

SGI[®] InfiniteStorage 6120 RAID User's Guide

COPYRIGHT

© 2009 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is SGI, 46600 Landing Parkway, Fremont, CA 94085.

TRADEMARKS AND ATTRIBUTIONS

Silicon Graphics and SGI are registered trademarks and the SGI logo is a trademark of Silicon Graphics International Corp. in the United States and/or other countries worldwide.

Internet Explorer, Windows, Windows Vista, and Windows XP are registered trademarks of Microsoft Corporation in the United States and/or other countries. Linux is a registered trademark of Linus Torvalds. Macintosh and Mac OS are trademarks of Apple Inc., registered in the United States and other countries. Mozilla Firefox is a registered trademark of the Mozilla Foundation.

All other trademarks mentioned herein are the property of their respective owners.

Preface

What is in this guide

This user guide gives you step-by-step instructions on how to install, configure and connect the SGI InfiniteStorage 6120 system to your host computer and how to use and maintain the system.

International Standards

The InfiniteStorage 6120 complies with the requirements of the following agencies and standards:

- CE
- UL

Potential for Radio Frequency Interference

USA Federal Communications Commission (FCC)

This equipment has been tested and found to comply with the limits for a class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits. The supplier is not responsible for any radio or television interference caused by using other than recommended cables and connectors or by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

European Regulations

This equipment complies with European Regulations EN 55022 Class A: Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipments and EN50082-1: Generic Immunity.

Safe Handling

- · Remove drives to minimize weight.
- Do not try to lift the enclosure by yourself.
- Do not lift the InfiniteStorage 6120 by the handles on the power cooling module (PCM); they are not designed to support the weight of the enclosure.

Safety

NOTE: If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Caution! Safety goggles should be worn when maintaining the equipment.

WARNING: The InfiniteStorage 6120 *MUST* be grounded before applying power. Unplug the unit if you think that it has become damaged in any way and before you move it.

Caution! To maintain proper airflow through the system, operate the system with the enclosure top covers closed.

- Plug-in modules are part of the enclosure and must only be removed when a replacement can be immediately installed. The system must not be run without all modules in place.
- In order to comply with applicable safety, emission, and thermal requirements, the top covers should remain closed while running.
- The InfiniteStorage 6120 system must only be operated from a power supply input voltage range of 200 VAC to 240 VAC.
- The equipment is intended to operate with two (2) working PCMs. Before removal/replacement of any module, disconnect all supply power for complete isolation.
- A faulty PCM must be replaced with a fully operational module within 24 hours.

WARNING: To minimize the risk of electric shock, disconnect the power from the power supply, either by turning off the switch or by physically removing the power cable, prior to removing the PCM from the enclosure.

- Do not remove a faulty PCM unless you have a replacement module of the correct type ready for insertion.
- The power connection must always be disconnected prior to removal of the PCM from the enclosure.
- A safe electrical earth connection must be provided to the power cord.
- Provide a suitable power source with electrical overload protection to meet the requirements given in the technical specifications.

WARNING: Do not remove covers from the PCM. Danger of electric shock inside. Return the PCM to your supplier for repair.

iv 007-5533-002

WARNING: Operation of the InfiniteStorage 6120 with ANY modules missing will disrupt the airflow and the drives will not receive sufficient cooling. It is ESSENTIAL that all apertures are filled before operating the unit.

Recycling of Waste Electrical and Electronic Equipment (WEEE)

At the end of the product's life, all scrap/ waste electrical and electronic equipment should be recycled in accordance with National regulations applicable to the handling of hazardous/ toxic electrical and electronic waste materials.

NOTE: Observe all applicable safety precautions, such as weight restrictions, handling batteries and lasers, etc. detailed in the preceding paragraphs when dismantling and disposing of this equipment.

ESD Precautions

Caution! It is recommended that you check and fit a suitable anti-static wrist or ankle strap and observe all conventional ESD precautions when handling the InfiniteStorage 6120 plug-in modules and components. Avoid contact with backplane components and module connectors.

Data Security

- Power down your host computer and all attached peripheral devices before beginning installation.
- Each enclosure contains up to 60 removable disk drive modules. Disk units are fragile. Handle them with care, and keep them away from strong magnetic fields.
- *ALL* the supplied plug-in modules and blanking plates must be in place for the air to flow correctly around the enclosure and also to complete the internal circuitry.
- If the enclosure is used with modules or blanking plates missing for more than a few minutes, the enclosure can overheat, causing power failure and data loss. Such use may also invalidate the warranty.
- If you remove a drive module, replace it immediately. If it is faulty, replace it with a drive module of the same type and capacity.
- Ensure that all disk drives are removed from the enclosure before attempting to move the rack installation.
- Do not abandon your backup routines. No system is completely foolproof.

007-5533-002 v

Related Publications

You should also see the following document:

SGI InfiniteStorage 6120 RAID CLUI Command Reference (007-5561-xxx)

You can find this document on the SGI Technical Publications Library (http://docs.sgi.com).

Product Support

SGI provides a comprehensive product support and maintenance program for its products. SGI also offers services to implement and integrate Linux applications in your environment.

- Refer to http://www.sgi.com/support/
- If you are in North America, contact the Technical Assistance Center at +1 800 800 4SGI or contact your authorized service provider.
- If you are outside North America, contact the SGI subsidiary or authorized distributor in your country.

Reader Comments

If you have comments about the technical accuracy, content, or organization of this document, contact SGI. Be sure to include the title and document number of the manual with your comments. (Online, the document number is located in the front matter of the manual. In printed manuals, the document number is located at the bottom of each page.)

You can contact SGI in any of the following ways:

- Send e-mail to the following address: techpubs@sgi.com
- Contact your customer service representative and ask that an incident be filed in the SGI incident tracking system.
- Send mail to the following address:
- SGI
 Technical Publications
 46600 Landing Parkway
 Fremont, CA 94538

SGI values your comments and will respond to them promptly.

Table of Contents

1.1 Intr	oduction	3
1.1.1	A SAN Solution.	3
1.1.2	Features of the InfiniteStorage 6120	3
1.2 The	e InfiniteStorage 6120 System Hardware	
1.2.1	Enclosure Chassis	(
1.2.2	Controller	7
1.2.4	Drive Modules	9
1.2.5	Drive Expander Module (DEM) Card	. 10
1.2.6.1	Front Panel Indicators	. 1
1.2.6.2	Internal Indicators	. 12
2.1 Inst	allation Overview	. 15
2.2 Sett	ing Up the InfiniteStorage 6120	. 10
2.2.1	Unpacking the InfiniteStorage 6120	. 16
2.2.3	Connecting the InfiniteStorage 6120	. 20
2.2.3.1	Host Connections	. 20
2.2.3.2	Expansion Enclosure Connections	. 20
2.2.3.3	Power Connections	. 2
2.2.4	Powering On the InfiniteStorage 6120 (and Expansion Enclosure)	. 2
2.3 Con	figuring the InfiniteStorage 6120.	. 23
2.3.1	Planning Your Setup and Configuration.	
2.3.2	Drive Layout	
2.3.3	Initial Configuration via RS-232	
2.3.3.1	Serial Interface Configuration	
2.3.3.2	Configure Network Settings	
2.3.4	Setting System Time & Date	
2.3.6	Installing Licensed Features	
2.3.7	Creating Storage Pools	
2.3.8	Creating Virtual Disks	
2.3.9	Creating Spare Pools	
2.3.10	Initializing the Host System	
2.3.10.1	Present Virtual Disk to External Host	
21.35	1 I I I I I I I I I I I I I I I I I I I	
	naging the InfiniteStorage 6120.	
3.1.1	Management Interface	
3.1.2	User Logins	
3.1.3	Available Commands	
3.1.3.1	Basic Key Operations	. 4
	figuration Management	
3.2.1	Monitor Status of Storage Assets	
3.2.1.1	Disk Information	. 42
3.2.1.2	Storage Pool View	. 44
3.2.1.3	Virtual Disk View	. 40
3.2.1.4	Spare Pool View	. 47
3.2.1.5	Visual Indication	. 47
3.2.2	Storage Pool and Virtual Disk Management	. 48

3.2.2.1	Changing the Disk's Status	48
3.2.2.2	Creating a Storage Pool	49
3.2.2.3	Storage Pool Initialization	49
3.2.2.4	Naming a Storage Pool	49
3.2.2.5	Deleting a Storage Pool	50
3.2.2.6	Creating a Virtual Disk	50
3.2.2.7	Naming a Virtual Disk	50
3.2.2.8	Deleting a Virtual Disk	50
3.2.3.1	Creating a Spare Pool	5
3.2.3.2	Naming a Spare Pool.	5
3.2.3.3	Deleting a Spare Pool	5
3.2.4.1	Full and Partial Rebuilds	52
3.2.4.2	Sparing Policy	52
3.2.4.3	Manual Drive Replace/Rebuild.	53
3.2.5	SATAssure	53
3.2.6	Cache Coherency.	54
3.2.7	Setting the System's Date and Time	54
3.3 Per	formance Management	56
3.3.1	Background Job Priority	50
3.3.2	Rebuild Policy Priority	5
3.4 Firm	nware Update Management	58
3.4.1	Displaying Current Firmware Version	58
3.4.2	Firmware Update Procedure	58
3.4.2.1	Windows Environment (Update via USB Stick)	
3.4.2.2	Linux Environment (Update from Network)	6
3.4.2.3	Windows Environment (Update from the Network)	62
3.5 The	System Logs.	64
2.6 Dom	usts Management of InfiniteStanage 6120	<i>(</i> 1
	note Management of InfiniteStorage 6120	
3.6.1	Network Connection.	
3.6.3	Logins	60
3.7 Pre	sentations	6
3.7.1	Application Discovered Initiator Commands	67
3.7.2	Application Host Commands	6
3.7.3	Application Presentation Commands	68
4.1 Stat	us LED Indicators	7
4.1.1	Front Panel Indicators	7
4.1.2	Power Cooling Module (PCM).	72
4.1.4	HDD (Hard Disk Drive).	73
4.2 Tro	ubleshooting	75
4.2.1	Initial Start-up Problems	
4.2.2	RAID[0]\$ Prompt Not Shown Correctly	
4.2.3	Contain Faulta	_
7.2.3	System Faults	/(
4.2.4	Power Supply/Cooling Faults	
		76
4.2.4 4.2.5	Power Supply/Cooling Faults	70

4.3.2	Replacing a Drive Module	9
4.4	Recovering from a Drive Failure	0
4.4.	Automatic Rebuild	0
4.4.2	2 Drive Replacement	1
4.4.3	Spare Not Available	1
4.5	Manual Intervention Required (MIR) Conditions	2
5.1	The GUI Management Agent	7
5.2	Starting the GUI Management Agent	8
5.2.	Login	8
5.2.2	2 Initial Home Screen and Health Indicators	8
5.3	Physical Disks	0
5.3.	Physical Disks Commands	0
5.3.2	2 Checking Status of Physical Disks	0
5.4	Storage Pools	1
5.4.	Storage Pool Commands	1
5.5	Virtual Disks	5
5.5.	Virtual Disk Commands	5
5.6	Spare Pools.	8
5.6.	Spare Pool Commands	8
5.7	Initializing the Host System	12
5.8	Presentations	4
5.8.	Presentation Commands	4
5.9	Email and Critical Event Notification Setup	8
App	endix A. Technical Specifications	1
App	endix B. Safety Requirements for Rack Installation	3
Inda	vy 11	5

SECTION 1

Introducing the InfiniteStorage 6120

1.1 Introduction

This section describes the features of the SGI InfiniteStorage 6120 and its hardware.

1.1.1 A SAN Solution

The InfiniteStorage 6120 is a compact network storage system. It combines a controller chassis and disk enclosure chassis into a single self-contained enclosure.

The InfiniteStorage 6120 plugs seamlessly into existing network environments, thereby protecting and upgrading investments made in legacy storage and networking products to substantially improve their performance, availability and manageability.

The InfiniteStorage 6120 is designed to support mixed workload environments with industry-leading density, a large number of small random IOPS, and high sequential throughput to make it perfect shared storage for transactional, backup, or rich-media markets. It enables a multi-vendor environment comprised of standalone and clustered servers, workstations, and PCs to access and back up data stored in centralized or distributed storage devices in an easy, cost-effective and reliable manner. This modular architecture ensures high data availability and uptime along with application performance.

1.1.2 Features of the InfiniteStorage 6120

The InfiniteStorage 6120 incorporates the following features:

Fibre Channel connectivity

The InfiniteStorage 6120 provides up to 4 individual 8Gb/s Fibre Channel (FC) host port connections, including simultaneous access to the same data through multiple ports. Each FC host port supports point-to-point and switched fabric operation.

Active/Active operation with cache coherency and failover

Both controllers operate in active mode at all times meaning I/O requests can be serviced by either controller from any host port and failover is transparent to the host.

RAID 5 & RAID 6

The system is based on a high performance software RAID engine with default RAID5 support and an optional/licensed RAID6.

• Configurable RAID group sizes

(5 or 9 drives per RAID 5 group, 6 or 10 drives per RAID 6 group)

This feature allows you to configure the system with the desired RAID and redundancy levels based on the importance of your data. Each RAID group is configured independently and any valid combination for the number of drives in the array is supported.

• Stripe size of 64KB, 128KB, 256KB

Configurable stripe sizes aid in system tuning for the application's data pattern. Stripe sizes are uniquely configurable per RAID set.

• 2MB maximum request size

This is the maximum transfer size a host may request from the unit and covers nearly all commonly found uses.

SAS/SATA storage pool

This feature allows in-box storage pooling, where high-performance SAS drives are used for primary data and high-capacity SATA drives are used for secondary data or active archiving.

Flexible configurations along with the intermix of SATA and SAS drives within the same enclosure is supported. However, for performance and reliability reasons, there are best-practice guidelines.

· Optional SATAssure data protection

SATAssure technology is designed to improve the reliability of enterprise SATA drives and to ensure that data integrity is always maintained for all I/O operations.

Partial rebuild

This feature reduces rebuild times by updating only the data that has changed while the drive was down.

• Hot-swappable and redundant components

Adhering to enterprise RAS standard, almost all hardware components—such as drives, controllers, power cooling modules, and drive expander module (DEM) cards—are redundant and hot-swappable.

Hot spares

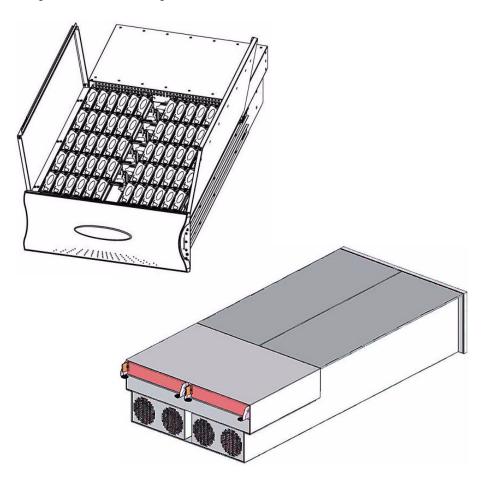
The unit supports as many hot spares as desired and they can be allocated as global hot spares or assigned to a specific RAID set.

· Comprehensive, centralized management capability

The InfiniteStorage 6120 provides a wide range of management capabilities via a secured command line user interface (CLUI): configuration management, performance management, and firmware update management.

• Management options via RS-232 and Ethernet (SSH)

A RS-232 port and Ethernet port are included to provide local and remote management capabilities.


1.2 The InfiniteStorage 6120 System Hardware

The InfiniteStorage 6120 is a four-unit (4U), rack-mountable enclosure that houses two power cooling modules, two controllers, and slots for up to 60 SAS or SATA drives (Figure 1). The controllers provide system management and host connectivity interfaces.

The InfiniteStorage 6120 design concept is based on a subsystem together with a set of plug-in modules and (as supplied) comprises:

- Enclosure chassis with front panel drive status indicator
- Two (2) power cooling plug-in modules (PCMs)
- Two plug-in controllers
- Up to 60 top loadable hard disk drives in a 5x12 matrix
- · SAS and SATA drive intermix allowed
- Eight (8) SAS drive expander modules (DEMs)

Figure 1. The InfiniteStorage 6120 - Front and Rear Views

1.2.1 Enclosure Chassis

The chassis assembly contains 60 drive bays at the front, each of which accommodates a plug-in drive module capable of holding a 3.5-inch SAS or SATA hard disk drive (HDD) or solid-state disk (SDD). The 60 drive bays are arranged in five rows of twelve drives (5x12) (Figure 2). At the rear, the chassis assembly contains two (2) power cooling modules and two (2) controllers (Figure 3).

The chassis is fitted with 19-inch rack mounting features which enables it to be installed into 19-inch wide racks and uses four (4) EIA units of rack space. A mid-plane separates the front and back of the chassis and provides the interconnect system between the power cooling modules, controllers, and the baseboard.

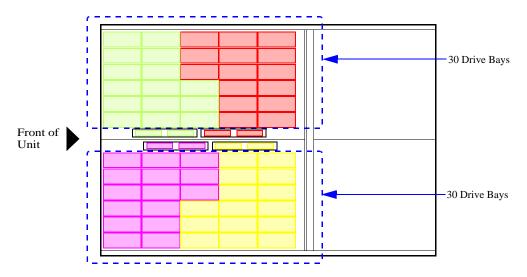
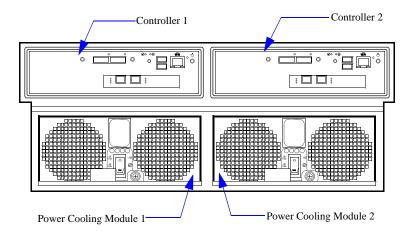
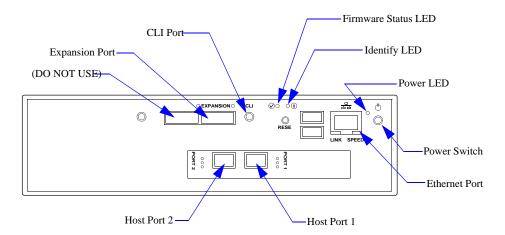



Figure 3. InfiniteStorage 6120 Rear View



1.2.2 Controller

The two controllers are redundant and hot-swappable modules which provide the intelligence and active/active data protection features of the InfiniteStorage 6120 (Figure 4).

If a controller fails, the remaining controller will assume its functionality and continue to provide data access at a reduced performance level.

Figure 4. A Controller

There are two 8Gb/s host ports for Fibre Channel host connections. You may connect your host systems directly to these ports or connect the ports to your Fibre Channel switches and hubs. When an FC signal is present on the port, the respective LED turns green.

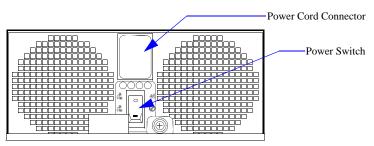
The **EXPANSION** port is used to connect to a 60-drive expansion enclosure.

The CLI connector provides local system monitoring and configuration capabilities.

The Ethernet port provides remote monitoring and configuration capabilities. The **LINK** LED is off when there is no Ethernet link.

The Firmware Status LED blinks green when the InfiniteStorage 6120 firmware is loading. It stays solid green when the InfiniteStorage 6120 is ready to be accessed.

The Power LED turns green when there is power applied to the controller.


The Identify LED turns blue when an SES identify command is received.

007-5533-002 **7**

1.2.3 Power Cooling Module (PCM)

Installed in the rear of the chassis (Figure 5) are two (2) power cooling modules.

Figure 5. Power Cooling Module

The InfiniteStorage 6120 must always be operated with two PCM installed. Module replacement should only take a few minutes to perform but must be completed with 10 minutes from removal of the failed module. Four (4) LEDs mounted on the PCM indicate the status of the module and the fans (Figure 6). Figure 7 provides a description of the color and status of the LEDs.

Figure 6. Power Cooling Module LEDs

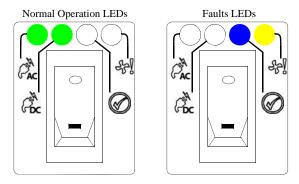
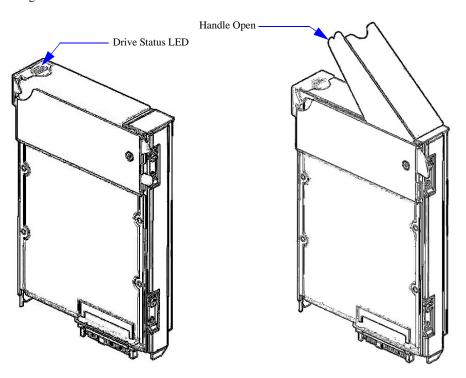


Figure 7. PCM LED Description

LED	Description	Color	Status
(AC	PCM AC	Green	ON - AC input to PCM within tolerances OFF - PCM failed
DC	PCM DC	Green	ON - DC output of PCM within tolerances OFF - PCM failed
왕	PCM Fault	Amber	ON - PCM fault detected OFF - no detected PCM faults
	PCM ID	Blue	ON - receiving SES identify command OFF - NOT receiving SES identify command

1.2.4 Drive Modules

The drive module comprises a hard disk mounted in a carrier (Figure 8). Each drive bay can house a single low profile 1.0-inch high, 3.5-inch form factor disk drive in its carrier. A fully loaded enclosure contains 60 drive modules.


The module handle provides the following functions:

- · Camming of the module into and out of drive bays
- Positive spring loading of the drive/baseplane connector
- Drive Status LED incorporated in handle assembly

NOTE: The InfiniteStorage 6120 design allows for drive bays to be left empty without the need for fitting dummy drive modules.

The InfiniteStorage 6120 supports a SATA interposer card which allows simultaneous access to the SATA HDD from both controllers installed in the enclosure. *Note that a SATA interposer card, which is part of the drive carrier assembly, is required to run SATA HDDs*.

Figure 8. Drive Module

1.2.5 Drive Expander Module (DEM) Card

The InfiniteStorage 6120 contains eight (8) top-loadable, hot-swappable DEMs (Figure 9). The DEMs provide the SAS connectivity between the controllers and the HDDs located with the enclosure.

The DEMs are organized into four module pairs, with each module pair controlling a bank of 15 drives. If a DEM card fails, its sister card will provide continuous operation of the unit until a replacement is inserted bringing the unit back to full redundancy.

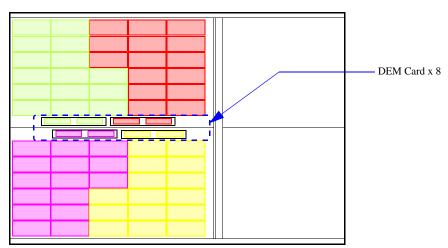
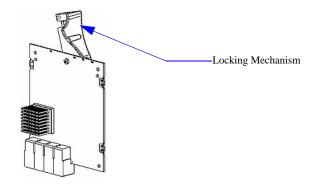



Figure 9. DEM Card Locations (Viewing from Top)

Each DEM (Figure 10) connects to a single port of the HDD based on the location within the enclosure within which it is installed. Each card provides power control signals to each drive slot. It controls HDD identify/service LEDs and monitors the status from partner DEM. Each pair of DEMs supports 15 drives.

1.2.6 LED Indicators

The InfiniteStorage 6120 has both FRU and status LEDs to indicate the state of various components within the enclosure. Each FRU has a visible blue identity LED. Each FRU, except the drive module, has a visible amber LED which indicates a fault.

1.2.6.1 Front Panel Indicators

The front panel indicators show the aggregated status of all the modules (Figure 11). The LEDs are defined in Figure 12. The Drive Activity LEDs indicate drive presence and flash during data I/O.

Figure 11. Front Panel LED Indicators

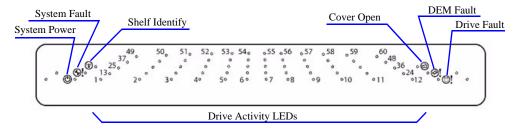


Figure 12. Front Panel LED Description

LED	Definition	Color	Status
	Shelf Identify	Blue	ON - SES is sending an identify command OFF - SES is NOT sending an identify command
®!	System Fault	Amber	ON - one or more components within enclosure have failed. A service action is required. Exact failed component has its own amber fault LED lit. OFF - no detectable faults
(1)	System Power	Green	ON - DC power is present OFF - DC power is not present LED does NOT flash under normal operating conditions
	Cover Open	Amber	OFF - both cover pieces securely closed and latched in place ON - either of the cover pieces is NOT securely closed and latched in place
@!	DEM Fault	Amber	OFF - all DEMs operating correctly ON - at least one DEM has failed; service action required
!	Drive Fault	Amber	ON - one or more HDDs are failed; SES must determine exact HDD OFF - no detectable drive faults
Individually numbered	HDDs	Green	ON - when SAS HDD is present Blinks - indicates HDD activity OFF - no HDD activity

1.2.6.2 Internal Indicators

For some components, the failure LED is internal to the enclosure and visible only when the cover is open. The various internal indicators are listed in Figure 13.

Figure 13. Internal LED Indicators

Description	Location	Color	Status		
DEM DC DEM internal to enclosure		Green	ON - 1.2VDC regulator circuit correctly functionin OFF - faulty 1.2VDC regulator circuit		
DEM ID	DEM internal to enclosure	Blue	ON - receiving SES identify command OFF - NOT receiving SES identify command		
HDD ID	HDD internal to enclosure	Blue	ON - receiving SES identify command OFF - NOT receiving SES identify command		

SECTION 2

InfiniteStorage 6120
Installation

2.1 Installation Overview

Here is an overview of all the steps needed to be taken to complete an installation and configuration of an InfiniteStorage 6120 system. Each step is explained in detail in Section 2.2 and Section 2.3.

- **1.** Unpack the InfiniteStorage 6120 system.
- **2.** Rackmount the InfiniteStorage 6120 (and expansion enclosure). (See Appendix A for physical dimensions and weight of the InfiniteStorage 6120.)
- **3.** Connect the InfiniteStorage 6120 to your Fibre Channel (FC) switch, host computer(s), and expansion enclosure.
- **4.** Power up the system.
- **5.** Configure the storage array (create storage pools, virtual disks, and spare pools) via RS-232 interface or SSH.
- **6.** Initialize the storage pools for use with your server/client systems. Partition disk space and create filesystems as needed.

2.2 Setting Up the InfiniteStorage 6120

This section details the installation of the hardware components of the InfiniteStorage 6120 system.

If your controller and disk enclosure configuration is delivered already installed in the rack, it must be removed from the shipping pallet using a minimum of 4 people. The racked unit may not be tipped more than 10 degrees, either from a level surface or rolling down an incline (such as a ramp).

NOTE: Follow the safety guidelines for rack installation given in Appendix B "Safety Requirements for Rack Installation".

2.2.1 Unpacking the InfiniteStorage 6120

Wear an ESD wrist strap or otherwise ground yourself when handling InfiniteStorage 6120 modules and components. Electrostatic discharge can damage the circuit boards.

Before you unpack your InfiniteStorage 6120, inspect the shipping container(s) for damage. If you detect damage, report it to your carrier immediately. Retain all boxes and packing materials in case you need to store or ship the system in the future.

While removing the components from their boxes/containers, inspect the InfiniteStorage 6120 chassis and all components for signs of damage. If you detect any problems, contact SGI Technical Support immediately.

Your InfiniteStorage 6120 ships with the following:

- InfiniteStorage 6120 controller chassis with integrated controllers
- Two (2) power cables
- One (1) mini-jack serial cable for initial configuration
- One (1) enclosure faceplate
- Rack-mounting hardware

2.2.2 Rack-Mounting the InfiniteStorage 6120 Chassis

The InfiniteStorage 6120 is designed to fit within a 4U rack space. Follow these steps to mount the system in your rack:

1. Using eight (8) $10-32 \times 0.188$ " Phillips panhead screws for each slider, attach the four (4) inner sliders to the chassis as shown in Figure 14 below.

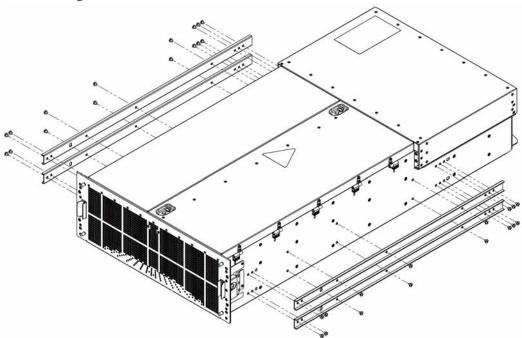
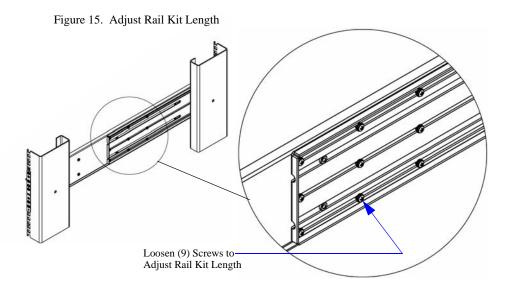
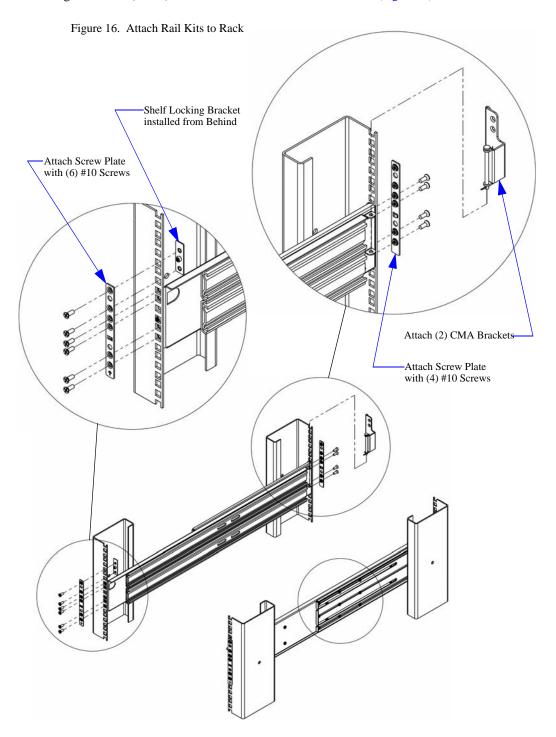



Figure 14. Attach 4 Inner Sliders to Chassis


2. For expansion enclosure, skip this step and proceed to the next step.

Loosen the nine (9) screws on the rail kit and set the length to fit the depth of your rack

(Figure 15). Tighten all the screws once the rail kit is set to the desired length. Repeat for the other rail kit.

- 3. Attach the two (2) rail kits to your rack as shown in Figure 16. Make sure you leave enough space for the unit—bottom of screw plate aligns to bottom of InfiniteStorage 6120 chassis. At the front, use one (1) screw plate, one (1) shelf locking bracket (installed from behind), and six (6) #10 screws.
 - For the rear end, use one (1) screw plate and four (4) #10 screws.
- **4.** If the depth of your rack is more than 25.5 inches (647 mm), attach the two (2) cable management arm (CMA) brackets to the rear end of the rail kits (Figure 16).

- **5.** Using two (2) 10-32×0.50" (100d) Phillips flathead screws for each CMA, attach the CMA to the CMA brackets (Figure 17). If the depth of your rack is 25.5 inches (647 mm) or less, attach the CMA directly to the rack, above the rail kits. For square-hole rack, add 100d #10 shoulder washers.
- **6.** With the help of a partner, hold the chassis close to the rail kits. Align the rear flanges on chassis with the rail kit flanges (Figure 17) and slide the chassis into rack until the sliders are engaged (slide in about 12 inches until stopped). Then slide the chassis out until locked. Depress the slider locks and proceed to slide the chassis all the way in.
- 7. Secure the two CMA to rear of chassis with two (2) 8-32×0.25" Phillips panhead screws.

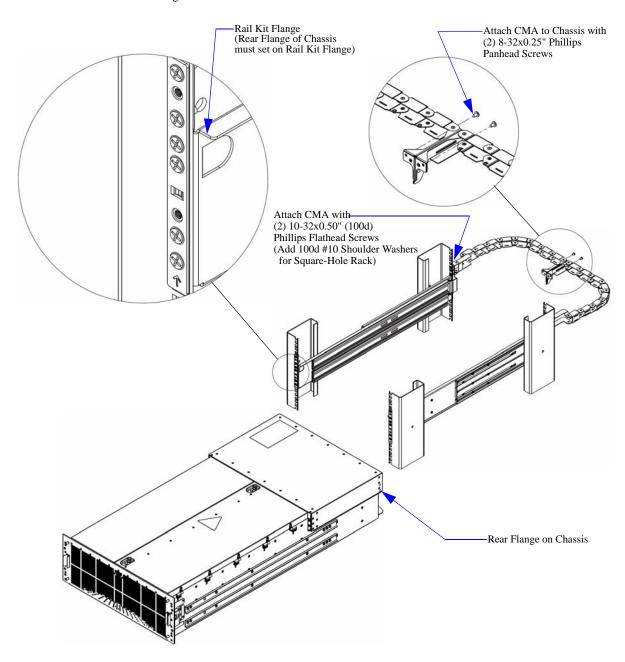
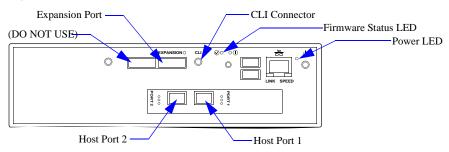


Figure 17. Install Chassis to Rack


2.2.3 Connecting the InfiniteStorage 6120

2.2.3.1 Host Connections

Each InfiniteStorage 6120 supports up to four Fibre Channel host connections, two per controller. Each connection is auto-sensing and supports 2Gb/s, 4Gb/s or 8Gb/s. You may connect more than four hosts to the unit using a Fibre Channel switch (not provided).

The host ports are numbered as shown in Figure 18 below. Connect your switch or host system(s) to these ports.

Figure 18. A Controller

2.2.3.2 Expansion Enclosure Connections

A expansion enclosure can be daisy-chained to the InfiniteStorage 6120 to increase storage capacity. Follow these steps to connect an expansion enclosure:

NOTE: Only a 60-drive expansion enclosure can be used with the InfiniteStorage 6120 for storage expansion.

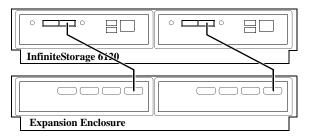
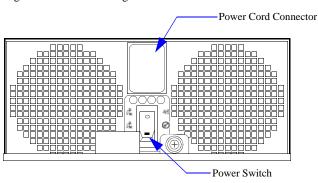

- 1. Using the supplied mini-SAS connector, connect one end of the cable to the port labeled **EXPANSION** on the InfiniteStorage 6120 controller (Figure 18).
- **2.** Connect the other end of the cable to the port labeled **EXP2** on the expansion enclosure (Figure 19).

Figure 19. I/O Module on Expansion Enclosure

 $\mathbf{3.}$ Repeat for the second controller (Figure 20).

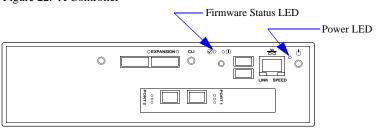
Figure 20. Daisy-Chaining


007-5533-002 **20**

2.2.3.3 Power Connections

Each InfiniteStorage 6120 (and expansion enclosure) ships with two fully redundant power supplies that require 220 V connections. Only the power cables supplied with the system should be used. The power supplies are accessible from the rear of the unit.

- 1. Verify that the power switch on both supplies is in the OFF position (Figure 21).
- **2.** Connect the power cables from the InfiniteStorage 6120 to the appropriate 220 V outlets. For maximum redundancy, connect the two power supplies to different AC circuits.
- 3. Similarly, connect the power cables to the expansion enclosure.


Figure 21. Power Cooling Module

2.2.4 Powering On the InfiniteStorage 6120 (and Expansion Enclosure)

- 1. On the InfiniteStorage 6120, turn the switch on each power supply to the ON position.
- **2.** Verify that the Power LED on each controller turns green within a few seconds (Figure 22), indicating a successful power application.

Figure 22. A Controller

- **3.** Verify that the Firmware Status LED blinks green within one minute of power application (Figure 22), indicating that the InfiniteStorage 6120 firmware is currently loading.
- **4.** Verify that the Firmware Status LED stays solid green within two minutes of power application, indicating that the InfiniteStorage 6120 is ready to be accessed.
- **5.** If an expansion enclosure is connected, turn the switch on each power supply to the ON position.

You may now configure the system as described in Section 2.3 "Configuring the InfiniteStorage 6120".

2.3 Configuring the InfiniteStorage 6120

This section provides information on configuring your InfiniteStorage 6120.

NOTE: The configuration examples provided here represent only a general guideline. These examples should not be used directly to configure your particular InfiniteStorage 6120.

The CLUI (command line user interface) commands used in these examples are fully documented in Sections 3.1 through 3.5—though exact commands may change depending on your firmware version. To access the most up-to-date commands, use the CLUI's online HELP feature.

2.3.1 Planning Your Setup and Configuration

Before proceeding to configure the storage settings for the InfiniteStorage 6120, it is necessary to understand the basic organization of the system.

The InfiniteStorage 6120 uses storage pools and virtual disks to configure drive storage for use by host systems. A storage pool (sometimes referred to as a RAID group) is a collection of 5 to 10 disk drives, ideally of the same capacity and type. In RAID5, the capacity of one drive is reserved for parity, allowing data recovery in the event of a single drive loss in the storage pool. In RAID6, the capacity of two drives is reserved for parity, allowing data recovery if either one or two drives are down in a storage pool.

A single RAID5 storage pool can be configured using 5 or 9 drives. A single RAID6 storage pool can be configured using 6 or 10 drives. The InfiniteStorage 6120 supports up to 24 storage pools in a single system. A storage pool can be configured with drives of different capacity, in which case the InfiniteStorage 6120 will use the lowest capacity for all drives, but this is not recommended.

A virtual disk is the storage unit presented to any attached host. Virtual disks allocate space in 8GiB increments. For example, 16GiB of storage space will be allocated when creating a virtual disk of 10GiB. You can create up to 64 virtual disks per storage pool.

NOTE: In this document, the terms GB and GiB are used interchangeably and denote 1.073.741 bytes (2^{30} bytes).

The drives in the system are categorized into one of the following pools:

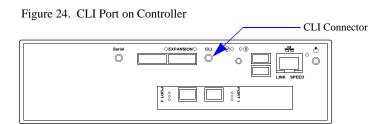
- Unassigned pool By default, all the drives or replacement drives are initially allocated to this pool. When a drive has failed or been released (from a spare pool, for example) it is also moved to this pool.
- Storage pool (sometimes referred to as a RAID group) A collection of 5 to 10 disk drives, ideally of the same capacity and type.
- Spare pool This type of pool contains drive(s) that can be used as spare drives in one or more storage pools.

2.3.2 Drive Layout

Figure 23 shows the layout of drives in an InfiniteStorage 6120. Drives are always referenced by enclosure ID and slot number as illustrated.

The InfiniteStorage 6120 supports mixing SAS and SATA drives within the same enclosure. For most efficient airflow and reduced vibrations, SAS drives should be placed in the front of the enclosure (lower slot numbers) while SATA drives should be placed in the rear of the enclosure (higher slot numbers).

DRIVE 1 DRIVE 13 DRIVE 25 DRIVE 37 DRIVE 49 DRIVE 2 DRIVE 14 DRIVE 26 DRIVE 38 DRIVE 50 DRIVE 3 DRIVE 15 DRIVE 27 DRIVE 39 DRIVE 51 DRIVE 4 DRIVE 16 DRIVE 52 DRIVE 28 DRIVE 40 DRIVE 5 DRIVE 17 DRIVE 29 DRIVE 41 DRIVE 53 Front DRIVE 6 DRIVE 18 DRIVE 30 DRIVE 42 DRIVE 54 AUX DRIVE Chassis DRIVE 7 DRIVE 19 DRIVE 31 DRIVE 43 DRIVE 8 DRIVE 20 DRIVE 32 DRIVE 44 DRIVE 56 DRIVE 9 DRIVE 21 DRIVE 33 DRIVE 45 DRIVE 57 DRIVE 10 DRIVE 34 DRIVE 58 DRIVE 11 DRIVE 23 DRIVE 35 DRIVE 47 DRIVE 59 DRIVE 12 DRIVE 24 DRIVE 36 DRIVE 48 DRIVE 60


Figure 23. InfiniteStorage 6120 Drive Layout

2.3.3 Initial Configuration via RS-232

The InfiniteStorage 6120 can be configured and administered either via serial connection (using the supplied mini-jack cable) or via Ethernet connection using SSH. However, in order to use the SSH connection, it is first necessary to configure the network settings on each controller. This can only be done using the serial interface as described in the next subsection.

2.3.3.1 Serial Interface Configuration

1. Connect the supplied mini-jack cable to the port labeled **CLI** on Controller 1 (Figure 24). Connect the other end of the cable to a serial port on a standard PC.

2. Load a serial console program (such as HyperTerminal, minicom, or screen) and use the following settings for the serial connection:

• Bits per second: 115,200

• Data bits: 8

• Parity: None

• Stop bits: 1

• Flow control: None

3. Once connected, hit the <Enter> key to bring up the password prompt. Enter the password: **user**.

2.3.3.2 Configure Network Settings

To enable SSH access to each controller, the network settings must be configured as follows:

Enter command: UI SET NETWORK_INTERFACE LOCAL IP_ADDRESS=<ip_address>
 IP_MASK=<netmask> IP_GATEWAY=<gateway>

where <ip_address> is an address appropriate to the local network. The netmask and gateway values can also be entered (Figure 25).

Figure 25. Set Network Interface Example

```
RAID[0]$ ui set network_interface local ip_address=10.32.31.31 ip_mask=255.255.240.0 ip_gateway=10.32.16.2 NETWORK_INTERFACE 0 set with STATUS='Success' (0x0)
```

2. To verify the new settings, enter command (Figure 26):

UI SHOW NETWORK INTERFACE LOCAL *

Figure 26. Show Network Interface Settings

```
RAID[0]$ ui show network_interface local *
Network device id 0
address 10.32.31.31
netmask 255.255.240.0
gateway 10.32.16.2
```

- **3.** Switch the serial cable to the **CLI** port on Controller 2 and repeat the above steps to enter a different IP address for Controller 2.
- **4.** Enter command **SHUTDOWN SUBSYSTEM RESTART** to restart the controllers and make the changes take effect.

2.3.4 Setting System Time & Date

The system time and date for the InfiniteStorage 6120 are factory-configured for the U.S. Pacific Standard Time (PST) zone. If you are located in a different time zone, you need to change the settings so that the time stamps for all events are correct.

To display the current system time (Figure 27), enter command **SHOW SUBSYSTEM ALL ATTRIBUTES**

Figure 27. Show Current System Time

```
RAID[0]$ show subsystem all_attributes
RP Subsystem Name:
UID: 0x000000000000000
Subsystem Time: Fri Jan 30 16:48:55 2009
Time zone: 0 minutes
DST offset: 0 minutes
Locate Dwell Time: 120 seconds
Mirror Synch: NA
```

To change the date and time to March 1, 2009 2:15:32 pm, for example, type:

SET SUBSYSTEM DATE_AND_TIME=2009:3:1:14:15:32

2.3.5 Checking Status of Physical Disks

Before creating any storage pools, check the status of all the drives.

1. You can use the following commands:

```
SHOW UNASSIGNED_POOL -ALL (Figure 28)
SHOW PHYSICAL_DISK * (Figure 29)
```

Figure 28. Show Unassigned Pool Example Screen

```
RAID$ show unassigned_pool -all
OID: 0x1800ffff
Type: UNASSIGNED
Capacity: 42270720 MBs

Failed Capacity: 0 MBs
Total Phy Disks 60
```

Figure 29. Show Disk Information Screen

ncl S	lot	Vendor	Product ID	Type	Cap GB	RPM	Revision	Serial Number	Pool	Status		Member Status	WWN
1	1	HITACHI	HDS725050KLA360	SATA	46	 5 7K	K2AOAD1	KRVN65ZAKAZLKH	UNAS	GOOD	57		5000cca20def4
1	2	HITACHI	HDS725050KLA360	SATA	465	5 7K	K2AOAD1	KRVN65ZAKNL79H	UNAS	GOOD	32	NORM	5000cca20df3a
1		HITACHI	HDS725050KLA360		469		K2AOAD1	KRVP65ZAKD8Y5F			42	NORM	5000cca20defd
1		HITACHI			46		K2AOAD1.	KRVN65ZAK72BLH			1	NORM	5000cca20ded7
1		HITACHI			465		K2AOAD1	KRVN65ZAKB269H			38	NORM	5000cca20def4
1		HITACHI Hitachi	HDS725050KLA360 HUA721075KLA330		46! 69!		K2AOAD1.	KRVN65ZAKB1LHH GTF200P8G6K2YF			23 40	NORM NORM	5000cca20def4 5000cca215c2f
1		HITACHI	HDS725050KLA360		465		K2AOAD1	KRVN65ZAKA6P9H			41	NORM	5000cca20deee
1		HITACHI	HDS725050KLA360		46		K2AOADI.	KRVN65ZAKAGVYF			47	NORM	5000cca20def0
1	-	HITACHI	HDS725050KLA360		469		K2AOAD1	KRVN65ZAKA5SDH			45	NORM	5000cca20deee
1		HITACHI	HDS725050KLA360		469		K2AOAD1	KRVN65ZAK8VH8F			39	NORM	5000cca20dee4
1	12	HITACHI	HDS725050KLA360	SATA	469	5 7K	K2AOAD1	KRVN65ZAKAZ75H	. 1	GOOD	26	NORM	5000cca20def4
1	13	Hitachi	HUA721075KLA330	SATA	698	3 7K	GK80A70	GTF202P8GTMNRF	4	GOOD	20	NORM	5000cca215cb3
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTLDJF			33	NORM	5000cca215cb2
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTPR7F			3	NORM	5000cca215cb3
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTPW9F			50	NORM	5000cca215cb3
1		Hitachi Hitachi	HUA721050KLA330 HUA721075KLA330		469 698		GK80AB0.	GTE402P6G94E8E GTF202P8GTPNXF			27 58	NORM	5000cca214c42 5000cca215cb3
1		Hitachi Hitachi	HUA721075KLA330 HUA721075KLA330		698		GK80A70	GTF202P8GTPNXF GTF202P8GTPTBF			18	NORM	5000cca215cb3
1		HITACHI	HDS725050KLA360		46		K2AOAD1	KRVN63ZAKSMX8D			21	NORM	5000cca20df50
1		HITACHI	HDS725050KLA360		46		K2AOAD1	KRVP65ZAKERMGF			17	NORM	5000cca20df08
1		Hitachi	HUA721050KLA330		46		GK60AB0.	GTE402P6G9M0SE			28	NORM	5000cca214c45
1	23	HITACHI	HDS725050KLA360	SATA	469	5 7K	K2AOAD1	KRVN63ZAKNTM6D	1	GOOD	35	NORM	5000cca20df3b
1	24	HITACHI	HDS725050KLA360	SATA	469	5 7K	K2AOAD1	KRVN65ZAKKVV3F	1	GOOD	30	NORM	5000cca20df26
1		HITACHI	HDS725050KLA360		469		K2AOAD1	KRVN35ZAKE8HZH			5	NORM	5000cca20df04
1		HITACHI	HDS725050KLA360		465		K2AOAD1.	KRVP65ZAKDW9PH			6	NORM	5000cca20df02
1		HITACHI	HDS725050KLA360		465		K2AOAD1.	KRVN63ZAKSNNDD			8	NORM	5000cca20df50
1		HITACHI	HDS725050KLA360		465		K2AOAD1	KRVN65ZAKAZ4LH			9	NORM	5000cca20def4
1		HITACHI HITACHI	HDS725050KLA360 HDS725050KLA360	SATA	46! 46!		K2AOAD1.	KRVN65ZAKB2GEH KRVP65ZAKESH1F	. 2		37 31	NORM NORM	5000cca20def4 5000cca20df08
1		HITACHI	HDS725050KLA360	SATA	465		K2AOADI.	KRVN03ZAGMUMUD			49	NORM	5000cca20dr08
1		HITACHI	HDS725050KLA360	SATA	465		K2AOAD1	KRVN35ZAK6VLBF	OIVAL		25	NORM	5000cca20de36
1		HITACHI	HDS725050KLA360	SATA	465		K2AOAD1	KRVN65ZAKN0S7F	1		36	NORM	5000cca20df36
1		HITACHI	HDS725050KLA360	SATA	465	5 7K	K2AOAD1	KRVN65ZAK9VNRH	. 2	GOOD	44	NORM	5000cca20deec
1	35	HITACHI	HDS725050KLA360	SATA	469	5 7K	K2AOAD1	KRVN65ZAKL1MYH		GOOD	22	NORM	5000cca20df27
1		HITACHI	HDS725050KLA360		469		K2AOAD1	KRVN03ZAGH9Y4D			43	NORM	5000cca20dc6f
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTSLNF			7	NORM	5000cca215cb4
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTRPVF			54	NORM	5000cca215cb3
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTSMGF			14	NORM	5000cca215cb4
1		Hitachi Hitachi	HUA721075KLA330 HUA721075KLA330		698 698		GK80A70	GTF202P8GTK4HF GTF202P8GTRPDF			56 52	NORM NORM	5000cca215cb2 5000cca215cb3
1		Hitachi	HUA721075KLA330 HUA721075KLA330		698		GK80A70	GTF202P8GTRPDF GTF202P8GTRLVF			24	NORM	5000cca215cb3
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTNPYF			13	NORM	5000cca215cb3
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTPWUF			53	NORM	5000cca215cb3
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTPSHF			12	NORM	5000cca215cb3
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTPKNF			29	NORM	5000cca215cb3
1		Hitachi	HUA721050KLA330		465		GK60AB0	GTE402P6G94EYE			46	NORM	5000cca214c42
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTRP6F			51	NORM	5000cca215cb3
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTV0KF			15	NORM	5000cca215cb4
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTUYLF			2	NORM	5000cca215cb4
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTSJZF			59		5000cca215cb4
1		Hitachi	HUA721075KLA330		698 698		GK80A70	GTF202P8GTNV9F			55 19	NORM NORM	5000cca215cb3
1		Hitachi Hitachi	HUA721075KLA330 HUA721075KLA330		698		GK80A70	GTF202P8GTTZ5F GTF202P8GTR3ZF			34	NORM	5000cca215cb4 5000cca215cb3
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTT3DF			4	NORM	5000cca215cb4
1		Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTPGWF			10	NORM	5000cca215cb4
1		Hitachi			698		GK80A70	GTF202P8GTPH3F			11	NORM	5000cca215cb3
1		Hitachi			698		GK80A70	GTF202P8GTSMLF			16	NORM	5000cca215cb4
1	59	Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTSK6F		GOOD	60		5000cca215cb4
1	60	Hitachi	HUA721075KLA330		698		GK80A70	GTF202P8GTPATF			48	NORM	5000cca215cb3
tal	Physi	cal Disks:	60										
tal.	Assig	med Disks:	54										
		signed Disks:	6										
Tota	l SAT	TA Disks: mber State No	60 rmal: 54										

007-5533-002 **26**

2. Verify that all the drives are present and healthy. If the drives are not visible, type **SHUTDOWN SUBSYSTEM RESTART** at the CLUI prompt to reboot both controllers.

If there is a drive missing, enter command **SHOW PHYSICAL_DISK * ALL_ATTRIBUTES**. Then search through the list to find out which slot is not reporting (Figure 30).

Figure 30. Physical Disk List Example Screen

```
RAID[0]$ show physical_disk * all_attributes
                    0x20a7003f
 OTD:
 Pool OID:
                    UNASSIGNED
 Capacity:
                    704512 MBs (0x56000000 blocks)
 Raw Capacity:
                    715404 MBs (0x575466f0 blocks)
 Block Size:
                    512
                    0x27
 Enabled Disk Ch:
                          0x22
 Disk Slot:
 Vendor ID:
                    Hitachi
 Product ID:
                    Hitachi HUA721075KLA330
 Product Revision: GK80AB0A
                          GTF200P8GBVPXF
 Serial Number:
 Health State:
                    GOOD
 Rotation Speed:
                    7200 RPM
                    SATA
 Device Type:
                    UNASSIGNED
 Member State:
                    FALSE
 Spare:
 Failed:
                    FALSE
                    0x5000cca215c564560
 UUID:
```

2.3.6 Installing Licensed Features

Before creating storage pools and virtual disks, you should install any licensed features (such as RAID 6 and SATAssure) and activate the associated licenses.

License key generation requires that you have your feature license number, JBOD enclosure serial number, and controller ID information (Figure 31). To complete license key generation, go to the SGI licensing site, http://www.sgi.com/support/licensing/special.html.

See the SGI customer letter that accompanies your feature license order for licensing instructions.

Figure 31. Installing Licensed Features

2.3.7 Creating Storage Pools

A storage pool on a InfiniteStorage 6120 has the following attributes:

RAID level

Storage pools can be configured to use either a RAID5 or RAID6 parity scheme. In RAID5, the capacity of one drive is reserved for parity, allowing data recovery in the event of a single drive loss in the storage pool. In RAID6, the capacity of two drives is reserved for parity, allowing data recovery if either one or two drives are down in a storage pool. *For maximum data protection, use RAID6*.

· Chunk size

The chunk size defines the amount of data written to a single disk before proceeding to the next disk in the storage pool. For optimal performance, the chunk size should be proportional to the expected host request size. For example, a large chunk size should be used when transferring large blocks of data while a small chunk size should be used when transferring multiple small blocks of data. The default chunk size is 128K.

Assignment policy

The assignment policy defines whether drives with the same interface type (SAS or SATA), spindle speed, or capacity are placed within the same pool. If there are not enough drives of the defined type, then the **CREATE POOL** command fails with a not-enough-drives message.

Once an assignment policy is used to create a pool, that policy also governs how spares are chosen for that pool. Only drives of the same defined type will be used for sparing on that pool. If there are no drives of the defined type available in the spare pool, none will be used.

Note: To change the assignment policy after the fact, use the SET POOL command to change the desired attributes.

· Drive count

A RAID5 storage pool may consist of 5 or 9 drives. A RAID6 storage pool may consist of 6 or 10 drives. For maximum performance, storage pools should be created using drives with the same characteristics (such as SAS/SATA, capacity, and RPM).

To create a storage pool, use the CREATE POOL command:

1. At the CLUI prompt, type:

```
CREATE POOL [CHUNK_SIZE=<value>][ASSIGN_POLICY=([SAS|SATA],
15000RPM|10000RPM|7200RPM|5400RPM|0RPM|SSD,[<capacity-raw>GB])]
[NUMBER=<n>] or PHYSICAL_DISK=<id1>,...,<idn>]
[RAID_LEVEL=RAID5|RAID6|RAID-SH]
```

You may either explicitly select the disks for the pool by specifying their index names with the **PHYSICAL_DISK** parameter or specify the number of disks in the pool by using **NUMBER** parameter, in which case the next available disks will be selected (Figure 32).

Figure 32. CREATE POOL Example (1)

```
RAID[0]$ create pool raid_level=raid5 chunk_size=64kb physical_disk=0x003e 0x003e 0x0040 0x0041 0x0042

POOL 0 OID=0x19b60000 create STATUS='Success' (0x0)

RAID$ create pool raid_level=raid6 chunk_size=128kb number=6

POOL 1 OID=0x19b80001 create STATUS='Success' (0x0)
```

If you specify the **ASSIGN_POLICY** and **NUMBER** parameters together (Figure 33), only the selected type of drives will be used for the storage pool and you will not need to enter the individual disk name.

Figure 33. CREATE POOL Example (2)

```
RAID[0]$ create pool raid_level=raid6 chunk_size=128kb number=6 assign_policy=sa
POOL 2 OID=0x19b80002 create STATUS='Success' (0x0)
```

2. Use the CREATE POOL command to add more storage pools as needed. If you need to delete a storage pool, use the DELETE POOL pool-id> command.

NOTE: Storage pool initialization is a background process and multiple storage pools can be initialized simultaneously. However, virtual disks on a storage pool are NOT accessible until its initialization is complete.

3. To view the list of configured storage pools, enter command SHOW POOL * (Figure 34).

Figure 34. Show Pool Information Screen

Idx Name	State	Chunk	Raid Faul	Total Fr ts cap GB ca			Sett	ing	gs		Jobs	Disk T/O		Spare Policy
0 pool-0	NORMAL	128	5	4104	0	0	W	R	F	I		10	UNASSIGNED	AUTO
1 pool-1	NORMAL	128	5	4104	0	0	W	R	F	I		10	UNASSIGNED	AUTO
2 pool-2	NORMAL	128	5	4104	0	0	W	R	F	I		10	UNASSIGNED	AUTO
3 pool-3	NORMAL	128	5	6192	0	0	W	R	F	ΙI		10	UNASSIGNED	AUTO
4 pool-4	NORMAL	128	5	6192	0	0	W	R	F	I		10	UNASSIGNED	AUTO
5 pool-5	NORMAL	128	5	6192	0	0	W	R	F	ΙI		10	UNASSIGNED	AUTO

Legend for the Settings field (Figure 34):

- S SATAssure
- W Write-back cache
- M Mirrored write-back cache
- R Read ahead
- F Full-stripe cache
- I IO routing

SHOW POOL <id> ALL_ATTRIBUTES will display detailed information of the storage pool (Figure 35).

Figure 35. SHOW POOL ALL_ATTRIBUTES Example Screen

RAID[0]\$ show pool 0 all_attributes OID: 0x19b40000 Type: Name: STORAGE 0x19b40000 Chunk Size: 64KB (0x80 blocks) Block Size: 512 RAID5 2801664 MBs 2801664 MBs 3522560 MBs RAID Type: Free Raid5 Capacity: Max VD Size: Total Capacity: 0x00 Global Spare Pool: DiskTimeout(FRT): UNASSIGNED 10 minutes Init Policy: Init Priority: NO IO permitted 50% Full Rebuild Priority: Fractional Rebuild Priority: 80%
Fractional Rebuild Priority: 90%
Sparing Policy: AUTOMATIC
Assign Policy:
Device Type: NA Rotation Speed: NA Raw Capacity: SATAssure: IO ROUTING: TRUE TRUE MWBC: FALSE Initializing: TRUE Rebuilding: FALSE Paused: FALSE AutoWriteLock: FALSE Critical: Current Home: FALSE 0x0015b2a122b20000 0x00000000 Future Home: Preferred Home: 0xfffffffffffffff 0x0015b2a122b20000 0x00000000 0x00000000 BkgdJob OID: Total Phy Disks 0x28000003 NORMAL Member Size: 704512 MB pID UUID State 0x003e NORM 0x003f NORM 0x5000cca215c56e47 0x5000cca215c56456 0x0040 NORM 0x5000cca215c54c71 0x0041 NORM 0x5000cca215c5675c 0x0042 0x5000cca215c56e55

2.3.8 Creating Virtual Disks

A virtual disk can be created on just a part of a storage pool or uses all of the capacity of a single storage pool.

To create a virtual disk, use the **CREATE VIRTUAL_DISK** command:

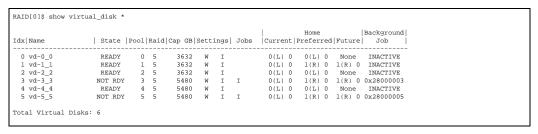
1. At the CLUI prompt, type:

```
CREATE VIRTUAL_DISK CAPACITY=<capacity> POOL=<pool-id>
```

where <capacity> is the capacity of the virtual disk in GiB or type **max** to use all available capacity; <pool-id> is the storage pool to be used by this virtual disk (Figure 36).

A message is displayed to indicate whether the virtual disk creation was successful.

Figure 36. CREATE VIRTUAL DISKS Example Screen


```
RAID[0]$ create virtual_disk capacity=16 pool=0
VIRTUAL_DISK 0 OID=0x89ba000 creation STATUS='Success' (0x0)
RAID[0]$ create virtual_disk capacity=32 pool=0
VIRTUAL_DISK 1 OID=0x89bb001 creation STATUS='Success' (0x0)
```

2. Use the CREATE VIRTUAL_DISK command to add more virtual disks as needed. If you need to delete a virtual disk, use the DELETE VIRTUAL_DISK <virtual disk-id> command.

NOTE: Virtual disk(s) on a storage pool are NOT accessible until its initialization is complete.

3. To view the list of configured virtual disks, type SHOW VIRTUAL_DISK * (Figure 37).

Figure 37. Show Virtual Disk Information Screen

SHOW VIRTUAL_DISK <id> ALL_ATTRIBUTES will display detailed information of the virtual disk (Figure 38). In contrast, **SHOW POOL <id> ALL_ATTRIBUTES** will display detailed information of the storage pool (Figure 35).

Figure 38. SHOW VIRTUAL_DISK ALL_ATTRIBUTES Example

```
RAID[0]$ show virtual disk 0 all attributes
  OID:
                      0x89ba0000
  Name:
  POOT, OTD:
                      0x19b40000
                       16384 MBs
  Capacity:
  Offset:
                       0×0
                      NOT RDY
  State:
  Raidlevel:
                      RAID5
  IO ROUTING:
                       TRUE
  WBC:
                       TRUE
  MWBC:
                       FALSE
  Initializing:
                       TRUE
  Paused:
                       FALSE
  AutoWriteLock:
                       FALSE
  Critical:
                       FALSE
  Present Home Only:FALSE
Current Home: 0x001
                       0x0015b2a122b20000
                                             0x0000000
  Future Home:
                       0xffffffffffffffff
                                             0x00000000
  Preferred Home:
                      0x0015b2a122b20000
                                             0x00000000
  BkgdJob OID:
UUID:
                      0x28000000
60001ff0722b2000000000089ba0000
```

2.3.9 Creating Spare Pools

The InfiniteStorage 6120 supports the concept of a spare pool. A spare pool contains physical disks that can be used as spare disks in one or more storage pools.

In the event of drive failure, a drive that is assigned to a spare pool is automatically swapped into the storage pool to replace the failed drive. A rebuild then occurs immediately, reducing the possibility of data loss due to additional drive failures.

Spare pools can be shared by storage pools or dedicated to a particular, in which case the spare disks will only be used by the designated storage pool. After a spare pool is created, you will need to select drive(s) from the unassigned pool and assign it to the spare pool.

NOTE: For maximum performance, create spare pools using drives with the same characteristics as those drives within the storage pool(s) for which they are designated to spare. The characteristics include items like SAS/SATA, capacity, and RPM.

To create a spare pool:

1. At the CLUI prompt, type: CREATE SPARE_POOL (Figure 39)

A message is displayed to indicate whether the new spare pool creation was successful.

Figure 39. CREATE SPARE POOL Example Screen

```
RAID[0]$ create spare_pool

SPARE POOL 6 OID=0x19bc0006 create STATUS='Success' (0x0)
```

2. Assign disk(s) to the spare pool, enter command:

ASSIGN PHYSICAL_DISK <disk-id> TO_POOL cpool-id>
where <disk-id> is the index name of the disk to be added.

To view the list of unassigned disks, enter command SHOW UNASSIGNED_POOL PHYSICAL_DISK

A message is displayed to indicate whether the disk has been added to the spare pool (Figure 40).

Figure 40. Assign Physical Disk to Spare Pool Example Screen

```
RAID[0]$ assign physical_disk 0x004e to_pool 6

PHYSICAL_DISK 78 OID=0x20b6004e assigned to POOL 6 OID=0x19bc0006STATUS='Success' (0x0)
```

3. Use the **CREATE SPARE_POOL** and **ASSIGN PHYSICAL_DISK** commands to create more spare pools as needed.

If you need to delete a disk from the spare pool, enter command ASSIGN PHYSICAL_DISK <disk-id> TO_POOL 0x1800fffff

To delete a spare pool, enter command DELETE SPARE_POOL <pool-id>

4. To view the list of configured spare pool(s), enter command SHOW SPARE_POOL * (Figure 41).

Figure 41. Show Spare Pool Information Screen

SHOW SPARE_POOL <id> ALL_ATTRIBUTES will display detailed information of the spare pool (Figure 42). SHOW SPARE_POOL <id> PHYSICAL_DISKS will display the list of disks in the pool.

Figure 42. Show Spare Pool Example Screen (2)

```
RAID[0]$ show spare_pool 6 all_attributes
                       0x19bc0006
  OID:
                       GLOBAL SPARE
  Type:
  Name:
                       19bc0006
  Block Size:
                       0 \times 200
  DiskTimeout(FRT): 10 minutes
  Total Capacity:
                       1409024 MBs
  UUID:
                       0x00
  Total Phy Disks
RAID[0]$ show spare_pool 6 physical_disk
OID: 0x20b6004e Index: 0x004e
OID: 0x20b7004f Index: 0x004f
```

5. Assign spare pools to storage pools. Enter command:

```
SET POOL <pool-id> SPARE_POOL <spare-pool-id>
```

where <pool-id> and <spare-pool-id> are the index names of the storage pool and spare pool, respectively.

NOTE: Each storage pool must have a spare pool assigned to it. If a storage pool's attributes show Global Spare Pool: UNASSIGNED, no spare pool will serve this storage pool.

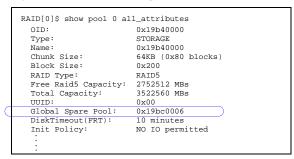

A message is displayed to indicate whether the spare pool has been designated (Figure 43). Repeat this step for each storage pool in the system.

Figure 43. Set Storage Pool to Spare Pool Example Screen

```
RAID[0]$ set pool 0 spare_pool 6
POOL 0 OID=0x19b40000 attributes set with STATUS='Success' (0x0)
```

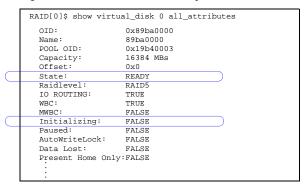
6. Use the **SHOW POOL** command to view the new storage pool information (Figure 44).

Figure 44. Show Pool Example Screen

2.3.10 Initializing the Host System

When a storage pool is created, initialization begins automatically and will continue in the background until it is completed. Once the storage pool has completed its initialization, its virtual disk(s) can be accessed immediately.

To monitor the progress of a job, use the **SHOW JOB * ALL_ATTRIBUTES** command. It will display the type of job and the percentage of completion (Figure 45).


Figure 45. Show Job Example Screen

```
RAID[0]$ show job * all_attributes

OID: 0x28000000
Target: 0x19b40000
Type: INITIALIZE
Status: RUNNING
Priority: 50
Fraction Complete:71%
```

You may also check if a virtual disk is ready for access using the SHOW VIRTUAL_DISK <id>ALL ATTRIBUTES command (Figure 46).

Figure 46. Show Virtual Disk Example Screen

2.3.10.1 Present Virtual Disk to External Host

A presentation on an InfiniteStorage 6120 has the following components:

· Discovered Initiators

A *discovered initiator* is defined as a Fibre Channel initiator that has logged into the InfiniteStorage 6120. This is normally a single port on a Fibre Channel HBA in an external computer.

Host

A *host* is an abstract client of a virtual disk that has all the access to all data within the virtual disk. This most commonly represents an external computer with one or more Fibre Channel initiators. The host attribute OS (operating system) allows you to select GENERIC, WINDOWS, LINUX or MAC_OS. The OS attribute dictates the way the controller responds to certain Fibre Channel commands where appropriate. For example, Mac OS X expects a different response from an inquiry of LUN0 (the controller LUN) than a Windows host.

Channel

A *channel* is one of the Fibre Channel ports on the controller. The channel attribute MODE allows you to select either MAC_OS or STANDARD. When MAC_OS is selected, the port's node name will be set differently in order to be visible to a Macintosh system.

Stack

A *stack* is the input side of the subsystem. In the case of the InfiniteStorage 6120, the stack is defined as the Fibre Channel interface. In future versions of the product, different interface stacks may exist.

· Presentation

A presentation is the relationship between a host and a virtual disk. A presentation implies that the related host has some sort of access to the virtual disk. The following are attributes of a presentation:

- PORT Port from which the host will see the virtual disk.
- READ_ONLY Controls read only access.
- PRESENT_HOME_ONLY Presents the specified virtual disk from its designated home controller only.
- LUN LUN number (user-specified) that the virtual disk will show to the host.

To create a host:

Use the APPLICATION CREATE HOST [OSTYPE=GENERIC | LINUX | MAC_OS | WINDOWS] command where OSTYPE is the operating system. GENERIC is the default.

To delete a host:

Use the APPLICATION DELETE HOST=<object-id> command.

To display presentations associated with the specified application host:

Use the APPLICATION SHOW HOST=<object-id>[PRESENTATIONS] command.

To display the presentations associated with the specified application host:

Use the APPLICATION SHOW HOST=<object-id>[INITIATORS] command.

To create a presentation to a virtual disk for the specified host:

Use the APPLICATION CREATE PRESENTATION VIRTUAL_DISK=<object-id>HOST=<object-id> | ALL command.

To create an initiator object that is associated with the specified host:

Use the APPLICATION IMPORT DISCOVERED_INITIATOR=<object-id>HOST=<object-id> command.

To present the virtual disk to all controller ports for both controllers (promiscuous mode):

Use the APPLICATION CREATE PREENTATION VIRTUAL_DISK=<object-id> HOST=ALL command.

SECTION 3

InfiniteStorage 6120

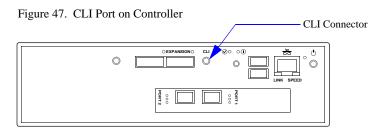
Management

3.1 Managing the InfiniteStorage 6120

The InfiniteStorage 6120 provides a set of tools that enable administrators to centrally manage the network storage and resources that handle business-critical data. These include configuration management, performance management, and firmware update management.

NOTE: The command descriptions given in this user guide only apply to firmware version 1.1.0.0. To access the most up-to-date commands, use the CLUI's online help feature.

3.1.1 Management Interface


SAN management information for the InfiniteStorage 6120 can be accessed locally through a serial interface or remotely through SSH.

NOTE: An InfiniteStorage 6120 may only have one active login (serial or SSH) per controller at any given time.

Locally via Serial Interface

Any RS-232 terminal or terminal emulator (such as Hyperterminal) can be used to configure and monitor the InfiniteStorage 6120.

1. Connect the supplied mini-jack cable to the port labeled **CLI** on Controller 1 (Figure 47). Connect the other end of the cable to a serial port on a standard PC.

- **2.** Load a serial console program (such as HyperTerminal, minicom, or screen) and use the following settings for the serial connection:
 - Bits per second: 115,200
 - Data bits: 8
 - Parity: None
 - Stop bits:
 - Flow control: None
- **3.** Once connected, hit the <Enter> key to bring up the password prompt. Enter the password: user.

Remotely via SSH

To configure and monitor the InfiniteStorage 6120 remotely, connect the controller to your Ethernet network. Please refer to Section 3.6, "Remote Management of InfiniteStorage 6120" for further information on how to set up the controller's network interface.

3.1.2 User Logins

RS-232 Login

For a terminal session, hit the <Enter> key to bring up the password prompt. Enter the password: user

Login via SSH

For a SSH session, enter the user name USER and password USER (Figure 48).

Figure 48. SSH Login Screen

```
login as: user
user@10.23.23.16 'password'
Linux (none) 2.6.25-sgi-016620-3 #2 SMP Wed Jan 14 10:38:28 MST 2009 x
InfiniteStorage 6120
```

Logout

To logout, enter command QUIT. For SSH connection, the current session will be disconnected.

3.1.3 Available Commands

Entering the ? character at the CLUI prompt will display the available commands within the InfiniteStorage 6120 CLUI (Figure 49). To get help information on a command, type the command followed by a question mark.

For example, ASSIGN ?<Enter> will display help on assignment options on the system.

Figure 49. Help Screen

```
RAID[0]$ ?
Select one of the following subjects for additional commands:
  APPLICATION
                    Selects the application processor as the subject
   RAID
                    Selects the raid processor as the subject
   UI
                    Selects the user interface as the subject
Additional commands:
                    Provides information on how to use the user interface help
   QUIT
                    Exits the Command Line User Interface
Object class options available for default subject RAID:
Available keywords:
  ASSIGN
                    Assign raid object
   CLEAR
                    Clear raid object states
   CREATE
                    Create raid objects
   DELETE
                    Delete raid objects
   LOCATE
                    Locate raid objects
   MOVE_HOME
                    Locate raid objects
   PAUSE
                    Pause raid objects
   REPLACE
                    Replace raid objects
   RESUME
                    Resume raid objects
   SET
                    Set raid objects
   SHOW
                    Display raid objects
   SHUTDOWN
                    Shutdown raid objects
   UPDATE
                    Update raid objects
```

3.1.3.1 Basic Key Operations

The command line editing and history features support **ANSI** and **VT-100** terminal modes. The command history buffer can hold up to 64 commands. The full command line editing and history only work on main CLI and SSH sessions when entering new commands. Basic key assignments are listed in Figure 50.

Simple, not full-command, line editing only is supported under the following conditions:

- CLUI prompts the user for more information.
- The alternate CLUI prompt is active. (The alternate CLUI is used on the RS-232 connection during an active SSH session.)

NOTE: Not all SSH programs support all the keys listed in Figure 50.

Figure 50. Basic Key Assignments

Key	ANSI CTRL or Escape Sequence	Description
Backspace	Ctrl-H	Deletes preceding character.
Delete	Del, or Esc [3~	Deletes current character.
Up Arrow	Esc [A	Retrieves previous command in the history buffer.
Down Arrow	Esc [B	Retrieves next command in the history buffer.
Right Arrow	Esc [C	Moves cursor to the right by one character.
Left Arrow	Esc [D	Moves cursor to the left by one character.
Home	Esc [H or Esc [1~	Gets the oldest command in the history buffer.
End	Esc [K or Esc [4~	Gets the latest command in the history buffer.
Insert	Esc [2~	Toggles between insert mode and overtype mode.
PgUp	Esc [5~	Retrieves oldest command in the history buffer.
PgDn	Esc [6~	Retrieves latest command in the history buffer.
Ctrl-U	Ctrl-U	Deletes to beginning of line.
Ctrl-K	Ctrl-K	Deletes to end of line.
Ctrl-A	Ctrl-A	Moves cursor to beginning of line.
Ctrl-E	Ctrl-E	Moves cursor to end of line.

3.2 Configuration Management

The InfiniteStorage 6120 provides uniform configuration management across a heterogeneous SAN.

3.2.1 Monitor Status of Storage Assets

The drives in the system are categorized into one of the following pools:

- Unassigned pool By default, all the drives or replacement drives are initially allocated to this pool. When a drive has failed or been released (from a spare pool, for example) it is also moved to this pool.
- Storage pool (sometimes referred to as a RAID group) A collection of 5 to 10 disk drives, ideally of the same capacity and type.
- Spare pool This type of pool contains physical disks that can be used as spare disks in one or more storage pools.

3.2.1.1 Disk Information

SHOW PHYSICAL_DISK * displays a list of all the disks installed in the system (Figure 51).

SHOW UNASSIGNED_POOL PHYSICAL_DISK displays the list of unassigned disks.

SHOW PHYSICAL_DISK=<disk-id> ALL retrieves information about a specific disk (Figure 52).

Figure 51. Show Physical Disk List Example Screen

cl Slo	t	Vendor	Product ID	Type Cap	GB	RPM	Revision	Serial Number	Pool	Status		Member Status	WWN
1 :	1	HITACHI	HDS725050KLA360	SATA	465	7K	K2AOAD1A	KRVN65ZAKAZLKH	UNAS	GOOD	57		5000cca20def45
1 :	2	HITACHI	HDS725050KLA360	SATA	465	7K	K2AOAD1A	KRVN65ZAKNL79H	UNAS	GOOD	32	NORM	5000cca20df3a2
1	3	HITACHI	HDS725050KLA360	SATA	465	7K	K2AOAD1A	KRVP65ZAKD8Y5F	UNAS	GOOD	42	NORM	5000cca20defdc
1 .	4	HITACHI	HDS725050KLA360	SATA	465	7K	K2AOAD1A	KRVN65ZAK72BLH	UNAS	GOOD	1	NORM	5000cca20ded7e
1 !	5	HITACHI	HDS725050KLA360	SATA	465	7K	K2AOAD1A	KRVN65ZAKB269H	UNAS	GOOD	38	NORM	5000cca20def4e
1 (6	HITACHI	HDS725050KLA360	SATA	465	7K	K2AOAD1A	KRVN65ZAKB1LHH	UNAS	GOOD	23	NORM	5000cca20def4c
1 '	7	Hitachi	HUA721075KLA330	SATA	698	7K	GK80A70M	GTF200P8G6K2YF	UNAS	GOOD	40	NORM	5000cca215c2fa
1 (8	HITACHI	HDS725050KLA360	SATA	465	7K	K2AOAD1A	KRVN65ZAKA6P9H	UNAS	GOOD	41	NORM	5000cca20deeeb
1 !	9	HITACHI	HDS725050KLA360	SATA	465	7K	K2AOAD1A	KRVN65ZAKAGVYF	UNAS	GOOD	47		5000cca20def0a
1 1	0	HITACHI	HDS725050KLA360	SATA	465	7K	K2AOAD1A	KRVN65ZAKA5SDH	2	GOOD	45	NORM	5000cca20deee7
1 1		HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN65ZAK8VH8F	2	GOOD	39	NORM	5000cca20dee4c
1 1:	2	HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN65ZAKAZ75H	1	GOOD	26	NORM	5000cca20def43
1 1	-	Hitachi	HUA721075KLA330		698		GK8OA70M	GTF202P8GTMNRF	4	GOOD	20	NORM	5000cca215cb32
1 1	-	Hitachi	HUA721075KLA330		698		GK8OA70M	GTF202P8GTLDJF	4	GOOD	33	NORM	5000cca215cb2d
1 1	5	Hitachi	HUA721075KLA330	SATA	698	7K	GK8OA70M	GTF202P8GTPR7F	3	GOOD	3	NORM	5000cca215cb3a
1 1	6	Hitachi	HUA721075KLA330	SATA	698	7K	GK80A70M	GTF202P8GTPW9F	5	GOOD	50	NORM	5000cca215cb3b
1 1		Hitachi	HUA721050KLA330		465		GK60AB0A	GTE402P6G94E8E	1	GOOD	27	NORM	5000cca214c427
1 1	-	Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTPNXF		GOOD	58		5000cca215cb3a
1 1		Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTPTBF	4	GOOD	18	NORM	5000cca215cb3a
1 2		HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN63ZAKSMX8D	0	GOOD	21	NORM	5000cca20df505
1 2		HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVP65ZAKERMGF	0	GOOD	17	NORM	5000cca20df084
1 2:		Hitachi	HUA721050KLA330		465		GK60AB0A	GTE402P6G9M0SE	1	GOOD	28	NORM	5000cca214c45e
1 2	-	HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN63ZAKNTM6D	1	GOOD	35	NORM	5000cca20df3ba
1 2		HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN65ZAKKVV3F	1	GOOD	30	NORM	5000cca20df265
1 2		HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN35ZAKE8HZH	0	GOOD	5	NORM	5000cca20df04f
1 2		HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVP65ZAKDW9PH	0	GOOD	6	NORM	5000cca20df021
1 2		HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN63ZAKSNNDD	0	GOOD	8	NORM	5000cca20df508
1 2		HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN65ZAKAZ4LH	0	GOOD	9	NORM	5000cca20def43
1 2	_	HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN65ZAKB2GEH	2	GOOD	37	NORM	5000cca20def4f
1 3	-	HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVP65ZAKESH1F	1	GOOD	31	NORM	5000cca20df087
1 3	_	HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN03ZAGMUMUD		GOOD	49		5000cca20dc903
1 3:	_	HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN35ZAK6VLBF	1	GOOD	25	NORM	5000cca20ded64
_		HITACHI	HDS725050KLA360		465		K2AOAD1A	KRVN65ZAKN0S7F	1 2	GOOD	36	NORM	5000cca20df360
1 34		HITACHI HITACHI	HDS725050KLA360 HDS725050KLA360		465 465		K2AOAD1A K2AOAD1A	KRVN65ZAK9VNRH KRVN65ZAKI.1MYH	0	GOOD	44 22	NORM NORM	5000cca20deec1 5000cca20df27b
1 3		HITACHI	HDS725050KLA360		465		K2AOADIA K2AOADIA	KRVN65ZAKLIMYH KRVN03ZAGH9Y4D	2	GOOD	43	NORM	
1 3	-	HITACHI Hitachi	HUA721075KLA330		698		GK8OA70M	GTF202P8GTSLNF	3	GOOD	4.3	NORM	5000cca20dc6f6 5000cca215cb41
_		Hitachi Hitachi	HUA721075KLA330		698		GK80A70M GK80A70M	GTF202P8GTRPVF	5	GOOD	54	NORM	5000cca215cb4
1 3	-	Hitachi Hitachi	HUA721075KLA330		698		GK8OA70M	GTF202P8GTSMGF	3	GOOD	14	NORM	5000cca215cb41
1 4	-	Hitachi Hitachi	HUA721075KLA330		698		GK8OA70M	GTF202P8GTSMGF GTF202P8GTK4HF	5	GOOD	56	NORM	5000cca215cb49
		Hitachi Hitachi	HUA721075KLA330		698			GTF202P8GTRPDF	5	GOOD	52	NORM	
		Hitachi Hitachi	HUA721075KLA330		698		GK8OA70M GK8OA70M	GTF202P8GTRPDF	4	GOOD	24	NORM	5000cca215cb3e 5000cca215cb3e
		Hitachi Hitachi	HUA721075KLA330		698		GK8OA70M	GTF202P8GTREVF	3	GOOD	13	NORM	
		Hitachi Hitachi	HUA721075KLA330		698		GK80A70M GK80A70M	GTF202P8GTPWUF	5	GOOD	53	NORM	5000cca215cb36 5000cca215cb3b
					698				3	GOOD	12	NORM	
		Hitachi Hitachi	HUA721075KLA330 HUA721075KLA330		698		GK8OA70M GK8OA70M	GTF202P8GTPSHF GTF202P8GTPKNF	4	GOOD	29	NORM	5000cca215cb3a 5000cca215cb39
		Hitachi Hitachi	HUA721075KLA330		465		GK60AB0A	GTE402P6G94EYE	2	GOOD	46	NORM	5000cca214c428
		Hitachi Hitachi	HUA721050KLA330		698		GK80A70M	GTF202P8GTRP6F	5	GOOD	51	NORM	5000cca214c426
		Hitachi Hitachi	HUA721075KLA330		698		GK8OA70M	GTF202P8GTKP6F	4	GOOD	15	NORM	5000cca215cb4e
1 5		Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTUYLF	3	GOOD	2	NORM	5000cca215cb4a
		Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GT01LF		GOOD	59	1401011	5000cca215cb41
		Hitachi	HUA721075KLA330		698		GK8OA70M	GTF202P8GTNV9F	UINAS 5	GOOD	55	NORM	5000cca215cb37
	_	Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTTZ5F	4	GOOD	19	NORM	5000cca215cb46
	-	Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTR3ZF	4	GOOD	34	NORM	5000cca215cb3h
	-	Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTT3DF	3	GOOD	4	NORM	5000cca215cb43
1 5	-	Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTPGWF	3	GOOD	10	NORM	5000cca215cb39
		Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTPH3F	3	GOOD	11	NORM	5000cca215cb39
1 5		Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTSMLF	4	GOOD	16	NORM	5000cca215cb41
1 5	-	Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTSK6F	-	GOOD	60	-10101	5000cca215cb41
1 6	-	Hitachi	HUA721075KLA330		698		GK80A70M	GTF202P8GTPATF	5	GOOD	48	NORM	5000cca215cb39
		cal Disks:	60			-						-	
		ned Disks:	54										
		igned Disks:	6										
		A Disks:	60										

Figure 52. Physical Disk Information Example Screen

```
RAID[0]$ show physical_disk 0x003f all_attributes
                      0x20a7003f
  OID:
  Pool OID:
                     UNASSIGNED
                      704512 MBs (0x56000000 blocks)
  Capacity:
  Raw Capacity:
                      715404 MBs (0x575466f0 blocks)
  Block Size:
                      512
  Enabled Disk Ch: 0x27 0x22
  Disk Slot:
                      1:42
  Vendor ID:
                     Hitachi
  Product ID: Hitachi : Product Revision: GK80AB0A
                     Hitachi HUA721075KLA330
  Serial Number:
                            GTF200P8GBVPXF
  Health State:
                      GOOD
  Rotation Speed:
                      7200 RPM
  Device Type:
Member State:
                      SATA
                     UNASSIGNED
  Spare:
                      FALSE
  Failed:
                      FALSE
  UUID:
                      0x5000cca215c564560
```

If there is a failed drive, **SHOW UNASSIGNED_POOL FAILED ALL** will display the failed drive's information (Figure 53).

Figure 53. Failed Drive Example Screen

```
RAID[0]$ show unassigned_pool failed all
                       0x20a7003f
  Pool OID:
                       UNASSIGNED
  Capacity:
                       704512 MBs (0x56000000 blocks)
 Raw Capacity:
Block Size:
                       715404 MBs (0x575466f0 blocks)
                       512
 Enabled Disk Ch:
                      0x27
1:42
                            0x22
  Disk Slot:
  Vendor ID:
                      Hitachi
                      Hitachi HUA721075KLA330
 Product ID: Hitachi I
Product Revision: GK80AB0A
                      GTF200P8GBVPXF
FAILED
 Serial Number:
  Health State:
 Rotation Speed:
                       7200 RPM
 Device Type:
Member State:
                       SATA
                       UNASSIGNED
  Spare:
                       FALSE
  Failed:
                       TRUE
                      0x5000cca215c564560
  UUID:
```

3.2.1.2 Storage Pool View

Storage pools are the basic building blocks of the InfiniteStorage 6120.

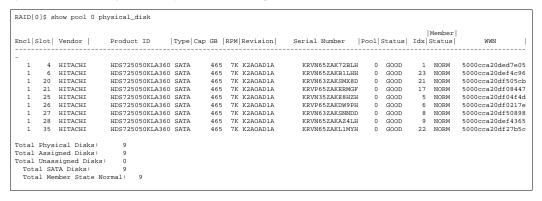

SHOW POOL * displays the list of configured storage pools in the system (Figure 54).

Figure 54. Show Configured Storage Pool List Example Screen

RAID[0]\$ show pool * |Total |Free | Max | |Chunk|Raid| Faults |cap GB|cap GB|VD GB | |Disk| Global Settings | Jobs T/O |spare pool |Policy| 5 128 0 pool-0 NORMAL 4104 RFI 10 UNASSIGNED AUTO 0 0 0 0 W W W 1 pool-1 2 pool-2 3 pool-3 NORMAL NORMAL 10 10 10 UNASSIGNED UNASSIGNED NORMAL 128 6192 UNASSIGNED AUTO 4 pool-4 5 pool-5 NORMAL. UNASSIGNED UNASSIGNED Total Storage Pools: 6

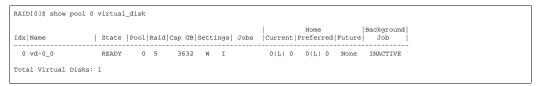

SHOW POOL <id> PHYSICAL_DISK displays the list of disks associated with the specified storage pool (Figure 55).

Figure 55. Show Storage Pool's Physical Disks Example Screen

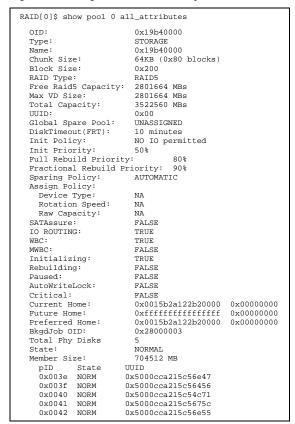
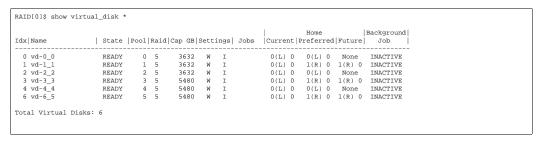

SHOW POOL <id> VIRTUAL_DISK displays the list of virtual disks associated with the specified storage pool (Figure 56).

Figure 56. Show storage pool's Virtual Disks Example Screen

SHOW POOL <id>> ALL displays detailed information of the storage pool (Figure 57).


Figure 57. Storage Pool Details Example Screen

3.2.1.3 Virtual Disk View

SHOW VIRTUAL_DISK * displays the list of configured virtual disks in the system (Figure 58).

Figure 58. List of Virtual Disks Example Screens

SHOW VIRTUAL_DISK <id>ALL_ATTRIBUTES will display detailed information of the virtual disk (Figure 59).

Figure 59. Virtual Disk Details Example Screen

```
RAID[0]$ show virtual_disk 0 all_attributes
 OID:
                     0x89ba0000
 Name:
                     89ba0000
 POOL OID:
                     0x19b40000
 Capacity:
Offset:
                     16384 MBs
                     0x0
 State:
                    NOT RDY
 Raidlevel:
                    RAID5
  IO ROUTING:
                     TRUE
 WBC:
                     TRUE
 MWBC:
                     FALSE
                     TRUE
FALSE
  Initializing:
 Paused:
 AutoWriteLock:
                     FALSE
 Data Lost:
                     FALSE
 Present Home Only
                     FALSE
                     0x0015b2a122b20000 0x00000000
 Current Home:
 Future Home:
                     0xfffffffffffffff
                                          0x00000000
 Preferred Home:
                     0x0015b2a122b20000
                                         0x00000000
                     0x28000000
 BkgdJob OID:
                     60001ff0722b2000000000089ba0000
```

3.2.1.4 Spare Pool View

SHOW SPARE_POOL * will display the list of configured spare pool(s) (Figure 60).

Figure 60. List of Spare Pools Example Screens

SHOW SPARE_POOL <id> ALL_ATTRIBUTES will display detailed information of the spare pool (Figure 61). SHOW SPARE_POOL <id> PHYSICAL_DISKS will display the list of disks in the pool.

Figure 61. Spare Pool Example Screen

```
RAID[0]$ show spare_pool 6 all_attributes
  OID:
                       0x19bc0006
  Type:
                       GLOBAL SPARE
                       19bc0006
  Name:
  Block Size:
                       0x200
  DiskTimeout(FRT): 10 minutes
  Total Capacity:
                       1409024 MBs
  UUID:
                       0x00
  Total Phy Disks
RAID$ show spare_pool 6 physical_disk
OID: 0x20b6004e Index: 0x004e
OID: 0x20b7004f Index: 0x004f
```

3.2.1.5 Visual Indication

Locate Physical Disk

LOCATE PHYSICAL_DISK <id> provides a visual indication of the specified drive. The status LED of the drive will blink.

LOCATE UNASSIGNED_POOL provides a visual indication of the drives that are unassigned. The status LED of the drives will blink.

LOCATE UNASSIGNED_POOL FAILED provides a visual indication of the drives that have failed. The status LED of the drives will blink.

Locate Storage Pool

LOCATE POOL <id> provides a visual indication of the specified storage pool. The status LED of the drives in the specified storage pool will blink.

Locate Enclosure

LOCATE ENCLOSURE <id> provides a visual indication of the specified enclosure. The Shelf Identify LED of the enclosure will blink.

3.2.2 Storage Pool and Virtual Disk Management

The InfiniteStorage 6120 creates centrally-managed and vendor-independent storage pooling. It enables different types of storage to be aggregated into a single logical storage resource from which virtual volumes (virtual disks) can be served up to multi-vendor host computers. The networked storage pools will provide the framework to manage the growth in storage demand from web-based applications, database growth, network data-intensive applications, and disaster tolerance capabilities.

The storage array may consist of up to 24 storage pools. The storage pools can be used individually or split into multiple virtual disks. A virtual disk can be as small as part of a storage pool or uses all of the capacity of a single storage pool. Virtual disks allocate space in 8GiB increments. For example, 16GiB of storage space will be allocated when creating a virtual disk of 10GiB. Up to 64 virtual disks are supported in total.

NOTE: In this document, the terms "GB" and "GiB" are used interchangeably, and denote 1,073,741 bytes (2^{30} bytes).

You can add and remove storage pools without affecting system operations. Use the **SHOW POOL** * command to display the current list of storage pools (Figure 62).

Figure 62. Storage Pool List Example Screen

```
RAID[0]$ show pool *

OID: 0x19b40000 Index: 0x0000 Name: 19b40000

OID: 0x19b60001 Index: 0x0001 Name: 19b60001
```

3.2.2.1 Changing the Disk's Status

SET PHYSICAL_DISK <disk-id> FAILED instructs the system to fail the specified disk. When a non-spare disk is specified and it is failing, the disk will not cause a multi-channel failure. The disk is marked as failed. An attempt is made to replace it with a spare disk. When a spare disk is specified, it is released, but marked as unhealthy and unavailable.

CLEAR PHYSICAL_DISK <disk-id> FAILED changes the specified disk's failure state to FALSE. After clearing a disk, use the ASSIGN PHYSICAL_DISK <disk-id> TO_POOL <pool-id> SET_SPARE command to add the disk back to the storage pool where the disk failed. This command will also initiate a rebuild if a spare has not already been assigned to the storage pool.

3.2.2.2 Creating a Storage Pool

To create a storage pool, enter command:

CREATE POOL RAID_LEVEL=<RAID level> CHUNK_SIZE=<chunk size>
{ASSIGN_POLICY=[SAS | SATA] NUMBER=<number of disks> or PHYSICAL_DISK=<list of disks>}

where:

- RAID level = raid5 or raid6
- chunk size = 64kb, 128kb, or 256kb
- number of disks = 5 or 9 drives for RAID 5, 6 or 10 drives for RAID 6
- list of disks = index name of disks

You may either explicitly select the disks for the pool by using **PHYSICAL_DISK=** or specify the number of disks in the pool by using **NUMBER=** in which case the next available disks will be selected. If you specify the **ASSIGN_POLICY** and **NUMBER** parameters together, only the selected type of disks will be used for the storage pool and you will not need to enter the individual disk name.

Examples:

- To use only the specified disks:
 CREATE POOL RAID_LEVEL=RAID5 CHUNK_SIZE=64KB PHYSICAL_DISK=0x003e
 0x003f 0x0040 0x0041 0x0042
- To use the next available disks:
 CREATE POOL RAID LEVEL=RAID6 CHUNK SIZE=128KB NUMBER=6
- To use only the selected type of disks:
 CREATE POOL RAID_LEVEL=RAID6 CHUNK_SIZE=128KB NUMBER=6
 ASSIGN POLICY=SAS

3.2.2.3 Storage Pool Initialization

When a storage pool is created, initialization begins automatically and will continue in the background until it is completed. Once the storage pool has completed its initialization, its virtual disk(s) can be accessed immediately.

You may use the **SHOW POOL** command to check if the storage pool is being initialized (see Section 3.2.1.2, "Storage Pool View" for more information).

You may monitor the initialization progress using the **SHOW JOB** command (see Section 3.3.1, "Background Job Priority" for more information).

3.2.2.4 Naming a Storage Pool

SET POOL pool-id> NAME="<name>" lets you specify a name to identify the storage pool (Figure 63).

Figure 63. Set Pool Name Example Screen

RAID[0]\$ set pool 0 name="RAID 5 Set"

POOL 0 OID: 0x19b40000 attributes set with STATUS='Success' (0x0)

3.2.2.5 Deleting a Storage Pool

DELETE POOL=<id> deletes the specified storage pool from the system.

The DELETE POOL command erases all the data on the storage pool.

3.2.2.6 Creating a Virtual Disk

To create a virtual disk, enter command:

CREATE VIRTUAL_DISK CAPACITY=<capacity> POOL=<pool-id>

where <capacity> is the capacity of the virtual disk in GiB or type **max** to use all available capacity; <pool-id> is the storage pool to be used by this virtual disk (Figure 64).

A message is displayed to indicate whether the virtual disk creation was successful.

Figure 64. Create Virtual Disks Example Screen

```
RAID[0]$ create virtual_disk capacity=16 pool=0
VIRTUAL_DISK 0 OID=0x89ba000 creation STATUS='Success' (0x0)
RAID[0]$ create virtual_disk capacity=32 pool=0
VIRTUAL_DISK 1 OID=0x89bb001 creation STATUS='Success' (0x0)
```

3.2.2.7 Naming a Virtual Disk

SET VIRTUAL_DISK <id> NAME="<name>" lets you specify a name to identify the virtual disk (Figure 65).

Figure 65. Set Virtual Disk Name Example Screen

```
RAID[0]$ set virtual_disk 0 name="LUN 0"

VIRTUAL_DISK 0 OID=0x89ba000 attributes set with STATUS='Success' (0x0)
```

3.2.2.8 Deleting a Virtual Disk

DELETE VIRTUAL_DISK=<id> deletes the specified virtual disk from the system.

When you delete a virtual disk, you lose access to all data that was stored on that virtual disk.

3.2.3 Spare Pool Management

The InfiniteStorage 6120 supports the concept of a spare pool which contains physical disks that can be used as spare disks. Spare pools can be shared by storage pools or dedicated to a particular storage pool in which case the spare disks will only be used by the designated storage pool. After a spare pool is created, you will need to select drives from the unassigned pool and assign them to the spare pool.

In the event of drive failure, a drive that is assigned to a spare pool is automatically swapped into the storage pool to replace the failed drive. A rebuild then occurs immediately, reducing the possibility of data loss due to additional drive failures.

NOTE: Each storage pool must have a spare pool assigned to it. If a storage pool's attributes show Global Spare Pool: UNASSIGNED, no spare pool will serve this storage pool.

3.2.3.1 Creating a Spare Pool

Use these commands to create a spare pool, add disks to the spare pool, and assign the spare pool to a storage pool:

- CREATE SPARE_POOL
- ASSIGN PHYSICAL_DISK <disk-id> TO_POOL <spare-pool-id>

3.2.3.2 Naming a Spare Pool

SET SPARE_POOL <pool-id> NAME="<name>" lets you specify a name to identify the spare pool.

3.2.3.3 Deleting a Spare Pool

To delete a disk from the spare pool, enter the command ASSIGN PHYSICAL_DISK <disk-id> TO_POOL 0x1800fffff .

To delete a spare pool, enter the command **DELETE SPARE_POOL <pool-id>**.

3.2.4 Drive Rebuild

The InfiniteStorage 6120's automatic drive failure recovery procedures ensure that absolute data integrity is maintained while operating in degraded mode.

3.2.4.1 Full and Partial Rebuilds

Both full and partial (fractional) rebuilds are supported in the InfiniteStorage 6120. Rebuilds are done at the storage pool level, not the virtual disk level. Partial rebuilds will reduce the time to return the storage pool to full redundancy and can be controlled by adjustable time limit for each storage pool. Permitted time limits are 0 (in which case partial rebuild is off) to 240 minutes. The timer will begin when a disk in the storage pool is declared missing—if the disk reappears prior to the expiration of the timer, a fractional rebuild will be done. Otherwise, the disk will be declared failed, replaced by a spare and a full rebuild will begin to return the storage pool to full redundancy. The default partial rebuild timer (Disk Timeout) setting is 10 minutes.

Under heavy write workloads, it is possible that the number of stripes that need to be rebuilt will exceed the system's internal limits prior to the timer expiration. When this happens, a full rebuild will be started automatically instead of waiting for the partial rebuild timeout.

Use the **SHOW POOL <id> ALL_ATTRIBUTES** command to display the current Disk Timeout setting (Figure 66).

Figure 66. Show Pool All Attributes

```
RAID[0]$ show pool 3 all
 OID:
                         0x19h003
 Type:
                         STORAGE
                         RAID5set
 Name:
 Chunk Size:
                         64KB (0x80 blocks)
 Block Size:
                         0x200
 RAID Type:
                         RAID5
 Free Raid5 Capacity:
                         2752512 MBs
 Max VD Size:
                         2752512 MBs
 Total Capacity:
                         3522560 MBs
 UUID:
                         0x00
 Global Spare Pool:
                         0x19bc0006
```

To change the disk timeout setting, use this command:

SET POOL <id>DISK_TIMEOUT=<timeout>

where <timeout> is in the range of <0..240> minutes. The default setting is 10.

3.2.4.2 Sparing Policy

Each storage pool has a sparing policy that determines what happens when a physical disk within the pool fails (or becomes inaccessible). In the event of a drive failure, the InfiniteStorage 6120 will automatically initiate a drive rebuild if the sparing policy is set to automatic and a spare pool has been assigned to the storage pool.

Use the **SHOW POOL <id> ALL_ATTRIBUTES** command to display the current settings (Figure 67).

Figure 67. Show Pool All Attributes

```
RAID[0]$ show pool 3 all
 OID:
                        0x19h003
 Type:
                        STORAGE
 UUID:
                        0x00
 Global Spare Pool:
                        0x19bc0006
 DiskTimeout(FRT):
                        10 minutes
 Init Policy:
                       NO IO permitted
 Init Priority:
                       50%
 Full Rebuild Priority:
 Fractional Rebuild Priority: 90%
 Sparing Policy:
                       AUTOMATIC
```

To change the sparing policy setting, use this command:

```
SET POOL <id>SPARING_POLICY=[AUTOMATIC | MANUAL]
```

The default setting is automatic which is recommended.

A rebuild operation can take up to several hours to complete, depending on the size of the disk and rate of rebuild. Refer to Section 3.3, "Performance Management" on page 56 for information on how to adjust the rate of rebuild.

3.2.4.3 Manual Drive Replace/Rebuild

If no spare pool is assigned to the storage pool, you must manually add a drive to the pool to replace a failed drive.

To add a drive to the pool to replace a failed drive, use this command:

ASSIGN PD=<id of the disk to be added> STORAGE_POOL=<id of the storage pool> SET_SPARE

The disk will be put into the storage pool as the spare drive and it will be used in the storage pool to replace the failed drive.

3.2.5 SATAssure

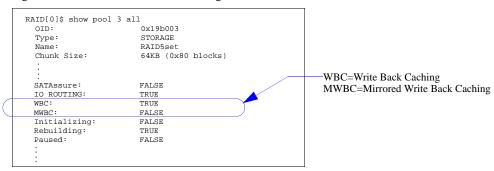
If you have purchased the optional SATAssure license, you may enable it for the storage pool. To display the current setting, enterthe command

SHOW POOL <pool-id> ALL_ATTRIBUTES.

Figure 68. Show Storage Pool Details Example Screen

```
RAID[0]$ show pool 0 all_attributes
 OID:
                         0x19b40000
                         STORAGE
 Type:
 Name:
                         0x19b40000
 Assign Policy:
   Device Type:
   Rotation Speed:
                         NA
   Raw Capacity:
                         NA
                         FALSE
 SATAssure:
 TO ROUTING:
                         TRUE
 WBC:
                         TRUE
 MWBC:
                         FALSE
  Initializing:
                         TRUE
 Rebuilding:
                         FALSE
```

To enable SATAssure, enter the command SET POOL cpool-id> SATASSURE=TRUE .


To disable SATAssure, enter the command SET POOL cpool-id> SATASSURE=FALSE .

3.2.6 Cache Coherency

By default, the InfiniteStorage 6120 runs in couplet mode, where both controllers are running simultaneously, communicating through internal Ethernet connections. This means that the InfiniteStorage 6120 is always running with cache coherency enabled.

The write back cache settings are configurable for each storage pool. To display the current settings, enter command **SHOW POOL <id> ALL ATTRIBUTES** (Figure 69).

Figure 69. Show Write Back Cache Setting

To change the settings, use these commands:

```
SET POOL <id>MIRRORED_WRITE_BACK_CACHE=[TRUE|FALSE]
SET POOL <id>WRITE_BACK_CACHING=[TRUE|FALSE]
```

3.2.7 Setting the System's Date and Time

SHOW SUBSYSTEM ALL_ATTRIBUTES displays the current system date and time (Figure 70).

Figure 70. Show System Time

The system time and date for the InfiniteStorage 6120 are factory-configured for the U.S. Pacific Standard Time (PST) zone.

The system records time using the military method, which records hours from 00 to 24, not in a.m. and p.m. increments of 1 to 12. Valid date settings are between years 2000 and 2104. Settings are automatically adjusted for leap years.

To change the system date and time to March 1, 2009 2:15:32 pm, for example, type: SET SUBSYSTEM DATE_AND_TIME=2009:3:1:14:15:32

3.2.8 Restarting the InfiniteStorage 6120

System Restart

SHUTDOWN CONTROLLER [LOCAL|REMOTE|0|1] RESTART performs a restart on the specified controller.

SHUTDOWN SUBSYSTEM RESTART performs a restart on both controllers.

These commands will prepare the system to be restarted. The system will halt all I/O requests and save the data to the disks before restarting. The restart process may take several minutes to complete.

System Shutdown

SHUTDOWN CONTROLLER [LOCAL | REMOTE | 0 | 1] shuts down the specified controller.

SHUTDOWN SUBSYSTEM shuts down both controllers.

If you need to power down the InfiniteStorage 6120, use **SHUTDOWN** prior to shutting off the power. This will cause the InfiniteStorage 6120 to immediately flush its cache, abort all initialization and rebuild operations, and proceed with an orderly shutdown.

All hosts actively using the InfiniteStorage 6120 should be safely shutdown and all users logged out before using this command. The InfiniteStorage 6120 will halt all I/O requests and save the data to the disks. The unit can be safely turned off after using this command.

Once shut down is complete, all power supplies must be switched off or unplugged. Power must be removed from the system for at least 10 seconds before it will start up again.

NOTE: Use **SHUTDOWN** whenever you need to power down the InfiniteStorage 6120 for maintenance. **SHUTDOWN** flushes any data left in the cache and prepares the InfiniteStorage 6120 for an orderly shutdown.

3.3 Performance Management

Initialization and rebuild operations are background processes and their rates can be adjusted to minimize their impact on system performance.

3.3.1 Background Job Priority

To monitor all current jobs (Figure 71), enter this command:

SHOW JOB * ALL ATTRIBUTES

The type of job and percentage of completion are displayed.

Figure 71. Show Job Example Screen

```
RAID[0]$ show job * all
                     0x2b010003
 OID:
 Target:
                     0x19b40003
 Type:
                     REBUILD
 Status:
                     RUNNING
 Priority:
                     80
 Fraction Complete:5%
 OID:
                     0x28000004
                     0x19b60004
 Target:
                     INITIALIZE
 Type:
 Status:
                    RUNNING
 Priority:
 Fraction Complete:10%
```

You may specify the amount of system resources that should be devoted to a background job. The higher its priority value, the faster the background job will run and the more the background job will impact client I/O performance.

To set the job priority, enter this command:

SET JOB=<id> PRIORITY=<pri>riority>

where <pri>priority> is a number between 1 and 99. Note that PRIORITY is not a percentage or a mathematical fraction of the available resources. For example, two background jobs with priority values of 50 will not use 100% of the system resources. The InfiniteStorage 6120 may or may not limit the number of background jobs to keep the total of their priorities below 100.

Pause/Resume a Job

You may pause a job at any time using the **PAUSE JOB=<id>** command (Figure 72). To resume the job, enter command **RESUME JOB=<id>**

Figure 72. Pause/Resume a Job

```
RAID[0]$ pause job 0x28000003
JOB 3 OID=0x28000003 paused with STATUS='Janus Success' (0x0)
RAID[0]$ show job * all_attributes
  OTD:
                    0x28000003
  Target:
                    0x19b40003
  Type:
                    INITIALIZE
  Status:
                    PAUSED
  Priority:
  Fraction Complete:11%
RAID[0]$ resume job 0x28000003
JOB 3 OID=0x28000003 resumed with STATUS='Janus Success' (0x0)
RAID[0]$ show job * all_attributes
                    0x28000003
  Target:
                    0x19b40003
                     INITIALIZE
  Type:
  Status:
                    RUNNING
  Priority:
  Fraction Complete:11%
```

3.3.2 Rebuild Policy Priority

Each storage pool has its own rebuild policy settings. You may specify the priority values for full rebuild and partial (fractional) rebuild policies. To display the current settings, enter command **SHOW POOL <id> ALL_ATTRIBUTES** (Figure 73).

Figure 73. Show Pool Information

```
RAID[0]$ show pool 3 all_attributes
                         0x19b40003
 OID:
  Type:
                         STORAGE
 Name:
                         raid 5 set
  Chunk Size:
                         64KB (0x80 blocks)
 Block Size:
                         0x200
 RAID Type:
                         RAID5
 Free Raid5 Capacity:
                         2752512 MBs
  Total Capacity:
                         3522560 MBs
                         0x00
                         0x1a0f000a
10 minutes
  Global Spare Pool:
 DiskTimeout(FRT):
  Init Policy:
                         NO IO permitted
  Init Priority:
                         50%
  Full Rebuild Priority:
 Fractional Rebuild Priority:
                                 90%
                         AUTOMATIC
  Sparing Policy:
```

Full Rebuild Priority

To change the full rebuild priority value (Figure 74), enter this command: **SET POOL <id> REBUILD_FULL_POLICY=<priority>** where <pri> s an integer in the range of 1 to 99. The default value specifies a priority of 80%.

Figure 74. Set Full Rebuild Priority

```
RAID[0]$ set pool 3 rebuild_full_policy=70

POOL 3 OID=0x19b40003 attributes set with STATUS='Success' (0x0)
```

Partial Rebuild Priority

To change the partial rebuild priority value (Figure 75), enter this command:

SET POOL <id>REBUILD_PARTIAL_POLICY=<priority>
where <pri>yriority> is an integer in the range of 1 to 99. The default value specifies a priority of 90%.

Figure 75. Set Partial Rebuild Priority

```
RAID[0]$ set pool 3 rebuild_partial_policy=80

POOL 3 OID=0x19b40003 attributes set with STATUS='Success' (0x0)
```

3.4 Firmware Update Management

SGI periodically releases firmware updates to enhance features of the products. Please contact our SGI Technical Support to obtain the latest firmware files.

3.4.1 Displaying Current Firmware Version

The **SHOW CONTROLLER <id> ALL_ATTRIBUTES** command displays version information of the InfiniteStorage 6120's hardware and firmware (Figure 76).

Figure 76. Controller Information Screen

```
RAID[0]$ show controller local all_attributes
                           0x38000001
Firmware Version:
                           1.0.3.3
  Release:
  Source Version:
Fully Checked In:
                           1877
                            Yes
  Private Build:
                           Yes
  Build Type:
                            Production
  Build Date and Time:
                           2009-03-02-09:49:EST
                           compiler ereo-debian
  Builder Username:
  Builder Hostname:
  Build for CPU Type:
                           AMD-64-bit
Hardware Version:
                           0 \times 0
State:
                           RIINNING
Local AP OID:
                           0x00000000
Memory Size:
Max Q of S ID:
                           0x0
                           0x0
                            0x7fe3
Up Time (seconds):
Last Event Sequence #:
Log Facility Mask:
                           0x27b
Crash Dump Enabled:
                           TRUE
Log Disk Enabled:
                            TRUE
RP Count:
Restart Pending:
                           FALSE
Controller:
                           T.OCAT.
                                           (SECONDARY)
Controller ID:
                            0x0015b2a1214a0000
MIR Reason:
```

3.4.2 Firmware Update Procedure

NOTE: The firmware update procedure described here only applies to upgrades from firmware version 1.0.4.1.xxxx or later to a new version. Upgrades from an older version of firmware must be done by a trained technician.

Before you begin upgrading the firmware, make sure all access to the InfiniteStorage 6120 is stopped, all volumes on the storage array are unmounted, and allow sufficient time for the InfiniteStorage 6120 to flush all cached data.

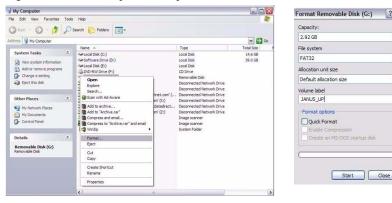
If you are upgrading from v1.0.3.3.xxx or later, there are two methods that can be utilized:

- · Create an upgrade package on a USB flash drive.
- For Linux or Windows, copy the new firmware image over to the controller via the network instead of using a USB flash drive.

~

Firmware update should only be performed when both controllers are powered on and running.

NOTE: In the examples that follow, the filename of the firmware image is flash-6620-1.1.0.0.2890-opt.sgi.tgz and the IP address of the controller is 10.32.31.240. Replace these parameters with the filename and IP address appropriate for your installation.


3.4.2.1 Windows Environment (Update via USB Stick)

Contact SGI Technical Support to obtain a USB stick with the new firmware. Then perform the following steps to update the firmware:

Software Prerequisite: This firmware update method requires software that can extract (uncompress) a TGZ file. By TGZ file, we mean a TAR file that was compressed by GZIP. Microsoft Windows XP and Vista normally include zip extraction; just right-click on the file in Internet Explorer. If you do not have a Zip decompression program, download or purchase a software tool that will allow you to perform this operation.

- 1. Create a USB stick for the code update:
 - Insert your 4GB USB stick into your computer.
 - In Windows Explorer, right-click on the device with the Volume Name JANUS_UP and select **Format** from the pop-up menu (Figure 77). Then click the **Start** button in the Format screen.

Figure 77. Firmware Update Example Screen (1)

To copy and extract the code on the USB stick, right-click on the filename and select
 Extract Files Here (Figure 78). Extract the firmware file to the JANUS_UP USB volume on your USB stick.

Figure 78. Firmware Update Example Screen (2)

- 2. Shut down one of the controllers:
 At the CLUI prompt, enter command SHUTDOWN REMOTE.
- 3. Insert the USB stick into the back of the controller that was not shut down in step 2.
- 4. At the CLUI prompt, enter command **UPDATE CONTROLLER LOCAL** (Figure 79)

Figure 79. Update Firmware Screen

```
RAID[0]$ update controller local
Starting upgrade...
Current Janus Linux, skipping Linux install
Installing JANUS code into sgi-v2
Upgrading Janus sgi-v2 opt...
Changing GRUB boot from sgi-v1 to sgi-v2
Done upgrading Janus
unmount: /tmp/usb: device is busy
Broadcast message from root@(none) (Sat Mar 14 13:25:52 2009):
The system is going down for reboot NOW!
```

5. Upon completion of reboot, login and enter command **SHOW CONTROLLER LOCAL ALL**. to verify that the firmware version is correct.

NOTE: Any virtual disks that exist will be in a CRITICAL state. This is expected behavior and has no ill effect on the system.

- **6.** Shut down the upgraded controller: At the CLUI prompt, enter command **SHUTDOWN LOCAL.**
- **7.** Upgrade the other controller:
 - a)Restart the controller.
 - b)Repeat the steps 3-5 on the other controller. You do not need to back out either controller during this procedure.
 - c)Once the controller has been upgraded, restart the first controller by pressing the power switch on the back of the controller.
- **8.** Once both controllers are running, all virtual disks in the system will be reported as **CRITICAL**. This state is due to the new Cache Safe feature and is expected. Clear this critical state:

At the CLUI prompt, enter command CLEAR POOL * CRITICAL.

3.4.2.2 Linux Environment (Update from Network)

Follow these steps to update the firmware:

1. Copy the new firmware to the controller using an scp or sftp client. The username is firmware and the password is Firmware .(Note that entries are case-sensitive.)

For example:

scp flash-6120-1.1.0.0.2890-opt.sgi.tgz firmware@10.32.31.240:

2. Shut down one of the controllers:

At the CLUI prompt, enter command SHUTDOWN REMOTE.

3. At the CLUI prompt, enter this command:

UPDATE FIRMWARE CONTROLLER=<controller-id> FILE="<file-specification>"

For example:

UPDATE_FIRMWARE CONTROLLER=LOCAL

FILE="flash-6120-1.1.0.0.2890-opt.sqi.tqz"

(Note that the filename must be enclosed within double quotation marks.)

4. Upon completion of reboot, log in and enter command **SHOW CONTROLLER LOCAL ALL**. Verify that the firmware version is correct.

NOTE: Any virtual disks that exist will be in a CRITICAL state. This is expected behavior and has no ill effect on the system.

5. Shutdown the upgraded controller:

At the CLUI prompt, enter command SHUTDOWN LOCAL.

- **6.** Upgrade the other controller:
 - a)Restart the controller.
 - b)Repeat the steps 3-5 on the other controller. You do not need to back out either controller during this procedure.
 - c)Once the controller has been upgraded, restart the first controller by pressing the power switch on the back of the controller.
- 7. Once both controllers are running, all virtual disks in the system will be reported as CRITICAL. This state is due to the new Cache Safe feature and is expected. Clear this critical state: At the CLUI prompt, enter command CLEAR POOL * CRITICAL.


3.4.2.3 Windows Environment (Update from the Network)

This method requires a SFTP or SCP client, and involves two steps – copying the firmware image to the controller and launching the update. This is an offline upgrade so all I/O load from hosts must be stopped prior to launching the update.

- 1. Copy the new firmware to the controller using an SCP or SFTP client. You must use an application that supports SFTP or SCP. WinSCP, a free SFTP and SCP client, is used in this example.
- 2. Launch WinSCP or other SFTP/SCP client. For hostname, use the IP address of your controller. User name is firmware and password is Firmware. Both user name and password are case-sensitive.
- 3. Select Login (Figure 80).

At the login screen, use the user name admin with the password password to log into the system. User name and passwords are case-sensitive..

Figure 80. Login Screen

4. Find the image file, drag it to the destination window, and select **Copy**. The copy operation commences.

Launch the Update

- 1. Log in to the controller via an SSH session with the username of user and password of user.
- 2. Shut down one of the controllers:
 At the CLUI prompt, enter command **SHUTDOWN REMOTE**.
- **3.** At the CLI prompt, enter:

```
RAID[0]$ update_firmware controller=local file="flash-6120-1.1.0.0.2890-opt.sgi.tgz"
```

NOTE: The quotes around the filename of the firmware image are required. The firmware update utility will be launched and the controller will be automatically rebooted to use the new firmware image.

4. Upon completion of reboot, log in and enter command **SHOW CONTROLLER LOCAL ALL** to verify that the firmware version is correct.

NOTE: Any virtual disks that exist will be in a CRITICAL state. This is expected behavior and has no ill effect on the system.

5. Shut down the upgraded controller:
At the CLUI prompt, enter command SHUTDOWN LOCAL.

- **6.** Upgrade the other controller:
 - a)Restart the controller.
 - b)Repeat the steps 3-5 on the other controller. You do not need to back out either controller during this procedure.
 - c)Once the controller has been upgraded, restart the first controller by pressing the power switch on the back of the controller.
- 7. Once both controllers are running, all virtual disks in the system will be reported as CRITICAL. This state is due to the new Cache Safe feature and is expected. Clear this critical state: At the CLUI prompt, enter command CLEAR POOL * CRITICAL.

3.5 The System Logs

To display the event log starting at the start sequence number in ascending sequence number order (Figure 81), enter this command:

SHOW CONTROLLER <id> LOG ASCEND

Figure 81. Controller Log Example Screen (1)

```
RAID[0]$ show controller 0 log ascend

000001 2009-02-05 12:13:31:3387789 G=0 S=0 T=1 RP=0 VP=63
LOG_JOI_BUILD_INF01 JOI FW VERSION ON PROCESSOR 0X40 = (1.0.3.1-0).

000002 2009-02-05 12:13:31:3387798 G=0 S=0 T=1 RP=0 VP=63
LOG_JOI_BUILD_INF02 JOI FW WAS BUILT ON JJDEBIAN AT 2009-02-05-14:17:MST (PRODUCT).

000003 2009-02-05 12:13:52:8320854 G=3 S=1 T=1 RP=0 VP=1
LOG_LOGDISK_ENABLE_RECEIVED_FROM_STATE LOG RECEIVED FROM STATE
```

To display the event log starting at the start sequence number in descending sequence number order (Figure 82), enter this command:

SHOW CONTROLLER <id> LOG DESCEND

Figure 82. Controller Log Example Screen (2)

```
RAID[0]$ SHOW CONTROLLER 1 LOG DESCEND

000024 2009-02-11 05:08:48:7027390 G=0 S=0 T=1 RP=0 VP=1 LOG_JOI_TIME_SET JOI TIME WAS SET BY AN ADMINISTRATOR AT 2009-2-11 5:8:48; NEARBY LOG ENTRIES MAY APPEAR OUT OF TIME ORDER. OFFSET= 0X1C987C765CD3B2B.

000023 2009-02-06 04:49:20:5069068 G=3 S=1 T=1 RP=0 VP=1 LOG_LOGDISK_ENABLE_RECEIVED __FROM_STATE LOGRECEIVED FROM STATE

000022 2009-02-06 04:49:20:4952631 G=0 S=0 T=1 RP=0 VP=1 LOG_JOI_TIME_SET JOI TIME WAS SET BY AN ADMINISTRATOR AT 2009-2-6 4:49:20; NEARBY LOG ENTRIES MAY APPEAR OUT OF TIME ORDER. OFFSET= 0X1C987C7A302483D.
```

To display the event log starting at the specified start sequence number in ascending sequence number order (Figure 83), enter this command:

SHOW CONTROLLER <id>LOG ASCEND START_SEQUENCE <start-sequence-number>

Figure 83. Controller Log Example Screen (3)

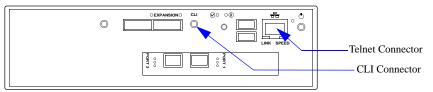
```
RAID[0]$ SHOW CONTROLLER 1 LOG ASCEND START_SEQUENCE 20

000021 2009-02-06 04:49:20:4731906 G=4 S=2 T=1 RP=0 VP=1 LOG_ST_MIR_STATE STATE
MIR STATE STATE:000A

000022 2009-02-06 04:49:20:4952631 G=0 S=0 T=1 RP=0 VP=1 LOG_JOI_TIME_SET JOI TIME
WAS SET BY AN ADMINISTRATOR AT 2009-2-6 4:49:20; NEARBY LOG ENTRIES MAY APPEAR
OUT OF TIME ORDER.OFFSET = 0X1C987C7A302483D.

000023 2009-02-06 04:49:20:5069068 G=3 S=1 T=1 RP=0 VP=1 LOG_LOGDISK_ENABLE_
RECEIVED_FROM_STATE LOG RECEIVED FROM STATE

000024 2009-02-11 05:08:48:7027390 G=0 S=0 T=1 RP=0 VP=1 LOG_JOI_TIME_SET JOI TIME
WAS SET BY AN ADMINISTRATOR AT 2009-2-11 5:8:48; NEARBY LOG ENTRIES MAY APPEAR
OUT OF TIME ORDER. OFFSET = 0X1C987C765CD3B2B.
```


3.6 Remote Management of InfiniteStorage 6120

The InfiniteStorage 6120 can be managed locally through the RS-232 interface or remotely via SSH. The CLUI is the same regardless of the management interface (RS-232 or SSH).

3.6.1 Network Connection

Connect the Telnet port on the back of the controllers to your Ethernet network (Figure 84). Then configure the network interface as described below.

Figure 84. Connectors on Controller

NOTE: Currently, the InfiniteStorage 6120 does not support network configuration protocols such as DHCP or BOOTP.

3.6.2 Network Interface Setup

UI SHOW NETWORK_INTERFACE [LOCAL | REMOTE] * displays the list of the network interfaces with their associated controller IDs and devices (Figure 85). **LOCAL** gives you information on the controller that you are currently logged into. **REMOTE** gives you information from the other controller in the pair.

Figure 85. Current Network Interface Settings Screen

```
RAID[0]$ ui show network_interface local *
Network device id 0
address 10.32.31.31
netmask 255.255.240.0
gateway 10.32.16.2
```

To change the network interface settings on the controller to which you are connected, enter this command:

UI SET NETWORK_INTERFACE LOCAL 0 IP_ADDRESS=<ip_address> IP_MASK=<netmask> IP_GATEWAY=<gateway>

where <ip_address> is an address appropriate to the local network. The netmask and gateway values can also be entered (Figure 86).

Figure 86. Set Network Interface Example

```
RAID[0]$ ui set network_interface local 0 ip_address=10.32.31.31 ip_mask=255.255.240.0 ip_gateway=10.32.10 NETWORK_INTERFACE 0 set with STATUS='Success' (0x0)
```

Enter command **SHUTDOWN SUBSYSTEM RESTART** to restart the controllers and make the changes take effect.

NOTE: This network interface setup must be performed separately on each controller. Since you cannot use a remote command currently, you must plug the serial port into each controller to issue the commands to each controller.

3.6.3 Logins

By default, the login name is user and its password is user. Both are case-sensitive.

Only one SSH session is permitted at a time. Once a SSH session is initiated, the RS-232 console switches to a CLI sub-shell. The SSH client should be using port 22 with its local echoing function disabled.

3.7 Presentations

A presentation on an InfiniteStorage 6120 has the following components:

· Discovered Initiators

A *discovered initiator* is defined as a Fibre Channel initiator that has logged into the InfiniteStorage 6120. This is normally a single port on a Fibre Channel HBA in an external computer.

Host

A *host* is an abstract client of a virtual disk that has all the access to all data within the virtual disk. This most commonly represents an external computer with one or more Fibre Channel initiators. The host attribute OS (operating system) allows you to select GENERIC, WINDOWS, LINUX or MAC_OS. The OS attribute dictates the way the controller responds to certain Fibre Channel commands where appropriate. For example, Mac OS X expects a different response from an inquiry of LUN0 (the controller LUN) than a Windows host.

· Channel

A *channel* is one of the Fibre Channel ports on the controller. The channel attribute MODE allows you to select either MAC_OS or STANDARD. When MAC_OS is selected, the port's node name will be set differently in order to be visible to a Macintosh system.

Stack

A *stack* is the input side of the subsystem. In the case of the InfiniteStorage 6120, the stack is defined as the Fibre Channel interface. In future versions of the product, different interface stacks may exist.

· Presentation

A presentation is the relationship between a host and a virtual disk. A presentation implies that the related host has some sort of access to the virtual disk. The following are attributes of a presentation:

- PORT Port from which the host will see the virtual disk.
- READ_ONLY Controls read only access.
- PRESENT_HOME_ONLY Presents the specified virtual disk from its designated home controller only.
- LUN LUN number (user-specified) that the virtual disk will show to the host.

3.7.1 Application Discovered Initiator Commands

To import a discovered initiator object that is associated with the specified host, use the **APPLICATION IMPORT DISCOVERED_INITIATOR**=<object-id> HOST=<object-id> command.

To display the attributes of a specified initiator, use the **APPLICATION SHOW DISCOVERED_INITIATOR=<object-id>** [ALL_ATTRIBUTES] command.

To create an application initiator for the specified host, use the **APPLICATION CREATE INITIATOR HOST=<object-id> WWPN=<integer> command.**

To delete the specified initiator, use the **APPLICATION DELETE INITIATOR=<object-id>** command.

3.7.2 Application Host Commands

To create a host stack, use the **APPLICATION CREATE HOST**[OSTYPE=GENERIC|LINUX|MAC_OS|WINDOWS] command. In the case of a FCP target

application stack, the ID string is not used. In the case of the Lustre OSS, the ID string is the name of a block device. The default operating system type is GENERIC.

To delete the specified host, use the **APPLICATION DELETE HOST =<object-id>** command.

To display the presentation associated with the specified application host, use the **APPLICATION SHOW HOST=<object-id> [PRESENTATIONS]** command.

To display the initiators associated with the specified application host, use the **APPLICATION SHOW HOST=<object-id>[INITIATORS]** command.

3.7.3 Application Presentation Commands

To create a presentation to a virtual disk for the specified host, use the **APPLICATION CREATE PRESENTATION VIRTUAL_DISK=<object-id> HOST=<object-id> command.**

To delete a presentation to a virtual disk for the specified host, use the **APPLICATION DELETE PRESENTATION VIRTUAL_DISK=<object-id> HOST=<object-id> [FORCE]** command. Note the optional parameter of FORCE deletes without asking questions.

To delete the specified presentation, use the **APPLICATION DELETE PRESENTATION=<object-id> [FORCE]** command. Note the optional parameter of FORCE deletes without asking questions.

The wildcard * deletes all presentations.

To set the specified attribute to the specified value, use the **APPLICATION SET PRESENTATION=<object-id>** <attribute-name>=<value> [<attribute-name>=<value>...]

command. Attributes are:

ENABLE=ALL|**NONE**|<channel-id>—where the channel-id is the object-id of an enabled client channel.

LUN=<integer>—where the integer is a logical unit number (LUN) that will be used to present the associated virtual disk to the associated host. NOTE: Each LUN integer entered for a presentation is cumulative and does not replace the previous entry.

HOME_ONLY[=**TRUE**[**FALSE**]—which enables/disables the home_only parameter.

READ_ONLY[=**TRUE**[**FALSE**]—which enables/disables read_only.

SECTION 4

Supporting the InfiniteStorage 6120

The InfiniteStorage 6120 system includes an enclosure services processor and associated monitoring and control logic to enable it to diagnose problems within the enclosure's power, cooling, and drive systems.

The sensors for power and cooling conditions are housed within the power supply/cooling modules. Each module is independently monitored.

4.1 Status LED Indicators

Green LEDs are always used for good or positive indication. Amber LEDs indicate there is a critical fault present within the module.

4.1.1 Front Panel Indicators

The front panel indicators show the aggregated status of all the modules (Figure 87). The LEDs are defined in Figure 88.

Figure 87. Front Panel LED Indicators

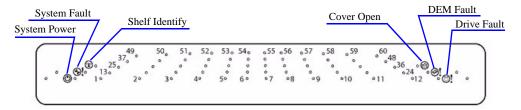


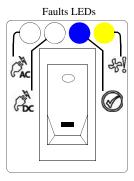
Figure 88. Front Panel LED Description

LED	Definition	Color	Status
1	Shelf Identify	Blue	ON - SES is sending an identify command . OFF - SES is NOT sending an identify command .
%!	System Fault	Amber	ON - One or more components within enclosure have failed. A service action is required. Exact failed component has its own amber fault LED lit. OFF - no detectable faults
(1)	System Power	Green	ON - DC power is present. OFF - DC power is not present. LED does NOT flash under normal operating conditions.
	Cover Open	Amber	OFF - both cover pieces is securely closed and latched in place . ON - Either of the cover pieces is NOT securely closed and latched in place.

Figure 88. Front Panel LED Description

LED	Definition	Color	Status
@!	DEM Fault	Amber	OFF - all DEMs operating correctly. ON - at least one DEM has failed; service action required.
!	Drive Fault	Amber	ON - One or more HDDs are failed; SES must determine exact HDD. OFF - No detectable drive faults.
Individually numbered	HDDs	Green	ON - SAS HDD is present. Blinks - Indicates HDD activity. OFF - No HDD activity.

4.1.2 Power Cooling Module (PCM)


Figure 89 describes the PCM LED status.

- Under normal conditions, the LEDs should be illuminated constant green.
- If a problem is detected, the color of the relevant LED will change to amber.

Figure 89. Power Cooling Module LEDs

Normal Operation LEDs

LED	Description	Color	Status
Enclosure front	Enclosure fault	Amber	ON - AC input, DC output, fan or other PCM fault detected
CAC	PCM AC	Green	ON - AC input to PCM within tolerances OFF - PCM failed
DC	PCM DC	Green	ON - DC output of PCM within tolerances OFF - PCM failed
F.	PCM Fault	Amber	ON - AC input, DC output, fan or other PCM fault detected OFF - no fault detected
	PCM ID	Blue	ON - receiving SES identify command OFF - NOT receiving SES identify command

4.1.3 Controller

Figure 91 describes the controller LED (Figure 90) status.

- Under normal conditions, the LEDs should be illuminated constant green.
- If a problem is detected, the color of the relevant LED will change to amber.

Figure 90. LEDs on Controller

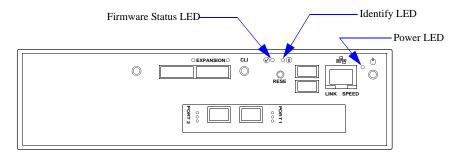


Figure 91. Controller LED Indicators

Identifier	Location	Color	Status
Enclosure fault	Front enclosure	Amber	ON - IO fault detected.
Firmware status	Rear enclosure	Green	ON - InfiniteStorage 6120 is ready to be accessed. Blinks - Firmware is loading OFF - InfiniteStorage 6120 is NOT ready to be accessed.
Power	Rear enclosure	Green	ON - Power is applied to controller. OFF - Power is NOT applied to controller.
Identify	Rear enclosure	Blue	ON - SES identify command is received. OFF - SES identify command is NOT received.

4.1.4 HDD (Hard Disk Drive)

Figure 92 describes the fault LED status when an HDD has failed.

- Under normal conditions, the LEDs should be illuminated constant green.
- If a problem is detected, the color of the relevant LED will change to amber.

Figure 92. HDD LED Indicators

Identifier Location		Color	Status
Enclosure fault	Enclosure front	Amber	ON - drive fault
Drive fault	Enclosure front	Amber	ON - drive fault

4.1.5 DEM (Drive Expander Module)

Figure 93 describes the DEM LED status.

- Under normal conditions, the LEDs should be illuminated constant green.
- If a problem is detected, the color of the relevant LED will change to amber.

Figure 93. DEM LED Indicators

Identifier	Location	Color	Status
Enclosure fault	Front enclosure	Amber	ON - DEM fault detected.
DEM fault	Front enclosure	Amber	ON - DEM fault detected.
DEM fault	Internal (DEM) enclosure	Amber	ON - DEM fault detected.
DC OK	Internal (DEM) enclosure	Green	ON - DC voltage regulation is within limits. OFF - DC output failure
Expander MIPS ready	Internal (DEM) enclosure	Green	ON - Expander internal processor is booted and operating correctly. OFF - Expander internal processor is NOT booted or ready.
DEM identify	Internal (DEM) enclosure	Blue	ON- This DEM is being sent an identify command, the SEP.

4.2 Troubleshooting

This section describes common problems, with possible solutions, which can occur with the InfiniteStorage 6120 system.

4.2.1 Initial Start-up Problems

Faulty Cords

First, check that you have wired up the enclosure correctly. Then if any of the following is true, call SGI Technical Support:

- · Cords are missing or damaged.
- · Plugs are incorrect.
- · Cords are too short.

Call Customer Service for a replacement.

Computer Does Not Recognize the InfiniteStorage 6120

- 1. Ensure that the host interface cables from the InfiniteStorage 6120 to the host computer are connected correctly.
- **2.** Ensure that all drive modules have been correctly installed.
- **3.** Ensure that the controller is set up as follows:
 - The controller has been correctly installed and all external links and cables are securely fitted.
 - The maximum cable length has not been exceeded.

4.2.2 RAID [0] \$ Prompt Not Shown Correctly

The default CLUI prompt is RAID [0] \$. If CLUI\$ is shown instead, one of the following problems may have occured:

- The firmware on this controller is in a *MIR* state and the MIR state needs to be resolved. Refer to Section 4.5, "Manual Intervention Required (MIR) Conditions" on page 82 for troubleshooting information.
- The CLUI has lost communication with the firmware or the firmware is not running. A restart of the system is needed.
- There are multiple CLUI connections to the firmware already and there are not enough resources to allow another connection. Only one CLUI connection is currently supported.

4.2.3 System Faults

Symptom	Cause	Action
1. The System Fault LED turns amber on front panel.	The ESI processor has detected an internal fault (for example, failure of an internal communications path)	1. Check for other amber LED indications on the power cooling modules. If there is a PSU error present there may be a communications problem with that power cooling module. Remove and then re-fit the module. If the problem persists, then replace the module. 2. Check for other amber LED indications on the drive modules. If none are evident, then there may either be an ESI processor problem or a backplane problem.

4.2.4 Power Supply/Cooling Faults

Symptom	Cause	Action
 System Fault LED is amber on front panel. An amber LED on one or more power cooling modules. 	 Any power fault A fan failure A thermal condition which could cause PSU overheating 	 Ensure that the power On/Off switch on rear of power cooling module is turned ON. Ensure that the AC main connection to the power cooling module is live. Disconnect the power cooling module from the main power, remove the module from the system, and re-install the module. If the problem persists, replace the power cooling module. Reduce the ambient temperature.

4.2.5 Thermal Alarm

Symptom	Cause	Action
1. Enclosure system FAULT LED is amber. 2. An amber LED on one or more power cooling modules 3. Air temperature exiting the PSU is above 55°C.	If the air temperature through the enclosure exceeds a pre-set threshold, a thermal alarm will sound.	 Ensure that the local ambient environment temperature is below the upper 40°C specification. Check the installation for any airflow restrictions at the front and rear of the enclosure. A minimum gap of 1" (25mm) at the front and 2" (50mm) at the rear is recommended. Check for restrictions due to dust build-up. Clean as appropriate. Check for excessive re-circulation of heated air from rear to the fron. Use in a fully enclosed rack installation is not recommended. If possible, shut down the enclosure and investigate the problem before continuing.

4.3 Component Failure Recovery

The InfiniteStorage 6120 contains redundant and hot-swappable power cooling modules. A single component failure, therefore, will not shut down the system. However, in the unlikely event of component failure, you can replace the failed component while the controller is running. The replaced component will automatically be returned to service once the component has been installed and booted up.

If the InfiniteStorage 6120 is powered up and you remove any module, replace it immediately. If the system is used with modules missing for more than a few minutes, the system can overheat, causing power failure and data loss. Such use will invalidate the warranty.

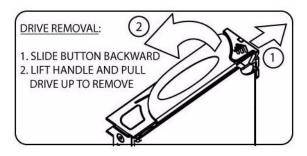
Observe all conventional ESD precautions when handling InfiniteStorage 6120 modules and components. Avoid contact with backplane components and module connectors.

4.3.1 Replacing a Power/Cooling Module

If a power supply or fan fail, the PCM Fault LED on the power cooling module will turn amber.

If a power supply unit or its fan is faulty, you must replace the whole PCM. You must not take any longer than five minutes to replace this module to prevent the enclosure from over-heating.

NOTE: Obtain a replacement module of the same type before removing any faulty module.


As there should always be two (2) power cooling modules installed, the system can continue running while you replace the faulty module.

- 1. Identify the failed PCM with an amber Fault LED.
- 2. Turn off the module's power switch and disconnect the power cord.
- **3.** Remove the module's thumbscrew, then slide the module out of the bay.
- **4.** Ensure that the power switch on the new (replacement) module is OFF.
- 5. Slide the module into the bay making sure it is fully inserted. Install the thumbscrew to secure it.
- **6.** Connect the power cord. Turn on the power switch. Verify that the AC and DC LEDs are **green**, indicating that the module is operating normally.

4.3.2 Replacing a Drive Module

NOTE: When a drive is failed by the InfiniteStorage 6120, replace it immediately so that the operation and performance of the system are not affected.

Figure 94. Drive Module Removal

CAUTION: Drive spin down—Damage can occur to a drive if it is removed while still spinning. If possible, use the operating system to spin down the drives prior to removal. If this is not possible, we recommend that you perform ALL steps of the following procedure to ensure that the drive has stopped prior to removal.

To remove a module:

- 1. Slide the latch backward to release handle (Figure 94).
- 2. Lift handle and pull module up, just enough to disconnect the module from the backplane.
- **3.** Wait for 30 seconds for the drive to completely spin down.
- **4.** Pull the module gently out of the drive bay.

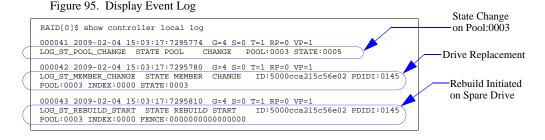
To insert a module:

- 1. Slide the latch backward to release handle.
- 2. Insert module into drive bay. Note orientation of module.
- **3.** Cam the drive module home. The camming foot on the base of the module will engage into the slot in the enclosure.
- **4.** When the module is fully inserted, close the handle. You should hear a click as the latch engages and holds the handle closed.
- **5.** Close the enclosure covers.

4.4 Recovering from a Drive Failure

When a drive failure occurs on the InfiniteStorage 6120, the storage pool containing that drive will begin operating in degraded mode. This means that the storage pool will continue to handle I/O commands from the host, but there will be no redundancy to protect against additional drive failures on the same storage pool. If another disk drive fails on the same storage pool before the data on the first drive is rebuilt (to a replacement disk or hot spare), the storage pool will go offline.

If one drive in a storage pool fails, the data or parity information on the failed drive will be reconstructed from the parity disk and data disks of that storage pool.


4.4.1 Automatic Rebuild

A single drive failure in any storage pool does not result in the data loss. The virtual disk(s) on that storage pool will continue to operate in degraded mode. If a spare drive is available and automatic rebuild is enabled, the InfiniteStorage 6120 will automatically rebuild the data on the spare drive.

NOTE: System performance will be impacted while recovery is taking place.

When a drive failure occurs, the error is written to the event log. The controller will rebuild the drive automatically once it finds a suitable spare drive. You may monitor the rebuild progress or adjust the rebuild rate to match the user load.

To display the event log (Figure 95), use the SHOW CONTROLLER LOCAL LOG command.

To look at the failed drive (Figure 96), enter command SHOW UNASSIGNED_POOL FAILED ALL

RAID[0]\$ show unassigned_pool failed all Pool OID: UNASSIGNED 704512 MBs (0x56000000 blocks Capacity: Raw Capacity: 715404 MBs (0x575466f0 blocks Block Size: 512 Physical Location Enabled Disk Ch: 0x27 Enclosure 1 Drive Slot 42 Disk Slot: 1:42 Vendor ID: Hitachi Product ID: Hitachi HUA721075KLA330 Product Revision: GK80AB0A Serial Number: Health State: GTF200P8GBVPXF FAILED 7200 RPM Rotation Speed Device Type: Member State: SATA UNASSIGNED Spare: FALSE Failed: UUID: 0x5000cca215c564560

Figure 96. Display Failed Drive

To monitor the rebuild progress (Figure 97), enter command SHOW JOB * ALL_ATTRIBUTES

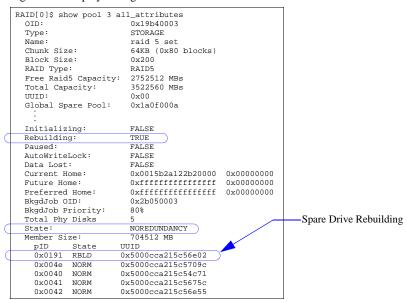
Figure 97. Display Rebuild Progress

```
RAID[0]$ show job * all_attributes

OID: 0x2b050003

Target: 0x19b40003

Type: REBUILD


Status: RUNNING

Priority: 80

Fraction Complete:12$
```

To show the storage pool information (Figure 98), enter command **SHOW POOL <id>ALL_ATTRIBUTES**. Once the rebuild is complete, the status of storage pool will return to "NORMAL".

Figure 98. Display Storage Pool Information

4.4.2 Drive Replacement

Upon completion of a rebuild, the spare drive becomes a member of the storage pool, replacing the failed drive. After you have replaced the failed drive with a new drive, the new drive is added to the unassigned pool. It is recommended that you assign this new drive to the spare pool to "replace" the spare drive that has been used.

4.4.3 Spare Not Available

When a drive is failed by the system and there is no spare drive available, you need to replace the failed drive immediately. After you have replaced the failed drive with a new drive, you can initiate a rebuild as described below:

- 1. Enter command SHOW UNASSIGNED_POOL * ALL to identify the new drive's index name.
- 2. Enter command ASSIGN PHYSICAL_DISK <new-disk-id> TO_POOL pool-id>
 set_spare where <new-disk-id> is the index name of the replacement drive and <pool-id> is
 the OID of the storage pool that had the failed drive.

4.5 Manual Intervention Required (MIR) Conditions

Manual Intervention Required (MIR) represents a condition with the controller that requires you to provide a solution before proceeding with normal controller operations. This is to guard against the controller firmware from executing operations that may not necessarily be the desired operation. These conditions will most likely be seen in a new system installation environment. For example, when a system is booted and the backend physical disks have never been installed behind the controllers, the controller firmware has never had a chance to write out configuration metadata. The controller recognizes that there is no valid metadata and requires you to choose whether or not to proceed.

SHOW CONTROLLER LOCAL ALL_ATTRIBUTES will display the MIR condition of the controller where you are logged in (Figure 99).

Figure 99. Controller Information Screen

```
RAID[0]$ show controller local all_attributes
                         0x38000001
OTD:
Firmware Version:
                         1.0.3.3
 Release:
  Source Version:
  Fully Checked In:
                         Yes
  Private Build:
                         Yes
  Build Type:
                         Production
  Build Date and Time:
                         2009-03-02-09:49:EST
  Builder Username:
                         compiler
  Builder Hostname:
                         ereo-debian
  Build for CPU Type:
                         AMD-64-bit
Hardware Version:
                         0 \times 0
                         RUNNING
State:
Local AP OID:
                         0x0000000
Memory Size:
                         0x0
Max Q of S ID:
                         0x0
Up Time (seconds):
                         0x7fe3
Last Event Sequence #:
                         0x27b
Log Facility Mask:
Crash Dump Enabled:
                         TRUE
Log Disk Enabled:
                         TRUE
RP Count:
                         0x1
Restart Pending:
                         FALSE
Controller:
                         LOCAL
                                       (SECONDARY)
                         0x0015b2a1214a0000
Controller ID:
MIR Reason:
                         None
```

Listed below are the possible MIR conditions and their required actions.

MIR_JIS_DISCOVERY_IN_PROG

Initialized storage discovery is in progress. Please allow time for configuration discovery to complete. If this condition persists, please reboot the system. If this condition continues to persist after the reboot, please contact customer support.

MIR_OTHER_JIS_DISCOVERY_IN_PROG

Initialized storage discovery is in progress on the other controller. Please allow time for configuration discovery to complete. If this condition persists, please reboot the system. If this condition continues to persist after the reboot, please contact customer support.

MIR NO BACKEND DRIVES

This controller cannot find any disk drives on the backend. Install disk drives on the backend or fix the condition that prevents this controller from finding backend drives. Please refer to the installation guidelines for proper setup.

MIR NO CONFIG

A configuration could not be created on the backend drives. Fix the condition that prevents this controller from creating a configuration on the backend drives. Please refer to the installation guidelines for proper setup.

MIR_NO_QUORUM

No quorum drives could be found within the disk drives on the backend. Fix the condition that prevents the quorum drives from being seen. This may be caused by the drives never being in the storage array. This will normally happen on new system installations. Use the **CLEAR SUBSYSTEM MIR_STATE** command to create an empty configuration. **NOTE**: This creates a new configuration and the old configuration will be deleted if one existed.

MIR_NOT_LAST_CONTROLLER

This controller found a valid configuration but was not present when another controller owned the configuration. Another controller may have cached data for this configuration. This may happen when controllers are swapped out or if the controllers went down and restarted individually. To use the found configuration on this controller, use the **CLEAR SUBSYSTEM MIR_STATE** command.

MIR_MULTIPLE_JIS

Multiple configurations were found on the quorum disks. This may happen if the drives from one system were installed in another system when the systems were powered down and then rebooted. If the drives were installed in the system while running, then this should not be an issue. A list of found configurations will be listed. Use the CLEAR SUBSYSTEM MIR_STATE ID=<id> command to use the specified ID's configuration.

MIR_DUAL_NO_AGREE

The two connected controllers do not agree on the ID of the configuration. This may occur if one controller saw a subset of the drives and the other controller saw a different subset of drives. Please refer to the installation guidelines for proper setup.

MIR_CONFIG_MISMATCH

The configuration version of this firmware does not match the configuration version of that on media. To proceed, either reload the previous version of firmware and do a backup then upgrade, or delete your configuration to continue. Use **CLEAR SUBSYSTEM CONFIGURATION** to create an empty configuration. **NOTE**: This creates a new configuration and the old configuration will be deleted if one existed.

MIR_NO_LOAD_CONFIG

A configuration could not be loaded from the backend drives. Fix the condition that prevents this controller from loading a configuration from the backend drives or use **CLEAR SUBSYSTEM MTR_STATE** to create an empty configuration. Please refer to the installation guidelines for proper setup. **NOTE**: This creates a new configuration and the old configuration will be deleted if one existed.

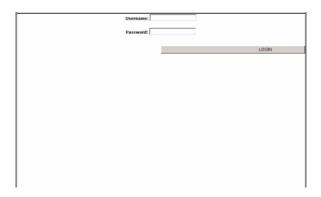
SECTION 5

GUI Management

5.1 The GUI Management Agent

This section provides information on configuring your InfiniteStorage 6120 using the GUI (Graphic User Interface) Management Agent.

NOTE: The configuration examples provided here represent only a general guideline. These examples should not be used directly to configure your particular InfiniteStorage 6120.


5.2 Starting the GUI Management Agent

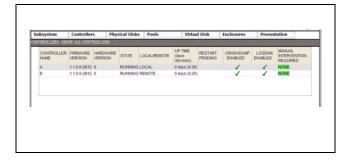
5.2.1 Login

Using a web browser, open a link to the IP address of the InfiniteStorage 6120. The management system supports Mozilla FireFox (version 3.0.11 and above) as well as Microsoft Internet Explorer (version 8.0 and above).

At the login screen, use the user name admin with the password password to log into the system. The user name and password are case-sensitive.

Figure 100. Login Screen

5.2.2 Initial Home Screen and Health Indicators


The home screen shows the Health Indicator. Since this is a new unconfigured system, at this point, the Health Indicator should be orange. You should see an alert message below the Health Indicator which show that manual intervention is required for both controllers.

WARNING: For any future encounters with MIR state issues, please refer to the service manual for specific instructions on how to clear them.

- Select the controller name.
 The system displays the Show Controller Screen. The home screen shows the Health Indicator.
- Select the underlined Manual Intervention Required.
 Details of the MIR state display show STATUS='MIR: no quorum disks found'.

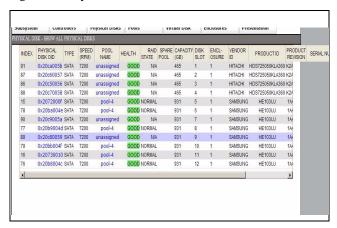
3. Press the CLEAR MIR button to clear the MIR state. Your subsystem is now ready to be configured.

Figure 101. Controllers-Show All Screen

5.3 Physical Disks

5.3.1 Physical Disks Commands

Physical disk commands are located under the **Physical Disk** tab drop down menu:


- · Show Physical Disks
- · Show Failed Disks
- Locate Disks
- · Set Failed
- · Assign to Pool
- Clear Failed

5.3.2 Checking Status of Physical Disks

Before creating any storage pools, check the status of all the drives.

Under the **Physical Disks** tab, select **SHOW ALL PHYSICAL DISKS** to verify that all the drives are present and healthy.

Figure 102. Physical Disk-Show All Screen

NOTE: If the drives are not visible, select **SUBSYSTEM RESTART** under the **Subsystem** tab to reboot the system.

5.4 Storage Pools

When creating a storage pool on an InfiniteStorage 6120, the following selectable attributes are available:

· RAID Level

Storage pools can be configured to use either a RAID5 or RAID6 parity scheme. In RAID5, the capacity of one drive is reserved for parity, allowing data recovery in the event of a single drive loss in the storage pool. In RAID6, the capacity of two drives is reserved for parity, allowing data recovery if either one or two drives are down in a storage pool. *For maximum data protection, use RAID6*.

· Chunk Size

The chunk size defines the amount of data written to a single disk before proceeding to the next disk in the storage pool. For optimal performance, the chunk size should be proportional to the expected host request size. For example, a large chunk size should be used when transferring large blocks of data while a small chunk size should be used when transferring multiple small blocks of data.

· Drive Count

A RAID5 storage pool may consist of 5 or 9 drives. A RAID6 storage pool may consist of 6 or 10 drives. For maximum performance, storage pools should be created using drives with the same characteristics (such as SAS/SATA, capacity, and RPM).

• Drive Type

Drive types can be SAS or SATA.

· Drive Size

Drive size is the capacity of the drive.

Spindle Speed

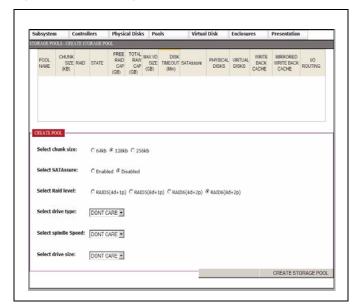
You may choose (RPM): 15000, 10000, 7200, 5400, 0 or SSD.

SATAssure

SATAssure technology is designed to improve the reliability of enterprise SATA drives and make sure that data integrity is always maintained for all IO operations. A license is required to run this feature.

Note: SGI does not support the mixing of SAS and SATA drives in the same storage pool.

5.4.1 Storage Pool Commands


Storage pool commands are located under the Pool tab drop-down menu:

- Show Storage Pools
- Create Storage Pool
- Set Storage Pools Attributes
- Delete Storage Pool
- Locate Storage Pool

To create a storage pool:

Under POOLS tab, select CREATE STORAGE POOL.
 The Storage Pools-Create Storage Pool screen displays (Figure 103).

Figure 103. Create Storage Pool Screen 1

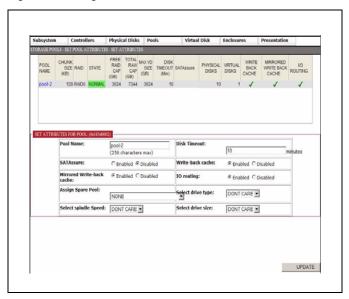
- 2. Select CHUNK_SIZE: 64kb, 128kb, 256kb.
- 3. Enable or disable SATAssure.
- 4. Select RAID Level: RAID5(4d+1p), RAID5(8d+1p), RAID6(4d+2p), RAID6(8d+2p)
- 5. Select **Drive Type** from scroll list.
- 6. Select Spindle Speed from scroll list.
- 7. Select **Drive Size** from scroll list.
- 8. Select **CREATE STORAGE POOL.**The system displays a success or error message and a list of storage pools created (Figure 104).

Figure 104. Storage Pool List

9. Repeat step 1 to add more storage pools as needed.

To show storage pools:

Under POOLS tab, select SHOW STORAGE POOLS.

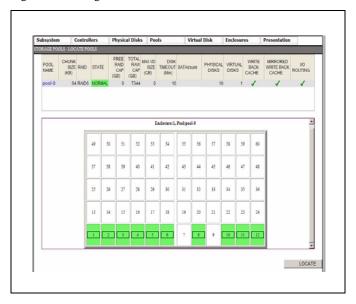

To delete a storage pool:

- 1. Under **POOLS** tab, select **DELETE STORAGE POOL**. The Storage Pools-Delete Storage Pool screen displays.
- 2. Select the storage pool you want to delete.
- **3.** Press the **DELETE** button or press **CANCEL** to cancel operation. A success or failure message displays.

To set storage pool attributes:

- 1. Under **POOLS** tab, select **SET STORAGE POOL ATTRIBUTES**. The Storage Pools-Set Attributes screen displays.
- **2.** Select the storage pool whose attributes you want to change. The Set Attributes screen appears (Figure 105).

Figure 105. Storage Pool Set Attributes



- 3. Make the changes desired.
- **4.** Press the **UPDATE** button. A success or failure message displays.

To locate storage pools:

1. Under **POOLS** tab, select **LOCATE STORAGE POOL**. The Storage Pools-Locate screen displays (Figure 106).

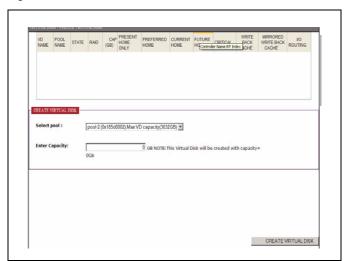
Figure 106. Storage Pool Locate

- 2. Select the storage pool you want to locate.
- **3.** Press the **LOCATE** button. A success or failure message displays.

5.5 Virtual Disks

A virtual disk can span a portion of a storage pool or utilize the entire capacity of a single storage pool.

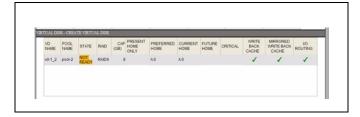
5.5.1 Virtual Disk Commands


Virtual disk commands are located under the **Virtual Disk** tab drop-down menu:

- Show Virtual Disks
- Create Virtual Disk
- Set Virtual Disks Attributes
- Delete Virtual Disk

To create a Virtual Disk:

1. Under the **Virtual Disk** tab, select **CREATE Virtual Disk**. The Virtual Disk-Create screen displays (Figure 107).


Figure 107. Create Virtual Disk Screen 1

- 2. Select the pool from the drop-down **Select Pool** menu.
- 3. Enter CAPACITY in GiB.

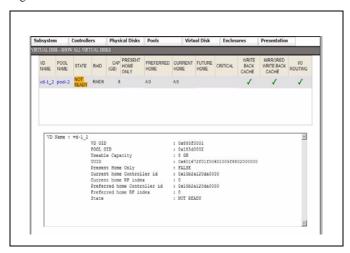

4. Press the **CREATE VIRTUAL DISK** button. The newly created disk is listed (Figure 108).

Figure 108. Create Virtual Disk Screen 2

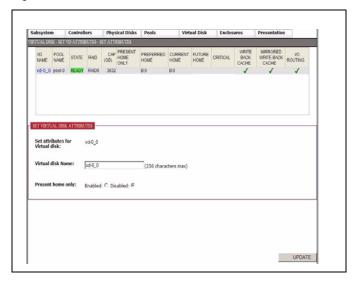
- 5. Repeat steps 1-4 to add more virtual disks as needed.
- 6. Under **Virtual Disk** tab, select **SHOW VIRTUAL DISKS** to view the list of configured virtual disks. Select the individual VD Name to display detailed information of the virtual disk selected.

Figure 109. Virtual Disk Detail Screen

NOTE: A virtual disk on a storage pool is NOT accessible until its initialization is complete.

To delete a Virtual Disk:

- 1. Under Virtual Disk tab, select DELETE Virtual Disk. Delete Virtual Disk screen displays.
- 2. Select the virtual disk you want to delete.
- Press the DELETE button or press CANCEL to cancel operation. Success or failure message displays.


To view a list of virtual disks:

Under Virtual Disk tab, select Show Virtual Disk.

To set virtual disk attributes:

1. Under Virtual Disk tab, select SET VIRTUAL DISK ATTRIBUTES. The Virtual Disks-Set Attributes screen displays (Figure 110).

Figure 110. Virtual Disk Set Attributes

- **2.** Select the virtual disk whose attributes you want to change. The Set Attributes screen appears.
- 3. Make the desired changes.
- **4.** Press the **UPDATE** button. A success or failure message displays.

5.6 Spare Pools

The InfiniteStorage 6120 supports the concept of spare pool. A spare pool contains physical disks that can be used as spare disks in one or more storage pools. In the event of a drive failure, a drive that is assigned to a spare pool is automatically swapped into the storage pool to replace the failed drive. A rebuild then occurs immediately, reducing the possibility of data loss due to additional drive failures.

Spare pools can be shared by storage pools or dedicated to a particular storage pool in which case the spare disks will only be used by the designated storage pool.

5.6.1 Spare Pool Commands

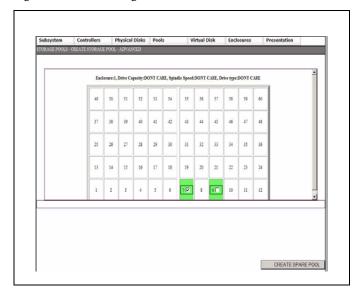
Spare pool commands are located under the **Pool** tab drop-down menu:

- · Show Spare Pools
- · Create Spare Pool
- Set Spare Pools Attributes
- Delete Spare Pool
- Locate Spare Pool

To create a spare pool:

Under POOLS tab, select CREATE SPARE POOL.
 The Spare Pools-Create Spare Pool screen displays (Figure 111).

Figure 111. Create Storage Pool Screen 1



2. Select the drive size, spindle speed, and drive type from their respective menus.

3. Press **Next** button.

The Storage Pools-Create Storage Pools-Advanced screen displays (Figure 112).

Figure 112. Create Storage Pools Advanced Screen

- 4. Select **PHYSICAL DISK** by checking in the appropriate box.
- Select CREATE SPARE POOL.
 A message is displayed to indicate whether the new spare pool creation was successful.
- **6.** Repeat steps 1 7 to add more spare pools as needed.

NOTE: Each storage pool must have a spare pool assigned to it.

To display a list of unassigned spare pools:

- 1. Under POOLS tab, select SHOW UNASSIGNED POOL.
- 2. Under POOLS tab, select command SHOW SPARE POOL to view the list of configured spare pool(s).
- 3. To assign the spare pool to a storage pool, select **SET POOL ATTRIBUTES** under **POOLS** tab.

4. Select the name of the pool that you will assign to the new spare pool (Figure 113).

Figure 113. Set Spare Pool Attributes

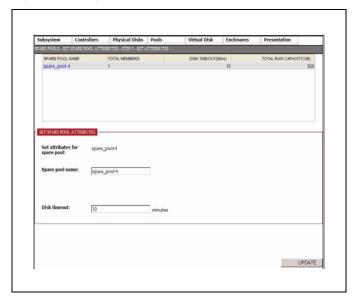
WARNING: When assigning disk drives to a spare pool that is to be assigned to a given storage pool, be sure to select a disk that is as large or larger than any disks in the assigned storage pool.

5. In the drop-down for **Assign Spare Pool**, select the name of the spare pool then press the **Update** button.

To show spare pools:

Under POOLS tab, select SHOW SPARE POOLS.

To delete spare pools:


- 1. Under **POOLS** tab, select **DELETE SPARE POOL**. The Spare Pools-Delete Spare Pool screen displays.
- **2.** Select the spare pool you want to delete.
- **3.** Press the **DELETE** button or press **CANCEL** to cancel the operation. A success or failure message displays.

To set spare pool attributes:

1. Under **POOLS** tab, select **SET SPARE POOL ATTRIBUTES**. The Spare Pools- Set Attributes screen displays.

2. Select the storage pool whose attributes you want to change. The Set Attributes screen appears (Figure 114).

Figure 114. Storage Pool Set Attributes

- **3.** Make the desired changes.
- **4.** Press the **UPDATE** button. A success or failure message displays.

To locate spare pools:

- 1. Under **POOLS** tab, select **LOCATE SPARE POOL**. The SPARE Pools- Locate screen displays.
- **2.** Select the storage pool you want to locate.
- Press the LOCATE button.
 A success or failure message displays. To display the list of available disks, under the POOLS tab, select SHOW UNASSIGNED POOL
- 4. Under the **POOLS** tab, select command **SHOW SPARE POOL** to view the list of configured spare pool(s).

NOTE: Each storage pool must have a spare pool assigned to it. If a storage pool's attributes show Global Spare Pool: UNASSIGNED, no spare pool will serve this storage pool.

- 5. To assign the spare pool to a storage pool, select SET POOL ATTRIBUTES under the POOLS tab.
- 6. Select the name of the pool that you will assign to the new spare pool.
- In the drop-down menu for Assign Spare Pool, select the name of the spare pool then press the Update button.

5.7 Initializing the Host System

When a storage pool is created, initialization begins immediately as a background job and will continue until it is completed. Once the storage pool has completed its initialization, virtual disks can be presented to host systems. However, you may immediately create the presentations.

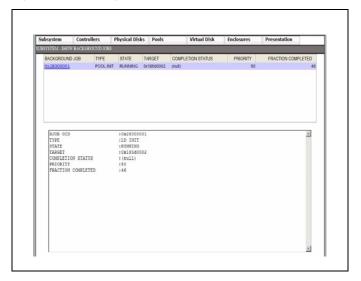

To monitor the progress of a job, under SUBSYSTEM tab, select the SHOW BACKGROUND JOBS.

Figure 115. Subsystem Menu

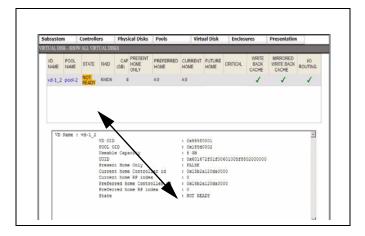

It will display the type of job and the percentage of completion. Select a background job to display its attributes (Figure 116).

Figure 116. Background Job Attributes

You may also check if a virtual disk is ready for access by selecting **SHOW VIRTUAL DISKS** under the **Virtual Disk** tab (Figure 117).

Figure 117. Show Virtual Disk Readiness

5.8 Presentations

A presentation on an InfiniteStorage 6120 has the following components:

· Discovered Initiators

A *discovered initiator* is defined as a Fibre Channel initiator that has logged into the InfiniteStorage 6120. This is normally a single port on a Fibre Channel HBA in an external computer.

Host

A *host* is an abstract client of a virtual disk that has all the access to all data within the virtual disk. This most commonly represents an external computer with one or more Fibre Channel initiators. The host attribute OS (operating system) allows you to select GENERIC, WINDOWS, LINUX or MAC_OS. The OS attribute dictates the way the controller responds to certain Fibre Channel commands where appropriate. For example, Mac OS X expects a different response from an inquiry of LUN0 (the controller LUN) than a Windows host.

Channel

A *channel* is one of the Fibre Channel ports on the controller. The channel attribute MODE allows you to select either MAC_OS or STANDARD. When MAC_OS is selected, the port's node name will be set differently in order to be visible to a Macintosh system.

Stack

A *stack* is the input side of the subsystem. In the case of the InfiniteStorage 6120, the stack is defined as the Fibre Channel interface. In future versions of the product, different interface stacks may exist.

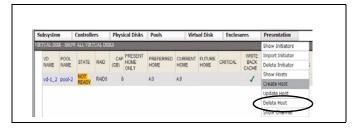
· Presentation

A presentation is the relationship between a host and a virtual disk. A presentation implies that the related host has some sort of access to the virtual disk. The following are attributes of a presentation:

- PORT Port from which the host will see the virtual disk.
- READ_ONLY Controls read only access.
- PRESENT_HOME_ONLY Presents the specified virtual disk from its designated home controller only.

LUN – LUN number (user-specified) that the virtual disk will show to the host.

5.8.1 Presentation Commands


Presentation commands are located under the **Presentation** tab drop-down menu:

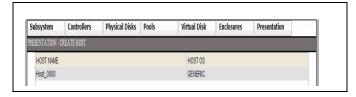
- Show Presentation
- Create Presentation
- Delete Presentation
- Update Presentation

To present the virtual disk to an external host:

1. Under the **Presentation** tab, select **Create Host** (Figure 118)..

Figure 118. Presentation Menu

The Presentation-Create Host screen displays (Figure 119).


Figure 119. Presentation-Create Host Screen 1

- 2. Specify the OS attribute using the pull-down menu if necessary.
- 3. Press the **Create Host** button.

 The system displays a success or error message and a list of hosts created (Figure 120).

Figure 120. Create Host Screen 2

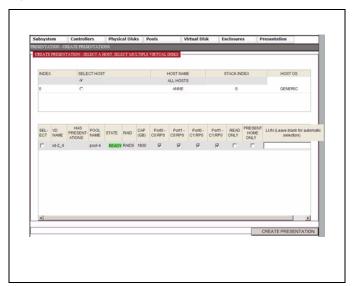


4. Repeat steps 1-3 to create more hosts.

To import one or more discovered initiators to your newly created host:

1. Under the **Presentation** tab, select **Import Initiators**. The Presentation-Create Host screen displays (Figure 121).

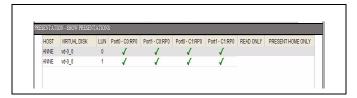
Figure 121. Presentation-Import Initiator Screen 1



- 2. Select the initiator.
- 3. Select the corresponding host.
- 4. Press the **Import Initiator** button. A success or error message displays.

To create the presentation:

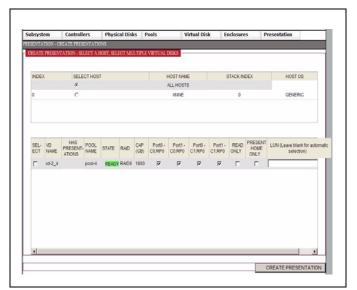
1. Under the Presentation tab, select **Create Presentation**. The Presentation-Create Presentation screen displays (Figure 122).


Figure 122. Create Presentation Screen 1

- 2. Select a host and a virtual disk.
- 3. Press the **Create Presentation** button. A success or error message displays.

NOTE: You can view the new presentations by selecting the **Show Presentation** menu selection under the **Presentation** tab (Figure 123).

Figure 123. Show Presentation Screen



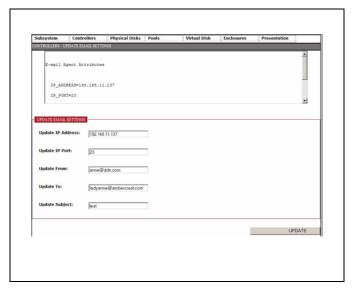
The external computer can access the pool once it has completed its initialization. You may also check if a virtual disk is ready for access by selecting **SHOW VIRTUAL DISKS** under the **Virtual Disk** tab.

To present the virtual disks to all hosts on all ports (optional):

Under the Presentation tab, select Create Presentation.
 The Presentation-Create Presentation screen displays (Figure 124).

Figure 124. Presentation-Create Presentation Display Screen

- 2. Select the ALL HOSTS option.
- 3. Select Virtual Disks.
- **4.** Press the **Create Presentation** button.


5.9 Email and Critical Event Notification Setup

Critical event notices will be sent via email. You must provide the email address.

To set up or change an email address:

Under the SUBSYSTEM tab, select UPDATE EMAIL SETTINGS.
 The upper portion of the screen will display the current email agent attributes, if any. Use the lower portion of the screen to enter email information (Figure 125).

Figure 125. Update Email Settings Screen.

- 2. In the **Update IP Address** field, enter the IP address of the SMTP server to which the subsystem will send email notifications.
- **3.** In the **IP Port** field, enter the IP port of the SMTP server to which the subsystem will send email notifications.
- 4. In the **Update From** field, enter an identification string, such as the name of the controller. This is a string which will be included on the From line of the email notification message sent by the agent.
- **5.** In the **Update To** field, enter an Internet Mail Format (RFC2822) email address to which the subsystem will send email notifications.
- **6.** In the **Update Subject** field, enter a string to be included on the Subject line of the email notification sent by the email agent.
- 7. Press the **UPDATE** button.
 A success or failure message displays.

SECTION 6

Appendices

Technical Specifications

Here are the technical specifications for the InfiniteStorage 6120.

NOTE: Specifications subject to change without notice.

Configuration, Performance, & Capacity

Fibre channel 8Gb/s Host interface Drive interface SAS / SATA Management interface RS-232 and Ethernet (SSH) Cache memory 6GB Number of host ports Number of host connections Up to 512 Up to 60 with a single unit, 120 with expansion Number of drives supported enclosure Number of storage pools supported Up to 24 Number of virtual disks supported Up to 64 per storage pool, Up to 256 per system Hot spare capability Yes Full duplex 10/100/1000 BaseT onboard

Reliability

SES (SCSI Enclosure Services) protocol support	Yes
Temperature monitoring	Yes
Redundant hot-swappable power & cooling modules	2

Yes

Physical, Power & Environmental

InfiniteStorage 6120 chassis dimensions $7.0" (18cm) \times 17.56" (45cm) \times 37" (94cm)$

 $(H\times W\times D)$

InfiniteStorage 6120 chassis weight 120 lbs (54.5 kg) without drives,

240 lbs (109.1 kg) with drives

Electrical/AC 200-240V @ 47-63Hz

Power consumption (maximum current) 10.3A @ 230VAC

Power consumption (average current) 7.5A @ 230VAC

Operating environment 5 °C to 35 °C / 20% - 80%, non-condensing

(temperature / relative humidity)

(temperature/ relative humidity)

Non-operating environment -10°C to 35°C / 20% - 80%, non-condensing

Cooling (maximum, peak, average) 13324 BTU/h, 6560 BTU/h, 5973 BTU/h

Certification UL, CE, CUL, FCC

Safety Requirements for Rack Installation

The following safety requirements must be considered when the InfiniteStorage 6120 is mounted in a rack.

The rack when configured with the units must meet the safety requirements of UL 60950 and IEC 60950

Mechanical Loading

- The mounting of the system must conform to even and safe mechanical loading. Uneven mechanical loading could cause a rack to tip and fall.
- The rack construction must be capable of supporting the total weight of the installed enclosure(s) and the design should incorporate stabilizing features suitable to prevent the rack from tipping or being pushed over during installation or in normal use.
- When loading a rack with the units, fill the rack from the bottom up and empty from the top down.
- Always remove all modules and drives, to minimize weight, before loading the chassis into a rack.

WARNING: It is recommended that you do not slide more than one enclosure out of the rack at a time, to avoid danger of the rack tipping over.

- When mounting in a rack, ensure that the enclosure is pushed fully back into the rack.
- The system must be operated with low pressure rear exhaust installation. (The back pressure created by rack doors and obstacles should not exceed 5 pascals [0.5mm water gauge].)

Circuit Overloading

The rack should have a safe electrical distribution system. It must provide over current protection for the unit and must not be overloaded by the total number of units installed in the rack. Consideration of the units nameplate rating should be used when addressing these concerns.

Reliable Earthing

- The electrical distribution system must provide a reliable earth ground for each unit and the rack.
- Each power supply in each unit has an earth leakage current of 1.5mA. The design of the electrical distribution system must take into consideration the total earth leakage current from all the power supplies in all the units. The rack will require labelling with HIGH LEAKAGE CURRENT. Earth connection essential before connecting supply.

Elevated Operating Ambient Temperature

If the InfiniteStorage 6120 system is installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. The rack design should take into consideration the maximum operating ambient temperature for the unit is 35°C.

Air Flow

When installing the system, do not compromise on the amount of air flow required for safe operation of the system.

Index

B \boldsymbol{E} background job, see job 56 enclosure connecting 20 location, physical 48 \boldsymbol{C} ESI processor 76 cable connections 20 Ethernet connection 65 cache expansion enclosure, connect 20 mirrored write back, set 54 write back, set 54 \boldsymbol{F} channel 35, 67, 104 chunk size 49 failure CLUI, using 39 drive, fixing 79, 80 components, hardware 5 fan, alerts 76 fan, fixing 78 controller 7 PCM, fixing 78 LED 75 power supply, fixing 78 cooling module 8 fan, see cooling module 8 fault 76, 77 LED 72,75 features, S2A6620 3 create firmware spare pool 32, 51 current version 58 storage pool 28 update 58 virtual disk 31 fractional rebuild 52 Customer service vi front panel LED 11 full rebuild 52 D G date, set system 54 delete gateway, set 65 storage pool 50 GUI management system 88 virtual disk 50 guidelines, rack installation safety DEM₁₀ LED 74 discovered initiator 35, 67, 104 H disk fail a 48 host 35, 67, 104 failure recovery 80 connections 20 fail, clear 48 port location 7 information 42 listing all 42 I location, physical 47 replace, manual 53 installation 15 status, change 48 IP address, set controller 65 disk commands, physical 90 disk timeout 52 .J drive failure recovery 80 drive, see disk 42 job priority, set 56

$oldsymbol{L}$	35, 67, 104
	priority
LED controller 75	job, set 56
cooling 72, 75	rebuild, set 57
cooling fault 76, 77	Product support vi
DEM 74	
fault, system 77	R
front panel 11	A
power supply 72, 75	rack installation 17
power supply fault 76, 77	safety guidelines 113
system fault 76	RAID level 49
licensing instructions 27	rebuild
login 40	automatic, set 52
logout 40	fractional 52
	full 52
7.4	manual, initialize 53
M	partial 52
management system, GUI 88	set priority 57
Manual Intervention Required 82	recovery
MIR 82	drive failure 80
clear, state 82	PCM 78
conditions 82	replace disk, manual 53
mirrored write back cache, set 54	restart
	controller 55
N	subsystem 55
1♥	RS-232 terminal set up 39
netmask, set 65	
network interface, set 65	${m S}$
	safety guidelines, rack installation
P	113
	SATAssure, set 53
partial rebuild 52	serial port, set up 39
password 40	shutdown
PCM 8	controller 55
failure recovery 78	subsystem 55
physical location disk 47	spare pool
enclosure 48	concept 98
storage pool 48	create 32, 51
virtual disk 48	delete 51
pool	global 51
spare, create 32, 51	GUI management of 98
storage, create 28	name, change 51
unassigned 42	view list of 47
power supply module 8	sparing policy 52
fault 76, 77	specifications, technical 111
LED 72, 75	SSH 65
presentation	stack 35, 67, 104
GUI management 104	storage pool
virtual disk to external host	configuration, checking 44

```
create 28, 49
     delete 50
    GUI management of 91
    initialization 49
    list of, view 44
    location, physical 48
    max number of 48
    name, change 49
    SATAssure, set 53
     sparing policy 52
     specifications 91
     status 44
system faults LED 76
\boldsymbol{T}
technical specifications 111
Technical support vi
Telnet 65
time, set system 54
troubleshooting 71
\boldsymbol{U}
unassigned pool 42
unpack the system 16
user name 40
version information 58
virtual disk
    associated with storage pool,
            view 45
    create 31, 50
     delete 50
    GUI management of 95
    location, physical 48
    max number of 48
    name, change 50
    status, checking 46
visual indication
    disk 47
    enclosure 48
     storage pool 48
     virtual disk 48
W
write back cache, set 54
```