sgi

High Availability Guide for SGI[®] InfiniteStorage[™]

COPYRIGHT

© 2010–2014 Silicon Graphics International Corp. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS

CXFS, SGI, SGI InfiniteStorage, SGI OpenVault, the SGI logo, Supportfolio, and XFS are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the U.S. and other countries. Novell is a registered trademark and SUSE is a trademark of Novell, Inc. in the United States and other countries. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. in the United States and other countries. All other trademarks mentioned herein are the property of their respective owners.

New Features in this Guide

This revision contains the following:

- Support for RHEL 6.5. See:
 - "Install the HA Software" on page 53
 - "RHEL: Configure the Nodes for HA" on page 54
 - "fence_ipmilan STONITH Template (RHEL)" on page 158
- Reference to the new resource templates provided in /usr/share/doc/sgi-ha/templates. See Chapter 11, "Resource Template Reference" on page 137.
- Consistent use of command-line methods in examples rather than GUI methods.
- Removal of information about the deprecated sgi-ipmi STONITH resource.

007–5617–008 iii

Record of Revision

Version	Description
001	July 2010 Original publication, supporting the SGI $^{\! \otimes}$ Infinite Storage Software Platform (ISSP) 2.1 release
002	September 2010 Revision to support ISSP 2.2
003	January 2011 Revision to support ISSP 2.3
004	April 2011 Revision to support ISSP 2.4
005	October 2011 Revision to support ISSP 2.5
006	April 2012 Revision to support ISSP 2.6
007	April 2013 Revision to support ISSP 3.0
008	February 2014 Revision to support ISSP 3.1

007–5617–008 v

Contents

007-5617-008

About This Guide	χi
Scope of this Guide	xi
Related SGI Publications	xii
Obtaining SGI Publications	xii
Conventions	iii
Reader Comments	ΧV
1. Introduction	1
High Availability Overview	1
SGI Resource Agents and RPMs	2
Supported HA Services	3
Outline of the HA Configuration Procedure	4
2. Best Practices	7
Preliminary Best Practices Before Introducing HA	7
Ensure the System is Ready for HA	7
Use a Separate Filesystem for CXFS NFS State Information	8
Use Consistent Virtual Hostnames	8
Ensure that the Debug RPM Matches the Kernel	8
Use the Correct CXFS Fail Policy	8
HA Configuration and Testing Best Practices	9
Use the Resource Templates	9
Template Location	10
•	10

vii

Resource Format	10
Variables You Can Change	11
Values You Cannot Change	11
Conventions for Resource Instance IDs	11
Operations	13
Timeout Values	14
Meta Attributes	14
Use the Appropriate Tools	14
Use the crm(8) Command for Configuration, Status, and Control	14
Use the crm_verify Command to Verify Configuration	15
Get More Information by Increasing Verbosity	16
Examine Log Files	16
Avoid Unnecessary Failovers	16
Always use STONITH	17
Use One Group for DMF HA	17
Examine the Use of Stickiness and Thresholds	17
Additional Resources to Consider	17
MailTo Resource	17
ping Resource	18
Administrative Best Practices	18
Make a Backup Copy of the CIB	18
Monitor Status Information for Problems	19
Clear Failcount Values After Resolving the Problem	19
Remove Implicit Constraints after Explicitly Moving a Resource	19
Set the Core Membership Timeout Value Appropriately	20
Upgrade Appropriately	20
Do Not Use an Edge-Serving Node as an NFS Client	20
Include the PID in Core Files	21

viii 007–5617–008

ix

Maintenance Best Practices	•	21
Questions to Ask Before Performing Maintenance		22
Hardware Maintenance		22
System Software Updates	•	22
ISSP Software Updates		22
Changes Permitted on a Running Resource		23
Changes that Require Maintenance Mode		23
Changes that Require a Full Cluster Outage	•	24
3. Requirements		25
HA Support Requirements		26
Licensing Requirements		26
Software Version Requirements		26
Hardware Requirements		26
System Reset Requirements		27
Time Synchronization Requirements		27
CXFS NFS Edge-Serving Requirements		27
CXFS Requirements		29
CXFS Server-Capable Administration Nodes		29
CXFS Relocation Support		29
Applications that Depend Upon CXFS Filesystems		30
CXFS and System Reset		30
CXFS Start/Stop Issues		30
CXFS Volumes and DMF-Managed Filesystems		31
Local XVM Requirements		31
Filesystem Requirements		31
IP Address Alias Requirements		32

007-5617-008

TMF Requirements	32
OpenVault $^{ imes}$ Requirements $$	32
COPAN MAID Requirements	34
COPAN MAID in Any HA Cluster	34
COPAN MAID in a DMF HA Cluster	34
COPAN MAID in a Mover-Node HA Cluster	35
DMF Requirements	35
NFS Requirements	37
Samba Requirements	38
DMF Manager Requirements	38
DMF Client SOAP Service Requirements	39
4. Standard Services	41
CXFS NFS Edge-Serving Standard Service	42
CXFS Standard Service	43
Local XVM Standard Service	43
TMF Standard Service	44
OpenVault Standard Service	44
COPAN MAID Standard Service	45
DMF Standard Service	46
NFS Standard Service	46
Samba Standard Service	47
DMF Manager Standard Service	47
DMF Client SOAP Standard Service	47
5. Prevent the Standard Services from Starting in the HA Environment .	49
Stop Standard Services for CXFS NFS Edge-Serving HA Service	49
Stop Standard Services for DMF HA Service	50
Stop Standard Services for COPAN MAID OpenVault Client HA Service	52

x 007–5617–008

6. Create the Base HA Cluster	5 3
Install the HA Software	5 3
Enable Multicasting on the Switch	54
Configure the Nodes for HA	54
RHEL: Configure the Nodes for HA	54
SLES: Configure the Nodes for HA	57
Test the Base HA Cluster	59
7. CXFS NFS Edge-Serving HA Service	61
CXFS NFS Edge-Serving Failover	61
CXFS NFS Edge-Serving HA Resource Map	64
CXFS NFS Edge-Serving HA Procedure	66
Ensure that the NFS Lock Services are Started (RHEL only)	66
Copy the /etc/exports Entries	66
Create the Clone	67
Test the Clone	68
Create the IP Address Alias Group Resources	70
Test Each IP Address Alias Group	72
Confirm the Completed Status	76
Put the CXFS NFS Edge-Serving HA Service into Production Mode	76
8. DMF HA Service	77
DMF Failover	77
DMF HA Resource Map	78
DMF HA Procedure	80
	81
DMF Group for the CXFS Environment	81
DMF Group for the Local XVM Environment	83

007–5617–008 xi

Local XVM Resource						. 84
Filesystem Resources						. 85
IP Address Alias Resource				•	•	. 88
Mounting Service Resource						. 90
OpenVault Resource						. 90
TMF Resource						. 99
COPAN MAID OpenVault Client Resource (Optional) .			•	•	•	. 102
Create the OpenVault Components on the Passive Node						. 102
Create and Test the COPAN MAID OpenVault Client Resor	urce	٠.				. 104
DMF Resource						. 106
NFS Resource (Optional)						. 111
Samba Resources (Optional)						. 113
DMF Manager Resource (Optional)						. 116
DMF Client SOAP Service Resource (Optional)						. 118
Confirm the Completed Status						. 119
Configure DMF Backups for HA						. 119
Put the DMF HA Service into Production Mode				•		. 119
9. COPAN MAID OpenVault Client HA Service				•		. 121
COPAN MAID OpenVault Client HA Service Failover						. 121
COPAN MAID OpenVault Client HA Resource Map						. 124
COPAN MAID OpenVault Client HA Service Procedure						. 125
Disable the Parallel Data-Mover Nodes and the Services .						. 125
Create the OpenVault Components on the Failover Node .						. 126
Create and Test the COPAN MAID OpenVault Client HA Service	e					. 128
Confirm the Completed Status						. 131
Put the COPAN MAID OpenVault Client HA Service into Produ	ıctio	n M	lode			. 131

xii 007–5617–008

xiii

10. Put the HA Cluster Into) Pr	od	uc	tio	n N	Лo	de		•						•					133
Create the STONITH Facility .																				133
RHEL STONITH																				133
SLES STONITH																				134
Enable Node-Level Fencing .		•	•				٠	•	•	٠			٠	•				•	٠	134
Test the STONITH Facility .									•											135
Remove Constraints							•	•	•	•	•		•		•				•	135
11. Resource Template Refe	eren	ıce		•			•	•												137
copan_ov_client Template																				139
cxfs Template																				142
cxfs-client Template																				144
cxfs-client-clone Template									•											146
cxfs-client-nfsserver Tem p	olate																			147
cxfs-client-smnotify Templ	ate																			150
cxfs-nfs-clone Template .																				152
dmf Template																				153
DMF-GROUP Template																				155
dmfman Template																				155
dmfsoap Template																				157
fence_ipmilan STONITH Temp	olate	(R	HE	L)																158
Filesystem Template																				160
IPaddr2 Templat e																				162
ipalias-group Template .																				164
ipmi STONITH Template (SLES)																				166
lxvm Template																				168
MailTo Template	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	170
rattio template	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	170

007-5617-008

nfsserver Template	71
nmb Template	73
openvault Template	74
ping Template	77
smb Template	80
tmf Template	81
winbind Template	85
12. Administrative Tasks and Considerations	87
	88
	89
Putting the Cluster into Maintenance Mode	89
Backing Up the CIB	90
Understanding CIFS and NFS in an HA Cluster	90
Reviewing the Log Files	90
Clearing the Resource Failcount	90
Clearing the Resource State on a Node	91
Controlling the Number of Historical Files	91
Changing DMF Configuration Parameters	92
Restarting the OpenVault Server	92
Manually Moving a copan_ov_client Resource	93
Performing a Rolling Upgrade	95
COPAN MAID OpenVault Client HA Service for Mover Nodes Rolling Upgrade 19	96
CXFS NFS Edge-Serving HA Rolling Upgrade	97
DMF HA Rolling Upgrade	00
Stopping the Underlying HA Control Services	03
Manually Resetting a Node	04

xiv 007–5617–008

Hardware Maintenance on a Cluster Node		204
Hardware Maintenance in a COPAN MAID OpenVault Client HA Service		204
Hardware Maintenance in a CXFS NFS Edge-Serving HA Service		207
Hardware Maintenance in a DMF HA Service		208
Maintenance with a Full Cluster Outage		210
Full Outage for COPAN MAID OpenVault Client HA Service on Mover Nodes		211
Full Outage for CXFS NFS Edge-Serving HA		213
Full Outage for DMF HA		215
13. Troubleshooting	•	219
Diagnosing Problems		219
Monitor the Status Output		219
Verify the Configuration in Greater Detail		220
Match Status Events To Error Messages		220
Verify chkconfig Settings		220
Off		221
On		221
Optionally On		221
Diagnose the Problem Resource		222
Examine Application-Specific Problems that Impact HA		222
Test the STONITH Capability		222
Gather Troubleshooting Data		223
Collect System Configuration Information		223
Collect System Logs		224
Collect HA Cluster Information		224
Collect SGI Service-Specific Information		225
Generate a Kernel Crash Dump		225

007–5617–008 xv

Contents

Index				•																					239
Glossa	ry	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	233
Cleari	ing the	Fail	cou	nts .	Aft	er	a S	eve	ere	Err	or							•					•		231
Recov	ering f	rom	a C	CIB (Coı	rru	ptio	on							•										231
Recov	ering f	rom	an	Inco	m	ple	te l	Fai	lov	er															230
Correctiv	ve Acti	ons																							230
Failover	Testing	g Str	ateg	gies			•																		227
Use S	GI Kno	owle	dge	base	•		•			•				•											226

xvi 007–5617–008

Figures

igure 1-1	Map of the HA Configuration Procedure		į
igure 7-1	CXFS NFS Edge-Serving HA Service — Normal State		62
igure 7-2	CXFS NFS Edge-Serving HA Service — After Failover		63
igure 7-3	Map of Resources for the CXFS NFS Edge-Serving HA Service		65
igure 8-1	DMF HA Service — Normal State		77
igure 8-2	DMF HA Service — After Failover		78
Figure 8-3	Map of Resources for the DMF HA Service		79
igure 9-1	COPAN OpenVault Client HA Service for Mover Nodes — Normal State		122
igure 9-2	COPAN OpenVault Client HA Service for Mover Nodes — After Failover		123
igure 9-3	Map of Resources for the COPAN MAID OpenVault HA Service		124

007–5617–008 xvii

Tables

Table 1-1	SGI Resource Agents in the sgi-ha-ocf-plugins RPM	[•	•		•	2
Table 2-1	Example Instance Names						12
Table 13-1	Failover Tests						228

007–5617–008 xix

About This Guide

This publication provides information about creating resources for the high-availability (HA) SGI® resource agents that SGI provides for use with SGI InfiniteStorage Software Platform (ISSP) products and with the Corosync, and Pacemaker products. These products are provided with the following:

- Red Hat® Enterprise Linux High Availability Add-On
- SUSE[®] Linux[®] Enterprise High Availability Extension (HAE)

Scope of this Guide

This guide describes the use to SGI resource agents. It does not discuss HA in general, nor does it provide details about configuring an HA cluster; for those details, see the following:

• Pacemaker information for either RHEL or SLES clusters:

http://clusterlabs.org/doc/en-US/Pacemaker/1.1-plugin/html-single/Pacemaker_Explained/index.html

- RHEL only:
 - Clusterlabs quick start guide for RHEL HA:
 http://clusterlabs.org/quickstart-redhat.html
 - RHEL Add-On documentation:

 $https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/High_Availability_Add-On~Overview/index.html$

Note: The information about RGmanager does not apply to the ISSP HA implementation, which uses Pacemaker.

• SUSE only:

High Availability Guide provided by the following website:

http://www.suse.com/documentation/sle_ha/

007–5617–008 xxi

Related SGI Publications

The following SGI publications contain additional information:

- CXFS 7 Administrator Guide for SGI InfiniteStorage
- CXFS 7 Client-Only Guide for SGI InfiniteStorage
- DMF 6 Administrator Guide for SGI InfiniteStorage
- DMF 6 Filesystem Audit Guide for SGI InfiniteStorage
- OpenVault Administrator Guide for SGI InfiniteStorage
- SGI InfiniteStorage Software Platform (ISSP) release note (README.txt)
- TMF 6 Administrator Guide for SGI InfiniteStorage
- XVM Volume Manager Administrator Guide
- · The hardware guide for your SGI server

Obtaining SGI Publications

You can obtain SGI documentation as follows:

- See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
 are available. This library contains the most recent and most comprehensive set of
 online books, man pages, and other information.
- You can view man pages by typing man title at a command line.
- The /docs directory on the ISSP DVD or in the Supportfolio™ download directory contains the following:
 - The ISSP release note: /docs/README.txt
 - Other release notes: /docs/README_NAME.txt
 - A complete list of the packages and their location on the media: /docs/RPMS.txt
 - The packages and their respective licenses: /docs/PACKAGE_LICENSES.txt

xxii 007–5617–008

• The release notes and manuals are provided in the noarch/sgi-isspdocs RPM and will be installed on the system into the following location:

/usr/share/doc/packages/sgi-issp-ISSPVERSION/TITLE

Conventions

The following conventions are used throughout this document:

Convention	Meaning
command	This fixed-space font denotes literal items such as commands, files, routines, path names, signals, messages, and programming language structures.
variable	Italic typeface denotes variable entries and words or concepts being defined.
user input	This bold, fixed-space font denotes literal items that the user enters in interactive sessions. (Output is shown in nonbold, fixed-space font.)
[]	Brackets enclose optional portions of a command or directive line.
	Ellipses indicate that a preceding element can be repeated.
manpage(x)	Man page section identifiers appear in parentheses after man page names.
cxfsclient#	This prompt indicates that the example command is executed on a CXFS client-only node
cxfsserver#	This prompt indicates that the example command is executed on a CXFS server-capable administration node
dmfserver#	This prompt indicates that the example command is executed on a DMF server
downnode#	This prompt indicates that the example command is executed on the HA node that requires maintenance
ha#	This prompt indicates that the example command is executed on any node that is or will be in the HA cluster

007–5617–008 xxiii

This prompt indicates that the example command is nfsclient# executed on an NFS client outside of the HA cluster This prompt indicates that the example command is node1# executed on node1, a node that is or will be in the HA cluster node2# This prompt indicates that the example command is executed on node2, a node that is or will be in the HA cluster This prompt indicates that the example command is otherhost# executed on machine outside of the HA cluster mover# This prompt indicates that the example command is executed on a DMF parallel data-mover node mover1# This prompt indicates that the example command is executed on mover1 (analogous to node1), a node that is or will be in the HA cluster This prompt indicates that the example command is mover2# executed on mover2 (analogous to node2), a node that is or will be in the HA cluster This prompt indicates that the example command is upnode# executed on the HA node that does not require maintenance

xxiv 007–5617–008

Reader Comments

If you have comments about the technical accuracy, content, or organization of this publication, contact SGI. Be sure to include the title and document number of the publication with your comments. (Online, the document number is located in the front matter of the publication. In printed publications, the document number is located at the bottom of each page.)

You can contact SGI in either of the following ways:

- Send e-mail to the following address: techpubs@sgi.com
- Contact your customer service representative and ask that an incident be filed in the SGI incident tracking system:

http://www.sgi.com/support/supportcenters.html

SGI values your comments and will respond to them promptly.

007–5617–008 xxv

Introduction

This chapter discusses the following:

- "High Availability Overview" on page 1
- "SGI Resource Agents and RPMs" on page 2
- "Supported HA Services" on page 3
- "Outline of the HA Configuration Procedure" on page 4

High Availability Overview

For SGI InfiniteStorage Software Platform (ISSP) products, the Corosync and Pacemaker products provide the infrastructure to fail over individual *highly available* (HA) resources and entire HA services that survive a single point of failure.

A resource is managed by HA. A resource group is a set of resources that must be managed and failed over from one node to another as a set. An HA service can include resource groups and individual resources and is usually associated with an IP address. HA starts, monitors, and stops resources and entire HA services. A resource agent is the set of software that allows an application to be highly available without modifying the application itself. A clone resource allows a resource to run simultaneously on multiple nodes. The underlying HA control services differ by operating system:

- RHEL:
 - CMAN
 - Corosync
 - Pacemaker
- SLES:
 - OpenAIS
 - Corosync
 - Pacemaker

007–5617–008

Each HA service is actively owned by one node. HA software uses the IP address of a service to direct clients to the node currently running the service. If that node fails, an alternate node restarts the HA services of the failed node. To application clients, the services on the alternate node are indistinguishable from those on the original node.

SGI Resource Agents and RPMs

Table 1-1 lists the Open Cluster Framework (OCF) resource agents specific to SGI that are provided by the SGI ISSP HA software and the associated templates that SGI provides to help you configure individual resources.

For information about software installation, see the ISSP release note and Chapter 6, "Create the Base HA Cluster" on page 53.

Table 1-1 SGI Resource Agents in the sgi-ha-ocf-plugins RPM

Resource Agent	Description
copan_ov_client	COPAN MAID OpenVault client HA service for Data Migration Facility (DMF) parallel data-mover nodes and DMF servers. See "copan_ov_client Template" on page 139.
cxfs	CXFS™ clustered filesystems whose metadata server location must follow the location of another resource, such as DMF or NFS. See "cxfs Template" on page 142.
cxfs-client	CXFS clustered filesystems (mounted on a CXFS client-only node) that are required to support another resource, such as those to be NFS-served from a CXFS client-only node or those used for a DMF parallel data-mover node. See "cxfs-client Template" on page 144.
cxfs-client-nfsserver	NFS server on a CXFS client-only node. See "cxfs-client-nfsserver Template" on page 147.
cxfs-client-smnotify	Network Status Monitor (NSM) lock reclaim notification on a CXFS client-only node. See "cxfs-client-smnotify Template" on page 150.
dmf	DMF server. See "dmf Template" on page 153.
dmfman	DMF Manager tool. See "dmfman Template" on page 155.

2 007–5617–008

Resource Agent	Description
dmfsoap	DMF client Simple Object Access Protocol (SOAP) service. See "dmfsoap Template" on page 157.
lxvm	Local XVM volume manager. See "lxvm Template" on page 168.
openvault	OpenVault mounting service for DMF. See "openvault Template" on page 174.
tmf	Tape Management Facility (TMF) mounting service for DMF. See "tmf Template" on page 181.

SGI provides templates for the individual resources associated with the above resource agents plus additional templates that may be of interest in /usr/share/doc/sgi-ha/templates. See Chapter 11, "Resource Template Reference" on page 137.

Supported HA Services

Although the SGI resource agents can be used independently, this guide provides example procedures to configure the set of resources required to provide highly available versions of the following:

- CXFS™ NFS edge-serving from CXFS client-only nodes in a two-node active/active HA cluster. See "CXFS NFS Edge-Serving Failover" on page 61.
- DMF in a two-node active/passive HA cluster (which can optionally include COPAN MAID shelves). See "DMF Failover" on page 77.
- COPAN MAID shelves in an active/active HA cluster that consists of two DMF parallel data-mover nodes. See "COPAN MAID OpenVault Client HA Service Failover" on page 121.

Although other configurations may be possible, SGI recommends the above HA environments.

Note: The attributes and the various value recommendations listed in this guide are in support of the examples used in this guide. If you are using the resources in a different manner, you must evaluate whether these recommendations and use of meta attributes apply to your intended site-specific purpose.

007–5617–008

Outline of the HA Configuration Procedure

This section summarizes the recommended steps to configure a two-node high-availability (HA) cluster for use with SGI InfiniteStorage products, pointing to the release notes or other chapters in this guide that provide the details:

1. Prepare for HA:

- a. Ensure that you have installed the required SGI products on node1 and node2 (from the SGI ISSP HA software) according to the installation procedure in the SGI InfiniteStorage Software Platform Release Note.
- Understand the recommendations for preparation, configuration, testing, and administration of an HA environment. See Chapter 2, "Best Practices" on page 7.
- c. Understand the requirements for the SGI products that you want to include in your HA cluster. See Chapter 3, "Requirements" on page 25.
- d. Configure and test each of the standard SGI product services on node1 before making them highly available. All of the filesystems must be mounted and all drives and libraries must be accessible on node1. See Chapter 4, "Standard Services" on page 41.
- 2. Prevent the standard services that will be controlled by HA from starting at boot time and stop any that are currently running. See Chapter 5, "Prevent the Standard Services from Starting in the HA Environment" on page 49.
- 3. Install the HA software and create the base HA cluster. See Chapter 6, "Create the Base HA Cluster" on page 53.
- 4. Configure and test the resources required for your HA configuration. Proceed to the next resource primitive only if the current resource is behaving as expected, as defined by the documentation. Using the instructions in this guide, you must configure resources in the specific order shown in one of the following chapters, depending upon the type of HA service you are implementing:
 - Chapter 7, "CXFS NFS Edge-Serving HA Service" on page 61
 - Chapter 8, "DMF HA Service" on page 77
 - Chapter 9, "COPAN MAID OpenVault Client HA Service" on page 121

4 007–5617–008

Note: If you are implementing multiple HA services, you should complete the entire process for one HA service before adding another service.

5. Put the HA cluster into production mode by creating the STONITH (*shoot the other node in the head*) facility, re-enabling node-level fencing, testing, and removing any resulting constraints. See Chapter 10, "Put the HA Cluster Into Production Mode" on page 133.

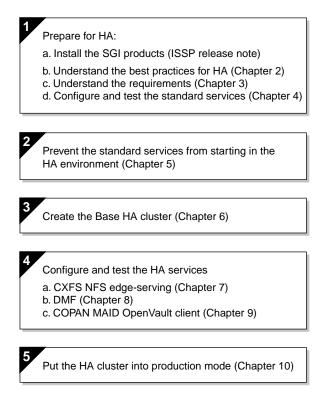


Figure 1-1 Map of the HA Configuration Procedure

007–5617–008

Best Practices

The following are best practices when using SGI resource agents:

- "Preliminary Best Practices Before Introducing HA" on page 7
- "HA Configuration and Testing Best Practices" on page 9
- "Administrative Best Practices" on page 18
- "Maintenance Best Practices" on page 21

Preliminary Best Practices Before Introducing HA

The following are best practices for your environment before introducing high availability (HA):

- "Ensure the System is Ready for HA" on page 7
- "Use a Separate Filesystem for CXFS NFS State Information" on page 8
- "Use Consistent Virtual Hostnames" on page 8
- "Ensure that the Debug RPM Matches the Kernel" on page 8
- "Use the Correct CXFS Fail Policy" on page 8

Ensure the System is Ready for HA

Do the following:

- Fix networking issues first.
- Make your overall system configuration as simple as possible complexity makes HA harder to achieve.
- Use redundancy in your system components to avoid single points of failure.
- Perform regular and frequent system backups.
- Configure and test the standard services (like DMF) in normal mode before making them highly available doing so will make problems easier to diagnose.

007–5617–008

Configure and test the base HA cluster before adding the SGI resources. You should review Chapter 6, "Create the Base HA Cluster" on page 53, and then follow the detailed example steps in the remainder of the guide, as appropriate for your site.

Use a Separate Filesystem for CXFS NFS State Information

For CXFS NFS edge-serving, use a separate shared CXFS filesystem on which to store NFS state information. The state is kept on disk and must be available while any edge-serving nodes are running. A simple setup where only one filesystem is being served via NFS can keep the state directories on the same filesystem that is being served.

Use Consistent Virtual Hostnames

When configuring OpenVault and DMF, be consistent when specifying virtual hostnames, always using either the short hostname (like myhost) everywhere or the fully qualified domain name (like myhost.mycompany.com) everywhere.

Ensure that the Debug RPM Matches the Kernel

Ensure that the kernel-default-debuginfo RPM that matches the kernel is installed on the system. This will let you make the best use of the recommended SGI Support tools in case you must send a kernel crash dump to SGI for troubleshooting purposes.

Use the Correct CXFS Fail Policy

In a DMF HA service, the STONITH facility must manage the server reset capability. Therefore, you must set the CXFS failpolicy for the CXFS server-capable administration nodes to Fence, Shutdown so that CXFS will not issue its own reset commands. For more information about CXFS failpolicy settings, see CXFS 7 Administrator Guide for SGI InfiniteStorage.

8 007–5617–008

HA Configuration and Testing Best Practices

The following are best practices for configuring and testing the HA system:

- "Use the Resource Templates" on page 9
- "Use the Appropriate Tools" on page 14
- "Examine Log Files" on page 16
- "Avoid Unnecessary Failovers" on page 16
- "Always use STONITH" on page 17
- "Use One Group for DMF HA" on page 17
- "Examine the Use of Stickiness and Thresholds" on page 17
- "Additional Resources to Consider" on page 17

Use the Resource Templates

This section discusses the following:

- "Template Location" on page 10
- "Use the Templates as Building Blocks" on page 10
- "Resource Format" on page 10
- "Variables You Can Change" on page 11
- "Values You Cannot Change" on page 11
- "Conventions for Resource Instance IDs" on page 11
- "Operations" on page 13
- "Timeout Values" on page 14
- "Meta Attributes" on page 14

For more information, see Chapter 11, "Resource Template Reference" on page 137.

007–5617–008

Template Location

SGI provides templates of the resources required to configure an HA cluster in the following location:

/usr/share/doc/sgi-ha/templates/

Use the Templates as Building Blocks

You should use the templates as building blocks to construct your HA configuration file, adding one resource at a time and testing it before adding another resource.

You will create a copy of a template in a partial configuration file (referred to as the *workfile*). In general, you should use the values shown in the templates except for the italicized uppercase site-specific variables (most parameters and some timeouts are site-specific). In many cases, you can use the defaults provided for the variables. The comments in the templates provide information about these variables; you must remove all of these comments before loading the *workfile*. You will then run the following command to update the cluster information base (CIB) database:

node1# crm configure load update workfile

In general, use a new workfile for each resource or as directed in this guide.

Resource Format

In general, the individual resources take the following format:

Caution: You must remove all of the comments before loading the work file.

10 007–5617–008

Variables You Can Change

Site-specific values that you may want to change are in uppercase in the template files. In Chapter 11, "Resource Template Reference" on page 137, they are highlighted in bold-italic uppercase (such as *REPLACE_THIS*). In many cases, you can use the defaults provided; see the comments for more information.

Values You Cannot Change

The *class*, *provider*, and *type* shown in "Resource Format" on page 10 must use the exact values provided in the templates. Most *type* names are lowercase, but some are mixed case. The names are listed under /usr/lib/ocf/resource.d/*provider*.

Conventions for Resource Instance IDs

The suggested IDs for all resource primitive instances, clone instances, and group instances provided in the templates are site-changeable. Every ID must be unique. You should choose IDs that are meaningful to your site; for simplicity, you may want to retain the defaults provided in the templates unless otherwise directed. All IDs must be unique within a given HA cluster; if there are multiple instances of the same *type*, each ID must be unique (such as two resources of type IPaddr2 with individual instance IDs of IP-1 and IP-2). Within this guide and in the templates, individual instance names are shown in uppercase by convention.

If you change an ID, you must ensure that the new name is used correctly elsewhere within constraints or groups as needed. You should use a unique ID for each resource, whether it is a clone, group, or primitive. Do not use spaces in resource IDs because this may cause HA or other supporting software to behave in a confusing manner.

By convention, the templates use the example instance IDs shown in Table 2-1.

Table 2-1 Example Instance Names

Primitive/Group/Clone Type	Example Instance Name		
copan_ov_client	SHELF, such as COO for the COPAN MAID cabinet 0, shelf 0 (the bottom shelf)		
cxfs	CXFS		
cxfs-client	CXFS-CLIENT		
clone	CXFS-CLIENT-CLONE		
cxfs-client-nfsserver	NFS		
cxfs-client-smnotify	SMNOTIFY-x, such as SMNOTIFY-1 and SMNOTIFY-2		
dmf	DMF		
dmfman	DMFMAN		
dmfsoap	DMFSOAP		
group	DMF-GROUP IPALIAS-GROUP-1 and IPALIAS-GROUP-2		
fence-ipmilan	STONITH-NODENAME, such as STONITH-node1 (RHEL)		
Filesystem	FILESYSTEM, such as dmfusr1, spool, or etc_samba		
IPaddr2	IP or IP-1		
ipmi	STONITH-NODENAME, such as STONITH-nodel (SLES)		
lxvm	LXVM		
MailTo	NOTIFY		
nfsserver	NFS		
nmb	NMB		
openvault	ov		
ping	PING		
smb	SMB		
tmf	TMF		
winbind	WINBIND		

Operations

Note the following:

- A monitor operation determines if the resource is operating correctly:
 - A probe monitor operation (which always uses an interval value of 0) checks to see if the resource is already running.
 - A standard monitor operation periodically verifies that the resource continues to run. Each operation will time-out after the specified number of seconds. If the operation fails, it will attempt to restart the resource.

Note: Always use a probe monitor operation, even if you do not use a standard monitor operation.

The start operation initiates a resource. It will time-out after a specified time. It
requires that fencing is configured and active in order to start the resource.
Using system reset as a fencing method is required in order to preserve data
integrity. If the operation fails, it will attempt to restart the resource.

Note: *Fencing* in HA terminology (node-level fencing) is not the same as *fencing* in CXFS terminology (I/O-level fencing).

- A stop operation terminates or gives up control of a resource. It will time-out after the specified time. If the operation fails, it will attempt to fence the node on which the failure occurred. The fail policy must be set to fence and a STONITH ("shoot the other node in the head") facility must be configured according to the requirements for your site. See:
 - RHEL: "fence_ipmilan STONITH Template (RHEL)" on page 158
 - SLES: "ipmi STONITH Template (SLES)" on page 166

Note: Longer stop operation timeouts may result in longer failover times, and shorter stop operation timeouts may result in more frequent system reset events.

Timeout Values

The various timeout values provided in the templates are good starting points, but you should evaluate their use at your site.

Meta Attributes

Note the following:

- migration-threshold specifies a count of failures at which the current node
 will receive a score of -INFINITY so that the resource must fail over to another
 node and is not eligible for restart on the local node, based on the number of
 start, monitor, or stop failures that this resource has experienced.
- resource-stickiness specifies a score for the preference to keep this resource on the node on which it is currently running. A positive value specifies a preference for the resource to remain on the node on which it is currently running. This preference may only be overridden if the node becomes ineligible to run the resource (if the node fails over) or if there is a start, monitor, or stop failure for this resource or another resource in the same resource group.

Use the Appropriate Tools

This section discusses the following:

- "Use the crm(8) Command for Configuration, Status, and Control" on page 14
- "Use the crm verify Command to Verify Configuration" on page 15
- "Get More Information by Increasing Verbosity" on page 16

Use the $\mathtt{crm}(8)$ Command for Configuration, Status, and Control

Use the crm(8) command to configure, to obtain status, and to perform administrative actions. To invoke the command, do the following:

/usr/sbin/crm

For more details, enter help or help *subcommand*. For example:

/usr/sbin/crm
crm(live)# help

This is crm shell, a Pacemaker command line interface.

Available commands:

```
cib
                        manage shadow CIBs
                       resources management
       resource
       configure
                       CRM cluster configuration
                       nodes management
       node
       options
                        user preferences
       history
                        CRM cluster history
       site
                        Geo-cluster support
                        resource agents information center
       ra
       status
                        show cluster status
       help,?
                       show help (help topics for list of topics)
       end,cd,up
                       go back one level
       quit,bye,exit
                        exit the program
crm(live)# help cib
```

A shadow CIB is a regular cluster configuration which is kept in a file. The CRM and the CRM tools may manage a shadow CIB in the same way as the live CIB (i.e. the current cluster configuration). A shadow CIB may be applied to the cluster in one step.

Note: Red Hat does not supply the crm(8) command. Therefore, the SGI ISSP HA software supplies this tool for RHEL customers. RHEL customers must use this version of crm for cluster resource configuration.

Use the crm_verify Command to Verify Configuration

Use the following command to verify changes you make to the CIB, after each resource primitive that you define:

ha# crm_verify -LV

For more information, see the pacemaker(8) man page.

Note: The crm configure verify command is not equivalent to the crm_verify command.

Get More Information by Increasing Verbosity

To get more information, you may add multiple –∨ options to many of the HA commands in order to increase verbosity. For example:

ha# crm_verify -LVVV

Examine Log Files

Examine the log files:

• RHEL:

/var/log/messages
/var/log/cluster/corosync.log (primary RHEL HA log file)

• SLES:

/var/log/messages

Avoid Unnecessary Failovers

This guide provides some starting points for monitoring values, but you should test these values under typical load for your site to determine if they are appropriate for your use. In some cases, you may wish to avoid monitoring other than probe monitoring (probe monitoring is always appropriate).

To prevent a given resource from being monitored and possibly triggering failovers, do not define a standard monitor operation (see "Operations" on page 13). This may be particularly useful for those resources that are not critical (such as DMF Manager) but should still move with the rest of the resource group or for those resources that have an alternative method for monitoring. You can also make timeout values larger to decrease the likelyhood of an unnecessary failover.

Do not create explicit location, colocation, or order constraints on an individual resource primitive except as directed in this guide.

Caution: Defining constraints on a resource primitive can lead to a deadlock situation in which the group has conflicting constraints that prevent it from starting anywhere.

Always use STONITH

Always use STONITH node-level fencing to protect data integrity in case of failure:

- RHEL: "fence_ipmilan STONITH Template (RHEL)" on page 158
- SLES: "ipmi STONITH Template (SLES)" on page 166

Use One Group for DMF HA

For a DMF HA cluster, place each resource primitive within one resource group. The resource group mechanism incorporates implied colocation constraints as well as resource order constraints. This lets you control the resources as a single entity, which greatly simplifies administration.

Examine the Use of Stickiness and Thresholds

You may want to examine the use of the resource_stickiness and migration_threshold attributes of resources to control how often and to what node failover will occur. The examples in this book result in the resource or resource group failing over to the alternate node on the first failure of any of the resource primitives. In this default setting, there is no automatic failback to the original node. For more information about score calculation, see the following website:

http://www.clusterlabs.org/doc/en-US/Pacemaker/1.0/html/Pacemaker_Explained/index.html

Additional Resources to Consider

This section discusses the following:

- "MailTo Resource" on page 17
- "ping Resource" on page 18

MailTo Resource

You may want to consider defining a Mailto resource to implement notification when a given resource starts, stops, or fails over. For more information, see "Mailto Template" on page 170.

ping Resource

The IPaddr2 virtual IP address resource agent monitors the existence of the IP address alias on the interface, but it does not monitor network interface controller (NIC) interface availability. You may want to consider defining a ping resource. For more information, see "ping Template" on page 177, and the information about moving resources due to connectivity changes at the following website:

http://www.clusterlabs.org/doc/en-US/Pacemaker/1.0/html/Pacemaker_Explained/index.html

Administrative Best Practices

The following are best practices for administering the HA cluster:

- "Make a Backup Copy of the CIB" on page 18
- "Monitor Status Information for Problems" on page 19
- "Clear Failcount Values After Resolving the Problem" on page 19
- "Remove Implicit Constraints after Explicitly Moving a Resource" on page 19
- "Set the Core Membership Timeout Value Appropriately" on page 20
- "Upgrade Appropriately" on page 20
- "Do Not Use an Edge-Serving Node as an NFS Client" on page 20
- "Include the PID in Core Files" on page 21

Make a Backup Copy of the CIB

After you have successfully completed the initial configuration, make a backup copy of the working CIB so that you can return to it if necessary after future changes. See:

- "Backing Up the CIB" on page 190
- "Recovering from a CIB Corruption" on page 231

Before making changes to an existing HA configuration, ensure that you have a good backup copy of the current CIB so that you can return to it if necessary. (If you encounter a corrupted CIB, you must erase it by force and then restore the information about resources, constraints, and configuration from a backup copy of a good CIB.)

After you establish that your changed configuration is good, make a new backup of the CIB.

Monitor Status Information for Problems

Periodically watch the output of the following commands for problems:

```
ha# crm status
ha# crm_verify -LV
ha# crm status failcounts
```

For more information, see "Viewing the Cluster Status " on page 188.

Refer to the logs in case of error and periodically to ensure that you are aware of operations automatically initiated by HA. See "Examine Log Files" on page 16.

Clear Failcount Values After Resolving the Problem

After a failure, clear the resource primitive failcount values for a node immediately after resolving the cause of the failure (or reboot the system). See "Clearing the Resource Failcount" on page 190.

Remove Implicit Constraints after Explicitly Moving a Resource

If you want to move or start a resource (either an individual primitive or a group) on a specific node, enter the following:

```
ha# crm resource move resource node
```

The result of this command is to create a location constraint with a score of INFINITY for the specified resource or resource group on the specified node.

Note: If conflicting constraints already exist, this preference might not be honored.

You must remember to remove implicit constraints when they are no longer needed, such as after the individual resource or resource group has successfully moved to the new node. Do the following:

ha# crm resource unmove resource

007-5617-008

To move the COPAN OpenVault client resource, see "Manually Moving a copan_ov_client Resource" on page 193.

Set the Core Membership Timeout Value Appropriately

Set the HA core membership timeout (totem token) value to one that is significantly higher than the CXFS heartbeat timeout. The CXFS heartbeat timeout is set by the mtcp_hb_period system tunable parameter (which is specified in hundredths of a second). For more information, see CXFS 7 Administrator Guide for SGI InfiniteStorage.

To determine the current setting of mtcp_hb_period, use the sysctl(8) command. For example:

```
# sysctl -a | grep mtcp_hb_period
kernel.cell.mtcp_hb_period = 500
```

In this case, the CXFS heartbeat timeout is 500 (5 seconds), so you would set the HA totem token value to at least 15s. If mtcp_hb_period was set to 6000 (60 seconds), you would use an HA totem token value of at least 90s.

The default HA totem consensus value is 1.2 times the totem token value, which is appropriate for most sites. For example, for the totem token value of 90s, the totem consensus value is set by default to 108s.

See "Configure the Nodes for HA" on page 54.

Upgrade Appropriately

When upgrading the software, follow the procedure in "Performing a Rolling Upgrade" on page 195.

Do Not Use an Edge-Serving Node as an NFS Client

Do not use a CXFS NFS edge-serving node running HA software as an NFS client. (The NFS client service on a CXFS NFS edge-serving node does not support monitored locking.)

Include the PID in Core Files

To better analyze problems, consider adding the following directive to the <code>/etc/sysctl.conf</code> file on each node in the HA cluster so that core dump files will include the name of the process ID (PID) that caused the dump and the time when the dump occurred:

```
kernel.core_pattern = core.%p.%t
```

Changes made to /etc/sysctl.conf will take effect on the next boot and will be persistent. To make the settings effective immediately for the current session as well, enter the following:

```
ha# echo "core.%p.%t" > /proc/sys/kernel/core_pattern
```

Note: Core files are generally placed in the current working directory (cwd) of the process that dumped the core file. For example, to locate the core file for a PID of 25478:

Maintenance Best Practices

This section discusses the following:

- "Questions to Ask Before Performing Maintenance" on page 22
- "Hardware Maintenance" on page 22
- "System Software Updates" on page 22
- "ISSP Software Updates" on page 22
- "Changes Permitted on a Running Resource" on page 23
- "Changes that Require Maintenance Mode" on page 23
- "Changes that Require a Full Cluster Outage" on page 24

Questions to Ask Before Performing Maintenance

Before performing maintenance tasks, answer the following questions:

- How will end users be impacted by the change being proposed?
- Will the change affect the availability of a resource, even briefly?
- How is HA monitoring the resource availability?
- Will the change impact other resources in the HA environment?
- What is the risk of a misstep that could lead to an HA service outage?
- How can the effectiveness of the change be verified?
- What is the change roll-back plan?

Hardware Maintenance

Hardware changes are generally disruptive to the HA environment and always require careful planning. You should consider whether or not the hardware change will also require a software change. In many cases, you must entirely shut down the HA cluster. See "Maintenance with a Full Cluster Outage" on page 210.

System Software Updates

System software updates (such as an operating system upgrade, kernel update, or software patches) are generally disruptive to the HA environment and always require careful planning. In many cases, a full cluster outage is required; see "Maintenance with a Full Cluster Outage" on page 210.

In other cases, an upgrade with the operational HA cluster may be possible; see "Performing a Rolling Upgrade" on page 195.

ISSP Software Updates

Before updating ISSP software, read the release notes and any late-breaking caveats on the Supportfolio download page:

https://support.sgi.com/login

Changes Permitted on a Running Resource

If a resource allows the change without impact to production operation, then the change is generally safe to perform in an HA environment. For example, you can make changes to most DMF configuration parameters or add volumes to an existing OpenVault cartridge group without problems. For more information about which parameters can be changed while DMF is running, see the "Best Practices" chapter of the *DMF 6 Administrator Guide for SGI InfiniteStorage*.

Caution: Changing meta attributes or operation parameters will influence the behavior of the resource or clone and can therefore influence how HA handles the resource or clone. If you make a mistake (such as setting a timeout to 3s when you meant to change it to 30s), problems can result.

Changes that Require Maintenance Mode

If a change requires that an individual resource be stopped but does not otherwise impact the rest of the HA cluster, you should put the cluster into maintenance mode before stopping the resource. See "Putting the Cluster into Maintenance Mode" on page 189.

Changes in this category include:

- Any change that requires DMF to be stopped according to the *DMF 6* Administrator Guide for SGI InfiniteStorage
- Restarting the OpenVault server when volume usage is inactive

Note: In general, you should not simply unmanage a given resource because that can adversely impact failcounts and cause inappropriate failovers.

Changes that Require a Full Cluster Outage

Many changes that require a resource to be stopped may also be disruptive to the HA cluster and therefore require a full cluster outage. See "Maintenance with a Full Cluster Outage" on page 210.

Changes in this category include:

- · Changes to CXFS filesystem mount options
- Changes to NFS export options
- Changes that require extensive testing

Requirements

This chapter discusses the following requirements for a high-availability (HA) cluster using SGI resource agents:

Note: All of the stop/start requirements for services and resources that are noted in this chapter will be fulfilled if you follow the steps in Chapter 5, "Prevent the Standard Services from Starting in the HA Environment" on page 49 and Chapter 6, "Create the Base HA Cluster" on page 53.

- "HA Support Requirements" on page 26
- · "Licensing Requirements" on page 26
- "Software Version Requirements" on page 26
- "Hardware Requirements" on page 26
- "System Reset Requirements" on page 27
- "Time Synchronization Requirements" on page 27
- "CXFS NFS Edge-Serving Requirements" on page 27
- "CXFS Requirements" on page 29
- "Local XVM Requirements" on page 31
- "Filesystem Requirements" on page 31
- "IP Address Alias Requirements" on page 32
- "TMF Requirements" on page 32
- "OpenVault™ Requirements" on page 32
- "COPAN MAID Requirements" on page 34
- "DMF Requirements" on page 35
- "NFS Requirements" on page 37
- "Samba Requirements" on page 38

- "DMF Manager Requirements" on page 38
- "DMF Client SOAP Service Requirements" on page 39

HA Support Requirements

HA may in some cases require the purchase of additional support from Red Hat or SUSE.

Licensing Requirements

All nodes in an HA cluster must have the appropriate software licenses installed. The following software requires licenses if used:

- CXFS
- DMF
- DMF Parallel Data-Mover Option

For information about obtaining licenses, see the individual product administration guides.

Software Version Requirements

For any of the SGI resource agents, you must use the corresponding version of SGI software as defined in the SGI InfiniteStorage Software Platform release note.

Hardware Requirements

All nodes in an SGI HA cluster must be x86_64 architecture with a BMC supporting the IPMI protocol and administrative privileges.

Note: If you form an HA cluster using only members of a partitioned system with a single power supply, a failure of that power supply may result in failure of the HA cluster. CXFS does not support these members as nodes in the CXFS cluster.

DMF supports only one instance running on a given node in an HA cluster at any given time, thus active/active mode is not a possible configuration. If the cluster also runs CXFS, the DMF server nodes in the cluster must also be CXFS server-capable administration nodes. For additional requirements when using the DMF Parallel Data-Mover Option, see *DMF 6 Administrator Guide for SGI InfiniteStorage*.

System Reset Requirements

You must use STONITH node-level fencing to protect data integrity in case of failure. The resource agent differs by operating system. See:

- RHEL: "fence_ipmilan STONITH Template (RHEL)" on page 158
- SLES: "ipmi STONITH Template (SLES)" on page 166

STONITH requires the use of a BMC user account with administrative privileges (typically -U admin -P admin). For more information, see the ipmitool(1) man page and the user guide or quick-start guide for your system.

Time Synchronization Requirements

You must configure time synchronization among all cluster nodes.

CXFS NFS Edge-Serving Requirements

CXFS NFS edge-serving in an HA environment has the following requirements:

- NFS version 3 (NFS v3) or NFS version 4 (NFS v4).
- An HA cluster of two CXFS client-only nodes. The nodes must run the CXFS edge-serving software. See the CXFS release notes for more information.

Note: There can be multiple two-node HA clusters within one CXFS cluster.

- On all CXFS NFS edge-serving nodes during HA operation, disable the cxfs client and NFS services from being started automatically at boot time:
 - RHEL:

```
ha# chkconfig cxfs_client off
ha# chkconfig nfs off
```

- SLES:

```
ha# chkconfig cxfs_client off
ha# chkconfig nfsserver off
```

The HA software will control these services.

 (RHEL only) On all RHEL nodes, ensure that NFS lock services are started at boot time:

ha# chkconfig nfslock on

- Ensure that the edge-serving node is not an NFS client. (The NFS client service on a CXFS NFS edge-serving node does not support monitored locking.)
- There must be a file (located on shared storage) that will be used for keeping kernel state information. (In a non-HA cluster, this would be the /var/lib/nfs/state file.) The file must be shared as follows:
 - All edge-serving nodes within a given HA cluster must share this file
 - If there are multiple HA clusters for edge-serving nodes within one CXFS cluster, all of the cluster systems must share this file

The statefile attribute for the CXFS client NFS server identifies this file.

- There must be a directory (located on shared storage) that will be used to store the NFS lock state. (In a non-HA cluster, this would be the /var/lib/nfs/ directory.) The directory must be shared as follows:
 - All edge-serving nodes within a given HA cluster must share this directory
 - If there are multiple HA clusters for multiple CXFS NFS edge-serving HA services within one CXFS cluster, each must have a separate state directory

The statedir instance attribute for the CXFS client NFS server identifies this directory.

CXFS Requirements

The cxfs resource agent allows you to associate the location of the CXFS metadata server with other products, such as DMF. This section discusses the following:

- "CXFS Server-Capable Administration Nodes" on page 29
- "CXFS Relocation Support" on page 29
- "Applications that Depend Upon CXFS Filesystems" on page 30
- "CXFS and System Reset" on page 30
- "CXFS Start/Stop Issues" on page 30
- "CXFS Volumes and DMF-Managed Filesystems" on page 31

CXFS Server-Capable Administration Nodes

An HA cluster using the <code>cxfs</code> resource agent must include the server-capable administration nodes that are potential metadata servers for every filesystem that is managed by the <code>cxfs</code> resource agent.

Certain resources (such as DMF) require that the CXFS metadata server and the HA resource be provided by the same node; see "DMF Requirements" on page 35. Other resources (such as NFS and Samba) do not have this requirement, but it may be desirable to enforce it in order to ensure that these resources provide the best performance possible. (Some NFS and Samba workloads can cause significant performance problems when the NFS or Samba resource is located on a node that is not the CXFS metadata server.)

Unless otherwise directed by this guide, you should configure the CXFS cluster, nodes, and filesystems according to the instructions in the following:

CXFS 7 Administrator Guide for SGI InfiniteStorage CXFS 7 Client-Only Guide for SGI InfiniteStorage

CXFS Relocation Support

CXFS relocation is provided automatically by the cxfs resource agent. In a CXFS cluster running HA software, relocation should only be started by using the tools provided with HA software and not by any other method.

Applications that Depend Upon CXFS Filesystems

If an application uses a CXFS filesystem that is managed by HA, that application must also be managed by HA. You must set colocation and start-ordering constraints or ordered resource groups such that:

- The application can only run on the server-capable administration node that is the active CXFS metadata server for the filesystem that it uses.
- The CXFS metadata server will start before the application starts and stop after the application stops

Using a single resource group and configuring in the correct order ensures the proper colocation.

CXFS and System Reset

CXFS server-capable administration nodes must use some sort of system reset in order to prevent conflicts with CXFS I/O fencing methods. In an HA environment, the HA process must control the reset functionality for CXFS. You must use STONITH for system reset and specify the following fail policy in the CXFS configuration

fence, shutdown

For more information, see:

- "fence_ipmilan STONITH Template (RHEL)" on page 158
- "ipmi STONITH Template (SLES)" on page 166

CXFS Start/Stop Issues

You must start the CXFS cluster cxfs_cluster service and CXFS filesystem cxfs service before starting the appropriate underlying HA control services (cman and pacemaker for RHEL nodes, openais for SLES nodes). The cxfs resource agent will wait for all of the CXFS filesystems to be mounted by CXFS before attempting any relocation. You must adjust the start operation timeout for the cxfs resource agent accordingly.

During failover, resources that colocate with the CXFS metadata server must be stopped before the CXFS resource. If a resource fails to shutdown completely, any files left open on the metadata server will prevent relocation. Therefore, the HA fail policy for any resource that could prevent relocation by holding files open must be

fence and you must configure a STONITH facility according to the requirements for your site. See:

- "fence_ipmilan STONITH Template (RHEL)" on page 158
- "ipmi STONITH Template (SLES)" on page 166

In this case, the offending CXFS metadata server will be reset, causing recovery to an alternate node.

CXFS Volumes and DMF-Managed Filesystems

The CXFS volumes specified for the cxfs resource must not include any volumes that represent DMF-managed filesystems.

Local XVM Requirements

All local XVM volumes that are managed by HA must have unique volname values.

All local XVM physical volumes (*physvols*) that are managed by HA must have unique Disk Name values in their XVM label when compared to all other XVM volumes on the SAN. For example, you cannot have two physvols on the same SAN with the Disk Name of spool, even if one is foreign.

If you do not have unique values, the following are potential problems:

- HA software may steal the wrong physvol from a system outside of the cluster while I/O is ongoing. This may result in losing data from that system while corrupting the filesystem from the node within the cluster by whom it is stolen.
- · General confusion, resulting in node reset.

Filesystem Requirements

For DMF HA purposes, filesystems used by the Filesystem resource should use a filesystem type of xfs.

IP Address Alias Requirements

You must have the following IP address aliases:

- CXFS NFS edge-serving HA service requires at least one IPaddr2 resource for each IPalias group (in an active-active configuration there are at least two groups).
- DMF HA service requires at least one IPaddr2 resource for the DMF and OpenVault server. You must allocate an IP address alias on the subnet used for DMF and OpenVault communication. The address must be a virtual address managed by an IPaddr2 resource within the same resource group as the openvault resource. You must also add an associated virtual hostname to your local DNS and to the /etc/hosts file on all hosts in the cluster that could be used as a DMF server or as an OpenVault client node.

You may need other aliases, depending on your configuration, such as for accessing DMF Manager or serving NFS. However, if DMF and OpenVault are configured to use a dedicated subnet, you should instead define a second <code>IPaddr2</code> address on an appropriate subnet for accessing these services. You should define this <code>IPaddr2</code> resource in the same resource group as the <code>dmfman</code> resource.

See "IP Address Alias Resource" on page 88.

TMF Requirements

To use TMF as the mounting service, all tape devices should be configured as DOWN in the tmf.config file on all nodes. The loaders should be configured as UP. The tmf service may be disabled at boot time (chkconfig tmf off) for all nodes; the resource agent will start tmf and configure the loader up as needed.

Note: If tape drives are defined and used outside of DMF, you must manually start TMF on the inactive server.

OpenVault™ Requirements

To use OpenVault as the mounting service, you must do the following:

 If upgrading to an entirely new root filesystem, as would be required if upgrading from a SLES 10 system, you should create a copy of the OpenVault configuration directory (/var/opt/openvault) from the old root before upgrading the OS.

You can then reinstall it on the new root so that you do not need to entirely reconfigure OpenVault. See the section about taking appropriate steps when upgrading DMF in the *DMF 6 Administrator Guide for SGI InfiniteStorage*.

- Provide a directory for OpenVault's use within an HA filesystem in the DMF resource group. This is known as the *serverdir directory*. The directory will hold OpenVault's database and logs. The directory can be either of the following:
 - Within the root of an HA-managed filesystem dedicated to OpenVault use
 - Within another HA-managed filesystem, such as the filesystem specified by the HOME_DIR parameter in the DMF configuration file

In non-HA configurations, the OpenVault server's files reside in /var/opt/openvault/server. During the conversion to HA, OpenVault will move its databases and logs into the specified directory within an HA-managed filesystem and change /var/opt/openvault/server to be a symbolic link to that directory.

- Ensure that you do not have the OV_SERVER parameter set in the base object of the DMF configuration file, because in an HA environment the OpenVault server must be the same machine as the DMF server.
- Configure the DMF application instances in OpenVault to use a wildcard ("*") for the hostname and instance name. For more information, see the chapter about mounting service configuration tasks in the DMF 6 Administrator Guide for SGI InfiniteStorage.
- On all HA nodes during HA operation, disable the openvault service from being started automatically at boot time:

ha# chkconfig openvault off

The HA software will control this service.

See also "IP Address Alias Requirements" on page 32.

COPAN MAID Requirements

This section discusses the following:

- "COPAN MAID in Any HA Cluster" on page 34
- "COPAN MAID in a DMF HA Cluster" on page 34
- "COPAN MAID in a Mover-Node HA Cluster" on page 35

COPAN MAID in Any HA Cluster

Using COPAN MAID shelves in any HA cluster requires the following:

- OpenVault must be configured to manage the RAID sets, lxvm volumes, and xfs filesystems for each shelf
- At any time, only one node (the owner node) can manage activity to a given shelf
- Activity to all shelves controlled by a given node must be stopped before moving the control of any one of those shelves to another node

COPAN MAID in a DMF HA Cluster

In addition to the requirements listed above in "COPAN MAID in Any HA Cluster", using COPAN MAID shelves in an active/passive DMF HA cluster consisting of DMF servers also requires the following:

- All potential DMF server nodes in the HA cluster must have physical connectivity to the shelves
- The active DMF server must be the owner node of all of the shelves
- The OpenVault server resource must be started before the COPAN OpenVault client resource is started
- The COPAN OpenVault client resource must be stopped before the OpenVault server resource is stopped

For suggested resource start/stop order, see Figure 8-3 on page 79.

COPAN MAID in a Mover-Node HA Cluster

In addition to the requirements listed in "COPAN MAID in Any HA Cluster" on page 34, using COPAN MAID shelves in an active-active HA cluster consisting of two parallel data-mover nodes also requires the following:

- Both parallel data-mover nodes in the HA cluster must have physical connectivity to the shelves.
- The parallel data-mover nodes that control the shelves cannot also be used for other tape resources.
- The CXFS client resource on each parallel data-mover node must be started (via a clone) before the COPAN OpenVault client resource is started on those nodes.
- The COPAN OpenVault client resource on each parallel data-mover node must be stopped before the CXFS client resource is stopped on those nodes.
- A parallel data-mover node must be configured as the owner node for each shelf.
 For load-balancing purposes, one mover node will be the default owner of half of the shelves and the other mover node will be the default owner of the remaining shelves.
- On both parallel data-mover nodes during HA operation, disable the cxfs_client and openvault services from being started automatically at boot time:

```
ha# chkconfig cxfs_client off
ha# chkconfig openvault off
```

The HA software will control these services.

For suggested resource start/stop order, see Figure 9-3 on page 124.

DMF Requirements

Using DMF with HA software requires the following:

- The HA cluster must contain all nodes that could be DMF servers.
- Each DMF server must run the required product and HA software.
- All DMF server nodes in the HA cluster must have connectivity to the same set of libraries and drives. If one node has access to only a subset of the drives, and the

DMF server is failed over to that node, DMF would then not be able to access data on volumes left mounted in inaccessible drives.

- All DMF server nodes must have connectivity to all of the CXFS and XFS[®] filesystems that DMF either depends upon or manages:
 - Each of the local XVM volumes that make up those filesystems must be managed by an lxvm resource within the same resource group as the dmf resource. Each of the XFS filesystems must be managed by a Filesystem resource in that resource group.
 - Each of the CXFS filesystems (other than DMF-managed user filesystems) must be managed by the cxfs resource in that resource group.

The DMF filesystems to be managed are:

- The DMF-managed user filesystems (do not include these in the volnames attribute list for the cxfs resource)
- DMF administrative filesystems specified by the following parameters in the DMF configuration file:
 - HOME_DIR
 - JOURNAL_DIR
 - SPOOL_DIR
 - TMP_DIR
 - MOVE_FS
 - CACHE DIR for any library servers
 - STORE_DIRECTORY for any disk cache manager (DCM) and disk MSPs using local disk storage

DMF requires independent paths to drives so that they are not fenced by CXFS. The ports for the drive paths on the switch should be masked from I/O fencing in a CXFS configuration.

The SAN must be zoned so that XVM does not move CXFS filesystem I/O to the paths visible through the HBA ports when Fibre Channel port fencing occurs. Therefore, you should use either independent switches or independent switch zones for CXFS/XVM volume paths and DMF drive paths.

For more information about DMF filesystems, see the *DMF 6 Administrator Guide* for *SGI InfiniteStorage*.

- The ordering of resources within a resource group containing a dmf resource must be such that the dmf resource starts after any filesystems it uses are mounted and volume resources it uses are available (and the dmf resource must be stopped before those resources are stopped). See Figure 8-3 on page 79.
- There must be a virtual hostname for use by DMF. See "IP Address Alias Requirements" on page 32.
- If you are using the DMF Parallel Data-Mover Option, you must define a node object in the DMF configuration file for each potential DMF server. Set the INTERFACE parameter in the node object for each potential DMF server to the same virtual hostname used for SERVER NAME in the base object.
- On all HA nodes during HA operation, disable the dmf service from being started automatically at boot time:

```
ha# chkconfig dmf off
```

The HA software will control this service.

Also see:

- "DMF Manager Requirements" on page 38
- "DMF Client SOAP Service Requirements" on page 39

NFS Requirements

Using NFS with HA software requires the following:

- On all HA nodes during HA operation, disable the NFS service from being started automatically at boot time:
 - RHEL:

ha# chkconfig nfs off

- SLES:

ha# chkconfig nfsserver off

The HA software will control this service.

 (RHEL only) On all RHEL nodes, ensure that NFS lock services are started at boot time:

ha# chkconfig nfslock on

Samba Requirements

The /etc/samba and /var/lib/samba directories must be on shared storage. SGI recommends using symbolic links.

On all HA nodes during HA operation, disable the smb and nmb services from being started automatically at boot time on all HA nodes:

```
ha# chkconfig smb off
ha# chkconfig nmb off
```

If winbind is used for authentication, disable the winbind service from being started automatically at boot time on all HA nodes:

ha# chkconfig winbind off

The HA software will control these services.

DMF Manager Requirements

On all HA nodes during HA operation, disable the ${\tt dmfman}$ service from being started automatically at boot time:

ha# chkconfig dmfman off

The HA software will control this service.

DMF Client SOAP Service Requirements

On all HA nodes during HA operation, disable the ${\tt dmfsoap}$ service from being started automatically at boot time:

ha# chkconfig dmfsoap off

The HA software will control this service.

Standard Services

You should configure and test all standard services before applying high availability. In general, you should do this on one host (known in this guide as *node1* or *mover1*). This host will later become a node in the high-availability (HA) cluster, on which all of the filesystems will be mounted and on which all drives and libraries are accessible. If you already have a stable configuration, you can skip the steps in this chapter.

This chapter discusses the following:

- "CXFS NFS Edge-Serving Standard Service" on page 42
- "CXFS Standard Service" on page 43
- "Local XVM Standard Service" on page 43
- "TMF Standard Service" on page 44
- "OpenVault Standard Service" on page 44
- "COPAN MAID Standard Service" on page 45
- "DMF Standard Service" on page 46
- "NFS Standard Service" on page 46
- "Samba Standard Service" on page 47
- "DMF Manager Standard Service" on page 47
- "DMF Client SOAP Standard Service" on page 47

When you have finished configuring and testing the standard services, see Chapter 5, "Prevent the Standard Services from Starting in the HA Environment" on page 49.

007–5617–008 41

CXFS NFS Edge-Serving Standard Service

Set up the NFS exports in the /etc/exports file on both CXFS client-only nodes as you would normally. The /etc/exports file should be identical on both nodes.

Note: Be sure to include the fsid=*uniquenumber* export option in order to prevent stale file handles after failover.

To test the CXFS NFS edge-serving standard service, do the following:

1. Run the following command on node1 to verify that the NFS filesystems are exported:

node1# exportfs -v

/nfsexportedfilesystem

<world>(rw,wdelay,root_squash,no_subtree_check,fsid=xxx)

- 2. Mount the filesystems on a node that will not be a member of the HA cluster (otherhost):
 - NFS v3:

otherhost# mount -t nfs -o vers=3 node1:/nfsexportedfilesystem /mnt/test

• NFS v4:

otherhost# mount -t nfs -o vers=4 node1:/nfsexportedfilesystem /mnt/test

3. Read and write to the NFS-mounted filesystems:

otherhost# echo "test data for a test file" > /mnt/test/testFile1A
otherhost# cat /mnt/test/testFile1A
test data for a test file

- 4. Repeat step 1 but execute on node2.
- 5. Repeat steps 2 and 3.

CXFS Standard Service

Do the following:

- 1. Configure CXFS on node1 (which must be a CXFS server-capable administration node), according to the instructions in the following:
 - "CXFS Requirements" on page 29
 - CXFS 7 Administrator Guide for SGI InfiniteStorage
- 2. Start the CXFS filesystem service (cxfs) and CXFS cluster service (cxfs_cluster). For more information, see CXFS 7 Administrator Guide for SGI InfiniteStorage.
- 3. Verify that the filesystem in question mounts on all applicable nodes. For example, use the cxfs_admin command:

```
node1# cxfs_admin -c status
```

Note: If you have multiple clusters on the same network, add the -i *clustername* option to identify the cluster name. For more information, see the cxfs_admin(8) man page.

Local XVM Standard Service

According to the instructions in the XVM Volume Manager Administrator Guide, do the following on node1 for each of the local XVM filesystems that you want to make highly available:

- 1. Configure the filesystem. Make a note of the name of each physvol that is part of each volume and save it for later.
- 2. Construct the filesystem using mkfs.
- 3. Mount the filesystem.

To test the local XVM standard service, ensure that you can create and delete files in each of the mounted filesystems.

007–5617–008 43

TMF Standard Service

Configure TMF on node1 according to the instructions in the TMF 6 Administrator Guide for SGI InfiniteStorage and run the following on node1:

node1# chkconfig tmf on

Note: In the tmf.config file, drives in drive groups managed by HA should have access configured as EXCLUSIVE and should have status configured as DOWN when TMF starts. Loaders in the tmf.config file should have status configured as UP when TMF starts.

To test the TMF standard service, do the following:

- 1. Use tmstat to verify that all of the tape drives have a status of idle or assn:
 - node1# tmstat
- 2. Use tmmls to verify that all of the loaders have a status of UP:

node1# tmmls

OpenVault Standard Service

Configure OpenVault on node1, according to the instructions in the *OpenVault Administrator Guide for SGI InfiniteStorage* and, if using the Parallel Data-Mover Option, the *DMF 6 Administrator Guide for SGI InfiniteStorage*. This means that you will use the **actual** hostname as reported by the hostname(1) command when using ov_admin. For the potential DMF servers and any parallel data-mover nodes, configure OpenVault library control programs (LCPs) and drive control programs (DCPs) for all local libraries and drives.

Note: Configuration of OpenVault on the alternate DMF server (node2) will be done when the conversion to HA is performed.

To test the OpenVault standard service, verify that you can perform operational tasks documented in the OpenVault guide, such as mounting and unmounting of cartridges using the ov_mount and ov_unmount commands.

For example, in an OpenVault configuration with two drives (drive0 and drive1) where you have configured a volume named DMF105 for use by DMF, the following

sequence of commands will verify that drive drive0 and the library are working correctly:

```
nodel# ov_mount -A dmf -V DMF105 -d drive0
Mounted DMF105 on /var/opt/openvault/clients/handles/An96H0uA3xr0
node1# tsmt status
       Controller: SCSI
       Device: SONY: SDZ-130
                                     0202
       Status: 0x20262
       Drive type: Sony SAIT
       Media : READY, writable, at BOT
node1# ov_stat -d | grep DMF105
drive0
                   drives
                                                                                                DMF105S1
                             true false false
                                                     inuse
                                                               loaded
                                                                         ready
                                                                                   true
node1# ov_unmount -A dmf -V DMF105 -d drive0
Unmounted DMF105
node1# exit
```

Repeat the sequence for drive1.

COPAN MAID Standard Service

Configure the following OpenVault components for each COPAN MAID shelf by executing the ov_shelf(8) command on nodel (or moverl), making nodel the owner node for that shelf, according to the instructions in the COPAN MAID for DMF Quick Start Guide:

- One library control program (LCP)
- Up to 16 drive control programs (DCPs)
- One OpenVault drive group

Note: You will not run ov_shelf on node2 at this point. You will do that later in "Create the OpenVault Components on the Passive Node" on page 102.

If you are using the Parallel Data-Mover Option, also see the instructions in *DMF 6 Administrator Guide for SGI InfiniteStorage*.

Note: You will create the OpenVault components on the alternate node later, using the instructions in this guide.

007–5617–008 45

To test the standard service, follow the instructions to test that OpenVault can mount a migration volume, as described in the *COPAN MAID for DMF Quick Start Guide*.

DMF Standard Service

Configure DMF according to the instructions in the *DMF 6 Administrator Guide for SGI InfiniteStorage*.

To test the DMF standard service, do the following:

1. Migrate a few test files:

```
node1# dmput -r files_to_test
```

2. Force volumes to be immediately written:

```
node1# dmdidle
```

Wait a bit to allow time for the volume to be written and unmounted.

- 3. Verify that the volumes are mounted and written successfully.
- 4. Verify that the volumes can be read and the data can be retrieved:

```
\verb|nodel| # | \textbf{dmget} | \textit{files\_to\_test}|
```

NFS Standard Service

Set up the NFS exports in the /etc/exports file on node1 as you would normally.

To test the NFS standard service, do the following:

1. Run the following command on node1 to verify that the NFS filesystems are exported:

node1# exportfs -v

/nfsexportedfilesystem

<world>(rw,wdelay,root_squash,no_subtree_check,fsid=xxx)

2. Mount the filesystems on a node that will not be a member of the HA cluster (otherhost):

otherhost# mount nodel:/nfsexportedfilesystem /mnt/test

3. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "test data for a test file" > /mnt/test/testFile1A
otherhost# cat /mnt/test/testFile1A
test data for a test file
```

Samba Standard Service

Set up the Samba standard service on node1 as you would normally, but place the Samba configuration files and directories on shared storage.

To test the Samba standard service, see the following information:

http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/install.html

In particular, see the information about the following topics:

- · Listing shares available on the server
- · Connecting with a UNIX client
- Connecting from a remote SMB client (but not the information about printing)

DMF Manager Standard Service

To verify that DMF Manager is operational, start it according to the directions in *DMF 6 Administrator Guide for SGI InfiniteStorage* and access it by pointing your browser to the following address:

```
https://YOUR_DMF_SERVER:11109
```

Then verify that you can log in and use DMF Manager, such as by viewing the **Overview** panel.

DMF Client SOAP Standard Service

To verify that the standard DMF client SOAP service is operational, start it according to the directions in *DMF 6 Administrator Guide for SGI InfiniteStorage* and access it by pointing your browser to the following address:

https://YOUR_DMF_SERVER:11110/server.php

Then verify that you can access the DMF client SOAP GUI and view the WSDL for one of the DMF client functions.

Prevent the Standard Services from Starting in the HA Environment

Before implementing HA, you must prevent the standard services that will be controlled by HA from starting at boot time and stop any that are currently running:

- "Stop Standard Services for CXFS NFS Edge-Serving HA Service" on page 49
- "Stop Standard Services for DMF HA Service" on page 50
- "Stop Standard Services for COPAN MAID OpenVault Client HA Service" on page 52

Stop Standard Services for CXFS NFS Edge-Serving HA Service

Do the following on both nodes to ensure that the standard services will be controlled by the CXFS NFS edge-serving HA service:

Note: Do not disable the cxfs and cxfs_cluster services.

• RHEL node1:

```
node1# chkconfig cxfs_client off
node1# chkconfig nfs off
node1# chkconfig nmb off
node1# chkconfig smb off

node1# service cxfs_client stop
node1# service nfs stop
node1# service nmb stop
node1# service smb stop

RHEL node2:

node2# chkconfig cxfs_client off
node2# chkconfig nfs off
node2# chkconfig nmb off
node2# chkconfig smb off
```

```
node2# service cxfs_client stop
  node2# service nfs stop
  node2# service nmb stop
  node2# service smb stop

    SLES node1:

  node1# chkconfig cxfs_client off
  node1# chkconfig nfsserver off
  node1# chkconfig nmb off
  node1# chkconfig smb off
  node1# service cxfs_client stop
  node1# service nfsserver stop
  node1# service nmb stop
  nodel# service smb stop
  SLES node2:
  node2# chkconfig cxfs_client off
  node2# chkconfig nfsserver off
  node2# chkconfig nmb off
  node2# chkconfig smb off
  node2# service cxfs_client stop
  node2# service nfsserver stop
  node2# service nmb stop
  node2# service smb stop
```

Stop Standard Services for DMF HA Service

Do the following on both nodes to ensure that the standard services will be controlled by the DMF HA service:

• RHEL node1:

```
node1# chkconfig dmf off
node1# chkconfig dmfman off
node1# chkconfig dmfsoap off
node1# chkconfig nfs off
node1# chkconfig openvault off
node1# chkconfig tmf off (optional)
```

```
node1# service dmfsoap stop
  nodel# service nfs stop
  node1# service openvault stop
  nodel# service tmf stop (optional)
  RHEL node2:
  node2# chkconfig dmf off
  node2# chkconfig dmfman off
  node2# chkconfig dmfsoap off
  node2# chkconfig nfs off
  node2# chkconfig openvault off
  node2# chkconfig tmf off (optional)
  node2# service dmf stop
  node2# service dmfman stop
  node2# service dmfsoap stop
  node2# service nfs stop
  node2# service openvault stop
  node2# service tmf stop (optional)
• SLES node1:
  node1# chkconfig dmf off
  node1# chkconfig dmfman off
  node1# chkconfig dmfsoap off
  nodel# chkconfig nfsserver off
  node1# chkconfig openvault off
  node1# chkconfig tmf off (optional)
  node1# service dmf stop
  node1# service dmfman stop
```

node1# service dmfsoap stop
node1# service nfsserver stop
node1# service openvault stop
node1# service tmf stop (optional)

node1# service dmf stop
node1# service dmfman stop

SLES node2:

```
node2# chkconfig dmf off
node2# chkconfig dmfman off
node2# chkconfig dmfsoap off
node2# chkconfig nfsserver off
node2# chkconfig openvault off
node2# chkconfig tmf off (optional)

node2# service dmf stop
node2# service dmfsoap stop
node2# service dmfsoap stop
node2# service nfsserver stop
node2# service openvault stop
node2# service tmf stop (optional)
```

Stop Standard Services for COPAN MAID OpenVault Client HA Service

Do the following on both parallel data-mover nodes to ensure that the standard services will be controlled by the COPAN MAID OpenVault Client HA service:

• On mover1:

```
mover1# chkconfig cxfs_client off
mover1# chkconfig openvault off
mover1# service cxfs_client stop
mover1# service openvault stop
```

• On mover 2:

```
mover2# chkconfig cxfs_client off
mover2# chkconfig openvault off
mover2# service cxfs_client stop
mover2# service openvault stop
```

Create the Base HA Cluster

This chapter discusses the following:

- "Install the HA Software" on page 53
- "Enable Multicasting on the Switch" on page 54
- "Configure the Nodes for HA" on page 54
- "Test the Base HA Cluster" on page 59

Install the HA Software

Note: The ISSP release note provided in the noarch/sgi-isspdocs RPM and will be installed on the system into the following location:

/usr/share/doc/packages/sgi-issp-ISSPVERSION/TITLE

Install the HA software on node1 and node2:

• RHEL:

Install the following:

```
rhel# yum -y groupinstall "High Availability"
rhel# yum -y install pacemaker
rhel# yum -y groupinstall "SGI ISSP High Availability"
```

Also create a RHEL update repository according to the directions in the ISSP release note.

SLES:

Use the instructions in the SUSE *High Availability Guide* provided by the following SUSE website:

http://www.suse.com/documentation/sle_ha/

Install the **SGI ISSP High Availability** pattern and create a SLES update repository according to the directions in the ISSP release note.

Enable Multicasting on the Switch

Ensure that the switch supports multicasting and has it enabled. (Some switches disable multicasting by default.)

Configure the Nodes for HA

This section discusses the following:

- "RHEL: Configure the Nodes for HA" on page 54
- "SLES: Configure the Nodes for HA" on page 57

RHEL: Configure the Nodes for HA

For RHEL, do the following:

- 1. Do the following on node1:
 - a. Create the cluster:

```
node1# ccs -f /etc/cluster/cluster.conf --createcluster mycluster
node1# ccs -f /etc/cluster/cluster.conf --addnode node1
node1# ccs -f /etc/cluster/cluster.conf --addnode node2
```

b. Set the cluster heartbeat timeout:

```
nodel# ccs -f /etc/cluster/cluster.conf --settotem token=120000
See "Set the Core Membership Timeout Value Appropriately" on page 20.
```

c. Add an alternate HA heartbeat network if appropriate:

```
node1# ccs -f /etc/cluster/cluster.conf --addalt node1 node1-priv
node1# ccs -f /etc/cluster/cluster.conf --addalt node2 node2-priv
```

d. Set the debug logging level:

```
node1# ccs -f /etc/cluster/cluster.conf --setlogging debug="on"
```

e. Specify how cluster manager (CMAN) should send its fencing requests to Pacemaker:

```
nodel# ccs -f /etc/cluster/cluster.conf --addfencedev pcmk agent=fence_pcmk
nodel# ccs -f /etc/cluster/cluster.conf --addmethod pcmk-redirect node1
nodel# ccs -f /etc/cluster/cluster.conf --addmethod pcmk-redirect node2
nodel# ccs -f /etc/cluster/cluster.conf --addfenceinst pcmk node1 pcmk-redirect port=node1
nodel# ccs -f /etc/cluster/cluster.conf --addfenceinst pcmk node2 pcmk-redirect port=node2
```

Note: Do this regardless of whether or not fencing is enabled within Pacemaker.

- 2. Copy /etc/cluster/cluster.conf to node2.
- 3. On both nodes, disable the default startup behavior that requires quorum:

Note: CMAN assumes the cluster should not start until the node has quorum.

• On node1:

```
node1# echo "CMAN_QUORUM_TIMEOUT=0" >> /etc/sysconfig/cman
```

• On nodes:

```
node2# echo "CMAN_QUORUM_TIMEOUT=0" >> /etc/sysconfig/cman
```

- 4. Ensure that the acpid and NetworkManager services are stopped on both nodes:
 - On node1:

```
node1# chkconfig acpid off
node1# chkconfig NetworkManager off
node1# service acpid stop
node1# service NetworkManager stop
```

• On node2:

```
node2# chkconfig acpid off
node2# chkconfig NetworkManager off
node2# service acpid stop
node2# service NetworkManager stop
```

- 5. On both nodes, start the cman and pacemaker services:
 - On node1:

```
node1# chkconfig cman on
node1# chkconfig pacemaker on
node1# service cman start
node1# service pacemaker start
```

• On node2:

```
node2# chkconfig cman on
node2# chkconfig pacemaker on
node2# service cman start
node2# service pacemaker start
```

- 6. On both nodes, verify that the user hacluster and group haclient have been added to the node. For example:
 - On node1:

```
node1# grep hacluster /etc/passwd
hacluster:x:189:189:cluster user:/home/hacluster:/sbin/nologin
node1# grep haclient /etc/group
haclient:x:189:
```

• On node2:

```
node2 grep hacluster /etc/passwd
hacluster:x:189:189:cluster user:/home/hacluster:/sbin/nologin
node2# grep haclient /etc/group
haclient:x:189:
```

For more information, see:

http://clusterlabs.org/quickstart-redhat.html

SLES: Configure the Nodes for HA

Note: This procedure uses explicit node IDs, but you can choose to automatically generate node IDs if you prefer.

You must follow the detailed instructions in the SUSE *High Availability Guide* to initialize the cluster and configure node1:

http://www.suse.com/documentation/sle_ha/

Complete the following set of steps in YaST for node1:

- 1. Set **Bind Network Address** to the network that will support the cluster heartbeat (for example, the CXFS private network, such as 128.162.244.0), which is different from the IP address to be failed over.
- 2. Set Multicast Address to a multicast address (for example, 226.94.1.1).
- 3. Set Multicast Port to a multicast port (for example, 5405).

Note: Ensure that multiple HA clusters on the same local network use different multicast addresses or different multicast port numbers.

4. Explicitly set the HA node ID, such as 1 for node1. Each node must have a unique HA node ID. (The HA node ID may be different from the CXFS node ID.)

Caution: With explicit node IDs, you must not use csync2 on node2 (despite the directions in the SUSE *High Availability Guide*) because it will result in duplicate node IDs.

- 5. Set security on.
- 6. Select Generate Auth Key File. It will be created in /etc/corosync/authkey; this process can take several minutes to complete.
- 7. Exit the GUI.

Note: You will not complete all of the steps in the wizard. The following steps take the place of the remainder of the GUI.

- 8. Modify the HA authorization and configuration files:
 - a. Set the following core membership timeout parameters in the /etc/corosync/corosync.conf file:

```
totem token totem consensus
```

Note: The default consensus value is 1.2 times the token value, which is appropriate for most sites. You should either remove the consensus parameter (in order to use the default) or else set it to a value that is greater than 1.2 times the token value. See "Set the Core Membership Timeout Value Appropriately" on page 20.

For more information, see the corosync.conf(5) man page.

b. Turn on debug messages in the logging stanza of the /etc/corosync/corosync.conf file:

The default for debug is off.

c. On node1, change the permission on the authkey and corosync.conf files to allow read and write permission for the root user only:

node1# chmod 0600 /etc/corosync/authkey /etc/corosync/corosync.conf

d. Copy the authkey and corosync.conf files from node1 to node2 and preserve their 0600 permission. For example:

```
node1# scp -p /etc/corosync/authkey node2:/etc/corosync/authkey
node1# scp -p /etc/corosync/corosync.conf node2:/etc/corosync/corosync.conf
```

e. Set the nodeid in the corosync.conf file on node2 to a unique value. For example:

```
nodeid: 2
```

- f. On both nodes, enable the logd and the openais services to be started automatically at boot time and then start them immediately:
 - On node1:

```
nodel# chkconfig logd on
nodel# chkconfig openais on
nodel# service logd start
nodel# service openais start
```

• On node2:

```
node2# chkconfig logd on
node2# chkconfig openais on
node2# service logd start
node2# service openais start
```

Test the Base HA Cluster

Do the following to test the base HA cluster:

1. Examine the cluster status by running the following command on node1, waiting to see both nodes come online (which could take a few minutes):

```
node1# crm status
```

The output should show that the cluster consists of two nodes (in this case, node1 and node2, and that there are no resources. For example (truncated):

```
nodel# crm status
...
2 Nodes configured, 2 expected votes
0 Resources configured.
Online: [ nodel node2 ]
```

2. Disable system reset (which is enabled by default) for testing purposes:

```
node1# crm configure property stonith-enabled=false
```

Note: You will reenable system reset after testing all of the SGI resource primitives.

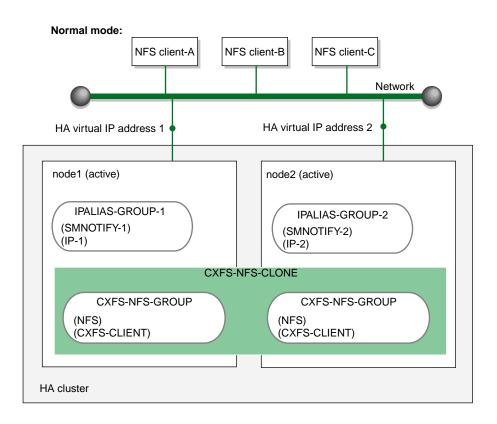
3. Set the correct two-node quorum policy action:

```
node1# crm configure property no-quorum-policy=ignore
```

After the base HA cluster is tested, you will configure the SGI resources in the specific order shown in one of the following chapters, depending upon the type of HA service you are implementing:

- Chapter 7, "CXFS NFS Edge-Serving HA Service" on page 61
- Chapter 8, "DMF HA Service" on page 77
- Chapter 9, "COPAN MAID OpenVault Client HA Service" on page 121

Note: If you are implementing multiple HA services, you should complete the entire process for one HA service before adding another service.


CXFS NFS Edge-Serving HA Service

This chapter contains the following sections:

- "CXFS NFS Edge-Serving Failover" on page 61
- "CXFS NFS Edge-Serving HA Resource Map" on page 64
- "CXFS NFS Edge-Serving HA Procedure" on page 66

CXFS NFS Edge-Serving Failover

Figure 7-1 and Figure 7-2 describe an example process of failing over an CXFS NFS edge-serving HA service in a two-node HA cluster using active/active mode.

Figure 7-1 CXFS NFS Edge-Serving HA Service — Normal State

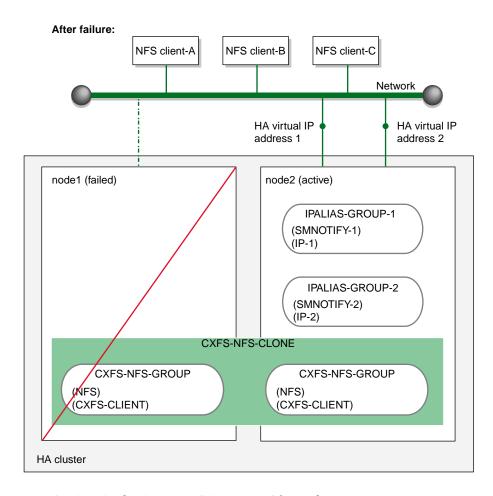


Figure 7-2 CXFS NFS Edge-Serving HA Service — After Failover

CXFS NFS Edge-Serving HA Resource Map

Note: In this configuration, each CXFS filesystem is a single point of failure for the HA cluster. Therefore, you may want to consider using a separate HA cluster for each filesystem in order to reduce the possibility of cluster failure while maintaining filesystem bandwidth scalability. However, this also introduces more complexity.

Figure 7-3 on page 65 shows a map of an example configuration process for CXFS NFS edge-serving in an active/active HA cluster, using the suggested default IDs found in the templates. This map also describes the start/stop order for resources.

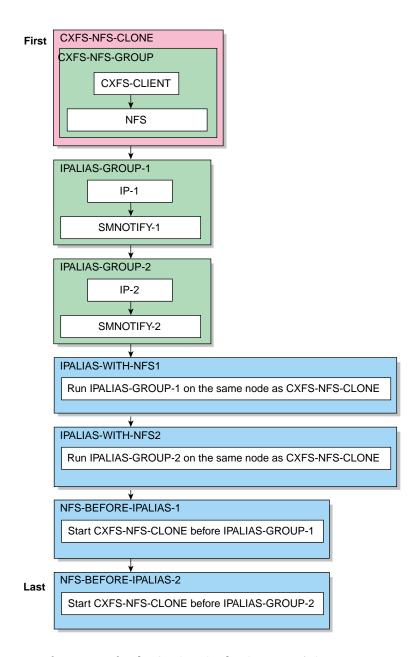


Figure 7-3 Map of Resources for the CXFS NFS Edge-Serving HA Service

007-5617-008 65

CXFS NFS Edge-Serving HA Procedure

Note: Ensure that you have set up the HA cluster as instructed in Chapter 6, "Create the Base HA Cluster" on page 53.

This section discusses the following steps:

- "Ensure that the NFS Lock Services are Started (RHEL only)" on page 66
- "Copy the /etc/exports Entries" on page 66
- "Create the Clone" on page 67
- "Test the Clone" on page 68
- "Create the IP Address Alias Group Resources" on page 70
- "Test Each IP Address Alias Group" on page 72
- "Confirm the Completed Status" on page 76
- "Put the CXFS NFS Edge-Serving HA Service into Production Mode" on page 76

Ensure that the NFS Lock Services are Started (RHEL only)

On both RHEL nodes, ensure that NFS lock services are started at boot time:

rhel# chkconfig nfslock on

Copy the /etc/exports Entries

Copy the /etc/exports entries that you would like to make highly available from node1 to the /etc/exports file on node2.

Note: Be sure to include the fsid=uniquenumber export option in order to prevent stale file handles after failover. All matching exports should have the same fsid=uniquenumber value on all CXFS NFS edge-serving nodes.

Create the Clone

Use the templates in /usr/share/doc/sgi-ha/templates as building blocks. The instructions in this chapter assume that you use the instance names provided in the templates (such as IP instance name for the IPaddr2 resource type), except as noted; see "Conventions for Resource Instance IDs" on page 11.

Do the following:

- 1. Copy the contents of the cxfs-nfs-clone template into a new partial configuration file (referred to as *workfile*). See "cxfs-nfs-clone Template" on page 152.
- 2. Copy the primitive text from the cxfs-client template into workfile and replace the site-specific variables as directed in the template comments or in "cxfs-client Template" on page 144.
- 3. Copy the primitive text from the cxfs-client-nfsserver template into workfile and replace the site-specific variables as directed in the template comments or in "cxfs-client-nfsserver Template" on page 147.
- 4. Verify that the timeout values are appropriate for your site.
- 5. Verify that there are no comments in workfile.
- 6. Save workfile.
- 7. Update the database:

nodel# crm configure load update workfile

Note: As a best practice, you should also run the following command to verify changes you make to the CIB

```
nodel# crm_verify -LV
```

For simplicity, this step is not included in the following procedures but is recommended. For more information, see "Use the crm_verify Command to Verify Configuration" on page 15.

Test the Clone

Do the following to test the clone:

1. Start the clone. For example:

```
node1# crm resource start CXFS-NFS-CLONE
```

- 2. Confirm that the clone has started. For example:
 - a. View the status of the cluster on node1. For example (truncated):

b. Verify that the cxfs_client process is running on node1:

Also execute the command on node2.

- c. View the status of the NFS daemons on node1.
 - RHEL:
 - NFS v3 and NFS v4:

```
node1# service nfs status
rpc.svcgssd is stopped
rpc.mountd is stopped
nfsd is stopped
rpc.rquotad is stopped
```

Note: The pid numbers vary with each restart. For NFS v4, the idmapd services is also started (but is not reported in the output).

- SLES:
 - NFS v3:

```
nodel# service nfsserver status
Checking for kernel based NFS server: mountd running
    statd running
    nfsd running
- NFS v4:
    nodel# service nfsserver status
```

```
Checking for kernel based NFS server: idmapd running mountd running statd running nfsd running
```

Note: Although the mountd and statd daemons only apply to SLES NFS v3, they are started on SLES NFS v4 as well.

Also execute the command on node2.

3. Set node 2 to standby state to ensure that the resources remain on node1:

```
node1# crm node standby node2
```

- 4. Confirm that node 2 is offline and that the resources are off:
 - a. View the status of the cluster on node1, which should show that node2 is in standby state:

b. Verify that the cxfs_client process is not running on node2 by executing the ps(1) command on node2 (there should be no output):

```
node2# ps -ef | grep cxfs_client
node2#
```

- c. (SLES only) View the status of the NFS daemons on node2, which should show for SLES that statd is dead and nfsd is unused:
 - SLES NFS v3:

```
node2# service nfsserver status

Checking for kernel based NFS server: mountd unused statd dead nfsd unused
```

• SLES NFS v4:

```
node2# service nfsserver status

Checking for kernel based NFS server: idmapd running mountd unused statd dead nfsd unused
```

Note: Although the mountd and statd daemons only apply only to SLES NFS v3, they are started on SLES NFS v4 as well.

5. Return node2 to online status:

```
node1# crm node online node2
```

6. Confirm that the clone has returned to normal status, as described in step 2.

Create the IP Address Alias Group Resources

Do the following:

1. Create a group resource in another workfile for the first set of IPaddr2 and cxfs-client-smnotify resources:

```
colocation IPALIAS-WITH-NFS-1 inf: IPALIAS-GROUP-1 CXFS-NFS-CLONE order NFS-BEFORE-IPALIAS-1 inf: CXFS-NFS-CLONE IPALIAS-GROUP-1
```

For more information, see "ipalias-group Template" on page 164.

- 2. Copy the primitive text from the IPaddr2 template into workfile and replace the site-specific variables as directed in the template comments or in "IPaddr2 Template" on page 162. Use a unique primitive ID, such as IP-1.
- 3. Copy the primitive text from the cxfs-client-smnotify template into workfile and replace the site-specific variables as directed in the template comments or in "cxfs-client-smnotify Template" on page 150. Use a unique primitive ID, such as SMNOTIFY-1.
- 4. Save workfile.
- 5. Update the database:

```
node1# crm configure load update workfile
```

6. Create a second group resource in another workfile for the second set of IPaddr2 and cxfs-client-smnotify resources:

- 7. Copy the primitive text from the IPaddr2 template into workfile and replace the site-specific variables as directed in the template comments or in "IPaddr2 Template" on page 162. Use a unique primitive ID, such as IP-2.
- 8. Copy the primitive text from the cxfs-client-smnotify template into workfile and replace the site-specific variables as directed in the template comments or in "cxfs-client-smnotify Template" on page 150. Use a unique primitive ID, such as SMNOTIFY-2.
- 9. Verify that the timeout values are appropriate for your site.
- 10. Verify that there are no comments in workfile.
- 11. Save workfile.

007–5617–008

12. Update the database:

nodel# crm configure load update workfile

Test Each IP Address Alias Group

To test each IP address alias group, do the following:

1. Start the group. For example, to start IPALIAS-GROUP-1:

```
node1# crm resource start IPALIAS-GROUP-1
```

- 2. Test the IP address alias resource within the group:
 - a. Verify that the IP address is configured correctly on node1:

```
node1# ip -o addr show | grep 128.162.244.240
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

b. Verify that node2 does not accept the IP address packets. For example, run the following command on node2 (the output should be 0):

```
node2# ip -o addr show | grep -c 128.162.244.240
```

c. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named node1:

```
nfsclient# ssh root@128.162.244.240
Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
node1# uname -n
node1
```

d. Move the resource group containing the IPaddr2 resource from node1 to node2:

node1# crm resource move IPALIAS-GROUP-1 node2

e. Verify the status:

```
node1# crm status
```

. . .

2 Nodes configured, 2 expected votes

8 Resources configured.

```
Online: [ node1 node2 ]

Clone Set: CXFS-NFS-CLONE [CXFS-NFS-GROUP]
    Started: [ node1 node2 ]

Resource Group: IPALIAS-GROUP-1
    IP-1 (ocf::heartbeat:IPaddr2): Started node2
    SMNOTIFY-1 (ocf::sgi:cxfs-client-smnotify): Started node2
```

f. Verify that the IP address is configured correctly on node2:

```
node2# ip -o addr show | grep 128.162.244.240
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

g. Verify that node1 does not accept the IP address packets by running the following command on node1 (the output should be 0):

```
nodel# ip -o addr show | grep -c 128.162.244.240
```

h. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named node2:

```
nfsclient# ssh root@128.162.244.240
Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
node2# uname -n
node2
```

i. Move the resource group containing the IPaddr2 resource back to node1:

node1# crm resource move IPALIAS-GROUP-1 node1

j. Verify the status:

```
node1# crm status
...
2 Nodes configured, 2 expected votes
8 Resources configured.
Online: [ node1 node2 ]
Clone Set: CXFS-NFS-CLONE [CXFS-NFS-GROUP]
```

007-5617-008

```
Started: [ nodel node2 ]

Resource Group: IPALIAS-GROUP-1

IP-1 (ocf::heartbeat:IPaddr2): Started node1

SMNOTIFY-1 (ocf::sgi:cxfs-client-smnotify): Started node1
```

- k. Test again as in steps a-c above.
- Remove the implicit location constraints imposed by the administrative move command above:

```
node1# crm resource unmove IPALIAS-GROUP-1
```

- 3. Repeat steps 1 and 2 for the other group, such as IPALIAS-GROUP-2.
- 4. Test a Linux NFS client NSM notification resource within the group:

Note: The procedures to test a Mac OS X or Windows CXFS NFS will be different.

a. On a system that is outside the HA cluster (for example, a system namednfsclient), mount the filesystem via the IP address alias hostname values specified in the cxfs-client-smnotify resources (such as hostalias1 and hostalias2, which are not the physical hostnames). For example:

```
nfsclient:~ # mount hostalias1://mnt/nfsexportedfilesystem /hostalias1
nfsclient:~ # mount hostalias2://mnt/nfsexportedfilesystem /hostalias2
```

For more information, see "cxfs-client-smnotify Template" on page 150

b. Turn on Network Lock Manager debugging on the NFS client:

```
nfsclient:~ # echo 65534 > /proc/sys/sunrpc/nlm_debug
```

c. Acquire locks:

```
nfsclient:/ipalias1 # touch file
nfsclient:/ipalias1 # flock -x file -c "sleep 1000000" &
nfsclient:/ipalias2 # touch file2
nfsclient:/ipalias2 # flock -x file2 -c "sleep 1000000" &
```

d. (NFSv3 only) Check in the shared sm-notify statedir directory on the NFS server for resources node1 and node2 to ensure that a file has been created by statd. The name should be the hostname of the node on which you have taken the locks.

If the file is not present, it indicates a misconfiguration of name resolution. Ensure that fully qualified domain name entries for each NFS client are present in /etc/hosts on each NFS server. (If the /etc/hosts file is not present, NSM reboot notification will not be sent to the client and locks will not be reclaimed.)

- e. On the NFS clients, ensure that the /var/lib/nfs/sm file contains the fully qualified domain name of each server from which you have requested locks. If this file is not present, NSM reboot notification will be rejected by the client. (The client must mount the node that uses the IP address specified by the ipalias value, such as node1, by hostname and not by the IP address in order for this to work.)
- f. Put node1 into standby state:

node1# crm node standby node1

g. Verify that both of the IP address aliases are now on node2:

node2# ip addr

h. (NFS v3 only) Verify that the log files (see "Examine Log Files" on page 16) on the NFS client (nfsclient) contains a message about reclaiming locks for the hostname for every ipalias value on which you have taken locks via NFS. (The two statd processes for the HA cluster share the same state directory, specified by the statedir parameter. NSM reboot notification will be sent to clients for all IP address aliases in the cluster, so you will see messages for all IP address aliases that have been mounted by the client.) For example:

Jul 30 13:40:46 nfsclient kernel: NLM: done reclaiming locks for host node2 Jul 30 13:40:49 nfsclient kernel: NLM: done reclaiming locks for host node1

i. Make node1 active again:

node1# crm node online node1

5. Test the other group.

007–5617–008

Confirm the Completed Status

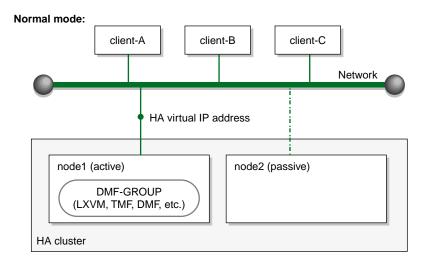
Use the status command to confirm the resulting HA cluster:

```
node1# crm status
2 Nodes configured, 2 expected votes
10 Resources configured.
Online: [ node1 node2 ]
 Clone Set: CXFS-NFS-CLONE [CXFS-NFS-GROUP]
    Started: [ node1 node2 ]
 Resource Group: IPALIAS-GROUP-1
    IP-1 (ocf::heartbeat:IPaddr2): Started nodel
     SMNOTIFY-1
                  (ocf::sgi:cxfs-client-smnotify):
                                                    Started nodel
 Resource Group: IPALIAS-GROUP-2
     IP-2 (ocf::heartbeat:IPaddr2): Started node2
                   SMNOTIFY-2
 STONITH-NODE1 (stonith:external/ipmi): Started node2
 STONITH-NODE2 (stonith:external/ipmi):
                                      Started nodel
```

Note: It does not matter whether IPALIAS-GROUP-1 runs on node1 or node2. The important thing is that during normal operation (before failover), IPALIAS-GROUP-1 and IPALIAS-GROUP-2 run on different nodes

Put the CXFS NFS Edge-Serving HA Service into Production Mode

See Chapter 10, "Put the HA Cluster Into Production Mode" on page 133 to complete the process.


DMF HA Service

This chapter contains the following sections:

- "DMF Failover" on page 77
- "DMF HA Resource Map" on page 78
- "DMF HA Procedure" on page 80

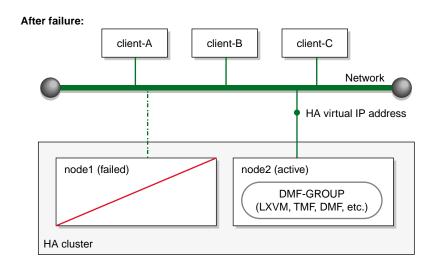

DMF Failover

Figure 8-1 and Figure 8-2 describe an example process of failing over a DMF HA service in a two-node HA cluster using active/passive mode.

Figure 8-1 DMF HA Service — Normal State

007–5617–008

Figure 8-2 DMF HA Service — After Failover

DMF HA Resource Map

Figure 8-3 on page 79 shows a map of an example configuration process for a DMF HA implementation in a two-node active/passive HA cluster (node1 and node2), using the suggested default IDs found in the templates. This map also describes the start/stop order for resources.

You should configure a resource group and then add and test resources in the order shown in this chapter, skipping products that do not apply to your site.

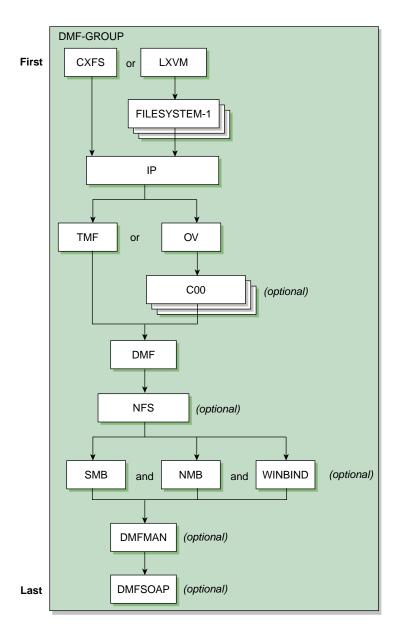


Figure 8-3 Map of Resources for the DMF HA Service

007–5617–008

DMF HA Procedure

Note: Ensure that you have set up the HA cluster as instructed in Chapter 6, "Create the Base HA Cluster" on page 53.

For the DMF HA implementation, you will create a single resource group (DMF-GROUP) that will contain all of the other resources, adding one resource at a time using a services of partial configuration files (know as *workfile*) to the group and then testing it. As a starting point, use the templates in

/usr/share/doc/sgi-ha/templates as building blocks. The instructions in this chapter assume that you use the instance IDs provided in the templates (such as IP instance ID for the IPaddr2 resource type), except as noted; see "Conventions for Resource Instance IDs" on page 11.

Do the following:

- 1. Add the following resources, in order:
 - a. A group resource for the DMF HA service and the appropriate resources for the environment:
 - "DMF Group for the CXFS Environment" on page 81
 - "DMF Group for the Local XVM Environment" on page 83
 - b. "IP Address Alias Resource" on page 88
 - c. "Mounting Service Resource" on page 90:
 - "OpenVault Resource" on page 90
 - "TMF Resource" on page 99
 - d. "COPAN MAID OpenVault Client Resource (Optional)" on page 102
 - e. "DMF Resource" on page 106
 - f. "NFS Resource (Optional)" on page 111
 - g. "Samba Resources (Optional)" on page 113
 - h. "DMF Manager Resource (Optional)" on page 116
 - i. "DMF Client SOAP Service Resource (Optional)" on page 118
- 2. "Confirm the Completed Status" on page 119

- 3. "Configure DMF Backups for HA" on page 119
- 4. "Put the DMF HA Service into Production Mode" on page 119

Add the Resources Used for DMF HA

This section discusses the following:

- "DMF Group for the CXFS Environment" on page 81
- "DMF Group for the Local XVM Environment" on page 83
- "IP Address Alias Resource" on page 88
- "Mounting Service Resource" on page 90
- "COPAN MAID OpenVault Client Resource (Optional)" on page 102
- "DMF Resource" on page 106
- "NFS Resource (Optional)" on page 111
- "Samba Resources (Optional)" on page 113
- "DMF Manager Resource (Optional)" on page 116
- "DMF Client SOAP Service Resource (Optional)" on page 118

DMF Group for the CXFS Environment

The purpose of this resource is to ensure that the defined filesystems run on the DMF server in a CXFS environment. This resource controls the location of the CXFS metadata server for CXFS filesystems that must be run on the DMF server, such as the DMF administrative filesystems, filesystems holding OpenVault server configuration, and filesystems for NFS/Samba configuration. This resource must not include any DMF-managed filesystems.

See the *DMF 6 Administrator Guide for SGI InfiniteStorage* for filesystem requirements, such as mount options.

Do the following:

1. Create a new partial configuration file (workfile) that contains the following:

group DMF-GROUP CXFS

007–5617–008

- 2. Copy the primitive text from the cxfs template into *workfile* and replace the site-specific variables as directed in the template comments or in "cxfs Template" on page 142.
- 3. Verify that the timeout values are appropriate for your site.
- 4. Verify that there are no comments in workfile.
- 5. Save workfile.
- 6. Update the database:

nodel# crm configure load update workfile

Note: As a best practice, you should also run the following command to verify changes you make to the CIB

```
node1# crm_verify -LV
```

For simplicity, this step is not included in the following procedures but is recommended. For more information, see "Use the crm_verify Command to Verify Configuration" on page 15.

7. Test the resource:

- a. Verify that CXFS is working on node1. For example:
 - i. Verify that all of the CXFS filesystems are mounted and accessible:

```
node1# df -lh
```

ii. Display the current metadata server for the filesystems:

Note: If you have multiple clusters on the same network, add the -i *clustername* option to identify the cluster name. For more information, see the cxfs_admin(8) man page.

```
node1# /usr/cluster/bin/cxfs_admin -c "show server"
```

b. Move the resource group containing the cxfs resource to node2:

```
node1# crm resource move DMF-GROUP node2
```

c. Verify the status:

node1# crm status

d. Verify that CXFS is working on node2:

```
node2# df -lh
node2# /usr/cluster/bin/cxfs_admin -c "show server"
```

Note: Only those volumes in /dev/cxvm that are **not** DMF-managed will now be served on node2 instead of node1.

e. Move the resource group containing the cxfs resource back to node1:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status

g. Verify that CXFS is working again on node1:

```
node1# df -lh
node1# /usr/cluster/bin/cxfs_admin -c "show server"
```

h. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

DMF Group for the Local XVM Environment

The DMF HA service in a local XVM environment requires the lxvm and Filesystem resources:

- "Local XVM Resource" on page 84
- "Filesystem Resources" on page 85

Note: See the *DMF 6 Administrator Guide for SGI InfiniteStorage* for filesystem requirements, such as mount options.

Local XVM Resource

Do the following:

- Make sure that none of the filesystems to be controlled are mounted on either node.
- 2. Make sure that none of the filesystems to be controlled are present in /etc/fstab on either node.
- 3. Make sure that the local XVM volumes are visible and online on node1.
- 4. Create a new partial configuration file (workfile) that contains the following:

```
group DMF-GROUP LXVM
```

- Copy the primitive text from the lxvm template into workfile and replace the site-specific variables as directed in the template comments or in "lxvm Template" on page 168.
- 6. Verify that the timeout values are appropriate for your site.
- 7. Verify that there are no comments in workfile.
- 8. Save workfile.
- 9. Update the database:

```
node1# crm configure load update workfile
```

Note: As a best practice, you should also run the following command to verify changes you make to the CIB:

```
node1# crm_verify -LV
```

For simplicity, this step is not included in the following procedures but is recommended. For more information, see "Use the crm_verify Command to Verify Configuration" on page 15.

10. Test the resource:

a. Move the resource group containing the lxvm resource from nodel to nodel:

node1# crm resource move DMF-GROUP node2

b. Verify the status:

```
node1# crm status
```

Note: If the timeout is too short for a start operation, the crm status and crm_verify -LV output and the log files will have an entry that refers to the action being "Timed Out" (see "Examine Log Files" on page 16). For example (line breaks shown here for readability):

c. Move the resource group containing the lxvm resource back to nodel:

node1# crm resource move DMF-GROUP node1

d. Verify the status:

nodel# crm status

e. Verify that the local XVM volumes are visible and online on node1:

```
node1# xvm -d local show vol
```

f. Remove the implicit location constraints generated by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Filesystem Resources

In a local XVM environment (without CXFS), add Filesystem resources for each of the DMF-managed filesystems, DMF administrative filesystems, optional dedicated Openvault server filesystems (and optional Samba configuration-file filesystem that will be controlled by HA processes, see "Samba Resources (Optional)" on page 113). Do the following:

1. Create another *workfile* that contains the following, where *PREVIOUSLY_ADDED_RESOURCES* are all of the resources added to this point

in the procedure and *FILESYSTEM* is one of the filesystems to be controlled by HA processes (use a unique ID for each Filesystem instance):

group DMF-GROUP PREVIOUSLY_ADDED_RESOURCES FILESYSTEM

- 2. Copy the primitive from the Filesystem template into workfile and replace the site-specific variables as directed in the template comments or in "Filesystem Template" on page 160.
- 3. Verify that the timeout values are appropriate for your site.
- 4. Verify that there are no comments in workfile.
- 5. Save workfile.
- 6. Update the database with the new resource:

node1# crm configure load update workfile

- 7. Test the Filesystem resource:
 - Ensure that all of the mount points required to mount all Filesystem resources exist on both nodes.

Note: After a Filesystem primitive has been added to a resource group's configuration, moving that resource group will unmount the filesystem defined in the primitive. This will result in killing any process that has that filesystem in the path of its current working directory.

b. Verify that the filesystems are online on node1:

```
node1# df -hl
```

c. Move the resource group containing all of the Filesystem resources from node1 to node2:

node1# crm resource move DMF-GROUP node2

d. Verify the status:

node1# crm status

- e. Verify that the filesystems are correctly mounted on node2 only:
 - On node2, check the mount table and verify that the filesystems are mounted and have the correct mount options. Use the 1s and df -1h commands on the mount point to verify that the filesystem is functional.
 - On node1, check the mount table and verify that none of the filesystems are mounted.
- f. Move the resource group containing all of the Filesystem resources back to node1:

node1# crm resource move DMF-GROUP node1

g. Verify the status:

node1# crm status

- h. Verify that the filesystems are correctly mounted on node1 only:
 - On node1, check the mount table and verify that the filesystems are mounted and have the correct mount options. Use the ls and df -lh commands on the mount point to verify that the filesystem is functional.
 - On node2, check the mount table and verify that none of the filesystems are mounted.
- i. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

8. Repeat steps 1–7 for each filesystem to be managed by HA in a local XVM environment. Use a unique instance ID for each filesystem.

After you have added all of the filesystems, the ${\tt DMF-GROUP}$ definition could appear something like the following:

IP Address Alias Resource

Do the following to add the IP address alias (IPaddr2) resource:

 Create another workfile that contains the following, where *Previously_Added_Resources* are all of the resources added to this point in the procedure:

```
group DMF-GROUP Previously_Added_Resources IP
```

For more information about the group definition, see "DMF-GROUP Template" on page 155.

- 2. Copy the primitive in the IPaddr2 template into workfile and replace the site-specific variables as directed in the template comments or in "IPaddr2 Template" on page 162.
- 3. Verify that the timeout values are appropriate for your site.
- 4. Verify that there are no comments in workfile.
- 5. Save workfile.
- 6. Update the database with the new resource:

```
node1# crm configure load update workfile
```

- 7. Test the IPaddr2 resource:
 - a. Verify that the IP address is configured correctly on node1. For example, for the ip value 128.162.244.240:

```
node1# ip -o addr show | grep '128.162.244.240/'
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

b. Verify that node2 does not accept the IP address packets by running the following command on node2 (there should be no output):

```
node2# ip -o addr show | grep '128.162.244.240/' node2#
```

c. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named nodel:

```
remote# ssh root@128.162.244.240
Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
```

```
remote# uname -n
node1
```

d. Move the resource group containing the IPaddr2 resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

e. Verify the status:

node1# crm status

f. Verify that the IP address is configured correctly on node2:

```
node2# ip -o addr show | grep '128.162.244.240/'
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

g. Verify that node1 does not accept the IP address packets by running the following command on node1 (the output should be no output):

```
nodel# ip -o addr show | grep '128.162.244.240/'
nodel#
```

h. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named node2:

```
ha# ssh root@128.162.244.240
Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
ha# uname -n
node2
```

i. Move the resource group containing the IPaddr2 resource back to node1:

node1# crm resource move DMF-GROUP node1

j. Verify the status:

node1# crm status

- k. Test again as in steps a-c above.
- l. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Mounting Service Resource

Add a resource for one of the following mounting services:

- "OpenVault Resource" on page 90
- "TMF Resource" on page 99

OpenVault Resource

Do the following to configure OpenVault for HA:

- 1. Ensure that all of the resources within the resource group are moved back to node1 (if not already there).
- 2. Create another workfile that contains the following:

```
group DMF-GROUP Previously_Added_Resources OV
```

For more information about the group definition, see "DMF-GROUP Template" on page 155.

- 3. Copy the primitive in the openvault template into workfile and replace the site-specific variables as directed in the template comments or in "openvault Template" on page 174.
- 4. Verify that the timeout values are appropriate for your site.
- 5. Verify that there are no comments in workfile.
- 6. Save workfile.
- 7. Update the database with the new resource:

```
node1# crm configure load update workfile
```

8. Run ov_admin on node1:

```
node1# ov_admin
...
```

When asked for the server hostname, specify the virtual hostname (the virtualhost value in the *workfile*). ov_admin will automatically convert the OpenVault configuration to an HA configuration by doing the following:

a. Stopping the server (if it is running).

- b. Creating the directory specified by the serverdir value in the workfile.
- c. Moving the OpenVault database and logs into the directory specified by the serverdir value.
- d. Making the host specified by virtualhost be the same hostname address used by the OpenVault server and all drive control programs (DCPs) and library control programs (LCPs) on node1.
- 9. Exit ov_admin.
- 10. Verify that the DCPs and LCPs are running on node1 by using the ov_stat(8) command with the -ld options, which should show ready in the LCP State and DCP State fields (output condensed here for readability):

```
node1# ov_stat -ld
Library Name
             Broken ... LCP State
lib1
             false ... ready
                                            Occupied
                                                       Cartridge PCL
Drive Name
             Group ...
                                DCP State
tape1
             drives ...
                                ready
                                            false
             drives ...
tape2
                                ready
                                            false
```

- 11. Enable the passive server (node2) as a potential OpenVault server:
 - a. On node1:

To allow node2 to access the OpenVault server, run ov_admin and answer yes when prompted to start the server. Then select the following menus, answering the questions when prompted:

When asked if DCPs will also be configured, answer yes.

b. On node2:

007-5617-008

i. Use ov_admin to enable the node to issue administrative commands by entering the virtual hostname:

```
node2# ov_admin
...
Name where the OpenVault server is listening? [virtualhostname]
```

- c. If your site contains a physical or virtual tape library, go to step 12. If not exit ov_admin and go to step 13.
- 12. (For sites containing a physical or virtual tape library) Define DCPs and LCPs on the passive node (node2). Whenever ov_admin asks for the server hostname, use the virtual hostname.

Note: If your site contains COPAN native MAID shelves, you will create their OpenVault components later in "Create the OpenVault Components on the Passive Node" on page 102. Therefore, you can skip this step if your site contains only COPAN native MAID shelves (and no physical tape library or COPAN VTL).

a. Configure drives by selecting:

```
2 - Manage DCPs for locally attached Drives...1 - Create a new SCSI DCP
```

You must specify the drive for which would you like to add a DCP and the DCP name.

On node2, you must configure at least one DCP for each drive that is already configured on node1.

b. Configure libraries by selecting:

```
1 - Manage LCPs for locally attached Libraries
```

On node2, you must configure at least one LCP for each library that is already configured on node1:

• When asked for the name of the device, use the same library name that was used on node1. The LCP instance name will automatically reflect the node2 name (for example, for the 1700a library, the LCP instance name on node1 is 1700a@node1 and the LCP instance name on node2 will be 1700a@node2).

• When prompted with Library 'libname' already exists in OpenVault catalog; create LCP anyway?, respond yes.

All DCPs and LCPs have now been configured and started on node2, but the server has not yet been configured to allow the LCPs to connect. This will be accomplished in step c.

c. On node1, use ov_admin to enable remote LCPs on node2 by selecting:

```
node1# ov_admin
...
21 - Manage remote Libraries and LCPs
```

You must enable each remote LCP using the same library and LCP names that you used on node2:

4 - Activate another LCP for an existing Library

Now that server configuration is complete, the LCPs on node2 will shortly discover that they are able to connect to the server.

- d. On node2:
 - i. Verify that the DCPs are running successfully. For example, the following output shows under DCPHost and DCPStateSoft columns that the DCP is running and connected to the OpenVault server (ready) on the active

HA node (node1) and running in disconnected mode (disconnected) on the passive node (node2):

node2# ov_dumptable -c DriveName, DCPName, DCPHost, DCPStateSoft DCP

DriveName	DCPName	DCPHost	DCPStateSoft
9940B_25a1	9940B_25a1@node1	node1	ready
9940B_b7ba	9940B_b7ba@node1	node1	ready
9940B_93c8	9940B_93c8@node1	node1	ready
LTO2_682f	LTO2_682f@node1	node1	ready
LTO2_6832	LT02_6832@node1	node1	ready
LTO2_6835	LT02_6835@node1	node1	ready
LTO2_6838	LT02_6838@node1	node1	ready
9940B_25a1	9940B_25a1@node2	node2	disconnected
9940B_93c8	9940B_93c8@node2	node2	disconnected
9940B_b7ba	9940B_b7ba@node2	node2	disconnected
LTO2_682f	LTO2_682f@node2	node2	disconnected
LTO2_6832	LT02_6832@node2	node2	disconnected
LTO2_6838	LT02_6838@node2	node2	disconnected
LTO2_6835	LT02_6835@node2	node2	disconnected

Note: All of the alternate DCPs should transition to disconnected state, meaning that they have successfully contacted the server. Do not proceed until they all transition to disconnected. A state of inactive means that the DCP has not contacted the server, so if the state remains inactive for more than a few minutes, the DCP may be having problems connecting to the server.

ii. Verify that the LCPs are running. For example, the following output shows under LCPHost and LCPStateSoft columns that the LCP is running and connected to the OpenVault server (ready) on the active HA node (node1) and running in disconnected mode (disconnected) on the passive node (node2):

node2# ov_dumptable -c LibraryName,LCPName,LCPHost,LCPStateSoft LCP

LibraryName	LCPName	LCPHost	LCPStateSoft
SL500-2	SL500-2@node1	node1	ready
L700A	L700A@node1	node1	ready
SL500-2	SL500-2@node2	node2	disconnected
L700A	L700A@node2	node2	disconnected

Note: It may take a minute or two for the LCPs to notice that they are able to connect to the server and activate themselves. All of the alternate LCPs should transition to disconnected state, meaning that they have successfully contacted the server. Do not proceed until they all transition to disconnected. A state of inactive means that the LCP has not contacted the server, so if the state remains inactive for more than a couple of minutes, the LCP may be having problems connecting to the server.

- e. Exit ov_admin.
- 13. Stop Openvault on node 2:
 - a. Stop all DCPs and LCPs on node2:

```
node2# ov_stop
```

- 14. Run ov_admin on each parallel data-mover node:
 - a. Enter the OpenVault virtual hostname, the port number, and security key as needed:

mover# **ov_admin**

. . .

Name where the OpenVault server is listening? [servername] virtualhostname What port number is the OpenVault server on virtualhostname using? [695] What security key would you like the admin commands to use? [none]

- b. Update the server name for each DCP using item 6 in the OpenVault DCP Configuration menu:
 - 2 Manage DCPs for locally attached Drives
 6 Change Server Used by DCPs
 a Change server for all DCPs.
- c. In the rare case that the parallel data-mover node has LCPs for something other than a COPAN MAID shelf, you must individually update the server used for each LCP by using item 8 in the OpenVault LCP Configuration menu:
 - 1 Manage LCPs for locally attached Libraries8 Change Server Used by LCPs

007–5617–008 95

For each LCP that does not apply to COPAN MAID, iteratively select its option and change its server. (Repeat individually for each LCP.)

Note: Do not select the option to change the server used by all LCPs if there are any COPAN MAID shelf LCPs defined.

d. Restart the OpenVault client components (DCPs and any LCPs) to connect to the OpenVault server using the virtual server name:

```
mover# service openvault stop
mover# service openvault start
```

This step may generate errors for COPAN MAID shelf DCPs and LCPs whose default host is not on this host. You can ignore errors such as the following:

```
shelf C00 is owned by owner_nodename
```

15. On node1, stop the OpenVault server and any DCPs and LCPs:

```
node1# ov_stop
```

16. Update the openvault resource so that it is managed by HA:

```
node1# crm resource manage OV
```

The conversion is now complete. (This action changes the is-managed attribute for the openvault primitive to true.)

17. (Optional) If you want to have additional OpenVault clients that are not DMF servers, such as for running administrative commands, install the OpenVault software on those clients and run ov_admin as shown below. When asked for the server hostname, specify the virtual hostname. This connects the clients to the virtual cluster, rather than a fixed host, so that upon migration they follow the server.

Note: You may wish to set the environment variable OVSERVER to the virtual hostname so that you can use the OpenVault administrative commands without having to specify the -S parameter on each command.

Do the following for each OpenVault client:

a. On node1:

To allow node 2 to act as an administrative client, run ov_admin and select the following menus, answering the questions when prompted:

b. On the OpenVault client node, use ov_admin to enable the node to issue administrative commands by entering the virtual hostname, the port number, and security key as needed:

node2# ov_admin

. . .

```
Name where the OpenVault server is listening? [virtualhostname]
What port number is the OpenVault server on virtualhostname using? [44444]
What security key is used for admin commands on the HA OpenVault servers? [none]
```

18. Test the new resource:

a. Verify that all of the OpenVault libraries and drives become available after a few minutes on node1:

nodel# ov_stat -ld	
Library Name Broken Disabled State LCP State	
L700A false false ready ready	
SL500-2 false false ready ready	
Drive Name Group Access Broken Disabled SoftState HardState DCP State Occupie	ed Cartridge PCL
9940B_25al 9940B_drives true false false ready unloaded ready false	
9940B_93c8 9940B_drives true false false ready unloaded ready false	
9940B_b7ba 9940B_drives true false false ready unloaded ready false	
LTO2_682f LTO2_drives true false false ready unloaded ready false	
LTO2_6832 LTO2_drives true false false ready unloaded ready false	
LTO2_6835 LTO2_drives true false false ready unloaded ready false	
LTO2_6838 LTO2_drives true false false ready unloaded ready false	

b. Move the resource group containing the openvault resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

c. Verify the status:

node1# crm status

d. Verify that all of the drives become available after a few moments. For example:

node2# ov_stat -ld Library Name Broken Disabled State LCP State L700A false false ready ready SL500-2 false false ready ready Group Access Broken Disabled SoftState HardState DCP St 9940B_drives true false false ready unloaded ready Drive Name Access Broken Disabled SoftState HardState DCP State Occupied Cartridge PCL 9940B_25a1 false 9940B_93c8 9940B_drives true false false ready unloaded ready false 9940B_b7ba 9940B_drives true false false ready unloaded ready false LTO2_drives true false false ready unloaded ready LTO2_682f false LTO2_6832 LTO2_drives true false false ready unloaded ready false LTO2_6835 LTO2_drives true false false ready unloaded ready false LTO2_6838 unloaded ready LTO2_drives true false false ready false

e. Move the resource group containing the openvault resource back to nodel:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status

g. Verify that all of the drives become available after a few moments. For example:

node1# ov_stat	-ld									
Library Name	Broken	Disabled	State	e LCP	State					
L700A	false	false	ready	y rea	dy					
SL500-2	false	false	ready	y rea	dy					
Drive Name	Group	Access	Broken	Disabled	SoftState	HardState	DCP State	Occupied	Cartridge	PCL
9940B_25a1	9940B_dr	rives true	false	false	ready	unloaded	ready	false		
9940B_93c8	9940B_dr	rives true	false	false	ready	unloaded	ready	false		
9940B_b7ba	9940B_dr	rives true	false	false	ready	unloaded	ready	false		
LTO2_682f	LTO2_dri	ves true	false	false	ready	unloaded	ready	false		
LTO2_6832	LTO2_dri	ves true	false	false	ready	unloaded	ready	false		
LTO2_6835	LTO2_dri	ves true	false	false	ready	unloaded	ready	false		
LTO2_6838	LTO2_dri	ves true	false	false	ready	unloaded	ready	false		

h. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

TMF Resource

To configure TMF for HA, do the following:

- 1. Modify the /etc/tmf/tmf.config file so that all tape devices belonging to device groups that are managed by HA are configured DOWN in the status parameter in the DEVICE definition.
- 2. Copy the following file from node1 to node2:

```
/etc/tmf/tmf.config
```

- 3. On node2, if the tape drive pathname (the FILE parameter in the DEVICE definition) for a given drive is not the same as the pathname for the same drive on node1, modify the pathname in the /etc/tmf.config file on node2 so that it points to the appropriate pathname.
- 4. Create another workfile that contains the following:

group DMF-GROUP Previously_Added_Resources TMF

For more information about the group definition, see "DMF-GROUP Template" on page 155.

- 5. Copy the primitive in the tmf template into *workfile* and replace the site-specific variables as directed in the template comments or in "tmf Template" on page 181.
- 6. Verify that the timeout values are appropriate for your site.
- 7. Verify that there are no comments in workfile.
- 8. Save workfile.
- 9. Update the database with the new resource:

node1# crm configure load update workfile

- 10. Test the new tmf resource:
 - a. Use tmmls to show the loader status.
 - b. Use tmstat to show the drive status. Verify that all of the tape drives in all HA-managed device groups are in assn or idle status on nodel.
 - c. Move the resource group containing the TMF resource to node2:

node1# crm resource move DMF-GROUP node2

d. Verify the status:

node1# crm status

- e. Verify that the state is correct:
 - Use tmstat to verify that the tape drives all have a status of down or sdwn on node1 and that they have a status of idle or assn on node2
 - Use tmmls to verify that all of the loaders on node1 still have a status of ${\tt UP}$
- f. Verify that the timeout values for the start, stop, and monitor operations are appropriate. Use the following guidelines:
 - i. On node2, look in the log files (see "Examine Log Files" on page 16) for the time when the resource start operation started and ended. Also capture the start and end times of the monitor operation.

- ii. On node1, look in the log files to find the start and stop times for the stop operation.
- iii. Subtract the ending time from the starting time in each case to get the required time for each operation.
- iv. Based on the above, choose values that you estimate will be acceptable timeouts that are sufficiently long so that you do not risk unnecessary failovers. In general, start with a longer timeout and shorten as required.

Following are examples of finding the start, stop, and monitor operation durations on a SLES system (line breaks shown here for readability):

```
node1 -> egrep "do_lrm_rsc_op.*Performing.*tmf_start|process_lrm_event.*tmf_start" /var/log/messages
May 11 08:20:53 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=47:81:0:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_start_0 )
May 11 08:21:10 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_start_0 (call=90, rc=0,
  cib-update=88, confirmed=true) ok
node1 -> egrep "do_lrm_rsc_op.*Performing.*tmf_stop|process_lrm_event.*tmf_stop" /var/log/messages
May 11 08:27:39 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=46:82:0:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_stop_0 )
May 11 08:27:40 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_stop_0 (call=92, rc=0,
  cib-update=100, confirmed=true) ok
nodel -> egrep "do_lrm_rsc_op.*Performing.*tmf_monitor|process_lrm_event.*tmf_monitor" /var/log/messages
May 11 08:08:21 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=16:78:7:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_monitor_0 )
May 11 08:08:21 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_monitor_0 (call=69, rc=7,
 cib-update=77, confirmed=true) not running
May 11 08:21:10 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=48:81:0:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_monitor_30000 )
May 11 08:21:11 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_monitor_30000 (call=91,
 rc=0, cib-update=89, confirmed=false) ok
May 11 08:27:39 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_monitor_30000 (cal1=91,
  status=1, cib-update=0, confirmed=true) Cancelled
```

- g. Modify values in the primitive definition as needed.
- h. Move the resource group containing the tmf resource back to node1:

node1# crm resource move DMF-GROUP node1

i. Verify the status:

node1# crm status

- j. Verify that the state is correct:
 - Use tmstat to verify that the tape drives all have a status of down or sdwn on node2 and that they have a status of idle or assn on node1
 - Use tmmls to verify that all of the loaders on node2 still have a status of UP
- k. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

COPAN MAID OpenVault Client Resource (Optional)

This section discusses the following:

- "Create the OpenVault Components on the Passive Node" on page 102
- "Create and Test the COPAN MAID OpenVault Client Resource" on page 104

Create the OpenVault Components on the Passive Node

When you configured the standard services according to the information in *COPAN MAID for DMF Quick Start Guide*, you executed an ov_shelf(8) command for each shelf in order to create the required OpenVault components (see "COPAN MAID Standard Service" on page 45).

In this step, you will create corresponding OpenVault components for the passive node so that it is ready to resume control of OpenVault in case of failover, using the following information for shelf 0 as an example:

• Shelf identifier: C00 (indicating cabinet 0, shelf 0)

Active node: node1

• Passive node: node2

Note: For more information about the shelf ID, see *COPAN MAID for DMF Quick Start Guide*.

Do the following:

- 1. On node1:
 - a. Stop all of the shelf's OpenVault clients:

```
node1# ov_stop C00*
```

b. Export the OCF shelf, hostname, and root environment variables for use by the copan_ov_client script:

```
node1# export OCF_RESKEY_shelf_name=C00
node1# export OCF_RESKEY_give_host=node2
node1# export OCF_ROOT=/usr/lib/ocf
```

c. Transfer ownership of the shelf from node1 to node2:

```
node1# /usr/lib/ocf/resource.d/sgi/copan_ov_client give
```

- 2. On node2:
 - a. Verify that node2 now owns the shelf's XVM volumes (COOA through COOZ, although not necessarily listed in alphabetical order):

```
node2# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
```

b. Create the OpenVault components for node2:

```
node2# ov_shelf create C00
```

This automatically starts all of the shelf's OpenVault components.

For more information, see COPAN MAID for DMF Quick Start Guide.

c. Stop all of the shelf's OpenVault clients:

```
node2# ov_stop C00*
```

d. Export the shelf, hostname, and OCF root environment variables for use by the copan_ov_client script:

```
node2# export OCF_RESKEY_shelf_name=C00
node2# export OCF_RESKEY_give_host=node1
```

```
node2# export OCF_ROOT=/usr/lib/ocf
```

e. Transfer ownership of the shelf from node2 back to node1:

```
node2# /usr/lib/ocf/resource.d/sgi/copan_ov_client give
```

3. On node1:

a. Verify that node1 once again owns the shelf's XVM volumes (C00A through C00Z, although not necessarily listed in alphabetical order):

```
node1# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
```

b. Restart all of the shelf's OpenVault clients:

```
node1# ov_start C00*
```

4. Repeat steps 1 through 3 for each shelf.

Create and Test the COPAN MAID OpenVault Client Resource

1. Create another *workfile* that contains the following, where *Cxx* is the COPAN MAID shelf ID:

```
group DMF-GROUP Previously_Added_Resources Cxx
```

For example, using COO for cabinet 0 shelf 0:

```
group DMF-GROUP Previously_Added_Resources C00
```

For more information about the group definition, see "DMF-GROUP Template" on page 155.

2. Copy the primitive in the copan_ov_client template into workfile and replace the site-specific variables as directed in the template comments or in "copan_ov_client Template" on page 139.

You should configure an instance of this resource for each shelf that will be owned by the active DMF server. (Shelves that are owned by a parallel data-mover node are not included in the DMF HA service.)

- 3. Verify that the timeout values are appropriate for your site.
- 4. Verify that there are no comments in workfile.
- 5. Save workfile.
- 6. Update the database with the new resource:

nodel# crm configure load update workfile

- 7. Test the new resource. For example, using shelf ID COO:
 - a. Verify that shelf C00 becomes available after a few minutes on node1:

nodel# ov_stat -L C00 -D 'C00.*'									
Library Name	Broken	Disabled	State	e LCP	State				
C00	false	false	ready	y read	dy				
Drive Name	Group	Access	Broken	Disabled	SoftState	HardState	DCP State	Occupied	Cartridge PCL
C00d00	dg_c00	true	false	false	ready	unloaded	ready	false	
C00d01	dg_c00	true	false	false	ready	unloaded	ready	false	
C00d02	dg_c00	true	false	false	ready	unloaded	ready	false	
C00d03	dg_c00	true	false	false	ready	unloaded	ready	false	
C00d04	dg_c00	true	false	false	ready	unloaded	ready	false	
C00d05	dg_c00	true	false	false	ready	unloaded	ready	false	
C00d06	dg_c00	true	false	false	ready	unloaded	ready	false	

b. Move the resource group containing the copan_ov_client resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

c. Verify the status:

node1# crm status

d. Verify that shelf C00 becomes available after a few minutes on node2:

node2# ov_stat -L C00 -D 'C00.*' Broken Disabled State LCP State Library Name C00 false false ready ready Drive Name Group Access Broken Disabled SoftState HardState DCP State Occupied Cartridge PCL dg_c00 true false false ready unloaded ready C00d00 false

C00d01	dg_c00	true	false	false	ready	unloaded	ready	false
C00d02	dg_c00	true	false	false	ready	unloaded	ready	false
C00d03	dg_c00	true	false	false	ready	unloaded	ready	false
C00d04	dg_c00	true	false	false	ready	unloaded	ready	false
C00d05	dg_c00	true	false	false	ready	unloaded	ready	false
C00d06	dq c00	true	false	false	ready	unloaded	ready	false

e. Move the resource group containing the copan_ov_client resource back to nodel:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status

g. Verify that shelf C00 becomes available after a few minutes on node1:

nodel# ov_stat -L C00 -D 'C00.*'										
Library Name	Br	oken Di	sabled	State	LCP Stat	te				
C00	false		lse	ready	ready					
Drive Name	Group	Access	Broken	Disabled	SoftState	HardState	DCP State	Occupied	Cartridge PCL	
C00d00	dg_c00	true	false	false	ready	unloaded	ready	false		
C00d01	dg_c00	true	false	false	ready	unloaded	ready	false		
C00d02	dg_c00	true	false	false	ready	unloaded	ready	false		
C00d03	dg_c00	true	false	false	ready	unloaded	ready	false		
C00d04	dg_c00	true	false	false	ready	unloaded	ready	false		
C00d05	dg_c00	true	false	false	ready	unloaded	ready	false		
C00d06	dg_c00	true	false	false	ready	unloaded	ready	false		

h. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

DMF Resource

Note: The following procedure requires that the DMF application instances in OpenVault are configured to use a wildcard ("*") for the hostname and instance name. For more information, see the chapter about mounting service configuration tasks in the *DMF 6 Administrator Guide for SGI InfiniteStorage*.

Do the following:

 Make the filesystem backup inventory accessible from all DMF servers in the HA cluster.

The backup of DMF-managed user filesystems and DMF administrative filesystems is always performed on the active DMF server based upon parameters in the DMF configuration file. The xfsdump command maintains an inventory of all backups performed within the directory /var/lib/xfsdump. In an HA environment, the active DMF server node can change over time; therefore (in order for xfsdump to maintain a consistent inventory) it must be able to access the inventory for all past backups, even if those backups were created on another node.

SGI recommends that you make the inventory accessible to all DMF server nodes by relocating it into an HA-managed DMF administrative filesystem within the same resource group as DMF. For example, create a site-specific directory in the directory specified by the DMF HOME_DIR configuration parameter, such as /dmf/home/site_specific:

• On node1 (which currently contain the inventory), enter the following:

```
nodel# cd /var/lib
nodel# cp -r xfsdump /dmf/home/site_specific/xfsdump
nodel# mv xfsdump xfsdump.bak
nodel# ln -s /dmf/home/site_specific/xfsdump xfsdump
```

Note: In a brand-new DMF installation, the /var/lib/xfsdump directory will not exist until after a backup has been performed.

On node2, enter the following:

```
node2# cd /var/lib
node2# mv xfsdump xfsdump.bak
node2# ln -s /dmf/home/site_specific/xfsdump xfsdump
```

Note: It is the /var/lib/xfsdump directory that should be shared, rather than the /var/lib/xfsdump/inventory directory. If there are inventories stored on various nodes, you can use xfsinvutil to merge them into a single common inventory, prior to sharing the inventory among the nodes in the cluster.

2. On node1, modify the DMF configuration file as follows:

- Set the MAX_MS_RESTARTS parameter in the appropriate drivegroup objects to 0 so that DMF will not restart the mounting service.
- Set the DUMP_INVENTORY_COPY parameter so that it uses a DMF HA administrative filesystem that is on a different disk from the live inventory created above in step 1. If the live inventory in /dmf/home/site_specific/xfsdump is lost, you can then recreate it from the inventory backup in DUMP_INVENTORY_COPY. For example, you could create the directory /dmf/journal/site_specific/inventory_copy for use in DUMP_INVENTORY_COPY.
- (OpenVault only) Set the MSG_DELAY parameter in the drivegroup objects to a value of slightly more than 2 minutes.
- Set the SERVER_NAME parameter for the base object to the HA virtual hostname of the DMF server.

Note: If you change this parameter, you must copy the DMF configuration file (/etc/dmf/dmf.conf) manually to each parallel data-mover node and then restart the services related to DMF. Do not change this parameter while DMF is running.

- Set the INTERFACE parameter in the node object for each potential DMF server node to the same virtual hostname used for SERVER_NAME in the base object.
- (DMF Parallel Data-Mover Option only) Create node objects for each potential DMF server and set the INTERFACE parameter in those node objects to the same virtual hostname used for SERVER_NAME in the base object.

Note: If you are not using the DMF Parallel Data-Mover Option, then no node objects are needed.

For more information, see the dmf.conf(5) man page and the DMF 6 Administrator Guide for SGI InfiniteStorage.

3. Copy the DMF configuration file (/etc/dmf/dmf.conf) from node1 to node2 and to any parallel data-mover nodes in the DMF configuration. You may wish to

use a symbolic link on node1 and on node2 that points to a shared location specified by the HOME_DIR parameter in the DMF configuration file. For example:

```
ha# ln -s /dmf/home/dmf.conf /etc/dmf/dmf.conf
```

Note: You cannot use a symbolic link for parallel data-mover nodes because DMF itself keeps the dmf.conf file synchronized with the server node.

4. If you are using OpenVault and you **explicitly set** hostnames when you defined the ov_keys file during initial OpenVault setup, edit the ov_keys file and replace the hostname in the first field of the lines containing "dmf" with the OpenVault virtual hostname. For example, if the virtual hostname is virtualhost, the result would be:

```
virtualhost dmf * CAPI none virtualhost dmf * AAPI none
```

Note: If you used a wildcard hostname (*) when you defined the ov_keys file during initial OpenVault setup, there is no need to edit this file.

5. Create another workfile that contains the following:

```
group DMF-GROUP Previously_Added_Resources DMF
```

For more information about the group definition, see "DMF-GROUP Template" on page 155.

- 6. Copy the primitive in the dmf template into *workfile* and replace the site-specific variables as directed in the template comments or in "dmf Template" on page 153.
- 7. Verify that the timeout values are appropriate for your site.
- 8. Verify that there are no comments in workfile.
- 9. Save workfile.
- 10. Update the database with the new resource:

node1# crm configure load update workfile

11. Test the resource:

a. Verify that DMF has started by using the dmdstat -v command and manual dmput and dmget commands on node1:

```
node1# dmdstat -v
node1# xfs_mkfile size test_file
node1# dmput -r test_file
node1# dmdidle
(wait a bit to allow time for the volume to be written and unmounted)
node1# dmget test_file
node1# rm test_file
```

b. Move the resource group containing the dmf resource to node2:

```
node1# crm resource move DMF-GROUP node2
```

c. Verify the status:

```
node1# crm status
```

d. Verify that DMF has started on the new node by using the dmdstat -v command and manual dmput and dmget commands on node2:

```
node2# dmdstat -v
node2# xfs_mkfile size another_test_file
node2# dmput -r another_test_file
node2# dmdidle
(wait a bit to allow time for the volume to be written and unmounted)
node2# dmget another_test_file
node2# rm another_test_file
```

e. Move the resource group containing the dmf resource back to node1:

```
node1# crm resource move DMF-GROUP node1
```

f. Verify the status:

```
node1# crm status
```

g. Verify that DMF has started by using the dmdstat -v command and manual dmput and dmget commands on node1:

```
node1# dmdstat -v
node1# xfs_mkfile size test_file
node1# dmput -r test_file
```

```
node1# dmdidle
(wait a bit to allow time for the volume to be written and unmounted)
node1# dmget test_file
node1# rm test_file
```

h. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

NFS Resource (Optional)

To configure NFS for HA, do the following:

1. Copy the /etc/exports entries that you would like to make highly available from node1 to the /etc/exports file on node2.

Note: Be sure to include the fsid=*uniquenumber* export option in order to prevent stale file handles after failover.

- 2. (RHEL only) On both RHEL nodes, ensure that NFS lock services are started at boot time:
 - On RHEL node1:

node1# chkconfig nfslock on

• On RHEL node2:

node2# chkconfig nfslock on

3. Create another workfile that contains the following:

```
\verb"group" DMF-GROUP" \textit{Previously\_Added\_Resources} \ \texttt{NFS}
```

For more information about the group definition, see "DMF-GROUP Template" on page 155.

- 4. Copy the primitive in the nfsserver template into workfile and replace the site-specific variables as directed in the template comments or in "nfsserver Template" on page 171.
- 5. Verify that the timeout values are appropriate for your site.

- 6. Verify that there are no comments in workfile.
- 7. Save workfile.
- 8. Update the database with the new resource:

```
nodel# crm configure load update workfile
```

- 9. Test the new resource:
 - a. Run the following command on node1 to verify that the NFS filesystems are exported:

b. Mount the filesystems on a node that will not be a member of the HA cluster (otherhost):

```
otherhost# mount nodel:/nfsexportedfilesystem /mnt/test
```

c. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "test data" > /mnt/test/testFile1A
otherhost# cat /mnt/test/testFile1A
test data
```

d. Move the resource group containing the nfsserver resource from node1 to node2:

```
node1# crm resource move DMF-GROUP node2
```

e. Verify the status:

```
node1# crm status
```

f. Run the following command on node2 to verify that the NFS filesystems are exported:

g. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "more test data" > /mnt/test/testFile1B
otherhost# cat /mnt/test/testFile1B
more test data
```

h. Move the resource group containing the nfsserver resource back to node1:

```
node1# crm resource move DMF-GROUP node1
```

i. Verify the status:

```
node1# crm status
```

j. Remove the implicit location constraints imposed by the administrative move command executed above:

```
node1# crm resource unmove DMF-GROUP
```

Samba Resources (Optional)

To configure Samba for HA, do the following:

1. If you are using winbind, ensure that the HA nodes do not use pluggable authentication modules (PAM) or name service switch (NSS) that could have dependencies on winbind. That is, there must not be dependencies on winbind in the files in the /etc/pam.d directory or the files listed in the /etc/nsswitch.conf file.

Note: Not all configurations with winbind will work in an HA cluster.

2. Copy the Samba directories to a shared location. For example:

```
nodel# cp -r /etc/samba /mnt/data/.ha/etc_samba
nodel# cp -r /var/lib/samba /mnt/data/.ha/var_lib_samba
```

3. Create a Filesystem resource for each of the new Samba directories, as described in "Filesystem Resources" on page 85. For example:

For the /mnt/data/.ha/etc_samba directory, you could use a primitive ID of etc_samba, a device value of /mnt/data/.ha/etc_samba, and a directory value of /etc/samba. In this case, the group definition would be:

group DMF-GROUP Previously_Added_Resources etc_samba

• For the /mnt/data/.ha/var_lib_samba directory, you could use a primitive ID of var_lib_samba, a device value of /mnt/data/.ha/var_lib_samba, and a directory value of /var/lib/samba. In this case, the group definition would be:

group DMF-GROUP Previously_Added_Resources var_lib_samba

For more information about the group definition, see "DMF-GROUP Template" on page 155.

4. Create another workfile that contains the following:

```
group DMF-GROUP Previously_Added_Resources SMB NMB
```

If your Samba implementation uses an authentication type that requires the winbind daemon, use the following:

group DMF-GROUP Previously_Added_Resources SMB NMB WINBIND

- 5. Copy the primitive in the smb and nmb templates and optionally the winbind template into *workfile* and replace the site-specific variables as directed in the template comments or in "smb Template" on page 180, "nmb Template" on page 173, and "winbind Template" on page 185.
- 6. Verify that the timeout values are appropriate for your site.
- 7. Verify that there are no comments in workfile.
- 8. Save workfile.
- 9. Update the database with the new resources:

node1# crm configure load update workfile

10. Test the new resources:

a. Ensure that the resource group containing the smb and nmb resources and optionally the winbind resource is on node1:

```
node1# crm resource move DMF-GROUP node1
```

b. Verify the status:

```
node1# crm status
```

c. Use smbclient from a machine outside of the HA cluster to connect to the Samba server on nodel and copy a file. For example, to log in to nodel as admin (assuming that admin is a valid login name in the homes section of the smb.conf file) copy originate to remotefile on the remote host:

```
otherhost# smbclient //node1/admin
smb:\> get origfileA remotefileA
```

Note: Depending upon the setting of the security parameter in the smb.conf file, this may involve using a Samba account that already exists.

d. Move the resource group containing the smb and nmb resources from node1 to node2:

```
node1# crm resource move DMF-GROUP node2
```

e. Verify the status:

```
node1# crm status
```

f. Use smbclient from a machine outside of the HA cluster to connect to the Samba server on node2 and copy a file. For example, to log in to node2 as admin (assuming that admin is a valid login name in the homes section of the smb.conf file) and copy origfileB to remotefileB on the remote host:

```
otherhost# smbclient //node2/admin
smb:\> get origfileB remotefileB
```

g. Move the resource group containing the smb and nmb resources back to node1:

node1# crm resource move DMF-GROUP node1

h. Verify the status:

node1# crm status

 Remove the implicit location constraints imposed by the administrative move command executed above:

node1# crm resource unmove DMF-GROUP

DMF Manager Resource (Optional)

To configure DMF Manager for HA, do the following:

- 1. Run the dmfman_setup_ha script to create the required links and directories in a commonly accessible filesystem (such as the directory specified by the HOME_DIR parameter in the DMF configuration file) that will allow DMF statistics archives to be accessible across the HA cluster (include the -u option only if you are upgrading from a previous release):
 - On node1:

node1# /usr/lib/dmf/dmfman_setup_ha -d HOME_DIR [-u node2name]

• On node2:

```
node2# /usr/lib/dmf/dmfman_setup_ha -d HOME_DIR [-u node1name]
```

For example, if the HOME_DIR parameter is set to /dmf/home in /etc/dmf/dmf.conf and you are upgrading from a previous release, you would enter the following:

• On node1:

```
node1# /usr/lib/dmf/dmfman_setup_ha -d /dmf/home -u node2
```

On node2:

```
node2# /usr/lib/dmf/dmfman_setup_ha -d /dmf/home -u node1
```

2. Create another workfile that contains the following:

```
group DMF-GROUP Previously_Added_Resources DMFMAN
```

For more information about the group definition, see "DMF-GROUP Template" on page 155.

- 3. Copy the primitive in the dmfman template to *workfile* and replace the site-specific variables as directed in the template comments or in "dmfman Template" on page 155.
- 4. Verify that the timeout values are appropriate for your site.
- 5. Verify that there are no comments in workfile.
- 6. Save workfile.
- 7. Update the database with the new resource:

node1# crm configure load update workfile

- 8. Test the new resource:
 - a. Point your browser at https://virtualIPaddress:11109 and verify that you can log in and use DMF Manager, such as viewing the **Overview** panel. For more information about using DMF Manager, see *DMF 6 Administrator Guide for SGI InfiniteStorage*.
 - b. Move the resource group containing the dmfman resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

c. Verify the status:

node1# crm status

- d. Repeat step 8a to verify that DMF Manager is still available.
- e. Move the resource group containing the dmfman resource back to node1:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status

g. Remove the implicit location constraints imposed by the administrative move command executed above:

node1# crm resource unmove DMF-GROUP

DMF Client SOAP Service Resource (Optional)

To configure DMF client SOAP service for HA, do the following:

1. Create another workfile that contains the following:

```
group DMF-GROUP Previously_Addeded_Resources DMFSOAP
```

- 2. Copy the primitive in the dmfsoap template into workfile and replace the site-specific variables as directed in the template comments or in Chapter 11, "Resource Template Reference" on page 137.
- 3. Verify that the timeout values are appropriate for your site.
- 4. Verify that there are no comments in workfile.
- 5. Save workfile.
- 6. Update the database with the new resource:

```
nodel# crm configure load update workfile
```

- 7. Test the new resource:
 - a. Point your browser at https://virtualIPaddress:11110/server.php and verify that you can access the GUI and view the WSDL for one of the DMF client functions. For more information, see DMF 6 Administrator Guide for SGI InfiniteStorage.
 - b. Move the resource group containing the dmfsoap resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

c. Verify the status:

node1# crm status

- d. Repeat step 7a to verify that DMF client SOAP service is still available.
- e. Move the resource group containing the dmfsoap resource back to nodel:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status

g. Remove the implicit location constraints imposed by the administrative move command above:

```
node1# crm resource unmove DMF-GROUP
```

Confirm the Completed Status

Use the status command to confirm the resulting HA cluster:

```
node1# crm status
```

Configure DMF Backups for HA

To configure DMF backups for HA, do the following:

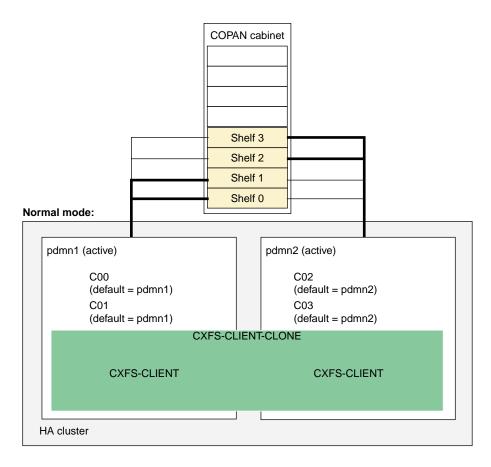
- 1. Make the filesystem backup inventory accessible from all servers in the HA cluster.
- 2. Create a shared directory in the DMF *HOME_DIR* directory, such as /dmf/home/xfsdump.
- 3. Move the current backup inventory to the shared directory. For example:

```
node1# cd /var/lib
node1# cp -r xfsdump /dmf/home/xfsdump
node1# mv xfsdump xfsdump.bak
node1# ln -s /dmf/home/xfsdump xfsdump
node2# cd /var/lib
node2# mv xfsdump xfsdump.bak
node2# ln -s /dmf/home/xfsdump xfsdump
```

Put the DMF HA Service into Production Mode

See Chapter 10, "Put the HA Cluster Into Production Mode" on page 133 to complete the process.

COPAN MAID OpenVault Client HA Service


This chapter contains the following sections:

- "COPAN MAID OpenVault Client HA Service Failover" on page 121
- "COPAN MAID OpenVault Client HA Resource Map" on page 124
- "COPAN MAID OpenVault Client HA Service Procedure" on page 125

COPAN MAID OpenVault Client HA Service Failover

Figure 9-1 and Figure 9-2 describe an example process of failing over the OpenVault client service for a COPAN MAID shelf in a two-node HA cluster (consisting of two parallel data-mover nodes) using active/active mode.

At initialization, each parallel data-mover node is the default owner node of two COPAN OpenVault client resources, as represented in the dark lines in Figure 9-1 (where mover1 is the owner node of shelves 0 and 1, and mover2 is the owner node of shelves 2 and 3).

 $\textbf{Figure 9-1} \ \ \text{COPAN OpenVault Client HA Service for Mover Nodes} - \ \ \text{Normal State}$

When mover1 fails, its COPAN OpenVault client resources move to mover2 and mover2 becomes the current owner node of all of the shelves, as shown in Figure 9-2.

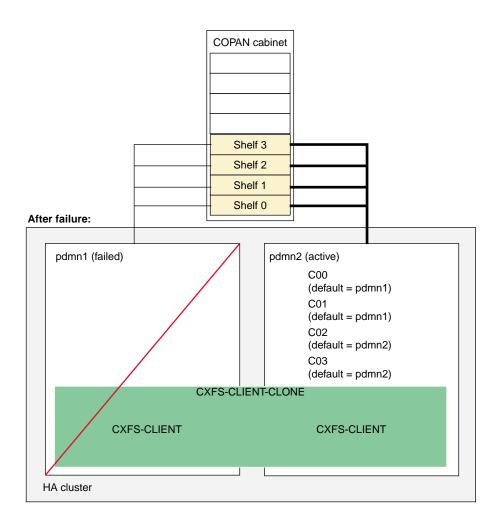


Figure 9-2 COPAN OpenVault Client HA Service for Mover Nodes — After Failover

After mover1 recovers and rejoins the HA cluster, you can choose a convenient time to manually move C00 and C01 back to mover1 to balance the load and return the HA cluster to its normal state (see "Manually Moving a copan_ov_client Resource" on page 193). You should perform this procedure during a time of low shelf activity, because moving a copan_ov_client resource involves disabling the active node via the dmnode_admin command (which results in stopping all activity to all shelves owned by the node).

COPAN MAID OpenVault Client HA Resource Map

Figure 9-3 shows a map of an example configuration process for the OpenVault client service for COPAN MAID shelves in an active/active HA cluster that consists of two parallel data-mover nodes named mover1 and mover2. (mover1 is the same node as node1 referred to in Chapter 6, "Create the Base HA Cluster" on page 53.) The map uses the suggested default IDs found in the templates.

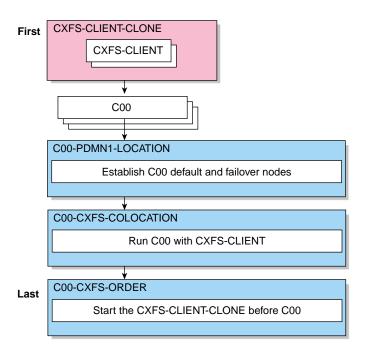


Figure 9-3 Map of Resources for the COPAN MAID OpenVault HA Service

COPAN MAID OpenVault Client HA Service Procedure

This section discusses the following steps:

- "Disable the Parallel Data-Mover Nodes and the Services" on page 125
- "Create the OpenVault Components on the Failover Node" on page 126
- "Create and Test the COPAN MAID OpenVault Client HA Service" on page 128
- "Confirm the Completed Status" on page 131
- "Put the COPAN MAID OpenVault Client HA Service into Production Mode" on page 131

Note: Ensure that you have set up the HA cluster as instructed in Chapter 6, "Create the Base HA Cluster" on page 53.

Disable the Parallel Data-Mover Nodes and the Services

Do the following to ensure that there is no activity to the COPAN MAID shelf:

1. On the DMF server, disable both parallel data-mover nodes:

```
dmfserver# dmnode_admin -d mover1 mover2
```

- Verify that there are no dmatwc or dmatrc data-mover processes running on either parallel data-mover node. For example, the output of the following command should be empty on both nodes:
 - On mover1:

```
mover1# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
mover1#
```

• On mover2:

```
mover2# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
mover2#
```

If the output is not empty, you must wait for the dmnode_admin -d action from step 1 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

3. Determine which CXFS filesystems are mounted:

```
# ls /dev/cxvm
```

Save the output from this command for use later when you define the *VOLUME_LIST* for the volnames parameter in the cxfs-client resource in "Create and Test the COPAN MAID OpenVault Client HA Service" on page 128.

Create the OpenVault Components on the Failover Node

When you configured the standard services according to the information in *COPAN MAID for DMF Quick Start Guide*, you executed an ov_shelf(8) command for each COPAN MAID shelf in order to create the required OpenVault components (see "COPAN MAID Standard Service" on page 45).

In this step, you will create corresponding OpenVault components for the failover node so that it is ready to assume control of OpenVault in case of failover, using the following information for shelf 0 as an example:

• Shelf identifier: C00 (indicating cabinet 0, shelf 0)

• Default node: mover1

• Failover node: mover2

Note: For more information about the shelf identifier, see *COPAN MAID for DMF Quick Start Guide*.

Do the following:

- 1. On mover1:
 - a. Export the shelf, hostname, and OCF root environment variables for use by the copan_ov_client script:

```
mover1# export OCF_RESKEY_shelf_name=C00
mover1# export OCF_RESKEY_give_host=mover2
mover1# export OCF_ROOT=/usr/lib/ocf
```

b. Transfer ownership of the shelf from mover1 to mover2:

mover1# /usr/lib/ocf/resource.d/sgi/copan_ov_client give

2. On mover 2:

a. Verify that mover 2 now owns the shelf's XVM volumes (COOA through COOZ, although not necessarily listed in alphabetical order):

```
mover2# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
```

b. Create the OpenVault components for mover 2:

```
mover2# ov_shelf create C00
```

The following type of messages may be seen at this point, but do not indicate an error:

Cartridge "C00B00" in the openvault database starts with the string "C00" but its owning library is unknown Cartridge "C00B01" in the openvault database starts with the string "C00" but its owning library is unknown Cartridge "C00B02" in the openvault database starts with the string "C00" but its owning library is unknown

For more information, see COPAN MAID for DMF Quick Start Guide.

c. Stop the newly created LCP and DCPs for the shelf:

```
mover2# ov_stop C00*
```

d. Export the shelf, hostname, and OCF root environment variables for use by the copan_ov_client script:

```
mover2# export OCF_RESKEY_shelf_name=C00
mover2# export OCF_RESKEY_give_host=mover1
mover2# export OCF_ROOT=/usr/lib/ocf
```

e. Transfer ownership of the shelf from mover2 back to mover1:

```
mover2# /usr/lib/ocf/resource.d/sgi/copan_ov_client give
```

3. On mover1, verify that mover1 once again owns the shelf's XVM volumes:

```
mover1# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
```

007-5617-008

4. Repeat steps 1 through 3 for each shelf.

Note: For load-balancing purposes, mover1 should be the default node for half of the shelves and mover2 should be the default node for the remaining shelves.

Create and Test the COPAN MAID OpenVault Client HA Service

As a starting point, use the templates in /usr/share/doc/sgi-ha/templates as building blocks. The instructions in this chapter assume that you use the instance names provided in the templates (such as IP instance name for the IPaddr2 resource type), except as noted; see "Conventions for Resource Instance IDs" on page 11.

Do the following:

- 1. Copy the contents of the cxfs-client-clone template into a new file partial configuration file (referred to as workfile). See "cxfs-client-clone Template" on page 146.
- 2. Copy the primitive text from the cxfs-client template into workfile and replace the site-specific variables as directed in the template comments or in "cxfs-client Template" on page 144.
- 3. Verify that the timeout values are appropriate for your site.
- 4. Verify that there are no comments in workfile.
- 5. Save workfile.
- 6. Update the database:

node1# crm configure load update workfile

Note: As a best practice, you should also run the following command to verify changes you make to the CIB

```
node1# crm_verify -LV
```

For simplicity, this step is not included in the following procedures but is recommended. For more information, see "Use the crm_verify Command to Verify Configuration" on page 15.

- 7. Test the clone:
 - a. Start the clone. For example:

```
mover1# crm resource start CXFS-CLIENT-CLONE
```

It make take several minutes for the filesystems to mount.

- b. Confirm that the clone has started. For example:
 - i. View the status of the cluster on mover1. For example (truncated):

- ii. Verify that the cxfs_client process is running on mover1 and mover2. For example:
 - On mover1:

c. Set mover2 to standby state to ensure that the resources remain on mover1:

mover1# crm node standby mover2

007-5617-008

- d. Confirm that mover 2 is offline and that the resources are off:
 - i. View the status of the cluster on mover1, which should show that mover2 is in standby state. For example:

ii. Verify that the cxfs_client process is not running on mover2. For example, executing the following command on mover2 should provide no output:

```
mover2# ps -ef | grep cxfs_client | grep -v grep
mover2#
```

e. Return mover2 to online status by executing the following on mover1:

```
mover1# crm node online mover2
```

f. Confirm that the clone has returned to started status, as described in step 7b.

Note: It may take several minutes for all filesystems to mount successfully.

- 8. Create another *workfile* file that contains the primitive and location text for the copan_ov_client resource, replacing the site-specific variables as directed in the template comments or in "copan_ov_client Template" on page 139.
- 9. Save workfile.
- 10. To test the copan_ov_client resource, follow the instructions in "Manually Moving a copan_ov_client Resource" on page 193 to move a resource from its default node to its failover node, and then return it to the default node.
- 11. Repeat steps 8—10 for any other shelves to be managed by the HA service.

Confirm the Completed Status

Use the status command to confirm the resulting HA cluster:

node1# crm status

Put the COPAN MAID OpenVault Client HA Service into Production Mode

See Chapter 10, "Put the HA Cluster Into Production Mode" on page 133 to complete the process.

Put the HA Cluster Into Production Mode

Do the following to put the tested HA cluster into production mode:

- 1. "Create the STONITH Facility" on page 133
- 2. "Enable Node-Level Fencing" on page 134
- 3. "Test the STONITH Facility" on page 135
- 4. "Remove Constraints" on page 135

Create the STONITH Facility

Note: The STONITH facility is required to ensure data integrity.

Create the STONITH facility:

- "RHEL STONITH" on page 133
- "SLES STONITH" on page 134

RHEL STONITH

Do the following to create a STONITH facility for RHEL:

- 1. Copy the primitive text from the fence-ipmilan template and replace the site-specific variables as directed in "fence_ipmilan STONITH Template (RHEL)" on page 158.
- 2. Verify that the timeout, userid, passwd, and interface values are appropriate for your site.
- 3. Verify that there are no comments in workfile.
- 4. Update the database:

rhel# crm configure load update workfile

5. Save workfile.

- 6. Repeat steps 1 through 4 for the second node, using different delay values, such as 0 and 15.
- 7. To prevent the acpid service from inappropriately attempting a graceful shutdown, ensure that the services not currently running and will not restart (on both RHEL nodes):
 - On RHEL node1:

```
node1# service acpid stop
node1# chkconfig acpid off
```

• On RHEL node2:

```
node2# service acpid stop
node2# chkconfig acpid off
```

SLES STONITH

Do the following to create a STONITH facility for SLES:

- 1. Copy the primitive text from the ipmi template and replace the site-specific variables as directed in "ipmi STONITH Template (SLES)" on page 166.
- 2. Verify that the timeout, userid, passwd, and interface values are appropriate for your site.
- 3. Verify that there are no comments in workfile.
- 4. Update the database:

```
node1# crm configure load update workfile
```

5. Repeat steps 1 through 4 for the second node.

Enable Node-Level Fencing

Enable node-level fencing (which was previously disabled for testing purposes):

node1# crm configure property stonith-enabled=true

Test the STONITH Facility

Test the STONITH facility:

1. Reset a node:

ha# crm node fence nodename

For example, to reset node1:

ha# crm node fence node1

2. Verify that the specified node was reset and was able to successfully complete a reboot.

Remove Constraints

Ensure that any constraints remaining in the cluster are appropriate for a production environment. To remove any remaining implicit constraints imposed by an administrative move, enter the following:

node1# crm resource unmove resource

007-5617-008

Resource Template Reference

This chapter provides an alphabetical reference to the resource templates provided in /usr/share/doc/sgi-ha/templates:

- "copan_ov_client Template" on page 139
- "cxfs Template" on page 142
- "cxfs-client Template" on page 144
- "cxfs-client-clone Template" on page 146
- "cxfs-client-nfsserver Template" on page 147
- "cxfs-client-smnotify Template" on page 150
- "cxfs-nfs-clone Template" on page 152
- "dmf Template" on page 153
- "DMF-GROUP Template" on page 155
- "dmfman Template" on page 155
- "dmfsoap Template" on page 157
- "fence_ipmilan STONITH Template (RHEL)" on page 158
- "Filesystem Template" on page 160
- "IPaddr2 Template" on page 162
- "ipalias-group Template" on page 164
- "ipmi STONITH Template (SLES)" on page 166
- "lxvm Template" on page 168
- "MailTo Template" on page 170
- "nfsserver Template" on page 171
- "nmb Template" on page 173
- "openvault Template" on page 174

- "ping Template" on page 177
- "smb Template" on page 180
- "tmf Template" on page 181
- "winbind Template" on page 185

Note: Values that you may want to change or that are site-specific are highlighted in bold-italic uppercase (such as *REPLACE-THIS*). In many cases, you can use the defaults provided.

For more information, see:

- "Use the Resource Templates" on page 9
- Chapter 7, "CXFS NFS Edge-Serving HA Service" on page 61
- Chapter 8, "DMF HA Service" on page 77
- Chapter 9, "COPAN MAID OpenVault Client HA Service" on page 121

copan_ov_client Template

A copan_ov_client resource defines a COPAN MAID shelf to be used by an OpenVault client. It is used in a COPAN MAID OpenVault client HA service or optionally in a DMF HA service. Each shelf requires its own primitive instance.

Use the following:

COPAN MAID OpenVault client HA service:

```
primitive SHELF ocf:sgi:copan_ov_client \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="120s" on-fail="fence" \
    params shelf_name="SHELF" \
    meta resource-stickiness="250" migration-threshold="1"
location SHELF-MOVER1-LOCATION SHELF 200: MOVER1
location SHELF-MOVER2-LOCATION SHELF 100: MOVER2
colocation SHELF-CXFS-COLOCATION inf: SHELF CXFS-CLIENT-CLONE
order SHELF-CXFS-ORDER inf: CXFS-CLIENT-CLONE SHELF
```

• DMF HA service:

```
primitive SHELF ocf:sgi:copan_ov_client \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="120s" on-fail="fence" \
   params shelf_name="SHELF" \
   meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
SHELF	Name of this resource instance, normally the three-character COPAN shelf ID, using the naming convention described in the <i>COPAN MAID for DMF Quick Start Guide</i> , such as C00 for cabinet 0, shelf 0 (the bottom shelf)
SHELF-MOVER1-LOCATION	Name of the location constraint for the primary parallel data-mover

node, such as

C00-MOVER1-LOCATION

MOVER1 Name of the primary parallel

data-mover node, such as MOVER1

SHELF-MOVER2-LOCATION Name of the location constraint

for the secondary parallel data-mover node, such as C00-MOVER2-LOCATION

MOVER2 Name of the secondary parallel

data-mover node, such as MOVER2

SHELF-CXFS-COLOCATION Name of the colocation

constraint, such as

C00-CXFS-COLOCATION

CXFS-CLIENT-CLONE Name of the clone, such as

CXFS-CLIENT-CLONE(see

"cxfs-client-clone Template"

on page 146)

SHELF-CXFS-ORDER Name of the order constraint, such

as C00-CXFS-ORDER

For example, for a COPAN MAID OpenVault client HA service:

```
primitive C00 ocf:sgi:copan_ov_client \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="120s" on-fail="fence" \
   params shelf_name="C00" \
   meta resource-stickiness="250" migration-threshold="1"

location C00-MOVER1-LOCATION C00 200: MOVER1
location C00-MOVER2-LOCATION C00 100: MOVER2
colocation C00-CXFS-COLOCATION inf: C00 CXFS-CLIENT-CLONE
order C00-CXFS-ORDER inf: CXFS-CLIENT-CLONE C00
```

For example, for a **DMF HA service**:

```
primitive C16 ocf:sgi:copan_ov_client \
   operations $id="C16-operations" \
   op monitor interval="0" timeout="60s" \
```

```
op monitor interval="120s" timeout="60s" on-fail="restart" \setminus op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \setminus op stop interval="0" timeout="120s" on-fail="fence" \setminus params shelf_name="C16" \setminus meta resource-stickiness="1" migration-threshold="1"
```

Note: The primitive instance for the COPAN MAID OpenVault client HA service requires location, colocation, and order constraints and the high value for resource-stickiness indicates that it will be unlikely to move to the other node, whereas the primitive instance for the DMF HA service requires no constraints and has a resource-stickiness value that matches the rest of the resources in the DMF-GROUP resource (see "DMF-GROUP Template" on page 155).

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Starts the COPAN MAID shelf client by ensuring that RAID sets are available and that the OpenVault LCP and at least one DCP are running
- · Fails if any of the above conditions are not met

The stop operation does the following:

- Stops the COPAN MAID OpenVault client resource
- Fails if the COPAN MAID OpenVault client resource fails to stop

cxfs Template

A cxfs resource controls of the CXFS metadata location. It is used in a DMF HA service.

Use the following:

```
primitive CXFS ocf:sgi:cxfs \
  op monitor interval="120s" timeout="180s" on-fail="restart" \
  op monitor interval="0" timeout="180s" \
  op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="60s" on-fail="fence" \
  params volnames="VOLUME-LIST" \
  meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
CXFS	Name of this resource instance if you want to use something other than the default
VOLUME-LIST	Comma-separated list of volumes under the /dev/cxvm directory, such as:
	cxfsvol1,cxfsvol2
	Note: Do not include any links or volumes that are DMF-managed filesystems.

For example:

```
primitive CXFS ocf:sgi:cxfs \
  op monitor interval="120s" timeout="180s" on-fail="restart" \
  op monitor interval="0" timeout="180s" \
  op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="60s" on-fail="fence" \
  params volnames="cxfsvol1,cxfsvol2" \
  meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Waits until all volumes in VOLUME-LIST are mounted by checking /proc/mounts
- Relocates the metadata server for all volumes in VOLUME-LIST
- Waits for all volumes in *VOLUME-LIST* to be owned by the local node according to clconf_info output
- Never explicitly fails, but can time out

The stop operation never explicitly fails, but can time out.

cxfs-client Template

A cxfs-client resource controls the CXFS client. It is used in the CXFS NFS edge-serving HA service and in the COPAN MAID OpenVault client HA service.

Use the following:

```
primitive CXFS-CLIENT ocf:sgi:cxfs-client \
  op monitor interval="0" timeout="30s" \
  op monitor interval="120s" timeout="30s" on-fail="restart" \
  op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="600s" on-fail="fence" \
  params volnames="VOLUME-LIST"
```

Variable

Description

CXFS-CLIENT

Name of this resource instance if you want to use something other than the default

VOLUME-LIST

Comma-separated list of volume names under the /dev/cxvm directory, as appropriate for the HA service:

- CXFS NFS edge-serving HA service: the CXFS filesystems to be served via NFS, such as cxfsvol1,cxfsvol2
- COPAN MAID OpenVault client HA service: all of the DMF-managed filesystems and the DMF administrative filesystems represented by the following parameters in the DMF configuration file:

```
CACHE_DIR
SPOOL_DIR
TMP_DIR
MOVE_FS
STORE DIRECTORY (DCM MSP)
```

Note: In a COPAN MAID OpenVault client HA service, in most cases you should not include the HOME_DIR or JOURNAL_DIR filesystems because a parallel data-mover node typically needs no access to these filesystems.

For example, suppose you have the following output:

ls /dev/cxvm

cache	dmfusr2	move
diskmsp	home	spool
dmfusr1	journal	tmp

You would likely enter the following (everything except home and journal):

cache, diskmsp, dmfusr1, dmfusr2, move, spool, tmp

For example, for **CXFS NFS edge-serving HA** service:

```
primitive CXFS-CLIENT ocf:sgi:cxfs-client \
  op monitor interval="0" timeout="30s" \
  op monitor interval="120s" timeout="30s" on-fail="restart" \
  op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="600s" on-fail="fence" \
  params volnames="cxfsvol1,cxfsvol2"
```

For example, for COPAN MAID OpenVault client HA service:

```
primitive CXFS-CLIENT ocf:sgi:cxfs-client \
  op monitor interval="0" timeout="30s" \
  op monitor interval="120s" timeout="30s" on-fail="restart" \
  op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="600s" on-fail="fence" \
  params volnames="cache,diskmsp,dmfusr1,dmfusr2,move,spool,tmp"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

Starts the CXFS client by calling the following:

```
service cxfs_client start
```

- Checks the /proc/mounts file until all volumes in VOLUME-LIST are mounted
- · Fails if the CXFS client fails to start

The stop operation does the following:

• Stops the CXFS client by calling the following:

```
service cxfs_client stop
```

Fails if the CXFS client fails to stop

cxfs-client-clone Template

A clone resource named CXFS-CLIENT-CLONE implements control of a CXFS client. It is used in a COPAN MAID OpenVault client HA service.

Use the following:

```
clone CXFS-CLIENT-CLONE CXFS-CLIENT \
  meta clone-max="2" target-role="Stopped" interleave="true"
```

Variable	Description
CXFS-CLIENT-CLONE	Name of this clone instance if you want to use something other than the default
CXFS-CLIENT	Name of the cxfs-client resource instance (see "cxfs-client Template" on page 144) if you want to use something other than the default

For example:

```
clone CXFS-CLIENT-CLONE CXFS-CLIENT \
  meta clone-max="2" target-role="Stopped" interleave="true"
```

The target-role is initially set to Stopped because you do not want the clone to start until you are ready to test it.

cxfs-client-nfsserver Template

A cxfs-client-nfsserver resource controls the NFS server running on a CXFS client. It is used in a CXFS NFS edge-serving HA service. It is part of a clone resource that runs on both nodes in the cluster.

Use the following:

Variable	Description
NFS	Name of this resource instance if you want to use something other than the default
NFS-INIT-PATH	Path to the NFS initialization script:
	• RHEL: /etc/init.d/nfs
	• SLES: /etc/init.d/nfsserver
NFSLOCK-INIT-PATH	Path to the nfslock initialization script:
	• RHEL: /etc/init.d/nfslock
	• SLES: (not used)
STATEDIR	Directory located on the NFS filesystem used to store NFS state (equivalent to /var/lib/nfs/ in a nonclustered configuration), such as:
	/mnt/cxfsvol1/statd/nfs1-nfs2
	Note: There must be a unique <i>STATEDIR</i> value for each HA cluster within a CXFS cluster.

STATEFILE

Filename located on the NFS state filesystem (equivalent to /var/lib/nfs/state in a nonclustered configuration), such as:

/mnt/cxfsvol1/statd/state

Note: A single *STATEFILE* value is shared among all HA clusters within a CXFS cluster.

VOLUME-LIST

Comma-separated list of volume names containing CXFS filesystems that are to be served via NFS, such as:

cxfsvol1

For example:

```
primitive NFS ocf:sgi:cxfs-client-nfsserver \
   op monitor interval="0" timeout="60s" \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="restart" \
    params nfs_init_script="/etc/init.d/nfsserver" \
        statedir="/mnt/cxfsvol1/statd/nfs1-nfs2" \
        statefile="/mnt/cxfsvol1/statd/state" volnames="cxfsvol1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Creates the STATEDIR directory and STATEFILE file as needed
- (NFS v3 only) Updates /etc/sysconfig/nfs to set the following:
 - statd_options to -p STATEDIR -s STATEFILE
 - start_smnotify to no
- Enables NLM grace notification for all volumes in VOLUME-LIST
- Starts the NFS server:
 - RHEL:

service nfs start

- SLES:

service nfsserver start

• Fails if the NFS server does not start or if the NLM grace notification cannot be enabled

The stop operation does the following:

- Stops the NFS server:
 - RHEL:

service nfs stop

- SLES:

service nfsserver stop

- Disables NLM grace notification for all volumes in VOLUME-LIST
- Fails if the NFS server does not stop or if the NLM grace notification cannot be disabled

cxfs-client-smnotify Template

A cxfs-client-smnotify resource controls NFS client notification of NFS server failovers and restarts. It is used in a CXFS NFS edge-serving HA service as part of a group resource that includes an IPaddr2 resource.

Use the following:

```
primitive SMNOTIFY-X ocf:sgi:cxfs-client-smnotify \
   op monitor interval="0" timeout="60s" \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op start interval="0" timeout="30s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="30s" on-fail="fence" \
   params ipalias="IPADDRESS-ALIAS" statedir="STATEDIR" statefile="STATEFILE" \
        gracedir="GRACEDIR" hostname="IPALIAS-HOST" \
        seconds="120" volnames="VOLUME-LIST" \
   meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
SMNOTIFY-X	Name of this resource instance, such as SMNOTIFY-1
IPALIAS-ADDRESS	IP address of the IP address alias associated with the NFS client lock state, which is reclaimed by the NFS client from the NFS server when it receives the NSM reboot notification that is initiated by the cxfs-client-smnotify resource agent, for example 128.162.244.244
STATEDIR	Identical to the <i>STATEDIR</i> value specified above for cxfs-client-nfsserver
STATEFILE	Identical to the STATEFILE value specified above for cxfs-client-nfsserver
GRACEDIR	Directory on the NFS state filesystem that specifies the directory containing the grace-period state, such as:
	/mnt/cxfsvol1/grace
	Note: A single <i>GRACEDIR</i> value is shared among all HA clusters within a CXFS cluster.

IPALIAS-HOST Hostname of IPALIAS-ADDRESS, which must match

what is in /etc/hosts or be resolvable with DNS,

such as hostalias1 or hostalias2

VOLUME-LIST Comma-separated list of all volumes that will be served

via IPALIAS-HOST, such as:

cxfsvol1

For example:

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Ends any active NLM grace period for the IP address alias
- Runs sm-notify to send out an NSM reboot notification to clients
- Fails if sm-notify returns an error

The stop operation does the following:

- · Starts an NLM grace period for the IP address alias
- Drops all locks associated with the IP address alias
- Fails if locks cannot be dropped

cxfs-nfs-clone Template

A clone resource named CXFS-NFS-CLONE implements a CXFS NFS edge-serving HA service. It consists of a group (such as CXFS-NFS-GROUP) constructed of two resources (such as CXFS-CLIENT and NFS).

Use the following:

```
group CXFS-NFS-GROUP CXFS-CLIENT NFS
clone CXFS-NFS-CLONE CXFS-NFS-GROUP \
  meta clone-max="2" target-role="Stopped" interleave="true"
```

Variable	Description
CXFS-NFS-GROUP	Name of this group instance if you want to use something other than the default
CXFS-CLIENT	Name of the cxfs-client resource instance (see "cxfs-client Template" on page 144), such as CXFS-CLIENT
NFS	Name of the $nfsserver$ resource instance (see "nfsserver Template" on page 171), such as nfs
CXFS-NFS-CLONE	Name of this clone instance if you want to use something other than the default

For example:

```
group CXFS-NFS-GROUP CXFS-CLIENT NFS
clone CXFS-NFS-CLONE CXFS-NFS-GROUP \
  meta clone-max="2" target-role="Stopped" interleave="true"
```

dmf Template

A dmf resource starts/stops DMF. It is used in a DMF HA service.

Use the following:

```
primitive DMF ocf:sgi:dmf \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="120s" on-fail="fence" \
   params monitor_level="0" \
   meta resource-stickiness="1" migration-threshold="1"
```

Variable Description DMF Name of this resource instance if you want to use something other than the default

Note: In a CXFS environment, ensure that the timeout values are appropriate for your site; you must account for the time required to relocate the CXFS metadata server for the DMF-managed filesystems.

For example:

```
primitive DMF ocf:sgi:dmf \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="120s" on-fail="fence" \
  params monitor_level="0" \
  meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

• Starts DMF by calling the following:

```
service dmf start
```

 Waits for a successful DMF startup by calling dmstat in a loop until dmfdaemon responds successfully

 \bullet $\;$ Fails if ${\tt dmfdaemon}\; does\; not\; respond\; to\; a\; {\tt dmdstat}\; query\; before\; the\; resource\;$ times out

The stop operation does the following:

• Stops DMF by calling the following:

service dmf stop

- Issues a dmclrmount command
- Fails if DMF could not be stopped

DMF-GROUP Template

The DMF HA implementation uses a single group resource that contains all of the other required resources, so that HA processes can coherently control all of the resources, starting and stopping them in the required order. (DMF-GROUP can be any name you choose).

Following are some sample group definitions, including optional resources:

A CXFS environment using OpenVault:

```
group DMF-GROUP CXFS IP OV DMF NFS etc_samba var_lib_samba SMB NMB DMFMAN DMFSOAP
```

A CXFS environment using TMF:

```
group DMF-GROUP CXFS IP TMF DMF NFS etc_samba var_lib_samba SMB NMB DMFMAN DMFSOAP
```

· A local XVM environment using OpenVault:

• A local XVM environment using TMF:

dmfman Template

A dmfman resource controls DMF Manager. It may be used in a DMF HA service.

Use the following:

```
primitive DMFMAN ocf:sgi:dmfman \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="120s" on-fail="fence" \
  meta resource-stickiness="1" migration-threshold="100"
```

Variable Description

DMFMAN Name of this resource instance if you want to use

something other than the default

For example:

```
primitive DMFMAN ocf:sgi:dmfman \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="120s" on-fail="fence" \
   meta resource-stickiness="1" migration-threshold="100"
```

The monitor operation probes to see if the resource is already running.

The start operation does the following:

• Starts DMF Manger by calling the following:

```
service dmfman start
```

• Waits for DMF Manager to start successfully by calling the following in a loop:

```
service dmfman status
```

• Fails if DMF Manager does not start successfully before the resource times out

The stop operation does the following:

• Stops DMF Manger by calling the following:

```
service dmfman stop
```

Verifies the DMF Manager status by calling the following:

```
service dmfman status
```

· Fails if DMF Manager does not stop successfully

dmfsoap Template

A dmfsoap resource controls the DMF client Simple Object Access Protocol (SOAP) service. It may optionally be used in a DMF HA service.

Use the following:

```
primitive DMFSOAP ocf:sgi:dmfsoap \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="120s" on-fail="fence" \
   meta resource-stickiness="1" migration-threshold="100"
```

Variable

Description

DMFSOAP

Name of this resource instance if you want to use something other than the default

For example:

```
primitive DMFSOAP ocf:sgi:dmfsoap \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="120s" on-fail="fence" \
  meta resource-stickiness="1" migration-threshold="100"
```

The monitor operation probes to see if the resource is already running.

The start operation does the following:

• Starts the DMF client SOAP service by calling the following:

```
service dmfsoap start
```

 Waits for DMF client SOAP service to start successfully by calling the following in a loop:

```
service dmfsoap status
```

 Fails if DMF client SOAP service does not start successfully before the resource times out

The stop operation does the following:

• Stops the DMF client SOAP service by calling the following:

```
service dmfsoap stop
```

Verifies the DMF client SOAP service status by calling the following:

```
service dmfsoap status
```

Fails if the DMF client SOAP service does not stop successfully

fence_ipmilan STONITH Template (RHEL)

A fence_ipmilan resource implements STONITH for one RHEL node in the cluster. It may be used in any HA service for a RHEL cluster.

Note: This resource does not apply to SLES nodes.

Use the following:

```
primitive STONITH-NODE stonith:fence_ipmilan \
  op monitor interval="300s" timeout="60s" on-fail="restart" \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="60s" on-fail="restart" \
    params pcmk_host_list="NODE" ipaddr="BMC-IP" login="admin" \
        passwd="admin" delay="DELAY"
location STONITH-NODE-LOCATION STONITH-NODE -inf: NODE
```

Variable	Description
STONITH-NODE	Name of this resource instance, such as STONITH-node1
NODE	Hostname of the RHEL node that this resource will control, such as node1
BMC-IP	The IP address for the BMC for <i>NODE</i> , such as 128.162.245.197
DELAY	The number of seconds by which the action should be delayed. The nodes must have different values, such as 0 and 15, so that they will not begin the reset process at the same time. This will ensure that both nodes cannot power each

STONITH-NODE-LOCATION

other off nearly simultaneously, so that neither is remaining to turn the other back on.

Name of this location instance if you want to use something other than the default

Note: The values shown for the BMC user ID and password are typical, but you must verify the values at your site.

Ensure that the acpid service is turned off and will not restart.

For example, for two nodes (node1 and node2):

The location constraints ensure that the STONITH-nodel resource will never be located on nodel and that the STONITH-nodel resource will never be located on nodel. This ensures that the power reset is performed via IPMI from another system.

Filesystem Template

A Filesystem resource implements the mount control for a single filesystem. It is used the following HA services:

- DMF HA service in a local XVM environment for the following:
 - DMF-managed filesystems
 - DMF administrative filesystems
 - Dedicated filesystem for the OpenVault serverdir directory (optional)
 - With Samba, for the filesystems used instead of /etc/samba and /var/lib/samba
- DMF HA service in a CXFS environment with Samba for the filesystems used instead of /etc/samba and /var/lib/samba

Note: The filesystem must not be listed in /etc/fstab.

Use the following:

Variable

Description

FILESYSTEM

Name of this resource instance, such as:

- dmfusr1 for a DMF-managed filesystem
- dmf_spool_fs for the DMF administrative filesystem defined by the SPOOL_DIR parameter in the DMF configuration file
- openvaultfs for the filesystem to use as the OpenVault serverdir directory

DEVICE-FILE The /dev/lxvm volume name of the DMF filesystem

device, such as /dev/lxvm/dmfusr1,

/dev/lxvm/dmf_spool, or
/mnt/data/.ha/etc_samba

MOUNT-POINT The mount point for the DMF filesystem, such as

/dmfusr1, /dmf/dmf_spool, or /etc/samba. This mount point must already exist on all nodes in the HA

cluster before you load this text into the CIB.

MOUNT-OPTIONS The mount options for the filesystem.

Note: Filesystems that must be mounted with the dmi mount option should also have an mtpt mount option whose value matches the filesystem's MOUNT_POINT value. This includes the MOVE_FS filesystem and all filesystems with filesystem stanzas (other than those with a MIGRATION_LEVEL setting of archive) in the DMF configuration file.

For example:

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Mounts the filesystem
- · Fails if the mount is unsuccessful

The stop operation does the following:

Unmounts the filesystem

· Fails if the unmount is unsuccessful

IPaddr2 Template

An IPaddr2 resource controls the addition/deletion of an IP address alias on a network interface. It is used in every HA service.

Use the following:

```
primitive IP ocf:heartbeat:IPaddr2 \
  op monitor interval="0" timeout="30s" \
  op start interval="0" timeout="90s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="100s" on-fail="fence" \
  params ip="IP-ADDRESS" \
  meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
IP	Name of this resource instance if you want to use something other than the default, such as ${\tt IP-1}$
IP-ADDRESS	IP address of the virtual channel, such as 128.162.244.240

For example:

```
primitive IP-1 ocf:heartbeat:IPaddr2 \
  op monitor interval="0" timeout="30s" \
  op start interval="0" timeout="90s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="100s" on-fail="fence" \
  params ip="128.162.244.240" \
  meta resource-stickiness="1" migration-threshold="1"
```

The monitor operation probes to see if the resource is already running. Normally, this is the only monitor operation required for an IPaddr2 resource.

The start operation does the following:

- · Establishes the IP address alias
- · Fails if the IP address alias is not established

The stop operation does the following:

- Removes the IP address alias
- Fails if the IP address alias is not removed

ipalias-group Template

A group resource named IPALIAS-GROUP controls the IPaddr2 and cxfs-client-smnotify resources. It is used in a CXFS NFS edge-serving HA service. You will have a pair of IPALIAS-GROUP resources, each with their own set of colocation and order constraints.

Use the following:

```
group \emph{IPALIAS-GROUP-X IP-X SMNOTIFY-X} \setminus
```

meta target-role="Stopped"

colocation IPALIAS-WITH-NFS-X inf: IPALIAS-GROUP-X CXFS-NFS-CLONE order NFS-BEFORE-IPALIAS-X inf: CXFS-NFS-CLONE IPALIAS-GROUP-X

Variable	Description
IPALIAS-GROUP-X	Name of this resource instance, such as IPALIAS-GROUP-1
IP-X	Name of the IPaddr2 resource instance (see "IPaddr2 Template" on page 162), such as IP-1
SMNOTIFY-X	Name of the cxfs-client-smnotify resource instance (see "cxfs-client-smnotify Template" on page 150), such as SMNOTIFY-1
IPALIAS-WITH-NFS-X	Name of this colocation constraint, such as IPALIAS-WITH-NFS-1
CXFS-NFS-CLONE	Name of the NFS clone (see "cxfs-nfs-clone Template" on page 152) if you want to use something other than the default
NFS-BEFORE-IPALIAS-X	Name of this order constraint, such as NFS-BEFORE-IPALIAS-1

For example:

• For the first group:

```
group IPALIAS-GROUP-1 IP-1 SMNOTIFY-1 \
   meta target-role="Stopped"
colocation IPALIAS-WITH-NFS-1 inf: IPALIAS-GROUP-1 CXFS-NFS-CLONE
order NFS-BEFORE-IPALIAS-1 inf: CXFS-NFS-CLONE IPALIAS-GROUP-1
```

• For the second group:

```
group IPALIAS-GROUP-2 IP-2 SMNOTIFY-2 \
    meta target-role="Stopped"
colocation IPALIAS-WITH-NFS-2 inf: IPALIAS-GROUP-2 CXFS-NFS-CLONE
order NFS-BEFORE-IPALIAS-2 inf: CXFS-NFS-CLONE IPALIAS-GROUP-2
```

The colocation and order constraints ensure that IPALIAS-GROUP-1 will only run on a server that is also running a CXFS-NFS-CLONE instance, and the clone instance will be started first.

007-5617-008

ipmi STONITH Template (SLES)

An ipmi resource implements STONITH for one SLES node in the cluster.

Note: This resource does not apply to RHEL nodes.

Use the following:

location STONITH-NODE-LOCATION STONITH-NODE -inf: NODE

Variable	Description
STONITH-NODE	Name of this resource instance, such as STONITH-node1
NODE	Name of the node that this resource will control, such as node1
BMC-IP	The IP address for the BMC of the node this resource will control, such as 128.162.232.79.
STONITH-NODE-LOCATION	Name of the location constraint if you want to use something other than the default

Note: You should verify that BMC userid, passwd, and interface values are correct for your site. (The BMC hardware at some sites may require the lanplus value for interface.)

For example:

```
primitive STONITH-nodel stonith:external/ipmi \
   op monitor interval="0" timeout="60s" \
   op monitor interval="300s" timeout="60s" on-fail="restart" \
   op start interval="0" timeout="60s" on-fail="restart" \
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Initializes the information required for the stonithd daemon to act when necessary
- · Fails if the information cannot be initialized

The location constraint ensures that the STONITH-nodel resource will never be located on nodel. This ensures that the power reset is performed via IPMI from some other system.

007-5617-008

1xvm Template

An lxvm resource implements node ownership control for local XVM volumes. It is used in a DMF HA service.

Use the following:

```
primitive LXVM ocf:sgi:lxvm \
   op monitor interval="120s" timeout="180s" on-fail="restart" \
   op monitor interval="0" timeout="180s" \
   op start interval="0" timeout="900s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="900s" on-fail="fence" \
   params physvols="PHYSVOL-LIST" volnames="VOLUME-LIST" \
   meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
LXVM	Name of this resource instance if you want to use something other than the default
PHYSVOL-LIST	Comma-separated list of the physical volumes for the resource agent to steal, such as:
	myCluster,myClusterStripe1,myClusterStripe2
	Note: PHYSVOL-LIST must contain all of the physical volumes for every logical volume listed in VOLUME-LIST. All physical disks that belong to a logical volume in an HA cluster must be completely dedicated to that logical volume and no other.
VOLUME-LIST	Comma-separated list of volume names under /dev/lxvm to monitor, such as:
	openvault, home, journals, spool, move, tmp, diskmsp, dmfusr1, dmfusr3

Note: A 900-second start timeout should be sufficient in most cases, but sites with large disk configurations may need to adjust this value. You should usually use the same timeout value for start and stop.

For example:

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Steals all physical volumes in PHYSVOL-LIST that are not already owned by the local system
- Verifies that all volumes in VOLUME-LIST are online
- Probes paths for all local XVM devices
- · Switches to preferred paths for all local XVM devices
- Fails if any volume in VOLUME-LIST does not come online

The stop operation does the following:

- Gives all physical volumes in PHYSVOL-LIST to a pseudo-cluster whose ID is of the form OCF-host-pid, which allows the lxvm resource agent to identify the filesystems that it must steal when it becomes active
- Fails if any physical volume in *PHYSVOL-LIST* could not be given away

MailTo Template

A Mailto resource implements failover notification for a given resource. It may be used in any HA service. A message is sent whenever the specified resource starts or stops.

Use the following:

```
primitive NOTIFY ocf:heartbeat:MailTo \
   params email="EMAIL-ADDRESS" subject="RESOURCE-TO-TRACK"
colocation NOTIFIER inf: RESOURCE-TO-TRACK NOTIFY
```

Variable	Description
NOTIFY	Name of this resource instance if you want to use something other than the default
EMAIL-ADDRESS	The address to be sent notifications
RESOURCE-TO-TRACK	Name of the resource to be tracked, which may be an individual resource such as dmf or a group resource such as DMF-GROUP (see "DMF-GROUP Template" on page 155)
NOTIFIER	Name of the colocation constraint, such as NOTIFIER

For example:

```
primitive NOTIFY ocf:heartbeat:MailTo \
   params email="admin@mycompany.com" subject="DMF-GROUP"
colocation NOTIFIER inf: DMF-GROUP NOTIFY
```

nfsserver Template

An nfsserver resource controls the start/stop of NFS. It may be used in a DMF HA service.

Use the following:

```
primitive NFS ocf:heartbeat:nfsserver \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="120s" on-fail="fence" \
   params nfs_shared_infodir="STATEDIR" nfs_ip="IP ADDRESS-ALIAS" \
   meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
NFS	Name of this resource instance if you want to use something other than the default.
STATEDIR	Site-specific NFS shared-information directory, such as a $/mnt/cxfsvoll/.nfs$ subdirectory in the exported filesystem.
IP ADDRESS-ALIAS	IP address alias associated with the NFS client lock state (which is reclaimed by the NFS client from the NFS server when it receives the NSM reboot notification that is initiated by this nfsserver resource), for example 128.162.244.244. This IP address alias will be the same IP address specified for IP-ADDRESS in one of the IPaddr2 resources (see "IPaddr2 Template" on page 162).

For example:

```
primitive NFS ocf:heartbeat:nfsserver \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="120s" on-fail="fence" \
   params nfs_shared_infodir="/mnt/cxfsvol1/.nfs" nfs_ip="128.162.232.79" \
  meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Starts the NFS server:
 - RHEL:

```
service nfs start
```

- SLES:

```
service nfsserver start
```

- Notifies clients by calling the nfs_notify_cmd command
- Fails if the NFS server does not start

The stop operation does the following:

- Stops the NFS server:
 - RHEL:

```
service nfs stop
```

- SLES:

```
service nfsserver stop
```

• Fails if the NFS server does not stop

nmb Template

An nmb resource controls the nmbd service for Samba. It may be used in a DMF HA service.

Use the following:

```
primitive NMB lsb:nmb \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="60s" on-fail="fence" \
  meta resource-stickiness="1" migration-threshold="1"
```

Variable

Description

NMB

Name of this resource instance if you want to use something other than the default

For example:

```
primitive NMB lsb:nmb \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="60s" on-fail="fence" \
  meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

• Starts the nmbd service by calling the following:

```
service nmb start
```

• Fails if the nmbd service does not start

The stop operation does the following:

• Stops the nmbd service by calling the following:

```
service nmb stop
```

Fails if the nmbd service does not stop

007–5617–008 173

openvault Template

An openvault resource controls the start/stop of all OpenVault processes. It is used in a DMF HA service.

Use the following:

```
primitive OV ocf:sgi:openvault \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="90s" on-fail="fence" \
  params virtualhost="VIRTUALHOST" serverdir="SERVERDIR" \
  meta resource-stickiness="1" migration-threshold="1" is-managed="false"
```

Variable	Description
OV	Name of this resource instance if you want to use something other than the default.
VIRTUALHOST	Hostname where the OpenVault server will be listening (which must also have its own IPaddr2 resource instance, see "IPaddr2 Template" on page 162).
SERVERDIR	The directory that will eventually contain the OpenVault server configuration. SERVERDIR could be a directory that will be dedicated for OpenVault use (such as /dmf/openvault) or it could be an HA-managed filesystem in the same resource group that has sufficient space (such as /dmf/home) to contain the subdirectory (such as /dmf/home/openvault) and its contents. The filesystem must be either:
	 A directory that will become a mountable CXFS filesystem managed by a cxfs resource

- A directory that will become a mountable XFS filesystem managed by a Filesystem resource in the same resource group as the openvault resource

174 007-5617-008 **Note:** As part of the conversion to HA, OpenVault will create this directory and move its database and logs into the directory; OpenVault will fail if the directory already exists.

For example, if you define SERVERDIR as /dmf/home/openvault, the parent directory /dmf/home directory can exist but the entire path /dmf/home/openvault must not exist.

For example:

```
primitive OV ocf:sgi:openvault \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="90s" on-fail="fence" \
   params virtualhost="myhost" serverdir="/dmf/home/openvault" \
   meta resource-stickiness="1" migration-threshold="1" is-managed="false"
```

Note: For the initial configuration process, the setting for the is-managed attribute must be false as shown above. Step 16 of the procedure in "OpenVault Resource" on page 90 will reset this attribute to true so that the resource will run under HA control.

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Verifies that the OpenVault serverdir directory is mounted and that the *VIRTUALHOST* IP address is available
- Starts OpenVault with the following command:

```
ov_start server clients
```

 Fails if either SERVERDIR or VIRTUALHOST is unavailable, or if OpenVault does not start

The stop operation does the following:

• Stops OpenVault with the following command:

```
ov_stop server clients
```

- Kills any remaining OpenVault processes found by ov_procs
- Clears the OpenVault semaphore with the following command:

```
ipcrm -s
```

• Fails if OpenVault could not be stopped or if the semaphore could not be cleared

ping Template

The HA software calculates a score for each node that determines where resources will run. A ping resource further influences the node on which a given resource will run. It may be used in any HA service.

Use the following cloned resource:

```
primitive PING ocf:pacemaker:ping \
  op monitor interval="0" timeout="60s" \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op start interval="0" timeout="60s" on-fail="restart" \
  params name="PINGSCORE" multiplier="NNNN" debug="true" \
  host_list="IP-PING-LIST"
clone PING-CLONE PING
```

The above creates an attribute called *PINGSCORE* on both nodes (because the *PING* resource is cloned). The value of the *PINGSCORE* attribute will be calculated as the number of IP addresses (from *IP-PING-LIST*) successfully pinged from that node times the *NNNN* multiplier.

To implement a connectivity influence constraint on *RESOURCE* in which the node that can successfully contact the most IP addresses in *IP-PING-LIST* will be chosen (assuming that all other elements of the cumulative node scores for *RESOURCE* are equal), use the following:

```
location BEST-LOCATION RESOURCE \
    rule PINGSCORE: defined PINGSCORE
```

This adds the value of *PINGSCORE* on each node to that node's overall score for *RESOURCE*, if the *PINGSCORE* attribute is defined (that is, the *PING* resource is running on the node).

To implement a connectivity influence constraint on *RESOURCE* that requires a node to meet a minimum-connectivity requirement in order to be eligible to run the *RESOURCE*, use the following constraint:

```
location THRESHOLD-LOCATION RESOURCE \ rule -inf: not_defined PINGSCORE or PINGSCORE lt THRESHOLD-VALUE
```

This sets the node score for *RESOURCE* to -INFINITY if either the *PINGSCORE* attribute is not defined for a node (that is, the *PING* resource is not running on the node) or the value of *PINGSCORE* is less than the defined *THRESHOLD-VALUE* on that node.

Variable	Description
PING	Name of this resource instance if you want to use something other than the default
IP-PING-LIST	Comma-separated list of IP addresses on which to execute ping, such as:
	28.162.246.63,128.162.246.61,128.162.232.79
PINGSCORE	Name of the attribute(if you want to use something other than the default) that will consist of a value computed by the ping resource agent.
	Note: Because the <i>PING</i> resource is cloned, all nodes in the cluster will use the same attribute. On each node, the value of the attribute is calculated by the ping resource agent for the <i>PINGSCORE</i> parameter will be computed as the number of IP addresses (from the <i>IP-PING-LIST</i>) that were successfully accessed via the ping command multiplied by the <i>NNNN</i> value.
NNNN	The arbitrary value, such as 1000, by which the number of the IP addresses from <i>IP-PING-LIST</i> which were successfully reached via ping will be multiplied.
PING-CLONE	Name of the clone instance if you want to use something other than the default
BEST-LOCATION	Name of the location constraint if you want to use something other than the default
THRESHOLD- LOCATION	Name of the location constraint if you want to use something other than the default
RESOURCE	Resource to be influenced, such as DMF-GROUP (see "DMF-GROUP Template" on page 155)
THRESHOLD-VALUE	The minimum number of IP addresses that <i>RESOURCE</i> must be able to ping, multiplied by the <i>NNNN</i> multiplier value
For example, suppose that you want to answe that a made muning the DME CROUD is	

For example, suppose that you want to ensure that a node running the DMF-GROUP is always able to successfully ping at least two of the IP addresses in *IP-PING-LIST*;

using an *NNNN* multiplier value of 1000, the *THRESHOLD-VALUE* would be 2000. You could use the following:

```
primitive PING ocf:pacemaker:ping \
   op monitor interval="0" timeout="60s" \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op start interval="0" timeout="60s" on-fail="restart" \
    params name="PINGSCORE" multiplier="1000" debug="true" \
    host_list="128.162.246.63,128.162.246.61,128.162.232.79"
clone PING-CLONE PING
location THRESHOLD-LOCATION DMF-GROUP \
   rule -inf: not_defined PINGSCORE or PINGSCORE lt 2000
```

smb Template

An smb resource controls the smb service for Samba. It may be used in a DMF HA service.

Use the following:

```
primitive SMB lsb:smb \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="60s" on-fail="fence" \
  meta resource-stickiness="1" migration-threshold="1"
```

Variable

Description

SMB

Name of this resource instance if you want to use something other than the default

For example:

```
primitive SMB lsb:smb \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="60s" on-fail="fence" \
  meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

• Starts the smbd service by calling the following:

```
service smb start
```

• Fails if the smbd service does not start

The stop operation does the following:

• Stops the smbd service by calling the following:

```
service smb stop
```

Fails if the smbd service does not stop

tmf Template

A tmf resource controls the start/stop of TMF. It may be used in a DMF HA service.

Use the following:

```
primitive TMF ocf:sgi:tmf \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="600s" on-fail="fence" \
   params devgrpnames="DEVGRPNAME-LIST" mindevsup="MINDEVSUP-LIST" \
        devtimeout="DEVTIMEOUT-LIST" loader_names="LOADERNAME-LIST" \
        loader_hosts="HOST-LIST" loader_users="USER-LIST" \
        loader_passwords="PASSWORD-LIST" admin_emails="EMAIL-ADDRESS-LIST" \
        meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
TMF	Name of this resource instance if you want to use something other than the default
DEVGRPNAME-LIST	Comma-separated list of TMF device groups defined in the ${\tt tmf.config}$ file that are to be managed by HA, such as:
	ibm3592,t10ka
MINDEVSUP-LIST	Comma-separated list of the minimum number of devices, one entry per device group, that must be configured up successfully within the corresponding device group in order to count the group as being highly available, such as:
	1,0

Note: A value of 0 indicates that failover will never be initiated, even if all the devices in that device group are unavailable. This value is supported for all device groups; however, in order for TMF to be considered up, at least one tape device in some device group must be up. If there are no devices up in all defined device groups, then the resource agent will be considered to be in a stopped state, which will impact the resource monitor and the resource start actions.

DEVTIMEOUT-LIST

Comma-separated list of device timeouts in seconds, one entry per device group, that are used to decide how long to wait for a device in that device group to finish configuring up or down, such as:

120,240

Changing the up/down state of a device may require rewinding and unloading a tape left in the drive by a previous host. Different tape device types have different maximum rewind and unload times, which can be obtained from the vendor's product literature. To calculate the timeout value for a particular device group, add the maximum rewind time for a device in that group to the device's unload time plus add an additional 10 seconds to allow for any required robot hand movement.

For example, 3592 tape drives with a maximum rewind time of 78 seconds and an unload time of 21 seconds require a value of 78+21+10=109 seconds. 9940B tape drives with a maximum rewind time of 90 seconds and an unload time of 18 seconds require a value of 90+18+10=118.

Note: The tmf resource agent will try twice to configure each drive up before considering it unusable, so the start timeout value should therefore be at least twice the greatest value in *DEVTIMEOUT-LIST*. For example, 2*118=236. You should usually use the same timeout value for start and stop.

LOADERNAME-LIST

Comma-separated list of loader names configured in DEVGRPNAME-LIST tmf.config that correspond to the device groups listed in DEVGRPNAME-LIST, such as:

ibm3494,1700a

HOST-LIST

Comma-separated list of hosts through which the corresponding loaders listed in *LOADERNAME-LIST* are controlled, such as:

ibm3494cps,stkacsls

USER-LIST

Comma-separated list of user names that are used to log in to the corresponding hosts listed in *HOST-LIST*, such as:

root,acssa

PASSWORD-LIST

Comma-separated list of passwords corresponding to the user names listed in *USER-LIST*, such as:

passwd1,passwd2

EMAIL-ADDRESS-LIST

(Optional) Comma-separated list of administrator email addresses corresponding to the device groups listed in *DEVGRPNAME-LIST*, such as:

root,admin1

007-5617-008

Note: You can use the same email address for more than one device group (such as admin1,admin1). The email address will be used to send a message whenever tape drives that were previously available become unavailable, so that the administrator can take action to repair the drives in a timely fashion.

For example:

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- · Starts the TMF daemon if necessary
- Configures up the tape loader and all tape drives in each device group
- Preempts reservations
- Forces dismount if necessary
- Fails if insufficient drives come up in any device group

The stop operation does the following:

- · Configures down all tape drives in each device group
- Forces a release of drives allocated to a user job
- Fails if any drive in any device group could not be stopped

winbind Template

If your Samba implementation uses an authentication type that requires the winbind daemon, you can use a winbind resource to control it. It may be used in a DMF HA service.

Use the following:

```
primitive WINBIND lsb:winbind \
  op monitor interval="0" timeout="60s" \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="60s" on-fail="fence" \
  meta resource-stickiness="1" migration-threshold="1"
```

Variable

Description

WINBIND

Name of this resource instance if you want to use something other than the default

For example:

```
primitive WINBIND lsb:winbind \
  op monitor interval="0" timeout="60s" \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="60s" on-fail="fence" \
  meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

• Starts the winbind service by calling the following:

```
service smb winbind
```

Fails if the winbind service does not start

The stop operation does the following:

• Stops the smbd service by calling the following:

```
service smb winbind
```

• Fails if the winbind service does not stop

Administrative Tasks and Considerations

This chapter discusses various administrative tasks and considerations for an HA cluster:

- "Viewing the Cluster Status " on page 188
- "Viewing the Cluster Configuration" on page 189
- "Putting the Cluster into Maintenance Mode" on page 189
- "Backing Up the CIB" on page 190
- "Understanding CIFS and NFS in an HA Cluster" on page 190
- "Reviewing the Log Files" on page 190
- "Clearing the Resource Failcount" on page 190
- "Clearing the Resource State on a Node" on page 191
- "Controlling the Number of Historical Files" on page 191
- "Changing DMF Configuration Parameters" on page 192
- "Restarting the OpenVault Server" on page 192
- "Manually Moving a copan_ov_client Resource" on page 193
- "Performing a Rolling Upgrade" on page 195
- "Stopping the Underlying HA Control Services" on page 203
- "Manually Resetting a Node" on page 204
- "Hardware Maintenance on a Cluster Node" on page 204
- "Maintenance with a Full Cluster Outage" on page 210

Viewing the Cluster Status

Use the following commands to view the cluster status:

```
ha# crm status
ha# crm_verify -LV
ha# crm status failcounts
```

For example, the following truncated output shows that there was an error in starting DMF on node2:

```
nodel# crm status failcounts
2 Nodes configured, 2 expected votes
9 Resources configured.
Online: [ node1 node2 ]
 Resource Group: DMF-GROUP
     LXVM (ocf::sgi:lxvm):
                                      Started nodel
              (ocf::heartbeat:Filesystem): Started node1
     home
     spool (ocf::heartbeat:Filesystem): Started node1
     journals (ocf::heartbeat:Filesystem): Started node1
              (ocf::heartbeat:Filesystem):
     tmp
                                           Started nodel
              (ocf::heartbeat:Filesystem): Started node1
     store
     dmi_fs (ocf::heartbeat:Filesystem): Started node1
     ΙP
               (ocf::heartbeat:IPaddr2):
                                             Started nodel
     DMF
               (ocf::sgi:dmf): Started node1
Migration summary:
* Node node1:
* Node node2:
   DMF: migration-threshold=1 fail-count=1000000
Failed actions:
    DMF_start_0 (node=node2, call=34, rc=-2, status=Timed Out): unknown exec error
```

Viewing the Cluster Configuration

To view the cluster configuration, enter the following:

```
ha# crm configure show
```

If you want to view the entire contents of the cluster information base (CIB) in XML format, including dynamic status information, you can use the following cibadmin(8) command:

```
ha# cibadmin -Q
```

To limit the output to a specific set of information, use the following:

```
ha# cibadmin -o modifier -Q
```

The *modifier* value can be one of the following:

constraints crm_config nodes resources status

Putting the Cluster into Maintenance Mode

You must put the cluster into maintenance mode before manually stopping or restarting any cluster components. To put the cluster into maintenance mode, enter the following:

```
ha# crm configure property maintenance-mode=true
```

You can then manually stop and restart individual resources as needed.

To return the cluster to managed status, enter the following:

ha# crm configure property maintenance-mode=false

Backing Up the CIB

You should make a backup copy of the configuration in the cluster information base (CIB) after making and verifying changes, so that you can easily recover in case of future CIB corruption (see "Recovering from a CIB Corruption" on page 231). Do the following to save only static configuration information to a plain text file labeled with the current date and time:

ha# crm configure save CIB.\$(date +%Y%m%d-%H%M%S)

You can view the resulting text file with any text tool, such as cat(1) or vi(1).

Understanding CIFS and NFS in an HA Cluster

CIFS failover requires that the client application reissue the I/O after the failover occurs. Applications such as XCOPY will do this, but many other applications will not. Applications that do not retry may abort when CIFS services are moved between nodes.

NFS failover is handled by the kernel, so no changes are required for an NFS client application; applications doing I/O on NFS will pause while the failover is occurring.

Reviewing the Log Files

See "Examine Log Files" on page 16.

Clearing the Resource Failcount

To clear individual resource failcounts, either reboot the nodes or enter the following on each node for each individual resource:

ha# crm resource failcount resource delete nodename

Clearing the Resource State on a Node

Caution: Do not clear the resource state on the node where a resource is currently running.

After you resolve the cause of action error messages in the crm status output, you should enter the following to clear the resource state from a given node:

ha# crm resource cleanup resource nodename

Note: Sometimes, the resource state can be cleared automatically if the same action for the same resource on the same node subsequently completes successfully.

Controlling the Number of Historical Files

Each time the configuration is updated, a new version of the CIB is created and the older version is saved. These files reside in /var/lib/pacemaker/pengine.

SGI recommends that you keep the number of files manageable by setting the following crm properties as appropriate for your site:

```
pe-error-series-max
pe-input-series-max
pe-warn-series-max
```

To set the properties, use the following command line:

crm configure property propertyname=value

For example, to set a maximum of 50 error, input, and warning files:

```
ha# crm configure property pe-error-series-max=50 ha# crm configure property pe-input-series-max=50 ha# crm configure property pe-warn-series-max=50
```

For more information, see the documentation listed in "High Availability Overview" on page 1.

Changing DMF Configuration Parameters

You can change many DMF configuration-file parameters while DMF is running, but others require that DMF be stopped. For more information, see the "Best Practices" chapter in *DMF 6 Administrator Guide for SGI InfiniteStorage*). For those parameters that require DMF to be stopped, do the following:

1. Put the cluster into maintenance mode:

ha# crm configure property maintenance-mode=true

2. Stop the DMF service:

ha# service dmf stop

- 3. Make the required changes to the DMF configuration file according to the instructions in the DMF administrator's guide, such as by using DMF Manager.
- 4. Verify the parameter changes by using DMF Manager or the following command:

ha# dmcheck

5. Start the DMF service:

ha# service dmf start

6. Verify DMF functionality, such as by running the following command and other DMF commands (based on the changes made):

```
ha# dmdstat -v
```

7. Return the cluster to managed status:

ha# crm configure property maintenance-mode=false

Restarting the OpenVault Server

To restart the OpenVault server, do the following:

1. Put the HA cluster into maintenance mode:

ha# crm configure property maintenance-mode=true

2. Stop the OpenVault service:

ha# service openvault stop

3. Start the OpenVault service:

```
ha# service openvault start
```

4. Return the HA cluster to managed status:

ha# crm configure property maintenance-mode=false

Manually Moving a copan ov client Resource

You may want to manually move a copan_ov_client resource as followings:

- To its failover node when you want to perform maintenance on its default node
- · Back to its default node, after maintenance is complete on the default node
- Back to its default node, after the formerly failed default node rejoins the HA cluster

Before you can move the resource from one node to another, you must ensure that you stop any activity occurring on the COPAN MAID shelf that is managed by the resource. This requires that you disable the mover capability on the currently active node (which stops activity for all shelves owned by that node).

You must also ensure that the new node is ready to receive the resource:

- The node must be online
- The CXFS client and STONITH services must be operational on the node

For example, to move the CO1 resource from parallel data-mover node mover1 to parallel data-mover node mover2:

1. Verify that mover 2 is ready to receive the resource by examining its status output with the crm(8) command. For example:

In the above output, note the following:

- The C01 resource is Started on mover1
- mover2 is Online
- The CXFS-CLIENT and STONITH-node1 clones have a status of Started on mover2
- 2. On the DMF server, disable mover1 so that it will cease all COPAN MAID shelf activity:

```
dmfserver# dmnode_admin -d mover1
```

3. Verify that there are no dmatwo or dmatro data-mover processes running on mover1. For example, the output of the following command should be empty:

```
mover1# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
mover1#
```

If the output is not empty, you must wait for the dmnode_admin -d action from step 2 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

4. Clear any failcounts and move the resource to mover 2:

```
mover2# crm resource failcount C00 delete mover2
mover2# crm resource move C00 mover2
```

This may take a few moments to complete.

5. Verify that the resource has moved to mover 2. For example:

In the above output, note that CO1 resource is started on mover 2.

6. Remove the constraint that requires CO1 to be controlled by mover2:

```
mover2# crm resource unmove C01
```

- 7. Repeat steps 3 through 6 for any other copan_ov_client resources requiring a move from mover1 to mover2.
- 8. On the DMF server, reenable mover1 so that it can resume COPAN MAID shelf activity:

```
dmfserver# dmnode_admin -e mover1
```

Performing a Rolling Upgrade

Note: Some software may not allow a rolling upgrade. Such a situation might require an extended outage window with all resources down and the appropriate underlying HA control services (cman and pacemaker for RHEL, openais for SLES) turned off, which would permit more thorough testing (similar to that done during the initial installation). See "Maintenance with a Full Cluster Outage" on page 210.

Assuming that you have a two-node production HA environment in place and want to perform a rolling upgrade of appropriate software with minimal testing, use the procedures in the following sections:

- "COPAN MAID OpenVault Client HA Service for Mover Nodes Rolling Upgrade" on page 196
- "CXFS NFS Edge-Serving HA Rolling Upgrade" on page 197
- "DMF HA Rolling Upgrade" on page 200

COPAN MAID OpenVault Client HA Service for Mover Nodes Rolling Upgrade

Do the following for a rolling upgrade in an HA cluster that consists of two parallel data-mover nodes (mover1 and mover1):

1. Read the release notes for the software you intend to upgrade.

For ISSP software, read the *SGI InfiniteStorage Software Platform Release Note* and any late-breaking caveats on SupportfolioTM Online:

```
https://support.sgi.com/login
```

- 2. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- 3. Move any copan_ov_client resources running on mover2 to mover1 according to the directions in "Manually Moving a copan_ov_client Resource" on page 193.
- 4. Stop all services on mover2 and ensure that they will not restart on the next boot of mover2:
 - · RHEL:

```
mover2# chkconfig cman off
mover2# chkconfig pacemaker off

mover2# service cman stop
mover2# service pacemaker stop
```

• SLES:

```
mover2# chkconfig openais off
mover2# service openais stop
```

- 5. Upgrade the software on mover 2.
- 6. Reboot mover 2.
- 7. Ensure that the services will restart upon reboot and start services immediately:
 - RHEL:

```
mover2# service cman start
mover2# service pacemaker start

mover2# chkconfig cman on
mover2# chkconfig pacemaker on

• SLES:
mover2# service openais start

mover2# chkconfig openais on
```

- 8. Move all copan_ov_client resources running on mover1 to mover2 according to the directions in "Manually Moving a copan_ov_client Resource" on page 193.
- 9. Repeat step 4 through step 7 above but executed for mover1.
- 10. Move the <code>copan_ov_client</code> resources than normally run on <code>mover1</code> back to that node, according to the directions in "Manually Moving a <code>copan_ov_client</code> Resource" on page 193.
- 11. Remove the constraints required to move the resources by executing the following command for each <code>copan_ov_client</code> resource

```
mover2# crm resource unmove copan_ov_client_name
```

The cluster is now back to normal operational state.

CXFS NFS Edge-Serving HA Rolling Upgrade

Note: Due to the way that NLM grace notification is implemented, all of the server-capable administration nodes in the CXFS cluster must run the same version of CXFS in order to use CXFS relocation. Therefore, you must use CXFS recovery and not CXFS relocation during a rolling upgrade.

Do the following for a rolling upgrade in a CXFS NFS edge-serving HA cluster with two nodes (node1 and node2):

1. Read the release notes for the software you intend to upgrade.

For ISSP software, read the *SGI InfiniteStorage Software Platform Release Note* and any late-breaking caveats on SupportfolioTM Online:

https://support.sgi.com/login

- 2. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- 3. Ensure that the resource groups are running on node1:

```
node1# crm resource move IPALIAS-GROUP-1 node1
node1# crm resource move IPALIAS-GROUP-2 node1
```

4. Set the node you intend to upgrade to standby state. (Putting a node in standby state will move, if possible, or stop any resources that are running on that node.) For example, if you intend to upgrade node2:

```
node1# crm node standby node2
```

This will shut down CXFS_CLIENT on node2 automatically.

- 5. Disable the appropriate underlying HA control services from being started automatically at boot time and stop the currently running services:
 - RHEL:

```
node2# chkconfig cman off
node2# chkconfig pacemaker off

node2# service cman stop
node2# service pacemaker stop
```

• SLES:

```
node2# chkconfig openais off
node2# service openais stop
```

- 6. Upgrade the software on node2.
- 7. Reboot node2 and verify basic upgraded functionality.

- 8. Enable HA to be started automatically at boot time and immediately start it on node 2:
 - RHEL:

```
node2# chkconfig cman on
node2# chkconfig pacemaker on
node2# service cman start
node2# service pacemaker start
```

• SLES:

```
node2# chkconfig openais on
node2# service openais start
```

9. Make node2 active again:

```
node1# crm node online node2
```

10. Move the resource groups from node1 to node2:

```
nodel# crm resource move IPALIAS-GROUP-1 node2
nodel# crm resource move IPALIAS-GROUP-2 node2
```

- 11. (Optional) Allow the resource groups to run on node2 for a period of time as a test.
- 12. Repeat steps 4 through 11 above but switching the roles for node1 and node2.

Note: In most cases, you will want to leave the resource groups running on node2 in order to avoid any unnecessary interruptions to the services that would have to be restarted if they were moved to node1. However, if you prefer to have the resource groups run on node1 despite any potential interruptions, do the following:

1. Move the appropriate resource group from node2 back to node1. For example:

```
node1# crm resource move IPALIAS-GROUP-1 node1
```

2. Remove the implicit location constraints imposed by the administrative move command above:

```
node1# crm resource unmove IPALIAS-GROUP-1
node1# crm resource unmove IPALIAS-GROUP-2
```

DMF HA Rolling Upgrade

Do the following for a rolling upgrade in a DMF HA cluster with two nodes (node1 and node2):

1. Read the release notes for the software you intend to upgrade.

For ISSP software, read the *SGI InfiniteStorage Software Platform Release Note* and any late-breaking caveats on Supportfolio Online:

```
https://support.sgi.com/login
```

- Ensure that the HA cluster, the underlying CXFS cluster (if applicable), and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than intended constraints.
- 3. Disable the CXFS services from being started automatically at boot time:

```
node2# chkconfig cxfs off
node2# chkconfig cxfs_cluster off
```

- 4. Disable the appropriate underlying HA control services from being started automatically at boot time:
 - · RHEL:

```
node2# chkconfig cman off
node2# chkconfig pacemaker off
```

• SLES:

```
node2# chkconfig openais off
```

5. Ensure that the resource groups are running on node1.

Note: Moving the DMF-GROUP resource group will involve CXFS relocation of the DMF administrative filesystems and DMF managed user filesystems. However, you cannot use CXFS relocation if your CXFS cluster also includes a CXFS NFS edge-server HA pair and the CXFS server-capable administration nodes are running different software levels. If that is the case, you must move the DMF-GROUP resource group via CXFS recovery by resetting the node that is running the DMF-GROUP resource.

Do one of the following, as appropriate for your site:

• Using CXFS recovery:

```
node1# crm node fence node2
```

• Using CXFS relocation:

Note: Stopping the appropriate underlying HA control services will cause a failover if there are resources running on the node. Depending on how things are defined and whether the resource stop actions succeed, it might even cause the node to be reset.

- RHEL:

```
node2# crm resource move DMF-GROUP node1

node2# service cman stop
node2# service pacemaker stop
node2# service cxfs stop
node2# service cxfs_cluster stop

SLES:

node2# crm resource move DMF-GROUP node1

node2# service openais stop
node2# service cxfs stop
node2# service cxfs stop
node2# service cxfs_cluster stop
```

- 6. Verify that the services have moved to node1.
- 7. Upgrade the software on node2 and reboot.

8. Add node2 back into the CXFS cluster (if present) by enabling the services to be started automatically at boot time and then starting them immediately:

```
node2# chkconfig cxfs_cluster on
node2# chkconfig cxfs on
node2# service cxfs_cluster start
node2# service cxfs start
```

- 9. Verify that node2 is fully back in the CXFS cluster with filesystems mounted.
- 10. Enable the appropriate underlying HA control services to be started automatically at boot time and then start them immediately on node2:
 - RHEL:

```
node2# chkconfig cman on
node2# chkconfig pacemaker on
node2# service cman start
node2# service pacemaker start
• SLES:
```

node2# chkconfig openais on
node2# service openais start

11. Repeat steps 3 through 10 above but executed for node1.

Note: In most cases, you will want to leave the resource group running on node2 in order to avoid any unnecessary interruptions to the services that would have to be restarted if they were moved to node1. However, if you prefer to have the resource group run on node1 despite any potential interruptions, do the following:

1. Move the appropriate resource groups from node2 back to node1:

```
node1# crm resource move DMF-GROUP node1
```

2. Remove the implicit location constraints imposed by the administrative move command above:

```
node1# crm resource unmove DMF-GROUP
```

The cluster is now back to normal operational state.

Stopping the Underlying HA Control Services

Note: Stopping HA control services will cause a failover if there are resources running on the node. Depending on how things are defined and whether the resource stop actions succeed, it might even cause the node to be reset.

To stop the appropriate underlying HA control services on the local node, enter the following:

· RHEL:

ha# service cman stop ha# service pacemaker stop

SLES:

ha# service openais stop

Manually Resetting a Node

To manually issue a system reset of a given node, execute the following from a different node in the HA cluster:

ha# crm node fence node to be reset

Note: This command requires that the stonith resource is defined and enabled in the CIB.

For example, to reset node1 from node2:

node2# crm node fence node1

Hardware Maintenance on a Cluster Node

This section discusses the following:

- "Hardware Maintenance in a COPAN MAID OpenVault Client HA Service" on page 204
- "Hardware Maintenance in a CXFS NFS Edge-Serving HA Service" on page 207
- "Hardware Maintenance in a DMF HA Service" on page 208

Hardware Maintenance in a COPAN MAID OpenVault Client HA Service

If you must perform maintenance on one node in the cluster that provides the COPAN MAID OpenVault client HA service, do the following:

- 1. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- 2. On the DMF server, disable the parallel data-mover node on which you want to perform maintenance (downnode) so that it will cease all COPAN MAID shelf activity:

dmfserver# dmnode_admin -d downnode

Wait for the activity to cease on downnode before continuing to the next step.

3. Verify that there are no dmatwc or dmatrc data-mover processes running on downnode. For example, the output of the following command should be empty:

```
downnode# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
ha#
```

If the output is not empty, you must wait for the dmnode_admin -d action from step 2 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

4. Ensure that any copan_ov_client shelf resources are running on the node that does not require maintenance (upnode). For example:

```
downnode# crm resource move C00 upnode downnode# crm resource move C01 upnode
```

5. Set downnode to standby state. (Putting a node in standby state will move, if possible, or stop any resources that are running on that node.) For example:

```
upnode# crm node standby downnode
```

This will shut down CXFS_CLIENT on downnode automatically.

- 6. Disable the appropriate underlying HA control services from being started on downnode automatically at boot time and stop the currently running services:
 - RHEL:

```
downnode# chkconfig cman off
downnode# chkconfig pacemaker off

downnode# service cman stop
downnode# service pacemaker stop
```

• SLES:

```
downnode# chkconfig openais off
downnode# service openais stop
```

- 7. Perform maintenance on downnode.
- 8. Reboot downnode and verify basic functionality.

- 9. Enable HA to be started automatically at boot time and immediately start it on downnode:
 - RHEL:

```
downnode# chkconfig cman on
downnode# chkconfig pacemaker on
downnode# service cman start
downnode# service pacemaker start
```

• SLES:

```
downnode# chkconfig openais on
downnode# service openais start
```

10. Make downnode active again:

downnode# crm node online downnode

- 11. (Optional) If you want to move shelf resources back to downnode:
 - a. On the DMF server, disable the other parallel data-mover node (upnode):

```
dmfserver# dmnode admin -d upnode
```

Wait for the activity to cease on upnode before continuing to the next step.

- b. Verify that there are no dmatwc or dmatrc data-mover processes running on upnode, as in step 3.
- c. Move back all of the copan_ov_client resources (for example, C00 and C01) that you want to run on downnode:

```
upnode# crm resource move C00 downnode upnode# crm resource move C01 downnode
```

d. On the DMF server, reenable upnode so that it will permit COPAN MAID shelf activity:

```
dmfserver# dmnode_admin -e upnode
```

e. On the DMF server, reenable downnode so that it will permit COPAN MAID shelf activity:

```
{\tt dmfserver\#\ dmnode\_admin\ -e\ downnode}
```

12. Remove any implicit location constraints imposed by the administrative move commands above. For example:

```
downnode# crm resource unmove C00 downnode# crm resource unmove C01
```

Hardware Maintenance in a CXFS NFS Edge-Serving HA Service

If you must perform maintenance on one node in the cluster that provides the CXFS NFS edge-serving HA service, , do the following:

- 1. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- 2. Ensure that the resource groups are running on the node that **does not** require maintenance (upnode). For example:

```
downnode# crm resource move IPALIAS-GROUP-2 upnode
```

3. Set the node you intend to perform maintenance on (downnode) to standby state. (Putting a node in standby state will move, if possible, or stop any resources that are running on that node.) For example, if you intend to upgrade downnode:

```
upnode# crm node standby downnode
```

This will shut down CXFS_CLIENT on downnode automatically.

- 4. Disable the appropriate underlying HA control services from being started on downnode automatically at boot time and stop the currently running services:
 - RHEL:

```
downnode# chkconfig cman off
downnode# chkconfig pacemaker off

downnode# service cman stop
downnode# service pacemaker stop
```

• SLES:

```
downnode# chkconfig openais off downnode# service openais stop
```

5. Perform maintenance on downnode.

- 6. Reboot downnode and verify basic functionality.
- 7. Enable HA to be started automatically at boot time and immediately start it on downnode:
 - RHEL:

```
downnode# chkconfig cman on
downnode# chkconfig pacemaker on
downnode# service cman start
downnode# service pacemaker start
```

SLES:

```
downnode# chkconfig openais on
downnode# service openais start
```

8. Make downnode active again:

```
downnode# crm node online downnode
```

9. Move back any resource groups that you want to run on downnode. For example:

```
upnode# crm resource move IPALIAS-GROUP-2 downnode
```

10. Remove any implicit location constraints imposed by the administrative move commands above. For example:

```
downnode# crm resource unmove IPALIAS-GROUP-2
```

Hardware Maintenance in a DMF HA Service

If you must perform maintenance on one node in the cluster that provides the DMF HA service, do the following:

- 1. On the node that requires maintenance (downnode), disable the underlying HA control services from being started automatically at boot time:
 - RHEL:

```
downnode# chkconfig cman off
downnode# chkconfig pacemaker off
```

SLES:

```
downnode# chkconfig openais off
```

2. If downnode is a CXFS server-capable administration node, disable the cxfs and cxfs_cluster services from being started automatically at boot time:

```
downnode# chkconfig cxfs off
downnode# chkconfig cxfs_cluster off
```

3. As a precaution, run the sync(8) command to flush disk buffers, synchronizing the data on disk with memory:

```
downnode# sync
```

4. Reset downnode in order to force resources to be moved to upnode:

```
upnode# crm node fence downnode
```

5. Verify that resources are running on upnode:

```
upnode# crm status
```

- 6. Perform the required maintenance on downnode.
- 7. Reboot downnode and ensure that is stable before proceeding.
- 8. If downnode was a CXFS server-capable administration node, do the following:
 - a. Enable the cxfs and cxfs_cluster services to start automatically at boot time and start them immediately on downnode:

```
downnode# chkconfig cxfs_cluster on
downnode# chkconfig cxfs on

downnode# service cxfs_cluster start
downnode# service cxfs start
```

- b. Verify that CXFS is functioning properly on downnode, such as if the node joined the cluster and mounted filesystems.
- 9. Enable the HA service to be started automatically at boot time and start it immediately on downnode:
 - · RHEL:

```
downnode# chkconfig cman on
downnode# chkconfig pacemaker on
downnode# service cman start
```

007-5617-008

downnode# service pacemaker start

• SLES:

downnode# chkconfig openais on
downnode# service openais start

10. Verify that downnode rejoins the HA cluster:

downnode# crm status

Note: In most cases, you will want to leave the resources running on upnode in order to avoid any unnecessary interruptions to the services that would have to be restarted if they were moved to downnode. However, if you prefer to have the resources run on downnode despite any potential interruptions, do the following:

1. Restart resources on downnode:

downnode# crm resource move ResourceName downnode

2. Remove the implicit location constraints imposed by the administrative move:

downnode# crm resource unmove ResourceName

Maintenance with a Full Cluster Outage

This section discusses the following:

- "Full Outage for COPAN MAID OpenVault Client HA Service on Mover Nodes" on page 211
- "Full Outage for CXFS NFS Edge-Serving HA" on page 213
- "Full Outage for DMF HA" on page 215

Full Outage for COPAN MAID OpenVault Client HA Service on Mover Nodes

Do the following to perform a full outage for a COPAN MAID OpenVault client HA service on parallel data-mover nodes:

1. On the DMF server, disable both parallel data-mover nodes so that they will cease all COPAN MAID shelf activity:

```
dmfserver# dmnode_admin -d mover1
dmfserver# dmnode_admin -d mover2
```

2. Verify that there are no dmatwc or dmatrc data-mover processes running on either node. For example, the output of the following command should be empty on each parallel data-mover node:

```
ha# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep ha#
```

If the output is not empty, you must wait for the dmnode_admin -d action from step 1 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

- 3. On both parallel data-mover nodes, disable services related to HA:
 - RHEL:

```
ha# chkconfig cman off
ha# chkconfig pacemaker off
```

• SLES:

```
ha# chkconfig openais off
```

- 4. On both nodes, stop the appropriate underlying HA control services (do this simultaneously):
 - RHEL:

```
ha# service cman stop
ha# service pacemaker stop
```

• SLES:

ha# service openais stop

5. Shut down both nodes.

- 6. Perform the required maintenance.
- 7. Perform component-level testing associated with the maintenance.
- 8. Reboot both nodes
- 9. On both nodes, enable services related to HA:
 - RHEL:

```
ha# chkconfig cman on ha# chkconfig pacemaker on
```

• SLES:

```
ha# chkconfig openais on
```

- 10. On both nodes, start the appropriate underlying HA control services (do this simultaneously):
 - RHEL:

```
ha# service cman start
ha# service pacemaker start
```

• SLES:

ha# service openais start

11. On either node, verify cluster status:

```
ha# crm status
```

12. On the DMF server, reenable both nodes for COPAN MAID activity:

```
dmfserver# dmnode_admin -e mover1
dmfserver# dmnode_admin -e mover2
```

Full Outage for CXFS NFS Edge-Serving HA

Do the following to perform a full outate for a CXFS NFS edge-serving HA cluster:

- 1. Schedule the outage and notify users well in advance.
- 2. Stop all resources in the proper order (bottom up, see Figure 7-3 on page 65). For example, using the example procedures in this guide, you would stop the IP address alias resource groups and the clone:

```
ha# crm resource stop IPALIAS-GROUP-2
ha# crm resource stop IPALIAS-GROUP-1
ha# crm resource stop CXFS-NFS-CLONE
```

- 3. Disable the services related to HA and CXFS from being started automatically at boot time:
 - On all HA servers:
 - RHEL:

```
ha# chkconfig cman off
ha# chkconfig pacemaker off
```

- SLES:

ha# chkconfig openais off

On all CXFS servers:

```
cxfsserver# chkconfig cxfs off
cxfsserver# chkconfig cxfs_cluster off
```

· On all CXFS clients:

```
cxfsclient# chkconfig cxfs_client off
```

- 4. Shut down all of the HA cluster systems and the CXFS cluster systems.
- 5. Perform the required maintenance.
- 6. Perform component-level testing associated with the maintenance.
- 7. Reboot all of the HA cluster systems and the CXFS cluster systems.
- 8. Enable the services related to CXFS to be started automatically at boot time and start them immediately as follows:

007–5617–008 213

· On all CXFS servers:

```
cxfsserver# chkconfig cxfs_cluster on
cxfsserver# chkconfig cxfs on

cxfsserver# service cxfs_cluster start
cxfsserver# service cxfs start
```

On all CXFS clients:

```
cxfsclient# chkconfig cxfs_client on
cxfsclient# service cxfs_client start
```

• Verify CXFS cluster functionality:

```
cxfsserver# /usr/cluster/bin/cxfs_admin -c status
```

9. On the NFS edge-servering node, disable the cxfs_client service from being started automatically at boot time and stop the currently running service immediately:

```
edge# chkconfig cxfs_client off
edge# service cxfs_client stop
```

- 10. On the HA servers, disable the appropriate underlying HA control service from being started automatically at boot time and stop the currently running service immediately:
 - RHEL:

```
ha# chkconfig cman on
ha# chkconfig pacemaker on
ha# service cman start
ha# service pacemaker start
```

• SLES:

```
ha# chkconfig openais on
ha# service openais start
```

11. Verify the HA cluster status:

```
ha# crm status
```

12. Start resources in the correct order (top-down). For example:

```
ha# crm resource stop CXFS-NFS-CLONE
ha# crm resource stop IPALIAS-GROUP-1
ha# crm resource stop IPALIAS-GROUP-2
```

13. Move the resources to the correct locations. For example:

```
ha# crm resource move IPALIAS-GROUP-1 node1 ha# crm resource move IPALIAS-GROUP-2 node2
```

14. Remove the implicit location constraints imposed by the administrative move command above. For example:

```
ha# crm resource unmove IPALIAS-GROUP-1
ha# crm resource unmove IPALIAS-GROUP-2
```

Full Outage for DMF HA

Do the following to perform a full outage for a DMF HA cluster::

- 1. Schedule the outage and notify users well in advance.
- 2. Stop all resources in the proper order (bottom-up, see Figure 8-3 on page 79). Using the example procedures in this guide, you would stop the group:

```
ha# crm resource stop DMF-GROUP
```

- 3. Disable the services related to HA and CXFS (if applicable) from being started automatically at boot time:
 - On all HA servers:
 - RHEL:

```
ha# chkconfig cman off
ha# chkconfig pacemaker off
```

- SLES:

ha# chkconfig openais off

007–5617–008 215

On all CXFS servers:

```
cxfsserver# chkconfig cxfs off
cxfsserver# chkconfig cxfs_cluster off
```

- 4. Shut down all of the HA cluster systems and any CXFS cluster systems.
- 5. Perform the required maintenance.
- 6. Perform component-level testing associated with the maintenance.
- 7. Reboot all of the HA cluster systems and any CXFS cluster systems.
- 8. Enable the following services related to CXFS (if applicable) to be started automatically at boot time and start them immediately:
 - On all CXFS servers:

```
cxfsserver# chkconfig cxfs_cluster on
cxfsserver# chkconfig cxfs on

cxfsserver# service cxfs_cluster start
cxfsserver# service cxfs start
```

On all CXFS clients:

```
cxfsclient# chkconfig cxfs_client on
cxfsclient# service cxfs_client start
```

• Verify CXFS cluster functionality:

```
cxfsserver# /usr/cluster/bin/cxfs_admin -c status
```

- 9. On the HA servers, enable the appropriate underlying HA control services to be started automatically at boot time and start them immediately:
 - · RHEL:

```
ha# chkconfig cman on
ha# chkconfig pacemaker on
ha# service cman start
ha# service pacemaker start
```

• SLES:

ha# chkconfig openais on

ha# service openais start

10. Verify HA cluster status:

ha# crm status

11. Start resources in the correct order (top-down). For example:

ha# crm resource start DMF-GROUP

12. Move the resources to the correct locations:

ha# crm resource move DMF-GROUP node1

Note: Keep in mind any relocation restrictions.

13. Remove the implicit location constraints imposed by the administrative move command above:

ha# crm resource unmove DMF-GROUP

Troubleshooting

This chapter discusses the following:

- "Diagnosing Problems" on page 219
- "Failover Testing Strategies" on page 227
- "Corrective Actions" on page 230

For more information, see the documentation listed in "About this Guide".

Diagnosing Problems

If you notice problems, do the following:

- "Monitor the Status Output" on page 219
- "Verify the Configuration in Greater Detail" on page 220
- "Match Status Events To Error Messages" on page 220
- "Verify chkconfig Settings" on page 220
- "Diagnose the Problem Resource" on page 222
- "Examine Application-Specific Problems that Impact HA" on page 222
- "Test the STONITH Capability" on page 222
- "Gather Troubleshooting Data" on page 223
- "Use SGI Knowledgebase" on page 226

Monitor the Status Output

Use the \mbox{crm} status command to determine the current status of the cluster and monitor it for problems.

007–5617–008 219

Verify the Configuration in Greater Detail

Execute the crm_verify(8) command with increasing numbers of -V options for more detail, such as:

ha# crm_verify -LVVVVVV

Note: If you run <code>crm_verify</code> before STONITH is enabled, you will see errors. Errors similar to the following may be ignored if STONITH is intentionally disabled and will go away after STONITH is reenabled (line breaks shown here for readability):

crm_verify[182641]: 2008/07/11_16:26:54 ERROR: unpack_operation: Specifying on_fail=fence and stonith-enabled=false makes no sense

Match Status Events To Error Messages

Match the events listed in the crm_verify output with the failed action and the host on which the action failed. To find the specific problem, view messages in the log files. See "Examine Log Files" on page 16.

Verify chkconfig Settings

Verify the chkconfig settings for the following services when used in an HA cluster:

- "Off" on page 221
- "On" on page 221
- "Optionally On" on page 221

Off

The following services must be off if used (most services):

```
acpid (RHEL)
cxfs_client
dmf
dmfman
dmfsoap
nfs (RHEL)
nfsserver (SLES)
openvault
smb
nmb
winbind
```

On

The following services must be on if used:

• RHEL:

```
cman
cxfs
cxfs_cluster
nfslock
pacemaker
```

• SLES:

```
cxfs
cxfs_cluster
openais
logd
```

Optionally On

The following service may optionally may be on:

```
tmf (if used)
```

007-5617-008 221

Diagnose the Problem Resource

To diagnose problems at the application level, put the cluster into maintenance mode. You might have to stop the appropriate underlying HA control services on all nodes (cman and pacemaker on RHEL nodes or openais on SLES nodes) and start/stop resources manually.

Caution: Ensure that you do not start a resource on multiple nodes. Verify that a resource is not already up on another node before you start it.

Examine Application-Specific Problems that Impact HA

Using HA can highlight existing problems for the applications that are being managed. For more information about diagnosing application-specific problems, see the manuals listed in "About this Guide".

Test the STONITH Capability

To test the STONITH capability, do the following:

- 1. Reset a given node from another node, using one of the following methods:
 - Requires that STONITH is defined in the CIB:

ha# crm node fence node_to_be_reset

For example, to reset node1 from node2:

node2# crm node fence node1

• Independent of the CIB configuration:

ha# ipmitool -I lan -U admin -P admin -H bmc_IP_of_node_to_be_reset power reset

For example, to reset node1 (whose BMC has an IP address of 128.162.232.79) from node2:

node2# ipmitool -I lan -U admin -P admin -H 128.162.232.79 power reset

Note: Some BMC hardware may require -I lanplus.

2. Verify that the specified node was reset and was able to successfully complete a reboot.

Gather Troubleshooting Data

If you need to report problems to SGI Support, do the following to gather important troubleshooting data:

- "Collect System Configuration Information" on page 223
- "Collect System Logs" on page 224
- "Collect HA Cluster Information" on page 224
- "Collect SGI Service-Specific Information" on page 225
- "Generate a Kernel Crash Dump" on page 225

When you contact SGI Support, you will be provided with information on how and where to upload the collected information files for SGI analysis.

Collect System Configuration Information

Run the following commands as root on every node in the cluster in order to gather system configuration information:

• RHEL:

```
rhel# /usr/sbin/system_info_gather -Avv -n
```

• SLES:

```
sles# /usr/sbin/system_info_gather -Avv -n
sles# /sbin/supportconfig
```

The system_info_gather script will print information to a time-stamped file named using the following format:

```
yyyymmdd_hhmmss-hostname-inventory[options]
```

For example, for output gathered on October 17, 2013, for a host named myserver using the -Avv options:

```
20131017_103317-myserver.mycompany.com-inventoryA2
```

007–5617–008 223

Collect System Logs

Collect any other system log files that may contain information about corosync/pacemaker or the services included in the HA configuration (if not otherwise gathered by the above tools).

Collect HA Cluster Information

To collect HA cluster information, use the following commands:

- RHEL: crm_report(8)
- SLES: hb_report(8)

The commands use a similar format:

```
ha# command -f "from_time" [-t "to_time"] [destination_directory]
```

where:

- command is either crm_report (RHEL) or hb_report (SLES)
- *from_time* and *to_time* are in the format *YYYY-MM-DD H:M:S*. If you omit the -t option, the command collects data up to the present.
- destination_directory is the destination directory. If omit this argument, the command will use its own naming convention for the compressed tarball:
 - RHEL default:

```
pcmk-date.tar.bz2
```

For example, the tarball will be named pcmk-Tue-10-Dec-2013.tar.bz2 if you execute the following command on 10 December 2013:

```
rhel# crm_report -f "2013-12-09 08:00"
```

- SLES default:

```
hb_report-date.tar.bz2
```

For example, the tarball will be named hb_report-Tue-10-Dec-2013.tar.bz2 if you execute the following command on 10 December 2013:

```
sles# hb_report -f "2013-12-09 08:00"
```

For more details, see the crm_report(8) and hb_report(8) man pages.

Collect SGI Service-Specific Information

Collect service-specific information. For example, run dmcollect for a resource group that contains DMF and cxfsdump for a resource group that contains CXFS. See the dmcollect(8) and cxfsdump(8) man pages for more information.

Generate a Kernel Crash Dump

Note: This procedure assumes that the appropriate kernel-default-debuginfo RPM is installed and that any CXFS node in the HA cluster has a fail policy that does not include reset.

To generate a kernel crash dump, do the following:

1. If the totem token value is not long enough to allow a dump to take place (which is usually the case), avoid system resets by disabling STONITH:

ha# crm configure property stonith-enabled=false

Note: Be aware of the following:

- If you disable STONITH, the resources may not fail over properly and the cluster may enter an unpredictable state.
- With a totem token value that is long enough for a dump to take place, it is possible that the system may restart before the failover system recognizes the situation, which can be problematic.
- 2. Force a crash dump to occur. For example:

ha# echo 1 > /proc/sysrq-trigger

3. If you disabled STONITH in step 1, reenable it:

ha# crm configure property stonith-enabled=true

4. Package up the kernel crash dump:

ha# /usr/sbin/sgi_collect_dump

007–5617–008 225

Use SGI Knowledgebase

If you encounter problems and have an SGI support contract, you can use the SGI Knowledgebase tool to search for information:

1. Log in to Supportfolio Online:

https://support.sgi.com/login

- 2. Click on Search the SGI Knowledgebase.
- 3. Select the type of search you want to perform.

If you need further assistance, contact SGI Support.

Failover Testing Strategies

Before performing any sort of failover testing, do the following so that you can predict the expected results and examine the actual results:

- 1. Verify the state of the HA cluster:
 - a. Check the resource fail counts:

ha# crm status failcounts

- b. If there has been a failure, ensure that the issue that caused a resource failure has been resolved.
- c. Reset the individual resource fail counts on the required nodes:

ha# crm resource failcount resourcePRIMITIVE delete nodename

d. Clear any implicit location constraints that may have been created for the resource group by a previous administrative move command:

ha# crm resource unmove resourceGROUP

2. Clearly delineate the start of each test in the logs by using the logger(1) command. For example:

```
ha# logger "TEST START - testdescription".
```

Note: The HBA tests presume that the system has redundant Fibre Channel HBA paths to storage.

Table 13-1 describes failover testing strategies.

007–5617–008

Table 13-1 Failover Tests

Test Type	Action	Expected Result
Administrative failover	Move the individual resource or resource group to the failover node: ha# crm resource move resourcePRIMITIVE failover_node or: ha# crm resource move resourceGROUP failover_node	The individual resource or the resource group moves to the failover node. Occasionally, filesystems may fail to dismount cleanly or in a timely fashion, thus preventing an administrative move from occurring cleanly. In this case, the active node will likely be reset when a stop operation passes its timeout limit.
		Note: Remember that longer resource stop operation timeouts may result in longer failover times, and shorter resource stop operation timeouts may result in more frequent system reset events.
System reboot	Reboot the active node: active# reboot	All resources running on the rebooted server should move to the failover node
Simulated system crash	Reset the active node	All resources running on the node that was reset should move to the failover node
Simulated	Stop the NFS server:	The resources should move to the
NFS daemon failure	• RHEL: rhel# service nfs stop • SLES:	failover node due to a monitor operation failure for the nfsserver resource
	sles# service nfsserver stop	
Simulated filesystem failure	Unmount the filesystem: ha# umount filesystem	The resources should move to the failover node due to a monitor operation failure for the Filesystem resource

Test Type	Action	Expected Result
Single simulated HBA failure	Disable the port for the Fibre Channel HBA. For example: brocade> portdisable portnumber	A device failover will not actually occur until I/O is attempted via the failed HBA path. An XVM failover to an alternate path should occur after I/O is performed on the system.
		Note: Remember to reenable the port after the test. For example:
		brocade> portenable portnumber
Multiple simulated HBA failures	Disable the port for the Fibre Channel HBA. For example: brocade> portdisable portnumber	The server should be reset after I/O is performed on the system. There will likely be multiple monitor operation failures for various resources followed
	Repeat for every HBA port on the system.	by a stop operation failure, which will result in a system reset and a forced XVM failover.
		Note: Remember to reenable the port after the test. For example:
		brocade> portenable portnumber

Corrective Actions

The following are corrective actions:

- "Recovering from an Incomplete Failover" on page 230
- "Recovering from a CIB Corruption" on page 231
- "Clearing the Failcounts After a Severe Error" on page 231

Recovering from an Incomplete Failover

After an incomplete failover, in which one or more of the individual resources are not started and the cluster can no longer provide high availability, you must do the following to restore functionality and high availability:

1. Put the cluster into maintenance mode:

ha# crm configure property maintenance-mode=true

2. Determine which individual resources have failcounts:

ha# crm resource failcount resourcePRIMITIVE show node

Repeat for each individual resource on each node.

- 3. Troubleshoot the failed resource operations. Examine the log files (see "Examine Log Files" on page 16) and application logs around the time of the operation failures in order to deduce why they failed. Then deal with those causes.
- 4. Ensure that all of the individual resources are working properly according to the information in:
 - Chapter 7, "CXFS NFS Edge-Serving HA Service" on page 61
 - Chapter 8, "DMF HA Service" on page 77
 - Chapter 9, "COPAN MAID OpenVault Client HA Service" on page 121
- 5. Remove the failcounts found in step 2:

ha# crm resource failcount failed_resourcePRIMITIVE delete node

Repeat this for each individual failed resource on each node.

6. Remove error messages:

ha# crm resource cleanup failed_resourcePRIMITIVE node

Repeat this for each individual failed resource on each node.

7. Return the cluster to managed status, ether the following:

ha# crm configure property maintenance-mode=false

Recovering from a CIB Corruption

Note: This procedure assumes that you have a good backup copy of the CIB that contains only static configuration information, as directed in "Backing Up the CIB" on page 190.

Do the following to recover from a CIB corruption:

1. Erase the existing corrupt CIB:

ha# crm configure erase

2. Load a new CIB from the backup copy:

ha# crm configure load replace CIB.xxxxxx

For example, for the copy made on August 24 (CIB. 20100824-130236):

ha# crm configure load replace CIB.20100824-130236

For more information, see the SUSE *High Availability Guide* and the cibadmin(8) man page.

Clearing the Failcounts After a Severe Error

Under certain circumstances, a severe failure will cause the failcount for the individual resources to be set to INFINITY. This means that the individual resources cannot run on a specific node again until the failcount is cleared, which requires administrative action. See "Clearing the Resource Failcount" on page 190.

007–5617–008

Glossary

active/active mode

An HA cluster in which multiple nodes are able to run disjoint sets of resources, with each node serving as a backup for another node's resources in case of node failure.

active/passive mode

An HA cluster in which all of the resources run on one node and one or more other nodes are the failover nodes in case the first node fails.

active node

The node on which resources are running.

BMC

Baseboard management controller, a system controller used in resetting x86_64 systems.

CIB

Cluster information base, used to define the HA cluster.

clone

A resource that is active on more than one node.

COPAN MAID

Power-efficient long-term data storage based on an enterprise massive array of idle disks (MAID) platform.

Corosync

The underlying HA architecture that provides core messaging and membership functionality

CXFS

Clustered XFS.

007-5617-008 233

CXFS NFS edge-serving

A configuration in which CXFS client nodes can export data with NFS.

DCP

Drive control program.

DMF

Data Migration Facility, a hierarchical storage management system for SGI environments.

DMF Manager

A web-based tool you can use to deal with day-to-day DMF operational issues and focus on work flow.

edge-serving

See CXFS NFS edge-serving.

failover node

The node on which resources will run if the active node fails or if they are manually moved by the administrator. Also known as the *passive node* or *standby node*.

fencing

The method that guarantees a known cluster state when communication to a node fails or actions on a node fail. (This is *node-level fencing*, which differs from the concept of *I/O fencing* in CXFS.)

HA

High availability, in which resources fail over from one node to another without disrupting services for clients.

HA control services

The set of underlying services that control the cluster, which vary by operating system:

- RHEL:
 - CMAN
 - Corosync
 - Pacemaker
- SLES:
 - OpenAIS
 - Corosync
 - Pacemaker

HA fail policy

A parameter defined in the CIB that determines what happens when a resource fails.

HA-managed filesystem

A filesystem that will be made highly available according to the instructions in this guide.

HA service

The set of resources and resource groups that can fail over from one node to another in an HA cluster. The HA service is usually associated with an IP address.

High Availability Extension (HAE)

SUSE Linux Enterprise product for high availability.

IPMI

Intelligent Platform Management Interface, a system reset method for x86_64 systems.

ISSP

InfiniteStorage Software Platform, an SGI software distribution.

007–5617–008

LCP

library control program.

LSB

Linux Standard Base.

monitor operation

See probe monitor operation and standard monitor operation.

mover1

In the examples in this guide, the initial parallel data-mover node (which will later become a node in the HA cluster) which will be the initial owner node of shelves 0 and 1. See also *mover2*.

mover2

In the examples in this guide, the alternate parallel data-mover node in the HA cluster (which will later become a node in the HA cluster) which will be the initial owner node of shelves 2 and 3. See also *mover1*.

node1

In the examples in this guide, the initial host (which will later become a node in the HA cluster) on which all of the filesystems will be mounted and on which all tape drives and libraries are accessible. See also *node2*.

node2

In the examples in this guide, the alternate host in the HA cluster other than the first node (node1). See also *node1*.

NSM

Network Status Monitor.

OCF

Open Cluster Framework.

OpenVault

A mounting service used by DMF.

owner node

The node that DMF will use to perform migrations and recalls on a given shelf. The node on which you run ov_copan becomes the owner node of that shelf. In an HA environment, ownership is transferred as part of HA failover.

physvol

XVM physical volume.

primitive

Used to define a resource in the CIB.

probe monitor operation

A monitor operation that checks to see if the resource is already running.

resource

An application that is managed by HA.

resource agent

The software that allows an application to be highly available without modifying the application itself.

resource group

A set of resources that are colocated on the same node and ordered to start and stop serially. The resources in a resource group will fail over together as a set.

resource stickiness

An HA concept that determines whether a resource should migrate to another node or stay on the node on which it is currently running.

007-5617-008

serverdir directory

A directory dedicated to holding OpenVault's database and logs within a highly available filesystem in the DMF resource group.

SOAP

Simple Object Access Protocol

split cluster

A situation in which cluster membership divides into multiple clusters, each claiming ownership of the same filesystems, which can result in filesystem data corruption. Also known as *split-brain syndrome*.

standard monitor operation

A monitor operation that periodically verifies that the resource continues to run.

standard service

An application before HA has been applied to it.

STONITH

Shoot the other node in the head, the facility that guarantees cluster state by fencing non-responsive or failing nodes.

TMF

Tape Management Facility, a mounting service used by DMF.

XFS

A filesystem implementation type for the Linux operating system. It defines the format that is used to store data on disks managed by the filesystem.

WSDL

Web Service Definition Language

XVM

Volume manager for XFS filesystems (local XVM).

Index

acpid chkconfig and, 221 active/passive mode, 3 administrative tasks CIB backup copy, 18 CIFS, 190 cleaning up the local resource state, 191 clearing the fail count, 190 log files, 190 manual system reset, 204 number of historical files, 191 stopping HA service, 203 application-specific problems, 222 applications that depend on CXFS filesystems, 30	configuration tools, 14 configuring COPAN MAID for HA, 124 configuring CXFS NFS edge-serving for HA, 61 configuring DMF for HA, 77 consensus, 20, 58 COPAN MAID cluster resources, 124 copan_ov_client resource agent, 2 requirements, 34 testing the standard service, 45 COPAN MAID failover example, 121 COPAN OpenVault client resource moving, 20 copan_ov_client, 2 moving, 193 copan_ov_client template, 139 core file identification, 21 core membership timeout, 20
back up the CIB, 18 backups and HA, 7 base object, 37 best practices, 7 C CACHE_DIR, 36 chkconfig, 59 chkconfig settings, 220 CIB recovery, 231 CIFS, 190 clearing failcounts, 231 cluster information base (CIB) backup, 18 cman chkconfig and, 221	corruption of CIB, 231 crm, 14 crm status and monitoring for problems, 19, 188 crm_verify, 14, 220 crm_verify -LV and monitoring for problems, 19, 188 CXFS applications that depend on CXFS, 30 colocation, 30 cxfs resource agent, 2 licensing, 26 nodes for failover, 29 number of nodes in the cluster, 29 relocation support, 29 requirements, 29 start-ordering, 30 start/stop issues, 30 system reset, 30 testing the cxfs resource, 82

testing the standard service, 43	testing the dmfman resource, 117
cxfs	testing the dmfsoap resource, 118
chkconfig and, 221	testing the standard service, 46
CXFS heartbeat timeout, 20	dmf
CXFS NFS edge-serving	chkconfig and, 221
testing the standard service, 42	DMF client SOAP
CXFS NFS edge-serving failover example, 61	dmfsoap resource agent, 3
CXFS NFS edge-serving for HA, 61	DMF configuration parameters, 192
CXFS NFS edge-serving node and NFS client, 21	DMF failover example, 77
cxfs template, 142	DMF Manager
cxfs-client-clone template, 146	dmfman resource agent, 2
cxfs-client-fs, 2	testing the standard service, 47
cxfs-client-nfsserver, 2	DMF SOAP
cxfs-client-nfsserver template, 147	testing the standard service, 47
cxfs-client-smnotify template, 150	dmf template, 153
cxfs-nfs-clone template, 152	DMF-GROUP template, 155
cxfs_client	dmfman
chkconfig and, 221	chkconfig and, 221
cxfs_cluster	dmfman template, 155
chkconfig and, 221	dmfman_setup_ha, 116
	dmfsoap
	chkconfig and, 221
D	dmfsoap template, 157
	dump from metadata server, 107
debugging, 19, 188	•
default-resource-failure-stickiness, 17	
Disk Name values must be unique, 31	E
DMF, 37	
and active/passive mode, 3	error message verbosity, 58
cluster resources, 77	error messages in log files, 220
configuration for HA, 107	/etc/corosync/corosync.conf, 58
configuring the Filesystem resource	/etc/exports, 42, 46
DMF-managed user filesystem, 161	exfs-client template, 144
connectivity to libraries and drives, 35	•
DMF client SOAP service requirements, 39	
DMF Manager requirements, 38	F
dmf resource agent, 2	
dmfman resource agent, 2	fail count clearing, 190
dmfsoap resource agent, 3	failcount values, 19
licensing, 26	failcounts, 231
requirements, 35	failover, 17
testing the dmf resource, 110	•
•	

failover nodes, 29	ISSP
failover testing strategies, 227	release note, 2
fence_ipmilan template, 158	RPMs, 2
fencing	YaST pattern, 2
See "STONITH", 17	•
fencing terminology (HA vs CXFS), 13	
Filesystem resource	J
DMF-managed user filesystem, 161	
OpenVault serverdir, 161	JOURNAL_DIR, 36
Filesystem template, 160	
filesystems	
testing the Filesystem resource, 86	K
fully qualified domain name, 8	
	kernel dump, 225
	kernel.core_pattern, 21
H	Knowledgebase, 226
HA control services	
stopping the service, 203	L
HA service	
terminology, 1	licensing requirements, 26
hardware requirements, 26	local XVM
heartbeat timeout, 20	lxvm resource agent, 3
high availability and SGI products, 1	requirements, 31
historical files, 191	testing lxvm, 84
HOME_DIR, 36	testing the standard service, 43
hostname consistency, 8	log files, 190
	logd
	chkconfig and, 221
I	logging, 58
	lxvm resource agent, 3
I/O fencing and system reset, 30	lxvm template, 168
implicit constraint, 19	
incomplete failover, 230	
INFINITY, 19	M
initial node, 4	
INTERFACE, 37	MAID shelf, 34
introduction, 1	MailTo resource, 17
IP address alias, 32	MailTo template, 170
IPaddr2 template, 162	maintenance mode, 189
IPALIAS-GROUP template, 164	manual system reset, 204
ipmi template, 166	

Messages, 190	OpenVault
monitoring for problems, 19, 188	configuration for HA, 90
mounting service	configuring the Filesystem resource
See "OpenVault or TMF", 32	serverdir, 161
move and unmove, 19	openvault resource agent, 3
MOVE_FS, 36	requirements, 32
moving the COPAN OpenVault client resource, 20	serverdir directory, 33
mtcp_hb_period, 20	testing the openvault resource, 97
epperiou, 20	testing the standard service, 44
	wildcard and, 33
N	openvault
•	chkconfig and, 221
networking and HA, 7	openvault template, 174
NFS	ownership of a MAID shelf, 34
configuration for HA, 111	ownership of a wirth shell, of
testing the nfsserver resource, 112	
testing the hisserver resource, 112 testing the standard service, 46	P
nfs	1
chkconfig and, 221	pacemaker
NFS client and CXFS NFS edge-serving node, 20	chkconfig and, 221
NFS client and cars iving node, 20	Parallel Data-Mover Option
nfslock	<u>-</u>
	DMF configuration and, 108
chkconfig and, 221 nfsserver	licensing, 26 OpenVault configuration and, 95
chkconfig and, 221	requirements, 27
nfsserver template, 171 nmb	passive mode, 3
	physvol Disk Name values must be unique, 31
chkconfig and, 221	PID in core files, 21
testing the nmb resource, 115	ping Resource, 18
nmb template, 173	ping template, 177
node object, 37	preliminary testing tasks, 227
node-level fencing	
See "STONITH", 17	D.
node1 terminology, 4	R
nodes for failover, 29	1 1 1774 ~
number of nodes in the cluster, 29	redundancy and HA, 7
	release note, 2
	relocation support for CXFS, 29
0	reporting problems to SGI, 223
	requirements
openais	COPAN MAID, 34
chkconfig and, 221	

CXFS, 29	cxfs-nfs-clone, 152
DMF, 35	dmf, 153
DMF client SOAP service, 39	DMF-GROUP, 155
DMF Manager, 37, 38	dmfman, 155
hardware, 26	dmfsoap, 157
IP address alias, 32	exfs-client, 144
licensing, 26	fence_ipmilan, 158
local XVM, 31	Filesystem, 160
OpenVault, 32	IPaddr2, 162
Parallel Data-Mover Option, 27	IPALIAS-GROUP, 164
software version, 26	ipmi, 166
system reset, 27	lxvm, 168
time synchronization, 27	MailTo, 170
TMF, 32	naming conventions, 11
reset	nfsserver, 171
CXFS and, 30	nmb, 173
enabling, 134	openvault, 174
manual, 204	ping, 177
requirements, 17, 27	smb, 180, 185
resource	tmf, 181
nfsserver configuration, 111	winbind, 185
nmb configuration, 113	resource testing
openvault configuration, 90	cxfs, 82
smb configuration, 113	dmf, 110
terminology, 1	dmfman, 117
resource agents	dmfsoap, 118
provided by SGI, 2	Filesystem, 86
terminology, 1	IPaddr2, 88
resource configuration	lxvm, 84
Filesystem	nfsserver, 112
DMF-managed user filesystem, 161	openvault, 97
OpenVault serverdir, 161	smb and nmb, 115
resource group	tmf, 100
colocation and ordering, 17	restart the OpenVault server, 192
terminology, 1	restore, 107
resource stickiness, 17	,
resource templates	
copan_ov_client, 139	S
cxfs, 142	
cxfs-client-clone, 146	Samba
cxfs-client-nfsserver, 147	configuration for HA, 113
cxfs-client-smnotify, 150	, ,

testing the standard service, 47	STORE_DIR, 36
score calculation, 17	Supportfolio, 226
SERVER_NAME, 37	sysctl, 20
serverdir directory for OpenVault, 33	system configuration and HA, 7
service	system reset and I/O fencing, 30
terminology, 1	system reset enabling, 134
SGI InfiniteStorage Software Platform See "ISSP", 2	
SGI ISSP High Availability YaST pattern, 2	T
SGI Knowledgebase, 226	
shelf on MAID, 34	testing
short hostname, 8	COPAN MAID standard service, 45
smb	CXFS NFS edge-serving standard service, 42
chkconfig and, 221	CXFS resource, 82
testing the smb resource, 115	CXFS standard service, 43
smb template, 180, 185	DMF Manager standard service, 47
software upgrades, 195	dmf resource, 110
software version requirements, 26	DMF SOAP standard service, 47
spaces in resource names, 11	DMF standard service, 46
SPOOL_DIR, 36	dmfman resource, 117
standard service configuration and testing	dmfsoap resource, 118
COPAN MAID, 45	Filesystem resource, 86
CXFS, 43	IPaddr2 resource, 88
CXFS NFS edge-serving, 42	ipmi, 135
DMF, 46	local XVM standard service, 43
DMF Manager, 47	lxvm resource, 84
DMF SOAP, 47	NFS serving standard service, 46
local XVM, 43	nfsserver resource, 112
NFS, 46	nmb resource, 115
OpenVault, 44	openvault resource, 97
Samba, 47	OpenVault standard service, 44
TMF, 44	Samba serving standard service, 47
start/stop issues and CXFS, 30	smb and nmb resource, 115
status output, 219	tmf resource, 100
STONITH	TMF standard service, 44
enabling, 134	testing COPAN MAID for HA, 124
requirements, 17, 27	testing CXFS NFS edge-serving for HA for HA, 61
stonith command, 204	testing DMF for HA, 77
testing ipmi, 135	testing strategies, 227
STONITH capability testing, 222	time synchronization, 27
stonith command, 222	TMF
stopping underlying HA control services, 203	

configuration for HA, 99	V
requirements, 32 testing the standard service, 44 testing the tmf resource, 100 tmf resource agent, 3 tmf chkconfig and, 222 tmf template, 181 TMP_DIR, 36 token, 58	/var/log/messages, 190 verbosity and HA commands, 16 virtual IP address requirements, 32 testing the IPaddr2 resource, 88 volume names must be unique, 31
token, 36 token consensus, 20	W
tools, 14 tools for configuration, 14 totem consensus, 58 totem token, 20, 58 troubleshooting CIB recovery, 231 clearing failcounts, 233 error message, 220 general troubleshooting, 219 incomplete failover, 230 reporting problems to SGI, 223 using SGI Knowledgebase, 226	wildcard and OpenVault, 33 winbind chkconfig and, 221 winbind template, 185 X XCOPY, 190 xfsdump and xfsrestore, 107
U unmove and move, 19 upgrades, 195 /usr/lib/dmf/dmfman_setup_ha, 116	Y YaST pattern, 2