
Unified Parallel C (UPC) User Guide

007–5604–005

COPYRIGHT
© 2010 – 2013, SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner,
in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
Altix, ICE, UV, SGI, and the SGI logo are are trademarks or registered trademarks of Silicon Graphics International Corp. or its
subsidiaries in the United States and other countries.

AMD is a trademark of Advanced Micro Devices, Inc.

Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

Linux is a registered trademark of Linus Torvalds in several countries.

New Features in This Manual

This update of the Unified Parallel C (UPC) User Guide supports the SGI Performance
Suite 1.5 release. The major documentation change for this release is the support for
the Many Integrated Core (MIC) technology from Intel Corporation.

007–5604–005 iii

Record of Revision

Version Description

001 April 2010
Original Printing.

002 June 2010
Updated to support the SGI ProPack 7 Service Pack 1 release.

003 November 2011
Updated to support the SGI Performace Suite 1.3 release.

004 May 2012
Updated to support the SGI Performace Suite 1.4 release.

005 January 2013
Updated to support the SGI Performance Suite 1.5 release.

007–5604–005 v

Contents

About This Guide . ix

Related Publications and Other Sources ix

Obtaining Publications . x

Helpful Online Resources . xi

Conventions . xi

Reader Comments . xi

1. Introduction . 1

Compiling and Running an SGI UPC Program 1

Compiling and Running an SGI UPC Program Exclusively on Xeon Processors or AMD
Processors . 2

Compiling and Running an SGI UPC Program Natively on MIC Devices (Intel Xeon Processor
Platforms Only) . 4

Compiling and Running a Heterogeneous SGI UPC Program on both Xeon Processors and on
MIC Devices . 6

Mixing UPC Programs with Programs Written In Other Languages 8

Using the sgi_upc Directive . 9

Debugging SGI UPC Programs 10

Analyzing Application Performance 10

OFED Configuration for UPC 10

2. UPC Job Environment 13

About the UPC Job Environment 13

Referencing Nonlocal Portions of Shared Arrays (SGI UVTM Systems) 14

Tuning Runtime Behavior . 15

Tuning Execution Performance (SGI UV Series Systems) 17

007–5604–005 vii

Contents

Index . 19

viii 007–5604–005

About This Guide

This guide describes the SGI® implementation of the Unified Parallel C (UPC) parallel
extension to the C programming language standard.

Related Publications and Other Sources
Material about UPC is available from a variety of sources. Some of these, particularly
webpages, include pointers to other resources. The following is a list of these sources:

• http://upc.gwu.edu/docs/upc_specs_1.2.pdf

Hosts a PDF copy of UPC Language Specifications V1.2, A publication of the UPC
Consortium. This document defines Unified Parallel C (UPC) as a parallel
extension to the C programming language standard that follows the partitioned
global address space programming model.

• UPC: Distributed Shared Memory Programming

Authors: Tarek El-Ghazawi, William Carlson, Thomas Sterling, Katherine Yelick;
ISBN-10: 0471220485 ; Published by Wiley – Interscience - May, 2005.

• http://upc.gwu.edu

Hosts information that is relevant to UPC.

• http://upc.gwu.edu/downloads/Manual-1.2.pdf

Hosts a PDF copy of the George Washington University UPC Manual, which
explains UPC language features.

• sgiupc(1) man page

The SGI Unified Parallel C (UPC) compiler man page, sgiupc(1), describes the
sgiupc(1) command. The sgiupc(1) command is the front-end to the SGI UPC
compiler suite. The command handles all stages of the UPC compilation process:
UPC language preprocessing, UPC-to-C translation, back-end C compilation, and
linking with UPC runtime libraries.

• Message Passing Toolkit (MPT) User Guide

007–5604–005 ix

About This Guide

Describes industry-standard message passing protocol optimized for SGI
computers.

• MPInside Reference Guide

Describes the SGI MPInside MPI profiling tool.

• SGI UV GRU Development Kit Programmer Guide

Describes the SGI UV global reference unit (GRU) development kit. It describes the
application program interface (API) that allows direct access to GRU functionality.

• SGI hardware reference guides

The following SGI hardware reference guides provide architectural overviews:

– SGI UV 2000 System User Guide

– SGI Altix UV 1000 System User’s Guide

– SGI Altix UV 100 System User’s Guide

– SGI Altix ICE 8200 Series System Hardware User’s Guide

– SGI Altix ICE 8400 Series System Hardware User’s Guide

– SGI ICE X System Hardware User Guide

Obtaining Publications
You can obtain SGI documentation in the following ways:

• Accessing the SGI Technical Publications Library at the following URL:

http://docs.sgi.com

Various formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• Retrieving man pages by typing man title on a command line.

• Retrieving SGI reference manuals that are provided in various formats in the SGI
Performance Suite software package RPMs.

x 007–5604–005

Unified Parallel C (UPC) User Guide

Helpful Online Resources
Supportfolio is the SGI support web site, including the SGI Knowledgebase, has links
for software supports and updates at: https://support.sgi.com/login.

For a complete list of SGI online resources, see the SGI Peformance Suite 1.x Start Here.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

007–5604–005 xi

About This Guide

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

SGI
Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.

xii 007–5604–005

Chapter 1

Introduction

Uniform Parallel C (UPC) is a Partitioned Global Address Space (PGAS)
programming model. Shared variables and arrays can reside anywhere on the parallel
computer system or be distributed across the nodes of the system. The UPC language
allows direct references to the shared variables regardless of there locality. In
addition, the UPC language defines synchronization and collective communication
primitives. SGI Unified Parallel C (UPC) conforms to the UPC version 1.2 standard.
Parallel I/O, which is not yet a part of the language, is not supported.

This manual describes the SGI implementation of the UPC standard. The sgiupc(1)
man page includes additional SGI UPC information. This chapter covers the
following topics:

• "Compiling and Running an SGI UPC Program" on page 1

• "Mixing UPC Programs with Programs Written In Other Languages" on page 8

• "Using the sgi_upc Directive" on page 9

• "Debugging SGI UPC Programs" on page 10

• "Analyzing Application Performance" on page 10

• "OFED Configuration for UPC" on page 10

Compiling and Running an SGI UPC Program
SGI supports SGI UPC on the following platforms:

• SGI ICE series systems

• SGI UV series systems

• SGI Rackable series systems

Each of the preceding SGI systems contains either an AMD processor or an Intel Xeon
processor. These SGI systems can also include an InfiniBand network. If the system
contains an Intel Xeon processor, it can also contain Intel Xeon PhiTM Many Integrated
Core (MIC) devices. As this manual explains, the steps you use to compile and run a
program, and the environment variables you use within your program, differ
depending on the presence of InfiniBand or MIC technology. For example, if you

007–5604–005 1

1: Introduction

have code sections that you want to run on the MIC devices, you compile the entire
program on the Xeon processor, and the system runs the appropriate code sections on
the MIC devices.

To determine whether your system is equipped with MIC devices, type one of the
following commands:

• On SGI UV systems: topology -cops

• On SGI ICE or SGI Rackable systems: ls /sys/class/mic

Use one of the following procedures to compile and run an SGI UPC program:

• "Compiling and Running an SGI UPC Program Exclusively on Xeon Processors or
AMD Processors" on page 2

• "Compiling and Running an SGI UPC Program Natively on MIC Devices (Intel
Xeon Processor Platforms Only)" on page 4

• "Compiling and Running a Heterogeneous SGI UPC Program on both Xeon
Processors and on MIC Devices" on page 6

Compiling and Running an SGI UPC Program Exclusively on Xeon Processors or AMD
Processors

The following procedure explains how to compile and run an SGI UPC program
completely on Xeon processors or AMD processors. Do not use this procedure if your
program includes sections that need to be run on MIC devices.

Procedure 1-1 To compile and run an SGI UPC program on Xeon processors or AMD
processors

1. (Optional) Determine the UPC compiler versions that are available on your
system.

Perform this step if you need to choose a compiler version.

Type the following command:

% ls /opt/intel/*/bin/compilervars.sh

Note the versions that this command returns. The next step in this procedure
modifies your environment to use a specific version.

2 007–5604–005

Unified Parallel C (UPC) User Guide

2. Type the following commands:

% module load mpt
% module load sgi-upc-devel

% source /opt/intel/version/bin/compilervars.sh intel64

For version, specify the compiler version you want to use.

The preceding commands modify your enviroment variables and enable you to
run SGI UPC applications. You need to run these commands before you can
retrieve the sgiupc(1) man page and before you can run SGI UPC applications.

You need to load these programming modules into your environment only once.

3. Use a text editor to open a file, add UPC program statements, and save the file.

For example, the following example UPC program resides in hello.c:

#include <upc.h>

#include <stdio.h>

int
main ()

{

printf("Executing on thread %d of %d threads\n", MYTHREAD, THREADS);

}

4. Use the sgiupc(1) command to compile the program and generate an executable
file.

For example, the following command generates an executable file called hello:

sgiupc hello.c -o hello

The sgiupc(1) command is the front-end to the SGI UPC compiler suite. This
command manages all stages of the UPC compilation process, which are UPC
language preprocessing, UPC-to-C translation, back-end C compilation, and
linking with UPC runtime libraries.

5. Use either the MPT mpirun(1) command or the mpiexec_mpt(1) command to
run the executable program.

For example, to direct the program to run on four threads, type the following
command:

mpirun -np 4 hello

007–5604–005 3

1: Introduction

You can expect output similar to the following:

Executing on thread 1 of 4 threads
Executing on thread 3 of 4 threads

Executing on thread 0 of 4 threads

Executing on thread 2 of 4 threads

The statements might not appear in the order listed in the preceding output
example.

For more information about sgiupc(1) and mpirun(1), see the corresponding
man pages.

Compiling and Running an SGI UPC Program Natively on MIC Devices (Intel Xeon
Processor Platforms Only)

The following procedure explains how to compile and run an SGI UPC program only
on the MIC devices included on an SGI system that is based on Intel Xeon processors.
On systems with MIC devices, the SGI UPC runtime environment layers on the Intel
MPI and on the Intel C compiler and runtime libraries. The sgiupc(1) command
supports only the Intel C compiler on MIC devices.

To determine whether or not your system has MIC devices, type the following
command:

/usr/sbin/hwinfo | grep ’N: mic’

The following procedure explains how to compile and run complete SGI UPC
programs on systems with MIC devices. As an alternative, if you want to run only
certain portions of a program on MIC devices, use the procedure in the following
topic:

"Compiling and Running a Heterogeneous SGI UPC Program on both Xeon
Processors and on MIC Devices" on page 6

Procedure 1-2 To compile and run an SGI UPC program on MIC devices

1. (Optional) Determine the UPC compiler versions that are available on your
system.

Perform this step if you need to choose a compiler version.

4 007–5604–005

Unified Parallel C (UPC) User Guide

Type the following command to retrieve the Intel compiler versions for the Xeon
processors:

% ls /opt/intel/*/bin/compilervars.sh

Type the following command to retrieve the available Intel MPI compiler versions:

% ls /opt/intel/impi/*/intel64/bin/mpivars.sh

Note the versions that these commands return. The next step in this procedure
modifies your environment to use specific versions.

2. Type the following commands to create the SGI UPC programming environment:

% module load sgi-upc-devel

% source /opt/intel/compiler_version/bin/iccvars.sh intel64

% source /opt/intel/impi/mpi_version/intel64/bin/mpivars.sh

The preceding commands modify your enviroment variables and enable you to
run SGI UPC applications. You need to run these commands before you can
retrieve the sgiupc(1) man page and before you can run SGI UPC applications.

You need to run these commands only once.

3. Use a text editor to open a file, add UPC program statements, and save the file.

For example, the following example UPC program resides in hello.c:

#include <upc.h>

#include <stdio.h>
int

main ()

{

printf("Executing on thread %d of %d threads\n", MYTHREAD, THREADS);

}

4. Use the sgiupc(1) command to compile the program and generate an executable
file.

For example, the following command generates an executable file called hello:

sgiupc -mmic hello.c -o hello

The sgiupc(1) command is the front-end to the SGI UPC compiler suite. This
command manages all stages of the UPC compilation process: UPC language

007–5604–005 5

1: Introduction

preprocessing, UPC-to-C translation, back-end C compilation, and linking with
UPC runtime libraries.

The -mmic parameter bilds the application to run natively on MIC devices.

5. Use the Intel MPI mpiexec.hydra(1) command to run the executable program.

For example, to direct the program to run on four threads on device mic0,
specify the -np 4 parameter, and type the following command:

mpiexec.hydra -np 4 -host mic0 ./hello

You can expect output similar to the following:

Executing on thread 1 of 4 threads

Executing on thread 3 of 4 threads

Executing on thread 0 of 4 threads

Executing on thread 2 of 4 threads

The statements might not appear in the order listed in the preceding output
example.

For more information about sgiupc(1) and mpiexec.hydra(1), see the
corresponding man pages.

Compiling and Running a Heterogeneous SGI UPC Program on both Xeon Processors and
on MIC Devices

SGI UPC enables you to run only specific, predefined sections of code on a coprocessor
based on the Intel MIC architecture. This topic explains how to compile and run an
SGI UPC program that contains both code sections to be run on the Xeon processors
and code sections to to be run on MIC devices. The beginning of this procedure is
identical to the procedure that explains how to compile and run a program on only
Xeon processors. This procedure repeats these initial steps for your convenience.

You can use the #pragma offload directive to mark code segments that you want
to run on MIC devices. When the compiler encounters a #pragma offload
directive statement, it runs the code on the MIC coprocessor if it is available.
Otherwise, the code runs on the central processing unit.

SGI UPC supports shared variable specifications inside a #pragma offload
directive. However, SGI UPC does not support the __declspec((target(mic)) or
the __attribute__(target(mic)) specifications on UPC shared variables. For

6 007–5604–005

Unified Parallel C (UPC) User Guide

more information about the #pragma offload statement, see your Intel C compiler
documentation.

The following procedure explains how to run SGI UPC programs with some code
sections marked for MIC devices.

Procedure 1-3 To compile and run an SGI UPC program with some code sections marked to
run on MIC devices

1. (Optional) Determine the UPC compiler versions that are available on your
system.

Perform this step if you need to choose a compiler version.

Type the following command:

% ls /opt/intel/*/bin/compilervars.sh

Note the versions that this command returns. The next step in this procedure
modifies your environment to use a specific version.

2. Type the following commands:

% module load mpt

% module load sgi-upc-devel

% source /opt/intel/version/bin/compilervars.sh intel64

For version, specify the compiler version you want to use.

The preceding commands modify your enviroment variables and enable you to
run SGI UPC applications. You need to run these commands before you can
retrieve the sgiupc(1) man page and before you can run SGI UPC applications.

You need to load these programming modules into your environment only once.

3. Use a text editor to open a file, add UPC program statements, add the #pragma
offload directive where needed, and save the file.

007–5604–005 7

1: Introduction

For example, the following example UPC program resides in hello.c:

__declspec(target(mic))

int global = 55;

__declspec(target(mic))

int foo()

{

return ++global;
}

main()

{

int i;

int j;
#pragma offload target(mic) in(global) out(i, global) nocopy(j)

{

i = foo();

j = i;

}
printf("global = %d, i = %d (should be the same)\n", global, i);

}

4. Use the sgiupc(1) command and the mpirun(1) command to compile the
program and run the executable file.

For example, the following command generates an executable file called hello:

sgiupc -offload-build hello.c -o hello

mpirun -np 4 ./hello

In this example, the -np 4 parameter runs the program on four threads.

Mixing UPC Programs with Programs Written In Other Languages
You can mix UPC programs with programs written in other languages. The rules are
similar to those for mixing C programs with those written in other languages. In the
main program, make sure to invoke the UPC library function __upc_init() at the
start of the main function. This library function is required, and its role is to initialize
libupc.

The SGI UPC compiler uses a struct type to represent a shared pointer. This
practice accommodates large thread counts and large blocking sizes. This

8 007–5604–005

Unified Parallel C (UPC) User Guide

representation is subject to change in later releases, so to pass a shared pointer to a
non-UPC function, SGI recommends that you use functions supported within UPC to
access the individual components.

When you use the sgiupc(1) command to compile the main program, the compiler
links in the necessary libraries. If the main program is not a UPC program, or if you
did not compile the main program with the sgiupc(1) command, you need to link in
the appropriate libraries explicitly.

Using the sgi_upc Directive
You can use the sgi_upc directive to improve program performance.

Consider the following loop:

upc_forall (i = 0; i < N; i++; i)

a[i] = b[i] + c[i];

If the array references are all remote, there are 2 X N remote loads and N remote stores
performed in this loop.

If you know that the loop can be safely vectorized, insert a #pragma sgi_upc
vector=on directive, as follows, to direct the compiler to vectorize the loop:

#pragma sgi_upc vector=on

upc_forall (i = 0; i < N; i++; i)

a[i] = b[i] + c[i];

Conversely, if you know that there could be aliasing problems for the shared variables
within the preceding loop, you do not want to insert a #pragma sgi_upc
vector=on directive.

When you use the sgi_upc directive, the number of remote loads is reduced to 2,
and the number of stores is reduced to 1. Each of these actions accesses N elements at
a time. The directive reduces the communications overhead that you incur when a
program accesses remote data. If a, b, and c are shared restricted pointers, then the
compiler can perform this optimization without the user having to specify the
sgi_upc directive.

007–5604–005 9

1: Introduction

Debugging SGI UPC Programs
The Allinea Distributed Debugging Tool (DDT) is an advanced debugging tool for
scalar, multithreaded, large-scale parallel applications. DDT 3.1 and later supports
sgiupc 1.05 and later.

For more information about DDT, type ddt -h or browse to the information on
following website:

http://www.allinea.com.

Analyzing Application Performance
The Parallel Performance Wizard (PPW) is a performance analysis tool for partitioned
global address space (PGAS) programs. PPW 2.8 and later supports sgiupc 1.05 and
later.

For more information on PPW, see the ppw man page, the ppwhelp command, or the
following site: http://ppw.hcs.ufl.edu/.

OFED Configuration for UPC
You can specify the maximum number of queue pairs (QPs) for SHMEM and UPC
applications when run on large clusters over OFED fabric. If the log_num_qp
parameter is set to a number that is too low, the system generates the following
message:

MPT Warning: IB failed to create a QP

SHMEM and UPC codes use the InfiniBand RC protocol for communication between
all pairs of processes in the parallel job, which requires a large number of QPs. The
log_num_qp parameter defines the log2 of the number of QPs. The following
procedure explains how to specify the log_num_qp parameter.

Procedure 1-4 To specify the log_num_qp parameter

1. Log into one of the hosts upon which you installed the MPT software as the root
user.

2. Use a text editor to open file /etc/modprobe.d/libmlx4.conf.

10 007–5604–005

Unified Parallel C (UPC) User Guide

3. Add a line similar to the following to file /etc/modprobe.d/libmlx4.conf:

options mlx4_core log_num_qp=21

By default, the maximum number of queue pairs is 217 (131072).

4. Save and close the file.

5. Repeat the preceding steps on other hosts.

007–5604–005 11

Chapter 2

UPC Job Environment

This chapter describes the following topics:

• "About the UPC Job Environment" on page 13

• "Referencing Nonlocal Portions of Shared Arrays (SGI UVTM Systems)" on page 14

• "Tuning Runtime Behavior" on page 15

• "Tuning Execution Performance (SGI UV Series Systems)" on page 17

About the UPC Job Environment
The SGI® Unified Parallel C (UPC) run-time environment includes the the following
libraries:

• Message Passing Toolkit (MPT) MPI libraries.

• SHMEM libraries.

• SGI UV Global Reference Unit (GRU) libraries. The GRU libraries are linked
automatically on SGI UV 2000, SGI UV 1000, SGI UV 200, and SGI UV 100
systems, all of which contain a GRU coprocessor.

The libraries provide job launch, parallel job control, memory mapping, and
synchronization functionality. You can use the mpirun(1) or mpiexec_mpt(1)
commands to launch SGI UPC jobs just as you can for MPT MPI or SHMEM jobs.
UPC thread numbers correspond to SHMEM PE numbers and to MPI rank numbers
for MPI_COMM_WORLD.

By default, UPC (MPI) jobs have UPC threads (MPI processes) pinned to successive
logical CPUs within the system or cpuset in which the program runs. This is often
optimal, but if you need to map UPC threads to logical CPUs in a different way, see
the following:

• On the mpi(1) man page, see the information under the heading Using a CPU
list and see the information about the MPI_DSM_CPULIST envoironment
variable.

• On the omplace(1) man page, see the information about placement of parallel
MPI and UPC jobs.

007–5604–005 13

2: UPC Job Environment

Referencing Nonlocal Portions of Shared Arrays (SGI UV TM Systems)
On the SGI UV series systems, SGI UPC offers the following options for performing
references to non-local portions of shared arrays:

• Processor-driven shared memory

By default, UPC uses processor-driven references for nearby sockets.

• Global reference unit (GRU)-driven shared memory

The GRU is a remote direct memory access (RDMA) facility provided by the UV
hub application-specific integrated circuit (ASIC).

• InfiniBand fabric-driven shared memory access

The following environment variables are among the most commonly used to control
references to non-local portions of shared arrays:

Environment
Variable

Purpose

GRU_RESOURCE_FACTOR=2

Some SGI UV systems have Intel processors with two hyper-threads
per core, while others have a single hyper-thread per core. When
dual hyper-threads per core are available, most HPC codes benefit by
leaving one hyper-thread per core idle, thereby giving more cache
and functional unit resources to the active hyper-thread to be
assigned to one of the UPC threads. This is easy to do because the
upper half of the logical CPUs (by number) are hyper-threads that are
paired with the lower half of the logical CPUs.

Set GRU_RESOURCE_FACTOR=2 when leaving half of the
hyper-threads idle.

For more information about the GRU_RESOURCE_FACTOR
environment variable, see the gru_resource(3) man page.

GRU_TLB_PRELOAD=100

Set GRU_TLB_PRELOAD=100 to get the best GRU-based bandwidth
for large block copies.

For more information about the GRU_TLB_PRELOAD environment
variable, see the gru_environment(7) man page.

14 007–5604–005

Unified Parallel C (UPC) User Guide

MPI_GRU_CBS=0

This environment variable makes all GRU resources available to UPC.

For more information about the MPI_GRU_CBS environment variable,
see the MPI(1) man page.

MPI_SHARED_NEIGHBORHOOD

By default, UPC uses GRU-driven references for distant references.
You can use the the MPI_SHARED_NEIGHBORHOOD environment
variable to tune the threshold between "nearby" and "distant". For
more information about the MPI_SHARED_NEIGHBORHOOD
environment variable, see "Tuning Runtime Behavior" on page 15.

You can experiment with the MPI_SHARED_NEIGHBORHOOD=HOST
setting. Some shared array access patterns are faster when you use
processor-driven references.

For more information about the MPI_GRU_CBS environment variable,
see the MPI(1) man page.

Tuning Runtime Behavior
The UPC runtime library includes many environment variables that can affect or tune
run-time behavior. The following list describes these variables.

Environment
Variable

Purpose

UPC_ALLOC_MAX

Sets the per-thread maximum amount of memory, in bytes, that can
be allocated dynamically by upc_alloc() and the other shared
array allocation functions.

If you set UPC_ALLOC_MAX, make sure to verify that the
SMA_SYMMETRIC_SIZE variable is set correctly. The
SMA_SYMMETRIC_SIZE environment variable must be set to the sum
of the value of UPC_ALLOC_MAX plus the amount of space consumed
by statically allocated arrays in the UPC program.

When you run UPC programs on InfiniBand clusters and you set the
UPC_ALLOC_MAX environment variable to the right size, the system

007–5604–005 15

2: UPC Job Environment

preallocates physical memory in the shared array heap. If the actual
memory space used by dynamically allocated arrays is less than the
preallocated amount, excessive physical memory is consumed.

The default is the amount of physical memory per logical CPU on the
system.

For more information about the UPC_ALLOC_MAX environment
variable, see the sgiupc(1) man page.

For more information about the SMA_SYMMETRIC_SIZE environment
variable, see intro_shmem(3) man page.

Availability:

• SGI ICE systems

• SGI UV systems

• SGI Rackable systems with InfiniBand

UPC_CAUTIOUS_STRICT

When the UPC_CAUTIOUS_STRICT environment variable is set to a
nonzero value, it is enabled. When enabled, libupc performs a
upc_fence call before all strict accesses, regardless of whether the
previous access was strict or relaxed.

When the UPC_CAUTIOUS_STRICT=0, it is disabled. When disabled,
libupc performs a upc_fence call only if there were one or more
relaxed writes since the previous upc_fence access.

The default is disabled.

For more information about the UPC_CAUTIOUS_STRICT
environment variable, see the sgiupc(1) man page.

Availability:

• SGI ICE systems

• SGI UV systems with InfiniBand

• SGI Rackable systems with InfiniBand

16 007–5604–005

Unified Parallel C (UPC) User Guide

UPC_HEAP_CHECK

When UPC_HEAP_CHECK=1, libupc checks the integrity of the
shared memory heap from which shared arrays are allocated.

The default value is 0.

For more information about the UPC_HEAP_CHECK environment
variable, see the sgiupc(1) man page.

Availability:

• SGI ICE systems

• SGI UV systems

• SGI Rackable systems with InfiniBand

UPC_IB_BUFFER_SIZE

The UPC_IB_BUFFER_SIZE environment variable sets the size of the
buffer used for InfiniBand fabric copy operations. This per-thread
buffer is allocated and used for remote-to-remote copies over the
InfiniBand fabric and for transfers of data to and from the InfiniBand
network in which the data cannot be transferred directly.

The default size is 16 kilobytes. The minimum size is 1 kilobytes.

For more information about the UPC_IB_BUFFER_SIZE environment
variable, see the sgiupc(1) man page.

Availability:

• SGI ICE systems with InfiniBand

• SGI UV systems with InfiniBand

• SGI Rackable systems with InfiniBand

Tuning Execution Performance (SGI UV Series Systems)
SGI supports a number of MPI and SHMEM environment variables that you can use
to tune execution performance on SGI UV systems. Some of the most useful variables
are as follows:

007–5604–005 17

2: UPC Job Environment

Environment
Variable

Purpose

MPI_SHARED_NEIGHBORHOOD

When you set MPI_SHARED_NEIGHBORHOOD=HOST, UPC shared
arrays use processor-driven shared memory transfers instead of GRU
transfers. The size of the memory blocks being accessed in a remote
part of a shared array, and other factors, determine whether
processor-driven or GRU-driven transfers perform better.

The default is MPI_SHARED_NEIGHBORHOOD=BLADE, which directs
UPC threads to use processor-driven shared memory for references to
shared array blocks that have affinity for the threads associated with
sockets on the same UV hub.

For more information about the MPI_SHARED_NEIGHBORHOOD
environment variable, see the MPI(1) man page.

MPI_GRU_CBS

These environment variables reserve SGI UV GRU resources for MPI,
which makes them unavailable to UPC. If you set MPI_GRU_CBS=0,
MPI does not reserve permanent GRU resources, which leaves all
GRU resources available to UPC.

For more information about the MPI_GRU_CBS environment variable,
see the MPI(1) man page.

GRU_RESOURCE_FACTOR

This environment variable specifies an integer multiplier that
increases the amount of per-thread GRU resources that can be used
by a UPC program. If UPC programs are placed such that some
portion of the logical CPUs (hyper-threads) on each UV hub are left
idle, you can specify a corresponding integer multiplier.

For example, if half of the logical CPUs are idle, SGI recommends
that you set GRU_RESOURCE_FACTOR=2.

For more information about the GRU_RESOURCE_FACTOR
environment variable, see the gru_resource(3) man page.

18 007–5604–005

Index

C

compiling and executing a sample UPC program
(MIC devices), 4

compiling and executing a sample UPC program
(Xeon or AMD processor), 2

Configuring MPT
OFED, 10

D

debugging tool
Allinea Distributed Debugging Tool (DDT) , 10

E

environment variables
GRU_RESOURCE_FACTOR, 18
GRU_RESOURCE_FACTOR=2, 14
GRU_TLB_PRELOAD, 14
MPI_GRU_CBS, 15, 18
MPI_SHARED_NEIGHBORHOOD, 15
SMA_SYMMETRIC_SIZE, 15
UPC_CAUTIOUS_STRICT, 16
UPC_HEAP_CHECK, 17
UPC_IB_BUFFER_SIZE, 17

G

global reference unit (GRU), 14

I

InfiniBand fabric
shared memory access, 14, 17

introduction, 1
related documentation, 1
UPC specifications, 1

O

OFED configuration for MPT, 10

P

parallel performance wizard (PPW), 10

R

referencing non-local portions of shared arrarys, 14
runtime library

setting environment variables
GRU_RESOURCE_FACTOR, 18
MPI_GRU_CBS, 18
MPI_SHARED_NEIGHBORHOOD, 18
SMA_SYMMETRIC_SIZE, 15
UPC_ALLOC_MAX, 15
UPC_CAUTIOUS_STRICT, 16
UPC_HEAP_CHECK, 17
UPC_IB_BUFFER_SIZE, 17

S

SGI APIs

007–5604–005 19

Index

MPI, 13
SHMEM, 13

shared pointer representation and access, 8

U

UPC job environement, 13
UPC Language Specifications, 1

UPC runtime library environment variables, 15
UPC: Distributed Shared Memory Programming, 1

V

vectorization of loops to reduce remote
communication overhead, 9

20 007–5604–005

	New Features in This Manual
	Table of Contents
	About This Guide
	Related Publications and Other Sources
	Obtaining Publications
	Helpful Online Resources
	Conventions
	Reader Comments

	1. Introduction
	Compiling and Running an SGI UPC Program
	Compiling and Running an SGI UPC Program Exclusively on Xeon Processors or AMD Processors
	Compiling and Running an SGI UPC Program Natively on MIC Devices (Intel Xeon Processor Platforms Only)
	Compiling and Running a Heterogeneous SGI UPC Program on both Xeon Processors and on MIC Devices

	Mixing UPC Programs with Programs Written In Other Languages
	Using the sgi_upc Directive
	Debugging SGI UPC Programs
	Analyzing Application Performance
	OFED Configuration for UPC

	2. UPC Job Environment
	About the UPC Job Environment
	Referencing Nonlocal Portions of Shared Arrays (SGI UV TM Systems)
	Tuning Runtime Behavior
	Tuning Execution Performance (SGI UV Series Systems)

	Index

