sgi

High Availability Extension and $\text{SGI}^{\text{\tiny{\$}}}$ InfiniteStorage $^{\text{\tiny{\intercal}}}$

COPYRIGHT

© 2010–2012 Silicon Graphics International Corp. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS

Altix, CXFS, FailSafe, SGI, SGI InfiniteStorage, SGI OpenVault, the SGI logo, Supportfolio, and XFS are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in the United States and other countries.

Intel is a trademark of Intel Corporation in the U.S. and other countries. Linux is a registered trademark of Linus Torvalds in the U.S. and other countries. Novell is a registered trademark and SUSE is a trademark of Novell, Inc. in the United States and other countries. Supermicro is a registered trademark of Super Micro Computer Inc. All other trademarks mentioned herein are the property of their respective owners.

New Features in this Guide

This revision contains the following:

- Information about the community IPMI STONITH ipmi. See "Community IPMI STONITH Examples" on page 169.
- Various clarifications about COPAN OpenVault client resources, including the following:
 - "COPAN MAID HA Service for Mover Nodes Rolling Upgrade" on page 185
 - "Full Outage for COPAN MAID OpenVault Client HA on Mover Nodes" on page 193
- Improved organization in Chapter 4, "Outline of the Configuration Procedure" on page 37.
- The HA_VIRTUAL_HOSTNAME parameter has been removed because it overlaps with the more general INTERFACE parameter. Sites using HA_VIRTUAL_HOSTNAME in the DMF configuration file must now use INTERFACE instead. See "DMF Requirements" on page 33.

007–5617–006 iii

Record of Revision

Version	Description
001	July 2010 Original publication, supporting the SGI® InfiniteStorage Software Platform (ISSP) 2.1 release
002	September 2010 Revision to support ISSP 2.2
003	January 2011 Revision to support ISSP 2.3
004	April 2011 Revision to support ISSP 2.4
005	October 2011 Revision to support ISSP 2.5
006	April 2012 Revision to support ISSP 2.6

007–5617–006 v

Contents

About This Guide	⁄ii
Prerequisites	vii
Related SGI Publications	vii
Obtaining SGI Publications	iii
Conventions	iii
Reader Comments	ХX
1. Introduction	1
High Availability Extension	1
SGI Resource Agents and RPMs	2
Failover Example Scenarios	4
CXFS™ NFS Edge-Serving Failover	4
DMF Failover	7
COPAN MAID OpenVault Client HA Service for Mover Nodes	8
Configuration Tools	10
2. Best Practices	11
Preliminary Best Practices	11
HA Configuration Best Practices	12
Administrative Best Practices	17
Maintenance Best Practices	20
Questions to Ask Before Performing Maintenance	20
Hardware Maintenance	21
System Software Updates	21
ISSP Software Updates	21
007–5617–006	vii

Changes Permitted on a Running Resource	21
Changes that Require Maintenance Mode	22
Changes that Require a Full Cluster Outage	22
3. Requirements	23
HAE Support Requirements	24
Licensing Requirements	24
Software Version Requirements	24
Hardware Requirements	24
System Reset Requirements	25
Time Synchronization Requirements	25
CXFS NFS Edge-Serving Requirements	25
CXFS Requirements	27
CXFS Server-Capable Administration Nodes	27
CXFS Relocation Support	28
Applications that Depend Upon CXFS Filesystems	28
CXFS and System Reset	28
CXFS Start/Stop Issues	28
CXFS Volumes and DMF-Managed User Filesystems	29
Local XVM Requirements	29
Filesystem Requirements	30
Virtual IP Address Requirements	30
ГМF Requirements	30
OpenVault™ Requirements	30
COPAN MAID Requirements	31
COPAN MAID in Any HA Cluster	32
COPAN MAID in a DMF HA Cluster	32

viii 007–5617–006

ix

COPAN MAID in a Mover-Node HA Cluster			32
DMF Requirements			33
NFS Requirements		•	35
Samba Requirements			35
DMF Manager Requirements			36
DMF Client SOAP Service Requirements			36
4. Outline of the Configuration Procedure	•	•	37
Prepare for HA			37
Install the HAE Software			38
Enable Multicasting on the Switch			38
Configure the Primary Node for HA Using YaST			39
Modify the HAE Authorization and Configuration Files			40
Configure Log and HA Services on Both Nodes			40
Configure and Test the SGI Resources			41
Put the HA Cluster Into Production Mode		•	41
5. Standard Services	•	•	43
CXFS NFS Edge-Serving Standard Service			44
CXFS Standard Service			45
Local XVM Standard Service			45
ГМF Standard Service			46
OpenVault Standard Service		•	46
COPAN MAID Standard Service			47
DMF Standard Service			48
NFS Standard Service			48
Samba Standard Service			49
DMF Manager Standard Service			49
DMF Client SOAP Standard Service			50

007-5617-006

X

6. CXFS NFS Edge-Serving HA Service	51
CXFS NFS Edge-Serving HA Example Procedure	51
Start the GUI	53
Create the Clone	53
Test the Clone	54
Create Two IP Alias Groups	56
Create the Constraints	56
Test the IP Alias Groups	57
CXFS Client Resource	60
Configuring the CXFS Client for HA	60
Creating the CXFS Client Primitive	61
Required Fields for a CXFS Client	61
Instance Attributes for a CXFS Client	61
Probe Monitor Operation for a CXFS Client	61
Monitor Operation for a CXFS Client	62
Start Operation for a CXFS Client	62
Stop Operation for a CXFS Client	63
CXFS Client NFS Server Resource	63
Configuring CXFS Client NFS for HA	63
Creating the CXFS Client NFS Server Primitive	64
Required Fields for a CXFS Client NFS Server	64
Instance Attributes for a CXFS Client NFS Server	64
Probe Monitor Operation for a CXFS Client NFS Server	65
Monitor Operation for a CXFS Client NFS Server	65
Start Operation for a CXFS Client NFS Server	66
Stop Operation for CXFS Client NFS Server	66
• •	
Virtual IP Address Resource	67
Creating the Virtual IP Address Primitive	67

007-5617-006

	Required Fields for a Virtual	IP Ad	dre	SS		•		•	•			•	•	•	•		•	•		67
	Instance Attributes for a Virtu	ıal IP	Ad	dres	SS															67
	Meta Attributes for a Virtual	IP Ad	ldre	SS																68
	Probe Monitor Operation for	a Virt	ual	IP A	Add	dres	S													68
	Start Operation for a Virtual l	IP Ad	dres	SS			•								•				•	68
	Stop Operation for a Virtual I	P Ad	dres	SS																68
CXFS	Client NSM Notification Res	ource																		69
Cre	eating the CXFS Client NSM	Notifi	catio	on I	Prin	nitiv	⁄e													69
	Required Fields for a CXFS C	lient l	NSN	ΛN	otif	icat	ion													69
	Instance Attributes for a CXF	S Clie	nt N	NSN	1 N	otif	icat	ion	l											69
	Meta Attributes for a CXFS C	lient 1	NSN	M N	otif	ficat	ion													70
	Probe Monitor Operation for	a CXI	FS C	Clier	nt N	ISM	I N	otif	icat	tior	1									70
	Monitor Operation for a CXF	S Clie	nt N	NSN	1 N	otif	icat	ion												71
	Start Operation for a CXFS C	lient 1	NSN	1 N	otifi	icat	ion													71
			TCN		~+:C	+														71
	Stop Operation for a CXFS Cl	lient l'	NSIV	1 N	oun	ıcau	1011		•	•	•	•	•	•	•	•	•	•	•	71
	•	nent P	NSIV.	1 N	OUIII	icau	ЮП		•	•	•	•	•	•	•	•	•	•	•	
7. D	MF HA Service				•	•	•				•		•	•	•	•		•		73
7. D DMF	MF HA Service HA Example Procedure .	• •			•	•	•	• ·		•		•	•	•	· ·	· ·		•	· ·	7 3
7. D DMF CXFS	MF HA Service HA Example Procedure				•	•	•	· · · · · · · · · · · · · · · · · · ·	· .		• • •	· .	· ·	·	·					73
7. D DMF CXFS Cre	MF HA Service HA Example Procedure . Resource eating the CXFS Primitive				•	•	•	· · · · · · · · · · · · · · · · · · ·	·	· ·	· ·	·	·	·		·			· · ·	7 3 74 77
7. D DMF CXFS Cre	MF HA Service HA Example Procedure . Resource eating the CXFS Primitive Required Fields for CXFS				•	•	•	· .							·	· · · · · · · · · · · · · · · · · · ·				73 74 77 77
7. D DMF CXFS Cro	MF HA Service HA Example Procedure . Resource eating the CXFS Primitive				•	•	•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		73 74 77 77 77
7. D DMF CXFS Cro	MF HA Service HA Example Procedure				•		•	•				· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		73 74 77 77
7. D DMF CXFS Cro	MF HA Service HA Example Procedure				•		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	73 74 77 77 77 77
7. D DMF CXFS Cre	MF HA Service HA Example Procedure				•		· · · · · · · · · · · · · · · · · · ·					• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •						• • • • • • • • • • • • • • • • • • • •	73 74 77 77 77 78 78
7. D DMF CXFS Cre	MF HA Service HA Example Procedure Resource eating the CXFS Primitive Required Fields for CXFS Instance Attributes for CXFS Meta Attributes for CXFS Probe Operation for CXFS Monitor Operation for CXFS Start Operation for CXFS				•		· · · · · · · · · · · · · · · · · · ·					• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • •		73 74 77 77 77 78 78 78 78
7. D DMF CXFS Cre	MF HA Service HA Example Procedure				•							• • • • • • • • • •								73 74 77 77 77 78 78

007–5617–006 xi

Local XVM Resource							80
Creating the Local XVM Primitive							81
Required Fields for Local XVM			•				81
Instance Attributes for Local XVM							81
Meta Attributes for Local XVM			•				81
Probe Monitor Operation for Local XVM			•				81
Monitor Operation for Local XVM						•	82
Start Operation for Local XVM							82
Stop Operation for Local XVM			•				83
Testing the Local XVM Resource							83
Filesystem Resources							84
Filesystems Supported							85
Configuring a DMF-Managed User Filesystem or DMF Administr	ative	Files	yste	m fo	or H	4	86
Creating a DMF-Managed User Filesystem Primitive							86
Required Fields for a DMF-Managed User Filesystem							86
Instance Attributes for a DMF-Managed User Filesystem .							86
Meta Attributes for a DMF-Managed User Filesystem						•	87
Probe Monitor Operation for a DMF-Managed User Filesystem							87
Monitor Operation for a DMF-Managed User Filesystem .							87
Start Operation for a DMF-Managed User Filesystem							87
Stop Operation for a DMF-Managed User Filesystem	·		•	•		·	88
Creating a DMF Administrative Filesystem Primitive	•	•	•	•		•	88
Required Fields for a DMF Administrative Filesystem	•	• •	•	•		•	88
·	•		•	•		•	
Instance Attributes for a DMF Administrative Filesystem .	•		•	•		•	88
Meta Attributes for a DMF Administrative Filesystem	٠		•	•		٠	89
Probe Monitor Operation for a DMF Administrative Filesystem	1		•	•		٠	89
Monitor Operation for a DMF Administrative Filesystem .							89

xii 007–5617–006

Start Operation for a DMF Administrative Filesystem	90
Stop Operation for a DMF Administrative Filesystem	90
Creating a Dedicated OpenVault Server Filesystem Primitive (Optional)	90
Required Fields for an OpenVault Server Filesystem	90
Instance Attributes for an OpenVault Server Filesystem	91
Meta Attributes for an OpenVault Server Filesystem	91
Probe Monitor Operation for an OpenVault Server Filesystem	91
Monitor Operation for an OpenVault Server Filesystem	91
Start Operation for OpenVault Server Filesystem	92
Stop Operation for an OpenVault Server Filesystem	92
Testing Filesystem Resources	92
Virtual IP Address Resource	94
Creating the Virtual IP Address Primitive	94
Required Fields for a Virtual IP Address	94
Instance Attributes for a Virtual IP Address	94
Meta Attributes for a Virtual IP Address	94
Probe Monitor Operation for a Virtual IP Address	94
Start Operation for a Virtual IP Address	95
Stop Operation for a Virtual IP Address	95
Testing the Virtual IP Address Resource	96
TMF Resource	97
Configuring TMF for HA	97
Creating the TMF Primitive	98
Required Fields for TMF	98
Instance Attributes for TMF	98
Meta Attributes for TMF	100
Probe Monitor Operation for TMF	100

007–5617–006 xiii

Monitor Operation for TMF	. 101
Start Operation for TMF	. 101
Stop Operation for TMF	. 102
Testing the TMF Resource	. 102
OpenVault Resource	. 104
Configuring OpenVault for HA	. 104
Creating the OpenVault Primitive	. 111
Required Fields for OpenVault	. 111
Instance Attributes for OpenVault	. 111
Meta Attributes for OpenVault	. 112
Probe Monitor Operation for OpenVault	. 112
Monitor Operation for OpenVault	. 112
Start Operation for OpenVault	. 113
Stop Operation for OpenVault	. 113
Testing the OpenVault Resource	. 114
COPAN MAID OpenVault Client Resource	. 116
Creating the OpenVault Components on the Failover Node	. 116
Creating the COPAN MAID OpenVault Client Primitive	. 118
Required Fields for a COPAN MAID OpenVault Client	. 118
Meta Attributes for a COPAN MAID OpenVault Client	. 118
Instance Attributes for a COPAN OpenVault Client	. 118
Probe Monitor Operation for a COPAN MAID OpenVault Client	. 118
Monitor Operation for a COPAN MAID OpenVault Client	. 119
Start Operation for a COPAN MAID OpenVault Client	. 119
Stop Operation for a COPAN MAID OpenVault Client	. 119
Testing the COPAN MAID OpenVault Client Resource	. 120

xiv 007–5617–006

DMF Resource											121
Configuring DMF for HA											122
Creating the DMF Primitive .											124
Required Fields for DMF .											124
Instance Attributes for DMF											125
Meta Attributes for DMF .											125
Probe Monitor Operation for D	M	F									125
Monitor Operation for DMF											125
Start Operation for DMF .											126
Stop Operation for DMF .											126
Testing the DMF Resource .											127
NFS Resource											128
Configuring NFS for HA											128
Creating the NFS Primitive .											129
Required Fields for NFS .											129
Instance Attributes for NFS											129
Meta Attributes for NFS .											129
Probe Monitor Operation for N	IFS	S									129
Monitor Operation for NFS .											130
Start Operation for NFS											130
Stop Operation for NFS											130
Testing the NFS Resource											131
Samba Resources											132
Configuring Samba for HA .											132
Creating the smb Primitive .											134
Required Fields for smb											134
Probe Monitor Operation for s	mk)									134

007–5617–006 xv

Start Operation for smb	4
Stop Operation for smb	5
Creating the nmb Primitive	5
Required Fields for nmb	5
Probe Monitor Operation for nmb	5
Start Operation for nmb	5
Stop Operation for nmb	6
Testing the Samba Resources	6
DMF Manager Resource	7
Configuring DMF Manager for HA	7
Creating the DMF Manager Primitive	8
Required Fields for DMF Manager	8
Meta Attributes for DMF Manager	9
Probe Monitor Operation for DMF Manager	9
Monitor Operation for DMF Manager	9
Start Operation for DMF Manager	0
Stop Operation for DMF Manager	0
Testing the DMF Manager Resource	1
DMF Client SOAP Service Resource	2
Configuring DMF Client SOAP Service for HA	2
Creating the DMF Client SOAP Service Primitive	3
Required Fields for DMF Client SOAP Service	3
Meta Attributes for DMF Client SOAP Service	3
Probe Monitor Operation for DMF Client SOAP Service	3
Monitor Operation for DMF Client SOAP Service	3
Start Operation for DMF Client SOAP Service	4
Stop Operation for DMF Client SOAP Service	4

xvi 007–5617–006

xvii

Testing the DMF Client SOAP Service Resource		•						•	145
8. COPAN MAID HA Service for Mover Nodes				•				•	147
COPAN MAID HA for Mover Nodes Example Procedure .									147
Disable the Parallel Data Mover Nodes and the Services									149
Create the OpenVault Components on the Failover Node									150
Start the GUI									152
Create the CXFS Client Clone									152
Test the Clone									153
Create the COPAN OpenVault Client Resources								•	155
Create the Constraints									155
Test the ov_copan_client Resource									156
CXFS Client Resource									157
Creating the CXFS Client Primitive									157
Required Fields for a CXFS Client									157
Instance Attributes for a CXFS Client									157
Probe Monitor Operation for a CXFS Client									158
Monitor Operation for a CXFS Client									158
Start Operation for a CXFS Client									159
Stop Operation for a CXFS Client									159
COPAN OpenVault Client Resource									159
Creating the COPAN OpenVault Client Primitive									160
Required Fields for a COPAN OpenVault Client									160
									160
•									160
Probe Monitor Operation for a COPAN OpenVault Client								•	160
•								•	
1	•	•	•	 ٠	٠	٠	٠	•	160
Start Operation for a COPAN OpenVault Client	•	•	•	 •	•	•	•	•	161

007-5617-006

Stop Operation for a COPAN OpenVault Client		٠	•	•	•		٠	٠	•	•	٠		161
9. STONITH Resource Examples	•	•										•	163
Overview of STONITH Resources													163
L2 STONITH Examples													163
Creating the L2 STONITH Clone													164
Creating the L2 STONITH Primitive													164
Required Fields for L2 STONITH													164
Instance Attributes for L2 STONITH													164
Probe Monitor Operation for L2 STONITH													165
Monitor Operation for L2 STONITH													165
Start Operation for L2 STONITH													165
Testing the L2 STONITH Resource													166
SGI IPMI STONITH Examples													166
Creating the SGI IPMI STONITH Clone													166
Creating the SGI IPMI STONITH Primitive													167
Required Fields for SGI IPMI STONITH													167
Instance Attributes for SGI IPMI STONITH													167
Probe Monitor Operation for SGI IPMI STONITH													168
Monitor Operation for SGI IPMI STONITH													168
Start Operation for SGI IPMI STONITH													168
Testing the SGI IPMI STONITH Resource													169
Community IPMI STONITH Examples													169
Creating the Community IPMI STONITH Constraints													169
Creating the Community IPMI STONITH Primitive													170
Required Fields for Community IPMI STONITH													170
Instance Attributes for Community IPMI STONITH	•	•	•	•	•	•	•		•	•	•	•	170
instance remission community in the STOTHITI		•	•	•	•	•	•	•	•	•	•	•	110

xviii 007–5617–006

Probe Monitor Operation for Community IPMI STONITH	. 170
Monitor Operation for Community IPMI STONITH	. 170
Start Operation for Community IPMI STONITH	. 171
Testing the Community IPMI STONITH Resource	. 171
10. Administrative Tasks and Considerations	. 173
Putting the Cluster into Maintenance Mode	. 174
Viewing the Contents of the CIB	. 174
Backing Up the CIB	. 174
Understanding CIFS and NFS in an HA Cluster	. 175
Reviewing the Log File	. 175
Clearing the Resource Primitive Failcount	. 175
Clearing the Resource State on a Node	. 175
Controlling the Number of Historical Files	. 176
Changing DMF Configuration Parameters	. 177
Restarting the OpenVault Server	. 177
Manually Moving a copan_ov_client Resource	. 178
Performing a Rolling Upgrade	. 180
CXFS NFS Edge-Serving HA Rolling Upgrade	. 181
DMF HA Rolling Upgrade	. 183
COPAN MAID HA Service for Mover Nodes Rolling Upgrade	. 185
Stopping the HAE openais Service	. 186
Manually Issuing a System Reset	. 186
Hardware Maintenance on a Cluster Node	. 187
Maintenance with a Full Cluster Outage	. 189
Full Outage for CXFS NFS Edge-Serving HA	. 189
Full Outage for DMF HA	. 191

007–5617–006 xix

ХX

Full Outage for COPAN MAID OpenVault Client HA on Mover Nodes	•	. 193
11. Troubleshooting		. 195
Diagnosing Problems		. 195
Monitor the Status Output		. 195
Verify the Configuration in Greater Detail		. 196
Increase the Verbosity of Error Messages		. 196
Match Status Events To Error Messages		. 196
Verify chkconfig Settings		. 197
Diagnose the Problem Resource		. 197
Examine Application-Specific Problems that Impact HA		. 197
Directly Test the STONITH Capability		. 198
IPMI STONITH Capability		. 198
L2 STONITH Capability		. 198
Gather Troubleshooting Data		. 199
Collect System Configuration Information		. 199
Collect System Logs		. 199
Collect HA Cluster Information		. 199
Collect SGI Service-Specific Information		. 200
Generate a Kernel Crash Dump		. 200
Use SGI Knowledgebase		. 201
Failover Testing Strategies		. 202
Corrective Actions		. 205
Recovering from an Incomplete Failover		. 205
Recovering from a CIB Corruption		. 206
Clearing the Failcounts After a Severe Error		. 206
Appendix A. Differences Among FailSafe®, Heartbeat, and HAE		. 207
xx (007–5	617–006

High Availability Extension and SGI [®] InfiniteStorage [™]	High Availability	Extension	and SGI®	InfiniteStorage™
---	-------------------	-----------	----------	------------------

Glossary	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	211
Index .							•	•						•										217

007–5617–006 xxi

Figures

Figure 1-1	CXFS NFS Edge-Serving HA Service — Normal State
Figure 1-2	CXFS NFS Edge-Serving HA Service — After Failover
Figure 1-3	DMF HA Service — Normal State
Figure 1-4	DMF HA Service — After Failover
Figure 1-5	COPAN OpenVault Client HA Service for Mover Nodes — Normal State $$. $$.
Figure 1-6	COPAN OpenVault Client HA Service for Mover Nodes — After Failover $$. $$.
Figure 6-1	CXFS NFS Edge-Server HA Service Map of Resources
Figure 7-1	DMF HA Service Map of Resources
Figure 8-1	COPAN MAID HA Service for Mover Nodes

007–5617–006 xxiii

Tables

Table 1-1	Resource Agents in the sgi-ha-ocf-plugins RPM .	•	•	•		•	•	2
Table 1-2	Resource Agents in the ${\tt sgi-ha-stonith-plugins}$ RPM							3
Table 11-1	Failover Tests							203
Table A-1	Differences Among FailSafe, Heartbeat, and HAE							207

007–5617–006 xxv

About This Guide

This publication provides information about creating resources for the high-availability (HA) SGI® resource agents that SGI provides for use with the SUSE® Linux® Enterprise High Availability Extension (HAE) product.

Prerequisites

To use this guide, you must have access to the SUSE HAE *High Availability Guide* provided by the following Novell, Inc., website:

http://www.novell.com/documentation/sle_ha/

Related SGI Publications

The following SGI publications contain additional information:

- CXFS 6 Administrator Guide for SGI InfiniteStorage
- CXFS 6 Client-Only Guide for SGI InfiniteStorage
- DMF 5 Administrator Guide for SGI InfiniteStorage
- DMF 5 Filesystem Audit Guide for SGI InfiniteStorage
- DMF 5 Filesystem Audit Guide for SGI InfiniteStorage
- OpenVault Operator's and Administrator's Guide
- SGI L1 and L2 Controller Software User's Guide
- SGI InfiniteStorage Software Platform (ISSP) release note (README.txt)
- TMF 5 Administrator's Guide for SGI InfiniteStorage
- XVM Volume Manager Administrator Guide
- The hardware guide for your SGI server

007–5617–006 xxvii

Obtaining SGI Publications

You can obtain SGI documentation as follows:

- See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
 are available. This library contains the most recent and most comprehensive set of
 online books, man pages, and other information.
- You can view man pages by typing man title at a command line.
- The /docs directory on the ISSP DVD or in the Supportfolio™ download directory contains the following:
 - The ISSP release note: /docs/README.txt
 - Other release notes: /docs/README_NAME.txt
 - A complete list of the packages and their location on the media: /docs/RPMS.txt
 - The packages and their respective licenses: /docs/PACKAGE_LICENSES.txt
- The release notes and manuals are provided in the noarch/sgi-isspdocs RPM and will be installed on the system into the following location:

/usr/share/doc/packages/sgi-issp-ISSPVERSION/TITLE

Conventions

In this guide, *High Availability Extension* and *HAE* refer to the Novell SUSE Linux Enterprise High Availability Extension product.

The following conventions are used throughout this document:

Convention	Meaning
command	This fixed-space font denotes literal items such as commands, files, routines, path names, signals, messages, and programming language structures.
variable	Italic typeface denotes variable entries and words or concepts being defined.
user input	This bold, fixed-space font denotes literal items that the user enters in interactive sessions. (Output is shown in nonbold, fixed-space font.)

xxviii 007–5617–006

[] Brackets enclose optional portions of a command or

directive line.

... Ellipses indicate that a preceding element can be

repeated.

manpage(x) Man page section identifiers appear in parentheses after

man page names.

GUI This font denotes the names of graphical user interface

(GUI) elements such as windows, screens, dialog boxes, menus, toolbars, icons, buttons, boxes, fields, and lists.

cxfsclient# This prompt indicates that the example command is

executed on a CXFS client-only node

cxfsserver# This prompt indicates that the example command is

executed on a CXFS server-capable administration node

dmfserver# This prompt indicates that the example command is

executed on a DMF server

downnode# This prompt indicates that the example command is

executed on the HAE node that requires maintenance

ha# This prompt indicates that the example command is

executed on any node that is or will be in the HA cluster

nfsclient# This prompt indicates that the example command is

executed on an NFS client outside of the HA cluster

node1# This prompt indicates that the example command is

executed on node1, a node that is or will be in the HA

cluster

node2# This prompt indicates that the example command is

executed on node2, a node that is or will be in the HA

cluster

otherhost# This prompt indicates that the example command is

executed on machine outside of the HA cluster

pdmn# This prompt indicates that the example command is

executed on a DMF parallel data mover node

pdmn1# This prompt indicates that the example command is

executed on pdmn1 (analogous to node1), a node that

is or will be in the HA cluster

007–5617–006 xxix

pdmn2# This prompt indicates that the example command is

executed on pdmn2 (analogous to node2), a node that

is or will be in the HA cluster

upnode# This prompt indicates that the example command is

executed on the HA node that does not require

maintenance

Reader Comments

If you have comments about the technical accuracy, content, or organization of this publication, contact SGI. Be sure to include the title and document number of the publication with your comments. (Online, the document number is located in the front matter of the publication. In printed publications, the document number is located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

- Contact your customer service representative and ask that an incident be filed in the SGI incident tracking system.
- Send mail to the following address:

SGI Technical Publications 46600 Landing Parkway Fremont, CA 94538

SGI values your comments and will respond to them promptly.

xxx 007–5617–006

Introduction

This chapter discusses the following:

- "High Availability Extension" on page 1
- "SGI Resource Agents and RPMs" on page 2
- "Failover Example Scenarios" on page 4
- "Configuration Tools" on page 10

High Availability Extension

The SUSE Linux Enterprise High Availability Extension (HAE) product provides the infrastructure to fail over individual *highly available (HA) resources* and entire *HA services* that survive a single point of failure. A *resource* is managed by HA. A *resource group* is a set of resources that must be managed and failed over from one node to another as a set. An *entire HA service* can include resource groups and individual resources and is usually associated with an IP address. HA starts, monitors, and stops resources and entire HA services. A *resource agent* is the set of software that allows an application to be highly available without modifying the application itself.

HA uses the IP address of a resource to direct clients to the node currently running the resource. Each resource is actively owned by one node. If that node fails, an alternate node restarts the HA services of the failed node. To application clients, the services on the alternate node are indistinguishable from those on the original node.

This guide does not discuss HA in general, nor does it provide details about configuring an HA cluster; for those details, see the Novell *High Availability Guide* provided by the following website:

http://www.novell.com/documentation/sle_ha/

007–5617–006

SGI Resource Agents and RPMs

Table 1-1 and Table 1-2 list the Open Cluster Framework (OCF) resource agents and the STONITH (*shoot the other node in the head*) resource agents that SGI provides in the SGI ISSP High Availability YaST pattern.

For information about software installation, see the *SGI InfiniteStorage*TM *Software Platform* (ISSP) release note and Chapter 4, "Outline of the Configuration Procedure" on page 37.

Table 1-1 Resource Agents in the sgi-ha-ocf-plugins RPM

Resource Agent	Description
copan_ov_client	COPAN MAID OpenVault client for DMF parallel data mover nodes and DMF servers. See:
	 "Creating the COPAN MAID OpenVault Client Primitive" on page 118 "Creating the COPAN OpenVault Client Primitive" on page 160
cxfs	CXFS [™] clustered filesystems whose metadata server location must follow the location of another resource, such as DMF or NFS. See "Creating the CXFS Primitive" on page 77.
cxfs-client	CXFS clustered filesystems (mounted on a CXFS client-only node) that are required to support another resource, such as those to be NFS-served from a CXFS client-only node or those used for a DMF parallel data mover node. See:
	"Creating the CXFS Client Primitive" on page 61"Creating the CXFS Client Primitive" on page 157
cxfs-client-nfsserver	NFS server on a CXFS client-only node. See "Creating the CXFS Client NFS Server Primitive" on page 64.
cxfs-client-smnotify	Network Status Monitor (NSM) lock reclaim notification on a CXFS client-only node. See "Creating the CXFS Client NSM Notification Primitive" on page 69.
dmf	DMF server. See "Creating the DMF Primitive" on page 124.
dmfman	DMF Manager tool. See "Creating the DMF Manager Primitive" on page 138.

2 007–5617–006

Resource Agent	Description
dmfsoap	DMF client Simple Object Access Protocol (SOAP) service. See "Creating the COPAN MAID OpenVault Client Primitive" on page 118.
lxvm	Local XVM volume manager. See "Creating the Local XVM Primitive" on page 81.
openvault	OpenVault mounting service for DMF. See "Creating the OpenVault Primitive" on page 111.
tmf	Tape Management Facility (TMF) mounting service for DMF. See "Creating the TMF Primitive" on page 98.

Table 1-2 Resource Agents in the sgi-ha-stonith-plugins RPM

Resource Agent	Description
12network	STONITH node-level fencing for systems using L1/L2 controllers, such as SGI ia64 systems. See "Creating the L2 STONITH Primitive" on page 164.
sgi-ipmi	STONITH node-level fencing for systems with a baseboard management controller (BMC) using intelligent platform management interface (IPMI), such as SGI x86_64. See "Creating the SGI IPMI STONITH Primitive " on page 167.

Although the SGI resource agents can be used independently, this guide provides example procedures to configure the set of resources required to provide highly available versions of the following:

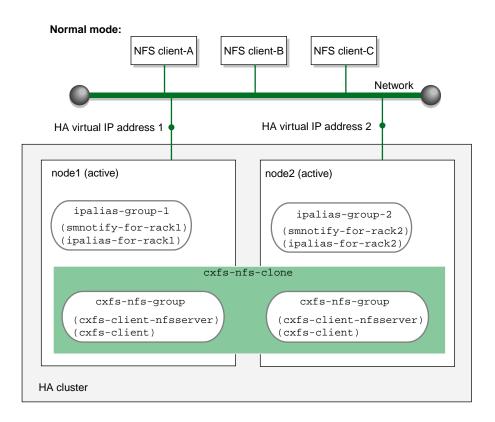
- CXFS NFS edge-serving from CXFS client-only nodes in a two-node active/active HA cluster. See "CXFS™ NFS Edge-Serving Failover" on page 4.
- DMF in a two-node active/passive HA cluster (which can optionally include COPAN MAID shelves). See "DMF Failover" on page 7.
- COPAN MAID shelves in an active/active HA cluster that consists of two parallel data mover nodes. See "COPAN MAID OpenVault Client HA Service for Mover Nodes" on page 8.

Although other configurations may be possible, SGI has tested and recommends the above HA environments.

007–5617–006

Note: The attributes and the various value recommendations listed in this guide are in support of the examples used in this guide. If you are using the resources in a different manner, you must evaluate whether these recommendations and use of meta attributes apply to your intended site-specific purpose.

Failover Example Scenarios


This section discusses the following examples:

- "CXFS™ NFS Edge-Serving Failover" on page 4
- "DMF Failover" on page 7
- "COPAN MAID OpenVault Client HA Service for Mover Nodes" on page 8

CXFS™ NFS Edge-Serving Failover

Figure 1-1 and Figure 1-2 describe an example process of failing over an CXFS NFS edge-serving HA service in a two-node HA cluster using active/active mode.

4 007–5617–006

Figure 1-1 CXFS NFS Edge-Serving HA Service — Normal State

007–5617–006 5

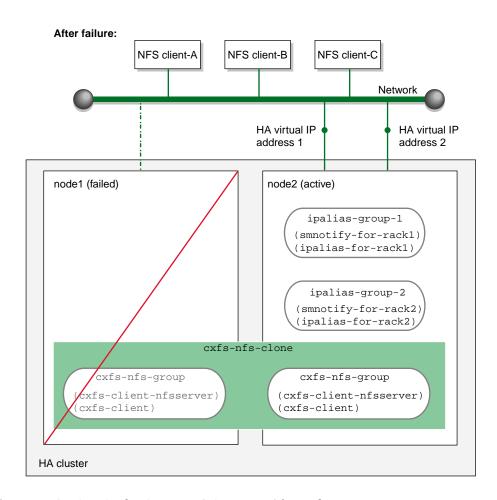


Figure 1-2 CXFS NFS Edge-Serving HA Service — After Failover

6 007–5617–006

DMF Failover

Figure 1-3 and Figure 1-4 describe an example process of failing over a DMF HA service in a two-node HA cluster using active/passive mode.

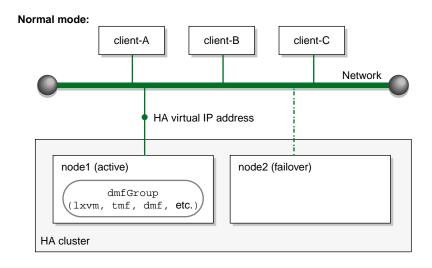


Figure 1-3 DMF HA Service — Normal State

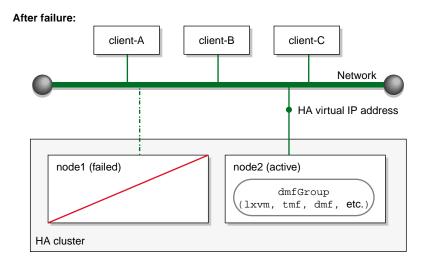


Figure 1-4 DMF HA Service — After Failover

COPAN MAID OpenVault Client HA Service for Mover Nodes

Figure 1-5 and Figure 1-6 describe an example process of failing over the OpenVault client service for a COPAN MAID shelf in a two-node HA cluster (consisting of two parallel data mover nodes) using active/active mode.

At initialization, each parallel data mover node is the default owner node of two COPAN OpenVault client resources, as represented in the dark lines in Figure 1-5 (where pdmn1 is the owner node of shelves 0 and 1, and pdmn2 is the owner node of shelves 3 and 4).

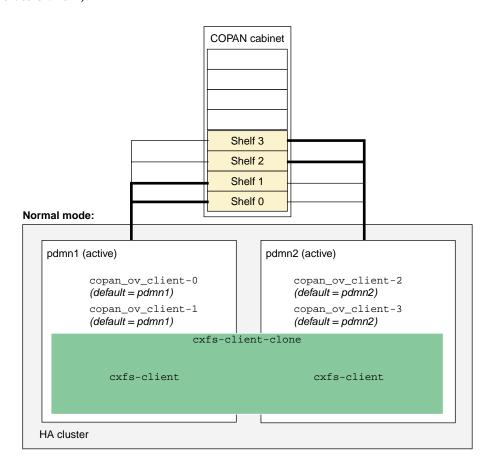


Figure 1-5 COPAN OpenVault Client HA Service for Mover Nodes — Normal State

When pdmn1 fails, its COPAN OpenVault client resources move to pdmn2 and pdmn2 becomes the current owner node of all of the shelves, as shown in Figure 1-6.

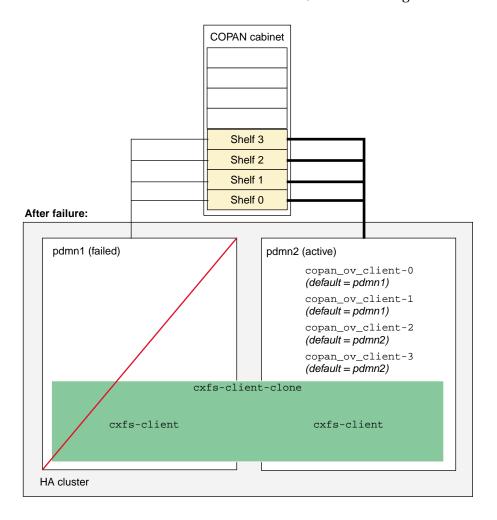


Figure 1-6 COPAN OpenVault Client HA Service for Mover Nodes — After Failover

After pdmn1 recovers and rejoins the HA cluster, you can choose a convenient time to manually move copan_ov_client_0 and copan_ov_client_1 back to pdmn1 to balance the load and return the HA cluster to its normal state (see "Manually Moving a copan_ov_client Resource" on page 178). You should perform this procedure

during a time of low shelf activity, because moving a copan_ov_client resource involves disabling the active node via the dmnode_admin command (which results in stopping all activity to all shelves owned by the node).

Configuration Tools

The procedures in this guide use the following tools as documented in the Novell *High Availability Guide* and the crm(8) online help:

- YaST installation and configuration tool
- Pacemaker graphical user interface (GUI) for HA resource management, accessed with the crm_gui command
- Linux HA Management Client command-line administration tools such as crm(8), cibadmin(8), and crm_verify(8)

Best Practices

The following are best practices when using SGI resource agents with High Availability Extension (HAE) software:

- "Preliminary Best Practices" on page 11
- "HA Configuration Best Practices" on page 12
- "Administrative Best Practices" on page 17
- "Maintenance Best Practices" on page 20

Preliminary Best Practices

The following are best practices for your environment before introducing high availability:

- Fix networking issues first.
- Make your overall system configuration as simple as possible complexity makes high availability harder to achieve.
- Use redundancy in your system components to avoid single points of failure.
- · Perform regular and frequent system backups.
- Configure and test the standard services (like DMF) in normal mode before
 making them highly available doing so will make problems easier to diagnose.
 Configure and test the base HA cluster before adding the SGI resource group and
 resource primitives. To do these things, review Chapter 4, "Outline of the
 Configuration Procedure", and then follow the detailed example steps in the
 remainder of the guide, as appropriate for your site.
- Set the appropriate passwords for the HAE GUI (crm_gui). You can log in to the GUI with any user ID that has access to the haclient group, but you must know the password for the user ID. By default, the GUI uses the hacluster user ID.

Before using the GUI, you should do one of the following:

- Add the root user to the haclient group
- Set the password for the hacluster user before you start crm_gui
- For CXFS NFS edge-serving, use a separate shared CXFS filesystem on which to store NFS state information. The state is kept on disk and must be available while any edge servers are running. A simple setup where only one filesystem is being served via NFS can keep the state directories on the same filesystem that is being served.
- When configuring OpenVault and DMF, be consistent when specifying virtual hostnames, always using either the short hostname (like myhost) everywhere or the fully qualified domain name (like myhost.mycompany.com) everywhere.
- Ensure that the kernel-default-debuginfo RPM that matches the kernel is installed on the system. This will let you make the best use of the recommended SGI Support tools in case you must send a kernel crash dump to SGI for troubleshooting purposes.

Caution: If your HA cluster includes CXFS nodes, you should use a CXFS fail policy that does not include reset. If the fail policy does not include reset, you must perform a manual reset of a failed node if the node does not reboot automatically.

HA Configuration Best Practices

The following are best practices for configuring the HA system:

 Use the HAE GUI (crm_gui) to initially configure the HA cluster and to make configuration changes, particularly changes to timeout values.

Note: If you make configuration changes with the crm command, use a shadow environment (crm cib new), so that you can verify those changes before applying them to the running cluster information base (CIB). See the crm(8) online help for more information.

• Use the crm(8) command or the HAE GUI to test resource primitives. This guide typically provides the crm command-line method.

• Use the following command to verify changes you make to the CIB, with each resource primitive that you define:

ha# crm_verify -LV

- · To avoid unnecessary failovers, make timeout values larger.
- For a DMF HA cluster, place all resource primitives within one resource group.
 The resource group mechanism incorporates implied colocation constraints as well as resource order constraints. The resource group concept lets you control the resources as a single entity, which greatly simplifies administration.
- Do not create explicit location, colocation, or order constraints on individual resource primitives except as directed in this guide.

Caution: Defining constraints on the resource primitives can lead to a deadlock situation in which the group has conflicting constraints that prevent it from starting anywhere.

- Use unique IDs for all resource clones, groups, and primitives.
- Do not use spaces in resource IDs because this may cause HAE or other supporting software to behave in a confusing manner.
- When you enter a time value that you want to be in seconds, you must often include the character "s" (as in 30s) because the default is usually in milliseconds.
- Always use STONITH node-level fencing to protect data integrity in case of failure.
- You may want to examine the use of the resource_stickiness and migration_threshold attributes of resources to control how often and to what node failover will occur. The examples in this book result in the resource or resource group failing over to the alternate node on the first failure of any of the resource primitives. In this default setting, there is no automatic failback to the original node. For more information about score calculation, see the Novell documentation and the following website:

 $http://www.clusterlabs.org/doc/en-US/Pacemaker/1.0/html/Pacemaker_Explained/index.html/Pace$

• Use values appropriate for your site (most instance attributes and timeouts are site-specific). Values shown in *italic font* in this guide are site-specific and are therefore changeable; suggested starting values that you must enter are shown in literalfont. When possible, some guidance is given for determining appropriate values.

Note: Fields that are unnecessary or for which the GUI provides appropriate defaults are not addressed in this guide.

- Click **Apply** only after you have entered all of the required operations.
- Resize the GUI as needed to view some fields and tabs. In some cases, the cursor must be positioned on the left-edge of a tab in order to select it.

- Note the following about using the configuration information in this guide:
 - monitor is the name value of the operation that determines if the resource is operating correctly. There are two types of monitor operations:
 - Standard monitor operations monitor the operation of the resources at an interval of the specified time (the interval begins at the end of the last monitor completion). Each monitor operation will time-out after the specified number of seconds. If the monitor operation fails, it will attempt to restart the resource.

Note: To prevent a resource from being monitored and possibly triggering failovers, do not define a regular monitor operation. This may be useful for those resources that are not critical (such as DMF Manager) but should still move with the rest of the resource group.

• Probe monitor operations check to see if the resources are already running.

Note: Always use a probe operation, even if you do not use a standard monitor operation.

- start is the name value of the operation that initiates the resource. It will time-out after a specified time. It requires that fencing is configured and active in order to start the resource. Using system reset as a fencing method is required in order to preserve data integrity. If the start operation fails, it will attempt to restart the resource.

Note: *Fencing* in HAE terminology (node-level fencing) is not the same as *fencing* in CXFS terminology (I/O-level fencing).

- stop is the name value of the operation that terminates or gives up control of the resource. It will time-out after the specified time. If the stop operation fails, it will attempt to fence the node on which the failure occurred. The stop fail policy must be set to fence and a STONITH facility must be configured according to the requirements for your site (see Chapter 9, "STONITH Resource Examples" on page 163.)

Note: Longer stop operation timeouts may result in longer failover times, and shorter stop operation timeouts may result in more frequent system reset events.

- migration-threshold specifies a count of failures at which the current node will receive a score of -INFINITY so that the resource must fail over to another node and is not eligible for restart on the local node, based on the number of start, monitor, or stop failures that this resource has experienced.
- resource-stickiness specifies a score for the preference to keep this resource on the node on which it is currently running. A positive value specifies a preference for the resource to remain on the node on which it is currently running. This preference may only be overridden if the node becomes ineligible to run the resource (if the node fails over) or if there is a start, monitor, or stop failure for this resource or another resource in the same resource group.
- Some Operations fields are accessed under the Optional tab. Those that are required for the SGI implementation of HAE are listed in this guide using the format Optional > Field Name.

Note: Although the GUI organizes these items under the **Optional** heading, they are not optional for the SGI implementation of HAE; you must provide them in your configuration. Similarly, the **Required** subsections in this chapter refer to those items located under that heading in the GUI; the label does not imply that only those values are required.

- In many cases, there are pull-down lists that contain possible values (shown in **boldface** in this guide). In other cases, you must enter in text (shown in literalfont).
- In general, you must use the values shown in this guide for meta attributes and for those values available from a pull-down list.
- ID is the unique identification of the clone, resource group, or resource primitive, such as cxfs. This can be any name you like as long as it does not include spaces. For the monitor, start, and stop operations, a unique ID will be generated for you based on the primitive name and interval, such as cxfs_op_monitor_30s.
- Class, Provider, and Type must use the exact values shown in this guide.

The IPaddr2 virtual IP address resource agent monitors the existence of the IP
alias address on the interface, but it does not monitor network interface controller
(NIC) interface availability. You may want to consider defining a pingd resource.
For more information, see the information about moving resources due to
connectivity changes at the following website:

http://www.clusterlabs.org/doc/en-US/Pacemaker/1.0/html/Pacemaker_Explained/index.html

Administrative Best Practices

Note: This guide shows administrative commands that act on a group by using the variable *resourceGROUP* or the example group name, such as dmfGroup. Other commands that act on a resource primitive use the variable *resourcePRIMITIVE* or an example primitive name, such as dmf.

The following are best practices for administering the HA cluster:

- Use the crm(8) command or the HAE GUI to obtain status and perform administrative actions. Use the online help available with the command.
- For verification, SGI recommends that you use crm_verify(8).

Note: The crm configure verify command is not equivalent to the crm_verify command.

- After you have successfully completed the initial configuration, make a backup copy of the working CIB so that you can return to it if necessary after future changes. See:
 - "Backing Up the CIB" on page 174
 - "Recovering from a CIB Corruption" on page 206
- Before making changes to an existing HAE configuration, ensure that you have a
 good backup copy of the current CIB so that you can return to it if necessary.
 After you establish that your changed configuration is good, make a new backup
 of the CIB.
- If you encounter a corrupted CIB, you must erase it by force and then restore the information about resources, constraints, and configuration from a backup copy of

a good CIB. For more information, see the Novell *High Availability Guide* and the cibadmin(8) man page.

• Periodically watch the output of the following commands for problems:

```
ha# crm status
ha# crm_verify -LV
```

Refer to the /var/log/messages system log periodically (to ensure that you are aware of operations automatically initiated by HAE) and if you notice errors. See "Reviewing the Log File" on page 175.

• To get more information, you may add multiple –V options to many of the HAE commands in order to increase verbosity. For example:

```
ha# crm_verify -LVVV
```

- After a failure, clear the resource primitive failcount values for a node immediately after resolving the cause of the failure (or reboot the system). See "Clearing the Resource Primitive Failcount" on page 175.
- Periodically monitor failcount values by using the following command:

ha# crm resource failcount resourcePRIMITIVE show node

Using the above command for all resources on all nodes can be labor-intensive; therefore, you may wish to write a script to handle this task.

• If you want to move or start a resource or resource group on a specific node, enter the following:

```
ha# crm resource move resource_or_resourceGROUP node
```

The result of this command is to create a location constraint with a score of INFINITY for the specified resource or resource group on the specified node.

Note: If conflicting constraints already exist, this preference might not be honored.

You must remember to remove implicit constraints when they are no longer needed, such as after the resource or resource group has successfully moved to the new node. Do the following:

ha# crm resource unmove resource_or_resourceGROUP

To move the COPAN OpenVault client resource, see "Manually Moving a copan ov client Resource" on page 178.

• Set the HAE totem token (core membership timeout) value to one that is significantly higher than the CXFS heartbeat timeout. The CXFS heartbeat timeout is set by the mtcp_hb_period system tunable parameter (which is specified in hundredths of a second). To determine the current setting of mtcp_hb_period, use the sysctl(8) command. For example:

```
# sysctl -a | grep mtcp_hb_period
kernel.cell.mtcp_hb_period = 500
```

In this case, the CXFS heartbeat timeout is 500 (5 seconds), so you would set the HAE totem token value to at least 15s. If mtcp_hb_period was set to 6000 (60 seconds), you would use an HAE totem token value of at least 90s.

For more information, see the corosync.conf(5) man page.

Note: There is an error on the corosync.conf(5) man page; the correct file location is /etc/corosync/corosync.conf.

- Set the HAE totem consensus value to one that is at least 1.2 X the totem token value. For example, for the totem token value of 90s, set the totem consensus value to at least 108s. For more information, see the corosync.conf(5) man page.
- When upgrading the software, follow the procedure in "Performing a Rolling Upgrade" on page 180.
- Do not use a CXFS NFS edge server node running HA software as an NFS client.
- To better analyze problems, consider adding the following directive to the /etc/sysctl.conf file on each node in the HA cluster so that core dump files will include the name of the process ID (PID) that caused the dump and the time when the dump occurred:

```
kernel.core_pattern = core.%p.%t
```

Changes made to /etc/sysctl.conf will take effect on the next boot and will be persistent. To make the settings effective immediately for the current session as well, enter the following:

ha# echo "core.%p.%t" > /proc/sys/kernel/core_pattern

Note: Core files are generally placed in the current working directory (cwd) of the process that dumped the core file. For example, to locate the core file for a PID of 25478:

Maintenance Best Practices

This section discusses the following:

- "Questions to Ask Before Performing Maintenance" on page 20
- "Hardware Maintenance" on page 21
- "System Software Updates" on page 21
- "ISSP Software Updates" on page 21
- "Changes Permitted on a Running Resource" on page 21
- "Changes that Require Maintenance Mode" on page 22
- "Changes that Require a Full Cluster Outage" on page 22

Questions to Ask Before Performing Maintenance

Before performing maintenance tasks, answer the following questions:

- How will end users be impacted by the change being proposed?
- Will the change affect the availability of a resource, even briefly?
- How is HAE monitoring the resource availability?
- Will the change impact other resources in the HA environment?
- What is the risk of a misstep that could lead to an HA service outage?

- How can the effectiveness of the change be verified?
- What is the change roll-back plan?

Hardware Maintenance

Hardware changes are generally disruptive to the HA environment and always require careful planning. You should consider whether or not the hardware change will also require a software change. In many cases, you must entirely shut down the HA cluster. See "Maintenance with a Full Cluster Outage" on page 189.

System Software Updates

System software updates (such as an operating system upgrade, kernel update, or software patches) are generally disruptive to the HA environment and always require careful planning. In many cases, a full cluster outage is required; see "Maintenance with a Full Cluster Outage" on page 189.

In other cases, an upgrade with the operational HA cluster may be possible; see "Performing a Rolling Upgrade" on page 180.

ISSP Software Updates

Before updating ISSP software, read the release notes and any late-breaking caveats on the Supportfolio download page.

Changes Permitted on a Running Resource

If a resource allows the change without impact to production operation, then the change is generally safe to perform in an HA environment. For example, you can make changes to most DMF configuration parameters or add volumes to an existing OpenVault cartridge group without problems. For more information about which parameters can be changed while DMF is running, see the "Best Practices" chapter of the *DMF 5 Administrator Guide for SGI InfiniteStorage*.

Caution: Changing meta attributes or operation parameters will influence the behavior of the resource or clone and can therefore influence how HAE handles the resource or clone. If you make a mistake (such as setting a timeout to 3s when you meant to change it to 30s), problems can result.

Changes that Require Maintenance Mode

If a change requires that an individual resource be stopped but does not otherwise impact the rest of the HA cluster, you should put the cluster into maintenance mode before stopping the resource. See "Putting the Cluster into Maintenance Mode" on page 174.

Changes in this category include:

- Any change that requires DMF to be stopped according to the DMF administration guide
- Restarting the OpenVault server when volume usage is inactive

Note: In general, you should not simply unmanage a given resource because that can adversely impact failcounts and cause inappropriate failovers.

Changes that Require a Full Cluster Outage

Many changes that require a resource to be stopped may also be disruptive to the HA cluster and therefore require a full cluster outage. See "Maintenance with a Full Cluster Outage" on page 189.

Changes in this category include:

- · Changes to CXFS filesystem mount options
- Changes to NFS export options
- Changes that require extensive testing

Requirements

Note: All of the stop/start requirements for services and HA resources that are noted in this chapter will be fulfilled if you follow the steps in Chapter 4, "Outline of the Configuration Procedure" on page 37.

This chapter discusses the following requirements for a High Availability Extension (HAE) cluster using SGI resource agents:

- "HAE Support Requirements" on page 24
- · "Licensing Requirements" on page 24
- "Software Version Requirements" on page 24
- "Hardware Requirements" on page 24
- "System Reset Requirements" on page 25
- "Time Synchronization Requirements" on page 25
- "CXFS NFS Edge-Serving Requirements" on page 25
- "CXFS Requirements" on page 27
- "Local XVM Requirements" on page 29
- "Filesystem Requirements" on page 30
- "Virtual IP Address Requirements" on page 30
- "TMF Requirements" on page 30
- "OpenVault™ Requirements" on page 30
- "COPAN MAID Requirements" on page 31
- "DMF Requirements" on page 33
- "NFS Requirements" on page 35
- "Samba Requirements" on page 35

- "DMF Manager Requirements" on page 36
- "DMF Client SOAP Service Requirements" on page 36

HAE Support Requirements

HAE may in some cases require the purchase of additional support from Novell.

Licensing Requirements

All nodes in an HA cluster must have the appropriate software licenses installed. The following software requires licenses if used:

- CXFS
- DMF
- DMF Parallel Data Mover Option

For information about obtaining licenses, see the individual product administration guides.

Software Version Requirements

For any of the SGI resource agents, you must use the corresponding version of SGI software as defined in the SGI InfiniteStorage Software Platform release note.

Hardware Requirements

Due to STONITH reset requirements, all nodes that might run SGI resource agents in an HA cluster must be of the same system type, supporting just one of the following:

- An L2 with Ethernet connectivity
- A BMC supporting the IPMI protocol and administrative privileges

Note: If you form an HA cluster using only members of a partitioned system with a single power supply, a failure of that power supply may result in failure of the HA cluster. CXFS does not support these members as server-capable administration nodes in the CXFS cluster.

DMF supports only one instance running on a given node in an HA cluster at any given time, thus active/active mode is not a possible configuration. If the cluster also runs CXFS, the DMF server nodes in the cluster must also be CXFS server-capable administration nodes. For additional requirements when using the DMF Parallel Data Mover Option, see *DMF 5 Administrator Guide for SGI InfiniteStorage*.

System Reset Requirements

You must use STONITH node-level fencing to protect data integrity in case of failure. See Chapter 9, "STONITH Resource Examples" on page 163.

The SGI 12network resource agent requires lowercase passwords.

The sgi-ipmi resource agent requires the use of a BMC user account with administrative privileges. For more information, see the ipmitool(1) man page and the user guide or quick start guide for your system.

Time Synchronization Requirements

You must configure time synchronization among all cluster nodes.

CXFS NFS Edge-Serving Requirements

CXFS NFS edge-serving in an HA environment has the following requirements:

- NFS version 3.
- An HA cluster of two CXFS client-only nodes. The nodes must run the SGI CXFS Edge Server YaST pattern software. See the CXFS release notes for more information.

Note: There can be multiple two-node HA clusters within one CXFS cluster.

- Due to the way that NLM grace notification is implemented, all of the server-capable administration nodes in the CXFS cluster must run the same version of CXFS in order to use CXFS relocation. This means that if you want to do a CXFS rolling upgrade of the metadata servers while running HA CXFS NFS edge-serving, you must use CXFS recovery and not CXFS relocation.
- On all CXFS NFS edge-server HA cluster systems during HA operation, disable the cxfs_client and nfsserver services from being started automatically at boot time:

```
ha# chkconfig cxfs_client off
ha# chkconfig nfsserver off
```

The HAE software will control these services.

- The NFS client service on a CXFS NFS edge server does not support monitored locking via statd.
- There must be a file located on shared storage on which to keep kernel state information. (In a non-HA cluster, this would be the /var/lib/nfs/state file.) The file must be shared as follows:
 - All systems in a single CXFS NFS edge-server HA cluster must share this file
 - If there are multiple CXFS NFS edge-server HA clusters within one CXFS cluster, all of the cluster systems must share this file

The **statefile** instance attribute for the CXFS client NFS server identifies this file.

- There must be a directory located on shared storage that will be used to store NFS lock state. (In a non-HA cluster, this would be the /var/lib/nfs/ directory.)
 The directory must be shared as follows:
 - All systems in a single CXFS NFS edge-server HA cluster must share this directory
 - If there are multiple CXFS NFS edge-server HA clusters within one CXFS cluster, each must have a separate state directory

The **statedir** instance attribute for the CXFS client NFS server identifies this directory.

Also see:

- "Preliminary Best Practices" on page 11
- "Instance Attributes for a CXFS Client NFS Server" on page 64

CXFS Requirements

The CXFS resource agent allows you to associate the location of the CXFS metadata server with other products, such as DMF. This section discusses the following:

- "CXFS Server-Capable Administration Nodes" on page 27
- "CXFS Relocation Support" on page 28
- "Applications that Depend Upon CXFS Filesystems" on page 28
- "CXFS and System Reset" on page 28
- "CXFS Start/Stop Issues" on page 28
- "CXFS Volumes and DMF-Managed User Filesystems" on page 29

CXFS Server-Capable Administration Nodes

An HA cluster using the CXFS resource agent must include the server-capable administration nodes that are potential metadata servers for every filesystem that is managed by the CXFS resource agent.

Certain resources (such as DMF) require that the CXFS metadata server and the HAE resource be provided by the same node; see "DMF Requirements" on page 33. Other resources (such as NFS and Samba) do not have this requirement, but it may be desirable to enforce it in order to ensure that these resources provide the best performance possible. (Some NFS and Samba workloads can cause significant performance problems when the NFS or Samba resource is located on a node that is not the CXFS metadata server.)

The CXFS server-capable administration nodes in an HA cluster must use a CXFS fail policy of reset. You should otherwise configure the CXFS cluster, nodes, and filesystems according to the instructions in the following:

CXFS 6 Administrator Guide for SGI InfiniteStorage CXFS 6 Client-Only Guide for SGI InfiniteStorage

CXFS Relocation Support

CXFS relocation is provided automatically by the CXFS resource agent. In a CXFS cluster running HAE software, relocation should only be started by using the tools provided with HAE software and not by any other method.

Applications that Depend Upon CXFS Filesystems

If an application uses a CXFS filesystem that is managed by HA, that application must also be managed by HA. You must set colocation and start-ordering constraints or ordered resource groups such that:

- The application can only run on the server-capable administration node that is the active CXFS metadata server for the filesystem that it uses.
- The CXFS metadata server will start before the application starts and stop after the application stops

Using a single resource group and configuring in the correct order ensures the proper colocation.

CXFS and System Reset

CXFS server-capable administration nodes must use some sort of system reset in order to prevent conflicts with CXFS I/O fencing methods. You must use one of the following methods:

- Specify the following in the node definition for the server-capable administration nodes:
 - Fail policy that includes Reset or FenceReset
 - Reset method of reset
- Specify a fail policy of fence, shutdown and use STONITH for system reset

For more information, see Chapter 9, "STONITH Resource Examples" on page 163.

CXFS Start/Stop Issues

You must start the CXFS cluster cxfs_cluster service and CXFS filesystem cxfs service before starting the HAE openais service. The CXFS resource agent will wait

for all of the CXFS filesystems to be mounted by CXFS before attempting any relocation. You must adjust the start operation timeout for the CXFS resource agent accordingly.

During failover, resources that colocate with the CXFS metadata server must be stopped before the CXFS resource. If a resource fails to shutdown completely, any files left open on the metadata server will prevent relocation. Therefore, the HA fail policy for any resource that could prevent relocation by holding files open must be **fence** and you must configure a STONITH facility according to the requirements for your site. See Chapter 9, "STONITH Resource Examples" on page 163.

In this case, the offending CXFS metadata server will be reset, causing recovery to an alternate node.

CXFS Volumes and DMF-Managed User Filesystems

The CXFS volumes specified for the <code>cxfs</code> resource must not include any volumes that represent DMF-managed user filesystems. See "Instance Attributes for CXFS" on page 77.

Local XVM Requirements

All local XVM volumes that are managed by HA must have unique volname values.

All local XVM physical volumes (*physvols*) that are managed by HA must have unique Disk Name values in their XVM label when compared to all other XVM volumes on the SAN. For example, you cannot have two physvols on the same SAN with the Disk Name of spool, even if one is foreign.

If you do not have unique values, the following are potential problems:

- HAE software may steal the wrong physvol from a system outside of the cluster while I/O is ongoing. This may result in losing data from that system while corrupting the filesystem from the node within the cluster by whom it is stolen.
- General confusion, resulting in node reset.

Filesystem Requirements

For DMF HA purposes, filesystems used by the Filesystem resource should use a filesystem type of xfs.

Virtual IP Address Requirements

You must allocate a virtual IP address on the subnet used for DMF and OpenVault communication. The address must be a virtual address managed by a community IPaddr2 resource within the same resource group as the openvault resource. You must also add an associated virtual hostname to your local DNS or to the /etc/hosts file on all hosts in the cluster that could be used as a DMF server or as an OpenVault client node.

Each HA node must have a physical Ethernet interface on the same subnet as the virtual IP address defined for the IPaddr2 resource.

You may use the <code>IPaddr2</code> virtual address for other services, such as for accessing DMF Manager or serving NFS. However, if DMF and OpenVault are configured to use a dedicated subnet, you should instead define a second <code>IPaddr2</code> address on an appropriate subnet for accessing these services. You should define this <code>IPaddr2</code> resource in the same resource group as the <code>dmfman</code> resource.

See also "Virtual IP Address Resource" on page 94.

TMF Requirements

All tape devices should be configured as DOWN in the tmf.config file on all nodes. The loaders may be configured as UP and the tmf service may be enabled to start automatically at boot time (chkconfig tmf on) for all nodes. (However, the resource agent will start tmf and configure the loader up if necessary.)

OpenVault™ Requirements

If OpenVault is to be used as the DMF mounting service, you must do the following:

 If upgrading to an entirely new root filesystem, as would be required if upgrading from a SLES 10 system, you should create a copy of the OpenVault configuration directory (/var/opt/openvault) from the old root before upgrading the OS.

You can then reinstall it on the new root so that you do not need to entirely reconfigure OpenVault. See the section about taking appropriate steps when upgrading DMF in the *DMF 5 Administrator Guide for SGI InfiniteStorage*.

- Provide a directory for OpenVault's use within an HA filesystem in the DMF resource group. This is known as the *serverdir directory* (as specified in "OpenVault Resource" on page 104). The directory will hold OpenVault's database and logs. The directory can be either of the following:
 - Within the root of an HA-managed filesystem dedicated for OpenVault use
 - Within another HA-managed filesystem, such as the filesystem specified by the HOME_DIR parameter in the DMF configuration file

In non-HA configurations, the OpenVault server's files reside in /var/opt/openvault/server. During the conversion to HA, OpenVault will move its databases and logs into the specified directory within an HA-managed filesystem and change /var/opt/openvault/server to be a symbolic link to that directory.

- Ensure that you **do not** have the OV_SERVER parameter set in the base object of the DMF configuration file, because in an HA environment the OpenVault server must be the same machine as the DMF server.
- Configure the DMF application instances in OpenVault to use a wildcard ("*") for the hostname and instance name. For more information, see the chapter about mounting service configuration tasks in the DMF 5 Administrator Guide for SGI InfiniteStorage.
- On all HA nodes during HA operation, disable the openvault service from being started automatically at boot time:

ha# chkconfig openvault off

The HAE software will control this service.

See also "Virtual IP Address Requirements" on page 30.

COPAN MAID Requirements

This section discusses the following:

• "COPAN MAID in Any HA Cluster" on page 32

- "COPAN MAID in a DMF HA Cluster" on page 32
- "COPAN MAID in a Mover-Node HA Cluster" on page 32

COPAN MAID in Any HA Cluster

Using COPAN MAID shelves in any HA cluster requires the following:

- OpenVault must be configured to manage the RAID sets, lxvm volumes, and xfs filesystems for each shelf
- At any time, only one node (the owner node) can manage activity to a given shelf
- Activity to all shelves controlled by a given node must be stopped before moving the control of any one of those shelves to another node

COPAN MAID in a DMF HA Cluster

In addition to the requirements listed in "COPAN MAID in Any HA Cluster" on page 32, using COPAN MAID shelves in an active/passive DMF HA cluster consisting of DMF servers also requires the following:

- All potential DMF server nodes in the HA cluster must have physical connectivity to the shelves
- The active DMF server must be the owner node of all of the shelves
- The OpenVault server resource must be started before the COPAN OpenVault client resource is started
- The COPAN OpenVault client resource must be stopped before the OpenVault server resource is stopped

For suggested resource start/stop order, see Figure 7-1 on page 75.

COPAN MAID in a Mover-Node HA Cluster

In addition to the requirements listed in "COPAN MAID in Any HA Cluster" on page 32, using COPAN MAID shelves in an active-active HA cluster consisting of two parallel data mover nodes also requires the following:

- Both parallel data mover nodes in the HA cluster must have physical connectivity to the shelves
- The parallel data mover nodes that control the shelves cannot also be used for other tape resources
- The CXFS client resource on each parallel data mover node must be started (via a clone) before the COPAN OpenVault client resource is started on those nodes
- The COPAN OpenVault client resource on each parallel data mover node must be stopped before the CXFS client resource is stopped on those nodes
- A parallel data mover node must be configured as the owner node for each shelf.
 For load-balancing purposes, one mover node will be the default owner of half of the shelves and the other mover node will be the default owner of the remaining shelves.
- On both parallel data mover nodes during HA operation, disable the cxfs_client and openvault services from being started automatically at boot time:

```
ha# chkconfig cxfs_client off
ha# chkconfig openvault off
```

The HAE software will control these services.

For suggested resource start/stop order, see Figure 7-1 on page 75.

DMF Requirements

Using DMF with HAE software requires the following:

- The HA cluster must contain all nodes that could be DMF servers.
- Each DMF server must run the required product and HAE software.
- All DMF server nodes in the HA cluster must have connectivity to the same set of libraries and drives. If one node has access to only a subset of the drives, and the DMF server is failed over to that node, DMF would then not be able to access data on volumes left mounted in inaccessible drives.
- All DMF server nodes must have connectivity to all of the CXFS and XFS[®] filesystems that DMF either depends upon or manages:

- Each of the local XVM volumes that make up those filesystems must be managed by an lxvm resource within the same resource group as the dmf resource. Each of the XFS filesystems must be managed by a community Filesystem resource in that resource group.
- Each of the CXFS filesystems (other than DMF-managed user filesystems) must be managed by the cxfs resource in that resource group.

The DMF filesystems to be managed are:

- The DMF-managed user filesystems (do not include these in the volnames attribute list for the cxfs resource; see "Instance Attributes for CXFS" on page 77)
- DMF administrative filesystems specified by the following parameters in the DMF configuration file:
 - HOME_DIR
 - JOURNAL_DIR
 - SPOOL_DIR
 - TMP_DIR
 - MOVE FS
 - CACHE_DIR for any library servers
 - STORE_DIRECTORY for any disk cache manager (DCM) and disk MSPs using local disk storage

DMF requires independent paths to drives so that they are not fenced by CXFS. The ports for the drive paths on the switch should be masked from I/O fencing in a CXFS configuration.

The SAN must be zoned so that XVM does not fail over CXFS filesystem I/O to the paths visible through the HBA ports when Fibre Channel port fencing occurs. Therefore, you should use either independent switches or independent switch zones for CXFS/XVM volume paths and DMF drive paths.

For more information about DMF filesystems, see the *DMF 5 Administrator Guide* for *SGI InfiniteStorage*.

 The ordering of resources within a resource group containing a dmf resource must be such that the dmf resource starts after any filesystems it uses are mounted and

volume resources it uses are available (and the dmf resource must be stopped before those resources are stopped).

- There must be a virtual hostname for use by DMF. See "Virtual IP Address Requirements" on page 30.
- Set the INTERFACE parameter in the node object for each potential DMF server node to the same virtual hostname used for SERVER_NAME in the base object.
- On all HA nodes during HA operation, disable the dmf service from being started automatically at boot time:

```
ha# chkconfig dmf off
```

The HAE software will control this service.

Also see:

- "DMF Manager Requirements" on page 36
- "DMF Client SOAP Service Requirements" on page 36

NFS Requirements

On all HA nodes during HA operation, disable the nfsserver service from being started automatically at boot time:

```
ha# chkconfig nfsserver off
```

The HAE software will control this service.

Samba Requirements

The /etc/samba and /var/lib/samba directories must be on shared storage. SGI recommends using symbolic links.

On all HA nodes during HA operation, disable the smb and nmb services from being started automatically at boot time:

```
ha# chkconfig smb off
ha# chkconfig nmb off
```

The HAE software will control these services.

DMF Manager Requirements

On all HA nodes during HA operation, disable the dmfman service from being started automatically at boot time:

ha# chkconfig dmfman off

The HAE software will control this service.

DMF Client SOAP Service Requirements

On all HA nodes during HA operation, disable the ${\tt dmfsoap}$ service from being started automatically at boot time:

ha# chkconfig dmfsoap off

The HAE software will control this service.

Outline of the Configuration Procedure

This chapter summarizes the recommended steps to configure a High Availability Extension (HAE) cluster for use with SGI InfiniteStorage products:

- "Prepare for HA" on page 37
- "Install the HAE Software" on page 38
- "Enable Multicasting on the Switch" on page 38
- "Configure the Primary Node for HA Using YaST" on page 39
- "Modify the HAE Authorization and Configuration Files" on page 40
- "Configure Log and HA Services on Both Nodes" on page 40
- "Configure and Test the SGI Resources" on page 41
- "Put the HA Cluster Into Production Mode" on page 41

This outline uses an example HA cluster with two-nodes: node1 and node2. This procedure uses explicit HA node IDs, but you can choose to automatically generate node IDs if you prefer.

Prepare for HA

To prepare for an HA cluster, do the following:

- 1. Understand the requirements for the SGI products that you want to include in your HA cluster. See Chapter 3, "Requirements" on page 23.
- 2. Ensure that you have installed the required SGI products on node1 and node2 (from the SGI ISSP High Availability YaST pattern) according to the installation procedure in the SGI InfiniteStorage Software Platform Release Note.
- 3. Configure and test each of the standard SGI product services on node1 before making them highly available. All of the filesystems must be mounted and all drives and libraries must be accessible on node1. See Chapter 5, "Standard Services" on page 43.

- 4. On both nodes, use the procedures in the following chapters to disable the noted standard services (other than cxfs and cxfs_cluster) from being started automatically at boot time and then stop the currently running services:
 - Chapter 6, "CXFS NFS Edge-Serving HA Service" on page 51:

```
cxfs_client
nfsserver
nmb
smb
```

• Chapter 7, "DMF HA Service" on page 73:

```
dmf
dmfman
dmfsoap
openvault
tmf (optional)
```

• Chapter 8, "COPAN MAID HA Service for Mover Nodes" on page 147:

```
cxfs_client openvault
```

Install the HAE Software

Install the SUSE HAE software on node1 and node2 as documented in the Novell *High Availability Guide* provided by the following Novell, Inc., website:

http://www.novell.com/documentation/sle_ha/

Enable Multicasting on the Switch

Ensure that the switch supports multicasting and has it enabled. (Some switches disable multicasting by default.)

Configure the Primary Node for HA Using YaST

You must follow the detailed instructions in the Novell *High Availability Guide* to initialize the cluster and configure node1. Also see the information about the setting the password and using the HAE GUI (crm_gui) in:

- "Preliminary Best Practices" on page 11
- "HA Configuration Best Practices" on page 12

Complete the following set of steps in YaST for node1:

- 1. Set **Bind Network Address** to the network that will support the cluster heartbeat (for example, the CXFS private network, such as 128.162.244.0), which is different from the IP address to be failed over.
- 2. Set Multicast Address to a multicast address (for example, 226.94.1.1).
- 3. Set **Multicast Port** to a multicast port (for example, 5405).

Note: Ensure that multiple HA clusters on the same local network use different multicast port numbers.

4. Explicitly set the HA node ID, such as 1 for node1. Each node must have a unique HA node ID number. (The HA node ID may be different from the CXFS node ID.)

Caution: With explicit node IDs, you must not use csync2 on node2 (despite the directions in the Novell *High Availability Guide*) because it will result in duplicate node IDs.

- 5. Set security on.
- 6. Select Generate Auth Key File. It will be created in /etc/corosync/authkey; this process can take several minutes to complete.

Modify the HAE Authorization and Configuration Files

Do the following:

 On node1, change the permission on the /etc/corosync/authkey and /etc/corosync/corosync.conf files to allow read and write permission for the root user only:

node1# chmod 0600 /etc/corosync/authkey /etc/corosync/corosync.conf

2. Copy the /etc/corosync/authkey and /etc/corosync/corosync.conf files from node1 to node2 and preserve their 0600 permission. For example:

```
node1# scp -p /etc/corosync/authkey node2:/etc/corosync/authkey
node1# scp -p /etc/corosync/corosync.conf node2:/etc/corosync/corosync.conf
```

3. Set the nodeid in the /etc/corosync.conf file on node2 to a unique value. For example:

nodeid: 2

Configure Log and HA Services on Both Nodes

On both nodes, enable the logd and the HAE openais services to be started automatically at boot time and then start them immediately:

• On node1:

```
node1# chkconfig logd on
node1# chkconfig openais on
node1# service logd start
node1# service openais start
```

• On node2:

```
node2# chkconfig logd on
node2# chkconfig openais on
node2# service logd start
node2# service openais start
```

Configure and Test the SGI Resources

Do the following to configure and test the SGI resources:

1. Test the base HA cluster by running the following command on node1, waiting to see both nodes come online (which could take a few minutes):

node1# crm status

2. Disable system reset (which is enabled by default) for testing purposes:

node1# crm configure property stonith-enabled=false

Note: You will reenable system reset later (in "Put the HA Cluster Into Production Mode" on page 41) after testing all of the SGI resource primitives.

3. Set the correct two-node quorum policy action:

node1# crm configure property no-quorum-policy=ignore

- 4. Configure and test the resources required for your HA configuration. Proceed to the next resource primitive only if the current resource is behaving as expected, as defined by the documentation. Using the instructions in this guide, you must configure resources in the specific order shown in the following:
 - Chapter 6, "CXFS NFS Edge-Serving HA Service" on page 51
 - Chapter 7, "DMF HA Service" on page 73
 - Chapter 8, "COPAN MAID HA Service for Mover Nodes" on page 147

Put the HA Cluster Into Production Mode

Do the following to put the tested HA cluster into production mode:

- 1. Create the STONITH facility appropriate for your site, one of:
 - "SGI IPMI STONITH Examples" on page 166
 - "L2 STONITH Examples" on page 163
 - "Community IPMI STONITH Examples" on page 169

Note: The STONITH facility is required to ensure data integrity.

2. Reenable node-level fencing (which was disabled for testing purposes):

node1# crm configure property stonith-enabled=true

3. Ensure that any constraints remaining in the cluster are appropriate for a production environment. To remove any remaining implicit constraints imposed by an administrative move, enter the following:

nodel# crm resource unmove resourceGROUP

Standard Services

You should configure and test all standard services before applying high availability. In general, you should do this on one host (known in this guide as *node1* or *pdmn1*). This host will later become a node in the HA cluster, on which all of the filesystems will be mounted and on which all drives and libraries are accessible. If you already have a stable configuration, you can skip the steps in this chapter.

This chapter discusses the following:

- "CXFS NFS Edge-Serving Standard Service" on page 44
- "CXFS Standard Service" on page 45
- "Local XVM Standard Service" on page 45
- "TMF Standard Service" on page 46
- "OpenVault Standard Service" on page 46
- "COPAN MAID Standard Service" on page 47
- "DMF Standard Service" on page 48
- "NFS Standard Service" on page 48
- "Samba Standard Service" on page 49
- "DMF Manager Standard Service" on page 49
- "DMF Client SOAP Standard Service" on page 50

CXFS NFS Edge-Serving Standard Service

Set up the NFS exports in the /etc/exports file on both CXFS client-only nodes as you would normally. The /etc/exports file should be identical on both nodes.

Note: Be sure to include the fsid=unique_number export option in order to prevent stale file handles after failover.

To test the CXFS NFS edge-serving standard service, do the following:

1. Run the following command on node1 to verify that the NFS filesystems are exported:

2. Mount the filesystems on a node that will not be a member of the HA cluster (otherhost):

otherhost# mount initial:/nfsexportedfilesystem /mnt/test

3. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "test data for a test file" > /mnt/test/testFile1A
otherhost# cat /mnt/test/testFile1A
test data for a test file
```

- 4. Repeat step 1 but execute on node2.
- 5. Repeat steps 2 and 3.

CXFS Standard Service

To configure and test the CXFS standard service before applying high availability, do the following:

- 1. Configure CXFS on node1 (which must be a CXFS server-capable administration node), according to the instructions in the following:
 - "CXFS Requirements" on page 27
 - CXFS 6 Administrator Guide for SGI InfiniteStorage
 - CXFS 6 Client-Only Guide for SGI InfiniteStorage
- Start the CXFS filesystem service (cxfs) and CXFS cluster service (cxfs_cluster). For more information, see CXFS 6 Administrator Guide for SGI InfiniteStorage.
- 3. Verify that the filesystem in question mounts on all applicable nodes. For example, use the <code>cxfs_admin</code> command:

```
node1# cxfs_admin -c status
```

Note: If you have multiple clusters on the same network, add the -i *clustername* option to identify the cluster name. For more information, see the cxfs_admin(8) man page.

Local XVM Standard Service

According to the instructions in the XVM Volume Manager Administrator Guide, do the following on node1 for each of the local XVM filesystems that you want to make highly available:

- 1. Configure the filesystem. Make a note of the name of each physvol that is part of each volume and save it for later.
- 2. Construct the filesystem using mkfs.
- 3. Mount the filesystem.

To test the local XVM standard service, ensure that you can create and delete files in each of the mounted filesystems.

TMF Standard Service

Configure TMF on node1 according to the instructions in the TMF 5 Administrator's Guide for SGI InfiniteStorage and run the following on node1:

node1# chkconfig tmf on

Note: In the tmf.config file, drives in drive groups managed by HAE should have access configured as EXCLUSIVE and should have status configured as DOWN when TMF starts. Loaders in the tmf.config file should have status configured as UP when TMF starts.

To test the TMF standard service, do the following:

1. Use tmstat to verify that all of the tape drives have a status of idle or assn:

node1# tmstat

2. Use tmmls to verify that all of the loaders have a status of UP:

node1# tmmls

OpenVault Standard Service

Configure OpenVault on node1, according to the instructions in the *OpenVault Operator's and Administrator's Guide* and, if using the Parallel Data Mover Option, the *DMF 5 Administrator Guide for SGI InfiniteStorage*. This means that you will use the actual hostname as reported by the hostname(1) command when using ov_admin. For the potential DMF servers and any parallel data mover nodes, configure OpenVault library control programs (LCPs) and drive control programs (DCPs) for all local libraries and drives.

Note: Configuration of OpenVault on the alternate DMF server (node2) will be done when the conversion to HA is performed.

To test the OpenVault standard service, verify that you can perform operational tasks documented in the OpenVault guide, such as mounting and unmounting of cartridges using the ov_mount and ov_unmount commands.

For example, in an OpenVault configuration with two drives (drive0 and drive1) where you have configured a volume named DMF105 for use by DMF, the following

sequence of commands will verify that drive drive0 and the library are working correctly:

```
nodel# ov_mount -A dmf -V DMF105 -d drive0
Mounted DMF105 on /var/opt/openvault/clients/handles/An96H0uA3xr0
node1# tsmt status
       Controller: SCSI
       Device: SONY: SDZ-130
                                     0202
       Status: 0x20262
       Drive type: Sony SAIT
       Media : READY, writable, at BOT
node1# ov_stat -d | grep DMF105
drive0
                   drives
                                                                                                DMF105S1
                             true false false
                                                     inuse
                                                               loaded
                                                                         ready
                                                                                   true
node1# ov_unmount -A dmf -V DMF105 -d drive0
Unmounted DMF105
node1# exit
```

Repeat the sequence for drive1.

COPAN MAID Standard Service

Configure the following OpenVault components for each COPAN MAID shelf by executing the ov_shelf(8) command on nodel (or pdmnl), making nodel the owner node for that shelf, according to the instructions in the COPAN MAID for DMF Quick Start Guide:

- One library control program (LCP)
- Up to 16 drive control programs (DCPs)
- One OpenVault drive group

Note: You will not run ov_shelf on node2 at this point. You will do that later in "Creating the OpenVault Components on the Failover Node" on page 116.

If you are using the Parallel Data Mover Option, also see the instructions in *DMF 5 Administrator Guide for SGI InfiniteStorage*.

Note: You will create the OpenVault components on the alternate node later, using the instructions in this guide.

To test the standard service, follow the instructions to test that OpenVault can mount a migration volume, as described in the *COPAN MAID for DMF Quick Start Guide*.

DMF Standard Service

Configure DMF according to the instructions in the *DMF 5 Administrator Guide for SGI InfiniteStorage*.

To test the DMF standard service, do the following:

1. Migrate a few test files:

```
node1# dmput -r files_to_test
```

2. Force volumes to be immediately written:

```
node1# dmdidle
```

Wait a bit to allow time for the volume to be written and unmounted.

- 3. Verify that the volumes are mounted and written successfully.
- 4. Verify that the volumes can be read and the data can be retrieved:

```
node1# dmget files_to_test
```

NFS Standard Service

Set up the NFS exports in the /etc/exports file on node1 as you would normally.

To test the NFS standard service, do the following:

1. Run the following command on node1 to verify that the NFS filesystems are exported:

2. Mount the filesystems on a node that will not be a member of the HA cluster (otherhost):

otherhost# mount initial:/nfsexportedfilesystem /mnt/test

3. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "test data for a test file" > /mnt/test/testFile1A otherhost# cat /mnt/test/testFile1A test data for a test file
```

Samba Standard Service

Set up the Samba standard service on node1 as you would normally, but place the Samba configuration files and directories on shared storage.

To test the Samba standard service, see the following information:

http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/install.html

In particular, see the information about the following topics:

- · Listing shares available on the server
- Connecting with a UNIX client
- Connecting from a remote SMB client (but not the information about printing)

DMF Manager Standard Service

To verify that standard DMF Manager is operational, start it according to the directions in *DMF 5 Administrator Guide for SGI InfiniteStorage* and access it by pointing your browser to the following address:

```
https://YOUR_DMF_SERVER:1179
```

Then verify that you can log in and use DMF Manager, such as by viewing the **Overview** panel.

DMF Client SOAP Standard Service

To verify that the standard DMF client SOAP service is operational, start it according to the directions in *DMF 5 Administrator Guide for SGI InfiniteStorage* and access it by pointing your browser to the following address:

https://YOUR_DMF_SERVER:1180/server.php

Then verify that you can access the GUI and view the WSDL for one of the DMF client functions.

CXFS NFS Edge-Serving HA Service

This chapter contains the following sections:

- "CXFS NFS Edge-Serving HA Example Procedure" on page 51
- "CXFS Client Resource" on page 60
- "CXFS Client NFS Server Resource" on page 63
- "Virtual IP Address Resource" on page 67
- "CXFS Client NSM Notification Resource" on page 69

Note: The attributes listed in this chapter and the various value recommendations are in support of this example. If you are using the resources in a different manner, you must evaluate whether these recommendations and the use of meta attributes apply to your intended site-specific purpose.

CXFS NFS Edge-Serving HA Example Procedure

Figure 6-1 on page 52 shows a map of an example configuration process for CXFS NFS edge-serving in an active/active HA cluster, referring to resource agent type names such as cxfs-client and IPaddr2.

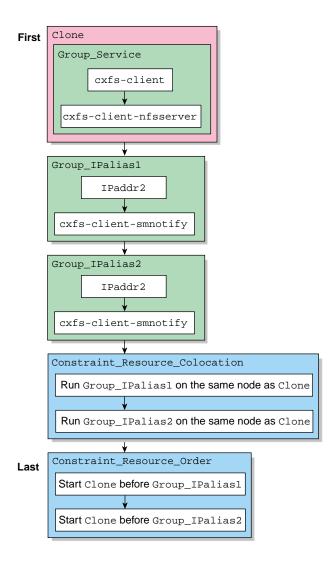


Figure 6-1 CXFS NFS Edge-Server HA Service Map of Resources

To implement this configuration, use the steps in the following sections:

- "Start the GUI" on page 53
- "Create the Clone" on page 53

- "Test the Clone" on page 54
- "Create Two IP Alias Groups" on page 56
- "Create the Constraints" on page 56
- "Test the IP Alias Groups" on page 57

Start the GUI

Do the following:

1. Invoke the HAE GUI:

```
node1# crm_gui
```

2. Log in to the initialized cluster (see Chapter 4, "Outline of the Configuration Procedure" on page 37).

Create the Clone

Do the following to create an anonymous clone containing a group and resources:

- 1. Select **Resources** in the left-hand navigation panel.
- 2. Click the **Add** button, select **Clone**, and click **OK**.
- 3. Enter the ID of the clone, such as cxfs-nfs-clone.
- 4. Select **Stopped** for the **Initial state of resource**, check the **Interleave** option, and click **Forward**.
- 5. Select the sub-resource **Group** and click **OK**.
- 6. Enter the ID of the resource group (such as cxfs-nfs-group).
- 7. Select **Defaults to Started or inherit from its parent**.
- 8. Select the sub-resource Primitive and click OK.
- 9. Create the primitives for the following resources:

Note: Click the **Operations** tab to edit the monitor operations and to add the probe, start, and stop operations as needed for a resource.

- a. "CXFS Client Resource" on page 60
- b. "CXFS Client NFS Server Resource" on page 63
- 10. Click **Apply** to apply the new group and again to apply the new clone.

Test the Clone

Use the following steps to test the clone:

1. Start the clone. For example:

node1# crm resource start cxfs-nfs-clone

- 2. Confirm that the clone has started. For example:
 - a. View the status of the cluster on node1:

```
nodel# crm status
=========

Last updated: Tue Mar 8 10:34:02 2011
Stack: openais
Current DC: nodel - partition with quorum
Version: 1.1.2-ecble2ea172ba2551f0bd763e557fccde68c849b
2 Nodes configured, 2 expected votes
1 Resources configured.
============
```

b. Verify that the cxfs_client process is running on node1:

```
nodel# ps -ef | grep cxfs_client
```

```
root 11575 1 0 10:32 ? 00:00:00 /usr/cluster/bin/cxfs_client -p /var/run/cxfs_client.pid -i TEST root 12237 7593 0 10:34 pts/1 00:00:00 grep --color -d skip cxfs_client
```

Also execute the command on node2.

c. View the status of the NFS daemons on node1:

node1# rcnfsserver status

```
Checking for kernel based NFS server: idmapd running mountd statd running nfsd running
```

Also execute the command on node2.

3. Set node2 to standby state to ensure that the resources remain on node1:

node1# crm node standby node2

- 4. Confirm that node2 is offline and that the resources are off:
 - a. View the status of the cluster on node1, which should show that node2 is in standby state:

b. Verify that the cxfs_client process is not running on node2 by executing the ps(1) command on node2 (that is, there should be no output):

```
node2# ps -ef | grep cxfs_client
node2#
```

c. View the status of the NFS daemons on node2, which should show that statd is dead and nfsd is unused:

node2# rcnfsserver status

```
Checking for kernel based NFS server: idmapd running mountd statd dead nfsd unused
```

5. Return node2 to online status:

node1# crm node online node2

6. Confirm that the clone has returned to normal status, as described in step 2.

Create Two IP Alias Groups

Do the following to create two IP alias groups, one for each rack:

- 1. Select **Resources** in the left-hand navigation panel.
- 2. Click the Add button, select Group, and click OK.
- 3. Enter the ID of the group, such as ipalias-group-1. Use the default initial state of **Stopped** and click **Forward**.
- 4. Select the sub-resource **Primitive** and click **OK**.
- 5. Create the primitives for the following resources:

Note: You will just create the primitives in this step. You will not test them until later, in "Test the IP Alias Groups" on page 57.

- a. "Virtual IP Address Resource" on page 67
- b. "CXFS Client NSM Notification Resource" on page 69
- 6. Click Cancel to stop adding primitives.
- 7. Repeat steps 1 through 6 for the second IP alias.
- 8. After completing both IP aliases, click **Apply** to apply the resource group.

Create the Constraints

Do the following to create the constraints:

- 1. Select **Constraints** in the left-hand navigation panel.
- 2. Click the Add button, select Resource Colocation, and click OK.
- 3. Create two colocation constraints so that the virtual IP addresses must run on a system that has NFS, one constraint for each rack:
 - a. Enter the **ID** of the constraint for the IP address, such as ipalias-rack1-with-nfs.

- b. For **Resource**, select the primitive created in step 5a of "Create Two IP Alias Groups" on page 56 above, such as **ipalias-rack1**.
- c. For **With Resource**, select the clone created in step 3 of "Create the Clone" on page 53 above, such as **cxfs-nfs-clone**.
- d. For **Score**, select **INFINITY**.
- e. Click OK.
- f. Repeat steps 3a through 3e to create the colocation constraint for the second rack.
- 4. Click the Add button, select Resource Order, and click OK.
- 5. Create two resource order constraints so that the clone will be started before the IP addresses and notifications, one constraint for each rack:
 - a. Enter the **ID** of the constraint for the IP address, such as nfs-before-ipalias-rack1.
 - b. For **First**, select the name of the clone created in step 3 of "Create the Clone" on page 53 above, such as **cxfs-nfs-clone**.
 - c. For **Then**, select the group name defined in step 3 of "Create Two IP Alias Groups" on page 56 above, such as **ipalias-group-1**.
 - d. Under Optional, set score to INFINITY.
 - e. Click OK.
 - f. Repeat steps 5a through 5e to create the resource order constraint for the second rack.

Test the IP Alias Groups

To test the IP alias groups, do the following:

1. Start the group. For example, to start ipalias-group-1:

node1# crm resource start ipalias-group-1

2. Test the virtual IP address resource within the group:

a. Verify that the IP address is configured correctly on node1:

```
node1# ip -o addr show | grep 128.162.244.240
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

b. Verify that node2 does not accept the IP address packets. For example, run the following command on node2 (the output should be 0):

```
node2# ip -o addr show | grep -c 128.162.244.240
```

c. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named node1:

```
nfsclient# ssh root@128.162.244.240
Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
node1# uname -n
node1
```

d. Move the resource group containing the IPaddr2 resource from node1 to node2:

```
node1# crm resource move ipalias-group-1 node2
```

e. Verify that the IP address is configured correctly on node2:

```
node2# ip -o addr show | grep 128.162.244.240
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

f. Verify that node1 does not accept the IP address packets by running the following command on node1 (the output should be 0):

```
nodel# ip -o addr show | grep -c 128.162.244.240 0
```

g. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named node2:

```
nfsclient# ssh root@128.162.244.240
Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
node2# uname -n
node2
```

h. Move the resource group containing the IPaddr2 resource back to node1:

node1# crm resource move ipalias-group-1 node1

- i. Test again as in steps 2a-2c above.
- j. Remove the implicit location constraints imposed by the administrative move command above:

```
node1# crm resource unmove ipalias-group-1
```

- 3. Repeat steps 1 and 2 for the other group, such as ipalias-group-2.
- 4. Test the CXFS client NSM notification resource within the group:
 - a. Mount the filesystem via each **ipalias hostname** on a system that is outside the HA cluster (for example, nfsclient). For example:

```
nfsclient:~ # mount hostalias1://mnt/cxfsvol1 /hostalias1
nfsclient:~ # mount hostalias2://mnt/cxfsvol1 /hostalias2
```

b. Turn on Network Lock Manager debugging on the NFS client:

```
nfsclient:~ # echo 65534 > /proc/sys/sunrpc/nlm_debug
```

c. Acquire locks:

```
nfsclient:/hostalias1 # touch file
nfsclient:/hostalias1 # flock -x file -c "sleep 1000000" &
nfsclient:/hostalias2 # touch file2
nfsclient:/hostalias2 # flock -x file2 -c "sleep 1000000" &
```

d. Check in the shared sm-notify **statedir** directory on the NFS server for resources hostalias1 and hostalias2 to ensure that a file has been created by statd. The name should be the hostname of the node on which you have taken the locks.

If the file is not present, it indicates a misconfiguration of name resolution. Ensure that fully qualified domain name entries for each NFS client are present in /etc/hosts on each NFS server. (If the /etc/hosts file is not present, NSM reboot notification will not be sent to the client and locks will not be reclaimed.)

e. On the NFS clients, check in the /var/lib/nfs/sm for a filename that is the fully qualified domain name of each server from which you have requested locks. If this file is not present, NSM reboot notification will be rejected by the client. (The client must mount the **ipalias** node, such as hostalias1, by hostname and not by the IP address in order for this to work.)

f. Make node1 be in standby state:

```
node1# crm node standby node1
```

g. Verify that both of the IP aliases are now on node2:

```
node2# ip addr
```

h. Verify that the /var/log/messages file on the NFS client (nfsclient) contains a message about reclaiming locks for every **ipalias hostname** on which you have taken locks via NFS. (The two stated processes for the HA cluster share the same state directory, specified by the **statedir** instance attribute. NSM reboot notification will be sent to clients for all IP aliases in the cluster, so you will see messages for all IP aliases that have been mounted by the client.) For example:

```
Jul 30 13:40:46 nfsclient kernel: NLM: done reclaiming locks for host hostalias2 Jul 30 13:40:49 nfsclient kernel: NLM: done reclaiming locks for host hostalias1
```

i. Make node1 active again:

```
node1# crm node online node1
```

5. Test the other group.

CXFS Client Resource

This section discusses the following:

- "Configuring the CXFS Client for HA" on page 60
- "Creating the CXFS Client Primitive" on page 61

Configuring the CXFS Client for HA

To configure the CXFS client for HA, do the following:

- On both nodes, disable the cxfs_client service from being started automatically at boot time:
 - On node1:

```
node1# chkconfig cxfs_client off
```

• On node2:

node2# chkconfig cxfs_client off

2. Add the CXFS client NFS resource primitive. See "Creating the CXFS Client Primitive" on page 61.

Creating the CXFS Client Primitive

Use the values shown in the following sections when adding a CXFS client resource primitive.

Note: There are no meta attributes for this primitive in this example procedure because it is part of a clone resource that should always restart locally.

Required Fields for a CXFS Client

ID Unique ID such as cxfs-client

Class ocf Provider sgi

Type cxfs-client

Instance Attributes for a CXFS Client

volnames Comma-separated list of XVM volume names containing

CXFS filesystems that are to be served via NFS or used to

store the NFS state, such as:

cxfsvol1,cxfsvol2

Probe Monitor Operation for a CXFS Client

Note: Click the **Operations** tab to edit the monitor operations and to add the probe, start, and stop operations as needed for a resource.

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for a CXFS Client

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

- Verifies that each volume in volnames is mounted by checking /proc/mounts
- Verifies that the volumes in **volnames** are online by executing the following command for each volume:

```
xvm show -v vol/volname
```

· Fails if the CXFS client does not start

Start Operation for a CXFS Client

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 600s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Starts the CXFS client by calling the following:

```
/etc/init.d/cxfs_client start
```

- Checks the /proc/mounts file until all volumes in volnames are mounted
- · Fails if the CXFS client fails to start

Stop Operation for a CXFS Client

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 600s

Optional > On Fail fence

The stop operation does the following:

• Stops the CXFS client by calling the following:

/etc/init.d/cxfs_client stop

Fails if the CXFS client fails to stop

Note: Using the example procedure in this guide, you should go on to add the primitive for "CXFS Client NFS Server Resource" on page 63 before testing the clone. You will test the resources later, after completing the clone.

CXFS Client NFS Server Resource

This section discusses the following:

- "Configuring CXFS Client NFS for HA" on page 63
- "Creating the CXFS Client NFS Server Primitive" on page 64

Configuring CXFS Client NFS for HA

To configure CXFS client NFS for HA, do the following:

1. Copy the /etc/exports entries that you would like to make highly available from node1 to the /etc/exports file on node2.

Note: Be sure to include the fsid=unique_number export option in order to prevent stale file handles after failover. All matching exports should have the same fsid=unique_number value on all CXFS NFS edge-server nodes.

- 2. On both nodes, disable the nfsserver service from being started automatically at boot time:
 - On node1:

node1# chkconfig nfsserver off

• On node2:

node2# chkconfig nfsserver off

3. Add the CXFS client NFS resource primitive. See "Creating the CXFS Client NFS Server Primitive" on page 64.

Creating the CXFS Client NFS Server Primitive

Use the values shown in the following sections when adding a CXFS client NFS server resource primitive. (There are no meta attributes for this primitive in this example procedure because it is part of a clone resource that should always restart locally.)

Required Fields for a CXFS Client NFS Server

ID Unique ID such as cxfs-client-nfsserver

Class ocf Provider sgi

Type cxfs-client-nfsserver

Instance Attributes for a CXFS Client NFS Server

nfs_init_script Location of the NFS initialization script, such as:

/etc/init.d/nfsserver

statedir Directory located on the NFS filesystem used to store NFS

state (equivalent to /var/lib/nfs/ in a nonclustered

configuration), such as:

/mnt/cxfsvol2/statd/nfs2-nfs3

Note: There must be a unique statedir value for each

HAE cluster within a CXFS cluster.

statefile Filename located on the NFS state filesystem (equivalent to

/var/lib/nfs/state in a nonclustered configuration),

such as:

/mnt/cxfsvol2/statd/state

Note: A single statefile value is shared among all HAE

clusters within a CXFS cluster.

volnames Comma-separated list of XVM volume names containing

CXFS filesystems that are to be served via NFS, such as:

cxfsvol1

Probe Monitor Operation for a CXFS Client NFS Server

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for a CXFS Client NFS Server

ID (Generated based on the primitive name and interval)

name monitor

Interval Interval time, such as 120s

Timeout Timeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

 Verifies the status of the NFS server by calling the status action of the nfs_init_script, such as:

/etc/init.d/nfsserver status

• Fails if the NFS server is not running

Start Operation for a CXFS Client NFS Server

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 300s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

- Creates the statedir directory and statefile as needed
- Updates /etc/sysconfig.nfs to set the following:
 - **statd_options** to -p *statedir* -s *statefile*
 - start_smnotify to no
- Enables NLM grace notification for all volumes in volnames
- Starts the NFS server by calling the start action of **nfs_init_script**, such as:

```
/etc/init.d/nfsserver start
```

 Fails if the NFS server does not start or if the NLM grace notification cannot be enabled

Stop Operation for CXFS Client NFS Server

ID (Generated based on the primitive name and interval)

name stop

Timeout, such as 600s

Optional > On Fail fence

The stop operation does the following:

• Stops the NFS server by calling the stop action of **nfs_init_script**, such as:

```
/etc/init.d/nfsserver stop
```

- Disables NLM grace notification for all volumes in volnames
- Fails if the NFS server does not stop or if the NLM grace notification cannot be disabled

Note: Using the example procedure in this guide, you should return to step 10 of "Create the Clone" on page 53.

Virtual IP Address Resource

This section discusses creating the virtual IP address primitive. You will test it as part of testing the group.

Creating the Virtual IP Address Primitive

Use the values shown in the following sections when adding a virtual IP address resource primitive.

Required Fields for a Virtual IP Address

ID Unique ID such as ipalias-rack1

Class ocf
Provider heartbeat
Type IPaddr2

Instance Attributes for a Virtual IP Address

ip IP address of the virtual channel, such as

128.162.244.240

nic (Optional) Network interface card that will service the

virtual IP address, such as eth0

cidr_netmask (Optional) Short-notation network mask, which should match

the subnet size at the site, such as 24

broadcast (Optional) Broadcast IP address, such as

128.162.244.255

Note: If you do not specify values for **nic**, **cidr_netmask**, and **broadcast**, appropriate values will be determined automatically.

Meta Attributes for a Virtual IP Address

resource-stickiness 1 migration_threshold 1

Probe Monitor Operation for a Virtual IP Address

Note: Defining a monitor operation (other than a probe operation) on an IPaddr2 resource is normally unnecessary.

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Start Operation for a Virtual IP Address

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 90s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

- Establishes the IP alias on the specified NIC
- · Fails if the IP alias is not established

Stop Operation for a Virtual IP Address

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 100s

Optional > On Fail fence

The stop operation does the following:

- Removes the IP alias from the specified NIC
- · Fails if the IP alias is not removed

Note: Using the example procedure in this guide, you should go on to "Creating the CXFS Client NSM Notification Primitive" on page 69. You will test the resources later.

CXFS Client NSM Notification Resource

This section discusses creating the CXFS client NSM notification primitive. You will test it as part of testing the group.

Creating the CXFS Client NSM Notification Primitive

Use the values shown in the following sections when adding a CXFS client Network Status Monitor (NSM) notification resource primitive.

Required Fields for a CXFS Client NSM Notification

ID Unique ID such as smnotify-for-rack1

Class ocf Provider sgi

Type cxfs-client-smnotify

Instance Attributes for a CXFS Client NSM Notification

ipalias IP address of the IP alias associated with the NFS client lock

state, which is reclaimed by the NFS client from the NFS server when it receives the NSM reboot notification that is initiated by the cxfs-client-smnotify resource agent,

for example for hostalias 1 128.162.244.244

statedir Identical to the statedir value specified above for

cxfs-client-nfsserver (see "Instance Attributes for a

CXFS Client NFS Server" on page 64)

statefile Identical to the statefile value specified above for

cxfs-client-nfsserver

pidfile Filename located on the NFS state filesystem that specifies

the process ID, such as:

/mnt/cxfsvol2/statd/smnotify-rackl.pid

Note: There must be a separate file and unique **pidfile**

value for each **cxfs-client-smnotify** primitive.

gracedir Directory on the NFS state filesystem that specifies the file

containing the grace-period state, such as:

/mnt/cxfsvol2/grace

Note: A single gracedir value is shared among all HAE

clusters within a CXFS cluster.

hostname Hostname of ipalias, which must match what is in

/etc/hosts or be resolvable with DNS

seconds The number of seconds before the grace period expires (must

be the same on all cxfs-client-smnotify resources in the

cluster), such as 120

Note: This value is always in seconds, unlike other timeout values, so you must not include the s identifier.

volnames Comma-separated list of all volumes that will be served via

ipalias, such as:

cxfsvol1

Meta Attributes for a CXFS Client NSM Notification

resource-stickiness 1 migration_threshold 1

Probe Monitor Operation for a CXFS Client NSM Notification

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for a CXFS Client NSM Notification

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

• Verifies that sm-notify ran successfully or is still running

Fails if sm-notify exited with an error

Start Operation for a CXFS Client NSM Notification

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 60s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Ends any active NLM grace period for the IP alias

Runs sm-notify to send out an NSM reboot notification to clients

• Fails if sm-notify returns an error

Stop Operation for a CXFS Client NSM Notification

ID (Generated based on the primitive name and interval)

name stop

Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

- · Starts an NLM grace period for the IP alias
- Drops all locks associated with the IP alias
- · Fails if locks cannot be dropped

Note: Using the example procedure in this guide, you should go back to step 6 of "Create Two IP Alias Groups" on page 56. You will test the resources later.

DMF HA Service

This chapter contains the following sections:

- "DMF HA Example Procedure" on page 74
- "CXFS Resource" on page 77
- "Local XVM Resource" on page 80
- "Filesystem Resources" on page 84
- "Virtual IP Address Resource" on page 94
- "TMF Resource" on page 97
- "OpenVault Resource" on page 104
- "COPAN MAID OpenVault Client Resource" on page 116
- "DMF Resource" on page 121
- "NFS Resource" on page 128
- "Samba Resources" on page 132
- "DMF Manager Resource" on page 137
- "DMF Client SOAP Service Resource" on page 142

Note: The attributes listed in this chapter and the various value recommendations are in support of this example. If you are using the resources in a different manner, you must evaluate whether these recommendations and the use of meta attributes apply to your intended site-specific purpose.

DMF HA Example Procedure

Figure 7-1 on page 75 shows a map of an example configuration process for DMF HA in a two-node active/passive HA cluster (node1 and node2), referring to resource agent type names such as lxvm and IPaddr2. This map also describes the start/stop order for resources.

You must configure a resource group and then add and test resource primitives in the order shown in this chapter, skipping products that do not apply to your site.

Note: When you create the resource group for the DMF HA service, you must also configure and test the first resource primitive at the same time. This first primitive must be for either CXFS or local XVM.

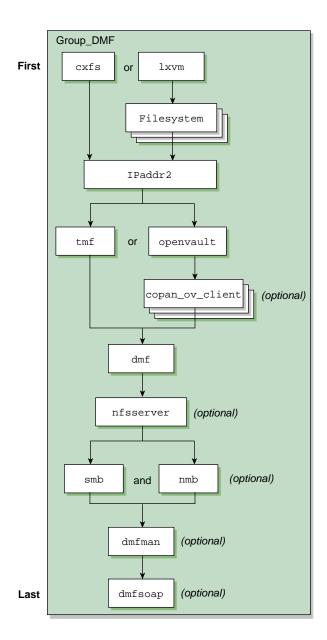


Figure 7-1 DMF HA Service Map of Resources

To create the resource group (referred to in the examples in this guide as dmfGroup), do the following:

1. Invoke the HAE GUI:

```
node1# crm gui
```

See the information about setting the password and using the HAE GUI in:

- · "Preliminary Best Practices" on page 11
- "HA Configuration Best Practices" on page 12
- 2. Log in to the initialized cluster (see Chapter 4, "Outline of the Configuration Procedure" on page 37).
- 3. Select Resources in the left-hand navigation panel.
- 4. Click the Add button, select Group, and click OK.
- 5. Enter the ID of the resource group (such as dmfGroup).
- 6. Set the target-role meta attribute for dmfGroup to Started and click Forward.
- 7. Select **OK** to add a **Primitive**. Add and test the CXFS or local XVM primitive, according to the steps described in either:
 - "CXFS Resource" on page 77
 - "Local XVM Resource" on page 80 and "Filesystem Resources" on page 84

Note: Click the **Operations** tab to edit the monitor operations and to add the probe, start, and stop operations as needed for a resource.

- 8. Add additional primitives for the other resources that should be part of dmfGroup, in the order shown in this guide:
 - a. "Virtual IP Address Resource" on page 94
 - b. A mounting service, either:
 - "TMF Resource" on page 97
 - "OpenVault Resource" on page 104 and (optionally) "COPAN MAID OpenVault Client Resource" on page 116

- c. "DMF Resource" on page 121
- d. "NFS Resource" on page 128 (optional)
- e. "Samba Resources" on page 132 (optional)
- f. "DMF Manager Resource" on page 137 (optional)
- g. "DMF Client SOAP Service Resource" on page 142 (optional)

CXFS Resource

This section discusses examples of the following:

- "Creating the CXFS Primitive" on page 77
- "Testing the CXFS Resource" on page 79

Creating the CXFS Primitive

Required Fields for CXFS

ID Unique ID such as cxfs

Class ocf Provider sgi Type cxfs

Instance Attributes for CXFS

volnames Comma-separated list of CXFS volume names (under

/dev/cxvm, excluding any volumes that represent

DMF-managed user filesystems), such as:

cxfsvol1,cxfsvol2

Meta Attributes for CXFS

resource-stickiness 1 migration_threshold 1

Probe Operation for CXFS

Note: Click the **Operations** tab to edit the monitor operations and to add the probe, start, and stop operations as needed for a resource.

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 120s

The probe operation checks to see if the resource is already running.

Monitor Operation for CXFS

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 120s

Optional > On Fail restart

The monitor operation does the following:

- Verifies that each volume in volnames is mounted by checking /proc/mounts
- Verifies that each volume in volnames is owned by the local node according to the clconf_info output
- Fails if a volume in volnames is not mounted or not owned by the local system

Start Operation for CXFS

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 600s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

- Waits until all volumes in volnames are mounted by checking /proc/mounts
- Relocates the metadata server for all volumes in volnames
- Waits for all volumes in volnames to be owned by the local node according to clconf_info output
- · Never explicitly fails, but can time out

Stop Operation for CXFS

ID (Generated based on the primitive name and interval)

name stop

Timeout, such as 600s

Optional > On Fail fence

The stop operation never explicitly fails, but can time out.

Testing the CXFS Resource

To test the cxfs resource, do the following:

- 1. Verify that CXFS is working on node1. For example:
 - a. Verify that all of the CXFS filesystems are mounted and accessible:

```
node1# df -lh
```

b. Display the current metadata server for the filesystems:

Note: If you have multiple clusters on the same network, add the -i clustername option to identify the cluster name. For more information, see the cxfs_admin(8) man page.

node1# /usr/cluster/bin/cxfs_admin -c "show server"

007–5617–006 79

Note: After a cxfs primitive has been added to a resource group's configuration, moving that resource group will unmount the filesystem defined in the primitive. This will result in killing any process that has that filesystem in the path of its current working directory.

2. Move the resource group containing the cxfs resource to node2:

```
node1# crm resource move dmfGroup node2
```

3. Verify that CXFS is working on node2:

```
node2# df -lh
node2# /usr/cluster/bin/cxfs_admin -c "show server"
```

4. Move the resource group containing the cxfs resource back to node1:

```
node1# crm resource move dmfGroup node1
```

5. Verify that CXFS is working again on node1:

```
node1# df -lh
node1# /usr/cluster/bin/cxfs_admin -c "show server"
```

6. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove dmfGroup

Local XVM Resource

This section discusses examples of the following:

- "Creating the Local XVM Primitive" on page 81
- "Testing the Local XVM Resource" on page 83

Creating the Local XVM Primitive

Required Fields for Local XVM

ID Unique ID such as local_xvm

Class ocf
Provider sgi
Type lxvm

Instance Attributes for Local XVM

volnames Comma-separated list of local XVM volume names (under

/dev/lxvm) to monitor, such as:

openvault, home, journals, spool, move, tmp, diskmsp, dmfusr1, dmfusr3

physvols Comma-separated list of the physical volumes (physvols) for

the resource agent to steal, such as:

myCluster,myClusterStripe1,myClusterStripe2

Note: physvols must contain all of the physical volumes for every logical volume listed in **volnames**. All physical disks that belong to a logical volume in an HA cluster must be completely dedicated to that logical volume and no other.

Meta Attributes for Local XVM

resource-stickiness 1 migration_threshold 1

Probe Monitor Operation for Local XVM

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for Local XVM

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

• Verifies that all volumes in volnames are online

• Fails if any volume in volnames is not online

Start Operation for Local XVM

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 60s

Note: A 60-second **start** timeout should be sufficient in most cases, but sites with large disk configurations may need to adjust this value. You should usually use the same **timeout** value for **start** and **stop**.

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

- Steals all physical volumes in **physvols** that are not already owned by the local system
- Verifies that all volumes in volnames are online
- Probes paths for all local XVM devices
- Switches to preferred paths for all local XVM devices
- Fails if any volume in volnames does not come online

Stop Operation for Local XVM

ID (Generated based on the primitive name and interval)

name stop

Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

- Gives all physical volumes in **physvols** to a pseudo-cluster whose ID is of the
 form OCF-host-pid, which allows the lxvm resource agent to identify the
 filesystems that it must steal when it becomes active
- · Fails if any physical volume in physvols could not be given away

Testing the Local XVM Resource

To test the lxvm resource, do the following:

- 1. On node1, unmount all of the filesystems for which a Filesystem primitive will be defined (in "Filesystem Resources" on page 84).
- 2. Move the resource group containing the lxvm resource from node1 to node2:

```
node1# crm resource move dmfGroup node2
```

Note: If the timeout is too short for a start operation, the crm status and crm_verify -LV output and the /var/log/messages file will have an entry that refers to the action being "Timed Out". For example (line breaks shown here for readability):

3. Verify that the local XVM volumes are visible and online on node2:

```
node2# xvm -d local show vol
```

- 4. On node2, unmount all of the filesystems for which a Filesystem primitive will be defined (in "Filesystem Resources" on page 84).
- 5. Move the resource group containing the lxvm resource back to nodel:

```
node1# crm resource move dmfGroup node1
```

6. Verify that the local XVM volumes are visible and online on node1:

```
node1# xvm -d local show vol
```

7. Remove the implicit location constraints generated by the administrative move command above:

```
node1# crm resource unmove dmfGroup
```

Filesystem Resources

This section discusses examples of the following:

- "Filesystems Supported" on page 85
- "Configuring a DMF-Managed User Filesystem or DMF Administrative Filesystem for HA" on page 86
- "Creating a DMF-Managed User Filesystem Primitive" on page 86
- "Creating a DMF Administrative Filesystem Primitive" on page 88
- "Creating a Dedicated OpenVault Server Filesystem Primitive (Optional)" on page 90
- "Testing Filesystem Resources" on page 92

Filesystems Supported

In this release, SGI supports the following types of filesystems for DMF HA:

DMF-managed user filesystems

Note: You must specify the dmi and mtpt mount options when configuring a DMF-managed user filesystem.

- DMF administrative filesystems specified by the following parameters in the DMF configuration file (/etc/dmf/dmf.conf):
 - HOME_DIR
 - JOURNAL_DIR
 - SPOOL_DIR
 - TMP DIR
 - MOVE_FS (optional)
 - CACHE_DIR for any library servers
 - STORE_DIRECTORY for a disk cache manager (DCM) media-specific process (MSP) or disk MSP using local disk storage

Note: The following DMF administrative filesystems require mount options:

- MOVE_FS requires dmi and mtpt
- STORE_DIRECTORY for a DCM MSP requires dirsync, dmi, and mtpt
- STORE_DIRECTORY for a disk MSP requires dirsync
- (Optional) OpenVault server filesystem
- (Optional) Any additional HA filesystems that are not managed by DMF; for example, other NFS-exported filesystems that are not under DMF control

All of the above filesystems should be configured as locally mounted XFS filesystems using the following resources:

- Local XVM resource
- Community-provided Filesystem resource

Configuring a DMF-Managed User Filesystem or DMF Administrative Filesystem for HA

To configure a DMF-managed user filesystem or DMF administrative filesystem for HA, do the following:

- Edit /etc/fstab and remove all of the filesystems that you will manage with HA
- Add a Filesystem primitive using the values show in one of the following, as appropriate:
 - "Creating a DMF-Managed User Filesystem Primitive" on page 86
 - "Creating a DMF Administrative Filesystem Primitive" on page 88
 - "Creating a Dedicated OpenVault Server Filesystem Primitive (Optional)" on page 90

Creating a DMF-Managed User Filesystem Primitive

Required Fields for a DMF-Managed User Filesystem

ID Unique ID such as dmfusrlfs

Class ocf
Provider heartbeat
Type Filesystem

Instance Attributes for a DMF-Managed User Filesystem

device The /dev/lxvm volume name of the DMF filesystem

device, such as /dev/lxvm/dmfusr1

directory The mount point for the DMF filesystem, such as /dmfusr1

options The mount options

Note: The value of the mtpt mount option must match the value used for the **directory** attribute, such as

/dmfusr1.

fstype xfs

Meta Attributes for a DMF-Managed User Filesystem

resource-stickiness 1 migration_threshold 1

Probe Monitor Operation for a DMF-Managed User Filesystem

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for a DMF-Managed User Filesystem

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

- Checks /proc/mounts, /etc/mtab, or the output of the mount command for the existence of the filesystem
- Fails if the filesystems is not mounted

Start Operation for a DMF-Managed User Filesystem

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 60s

Optional > Requires fencing

Optional > On Fail restart

The start operation does the following:

• Mounts the filesystem

· Fails if the mount is unsuccessful

Stop Operation for a DMF-Managed User Filesystem

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

• Unmounts the filesystem

· Fails if the unmount is unsuccessful

Creating a DMF Administrative Filesystem Primitive

Required Fields for a DMF Administrative Filesystem

ID Unique ID such as dmf_spool_fs

Class ocf Provider heartbeat

Type Filesystem

Instance Attributes for a DMF Administrative Filesystem

device The /dev/lxvm volume name of the DMF administrative

filesystem device, such as /dev/lxvm/dmf_spool

directory Mount point for the DMF administrative filesystem, such as

/dmf/dmf_spool

options Mount options

Note: You must use the **options** attribute for the following DMF administrative filesystems:

- MOVE_FS requires dmi and mtpt (the value of the mtpt mount option must match the value used for the directory attribute, such as /dmf/dmf_spool)
- STORE_DIRECTORY for a DCM MSP requires dirsync, dmi, and mtpt
- STORE_DIRECTORY for a disk MSP requires dirsync

fstype xfs

Meta Attributes for a DMF Administrative Filesystem

resource-stickiness 1 migration_threshold 1

Probe Monitor Operation for a DMF Administrative Filesystem

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for a DMF Administrative Filesystem

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

- Checks /proc/mounts, /etc/mtab, or the output of the mount command for the existence of the filesystem
- Fails if the filesystems is not mounted

Start Operation for a DMF Administrative Filesystem

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 60s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Mounts the filesystem

Fails if the mount is unsuccessful

Stop Operation for a DMF Administrative Filesystem

ID (Generated based on the primitive name and interval)

name stop

Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

- Unmounts the filesystem
- · Fails if the unmount is unsuccessful

Creating a Dedicated OpenVault Server Filesystem Primitive (Optional)

If you choose to have a dedicated filesystem for the OpenVault serverdir directory, use the information in the following sections.

Required Fields for an OpenVault Server Filesystem

ID Unique ID such as openvaultfs

Class ocf

Provider heartbeat
Type Filesystem

Instance Attributes for an OpenVault Server Filesystem

device The /dev/lxvm volume name of the DMF filesystem

device, such as /dev/lxvm/openvault

directory Mount point for the DMF filesystem, such as

/dmf/openvault

fstype xfs

Meta Attributes for an OpenVault Server Filesystem

resource-stickiness 1 migration_threshold 1

Probe Monitor Operation for an OpenVault Server Filesystem

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for an OpenVault Server Filesystem

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

• Checks /proc/mounts, /etc/mtab, or the output of the mount command for the existence of the filesystem

007–5617–006 91

· Fails if the filesystems is not mounted

Start Operation for OpenVault Server Filesystem

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 60s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Mounts the filesystem

· Fails if the mount is unsuccessful

Stop Operation for an OpenVault Server Filesystem

ID (Generated based on the primitive name and interval)

name stop

Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

• Unmounts the filesystem

· Fails if the unmount is unsuccessful

Testing Filesystem Resources

To test the filesystem resources for a DMF resource group named dmfGroup, do the following:

1. Ensure that all of the mount points required to mount all Filesystem resources exist on both nodes.

Note: After a Filesystem primitive has been added to a resource group's configuration, moving that resource group will unmount the filesystem defined in the primitive. This will result in killing any process that has that filesystem in the path of its current working directory.

2. Verify that the filesystems are online on node1:

node1# **df -hl**

3. Move the resource group containing all of the Filesystem resources from node1 to node2:

node1# crm resource move dmfGroup node2

- 4. Verify that the filesystems are correctly mounted on node2 only:
 - On node2, check the mount table and verify that the filesystems are mounted and have the correct mount options. Use the ls and df -lh commands on the mount point to verify that the filesystem is functional.
 - On node1, check the mount table and verify that none of the filesystems are mounted.
- 5. Move the resource group containing all of the Filesystem resources back to nodel:

node1# crm resource move dmfGroup node1

- 6. Verify that the filesystems are correctly mounted on node1 only:
 - On node1, check the mount table and verify that the filesystems are mounted and have the correct mount options. Use the ls and df -lh commands on the mount point to verify that the filesystem is functional.
 - On node2, check the mount table and verify that none of the filesystems are mounted.
- 7. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove dmfGroup

007–5617–006 93

Virtual IP Address Resource

This section discusses examples of the following:

- "Creating the Virtual IP Address Primitive" on page 94
- "Testing the Virtual IP Address Resource" on page 96

Creating the Virtual IP Address Primitive

Required Fields for a Virtual IP Address

ID Unique ID such as VirtualIP

Class ocf

Provider heartbeat Type IPaddr2

Instance Attributes for a Virtual IP Address

ip IP address of the virtual channel, such as

128.162.244.240

nic Network interface card that will service the virtual IP

address, such as eth0

cidr_netmask Short-notation network mask, which should match the subnet

size at the site, such as 24

broadcast Broadcast IP address, such as 128.162.244.255

Meta Attributes for a Virtual IP Address

resource-stickiness 1 migration_threshold 1

Probe Monitor Operation for a Virtual IP Address

Note: Defining a monitor operation (other than a probe operation) on an IPaddr2 resource is normally unnecessary.

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Start Operation for a Virtual IP Address

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 90s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

· Establishes the IP alias on the specified NIC

· Fails if the IP alias is not established

Stop Operation for a Virtual IP Address

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 100s

Optional > On Fail fence

The stop operation does the following:

· Removes the IP alias from the specified NIC

Fails if the IP alias is not removed

007–5617–006 95

Testing the Virtual IP Address Resource

To test the IPaddr2 resource, do the following:

1. Verify that the IP address (the value used for **ip** in "Instance Attributes for a Virtual IP Address" on page 94 above) is configured correctly on node1. For example, for the **ip** value 128.162.244.240:

```
node1# ip -o addr show | grep '128.162.244.240/'
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

2. Verify that node2 does not accept the IP address packets by running the following command on node2 (there should be no output):

```
node2# ip -o addr show | grep '128.162.244.240/'
node2#
```

3. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named node1:

```
ha# ssh root@128.162.244.240
Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
ha# uname -n
node1
```

4. Move the resource group containing the IPaddr2 resource from node1 to node2:

```
node1# crm resource move dmfGroup node2
```

5. Verify that the IP address is configured correctly on node2:

```
node2# ip -o addr show | grep '128.162.244.240/'
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

6. Verify that node1 does not accept the IP address packets by running the following command on node1 (the output should be no output):

```
node1# ip -o addr show | grep '128.162.244.240/'
node1#
```

7. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named node2:

```
ha# ssh root@128.162.244.240
Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
ha# uname -n
node2
```

8. Move the resource group containing the IPaddr2 resource back to node1:

```
node1# crm resource move dmfGroup node1
```

- 9. Test again as in steps 1-3 above.
- 10. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove dmfGroup

TMF Resource

This section discusses examples of the following:

- "Configuring TMF for HA" on page 97
- "Creating the TMF Primitive" on page 98
- "Testing the TMF Resource" on page 102

Configuring TMF for HA

To configure TMF for HA and create the TMF resource, do the following:

- 1. Modify the /etc/tmf/tmf.config file so that all tape devices belonging to device groups that are managed by HA are configured DOWN in the status parameter in the DEVICE definition.
- 2. Copy the following file from node1 to node2:

```
/etc/tmf/tmf.config
```

On node2, if the tape drive pathname (the FILE parameter in the DEVICE definition) for a given drive is not the same as the pathname for the same drive

007–5617–006 97

on node1, modify the pathname in the /etc/tmf.config file on node2 so that it points to the appropriate pathname.

3. On node2, enable the tmf service to be started automatically at boot time:

node2# chkconfig tmf on

4. Create the TMF resource primitive with the fields shown in "Creating the TMF Primitive" on page 98.

Creating the TMF Primitive

Required Fields for TMF

ID Unique ID such as tmf

Class ocf Provider sgi Type tmf

Instance Attributes for TMF

devgrpnames Comma-separated list of TMF device groups defined in the

tmf.config file that are to be managed by HA, such as:

ibm3592,t10ka

mindevsup Comma-separated list of the number of devices, one entry per

device group, that must be configured up successfully within the corresponding device group in order to count the group

as being highly available, such as:

1,0

Note: A value of 0 indicates that failover will never be initiated, even if all the devices in that device group are unavailable. This value is supported for all device groups; however, in order for TMF to be considered up, at least one tape device in some device group must be up. If there are no devices up in all defined device groups, then the resource agent will be considered to be in a stopped state, which will impact the resource monitor and the resource start actions.

devtimeout

Comma-separated list of timeouts in seconds, one entry per device group, that are used to decide how long to wait for a device in that device group to finish configuring up or down, such as:

120,240

Note: Changing the up/down state of a device may require rewinding and unloading a tape left in the drive by a previous host. Different tape device types have different maximum rewind and unload times, which can be obtained from the vendor's product literature. To calculate the timeout value for a particular device group, add the maximum rewind time for a device in that group to the device's unload time plus add an additional 10 seconds to allow for any required robot hand movement.

For example, 3592 tape drives with a maximum rewind time of 78 seconds and an unload time of 21 seconds require a **devtimeout** value of 78+21+10=109 seconds. 9940B tape drives with a maximum rewind time of 90 seconds and an unload time of 18 seconds require a **devtimeout** of 90+18+10=118.

admin_emails

(Optional) Comma-separated list of administrator email addresses corresponding to the device groups listed in **devgrpnames**, such as:

root,admin1

007–5617–006 99

Note: You can use the same email address for more than one device group (such as admin1, admin1). The email address will be used to send a message whenever tape drives that were previously available become unavailable, so that the administrator can take action to repair the drives in a timely fashion.

loader_names Comma-separated list of loader names configured in

tmf.config that correspond to the device groups listed in

devgrpnames, such as:

ibm3494,1700a

loader_hosts Comma-separated list of hosts through which the

corresponding loaders listed in loader_names are controlled,

such as:

ibm3494cps, stkacsls

loader_users Comma-separated list of user names that are used to log in to

the corresponding hosts listed in loader_hosts, such as:

root,acssa

loader_passwords Comma-separated list of passwords corresponding to the user

names listed in loader_users, such as:

passwd1,passwd2

Meta Attributes for TMF

resource-stickiness 1 1

migration_threshold

Probe Monitor Operation for TMF

ID (Generated based on the primitive name and interval)

monitor name

Interval 0

100 007-5617-006 **Timeout** Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for TMF

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

Issues a tmstat command and parses the output

• Fails if insufficient drives came up in any device group or if TMF is down

Start Operation for TMF

ID (Generated based on the primitive name and interval)

name start

Timeout, such as 236s

Note: The tmf resource agent will try twice to configure each drive up before considering it unusable, so the **start timeout** value should therefore be at least twice the greatest **devtimeout** value. For example, 2*118=236. You should usually use the same **timeout** value for **start** and **stop**.

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

- · Starts the TMF daemon if necessary
- Configures up the tape loader and all tape drives in each device group
- Preempts reservations

- · Forces dismount if necessary
- Fails if insufficient drives come up in any device group

Stop Operation for TMF

ID (Generated based on the primitive name and interval)

name stop

Timeout, such as 236s

Optional > On Fail fence

The stop operation does the following:

- Configures down all tape drives in each device group
- · Forces a release of drives allocated to a user job
- · Fails if any drive in any device group could not be stopped

Testing the TMF Resource

To test the TMF resource as part of a resource group named dmfGroup, do the following:

- 1. Use tmmls to show the loader status.
- 2. Use tmstat to show the drive status. Verify that all of the tape drives in all HA-managed device groups are in assn or idle status on nodel.
- 3. Move the resource group containing the tmf resource to node2:

node1# crm resource move dmfGroup node2

- 4. Verify that the state is correct:
 - Use tmstat to verify that the tape drives all have a status of down or sdwn on node1 and that they have a status of idle or assn on node2
 - Use tmmls to verify that all of the loaders on node1 still have a status of UP
- 5. Verify that the timeout values for the start, stop, and monitor operations are appropriate. Do the following:

- a. On node2, look in /var/log/messages for the time when the resource start operation started and ended. Also capture the start and end times of the monitor operation.
- b. On node1, look in /var/log/messages to find the start and stop times for the stop operation.
- c. Subtract the ending time from the starting time in each case to get the required time for each operation.
- d. Take the above values and increase them by 10%.

Following are examples of finding the start, stop, and monitor operation durations (line breaks shown here for readability):

```
node1 -> egrep "do_lrm_rsc_op.*Performing.*tmf_start|process_lrm_event.*tmf_start" /var/log/messages
May 11 08:20:53 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=47:81:0:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_start_0 )
May 11 08:21:10 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_start_0 (call=90, rc=0,
  cib-update=88, confirmed=true) ok
node1 -> egrep "do_lrm_rsc_op.*Performing.*tmf_stop|process_lrm_event.*tmf_stop" /var/log/messages
May 11 08:27:39 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=46:82:0:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_stop_0 )
May 11 08:27:40 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_stop_0 (call=92, rc=0,
 cib-update=100, confirmed=true) ok
node1 -> egrep "do_lrm_rsc_op.*Performing.*tmf_monitor|process_lrm_event.*tmf_monitor" /var/log/messages
May 11 08:08:21 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=16:78:7:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_monitor_0 )
May 11 08:08:21 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_monitor_0 (call=69, rc=7,
 cib-update=77, confirmed=true) not running
May 11 08:21:10 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=48:81:0:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_monitor_30000 )
May 11 08:21:11 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_monitor_30000 (call=91,
 rc=0, cib-update=89, confirmed=false) ok
May 11 08:27:39 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_monitor_30000 (call=91,
  status=1, cib-update=0, confirmed=true) Cancelled
```

6. If you need to change any values, modify the primitive using the HAE GUI (crm_gui).

7. Move the resource group containing the tmf resource back to node1:

```
node1# crm resource move dmfGroup node1
```

- 8. Verify that the state is correct:
 - Use tmstat to verify that the tape drives all have a status of down or sdwn on node2 and that they have a status of idle or assn on node1
 - Use tmmls to verify that all of the loaders on node2 still have a status of UP
- 9. Remove the implicit location constraints imposed by the administrative move command above:

```
node1# crm resource unmove dmfGroup
```

OpenVault Resource

This section discusses examples of the following:

- "Configuring OpenVault for HA" on page 104
- "Creating the OpenVault Primitive" on page 111
- "Testing the OpenVault Resource" on page 114

Configuring OpenVault for HA

Do the following to configure OpenVault for HA:

- 1. Ensure that all of the resources within the resource group are moved back to node1 (if not already there).
- 2. Add the primitive using the values shown in "Creating the OpenVault Primitive" on page 111.
- 3. Run ov_admin on node1:

```
node1# ov_admin
...
```

When asked for the server hostname, specify the virtual hostname (the virtualhost value). ov_admin will automatically convert the OpenVault configuration to an HA configuration by doing the following:

- a. Stopping the server (if it is running).
- b. Creating the directory specified by serverdir.
- Moving the OpenVault database and logs into the directory specified by serverdir.
- d. Making the host specified by virtualhost be the same hostname address used by the OpenVault server and all drive control programs (DCPs) and library control programs (LCPs) on node1.
- 4. Verify that the DCPs and LCPs are running on node1 by using the ov_stat(8) command with the -ld options, which should show ready in the LCP State and DCP State fields (output condensed here for readability):

```
nodel# ov_stat -ld
Library Name Broken ... LCP State
lib1 false ... ready

Drive Name Group ... DCP State Occupied Cartridge PCL
tape1 drives ... ready false
tape2 drives ... ready false
```

- 5. Enable the passive server (node2) as a potential OpenVault server:
 - a. On node1:

To allow node2 to access the OpenVault server, run ov_admin and answer yes when prompted to start the server. Then select the following menus, answering the questions when prompted:

When asked if DCPs will also be configured, answer yes.

b. On node2:

i. Use ov_admin to enable the node to issue administrative commands by entering the virtual hostname:

```
node2# ov_admin
...
Name where the OpenVault server is listening? [virtualhostname]
```

6. If your site contains a physical or virtual tape library, define DCPs and LCPs on the passive node (node2). Whenever ov_admin asks for the server hostname, use the virtual hostname.

Note: If your site contains COPAN MAID shelves, you will create their OpenVault components later in "Creating the OpenVault Components on the Failover Node" on page 116. Therefore, you can skip this step if your site contains only COPAN MAID shelves (and no physical tape library or COPAN VTL).

a. Configure drives by selecting:

```
2 - Manage DCPs for locally attached Drives
...
1 - Create a new SCSI DCP
```

You must specify the drive for which would you like to add a DCP and the DCP name

On node2, you must configure at least one DCP for each drive that is already configured on node1.

b. Configure libraries by selecting:

```
1 - Manage LCPs for locally attached Libraries
```

On node2, you must configure at least one LCP for each library that is already configured on node1:

• When asked for the name of the device, use the same library name that was used on node1. The LCP instance name will automatically reflect the node2 name (for example, for the 1700a library, the LCP instance name on node1 is 1700a@node1 and the LCP instance name on node2 will be 1700a@node2).

• When prompted with Library 'libname' already exists in OpenVault catalog; create LCP anyway?, respond yes.

All DCPs and LCPs have now been configured and started on node2, but the server has not yet been configured to allow the LCPs to connect. This will be accomplished in step c.

c. On node1, use ov_admin to enable remote LCPs on node2 by selecting:

```
node1# ov_admin
...
21 - Manage remote Libraries and LCPs
```

You must enable each remote LCP using the same library and LCP names that you used on node2:

4 - Activate another LCP for an existing Library

Now that server configuration is complete, the LCPs on node2 will shortly discover that they are able to connect to the server.

- d. On node2:
 - i. Verify that the DCPs are running successfully. For example, the following output shows under DCPHost and DCPStateSoft columns that the DCP is running and connected to the OpenVault server (ready) on the active

HA node (node1) and running in disconnected mode (disconnected) on the failover node (node2):

node2# ov_dumptable -c DriveName, DCPName, DCPHost, DCPStateSoft DCP

DriveName	DCPName	DCPHost	DCPStateSoft
9940B_25a1	9940B_25a1@node1	node1	ready
9940B_b7ba	9940B_b7ba@node1	node1	ready
9940B_93c8	9940B_93c8@node1	node1	ready
LTO2_682f	LTO2_682f@node1	node1	ready
LTO2_6832	LT02_6832@node1	node1	ready
LTO2_6835	LT02_6835@node1	node1	ready
LTO2_6838	LT02_6838@node1	node1	ready
9940B_25a1	9940B_25a1@node2	node2	disconnected
9940B_93c8	9940B_93c8@node2	node2	disconnected
9940B_b7ba	9940B_b7ba@node2	node2	disconnected
LTO2_682f	LTO2_682f@node2	node2	disconnected
LTO2_6832	LT02_6832@node2	node2	disconnected
LTO2_6838	LT02_6838@node2	node2	disconnected
LTO2_6835	LT02_6835@node2	node2	disconnected

Note: All of the alternate DCPs should transition to disconnected state, meaning that they have successfully contacted the server. Do not proceed until they all transition to disconnected. A state of inactive means that the DCP has not contacted the server, so if the state remains inactive for more than a few minutes, the DCP may be having problems connecting to the server.

ii. Verify that the LCPs are running. For example, the following output shows under LCPHost and LCPStateSoft columns that the LCP is running and connected to the OpenVault server (ready) on the active HA node (node1) and running in disconnected mode (disconnected) on the failover node (node2):

node2# ov_dumptable -c LibraryName,LCPName,LCPHost,LCPStateSoft LCP

LibraryName	LCPName	LCPHost	LCPStateSoft
SL500-2	SL500-2@node1	node1	ready
L700A	L700A@node1	node1	ready
SL500-2	SL500-2@node2	node2	disconnected
L700A	L700A@node2	node2	disconnected

Note: It may take a minute or two for the LCPs to notice that they are able to connect to the server and activate themselves. All of the alternate LCPs should transition to disconnected state, meaning that they have successfully contacted the server. Do not proceed until they all transition to disconnected. A state of inactive means that the LCP has not contacted the server, so if the state remains inactive for more than a couple of minutes, the LCP may be having problems connecting to the server.

- 7. Stop Openvault on node2:
 - a. Stop all DCPs and LCPs on node2:

```
node2# ov_stop
```

b. Disable the openvault service from being started automatically at boot time:

```
node2# chkconfig openvault off
```

- 8. Run ov_admin on each parallel data mover node:
 - a. Enter the OpenVault virtual hostname, the port number, and security key as needed:

pdmn# ov_admin

. . .

Name where the OpenVault server is listening? [servername] virtualhostname What port number is the OpenVault server on virtualhostname using? [44444] What security key would you like the admin commands to use? [none]

b. Update the server name for each DCP using item 6 in the OpenVault DCP Configuration menu:

```
2 - Manage DCPs for locally attached Drives
6 - Change Server Used by DCPs
a - Change server for all DCPs.
```

c. Restart the DCPs to connect to the OpenVault server using the virtual server name:

```
pdmn# service openvault stop
pdmn# service openvault start
```

007-5617-006

- d. Update the server name for each LCP using item 8 in the OpenVault LCP Configuration menu:
 - 1 Manage LCPs for locally attached Libraries
 - 8 Change Server Used by LCPs
 - a Change server for all LCPs.
- Restart the LCPs to connect to the OpenVault server using the virtual server name:

```
pdmn# service openvault stop
pdmn# service openvault start
```

This step may generate errors for COPAN MAID shelf DCPs and LCPs whose default host is not on this host. You can ignore errors such as the following:

```
shelf C02 is owned by owner_nodename
```

9. On node1, stop the OpenVault server and any DCPs and LCPs:

```
node1# ov_stop
```

10. On node1, disable the openvault service from being started automatically at boot time:

```
node1# chkconfig openvault off
```

11. Update the openvault resource so that it is managed by HA:

```
nodel# crm resource manage OpenVault_resourcePRIMITIVE
```

12. (Optional) If you want to have additional OpenVault clients that are not DMF servers, such as for running administrative commands, install the OpenVault software on those clients and run ov_admin as shown below. When asked for the server hostname, specify the virtual hostname. This connects the clients to the virtual cluster, rather than a fixed host, so that upon migration they follow the server.

Note: You may wish to set the environment variable OVSERVER to the virtual hostname so that you can use the OpenVault administrative commands without having to specify the -S parameter on each command.

Do the following for each OpenVault client:

a. On node1:

To allow node 2 to act as an administrative client, run ov_admin and select the following menus, answering the questions when prompted:

b. On the OpenVault client node, use ov_admin to enable the node to issue administrative commands by entering the virtual hostname, the port number, and security key as needed:

node2# ov_admin

. . .

Name where the OpenVault server is listening? [virtualhostname]
What port number is the OpenVault server on virtualhostname using? [44444]
What security key is used for admin commands on the HA OpenVault servers? [none]

Creating the OpenVault Primitive

Required Fields for OpenVault

ID Unique ID such as Openvault

Class ocf Provider sgi

Type openvault

Instance Attributes for OpenVault

virtualhost Hostname that will resolve as defined in

/etc/nsswitch.conf to the IP address configured in "Virtual IP Address Resource" on page 94, such as

128.162.244.240

serverdir Directory containing the OpenVault server configuration,

such as /dmf/home/openvault

Note: serverdir must be a path on a mountable CXFS filesystem that is being managed by a cxfs resource or on an XFS filesystem that is being managed by a Filesystem resource in the same resource group as the openvault resource. The filesystem could be one dedicated for OpenVault use (such as /dmf/openvault) or it could be an HA-managed filesystem in the same resource group that has sufficient space (such as /dmf/home). As part of the conversion to HA, OpenVault will create this directory and move its database and logs into the directory; OpenVault will fail if the directory already exists.

Meta Attributes for OpenVault

resource-stickiness 1
migration_threshold 1
is-managed false

Note: The **false** setting facilitates the conversion of OpenVault from a single-system server to HA.

Probe Monitor Operation for OpenVault

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for OpenVault

ID (Generated based on the primitive name and interval)

name monitor

Interval Interval time, such as 120s

Timeout Timeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

• Verifies that the ovroot process appears in the ov_procs output

• Fails if the ovroot process is not running

Start Operation for OpenVault

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 300s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

- Verifies that the OpenVault serverdir directory is mounted and that the virtualhost IP address is available
- Starts OpenVault with the following command:

```
ov_start server clients
```

• Fails if either the **serverdir** value or the **virtualhost** value is unavailable, or if OpenVault does not start

Stop Operation for OpenVault

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 90s

Optional > On Fail fence

The stop operation does the following:

• Stops OpenVault with the following command:

ov_stop server clients

- Kills any remaining OpenVault processes found by ov_procs
- Clears the OpenVault semaphore with the following command:

```
ipcrm -s
```

• Fails if OpenVault could not be stopped or if the semaphore could not be cleared

Testing the OpenVault Resource

To test the OpenVault resource as part of a resource group named dmfGroup, do the following:

1. Verify that all of the OpenVault libraries and drives become available after a few minutes on node1:

node1# ov_stat	-ld									
Library Name	Broken	Disabled	State	e LCP	State					
L700A	false	false	ready	y read	dy					
SL500-2	false	false	ready	y read	dy					
Drive Name	Group	Access	Broken	Disabled	SoftState	HardState	DCP State	Occupied	Cartridge	PCL
9940B_25a1	9940B_dr	rives true	false	false	ready	unloaded	ready	false		
9940B_93c8	9940B_dr	rives true	false	false	ready	unloaded	ready	false		
9940B_b7ba	9940B_dr	rives true	false	false	ready	unloaded	ready	false		
LT02_682f	LTO2_dri	ves true	false	false	ready	unloaded	ready	false		
LTO2_6832	LTO2_dri	ves true	false	false	ready	unloaded	ready	false		
LTO2_6835	LTO2_dri	lves true	false	false	ready	unloaded	ready	false		
LTO2_6838	LTO2_dri	ves true	false	false	ready	unloaded	ready	false		

2. Move the resource group containing the openvault resource from node1 to node2:

node1# crm resource move dmfGroup node2

3. Verify that all of the drives become available after a few moments. For example:

node2# ov_stat	-1d									
Library Name	Broken	Disabled	State	e LCP	State					
L700A	false	false	ready	y rea	dy					
SL500-2	false	false	ready	y rea	dy					
Drive Name	Group	Access	Broken	Disabled	SoftState	HardState	DCP State	Occupied	Cartridge P	CL
9940B_25a1	9940B_dr	rives true	false	false	ready	unloaded	ready	false		
9940B_93c8	9940B_dr	rives true	false	false	ready	unloaded	ready	false		
9940B_b7ba	9940B_dr	rives true	false	false	ready	unloaded	ready	false		
LTO2_682f	LTO2_dri	lves true	false	false	ready	unloaded	ready	false		
LTO2_6832	LTO2_dri	lves true	false	false	ready	unloaded	ready	false		
LTO2_6835	LTO2_dri	lves true	false	false	ready	unloaded	ready	false		
LTO2_6838	LTO2_dri	lves true	false	false	ready	unloaded	ready	false		

 ${\bf 4.}\ \ Move\ the\ resource\ group\ containing\ the\ {\tt openvault}\ resource\ back\ to\ {\tt nodel:}$

node1# crm resource move dmfGroup node1

5. Verify that all of the drives become available after a few moments. For example:

node1# ov_stat	-1d								
Library Name	Broken	Disabled	State	e LCP	State				
L700A	false	false	ready	y rea	dy				
SL500-2	false	false	ready	y rea	dy				
Drive Name	Group	Access	Broken	Disabled	SoftState	HardState	DCP State	Occupied	Cartridge PCL
9940B_25a1	9940B_dr	rives true	false	false	ready	unloaded	ready	false	
9940B_93c8	9940B_dr	rives true	false	false	ready	unloaded	ready	false	
9940B_b7ba	9940B_dr	rives true	false	false	ready	unloaded	ready	false	
LTO2_682f	LTO2_dri	ves true	false	false	ready	unloaded	ready	false	
LTO2_6832	LTO2_dri	ves true	false	false	ready	unloaded	ready	false	
LTO2_6835	LTO2_dri	ves true	false	false	ready	unloaded	ready	false	
LTO2_6838	LTO2_dri	ves true	false	false	ready	unloaded	ready	false	

6. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove dmfGroup

007-5617-006

COPAN MAID OpenVault Client Resource

This section discusses the following:

- "Creating the OpenVault Components on the Failover Node" on page 116
- "Creating the COPAN MAID OpenVault Client Primitive" on page 118
- "Testing the COPAN MAID OpenVault Client Resource" on page 120

Creating the OpenVault Components on the Failover Node

When you configured the standard services according to the information in *COPAN MAID for DMF Quick Start Guide*, you executed an ov_shelf(8) command for each shelf in order to create the required OpenVault components (see "COPAN MAID Standard Service" on page 47).

In this step, you will create corresponding OpenVault components for the failover node so that it is ready to resume control of OpenVault in case of failover, using the following information for shelf 0 as an example:

• Shelf identifier: C00 (indicating cabinet 0, shelf 0)

• Active node: node1

• Failover node: node2

Note: For more information about the shelf identifier, see *COPAN MAID for DMF Quick Start Guide*.

Do the following:

- 1. On node1:
 - a. Stop all of the shelf's OpenVault clients:

```
node1# ov_stop C00*
```

b. Export the OCF shelf, hostname, and root environment variables for use by the copan_ov_client script:

```
node1# export OCF_RESKEY_shelf_name=C00
node1# export OCF_RESKEY_give_host=node2
node1# export OCF_ROOT=/usr/lib/ocf
```

c. Transfer ownership of the shelf from node1 to node2:

```
node1# /usr/lib/ocf/resource.d/sgi/copan_ov_client give
```

2. On node2:

a. Verify that node2 now owns the shelf's XVM volumes (COOA through COOZ, although not necessarily listed in alphabetical order):

```
node2# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
```

b. Create the OpenVault components for node2:

```
node2# ov_shelf create C00
```

This automatically starts all of the shelf's OpenVault components.

For more information, see COPAN MAID for DMF Quick Start Guide.

c. Stop all of the shelf's OpenVault clients:

```
node2# ov_stop C00*
```

d. Export the shelf, hostname, and OCF root environment variables for use by the copan_ov_client script:

```
node1# export OCF_RESKEY_shelf_name=C00
node1# export OCF_RESKEY_give_host=node2
node1# export OCF_ROOT=/usr/lib/ocf
```

e. Transfer ownership of the shelf from node2 back to node1:

```
node2# /usr/lib/ocf/resource.d/sgi/copan_ov_client give
```

3. On node1:

a. Verify that node1 once again owns the shelf's XVM volumes (C00A through C00Z, although not necessarily listed in alphabetical order):

```
nodel# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
```

. . .

b. Restart all of the shelf's OpenVault clients:

node1# ov_start C00*

4. Repeat steps 1 through 3 for each shelf.

Creating the COPAN MAID OpenVault Client Primitive

Use the values shown in the following sections when adding a COPAN OpenVault client primitive. There should be one primitive instance for each shelf.

Required Fields for a COPAN MAID OpenVault Client

ID Unique ID for the COPAN OpenVault client on each shelf,

corresponding to the shelf ID, such as copan_C00 for shelf

0, which has a shelf ID of C00

Class ocf Provider sgi

Type copan_ov_client

Meta Attributes for a COPAN MAID OpenVault Client

resource-stickiness 1 migration-threshold 1

target-role Started

Instance Attributes for a COPAN OpenVault Client

shelf_name The three-character shelf ID, using the naming convention

described in the COPAN MAID for DMF Quick Start

Guide, such as COO for cabinet 0 shelf 0.

Probe Monitor Operation for a COPAN MAID OpenVault Client

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for a COPAN MAID OpenVault Client

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

• Verifies that OpenVault is functional: the LCP and at least one DCP are running and at least one RAID set is accessible on the shelf

· Fails if the COPAN MAID shelf is not functional

Start Operation for a COPAN MAID OpenVault Client

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 120s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Starts the COPAN MAID shelf client by ensuring that RAID sets are available and that the OpenVault LCP and at least one DCP are running

· Fails if any of the above conditions are not met

Stop Operation for a COPAN MAID OpenVault Client

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 120s

Optional > On Fail fence

The stop operation does the following:

- Stops the COPAN MAID OpenVault client resource
- Fails if the COPAN MAID OpenVault client resource fails to stop

Testing the COPAN MAID OpenVault Client Resource

To test the COPAN MAID OpenVault client resource, do the following, using shelf ${\tt CO2}$ as an example:

1. Verify that shelf C02 becomes available after a few minutes on node1:

node1# ov_stat	-L C02 -E	'C02.*'							
Library Name	Broken	Disabled	State	e LCP	State				
C02	false	false	ready	y rea	dy				
Drive Name	Group	Access	Broken	Disabled	SoftState	HardState	DCP State	Occupied	Cartridge PCL
C02d00	dg_c02	true	false	false	ready	unloaded	ready	false	
C02d01	dg_c02	true	false	false	ready	unloaded	ready	false	
C02d02	dg_c02	true	false	false	ready	unloaded	ready	false	
C02d03	dg_c02	true	false	false	ready	unloaded	ready	false	
C02d04	dg_c02	true	false	false	ready	unloaded	ready	false	
C02d05	dg_c02	true	false	false	ready	unloaded	ready	false	
C02d06	dg_c02	true	false	false	ready	unloaded	ready	false	

2. Move the resource group containing the copan_ov_client resource from node1 to node2:

node1# crm resource move dmfGroup node2

3. Verify that shelf C02 becomes available after a few minutes on node2:

node2# ov_stat -L C02 -D 'C02.*'										
Library Name	Brok	en Di	sabled	State	LCP Sta	te				
C02	fals	e fa	lse	ready	ready					
Drive Name	Group	Access	Broken	Disabled	SoftState	HardState	DCP State	Occupied	Cartridge PCL	
C02d00	dg_c02	true	false	false	ready	unloaded	ready	false		
C02d01	dg_c02	true	false	false	ready	unloaded	ready	false		

C02d02	dg_c02	true	false	false	ready	unloaded	ready	false
C02d03	dg_c02	true	false	false	ready	unloaded	ready	false
C02d04	dg_c02	true	false	false	ready	unloaded	ready	false
C02d05	dg_c02	true	false	false	ready	unloaded	ready	false
C02d06	dg_c02	true	false	false	ready	unloaded	ready	false

4. Move the resource group containing the <code>copan_ov_client</code> resource back to <code>nodel:</code>

node1# crm resource move dmfGroup node1

5. Verify that shelf C02 becomes available after a few minutes on node1:

nodel# ov_stat -L C02 -D 'C02.*'										
Library Name	Brok	en Di	sabled	State	LCP Sta	te				
C02	fals	e fai	lse	ready	ready					
Drive Name	Group	Access	Broken	Disabled	SoftState	HardState	DCP State	Occupied	Cartridge	PCL
C02d00	dg_c02	true	false	false	ready	unloaded	ready	false		
C02d01	dg_c02	true	false	false	ready	unloaded	ready	false		
C02d02	dg_c02	true	false	false	ready	unloaded	ready	false		
C02d03	dg_c02	true	false	false	ready	unloaded	ready	false		
C02d04	dg_c02	true	false	false	ready	unloaded	ready	false		
C02d05	dg_c02	true	false	false	ready	unloaded	ready	false		
C02d06	da c02	true	false	false	readv	unloaded	readv	false		

6. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove dmfGroup

DMF Resource

This section discusses examples of the following:

- "Configuring DMF for HA" on page 122
- "Creating the DMF Primitive" on page 124
- "Testing the DMF Resource " on page 127

Configuring DMF for HA

Note: The following procedure requires that the DMF application instances in OpenVault are configured to use a wildcard ("*") for the hostname and instance name. For more information, see the chapter about mounting service configuration tasks in the *DMF 5 Administrator Guide for SGI InfiniteStorage*.

To configure DMF for HA, do the following:

 Make the filesystem backup inventory accessible from all DMF servers in the HA cluster.

The backup of DMF-managed user filesystems and DMF administrative filesystems is always performed on the active DMF server based upon parameters in the DMF configuration file. The xfsdump command maintains an inventory of all backups performed within the directory /var/lib/xfsdump; in an HA environment, the active DMF server node can change over time. Therefore, in order for xfsdump to maintain a consistent inventory, it must be able to access the inventory for all past backups even if those backups were created on another node.

SGI recommends that you make the inventory accessible to all DMF server nodes by relocating it into an HA-managed DMF administrative filesystem within the same resource group as DMF. For example, create a site-specific directory in DMF's *HOME_DIR*, such as /dmf/home/site_specific:

On node1 (which currently contain the inventory), enter the following:

```
nodel# cd /var/lib
nodel# cp -r xfsdump /dmf/home/site_specific/xfsdump
nodel# mv xfsdump xfsdump.bak
nodel# ln -s /dmf/home/site_specific/xfsdump xfsdump
```

Note: In a brand-new DMF installation, the /var/lib/xfsdump directory will not exist until after a backup has been performed.

On node2, enter the following:

```
node2# cd /var/lib
node2# mv xfsdump xfsdump.bak
node2# ln -s /dmf/home/site_specific/xfsdump xfsdump
```

Note: It is the /var/lib/xfsdump directory that should be shared, rather than the /var/lib/xfsdump/inventory directory. If there are inventories stored on various nodes, you can use xfsinvutil to merge them into a single common inventory, prior to sharing the inventory among the nodes in the cluster.

- 2. On node1, modify the DMF configuration file as follows:
 - Set the MAX_MS_RESTARTS parameter in the appropriate drivegroup objects to 0 so that DMF will not restart the mounting service.
 - Set the DUMP_INVENTORY_COPY parameter so that it uses a DMF HA administrative filesystem that is on a different disk from the live inventory created above in step 1. If the live inventory in /dmf/home/site_specific/xfsdump is lost, you can then recreate it from the inventory backup in DUMP_INVENTORY_COPY. For example, you could create the directory /dmf/journal/site_specific/inventory_copy for use in DUMP_INVENTORY_COPY.
 - If you are using OpenVault, set the MSG_DELAY parameter in the drivegroup objects to a value of slightly more than 2 minutes.
 - Set the SERVER_NAME parameter for the base object to the HA virtual hostname of the DMF server.

Note: If you change this parameter, you must copy the DMF configuration file (/etc/dmf/dmf.conf) manually to each parallel data mover node and then restart the services related to DMF. Do not change this parameter while DMF is running.

•

- Set the INTERFACE parameter in the node object for each potential DMF server node to the same virtual hostname used for SERVER_NAME in the base object.
- If using the DMF Parallel Data Mover Option, create node objects for each parallel data mover node in the HA cluster.

For more information, see the dmf.conf(5) man page and the DMF 5 Administrator Guide for SGI InfiniteStorage.

007–5617–006 123

3. Copy the DMF configuration file (/etc/dmf/dmf.conf) from node1 to node2 and to any parallel data mover nodes in the DMF configuration. You may wish to use a symbolic link on node1 and on node2 that points to a shared location in the HOME_DIR directory. For example:

```
ha# ln -s /dmf/home/dmf.conf /etc/dmf/dmf.conf
```

Note: You cannot use a symbolic link for parallel data mover nodes because DMF itself keeps the dmf.conf file synchronized with the server node.

4. If you are using OpenVault and you explicitly set hostnames when you defined the ov_keys file during initial OpenVault setup, edit the ov_keys file and replace the hostname in field 1 of the DMF lines with the OpenVault virtual hostname. For example, if the virtual hostname is virtualhost:

```
virtualhost dmf * CAPI none
virtualhost dmf * AAPI none
```

Note: If you used a wildcard hostname (*) when you defined the ov_keys file during initial OpenVault setup, there is no need to edit this file.

5. On each potential DMF server node in the HA cluster, disable the dmf, dmfman, and dmfsoap services from being started automatically at boot time:

```
dmfserver# chkconfig dmf off
dmfserver# chkconfig dmfman off
dmfserver# chkconfig dmfsoap off
```

6. Create the DMF resource with the fields shown in "Creating the DMF Primitive" on page 124.

Creating the DMF Primitive

Required Fields for DMF

ID Unique ID, such as dmf

Class ocf Provider sgi

Type dmf

Instance Attributes for DMF

monitor_level Level that specifies whether to check for the existence of the

dmfdaemon process only (0) or also run an additional check

using dmdstat (1)

Meta Attributes for DMF

resource-stickiness 1 migration_threshold 1

Probe Monitor Operation for DMF

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for DMF

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

• Verifies that dmfdaemon is running by calling the following:

ps -C dmfdaemon

 If monitor_level is set to 1, verifies that dmfdaemon is responding via a dmdstat command

• Fails if the dmfdaemon process does not exist or if it is not responsive

007-5617-006 125

Start Operation for DMF

ID (Generated based on the primitive name and interval)

name start

Timeout, such as 240s

Note: In a CXFS environment, you must account for the time required for relocation of DMF-managed user filesystems. In this case, you may want to use a

Timeout value of 600s.

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Starts DMF by calling the following:

/etc/init.d/dmf start

- Waits for a successful DMF startup by calling dmstat in a loop until dmfdaemon responds successfully
- Fails if dmfdaemon does not respond to a dmdstat query before the resource times out

Stop Operation for DMF

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 240s

Optional > On Fail fence

The stop operation does the following:

• Stops DMF by calling the following:

/etc/init.d/dmf stop

- Issues a dmclrmount command
- Fails if DMF could not be stopped

Testing the DMF Resource

To test the dmf resource as part of a resource group named dmfGroup, do the following:

1. Verify that DMF has started by using the dmdstat -v command and manual dmput and dmget commands on nodel:

```
node1# dmdstat -v
node1# xfs_mkfile size test_file
node1# dmput -r test_file
node1# dmdidle
(wait a bit to allow time for the volume to be written and unmounted)
node1# dmget test_file
node1# rm test_file
```

2. Move the resource group containing the dmf resource to node2 (because the mounting service is in the same resource group, it must be colocated and thus should failover with DMF to the new node):

```
node1# crm resource move dmfGroup node2
```

3. Verify that DMF has started on the new node by using the dmdstat -v command and manual dmput and dmget commands on node2:

```
node2# dmdstat -v
node2# xfs_mkfile size another_test_file
node2# dmput -r another_test_file
node2# dmdidle
(wait a bit to allow time for the volume to be written and unmounted)
node2# dmget another_test_file
node2# rm another_test_file
```

4. Move the resource group containing the dmf resource back to node1:

```
node1# crm resource move dmfGroup node1
```

5. Verify that DMF has started by using the dmdstat -v command and manual dmput and dmget commands on nodel:

```
node1# dmdstat -v
node1# xfs_mkfile size test_file
node1# dmput -r test_file
node1# dmdidle
(wait a bit to allow time for the volume to be written and unmounted)
```

007–5617–006 127

```
node1# dmget test_file
node1# rm test_file
```

Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove dmfGroup

NFS Resource

This section discusses examples of the following:

- "Configuring NFS for HA" on page 128
- "Creating the NFS Primitive" on page 129
- "Testing the NFS Resource" on page 131

Configuring NFS for HA

To configure NFS for HA, do the following:

1. Copy the /etc/exports entries that you would like to make highly available from node1 to the /etc/exports file on node2.

Note: Be sure to include the fsid=*unique_number* export option in order to prevent stale file handles after failover.

- On both nodes, disable the nfsserver service from being started automatically at boot time:
 - On node1:

node1# chkconfig nfsserver off

• On node2:

node2# chkconfig nfsserver off

3. Add the NFS resource primitive. See "Creating the NFS Primitive" on page 129.

Creating the NFS Primitive

Required Fields for NFS

ID Unique ID, such as nfs

Class ocf

Provider heartbeat
Type nfsserver

Instance Attributes for NFS

nfs_init_script NFS initialization script, such as

/etc/init.d/nfsserver

nfs_notify_cmd NFS notification command, such as

/usr/sbin/sm-notify

nfs_shared_infodir Site-specific NFS shared-information directory, such as a

/mnt/cxfsvol1/.nfs *subdirectory in the exported*

filesystem

nfs_ipThe same IP address specified for the **ip** field for the virtual

IP resource (see "Instance Attributes for a Virtual IP

Address" on page 94)

Meta Attributes for NFS

resource-stickiness 1 migration_threshold 1

Probe Monitor Operation for NFS

(Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

007-5617-006 129

Monitor Operation for NFS

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

• Checks for the existence of the rpc.mountd, rpc.statd, and nfsd processes by calling the **nfs_init_script** status action, such as the following:

/etc/init.d/nfsserver status

· Fails if the processes do not exist

Start Operation for NFS

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 60s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

 Starts the NFS server by calling the nfs_init_script start action, such as the following:

/etc/init.d/nfsserver start

- Notifies clients by calling the **nfs_notify_cmd** command
- · Fails if the NFS server does not start

Stop Operation for NFS

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

 Stops the NFS server by calling the nfs_init_script stop action, such as the following:

```
/etc/init.d/nfsserver stop
```

• Fails if the NFS server does not stop

Testing the NFS Resource

To test the nfsserver resource, do the following:

1. Run the following command on node1 to verify that the NFS filesystems are exported:

2. Mount the filesystems on a node that will not be a member of the HA cluster (otherhost):

```
otherhost# mount nodel:/nfsexportedfilesystem /mnt/test
```

3. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "data for a test file" > /mnt/test/testFile1A
otherhost# cat /mnt/test/testFile1A
test data for a test file
```

4. Move the resource group containing the nfsserver resource from node1 to node2:

node1# crm resource move dmfGroup node2

5. Run the following command on node2 to verify that the NFS filesystems are exported:

6. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "test data for another test file" > /mnt/test/testFile1B
otherhost# cat /mnt/test/testFile1B
test data for another test file
```

7. Move the resource group containing the nfsserver resource back to nodel:

```
node1# crm resource move dmfGroup node1
```

8. Remove the implicit location constraints imposed by the administrative move command executed above:

```
node1# crm resource unmove dmfGroup
```

Samba Resources

This section discusses examples of the following:

- "Configuring Samba for HA" on page 132
- "Creating the smb Primitive" on page 134
- "Creating the nmb Primitive" on page 135
- "Testing the Samba Resources" on page 136

Configuring Samba for HA

To configure Samba for HA, do the following:

1. Use symbolic links to make the Samba directories and the files within them available on both node1 and node2. For example:

a. Copy /etc/samba and /var/lib/samba to a shared location. For example:

```
nodel# cp -a /etc/samba /mnt/data/.ha/etc-samba
nodel# cp -a /var/lib/samba /mnt/data/.ha/var-lib-samba
```

- b. Remove the original /etc/samba and /var/lib/samba directories on both nodes:
 - On node1:

```
node1# rm -r /etc/samba /var/lib/samba
```

• On node2:

```
node2# rm -r /etc/samba /var/lib/samba
```

- Make symbolic links from the shared locations to the original names on both nodes:
 - On node1:

```
nodel# ln -s /mnt/data/.ha/etc-samba /etc/samba
nodel# ln -s /mnt/data/.ha/var-lib-samba /var/lib/samba
```

• On node2:

```
node2# ln -s /mnt/data/.ha/etc-samba /etc/samba
node2# ln -s /mnt/data/.ha/var-lib-samba /var/lib/samba
```

- 2. On both nodes, disable the smb and nmb services from being started automatically at boot time:
 - On node1:

```
node1# chkconfig smb off
node1# chkconfig nmb off
```

• On node2:

```
node2# chkconfig smb off
node2# chkconfig nmb off
```

- 3. Add the Samba resource primitives. See:
 - "Creating the smb Primitive" on page 134
 - "Creating the nmb Primitive" on page 135

Creating the smb Primitive

Note: The Samba resources do not have as many required fields or attributes as other resources.

Required Fields for smb

ID Unique ID, such as smb

Class lsb Type smb

Probe Monitor Operation for smb

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Start Operation for smb

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 60s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Starts the smbd service by calling the following:

/etc/init.d/smb start

• Fails if the smbd service does not start

Stop Operation for smb

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

• Stops the smbd service by calling the following:

/etc/init.d/smb stop

• Fails if the smbd service does not stop

Creating the nmb Primitive

Required Fields for nmb

ID Unique ID, such as nmb

Class lsb Type nmb

Probe Monitor Operation for nmb

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Start Operation for nmb

ID (Generated based on the primitive name and interval)

name start

Timeout, such as 60s

Optional > Requires fencing

Optional > On Fail restart

The start operation does the following:

• Starts the nmbd service by calling the following:

```
/etc/init.d/nmb start
```

• Fails if the nmbd service does not start

Stop Operation for nmb

ID (Generated based on the primitive name and interval)

name stop

Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

• Stops the nmbd service by calling the following:

```
/etc/init.d/nmb stop
```

• Fails if the nmbd service does not stop

Testing the Samba Resources

To test the Samba resources, do the following:

1. Ensure that the resource group containing the smb and nmb resources is on node1:

```
node1# crm resource move dmfGroup node1
```

2. Use smbclient from a machine outside of the HA cluster to connect to the Samba server on nodel and copy a file. For example, to log in to nodel as admin (assuming that admin is a valid login name in the homes section of the smb.conf file) copy originate to remotefile on the remote host:

```
otherhost# smbclient //nodel/admin
smb:\> get origfileA remotefileA
```

Note: Depending upon the setting of the security parameter in the smb.conf file, this may involve using a Samba account that already exists.

3. Move the resource group containing the smb and nmb resources from node1 to node2:

```
node1# crm resource move dmfGroup node2
```

4. Use smbclient from a machine outside of the HA cluster to connect to the Samba server on node2 and copy a file. For example, to log in to node2 as admin (assuming that admin is a valid login name in the homes section of the smb.conf file) and copy originies to remotefiles on the remote host:

```
otherhost# smbclient //node2/admin
smb:\> get origfileB remotefileB
```

5. Move the resource group containing the smb and nmb resources back to node1:

```
node1# crm resource move dmfGroup node1
```

6. Remove the implicit location constraints imposed by the administrative move command executed above:

```
node1# crm resource unmove dmfGroup
```

DMF Manager Resource

This section discusses examples of the following:

- "Configuring DMF Manager for HA" on page 137
- "Creating the DMF Manager Primitive" on page 138
- "Testing the DMF Manager Resource" on page 141

Configuring DMF Manager for HA

To configure DMF Manager for HA, do the following:

 On both nodes, disable the dmfman service from being started automatically at boot time:

• On node1:

nodel# chkconfig dmfman off

• On node2:

node2# chkconfig dmfman off

- 2. Add a primitive for DMF Manager using the values shown in "Creating the DMF Manager Primitive" on page 138.
- 3. Run the following script to create the required links and directories in the DMF *HOME_DIR* that will allow DMF statistics archives to be accessible across the HA cluster:
 - On node1:

node1# /usr/lib/dmf/dmfman_setup_ha -d HOME_DIR

• On node2:

node2# /usr/lib/dmf/dmfman_setup_ha -d HOME_DIR

For example, if the HOME_DIR parameter is set to /dmf/home in /etc/dmf/dmf.conf, you would enter the following:

• On node1:

node1# /usr/lib/dmf/dmfman_setup_ha -d /dmf/home

• On node2:

node2# /usr/lib/dmf/dmfman_setup_ha -d /dmf/home

Creating the DMF Manager Primitive

Required Fields for DMF Manager

ID Unique ID, such as dmfman

Class ocf Provider sgi

Type dmfman

Meta Attributes for DMF Manager

resource-stickiness 1 migration_threshold 1

Note: You might want to set the **migration-threshold** higher than 1 for this resource so that it will simply restart in place.

Probe Monitor Operation for DMF Manager

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for DMF Manager

Note: You should only define a monitor operation for the dmfman resource if you want a failure of the DMF Manager resource to cause a failover for the entire resource group.

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

Verifies the DMF Manager status by calling the following:

/etc/init.d/dmfman status

· Fails if DMF Manager is not running

Start Operation for DMF Manager

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 60s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Starts DMF Manger by calling the following:

/etc/init.d/dmfman start

• Waits for DMF Manager to start successfully by calling the following in a loop:

/etc/init.d/dmfman status

• Fails if DMF Manager does not start successfully before the resource times out

Stop Operation for DMF Manager

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

• Stops DMF Manger by calling the following:

/etc/init.d/dmfman stop

• Verifies the DMF Manager status by calling the following:

/etc/init.d/dmfman status

Fails if DMF Manager does not stop successfully

Testing the DMF Manager Resource

To test the dmfman resource, do the following:

- 1. Point your browser at https://virtualIPaddress:1179 and verify that you can log in and use DMF Manager, such as viewing the **Overview** panel. For more information about using DMF Manager, see *DMF 5 Administrator Guide for SGI InfiniteStorage*.
- 2. Move the resource group containing the dmfman resource from node1 to node2:

```
node1# crm resource move dmfGroup node2
```

- 3. Repeat step 1 to verify that DMF Manager is still available.
- 4. Move the resource group containing the dmfman resource back to node1:

```
node1# crm resource move dmfGroup node1
```

5. Remove the implicit location constraints imposed by the administrative move command executed above:

node1# crm resource unmove dmfGroup

DMF Client SOAP Service Resource

This section discusses examples of the following:

- "Configuring DMF Client SOAP Service for HA" on page 142
- "Creating the DMF Client SOAP Service Primitive" on page 143
- "Testing the DMF Client SOAP Service Resource" on page 145

Configuring DMF Client SOAP Service for HA

To configure DMF client SOAP service for HA, do the following:

- On both nodes, disable the dmfsoap service from being started automatically at boot time:
 - On node1:

node1# chkconfig dmfsoap off

• On node2:

node2# chkconfig dmfsoap off

2. Add a primitive for DMF client SOAP resource using the values shown in "Creating the DMF Client SOAP Service Primitive" on page 143.

Creating the DMF Client SOAP Service Primitive

Required Fields for DMF Client SOAP Service

ID Unique ID, such as dmfsoap

Class ocf Provider sgi

Type dmfsoap

Meta Attributes for DMF Client SOAP Service

resource-stickiness 1 migration_threshold 1

Note: You might want to set the **migration-threshold** higher than 1 for this resource so that it will simply restart in place.

Probe Monitor Operation for DMF Client SOAP Service

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for DMF Client SOAP Service

Note: You should only define a monitor operation for the dmfsoap resource if you want a failure of DMF client SOAP service to cause a failover for the entire resource group.

ID (Generated based on the primitive name and interval)

name monitor

Interval Interval time, such as 120s

007–5617–006 143

Timeout Timeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

• Verifies the DMF client SOAP service status by calling the following:

/etc/init.d/dmfsoap status

• Fails if DMF client SOAP service is not running

Start Operation for DMF Client SOAP Service

ID (Generated based on the primitive name and interval)

name start

Timeout, such as 60s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Starts the DMF client SOAP service by calling the following:

/etc/init.d/dmfsoap start

 Waits for DMF client SOAP service to start successfully by calling the following in a loop:

/etc/init.d/dmfsoap status

• Fails if DMF client SOAP service does not start successfully before the resource times out

Stop Operation for DMF Client SOAP Service

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 60s

Optional > On Fail fence

The stop operation does the following:

• Stops the DMF client SOAP service by calling the following:

/etc/init.d/dmfsoap stop

• Verifies the DMF client SOAP service status by calling the following:

/etc/init.d/dmfsoap status

Fails if the DMF client SOAP service does not stop successfully

Testing the DMF Client SOAP Service Resource

To test the dmfsoap resource, do the following:

- 1. Point your browser at https://virtualIPaddress:1180/server.php and verify that you can access the GUI and view the WSDL for one of the DMF client functions. For more information, see DMF 5 Administrator Guide for SGI InfiniteStorage.
- 2. Move the resource group containing the ${\tt dmfsoap}$ resource from ${\tt node1}$ to ${\tt node2}$:

node1# crm resource move dmfGroup node2

- 3. Repeat step 1 to verify that DMF client SOAP service is still available.
- 4. Move the resource group containing the dmfsoap resource back to node1:

node1# crm resource move dmfGroup node1

5. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove dmfGroup

COPAN MAID HA Service for Mover Nodes

This chapter contains the following sections:

- "COPAN MAID HA for Mover Nodes Example Procedure" on page 147
- "CXFS Client Resource" on page 157
- "COPAN OpenVault Client Resource" on page 159

Note: The attributes listed in this chapter and the various value recommendations are in support of this example. If you are using the resources in a different manner, you must evaluate whether these recommendations and the use of meta attributes apply to your intended site-specific purpose.

COPAN MAID HA for Mover Nodes Example Procedure

Figure 8-1 on page 148 shows a map of an example configuration process for the COPAN OpenVault client service for COPAN MAID shelves in an active/active HA cluster that consists of two parallel data mover nodes named pdmn1 and pdmn2. (pdmn1 is the same node as node1 referred to in Chapter 4, "Outline of the Configuration Procedure" on page 37.)The map refers to resource agent type names such as cxfs-client and copan_ov_client.

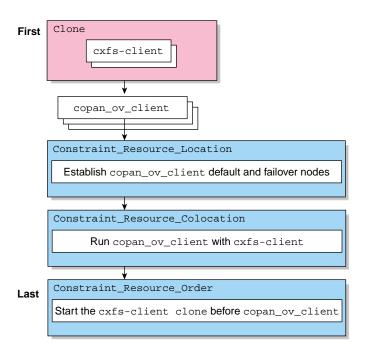


Figure 8-1 COPAN MAID HA Service for Mover Nodes

To manage COPAN MAID shelves in an active/active HAE environment, use the steps in the following sections:

- "Disable the Parallel Data Mover Nodes and the Services" on page 149
- "Create the OpenVault Components on the Failover Node" on page 150
- "Start the GUI" on page 152
- "Create the CXFS Client Clone" on page 152
- "Test the Clone" on page 153
- "Create the COPAN OpenVault Client Resources" on page 155
- "Create the Constraints" on page 155
- "Test the ov_copan_client Resource" on page 156

Disable the Parallel Data Mover Nodes and the Services

Do the following to ensure that there is no activity to the COPAN MAID shelf:

1. On the DMF server, disable both parallel data mover nodes:

```
dmfserver# dmnode_admin -d pdmn1 pdmn2
```

- Verify that there are no dmatwc or dmatrc data mover processes running on either parallel data mover node. For example, the output of the following command should be empty on both nodes:
 - On pdmn1:

```
pdmn1# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
pdmn1#
```

• On pdmn2:

```
pdmn2# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
pdmn2#
```

If the output is not empty, you must wait for the dmnode_admin -d action from step 1 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

3. Determine which CXFS filesystems are mounted:

```
# ls /dev/cxvm
```

Save the output from this command for use later when you define the **volnames** instance attribute in "Instance Attributes for a CXFS Client" on page 157.

- 4. On both parallel data mover nodes, disable the openvault and cxfs_client services from being started automatically at boot time and stop the currently running services:
 - On pdmn1:

```
pdmn1# chkconfig openvault off
pdmn1# chkconfig cxfs_client off

pdmn1# service openvault stop
pdmn1# service cxfs_client stop
```

007–5617–006 149

• On pdmn2:

```
pdmn2# chkconfig openvault off
pdmn2# chkconfig cxfs_client off

pdmn2# service openvault stop
pdmn2# service cxfs_client stop
```

Create the OpenVault Components on the Failover Node

When you configured the standard services according to the information in *COPAN MAID for DMF Quick Start Guide*, you executed an ov_shelf(8) command for each COPAN MAID shelf in order to create the required OpenVault components (see "COPAN MAID Standard Service" on page 47).

In this step, you will create corresponding OpenVault components for the failover node so that it is ready to assume control of OpenVault in case of failover, using the following information for shelf 0 as an example:

Shelf identifier: C00 (indicating cabinet 0, shelf 0)

• Default node: pdmn1

• Failover node: pdmn2

Note: For more information about the shelf identifier, see *COPAN MAID for DMF Quick Start Guide*.

Do the following:

- 1. On pdmn1:
 - a. Export the shelf, hostname, and OCF root environment variables for use by the copan_ov_client script:

```
pdmn1# export OCF_RESKEY_shelf_name=C00
pdmn1# export OCF_RESKEY_give_host=pdmn2
pdmn1# export OCF_ROOT=/usr/lib/ocf
```

b. Transfer ownership of the shelf from pdmn1 to pdmn2:

```
pdmn1# /usr/lib/ocf/resource.d/sgi/copan_ov_client give
```

2. On pdmn2:

a. Verify that pdmn2 now owns the shelf's XVM volumes (C00A through C00Z, although not necessarily listed in alphabetical order):

```
pdmn2# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
```

b. Create the OpenVault components for pdmn2:

```
pdmn2# ov_shelf create C00
```

For more information, see COPAN MAID for DMF Quick Start Guide.

c. Stop the newly created LCP and DCPs for the shelf:

```
pdmn2# ov_stop C00*
```

d. Export the shelf, hostname, and OCF root environment variables for use by the copan_ov_client script:

```
pdmn1# export OCF_RESKEY_shelf_name=C00
pdmn1# export OCF_RESKEY_give_host=pdmn2
pdmn1# export OCF_ROOT=/usr/lib/ocf
```

e. Transfer ownership of the shelf from pdmn2 back to pdmn1:

```
pdmn2# /usr/lib/ocf/resource.d/sgi/copan_ov_client give
```

3. On pdmn1, verify that pdmn1 once again owns the shelf's XVM volumes:

```
pdmn1# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
...
```

4. Repeat steps 1 through 3 for each shelf.

Note: For load-balancing purposes, pdmn1 should be the default node for half of the shelves and pdmn2 should be the default node for the remaining shelves.

Start the GUI

Do the following:

1. Invoke the HAE GUI:

```
pdmn1# crm_gui
```

2. Log in to the initialized cluster (see Chapter 4, "Outline of the Configuration Procedure" on page 37).

Create the CXFS Client Clone

Do the following to create the CXFS client clone:

- 1. Select **Resources** in the left-hand navigation panel.
- 2. Click the Add button, select Clone, and click OK.
- 3. Enter the ID of the clone, such as cxfs-client-clone.
- 4. Select Stopped for the Initial state of resource and click Forward.
- 5. Select the sub-resource Primitive and click OK.
- 6. Create the primitive for the CXFS client resource: See "Creating the CXFS Client Primitive" on page 157.
- 7. Click **Apply** to apply the new primitive and again to apply the new clone.

Test the Clone

Use the following steps to test the clone:

1. Start the clone. For example:

```
pdmn1# crm resource start cxfs-client-clone
```

It make take several minutes for the filesystems to mount.

- 2. Confirm that the clone has started. For example:
 - a. View the status of the cluster on pdmn1:

- b. Verify that the cxfs_client process is running on pdmn1 and pdmn2. For example:
 - On pdmn1:

3. Set pdmn2 to standby state to ensure that the resources remain on pdmn1:

pdmn1# crm node standby pdmn2

- 4. Confirm that pdmn2 is offline and that the resources are off:
 - a. View the status of the cluster on pdmn1, which should show that pdmn2 is in standby state:

b. Verify that the cxfs_client process is not running on pdmn2. For example, executing the following command on pdmn2 should provide no output:

```
pdmn2# ps -ef | grep cxfs_client | grep -v grep
pdmn2#
```

5. Return pdmn2 to online status by executing the following on pdmn1:

```
pdmn1# crm node online pdmn2
```

6. Confirm that the clone has returned to started status, as described in step 2.

Note: It may take several minutes for all filesystems to mount successfully.

Create the COPAN OpenVault Client Resources

Do the following to create the COPAN OpenVault client resources:

- 1. Start the HAE GUI if it is not already started.
- 2. Select **Resources** in the left-hand navigation panel.
- 3. Click the Add button, select Primitive, and click OK.
- 4. Create the primitives for the COPAN OpenVault client resources. See "Creating the COPAN OpenVault Client Primitive" on page 160.

Create the Constraints

For each shelf being managed by the COPAN MAID HA cluster, you must create the following:

- Two location constraints:
 - A score of 200 for the default node
 - A score of 100 for the failover node
- · One colocation constraint
- · One order constraint

Do the following:

- 1. Select **Constraints** in the left-hand navigation panel of the GUI.
- 2. Create two location constraints (one for the default node and one for the failover node) for each shelf, using the scores described above. Do the following:
 - a. Click the Add button, select Resource Location, and click OK.
 - b. Enter the constraint ID, such as C00_on_pdmn1 for the constraint for shelf C00 managed by pdmn1.
 - c. Select the name of the COPAN OpenVault client primitive as the **Resource**.
 - d. Enter a score based on whether the node is the default node (200) or failover node (100).
 - e. Enter the node name.

007–5617–006 155

- f. Click OK.
- g. Repeat steps 2a through 2f to create the remaining location constraints.
- 3. Create a colocation constraint for each shelf:
 - a. Click the Add button, select Resource Colocation, and click OK.
 - b. Enter the ID of the constraint for the shelf, such as COO_with_cxfs for shelf COO.
 - c. Select the name of the COPAN OpenVault client primitive as the Resource.
 - d. Select the name of the CXFS client clone as the With Resource.
 - e. Select INFINITY for Score.
 - f. Click OK.
 - g. Repeat steps 3a through 3f to create the colocation constraint for the remaining shelves.
- 4. Create an order constraint for each shelf:
 - a. Click the Add button, select Resource Order, and click OK.
 - b. Enter the ID of the constraint for the shelf, such as C00_cxfs_first for shelf C00.
 - c. Select the name of the CXFS client clone as First.
 - d. Select the name of the COPAN OpenVault client primitive as **Then**.
 - e. Open Optional and select true for Symmetrical.
 - f. Click OK.
 - g. Repeat steps 4a through 4f to create the order constraint for the remaining shelves.

Test the ov_copan_client Resource

To test the <code>copan_ov_client</code> resource, follow the instructions in "Manually Moving a <code>copan_ov_client</code> Resource" on page 178 to move a resource from its default node to its failover node, and then return it to the default node.

CXFS Client Resource

This section discusses the following:

• "Creating the CXFS Client Primitive" on page 157

Creating the CXFS Client Primitive

Use the values shown in the following sections when adding a CXFS client resource primitive for the CXFS client clone.

Note: There are no meta attributes for this primitive in this example procedure because it is part of a clone resource that should always restart locally.

Required Fields for a CXFS Client

ID Unique ID such as cxfs-client

Class ocf Provider sgi

Type cxfs-client

Instance Attributes for a CXFS Client

volnames Comma-separated list of CXFS XVM volume names that

represent the following DMF configuration file parameters and all DMF-managed user filesystems (originally mounted under /dev/cxvm as determined in step 3 of "Disable the Parallel Data Mover Nodes and the Services" on page

149):

CACHE_DIR SPOOL_DIR TMP_DIR MOVE_FS

STORE_DIRECTORY (for a DCM, if used)

All DMF-managed user filesystems

For example, suppose you have the following output:

ls /dev/cxvm

cache dmfusr2 move diskmsp home spool dmfusr1 journal tmp

You would enter the following (everything except home and journal):

cache, diskmsp, dmfusr1, dmfusr2, move, spool, tmp

Probe Monitor Operation for a CXFS Client

Note: Click the **Operations** tab to edit the monitor operations and to add the probe, start, and stop operations as needed for a resource.

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for a CXFS Client

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 120sTimeoutTimeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

- Verifies that each volume in volnames is mounted by checking /proc/mounts
- Verifies that the volumes in volnames are online by executing the following command for each volume:

xvm show -v vol/volname

• Fails if the CXFS client does not start

Start Operation for a CXFS Client

ID (Generated based on the primitive name and interval)

name start

Timeout, such as 600s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

• Starts the CXFS client by calling the following:

/etc/init.d/cxfs_client start

- Checks the /proc/mounts file until all volumes in volnames are mounted
- Fails if the CXFS client fails to start

Stop Operation for a CXFS Client

ID (Generated based on the primitive name and interval)

name stop

Timeout. such as 600s

Optional > On Fail fence

The stop operation does the following:

• Stops the CXFS client by calling the following:

/etc/init.d/cxfs_client stop

Fails if the CXFS client fails to stop

COPAN OpenVault Client Resource

This section discusses the following:

• "Creating the COPAN OpenVault Client Primitive" on page 160

007–5617–006 159

Creating the COPAN OpenVault Client Primitive

Use the values shown in the following sections when adding a COPAN OpenVault client primitive.

Required Fields for a COPAN OpenVault Client

ID Unique ID for the COPAN OpenVault client on each shelf,

corresponding to the shelf ID, such as copan_C00 for shelf

0, which has a shelf ID of C00

Class ocf Provider sgi

Type copan_ov_client

Meta Attributes for a COPAN OpenVault Client

resource-stickiness 250 migration-threshold 1

target-role Started

Instance Attributes for a COPAN OpenVault Client

shelf_name The three-character shelf ID, using the naming convention

described in the COPAN MAID for DMF Quick Start

Guide, such as COO for cabinet 0 shelf 0.

Probe Monitor Operation for a COPAN OpenVault Client

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout Timeout, such as 60s

The probe operation checks to see if the resource is already running.

Monitor Operation for a COPAN OpenVault Client

ID (Generated based on the primitive name and interval)

name monitor

Interval Interval time, such as 120s

Timeout Timeout, such as 60s

Optional > On Fail restart

The monitor operation does the following:

- Verifies that OpenVault is functional: the LCP and at least one DCP are running and at least one RAID set is accessible on the shelf
- · Fails if the COPAN MAID shelf is not functional

Start Operation for a COPAN OpenVault Client

ID (Generated based on the primitive name and interval)

name start

Timeout, such as 120s

Optional > Requires fencing
Optional > On Fail restart

The start operation does the following:

- Starts the COPAN MAID shelf client by ensuring that RAID sets are available and the OpenVault LCP and at least one DCP are running
- · Fails if any of the above conditions are not met

Stop Operation for a COPAN OpenVault Client

ID (Generated based on the primitive name and interval)

name stop

Timeout Timeout, such as 120s

Optional > On Fail fence

The stop operation does the following:

- Stops the COPAN OpenVault client resource
- Fails if the COPAN OpenVault client resource fails to stop

STONITH Resource Examples

This chapter discusses the following:

- "Overview of STONITH Resources" on page 163
- "L2 STONITH Examples" on page 163
- "SGI IPMI STONITH Examples" on page 166
- "Community IPMI STONITH Examples" on page 169

Overview of STONITH Resources

STONITH ("shoot the other node in the head") node-level fencing is required in order to protect data integrity in case of failure:

- 12network for ia64 systems using L2 controllers, such as SGI Altix® 450 systems
- sgi-ipmi for x86_64 systems using baseboard management controller (BMC) and intelligent platform management interface (IPMI) network reset
- ipmi for x86_64 systems using baseboard management controller (BMC) and intelligent platform management interface (IPMI) network reset

L2 STONITH Examples

This section discusses examples of the following:

- "Creating the L2 STONITH Clone" on page 164
- "Creating the L2 STONITH Primitive" on page 164
- "Testing the L2 STONITH Resource" on page 166

For more information, see the SGI L1 and L2 Controller Software User's Guide and the user guide or quick start for your system.

007–5617–006 163

Creating the L2 STONITH Clone

To create the STONITH clone, do the following:

- 1. Select **Resources** in the left-hand navigation panel.
- 2. Click the **Add** button, select **Clone**, and click **OK**.
- 3. Enter the name of the clone (such as stonith-l2network-set) in the ID field.
- 4. Use the **target-role** of **Started** and the default options (2 maximum number of copies and 1 number of copies on a single node) and click **Forward**.
- 5. Select **OK** to add a **Primitive**. Add the STONITH primitive according to the steps described in "Creating the L2 STONITH Primitive" on page 164.

Creating the L2 STONITH Primitive

Required Fields for L2 STONITH

D Unique ID such as stonith-l2network

Class stonith
Type l2network

Instance Attributes for L2 STONITH

nodelist Nodes to be acted upon, such as:

node1;128.162.245.170;;3 node2;128.162.245.170;;4

You must provide the following information for each node (each field is separated by a semicolon and each node is separated by a space):

nodename; L2_ipaddr; L2pass; partition

where the fields are:

- Node name (such as node1)
- L2 IP address (such as 128.162.245.170)

- L2 password (an empty field indicates that the L2 has no password)
- Machine partition (such as 3); use 0 for a nonpartitioned system, which is the most common circumstance

Note: The following command shows the partition ID on an SGI ia64 system:

ha# cat /proc/sgi_sn/partition_id

Probe Monitor Operation for L2 STONITH

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 300s

The probe operation checks to see if the resource is already running.

Monitor Operation for L2 STONITH

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 300sTimeoutTimeout, such as 300s

Optional > On Fail restart

The monitor operation calls the defined STONITH resource agent.

Start Operation for L2 STONITH

ID (Generated based on the primitive name and interval)

name start

Timeout, such as 60s

Optional > On Fail restart

The start operation does the following:

- Initializes the information required for the stonithd daemon to act when necessary
- · Fails if the information cannot be initialized

Testing the L2 STONITH Resource

To test the L2 STONITH resource, do the following:

1. Reset a node:

ha# crm node fence nodename

For example, to reset node1:

ha# crm node fence node1

2. Verify that the specified node was reset and was able to successfully complete a reboot.

See also "L2 STONITH Capability" on page 198.

SGI IPMI STONITH Examples

This section discusses examples of the following:

- "Creating the SGI IPMI STONITH Clone" on page 166
- "Creating the SGI IPMI STONITH Primitive" on page 167
- "Testing the SGI IPMI STONITH Resource" on page 169

Creating the SGI IPMI STONITH Clone

To create the IPMI STONITH clone, do the following:

- 1. Select **Resources** in the left-hand navigation panel.
- 2. Click the Add button, select Clone, and click OK.
- 3. Enter the name of the clone (such as stonith-sgi-ipmi-set) in the ID field.

- 4. Use the **target-role** of **Started** and the default options (2 maximum number of copies and 1 number of copies on a single node) and click **Forward**.
- 5. Select **OK** to add a **Primitive**. Add the STONITH primitive according to the steps described in "Creating the SGI IPMI STONITH Primitive" on page 167.

Creating the SGI IPMI STONITH Primitive

Required Fields for SGI IPMI STONITH

ID Unique ID such as stonith-sgi-ipmi

Class stonith

Type external/sgi-ipmi

Instance Attributes for SGI IPMI STONITH

nodelist

Nodes to be acted upon, such as:

node1;admin;admin;supermicro;128.162.245.170 node2;admin;admin;supermicro;128.162.245.171

You must provide the following information for each node (each field is separated by a semicolon and each node is separated by a space):

nodename; userID; IPMIpass; BMCtype; IPMIipaddr1[; IPMIipaddrN]

where the fields are:

- Node name (such as node1)
- User ID to use on the IPMI device (such as the default admin)
- IPMI device password (such as the default admin)
- BMC type of the IPMI device:
 - intel for Intel[®] BMC
 - supermicro for Supermicro® BMC

• IPMI device IP address (such as 128.162.245.170)

Probe Monitor Operation for SGI IPMI STONITH

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 300s

The probe operation checks to see if the resource is already running.

Monitor Operation for SGI IPMI STONITH

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 300sTimeoutTimeout, such as 300s

Optional > On Fail restart

The monitor operation calls the defined STONITH resource agent.

Start Operation for SGI IPMI STONITH

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 60s

Optional > On Fail restart

The start operation does the following:

- Initializes the information required for the stonithd daemon to act when necessary
- · Fails if the information cannot be initialized

Testing the SGI IPMI STONITH Resource

To test the IPMI STONITH resource, do the following:

1. Reset a node:

ha# crm node fence nodename

For example, to reset node1:

ha# crm node fence node1

Verify that the specified node was reset and was able to successfully complete a reboot.

See also "IPMI STONITH Capability" on page 198.

Community IPMI STONITH Examples

This section discusses examples of the following:

- "Creating the Community IPMI STONITH Constraints" on page 169
- "Creating the Community IPMI STONITH Primitive" on page 170
- "Testing the Community IPMI STONITH Resource" on page 171

Creating the Community IPMI STONITH Constraints

To use the community IPMI STONITH facility, do the following for each node in the HA cluster:

- 1. Create an ipmi resource for the node.
- 2. Create a constraint so that the ipmi resource will never run on its corresponding node. Choose one of the following methods:
 - To allow the ipmi resource to run on any other node in the HA cluster, create
 a constraint with a score of -INFINITY for the corresponding node. For
 example, to allow any other node in the cluster to perform STONITH fencing
 for node1:

node1# location cli-prefer-node1-stonith stonith-ipmi-node1 -inf: node1

• To use a specific node for performing STONITH fencing, create a constraint with a score of INFINITY for that specific node. For example, to use node2 to perform STONITH fencing for node1:

node1# location cli-prefer-node1-stonith stonith-ipmi-node1 inf: node2

Creating the Community IPMI STONITH Primitive

Required Fields for Community IPMI STONITH

ID Unique ID such as stonith-ipmi-node1

Class stonith

Type external/ipmi

Instance Attributes for Community IPMI STONITH

hostname The hostname of the node to be managed by this BMC

ipaddr The IP address of the BMC

userid The user name used for logging in to the BMCpasswd The password used for logging in to the BMC

interface The IPMI interface to use, one of:

lanplus for most SGI systems

 lanplus -o intelplus for older Altix XE210 or Altix XE240 systems

Probe Monitor Operation for Community IPMI STONITH

ID (Generated based on the primitive name and interval)

name monitor

Interval 0

Timeout, such as 15s

The probe operation checks to see if the resource is already running.

Monitor Operation for Community IPMI STONITH

ID (Generated based on the primitive name and interval)

name monitor

IntervalInterval time, such as 300sTimeoutTimeout, such as 15s

Optional > On Fail restart

The monitor operation calls the defined STONITH resource agent.

Start Operation for Community IPMI STONITH

ID (Generated based on the primitive name and interval)

name start

Timeout Timeout, such as 15s

Optional > On Fail restart

The start operation does the following:

- Initializes the information required for the stonithd daemon to act when necessary
- Fails if the information cannot be initialized

Testing the Community IPMI STONITH Resource

To test the community IPMI STONITH resource, do the following:

1. Reset a node:

ha# crm node fence nodename

For example, to reset node1:

ha# crm node fence node1

2. Verify that the specified node was reset and was able to successfully complete a reboot.

See also "IPMI STONITH Capability" on page 198.

Administrative Tasks and Considerations

This chapter discusses various administrative tasks and considerations for an HA cluster:

- "Putting the Cluster into Maintenance Mode" on page 174
- "Viewing the Contents of the CIB" on page 174
- "Backing Up the CIB" on page 174
- "Understanding CIFS and NFS in an HA Cluster" on page 175
- "Reviewing the Log File" on page 175
- "Clearing the Resource Primitive Failcount" on page 175
- "Clearing the Resource State on a Node" on page 175
- "Controlling the Number of Historical Files" on page 176
- "Changing DMF Configuration Parameters" on page 177
- "Restarting the OpenVault Server" on page 177
- "Manually Moving a copan_ov_client Resource" on page 178
- "Performing a Rolling Upgrade" on page 180
- "Stopping the HAE openais Service" on page 186
- · "Manually Issuing a System Reset" on page 186
- "Hardware Maintenance on a Cluster Node" on page 187
- "Maintenance with a Full Cluster Outage" on page 189

007–5617–006 173

Putting the Cluster into Maintenance Mode

You must put the cluster into maintenance mode before manually stopping or restarting any cluster components. To put the cluster into maintenance mode, enter the following:

ha# crm configure property maintenance-mode=true

You can then manually stop and restart individual resources as needed.

To return the cluster to managed status, enter the following:

ha# crm configure property maintenance-mode=false

Viewing the Contents of the CIB

If you want to view the contents of the cluster information base (CIB), you can use the following cibadmin(8) command to show configuration and status information:

ha# cibadmin -o modifier -Q

The *modifier* value can be one of the following:

constraints crm_config nodes resources status

Backing Up the CIB

You should make a backup copy of the configuration in the cluster information base (CIB) after making and verifying changes, so that you can easily recover in case of future CIB corruption (see "Recovering from a CIB Corruption" on page 206). Do the following to save only static configuration information to a plain text file labeled with the current date and time:

ha# crm configure save CIB.\$(date +%Y%m%d-%H%M%S)

You can view the resulting text file with any text tool, such as cat(1) or vi(1).

Understanding CIFS and NFS in an HA Cluster

CIFS failover requires that the client application reissue the I/O after the failover occurs. Applications such as XCOPY will do this, but many other applications will not. Applications that do not retry may abort when CIFS services are moved between nodes.

NFS failover is handled by the kernel, so no changes are required for an NFS client application; applications doing I/O on NFS will pause while the failover is occurring.

Reviewing the Log File

You will find information in the /var/log/messages log file. To turn on debug messages, see "Increase the Verbosity of Error Messages" on page 196.

Clearing the Resource Primitive Failcount

To clear resource primitive failcounts, either reboot the nodes or enter the following on each node for each resource primitive:

ha# crm resource failcount resourcePRIMITIVE delete nodename

Clearing the Resource State on a Node

Caution: Do not clear the resource state on the node where a resource is currently running.

After you resolve the cause of action error messages in the crm status output, you should enter the following to clear the resource state from a given node:

ha# crm resource cleanup resourcePRIMITIVE nodename

Note: Sometimes, the resource state can be cleared automatically if the same action for the same resource on the same node subsequently completes successfully.

Controlling the Number of Historical Files

Each time the configuration is updated, a new version of the CIB is created and the older version is saved. These files reside in /var/lib/heartbeat/crm. SGI recommends that you keep the number of files manageable by setting the following crm properties as appropriate for your site:

```
pe-error-series-max
pe-input-series-max
pe-warn-series-max
```

To set the properties, use the following command line:

```
# crm configure property propertyname=value
```

For example, to set a maximum of 50 error, input, and warning files:

```
ha# crm configure property pe-error-series-max=50 ha# crm configure property pe-input-series-max=50 ha# crm configure property pe-warn-series-max=50
```

For more information, see the Novell High Availability Guide.

Changing DMF Configuration Parameters

You can change many DMF configuration file parameters while DMF is running, but others require that DMF be stopped. For more information, see the "Best Practices" chapter in *DMF 5 Administrator Guide for SGI InfiniteStorage*). For those parameters that required DMF to be stopped, do the following:

1. Put the cluster into maintenance mode:

ha# crm configure property maintenance-mode=true

2. Stop the DMF service:

```
ha# service dmf stop
```

- 3. Make the required changes to the DMF configuration file according to the instructions in the DMF administrator's guide, such as by using DMF Manager.
- 4. Verify the parameter changes by using DMF Manager or the following command:

ha# dmcheck

5. Start the DMF service:

ha# service dmf start

6. Verify DMF functionality, such as by running the following command and other DMF commands (based on the changes made):

```
ha# dmdstat -v
```

7. Return the cluster to managed status:

ha# crm configure property maintenance-mode=false

Restarting the OpenVault Server

To restart the OpenVault server, do the following:

1. Put the HA cluster into maintenance mode:

ha# crm configure property maintenance-mode=true

2. Stop the OpenVault service:

ha# service openvault stop

3. Start the OpenVault service:

ha# service openvault start

4. Return the HA cluster to managed status:

ha# crm configure property maintenance-mode=false

Manually Moving a copan ov client Resource

You may want to manually move a copan_ov_client resource as followings:

- · To its failover node when you want to perform maintenance on its default node
- · Back to its default node, after maintenance is complete on the default node
- Back to its default node, after the formerly failed default node rejoins the HA cluster

Before you can move the resource from one node to another, you must ensure that you stop any activity occurring on the COPAN MAID shelf that is managed by the resource. This requires that you disable the mover capability on the currently active node (which stops activity for all shelves owned by that node).

You must also ensure that the new node is ready to receive the resource:

- The node must be online
- The CXFS client and STONITH services must be operational on the node

For example, to move the copan_maid_C01 resource from parallel data mover node pdmn1 to parallel data mover node pdmn2:

1. Verify that pdmn2 is ready to receive the resource by examining its status output with the crm(8) command:

In the above output, note the following:

- The copan_maid_C01 resource is Started on pdmn1
- pdmn2 is Online
- The cxfs-client and stonith-sgi-ipmi clones have a status of Started on pdmn2
- On the DMF server, disable pdmn1 so that it will cease all COPAN MAID shelf activity:

```
dmfserver# dmnode_admin -d pdmn1
```

3. Verify that there are no dmatwo or dmatro data mover processes running on pdmn1. For example, the output of the following command should be empty:

```
pdmn1# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
pdmn1#
```

If the output is not empty, you must wait for the <code>dmnode_admin -d</code> action from step 2 to complete (the entire process can take 6 minutes or longer). Rerun the <code>ps</code> command until there is no output.

4. Clear any failcounts and move the resource to pdmn2:

```
pdmn2# crm resource failcount copan_maid_C01 delete pdmn2
pdmn2# crm resource move copan_maid_C01 pdmn2
```

This make take a few moments to complete.

007-5617-006 179

5. Verify that the resource has moved to pdmn2:

```
pdmn2# crm status
=========
Last updated: Tue Aug 30 07:46:58 2011
Stack: openais
Current DC: pdmn2 - partition with quorum
Version: 1.1.5-5bd2b9154d7d9f86d7f56fe0a74072a5a6590c60
2 Nodes configured, 2 expected votes
6 Resources configured.
=========
Online: [ pdmn1 pdmn2 ]
Clone Set: cxfs-client-clone [cxfs_client]
    Started: [ pdmn1 pdmn2 ]
copan_maid_C00 (ocf::sgi:copan_ov_client):
                                               Started pdmn1
copan_maid_C01 (ocf::sgi:copan_ov_client):
                                               Started pdmn2
Clone Set: stonith-sgi-ipmi-set [stonith-sgi-ipmi]
    Started: [ pdmn1 pdmn2 ]
```

In the above output, note that copan_maid_C01 resource is started on pdmn2.

6. Remove the constraint to run copan_maid_C01 on pdmn2:

```
pdmn2# crm resource unmove copan_maid_C01
```

- 7. Repeat steps 3 through 6 for any other copan_ov_client resources requiring a move from pdmn1 to pdmn2.
- 8. On the DMF server, reenable pdmn1 so that it can resume COPAN MAID shelf activity:

```
dmfserver# dmnode_admin -e pdmn1
```

Performing a Rolling Upgrade

Note: Some software may not allow a rolling upgrade. Such a situation might require an extended outage window with all resources down and the HAE openais service turned off, which would permit more thorough testing (similar to that done during the initial installation). See "Maintenance with a Full Cluster Outage" on page 189.

Assuming that you have a two-node production HA environment in place and want to perform a rolling upgrade of appropriate software with minimal testing, use the procedures in the following sections:

- "CXFS NFS Edge-Serving HA Rolling Upgrade" on page 181
- "DMF HA Rolling Upgrade" on page 183
- "COPAN MAID HA Service for Mover Nodes Rolling Upgrade" on page 185

CXFS NFS Edge-Serving HA Rolling Upgrade

Do the following for a rolling upgrade in a CXFS NFS edge-serving HA cluster with two nodes (node1 and node1):

1. Read the release notes for the software you intend to upgrade.

For ISSP software, read the *SGI InfiniteStorage Software Platform Release Note* and any late-breaking caveats on SupportfolioTM Online:

```
https://support.sgi.com/login
```

- 2. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- 3. Ensure that the resource groups are running on node1:

```
node1# crm resource move ipalias-group-1 node1
node1# crm resource move ipalias-group-2 node1
```

4. Set the node you intend to upgrade to standby state. (Putting a node in standby state will move, if possible, or stop any resources that are running on that node.) For example, if you intend to upgrade node2:

```
node1# crm node standby node2
```

This will shut down cxfs_client on node2 automatically.

5. Disable the HAE openais service from being started automatically at boot time and stop the currently running service:

```
node2# chkconfig openais off
node2# service openais stop
```

- 6. Upgrade the software on node2.
- 7. Reboot node2.
- 8. Enable openais to be started automatically at boot time and immediately start it on node2:

```
node2# chkconfig openais on
node2# service openais start
```

9. Make node2 active again:

```
node1# crm node online node2
```

10. Move the resource groups from node1 to node2:

```
node1# crm resource move ipalias-group-1 node2
node1# crm resource move ipalias-group-2 node2
```

- 11. (Optional) Allow the resource groups to run on node2 for a period of time as a test.
- 12. Repeat steps 4 through 11 above but switching the roles for node1 and node2.

Note: In most cases, you will want to leave the resource groups running on node2 in order to avoid any unnecessary interruptions to the services that would have to be restarted if they were moved to node1. However, if you prefer to have the resource groups run on node1 despite any potential interruptions, do the following:

1. Move the appropriate resource group from node2 back to node1. For example:

```
node1# crm resource move ipalias-group-1 node1
```

2. Remove the implicit location constraints imposed by the administrative move command above:

```
node1# crm resource unmove ipalias-group-1
node1# crm resource unmove ipalias-group-2
```

DMF HA Rolling Upgrade

Do the following for a rolling upgrade in a DMF HA cluster with two nodes (node1 and node2):

1. Read the release notes for the software you intend to upgrade.

For ISSP software, read the *SGI InfiniteStorage Software Platform Release Note* and any late-breaking caveats on Supportfolio Online:

https://support.sgi.com/login

- Ensure that the HA cluster, the underlying CXFS cluster (if applicable), and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than intended constraints.
- 3. Disable the services from being started automatically at boot time:

```
node2# chkconfig openais off
node2# chkconfig cxfs off
node2# chkconfig cxfs_cluster off
```

4. Ensure that the resource groups are running on node1.

Note: Moving the dmfGroup resource group will involve CXFS relocation of the DMF administrative filesystems and DMF managed user filesystems. However, you cannot use CXFS relocation if your CXFS cluster also includes a CXFS NFS edge-server HA pair and the CXFS server-capable administration nodes are running different software levels. If that is the case, you must move the dmfGroup resource group via CXFS recovery by resetting the node that is running the dmfGroup resource.

Do one of the following, as appropriate for your site:

• Using CXFS relocation:

Note: Stopping openais will cause a failover if there are resources running on the node. Depending on how things are defined and whether the resource stop actions succeed, it might even cause the node to be reset.

007–5617–006 183

```
node2# crm resource move dmfGroup node1
node2# service openais stop
node2# service cxfs stop
node2# service cxfs_cluster stop
```

Using CXFS recovery:

```
node2# crm node fence node1
```

- 5. Upgrade the software on node2 and reboot.
- 6. Add node2 back into the CXFS cluster (if present) by enabling the services to be started automatically at boot time and then starting them immediately:

```
node2# chkconfig cxfs_cluster on
node2# chkconfig cxfs on
node2# service cxfs_cluster start
node2# service cxfs start
```

- 7. Verify that node2 is fully back in the CXFS cluster with filesystems mounted.
- 8. Enable the HAE openais service to be started automatically at boot time and then start it immediately on node2:

```
node2# chkconfig openais on
node2# service openais start
```

9. Repeat steps 3 through 8 above but executed for node1.

Note: In most cases, you will want to leave the resource group running on node2 in order to avoid any unnecessary interruptions to the services that would have to be restarted if they were moved to node1. However, if you prefer to have the resource group run on node1 despite any potential interruptions, do the following:

1. Move the appropriate resource groups from node2 back to node1:

```
node1# crm resource move dmfGroup node1
```

2. Remove the implicit location constraints imposed by the administrative move command above:

```
node1# crm resource unmove dmfGroup
```

The cluster is now back to normal operational state.

COPAN MAID HA Service for Mover Nodes Rolling Upgrade

Do the following for a rolling upgrade in an HA cluster that consists of two parallel data mover nodes (pdmn1 and pdmn1):

1. Read the release notes for the software you intend to upgrade.

For ISSP software, read the *SGI InfiniteStorage Software Platform Release Note* and any late-breaking caveats on SupportfolioTM Online:

https://support.sgi.com/login

- 2. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- 3. Move any copan_ov_client resources running on pdmn2 to pdmn1 according to the directions in "Manually Moving a copan_ov_client Resource" on page 178.
- 4. Stop all services on pdmn2 and ensure that they will not restart on the next boot of pdmn2:

```
pdmn2# service openais stop
pdmn2# chkconfig openais off
```

- 5. Upgrade the software on pdmn2.
- 6. Reboot pdmn2.
- 7. Ensure that the services will restart upon reboot and start services immediately:

```
pdmn2# chkconfig openais on
pdmn2# service openais start
```

- 8. Move all copan_ov_client resources running on pdmn1 to pdmn2 according to the directions in "Manually Moving a copan_ov_client Resource" on page 178.
- 9. Repeat step 4 through step 7 above but executed for pdmn1.
- 10. Move the copan_ov_client resources than normally run on pdmn1 back to that node, according to the directions in "Manually Moving a copan_ov_client Resource" on page 178.
- 11. Remove the constraints required to move the resources by executing the following command for each <code>copan_ov_client</code> resource

pdmn2# crm resource unmove copan_ov_client_name

The cluster is now back to normal operational state.

Stopping the HAE openais Service

Note: Stopping openais will cause a failover if there are resources running on the node. Depending on how things are defined and whether the resource stop actions succeed, it might even cause the node to be reset.

To stop the HAE openais service on the local node, enter the following:

ha# service openais stop

Manually Issuing a System Reset

To manually issue a system reset, do the following:

• For ia64 systems, where *nodelist* is the value for the nodelist attribute as described in "L2 STONITH Examples" on page 163:

```
stonith -t l2network -p "nodelist" -T reset node_to_be_reset
```

For example, to reset node1:

```
ha# stonith -t 12network -p "node1;128.162.245.170;;3" -T reset node1
```

In the above command, 128.162.245.170 is the IP address of the L2 that has node1 configured as partition 3.

• For x86-64 systems, where *nodelist_value* is the value of the nodelist attribute in "SGI IPMI STONITH Examples" on page 166:

```
stonith -t external/sgi-ipmi -p "nodelist_value" -T reset node_to_be_reset
```

For example, to reset node1:

ha# stonith -t external/sgi-ipmi -p "nodel;admin;admin;supermicro;128.162.245.170" -T reset node1

In the above command, node1 has a BMC responding at IP address 128.162.245.170. The BMC is a Supermicro and has been configured with user name admin and password admin.

If you enter the above command on node1, it will reboot node1. If you execute the command from node2, it will execute the IPMI power-off and power-on commands via the BMC at 128.162.245.170.

In general, the <code>external/sgi-ipmi</code> STONITH agent will execute the reboot command if it is run on the node that will be reset or it will execute the IPMI power-off and power-on commands via the first responsive BMC at one of the IP addresses provided in <code>nodelist_value</code>.

Hardware Maintenance on a Cluster Node

If you must perform maintenance on one node in the cluster, do the following:

1. On the node that requires maintenance (downnode), disable the HAE openais service from being started automatically at boot time:

```
downnode# chkconfig openais off
```

2. If downnode is a CXFS server-capable administration node, disable the cxfs and cxfs_cluster services from being started automatically at boot time:

```
downnode# chkconfig cxfs off
downnode# chkconfig cxfs_cluster off
```

3. As a precaution, run the sync(8) command to flush disk buffers, synchronizing the data on disk with memory:

```
downnode# sync
```

4. Reset downnode in order to force resources to be moved to upnode:

```
upnode# crm node fence downnode
```

5. Verify that resources are running on upnode:

```
upnode# crm status
```

- 6. Perform the required maintenance on downnode.
- 7. Reboot downnode and ensure that is stable before proceeding.
- 8. If downnode was a CXFS server-capable administration node, do the following:

a. Enable the cxfs and cxfs_cluster services to start automatically at boot time and start them immediately on downnode:

```
downnode# chkconfig cxfs_cluster on
downnode# chkconfig cxfs on
downnode# service cxfs_cluster start
downnode# service cxfs start
```

- b. Verify that CXFS is functioning properly on downnode, such as if the node joined the cluster and mounted filesystems.
- 9. Enable the HAE openais service to be started automatically at boot time and start it immediately on downnode:

```
downnode# chkconfig openais on
downnode# service openais start
```

10. Verify that downnode rejoins the HA cluster:

```
downnode# crm status
```

Note: In most cases, you will want to leave the resources running on upnode in order to avoid any unnecessary interruptions to the services that would have to be restarted if they were moved to downnode. However, if you prefer to have the resources run on downnode despite any potential interruptions, do the following:

1. Restart resources on downnode:

```
downnode# crm resource move ResourceName downnode
```

2. Remove the implicit location constraints imposed by the administrative move:

downnode# crm resource unmove ResourceName

Maintenance with a Full Cluster Outage

This section discusses the following:

- "Full Outage for CXFS NFS Edge-Serving HA" on page 189
- "Full Outage for DMF HA" on page 191
- "Full Outage for COPAN MAID OpenVault Client HA on Mover Nodes" on page 193

Full Outage for CXFS NFS Edge-Serving HA

Do the following to perform a full outate for a CXFS NFS edge-serving HA cluster:

- 1. Schedule the outage and notify users well in advance.
- 2. Stop all resources in the proper order (bottom up). For example, using the example procedures in this guide, you would stop the IP alias resource groups and the clone:

```
ha# crm resource stop ipalias-group-2
ha# crm resource stop ipalias-group-1
ha# crm resource stop cxfs-nfs-clone
```

- 3. Disable the services related to HA and CXFS from being started automatically at boot time:
 - · On all HA servers:

```
ha# chkconfig openais off
```

On all CXFS servers:

```
cxfsserver# chkconfig cxfs off
cxfsserver# chkconfig cxfs_cluster off
```

• On all CXFS clients:

```
cxfsclient# chkconfig cxfs_client off
```

- 4. Shut down all of the HA cluster systems and the CXFS cluster systems.
- 5. Perform the required maintenance.
- 6. Perform component-level testing associated with the maintenance.

- 7. Reboot all of the HA cluster systems and the CXFS cluster systems.
- 8. Enable the services related to CXFS to be started automatically at boot time and start them immediately as follows:
 - On all CXFS servers:

```
cxfsserver# chkconfig cxfs_cluster on
cxfsserver# chkconfig cxfs on
cxfsserver# service cxfs_cluster start
cxfsserver# service cxfs start
```

On all CXFS clients:

```
cxfsclient# chkconfig cxfs_client on
cxfsclient# service cxfs_client start
```

• Verify CXFS cluster functionality:

```
cxfsserver# /usr/cluster/bin/cxfs_admin -c status
```

9. On the NFS edge servers, disable the <code>cxfs_client</code> service from being started automatically at boot time and stop the currently running service immediately:

```
edge# chkconfig cxfs_client off
edge# service cxfs_client stop
```

10. On the HA servers, disable the HAE openais service from being started automatically at boot time and stop the currently running service immediately:

```
ha# chkconfig openais on
ha# service openais start
```

11. Verify the HA cluster status:

```
ha# crm status
```

12. Start resources in the correct order (top-down). For example:

```
ha# crm resource stop cxfs-nfs-clone
ha# crm resource stop ipalias-group-1
ha# crm resource stop ipalias-group-2
```

13. Move the resources to the correct locations. For example:

```
ha# crm resource move ipalias-group-1 node1
ha# crm resource move ipalias-group-2 node2
```

14. Remove the implicit location constraints imposed by the administrative move command above. For example:

```
ha# crm resource unmove ipalias-group-1
ha# crm resource unmove ipalias-group-2
```

Full Outage for DMF HA

Do the following to perform a full outage for a DMF HA cluster::

- 1. Schedule the outage and notify users well in advance.
- 2. Stop all resources in the proper order (bottom-up). Using the example procedures in this guide, you would stop the group:

```
ha# crm resource stop dmfGroup
```

- 3. Disable the services related to HA and CXFS (if applicable) from being started automatically at boot time:
 - On all HA servers:

```
ha# chkconfig openais off
```

On all CXFS servers:

```
cxfsserver# chkconfig cxfs off
cxfsserver# chkconfig cxfs_cluster off
```

- 4. Shut down all of the HA cluster systems and any CXFS cluster systems.
- 5. Perform the required maintenance.
- 6. Perform component-level testing associated with the maintenance.
- 7. Reboot all of the HA cluster systems and any CXFS cluster systems.
- 8. Enable the following services related to CXFS (if applicable) to be started automatically at boot time and start them immediately:

• On all CXFS servers:

```
cxfsserver# chkconfig cxfs_cluster on
cxfsserver# chkconfig cxfs on
cxfsserver# service cxfs_cluster start
cxfsserver# service cxfs start
```

On all CXFS clients:

```
cxfsclient# chkconfig cxfs_client on
cxfsclient# service cxfs_client start
```

• Verify CXFS cluster functionality:

```
cxfsserver# /usr/cluster/bin/cxfs_admin -c status
```

9. On the HA servers, enable the openais service to be started automatically at boot time and start the service immediately

```
ha# chkconfig openais on ha# service openais start
```

10. Verify HA cluster status:

ha# crm status

11. Start resources in the correct order (top-down). For example:

```
ha# crm resource start dmfGroup
```

12. Move the resources to the correct locations:

```
ha# crm resource move dmfGroup node1
```

Note: Keep in mind any relocation restrictions.

13. Remove the implicit location constraints imposed by the administrative move command above:

```
ha# crm resource unmove dmfGroup
```

Full Outage for COPAN MAID OpenVault Client HA on Mover Nodes

Do the following to perform a full outage for a COPAN MAID OpenVault HA cluster on parallel data mover nodes:

1. On the DMF server, disable both parallel data mover nodes so that they will cease all COPAN MAID shelf activity:

```
dmfserver# dmnode_admin -d pdmn1
dmfserver# dmnode_admin -d pdmn2
```

2. Verify that there are no dmatwc or dmatrc data mover processes running on either node. For example, the output of the following command should be empty on each parallel data mover node:

```
ha# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep ha#
```

If the output is not empty, you must wait for the dmnode_admin -d action from step 1 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

3. On both parallel data mover nodes, disable services related to HA:

```
ha# chkconfig openais off
```

4. On both nodes, stop HA services (do this simultaneously):

```
ha# service openais stop
```

- 5. Shut down both nodes.
- 6. Perform the required maintenance.
- 7. Perform component-level testing associated with the maintenance.
- 8. Reboot both nodes
- 9. On both nodes, enable services related to HA:

```
ha# chkconfig openais on
```

10. On both nodes, start HA services (do this simultaneously):

```
ha# service openais start
```

11. On either node, verify cluster status:

ha# crm status

12. On the DMF server, reenable both nodes for COPAN MAID activity:

```
dmfserver# dmnode_admin -e pdmn1
dmfserver# dmnode_admin -e pdmn2
```

Troubleshooting

This chapter discusses the following:

- "Diagnosing Problems" on page 195
- "Failover Testing Strategies" on page 202
- "Corrective Actions" on page 205

For details about troubleshooting High Availability Extension (HAE), see the Novell *High Availability Guide*.

Diagnosing Problems

If you notice problems, do the following:

- "Monitor the Status Output" on page 195
- "Verify the Configuration in Greater Detail" on page 196
- "Increase the Verbosity of Error Messages" on page 196
- "Match Status Events To Error Messages" on page 196
- "Verify chkconfig Settings" on page 197
- "Diagnose the Problem Resource" on page 197
- "Examine Application-Specific Problems that Impact HA" on page 197
- "Directly Test the STONITH Capability" on page 198
- "Gather Troubleshooting Data" on page 199
- "Use SGI Knowledgebase" on page 201

Monitor the Status Output

Use the crm status command to determine the current status of the cluster and monitor it for problems.

Verify the Configuration in Greater Detail

Execute the crm_verify(8) command with increasing numbers of -V options for more detail, such as:

```
ha# crm_verify -LVVVVVV
```

Note: If you run <code>crm_verify</code> before STONITH is enabled, you will see errors. Errors similar to the following may be ignored if STONITH is intentionally disabled and will go away after STONITH is reenabled (line breaks shown here for readability):

```
crm_verify[182641]: 2008/07/11_16:26:54 ERROR: unpack_operation:
Specifying on_fail=fence and
stonith-enabled=false makes no sense
```

Increase the Verbosity of Error Messages

For additional information, turn on debug messages in the logging stanza of the /etc/corosync/corosync.conf file:

```
logging{
...
debug:on/off
...
}
```

The default for debug is off.

Match Status Events To Error Messages

Match the events listed in the crm_verify output with the failed action and the host on which the action failed. To find the specific problem, view messages in /var/log/messages.

Verify chkconfig Settings

Verify the chkconfig settings for the following services when used in an HA cluster:

• Must be off if used (most services):

```
cxfs_client
dmf
dmfman
dmfsoap
nfsserver
openvault
smb
nmb
```

• Must be on if used:

```
cxfs
cxfs_cluster
openais
logd
```

• Optionally may optionally be on:

tmf

Diagnose the Problem Resource

To diagnose problems at the application level, put the cluster into maintenance mode. You might have to stop the HAE openais service on all nodes and start/stop resources manually.

Caution: Ensure that you do not start a resource on multiple nodes. Verify that a resource is not already up on another node before you start it.

Examine Application-Specific Problems that Impact HA

Using HA can highlight existing problems for the applications that are being managed. For more information about diagnosing application-specific problems, see the manuals listed in "About this Guide".

Directly Test the STONITH Capability

This section discusses testing the STONITH functionality outside of its definition in the CIB:

- "L2 STONITH Capability" on page 198
- "IPMI STONITH Capability" on page 198

IPMI STONITH Capability

To directly test the IPMI STONITH capability, do the following:

1. Reset a node:

```
ha# stonith -t external/sgi-ipmi -p "nodelist" -T reset node_to_reset
```

For example, to reset node1:

```
ha# stonith -t external/sgi-ipmi -p "nodel;admin;admin;supermicro;128.162.245.170" -T reset node1
```

Verify that the specified node was reset and was able to successfully complete a reboot.

L2 STONITH Capability

To test the L2 STONITH capability, do the following:

1. Reset a node:

```
ha# stonith -t 12network -T reset nodelist="nodelist" node_to_reset
```

For example, to reset node1 (line breaks here shown for readability):

```
ha# stonith -t l2network -T reset \
nodelist="nodel;128.162.245.170;;3 node2;128.162.245.170;;4" node1
** INFO: Initiating l2network-reset on node1 via L2 128.162.245.170, partition 3
```

2. Verify that the specified node was reset and was able to successfully complete a reboot.

Gather Troubleshooting Data

If you need to report problems to SGI Support, do the following to gather important troubleshooting data:

- "Collect System Configuration Information" on page 199
- "Collect System Logs" on page 199
- "Collect HA Cluster Information" on page 199
- "Collect SGI Service-Specific Information" on page 200
- "Generate a Kernel Crash Dump" on page 200

When you contact SGI Support, you will be provided with information on how and where to upload the collected information files for SGI analysis.

Collect System Configuration Information

Run the following commands as root on every node in the cluster in order to gather system configuration information:

```
ha# /usr/sbin/system_info_gather -A -o node.out ha# /sbin/supportconfig
```

Collect System Logs

Collect any other system log files that may contain information about the HAE openais service or the services included in the HA configuration (if not otherwise gathered by the above tools).

Collect HA Cluster Information

Collect HA cluster information by using the hb_report command:

```
ha# hb_report -f priortime destination_directory
```

where:

• *priortime* specifies a time prior to when the problem began (specify *priortime* in Date::Parse Perl module format)

• *destination_directory* is the absolute pathname of a nonexistent directory that will be created as a compressed bunzip2 tarball in the format:

```
destination_directory.tar.bz2
```

For example, if run at 3:06 PM on June 2, 2010, the following command line will create a report starting from 1:00 AM (0100) that day and place the output in /tmp/hb_report.20100602-1506.tar.bz2:

```
ha# hb_report -f lam /tmp/hb_report.$(date+%Y%m%d-%H%M)
```

For example, to collect data starting at 1:00 PM on April 4, 2012:

```
ha# hb_report -f "2012/04/04 13:00" /tmp/hb_report.$(date+%Y%m%d-%H%M)
```

For more information, see the hb_report(8) man page.

Collect SGI Service-Specific Information

Collect service-specific information. For example, run dmcollect for a resource group that contains DMF and cxfsdump for a resource group that contains CXFS. See the dmcollect(8) and cxfsdump(8) man pages for more information.

Generate a Kernel Crash Dump

Note: This procedure assumes that the appropriate kernel-default-debuginfo RPM is installed and that any CXFS node in the HA cluster has a fail policy that does not include reset.

To generate a kernel crash dump, do the following:

1. If the totem token value is not long enough to allow a dump to take place (which is usually the case), avoid system resets by disabling STONITH:

ha# crm configure property stonith-enabled=false

Note: Be aware of the following:

- If you disable STONITH, the resources may not fail over properly and the cluster may enter an unpredictable state.
- With a totem token value that is long enough for a dump to take place, it is
 possible that the system may restart before the failover system recognizes the
 situation, which can be problematic.
- 2. Force a crash dump to occur. For example:

```
# echo 1 > /proc/sysrq-trigger
```

3. If you disabled STONITH in step 1, reenable it:

ha# crm configure property stonith-enabled=true

4. Package up the kernel crash dump:

ha# /usr/sbin/sgi_collect_dump

Use SGI Knowledgebase

If you encounter problems and have an SGI support contract, you can use the SGI Knowledgebase tool to search for information:

1. Log in to Supportfolio Online:

https://support.sgi.com/login

- 2. Click on Search the SGI Knowledgebase.
- 3. Select the type of search you want to perform.

If you need further assistance, contact SGI Support.

Failover Testing Strategies

Before performing any sort of failover testing, do the following so that you can predict the expected results and examine the actual results:

- 1. Verify the state of the HA cluster:
 - a. Check the resource fail counts:

ha# crm resource failcount resourcePRIMITIVE show nodename

Repeat this for each resource primitive on each node.

- b. If there has been a failure, ensure that the issue that caused a resource failure has been resolved.
- c. Reset the resource fail counts on the required nodes:

ha# crm resource failcount resourcePRIMITIVE delete nodename

d. Clear any implicit location constraints that may have been created by a previous administrative move command:

ha# crm resource unmove resourceGROUP

2. Clearly delineate the start of each test in the logs by using the logger(1) command. For example:

```
ha# logger "TEST START - testdescription".
```

Note: The HBA tests presume that the system has redundant Fibre Channel HBA paths to storage.

Table 11-1 describes failover testing strategies.

Table 11-1 Failover Tests

Test Type	Action	Expected Result
Administrative failover	Move the individual resource or resource group to the failover node: ha# crm resource move resourcePRIMITIVE failover_node or: ha# crm resource move resourceGROUP failover_node	The individual resource or the resource group moves to the failover node. Occasionally, filesystems may fail to dismount cleanly or in a timely fashion, thus preventing an administrative move from occurring cleanly. In this case, the active node will likely be reset when a stop operation passes its timeout limit.
		Note: Remember that longer resource stop operation timeouts may result in longer failover times, and shorter resource stop operation timeouts may result in more frequent system reset events.
System reboot	Reboot the active node: active# reboot	All resources running on the rebooted server should move to the failover node
Simulated system crash	Reset the active node	All resources running on the node that was reset should move to the failover node
Simulated NFS daemon failure	Stop the NFS server: ha# service nfsserver stop	The resources should move to the failover node due to a monitor operation failure for the nfsserver resource
Simulated filesystem failure	Unmount the filesystem: ha# umount filesystem	The resources should move to the failover node due to a monitor operation failure for the Filesystem resource

Test Type	Action	Expected Result
Single simulated HBA failure	Disable the port for the Fibre Channel HBA. For example: brocade> portdisable portnumber	A device failover will not actually occur until I/O is attempted via the failed HBA path. An XVM failover to an alternate path should occur after I/O is performed on the system.
		Note: Remember to reenable the port after the test. For example: brocade> portenable portnumber
Multiple simulated HBA failures	Disable the port for the Fibre Channel HBA. For example: brocade> portdisable portnumber Repeat for every HBA port on the system.	The server should be reset after I/O is performed on the system. There will likely be multiple monitor operation failures for various resources followed by a stop operation failure, which will result in a system reset and a forced XVM failover.
		Note: Remember to reenable the port after the test. For example: brocade> portenable portnumber

Corrective Actions

The following are corrective actions:

- "Recovering from an Incomplete Failover" on page 205
- "Recovering from a CIB Corruption" on page 206
- "Clearing the Failcounts After a Severe Error" on page 206

Recovering from an Incomplete Failover

After an incomplete failover, in which one or more of the resource primitives are not started and the cluster can no longer provide high availability, you must do the following to restore functionality and high availability:

1. Put the cluster into maintenance mode:

ha# crm configure property maintenance-mode=true

2. Determine which resource primitives have failcounts:

ha# crm resource failcount resourcePRIMITIVE show node

Repeat for each resource primitive on each node.

- 3. Troubleshoot the failed resource operations. Examine the /var/log/messages system log and application logs around the time of the operation failures in order to deduce why they failed. Then deal with those causes.
- 4. Ensure that all of the individual resources are working properly according to the information in:
 - Chapter 6, "CXFS NFS Edge-Serving HA Service" on page 51
 - Chapter 7, "DMF HA Service" on page 73
 - Chapter 8, "COPAN MAID HA Service for Mover Nodes" on page 147
- 5. Remove the failcounts found in step 2:

ha# crm resource failcount failed_resourcePRIMITIVE delete node

Repeat this for each failed resource primitive on each node.

6. Remove error messages:

ha# crm resource cleanup failed_resourcePRIMITIVE node

Repeat this for each failed resource primitive on each node.

7. Return the cluster to managed status, ether the following:

ha# crm configure property maintenance-mode=false

Recovering from a CIB Corruption

Note: This procedure assumes that you have a good backup copy of the CIB that contains only static configuration information, as directed in "Backing Up the CIB" on page 174.

Do the following to recover from a CIB corruption:

1. Erase the existing corrupt CIB:

ha# crm configure erase

2. Load a new CIB from the backup copy:

ha# crm configure load replace CIB.xxxxxx

For example, for the copy made on August 24 (CIB. 20100824-130236):

ha# crm configure load replace CIB.20100824-130236

Clearing the Failcounts After a Severe Error

Under certain circumstances, a severe failure will cause the failcount for the resource primitives to be set to INFINITY. This means that the resource primitives cannot run on a specific node again until the failcount is cleared, which requires administrative action. See "Clearing the Resource Primitive Failcount" on page 175.

Differences Among FailSafe®, Heartbeat, and HAE

Table A-1 summarizes the differences among the following, for those readers who may be familiar with the older products:

- FailSafe®
- Linux-HA Heartbeat
- SUSE Linux Enterprise High Availability Extension (HAE)

Note: These products do not work together and cannot form an HA cluster.

Table A-1 Differences Among FailSafe, Heartbeat, and HAE

Topic	FailSafe	Heartbeat	HAE
Operating system	IRIX	Can be built and run on most operating systems based on UNIX. The version of Heartbeat packaged by SGI is part of the ISSP media distribution and runs on the base OS for ISSP as defined in the ISSP release notes.	SLES 11
Terminology	node resource	node resource	node resource
Size of cluster	8 nodes	8+ nodes (Specific resource agents may have cluster size limitations. DMF can run on only 2 nodes in active/passive mode.)	16 nodes in active/passive mode for DMF, but 2 nodes recommended. 2 nodes for CXFS NFS edge-serving in active/active mode. 2 parallel data mover nodes for COPAN OpenVault client in active/active mode.

Topic	FailSafe	Heartbeat	НАЕ
Node/member name	Hostname or private network address	Hostname and private network address	Hostname and private network address
NFS lock failover	Supported	Not supported by the operating system	Supported in active/passive configurations
Network tiebreaker	A node that is participating in the cluster membership. FailSafe tries to include the tiebreaker node in the membership in case of a split cluster.	You can configure Heartbeat to use a variety of methods to provide tiebreaker functionality.	You can configure HAE to use a variety of methods to provide tiebreaker functionality.
Rolling upgrade	Supported	Supported	Supported
Configuration information storage	Information is stored in the cluster database. The cluster database is replicated on all nodes automatically and kept in synchronization.	The /etc/ha.d/ha.cf file contains bootstrap information and must be manually replicated across the cluster when changed. Other cluster configuration is stored in the cluster information base (CIB), which is a replicated database. You can use cibadmin(8) to query and update the CIB.	The /etc/corosync/corosync.co file contains bootstrap information. Other cluster configuration is stored in the replicated CIB. You can use cibadmin(8) to query and update the CIB.
Making changes while the service is enabled	Depends upon the plug-in and the configuration device parameter.	Service parameters can be changed while a service is running. Depending on the service and parameter, a change may cause a stop/start or a trigger a restart action. SGI recommends that you do not make any changes that could stop or restart DMF and CXFS.	Service parameters can be changed while a service is running. Depending on the service and parameter, a change may cause a stop/start or a trigger a restart action. SGI recommends that you do not make any changes that could stop or restart DMF and CXFS.

Topic	FailSafe	Heartbeat	НАЕ
Heartbeat interval and timeout	You can specify cluster membership heartbeat interval and timeout (in milliseconds).	Heartbeat provides a number of parameters to tune node status monitoring and failure actions.	HAE provides a number of parameters to tune node status monitoring and failure actions.
Heartbeat networks	Allows multiple networks to be designated as heartbeat networks. You can choose a list of networks.	You can configure Heartbeat to communicate over one or more private or public networks.	You can configure HAE to communicate over one or more private or public networks.
Action scripts	Separate scripts named start, stop, monitor, restart, exclusive.	Open Cluster Framework (OCF) resource agent specification, which may support start, monitor, stop, and restart actions as well as other more-specialized actions.	OCF resource agent specification, which may support start, monitor, stop, and restart actions as well as other more-specialized actions.
Resource timeouts	Timeouts can be specified for each action (start, stop, monitor, restart, exclusive) and for each resource type independently.	Timeouts and failover actions are highly configurable.	Timeouts and failover actions are highly configurable.
Resource dependencies	Resource and resource type dependencies are supported and can be modified by the user.	Heartbeat provides great flexibility to configure resource dependencies.	HAE provides great flexibility to configure resource dependencies.
Failover policies	The ordered and round-robin failover policies are predefined. User-defined failover policies are supported.	Heartbeat provides great flexibility to configure resource failover policies.	HAE provides great flexibility to configure resource failover policies.

Glossary

This glossary lists terms and abbreviations used within this guide. For a more information, see the Novell *High Availability Guide*:

http://www.novell.com/documentation/sle_ha/

active/active mode

An HA cluster in which multiple nodes are able to run disjoint sets of resources, with each node serving as a backup for another node's resources in case of node failure.

active/passive mode

An HA cluster in which all of the resources run on one node and one or more other nodes are the failover nodes in case the first node fails.

active node

The node on which resources are running.

BMC

Baseboard management controller, a system controller used in resetting x86_64 systems.

CIB

Cluster information base, used to define the HA cluster.

clone

A resource that is active on more than one node.

COPAN MAID

Power-efficient long-term data storage based on an enterprise massive array of idle disks (MAID) platform.

CXFS

Clustered XFS.

CXFS NFS edge-serving

A configuration in which CXFS client nodes can export data with NFS.

DCP

Drive control program.

DMF

Data Migration Facility, a hierarchical storage management system for SGI environments.

DMF Manager

A web-based tool you can use to deal with day-to-day DMF operational issues and focus on work flow.

edge-serving

See CXFS NFS edge-serving.

failover node

The node on which resources will run if the active node fails or if they are manually moved by the administrator. Also known as the *passive node* or *standby node*.

fencing

The method that HAE uses to guarantee a known cluster state when communication to a node fails or actions on a node fail. (This is *node-level fencing*, which differs from the concept of I/O fencing in CXFS.)

HA

Highly available or high availability, in which resources fail over from one node to another without disrupting services for clients.

HAE fail policy

A parameter defined in the CIB that determines what happens when a resource fails.

HAE-managed filesystem

A filesystem that will be made highly available according to the instructions in this guide.

HA service

The set of resources and resource groups that can fail over from one node to another in an HA cluster. The HA service is usually associated with an IP address.

HAE openais service

The underlying HA cluster service provided by the Novell SUSE Linux Enterprise product for high availability.

High Availability Extension (HAE)

Novell SUSE Linux Enterprise product for high availability.

IPMI

Intelligent Platform Management Interface, a system reset method for x86_64 systems.

ISSP

InfiniteStorage Software Platform, an SGI software distribution.

LCP

library control program.

LSB

Linux Standard Base.

node1

In the examples in this guide, the initial host (which will later become a node in the HA cluster) on which all of the filesystems will be mounted and on which all tape drives and libraries are accessible. See also *alternate node*.

NSM

Network Status Monitor.

node2

In the examples in this guide, the alternate host in the HA cluster other than the first node (node1). See also *node1*.

OCF

Open Cluster Framework.

OpenVault

A tape mounting service used by DMF.

owner node

The node that DMF will use to perform migrations and recalls on a given shelf. The node on which you run ov_copan becomes the owner node of that shelf. In an HA environment, ownership is transferred as part of HA failover.

physvol

XVM physical volume.

primitive

Used to define a resource in the CIB.

resource

An application that is managed by HAE.

resource agent

The software that allows an application to be highly available without modifying the application itself.

resource group

A set of resources that are colocated on the same node and ordered to start and stop serially. The resources in a resource group will fail over together as a set.

resource stickiness

A concept in HAE that determines whether a resource should migrate to another node or stay on the node on which it is currently running.

serverdir directory

A directory dedicated to holding OpenVault's database and logs within a highly available filesystem in the DMF resource group.

SOAP

Simple Object Access Protocol

split cluster

A situation in which cluster membership divides into multiple clusters, each claiming ownership of the same filesystems, which can result in filesystem data corruption. Also known as *split-brain syndrome*.

standard service

An application before HA has been applied to it.

STONITH

Shoot the other node in the head, the facility that guarantees cluster state by fencing non-responsive or failing nodes.

TMF

Tape Management Facility, a tape mounting service used by DMF.

XFS

A filesystem implementation type for the Linux operating system. It defines the format that is used to store data on disks managed by the filesystem.

WSDL

Web Service Definition Language

XVM

Volume manager for XFS filesystems (local XVM).

Index

action scripts, 209 active/passive mode, 4 administrative tasks CIB backup copy, 17 CIFS, 175 cleaning up the local resource state, 175 clearing the fail count, 175 log files, 175 manual system reset, 186 number of historical files, 176	cluster information base (CIB) backup, 17 Community IPMI STONITH See "STONITH", 163 configuration procedure, 39 configuration tools, 10 configuring COPAN MAID for HA, 147 configuring CXFS NFS edge-serving for HA, 51 configuring DMF for HA, 73 COPAN MAID cluster resources, 147 configuring the copan_ov_client resource, 160 configuring the cxfs-client resource, 157
stopping HAE, 186 application-specific problems, 197 applications that depend on CXFS filesystems, 28	copan_ov_client resource agent, 2 requirements, 31 testing the standard service, 47 COPAN MAID failover example, 8 COPAN OpenVault client resource
back up the CIB, 17 backups and HA, 11 best practices, 11	moving, 19 copan_ov_client, 2 moving, 178 corruption of CIB, 206 crm, 10 crm status and monitoring for problems, 18 crm_gui, 10
CACHE_DIR, 34 chkconfig, 40 chkconfig settings, 197 CIB recovery, 206 cibadmin, 11 CIFS, 175 clearing failcounts, 206 clone L2 STONITH, 164 SGI IPMI STONITH, 166 cluster database, 208	crm_verify, 11, 196 crm_verify -LV and monitoring for problems, 18 CXFS applications that depend on CXFS, 28 colocation, 28 configuring the cxfs resource, 77 cxfs resource agent, 2 licensing, 24 nodes for failover, 27 number of nodes in the cluster, 27 relocation support, 28 requirements, 27 resource, 69

start-ordering, 28	dmf resource agent, 2
start/stop issues, 28	dmfman resource agent, 2
system reset, 28	dmfsoap resource agent, 3
testing the cxfs resource, 79	licensing, 24
testing the standard service, 45	requirements, 33
CXFS client	testing the dmf resource, 127
configuration for HA, 60	testing the dmfman resource, 141
resource, 61	testing the dmfsoap resource, 145
CXFS client NFS	testing the standard service, 48
configuration for HA, 63	DMF client SOAP
CXFS client NFS server	dmfsoap resource agent, 3
primitive, 64	DMF configuration parameters, 177
CXFS NFS edge-serving	DMF failover example, 7
testing the standard service, 44	DMF Manager
CXFS NFS edge-serving failover example, 4	dmfman resource agent, 2
CXFS NFS edge-serving for HA, 51	testing the standard service, 49
cxfs-client-fs, 2	DMF SOAP
cxfs-client-nfsserver, 2	testing the standard service, 50
	dmfman resource configuration, 138
	dmfman_setup_ha, 138
D	dmfsoap resource configuration, 143
	dump from metadata server, 122
debugging, 18	•
default-resource-failure-stickiness, 13	
dependencies, 209	E
Disk Name values must be unique, 29	
DMF	error message verbosity, 196
and active/passive mode, 4	error messages in /var/log/messages, 196
cluster resources, 73	/etc/corosync/corosync.conf, 196
configuration for HA, 122	/etc/exports, 44, 48
configuration procedure, 74	
configuring filesystems, 86	
configuring the copan_ov_client resource, 118	F
configuring the dmf resource, 124	
configuring the dmfman resource, 138	fail count clearing, 175
configuring the dmfsoap resource, 143	failcounts, 206
configuring the Filesystem resource	failover, 13
DMF administrative, 88	failover examples, 4
DMF-managed user filesystem, 86	failover nodes, 27
connectivity to libraries and drives, 33	failover testing strategies, 202
DMF client SOAP service requirements, 36	FailSafe differences, 207
DMF Manager requirements, 35, 36	

fencing See "STONITH", 13	ISSP release note, 2
fencing terminology (HAE vs CXFS), 15	RPMs, 2
Filesystem resource	YaST pattern, 2
DMF administrative, 88	•
DMF-managed user filesystem, 86	
OpenVault serverdir, 91	J
filesystems	
supported for HA, 85	JOURNAL_DIR, 34
testing the Filesystem resource, 92	
fully qualified domain name, 12	
•	K
Н	kernel dump, 200
	Knowledgebase, 201
HA service	
terminology, 1	
HAE	L
RPMs provided by SGI, 2	
stopping the service, 186	L2 STONITH
troubleshooting, 195	See "STONITH", 163
hardware requirements, 24	l2network resource agent, 3
Heartbeat differences, 207	licensing requirements, 24
high availability and SGI products, 1	Linux—HA Heartbeat differences, 207
historical files, 176	local XVM
HOME_DIR, 34	configuring the lxvm resource, 81
hostname consistency, 12	lxvm resource agent, 3
	requirements, 29
	testing lxvm, 83
	testing the standard service, 45
	log files, 175
I/O fencing and system reset, 28	logging, 196
ia64 STONITH	lxvm resource agent, 3
See "STONITH", 163	
incomplete failover, 205	
initial node, 38	M
INTERFACE, 35	
Interleave option, 53	MAID shelf, 31
introduction, 1	maintenance mode, 174
IPaddr2, 94	manual system reset, 186
IPMI STONITH	Messages, 175
See "STONITH", 163	

monitoring for problems, 18 mounting service See "OpenVault or TMF", 30 MOVE_FS, 34 moving the COPAN OpenVault client resource, 19	testing the standard service, 46 wildcard and, 31 outline of the configuration procedure, 39 ownership of a MAID shelf, 31
mtcp_hb_period, 19	P
	•
N	Parallel Data Mover Option
. 1 11TA 44	DMF configuration and, 123
networking and HA, 11	licensing, 24
networks, 209	OpenVault configuration and, 109
NFS	requirements, 25
configuration for HA, 128	passive mode, 4
configuring the nfsserver resource, 129 testing the nfsserver resource, 131	physvol Disk Name values must be unique, 29 preliminary testing tasks, 202
testing the misserver resource, 131 testing the standard service, 48	private network, 209
nfsserver resource configuration, 129	public network, 209
nmb	public lictwork, 200
configuring the nmb resource, 135	
testing the nmb resource, 136	R
nmb resource configuration, 135	
node number in cluster, 208	redundancy and HA, 11
node terminology, 207	release note, 2
node-level fencing	relocation support for CXFS, 28
See "STONITH", 13, 163, 166, 169	reporting problems to SGI, 199
node1 terminology, 38	requirements
nodes for failover, 27	COPAN MAID, 31
number of nodes in the cluster, 27	CXFS, 27
	DMF, 33
	DMF client SOAP service, 36
0	DMF Manager, 35, 36
OnenVeult	hardware, 24
OpenVault	licensing, 24 local XVM, 29
configuration for HA, 104 configuring the Filesystem resource	OpenVault, 30
serverdir, 91	Parallel Data Mover Option, 25
configuring the openvault resource, 111	software version, 24
openvault resource agent, 3	system reset, 25
requirements, 30	time synchronization, 25
serverdir directory, 31	TMF, 30
testing the openvault resource, 114	

virtual IP address, 30	resource group
reset	colocation and ordering, 13
CXFS and, 28	terminology, 1
enabling, 42	resource stickiness, 13
manual, 186	resource testing
requirements, 13, 25	cxfs, 79
See "STONITH", 163	dmf, 127
resource	dmfman, 141
cxfs-client configuration, 60	dmfsoap, 145
cxfs-client-nfsserver configuration, 63	Filesystem, 92
dependencies, 209	IPaddr2, 96
IPaddr2 configuration, 67	lxvm, 83
nfsserver configuration, 128	nfsserver, 131
nmb configuration, 132	openvault, 114
openvault configuration, 104	smb and nmb, 136
smb configuration, 132	tmf, 102
terminology, 1, 207	restart the OpenVault server, 177
virtual IP address configuration, 67	restore, 122
resource agents	rolling upgrade, 208
provided by SGI, 2	0.10
terminology, 1	
resource configuration	S
copan_ov_client, 118, 160	
cxfs, 77	Samba
cxfs-client, 157	configuration for HA, 132
dmf, 124	testing the standard service, 49
dmfman, 138	score calculation, 13
dmfsoap, 143	SERVER_NAME, 35
Filesystem	serverdir directory for OpenVault, 31
DMF administrative filesystem, 88	service
DMF-managed user filesystem, 86	terminology, 1
OpenVault serverdir, 91	SGI InfiniteStorage Software Platform
IPaddr2, 94	See "ISSP", 2
ipmi, 170	SGI IPMI STONITH
l2network, 164	See "STONITH", 163
lxvm, 81	SGI ISSP High Availability YaST pattern, 2
nfsserver, 129	SGI Knowledgebase, 201
nmb, 135	sgi-ipmi resource agent, 3
openvault, 111	shelf on MAID, 31
sgi-ipmi, 167	short hostname, 12
smb, 134	size of cluster, 208
tmf, 98	

smb	stopping HAE, 186
configuring the smb resource, 134	STORE_DIR, 34
testing the smb resource, 136	Supportfolio, 201
smb resource configuration, 134	SUSE Linux Enterprise High Availability
software upgrades, 181	Extension
software version requirements, 24	See "HAE", 2
spaces in resource names, 13	sysctl, 19
SPOOL_DIR, 34	system configuration and HA, 11
standard service configuration and testing	system reset and I/O fencing, 28
COPAN MAID, 47	system reset enabling, 42
CXFS, 45	, o
CXFS NFS edge-serving, 44	
DMF, 48	T
DMF Manager, 49	
DMF SOAP, 50	testing
local XVM, 45	COPAN MAID standard service, 47
NFS, 48	CXFS NFS edge-serving standard service, 44
OpenVault, 46	CXFS resource, 79
Samba, 49	CXFS standard service, 45
TMF, 46	DMF Manager standard service, 49
start/stop issues and CXFS, 28	dmf resource, 127
status output, 195	DMF SOAP standard service, 50
STONITH	DMF standard service, 48
community IPMI, 169	dmfman resource, 141
configuring the ipmi resource, 170	dmfsoap resource, 145
configuring the l2network resource, 164	Filesystem resource, 92
configuring the sgi-ipmi resource, 167	IPaddr2 resource, 96
creating the L2 clone, 164	ipmi, 171
creating the SGI IPMI clone, 166	l2network, 166
enabling, 42	local XVM standard service, 45
L2, 163	lxvm resource, 83
l2network resource agent, 3	NFS serving standard service, 48
overview, 163	nfsserver resource, 131
requirements, 13, 25	nmb resource, 136
SGI IPMI, 166	openvault resource, 114
sgi-ipmi resource agent, 3	OpenVault standard service, 46
stonith command, 186	Samba serving standard service, 49
testing ipmi, 171	sgi-ipmi, 169
testing l2network, 166	smb and nmb resource, 136
testing sgi-ipmi, 169	tmf resource, 102
STONITH capability testing, 198	TMF standard service, 46
stonith command 198	

testing COPAN MAID for HA, 147	/usr/lib/dmf/dmfman_setup_ha, 138
testing CXFS NFS edge-serving for HA for HA, 51	•
testing DMF for HA, 73	
testing strategies, 202	V
tiebreaker, 208	
time synchronization, 25	/var/log/messages, 175, 196
timeout, 209	virtual IP address
TMF	configuring the IPaddr2 resource, 94
configuration for HA, 97	requirements, 30
configuring the tmf resource, 98	testing the IPaddr2 resource, 96
requirements, 30	volume names must be unique, 29
testing the standard service, 46	•
testing the tmf resource, 102	
tmf resource agent, 3	W
TMP_DIR, 34	
tools for configuration, 10	wildcard and OpenVault, 31
totem token, 19	
troubleshooting	
CIB recovery, 206	X
clearing failcounts, 207	
error messages in /var/log/messages, 196	x86_64 STONITH
general troubleshooting, 195	See "STONITH", 166, 169
incomplete failover, 205	XCOPY, 175
reporting problems to SGI, 199	xfsdump and xfsrestore, 122
using SGI Knowledgebase, 201	
	Y
\mathbf{U}	•
	YaST pattern, 2
upgrades, 181, 208	rao i patterni, w
mpo-mass, 101, 200	