
Unified Parallel C (UPC) User’s Guide

007–5604–003

COPYRIGHT
© 2010, 2011, SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner,
in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
SGI, Altix, and the SGI logo are are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in
the United States and other countries.

Linux is a registered trademark of Linus Torvalds in several countries.

New Features in This Manual

This rewrite of the Unified Parallel C (UPC) User’s Guide supports the SGI Performance
Suite 1.3 release.

Major Documentation Changes
Performed the following:

• Updated "UPC Quick Start on SGI Altix UV or SGI Altix ICE Systems" on page 5.

• Updated the UPC_ALLOC_MAX variable description in "UPC Runtime Library
Environment Variables" on page 6.

• Added UPC_CAUTIOUS_STRICT, UPC_GRU_DOMAIN_SIZE, and
UPC_IB_BUFFER_SIZE variable descriptions in "UPC Runtime Library
Environment Variables" on page 6.

007–5604–003 iii

Record of Revision

Version Description

001 April 2010
Original Printing.

002 June 2010
Updated to support the SGI ProPack 7 Service Pack 1 release.

003 Nobember 2011
Updated to support the SGI Performace Suite 1.3 release.

007–5604–003 v

Contents

About This Manual . ix

Obtaining Publications . ix

Related Publications and Other Sources ix

Conventions . x

Reader Comments . x

1. Introduction . 1

UPC Implementation . 1

Compiling and Executing a Sample UPC Program 2

Mixing of UPC Programs with Other Languages 2

Shared Pointer Representation and Access 3

Vectorization of Loops to Reduce Remote Communication Overhead 3

Allinea Distributed Debugging Tool 4

Parallel Performance Wizard . 4

2. UPC Job Environment 5

UPC Job Environment . 5

UPC Quick Start on SGI Altix UV or SGI Altix ICE Systems 5

UPC Runtime Library Environment Variables 6

Index . 11

007–5604–003 vii

About This Manual

This publication documents the SGI implementation of the Unified Parallel C (UPC)
parallel extension to the C programming language standard.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• You can also view man pages by typing man title on a command line.

Related Publications and Other Sources
Material about UPC is available from a variety of sources. Some of these, particularly
webpages, include pointers to other resources. Following is a list of these sources:

• UPC: Distributed Shared Memory Programming

Authors: Tarek El-Ghazawi, William Carlson, Thomas Sterling, Katherine Yelick;
ISBN: 0-471-22048-5 ; Published by John Wiley and Sons- May, 2005

• http://upc.gwu.edu

Contains much information that is relevant to UPC.

• http://upc.gwu.edu/docs/upc_specs_1.2.pdf

Contains the description of Version 1.2 of the UPC programming language.

• http://upc.gwu.edu/downloads/Manual-1.2.pdf

Contains a discussion about the UPC language features.

• sgiupc(1) man page

SGI Unified Parallel C (UPC) compiler man page describes the sgiupc(1)
command. sgiupc is the front-end to the SGI UPC compiler suite. It handles all

007–5604–003 ix

About This Manual

stages of the UPC compilation process: UPC language preprocessing, UPC-to-C
translation, back- end C compilation, and linking with UPC runtime libraries.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

x 007–5604–003

Unified Parallel C (UPC) User’s Guide

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

SGI
Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.

007–5604–003 xi

Chapter 1

Introduction

The UPC Language Specifications document defines Unified Parallel C (UPC) as a
parallel extension to the C programming language standard that follows the
partitioned global address space programming model. It is available at the following
location: http://upc.gwu.edu/docs/upc_specs_1.2.pdf.

UPC: Distributed Shared Memory Programming provides information about UPC
programming language. For details about this manual and other resources related to
UPC, see the preface “About This Manual”.

The UPC common global address space (SMP and NUMA) provides an application
with a single shared, partitioned address space, where variables may be directly read
and written by any processor, but each variable is physically associated with a single
module load sgi-upc-develprocessor.

This manual documents the SGI implementation of the UPC standard. This chapter
covers the following topics:

• "UPC Implementation" on page 1

• "Allinea Distributed Debugging Tool" on page 4

• "Parallel Performance Wizard" on page 4

UPC Implementation
The SGI implementation of UPC conforms to Version 1.2 standard. Parallel I/O,
which is not yet a part of the language, is not supported.

The SGI Unified Parallel C (UPC) compiler man page describes the sgiupc(1)
command. sgiupc is the front-end to the SGI UPC compiler suite. It handles all
stages of the UPC compilation process: UPC language preprocessing, UPC-to-C
translation, back-end C compilation, and linking with UPC runtime libraries.

To see the sgiupc(1) man page, make sure the sgi-upc-devel module is loaded,
as follows:

% module load sgi-upc-devel

007–5604–003 1

1: Introduction

Compiling and Executing a Sample UPC Program

A sample UPC program (hello.c) is, as follows:

#include <upc.h>
#include <stdio.h>

int

main ()

{

printf("Executing on thread %d of %d threads\n", MYTHREAD, THREADS);

}
To compile this program and generate the executable hello, use the following
command:

sgiupc hello.c -o hello

The mpirun(1) command is used for execution. If you want the program to execute
using four threads, perform the following command:

mpirun -np 4 hello

You can expect output similar to the following:

Executing on thread 1 of 4 threads

Executing on thread 3 of 4 threads

Executing on thread 0 of 4 threads

Executing on thread 2 of 4 threads

Note: The statements might not appear in the order listed in the output example,
above.

For more information on sgiupc(1) and mpirun(1), see the corresponding man pages.

Mixing of UPC Programs with Other Languages

The rules for mixing UPC programs with programs written in other languages are
similar to that of mixing a C program compiled with the native compiler used to
compile the UPC program (as specified by UPC_NATIVE_CC), with the caveat for
shared pointers, as follows:

If the main program is compiled using sgiupc, the appropriate libraries needed for
running UPC programs are linked in. If the main program is not a UPC program

2 007–5604–003

Unified Parallel C (UPC) User’s Guide

compiled with sgiupc, the appropriate runtime libraries needed by sgiupc have to
be explicitly linked in. You can determine this by specifying the -v option to the
sgiupc command used to compile and link an application comprising of a single
UPC program.

Shared Pointer Representation and Access

In order to handle large thread counts, as well as large blocking size, the SGI UPC
compiler uses a struct type to represent a shared pointer. As SGI reserves the right
to change this representation at a later time, it would be best to use UPC provided
functions to access the individual components if a shared pointer is to be passed to a
non-UPC function.

Vectorization of Loops to Reduce Remote Communication Overhead

Consider the following loop:

upc_forall (i = 0; i < N; i++; i)
a[i] = b[i] + c[i];

If the array references are all remote, there are 2*N remote loads and N stores
performed in this loop.

If the loop does not have any aliasing issues, the number of remote loads can be
reduced to 2 and the stores to 1, although each of these would be dealing with N
elements at a time. This will cut down the communication overheads to fetch remote
data.

If a, b, and c are shared restricted pointers, the compiler is able to figure out that
there are no aliasing issues, and it is able to vectorize this loop so that remote block
data accesses can be used.

For all other cases, the user can specify a pragma type before the loop, as follows:

#pragma sgi_upc vector=on

upc_forall (i = 0; i < N; i++; i)

a[i] = b[i] + c[i];

Note that the upc_forall can contain several statements.

007–5604–003 3

1: Introduction

Allinea Distributed Debugging Tool
The Allinea Distributed Debugging Tool (DDT) is an advanced debugging tool
available for scalar, multi-threaded, and large-scale parallel applications. DDT 3.1 and
later supports sgiupc 1.05 and later. For more information on DDT refer to the ddt
command’s help option or the following site: http://allinea.com/ddt.

Parallel Performance Wizard
Parallel Performance Wizard (PPW) is a performance analysis tool designed for
partitioned global-address-space (PGAS) programs. PPW 2.8 and later supports
sgiupc 1.05 and later. For more information on PPW refer to the ppw man page, the
ppwhelp command, or the following site: http://ppw.hcs.ufl.edu/.

4 007–5604–003

Chapter 2

UPC Job Environment

This chapter describes the SGI UPC run-time environment and covers the following
topics:

• "UPC Job Environment" on page 5

• "UPC Quick Start on SGI Altix UV or SGI Altix ICE Systems" on page 5

• "UPC Runtime Library Environment Variables" on page 6

UPC Job Environment
The SGI UPC run-time environment depends on the SGI Message Passing Toolkit
(MPT) MPI and SHMEM libraries and the job launch, parallel job control, memory
mapping, and synchronization functionality they provide. UPC jobs are launched like
MPT MPI or SHMEM jobs, using the mpirun(1) or mpiexec_mpt(1) commands.
UPC thread numbers correspond to SHMEM PE numbers and MPI rank numbers for
MPI_COMM_WORLD.

By default, UPC (MPI) jobs have UPC threads (MPI processes) pinned to successive
logical CPUs within the system or cpuset in which the program is running. This is
often optimal, but at times there is benefit in specifying a different mapping of UPC
threads to logical CPUs. See the MPI job placement information in the mpi(1) man
page under Using a CPU List and MPI_DSM_CPULIST, and see the omplace(1) man
page for more information about placement of parallel MPI/UPC jobs.

UPC Quick Start on SGI Altix UV or SGI Altix ICE Systems
This section describes environment variable settings that may be appropriate for some
common UPC program execution situations.

SGI UPC is designed with three options for performing references to non-local
portions of shared arrays:

• Processor driven shared memory

• Global reference unit (GRU) driven shared memory

007–5604–003 5

2: UPC Job Environment

The GRU is a remote direct memory access (RDMA) facility provided by the UV
hub application-specific integrated circuit (ASIC).

• InfiniBand fabric driven shared memory access

By default, UPC uses processor-driven references for nearby sockets and GRU-driven
references for more distant references. The threshold between "nearby" and "distant"
can be tuned with the MPI_SHARED_NEIGHBORHOOD variable, described later in more
detail in "UPC Runtime Library Environment Variables" on page 6.

Set the following environment variables:

• Set MPI_GRU_CBS=0

This makes all GRU resources available to UPC.

• Some Altix UV systems have Intel processors with two hyper-threads per core,
while others have a single hyper-thread per core. When dual hyper-threads per
core are available, most HPC codes benefit by leaving one hyper-thread per core
idle, thereby, giving more cache and functional unit resources to the active
hyper-thread that will be assigned to one of the UPC threads. This is easy to do
because the upper half of the logical CPUs (by number) are hyper-threads that are
paired with the lower half of the logical CPUs. Set GRU_RESOURCE_FACTOR=2
when leaving half of the hyper-threads idle.

• You can experiment with the MPI_SHARED_NEIGHBORHOOD=HOST variable. Some
shared array access patterns will be faster using processor-driven references.

• Set GRU_TLB_PRELOAD=100 to get the best GRU-based bandwidth for large block
copies.

UPC Runtime Library Environment Variables
The UPC runtime library has a number of environment variables that can affect or
tune run-time behavior. They are, as follows:

• UPC_ALLOC_MAX

This sets the per-thread maximum amount of memory in bytes that can be
allocated dynamically by upc_alloc() and the other shared array allocation
functions. Note that the SMA_SYMMETRIC_SIZE variable needs to be set to the
sum of the value of UPC_ALLOC_MAX plus the amount of space consumed by

6 007–5604–003

Unified Parallel C (UPC) User’s Guide

statically allocated arrays in the UPC program. See the intro_shmem(1) man
page for more information about MA_SYMMETRIC_SIZE.

When running UPC programs on InfiniBand clusters, there is particular benefit to
setting UPC_ALLOC_MAX to the right size, because physical memory will be
pre-allocated in the shared array heap. If the actual memory space utilized by
dynamically allocated arrays is less than the pre-allocated amount, excessive
physical memory will be consumed.See the intro_shmem(1) man page for more
information about SMA_SYMMETRIC_SIZE.

The default is the amount of physical memory per logical CPU on the system.

007–5604–003 7

2: UPC Job Environment

• UPC_CAUTIOUS_STRICT

When enabled (nonzero), libupc performs a upc_fence call before all strict
accesses, regardless if the previous access was strict or relaxed. When disabled
(zero), libupc performs a upc_fence call only if there were one or more relaxed
writes since the previous upc_fence.

The default is disabled.

• UPC_GRU_DOMAIN_SIZE

This variable controls the use of the GRU, as follows:

– When non-integer, the GRU is never used.

– When zero or negative integer, the GRU is always used.

– When positive power-of-two, the GRU is used except when all threads
communicating are within a block of that size.

– When positive non-power-of-two, rounded down to the next power-of-two.

• UPC_HEAP_CHECK

When set to 1, causes libupc to check the integrity of the shared memory heap
from which shared arrays are allocated.

The default value is 0.

• UPC_IB_BUFFER_SIZE

This variable sets the size of the buffer used for InfiniBand fabric copy operations.
This per-thread buffer is only allocated and used for remote-to-remote copies over
InfiniBand, or any transfers of data to/from InfiniBand where the data cannot be
transferred directly.

The default size is 16 kB. The minimum size is 1 kB.

A number of MPI and SHMEM environment variables described on the MPI(1),
SHMEM(1) and gru_resource(3) man pages can be used to tune the execution of
UPC programs on SGI Altix UV systems. These man pages should be consulted for a
complete list of tunable environment variables. Some of the most helpful variables for
UPC programs are, as follows:

• MPI_SHARED_NEIGHBORHOOD

8 007–5604–003

Unified Parallel C (UPC) User’s Guide

This environment variable has an effect only on Altix UV systems. This variable
can be set to HOST to request that UPC shared arrays use processor-driven shared
memory transfers instead of GRU transfers. The size of the memory blocks being
accessed in a remote part of a shared array and other factors can determine
whether processor-driven or GRU-driven transfers will perform better.

The default setting for the MPI_SHARED_NEIGHBORHOOD variable is BLADE,
which implies that UPC threads will use processor-driven shared memory for
references to shared array blocks that have affinity for the threads associated with
sockets on the same UV hub.

• MPI_GRU_CBS and MPI_GRU_DMA_CACHESIZE

These environment variables have an effect only on Altix UV systems. These
variables reserve Altix UV GRU resources for MPI and thereby makes them
unavailable for UPC. Setting MPI_GRU_CBS to 0 will have the result of making all
GRU resources available to UPC.

• GRU_RESOURCE_FACTOR

This environment variable has an effect only on Altix UV systems. This
environment variable specifies an integer multiplier that increases the amount of
per-thread GRU resources that can be used by a UPC program. If UPC programs
are placed such that some portion of the logical CPUs (hyper-threads) on each UV
hub are left idle, you can specify a corresponding multiplier. For example, if half
of the logical CPUs are idle, a setting of GRU_RESOURCE_FACTOR=2 would be
recommended. See the gru_resource(3) man page for more details.

007–5604–003 9

Index

C

compiling and executing a sample UPC program, 2

D

debugging tool
Allinea Distributed Debugging Tool (DDT) , 4

E

environment variables
GRU_RESOURCE_FACTOR, 9
GRU_RESOURCE_FACTOR=2, 6
GRU_TLB_PRELOAD, 6
MPI_GRU_CBS, 6, 9
MPI_SHARED_NEIGHBORHOOD, 6
SMA_SYMMETRIC_SIZE, 7
UPC_ALLOC_MAX, 6
UPC_CAUTIOUS_STRICT, 8
UPC_GRU_DOMAIN_SIZE, 8
UPC_HEAP_CHECK, 8
UPC_IB_BUFFER_SIZE, 8

G

global reference unit (GRU), 5

I

InfiniBand fabric
shared memory access, 6, 8

introduction, 1

related documentation, 1
sgiupc(1) man page, 1
UPC specifications, 1

M

mixing of UPC programs with other languages, 2

P

parallel performance wizard (PPW), 4

Q

quick start
setting environment variables

GRU_RESOURCE_FACTOR=2, 6
GRU_TLB_PRELOAD=100, 6
MPI_GRU_CBS=0, 6
MPI_SHARED_NEIGHBORHOOD, 5

R

referencing non-local portions of shared arrarys, 5
runtime library

setting environment variables
GRU_RESOURCE_FACTOR, 9
MPI_GRU_CBS, 9
MPI_GRU_DMA_CACHESIZE, 9
MPI_SHARED_NEIGHBORHOOD, 9
SMA_SYMMETRIC_SIZE, 7
UPC_ALLOC_MAX, 6
UPC_CAUTIOUS_STRICT, 8

007–5604–003 11

Index

UPC_GRU_DOMAIN_SIZE, 8
UPC_HEAP_CHECK, 8
UPC_IB_BUFFER_SIZE, 8

S

SGI APIs
MPI, 5
SHMEM, 5

shared pointer representation and access, 3

U

UPC job environement, 5

UPC Language Specifications, 1
UPC runtime library environment variables, 6
UPC: Distributed Shared Memory Programming, 1

V

vectorization of loops to reduce remote
communication overhead, 3

12 007–5604–003

