520

J

joining of byte ranges, 297
journal files

configuring automated task for retaining, 263
database, 421
dmfdaemon, 419
LS, 431
remove, 242
retaining, 474
summary, 49

JOURNAL_DIR, 80, 84, 219, 419, 427, 431, 483
JOURNAL_RETENTION, 242, 253, 420, 432
JOURNAL_SIZE, 220, 420, 431, 432
journaling and database loading, 112

K

keys.dat, 66
Knowledgebase, 513

007–5484–012 681

Index

L

label keyword, 452
LABEL_TYPE, 309
LCP and COPAN, 94
LEGATO NetWorker, 597
libdmfadm.H, 569
libdmfcom.H, 569
libdmfusr.so, 51, 143, 144

See "user library (libdmfusr.so)", 519
libraries, 197

See "site-defined policy library", 565
See "user library (libdmfusr.so)", 519

library disabling, 493
Library panel in DMF Manager, 149
library server

See "LS", 302
library slot usage, 198
library versioning, 522
libraryserver, 99
libraryserver object

associated task scripts, 243
overview, 212
parameters, 303

libsrv_db journal file, 431
libsrv_db.dbd, 430, 431, 485
license capacity, 161
License Info button, 617
License Keys (LK), 59
LICENSE_FILE, 87, 220
Licenses panel in DMF Manager, 149
licensing, 59

capability license, 59
capacity determination, 63
commands, 51
data-capacity license, 59
dmflicense, 51, 67
dmusage, 51
entitlement ID, 65
/etc/lk/keys.dat, 220
file, 220

HA and, 60
host information, 65
installation, 66
keys, 65
License Keys (LK), 59
LICENSE_FILE, 220
lk_hostid, 65
lk_verify, 68
mounting services and, 65
obtaining from SGI, 65
OpenVault and, 65
Parallel Data-Mover Option and, 64
requirements, 42
SGI webpage, 69
stored capacity and, 59
TMF and, 65
types, 59
verification, 66

lights-out operations, 45
limit keywords

dmcatadm, 443
dmvoladm command, 453

Linux
DMF user library location, 520
ia64, 520
partial-state files and, 605
x86_64, 520

Linux-HA
See "HA", 12

list directive, 412, 438, 448
LK license, 59
lk_hostid, 65
lk_verify, 68
load directive, 412, 438, 448
LOCAL_, 110
lock manager, 421
log files

automated space management, 407
automated task for retaining, 263–265
changes in DMF 3.2, 613
disk MSP, 466

682 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

dmfdaemon, 419
dmlockmgr communication and, 421
FTP MSP, 463
LS, 432
remove, 242
retaining, 473
scan for errors, 242
transaction log files, 423

LOG_RETENTION, 242, 243, 253
LOGICAL_BLOCK_PROTECTION, 322
login for DMF Manager, 153
logs

general format, 401
low-voltage differential (LVD) tapes, 8
LS

architecture, 37
CAT records, 426, 430
commands, 49
configuration example, 340
database, 431
database recovery, 485
database recovery example, 486
description, 425
directories, 427
dmatread, 460
dmatsnf, 461
dmaudit verifymsp, 461
dmcatadm, 437
dmvoladm, 447
drive scheduling, 470
error analysis and avoidance, 468
journals, 431
log files, 432
objects, 212, 303
operations, 426
process, 38
setup, 302
status monitoring, 470
tape operations, 426
tape setup, 348
terminology, 15

VOL records, 426, 430
volume merging, 436

LS commands, 54
LS database, 35
LS_NAMES, 87, 99, 229
LSI FC ports and N-port technology, 118
lsiutil, 118
Lustre filesystem and DMF archiving, 12, 102
LVD tapes, 8

M

Mac OS X, 12, 520
MAID

configuration best practices, 93
maintenance and recovery

automated, 132
cleaning up journal files, 474
cleaning up log files, 473
daemon configuration, 240
database backup, 484–486
dmfill, 484
dmmaint, 615
example, 486
hard-deletes, 474
LS database, 485, 486
soft-deletes, 474

maintenance task configuration, 345
managing DMF

See "DMF Manager", 9
manypartial, 612
MAX_ALERTDB_SIZE, 253
MAX_CACHE_FILE, 305
MAX_CHUNK_SIZE, 323
MAX_IDLE_PUT_CHILDREN, 323
MAX_MANAGED_REGIONS, 271
MAX_MS_RESTARTS, 128, 310
MAX_PERFDB_SIZE, 242, 253
MAX_PUT_CHILDREN, 84, 310, 324
maximum burst size, 119

007–5484–012 683

Index

media, 46
media concepts, 427
media transports, 40
media-specific processes

See "MSP", 15
memory-mapping issues, 115
MERGE_CUTOFF, 325
MERGE_INTERFACE, 233
MERGE_THRESHOLD, 98, 325
merging and fast-mount cache, 98
merging sparse tapes

run_merge_mgr.sh, 242
run_tape_merge.sh, 347

merging sparse volumes
DMF Manager and, 188
run_merge_stop.sh, 347

MESSAGE_LEVEL, 229, 236, 272, 305, 353, 358, 362
messages

dmcatadm, 515
dmvoladm, 517
FTP MSP, 464
log, 401

Messages tab in DMF Manager, 149
metrics in DMF Manager monitoring, 115, 191
METRICS_RETENTION, 220
MG

objects, 213
MiB vs MB and DMF Manager, 190, 192
migrate group

configuration best practices, 95
COPAN and, 94

migrated data movement between MSPs, 467
migrated file, 3
migrategroup object

overview, 213
parameters, 332

migrating data from other HSMs, 145
migration

automated file selection, 405
file exclusion, 404
file selection, 405

frequency, 7
MSP/VG, 300
MSP/VG selection, 286, 291
multiple copies of a file, 107
overview, 5, 27
policies, 7
real-time partitions and, 407
recalling, 27
relationship of space management targets, 406
target, 403
terminology, 14
triggers, 7
weighting of files, 283, 289, 297

migration policies, 7
migration targets, 7
MIGRATION_LEVEL, 229, 272, 279, 362
MIGRATION_TARGET, 283
MIN_ARCHIVE_SIZE, 273
MIN_DIRECT_SIZE, 273, 363
MIN_VOLUMES, 325
mkfs parameter, 85
mkfs.xfs, 85, 129
modifications to the DMF configuration, 87
monitoring DMF, 107
monitoring performance, 189
mount options, 127
mount parameter, 85
MOUNT_BLOCKED_TIMEOUT, 311
MOUNT_SERVICE, 268, 311
MOUNT_SERVICE_GROUP, 268, 311
MOUNT_TIMEOUT, 312
mounting service tasks

OpenVault, 385
TMF, 399

mounting services
See “OpenVault” or “TMF”, 13

MOVE_FS, 80, 84, 85, 229, 230, 380, 483
MSG_DELAY, 312
MSGMAX, 132
MSGMNI, 132
MSP

684 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

automated maintenance tasks, 263
CAT records, 430
commands, 49
configuration, 300
description, 425
disk, 465
dmatread, 460
dmcatadm message, 515
dmfdaemon, 426
dmvoladm message, 517
FTP, 462
log files, 263
log files and automated maintenance tasks, 346
logs, 401
moving migrated data between MSPs, 467
msp object

DCM, 360
DCM MSP, 365
disk MSP, 356
FTP MSP, 350
overview, 213

selection for migrating files, 286, 291
tape setup, 348
tasks, 347
terminology, 15
types, 16

MSP objects, 350
MSP/VG selection, 278
MSP_NAMES, 87, 229
msp_tasks, 345
mspkey, 415, 418
msplog

message format, 401
msplog file

disk MSP, 466
dmatls, 434
LS logs, 432
LS statistics messages, 434

mspname, 415, 418
MULTIPLIER, 87, 333
MULTITAPE_NODES, 312

MVS_UNIT, 353

N

N-port technology, 118
n-tier capability, 15
NAME_FORMAT, 130, 353, 358, 363
network filesystem (NFS), 8
network service configuration and YaST, 72
NetWorker, 597
NFS, 8
nfsd_workaround, 116
node object

overview, 212
parameters, 232

node status in DMF manager, 208
NODE_ANNOUNCE_RATE, 237
NODE_BANDWIDTH, 221, 233
NODE_TIMEOUT, 237
NTP, 106
number of copies, 7
nwbackup, 598
nwrecover, 598

O

objects in DMF configuration file
allocationgroup object parameters, 339
base object, 217
device object, 267
dmdaemon object, 228
drivegroup object, 306
fastmountcache object, 301
filesystem object, 270
libraryserver object, 303
migrategroup object, 332
msp object

DCM, 360
DCM MSP, 365

007–5484–012 685

Index

disk MSP, 356
FTP MSP, 350

node object, 232
overview, 211
policy object, 276
resourcescheduler object, 337
resourcewatcher object parameters, 338
services object, 236
stanza format, 213
taskgroup object, 240, 345
volumegroup object, 319

offline data management, 47
offline file, 3, 14, 18, 27
online access, 5
OpenVault

availability, 127
considerations, 127
downgrade from DMF 4.0, 76
key file, 221
license, 65
OV_KEY_FILE, 221
OV_SERVER, 221
parameters, 221
server, 221
support for, 13
YaST and, 73

OpenVault configuration tasks
add the dmf application, 388
DMF and OpenVault servers differ, 396
drive groups, 396
initial server configuration, 386
parallel data-mover node configuration, 392

OpenVault drive disabling, 492
OpenVault libraries, 198
OpenVault library disabling, 493
operations timeout on Windows, 512
operative_flags, 575
operative_priority, 575
operative_volgrps, 575
origage, 415
origdevice, 415, 418

origin file error, 512
originode, 415, 418
origname, 415, 418
origsize, 415, 418
origtime, 415, 418
origuid, 415, 418
out-ot-library tapes, 142
OV_ACCESS_MODES, 268, 313
ov_admin, 72
ov_dcp, 491
ov_drive, 492, 496
ov_dumptable, 491
OV_INTERCHANGE_MODES, 268, 313
OV_KEY_FILE, 87, 221, 381, 392
ov_library, 142, 493
OV_SERVER, 87, 221
ov_start, 496
ov_stat, 493, 494
overhead of DMF, 40
oversubscription, 5
Overview panel in DMF Manager, 148, 149

P

parallel data-mover node
requirements, 42

Parallel Data-Mover Option
active node, 64
configuration, 379
CXFS and, 89
disabling/reenabling nodes, 383
installation, 125
license, 59
node state, 382
overview, 31
terminology, 31

parameter table, 368
parameters

ADMDIR_IN_ROOTFS, 217
ADMIN_EMAIL, 218

686 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

AGE_WEIGHT, 284, 404, 481
AGGRESSIVE_HVFY, 306
ALERT_RETENTION, 245
ALGORITHM, 337
ALLOCATION_GROUP, 319, 329
ALLOCATION_MAXIMUM, 319
ALLOCATION_MINIMUM, 319
BANDWIDTH_MULTIPLIER, 307
BLOCK_SIZE, 307
BUFFERED_IO_SIZE, 270, 361
CACHE_AGE_WEIGHT, 289
CACHE_DIR, 80, 303, 380, 483
CACHE_MEMBERS, 301
CACHE_SPACE, 91, 304
CACHE_SPACE_WEIGHT, 290
CHECKSUM_TYPE, 320
CHILD_MAXIMUM, 351, 356, 361
COMMAND, 304, 351, 356, 361
COMPRESSION_TYPE, 307
COPAN_VSNS, 304
DATA_LIMIT, 242, 243, 246, 347
DATABASE_COPIES, 241, 246
DIRECT_IO_MAXIMUM_SIZE, 218
DIRECT_IO_SIZE, 271, 361
DISCONNECT_TIMEOUT, 304
DMMIGRATE_MINIMUM_AGE, 246
DMMIGRATE_TRICKLE, 246
DMMIGRATE_VERBOSE, 247
DMMIGRATE_WAIT, 247
DRIVE_GROUPS, 87, 304
DRIVE_MAXIMUM, 308, 320
DRIVE_SCHEDULER, 309
DRIVES_TO_DOWN, 309
DRIVETAB, 247
DSK_BUFSIZE, 356, 362
DUALRESIDENCE_TARGET, 287
DUMP_COMPRESS, 242, 247
DUMP_CONCURRENCY, 242, 248
DUMP_DATABASE_COPY, 242, 248
DUMP_DESTINATION, 242, 248
DUMP_DEVICE, 242, 248

DUMP_FILE_SYSTEMS, 242, 249
DUMP_FLUSH_DCM_FIRST, 242, 249, 483
DUMP_INVENTORY_COPY, 242, 249
DUMP_MAX_FILESPACE, 242, 249
DUMP_MIGRATE_FIRST, 242, 250, 480, 483
DUMP_MIRRORS, 134, 242, 250
DUMP_RETENTION, 242, 250
DUMP_STREAMS, 251
DUMP_TAPES, 242, 251
DUMP_VSNS_USED, 242, 251
DUMP_XFSDUMP_PARAMS, 242, 251
EXPORT_METRICS, 87, 218
EXPORT_QUEUE, 228
FADV_SIZE_MAID, 309
FADV_SIZE_MSP, 357, 362
FILE_RETENTION_DAYS, 243, 251
FMC_MOVEFS, 243, 252
FMC_NAME, 252
FORWARD_RECALLS, 321
FREE_DUALRESIDENT_FIRST, 288
FREE_DUALSTATE_FIRST, 280
FREE_SPACE_DECREMENT, 280, 288, 406
FREE_SPACE_MINIMUM, 281, 288, 405
FREE_SPACE_TARGET, 282, 288
FREE_VOLUME_MINIMUM, 243, 252
FREE_VOLUME_TARGET, 243, 252
FTP_ACCOUNT, 351
FTP_COMMAND, 351
FTP_DIRECTORY, 351
FTP_HOST, 351
FTP_PASSWORD, 351
FTP_PORT, 352
FTP_USER, 352
FULL_THRESHOLD_BYTES, 357
GET_WAIT_TIME, 321
GROUP_MEMBERS, 332
GUARANTEED_DELETES, 352, 357, 362
GUARANTEED_GETS, 352, 357, 362
HBA_BANDWIDTH, 218, 232
HFREE_TIME, 322
HOME_DIR, 80, 219, 427, 483

007–5484–012 687

Index

HTML_REFRESH, 338
IMPORT_DELETE, 352, 357
IMPORT_ONLY, 322, 352, 358
INTERFACE, 233
JOURNAL_DIR, 80, 219, 427, 431, 483
JOURNAL_RETENTION, 242, 253, 420, 432
JOURNAL_SIZE, 220, 420, 431
LABEL_TYPE, 309
LICENSE_FILE, 220
LOCAL_, 110
LOG_RETENTION, 242, 243, 253
LOGICAL_BLOCK_PROTECTION, 322
LS_NAMES, 87, 229
MAX_ALERTDB_SIZE, 253
MAX_CACHE_FILE, 305
MAX_CHUNK_SIZE, 323
MAX_IDLE_PUT_CHILDREN, 323
MAX_MANAGED_REGIONS, 271
MAX_MS_RESTARTS, 128, 310
MAX_PERFDB_SIZE, 242, 253
MAX_PUT_CHILDREN, 310, 324
MERGE_CUTOFF, 325
MERGE_INTERFACE, 233
MERGE_THRESHOLD, 325
MESSAGE_LEVEL, 229, 236, 272, 305, 353,

358, 362
METRICS_RETENTION, 220
MIGRATION_LEVEL, 229, 272, 279, 362
MIGRATION_TARGET, 283
MIN_ARCHIVE_SIZE, 273
MIN_DIRECT_SIZE, 273, 363
MIN_VOLUMES, 325
MOUNT_BLOCKED_TIMEOUT, 311
MOUNT_SERVICE, 268, 311
MOUNT_SERVICE_GROUP, 268, 311
MOUNT_TIMEOUT, 312
MOVE_FS, 80, 229, 380, 483
MSG_DELAY, 312
MSP_NAMES, 87, 229
MULTIPLIER, 333
MULTITAPE_NODES, 312

MVS_UNIT, 353
NAME_FORMAT, 130, 353, 358, 363
NODE_ANNOUNCE_RATE, 237
NODE_BANDWIDTH, 221, 233
NODE_TIMEOUT, 237
OV_ACCESS_MODES, 268, 313
OV_INTERCHANGE_MODES, 268, 313
OV_KEY_FILE, 221, 381, 392
OV_SERVER, 221
PARTIAL_STATE_FILES, 230
PENALTY, 337
PERF_RETENTION, 242, 253
PERFTRACE_METRICS, 221
POLICIES, 273, 278, 364
POSITION_RETRY, 315
POSITIONING, 314
POSIX_FADVISE_SIZE, 274
PRIORITY_PERIOD, 364
PUT_IDLE_DELAY, 326
PUTS_TIME, 326
READ_ERR_MAXIMUM, 315
READ_ERR_MINIMUM, 316
READ_ERR_TIMEOUT, 316
READ_IDLE_DELAY, 316
READ_TIME, 326
RECALL_NOTIFICATION_RATE, 91, 230
REINSTATE_DRIVE_DELAY, 316, 469
REINSTATE_VOLUME_DELAY, 316
REMALERT_PARAMS, 242, 254
REMPERF_PARAMS, 242, 254
RESERVED_VOLUMES, 326
REWIND_DELAY, 317
ROTATION_STRATEGY, 334
RUN_TASK, 255, 305, 317, 327
SCAN_FILESYSTEMS, 256
SCAN_FOR_DMSTAT, 256
SCAN_OUTPUT, 256
SCAN_PARALLEL, 256
SCAN_PARAMS, 257
SELECT_LOWER_VG, 291
SELECT_MSP, 286

688 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

SELECT_VG, 286, 482
SERVER_NAME, 222, 382
SERVICES, 233
SERVICES_PORT, 87, 237, 382
SITE_SCRIPT, 283, 289
SPACE_WEIGHT, 285, 404, 481
SPOOL_DIR, 80, 222, 380, 407, 427, 483
STORE_DIRECTORY, 80, 359, 364, 380
TASK_GROUP, 327
TASK_GROUPS, 231, 237, 274, 305, 317, 354,

359, 365
THRESHOLD, 242, 243, 257, 347
TIMEOUT_FLUSH, 327
TMF_TMMNT_OPTIONS, 269, 317
TMP_DIR, 80, 222, 380, 483
TSREPORT_OPTIONS, 258
TYPE, 217, 228, 232, 236, 245, 268, 270, 279,

301, 303, 306, 319, 332, 337–339, 351, 356, 361
USE_UNIFIED_BUFFER, 274
VALID_ROOT_HOSTS, 223
VERIFY_POSITION, 317
VOL_MSG_TIME, 327, 339
VOLUME_GROUPS, 87, 318
VOLUME_LIMIT, 243, 258, 347
WATCHER, 305
WEIGHT, 337
WRITE_CHECKSUM, 318, 354, 359, 365
ZONE_SIZE, 90, 328

Parameters panel in DMF Manager, 149, 176
partial-state file

CACHE_SPACE_WEIGHT, 290
considerations, 605
enable/disable feature, 230
file regions and, 5
Linux kernel support lacking, 605
online retention, 6
performance cost, 605
recall, 6
SPACE_WEIGHT, 285
terminology, 14

partial-state filed

exact byte range requests, 606
PARTIAL_STATE_FILES, 105, 230
passwords for DMF manager

GUI access, 148
passwords in DMF Manager

admin, 153
path segment extension record, 130
path segment extension records, 88
pathseg, 130
pathseg.dat file, 485
pathseg.keys file, 485
PCP, 510
pcp-storage, 115
PENALTY, 337
PERF_RETENTION, 207, 242, 253
performance archives, 115
Performance Co-Pilot, 115, 191
performance monitoring, 189
performance statistics

remove, 242
PERFTRACE_METRICS, 221
periodic maintenance tasks, 240
php-curl, 501
php5-openssl, 501
php5-soap, 501
pipes, 27
pminfo, 510
POLICIES, 273, 278, 364
policies, 143
policy object

overview, 212
parameters, 276

poor migration performance, 512
port speeds and tape drives, 118
POSITION_RETRY, 315
POSITIONING, 314
POSIX_FADVISE_SIZE, 274
preconfigured samples in DMF Manager, 168
preferences in DMF Manager, 157
preventing automatic start, 138, 139
preventing automatic start of dmfsoap, 500

007–5484–012 689

Index

PRIORITY_PERIOD, 364
private filesystem of DMF and backups, 483
put file requests, 551
PUT_IDLE_DELAY, 326
PUTS_TIME, 326

Q

QLogic FC switch, 135
QUANTUM, 215
quit directive, 412, 438, 448

R

RAID set, 8
range tokens

RECALL_NOTIFICATION_RATE and, 91
ranges clause, 295
ranking of files, 47
RDM lock manager, 421
READ_ERR_MAXIMUM, 315
READ_ERR_MINIMUM, 316
READ_ERR_TIMEOUT, 316
READ_IDLE_DELAY, 316
READ_TIME, 326
readage, 442
readcount, 442
readdate, 442
recall of migrated files, 27
RECALL_NOTIFICATION_RATE, 91, 230
record length, 130
recordlimit, 416, 443, 454
recordorder, 416, 443, 454
recover command, 598
recovery

daemon database, 485, 486
LS database, 485, 486

Red Hat Enterprise Linux, 42
Red Hat Enterprise Linux (RHEL), 12

regions, 5
regular file, 14, 27
REINSTATE_DRIVE_DELAY, 316, 469
REINSTATE_VOLUME_DELAY, 316
relationships in DMF Manager, 183
Release Note button, 616
reliability, 264
REMALERT_PARAMS, 242, 254
remote connection failures, 512
REMPERF_PARAMS, 242, 254
repair directive, 448
reporting problems to SGI, 514
Reports Panel in DMF Manager, 181
Reports panel in DMF Manager, 149
request completion subroutines, 559
request processing

disk MSP, 465
FTP MSP, 462

requirements
direct archiving, 44
DMAPI, 43
DMF Manager, 43
DMF SOAP, 44
fast-mount cache, 44
hardware, 41
ksh, 42
licensing, 42
mounting service, 42
OpenVault, 42
parallel data-mover node, 42
server-node, 41
software, 41
TMP, 42

RESERVED_VOLUMES, 326
resource scheduler

algorithm, 39
configuration, 213
object overview, 213
object parameters, 337
resourcescheduler object, 213
terminology, 39

690 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

weighted_roundrobin, 337
resource watcher

resourcewatcher object overview, 213
terminology, 39

Resources panel in DMF Manager, 149
retention of journal files, 263
retention of log files, 263–265
Retention Policy parameter (NetWorker), 598
REWIND_DELAY, 317
RHEL, 42
robotic library, 15
ROTATION_STRATEGY, 87, 334
ROUND_ROBIN_BY_FILES, 334
rounding of byte ranges, 297
rpm, 139, 140
rpm dmfsoap, 500
RSCN, 134
rules for policy parameters, 278
run_audit.sh, 241, 262
run_compact_tape_report.sh, 668
run_copy_databases.sh, 49, 109, 241, 264
run_daily_drive_report.sh, 241
run_daily_tsreport.sh, 241, 263
run_dcm_admin.sh, 243
run_dmmigrate.sh, 99, 241, 243
run_filesystem_scan.sh, 241, 262
run_fmc_free.sh, 98, 243
run_full_dump.sh, 48, 242, 259
run_hard_deletes.sh, 49, 116, 242, 259
run_merge_mgr.sh, 242
run_merge_stop.sh, 243, 347
run_partial_dump.sh, 48, 242, 259
run_remove_journals.sh, 49, 242, 263, 346
run_remove_logs.sh, 49, 207, 242, 243, 263–265, 346
run_remove_perf.sh, 242
run_scan_logs.sh, 242, 263
run_tape_merge.sh, 243, 345, 347
run_tape_report.sh, 668
run_tape_stop.sh, 346
RUN_TASK, 98, 255, 305, 317, 327

S

safe modifications to the DMF configuration, 87
safety, 6
SAM, 145
sample configuration files, 86
sample DMF SOAP client files, 500
sample_sitelib.C, 566
sample_sitelib.mk, 566
samples in DMF Manager, 168
SAN switch zoning or separate SAN fabric, 43
save command, 598
savepnpc command, 598
scalability, 6
SCAN_FILESYSTEMS, 256
SCAN_FOR_DMSTAT, 256
SCAN_OUTPUT, 256
SCAN_PARALLEL, 256
SCAN_PARAMS, 257
script names, 89
SCSI low-voltage differential (LVD) tapes, 8
sdparm, 119
SEAGATE ULTRIUM, 215
secondary storage

See also "migration", 5
select directive, 448
select system call, 410
SELECT_LOWER_VG, 291, 293
SELECT_MSP, 286, 293, 580
SELECT_VG, 286, 293, 482, 580
selection expression, 449
separate SAN fabric, 43
SEQUENTIAL, 334
serial ATA, 15
server capability license, 59
Server Message Block (SMB), 9
server node functionality, 30
SERVER_NAME, 222, 382
SERVICES, 233
services object

associated task scripts, 243

007–5484–012 691

Index

overview, 212
parameters, 236

SERVICES_PORT, 87, 237, 382
SessTimeout, 111
set directive, 412, 438, 448
settag file requests, 556
SGI 400 VTL

disable drives before stopping, 113
SGI InfiniteStorage Software Platform (ISSP), 123
SGI Knowledgebase, 513
SGI x86_64 hardware, 42
sgi-dmapi, 89
sgi-xfsprogs, 89
sginfo, 120
shutdown, 139, 140, 423
shutdown of dmfsoap, 500
silo, 15
site tag feature, 611
site-defined policies

considerations, 568
customizing DMF, 143
DmaConfigStanzaExists(), 582
DmaContext_t, 569
DmaFrom_t, 570
DmaGetConfigBool(), 583
DmaGetConfigFloat(), 584
DmaGetConfigInt(), 585
DmaGetConfigList(), 586
DmaGetConfigStanza(), 587
DmaGetConfigString(), 588
DmaGetContextFlags(), 589
DmaGetCookie(), 589
DmaGetDaemonMigGroups, 590
DmaGetDaemonVolAndMigGroups(), 590
DmaGetDaemonVolGroups(), 591
DmaGetMigGroupMembers, 591
DmaGetProgramIdentity(), 592
DmaGetUserIdentity(), 592
DmaIdentity_t, 570
DmaLogLevel_t, 572
DmaRealm_t, 572

DmaRecallType_t, 573
DmaSendLogFmtMessage(), 593
DmaSendUserFmtMessage(), 594
DmaSetCookie(), 595
getting started, 566
SiteArchiveFile(), 573
SiteCreateContext(), 575
SiteDestroyContext(), 576
SiteFncMap_t, 573
SiteKernRecall(), 576
sitelib.so data types, 569, 572
SitePutFile(), 578
SiteWhen(), 580
subroutines overview, 565
terminology, 144

site-specific configuration parameter and stanza
names, 110

site-specific objects and parameters
DMF Manager and, 167

SITE_SCRIPT, 283, 289
SiteArchiveFile() sitelib.so subroutine, 573
SiteCreateContext() sitelib.so subroutine, 575
SiteDestroyContext() sitelib.so subroutine, 576
sitefn expression, 292
SiteFncMap variable, 567
SiteFncMap_t object, 573
SiteKernRecall() sitelib.so subroutine, 576
SITELIB parameter, 567
sitelib.so

See "site-defined policy library", 565
SitePutFile() sitelib.so subroutine, 578
sitetag expression, 293
SiteWhen() sitelib.so subroutine, 580
size expression, 293
size of DMF database filesystems, 83
SLES, 42
slot usage, 198
small files and DMF, 481
SMB, 9
SMB request timeouts, 111
SMB/CIFS network share, 511

692 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

.so file, 39
SOAP, 44

accessing the GUI, 499
dmfsoap service, 500
sample client files, 500
security/authentication, 500
See "", 497
starting, 500
stopping, 500
URLs for, 499

socket merges, 112
soft-deleted files

maintenance/recovery, 474
softdeleted expression, 293
software mix, 71
software requirements, 41
Solaris, 12, 520
SONY SDX, 215
SONY SDZ, 215
space expression, 293
space management

commands overview, 54
DCM MSP and, 407

SPACE_WEIGHT, 285, 293, 295, 404, 481, 580
sparcv9, 520
sparse tapes

configuration of automated merging, 347
merging, 242, 347

sparse volumes
automated merging, 347
merging, 436
terminology, 47

special files, 27
SPOOL_DIR, 80, 84, 87, 222, 380, 407, 419, 427, 483
stalled-recovery timeout, 102
starting the DMF environment, 138
Statistics tab in DMF Manager, 149
stdin, stdout, stderr and sitelib.so, 568
STK, 215
stopping the DMF environment, 138
Storage tab in DMF Manager, 149

storage used by an MSP, 482
STORE_DIRECTORY, 64, 80, 359, 364, 380, 467
STORE_DIRECTORY and dirsync, 80
STORE_DIRECTORY parameters, 467
Supportfolio, 513
SUSE Linux Enterprise Server (SLES), 12, 42
swdn, 118
switch

QLogic, 135
switch zoning, 43

T

tape autoloader API end of life, 609
tape drivers

ts, 58, 91, 262, 263, 508
tape drives

host port speeds and, 118
reports on, 241

tape ejection in DMF Manager, 188
tape management

error reports, 347
merging sparse tapes, 347
merging sparse volumes, 436

Tape Management Facility
See "TMF", 13

tape merging, 242
See "volume merging", 436

tape mounting services
See “OpenVault” or “TMF”, 13

tape MSP end of life, 610
tape MSP/LS and dmatread, 460
tape performance, 607
tape recall, 142
tapesize keyword, 452
tar file recall, 476
task, 46
TASK_GROUPS, 133, 231, 237, 274, 305, 317, 327,

354, 359, 365
taskgroup, 98

007–5484–012 693

Index

taskgroup object
overview, 212
parameters, 240, 345

Tasks panel in DMF Manager, 149
tcpmux, 92
tcpmux service_limit error, 512
terminology, 14
theory of archiving, 18
third-party backup package configuration, 479, 597
THRESHOLD, 242, 243, 257, 347
threshold keyword, 452
tiered-storage management, 5
Time Navigator, 599
time synchronization, 106
time_expression configuration, 255
TIMEOUT_FLUSH, 327
tmcollect, 513
tmconfig, 495
TMF

availability, 127
considerations, 127
license, 65
LS drive groups and, 399
support for, 13
tracing, 110

TMF drive disabling, 495
TMF_TMMNT_OPTIONS, 269, 317
TMP_DIR, 80, 87, 222, 380, 483
tmstat, 495
tools, 49
totals, 198
tpcrdm.dat, 485
tpcrdm.dat file, 430, 485
tpcrdm.key1.keys, 485
tpcrdm.key1.keys file, 430, 485
tpcrdm.key2.keys, 485
tpcrdm.key2.keys file, 430, 485
tpvrdm, 430
tpvrdm.dat, 431, 485
tpvrdm.dat file, 485
tpvrdm.vsn.keys, 431, 485

tpvrdm.vsn.keys file, 485
trace_directory, 110
trace_file_size, 110
trace_save_directory, 110
tracing and TMF, 110
trailing scaling character, 215, 297
transaction processing, 36
transports, 40
troubleshooting, 505

reporting problems to SGI, 514
ts tape driver, 262, 263

drives not claimed, 508
HBA drivers and initrd, 91
tsreport, 58

tsreport, 241, 263
TSREPORT_OPTIONS, 258
TYPE, 217, 228, 232, 236, 245, 268, 270, 279, 301,

303, 306, 319, 332, 337–339, 351, 356, 361

U

uid expression, 294
ULTRIUM, 215
undocumented commands, 115
unit measures and DMF Manager, 190, 192
UNIX special files, 27
unknown mount option, 508
unmanaged archive filesystem and archiving, 12,

102
unmigrating file, 14
unsupported commands, 115
upage keyword, 452
update directive, 412, 438, 448
update keyword, 452
Update License button, 617
updateage, 415
updatetime, 415, 418
upgrade best practices, 73
URL for DMF Manager, 9
USE_UNIFIED_BUFFER, 274

694 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

user interface commands, 50
user library (libdmfusr.so)

archive file requests, 547
context manipulation subroutines, 540
copy file requests, 545
distributed commands, 519
DmuAllErrors_t, 524
DmuAttr_t, 525
DmuAwaitReplies(), 559
DmuByteRange_t, 526
DmuByteRanges_t, 526
DmuChangedDirectory(), 542
DmuCompletion_t, 530
DmuCopyAsync_2(), 545
DmuCopyRange_t, 530
DmuCopyRanges_t, 531
DmuCopySync_2(), 545
DmuCreateContext(), 540
DmuDestroyContext(), 542
DmuErrHandler_f, 532
DmuErrInfo_t, 532
DmuError_t, 533
DmuEvents_t, 533
DmuFhandle_t, 534
DmuFilesysInfo(), 543
DmuFsysInfo_t, 534
DmuFullRegbuf_t, 535
DmuFullstat_t, 535
DmuFullstatByFhandleAsync(), 549
DmuFullstatByFhandleSync(), 549
DmuFullstatByPathAsync(), 549
DmuFullstatByPathSync(), 549
DmuFullstatCompletion(), 560
DmuGetByFhandleAsync_2(), 554
DmuGetByFhandleSync_2(), 554
DmuGetByPathAsync_2(), 554
DmuGetByPathSync_2(), 554
DmuGetNextReply(), 561
DmuGetThisReply(), 563
DmuPriority_t, 536
DmuPutByFhandleAsync(), 551

DmuPutByFhandleSync(), 551
DmuPutByPathAsync(), 551
DmuPutByPathSync(), 551
DmuRegion_t, 537
DmuRegionbuf_t, 537
DmuReplyOrder_t, 537
DmuReplyType_t, 538
DmuSettagByFhandleAsync(), 556
DmuSettagByFhandleSync(), 556
DmuSettagByPathAsync(), 556
DmuSettagByPathSync(), 556
DmuSeverity_t, 538
DmuVolGroup_t, 539
DmuVolGroups_t, 539
file request subroutines, 544
fullstat requests, 549
get file requests, 554
IRIX considerations, 522
library versioning, 522
put file requests, 551
request completion subroutines, 559
settag file requests, 556
sitelib.so and, 569
update in DMF 3.1, 610
user-accessible API subroutines for

libdmfusr.so.2, 540
/usr/dmf/dmbase, 609
/usr/lib/dmf/dmf_client_ports, 144
/usr/lib/dmf/support/dmanytag, 611
/usr/lib/dmf/support/dmcleardcmtag, 611
/usr/lib/dmf/support/dmclearpartial, 612
/usr/lib/dmf/support/dmcleartag, 611
/usr/lib/dmf/support/manypartial, 612
/usr/sbin/lk_hostid, 65
/usr/share/doc/dmf-*/info/sample, 566

V

VALID_ROOT_HOSTS, 223
/var/lib/pcp-storage/archives, 115

007–5484–012 695

Index

/var/lib/pcp-storage/archives directory, 115
/var/log/xinetd.log, 512
verification

automated task, 262
daemon database integrity, 262
dmmaint and, 615
License Info, 617
license keys, 66
run_audit.sh, 262

verify
disk MSPs, 467

verify directive, 438, 448
VERIFY_POSITION, 317
version keyword, 452
VG, 200

configuration, 300
objects, 213
selection for migrating files, 286, 291
terminology, 39

VG and COPAN, 94
vgnames, 444
vista.taf file, 424
VOL record, 35

messages, 517
VOL records, 426, 430

backup, 484
VOL_MSG_TIME, 327, 339
volgrp, 442
volgrp keyword, 452
volume group, 200
volume merge stopping, 243
volume merging

configuration of automated task, 347
LS, 436
stopping automatically, 347
terminology, 36

volume-to-volume merging, 436
VOLUME_GROUPS, 87, 318
VOLUME_LIMIT, 243, 258, 347
volumegroup, 99
volumegroup object

associated task scripts, 243
overview, 213
parameters, 319

volumes, 200
Volumes panel in DMF Manager, 149, 185
vsn, 442
VSN on COPAN MAID, 56
vsnlist expression, 449
VTL

configuration best practices, 93
See "SGI 400 VTL", 93

W

WATCHER, 305
web service definition language, 499
web-based tool, 9
WEIGHT, 337
weighting of files for migration, 283, 289, 297
wfage keyword, 453
wfdate keyword, 453
What Is help, 157
when clause, 292
Windows Explorer delay icon, 111
Windows Explorer hangs, 512
WRITE_CHECKSUM, 318, 354, 359, 365
writeage, 442
writedate, 442
WSDL, 499

X

XDSM standard, 37
XFS, 8
xfsdump, 476
xfsrestore, 476
xinetd, 92, 127
XVM failover, 43

696 007–5484–012

DMF 6 Administrator Guide for SGI® InfiniteStorageTM

Y

YaST and configuring network services, 72

Z

zone size and performance, 90

ZONE_SIZE, 90, 328, 607
zoneblockid, 442
zonenumber, 442
zonepos, 442
zones, 428
zonesize, 518
zoning of the SAN switch, 43

007–5484–012 697

	New Features in this Guide
	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	List of Procedures

	About This Guide
	Related Publications
	Man Pages
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction to DMF
	DMF Features
	Automatic Monitoring of Filesystem Space
	Easy and Constant Availability of Data
	Partial-State Files
	Safety and Scalability
	Site-Defined Migration Policies
	A Variety of Migration Targets
	Support for Fileserving Applications
	DMF Manager Web Interface
	Easy Access to User Commands on DMF Clients
	High Availability
	SOAP Web Service
	Direct Archiving
	Mounting Services
	Out-of-Library Tapes

	How DMF Works
	DMF File State Concepts
	DMF Mechanisms
	Multiple Storage Tiers
	Migration Process
	Recall of File Data
	Fast-Mount Cache Overview
	DMF Server Functions
	Parallel Data-Mover Option Overview
	DMF Databases
	Ensuring Data Integrity
	DMF Architecture
	Migrate Groups
	DMF Capacity

	Requirements
	Server Node Requirements
	Parallel Data-Mover Node Requirements
	Mounting Service Requirements
	License Requirements
	DMAPI Requirement
	SAN Switch Zoning or Separate SAN Fabric Requirement
	DMF Manager Requirements
	DMF SOAP Requirements
	DMF Direct Archiving Requirements
	Fast-Mount Cache Requirements

	Administration Tasks
	Initial Planning
	Installation and Configuration
	Recurring Administrative Duties
	Commands Overview

	2. DMF Licensing
	DMF License Types
	Anticipating Your DMF Data Capacity Requirements
	Displaying Current DMF Data Capacity Use
	Parallel Data-Mover Option and Licensing
	Mounting Services and Licensing
	Gathering the Host Information
	Obtaining the License Keys
	Installing the License Keys
	Verifying the License Keys
	DMF Manager Licenses Panel
	dmflicense
	lk_verify

	For More Information About Licensing

	3. DMF Best Practices
	Installation, Upgrade, and Downgrade Best Practices
	Use the Correct Mix of Software Releases
	Do Not Use YaST to Configure Network Services
	Upgrade Nodes in the Correct Order
	Take Appropriate Steps when Upgrading DMF
	Contact SGI Support to Downgrade After Using OpenVault TM 4.0 or Later

	Configuration Best Practices
	Follow all DMF Requirements
	Use Supported Libraries and Tape Drives
	Use Sufficiently Fast Filesystems
	Configure Passwordless SSH
	Configure DMF Administrative Directories Appropriately
	Safely Make Changes to the DMF Configuration
	Use Inode-Resident Extended Attributes and 256{byte Inodes
	Limit Path Segment Extension Records
	Do Not Change Script Names
	Configure DMF Appropriately with CXFS TM
	Improve Drive Performance with an Appropriate VG Zone Size
	Add HBA Drivers to the initrd Image
	Set RECALL_NOTIFICATION_RATE to 0 if CXFS Range Tokens are Disabled
	Set the xinetd tcpmux instances Parameter Appropriately
	Avoid Unintentional File Recall by Filesystem Browsers
	Configure Appropriately for SGI 400 VTL or COP AN MAID Shelves
	Use Migrate Groups Appropriately
	Use Fast-Mount Cache Appropriately
	Ensure that the Cache Copy is Recalled First
	Use a Task Group to Run dmmigrate Periodically
	Restrict the Size of the Alerts and Performance Records Databases
	Prevent Stalled-Recovery Timeout in a Non-HA Environment
	Use Appropriate Tape Barcodes
	Use dmarchive to Copy Unmanaged Archive File Data to Secondary Storage
	Use an Appropriate Filesystem for a Disk MSP
	Use Corresponding Drive-Group Names in OpenVault and DMF
	Use a Private Network Interface in a Parallel Environment
	Modify Partial-State Capability with Care

	Administrative Best Practices
	Use a Time Synchronization Application
	Monitor DMF Daily
	Migrate Multiple Copies of a File
	Determine the Backup Requirements for Your Site
	Run Certain Commands Only on a Copy of the DMF Databases
	Be Aware of Differences in an HA Environment
	Start Site-Specific Configuration Parameters and Stanzas with LOCAL_"
	Use TMF Tracing
	Run dmcollect If You Suspect a Problem
	Modify Settings If Providing File Access via Samba
	Disable Journaling When Loading an Empty Database
	Use Sufficient Network Bandwidth for Socket Merges
	Temporarily Disable Components Before Maintenance
	Gracefully Stop the SGI 400 VTL
	Reload STK ACSLS Cartridges Properly
	Disable Zone Reclaim to Avoid System Stalls
	Set Volume Size If You Want to Use Capacity Features
	Monitor the Size of the PCP Metrics Archive
	Be Aware that API Commands Change Without Notice
	Be Aware of Memory-Mapping Issues
	Use a Task to Perform Hard-Deletes Periodically
	Enable the Enhanced-NFS RPC Corruption Workaround Parameter if Needed
	Use the Appropriate Tool to Load Volumes to an Existing Environment
	Configure Fibre Channel Switches and Zones Appropriately

	Best Practices for Optional Tasks
	Balance Data Among Libraries
	Prevent Recalls From Waiting for a Busy Volume

	4. Installing and Configuring the DMF Environment
	Overview of the Installation and Configuration Steps
	Installation and Configuration Considerations
	ISSP DMF Software
	DMF Client Configurations and xinetd
	Filesystem Mount Options
	Mounting Service Considerations
	Inode Size Configuration
	Daemon Database Record Length
	Interprocess Communication Parameters
	Automated Maintenance Tasks
	Networking Considerations for Parallel Data-Mover Option
	Passwordless SSH Configuration for DMF
	Suppressing RSCN
	QLogic (R) Fibre Channel Switch

	Starting and Stopping the DMF Environment
	Automatic Start After Reboot
	Preventing Automatic Start After Reboot
	Explicit Start
	Explicit Stop

	Using Out-of-Library Tapes
	TMF and Out-of-Library Tapes
	OpenVault and Out-of-Library Tapes

	Customizing DMF
	File Tagging
	Site-Defined Policies
	Site-Defined Client Port Assignment in a Secure Environment

	Importing Data From Other HSMs

	5. DMF Manager
	Accessing DMF Manager
	Getting Started with DMF Manager
	Running Observer Mode or admin Mode
	Observer Mode Functionality
	admin Mode Functionality
	admin Mode Access

	Getting More Information in DMF Manager
	Setting Panel Preferences
	Refreshing the View
	Managing Licenses and Data Capacity with DMF Manager
	Adding New Licenses
	Deleting Existing Licenses
	Viewing the Installed Licenses
	Showing Current DMF Usage and Licensed Capacity
	Showing Remaining Storage Capacity

	Configuring DMF with DMF Manager
	Limitations to the DMF Configuration Capability
	Showing All Configured Objects
	Setting Up a New DMF Configuration File
	Copying an Object
	Modifying an Object
	Creating a New Object
	Deleting an Object
	Validating Your Changes
	Saving Your Configuration Changes
	Exiting the Temporary Configuration without Saving

	Displaying DMF Configuration File Parameters
	Starting and Stopping DMF and the Mounting Service
	Discovering DMF Problems
	Filtering Alerts
	Seeing Relationships Among DMF Components
	Managing Volumes
	Managing Libraries
	Displaying DMF Manager Tasks
	Monitoring DMF Performance Statistics
	Using the Statistics Panels
	Metrics Collection
	DMF Activity
	DMF Resources
	DMF I/O

	Displaying Node Status

	6. DMF Configuration File
	Configuration Objects Overview
	Stanza Format
	Units of Measure
	Device Block-Size Defaults and Bandwidth
	base Object
	base Object Name
	base Object Parameters
	base Object Examples

	dmdaemon Object
	dmdaemon Object Name
	dmdaemon Object Parameters
	dmdaemon Object Example

	node Object
	node Object Name
	node Object Parameters
	node Object Examples

	services Object
	services Object Name
	services Object Parameters
	services Object Examples

	taskgroup Object
	Overview of the Tasks
	Details About Backup Tasks
	taskgroup Object Name
	taskgroup Object Parameters
	taskgroup Object Examples

	device Object
	device Object Name
	device Object Parameters

	filesystem Object
	filesystem Object Name
	filesystem Object Parameters
	filesystem Object Examples

	policy Object
	Functions of policy Parameters
	Rules for policy Parameters
	policy Object Name
	DMF-Managed Filesystem policy Parameters
	DCM MSP STORE_DIRECTORY policy Parameters
	when Clause
	ranges Clause
	policy Configuration Examples

	fastmountcache Object
	fastmountcache Object Name
	fastmountcache Object Parameters
	fastmountcache Object Examples

	LS Objects
	libraryserver Object
	drivegroup Object
	volumegroup Object
	migrategroup Object
	resourcescheduler Object
	resourcewatcher Object
	allocationgroup Object
	Examples of Configuring an LS
	LS Tasks
	LS Database Records

	MSP Objects
	msp Object Name
	FTP msp Object
	Disk msp Object
	DCM msp Object

	Summary of the Configuration File Parameters

	7. Parallel Data-Mover Option Configuration
	Parallel Data-Mover Option Configuration Procedure
	Determining the State of Parallel Data-Mover nodes
	Disabling Parallel Data-Mover Nodes
	Reenabling Parallel Data-Mover Nodes

	8. Mounting Service Configuration Tasks
	OpenVault Configuration Tasks
	Initially Configure the OpenVault Server
	Configure OpenVault for DMF Use
	Configure OpenVault for Each Parallel Data-Mover Node
	Configure OpenVault on the DMF Server If on a Different Host
	Configure OpenVault for a Drive Group

	TMF Configuration Tasks

	9. Message Log Files
	10. Automated Space Management
	The dmfsmon Daemon and dmfsfree Command
	Generating the Candidate List
	Selection of Migration Candidates
	Space Management and the DCM MSP
	Automated Space Management Log File

	11. The DMF Daemon
	Daemon Processing
	Daemon Database and dmdadm
	Overview of the Daemon Database and dmdadm
	dmdadm Directives
	dmdadm Field and Format Keywords
	dmdadm Text Field Order

	Daemon Logs and Journals

	12. The DMF Lock Manager
	dmlockmgr Communication and Log Files
	dmlockmgr Individual Transaction Log Files

	13. Media-Specific Processes and Library Servers
	LS Operations
	LS Directories
	Media Concepts
	CA T Records
	VOL Records
	LS Journals
	LS Logs
	Volume Merging
	dmcatadm Command
	dmvoladm Command
	dmatread Command
	dmatsnf Command
	dmaudit verifymsp Command

	FTP MSP
	FTP MSP Processing of Requests
	FTP MSP Activity Log
	FTP MSP Messages

	Disk MSP
	Disk MSP Processing of Requests
	Disk MSP Activity Log

	DCM MSP
	dmdskvfy Command
	Moving Migrated Data
	LS Error Analysis and Avoidance
	LS Drive Scheduling
	LS Status Monitoring

	14. DMF Maintenance and Recovery
	Retaining Old DMF Daemon Log Files
	Retaining Old DMF Daemon Journal Files
	Cleaning Up Obsolete Database Entries
	Backups and DMF
	DMF-Managed Filesystems
	Storage Used by an FTP MSP or a Standard Disk MSP
	Filesystems Used by a DCM
	DMF's Private Filesystems

	Using dmfill
	Database Recovery
	Database Backups
	Database Recovery Procedures

	Viewing Drive Statistics
	Temporarily Disabling Components
	Disable an OpenVault DCP
	Disable an OpenVault Drive
	Disable an OpenVault Library
	Disable a TMF Drive
	Stop the COP AN VTL

	15. DMF SOAP Server
	Overview of DMF SOAP
	Accessing the DMF SOAP and WSDL
	Starting and Stopping the DMF SOAP Service
	Starting the dmfsoap Service
	Preventing Automatic Start of dmfsoap After Reboot
	Explicitly Stopping dmfsoap

	Security/Authentication
	DMF SOAP Sample Client Files

	16. Troubleshooting
	Filesystem Errors
	Unable to Use the dmi Mount Option
	EOT Error
	Tape Drive Not Claimed by ts
	Drive Entry Does Not Correspond to an Existing Drive (OpenVault)
	Drive Does Not Exist (TMF)
	DMF Manager Errors
	DMF Statistics are Unavailable Error Message
	DMF Statistics Graphs are Empty
	OpenVault Library Is Missing

	Delay In Accessing Files in an SMB/CIFS Network Share
	Operations Timeout or Abort on Windows (R)
	Windows Explorer Hangs
	Poor Migration Performance
	Remote Connection Failures
	YaST2 Disk Space Warning
	Linux CXFS Clients Cannot Mount DMF-Managed Filesystems
	Using SGI Knowledgebase
	Reporting Problems to SGI

	A. Messages
	dmcatadm Message Interpretation
	dmvoladm Message Interpretation

	B. DMF User Library libdmfusr.so
	Overview of the Distributed Command Feature and libdmfusr.so
	Considerations for IRIX (R)
	libdmfusr.so Library Versioning
	libdmfusr.so.2 Data Types
	DmuAllErrors_t
	DmuAttr_t
	DmuByteRange_t
	DmuByteRanges_t
	DmuCompletion_t
	DmuCopyRange_t
	DmuCopyRanges_t
	DmuErrHandler_f
	DmuErrInfo_t
	DmuError_t
	DmuEvents_t
	DmuFhandle_t
	DmuFsysInfo_t
	DmuFullRegbuf_t
	DmuFullstat_t
	DmuPriority_t
	DmuRegion_t
	DmuRegionbuf_t
	DmuReplyOrder_t
	DmuReplyType_t
	DmuSeverity_t
	DmuVolGroup_t
	DmuVolGroups_t

	User-Accessible API Subroutines for libdmfusr.so.2
	Context-Manipulation Subroutines
	Filesystem-Information Subroutine
	DMF File-Request Subroutines
	Request-Completion Subroutines

	C. Site-Defined Policy Subroutines and the sitelib.so Library
	Overview of Site-Defined Policy Subroutines
	Getting Started with Custom Subroutines
	Considerations for Writing Custom Subroutines
	sitelib.so Data Types
	DmaContext_t
	DmaFrom_t
	DmaIdentity_t
	DmaLogLevel_t
	DmaRealm_t
	DmaRecallType_t
	SiteFncMap_t

	Site-Defined Policy Subroutines
	SiteArchiveFile()
	SiteCreateContext()
	SiteDestroyContext()
	SiteKernRecall()
	SitePutFile()
	SiteWhen()

	Helper Subroutines for sitelib.so
	DmaConfigStanzaExists()
	DmaGetConfigBool()
	DmaGetConfigFloat()
	DmaGetConfigInt()
	DmaGetConfigList()
	DmaGetConfigStanza()
	DmaGetConfigString()
	DmaGetContextFlags()
	DmaGetCookie()
	DmaGetDaemonMigGroups()
	DmaGetDaemonVolAndMigGroups()
	DmaGetDaemonVolGroups()
	DmaGetMigGroupMembers()
	DmaGetProgramIdentity()
	DmaGetUserIdentity()
	DmaSendLogFmtMessage()
	DmaSendUserFmtMessage()
	DmaSetCookie()

	D. Third-Party Backup Package Configuration
	EMC (R) LEGA TO NetWorker(R)
	Atempo (R) Time Navigator TM

	E. Converting from IRIX DMF to Linux (R) DMF
	F. Considerations for Partial-State Files
	Performance Cost Due to Lack of Linux Kernel Support
	Inability to Fulfill Exact Byte Range Requests

	G. Case Study: Impact of Zone Size on Tape Performance
	H. Historical Feature Information
	End of Life for the Tape Autoloader API with DMF 2.6.3
	DMF Directory Structure Prior to DMF Release 2.8
	End of Life for the Tape MSP after DMF 3.0
	DMF User Library (libdmfusr.so) Update in DMF 3.1
	Downgrading and the Site-T ag Feature Introduced in DMF 3.1
	Downgrading and the Partial-State File Feature Introduced in DMF 3.2
	dmaudit(8) Changes in DMF 3.2
	Logfile Changes in DMF 3.2
	Possible DMF Database Lock Manager Incompatibility On Upgrades as of DMF 3.8.3

	I. Using dmmaint to Install Licenses and Configure DMF
	Overview of dmmaint
	Installing the DMF License
	Using dmmaint to Define the Configuration File

	Glossary
	Index

