sgi

High Availability Guide for SGI[®] InfiniteStorage[™]

007–5617–011

COPYRIGHT

© 2010–2015 Silicon Graphics International Corp. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS

DMF, CXFS, SGI, SGI InfiniteStorage, SGI OpenVault, the SGI logo, Supportfolio, and XFS are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the U.S. and other countries. SLES and SUSE are registered trademarks of SUSE LLC in the United States and other countries. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. in the United States and other countries. All other trademarks mentioned herein are the property of their respective owners.

New Features in this Guide

This revision includes the following changes:

- A new resource agent dmcopytool for the DMF copytool for Lustre. It is used to support a single instance of the lhsmtool_dmf(8) command:
 - "SGI Resource Agents and RPMs" on page 2
 - "DMF Copytool Requirements" on page 84
 - "Configure and Test Lustre Before Applying the DMF Copytool an HA Environment" on page 92
 - "Add the dmcopytool Resources (Optional)" on page 154
- Due to a change in the way that the pacemaker command-line tools work, the status command should now be the following in order to include the inactive argument so that all resources appear:

crm status inactive

- New section: "Avoid UID/GID Conflicts" on page 35
- Reorganized for better clarity: resource templates are discussed in the order in which they are to be added within the procedures in Chapters 5–7 as well as in the new Appendix A, "Resource Reference" on page 235.

Record of Revision

Version	Description
001	July 2010 Original publication, supporting the SGI® InfiniteStorage Software Platform (ISSP) 2.1 release
002	September 2010 Revision to support ISSP 2.2
003	January 2011 Revision to support ISSP 2.3
004	April 2011 Revision to support ISSP 2.4
005	October 2011 Revision to support ISSP 2.5
006	April 2012 Revision to support ISSP 2.6
007	April 2013 Revision to support ISSP 3.0
008	February 2014 Revision to support ISSP 3.1
009	May 2014 Revision to support ISSP 3.2
010	November 2014 Revision to support ISSP 3.3
011	July 2015 Revision to support ISSP 3.4

About This Guide	•	•	•	•	• 3	xxvii
Scope of this Guide	•				•	xxvii
Related SGI Publications					. X	xviii
Obtaining SGI Publications	•				. X	xviii
Conventions						xxix
Reader Comments	•	•	•			xxx
1. Introduction	•	•	•	•	•	1
High Availability Overview	•					1
SGI Resource Agents and RPMs						2
Supported HA Services						3
CXFS NFS Edge-Serving Failover						4
DMF Failover						7
COPAN MAID OpenVault Client HA Service Failover						8
Outline of the Configuration Procedure	•	•	•		•	11
2. Best Practices			•	•		15
Best Practices Before Applying an HA Environment						15
Ensure the System is Ready						15
Configure and Test the Components Before Applying an HA Environment						16
Ensure that the Debug RPM Matches the Kernel						16
Use a Separate Filesystem for CXFS NFS State Information for Edge Servers						16
Use Consistent Virtual Hostnames						16
Use the Correct CXFS Fail Policy in a DMF HA Service						16
Best Practices for Configuring and Testing						17
007–5617–011						vii

Use the Resource Templates			. 17
Template Location			. 18
Use the Templates as Building Blocks			. 18
Resource Format			. 18
Values You Can Change			. 19
Values You Cannot Change			. 19
Conventions for Resource Instance IDs			. 19
Operations			. 21
Timeout Values			. 22
Meta Attributes			. 22
Use the Appropriate Tools			. 22
Use the crm(8) Command for Configuration, Status, and Control			. 23
Use the crm_verify Command to Verify Configuration			. 24
Get More Information by Increasing Verbosity			. 24
Examine Log Files			. 24
Avoid Unnecessary Failovers			. 24
Always use STONITH			. 25
Use One Group for a DMF HA Environment			. 25
Examine the Use of Stickiness and Thresholds			. 25
Additional Resources to Consider			. 26
MailTo Resource			. 26
ping Resource			. 26
Best Practices for Administration			. 26
Make a Backup Copy of the CIB	• •		. 27
Monitor Status Information for Problems		• •	. 27
Clear Failcount Values After Resolving the Problem			
Remove Implicit Constraints after Explicitly Moving a Resource			
Set the Core Membership Timeout Value Appropriately			. 28

Upgrade Appropriately	•		•		•	•	•	•	•	•		•	29
Do Not Use an Edge-Serving Node as an NFS Client				•	•	•	•	•				•	29
Include the PID in Core Files												•	29
Best Practices for Maintenance	•			•	•	•	•	•				•	30
Questions to Ask Before Performing Maintenance	•		•	•	•	•	•	•				•	30
Hardware Maintenance	•			•	•	•	•	•				•	30
System Software Updates	•			•	•	•	•	•					31
ISSP Software Updates			•		•	•	•	•				•	31
Changes Permitted on a Running Resource				•		•	•	•				•	31
Changes that Require Maintenance Mode					•	•	•	•					31
Changes that Require a Full Cluster Outage			•	•				•				•	32
3. General Requirements	•	•	•	•	•	•	•	•	•	•	•	•	33
HA Support Requirements					•	•	•	•					33
Licensing Requirements							•					•	33
Software Version Requirements					•	•		•					34
Hardware Requirements			•		•		•	•					34
System Reset Requirements							•						34
Time Synchronization Requirements	•		•	•				•	•	•	•	•	34
4. Create the Base HA Cluster	•	•	•	•	•	•	•	•	•	•	•	•	35
Avoid UID/GID Conflicts	•		•	•	•	•	•	•				•	35
Install the HA Software	•			•	•	•	•	•					37
Enable Multicasting on the Ethernet Switch			•	•	•	•	•	•	•	•	•	•	38
Configure the Nodes for an HA Environment				•		•	•	•				•	38
RHEL: Configure the Nodes for an HA Environment				•	•	•		•				•	39
SLES: Configure the Nodes for an HA Environment							•						42
Test the Base HA Cluster					•								45

Create the ISSP HA Service		46	
5. Create the CXFS NFS Edge-Serving HA Service		47	
Understand the Requirements for the Edge-Serving HA Service		48	
Edge-Serving Requirements		48	
IP Address Alias Requirements in an Edge-Serving HA Cluster		49	
Configure and Test the Service Components Before Applying an HA Environment .		49	
Configure and Test the CXFS Client Before Applying the HA Environment		50	
Configure and Test the NFS Edge Service Before Applying an HA Environment		50	
Ensure that the Base HA Cluster is Operational		51	
Stop Services Before Applying an HA Environment		52	
Ensure that the NFS Lock Services are Started (<i>RHEL only</i>)		53	
Copy the /etc/exports Entries		53	
Map of Resources for the Edge-Serving HA Service		53	
Create the Clone		55	
Add the cxfs-client Resource		56	
Add the cxfs-client-nfsserver Resource		57	
Test the Clone . . .		59	
Create the IP Address Alias Group		62	
Test Each IP Address Alias Group . <th .<<="" td=""><td></td><td>67</td></th>	<td></td> <td>67</td>		67
Confirm the Completed Status		71	
Requirements for a Second Edge-Serving HA Cluster		72	
Put the HA Service into Production Mode		73	
6. Create the DMF HA Service		75	
Understand the Requirements for the DMF HA Service	•••	75	
CXFS Requirements		76	
CXFS Server-Capable Administration Nodes		76	

CXFS Relocation Support	•	 77	
Applications that Depend Upon CXFS Filesystems	•	 77	
CXFS and System Reset	•	 77	
CXFS Start/Stop Issues	•	 77	
CXFS Volumes and Filesystems Managed by DMF		 78	
cxfs and cxfs_cluster Services Not Controlled by the HA Environment		 78	
Local XVM Requirements	•	 78	
Local Filesystem Requirements		 79	
IP Address Alias Requirements		 79	
TMF Requirements . <th .<="" t<="" td=""><td></td><td> 79</td></th>	<td></td> <td> 79</td>		 79
OpenVault Requirements		 80	
COPAN MAID Requirements for a DMF HA Service (Optional)		 81	
DMF Requirements		 81	
Potential DMF Server Requirements		 82	
Ordering of Resources		 83	
Virtual Hostname Requirement		 83	
Parallel Data-Mover Option Requirements		 83	
Control of the dmf Service		 83	
Use of the Wildcard in OpenVault Configuration	•	 83	
Samba Requirements (Optional)	•	 84	
DMF Copytool Requirements	•	 84	
DMF Manager Requirements (Optional)	•	 84	
DMF Client SOAP Service Requirements (Optional)	•	 85	
Configure and Test the Service Components Before Applying an HA Environment	•	 85	
Configure and Test CXFS Before Applying an HA Environment		 86	
Configure and Test Local XVM Before Applying an HA Environment		 86	

Configure and Test TMF Before Applying an HA Environment	87
Configure and Test OpenVault Before Applying an HA Environment	87
Configure and Test the COPAN MAID OpenVault Client Before Applying a DMF HA Environment	88
Configure and Test DMF Before Applying an HA Environment	89
Configure and Test the NFS Service for DMF Use Before Applying an HA Environment	89
Configure and Test Samba Before Applying an HA Environment	91
Configure and Test the Winbind Service Before Applying an HA Environment \ldots	91
Configure and Test Lustre Before Applying the DMF Copytool an HA Environment	92
Test DMF Manager Before Applying an HA Environment	95
Test the DMF Client SOAP Service Before Applying an HA Environment	95
Ensure that the Base HA Cluster is Operational	95
Stop Services Related to DMF Before Applying an HA Environment	95
Add the Resources in the Correct Order	97
Summary of the DMF HA Resources	98
Add the dmf-group and Clustered/Local Filesystems Resources	101
Add the dmf-group and CXFS Resources	102
Add the dmf-group and lxvm and Filesystem Resources	105
Add the IPaddr2 Resource (DMF HA)	107
Add the Mounting Service Resources	110
Add the tmf Resource	112
Add the openvault Resource	118
Create the OpenVault Components on the Passive Node (COPAN MAID Only)	125
Make the openvault Resource HA-Managed	127
Add the copan_ov_client Resource (Optional)	127
Add Any OpenVault Clients that are Not DMF Servers (Optional)	132
Test the openvault Resource	133

Add the dmf Resource	5
Add the nfsserver Resource (Optional)	2
Add the Samba Resources: smb, nmb, and winbind (Optional)	6
Add the dmcopytool Resources (Optional)	4
Add the dmfman Resource (Optional)	9
Add the dmfsoap Resource (Optional)	2
Confirm the Completed Status	4
Put the DMF HA Service into Production Mode	4
7. Create the COPAN MAID OpenVault Client HA Service for Mover Nodes 16	5
Understand the Requirements for the COPAN MAID OpenVault Client HA Service 16	5
COPAN MAID Requirements for an OpenVault Client HA Service	5
	6
COPAN MAID Requirements in Any HA Cluster	•
COPAN MAID Requirements in Any HA Cluster 16 COPAN MAID Requirements in a Mover-Node HA Cluster 16	b
COPAN MAID Requirements in a Mover-Node HA Cluster	57
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA Environment 16	7 7
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16	57 57
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16 Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16	57 57 57
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16 Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16 Environment 16	57 57 58 58
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Environment 1 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA Environment 16 Environment 16 Stop the cxfs_client and openvault Services Before Applying an HA Environment 16	57 57 58 58 58
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16 Environment 16 Environment 16 Stop the cxfs_client and openvault Services Before Applying an HA Environment 16 Disable the Parallel Data-Mover Nodes and the Services 16	57 57 58 58 58 59 70
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Environment 1 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16 Environment 16 Ensure that the Base HA Cluster is Operational 16 Stop the cxfs_client and openvault Services Before Applying an HA Environment 16 Disable the Parallel Data-Mover Nodes and the Services 16 Map of Resources for the COPAN MAID OpenVault HA Service 17	57 57 58 58 59 70 70
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16 Environment 16 Ensure that the Base HA Cluster is Operational 16 Stop the cxfs_client and openvault Services Before Applying an HA Environment 16 Disable the Parallel Data-Mover Nodes and the Services 16 Map of Resources for the COPAN MAID OpenVault HA Service 17 Create the OpenVault Components on the Failover Node 17	57 57 58 58 59 70 70 72
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16 Environment 16 Environment 16 Ensure that the Base HA Cluster is Operational 16 Stop the cxfs_client and openvault Services Before Applying an HA Environment 16 Disable the Parallel Data-Mover Nodes and the Services 17 Create the OpenVault Components on the Failover Node 17 Create and Test the HA Service 17	57 57 58 58 59 70 70 72 73
COPAN MAID Requirements in a Mover-Node HA Cluster 16 Configure and Test the Service Components Before Applying an COPAN MAID HA 16 Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment 16 Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA 16 Environment 16 Ensure that the Base HA Cluster is Operational 16 Stop the cxfs_client and openvault Services Before Applying an HA Environment 16 Disable the Parallel Data-Mover Nodes and the Services 17 Create the OpenVault Components on the Failover Node 17 Create and Test the HA Service 17 Add the Clone 17	57 57 58 58 59 70 70 72 73 74

Test the copan_ov_client Resource 181 Confirm the Completed Status 183 Put the HA Service into Production Mode 184 8. Create the Fencing Capability and Put Into Production Mode 184 8. Create the Fencing Capability and Put Into Production Mode 185 Create the STONITH Facility 185 SLES STONITH 186 Enable Node-Level Fencing 187 Test the STONITH Facility 187 Remove Constraints 187 Enable Cluster Services to be Started Automatically 187 RHEL: Enable cman and pacemaker to be Started Automatically 188 SLES: Enable openais to be Started Automatically 188 9. Administrative Tasks and Considerations 190 Viewing the Cluster Status 191 Putting the Cluster Into Maintenance Mode 191 Backing Up the CIB 192 Understanding CIFS and NFS in an HA Cluster 192 Clearing the Resource Failcount 192 Clearing the Resource State on a Node 193	Create the STONITH Capability				181
Put the HA Service into Production Mode 184 8. Create the Fencing Capability and Put Into Production Mode 185 Create the STONITH Facility 185 RHEL STONITH 185 SLES STONITH 186 Enable Node-Level Fencing 187 Test the STONITH Facility 187 Remove Constraints 187 Enable Cluster Services to be Started Automatically 187 RHEL: Enable cman and pacemaker to be Started Automatically 188 SLES: Enable openais to be Started Automatically 188 9. Administrative Tasks and Considerations 190 Viewing the Cluster Configuration 191 Putting the Cluster Into Maintenance Mode 191 Backing Up the CIB 192 Understanding CIFS and NFS in an HA Cluster 192 Clearing the Resource Failcount 192	Test the copan_ov_client Resource				181
8. Create the Fencing Capability and Put Into Production Mode .	Confirm the Completed Status				183
Create the STONITH Facility 185 RHEL STONITH 185 SLESS STONITH 186 Enable Node-Level Fencing 187 Test the STONITH Facility 187 Remove Constraints 187 Enable Cluster Services to be Started Automatically 187 RHEL: Enable cman and pacemaker to be Started Automatically 188 SLES: Enable openais to be Started Automatically 188 9. Administrative Tasks and Considerations 191 Viewing the Cluster Status 191 Putting the Cluster into Maintenance Mode 191 Putting the Cluster into Maintenance Mode 192 Understanding CIFS and NFS in an HA Cluster 192 Clearing the Resource Failcount 192	Put the HA Service into Production Mode	•		•	184
RHEL STONITH 185 SLESS STONITH 186 Enable Node-Level Fencing 187 Test the STONITH Facility 187 Remove Constraints 187 Enable Cluster Services to be Started Automatically 187 RHEL: Enable cman and pacemaker to be Started Automatically 187 SLES: Enable openais to be Started Automatically 188 SLES: Enable openais to be Started Automatically 188 Viewing the Cluster Status 189 Viewing the Cluster Configuration 191 Putting the Cluster into Maintenance Mode 191 Backing Up the CIB 192 Understanding CIFS and NFS in an HA Cluster 192 Clearing the Resource Failcount 192	8. Create the Fencing Capability and Put Into Production Mode	•		•	185
SLES STONITH 186 Enable Node-Level Fencing 187 Test the STONITH Facility 187 Test the STONITH Facility 187 Remove Constraints 187 Enable Cluster Services to be Started Automatically 187 RHEL: Enable cman and pacemaker to be Started Automatically 187 SLES: Enable openais to be Started Automatically 188 9. Administrative Tasks and Considerations 188 Viewing the Cluster Status 190 Viewing the Cluster Into Maintenance Mode 191 Putting the Cluster into Maintenance Mode 192 Understanding CIFS and NFS in an HA Cluster 187 Reviewing the Log Files 187 Clearing the Resource Failcount 187	Create the STONITH Facility				185
Enable Node-Level Fencing 187 Test the STONITH Facility 187 Remove Constraints 187 Enable Cluster Services to be Started Automatically 187 RHEL: Enable cman and pacemaker to be Started Automatically 187 SLES: Enable openais to be Started Automatically 188 9. Administrative Tasks and Considerations 187 Viewing the Cluster Status 189 Viewing the Cluster Configuration 191 Putting the Cluster into Maintenance Mode 191 Backing Up the CIB 187 Reviewing the Log Files 187 Reviewing the Log Files 187 Inderstanding CIFS and NFS in an HA Cluster 187 Inderstanding CIFS and NFS in an HA Cluster 187 Reviewing the Log Files 191 Reviewing the Resource Failcount 192 Inderstanding CIFS and NFS in an HA Cluster 187 Inderstanding CIFS and NFS in an HA Cluster 187 Inderstanding CIFS and NFS in an HA Cluster 192 Inderstanding CIFS and NFS in an HA Cluster 192 Inderstanding CIFS and NFS in an HA Cluster 192 Inderstanding CIFS and NFS in an HA Clu				•	
Test the STONITH Facility 187 Remove Constraints 187 Remove Constraints 187 Enable Cluster Services to be Started Automatically 187 RHEL: Enable cman and pacemaker to be Started Automatically 187 SLES: Enable openais to be Started Automatically 188 9. Administrative Tasks and Considerations 187 Viewing the Cluster Status 189 Viewing the Cluster Configuration 191 Putting the Cluster into Maintenance Mode 191 Backing Up the CIB 191 Reviewing the Log Files 191 Reviewing the Log Files 191 Reviewing the Resource Failcount 192		•	• •	•	
Remove Constraints 187 Enable Cluster Services to be Started Automatically 187 RHEL: Enable cman and pacemaker to be Started Automatically 187 SLES: Enable openais to be Started Automatically 188 9. Administrative Tasks and Considerations 187 Viewing the Cluster Status 189 Viewing the Cluster Configuration 190 Viewing the Cluster Into Maintenance Mode 191 Backing Up the CIB 191 Reviewing the Log Files 192 Clearing the Resource Failcount 192	-			•	
RHEL: Enable cman and pacemaker to be Started Automatically 188 SLES: Enable openais to be Started Automatically 188 9. Administrative Tasks and Considerations 189 Viewing the Cluster Status 190 Viewing the Cluster Configuration 181 9. Administrative Tasks and Considerations 189 Viewing the Cluster Status 190 Viewing the Cluster Configuration 191 Putting the Cluster into Maintenance Mode 191 Backing Up the CIB 192 Understanding CIFS and NFS in an HA Cluster 192 Reviewing the Log Files 192 Clearing the Resource Failcount 192					187
SLES: Enable openais to be Started Automatically 188 9. Administrative Tasks and Considerations 189 Viewing the Cluster Status 189 Viewing the Cluster Status 190 Viewing the Cluster Configuration 180 Putting the Cluster into Maintenance Mode 180 Understanding CIFS and NFS in an HA Cluster 180 Reviewing the Log Files 191 192 192 Clearing the Resource Failcount 192	Enable Cluster Services to be Started Automatically				187
9. Administrative Tasks and Considerations .<	RHEL: Enable cman and pacemaker to be Started Automatically				188
Viewing the Cluster Status <td>SLES: Enable openais to be Started Automatically</td> <td></td> <td></td> <td>•</td> <td>188</td>	SLES: Enable openais to be Started Automatically			•	188
Viewing the Cluster Configuration 191 Putting the Cluster into Maintenance Mode 1 191 Backing Up the CIB 1 192 Understanding CIFS and NFS in an HA Cluster 1 192 Reviewing the Log Files 1 192 Clearing the Resource Failcount 1	9. Administrative Tasks and Considerations			•	189
Putting the Cluster into Maintenance Mode 191 Backing Up the CIB . <td< td=""><td>Viewing the Cluster Status</td><td></td><td></td><td></td><td>190</td></td<>	Viewing the Cluster Status				190
Backing Up the CIB .	Viewing the Cluster Configuration				191
Understanding CIFS and NFS in an HA Cluster 192 Reviewing the Log Files 1 Clearing the Resource Failcount 1 192	Putting the Cluster into Maintenance Mode				191
Reviewing the Log Files 192 Clearing the Resource Failcount 192	Backing Up the CIB				192
Clearing the Resource Failcount	Understanding CIFS and NFS in an HA Cluster				192
	Reviewing the Log Files				192
Clearing the Resource State on a Node	Clearing the Resource Failcount				192
	Clearing the Resource State on a Node				193
Controlling the Number of Historical Files	Controlling the Number of Historical Files				193
Changing DMF Configuration Parameters	Changing DMF Configuration Parameters				194
Restarting the OpenVault Server	Restarting the OpenVault Server				194

Manually Moving a copan_ov_client Resource
Performing a Rolling Upgrade
COPAN MAID OpenVault Client HA Service for Mover Nodes Rolling Upgrade 198
CXFS NFS Edge-Serving HA Rolling Upgrade
DMF HA Rolling Upgrade
Stopping the Underlying HA Control Services
Manually Resetting a Node
Hardware Maintenance on a Cluster Node
Hardware Maintenance in a COPAN MAID OpenVault Client HA Service
Hardware Maintenance in a CXFS NFS Edge-Serving HA Service
Hardware Maintenance in a DMF HA Service
Maintenance with a Full Cluster Outage
Full Outage for COPAN MAID OpenVault Client HA Service on Mover Nodes . . . 214
Full Outage for CXFS NFS Edge-Serving HA Service .
Full Outage for DMF HA Service
10. Troubleshooting
Diagnosing Problems
Monitor the Status Output
Verify the Configuration in Greater Detail
Match Status Events To Error Messages
Verify chkconfig Settings
Off
On
Optionally On
Diagnose the Problem Resource
Examine Application-Specific Problems that Impact HA

Test the STONITH Capability .										•	•		•	•	•		•	•	224
Gather Troubleshooting Data .		•									•			•	•		•	•	225
Collect System Configuration 1	Infor	mat	tion											•					225
Collect System Logs														•					226
Collect HA Cluster Informatio	n	•												•				•	226
Collect SGI Service-Specific Inf	form	atio	n							•	•		•	•	•		•	•	227
Generate a Kernel Crash Dum	р	•								•	•			•	•		•	•	227
Use SGI Knowledgebase														•					228
Failover Testing Strategies		•												•				•	228
Corrective Actions														•				•	232
		•		•	•		•				•			•				•	232
Recovering from an Incomplete F	Failov	ver		•	•		•	•	•	•	•	•		•	•	•	•	•	232
Recovering from a CIB Corruption	on	•								•	•			•	•		•	•	233
																			000
Clearing the Failcounts After a Second	evere	e Er	ror		•		•	•	•	•	•	·	·	·	•	•	·	•	233
U											•	•	•	•	•	•	•	•	
Appendix A. Resource Refere	ence	è	•		•						•		•	•	•	•	•		235
Appendix A. Resource Reference copan_ov_client	ence	e	•	•			• •	• • •	•		•	• •	•	•	•	•	•	•	235 237
Appendix A. Resource Reference copan_ov_client copan_ov_client Purpose .	ence 	e	• • •	• • •	• •		• • • •	• • •	•		•	•	• •	• •	• •	• •	•	•	235 237 237
Appendix A. Resource Reference copan_ov_client copan_ov_client Purpose . copan_ov_client Requirement	ence ts	• • •		• • •		· · ·	• • • •	• • • •		• • •		•	• • •	• • •	• • •	• • •	•	•	235 237 237 237
Appendix A. Resource Reference copan_ov_client	ence ts	• • • •	• • •	• • •			• • • •	• • • •			•	•	•	• • • •	• • •	• • •	•	•	235 237 237 237 238
Appendix A. Resource Reference copan_ov_client	ence ts 	• • • •	• • • •	• • •		· · ·	• • • • •	• • • • •	•	• • • •	•	•	•	• • • •	• • • •	• • • •	•	• • • •	 235 237 237 237 238 238
Appendix A. Resource Reference copan_ov_client	ence ts 			•	•	· · ·	· ·	· · · ·	• • •	•	•	•	•	• • • •	• • • •	• • • •	•	• • • •	 235 237 237 237 238 238 238 238
Appendix A. Resource Reference copan_ov_client	ence ts 		•	•	•	· · · · · · · · · · · · · · · · · · ·	• • • •	• •	•	· · ·	•	•	• • • •	• • • • • • •	• • • • • • •	• • • • • •	• • • • • •	•	 235 237 237 238 238 238 242
Appendix A. Resource Reference copan_ov_client	ence ts 	• • • • • •	•	•	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•	•	•	• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • •	•	 235 237 237 238 238 238 242 242 242
Appendix A. Resource Reference copan_ov_client Purpose	ence ts 		• • • • •	• • • • •	•	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		• • • • • •	• • • • • • • • •	• • • • • • • •	• • • • • • • • •	• • • • • • •	•	 235 237 237 238 238 238 242 242 242 242
Appendix A. Resource Reference copan_ov_client copan_ov_client Purpose copan_ov_client Requirement Testing Before Appendix A. Resource Requirement Copan_ov_client Requirement Copan_ov_client Copan_ov_client<	ence ts 		•	•	•	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		• • • • • •	• • • • • • • • •	• • • • • • • •	• • • • • • • • •	• • • • • • •	•	 235 237 237 238 238 238 242 242 242 242 242 242 242
Appendix A. Resource Reference copan_ov_client Purpose	ence ts 		•	•	•		· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	• • •	• • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •	 235 237 237 238 238 238 242 242 242 242

cxfs-client	1 5
cxfs-client Purpose	15
cxfs-client Requirements	15
Testing Before Applying HA .	16
HA Control of the Service	46
cxfs-client Template	1 6
cxfs-client-clone	19
cxfs-client-clone Purpose	19
cxfs-client-clone Template	19
cxfs-client-nfsserver	51
cxfs-client-nfsserver Purpose	51
cxfs-client-nfsserver Requirements	51
Testing Before Applying HA .	51
HA Control of the Service	51
cxfs-client-nfsserver Template	52
cxfs-client-smnotify	56
cxfs-client-smnotify Purpose	56
cxfs-client-smnotify Requirements	56
cxfs-client-smnotify Template	56
cxfs-nfs-clone	30
cxfs-nfs-clone Purpose	30
cxfs-nfs-clone Template	30
dmcopytool	32
dmcopytool Purpose	32
dmcopytool Requirements	32
Testing Before Applying HA .	32
dmcopytool Template	32

dmf	•	•		•			•	•		•	•	•	•	•		265
dmf Purpose	•			•	•	•	•	•	•	•	•		•	•	•	265
dmf Requirements	•		•	•	•	•	•	•		•			•	•		265
Testing Before Applying HA				•			•			•						265
HA Control of the Service				•												266
dmf Template	•			•	•	•	•	•		•	•		•	•	•	266
dmf-group	•			•	•	•	•	•		•	•			•	•	268
dmf-group Purpose .	•			•			•	•		•	•				•	268
dmf-group Template .	•			•	•	•	•	•		•	•		•	•	•	268
dmfman				•			•			•						270
dmfman Purpose	•			•	•	•	•	•		•	•		•	•	•	270
dmfman Requirements .	•			•	•	•	•	•		•	•			•	•	270
Testing Before Applying HA				•			•			•						270
HA Control of the Service				•												270
dmfman Template	•			•			•	•		•	•				•	271
dmfsoap										•						273
dmfsoap Purpose	•							•								273
dmfsoap Requirements				•			•			•						273
Testing Before Applying HA																273
HA Control of the Service				•												273
dmfsoap Template				•			•			•						274
fence_ipmilan				•												276
fence_ipmilan Purpose				•			•			•						276
Testing Before Applying HA				•			•			•						276
fence_ipmilan Template																276
Filesystem																279
Filesystem Purpose .																279

Filesystem Requirements		•	•	•	•	•	•	•	•	•	·	·	•	•	•	•	·	•	•	•	279
Testing Before Applying HA		•									•						•		•		280
Filesystem Template .		•					•				•						•		•		280
Filesystem Example for	a N	Лаı	nag	ed	File	esys	ster	n				•							•		281
Filesystem Example for	the	e Sa	aml	ba l	Dire	ecto	ory	biı	nd-	Mo	unt	ed	on	/et	c/	sar	nba		•		282
IPaddr2							•												•		283
IPaddr2 Purpose		•					•				•						•		•		283
IPaddr2 Requirements		•					•				•						•		•		283
IPaddr2 Template																			•		283
ipalias-group																			•		285
ipalias-group Purpose																			•		285
ipalias-group Template																			•		285
ipmi																					287
ipmi Purpose																			•		287
																					287
Test the BMC IP Address Bef	ore	A	ppl	yin	g a	n H	IA	Env	/iro	nm	ent								•		287
ipmi Template																			•		287
lxvm																					290
lxvm Purpose							•				•						•		•		290
lxvm Requirements																			•		290
Testing Before Applying HA																			•		290
lxvm Template																			•		290
MailTo																					293
MailTo Purpose																			•		293
Testing Before Applying HA																			•		293
MailTo Template																					293
nfsserver																			•		295

nfsserver Purpose .		•	•	•	•	•		•	•	•		•	•	•	•		295
Testing Before Applying HA			•														295
HA Control of the Service																	295
nfsserver Template .			•					•				•	•				296
nmb			•									•					298
nmb Purpose			•					•		•		•	•				298
nmb Requirements								•									298
HA Control of the Service			•														298
nmb Template			•				•	•				•	•				298
openvault								•									300
openvault Purpose .		•	•	•	•	•		•		•		•	•	•			300
openvault Requirements			•														300
Testing Before Applying HA			•									•					300
HA Control of the Service																	300
openvault Template .			•					•		•		•	•				301
ping			•														304
ping Purpose			•														304
Testing Before Applying HA			•										•				304
ping Template																	304
smb																	307
smb Purpose			•														307
smb Requirements																	307
HA Control of the Service																	307
Testing Before Applying HA			•														307
smb Template																	308
tmf			•														309
tmf Purpose			•														309

Ir	ndex	•	•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	325
G	lossary	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	317
	winbind Template	•	•		•	•	•	•			•	•	•	•	•		•	•	•	•	314
	HA Control of the Service	•		•			•					•		•			•	•			314
	Testing Before Applying HA			•								•		•			•	•			314
	winbind Purpose	•		•									•	•				•			314
w	inbind																				314
	tmf Template	•																			310
	HA Control of the Service																				309
	Testing Before Applying HA																				309
	tmf Requirements	•	•	•		•		•	•	•				•			•	•	•		309

Figures

Figure 1-1	CXFS NFS Edge-Serving HA Service — Normal State	5
Figure 1-2	CXFS NFS Edge-Serving HA Service — After Failover	6
Figure 1-3	DMF HA Service — Normal State	7
Figure 1-4	DMF HA Service — After Failover	8
Figure 1-5	COPAN OpenVault Client HA Service for Mover Nodes — Normal State $\ . \ .$	9
Figure 1-6	COPAN OpenVault Client HA Service for Mover Nodes — After Failover $\ . \ .$	10
Figure 1-7	Map of the Configuration Procedure	12
Figure 5-1	Map of Resources for two CXFS NFS Edge-Serving HA Services	54
Figure 5-2	Two NFS Edge-Serving HA Clusters	73
Figure 6-1	Map of Resources for the DMF HA Service	99
Figure 6-2	Adding the Resources for the DMF Group and the Clustered/Local Filesystems	101
Figure 6-3	Adding the Resource for the IP Alias	107
Figure 6-4	Adding the Resource for the Mounting Service	111
Figure 6-5	Adding the Resource for DMF	136
Figure 6-6	Adding the Resource for the NFS Server	142
Figure 6-7	Adding the Resources for Samba	147
Figure 6-8	Adding the Resource for the DMF Copytool	155
Figure 6-9	Adding the Resource for DMF Manager	159
Figure 6-10	Adding the Resource for DMF Manager	162
Figure 7-1	Map of Resources for the COPAN MAID OpenVault HA Service	170
Figure 7-2	Adding the Resources for the Clone and the CXFS Client	173
Figure 7-3	Adding the Resources for the COPAN MAID OpenVault Clients	178

Tables

Table 1-1	SGI Resource Agents in the sgi-ha-ocf-plugins RPM	•	•	•	•	•	•	2
Table 2-1	Example Instance Names						•	20
Table 6-1	Order of Resources Used in the DMF HA Service						•	100
Table 10-1	Failover Tests		•	•	•	•	•	230

About This Guide

This publication provides information about creating a high-availability (HA) cluster using SGI [®] resource agents released with SGI InfiniteStorage Software Platform (ISSP) products. The resource agents are used with the Corosync and Pacemaker products, which are provided with the following:

- Red Hat[®] Enterprise Linux High Availability Add-On
- SUSE[®] Linux[®] Enterprise High Availability Extension

Scope of this Guide

This guide describes the use of SGI resource agents. It does not provide details about configuring an HA cluster; for those details, see the following:

• Pacemaker information for either RHEL or SLES clusters:

http://clusterlabs.org/doc/en-US/Pacemaker/1.1-plugin/html-single/Pacemaker_Explained/index.html

- RHEL only:
 - Clusterlabs quick start guide for RHEL:

http://clusterlabs.org/quickstart-redhat.html

- RHEL Add-On documentation:

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/High_Availability_Add-On_Overview/index.html

Note: The information about RGmanager does not apply to the ISSP implementation, which uses Pacemaker.

• SUSE only:

High Availability Guide provided by the following website:

http://www.suse.com/documentation/sle_ha/

Related SGI Publications

The following SGI publications contain additional information:

- CXFS 7 Administrator Guide for SGI InfiniteStorage
- CXFS 7 Client-Only Guide for SGI InfiniteStorage
- DMF 6 Administrator Guide
- DMF 6 Filesystem Audit Guide
- OpenVault Administrator Guide for SGI InfiniteStorage
- SGI InfiniteStorage Software Platform (ISSP) release note (README.txt)
- TMF 6 Administrator Guide for SGI InfiniteStorage
- XVM Volume Manager Administrator Guide
- The hardware guide for your SGI server

Obtaining SGI Publications

You can obtain SGI documentation as follows:

- See the SGI Technical Publications Library at http://docs.sgi.com. Various formats are available. This library contains the most recent and most comprehensive set of online books, man pages, and other information.
- You can view man pages by typing man *title* at a command line.
- The /docs directory on the ISSP DVD or in the Supportfolio[™] download directory contains the following:
 - The ISSP release note: /docs/README.txt
 - Other release notes: /docs/README_NAME.txt
 - A complete list of the packages and their location on the media: /docs/RPMS.txt
 - The packages and their respective licenses: /docs/PACKAGE_LICENSES.txt

• The release notes and manuals are provided in the noarch/sgi-isspdocs RPM and will be installed on the system into the following location:

/usr/share/doc/packages/sgi-issp-ISSPVERSION/TITLE

Conventions

The following conventions are used throughout this document:

Convention	Meaning
command	This fixed-space font denotes literal items such as commands, files, routines, path names, signals, messages, and programming language structures.
variable	Italic typeface denotes variable entries and words or concepts being defined.
user input	This bold, fixed-space font denotes literal items that the user enters in interactive sessions. (Output is shown in nonbold, fixed-space font.)
[]	Brackets enclose optional portions of a command or directive line.
	Ellipses indicate that a preceding element can be repeated.
manpage(x)	Man page section identifiers appear in parentheses after man page names.

The following prompts are used in examples to help clarify the machine on which the command is executed:

ha#	Any node that is or will be in the HA cluster
node1#	The first node that is or will be in the HA cluster
node2#	The second node that is or will be in the HA cluster
mover#	DMF parallel data-mover node
mover1#	The first DMF parallel data-mover node that is or will be in the HA cluster (analogous to node1)
mover2#	The second DMF parallel data-mover node that is or will be in the HA cluster (analogous to node2)

dmfserver#	DMF server
cxfsclient#	CXFS client-only node
cxfsserver#	CXFS server-capable administration node
downnode#	HA node that requires maintenance
upnode#	HA node that does not require maintenance
nfsclient#	NFS client outside of the HA cluster
otherhost#	Machine outside of the HA cluster

Reader Comments

If you have comments about the technical accuracy, content, or organization of this publication, contact SGI. Be sure to include the title and document number of the publication with your comments. (Online, the document number is located in the front matter of the publication. In printed publications, the document number is located at the bottom of each page.)

You can contact SGI in either of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in the SGI incident tracking system:

http://www.sgi.com/support/supportcenters.html

SGI values your comments and will respond to them promptly.

Chapter 1

Introduction

This chapter discusses the following:

- "High Availability Overview" on page 1
- "SGI Resource Agents and RPMs" on page 2
- "Supported HA Services" on page 3
- "Outline of the Configuration Procedure" on page 11

High Availability Overview

For SGI InfiniteStorage Software Platform (ISSP) products, the Corosync and Pacemaker products provide the infrastructure to keep managed resources highly available. The high-availability (HA) software is designed to fail over resources from one node to another, so that they survive a single point of failure:

- A *resource* is an application that is managed by HA software according to its definition in the HA *cluster information base* (CIB) and the use of a resource agent
- A *resource agent* is software that allows an application to be highly available without modifying the application itself
- A *resource group* is a set of resources that must be managed and failed over as a set from one node to another
- A *clone* allows a resource to run simultaneously on multiple nodes
- An *HA service* is the aggregate functionality provided by individual resources, resource groups, and clone resources that are configured together, and is usually associated with an IP address

The HA software starts, monitors, and stops resources and entire HA services. The underlying *control services* differ by operating system:

- Red Hat Enterprise Linux (RHEL):
 - CMAN
 - Corosync
 - Pacemaker
- SUSE Linux Enterprise Server (SLES[®]):
 - OpenAIS
 - Corosync
 - Pacemaker

Each HA service is actively owned by one node. The HA software uses the IP address associated with each HA service to direct clients to the node currently running the service. If that node fails, an alternate node restarts the HA services of the failed node. To application clients, the services on the alternate node are indistinguishable from those on the original node.

SGI Resource Agents and RPMs

Table 1-1 lists the Open Cluster Framework (OCF) resource agents specific to SGI ISSP products and the associated templates that help you configure individual resources.

Table 1-1 SGI Resource Agents in the sgi-ha-ocf-plugins RPM

Resource Agent	Description
copan_ov_client	COPAN MAID OpenVault client HA service for parallel data-mover nodes and SGI DMF TM tiered-storage virtualization servers
cxfs	CXFS™ filesystems whose metadata server location must follow the location of another resource, such as DMF or NFS

Resource Agent	Description
cxfs-client	CXFS filesystems (mounted on a CXFS client-only node) that are required to support another resource, such as those to be NFS-served from a CXFS client-only node or those used for a DMF parallel data-mover node
cxfs-client-nfsserver	NFS server on a CXFS client-only node
cxfs-client-smnotify	Network Status Monitor (NSM) lock reclaim notification on a CXFS client-only node
dmf	DMF server
dmcopytool	DMF copytool for Lustre, used to support a single instance of the lhsmtool_dmf (8) command
dmfman	DMF Manager tool
dmfsoap	DMF client Simple Object Access Protocol (SOAP) service
lxvm	Local XVM volume manager
openvault	OpenVault mounting service for DMF
tmf	Tape Management Facility (TMF) mounting service for DMF

SGI provides templates for the SGI resource agents, plus additional community resources that may be of interest, in /usr/share/doc/sgi-ha/templates. See Appendix A, "Resource Reference" on page 235.

For information about software installation, see the ISSP release note and Chapter 4, "Create the Base HA Cluster" on page 35.

Supported HA Services

Although the SGI resource agents can be used independently, this guide provides example procedures to configure the following HA services:

- CXFS NFS edge-serving from CXFS client-only nodes in a two-node active/active HA cluster. See "CXFS NFS Edge-Serving Failover" on page 4.
- DMF in a two-node active/passive HA cluster (which can optionally include COPAN MAID shelves). See "DMF Failover" on page 7.

 COPAN MAID shelves in a two-node active/active HA cluster (the nodes are two DMF parallel data-mover nodes). See "COPAN MAID OpenVault Client HA Service Failover " on page 8.

Although other configurations may be possible, SGI recommends the above HA environments.

Note: The attributes and the value recommendations listed are in support of the examples used in this guide. If you are using the resources in a different manner, you must evaluate whether these recommendations and use of meta attributes apply to your intended site-specific purpose.

CXFS NFS Edge-Serving Failover

Figure 1-1 and Figure 1-2 describe an example process of failing over a CXFS NFS edge-serving HA service in a two-node active/active HA cluster.

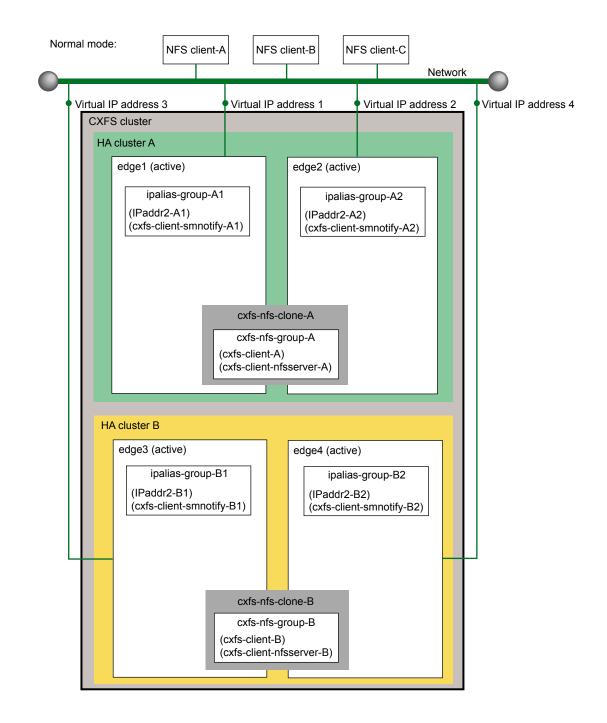


Figure 1-1 CXFS NFS Edge-Serving HA Service — Normal State

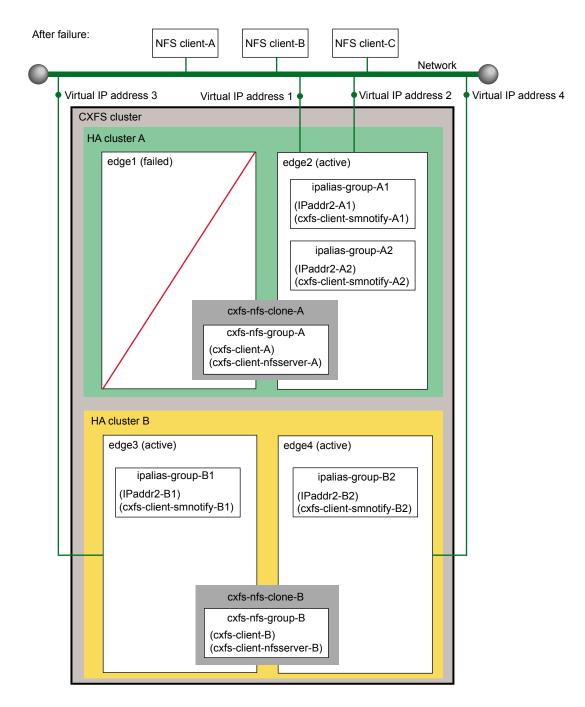


Figure 1-2 CXFS NFS Edge-Serving HA Service — After Failover

In this configuration, each CXFS filesystem is a single point of failure for the HA cluster. Therefore, you may want to consider using a separate HA cluster for each filesystem in order to reduce the possibility of cluster failure while maintaining filesystem bandwidth scalability. However, this also introduces more complexity.

Note: If you have multiple CXFS NFS edge-serving HA clusters within a single CXFS cluster, certain values must be unique to each HA cluster while others must be common across all of them. See "Requirements for a Second Edge-Serving HA Cluster" on page 72.

DMF Failover

Figure 1-3 and Figure 1-4 describe an example process of failing over a DMF HA service in a two-node active/passive HA cluster.

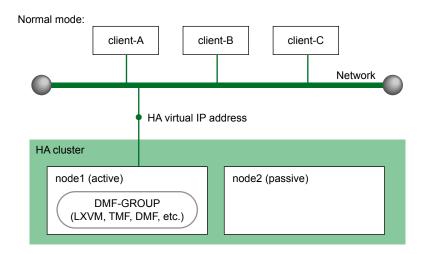
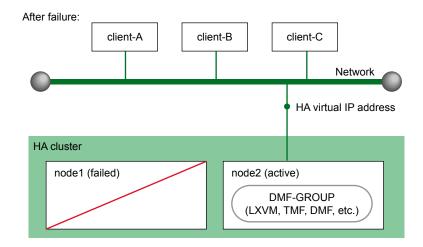



Figure 1-3 DMF HA Service — Normal State

Figure 1-4 DMF HA Service — After Failover

COPAN MAID OpenVault Client HA Service Failover

Figure 1-5 and Figure 1-6 describe an example process of failing over the OpenVault client service for a COPAN MAID shelf in a two-node active/active HA cluster (consisting of two parallel data-mover nodes).

At initialization, each parallel data-mover node is the default owner node of two COPAN OpenVault client resources, as represented in the dark lines in Figure 1-5 (where mover1 is the owner node of shelves 0 and 1, and mover2 is the owner node of shelves 2 and 3).

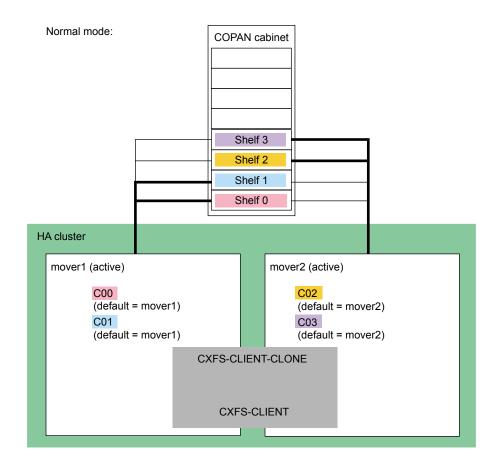


Figure 1-5 COPAN OpenVault Client HA Service for Mover Nodes — Normal State

When mover1 fails, its COPAN OpenVault client resources move to mover2 and mover2 becomes the current owner node of all of the shelves, as shown in Figure 1-6.

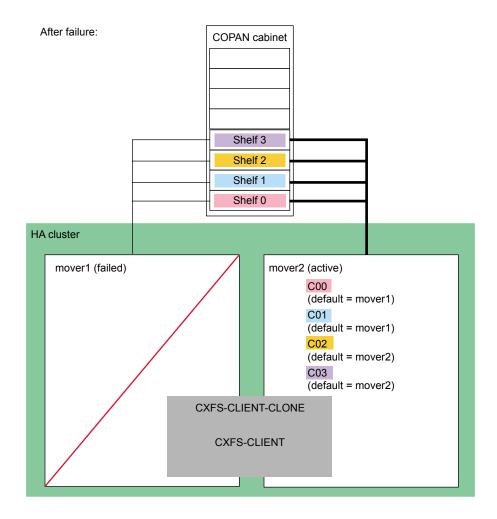


Figure 1-6 COPAN OpenVault Client HA Service for Mover Nodes — After Failover

After mover1 recovers and rejoins the HA cluster, you can choose a convenient time to manually move COO and CO1 back to mover1 to balance the load and return the HA cluster to its normal state (see "Manually Moving a copan_ov_client Resource" on page 195). You should perform this procedure during a time of low shelf activity, because moving a copan_ov_client resource involves disabling the active node via the dmnode_admin command (which results in stopping all activity to all shelves owned by the node).

Outline of the Configuration Procedure

Figure 1-7 summarizes the recommended steps to configure a two-node HA cluster for use with SGI InfiniteStorage products, pointing to the release notes or other chapters in this guide that provide the details:

Prepare for an HA environment:

- a. Install the SGI products (ISSP release notes)
- b. Understand the best practices for an HA environment (Chapter 2)
- c. Understand the general requirements (Chapter 3)

Create the Base HA cluster (Chapter 4)

Configure and test just one HA service:

CXFS NFS edge-serving (Chapter 5)

- a. Test the service components before applying an HA environment
- b. Stop the service components
- c. Add resources in the correct order
- d. Test the service components in the HA environment

OR

DMF (Chapter 6)

- a. Test the service components before applying an HA environment
- b. Stop the service components
- c. Add resources in the correct order
- d. Test the service components in the HA environment

OR

COPAN MAID OpenVault client (Chapter 7)

- a. Test the service components before applying an HA environment
- b. Stop the service components
- c. Add resources in the correct order
- d. Test the service components in the HA environment

Create the fencing capability and put the HA cluster into production mode (Chapter 8)

Figure 1-7 Map of the Configuration Procedure

007-5617-011

Do the following:

- 1. Prepare for an HA environment:
 - a. Ensure that you have installed the required SGI products on both nodes according to the installation procedure in the SGI InfiniteStorage Software Platform Release Note.
 - b. Understand the recommendations for preparation, configuration, testing, and administration of an HA environment. See Chapter 2, "Best Practices" on page 15.
 - c. Understand the general requirements for an HA environment. See Chapter 3, "General Requirements" on page 33.
- 2. Install the HA software and create the base HA cluster. See Chapter 4, "Create the Base HA Cluster" on page 35.
- 3. Configure and test each of the individual resources required for **just one** of the following HA services:
 - Chapter 5, "Create the CXFS NFS Edge-Serving HA Service" on page 47
 - Chapter 6, "Create the DMF HA Service" on page 75
 - Chapter 7, "Create the COPAN MAID OpenVault Client HA Service for Mover Nodes" on page 165

Note: If you are implementing multiple HA services, you should complete the entire process for just one HA service before adding another HA cluster for another HA service. You must configure individual resources for a given HA service in the order shown in the procedure.

In general, the procedure to create an HA service is as follows:

- a. Configure and test the service components **before applying the HA environment** (to reduce complexity)
- b. Stop the service components (so that they can be controlled by the HA software instead)
- c. Add the resources in the correct order, as documented
- d. Test the service components in the HA environment

4. Put the HA cluster into production mode by creating the STONITH (*shoot the other node in the head*) facility, reenabling node-level fencing, testing, and removing any resulting constraints. See Chapter 8, "Create the Fencing Capability and Put Into Production Mode" on page 185.

Best Practices

The following are best practices when using SGI resource agents:

- "Best Practices Before Applying an HA Environment" on page 15
- "Best Practices for Configuring and Testing" on page 17
- "Best Practices for Administration" on page 26
- "Best Practices for Maintenance" on page 30

Best Practices Before Applying an HA Environment

The following are best practices for your environment before introducing HA:

- "Ensure the System is Ready" on page 15
- "Configure and Test the Components Before Applying an HA Environment" on page 16
- "Ensure that the Debug RPM Matches the Kernel" on page 16
- "Use a Separate Filesystem for CXFS NFS State Information for Edge Servers" on page 16
- "Use Consistent Virtual Hostnames" on page 16
- "Use the Correct CXFS Fail Policy in a DMF HA Service" on page 16

Ensure the System is Ready

Do the following:

- Fix networking issues first.
- Make your overall system configuration as simple as possible complexity makes HA harder to achieve.
- Use redundancy in your system components to avoid single points of failure.
- Perform regular and frequent system backups.

007-5617-011

Configure and Test the Components Before Applying an HA Environment

Configure and test the services (like DMF) before making them highly available, which will make problems easier to diagnose.

In general, you should configure and test on one host (generally known in this guide as *edge1*, *node1*, or *mover1*). This host will later become a node in the HA cluster, on which all of the filesystems will be mounted and on which all drives and libraries are accessible.

Ensure that the Debug RPM Matches the Kernel

Ensure that the kernel-default-debuginfo RPM that matches the kernel is installed on the system. This will let you make the best use of the recommended SGI Support tools in case you must send a kernel crash dump to SGI for troubleshooting purposes.

Use a Separate Filesystem for CXFS NFS State Information for Edge Servers

For CXFS NFS edge-serving, use a separate shared CXFS filesystem on which to store NFS state information. The state is kept on disk and must be available while any edge-serving nodes are running. A simple setup where only one filesystem is being served via NFS can keep the state directories on the same filesystem that is being served.

Use Consistent Virtual Hostnames

When configuring OpenVault and DMF, be consistent when specifying virtual hostnames, always using either the short hostname (like myhost) everywhere or the fully qualified domain name (like myhost.mycompany.com) everywhere.

Use the Correct CXFS Fail Policy in a DMF HA Service

In a DMF HA service, the STONITH facility must manage the server reset capability. Therefore, you must set the CXFS failpolicy for the CXFS server-capable administration nodes to Fence, Shutdown so that CXFS will not issue its own reset commands. For more information about CXFS failpolicy settings, see CXFS 7 Administrator Guide for SGI InfiniteStorage.

Best Practices for Configuring and Testing

The following are best practices for configuring and testing the HA system:

- "Use the Resource Templates" on page 17
- "Use the Appropriate Tools" on page 22
- "Examine Log Files" on page 24
- "Avoid Unnecessary Failovers" on page 24
- "Always use STONITH" on page 25
- "Use One Group for a DMF HA Environment" on page 25
- "Examine the Use of Stickiness and Thresholds" on page 25
- "Additional Resources to Consider" on page 26

Use the Resource Templates

This section discusses the following:

- "Template Location" on page 18
- "Use the Templates as Building Blocks" on page 18
- "Resource Format" on page 18
- "Values You Can Change" on page 19
- "Values You Cannot Change" on page 19
- "Conventions for Resource Instance IDs" on page 19
- "Operations" on page 21
- "Timeout Values" on page 22
- "Meta Attributes" on page 22

Template Location

SGI provides templates of the resources required to configure an HA cluster in the following location:

/usr/share/doc/sgi-ha/templates/

Use the Templates as Building Blocks

You should use the templates as building blocks to construct your HA configuration file, adding one resource at a time and testing it before adding another resource.

You can create a copy of a template in a partial configuration file (referred to as the *workfile*). In general, you should use the values shown in the templates except for the italicized uppercase site-specific variables (most parameters and some timeouts are site-specific). In many cases, you can use the defaults provided for the variables. The comments in the templates provide information about these variables; you must remove all of these comments before loading the *workfile*. You will then run the following command to update the cluster information base (CIB) database:

node1# crm configure load update workfile

In general, use a new workfile for each resource or as directed in this guide.

Resource Format

In general, the individual resources take the following format:

- # Comments_about_using_this_resource
- primitive ID class: provider: type
 - $op \quad monitor_operation_that_probes_to_see_if_the_resource_is_already_running$
 - $\texttt{op} \hspace{0.1in} \textit{monitor_operation_that_probes_to_see_if_the_resource_continues_to_run}$
 - op start_operation
 - op stop_operation
 - params parameters_specific_to_the_resource
 - meta attributes_specific_to_the_resource

#

Caution: You must remove all of the comments before loading the work file.

Values You Can Change

Site-specific values that you may want to change are in uppercase in the template files. In this guide, they are highlighted in bold-italic uppercase (such as *REPLACE_THIS*). In many cases, you can use the defaults provided; see the comments for more information.

Values You Cannot Change

The *class*, *provider*, and *type* shown in "Resource Format" on page 18 must use the exact values provided in the templates. Most *type* names are lowercase, but some are mixed case. The names are listed under /usr/lib/ocf/resource.d/*provider*.

Conventions for Resource Instance IDs

The suggested IDs for all resource primitive instances, clone instances, and group instances provided in the templates are site-changeable. You should choose IDs that are meaningful to your site; for simplicity, you may want to retain the defaults provided in the templates unless otherwise directed. By convention, the templates use the example instance IDs shown in Table 2-1.

All IDs should be unique within a given HA cluster; if there are multiple instances of the same *type*, each ID must be unique (such as two resources of type IPaddr2 with individual instance IDs of IPaddr2-A1 and IPaddr2-A2). Within this guide and in the templates, individual instance names are shown in uppercase by convention.

If you change an ID, you must ensure that the new name is used correctly elsewhere within constraints or groups as needed. You should use a unique ID for each resource, whether it is a clone, group, or primitive resource. Do not use spaces in resource IDs because this may cause HA software or other supporting software to behave in a confusing manner.

007-5617-011

Primitive/Group/Clone Type	Example Instance Name
copan_ov_client	SHELF, such as COO for the COPAN MAID cabinet 0, shelf 0 (the bottom shelf)
cxfs	CXFS
cxfs-client	CXFS-CLIENT
clone	CXFS-CLIENT-CLONE
cxfs-client-nfsserver	EDGENFS-A for cluster A and EDGENFS-B for cluster B
cxfs-client-smnotify	CXFS-CLIENT-SMNOTIFY-XX, such as CXFS-CLIENT-SMNOTIFY-A1 and CXFS-CLIENT-SMNOTIFY-A2 for cluster A and CXFS-CLIENT-SMNOTIFY-B1 and CXFS-CLIENT-SMNOTIFY-B2 for cluster B
dmf	DMF
dmfman	DMFMAN
dmfsoap	DMFSOAP
group	DMF: DMF-GROUP Edge-serving: IPALIAS-GROUP-XX, such as IPALIAS-GROUP-A1 and IPALIAS-GROUP-A2 for cluster A and IPALIAS-GROUP-B1 and IPALIAS-GROUP-B2 for cluster B
fence-ipmilan	STONITH-NODENAME, such as STONITH-node1 (RHEL only)
Filesystem	FILESYSTEM, such as dmfusr1, spool, or etc_samba
IPaddr2	DMF: IPaddr2 Edge—serving: IPaddr2-A1 and IPaddr2-A2 for cluster A and IPaddr2-B1 and IPaddr2-B2 for cluster B
ipmi	STONITH-NODENAME, such as STONITH-node1 (SLES only)
lxvm	LXVM
MailTo	NOTIFY
nfsserver	NFSSERVER
nmb	NMB
openvault	VO

Table 2-1 Example Instance Names

Primitive/Group/Clone Type	Example Instance Name
ping	PING
smb	SMB
tmf	TMF
winbind	WINBIND

Operations

Note the following:

- A monitor operation determines if the resource is operating correctly:
 - A *probe* monitor operation (which always uses an interval value of 0) checks to see if the resource is already running.
 - A *standard* monitor operation periodically verifies that the resource continues to run. Each operation will time-out after the specified number of seconds. If the operation fails, it will attempt to restart the resource.

Note: Always use a probe monitor operation, even if you do not use a standard monitor operation.

• The start operation initiates a resource. It will time-out after a specified time. It requires that fencing is configured and active in order to start the resource. Using system reset as a fencing method is required in order to preserve data integrity. If the operation fails, it will attempt to restart the resource.

Note: *Fencing* in HA terminology (node-level fencing) is not the same as *fencing* in CXFS terminology (I/O-level fencing).

- A stop operation terminates or gives up control of a resource. It will time-out after the specified time. If the operation fails, it will attempt to fence the node on which the failure occurred. The fail policy must be set to fence and a STONITH ("shoot the other node in the head") facility must be configured according to the requirements for your site. See:
 - RHEL: "fence_ipmilan Template" on page 276
 - SLES: "ipmi Template" on page 287

	Note: Longer stop operation timeouts may result in longer failover times, and shorter stop operation timeouts may result in more frequent system reset events.	
Timeout Values		
	The various timeout values provided in the templates are good starting points, but you should evaluate their use at your site.	
Meta Attributes		
	Note the following:	
	• migration-threshold specifies a count of failures at which the current node will receive a score of -INFINITY so that the resource must fail over to another node and is not eligible for restart on the local node, based on the number of start, monitor, or stop failures that this resource has experienced.	
	• resource-stickiness specifies a score for the preference to keep this resource on the node on which it is currently running. A positive value specifies a preference for the resource to remain on the node on which it is currently running. This preference may only be overridden if the node becomes ineligible to run the resource (if the node fails over) or if there is a start, monitor, or stop failure for this resource or another resource in the same resource group.	

Use the Appropriate Tools

This section discusses the following:

- "Use the crm(8) Command for Configuration, Status, and Control" on page 23
- "Use the crm_verify Command to Verify Configuration" on page 24
- "Get More Information by Increasing Verbosity" on page 24

Use the crm(8) Command for Configuration, Status, and Control

Use the crm(8) command to configure, to obtain status, and to perform administrative actions. To invoke the command, do the following:

/usr/sbin/crm

For more details, enter help or help *subcommand*. For example:

/usr/sbin/crm
crm(live)# help

This is crm shell, a Pacemaker command line interface.

Available commands:

cib	manage shadow CIBs
resource	resources management
configure	CRM cluster configuration
node	nodes management
options	user preferences
history	CRM cluster history
site	Geo-cluster support
ra	resource agents information center
status	show cluster status
help,?	show help (help topics for list of topics)
end,cd,up	go back one level
quit,bye,exit	exit the program
<pre>crm(live)# help cib</pre>	

A shadow CIB is a regular cluster configuration which is kept in a file. The CRM and the CRM tools may manage a shadow CIB in the same way as the live CIB (i.e. the current cluster configuration). A shadow CIB may be applied to the cluster in one step.

Note: Red Hat does not supply the crm(8) command. Therefore, the SGI ISSP HA software supplies this tool for RHEL customers. RHEL customers must use this version of crm for cluster resource configuration.

Use the crm_verify Command to Verify Configuration

Use the following command to verify changes you make to the CIB, after each resource primitive that you define:

ha# crm_verify -LV

For more information, see the pacemaker(8) man page.

Note: The crm configure verify command is not equivalent to the crm_verify command.

Get More Information by Increasing Verbosity

To get more information, you may add multiple -v options to many of the HA commands in order to increase verbosity. For example:

ha# crm_verify -LVVV

Examine Log Files

You should regularly examine the following log files:

• RHEL:

```
/var/log/cluster/corosync.log (primary RHEL HA log file)
/var/log/messages
```

• SLES:

/var/log/messages

Avoid Unnecessary Failovers

This guide provides some starting points for monitoring values, but you should test these values under typical load for your site to determine if they are appropriate for your use. In some cases, you may wish to avoid monitoring other than probe monitoring (probe monitoring is always appropriate).

To prevent a given resource from being monitored and possibly triggering failovers, do not define a standard monitor operation (see "Operations" on page 21). This may be particularly useful for those resources that are not critical (such as DMF Manager)

but should still move with the rest of the resource group or for those resources that have an alternative method for monitoring. You can also make timeout values larger to decrease the likelyhood of an unnecessary failover.

Do not create explicit location, colocation, or order constraints on an individual resource primitive except as directed in this guide.

Caution: Defining constraints on a resource primitive can lead to a deadlock situation in which the group has conflicting constraints that prevent it from starting anywhere.

Always use STONITH

Always use STONITH node-level fencing to protect data integrity in case of failure:

- RHEL: "fence_ipmilan Template" on page 276
- SLES: "ipmi Template" on page 287

Use One Group for a DMF HA Environment

For a DMF HA cluster, place each resource primitive within one resource group. The resource group mechanism incorporates implied colocation constraints as well as resource order constraints. This lets you control the resources as a single entity, which greatly simplifies administration.

Examine the Use of Stickiness and Thresholds

You may want to examine the use of the resource_stickiness and migration_threshold attributes of resources to control how often and to what node failover will occur. The examples in this book result in the individual resource or resource group failing over to the alternate node on the first failure of any of the resource primitives. In this default setting, there is no automatic failback to the original node. For more information about score calculation, see the following website:

http://www.clusterlabs.org/doc/en-US/Pacemaker/1.0/html/Pacemaker_Explained/index.html

Additional Resources to Consider

This section discusses the following:

- "MailTo Resource" on page 26
- "ping Resource" on page 26

MailTo Resource

You may want to consider defining a MailTo resource to implement notification when a given resource starts, stops, or fails over. For more information, see "MailTo Template" on page 293.

ping Resource

The IPaddr2 virtual IP address resource agent monitors the existence of the IP address alias on the interface, but it does not monitor network interface controller (NIC) interface availability. You may want to consider defining a ping resource. For more information, see "ping Template" on page 304, and the information about moving resources due to connectivity changes at the following website:

http://www.clusterlabs.org/doc/en-US/Pacemaker/1.0/html/Pacemaker_Explained/index.html

Best Practices for Administration

The following are best practices for administering the HA cluster:

- "Make a Backup Copy of the CIB" on page 27
- "Monitor Status Information for Problems" on page 27
- "Clear Failcount Values After Resolving the Problem" on page 27
- "Remove Implicit Constraints after Explicitly Moving a Resource" on page 28
- "Set the Core Membership Timeout Value Appropriately" on page 28
- "Upgrade Appropriately" on page 29
- "Do Not Use an Edge-Serving Node as an NFS Client" on page 29
- "Include the PID in Core Files" on page 29

Make a Backup Copy of the CIB

After you have successfully completed the initial configuration, make a backup copy of the working CIB so that you can return to it if necessary after future changes. See:

- "Backing Up the CIB" on page 192
- "Recovering from a CIB Corruption" on page 233

Before making changes to an existing HA environment, ensure that you have a good backup copy of the current CIB. (If you encounter a corrupted CIB, you must erase it by force and then restore the information about resources, constraints, and configuration from a backup copy of a good CIB.)

After you establish that your changed configuration is good, make a new backup of the CIB.

Monitor Status Information for Problems

Periodically watch the output of the following commands for problems:

ha# crm status inactive ha# crm_verify -LV ha# crm status failcounts

For more information, see "Viewing the Cluster Status " on page 190.

Refer to the logs in case of error and periodically to ensure that you are aware of operations automatically initiated by HA software. See "Examine Log Files" on page 24.

Clear Failcount Values After Resolving the Problem

After a failure, clear the resource primitive failcount values for a node immediately after resolving the cause of the failure (or reboot the system). See "Clearing the Resource Failcount" on page 192.

Remove Implicit Constraints after Explicitly Moving a Resource

If you want to move or start a resource (either an individual primitive or a group) on a specific node, enter the following:

ha# crm resource move resource node

The result of this command is to create a location constraint with a score of INFINITY for the specified resource or resource group on the specified node.

Note: If conflicting constraints already exist, this preference might not be honored.

You must remember to remove implicit constraints when they are no longer needed, such as after the individual resource or resource group has successfully moved to the new node. Do the following:

ha# crm resource unmove resource

To move the COPAN OpenVault client resource, see "Manually Moving a copan_ov_client Resource" on page 195.

Set the Core Membership Timeout Value Appropriately

Set the HA core membership timeout (totem token) value to one that is significantly higher than the CXFS heartbeat timeout. The CXFS heartbeat timeout is set by the mtcp_hb_period system tunable parameter (which is specified in hundredths of a second). For more information, see *CXFS 7 Administrator Guide for SGI InfiniteStorage*.

To determine the current setting of mtcp_hb_period, use the sysctl(8) command. For example:

```
# sysctl -a | grep mtcp_hb_period
kernel.cell.mtcp_hb_period = 500
```

In this case, the CXFS heartbeat timeout is 500 (5 seconds), so you would set the HA totem token value to at least 15s. If mtcp_hb_period was set to 6000 (60 seconds), you would use an totem token value of at least 90s.

The default totem consensus value is 1.2 times the totem token value, which is appropriate for most sites. For example, for the totem token value of 90s, the totem consensus value is set by default to 108s.

See "Configure the Nodes for an HA Environment" on page 38.

Upgrade Appropriately

When upgrading the software, follow the procedure in "Performing a Rolling Upgrade" on page 197.

Do Not Use an Edge-Serving Node as an NFS Client

Do not use a CXFS NFS edge-serving node running HA software as an NFS client. (The NFS client service on a CXFS NFS edge-serving node does not support monitored locking.)

Include the PID in Core Files

To better analyze problems, consider adding the following directive to the /etc/sysctl.conf file on each node in the HA cluster so that core dump files will include the name of the process ID (PID) that caused the dump and the time when the dump occurred:

kernel.core_pattern = core.%p.%t

Changes made to /etc/sysctl.conf will take effect on the next boot and will be persistent. To make the settings effective immediately for the current session as well, enter the following:

ha# echo "core.%p.%t" > /proc/sys/kernel/core_pattern

Note: Core files are generally placed in the current working directory (cwd) of the process that dumped the core file. For example, to locate the core file for a PID of 25478:

nodel# ps -fp 25478
UID PID PPID C STIME TTY TIME CMD
root 25478 25469 0 Feb02 ? 00:02:40 /usr/lib/heartbeat/stonithd
nodel# ls -l /proc/25478/cwd
lrwxrwxrwx 1 root root 0 Mar 2 17:29 /proc/25478/cwd -> /var/lib/heartbeat/cores/root

Best Practices for Maintenance

This section discusses the following:

- "Questions to Ask Before Performing Maintenance" on page 30
- "Hardware Maintenance" on page 30
- "System Software Updates" on page 31
- "ISSP Software Updates" on page 31
- "Changes Permitted on a Running Resource" on page 31
- "Changes that Require Maintenance Mode" on page 31
- "Changes that Require a Full Cluster Outage" on page 32

Questions to Ask Before Performing Maintenance

Before performing maintenance tasks, answer the following questions:

- How will end users be impacted by the change being proposed?
- Will the change affect the availability of a resource, even briefly?
- How is the HA software monitoring the resource availability?
- Will the change impact other resources in the HA environment?
- What is the risk of a misstep that could lead to an HA service outage?
- How can the effectiveness of the change be verified?
- What is the change roll-back plan?

Hardware Maintenance

Hardware changes are generally disruptive to the HA environment and always require careful planning. You should consider whether or not the hardware change will also require a software change. In many cases, you must entirely shut down the HA cluster. See "Maintenance with a Full Cluster Outage" on page 213.

System Software Updates

System software updates (such as an operating system upgrade, kernel update, or software patches) are generally disruptive to the HA environment and always require careful planning. In many cases, a full cluster outage is required; see "Maintenance with a Full Cluster Outage" on page 213.

In other cases, an upgrade with the operational HA cluster may be possible; see "Performing a Rolling Upgrade" on page 197.

ISSP Software Updates

Before updating ISSP software, read the release notes and any late-breaking caveats on the Supportfolio download page:

https://support.sgi.com/login

Changes Permitted on a Running Resource

If a resource allows the change without impact to production operation, then the change is generally safe to perform in an HA environment. For example, you can make changes to most DMF configuration parameters or add volumes to an existing OpenVault cartridge group without problems. For more information about which parameters can be changed while DMF is running, see the "Best Practices" chapter of the *DMF 6 Administrator Guide*.

Caution: Changing meta attributes or operation parameters will influence the behavior of the resource or clone and can therefore influence how the HA software handles the resource or clone. If you make a mistake (such as setting a timeout to 3s when you meant to change it to 30s), problems can result.

Changes that Require Maintenance Mode

If a change requires that an individual resource be stopped but does not otherwise impact the rest of the HA cluster, you should put the cluster into maintenance mode before stopping the resource. See "Putting the Cluster into Maintenance Mode" on page 191.

Changes in this category include:

- Any change that requires DMF to be stopped according to the DMF 6 Administrator Guide
- Restarting the OpenVault server when volume usage is inactive

Note: In general, you should not simply unmanage a given resource because that can adversely impact failcounts and cause inappropriate failovers.

Changes that Require a Full Cluster Outage

Many changes that require a resource to be stopped may also be disruptive to the HA cluster and therefore require a full cluster outage. See "Maintenance with a Full Cluster Outage" on page 213.

Changes in this category include:

- Changes to CXFS filesystem mount options
- · Changes to NFS export options
- Changes that require extensive testing

Chapter 3

General Requirements

This chapter discusses the following requirements for an HA cluster using SGI resource agents:

- "HA Support Requirements" on page 33
- "Licensing Requirements" on page 33
- "Software Version Requirements" on page 34
- "Hardware Requirements" on page 34
- "System Reset Requirements" on page 34
- "Time Synchronization Requirements" on page 34

Note: Resource-specific requirements are documented in the resource-specific chapters later in this guide.

HA Support Requirements

An HA environment may in some cases require the purchase of additional support from Red Hat or SUSE.

Licensing Requirements

All nodes in an HA cluster must have the appropriate software licenses installed. The following software requires licenses if used:

- CXFS
- DMF
- DMF Parallel Data-Mover Option

For information about obtaining licenses, see the individual product administration guides.

Software Version Requirements

For any of the SGI resource agents, you must use the corresponding version of SGI software as defined in the *SGI InfiniteStorage Software Platform* release note.

Hardware Requirements

All nodes in an SGI HA cluster must be x86_64 architecture with a BMC supporting the IPMI protocol and administrative privileges.

Note: If you form an HA cluster using only members of a partitioned system with a single power supply, a failure of that power supply may result in failure of the HA cluster. CXFS does not support these members as nodes in the CXFS cluster.

DMF supports only one instance running on a given node in an HA cluster at any given time, thus an active/active cluster is not possible for DMF. If the cluster also runs CXFS, the DMF server nodes in the cluster must also be CXFS server-capable administration nodes. For additional requirements when using the DMF Parallel Data-Mover Option, see DMF 6 Administrator Guide.

System Reset Requirements

You must use STONITH node-level fencing to protect data integrity in case of failure. The resource agent differs by operating system. See:

- RHEL: "fence_ipmilan Template" on page 276
- SLES: "ipmi Template" on page 287

STONITH requires the use of a BMC user account with administrative privileges (typically -U admin -P admin). For more information, see the ipmitool(1) man page and the user guide or quick-start guide for your system.

Time Synchronization Requirements

You must configure time synchronization among all cluster nodes.

Create the Base HA Cluster

This chapter discusses the following:

- "Avoid UID/GID Conflicts" on page 35
- "Install the HA Software" on page 37
- "Enable Multicasting on the Ethernet Switch" on page 38
- "Configure the Nodes for an HA Environment" on page 38
- "Test the Base HA Cluster" on page 45
- "Create the ISSP HA Service" on page 46

Avoid UID/GID Conflicts

The pacemaker software automatically creates user hacluster and haclient if they do not already exist, using the following UID/GID values:

- RHEL: 189
- SLES: 90

Before installing the pacemaker software, verify that no other user or group is already using the default UID/GID values

- RHEL:
 - On node1: node1# getent passwd 189 node1# getent group 189
 On node2:

node2# getent passwd 189
node2# getent group 189

• SLES:

007-5617-011

- On node1:

node1# getent passwd 90
node1# getent group 90

- On node2:

node2# getent passwd 90
node2# getent group 90

If there is no output, you can continue on to "Install the HA Software" on page 37.

However, if the output indicates that the UID/GID is already in use at your site, you must use groupadd(8) and useradd(8) commands to explicitly create the user/group with an unused UID/GID value. For example:

• RHEL: an example value of 190:

- On RHEL node1:

nodel# groupadd -r haclient -g 190 nodel# useradd -r -g haclient -u 190 -s /sbin/nologin -c "cluster user" hacluster

- On RHEL node2:

node2# groupadd -r haclient -g 190 node2# useradd -r -g haclient -u 190 -s /sbin/nologin -c "cluster user" hacluster

• SLES: an example value of 91:

- On SLES node1:

nodel# groupadd -o -r -g 91 haclient nodel# useradd -r -g haclient -c "heartbeat processes" -d /var/lib/heartbeat/cores/hacluster -o -u 91 hacluster

- On SLES node2:

node2# groupadd -o -r -g 91 haclient node2# useradd -r -g haclient -c "heartbeat processes" -d /var/lib/heartbeat/cores/hacluster -o -u 91 hacluster

Install the HA Software

The ISSP release note provided in the noarch/sgi-isspdocs RPM is installed in the following location:

/usr/share/doc/packages/sgi-issp-ISSPVERSION/TITLE

Note: For simplicity, this procedure refers to the first node in the HA cluster as node1 (which also implies either edge1 or mover1) and the second node as node2 (which also implies either edge2 or mover2).

Install the HA software on node1 and node2, if not already done:

- RHEL:
 - 1. Install the following:

rhel# yum groupinstall "High Availability"
rhel# yum install pacemaker
rhel# yum groupinstall "SGI ISSP High Availability"

2. Create a RHEL update repository according to the directions in the ISSP release note.

- SLES:
 - 1. Install the SUSE Linux Enterprise High Availability Extension by following the instructions in the SUSE *High Availability Guide* section about installation as an add-on (section 3.3):

 $https://www.suse.com/documentation/sle_ha/book_sleha/data/sec_ha_installation_add-on.html add-on.html add-on.htm$

Note: You will only use the instructions to install the High Availability Extension add-on; further configuration will be done using the instructions in this ISSP guide.

2. Install the ISSP HA pattern:

sles# zypper install --type pattern SGI-ISSP-High-Availability

3. Create a SLES update repository according to the directions in the ISSP release note.

Enable Multicasting on the Ethernet Switch

Ensure that the Ethernet switch supports multicasting and has it enabled. (Some switches disable multicasting by default.)

Configure the Nodes for an HA Environment

This section discusses the following:

- "RHEL: Configure the Nodes for an HA Environment" on page 39
- "SLES: Configure the Nodes for an HA Environment" on page 42

RHEL: Configure the Nodes for an HA Environment

For RHEL, do the following:

- 1. Do the following on node1:
 - a. Choose the HA node names and networks that will be used for the primary and secondary heartbeat networks.

For example, suppose you want to use the following:

- 192.168.1.0 as the primary heartbeat network, with HA node names of node1-ha and node2-ha
- 192.168.10.0 as the secondary heartbeat network, with alternate HA node names of node1-ha-alt and node2-ha-alt (optional but recommended if appropriate)

You would then have the following in the /etc/hosts file:

10.0.1.1 node1 10.0.1.2 node2 192.168.1.1 node1-ha 192.168.10.1 node1-ha-alt 192.168.10.1 node1-ha-alt 192.168.10.2 node2-ha-alt

b. Create the cluster:

```
nodel# ccs -f /etc/cluster/cluster.conf --createcluster mycluster
nodel# ccs -f /etc/cluster/cluster.conf --addnode node1-ha
nodel# ccs -f /etc/cluster/cluster.conf --addnode node2-ha
```

c. Set the cluster heartbeat timeout:

node1# ccs -f /etc/cluster/cluster.conf --settotem token=120000

See "Set the Core Membership Timeout Value Appropriately" on page 28.

d. (Optional) Add an alternate HA heartbeat network, if appropriate:

```
node1# ccs -f /etc/cluster/cluster.conf --addalt node1-ha node1-ha-alt
node1# ccs -f /etc/cluster/cluster.conf --addalt node2-ha node2-ha-alt
```

e. Set the debug logging level:

node1# ccs -f /etc/cluster/cluster.conf --setlogging debug="on"

007-5617-011

f. Specify how cluster manager (CMAN) should send its fencing requests to Pacemaker:

```
nodel# ccs -f /etc/cluster/cluster.conf --addfencedev pcmk agent=fence_pcmk
nodel# ccs -f /etc/cluster/cluster.conf --addmethod pcmk-redirect nodel-ha
nodel# ccs -f /etc/cluster/cluster.conf --addmethod pcmk-redirect node2-ha
nodel# ccs -f /etc/cluster/cluster.conf --addfenceinst pcmk node1-ha pcmk-redirect port=node1-ha
nodel# ccs -f /etc/cluster/cluster.conf --addfenceinst pcmk node2-ha pcmk-redirect port=node2-ha
```

Note: Do this regardless of whether or not fencing is enabled within Pacemaker.

- 2. Copy /etc/cluster/cluster.conf to node2.
- 3. On both nodes, disable the default startup behavior that requires quorum:

Note: CMAN assumes the cluster should not start until the node has quorum.

a. On node1:

node1# echo "CMAN_QUORUM_TIMEOUT=0" >> /etc/sysconfig/cman

b. On node2:

node2# echo "CMAN_QUORUM_TIMEOUT=0" >> /etc/sysconfig/cman

- 4. Ensure that the acpid and NetworkManager services are stopped on both nodes:
 - a. On node1:

nodel# chkconfig acpid off nodel# chkconfig NetworkManager off

node1# service acpid stop
node1# service NetworkManager stop

b. On node2:

node2# chkconfig acpid off node2# chkconfig NetworkManager off

node2# service acpid stop
node2# service NetworkManager stop

- 5. On both nodes, verify that the user hacluster and group haclient have been added to the node. For example, showing the default UID/GID:
 - a. On node1:

```
nodel# grep hacluster /etc/passwd
hacluster:x:189:189:cluster user:/home/hacluster:/sbin/nologin
nodel# grep haclient /etc/group
haclient:x:189:
```

b. On node2:

```
node2# grep hacluster /etc/passwd
hacluster:x:189:189:cluster user:/home/hacluster:/sbin/nologin
node2# grep haclient /etc/group
haclient:x:189:
```

- 6. On both nodes, start the cman and pacemaker services:
 - a. On node1:

node1# service cman start
node1# service pacemaker start

b. On node2:

node2# service cman start
node2# service pacemaker start

Note: If a reboot occurs during the configuration process, you must manually restart the cman and pacemaker services. After configuration and testing are complete, you will enable automatic starting via chkconfig (in "RHEL: Enable cman and pacemaker to be Started Automatically" on page 188).

For more information, see:

http://clusterlabs.org/quickstart.html

SLES: Configure the Nodes for an HA Environment

Note: This procedure uses explicit node IDs, but you can choose to automatically generate node IDs if you prefer.

You must follow the detailed instructions in the SUSE *High Availability Guide* section about manual cluster setup using YaST in order to initialize the cluster and configure node1 (section 3.5):

 $https://www.suse.com/documentation/sle_ha/book_sleha/data/sec_ha_installation_setup_manual.html and the statement of the st$

Using the above instructions, do the following for node1:

- 1. Define the following or the primary network channel:
 - **Bind Network Address**: set to the primary network that will support the cluster heartbeat (for example, the CXFS private network), which is different from the IP address to be failed over
 - Multicast Address: set to a multicast address
 - Multicast Port: set to a multicast port

Note: You must ensure that at least the multicast address or multicast port is unique and is not shared between the primary and redundant channels, or shared with any other HA clusters on the same local network. As a best practice for clarity, SGI recommends that both the multicast port and multicast address are unique.

Example primary network:

Bind Network Address: 192.168.1.0 Multicast Address: 226.94.1.1 Multicast Port: 5405

- 2. Enable **Redundant Channel** (to the right of the first network channel configuration window)
- 3. Define the following for the redundant channel:
 - **Bind Network Address**: set to the redundant network that will support the cluster heartbeat and is different from the primary network and from IP address to be failed over

Caution: The primary and redundant channels must not share the same bind network address.

- Multicast Address: set to a unique multicast address
- Multicast Port: set to a unique multicast port

Example redundant network:

Bind Network Address: 192.168.10.0 Multicast Address: 226.94.1.2 Multicast Port: 5407

- 4. Set **rrp mode** to **active** (recommended).
- 5. Explicitly set the HA node ID, such as 1 for node1. Each node must have a unique HA node ID. (The HA node ID may be different from the CXFS node ID.)

Caution: With explicit node IDs, you must not use csync2 on node2 (despite the directions in the SUSE *High Availability Guide*) because it will result in duplicate node IDs.

- 6. Click Next to go to the next screen (Security).
- 7. Set security on.
- 8. Select Generate Auth Key File. It will be created in /etc/corosync/authkey; this process can take several minutes to complete.
- 9. Keep clicking **Next** on the subsequent screens without configuring anything until you exit the GUI.

Note: You will not complete all of the steps in the wizard. The following steps take the place of the remainder of the GUI.

10. Modify the HA authorization and configuration files:

a. Set the cluster heartbeat timeout by setting the totem token value in the /etc/corosync/corosync.conf file. The consensus value must either be missing (meaning it will default to 1.2 times the token value) or it must be set to a value at least 1.2 times the token value. For example:

```
...
totem {
    ...
    token: 60000
    consensus: 72000
        ...
}
```

See "Set the Core Membership Timeout Value Appropriately" on page 28 and the corosync.conf(5) man page.

b. Turn on debug messages for all subsystems other than the totem. Add or update the logging stanza of the /etc/corosync/corosync.conf file:

```
logging{
...
    debug:on
...
logger_subsys {
        subsys: TOTEM
        debug: off
     }
}
```

c. On node1, change the permission on the authkey and corosync.conf files to allow read and write permission for the root user only:

node1# chmod 0600 /etc/corosync/authkey /etc/corosync/corosync.conf

d. Copy the authkey and corosync.conf files from node1 to node2 and preserve their 0600 permission. For example:

```
node1# scp -p /etc/corosync/authkey node2:/etc/corosync/authkey
node1# scp -p /etc/corosync/corosync.conf node2:/etc/corosync/corosync.conf
```

e. Set the nodeid in the corosync.conf file on node2 to a unique value. For example:

nodeid: 2

- 11. Enable the logd service to be started automatically at boot time and then start them immediately:
 - On node1:

node1# chkconfig logd on node1# service logd start

• On node2:

node2# chkconfig logd on node2# service logd start

- 12. Start the openais service:
 - On node1:

node1# service openais start

• On node2:

node2# service openais start

Note: If a reboot occurs during the configuration process, you must manually restart the openais service. After configuration and testing are complete, you will enable automatic starting via chkconfig (in "Enable Cluster Services to be Started Automatically" on page 187).

Test the Base HA Cluster

Do the following to test the base HA cluster:

1. Examine the cluster status by running the following command on node1, waiting to see both nodes come online (which could take a few minutes):

node1# crm status inactive

The output should show that the cluster consists of two nodes (in this case, node1 and node2, and that there are no resources. For example (truncated):

node1# crm status inactive
...
2 Nodes configured, 2 expected votes
0 Resources configured.

Online: [nodel node2]

2. Disable system reset (which is enabled by default) for testing purposes:

node1# crm configure property stonith-enabled=false

Note: You will reenable system reset after testing all of the SGI resource primitives.

3. Set the correct two-node quorum policy action:

node1# crm configure property no-quorum-policy=ignore

Create the ISSP HA Service

After you have created and tested the base HA cluster, configure just one of the following ISSP HA services:

- Chapter 5, "Create the CXFS NFS Edge-Serving HA Service" on page 47
- Chapter 6, "Create the DMF HA Service" on page 75
- Chapter 7, "Create the COPAN MAID OpenVault Client HA Service for Mover Nodes" on page 165

After the HA service is created, you will follow the steps in Chapter 8, "Create the Fencing Capability and Put Into Production Mode" on page 185.

Note: If you are implementing multiple HA services, you should complete the entire process for one HA service before adding another service.

Create the CXFS NFS Edge-Serving HA Service

This chapter provides an overview of the following:

- "Understand the Requirements for the Edge-Serving HA Service" on page 48
- "Configure and Test the Service Components Before Applying an HA Environment" on page 49
- "Ensure that the Base HA Cluster is Operational" on page 51
- "Stop Services Before Applying an HA Environment" on page 52
- "Ensure that the NFS Lock Services are Started (RHEL only)" on page 53
- "Copy the /etc/exports Entries" on page 53
- "Map of Resources for the Edge-Serving HA Service" on page 53
- "Create the Clone" on page 55
- "Add the cxfs-client Resource" on page 56
- "Add the cxfs-client-nfsserver Resource" on page 57
- "Test the Clone" on page 59
- "Create the IP Address Alias Group" on page 62
- "Test Each IP Address Alias Group" on page 67
- "Confirm the Completed Status" on page 71
- "Requirements for a Second Edge-Serving HA Cluster" on page 72
- "Put the HA Service into Production Mode" on page 73

Note: Details about the resources are provided in individual resource chapters.

Understand the Requirements for the Edge-Serving HA Service

This section discusses the following:

- "Edge-Serving Requirements" on page 48
- "IP Address Alias Requirements in an Edge-Serving HA Cluster" on page 49

Edge-Serving Requirements

CXFS NFS edge-serving in an HA environment has the following requirements:

- NFS version 3 (NFS v3) or NFS version 4 (NFS v4).
- An HA cluster of two CXFS client-only nodes. The nodes must run the CXFS edge-serving software.
- Ensure that the edge-serving node is not an NFS client. (The NFS client service on a CXFS NFS edge-serving node does not support monitored locking.)
- There must be a file (located on shared storage) that will be used for keeping kernel state information. (In a non-HA cluster, this would be the /var/lib/nfs/state file.) The file must be shared as follows:
 - All edge-serving nodes within a given HA cluster must share this file
 - If there are multiple HA clusters for edge-serving nodes within one CXFS cluster, all of the cluster systems must share this file

The statefile attribute for the CXFS client NFS server identifies this file.

- There must be a directory (located on shared storage) that will be used to store the NFS lock state. (In a non-HA cluster, this would be the /var/lib/nfs/ directory.) The directory must be shared as follows:
 - All edge-serving nodes within a given HA cluster must share this directory
 - If there are multiple HA clusters for multiple CXFS NFS edge-serving HA services within one CXFS cluster, each must have a separate state directory

The statedir instance attribute for the CXFS client NFS server identifies this directory.

- (RHEL only) On all RHEL nodes, do the following:
 - 1. Set the following in the /etc/sysconfig/nfs file:

START_SMNOTIFY="no"

- 2. Ensure that NFS lock services are started at boot time:
 - On RHEL edge1:

<code>edge1# chkconfig nfslock on</code>

- On RHEL edge2:

node2# chkconfig nfslock on

Note: A second edge-serving HA cluster within a given CXFS cluster requires that some values be unique to each HA cluster value, but some values be identical across the HA clusters, as discussed below in "Requirements for a Second Edge-Serving HA Cluster" on page 72.

IP Address Alias Requirements in an Edge-Serving HA Cluster

CXFS NFS edge-serving HA service requires at least one IPaddr2 resource for each IPalias group (in an active-active configuration, there are at least two groups) in each HA cluster.

Configure and Test the Service Components Before Applying an HA Environment

Configure and test the service components **before applying an HA environment**, as described in the following:

- "Configure and Test the CXFS Client Before Applying the HA Environment" on page 50
- "Configure and Test the NFS Edge Service Before Applying an HA Environment" on page 50

Configure and Test the CXFS Client Before Applying the HA Environment

Before applying an HA environment, configure CXFS according to the instructions in CXFS 7 Administrator Guide for SGI InfiniteStorage and CXFS 7 Client-Only Guide for SGI InfiniteStorage.

Test CXFS by doing the following:

1. Ensure that the node is a member of the CXFS cluster and that the CXFS client service is running;

edge1# service cxfs_client status

2. Ensure that filesystems are mounted. For example:

edgel# **df**

Configure and Test the NFS Edge Service Before Applying an HA Environment

Before applying an HA environment, set up the NFS exports in the /etc/exports file on both CXFS client-only nodes as you would normally. The /etc/exports file should be identical on both nodes.

Note: Be sure to include the fsid=*uniquenumber* export option in order to prevent stale file handles after failover.

Test the CXFS NFS edge-serving before applying an HA environment by doing the following:

- 1. Ensure that the NFS service is running:
 - RHEL:

rhel# service nfs status

If it is not running, start it:

rhel# service nfs start

• SLES:

sles# service nfsserver status

If it is not running, start it:

sles# service nfsserver start

- 2. Export the filesystem from edge1:
 - a. Configure /etc/exports.
 - b. Export the CXFS filesystems:

edge1# exportfs -a

c. Run the following command on edge1 to verify that the filesystems are exported:

edgel# **exportfs -v** /nfsexportedfilesystem

<world>(rw,wdelay,root_squash,no_subtree_check,fsid=xxx)

- 3. NFS-mount and test the filesystem:
 - a. Mount the filesystems on a node that will not be a member of the HA cluster (otherhost):
 - NFS v3:

otherhost# mount -t nfs -o vers=3 edge1:/nfsexportedfilesystem /mnt/test

• NFS v4:

otherhost# mount -t nfs -o vers=4 edge1:/nfsexportedfilesystem /mnt/test

b. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "test data for a test file" > /mnt/test/testFile1A
otherhost# cat /mnt/test/testFile1A
test data for a test file
```

4. Repeat steps 2 and3, exporting and then mounting the filesystem from edge2.

Ensure that the Base HA Cluster is Operational

Ensure that the base HA cluster is operational, as described in "Test the Base HA Cluster" on page 45.

Stop Services Before Applying an HA Environment

Do the following on both nodes to ensure that the services will be controlled by the CXFS NFS edge-serving HA service:

Note: Do not disable the cxfs and cxfs_cluster services.

- RHEL system:
 - RHEL edge1:

edge1# chkconfig cxfs_client off
edge1# chkconfig nfs off

edge1# service cxfs_client stop
edge1# service nfs stop

RHEL edge2:

edge2# chkconfig cxfs_client off
edge2# chkconfig nfs off

edge2# service cxfs_client stop
edge2# service nfs stop

• SLES system:

SLES edge1:

edge1# chkconfig cxfs_client off
edge1# chkconfig nfsserver off

edge1# service cxfs_client stop
edge1# service nfsserver stop

SLES edge2:

edge2# chkconfig cxfs_client off
edge2# chkconfig nfsserver off

edge2# service cxfs_client stop

edge2# service nfsserver stop

Ensure that the NFS Lock Services are Started (RHEL only)

On both RHEL nodes, ensure that NFS lock services are started at boot time:

• On RHEL edge1:

edge1# chkconfig nfslock on

• On RHEL edge2:

edge2# chkconfig nfslock on

Copy the /etc/exports Entries

Copy the /etc/exports entries that you would like to make highly available from edge1 to the /etc/exports file on edge2.

Note: Be sure to include the fsid=*uniquenumber* export option in order to prevent stale file handles after failover. All matching exports should have the same fsid=*uniquenumber* value on all CXFS NFS edge-serving nodes.

Map of Resources for the Edge-Serving HA Service

Figure 5-1 on page 54 shows a map of an example configuration process for CXFS NFS edge-serving using two active/active HA clusters. Cluster A conists of two nodes (edge1 and edge2); cluster B consists of two different nodes (edge3 and edge4). Both HA clusters reside within a single CXFS cluster. This map also describes the start/stop order for resources.

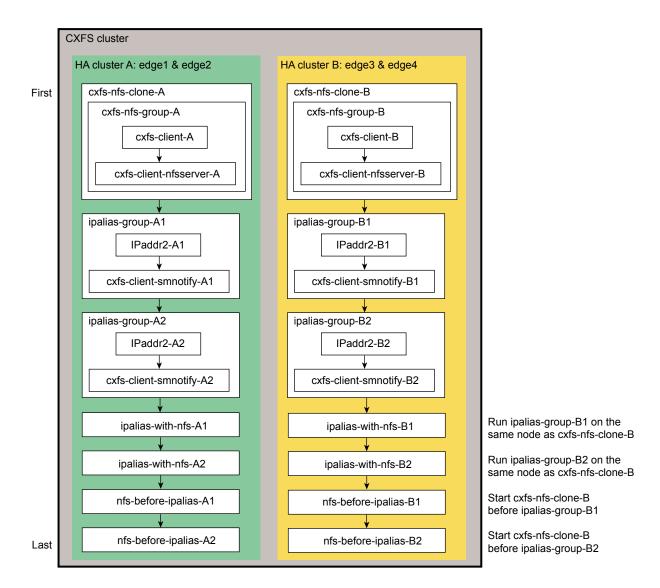


Figure 5-1 Map of Resources for two CXFS NFS Edge-Serving HA Services

Create the Clone

Use the templates in /usr/share/doc/sgi-ha/templates as building blocks. The instructions in this chapter assume that you use the instance names provided in the templates, such as IPaddr2-A1 instance name for the IPaddr2 resource type for cluster A, except as noted (see "Map of Resources for the Edge-Serving HA Service" on page 53 and "Conventions for Resource Instance IDs" on page 19).

Do the following:

1. Copy the contents of the

/usr/share/doc/sgi-ha/templates/cxfs-nfs-clone template into a new partial configuration file (referred to as *workfile*).

A clone resource named CXFS-NFS-CLONE-A for HA cluster A implements a CXFS NFS edge-serving HA service. It consists of a group (such as CXFS-NFS-GROUP-A) constructed of two resources (such as CXFS-CLIENT-A and EDGENFS-A).

The template is located in:

/usr/share/doc/sgi-ha/templates/cxfs-nfs-clone

See "Use the Templates as Building Blocks" on page 18.

Use the following:

group	CXFS-NFS-GROUP	-X CXFS-CLIENT-X EDGEN	IFS-X
clone	CXFS-NFS-CLONE-	X CXFS-NFS-GROUP-X \	
met	ta clone-max="2"	<pre>target-role="Stopped"</pre>	interleave="true"

Variable	Description
CXFS-NFS-GROUP-X	Name of this group instance, such as CXFS-NFS-GROUP-A
CXFS-CLIENT-X	Name of the cxfs-client resource instance, such as CXFS-CLIENT-A
EDGENFS-A	Name of the cxfs-client-nfsserver resource instance, such as EDGENFS-A for the first HA cluster

CXFS-NFS-CLONE-X

Name of this clone instance, such as CXFS-NFS-CLONE-A

For example:

```
group CXFS-NFS-GROUP-A CXFS-CLIENT-A EDGENFS-A
clone CXFS-NFS-CLONE-A CXFS-NFS-GROUP-A \
   meta clone-max="2" target-role="Stopped" interleave="true"
```

Add the cxfs-client Resource

Do the following:

 Copy the primitive text from the /usr/share/doc/sgi-ha/templates/cxfs-client template into workfile and replace the site-specific variables as directed.

A cxfs-client resource controls the CXFS client.

The template is located in:

/usr/share/doc/sgi-ha/templates/cxfs-client

See "Use the Templates as Building Blocks" on page 18.

Use the following:

```
primitive CXFS-CLIENT-A ocf:sgi:cxfs-client \
    op monitor interval="0" timeout="30s" \
    op monitor interval="120s" timeout="30s" on-fail="restart" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params volnames="VOLUME-LIST"
```

Variable	Description
CXFS-CLIENT-A	Name of this resource instance, such as CXFS-CLIENT-A
VOLUME-LIST	Comma-separated list of the CXFS filesystems to be served via NFS, such as cxfsvol1,cxfsvol2

For example, for cluster A:

```
primitive CXFS-CLIENT-A ocf:sgi:cxfs-client \
    op monitor interval="0" timeout="30s" \
```

```
op monitor interval="120s" timeout="30s" on-fail="restart" \
op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
op stop interval="0" timeout="600s" on-fail="fence" \
params volnames="cxfsvol1,cxfsvol2"
```

Add the cxfs-client-nfsserver Resource

Do the following:

• Copy the primitive text from the /usr/share/doc/sgi-ha/templates/cxfs-client-nfsserver template into *workfile* and replace the site-specific variables as directed.

A cxfs-client-nfsserver resource controls the NFS server running on a CXFS client. It is used in a CXFS NFS edge-serving HA service. It is part of a clone resource that runs on both nodes in the cluster.

The template is located in:

/usr/share/doc/sgi-ha/templates/cxfs-client-nfsserver

See "Use the Templates as Building Blocks" on page 18.

Use the following:

```
primitive EDGENFS-X ocf:sgi:cxfs-client-nfsserver \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="restart" \
    params nfs_init_script="NFS-INIT-PATH" statedir="STATEDIR" \
    statefile="STATEFILE" volnames="VOLUME-LIST" \
    nfslock_init_script="NFSLOCK-INIT-PATH"
    Variable Description
```

EDGENFS-A

Name of this resource instance. For simplicity, give a unique name to every resource ID at your site; if you have a CXFS cluster containing two edge-serving clusters, you could use EDGENFS-A and EDGENFS-B.

Path to the NFS initialization script:

NFS-INIT-PATH

	- RHEL: /etc/init.d/nfs
	- SLES: /etc/init.d/nfsserver
NFSLOCK-INIT-PATH	Path to the nfslock initialization script:
	- RHEL: /etc/init.d/nfslock
	– SLES: (not used)
STATEDIR	Directory in the NFS filesystem that will be used to store NFS file-lock state for this HA cluster (equivalent to /var/lib/nfs/ in a nonclustered configuration), such as:
	/mnt/cxfsvol1/statd/nfs1-nfs2
	Note: This value must be must be unique to this HA cluster.
STATEFILE	File in the NFS filesystem that will store NFS file-lock state for all of the NFS edge-serving HA clusters (equivalent to /var/lib/nfs/state in a nonclustered configuration), such as:
	/mnt/cxfsvol1/statd/state
	Note: This value must be identical to the <i>STATEFILE</i> value specified for cxfs-client-smnotify. All HA clusters within a CXFS cluster must have an identical <i>STATEFILE</i> value.
VOLUME-LIST	Comma-separated list of volume names containing CXFS filesystems that are to be served via NFS, such as:
	cxfsvoll
For example, for the first of single CXFS cluster:	two edge-serving HA clusters (cluster A) within a

```
primitive EDGENFS-A ocf:sgi:cxfs-client-nfsserver \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
```

```
op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
op stop interval="0" timeout="600s" on-fail="restart" \
params nfs_init_script="/etc/init.d/nfsserver" \
statedir="/mnt/cxfsvoll/statd/nfs1-nfs2" \
statefile="/mnt/cxfsvoll/statd/state" volnames="cxfsvoll"
```

- Verify that the timeout values are appropriate for your site.
- Verify that there are no comments in workfile.
- Save workfile.
- Update the database:

edge1# crm configure load update workfile

Note: As a best practice, you should also run the following command to verify changes you make to the CIB:

edge1# crm_verify -LV

For simplicity, this step is not included in the following procedures but is recommended. For more information, see "Use the crm_verify Command to Verify Configuration" on page 24.

Test the Clone

Do the following to test the clone:

1. Start the clone. For example:

edge1# crm resource start CXFS-NFS-CLONE-A

- 2. Confirm that the clone has started. For example:
 - a. View the status of the cluster on edge1. For example (truncated):

```
edgel# crm status inactive
...
2 Nodes configured, 2 expected votes
4 Resources configured.
Online: [ edgel edge2 ]
```

```
Clone Set: CXFS-NFS-CLONE-A [CXFS-NFS-GROUP-A]
Started: [ edge1 edge2 ]
```

b. Verify that the cxfs_client process is running on edge1:

edgel# **ps -ef | grep cxfs_client** root 11575 1 0 10:32 ? 00:00:00 /usr/cluster/bin/cxfs_client -p /var/run/cxfs_client.pid -i TEST root 12237 7593 0 10:34 pts/1 00:00:00 grep --color -d skip cxfs_client

Also execute the command on edge2.

- c. View the status of the NFS daemons on edge1.
 - RHEL:

NFS v3 and NFS v4 (output truncated):

```
edge1# service nfs status
```

```
rpc.svcgssd is stopped
rpc.mountd (pid 666 665 663 ... 649 647) is running...
nfsd (pid 800 799 798 ... 672 671) is running...
rpc.rquotad (pid 642) is running...
```

Note: The pid numbers vary with each restart. For NFS v4, the idmapd services is also started (but is not reported in the output).

• SLES:

NFS v3:

```
edge1# service nfsserver status
Checking for kernel based NFS server: mountd running
  statd running
  nfsd running
NFS v4:
```

```
edgel# service nfsserver status
Checking for kernel based NFS server: idmapd running
mountd running
statd running
nfsd running
```

Note: Although the mountd and statd daemons only apply to SLES NFS v3, they are started on SLES NFS v4 as well.

- d. View the status of the NFS daemons as above but on edge2.
- 3. Set edge2 to standby state to ensure that the resources remain on edge1:

edge1# crm node standby edge2

- 4. Confirm that edge2 is offline and that the resources are off:
 - a. View the status of the cluster on edge1, which should show that edge2 is in standby state:

```
edge1# crm status inactive
...
2 Nodes configured, 2 expected votes
4 Resources configured.
Node edge2: standby
Online: [ edge1 ]
Clone Set: CXFS-NFS-CLONE-A [CXFS-NFS-GROUP-A]
Started: [ edge1 ]
Stopped: [ CXFS-NFS-GROUP-A:1 ]
```

b. Verify that the cxfs_client process is not running on edge2 by executing the ps(1) command on edge2 (there should be no output):

```
edge2# ps -ef | grep cxfs_client
edge2#
```

- c. (SLES only) View the status of the NFS daemons on edge2, which should show for SLES that statd is dead and nfsd is unused:
 - SLES NFS v3:

edge2# service nfsserver status	
Checking for kernel based NFS server: m	ountd unused
statd	dead
nfsd	unused

• SLES NFS v4:

edge2# service nfsserver status	
Checking for kernel based NFS server: idmapd	running
mountd	unused
statd	dead
nfsd	unused

Note: Although the mountd and statd daemons only apply only to SLES NFS v3, they are started on SLES NFS v4 as well.

5. Return edge2 to online status:

edge1# crm node online edge2

6. Confirm that the clone has returned to normal status, as described in step 2.

Create the IP Address Alias Group

Do the following:

1. Create a group resource in another *workfile* for the first set of IPaddr2 and cxfs-client-smnotify resources.

A group resource named IPALIAS-GROUP controls the IPaddr2 and cxfs-client-smnotify resources. It is used in a CXFS NFS edge-serving HA service. Each HA cluster will have a pair of IPALIAS-GROUP resources (such as IPALIAS-GROUP-A1 and IPALIAS-GROUP-A2 for HA cluster A), each with their own set of colocation and order constraints.

Use the following:

group IPALIAS-GROUP-XX IPaddr2-XX CXFS-CLIENT-SMNOTIFY-XX \

meta target-role="Stopped"

```
colocation IPALIAS-WITH-NFS-XX inf: IPALIAS-GROUP-XX CXFS-NFS-CLONE-X order NFS-BEFORE-IPALIAS-XX inf: CXFS-NFS-CLONE-X IPALIAS-GROUP-XX
```

```
Variable
```

Description

IPALIAS-GROUP-XX

Name of this resource instance, such as IPALIAS-GROUP-A1

	for the first group in HA cluster ${\ensuremath{\mathbb A}}$
IPaddr2-XX	Name of the IPaddr2 resource instance, such as IPaddr2-A1 for the first address in HA cluster A
CXFS-CLIENT-SMNOTIFY-XX	Name of the cxfs-client-smnotify resource instance, such as CXFS-CLIENT-SMNOTIFY-A1
IPALIAS-WITH-NFS-XX	Name of this colocation constraint, such as IPALIAS-WITH-NFS-A1
CXFS-NFS-CLONE-X	Name of the NFS clone, such as CXFS-NFS-CLONE-A
NFS-BEFORE-IPALIAS-XX	Name of this order constraint, such as NFS-BEFORE-IPALIAS-A1

For example, for the first group for cluster A:

```
group IPALIAS-GROUP-A1 IPaddr2-A1 CXFS-CLIENT-SMNOTIFY-A1 \
    meta target-role="Stopped"
colocation IPALIAS-WITH-NFS-1 inf: IPALIAS-GROUP-A1 CXFS-NFS-CLONE-A
order NFS-BEFORE-IPALIAS-A1 inf: CXFS-NFS-CLONE-A IPALIAS-GROUP-A1
```

The colocation and order constraints ensure that IPALIAS-GROUP-A1 will only run on a server that is also running a CXFS-NFS-CLONE instance, and the clone instance will be started first.

2. Copy the primitive text from the

/usr/share/doc/sgi-ha/templates/IPaddr2 template into *workfile* and replace the site-specific variables as directed. Use a unique primitive ID, such as IPaddr2-A1 for the first IP alias for HA cluster A.

An IPaddr2 resource controls the addition/deletion of an IP address alias on a network interface.

Use the following:

```
primitive IPaddr2-XX ocf:heartbeat:IPaddr2 \
    op monitor interval="0" timeout="30s" \
```

```
op start interval="0" timeout="90s" on-fail="restart" requires="fencing" \
op stop interval="0" timeout="100s" on-fail="fence" \
params ip="IP-ADDRESS" \
meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
IPaddr2-XX	Name of this resource instance, which must match the named used to define it in the associated group resource (for example, IPaddr2-A1 for the first IP address in HA cluster A).
IP-ADDRESS	IP address of the virtual channel, such as 128.162.244.240

For example, for the first IP address for HA cluster A:

```
primitive IPaddr2-Al ocf:heartbeat:IPaddr2 \
    op monitor interval="0" timeout="30s" \
    op start interval="0" timeout="90s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="100s" on-fail="fence" \
    params ip="128.162.244.240" \
    meta resource-stickiness="1" migration-threshold="1"
```

3. Copy the primitive text from the

/usr/share/doc/sgi-ha/templates/cxfs-client-smnotify template into workfile and replace the site-specific variables as directed. Use a unique primitive ID, such as CXFS-CLIENT-SMNOTIFY-A1 for HA cluster A.

A cxfs-client-smnotify resource controls NFS client notification of NFS server failovers and restarts. It is used in a CXFS NFS edge-serving HA service as part of a group resource that includes an IPaddr2 resource.

The templated is located in:

/usr/share/doc/sgi-ha/templates/cxfs-client-smnotify

Use the following:

```
primitive CXFS-CLIENT-SMNOTIFY-XX ocf:sgi:cxfs-client-smnotify \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="30s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="30s" on-fail="fence" \
    params ipalias="IPALIAS-ADDRESS" statedir="STATEDIR" statefile="STATEFILE" \
```

Variable	Description
CXFS-CLIENT- SMNOTIFY-XX	Name of this resource instance, such as CXFS-CLIENT-SMNOTIFY-A1
IPALIAS-ADDRESS	IP address of the alias associated with the NFS client-lock state, which is reclaimed by the NFS client from the NFS server when it receives the NSM reboot notification that is initiated by the cxfs-client-smnotify resource agent, for example 128.162.244.244
STATEDIR	Directory in the NFS filesystem that will be used to store NFS file-lock state for this NFS edge-serving HA cluster.
	Note: This value must be identical to the STATEDIR value specified for cxfs-client-nfsserver, and must be unique to this HA cluster.
STATEFILE	File in the NFS filesystem that will store NFS file-lock state for all of the NFS edge-serving HA clusters within one CXFS cluster (equivalent to /var/lib/nfs/state in a nonclustered configuration), such as:
	/mnt/cxfsvol1/statd/state
	Note: This value must be identical to the <i>STATEFILE</i> value specified for cxfs-client-nfsserver. All HA clusters within a CXFS cluster must have an identical <i>STATEFILE</i> value.
GRACEDIR	Directory on the NFS file-lock-state filesystem that specifies the directory containing the grace-period state (the grace period specified by the seconds attribute is the time during which the CXFS tokens

gracedir="GRACEDIR" hostname="IPALIAS-HOST" \

owned by a given CXFS client will be maintained by that client to permit time for failover), such as:

/mnt/cxfsvol1/grace

Note: All HA clusters within a CXFS cluster must have an identical *GRACEDIR* value.

IPALIAS-HOSTHostname of IPALIAS-ADDRESS, which must
match what is in /etc/hosts or be resolvable
with DNS, such as hostalias1 or hostalias2VOLUME-LISTComma-separated list of all volumes that will be
served via IPALIAS-HOST, such as:

cxfsvoll

For example:

```
primitive CXFS-CLIENT-SMNOTIFY-A1 ocf:sgi:cxfs-client-smnotify \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="30s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="30s" on-fail="fence" \
    params ipalias="128.162.244.244" statedir="/mnt/cxfsvoll/statd/nfs1-nfs2" \
        statefile="/mnt/cxfsvol1/statd/state" \
        gracedir="/mnt/cxfsvol1/grace" hostname="myhost" \
        seconds="120" volnames="cxfsvol1" \
    meta resource-stickiness="1" migration-threshold="1"
```

- 4. Save workfile.
- 5. Update the database:

edge1# crm configure load update workfile

6. Create a second group resource in another *workfile* for the second set of IPaddr2 and cxfs-client-smnotify resources. For example, for the second group:

group IPALIAS-GROUP-A2 IPaddr2-A2 CXFS-CLIENT-SMNOTIFY-A2 \
 meta target-role="Stopped"

colocation IPALIAS-WITH-NFS-A2 inf: IPALIAS-GROUP-A2 CXFS-NFS-CLONE order NFS-BEFORE-IPALIAS-A2 inf: CXFS-NFS-CLONE IPALIAS-GROUP-A2

- 7. Copy the primitive text from the /usr/share/doc/sgi-ha/templates/IPaddr2 template into workfile and replace the site-specific variables as directed above. Use a unique primitive ID, such as IPaddr2-A2.
- 8. Copy the primitive text from the /usr/share/doc/sgi-ha/templates/cxfs-client-smnotify template into workfile and replace the site-specific variables as directed above. Use a unique primitive ID, such as CXFS-CLIENT-SMNOTIFY-A2.
- 9. Verify that the timeout values are appropriate for your site.
- 10. Verify that there are no comments in workfile.
- 11. Save workfile.
- 12. Update the database:

edge1# crm configure load update workfile

Test Each IP Address Alias Group

To test each IP address alias group, do the following:

1. Start the group. For example, to start IPALIAS-GROUP-A1:

edge1# crm resource start IPALIAS-GROUP-A1

- 2. Test the IP address alias resource within the group:
 - a. Verify that the IP address is configured correctly on edge1:

```
edgel# ip -o addr show | grep 128.162.244.240
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

b. Verify that edge2 does not accept the IP address packets. For example, run the following command on edge2 (the output should be 0):

edge2# ip -o addr show | grep -c 128.162.244.240 0

```
address is being served by the correct system. For example, for the IP address
                             128.162.244.240 and the machine named edge1:
                             nfsclient# ssh root@128.162.244.240
                             Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
                             edge1# uname -n
                             edge1
                         d. Move the resource group containing the IPaddr2 resource from edge1 to
                             edge2:
                             edge1# crm resource move IPALIAS-GROUP-A1 edge2
                         e. Verify the status:
edge1# crm status inactive
. . .
2 Nodes configured, 2 expected votes
8 Resources configured.
Online: [ edge1 edge2 ]
  Clone Set: CXFS-NFS-CLONE-A [CXFS-NFS-GROUP-A]
      Started: [ edge1 edge2 ]
 Resource Group: IPALIAS-GROUP-A1
      IPaddr2-A1
                  (ocf::heartbeat:IPaddr2):
                                                     Started edge2
      CXFS-CLIENT-SMNOTIFY-1
                                  (ocf::sgi:cxfs-client-smnotify):
                                                                          Started edge2
```

f. Verify that the IP address is configured correctly on edge2:

c. Connect to the virtual address using ssh or telnet and verify that the IP

edge2# ip -o addr show | grep 128.162.244.240
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
g. Verify that edge1 does not accept the IP address packets by running the
following command on edge1 (the output should be 0):

edge1# ip -o addr show | grep -c 128.162.244.240 0

h. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named edge2:

nfsclient# **ssh root@128.162.244.240** Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com

```
edge2# uname -n
edge2
```

i. Move the resource group containing the IPaddr2 resource back to edge1:

edge1# crm resource move IPALIAS-GROUP-A1 edge1

j. Verify the status:

```
edge1# crm status inactive
...
2 Nodes configured, 2 expected votes
8 Resources configured.
Online: [ edge1 edge2 ]
Clone Set: CXFS-NFS-CLONE-A [CXFS-NFS-GROUP-A]
Started: [ edge1 edge2 ]
Resource Group: IPALIAS-GROUP-A1
IPaddr2-A1 (ocf::heartbeat:IPaddr2): Started edge1
CXFS-CLIENT-SMNOTIFY-A1 (ocf::sgi:cxfs-client-smnotify): Started edge1
```

- k. Test again as in steps a-c above.
- 1. Remove the implicit location constraints imposed by the administrative move command above:

edge1# crm resource unmove IPALIAS-GROUP-A1

- 3. Repeat steps 1 and 2 for the other group, such as IPALIAS-GROUP-A2.
- 4. Test the NSM notification resource within the group. For example, on a Linux NFS client:
 - a. On a system that is outside the HA cluster (for example, a system named nfsclient), mount the filesystem via the IP address alias hostname values

specified in the cxfs-client-smnotify resources (such as hostalias1 and hostalias2, which are not the physical hostnames). For example:

nfsclient# mount hostalias1://mnt/nfsexportedfilesystem /hostalias1
nfsclient# mount hostalias2://mnt/nfsexportedfilesystem /hostalias2

b. Turn on Network Lock Manager debugging on the NFS client:

nfsclient# echo 65534 > /proc/sys/sunrpc/nlm_debug

c. Acquire locks:

nfsclient# touch /hostalias1/file nfsclient# flock -x /hostalias1/file -c "sleep 1000000" & nfsclient# touch /hostalias2/file2 nfsclient# flock -x /hostalias2/file2 -c "sleep 1000000" &

d. (*NFSv3 only*) Check in the shared sm-notify statedir directory on the NFS server for resources edge1 and edge2 to ensure that a file has been created by statd. The name should be the hostname of the node on which you have taken the locks.

If the file is not present, it indicates a misconfiguration of name resolution. Ensure that fully qualified domain name entries for each NFS client are present in /etc/hosts on each NFS server. (If the /etc/hosts file is not present, NSM reboot notification will not be sent to the client and locks will not be reclaimed.)

- e. On the NFS clients, ensure that the appropriate NFS file contains the fully qualified domain name of each server from which you have requested locks. (If this file is not present, NSM reboot notification will be rejected by the client. The client must mount the node that uses the IP address specified by the ipalias value, such as edge1, by hostname and not by the IP address in order for this to work.) The file location varies by OS:
 - RHEL: /var/lib/nfs/statd/sm
 - SLES: /var/lib/nfs/sm
- f. Put edge1 into standby state:

edge1# crm node standby edge1

g. Verify that both of the IP address aliases are now on edge2:

edge2# ip addr

h. (NFS v3 only) Verify that the log files (see "Examine Log Files" on page 24) on the NFS client (nfsclient) contain a message about reclaiming locks for the hostname for every ipalias value on which you have taken locks via NFS. (The two statd processes for the HA cluster share the same state directory, specified by the statedir parameter. NSM reboot notification will be sent to clients for all IP address aliases in the cluster, so you will see messages for all IP address aliases that have been mounted by the client.) For example:

Jul 30 13:40:46 nfsclient kernel: NLM: done reclaiming locks for host edge2 Jul 30 13:40:49 nfsclient kernel: NLM: done reclaiming locks for host edge1

i. Make edge1 active again:

edge1# crm node online edge1

5. Test the other group.

Confirm the Completed Status

Use the status command to confirm the resulting HA cluster:

```
edge1# crm status inactive
. . .
2 Nodes configured, 2 expected votes
10 Resources configured.
Online: [ edge1 edge2 ]
 Clone Set: CXFS-NFS-CLONE-A [CXFS-NFS-GROUP-A]
     Started: [ edge1 edge2 ]
 Resource Group: IPALIAS-GROUP-A1
     IPaddr2-A1 (ocf::heartbeat:IPaddr2):
                                                   Started edge1
     CXFS-CLIENT-SMNOTIFY-1 (ocf::sgi:cxfs-client-smnotify):
                                                                   Started edge1
 Resource Group: IPALIAS-GROUP-A2
     IPaddr2-A2 (ocf::heartbeat:IPaddr2):
                                                   Started edge2
     CXFS-CLIENT-SMNOTIFY-2 (ocf::sgi:cxfs-client-smnotify):
                                                                   Started edge2
 STONITH-edge1 (stonith:external/ipmi): Started edge2
 STONITH-edge2 (stonith:external/ipmi):
                                            Started edgel
```

Note: It does not matter whether IPALIAS-GROUP-A1 runs on edge1 or edge2. The important thing is that during normal operation (before failover), IPALIAS-GROUP-A1 and IPALIAS-GROUP-A2 run on different nodes

Requirements for a Second Edge-Serving HA Cluster

For a second edge-serving HA cluster, repeat the above procedures for the second HA cluster (cluster B) for edge3 and edge4, using unique resources names.

Note the following requirements:

- Identical among all HA clusters within a single CXFS cluster:
 - GRACEDIR value for the cxfs-client-smnotify resource
 - STATEFILE value for the cxfs-client-smnotify and cxfs-client-nfsserver resources
- Unique to each HA cluster within a single CXFS cluster:
 - STATEDIR value for the cxfs-client-nfsserver, and cxfs-client-smnotify resources

The following figure illustrates which values are unique and which are shared.

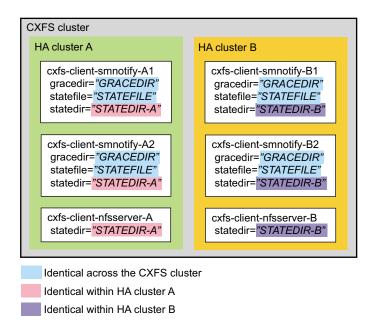


Figure 5-2 Two NFS Edge-Serving HA Clusters

Put the HA Service into Production Mode

See Chapter 8, "Create the Fencing Capability and Put Into Production Mode" on page 185 to complete the process.

Create the DMF HA Service

This chapter provides an overview of the following:

- "Understand the Requirements for the DMF HA Service" on page 75
- "Configure and Test the Service Components Before Applying an HA Environment" on page 85
- "Ensure that the Base HA Cluster is Operational" on page 95
- "Stop Services Related to DMF Before Applying an HA Environment" on page 95
- "Add the Resources in the Correct Order" on page 97
- "Confirm the Completed Status" on page 164
- "Put the DMF HA Service into Production Mode" on page 164

Understand the Requirements for the DMF HA Service

Before applying an HA environment, you must understand the requirements of the individual components:

- "CXFS Requirements" on page 76
- "Local XVM Requirements" on page 78
- "Local Filesystem Requirements" on page 79
- "IP Address Alias Requirements" on page 79
- "TMF Requirements" on page 79
- "OpenVault Requirements" on page 80
- "COPAN MAID Requirements for a DMF HA Service (Optional)" on page 81
- "DMF Requirements" on page 81
- "Samba Requirements (Optional)" on page 84
- "DMF Copytool Requirements" on page 84

- "DMF Manager Requirements (Optional)" on page 84
- "DMF Client SOAP Service Requirements (Optional)" on page 85

CXFS Requirements

The cxfs resource agent allows you to associate the location of the CXFS metadata server with other products, such as DMF. This section discusses the following:

- "CXFS Server-Capable Administration Nodes" on page 76
- "CXFS Relocation Support" on page 77
- "Applications that Depend Upon CXFS Filesystems" on page 77
- "CXFS and System Reset" on page 77
- "CXFS Start/Stop Issues" on page 77
- "CXFS Volumes and Filesystems Managed by DMF" on page 78
- "cxfs and cxfs_cluster Services Not Controlled by the HA Environment" on page 78

CXFS Server-Capable Administration Nodes

An HA cluster using the cxfs resource agent must include the server-capable administration nodes that are potential metadata servers for every filesystem that is managed by the cxfs resource agent.

Certain resources (such as DMF) require that the CXFS metadata server and the HA resource be provided by the same node. Other resources (such as NFS and Samba) do not have this requirement, but it may be desirable to enforce it in order to ensure that these resources provide the best performance possible. (Some NFS and Samba workloads can cause significant performance problems when the NFS or Samba resource is located on a node that is not the CXFS metadata server.)

Unless otherwise directed by this guide, you should configure the CXFS cluster, nodes, and filesystems according to the instructions in the following:

CXFS 7 Administrator Guide for SGI InfiniteStorage CXFS 7 Client-Only Guide for SGI InfiniteStorage

CXFS Relocation Support

CXFS relocation is provided automatically by the cxfs resource agent. In a CXFS cluster running HA software, relocation should only be started by using the tools provided with HA software and not by any other method.

Applications that Depend Upon CXFS Filesystems

If an application uses a CXFS filesystem that is managed by HA software, that application must also be managed by HA software. You must set colocation and start-ordering constraints or ordered resource groups such that:

- The application can only run on the server-capable administration node that is the active CXFS metadata server for the filesystem that it uses.
- The CXFS metadata server will start before the application starts and stop after the application stops

Using a single resource group and configuring in the correct order ensures the proper colocation.

CXFS and System Reset

CXFS server-capable administration nodes must use some sort of system reset in order to prevent conflicts with CXFS I/O fencing methods. In an HA environment, the HA process must control the reset functionality for CXFS. You must use STONITH for system reset and specify the following fail policy in the CXFS configuration (set via the CXFS Manager interface or the cxfs_admin command):

fence, shutdown

For more information, see:

- "fence_ipmilan Template" on page 276
- "ipmi Template" on page 287
- CXFS 7 Administrator Guide for SGI InfiniteStorage chapters about CXFS Manager and cxfs_admin For the cxfs_admin(8) man page and help text

CXFS Start/Stop Issues

You must start the CXFS cluster cxfs_cluster service and CXFS filesystem cxfs service before starting the appropriate underlying HA control services (cman and

pacemaker for RHEL nodes, openais for SLES nodes). The cxfs resource agent will wait for all of the CXFS filesystems to be mounted by CXFS before attempting any relocation. You must adjust the start operation timeout for the cxfs resource agent accordingly.

During failover, resources that colocate with the CXFS metadata server must be stopped before the CXFS resource. If a resource fails to shutdown completely, any files left open on the metadata server will prevent relocation. Therefore, the HA fail policy for any resource that could prevent relocation by holding files open must be fence and you must configure a STONITH facility according to the requirements for your site, as directed later in this procedure (Chapter 8, "Create the Fencing Capability and Put Into Production Mode" on page 185).

In this case, the offending CXFS metadata server will be reset, causing recovery to an alternate node.

CXFS Volumes and Filesystems Managed by DMF

The CXFS volumes specified for the cxfs resource must not include any volumes that represent filesystems managed by DMF.

cxfs and cxfs_cluster Services Not Controlled by the HA Environment

Do not disable the cxfs and cxfs_cluster services (that is, do not set the service to off via chkconfig). Unlike other services, these services will not be controlled by HA software in an HA cluster.

Local XVM Requirements

All local XVM volumes that are managed by HA software must have unique volname values.

All local XVM physical volumes (*physvols*) that are managed by HA software must have unique Disk Name values in their XVM label when compared to all other XVM volumes on the SAN. For example, you cannot have two physvols on the same SAN with the Disk Name of spool, even if one is foreign. If you do not have unique values, the following are potential problems:

- High-availability software may steal the wrong physvol from a system outside of the cluster while I/O is ongoing. This may result in losing data from that system while corrupting the filesystem from the node within the cluster by whom it is stolen.
- General confusion, resulting in node reset.

Local Filesystem Requirements

For DMF HA purposes, filesystems used by the Filesystem resource should use a filesystem type of xfs.

The filesystem must not be listed in /etc/fstab.

The Filesystem resources used with Samba require fstype="none", which differs from the template below, and options="bind".

IP Address Alias Requirements

DMF HA service (in either a CXFS or a local XVM environment) requires at least one IPaddr2 resource for the DMF and OpenVault server. You must allocate an IP address alias on the subnet used for DMF and OpenVault communication. The address must be a virtual address managed by an IPaddr2 resource within the same resource group as the openvault resource. You must also add an associated virtual hostname to your local DNS and to the /etc/hosts file on all hosts in the cluster that could be used as a DMF server or as an OpenVault client node.

You may need other aliases, depending on your configuration, such as for accessing DMF Manager or serving NFS. However, if DMF and OpenVault are configured to use a dedicated subnet, you should instead define a second IPaddr2 address on an appropriate subnet for accessing these services. You should define this IPaddr2 resource in the same resource group as the dmfman resource.

TMF Requirements

To use TMF as the mounting service, all tape devices should be configured as DOWN in the TMF configuration file on all nodes. The loaders should be configured as UP.

During HA operation, the HA software will control this service.

Note: If tape drives are defined and used outside of DMF, you must manually start TMF on the inactive server.

OpenVault Requirements

To use OpenVault as the mounting service, you must do the following:

- If upgrading to an entirely new root filesystem, as would be required if upgrading from a SLES 10 system, you should create a copy of the OpenVault configuration directory (/var/opt/openvault) from the old root before upgrading the OS. You can then reinstall it on the new root so that you do not need to entirely reconfigure OpenVault. See the section about taking appropriate steps when upgrading DMF in the DMF 6 Administrator Guide.
- Provide a directory for OpenVault's use within an HA filesystem in the DMF resource group. This is known as the *serverdir directory*. The directory will hold OpenVault's database and logs. The directory can be either of the following:
 - Within the root of an HA filesystem dedicated to OpenVault use
 - Within another HA filesystem, such as the filesystem specified by the HOME_DIR parameter in the DMF configuration file (/etc/dmf/dmf.conf)

In non-HA environments, the OpenVault server's files reside in /var/opt/openvault/server. During the conversion to an HA environment, OpenVault will move its databases and logs into the specified directory within an HA filesystem and change /var/opt/openvault/server to be a symbolic link to that directory.

- Ensure that you **do not** have the OV_SERVER parameter set in the base object of the DMF configuration file, because in an HA environment the OpenVault server must be the same machine as the DMF server.
- Configure the DMF application instances in OpenVault to use a wildcard ("*") for the hostname and instance name. For more information, see the chapter about mounting service configuration tasks in the *DMF 6 Administrator Guide*.
- During HA operation, the HA software will control the openvaultservice.

COPAN MAID Requirements for a DMF HA Service (Optional)

Using COPAN MAID shelves in an active/passive DMF HA cluster consisting of potential DMF servers also requires the following:

- OpenVault must be configured to manage the RAID sets
- In an implementation using local XVM, OpenVault must be configured to manage the RAID sets, lxvm volumes, and xfs filesystems for each shelf
- At any time, only one node (the owner node) can manage activity to a given shelf
- Activity to all shelves controlled by a given node must be stopped before moving the control of any one of those shelves to another node
- All potential DMF server nodes in the HA cluster must have physical connectivity to the shelves
- The active DMF server must be the owner node of all of the shelves
- The OpenVault server resource must be started before the COPAN OpenVault client resource is started
- The COPAN OpenVault client resource must be stopped before the OpenVault server resource is stopped

For suggested resource start/stop order, see Figure 6-1 on page 99.

DMF Requirements

This section discusses the following:

- "Potential DMF Server Requirements" on page 82
- "Ordering of Resources" on page 83
- "Virtual Hostname Requirement" on page 83
- "Parallel Data-Mover Option Requirements" on page 83
- "Control of the dmf Service" on page 83
- "Use of the Wildcard in OpenVault Configuration" on page 83

Potential DMF Server Requirements

Each potential DMF server must:

- Be a member of the DMF HA cluster
- Run the required product and HA software.
- Have the ident service started and configured to restart on reboot, as documented in the *DMF 6 Administrator Guide*.
- Have connectivity to the same set of libraries and drives as every other potential DMF server. (If one node has access to only a subset of the drives when the DMF server is failed over to that node, at that point DMF would not be able to access data on volumes left mounted in inaccessible drives.)
- Have connectivity to all of the CXFS and XFS[®] filesystems that DMF either depends upon or manages:
 - Each of the local XVM volumes that make up those filesystems must be managed by an lxvm resource within the same resource group as the dmf resource. Each of the XFS filesystems must be managed by a Filesystem resource in that resource group.
 - Each of the CXFS filesystems (other than managed user filesystems) must be managed by the cxfs resource in that resource group.

The DMF filesystems to be managed are as follows:

- The managed user filesystems (do not include these in the volnames attribute list for the cxfs resource)
- DMF administrative filesystems specified by the following parameters in the DMF configuration file:
 - HOME_DIR
 - JOURNAL_DIR
 - SPOOL_DIR
 - TMP_DIR
 - MOVE_FS
 - CACHE_DIR for any library servers

• STORE_DIRECTORY for any disk cache manager (DCM) and disk MSPs using local disk storage

DMF requires independent paths to drives so that they are not fenced by CXFS. The ports for the drive paths on the switch should be masked from I/O fencing in a CXFS configuration.

The SAN must be zoned so that XVM does not move CXFS filesystem I/O to the paths visible through the HBA ports when Fibre Channel port fencing occurs. Therefore, you should use either independent switches or independent switch zones for CXFS/XVM volume paths and DMF drive paths.

For more information about DMF filesystems, see the DMF 6 Administrator Guide.

Ordering of Resources

The ordering of resources within a resource group containing a dmf resource must be such that the dmf resource starts after any filesystems it uses are mounted and volume resources it uses are available (and the dmf resource must be stopped before those resources are stopped). See Figure 6-1 on page 99.

Virtual Hostname Requirement

There must be a virtual hostname for use by DMF. See "IP Address Alias Requirements" on page 79.

Parallel Data-Mover Option Requirements

If you are using the DMF Parallel Data-Mover Option, you must define a node object in the DMF configuration file for each potential DMF server. Set the INTERFACE parameter in the node object for each potential DMF server to the same virtual hostname used for SERVER_NAME in the base object.

Control of the dmf Service

During HA operation, the HA software will control the dmf service.

Use of the Wildcard in OpenVault Configuration

The procedure shown in this chapter requires that the DMF application instances in OpenVault are configured to use a wildcard ("*") for the hostname and instance

name. For more information, see the chapter about mounting service configuration tasks in the *DMF 6 Administrator Guide*.

Samba Requirements (Optional)

The /etc/samba and /var/lib/samba directories must be on shared storage and must use bind mounts.

The Filesystem resources for /etc/samba and /var/lib/samba require fstype="none" (which differs from the /usr/share/doc/sgi-ha/templates/Filesystem template), and options="bind". See "Filesystem Example for the Samba Directory bind-Mounted on /etc/samba" on page 282.

DMF Copytool Requirements

Using the DMF copytool for Lustre (lhsmtool_dmf) in an HA environment requires the following:

- You must use dmcopytool-1.0.16 or later for proper execution of the dmcopytool resource agent.
- There must be a Lustre filesystem mount point dedicated for use by the DMF copytool. This mount point must exist on both nodes.
- There must be a Lustre filesystem archive mount point defined in the DMF configuration file as a filesystem object containing a MIGRATION_LEVEL parameter set to archive. This mount point must exist on both nodes.
- There must be a directory in a filesystem managed by DMF that is used to archive or restore Lustre files. This filesystem must be mounted and the directory must exist prior to executing the lhsmtool_dmf(8) command.

DMF Manager Requirements (Optional)

During HA operation, the HA software will control the dmfman service. See "Stop Services Related to DMF Before Applying an HA Environment" on page 95.

DMF Client SOAP Service Requirements (Optional)

During HA operation, the HA software must control the dmfsoap service. See "Stop Services Related to DMF Before Applying an HA Environment" on page 95.

Configure and Test the Service Components Before Applying an HA Environment

Configure and test the service components **before applying an HA environment**, as described in the following:

- Filesystem, one of the following:
 - "Configure and Test CXFS Before Applying an HA Environment" on page 86
 - "Configure and Test Local XVM Before Applying an HA Environment" on page 86
- Mounting service, one of the following:
 - "Configure and Test TMF Before Applying an HA Environment" on page 87
 - "Configure and Test OpenVault Before Applying an HA Environment" on page 87, and *(optional)* "Configure and Test the COPAN MAID OpenVault Client Before Applying a DMF HA Environment" on page 88
- "Configure and Test DMF Before Applying an HA Environment" on page 89
- "Configure and Test the NFS Service for DMF Use Before Applying an HA Environment" on page 89 (Optional)
- "Configure and Test Samba Before Applying an HA Environment" on page 91 (*Optional*)
- "Configure and Test the Winbind Service Before Applying an HA Environment" on page 91 (Optional)
- "Configure and Test Lustre Before Applying the DMF Copytool an HA Environment" on page 92 (Optional)
- "Test DMF Manager Before Applying an HA Environment" on page 95 (Optional)
- "Test the DMF Client SOAP Service Before Applying an HA Environment" on page 95 (*Optional*)

Configure and Test CXFS Before Applying an HA Environment

Do the following:

- 1. Before applying an HA environment, configure CXFS on node1 (which must be a CXFS server-capable administration node), according to the instructions in the following:
 - "CXFS Requirements" on page 76
 - CXFS 7 Administrator Guide for SGI InfiniteStorage
- Start the CXFS filesystem service (cxfs) and CXFS cluster service (cxfs_cluster). For more information, see CXFS 7 Administrator Guide for SGI InfiniteStorage.
- 3. Verify that the filesystem in question mounts on all applicable nodes. For example, use the cxfs_admin command:

node1# cxfs_admin -c status

Note: If you have multiple clusters on the same network, add the -i *clustername* option to identify the cluster name. For more information, see the cxfs_admin(8) man page.

Configure and Test Local XVM Before Applying an HA Environment

Before applying an HA environment, use the instructions in the XVM Volume Manager Administrator Guide to do the following on node1 for each of the local XVM filesystems that you want to later make highly available:

- 1. Configure the filesystem. Make a note of the name of each physvol that is part of each volume and save it for later.
- 2. Construct the filesystem using mkfs.
- 3. Mount the filesystem.

To test the local XVM service before applying HA, ensure that you can create and delete files in each of the mounted filesystems.

Configure and Test TMF Before Applying an HA Environment

Before applying an HA environment, configure TMF on node1 according to the instructions in the *TMF 6 Administrator Guide for SGI InfiniteStorage* and run the following on node1:

node1# chkconfig tmf on

Note: In the tmf.config file, drives in drive groups managed by HA software should have access configured as EXCLUSIVE and should have status configured as DOWN when TMF starts. Loaders in the tmf.config file should have status configured as UP when TMF starts.

To test the TMF service before applying HA, do the following:

1. Use tmstat to verify that all of the tape drives have a status of idle or assn:

nodel# tmstat

2. Use tmmls to verify that all of the loaders have a status of UP:

nodel# tmmls

Configure and Test OpenVault Before Applying an HA Environment

Before applying an HA environment, configure OpenVault on node1, according to the instructions in the *OpenVault Administrator Guide for SGI InfiniteStorage* and, if using the Parallel Data-Mover Option, the *DMF 6 Administrator Guide*. This means that you will use the **actual** hostname as reported by the hostname(1) command when using ov_admin. For the potential DMF servers and any parallel data-mover nodes, configure OpenVault library control programs (LCPs) and drive control programs (DCPs) for all local libraries and drives.

Note: Configuration of OpenVault on the alternate DMF server (node2) will be done when the conversion to an HA environment is performed.

To test the OpenVault service before applying HA, verify that you can perform operational tasks documented in the OpenVault guide, such as mounting and unmounting of cartridges using the ov_mount and ov_unmount commands.

For example, in an OpenVault configuration using tapes with two drives (drive0 and drive1) where you have configured a volume named DMF105 for use by DMF, the following sequence of commands will verify that drive drive0 and the library are working correctly:

```
nodel# ov_mount -A dmf -V DMF105 -d drive0
Mounted DMF105 on /var/opt/openvault/clients/handles/An96H0uA3xr0
nodel# tsmt status
       Controller: SCSI
       Device: SONY: SDZ-130
                                     0202
       Status: 0x20262
       Drive type: Sony SAIT
       Media : READY, writable, at BOT
node1# ov_stat -d | grep DMF105
drive0
         drives true true false
                                             inuse
                                                       loaded
                                                                 true
                                                                          DMF105
node1# ov_unmount -A dmf -V DMF105 -d drive0
Unmounted DMF105
node1# exit
                        Repeat the sequence for drive1.
```

Note: The tsmt step is only useful when using tapes.

Configure and Test the COPAN MAID OpenVault Client Before Applying a DMF HA Environment

Before applying an HA environment, configure the following OpenVault components for each COPAN MAID shelf by executing the ov_shelf(8) command on node1 (or mover1), making node1 the owner node for that shelf, according to the instructions in the COPAN MAID for DMF Quick Start Guide:

- One library control program (LCP)
- Up to 16 drive control programs (DCPs)
- One OpenVault drive group

Note: You will not run ov_shelf on node2 at this point.

If you are using the Parallel Data-Mover Option, also see the instructions in *DMF 6* Administrator Guide.

Note: You will create the OpenVault components on the alternate node later, using the instructions in this guide.

To test the service before applying HA, follow the instructions to test that OpenVault can mount a migration volume, as described in the *COPAN MAID for DMF Quick Start Guide*.

Configure and Test DMF Before Applying an HA Environment

Before applying an HA environment, configure DMF according to the instructions in the *DMF 6 Administrator Guide*.

To test the DMF service before applying HA, do the following:

1. Migrate a few test files:

node1# dmput -r files_to_test

2. Force volumes to be immediately written:

nodel# dmdidle

Wait a bit to allow time for the volume to be written and unmounted.

- 3. Verify that the volumes are mounted and written successfully.
- 4. Verify that the volumes can be read and the data can be retrieved:

node1# dmget files_to_test

Configure and Test the NFS Service for DMF Use Before Applying an HA Environment

Before applying an HA environment, set up the NFS exports in the /etc/exports file on both CXFS nodes as you would normally. The /etc/exports file should be identical on both nodes.

Note: Be sure to include the fsid=*uniquenumber* export option in order to prevent stale file handles after failover.

To test the NFS service before applying HA, do the following:

1. Ensure that the node is a member of the CXFS cluster and has filesystems mounted. For example:

```
node1# /usr/cluster/bin/clconf_info
node1# df
```

- 2. Ensure that the NFS service is running on the CXFS metadata server:
 - RHEL:

rhel# service nfs status

If it is not running, start it:

rhel# service nfs start

• SLES:

sles# service nfsserver status

If it is not running, start it:

sles# service nfsserver start

- 3. Export the filesystem from node1:
 - a. Configure /etc/exports.
 - b. Export the CXFS filesystems:

node1# exportfs -a

c. Run the following command on node1 to verify that the filesystems are exported:

node1# exportfs -v
/nfsexportedfilesystem

stem <world>(rw,wdelay,root_squash,no_subtree_check,fsid=xxx)

- 4. NFS-mount and test the filesystem from node1:
 - a. Mount the filesystems on a node that will not be a member of the HA cluster (otherhost):
 - NFS v3:

otherhost# mount -t nfs -o vers=3 nodel:/nfsexportedfilesystem /mnt/test

• NFS v4:

otherhost# mount -t nfs -o vers=4 node1:/nfsexportedfilesystem /mnt/test

b. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "test data for a test file" > /mnt/test/testFile1A
otherhost# cat /mnt/test/testFile1A
test data for a test file
```

5. Repeat steps 3 and 4, exporting and then mounting the filesystem from node2.

Configure and Test Samba Before Applying an HA Environment

Before applying an HA environment, set up the Samba service on node1 as you would normally (before applying HA), but place the Samba configuration files and directories on shared storage.

To test the Samba service before applying HA, see the following information:

http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/install.html

In particular, see the information about the following topics:

- · Listing shares available on the server
- Connecting with a UNIX client
- Connecting from a remote SMB client (but not the information about printing)

Configure and Test the Winbind Service Before Applying an HA Environment

Before applying the HA environment, configure Winbind and do the following to test it:

1. Verify the configuration:

a. List the users of the domain:

nodel# wbinfo -u

b. List the groups:

node1# wbinfo -g

- 2. Verify the nsswitch module:
 - a. Verify the password:

node1# sudo getent passwd

b. Verify the groups:

node1# sudo getent group

Configure and Test Lustre Before Applying the DMF Copytool an HA Environment

Before applying an HA environment, you must configure Lustre and test it to ensure that the basic Lustre HSM commands operate normally. For example, perform the following sanity test:

1. Archive and release files using the tier-1 storage (t1), which will be the XFS or CXFS filesystem managed by DMF, periodically checking the state:

```
node1# dd if=/dev/urandom of=/lustre/test t1 bs=1M count=1
node1# md5sum /lustre/test_t1
                                             (record this value for later comparison)
node1# lfs hsm_archive -Dt1 /lustre/test_t1
                                             (after a few seconds, this should be "exists archived")
node1# lfs hsm_state /lustre/test_t1
node1# lfs hsm_release /lustre/test_t1
node1# lfs hsm_state /lustre/test_t1
                                             (after a few seconds, this should be "released exists archived")
node1# md5sum /lustre/test_t1
                                             (implicitly recalls the file, value should match above value)
                                             (should be "exists archived)
node1# lfs hsm_state /lustre/test_t1
node1# lfs hsm_remove /lustre/test_t1
node1# lfs hsm_state /lustre/test_t1
                                             (no archive state)
node1# rm /lustre/test_t1
```

For example:

nodel# dd if=/dev/urandom of=/lustre/test_t1 bs=lM count=1
1+0 records in
1+0 records out
1048576 bytes (1.0 MB) copied, 0.114834 s, 9.1 MB/s
nodel# md5sum /lustre/test_t1
701e3c19baea92096004ff94c6695d46 /lustre/test_t1

nodel# lfs hsm_archive -Dt1 /lustre/test_t1
nodel# lfs hsm_state /lustre/test_t1
/lustre/test_t1: (0x00000009) exists archived, archive_id:1

nodel# lfs hsm_release /lustre/test_t1
nodel# lfs hsm_state /lustre/test_t1
/lustre/test_t1: (0x0000000d) released exists archived, archive_id:1

node1# md5sum /lustre/test_t1
701e3c19baea92096004ff94c6695d46 /lustre/test_t1
node1# lfs hsm_state /lustre/test_t1
/lustre/test_t1: (0x00000009) exists archived, archive_id:1

nodel# lfs hsm_remove /lustre/test_t1
nodel# lfs hsm_state /lustre/test_t1
/lustre/test_t1: (0x00000000), archive_id:1

nodel# rm /lustre/test_t1
rm: remove regular file `/lustre/test_t1'? y
nodel# lfs hsm_state /lustre/test_t1
can't get hsm state for /lustre/test_t1: No such file or directory

2. Archive and release a file using the tier-2 storage (t2), which will be archived directly to the storage on disk/tape:

Note: This test will take longer to complete than the tier–1 case (perhaps several minutes).

nodel# dd if=/dev/urandom of=/lustre/test_t2 bs=1M count=1
nodel# md5sum /lustre/test_t2 (record this value for later comparison)

node1# lfs hsm_archive -Dt2 /lustre/test_t2

```
nodel# dmdidle (force the data out to tape)
nodel# lfs hsm_state /lustre/test_t2 (after a few minutes, this should be "exists archived")
nodel# lfs hsm_release /lustre/test_t2
nodel# lfs hsm_state /lustre/test_t2 (after a few minutes, this should be "released exists archived")
nodel# md5sum /lustre/test_t2 (after a few minutes, this should be "released exists archived")
nodel# lfs hsm_state /lustre/test_t2 (implicitly recalls the file, value should match above value)
nodel# lfs hsm_remove /lustre/test_t2 (should be "exists archived)
nodel# lfs hsm_remove /lustre/test_t2 (no archive state)
```

node1# rm /lustre/test_t2

For example:

nodel# dd if=/dev/urandom of=/lustre/test_t2 bs=lM count=1
1+0 records in
1+0 records out
1048576 bytes (1.0 MB) copied, 0.114834 s, 9.1 MB/s
nodel# md5sum /lustre/test_t2
2cd70bb4e9ec10de116c9d1937f58d22 /lustre/test_t2

nodel# lfs hsm_archive -Dt2 /lustre/test_t2
nodel# dmdidle
nodel# lfs hsm_state /lustre/test_t2
/lustre/test_t2: (0x00000009) exists archived, archive_id:1

nodel# lfs hsm_release /lustre/test_t2
nodel# lfs hsm_state /lustre/test_t2
/lustre/test_t2: (0x0000000d) released exists archived, archive_id:1

nodel# md5sum /lustre/test_t2
2cd70bb4e9ec10de116c9d1937f58d22 /lustre/test_t2
nodel# lfs hsm_state /lustre/test_t2
/lustre/test_t2: (0x00000009) exists archived, archive_id:1

nodel# lfs hsm_remove /lustre/test_t2
nodel# lfs hsm_state /lustre/test_t2
/lustre/test_t2: (0x00000000), archive_id:1

node1# rm /lustre/test_t2

rm: remove regular file `/lustre/test_t2'? y
nodel# lfs hsm_state /lustre/test_t2
can't get hsm state for /lustre/test_t2: No such file or directory

Test DMF Manager Before Applying an HA Environment

Before applying an HA environment, verify that DMF Manager is operational by pointing your browser to the following address:

https://YOUR_DMF_SERVER:11109

Then verify that you can log in and use DMF Manager, such as by viewing the **Overview** panel.

Test the DMF Client SOAP Service Before Applying an HA Environment

Before applying an HA environment, verify that the standard DMF client SOAP service is operational pointing your browser to the following address:

https://YOUR_DMF_SERVER:11110/server.php

Then verify that you can access the DMF client SOAP GUI and view the WSDL for one of the DMF client functions.

Ensure that the Base HA Cluster is Operational

Ensure that the base HA cluster is operational, as described in "Test the Base HA Cluster" on page 45.

Stop Services Related to DMF Before Applying an HA Environment

Do the following on both nodes to ensure that the services will be controlled by the DMF HA service:

• RHEL:

RHEL node1:

node1# chkconfig dmf off node1# chkconfig dmfman off node1# chkconfig dmfsoap off

```
node1# chkconfig nfs off
node1# chkconfig openvault off
node1# service dmf stop
node1# service dmfman stop
node1# service dmfsoap stop
node1# service nfs stop
node1# service openvault stop
```

RHEL node2:

node2# chkconfig dmf off
node2# chkconfig dmfman off
node2# chkconfig dmfsoap off
node2# chkconfig nfs off
node2# chkconfig openvault off

node2# service dmf stop node2# service dmfman stop node2# service dmfsoap stop node2# service nfs stop node2# service openvault stop

• SLES:

SLES node1:

node1# chkconfig dmf off node1# chkconfig dmfman off node1# chkconfig dmfsoap off node1# chkconfig nfsserver off node1# chkconfig openvault off node1# chkconfig tmf off (optional) node1# service dmf stop node1# service dmfman stop node1# service dmfsoap stop

node1# service ampout boop node1# service openvault stop node1# service tmf stop (optional)

```
SLES node2:
```

```
node2# chkconfig dmf off
node2# chkconfig dmfman off
node2# chkconfig dmfsoap off
node2# chkconfig nfsserver off
node2# chkconfig openvault off
node2# chkconfig tmf off (optional)
node2# service dmf stop
node2# service dmfsoap stop
node2# service nfsserver stop
node2# service openvault stop
node2# service tmf stop (optional)
```

Note: Do not disable the cxfs and cxfs_cluster services. Unlike other services, these services **will not** be controlled by HA software in an HA cluster.

Add the Resources in the Correct Order

This section discusses the following:

- "Summary of the DMF HA Resources" on page 98
- "Add the dmf-group and Clustered/Local Filesystems Resources" on page 101
- "Add the IPaddr2 Resource (DMF HA)" on page 107
- "Add the Mounting Service Resources" on page 110
- "Add the dmf Resource" on page 135
- "Add the nfsserver Resource (Optional)" on page 142
- "Add the Samba Resources: smb, nmb, and winbind (Optional)" on page 146
- "Add the dmcopytool Resources (Optional)" on page 154
- "Add the dmfman Resource (Optional)" on page 159
- "Add the dmfsoap Resource (Optional)" on page 162

Summary of the DMF HA Resources

For the DMF HA implementation, you will create a single resource group (using an example ID name of DMF-GROUP) that will contain all of the other resources, adding one resource at a time to the group and then testing it.

Note: The ID names (such as DMF-GROUP) are site-configurable. For simplicity, this guide uses the defaults found in the template files.

As a starting point, use the templates in /usr/share/doc/sgi-ha/templates as building blocks. Add the resources in the order shown in Figure 6-1 on page 99, skipping products that do not apply to your site.

Figure 6-1 shows the overall DMF HA implementation in a two-node active/passive HA cluster (node1 and node2), using the suggested default IDs found in the templates in /usr/share/doc/sgi-ha/templates. This map also describes the start/stop order for resources. Table 6-1 lists the resource-specific sections that provide the details.

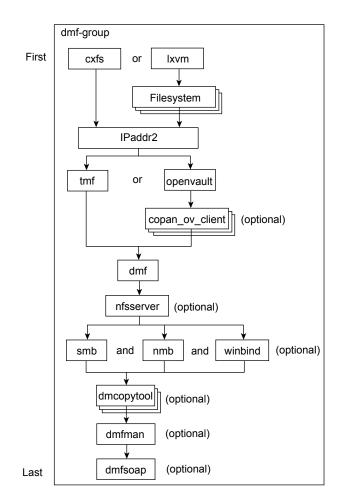


Figure 6-1 Map of Resources for the DMF HA Service

Order	Purpose	Resource Type	Example ID	Instructions
First	Group name and Filesystem	cxfs	DMF-GROUP and CXFS	"Add the dmf-group and CXFS Resources" on page 102
			— or —	
		lxvm and Filesystem	DMF-GROUP and LXVM plus FILESYSTEM-n (one or more)	"Add the dmf-group and lxvm and Filesystem Resources" on page 105
	IP alias	IPaddr2	IP	"Add the IPaddr2 Resource (DMF HA)" on page 107
	Mounting service	tmf	TMF	"Add the tmf Resource" on page 112
			— or —	
		openvault	ov plus	"Add the openvault Resource" on page 118
		copan_ov_client	COn (one or more)	"Add the copan_ov_client Resource (Optional)" on page 127
	DMF	dmf	DMF	"Add the dmf Resource" on page 135
	NFS (optional)	nfsserver	NFS	" Add the nfsserver Resource (<i>Optional</i>)" on page 142
	Samba <i>(optional)</i>	smb nmb winbind	SMB NMB WINBIND	"Add the Samba Resources: smb, nmb, and winbind (Optional)" on page 146
	DMF copytool (optional)	dmcopytool	DMCOPYTOOL	"Add the dmcopytool Resources <i>(Optional)</i> " on page 154
	DMF Manager (optional)	dmfman	DMFMAN	"Add the dmfman Resource <i>(Optional)</i> " on page 159
Last	DMF SOAP (optional)	dmfsoap	DMFSOAP	"Add the dmfsoap Resource (Optional)" on page 162

Table 6-1 Order of Resources Used in the DMF HA Service

Add the dmf-group and Clustered/Local Filesystems Resources

The DMF HA implementation uses a single group resource that contains all of the other required resources, so that HA processes can coherently control all of the resources, starting and stopping them in the required order. (The name of the group can be any name you choose.)

Figure 6-2 shows the step to add the group for the DMF HA service and the choice between a CXFS environment or a local XVM environment.

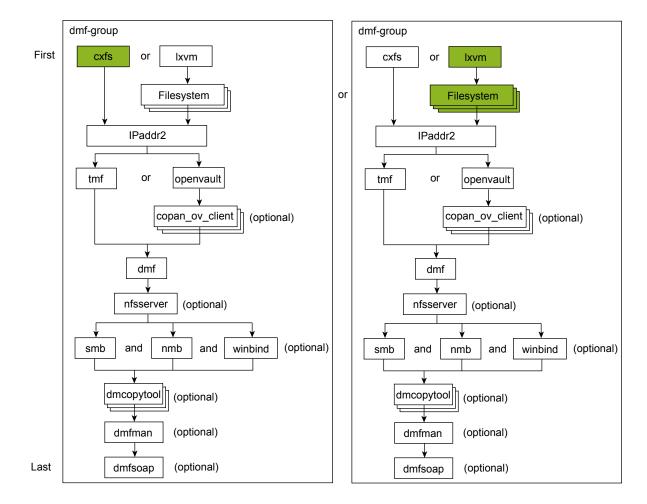


Figure 6-2 Adding the Resources for the DMF Group and the Clustered/Local Filesystems

You will create a group either for the CXFS environment using cluster XVM or for individual XFS filesystems using the local XVM environment:

- "Add the dmf-group and CXFS Resources" on page 102
- "Add the dmf-group and lxvm and Filesystem Resources" on page 105

Add the dmf-group and CXFS Resources

The purpose of this resource is to ensure that the defined filesystems run on the DMF server in a CXFS environment. This resource controls the location of the CXFS metadata server for CXFS filesystems that must be run on the DMF server, such as the DMF administrative filesystems, filesystems holding OpenVault server configuration, and filesystems for NFS/Samba configuration. This resource must not include any filesystems managed by DMF.

See the DMF 6 Administrator Guide for filesystem requirements, such as mount options.

Do the following:

1. Create a new partial configuration file (*workfile*) that contains the following:

group DMF-GROUP CXFS

2. Copy the primitive text from the cxfs template into *workfile* and replace the site-specific variables as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/cxfs

See "Use the Templates as Building Blocks" on page 18.

A cxfs resource controls of the CXFS metadata location. It is used in a DMF HA service.

Use the following:

```
primitive CXFS ocf:sgi:cxfs \
    op monitor interval="120s" timeout="180s" on-fail="restart" \
    op monitor interval="0" timeout="180s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    params volnames="VOLUME-LIST" \
    meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
CXFS	Name of this resource instance, such as $\ensuremath{\mathtt{CXFS}}$
VOLUME-LIST	Comma-separated list of volumes under the /dev/cxvm directory, such as:
	cxfsvol1,cxfsvol2

Note: Do not include any links or volumes that are filesystems managed by DMF.

For example:

```
primitive CXFS ocf:sgi:cxfs \
    op monitor interval="120s" timeout="180s" on-fail="restart" \
    op monitor interval="0" timeout="180s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    params volnames="cxfsvol1,cxfsvol2" \
    meta resource-stickiness="1" migration-threshold="1"
```

- 3. Verify that the timeout values are appropriate for your site.
- 4. Verify that there are no comments in workfile.
- 5. Save workfile.
- 6. Update the database:

node1# crm configure load update workfile

Note: As a best practice, you should also run the following command to verify changes you make to the CIB:

node1# crm_verify -LV

For testing purposes, ignore any stonith errors at this point.

For simplicity, this step is not included in the following procedures but is recommended. For more information, see "Use the crm_verify Command to Verify Configuration" on page 24.

7. Test the resource:

- a. Verify that CXFS is working on node1. For example:
 - Verify that all of the CXFS filesystems are mounted and accessible:
 node1# df -1h
 - ii. Display the current metadata server for the filesystems:

Note: If you have multiple clusters on the same network, add the -i *clustername* option to identify the cluster name. For more information, see the cxfs_admin(8) man page.

node1# /usr/cluster/bin/cxfs_admin -c "show server"

b. Move the resource group containing the cxfs resource to node2:

node1# crm resource move DMF-GROUP node2

c. Verify the status:

node1# crm status inactive

d. Verify that CXFS is working on node2:

```
node2# df -lh
node2# /usr/cluster/bin/cxfs_admin -c "show server"
```

Note: Only those volumes in /dev/cxvm that are not managed by DMF will now be served on node2 instead of node1.

e. Move the resource group containing the cxfs resource back to node1:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status inactive

g. Verify that CXFS is working again on node1:

```
node1# df -lh
node1# /usr/cluster/bin/cxfs_admin -c "show server"
```

h. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Add the dmf-group and lxvm and Filesystem Resources

Note: See the *DMF 6 Administrator Guide* for filesystem requirements, such as mount options.

The DMF HA service in a local XVM environment requires the lxvm and Filesystem resources:

Do the following:

- 1. Make sure that none of the filesystems to be controlled are mounted on either node.
- 2. Make sure that none of the filesystems to be controlled are present in /etc/fstab on either node.
- 3. Make sure that the local XVM volumes are visible and online on node1.
- 4. Create a new partial configuration file (workfile) that contains the following:

group DMF-GROUP LXVM

5. Copy the primitive text from the lxvm template into *workfile* and replace the site-specific variables as directed in the template comments or in "lxvm Template" on page 290. The template is located in:

/usr/share/doc/sgi-ha/templates/lxvm

See "Use the Templates as Building Blocks" on page 18.

- 6. Verify that the timeout values are appropriate for your site.
- 7. Verify that there are no comments in workfile.
- 8. Save workfile.
- 9. Update the database:

node1# crm configure load update workfile

Note: As a best practice, you should also run the following command to verify changes you make to the CIB:

node1# crm_verify -LV

For simplicity, this step is not included in the following procedures but is recommended. For more information, see "Use the crm_verify Command to Verify Configuration" on page 24.

- 10. Test the resource:
 - a. Move the resource group containing the lxvm resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

b. Verify the status:

node1# crm status inactive

Note: If the timeout is too short for a start operation, the crm status inactive and crm_verify -LV output and the log files will have an entry that refers to the action being "Timed Out" (see "Examine Log Files" on page 24). For example (line breaks shown here for readability):

Processing failed op lxvm_start_0 on nodel: Timed Out

c. Move the resource group containing the lxvm resource back to nodel:

node1# crm resource move DMF-GROUP node1

d. Verify the status:

node1# crm status inactive

e. Verify that the local XVM volumes are visible and online on node1:

nodel# xvm -d local show vol

f. Remove the implicit location constraints generated by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Add the IPaddr2 Resource (DMF HA)

Figure 6-3 shows the step to add the IPaddr2 resource for the IP alias.

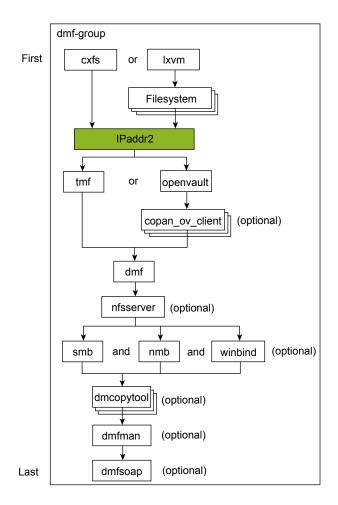


Figure 6-3 Adding the Resource for the IP Alias

Do the following to add the IP address alias (IPaddr2) resource:

1. Create another *workfile* that contains the following, where *Previously_Added_Resources* are all of the resources added to this point in the procedure. For example, for the DMF HA example used in this guide:

group DMF-GROUP Previously_Added_Resources IP

For more information about the group definition, see "dmf-group Template" on page 268.

2. Copy the primitive in the IPaddr2 template into *workfile* and replace the site-specific variables as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/IPaddr2

See "Use the Templates as Building Blocks" on page 18.

An IPaddr2 resource controls the addition/deletion of an IP address alias on a network interface. It is used either a CXFS environment or a local XVM environment.

Use the following:

```
primitive IP ocf:heartbeat:IPaddr2 \
    op monitor interval="0" timeout="30s" \
    op start interval="0" timeout="90s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="100s" on-fail="fence" \
    params ip="IP-ADDRESS" \
    meta resource-stickiness="1" migration-threshold="1"
```

Variable

Description

IP

Name of this resource instance, which must match the named used to define it in the associated group resource, such as example IP used DMF HA example in this guide

IP address of the virtual channel, such as

IP-ADDRESS

128.162.244.240

For example:

```
primitive IP ocf:heartbeat:IPaddr2 \
    op monitor interval="0" timeout="30s" \
    op start interval="0" timeout="90s" on-fail="restart" requires="fencing" \
```

```
op stop interval="0" timeout="100s" on-fail="fence" \
                              params ip="128.162.244.240" \
                              meta resource-stickiness="1" migration-threshold="1"
                           The monitor operation probes to see if the resource is already running.
                           Normally, this is the only monitor operation required for an IPaddr2 resource.
                         3. Verify that the timeout values are appropriate for your site.
                         4. Verify that there are no comments in workfile.
                         5. Save workfile.
                         6. Update the database with the new resource:
                           node1# crm configure load update workfile
                         7. Test the IPaddr2 resource:
                           a. Verify that the IP address is configured correctly on node1. For example, for
                               the ip value 128.162.244.240:
node1# ip -o addr show | grep '128.162.244.240/'
            inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
                            b. Verify that node2 does not accept the IP address packets by running the
                               following command on node2 (there should be no output):
                               node2# ip -o addr show | grep '128.162.244.240/'
                               node2#
                              Connect to the virtual address using ssh or telnet and verify that the IP
                           C.
                               address is being served by the correct system. For example, for the IP address
                               128.162.244.240 and the machine named node1:
                               remote# ssh root@128.162.244.240
                               Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
                               remote# uname -n
                               node1
```

d. Move the resource group containing the IPaddr2 resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

4: eth2

e. Verify the status:

node1# crm status inactive

f. Verify that the IP address is configured correctly on node2:

```
node2# ip -o addr show | grep '128.162.244.240/'
4: eth2 inet 128.162.244.240/24 brd 128.162.244.255 scope global secondary eth2
```

g. Verify that node1 does not accept the IP address packets by running the following command on node1 (there should be no output):

node1# ip -o addr show | grep '128.162.244.240/'
node1#

h. Connect to the virtual address using ssh or telnet and verify that the IP address is being served by the correct system. For example, for the IP address 128.162.244.240 and the machine named node2:

ha# ssh root@128.162.244.240
Last login: Mon Jul 14 10:34:58 2008 from mynode.mycompany.com
ha# uname -n
node2

i. Move the resource group containing the IPaddr2 resource back to node1:

node1# crm resource move DMF-GROUP node1

j. Verify the status:

node1# crm status inactive

- k. Test again as in steps a-c above.
- 1. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Add the Mounting Service Resources

Figure 6-4 shows the step to add the resource for the mounting service, which is either the TMF mounting service or the OpenVault mounting service using optional COPAN OpenVault client resources.

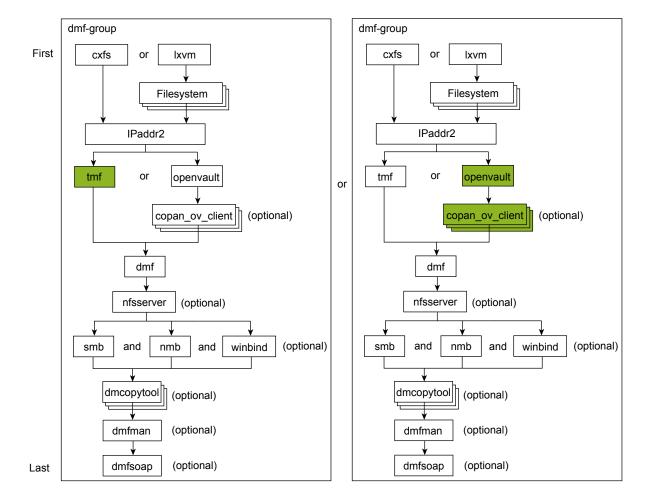


Figure 6-4 Adding the Resource for the Mounting Service

This section discusses the following:

- "Add the tmf Resource" on page 112
- "Add the openvault Resource" on page 118
- "Create the OpenVault Components on the Passive Node (COPAN MAID Only)" on page 125

- "Add the copan_ov_client Resource (Optional)" on page 127
- "Add Any OpenVault Clients that are Not DMF Servers (Optional)" on page 132
- "Test the openvault Resource" on page 133

Add the tmf Resource

To configure TMF for an HA environment, do the following:

- Modify the /etc/tmf/tmf.config file so that all tape devices belonging to device groups that are managed by HA are configured DOWN in the status parameter in the DEVICE definition.
- 2. Copy the following file from node1 to node2:

/etc/tmf/tmf.config

- 3. On node2, if the tape drive pathname (the FILE parameter in the DEVICE definition) for a given drive is not the same as the pathname for the same drive on node1, modify the pathname in the /etc/tmf.config file on node2 so that it points to the appropriate pathname.
- 4. Create another *workfile* that contains the following:

group DMF-GROUP Previously_Added_Resources TMF

For more information about the group definition, see "dmf-group Template" on page 268.

5. Copy the primitive in the tmf template into *workfile* and replace the site-specific variables as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/tmf

See "Use the Templates as Building Blocks" on page 18.

A tmf resource controls the start/stop of TMF. It may be used in a DMF HA service.

Use the following:

```
primitive TMF ocf:sgi:tmf \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="60os" on-fail="restart" requires="fencing" \
```

<pre>op stop interval="0" timeout="600s" on-fail="fence" \ params devgrpnames="DEVGRPNAME-LIST" mindevsup="MINDEVSUP-LIST" \ devtimeout="DEVTIMEOUT-LIST" loader_names="LOADERNAME-LIST" \ loader_hosts="HOST-LIST" loader_users="USER-LIST" \ loader_passwords="PASSWORD-LIST" admin_emails="EMAIL-ADDRESS-LIST" meta resource-stickiness="1" migration-threshold="1"</pre>				
Variable	Description			
TMF	Name of this resource instance, such as TMF.			
DEVGRPNAME-LIST	Comma-separated list of TMF device groups defined in the tmf.config file that are to be managed by HA software, such as:			
	ibm3592,t10ka			
MINDEVSUP-LIST	Comma-separated list of the minimum number of devices, one entry per device group, that must be configured up successfully within the corresponding device group in order to count the group as being highly available, such as:			
	1,0			
	Note: A value of 0 indicates that failover will never be initiated, even if all the devices in that device group are unavailable. This value is supported for all device groups; however, in order for TMF to be considered up, at least one tape device in some device group must be up. If there are no devices up in all defined device groups, then the resource agent will be considered to be in a stopped state, which will impact the resource monitor and the resource start actions.			
DEVTIMEOUT-LIST	Comma-separated list of device timeouts in seconds, one entry per device group, that are used to decide how long to wait for a device in that device group to finish configuring up or down, such as:			
	120,240			

	Changing the up/down state of a device may require rewinding and unloading a tape left in the drive by a previous host. Different tape device types have different maximum rewind and unload times, which can be obtained from the vendor's product literature. To calculate the timeout value for a particular device group, add the maximum rewind time for a device in that group to the device's unload time plus add an additional 10 seconds to allow for any required robot hand movement.
	For example, 3592 tape drives with a maximum rewind time of 78 seconds and an unload time of 21 seconds require a value of 78+21+10=109 seconds. 9940B tape drives with a maximum rewind time of 90 seconds and an unload time of 18 seconds require a value of 90+18+10=118.
	Note: The tmf resource agent will try twice to configure each drive up before considering it unusable, so the start timeout value should therefore be at least twice the greatest value in <i>DEVTIMEOUT-LIST</i> . For example, 2*118=236. You should usually use the same timeout value for start and stop.
LOADERNAME-LIST	Comma-separated list of loader names configured in <i>DEVGRPNAME-LIST</i> tmf.config that correspond to the device groups listed in <i>DEVGRPNAME-LIST</i> , such as:
	ibm3494,1700a
HOST-LIST	Comma-separated list of hosts through which the corresponding loaders listed in <i>LOADERNAME-LIST</i> are controlled, such as:
	ibm3494cps,stkacsls

USER-LIST	Comma-separated list of user names that are used to log in to the corresponding hosts listed in <i>HOST-LIST</i> , such as:
	root,acssa
PASSWORD-LIST	Comma-separated list of passwords corresponding to the user names listed in <i>USER-LIST</i> , such as:
	passwd1,passwd2
EMAIL-ADDRESS-LIST	(Optional) Comma-separated list of administrator email addresses corresponding to the device groups listed in <i>DEVGRPNAME-LIST</i> , such as:
	root,admin1
	Note: You can use the same email address for more than one device group (such as admin1, admin1). The email address will be used to send a message whenever tape drives that were previously available become unavailable, so that the administrator can take action to repair the drives in a timely fashion.

For example:

```
primitive TMF ocf:sgi:tmf \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params devgrpnames="ibm3592,t10ka" mindevsup="1,0" devtimeout="120,240" \
        loader_names="ibm3494,1700a" loader_hosts="ibm3494cps,stkacsls" \
        loader_users="root,acssa" loader_passwords="passwdl,passwd2" \
        admin_emails="root,admin1" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

- 6. Verify that the timeout values are appropriate for your site.
- 7. Verify that there are no comments in workfile.

- 8. Save workfile.
- 9. Update the database with the new resource:

node1# crm configure load update workfile

- 10. Test the new tmf resource:
 - a. Use tmmls to show the loader status.
 - b. Use tmstat to show the drive status. Verify that all of the tape drives in all HA device groups are in assn or idle status on nodel.
 - c. Move the resource group containing the TMF resource to node2:

node1# crm resource move DMF-GROUP node2

d. Verify the status:

node1# crm status inactive

- e. Verify that the state is correct:
 - Use tmstat to verify that the tape drives all have a status of down or sdwn on node1 and that they have a status of idle or assn on node2
 - Use tmmls to verify that all of the loaders on node1 still have a status of UP
- f. Verify that the timeout values for the start, stop, and monitor operations are appropriate. Use the following guidelines:
 - i. On node2, look in the log files (see "Examine Log Files" on page 24) for the time when the resource start operation started and ended. Also capture the start and end times of the monitor operation.
 - ii. On node1, look in the log files to find the start and stop times for the stop operation.
 - iii. Subtract the ending time from the starting time in each case to get the required time for each operation.
 - iv. Based on the above, choose values that you estimate will be acceptable timeouts that are sufficiently long so that you do not risk unnecessary failovers. In general, start with a longer timeout and shorten as required.

Following are examples of finding the start, stop, and monitor operation durations on a SLES system (line breaks shown here for readability):

```
nodel -> egrep "do_lrm_rsc_op.*Performing.*tmf_start|process_lrm_event.*tmf_start" /var/log/messages
May 11 08:20:53 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=47:81:0:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_start_0 )
May 11 08:21:10 nodel crmd: [6498]: info: process_lrm_event: LRM operation tmf_start_0 (call=90, rc=0,
 cib-update=88, confirmed=true) ok
node1 -> egrep "do_lrm_rsc_op.*Performing.*tmf_stop|process_lrm_event.*tmf_stop" /var/log/messages
May 11 08:27:39 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=46:82:0:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_stop_0 )
May 11 08:27:40 nodel crmd: [6498]: info: process_lrm_event: LRM operation tmf_stop_0 (call=92, rc=0,
 cib-update=100, confirmed=true) ok
nodel -> egrep "do_lrm_rsc_op.*Performing.*tmf_monitor|process_lrm_event.*tmf_monitor" /var/log/messages
May 11 08:08:21 node1 crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=16:78:7:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_monitor_0 )
May 11 08:08:21 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_monitor_0 (call=69, rc=7,
 cib-update=77, confirmed=true) not running
May 11 08:21:10 nodel crmd: [6498]: info: do_lrm_rsc_op: Performing
 key=48:81:0:562726de-a397-4c6c-8501-b273c214eb3f op=tmf_monitor_30000 )
May 11 08:21:11 nodel crmd: [6498]: info: process_lrm_event: LRM operation tmf_monitor_30000 (call=91,
 rc=0, cib-update=89, confirmed=false) ok
May 11 08:27:39 node1 crmd: [6498]: info: process_lrm_event: LRM operation tmf_monitor_30000 (call=91,
  status=1, cib-update=0, confirmed=true) Cancelled
                            g. Modify values in the primitive definition as needed.
                            h. Move the resource group containing the tmf resource back to node1:
```

nodel# crm resource move DMF-GROUP nodel

i. Verify the status:

node1# crm status inactive

- j. Verify that the state is correct:
 - Use tmstat to verify that the tape drives all have a status of down or sdwn on node2 and that they have a status of idle or assn on node1
 - Use tmmls to verify that all of the loaders on node2 still have a status of UP

007-5617-011

k. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Add the openvault Resource

Do the following to configure OpenVault for an HA environment:

- 1. Ensure that all of the resources within the resource group are moved back to node1 (if not already there).
- 2. Create another *workfile* that contains the following:

group DMF-GROUP Previously_Added_Resources OV

For more information about the group definition, see "dmf-group Template" on page 268.

3. Copy the primitive in the openvault template into *workfile* and replace the site-specific variables as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/openvault

See "Use the Templates as Building Blocks" on page 18.

An openvault resource controls the start/stop of all OpenVault processes. It is used in a DMF HA service.

Use the following:

```
primitive OV ocf:sgi:openvault \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="90s" on-fail="fence" \
    params virtualhost="VIRTUALHOSTVALUE" serverdir="SERVERDIR" \
    meta resource-stickiness="1" migration-threshold="1" is-managed="false"
```

Variable

Description

OV	Name of this resource instance, such as OV.
VIRTUALHOSTVALUE	Hostname where the OpenVault server will be
	listening (which must also have its own IPaddr2

resource instance, see "IPaddr2 Template" on page 283). SERVERDIR The directory that will eventually contain the OpenVault server configuration. SERVERDIR could be a directory that will be dedicated for OpenVault use (such as /dmf/openvault) or it could be an HA filesystem in the same resource group that has sufficient space (such as /dmf/home) to contain the subdirectory (such as /dmf/home/openvault) and its contents. The filesystem must be either: A directory that will become a mountable CXFS filesystem managed by a cxfs resource A directory that will become a mountable XFS filesystem managed by a Filesystem resource in the same resource group as the openvault resource Note: As part of the conversion to an HA environment, OpenVault will create this directory and move its database and logs into the directory; OpenVault will fail if the directory already exists. For example, if you define SERVERDIR as /dmf/home/openvault, the parent directory /dmf/home directory can exist but the entire path /dmf/home/openvault must not exist. For example: primitive OV ocf:sgi:openvault \ op monitor interval="120s" timeout="60s" on-fail="restart" \

```
op monitor interval="0" timeout="60s" \
```

```
op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
```

```
op stop interval="0" timeout="90s" on-fail="fence" \
```

params virtualhost="myvirtualhost" serverdir="/dmf/home/openvault" \

meta resource-stickiness="1" migration-threshold="1" is-managed="false"

Note: For the initial configuration process, the setting for the is-managed attribute must be false as shown above. The step in section "Make the openvault Resource HA-Managed" on page 127 will reset this attribute to true so that the resource will run under HA control.

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

- 4. Verify that the timeout values are appropriate for your site.
- 5. Verify that there are no comments in workfile.
- 6. Save workfile.
- 7. Update the database with the new resource:

node1# crm configure load update workfile

8. Run ov_admin on node1, in order to convert the OpenVault server into an HA configuration and move the OpenVault database to the directory specified for the serverdir parameter specified above in step 3:

node1# ov_admin
...

Verify that the server hostname matches the virtualhost value you specified in step 3 above. If the server name matches, then the OpenVault server is properly configured for HA.

9. Exit ov_admin.

Note: From here forward, whenever ov_admin asks for the server hostname, you must use *virtualhostvalue*.

10. After allowing a few moments for the OpenVault server conversion to complete, verify that there are no unusable libraries or drives on nodel by using the ov_stat(8) command with the -ldxy options (the -y option restricts the output to unusable LCPs and DCPs). If everything is operating normally at this point, there should be no output. For example:

node1# ov_stat -ldxy
node1#

However, if there are DCPs listed, it may be that the DCPs have not yet connected to the new OpenVault server configured above. (This is particularly likely if you have parallel data-mover nodes, which may take more time to reconnect.) Wait a few moments and then issue the $ov_stat -ldxy$ command again until there is no output.

- 11. Enable the passive server (node2) as a potential OpenVault server:
 - a. On node1:

To allow node2 to access the OpenVault server, run ov_admin and select the step to activate a client machine:

Answer the questions as following, optionally supplying a security key:

Which Client Machine do you want to activate? [] **node2** What security key would you like the Client Machine node2 to use? [none] **mykey** Will DCPs and/or LCPs also be configured to run on "node2"? [Yes] **yes**

Note: If you originally entered the server name when activating the dmf application instances on node1 (rather than the wildcard * character, which allows the dmf application to be used from any host, as suggested in the *DMF 6 Administrator Guide*), you must also create a privileged and an unprivileged dmf application instance for node2.

b. On node2, use ov_admin to enable the node to issue administrative commands by using *virtualhostvalue* (the default) entering *mykey* if you specified the key in step 11a:

node2# ov_admin
...
Name where the OpenVault server is listening? [virtualhostvalue]
What port number is the OpenVault server on virtualhostvalue using? [695]
What security key would you like the admin commands to use? [none] mykey

12. Define DCPs and LCPs on the passive node (node2).

Note: If your site contains COPAN native MAID shelves, you will create their OpenVault components later in "Create the OpenVault Components on the Passive Node (COPAN MAID Only)" on page 125. Therefore, you can skip this step if your site contains only COPAN native MAID shelves (and no physical tape library or COPAN VTL).

- a. Configure drives by selecting the following:
 - 2 Manage DCPs for locally attached Drives
 - 1 Create a new SCSI DCP

You must specify the drive for which would you like to add a DCP and the DCP name.

On node2, you must configure at least one DCP for each drive that is already configured on node1.

b. Configure libraries by selecting the following:

1 - Manage LCPs for locally attached Libraries

On node2, you must configure at least one LCP for each library that is already configured on node1:

- When asked for the name of the device, use the same library name that was used on node1. The LCP instance name will automatically reflect the node2 name (for example, for the 1700a library, the LCP instance name on node1 is 1700a@node1 and the LCP instance name on node2 will be 1700a@node2).
- When prompted with Library 'libname' already exists in OpenVault catalog; create LCP anyway?, respond yes.
- When prompted for the drive name at a given element address, use the ov_drive(8) command to the determine the drive name that corresponds to serial number provided in the prompt. For example 80300189-D00:

For the drive at location "drive 0 VENDOR='' PRODUCT='' SERIAL='80900229-D00' Enter a drive name for the element address "256":

In the above, the serial number is 80900229-D00, which corresponds to C16d00 in the following ov_drive(8) output (truncated):

node2# ov_dr : Drives:	lve						
Drive	Drive G	roup	Disabled	Vendor		Product	Serial Number
sl48_1	lto3		false	HP		Ultrium 3-SCSI	80900229-D0
		A	ll DCPs and LCI	Ps have no	w been c	onfigured and starte	ed on node2.
		c. O	n nodel:				
		i.	ov_stat. For usable and rea	• example, ady for the running in	the follov OpenVau disconne	successfully by usin ving output shows ult server on the act cted mode (unusabl	tive HA node
nodel# ov_st a	at -dx						
DCPName	DriveName	Usable	SoftState	Disabled	MsgLeve	1	
sl48_1a@node1	l s148_1	true	disconnected	false	debug		
sl48_la@node2	2 sl48_1	true	disconnected	false	debug		
sl48_1b@node1	l sl48_1	true	ready	false	debug		
sl48_1b@node2	2 sl48_1	true	disconnected	false	debug		
		ii.	state, meaning proceed until means that the inactive for problems com	g that they they all tra e DCP has more than necting to t	have such insition to not conta n a few m the server	acted the server, so ainutes, the DCP ma	the server. Do not A state of inactive if the state remains ay be having
		11.	shows that the the active HA	e LCPs are node (nod	usable and le1) and	nd ready for the Op running in disconne ssive node (node2)	enVault server on ected mode
nodel# ov_st a	at -lx						
LCPName I	LibraryName	Usable	SoftState	Disabled	MsgLeve	1	
sl48a@nodel s	s148	true	disconnected	false	debug		
sl48a@node2 s	s148	true	disconnected	false	debug		
sl48b@nodel s	s148	true	ready	false	debug		

007-5617-011

sl48b@node2 sl48 true disconnected false debug

Note: It may take a minute or two for the LCPs to notice that they are able to connect to the server and activate themselves. All of the alternate LCPs should transition to disconnected state, meaning that they have successfully contacted the server. Do not proceed until they all transition to disconnected. A state of inactive means that the LCP has not contacted the server, so if the state remains inactive for more than a couple of minutes, the LCP may be having problems connecting to the server.

- d. Exit ov_admin.
- 13. Stop all DCPs and LCPs on node2:

node2# ov_stop

- 14. Run ov_admin on each parallel data-mover node:
 - a. Enter *virtualhostvalue* and the port number (and security key *mykey*, if needed):

mover# ov_admin

. . .

Name where the OpenVault server is listening? [*servername*] *virtualhostvalue* What port number is the OpenVault server on *virtualhostvalue* using? [695] What security key would you like the admin commands to use? [none] *mykey*

- b. Update the server name for each DCP using item 6 in the OpenVault DCP Configuration menu:
 - 2 Manage DCPs for locally attached Drives6 Change Server Used by DCPsa Change server for all DCPs.
- c. Update the server name for each LCP using item 8 in the OpenVault DCP Configuration menu:
 - 1 Manage LCPs for locally attached Libraries
 - 8 Change Server Used by LCPs
 - a Change server for all LCPs.
- d. Exit ov_admin.

e. Restart the OpenVault client components (DCPs and any LCPs) to connect to the OpenVault server using the virtual server name:

mover# service openvault stop
mover# service openvault start

This step may generate errors for COPAN MAID shelf DCPs and LCPs whose default host is not on this host. You can ignore errors such as the following:

shelf COO is owned by owner_nodename

15. On node1, stop the OpenVault server and any DCPs and LCPs:

node1# ov_stop

Create the OpenVault Components on the Passive Node (COPAN MAID Only)

Note: This step only applies if you have COPAN MAID connected to the active DMF server and passive DMF server. If you do not, skip to "Make the openvault Resource HA-Managed" on page 127.

When you configured the services according to the information in *COPAN MAID for DMF Quick Start Guide* before applying HA, you executed an ov_shelf(8) command for each shelf in order to create the required OpenVault components (see "Configure and Test the COPAN MAID OpenVault Client Before Applying a DMF HA Environment" on page 88).

In this step, you will create corresponding OpenVault components for the passive node so that it is ready to resume control of OpenVault in case of failover, using the following information for shelf 0 as an example:

- Shelf identifier: COO (indicating cabinet 0, shelf 0)
- Active node: node1
- Passive node: node2

Note: For more information about the shelf ID, see *COPAN MAID for DMF Quick Start Guide*.

Do the following:

1. On node1:

007-5617-011

a. Stop all of the shelf's OpenVault clients:

node1# ov_stop C00*

b. Export the OCF shelf, hostname, and root environment variables for use by the copan_ov_client script:

node1# export OCF_RESKEY_shelf_name=C00 node1# export OCF_RESKEY_give_host=node2 node1# export OCF_ROOT=/usr/lib/ocf

c. Transfer ownership of the shelf from node1 to node2:

node1# /usr/lib/ocf/resource.d/sgi/copan_ov_client give

- 2. On node2:
 - a. Verify that node2 now owns the shelf's XVM volumes (COOA through COOZ, although not necessarily listed in alphabetical order):

```
node2# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
...
```

b. Create the OpenVault components for node2:

node2# ov_shelf create C00

This automatically starts all of the shelf's OpenVault components.

For more information, see COPAN MAID for DMF Quick Start Guide.

c. Stop all of the shelf's OpenVault clients:

node2# ov_stop C00*

d. Export the shelf, hostname, and OCF root environment variables for use by the copan_ov_client script:

node2# export OCF_RESKEY_shelf_name=C00 node2# export OCF_RESKEY_give_host=node1 node2# export OCF_ROOT=/usr/lib/ocf e. Transfer ownership of the shelf from node2 back to node1:

node2# /usr/lib/ocf/resource.d/sgi/copan_ov_client give

- 3. On node1:
 - a. Verify that node1 once again owns the shelf's XVM volumes (C00A through C00Z, although not necessarily listed in alphabetical order):

```
node1# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
...
```

b. Restart all of the shelf's OpenVault clients:

node1# ov_start C00*

4. Repeat steps 1 through 3 for each shelf.

Make the openvault Resource HA-Managed

Update the openvault resource so that it is managed by HA software:

node1# crm resource manage OV

The conversion is now complete (the is-managed attribute for the openvault primitive is now set to true).

Add the copan_ov_client Resource (Optional)

1. Create another *workfile* that contains the following, where *Cxx* is the COPAN MAID shelf ID:

group DMF-GROUP Previously_Added_Resources Cxx

For example, using COO for cabinet 0 shelf 0:

group DMF-GROUP Previously_Added_Resources C00

For more information about the group definition, see "dmf-group Template" on page 268.

2. Copy the primitive in the copan_ov_client template into *workfile* and replace the site-specific variables for the appropriate section as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/copan_ov_client

See "Use the Templates as Building Blocks" on page 18.

A copan_ov_client resource defines a COPAN MAID shelf to be used by an OpenVault client. It is used in a COPAN MAID OpenVault client HA service or optionally in a DMF HA service. Each shelf requires its own primitive instance.

Use the following:

```
primitive SHELF ocf:sgi:copan_ov_client \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params shelf_name="SHELF" \
    meta resource-stickiness="1" migration-threshold="1"
```

Note: The copan_ov_client template contains two sections, one for a COPAN MAID OpenVault client HA service and another for a DMF HA service – you must fill in the values in the section for the service you want to configure and delete the other section entirely.

Variable	Description
SHELF	Name of this resource instance, normally the three-character COPAN shelf ID, using the naming convention described in the COPAN MAID for DMF Quick Start Guide, such as COO for cabinet 0, shelf 0 (the bottom shelf)
SHELF-MOVER1-LOCATION	Name of the location constraint for the primary parallel data-mover node, such as C00-MOVER1-LOCATION

MOVER1	Name of the primary parallel data-mover node, such as MOVER1
SHELF-MOVER2-LOCATION	Name of the location constraint for the secondary parallel data-mover node, such as C00-MOVER2-LOCATION
MOVER2	Name of the secondary parallel data-mover node, such as MOVER2
SHELF-CXFS-COLOCATION	Name of the colocation constraint, such as C00-CXFS-COLOCATION
CXFS-CLIENT-CLONE	Name of the clone, such as CXFS-CLIENT-CLONE (see "cxfs-client-clone Template" on page 249)
SHELF-CXFS-ORDER	Name of the order constraint, such as COO-CXFS-ORDER

Note: The copan_ov_client template contains two sections, one for a COPAN MAID OpenVault client HA service and another for a DMF HA service – you must fill in the values in the section for the service that you want to configure and delete the other section entirely.

For example, for a DMF HA service:

```
primitive C16 ocf:sgi:copan_ov_client \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params shelf_name="C16" \
    meta resource-stickiness="1" migration-threshold="1"
```

Note: The primitive instance for the COPAN MAID OpenVault client HA service requires location, colocation, and order constraints and a high value for resource-stickiness indicates that it will be unlikely to move to the other node, whereas the primitive instance for the DMF HA service requires no constraints and has a resource-stickiness value that matches the rest of the resources in the DMF-GROUP resource (see "dmf-group Template" on page 268).

You should configure an instance of this resource for each shelf that will be owned by the active DMF server. (Shelves that are owned by a parallel data-mover node are not included in the DMF HA service.)

- 3. Verify that the timeout values are appropriate for your site.
- 4. Delete the section of the template that does not apply to your configuration.
- 5. Verify that there are no comments in *workfile*.
- 6. Save workfile.
- 7. Update the database with the new resource:

node1# crm configure load update workfile

- 8. Test the new resource. For example, using shelf ID COO:
 - a. Verify that shelf COO becomes available after a few minutes on node1:

nodel# ov_stat -L C00 -D 'C00.*'									
Library Na	ame	Broker	n Disa	abled	State	LCP State			
C00		false	fal	se	ready	ready			
DriveName	Group	<u>,</u>	Usable	Access	Disabled	SoftState	HardState	Occupied	PCL
C00d00	dg_c(00	true	true	false	ready	unloaded	false	
C00d01	dg_c(00	true	true	false	ready	unloaded	false	
C00d02	dg_c(00	true	true	false	ready	unloaded	false	
C00d03	dg_c(00	true	true	false	ready	unloaded	false	
C00d04	dg_c(00	true	true	false	ready	unloaded	false	
C00d05	dg_c(00	true	true	false	ready	unloaded	false	
C00d06	dg_c(00	true	true	false	ready	unloaded	false	

b. Move the resource group containing the copan_ov_client resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

c. Verify the status:

node1# crm status inactive

d. Verify that shelf C00 becomes available after a few minutes on node2:

node2# ov_stat -L C00 -D 'C00.*'								
Library Name	Broken	Disa	bled S	State	LCP St	tate		
C00	false	fals	e r	ready	ready			
DriveName Group	Usable	Access	Disable	ed SoftS	tate Ha	ardState	Occupied	PCL
C00d00 dg_c00	true	true	false	ready	ui	nloaded	false	
C00d01 dg_c00	true	true	false	ready	ui	nloaded	false	
C00d02 dg_c00	true	true	false	ready	ui	nloaded	false	
C00d03 dg_c00	true	true	false	ready	ui	nloaded	false	
C00d04 dg_c00	true	true	false	ready	ui	nloaded	false	
C00d05 dg_c00	true	true	false	ready	ur	nloaded	false	
C00d06 dg_c00	true	true	false	ready	u	nloaded	false	

e. Move the resource group containing the copan_ov_client resource back to nodel:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status inactive

g. Verify that shelf COO becomes available after a few minutes on node1:

nodel# ov_stat -L COO -D 'COO.*'										
Library Na	ame	Broken	Disal	oled	Sta	te	LCP	State		
C00		false	false	e	read	dy	read	ly		
DriveName	Group	Usable	Access	Disab	led	SoftSt	ate	HardState	Occupied	PCL
C00d00	dg_c00	true	true	false		ready		unloaded	false	
C00d01	dg_c00	true	true	false		ready		unloaded	false	
C00d02	dg_c00	true	true	false		ready		unloaded	false	
C00d03	dg_c00	true	true	false		ready		unloaded	false	

C00d04	dg_c00	true	true	false	ready	unloaded	false
C00d05	dg_c00	true	true	false	ready	unloaded	false
C00d06	dg_c00	true	true	false	ready	unloaded	false

h. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Add Any OpenVault Clients that are Not DMF Servers (Optional)

If you want to have additional OpenVault clients that are not DMF servers, such as for running administrative commands, install the OpenVault software on those clients and run ov_admin as shown below. When asked the server hostname, specify the virtualhost value from the workfile in step 3 above.

Note: You may wish to set the environment variable OVSERVER to the virtual hostname so that you can use the OpenVault administrative commands without having to specify the –S parameter on each command.

Do the following for each OpenVault client:

1. On node1:

To allow node2 to act as an administrative client, run ov_admin and select the following menus, answering the questions when prompted:

node1# ov_admin
...
22 - Manage OpenVault Client Machines
 1 - Activate an OpenVault Client Machine

2. On the OpenVault client node, use ov_admin to enable the node to issue administrative commands by entering the virtualhost value in *workfile*, the port number, and security key as needed:

node2# ov_admin

Name where the OpenVault server is listening? [*virtualhostvalue*] What port number is the OpenVault server on *virtualhostvalue* using? [695] What security key is used for admin commands on the HA OpenVault servers? [none]

. . .

Test the openvault Resource

Test the new openvault resource:

1. Verify that the OpenVault libraries and drives become available after a few minutes on node1. Using the -ldxy options to the ov_stat command, the only output you should see is that of the inactive LCPs and DCPs that apply to the passive server. For example:

node1# ov_stat -ldxy LCPName LibraryName Usable SoftState Disabled MsgLevel sl48a@node2 sl48 false inactive false debuq sl48b@node2 sl48 false inactive false debug DCPName DriveName Usable SoftState Disabled MsgLevel s148_1a@node2 s148_1 false inactive false debug s148_1b@node2 s148_1 false inactive false debug

In the above output, the LCPs and DCPs for node2 are expected to be inactive because node2 is the passive server. Therefore, the above output indicates that all is well.

If you prefer to see all of the LCPs and DCPs regardless of state, do not include the -y option. For example:

```
node1# ov_stat -ldxy
            LibraryName Usable SoftState
LCPName
                                            Disabled MsgLevel
                                             false
                                                      debug
sl48a@nodel sl48
                        true
                               ready
sl48a@node2 sl48
                        false inactive
                                            false
                                                      debug
sl48b@node1 sl48
                               disconnected false
                                                      debug
                        true
sl48b@node2 sl48
                        false inactive
                                             false
                                                      debug
DCPName
              DriveName Usable SoftState
                                            Disabled MsgLevel
sl48_1a@node1 sl48_1
                        true
                               ready
                                             false
                                                      debug
s148_1a@node2 s148_1
                                             false
                                                      debug
                        false inactive
s148_1b@node1 s148_1
                        true
                               disconnected false
                                                      debug
s148_1b@node2 s148_1
                                             false
                        false inactive
                                                      debug
```

Note: If multiple instances of an LCP/DCP exist on the active server, exactly one will be listed with a SoftState of ready and the others will be listed as disconnected. The particular instance listed as ready may change over time and is not important.

007-5617-011

2. Move the resource group containing the openvault resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

3. Verify the status:

node1# crm status inactive

4. Verify that all of the drives become available after a few moments on node2. Using the -ldxy options to the ov_stat command, the only output you should see is that of the inactive LCPs and DCPs that apply to the passive server (now node1). For example:

```
node2# ov_stat -ldxy
LCPName LibraryName Usable SoftState Disabled MsgLevel
sl48a@node1 sl48 false inactive false debug
sl48b@node1 sl48 false inactive false debug
DCPName DriveName Usable SoftState Disabled MsgLevel
sl48_la@node1 sl48_1 false inactive false debug
sl48_lb@node1 sl48_1 false inactive false debug
```

In the above output, all is well because the only output displayed are the inactive LCPs and DCPs that are connected to what is now the passive DMF server (node1).

5. Move the resource group containing the openvault resource back to node1:

node1# crm resource move DMF-GROUP node1

6. Verify the status:

node1# crm status inactive

7. Verify that all of the drives become available after a few moments on node1. Using the -ldxy options to the ov_stat command, the only output you should see is that of the inactive LCPs and DCPs that apply to the passive server (now back to node2). For example:

node1# ov_stat -ldxy LibraryName Usable SoftState Disabled MsgLevel LCPName sl48a@node2 sl48 false inactive false debug sl48b@node2 sl48 false inactive false debug DCPName DriveName Usable SoftState Disabled MsgLevel sl48_1a@node2 sl48_1 false inactive false debug s148_1b@node2 s148_1 false inactive false debug

8. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Add the dmf Resource

Figure 6-5 shows the step to add the resource for DMF.

Note: The following procedure requires that the DMF application instances in OpenVault are configured to use a wildcard ("*") for the hostname and instance name. For more information, see the chapter about mounting service configuration tasks in the *DMF 6 Administrator Guide*.

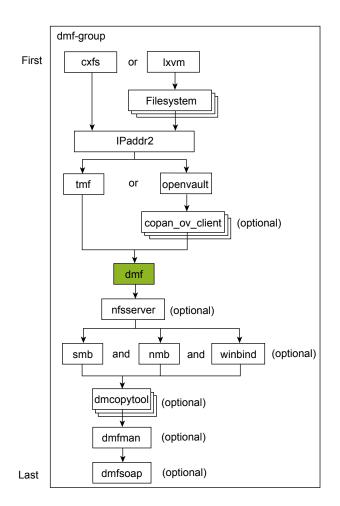


Figure 6-5 Adding the Resource for DMF

Do the following:

1. Make the filesystem backup inventory accessible from all DMF servers in the HA cluster.

The backup of managed user filesystems and DMF administrative filesystems is always performed on the active DMF server based upon parameters in the DMF configuration file. The xfsdump command maintains an inventory of all backups performed within the directory /var/lib/xfsdump. In an HA environment, the active DMF server node can change over time; therefore (in order for xfsdump to maintain a consistent inventory) it must be able to access the inventory for all past backups, even if those backups were created on another node.

SGI recommends that you make the inventory accessible to all DMF server nodes by relocating it into an HA-managed DMF administrative filesystem within the same resource group as DMF. For example, create a site-specific directory in the directory specified by the DMF HOME_DIR configuration parameter, such as /dmf/home/site_specific:

• On node1 (which currently contains the inventory), enter the following:

```
nodel# cd /var/lib
nodel# cp -r xfsdump /dmf/home/site_specific/xfsdump
nodel# mv xfsdump xfsdump.bak
nodel# ln -s /dmf/home/site_specific/xfsdump xfsdump
```

Note: In a brand-new DMF installation, the /var/lib/xfsdump directory will not exist until after a backup has been performed.

• On node2, enter the following:

```
node2# cd /var/lib
node2# mv xfsdump xfsdump.bak
node2# ln -s /dmf/home/site_specific/xfsdump xfsdump
```

Note: It is the /var/lib/xfsdump directory that should be shared, rather than the /var/lib/xfsdump/inventory directory. If there are inventories stored on various nodes, you can use xfsinvutil to merge them into a single common inventory, prior to sharing the inventory among the nodes in the cluster.

- 2. On node1, modify the DMF configuration file as follows:
 - Set the MAX_MS_RESTARTS parameter in the appropriate drivegroup objects to 0 so that DMF will not restart the mounting service.
 - Set the DUMP_INVENTORY_COPY parameter so that it uses a DMF HA administrative filesystem that is on a different disk from the live inventory created above in step 1. If the live inventory in /dmf/home/site_specific/xfsdump is lost, you can then recreate it from the inventory backup in DUMP_INVENTORY_COPY. For example, you could

create the directory /dmf/journal/site_specific/inventory_copy for use in DUMP_INVENTORY_COPY.

- (*OpenVault only*) Set the MSG_DELAY parameter in the drivegroup objects to a value of slightly more than 2 minutes.
- Set the SERVER_NAME parameter for the base object to the HA virtual hostname of the DMF server.

Note: If you change this parameter, you must copy the DMF configuration file (/etc/dmf/dmf.conf) manually to each parallel data-mover node and then restart the services related to DMF. Do not change this parameter while DMF is running.

- Set the INTERFACE parameter in the node object for each potential DMF server node to the same virtual hostname used for SERVER_NAME in the base object.
- (DMF Parallel Data-Mover Option only) Create node objects for each potential DMF server and set the INTERFACE parameter in those node objects to the same virtual hostname used for SERVER_NAME in the base object.

Note: If you are not using the DMF Parallel Data-Mover Option, then no node objects are needed.

For more information, see the dmf.conf(5) man page and the DMF 6 Administrator Guide.

3. Copy the DMF configuration file (/etc/dmf/dmf.conf) from node1 to node2 and to any parallel data-mover nodes in the DMF configuration. You may wish to use a symbolic link on node1 and on node2 that points to a shared location specified by the HOME_DIR parameter in the DMF configuration file. For example:

ha# ln -s /dmf/home/dmf.conf /etc/dmf/dmf.conf

Note: You cannot use a symbolic link for parallel data-mover nodes because DMF itself keeps the dmf.conf file synchronized with the server node.

4. If you are using OpenVault and you **explicitly set** hostnames when you defined the ov_keys file during initial OpenVault setup, edit the ov_keys file and

replace the hostname in the first field of the lines containing "dmf" with the OpenVault virtual hostname. For example, if the virtualhost value in the *workfile* is myvirtualhost, the result would be:

myvirtualhost dmf * CAPI none myvirtualhost dmf * AAPI none

Note: If you used a wildcard hostname (*) when you defined the ov_keys file during initial OpenVault setup, there is no need to edit this file.

5. Create another *workfile* that contains the following:

group DMF-GROUP Previously_Added_Resources DMF

For more information about the group definition, see "dmf-group Template" on page 268.

6. Copy the primitive in the dmf template into *workfile* and replace the site-specific variables as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/dmf

See "Use the Templates as Building Blocks" on page 18.

A dmf resource starts/stops DMF. It is used in a DMF HA service.

Use the following:

```
primitive DMF ocf:sgi:dmf \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params monitor_level="0" \
    meta resource-stickiness="1" migration-threshold="1"
```

Variable DMF

Description

Name of this resource instance, such as DMF

Note: In a CXFS environment, ensure that the timeout values are appropriate for your site; you must account for the time required to relocate the CXFS metadata server for the managed filesystems.

For example:

```
primitive DMF ocf:sgi:dmf \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params monitor_level="0" \
    meta resource-stickiness="1" migration-threshold="1"
```

- 7. Verify that the timeout values are appropriate for your site.
- 8. Verify that there are no comments in workfile.
- 9. Save workfile.
- 10. Update the database with the new resource:

node1# crm configure load update workfile

- 11. Test the resource:
 - a. Verify that DMF has started by using the dmdstat -v command and manual dmput and dmget commands on node1:

```
nodel# dmdstat -v
nodel# xfs_mkfile size test_file
nodel# dmput -r test_file
nodel# dmdidle
(wait a bit to allow time for the volume to be written and unmounted)
nodel# dmget test_file
nodel# rm test_file
```

b. Move the resource group containing the dmf resource to node2:

node1# crm resource move DMF-GROUP node2

c. Verify the status:

node1# crm status inactive

d. Verify that DMF has started on the new node by using the dmdstat -v command and manual dmput and dmget commands on node2:

node2# dmdstat -v
node2# xfs_mkfile size another_test_file

```
node2# dmput -r another_test_file
node2# dmdidle
(wait a bit to allow time for the volume to be written and unmounted)
node2# dmget another_test_file
node2# rm another_test_file
```

e. Move the resource group containing the dmf resource back to node1:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status inactive

g. Verify that DMF has started by using the dmdstat -v command and manual dmput and dmget commands on node1:

```
nodel# dmdstat -v
nodel# xfs_mkfile size test_file
nodel# dmput -r test_file
nodel# dmdidle
(wait a bit to allow time for the volume to be written and unmounted)
nodel# dmget test_file
nodel# rm test_file
```

h. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Add the nfsserver Resource (Optional)

Figure 6-6 shows the step to add the optional resource for the NFS server.

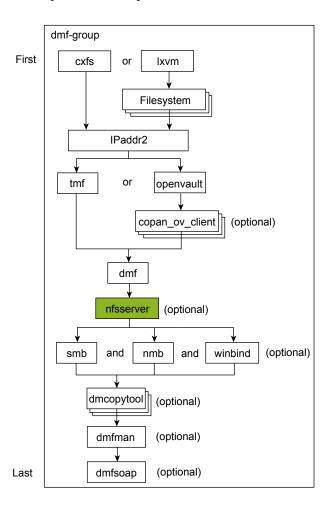


Figure 6-6 Adding the Resource for the NFS Server

To configure NFS for an HA environment, do the following:

1. Copy the /etc/exports entries that you would like to make highly available from node1 to the /etc/exports file on node2.

Note: Be sure to include the fsid=*uniquenumber* export option in order to prevent stale file handles after failover.

- 2. (RHEL only) On both RHEL nodes, do the following:
 - a. Set the following in the /etc/sysconfig/nfs file:

START_SMNOTIFY="no"

- b. Ensure that NFS lock services are started at boot time:
 - On RHEL node1:

node1# chkconfig nfslock on

• On RHEL node2:

node2# chkconfig nfslock on

3. Create another workfile that contains the following:

group DMF-GROUP Previously_Added_Resources NFS

For more information about the group definition, see "dmf-group Template" on page 268.

4. Copy the primitive in the nfsserver template into *workfile* and replace the site-specific variables as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/nfsserver

See "Use the Templates as Building Blocks" on page 18.

An nfsserver resource controls the start/stop of NFS. It may be used in a DMF HA service.

Use the following:

```
primitive NFS ocf:heartbeat:nfsserver \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params nfs_shared_infodir="STATEDIR" nfs_ip="IP ADDRESS-ALIAS" \
    meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
NFS	Name of this resource instance, such as NFS.
STATEDIR	Directory in the NFS filesystem that will be used to store NFS file-lock state for this HA cluster, such as the /mnt/cxfsvol1/.nfs subdirectory in the exported filesystem.
IP ADDRESS-ALIAS	IP address alias associated with the NFS client lock state (which is reclaimed by the NFS client from the NFS server when it receives the NSM reboot notification that is initiated by this nfsserver resource), for example 128.162.244.244. This IP address alias will be the same IP address specified for <i>IP-ADDRESS</i> in one of the IPaddr2 resources (see "IPaddr2 Template" on page 283).
For example:	

```
primitive NFS ocf:heartbeat:nfsserver \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params nfs_shared_infodir="/mnt/cxfsvol1/.nfs" nfs_ip="128.162.232.79" \
    meta resource-stickiness="1" migration-threshold="1"
```

- 5. Verify that the timeout values are appropriate for your site.
- 6. Verify that there are no comments in workfile.
- 7. Save workfile.
- 8. Update the database with the new resource:

node1# crm configure load update workfile

- 9. Test the new resource:
 - a. Run the following command on node1 to verify that the NFS filesystems are exported:

```
nodel# exportfs -v
/work.mynodel <world>(rw,wdelay,root_squash,no_subtree_check,fsid=8001)
/work.mynode2 <world>(rw,wdelay,root_squash,no_subtree_check,fsid=8002)
```

/work.mynode3	<world>(rw,wdelay,root_squash,no_subtree_check,fsid=8003)</world>
/work.mynode4	<pre><world>(rw,wdelay,root_squash,no_subtree_check,fsid=8004)</world></pre>
/mirrors	<pre><world>(ro,wdelay,root_squash,no_subtree_check,fsid=8005)</world></pre>
/	<world>(ro,wdelay,root_squash,no_subtree_check,fsid=8006)</world>

b. Mount the filesystems on a node that will not be a member of the HA cluster (otherhost):

otherhost# mount node1:/nfsexportedfilesystem /mnt/test

c. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "test data" > /mnt/test/testFile1A
otherhost# cat /mnt/test/testFile1A
test data
```

d. Move the resource group containing the nfsserver resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

e. Verify the status:

node1# crm status inactive

f. Run the following command on node2 to verify that the NFS filesystems are exported:

```
node2# exportfs -v
/work.mynode1 <world>(rw,wdelay,root_squash,no_subtree_check,fsid=8001)
/work.mynode2 <world>(rw,wdelay,root_squash,no_subtree_check,fsid=8002)
/work.mynode4 <world>(rw,wdelay,root_squash,no_subtree_check,fsid=8003)
/work.mynode4 <world>(rw,wdelay,root_squash,no_subtree_check,fsid=8004)
/mirrors <world>(ro,wdelay,root_squash,no_subtree_check,fsid=8005)
/ <world>(ro,wdelay,root_squash,no_subtree_check,fsid=8006)
```

g. Read and write to the NFS-mounted filesystems:

```
otherhost# echo "more test data" > /mnt/test/testFile1B
otherhost# cat /mnt/test/testFile1B
more test data
```

h. Move the resource group containing the nfsserver resource back to node1:

node1# crm resource move DMF-GROUP node1

i. Verify the status:

node1# crm status inactive

j. Remove the implicit location constraints imposed by the administrative move command executed above:

node1# crm resource unmove DMF-GROUP

Add the Samba Resources: smb, nmb, and winbind (Optional)

Figure 6-7 shows the step to add the resources associated with Samba, which are optional.

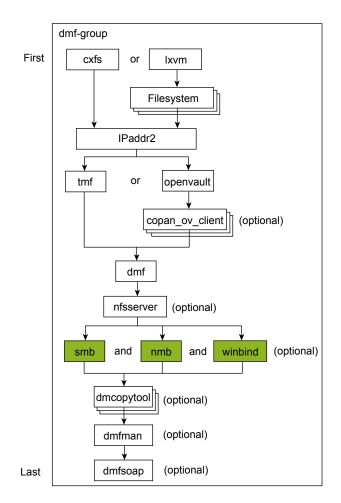


Figure 6-7 Adding the Resources for Samba

To configure Samba for an HA environment, do the following:

1. If you are using winbind, ensure that the HA nodes do not use pluggable authentication modules (PAM) or name service switch (NSS) that could have dependencies on winbind. That is, there must not be dependencies on winbind in the files in the /etc/pam.d directory or the files listed in the /etc/nsswitch.conf file.

Note: Not all configurations with winbind will work in an HA cluster.

2. Copy the Samba directories to a shared location. For example:

```
node1# cp -r /etc/samba /mnt/data/.ha/etc_samba
node1# cp -r /var/lib/samba /mnt/data/.ha/var_lib_samba
```

- 3. Create a Filesystem resource for each of the new Samba directories:
 - a. Create another *workfile* that contains the following, where *PREVIOUSLY_ADDED_RESOURCES* are all of the resources added to this point in the procedure and *FILESYSTEM* is one of the filesystems to be controlled by HA processes (use a unique ID for each Filesystem instance):

group DMF-GROUP PREVIOUSLY_ADDED_RESOURCES FILESYSTEM

 b. Copy the primitive from the Filesystem template into *workfile* and replace the site-specific variables as directed in the template comments or in "Filesystem Template" on page 280. The template is located in:

/usr/share/doc/sgi-ha/templates/Filesystem

See "Use the Templates as Building Blocks" on page 18.

Note: The Filesystem resource for Samba requires fstype="none", which differs from the template, and options="bind".

- c. Verify that the timeout values are appropriate for your site.
- d. Verify that there are no comments in *workfile*.
- e. Save workfile.
- f. Update the database with the new resource:

node1# crm configure load update workfile

- g. Test the Filesystem resource:
 - i. Ensure that all of the mount points required to mount all Filesystem resources exist on both nodes.

Note: After a Filesystem primitive has been added to a resource group's configuration, moving that resource group will unmount the filesystem defined in the primitive. This will result in killing any process that has that filesystem in the path of its current working directory.

ii. Verify that the filesystems are online on node1:

node1# **df** -hl

iii. Move the resource group containing all of the Filesystem resources from node1 to node2:

node1# crm resource move DMF-GROUP node2

iv. Verify the status:

node1# crm status inactive

- v. Verify that the filesystems are correctly mounted on node2 only:
 - On node2, check the mount table and verify that the filesystems are mounted and have the correct mount options. Use the ls and df -lh commands on the mount point to verify that the filesystem is functional.
 - On node1, check the mount table and verify that none of the filesystems are mounted.
- vi. Move the resource group containing all of the Filesystem resources back to node1:

node1# crm resource move DMF-GROUP node1

vii. Verify the status:

node1# crm status inactive

viii. Verify that the filesystems are correctly mounted on node1 only:

• On node1, check the mount table and verify that the filesystems are mounted and have the correct mount options. Use the ls and df -lh commands on the mount point to verify that the filesystem is functional.

- On node2, check the mount table and verify that none of the filesystems are mounted.
- ix. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

h. Repeat steps a-g for each filesystem to be managed by HA in a local XVM environment. Use a unique instance ID for each filesystem.

For example:

• For the /mnt/data/.ha/etc_samba directory, you could use a primitive ID of etc_samba, a device value of /mnt/data/.ha/etc_samba, and a directory value of /etc/samba. In this case, the group definition would be:

group DMF-GROUP Previously_Added_Resources etc_samba

• For the /mnt/data/.ha/var_lib_samba directory, you could use a primitive ID of var_lib_samba, a device value of /mnt/data/.ha/var_lib_samba, and a directory value of /var/lib/samba. In this case, the group definition would be:

group DMF-GROUP Previously_Added_Resources var_lib_samba

After you have added all of the filesystems, the DMF-GROUP definition could appear something like the following:

group DMF-GROUP LXVM dmfusr1 dmfusr2 home spool move_fs journals \
 tmp move_fs cache store

4. Create another workfile that contains the following:

group DMF-GROUP Previously_Added_Resources SMB NMB

If your Samba implementation uses an authentication type that requires the winbind daemon, use the following:

group DMF-GROUP Previously_Added_Resources SMB NMB WINBIND

- 5. Copy the primitive in the smb and nmb templates and optionally the winbind template into workfile and replace the site-specific variables as directed:
 - smb:

An smb resource controls the smb service for Samba. It may be used in a DMF HA service. The template is located in:

/usr/share/doc/sgi-ha/templates/smb

See "Use the Templates as Building Blocks" on page 18.

Use the following:

```
primitive SMB lsb:smb \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="60s" on-fail="fence" \
   meta resource-stickiness="1" migration-threshold="1"
```

Variable

Description

SMB

Name of this resource instance, such as SMB.

For example:

```
primitive SMB lsb:smb \
   op monitor interval="120s" timeout="60s" on-fail="restart" \
   op monitor interval="0" timeout="60s" \
   op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
   op stop interval="0" timeout="60s" on-fail="fence" \
   meta resource-stickiness="1" migration-threshold="1"
```

nmb: ٠

An nmb resource controls the nmbd service for Samba. It may be used in a DMF HA service. The template is located in:

/usr/share/doc/sgi-ha/templates/nmb

See "Use the Templates as Building Blocks" on page 18.

Use the following:

```
primitive NMB lsb:nmb \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="1"
```

Variable

NMB

```
Description
```

Name of this resource instance, such as NMB.

For example:

```
primitive NMB lsb:nmb \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="1"
```

• winbind:

This template is located in:

/usr/share/doc/sgi-ha/templates/winbind

See "Use the Templates as Building Blocks" on page 18.

If your Samba implementation uses an authentication type that requires the winbind daemon, you can use a winbind resource to control it. It may be used in a DMF HA service.

Use the following:

```
primitive WINBIND lsb:winbind \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="1"
```

007-5617-011

High Availability Guide for $SGI^{\ensuremath{\mathbb{R}}}$ InfiniteStorage^{\ensuremath{\mathbb{T}} M}

	Variable	Description
	WINBIND	Name of this resource instance, such as WINBIND
	For example:	
	op monitor inter op start interva op stop interval	<pre>Lsb:winbind \ cval="0" timeout="60s" \ cval="120s" timeout="60s" on-fail="restart" \ al="0" timeout="60s" on-fail="restart" requires="fencing L="0" timeout="60s" on-fail="fence" \ cickiness="1" migration-threshold="1"</pre>
6. Ve	rify that the timeou	t values are appropriate for your site.
7. Ve	rify that there are no	comments in <i>workfile</i> .
8. Sa	ve <i>workfile</i> .	
9. Up	pdate the database wi	ith the new resources:
no	del# crm configure	e load update workfile
0. Te	st the new resources:	
a.		ource group containing the smb and nmb resources and pind resource is on node1:
	nodel# crm resou	rce move DMF-GROUP nodel
b.	Verify the status:	
	nodel# crm statu	s inactive
C.	Samba server on no admin (assuming t	om a machine outside of the HA cluster to connect to the odel and copy a file. For example, to log in to nodel as hat admin is a valid login name in the homes section of copy origfileA to remotefileA on the remote host:
		ient //nodel/admin ileA remotefileA

d. Move the resource group containing the smb and nmb resources from node1 to node2:

node1# crm resource move DMF-GROUP node2

e. Verify the status:

node1# crm status inactive

f. Use smbclient from a machine outside of the HA cluster to connect to the Samba server on node2 and copy a file. For example, to log in to node2 as admin (assuming that admin is a valid login name in the homes section of the smb.conf file) and copy origfileB to remotefileB on the remote host:

otherhost# smbclient //node2/admin
smb:\> get origfileB remotefileB

g. Move the resource group containing the smb and nmb resources back to node1:

node1# crm resource move DMF-GROUP node1

h. Verify the status:

node1# crm status inactive

i. Remove the implicit location constraints imposed by the administrative move command executed above:

node1# crm resource unmove DMF-GROUP

Add the dmcopytool Resources (Optional)

Figure 6-8 shows the step to add an optional dmcopytool resource for the DMF copytool for Lustre.

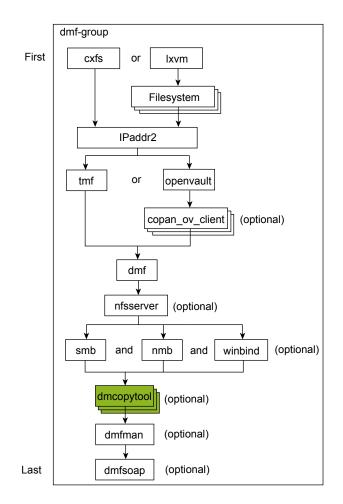


Figure 6-8 Adding the Resource for the DMF Copytool

To configure a DMF copytool resource for an HA environment, do the following:

1. Create another *workfile* that contains the following:

group DMF-GROUP Previously_Addeded_Resources DMCOPYTOOL

2. Copy the primitive in the dmcopytool template into *workfile* and replace the site-specific variables as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/dmcopytool

See "Use the Templates as Building Blocks" on page 18.

A dmcopytool resource controls the SGI DMF copytool (lhsmtool_dmf), which is a version of the Lustre copytool (lhsmtool_posix) that has been tuned to work efficiently with the DMF archive system. Its primary function is to copy files between the Lustre filesystem and the DMF archive system. It may optionally be used in a DMF HA service.

Use the following:

```
primitive DMCOPYTOOL ocf:sgi:dmcopytool \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params archive="NUM" hsmroot="PATH" lustredevice="DEVICE" \
    dmctmount="DMCT-MOUNT" dmfmount="DMF-MOUNT" \
    meta resource-stickiness="1" migration-threshold="1"
```

Variable

Description

	_
DMCOPYTOOL	Name of this resource instance, such as DMCOPYTOOL
NUM	The archive number registered with the Lustre HSM coordinator for this instance of the copytool. Each Lustre filesystem using the DMF copytool should be given its own unique archive number.
PATH	Path of a directory within a filesystem managed by DMF that is used for archiving or restoring Lustre files. This directory must already exist.
DEVICE	The Lustre filesystem device to be mounted for use by the DMF copytool.
DMCT-MOUNT	The Lustre filesystem mount point that will be used by the DMF copytool.

007-5617-011

DMF-MOUNT

The Lustre filesystem mount point that will be used by DMF. This mount point must match the name of a filesystem object defined in the DMF configuration file with a MIGRATION_LEVEL parameter set to archive.

For example:

```
primitive DMCOPYTOOL ocf:sgi:dmcopytool \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params archive="2" hsmroot="/usr3" lustredevice="128.162.245.79@tcp0:/lustrefs" \
    dmctmount="/lfs_dmct" dmfmount="/lfs_dmf" \
    meta resource-stickiness="1" migration-threshold="1"
```

- 3. Verify that the timeout values are appropriate for your site.
- 4. Add any other parameters as required by your site (see below).
- 5. Verify that there are no comments in *workfile*.
- 6. Save workfile.
- 7. Update the database with the new resource:

node1# crm configure load update workfile

- 8. Test the new resource:
 - a. Point your browser at https://virtualIPaddress:11110/server.php and verify that you can access the GUI and view the WSDL for one of the DMF client functions. For more information, see DMF 6 Administrator Guide.
 - b. Move the resource group containing the dmfsoap resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

c. Verify the status:

node1# crm status inactive

d. Repeat step 8a to verify that the DMF copytool is still available.

e. Move the resource group containing the dmcopytool resource back to nodel:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status inactive

g. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Additional parameters, which correspond to options on the lhsmtool_dmf(8) man page:

- mountoptions specifies a comma-separated list of mount options for the Lustre filesystem used by the DMF copytool.
- loglevel specifies the logging filter level. The level value can be any of the following, shown in ascending verbosity:

```
off
fatal
error
warning
normal
information (default)
debug
```

- interval specifies the time, in seconds, between progress reports sent to the Lustre HSM coordinator. The default is 30. (For most DMF environments, you should use the default.)
- bandwidth specifies the overall I/O bandwidth limit. By default, bandwidth is specified in mebibytes per second. A value of 0 disables the bandwidth limit. The default is 0. This value is ignored for t2 (tier 2) storage.
- chunksize specifies the default transfer buffer size. By default, size is specified in mebibytes For best performance, this value should match the default stripe size for Lustre files. The default is 1. This value is ignored for Tier 2 copying. This value is ignored for t2 storage.

Add the dmfman Resource (Optional)

Figure 6-9 shows the step to add the optional dmfman resource for DMF Manager.

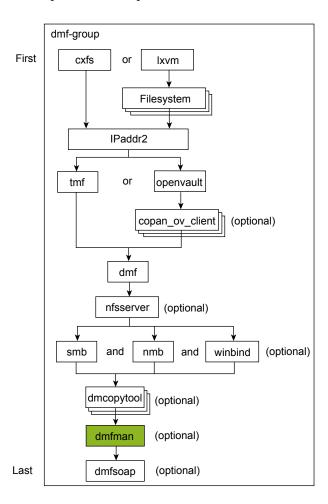


Figure 6-9 Adding the Resource for DMF Manager

To configure DMF Manager for an HA environment, do the following:

1. Run the dmfman_setup_ha script to create the required links and directories in a commonly accessible filesystem (such as the directory specified by the HOME_DIR

007-5617-011

parameter in the DMF configuration file) that will allow DMF statistics archives to be accessible across the HA cluster:

• On node1:

node1# /usr/lib/dmf/dmfman_setup_ha -d HOME_DIR

• On node2:

node2# /usr/lib/dmf/dmfman_setup_ha -d HOME_DIR

For example, if the HOME_DIR parameter is set to /dmf/home in /etc/dmf/dmf.conf, you would enter the following:

• On nodel:

node1# /usr/lib/dmf/dmfman_setup_ha -d /dmf/home

• On node2:

node2# /usr/lib/dmf/dmfman_setup_ha -d /dmf/home

2. Create another *workfile* that contains the following:

group DMF-GROUP Previously_Added_Resources DMFMAN

For more information about the group definition, see "dmf-group Template" on page 268.

3. Copy the primitive in the dmfman template to *workfile* and replace the site-specific variables as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/dmfman

See "Use the Templates as Building Blocks" on page 18.

A dmfman resource controls DMF Manager. It may be used in a DMF HA service.

Use the following:

```
primitive DMFMAN ocf:sgi:dmfman \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="100"
```

Va	riable	Description
Dl	MFMAN	Name of this resource instance, such as DMFMAN
Fo	r example:	
pr.	op stop interval="0" ti	
4. Ve	rify that the timeout va	lues are appropriate for your site.
5. Ve	rify that there are no con	nments in <i>workfile</i> .
6. Sa	ve <i>workfile</i> .	
7. Up	odate the database with t	he new resource:
no	del# crm configure lo	oad update workfile
3. Te	st the new resource:	
a.	can log in and use DM	https://virtualIPaddress:11109 and verify that you F Manager, such as viewing the Overview panel. For t using DMF Manager, see <i>DMF 6 Administrator Guide</i> .
b.	Move the resource ground node2:	up containing the dmfman resource from nodel to
	nodel# crm resource	move DMF-GROUP node2
c.	Verify the status:	
	nodel# crm status i	nactive
d.	Repeat step 8a to verify	y that DMF Manager is still available.
e.	Move the resource grou	up containing the dmfman resource back to node1:
	node1# crm resource	move DMF-GROUP node1
f.	Verify the status:	

f. Verify the status:

node1# crm status inactive

g. Remove the implicit location constraints imposed by the administrative move command executed above:

node1# crm resource unmove DMF-GROUP

Add the dmfsoap Resource (Optional)

Figure 6-10 shows the step to add the optional ${\tt dmfsoap}$ resource for the DMF SOAP client.

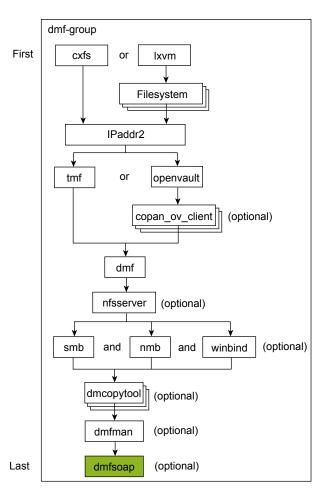


Figure 6-10 Adding the Resource for DMF Manager

To configure the DMF client SOAP service for an HA environment, do the following:

1. Create another *workfile* that contains the following:

group DMF-GROUP Previously_Addeded_Resources DMFSOAP

2. Copy the primitive in the dmfsoap template into *workfile* and replace the site-specific variables as directed. The template is located in:

/usr/share/doc/sgi-ha/templates/dmfsoap

See "Use the Templates as Building Blocks" on page 18.

A dmfsoap resource controls the DMF client Simple Object Access Protocol (SOAP) service. It may optionally be used in a DMF HA service.

Use the following:

```
primitive DMFSOAP ocf:sgi:dmfsoap \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="100"
```

Variable

Description

DMFSOAP

Name of this resource instance, such as DMFSOAP

For example:

```
primitive DMFSOAP ocf:sgi:dmfsoap \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="100"
```

- 3. Verify that the timeout values are appropriate for your site.
- 4. Verify that there are no comments in workfile.
- 5. Save workfile.
- 6. Update the database with the new resource:

node1# crm configure load update workfile

7. Test the new resource:

- a. Point your browser at https://virtualIPaddress:11110/server.php and verify that you can access the GUI and view the WSDL for one of the DMF client functions. For more information, see DMF 6 Administrator Guide.
- b. Move the resource group containing the dmfsoap resource from node1 to node2:

node1# crm resource move DMF-GROUP node2

c. Verify the status:

node1# crm status inactive

- d. Repeat step 7a to verify that the DMF client SOAP service is still available.
- e. Move the resource group containing the dmfsoap resource back to node1:

node1# crm resource move DMF-GROUP node1

f. Verify the status:

node1# crm status inactive

g. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

Confirm the Completed Status

Use the status command to confirm the resulting HA cluster:

node1# crm status inactive

Put the DMF HA Service into Production Mode

See Chapter 8, "Create the Fencing Capability and Put Into Production Mode" on page 185 to complete the process.

Create the COPAN MAID OpenVault Client HA Service for Mover Nodes

This chapter provides an overview of the following:

- "Understand the Requirements for the COPAN MAID OpenVault Client HA Service" on page 165
- "Configure and Test the Service Components Before Applying an COPAN MAID HA Environment" on page 167
- "Ensure that the Base HA Cluster is Operational" on page 168
- "Stop the cxfs_client and openvault Services Before Applying an HA Environment" on page 168
- "Disable the Parallel Data-Mover Nodes and the Services" on page 169
- "Map of Resources for the COPAN MAID OpenVault HA Service" on page 170
- "Create the OpenVault Components on the Failover Node" on page 170
- "Create and Test the HA Service" on page 172
- "Confirm the Completed Status" on page 183
- "Put the HA Service into Production Mode" on page 184

Understand the Requirements for the COPAN MAID OpenVault Client HA Service

Before applying an HA environment, you must understand the requirements of the individual components:

COPAN MAID Requirements for an OpenVault Client HA Service

This section discusses the following:

• "COPAN MAID Requirements in Any HA Cluster" on page 166

• "COPAN MAID Requirements in a Mover-Node HA Cluster" on page 166

COPAN MAID Requirements in Any HA Cluster

Using COPAN MAID shelves in any HA cluster requires the following:

- OpenVault must be configured to manage the RAID sets, lxvm volumes, and xfs filesystems for each shelf
- At any time, only one node (the owner node) can manage activity to a given shelf
- Activity to all shelves controlled by a given node must be stopped before moving the control of any one of those shelves to another node

COPAN MAID Requirements in a Mover-Node HA Cluster

In addition to the requirements listed in "COPAN MAID Requirements in Any HA Cluster" on page 166, using COPAN MAID shelves in an active/active HA cluster consisting of two parallel data-mover nodes also requires the following:

- Both parallel data-mover nodes in the HA cluster must have physical connectivity to the shelves.
- The parallel data-mover nodes that control the shelves cannot also be used for other tape resources.
- The CXFS client resource on each parallel data-mover node must be started (via a clone) before the COPAN OpenVault client resource is started on those nodes.
- The COPAN OpenVault client resource on each parallel data-mover node must be stopped before the CXFS client resource is stopped on those nodes.
- A parallel data-mover node must be configured as the owner node for each shelf. For load-balancing purposes, one mover node will be the default owner of half of the shelves and the other mover node will be the default owner of the remaining shelves.
- On both parallel data-mover nodes during HA operation, disable the cxfs_client and openvault services from being started automatically at boot time:

ha# chkconfig cxfs_client off ha# chkconfig openvault off

The HA software will control these services.

For suggested resource start/stop order, see Figure 7-1 on page 170.

Configure and Test the Service Components Before Applying an COPAN MAID HA Environment

Configure and test the service components **before applying an HA environment**, as described in the following:

- "Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment" on page 167
- "Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA Environment" on page 167

Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment

Before applying an HA environment, configure CXFS according to the instructions in *CXFS 7 Administrator Guide for SGI InfiniteStorage* and *CXFS 7 Client-Only Guide for SGI InfiniteStorage*. To test, do the following:

1. Ensure that the node is a member of the CXFS cluster. For example:

node1# /usr/cluster/bin/cxfs_info

2. Ensure that the CXFS client service is running:

node1# service cxfs-client status

If it is not running, start it:

node1# service cxfs-client start

3. Ensure that filesystems are mounted. For example:

nodel# **df**

Test the COPAN MAID OpenVault Client Before Applying a COPAN MAID HA Environment

Configure the following OpenVault components for each COPAN MAID shelf by executing the ov_shelf(8) command on node1 (or mover1), making node1 the owner node for that shelf, according to the instructions in the COPAN MAID for DMF Quick Start Guide:

7: Create the COPAN MAID OpenVault Client HA Service for Mover Nodes

- One library control program (LCP)
- Up to 16 drive control programs (DCPs)
- One OpenVault drive group

Note: You will not run ov_shelf on node2 at this point.

If you are using the Parallel Data-Mover Option, also see the instructions in *DMF 6* Administrator Guide.

Note: You will create the OpenVault components on the alternate node later, using the instructions in this guide.

To test the non-HA service, follow the instructions to test that OpenVault can mount a migration volume, as described in the *COPAN MAID for DMF Quick Start Guide*.

Ensure that the Base HA Cluster is Operational

Ensure that the base HA cluster is operational, as described in "Test the Base HA Cluster" on page 45.

Stop the cxfs_client and openvault Services Before Applying an HA Environment

Do the following on both parallel data-mover nodes to ensure that the non-HA services will be controlled by the COPAN MAID OpenVault Client HA service:

• On mover1:

```
mover1# chkconfig cxfs_client off
mover1# chkconfig openvault off
mover1# service cxfs_client stop
mover1# service openvault stop
```

007-5617-011

• On mover2:

```
mover2# chkconfig cxfs_client off
mover2# chkconfig openvault off
```

```
mover2# service cxfs_client stop
mover2# service openvault stop
```

Disable the Parallel Data-Mover Nodes and the Services

Do the following to ensure that there is no activity to the COPAN MAID shelf:

1. On the DMF server, disable both parallel data-mover nodes:

dmfserver# dmnode_admin -d mover1 mover2

- 2. Verify that there are no dmatwc or dmatrc data-mover processes running on either parallel data-mover node. For example, the output of the following command should be empty on both nodes:
 - On mover1:

mover1# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
mover1#

• On mover2:

```
mover2# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
mover2#
```

If the output is not empty, you must wait for the dmnode_admin -d action from step 1 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

3. On the DMF server, determine which CXFS filesystems are mounted:

dmfserver# 1s /dev/cxvm

Save the output from this command for use later when you define the *VOLUME_LIST* for the volnames parameter in the cxfs-client resource in "Create and Test the HA Service" on page 172.

Map of Resources for the COPAN MAID OpenVault HA Service

Figure 7-1 shows a map of an example configuration process for the OpenVault client service for COPAN MAID shelves in an active/active HA cluster that consists of two parallel data-mover nodes named mover1 and mover2. (mover1 is the same node as node1 referred to in Chapter 4, "Create the Base HA Cluster" on page 35.) The map uses the suggested default IDs found in the templates in /usr/share/doc/sgi-ha/templates.

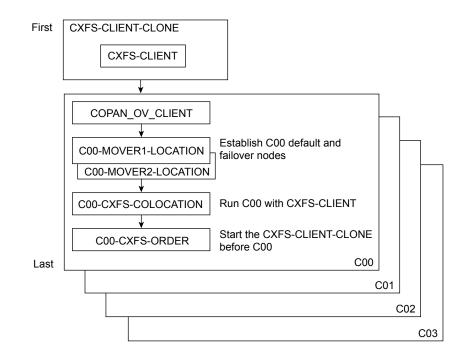


Figure 7-1 Map of Resources for the COPAN MAID OpenVault HA Service

Create the OpenVault Components on the Failover Node

When you configured the non-HA services according to the information in *COPAN MAID for DMF Quick Start Guide*, you executed an ov_shelf(8) command for each COPAN MAID shelf in order to create the required OpenVault components (see "Configure and Test the COPAN MAID OpenVault Client Before Applying a DMF HA Environment" on page 88).

In this step, you will create corresponding OpenVault components for the failover node so that it is ready to assume control of OpenVault in case of failover, using the following information for shelf 0 as an example:

- Shelf identifier: COO (indicating cabinet 0, shelf 0)
- Default node: mover1
- Failover node: mover2

Note: For more information about the shelf identifier, see *COPAN MAID* for *DMF Quick Start Guide*.

Do the following:

- 1. On mover1:
 - a. Export the shelf, hostname, and OCF root environment variables for use by the copan_ov_client script:

mover1# export OCF_RESKEY_shelf_name=C00
mover1# export OCF_RESKEY_give_host=mover2
mover1# export OCF_ROOT=/usr/lib/ocf

b. Transfer ownership of the shelf from mover1 to mover2:

mover1# /usr/lib/ocf/resource.d/sgi/copan_ov_client give

- 2. On mover 2:
 - a. Verify that mover2 now owns the shelf's XVM volumes (COOA through COOZ, although not necessarily listed in alphabetical order):

mover2# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
....

b. Create the OpenVault components for mover 2:

mover2# ov_shelf create C00

Messages such as the following may be seen at this point, but do not indicate an error:

Cartridge "C00B00" in the openvault database starts with the string "C00" but its owning library is unknown Cartridge "C00B01" in the openvault database starts with the string "C00" but its owning library is unknown Cartridge "C00B02" in the openvault database starts with the string "C00" but its owning library is unknown

For more information, see COPAN MAID for DMF Quick Start Guide.

c. Stop the newly created LCP and DCPs for the shelf:

mover2# ov_stop C00*

d. Export the shelf, hostname, and OCF root environment variables for use by the copan_ov_client script:

mover2# export OCF_RESKEY_shelf_name=C00
mover2# export OCF_RESKEY_give_host=mover1
mover2# export OCF_ROOT=/usr/lib/ocf

e. Transfer ownership of the shelf from mover2 back to mover1:

mover2# /usr/lib/ocf/resource.d/sgi/copan_ov_client give

3. On mover1, verify that mover1 once again owns the shelf's XVM volumes:

```
mover1# xvm -d local probe | grep C00
phys/copan_C00M
phys/copan_C00B
phys/copan_C00G
...
```

4. Repeat steps 1 through 3 for each shelf.

Note: For load-balancing purposes, mover1 should be the default node for half of the shelves and mover2 should be the default node for the remaining shelves.

Create and Test the HA Service

This section discusses the following:

• "Add the Clone" on page 173

- "Add the cxfs-client Resource" on page 174
- "Test the Clone" on page 176
- "Add the copan_ov_client Resources" on page 178
- "Create the STONITH Capability" on page 181
- "Test the copan_ov_client Resource" on page 181

Add the Clone

Figure 7-2 shows the steps to add the resources for the clone and the CXFS client.

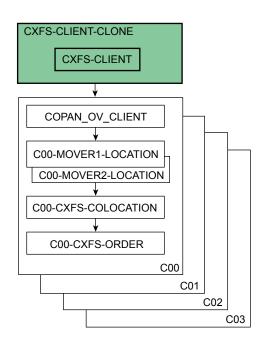


Figure 7-2 Adding the Resources for the Clone and the CXFS Client

As a starting point, use the templates in /usr/share/doc/sgi-ha/templates as building blocks.

The instructions in this chapter assume that you use the instance names provided in the templates, such as CXFS-CLIENT-CLONE, except as noted (see "Map of Resources for the COPAN MAID OpenVault HA Service" on page 170 and "Conventions for Resource Instance IDs" on page 19).

Do the following:

1. Copy the contents of the

/usr/share/doc/sgi-ha/templates/cxfs-client-clone template into a new file partial configuration file (referred to as *workfile*).

A clone resource named CXFS-CLIENT-CLONE implements control of a CXFS client. It is used in a COPAN MAID OpenVault client HA service.

The template is located in:

/usr/share/doc/sgi-ha/templates/cxfs-client-clone

See "Use the Templates as Building Blocks" on page 18.

Use the following:

clone CXFS-CLIENT-CLONE CXFS-CLIENT \
 meta clone-max="2" target-role="Stopped" interleave="true"

Add the cxfs-client Resource

Do the following:

 Copy the primitive text from the /usr/share/doc/sgi-ha/templates/cxfs-client template into workfile and replace the site-specific variables as directed.

A cxfs-client resource controls the CXFS client. The template is located in:

/usr/share/doc/sgi-ha/templates/cxfs-client

See "Use the Templates as Building Blocks" on page 18.

Use the following:

```
primitive CXFS-CLIENT ocf:sgi:cxfs-client \
  op monitor interval="0" timeout="30s" \
  op monitor interval="120s" timeout="30s" on-fail="restart" \
  op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="600s" on-fail="fence" \
  params volnames="VOLUME-LIST"
```

Variable	Description
CXFS-CLIENT	Name of this resource instance, such as CXFS-CLIENT
VOLUME-LIST	Comma-separated list of volume names under the /dev/cxvm directory for all of the managed filesystems and the DMF administrative filesystems represented by the following parameters in the DMF configuration file:
	CACHE_DIR SPOOL_DIR TMP_DIR MOVE_FS STORE_DIRECTORY for a DCM MSP

For example, suppose you have the following output:

# ls /dev/cxvm					
cache	dmfusr2	move			
diskmsp	home	spool			
dmfusrl	journal	tmp			

Note: In a COPAN MAID OpenVault client HA service, you should not include the ${\tt HOME_DIR}$ or JOURNAL_DIR filesystems because a parallel data-mover node typically needs no access to these filesystems.

You would likely enter the following (everything except home and journal):

cache,diskmsp,dmfusr1,dmfusr2,move,spool,tmp

For example:

```
primitive CXFS-CLIENT ocf:sgi:cxfs-client \
    op monitor interval="0" timeout="30s" \
    op monitor interval="120s" timeout="30s" on-fail="restart" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params volnames="cache,diskmsp,dmfusr1,dmfusr2,move,spool,tmp"
```

- 2. Verify that the timeout values are appropriate for your site.
- 3. Verify that there are no comments in workfile.
- 4. Save workfile.
- 5. Update the database:

node1# crm configure load update workfile

Note: As a best practice, you should also run the following command to verify changes you make to the CIB:

node1# crm_verify -LV

For simplicity, this step is not included in the following procedures but is recommended. For more information, see "Use the crm_verify Command to Verify Configuration" on page 24.

Test the Clone

1. Start the clone. For example:

mover1# crm resource start CXFS-CLIENT-CLONE

It make take several minutes for the filesystems to mount.

2. Confirm that the clone has started. For example:

a. View the status of the cluster on mover1. For example (truncated):

```
mover1# crm status inactive
                               . . .
                              2 Nodes configured, 2 expected votes
                              2 Resources configured.
                              Online: [ mover1 mover2 ]
                               Clone Set: CXFS-CLIENT-CLONE [CXFS_CLIENT]
                                    Started: [ mover1 mover2 ]
                          b. Verify that the cxfs_client process is running on mover1 and mover2.
                              For example:
                               • On mover1:
mover1# ps -ef | grep cxfs_client | grep -v grep
root 11575
             1 0 10:32 ?
                               00:00:00 /usr/cluster/bin/cxfs_client -p /var/run/cxfs_client.pid -i TEST
                               • On mover2:
mover2# ps -ef | grep cxfs_client | grep -v grep
root 11576
            1 0 10:32 ?
                                00:00:00 /usr/cluster/bin/cxfs_client -p /var/run/cxfs_client.pid -i TEST
                        3. Set mover2 to standby state to ensure that the resources remain on mover1:
                          mover1# crm node standby mover2
                        4. Confirm that mover 2 is offline and that the resources are off:
                          a. View the status of the cluster on mover1, which should show that mover2 is
                              in standby state. For example:
                              mover1# crm status inactive
                                   . . .
                                   2 Nodes configured, 2 expected votes
                                   2 Resources configured.
                                  Node mover2: standby
                                  Online: [ mover1 ]
                                   Clone Set: CXFS-CLIENT-CLONE [CXFS_CLIENT]
                                       Started: [ mover1 ]
                                       Stopped: [ cxfs_client:1 ]
```

b. Verify that the cxfs_client process is not running on mover2. For example, executing the following command on mover2 should provide no output:

mover2# ps -ef | grep cxfs_client | grep -v grep
mover2#

5. Return mover2 to online status by executing the following on mover1:

mover1# crm node online mover2

6. Confirm that the clone has returned to started status, as described in step 2.

Note: It may take several minutes for all filesystems to mount successfully.

Add the copan_ov_client Resources

Figure 7-3 shows the steps to add the resources for the set of COPAN MAID OpenVault client resources.

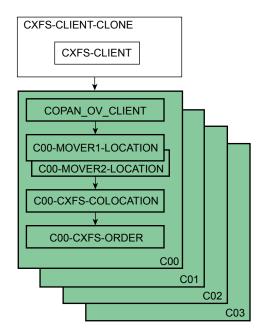


Figure 7-3 Adding the Resources for the COPAN MAID OpenVault Clients

007-5617-011

Do the following to add a copan_ov_client resource:

1. Create another *workfile* file that contains the primitive and location text for the copan_ov_client resource, replacing the site-specific variables as directed.

A copan_ov_client resource defines a COPAN MAID shelf to be used by an OpenVault client. Each shelf requires its own primitive instance.

This template is located in:

/usr/share/doc/sgi-ha/templates/copan_ov_client

See "Use the Templates as Building Blocks" on page 18.

Use the following:

```
primitive SHELF ocf:sgi:copan_ov_client \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params shelf_name="SHELF" \
    meta resource-stickiness="250" migration-threshold="1"
location SHELF-MOVER1-LOCATION SHELF 200: MOVER1
location SHELF-CXFS-COLOCATION inf: SHELF CXFS-CLIENT-CLONE
order SHELF-CXFS-ORDER inf: CXFS-CLIENT-CLONE SHELF
```

Note: The copan_ov_client template contains two sections, one for a COPAN MAID OpenVault client HA service and another for a DMF HA service – you must fill in the values in the section for the service you want to configure and delete the other section entirely.

Variable

SHELF

Description

Name of this resource instance, normally the three-character COPAN shelf ID, using the naming convention described in the *COPAN MAID for DMF Quick Start Guide*, such as C00 for cabinet 0, shelf 0 (the bottom shelf)

SHELF-MOVER1-LOCATION	Name of the location constraint for the primary parallel data-mover node, such as C00-MOVER1-LOCATION
MOVER1	Name of the primary parallel data-mover node, such as MOVER1
SHELF-MOVER2-LOCATION	Name of the location constraint for the secondary parallel data-mover node, such as COO-MOVER2-LOCATION
MOVER2	Name of the secondary parallel data-mover node, such as MOVER2
SHELF-CXFS-COLOCATION	Name of the colocation constraint, such as C00-CXFS-COLOCATION
CXFS-CLIENT-CLONE	Name of the clone, such as CXFS-CLIENT-CLONE
SHELF-CXFS-ORDER	Name of the order constraint, such as COO-CXFS-ORDER

For example:

primitive COO ocf:sgi:copan_ov_client \
op monitor interval="120s" timeout="60s" on-fail="restart" \setminus
op monitor interval="0" timeout="60s" \
op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \setminus
op stop interval="0" timeout="120s" on-fail="fence" \setminus
params shelf_name="C00" \
<pre>meta resource-stickiness="250" migration-threshold="1"</pre>

location C00-MOVER1-LOCATION C00 200: MOVER1 location C00-MOVER2-LOCATION C00 100: MOVER2 colocation C00-CXFS-COLOCATION inf: C00 CXFS-CLIENT-CLONE order C00-CXFS-ORDER inf: CXFS-CLIENT-CLONE C00 Note: The primitive instance for the COPAN MAID OpenVault client HA service requires location, colocation, and order constraints and a high value for resource-stickiness indicates that it will be unlikely to move to the other node.

- 2. Save workfile.
- 3. Update the database:

node1# crm configure load update workfile

4. Repeat steps 1–3 for any other shelves to be managed by the HA service.

Create the STONITH Capability

Follow the instructions in Chapter 8, "Create the Fencing Capability and Put Into Production Mode" on page 185 to create the STONITH capability.

Test the copan_ov_client Resource

Test the copan_ov_client resource by manually moving it as followings:

- · To its failover node when you want to perform maintenance on its default node
- Back to its default node, after maintenance is complete on the default node
- Back to its default node, after the formerly failed default node rejoins the HA cluster

Before you can move the resource from one node to another, you must ensure that you stop any activity occurring on the COPAN MAID shelf that is managed by the resource. This requires that you disable the mover capability on the currently active node (which stops activity for all shelves owned by that node).

You must also ensure that the new node is ready to receive the resource:

- The node must be online
- The CXFS client and STONITH services must be operational on the node

For example, to move the CO1 resource from parallel data-mover node mover1 to parallel data-mover node mover2:

1. Verify that mover2 is ready to receive the resource by examining its status output with the crm(8) command. For example:

mover2# crm status inactive ... 2 Nodes configured, 2 expected votes 6 Resources configured. Online: [mover1 mover2] Clone Set: CXFS-CLIENT-CLONE [CXFS_CLIENT] Started: [mover1 mover2] C00 (ocf::sgi:copan_ov_client): Started mover1 C01 (ocf::sgi:copan_ov_client): Started mover1 Clone Set: STONITH-node1 [stonith-ipmi] Started: [mover1 mover2]

In the above output, note the following:

- The CO1 resource is Started on mover1
- mover2 is Online
- The CXFS-CLIENT and STONITH-node1 clones have a status of Started on mover2
- 2. On the DMF server, disable mover1 so that it will cease all COPAN MAID shelf activity:

dmfserver# dmnode_admin -d mover1

3. Verify that there are no dmatwc or dmatrc data-mover processes running on mover1. For example, the output of the following command should be empty:

```
mover1# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
mover1#
```

If the output is not empty, you must wait for the dmnode_admin -d action from step 2 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

4. Clear any failcounts and move the resource to mover 2:

mover2# crm resource failcount C00 delete mover2
mover2# crm resource move C00 mover2

This may take a few moments to complete.

5. Verify that the resource has moved to mover 2. For example:

mover2# crm status inactive ... 2 Nodes configured, 2 expected votes 6 Resources configured. Online: [mover1 mover2] Clone Set: CXFS-CLIENT-CLONE [CXFS_CLIENT] Started: [mover1 mover2] C00 (ocf::sgi:copan_ov_client): Started mover1 C01 (ocf::sgi:copan_ov_client): Started mover2 Clone Set: STONITH-node1 [stonith-ipmi] Started: [mover1 mover2]

In the above output, note that CO1 resource is started on mover2.

6. Remove the constraint that requires CO1 to be controlled by mover 2:

mover2# crm resource unmove C01

- Repeat steps 3 through 6 for any other copan_ov_client resources requiring a move from mover1 to mover2.
- 8. On the DMF server, reenable mover1 so that it can resume COPAN MAID shelf activity:

dmfserver# dmnode_admin -e mover1

Confirm the Completed Status

Use the status command to confirm the resulting HA cluster:

node1# crm status inactive

Put the HA Service into Production Mode

Given that the fencing capability exists and the resources have been tested, you can now use the HA cluster in production mode.

Create the Fencing Capability and Put Into Production Mode

This chapter discusses the following steps to ensure data integrity and put the tested HA cluster into production mode:

- "Create the STONITH Facility" on page 185
- "Enable Node-Level Fencing" on page 187
- "Test the STONITH Facility" on page 187
- "Remove Constraints" on page 187
- "Enable Cluster Services to be Started Automatically" on page 187

Create the STONITH Facility

Create the appropriate STONITH facility:

- "RHEL STONITH" on page 185
- "SLES STONITH" on page 186

RHEL STONITH

Do the following to create a STONITH facility for RHEL:

- Copy the contents of the /usr/share/doc/sgi-ha/templates/fence-ipmilan template into a new file partial configuration file (referred to as *workfile*) and replace the site-specific variables as directed in "fence_ipmilan Template" on page 276.
- 2. Verify that the timeout, userid, passwd, and interface values are appropriate for your site.
- 3. Verify that there are no comments in workfile.
- 4. Save workfile.

5. Update the database:

rhel# crm configure load update workfile

- 6. Repeat steps 1 through 5 for the second node, using different delay values, such as 0 and 15.
- 7. To prevent the acpid service from inappropriately attempting a graceful shutdown, ensure that the services not currently running and will not restart (on both RHEL nodes):
 - On RHEL node1:

node1# service acpid stop
node1# chkconfig acpid off

• On RHEL node2:

node2# service acpid stop node2# chkconfig acpid off

SLES STONITH

Do the following to create a STONITH facility for SLES:

- 1. Copy the contents of the /usr/share/doc/sgi-ha/templates/ipmi template into a new file partial configuration file (referred to as *workfile*) and replace the site-specific variables as directed in "ipmi Template" on page 287.
- 2. Verify that the timeout, userid, passwd, and interface values are appropriate for your site.
- 3. Verify that there are no comments in workfile.
- 4. Save workfile.
- 5. Update the database:

node1# crm configure load update workfile

6. Repeat steps 1 through 5 for the second node.

Enable Node-Level Fencing

Enable node-level fencing (which was previously disabled for testing purposes):

node1# crm configure property stonith-enabled=true

Test the STONITH Facility

To test the STONITH facility, use the node fence command on one node to fence the other node. For example, to test the failover of resources running on node1:

1. From node2, reset node1:

node2# crm node fence node1

- 2. Wait for the failover to occur.
- 3. On node2, execute the following:

node2# crm status inactive

If all of the resources are not failed over, wait again and repeat the command.

Remove Constraints

Ensure that any constraints remaining in the cluster are appropriate for a production environment. To remove any remaining implicit constraints imposed by an administrative move, enter the following:

node1# crm resource unmove resource

Enable Cluster Services to be Started Automatically

This section discusses the following:

- "RHEL: Enable cman and pacemaker to be Started Automatically" on page 188
- "SLES: Enable openais to be Started Automatically" on page 188

RHEL: Enable cman and pacemaker to be Started Automatically

If you are using RHEL, enable the cman and pacemaker services to be started automatically at boot time:

1. On node1:

node1# chkconfig cman on node1# chkconfig pacemaker on

2. On node2:

node2# chkconfig cman on node2# chkconfig pacemaker on

SLES: Enable openais to be Started Automatically

If you are using SLES, enable the openais service to be started automatically at boot time:

• On nodel:

nodel# chkconfig openais on

• On node2:

node2# chkconfig openais on

007-5617-011

Administrative Tasks and Considerations

This chapter discusses various administrative tasks and considerations for an HA cluster:

- "Viewing the Cluster Status " on page 190
- "Viewing the Cluster Configuration" on page 191
- "Putting the Cluster into Maintenance Mode" on page 191
- "Backing Up the CIB" on page 192
- "Understanding CIFS and NFS in an HA Cluster" on page 192
- "Reviewing the Log Files" on page 192
- "Clearing the Resource Failcount" on page 192
- "Clearing the Resource State on a Node" on page 193
- "Controlling the Number of Historical Files" on page 193
- "Changing DMF Configuration Parameters" on page 194
- "Restarting the OpenVault Server" on page 194
- "Manually Moving a copan_ov_client Resource" on page 195
- "Performing a Rolling Upgrade" on page 197
- "Stopping the Underlying HA Control Services" on page 206
- "Manually Resetting a Node" on page 207
- "Hardware Maintenance on a Cluster Node" on page 207
- "Maintenance with a Full Cluster Outage" on page 213

Viewing the Cluster Status

Use the following commands to view the cluster status:

ha# crm status inactive ha# crm_verify -LV ha# crm status failcounts

For example, the following truncated output shows that there was an error in starting DMF on node2:

```
nodel# crm status failcounts
. . .
2 Nodes configured, 2 expected votes
9 Resources configured.
Online: [ nodel node2 ]
 Resource Group: DMF-GROUP
     LXVM
             (ocf::sgi:lxvm):
                                     Started nodel
             (ocf::heartbeat:Filesystem): Started nodel
     home
     spool (ocf::heartbeat:Filesystem): Started node1
     journals (ocf::heartbeat:Filesystem): Started node1
              (ocf::heartbeat:Filesystem):
     tmp
                                           Started nodel
              (ocf::heartbeat:Filesystem): Started nodel
     store
     dmi_fs (ocf::heartbeat:Filesystem): Started node1
     ΙP
               (ocf::heartbeat:IPaddr2):
                                             Started nodel
     DMF
              (ocf::sgi:dmf): Started node1
```

Migration summary:

* Node nodel:

* Node node2:

DMF: migration-threshold=1 fail-count=1000000

Failed actions:

DMF_start_0 (node=node2, call=34, rc=-2, status=Timed Out): unknown exec error

007-5617-011

Viewing the Cluster Configuration

To view the cluster configuration, enter the following:

ha# crm configure show

If you want to view the entire contents of the cluster information base (CIB) in XML format, including dynamic status information, you can use the following cibadmin(8) command:

ha# cibadmin -Q

To limit the output to a specific set of information, use the following:

ha# cibadmin -o modifier -Q

The *modifier* value can be one of the following:

constraints crm_config nodes resources status

Putting the Cluster into Maintenance Mode

You must put the cluster into maintenance mode before manually stopping or restarting any cluster components. To put the cluster into maintenance mode, enter the following:

ha# crm configure property maintenance-mode=true

You can then manually stop and restart individual resources as needed.

To return the cluster to managed status, enter the following:

ha# crm configure property maintenance-mode=false

Backing Up the CIB

You should make a backup copy of the configuration in the cluster information base (CIB) after making and verifying changes, so that you can easily recover in case of future CIB corruption (see "Recovering from a CIB Corruption" on page 233). Do the following to save only static configuration information to a plain text file labeled with the current date and time:

ha# crm configure save CIB.\$(date +%Y%m%d-%H%M%S)

You can view the resulting text file with any text tool, such as cat(1) or vi(1).

Understanding CIFS and NFS in an HA Cluster

CIFS failover requires that the client application reissue the I/O after the failover occurs. Applications such as XCOPY will do this, but many other applications will not. Applications that do not retry may abort when CIFS services are moved between nodes.

NFS failover is handled by the kernel, so no changes are required for an NFS client application; applications doing I/O on NFS will pause while the failover is occurring.

Reviewing the Log Files

See "Examine Log Files" on page 24.

Clearing the Resource Failcount

To clear individual resource failcounts, either reboot the nodes or enter the following on each node for each individual resource:

ha# crm resource failcount resource delete nodename

Clearing the Resource State on a Node

Caution: Do not clear the resource state on the node where a resource is currently running.

After you resolve the cause of action error messages in the crm status output, you should enter the following to clear the resource state from a given node:

ha# crm resource cleanup resource nodename

Note: Sometimes, the resource state can be cleared automatically if the same action for the same resource on the same node subsequently completes successfully.

Controlling the Number of Historical Files

Each time the configuration is updated, a new version of the CIB is created and the older version is saved. These files reside in /var/lib/pacemaker/pengine.

SGI recommends that you keep the number of files manageable by setting the following crm properties as appropriate for your site:

pe-error-series-max pe-input-series-max pe-warn-series-max

To set the properties, use the following command line:

crm configure property propertyname=value

For example, to set a maximum of 50 error, input, and warning files:

ha# crm configure property pe-error-series-max=50 ha# crm configure property pe-input-series-max=50 ha# crm configure property pe-warn-series-max=50

For more information, see the documentation listed in "High Availability Overview" on page 1.

007-5617-011

Changing DMF Configuration Parameters

You can change many DMF configuration-file parameters while DMF is running, but others require that DMF be stopped. For more information, see the "Best Practices" chapter in *DMF 6 Administrator Guide*). For those parameters that require DMF to be stopped, do the following:

1. Put the cluster into maintenance mode:

ha# crm configure property maintenance-mode=true

2. Stop the DMF service:

ha# service dmf stop

- 3. Make the required changes to the DMF configuration file according to the instructions in the DMF administrator's guide, such as by using DMF Manager.
- 4. Verify the parameter changes by using DMF Manager or the following command:

ha# dmcheck

5. Start the DMF service:

ha# service dmf start

6. Verify DMF functionality, such as by running the following command and other DMF commands (based on the changes made):

ha# dmdstat -v

7. Return the cluster to managed status:

ha# crm configure property maintenance-mode=false

Restarting the OpenVault Server

To restart the OpenVault server, do the following:

1. Put the HA cluster into maintenance mode:

ha# crm configure property maintenance-mode=true

2. Stop the OpenVault service:

ha# service openvault stop

3. Start the OpenVault service:

ha# service openvault start

4. Return the HA cluster to managed status:

ha# crm configure property maintenance-mode=false

Manually Moving a copan_ov_client Resource

You may want to manually move a copan_ov_client resource as followings:

- · To its failover node when you want to perform maintenance on its default node
- · Back to its default node, after maintenance is complete on the default node
- Back to its default node, after the formerly failed default node rejoins the HA cluster

Before you can move the resource from one node to another, you must ensure that you stop any activity occurring on the COPAN MAID shelf that is managed by the resource. This requires that you disable the mover capability on the currently active node (which stops activity for all shelves owned by that node).

You must also ensure that the new node is ready to receive the resource:

- The node must be online
- The CXFS client and STONITH services must be operational on the node

For example, to move the CO1 resource from parallel data-mover node mover1 to parallel data-mover node mover2:

1. Verify that mover2 is ready to receive the resource by examining its status output with the crm(8) command. For example:

```
mover2# crm status inactive
...
2 Nodes configured, 2 expected votes
6 Resources configured.
Online: [ mover1 mover2 ]
Clone Set: CXFS-CLIENT-CLONE [CXFS_CLIENT]
Started: [ mover1 mover2 ]
C00 (ocf::sgi:copan_ov_client): Started mover1
```

007-5617-011

```
C01 (ocf::sgi:copan_ov_client): Started mover1
Clone Set: STONITH-node1 [stonith-ipmi]
    Started: [ mover1 mover2 ]
```

In the above output, note the following:

- The CO1 resource is Started on mover1
- mover2 is Online
- The CXFS-CLIENT and STONITH-node1 clones have a status of Started on mover2
- 2. On the DMF server, disable mover1 so that it will cease all COPAN MAID shelf activity:

dmfserver# dmnode_admin -d mover1

3. Verify that there are no dmatwc or dmatrc data-mover processes running on mover1. For example, the output of the following command should be empty:

```
mover1# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
mover1#
```

If the output is not empty, you must wait for the $dmnode_admin -d$ action from step 2 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

4. Clear any failcounts and move the resource to mover 2:

mover2# crm resource failcount C00 delete mover2
mover2# crm resource move C00 mover2

This may take a few moments to complete.

5. Verify that the resource has moved to mover 2. For example:

```
mover2# crm status inactive
...
2 Nodes configured, 2 expected votes
6 Resources configured.
Online: [ mover1 mover2 ]
Clone Set: CXFS-CLIENT-CLONE [CXFS_CLIENT]
    Started: [ mover1 mover2 ]
```

007-5617-011

```
C00 (ocf::sgi:copan_ov_client): Started mover1
C01 (ocf::sgi:copan_ov_client): Started mover2
Clone Set: STONITH-node1 [stonith-ipmi]
Started: [ mover1 mover2 ]
```

In the above output, note that CO1 resource is started on mover 2.

6. Remove the constraint that requires CO1 to be controlled by mover 2:

mover2# crm resource unmove C01

- Repeat steps 3 through 6 for any other copan_ov_client resources requiring a move from mover1 to mover2.
- 8. On the DMF server, reenable mover1 so that it can resume COPAN MAID shelf activity:

dmfserver# dmnode_admin -e mover1

Performing a Rolling Upgrade

Note: Some software may not allow a rolling upgrade. Such a situation might require an extended outage window with all resources down and the appropriate underlying HA control services (cman and pacemaker for RHEL, openais for SLES) turned off, which would permit more thorough testing (similar to that done during the initial installation). See "Maintenance with a Full Cluster Outage" on page 213.

Assuming that you have a two-node production HA environment in place and want to perform a rolling upgrade of appropriate software with minimal testing, use the procedures in the following sections:

- "COPAN MAID OpenVault Client HA Service for Mover Nodes Rolling Upgrade" on page 198
- "CXFS NFS Edge-Serving HA Rolling Upgrade" on page 200
- "DMF HA Rolling Upgrade" on page 203

COPAN MAID OpenVault Client HA Service for Mover Nodes Rolling Upgrade

Do the following for a rolling upgrade in an HA cluster that consists of two parallel data-mover nodes (mover1 and mover1):

1. Read the release notes for the software you intend to upgrade and any late-breaking caveats on Supportfolio[™] Online:

https://support.sgi.com/login

- 2. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- Move any copan_ov_client resources running on mover2 to mover1 according to the directions in "Manually Moving a copan_ov_client Resource" on page 195.
- 4. Stop all services on mover2 and ensure that they will not restart on the next boot of mover2:
 - RHEL:

mover2# chkconfig cman off
mover2# chkconfig pacemaker off
mover2# service pacemaker stop
• SLES:
mover2# chkconfig openais off
mover2# service openais stop

- 5. Upgrade the software on mover 2.
- 6. Reboot mover 2.

- 7. Ensure that the services will restart upon reboot and start services immediately:
 - RHEL:

mover2# service cman start
mover2# service pacemaker start
mover2# chkconfig cman on
mover2# chkconfig pacemaker on
• SLES:

mover2# service openais start

mover2# chkconfig openais on

- Move all copan_ov_client resources running on mover1 to mover2 according to the directions in "Manually Moving a copan_ov_client Resource" on page 195.
- 9. Repeat step 4 through step 7 above but executed for mover1.
- Move the copan_ov_client resources than normally run on mover1 back to that node, according to the directions in "Manually Moving a copan_ov_client Resource" on page 195.
- 11. Remove the constraints required to move the resources by executing the following command for each copan_ov_client resource

mover2# crm resource unmove copan_ov_client_name

The cluster is now back to normal operational state.

CXFS NFS Edge-Serving HA Rolling Upgrade

Note: Due to the way that NLM grace notification is implemented, all of the server-capable administration nodes in the CXFS cluster must run the same version of CXFS in order to use CXFS relocation. Therefore, you must use CXFS recovery and not CXFS relocation during a rolling upgrade.

Do the following for a rolling upgrade in a CXFS NFS edge-serving HA cluster with two nodes (node1 and node2):

1. Read the release notes for the software you intend to upgrade.

For ISSP software, read the *SGI InfiniteStorage Software Platform Release Note* and any late-breaking caveats on Supportfolio[™] Online:

https://support.sgi.com/login

- 2. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- 3. Ensure that the resource groups are running on node1:

nodel# crm resource move IPALIAS-GROUP-1 node1
nodel# crm resource move IPALIAS-GROUP-2 node1

4. Set the node you intend to upgrade to standby state. (Putting a node in standby state will move, if possible, or stop any resources that are running on that node.) For example, if you intend to upgrade node2:

node1# crm node standby node2

This will shut down CXFS_CLIENT on node2 automatically.

- 5. Disable the appropriate underlying HA control services from being started automatically at boot time and stop the currently running services:
 - RHEL:

```
node2# chkconfig cman off
node2# chkconfig pacemaker off
node2# service pacemaker stop
• SLES:
```

007-5617-011

```
node2# chkconfig openais off
node2# service openais stop
```

- 6. Upgrade the software on node2.
- 7. Reboot node2 and verify basic upgraded functionality.
- 8. Enable HA services to be started automatically at boot time and immediately start it on node2:
 - RHEL:

node2# chkconfig cman on node2# chkconfig pacemaker on node2# service cman start node2# service pacemaker start

• SLES:

node2# chkconfig openais on node2# service openais start

9. Make node2 active again:

node1# crm node online node2

10. Move the resource groups from node1 to node2:

nodel# crm resource move IPALIAS-GROUP-1 node2
nodel# crm resource move IPALIAS-GROUP-2 node2

- 11. (Optional) Allow the resource groups to run on node2 for a period of time as a test.
- 12. Repeat steps 4 through 11 above but switching the roles for node1 and node2.

Note: In most cases, you will want to leave the resource groups running on node2 in order to avoid any unnecessary interruptions to the services that would have to be restarted if they were moved to node1. However, if you prefer to have the resource groups run on node1 despite any potential interruptions, do the following:

1. Move the appropriate resource group from node2 back to node1. For example:

node1# crm resource move IPALIAS-GROUP-1 node1

2. Remove the implicit location constraints imposed by the administrative move command above:

nodel# crm resource unmove IPALIAS-GROUP-1
nodel# crm resource unmove IPALIAS-GROUP-2

DMF HA Rolling Upgrade

Do the following for a rolling upgrade in a DMF HA cluster with two nodes (node1 and node2):

1. Read the release notes for the software you intend to upgrade.

For ISSP software, read the *SGI InfiniteStorage Software Platform Release Note* and any late-breaking caveats on Supportfolio Online:

https://support.sgi.com/login

- 2. Ensure that the HA cluster, the underlying CXFS cluster (if applicable), and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than intended constraints.
- 3. Disable the CXFS services from being started automatically at boot time:

node2# chkconfig cxfs off node2# chkconfig cxfs_cluster off

- 4. Disable the appropriate underlying HA control services from being started automatically at boot time:
 - RHEL:

node2# chkconfig cman off node2# chkconfig pacemaker off

• SLES:

node2# chkconfig openais off

5. Ensure that the resource groups are running on node1.

Note: Moving the DMF-GROUP resource group will involve CXFS relocation of the DMF administrative filesystems and DMF managed user filesystems. However, you cannot use CXFS relocation if your CXFS cluster also includes a CXFS NFS edge-server HA pair and the CXFS server-capable administration nodes are running different software levels. If that is the case, you must move the DMF-GROUP resource group via CXFS recovery by resetting the node that is running the DMF-GROUP resource.

Do one of the following, as appropriate for your site:

• Using CXFS recovery:

node1# crm node fence node2

• Using CXFS relocation:

Note: Stopping the appropriate underlying HA control services will cause a failover if there are resources running on the node. Depending on how things are defined and whether the resource stop actions succeed, it might even cause the node to be reset.

- RHEL:

node2# crm resource move DMF-GROUP node1
node2# service pacemaker stop
node2# service cxfs stop
node2# service cxfs_cluster stop
SLES:
node2# crm resource move DMF-GROUP node1
node2# service openais stop
node2# service cxfs stop
node2# service cxfs_cluster stop

- 6. Verify that the services have moved to node1.
- 7. Upgrade the software on node2 and reboot.

8. Add node2 back into the CXFS cluster (if present) by enabling the services to be started automatically at boot time and then starting them immediately:

```
node2# chkconfig cxfs_cluster on
node2# chkconfig cxfs on
node2# service cxfs_cluster start
node2# service cxfs start
```

- 9. Verify that node2 is fully back in the CXFS cluster with filesystems mounted.
- 10. Enable the appropriate underlying HA control services to be started automatically at boot time and then start them immediately on node2:
 - RHEL:

```
node2# chkconfig cman on
node2# chkconfig pacemaker on
node2# service cman start
node2# service pacemaker start
• SLES:
node2# chkconfig openais on
```

```
node2# service openais start
```

11. Repeat steps 3 through 10 above but executed for node1.

Note: In most cases, you will want to leave the resource group running on node2 in order to avoid any unnecessary interruptions to the services that would have to be restarted if they were moved to node1. However, if you prefer to have the resource group run on node1 despite any potential interruptions, do the following:

1. Move the appropriate resource groups from node2 back to node1:

node1# crm resource move DMF-GROUP node1

2. Remove the implicit location constraints imposed by the administrative move command above:

node1# crm resource unmove DMF-GROUP

The cluster is now back to normal operational state.

Stopping the Underlying HA Control Services

Note: Stopping HA control services will cause a failover if there are resources running on the node. Depending on how things are defined and whether the resource stop actions succeed, it might even cause the node to be reset.

To stop the appropriate underlying HA control services on the local node, enter the following:

• RHEL:

ha# service pacemaker stop

• SLES:

ha# service openais stop

Manually Resetting a Node

To manually issue a system reset of a given node, execute the following from a different node in the HA cluster:

ha# crm node fence node_to_be_reset

Note: This command requires that the stonith resource is defined and enabled in the CIB.

For example, to reset node1 from node2:

node2# crm node fence node1

Hardware Maintenance on a Cluster Node

This section discusses the following:

- "Hardware Maintenance in a COPAN MAID OpenVault Client HA Service" on page 207
- "Hardware Maintenance in a CXFS NFS Edge-Serving HA Service" on page 210
- "Hardware Maintenance in a DMF HA Service" on page 211

Hardware Maintenance in a COPAN MAID OpenVault Client HA Service

If you must perform maintenance on one node in the cluster that provides the COPAN MAID OpenVault client HA service, do the following:

- 1. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- 2. On the DMF server, disable the parallel data-mover node on which you want to perform maintenance (downnode) so that it will cease all COPAN MAID shelf activity:

dmfserver# dmnode_admin -d downnode

Wait for the activity to cease on downnode before continuing to the next step.

3. Verify that there are no dmatwc or dmatrc data-mover processes running on downnode. For example, the output of the following command should be empty:

downnode# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
downnode#

If the output is not empty, you must wait for the $dmnode_admin -d$ action from step 2 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

4. Ensure that any copan_ov_client shelf resources are running on the node that does not require maintenance (upnode). For example:

downnode# crm resource move C00 upnode downnode# crm resource move C01 upnode

5. Set downnode to standby state. (Putting a node in standby state will move, if possible, or stop any resources that are running on that node.) For example:

upnode# crm node standby downnode

This will shut down CXFS_CLIENT on downnode automatically.

- 6. Disable the appropriate underlying HA control services from being started automatically on downnode at boot time and stop the currently running services:
 - RHEL:

downnode# chkconfig cman off
downnode# chkconfig pacemaker off

downnode# service pacemaker stop

SLES:

downnode# chkconfig openais off
downnode# service openais stop

- 7. Perform maintenance on downnode.
- 8. Reboot downnode and verify basic functionality.

- 9. Enable HA services to be started automatically at boot time and immediately start it on downnode:
 - RHEL:

downnode# chkconfig cman on downnode# chkconfig pacemaker on

downnode# service cman start downnode# service pacemaker start

• SLES:

downnode# chkconfig openais on downnode# service openais start

10. Make downnode active again:

downnode# crm node online downnode

- 11. (Optional) If you want to move shelf resources back to downnode:
 - a. On the DMF server, disable the other parallel data-mover node (upnode):

dmfserver# dmnode_admin -d upnode

Wait for the activity to cease on upnode before continuing to the next step.

- b. Verify that there are no dmatwc or dmatrc data-mover processes running on upnode, as in step 3.
- c. Move back all of the copan_ov_client resources (for example, COO and CO1) that you want to run on downnode:

upnode# crm resource move C00 downnode upnode# crm resource move C01 downnode

d. On the DMF server, reenable upnode so that it will permit COPAN MAID shelf activity:

dmfserver# dmnode_admin -e upnode

e. On the DMF server, reenable downnode so that it will permit COPAN MAID shelf activity:

dmfserver# dmnode_admin -e downnode

12. Remove any implicit location constraints imposed by the administrative move commands above. For example:

downnode# crm resource unmove C00 downnode# crm resource unmove C01

Hardware Maintenance in a CXFS NFS Edge-Serving HA Service

If you must perform maintenance on one node in the cluster that provides the CXFS NFS edge-serving HA service, do the following:

- 1. Ensure that the HA cluster, the underlying CXFS cluster, and all other hardware and software components are in a healthy state. Ensure that all resource failcounts are cleared and that no constraints are present other than permanent constraints.
- 2. Ensure that the resource groups are running on the node that **does not** require maintenance (upnode). For example:

```
downnode# crm resource move IPALIAS-GROUP-2 upnode
```

3. Set the node on which you intend to perform maintenance (downnode) to standby state. (Putting a node in standby state will move, if possible, or stop any resources that are running on that node.) For example, if you intend to upgrade downnode:

upnode# crm node standby downnode

This will shut down CXFS_CLIENT on downnode automatically.

- 4. Disable the appropriate underlying HA control services from being started automatically on downnode at boot time and stop the currently running services:
 - RHEL:

downnode# chkconfig cman off downnode# chkconfig pacemaker off

downnode# service pacemaker stop

• SLES:

downnode# chkconfig openais off
downnode# service openais stop

5. Perform maintenance on downnode.

- 6. Reboot downnode and verify basic functionality.
- 7. Enable HA services to be started automatically at boot time and immediately start it on downnode:
 - RHEL:

downnode# chkconfig cman on downnode# chkconfig pacemaker on

downnode# service cman start downnode# service pacemaker start

• SLES:

downnode# chkconfig openais on downnode# service openais start

8. Make downnode active again:

downnode# crm node online downnode

9. Move back any resource groups that you want to run on downnode. For example:

upnode# crm resource move IPALIAS-GROUP-2 downnode

10. Remove any implicit location constraints imposed by the administrative move commands above. For example:

downnode# crm resource unmove IPALIAS-GROUP-2

Hardware Maintenance in a DMF HA Service

If you must perform maintenance on one node in the cluster that provides the DMF HA service, do the following:

- 1. On the node that requires maintenance (downnode), disable the underlying HA control services from being started automatically at boot time:
 - RHEL:

downnode# chkconfig cman off
downnode# chkconfig pacemaker off

SLES:

downnode# chkconfig openais off

2. If downnode is a CXFS server-capable administration node, disable the cxfs and cxfs_cluster services from being started automatically at boot time:

```
downnode# chkconfig cxfs off
downnode# chkconfig cxfs_cluster off
```

3. As a precaution, run the sync(8) command to flush disk buffers, synchronizing the data on disk with memory:

downnode# sync

4. Reset downnode in order to force resources to be moved to upnode:

upnode# crm node fence downnode

5. Verify that resources are running on upnode:

upnode# crm status inactive

- 6. Perform the required maintenance on downnode.
- 7. Reboot downnode and ensure that is stable before proceeding.
- 8. If downnode was a CXFS server-capable administration node, do the following:
 - a. Enable the cxfs and cxfs_cluster services to start automatically at boot time and start them immediately on downnode:

downnode# chkconfig cxfs_cluster on downnode# chkconfig cxfs on

downnode# service cxfs_cluster start
downnode# service cxfs start

- b. Verify that CXFS is functioning properly on downnode, such as if the node joined the cluster and mounted filesystems.
- 9. Enable the HA service to be started automatically at boot time and start it immediately on downnode:
 - RHEL:

downnode# chkconfig cman on downnode# chkconfig pacemaker on

downnode# service cman start

downnode# service pacemaker start
SLES: downnode# chkconfig openais on downnode# service openais start
10. Verify that downnode rejoins the HA cluster:

downnode# crm status inactive

Note: In most cases, you will want to leave the resources running on upnode in order to avoid any unnecessary interruptions to the services that would have to be restarted if they were moved to downnode. However, if you prefer to have the resources run on downnode despite any potential interruptions, do the following:

1. Restart resources on downnode:

downnode# crm resource move ResourceName downnode

2. Remove the implicit location constraints imposed by the administrative move:

downnode# crm resource unmove ResourceName

Maintenance with a Full Cluster Outage

This section discusses the following:

- "Full Outage for COPAN MAID OpenVault Client HA Service on Mover Nodes" on page 214
- "Full Outage for CXFS NFS Edge-Serving HA Service" on page 216
- "Full Outage for DMF HA Service" on page 218

Full Outage for COPAN MAID OpenVault Client HA Service on Mover Nodes

Do the following to perform a full outage for a COPAN MAID OpenVault client HA service on parallel data-mover nodes:

1. On the DMF server, disable both parallel data-mover nodes so that they will cease all COPAN MAID shelf activity:

dmfserver# dmnode_admin -d mover1 dmfserver# dmnode_admin -d mover2

2. Verify that there are no dmatwc or dmatwc data-mover processes running on either node. For example, the output of the following command should be empty on each parallel data-mover node:

```
ha# ps -ef | egrep 'dmatrc|dmatwc' | grep -v grep
ha#
```

If the output is not empty, you must wait for the dmnode_admin -d action from step 1 to complete (the entire process can take 6 minutes or longer). Rerun the ps command until there is no output.

- 3. On both parallel data-mover nodes, disable services related to an HA environment:
 - RHEL:

ha# chkconfig cman off ha# chkconfig pacemaker off

SLES:

ha# chkconfig openais off

- 4. On both nodes, stop the appropriate underlying HA control services (do this simultaneously):
 - RHEL:

ha# service pacemaker stop

• SLES:

ha# service openais stop

5. Shut down both nodes.

- 6. Perform the required maintenance.
- 7. Perform component-level testing associated with the maintenance.
- 8. Reboot both nodes
- 9. On both nodes, enable services related to an HA environment:
 - RHEL:

ha# chkconfig cman on ha# chkconfig pacemaker on

• SLES:

ha# chkconfig openais on

- 10. On both nodes, start the appropriate underlying HA control services (do this simultaneously):
 - RHEL:

ha# service cman start ha# service pacemaker start

• SLES:

ha# service openais start

11. On either node, verify cluster status:

ha# crm status inactive

12. On the DMF server, reenable both nodes for COPAN MAID activity:

dmfserver# dmnode_admin -e mover1
dmfserver# dmnode_admin -e mover2

Full Outage for CXFS NFS Edge-Serving HA Service

Do the following to perform a full outate for a CXFS NFS edge-serving HA cluster:

- 1. Schedule the outage and notify users well in advance.
- 2. Stop all resources in the proper order (bottom up, see Figure 5-1 on page 54). For example, using the example procedures in this guide, you would stop the IP address alias resource groups and the clone:

ha# crm resource stop IPALIAS-GROUP-2 ha# crm resource stop IPALIAS-GROUP-1 ha# crm resource stop CXFS-NFS-CLONE

- 3. Disable the services related to an HA environment and CXFS from being started automatically at boot time:
 - On all HA servers:
 - RHEL:

ha# chkconfig cman off ha# chkconfig pacemaker off

- SLES:

ha# chkconfig openais off

• On all CXFS servers:

cxfsserver# chkconfig cxfs off
cxfsserver# chkconfig cxfs_cluster off

• On all CXFS clients:

cxfsclient# chkconfig cxfs_client off

- 4. Shut down all of the HA cluster systems and the CXFS cluster systems.
- 5. Perform the required maintenance.
- 6. Perform component-level testing associated with the maintenance.
- 7. Reboot all of the HA cluster systems and the CXFS cluster systems.
- 8. Enable the services related to CXFS to be started automatically at boot time and start them immediately as follows:

• On all CXFS servers:

```
cxfsserver# chkconfig cxfs_cluster on
cxfsserver# chkconfig cxfs on
```

```
cxfsserver# service cxfs_cluster start
cxfsserver# service cxfs start
```

• On all CXFS clients:

cxfsclient# chkconfig cxfs_client on

cxfsclient# service cxfs_client start

• Verify CXFS cluster functionality:

cxfsserver# /usr/cluster/bin/cxfs_admin -c status

9. On the NFS edge-servering node, disable the cxfs_client service from being started automatically at boot time and stop the currently running service immediately:

edge# chkconfig cxfs_client off

edge# service cxfs_client stop

- 10. On the HA servers, disable the appropriate underlying HA control service from being started automatically at boot time and stop the currently running service immediately:
 - RHEL:

ha# chkconfig cman on ha# chkconfig pacemaker on ha# service cman start ha# service pacemaker start
• SLES:

ha# chkconfig openais on

ha# service openais start

11. Verify the HA cluster status:

ha# crm status inactive

12. Start resources in the correct order (top-down). For example:

ha# crm resource stop CXFS-NFS-CLONE ha# crm resource stop IPALIAS-GROUP-1 ha# crm resource stop IPALIAS-GROUP-2

13. Move the resources to the correct locations. For example:

ha# crm resource move IPALIAS-GROUP-1 node1 ha# crm resource move IPALIAS-GROUP-2 node2

14. Remove the implicit location constraints imposed by the administrative move command above. For example:

ha# crm resource unmove IPALIAS-GROUP-1 ha# crm resource unmove IPALIAS-GROUP-2

Full Outage for DMF HA Service

Do the following to perform a full outage for a DMF HA cluster::

- 1. Schedule the outage and notify users well in advance.
- 2. Stop all resources in the proper order (bottom-up, see Figure 6-1 on page 99). Using the example procedures in this guide, you would stop the group:

ha# crm resource stop DMF-GROUP

- 3. Disable the services related to an HA environment and CXFS (if applicable) from being started automatically at boot time:
 - On all HA servers:

- RHEL:

ha# chkconfig cman off ha# chkconfig pacemaker off

– SLES:

ha# chkconfig openais off

• On all CXFS servers:

```
cxfsserver# chkconfig cxfs off
cxfsserver# chkconfig cxfs_cluster off
```

- 4. Shut down all of the HA cluster systems and any CXFS cluster systems.
- 5. Perform the required maintenance.
- 6. Perform component-level testing associated with the maintenance.
- 7. Reboot all of the HA cluster systems and any CXFS cluster systems.
- 8. Enable the following services related to CXFS (if applicable) to be started automatically at boot time and start them immediately:
 - On all CXFS servers:

cxfsserver# chkconfig cxfs_cluster on cxfsserver# chkconfig cxfs on

cxfsserver# service cxfs_cluster start
cxfsserver# service cxfs start

• On all CXFS clients:

cxfsclient# chkconfig cxfs_client on

cxfsclient# service cxfs_client start

• Verify CXFS cluster functionality:

cxfsserver# /usr/cluster/bin/cxfs_admin -c status

- 9. On the HA servers, enable the appropriate underlying HA control services to be started automatically at boot time and start them immediately:
 - RHEL:

```
ha# chkconfig cman on
ha# chkconfig pacemaker on
ha# service cman start
ha# service pacemaker start
```

• SLES:

ha# chkconfig openais on

ha# service openais start

10. Verify HA cluster status:

ha# crm status inactive

11. Start resources in the correct order (top-down). For example:

ha# crm resource start DMF-GROUP

12. Move the resources to the correct locations:

ha# crm resource move DMF-GROUP nodel

Note: Keep in mind any relocation restrictions.

13. Remove the implicit location constraints imposed by the administrative move command above:

ha# crm resource unmove DMF-GROUP

Chapter 10

Troubleshooting

This chapter discusses the following:

- "Diagnosing Problems" on page 221
- "Failover Testing Strategies" on page 228
- "Corrective Actions" on page 232

For more information, see the documentation listed in "About this Guide".

Diagnosing Problems

If you notice problems, do the following:

- "Monitor the Status Output" on page 221
- "Verify the Configuration in Greater Detail" on page 222
- "Match Status Events To Error Messages" on page 222
- "Verify chkconfig Settings" on page 222
- "Diagnose the Problem Resource" on page 224
- "Examine Application-Specific Problems that Impact HA" on page 224
- "Test the STONITH Capability" on page 224
- "Gather Troubleshooting Data" on page 225
- "Use SGI Knowledgebase" on page 228

Monitor the Status Output

Use the crm status inactive command to determine the current status of the cluster and monitor it for problems.

Verify the Configuration in Greater Detail

Execute the $crm_verify(8)$ command with increasing numbers of -v options for more detail, such as:

ha# crm_verify -LVVVVVV

Note: If you run crm_verify before STONITH is enabled, you will see errors. Errors similar to the following may be ignored if STONITH is intentionally disabled and will go away after STONITH is reenabled (line breaks shown here for readability):

crm_verify[182641]: 2008/07/11_16:26:54 ERROR: unpack_operation: Specifying on_fail=fence and stonith-enabled=false makes no sense

Match Status Events To Error Messages

Match the events listed in the crm_verify output with the failed action and the host on which the action failed. To find the specific problem, view messages in the log files. See "Examine Log Files" on page 24.

Verify chkconfig Settings

Verify the chkconfig settings for the following services when used in an HA cluster:

- "Off" on page 223
- "On" on page 223
- "Optionally On" on page 223

007-5617-011

Off

The following services must be off if used (most services):

```
acpid (RHEL)
cxfs_client
dmf
dmfman
dmfsoap
nfs (RHEL)
nfsserver (SLES)
openvault
smb
nmb
winbind
```

On

The following services must be on if used:

• RHEL:

cman cxfs cxfs_cluster nfslock pacemaker

• SLES:

cxfs cxfs_cluster openais logd

Optionally On

The following service may optionally may be on:

tmf (if used)

Diagnose the Problem Resource

To diagnose problems at the application level, put the cluster into maintenance mode. You might have to stop the appropriate underlying HA control services on all nodes (cman and pacemaker on RHEL nodes or openais on SLES nodes) and start/stop resources manually.

Caution: Ensure that you do not start a resource on multiple nodes. Verify that a resource is not already up on another node before you start it.

Examine Application-Specific Problems that Impact HA

Using HA can highlight existing problems for the applications that are being managed. For more information about diagnosing application-specific problems, see the manuals listed in "About this Guide".

Test the STONITH Capability

To test the STONITH capability, do the following:

- 1. Reset a given node from another node, using one of the following methods:
 - Requires that STONITH is defined in the CIB:
 - ha# crm node fence node_to_be_reset

For example, to reset node1 from node2:

node2# crm node fence node1

Independent of the CIB configuration:

ha# ipmitool -I lan -U admin -P admin -H bmc_IP_of_node_to_be_reset power reset

For example, to reset node1 (whose BMC has an IP address of 128.162.232.79) from node2:

node2# ipmitool -I lan -U admin -P admin -H 128.162.232.79 power reset

Note: Some BMC hardware may require -I lanplus.

2. Verify that the specified node was reset and was able to successfully complete a reboot.

Gather Troubleshooting Data

If you need to report problems to SGI Support, do the following to gather important troubleshooting data:

- "Collect System Configuration Information" on page 225
- "Collect System Logs" on page 226
- "Collect HA Cluster Information" on page 226
- "Collect SGI Service-Specific Information" on page 227
- "Generate a Kernel Crash Dump" on page 227

When you contact SGI Support, you will be provided with information on how and where to upload the collected information files for SGI analysis.

Collect System Configuration Information

Run the following commands as root on every node in the cluster in order to gather system configuration information:

• RHEL:

rhel# /usr/sbin/system_info_gather -Avv -n

• SLES:

sles# /usr/sbin/system_info_gather -Avv -n
sles# /sbin/supportconfig

The system_info_gather script will print information to a time-stamped file named using the following format:

yyyymmdd_hhmmss-hostname-inventory[options]

For example, for output gathered on October 17, 2013, for a host named myserver using the -Avv options:

20131017_103317-myserver.mycompany.com-inventoryA2

Collect System Logs

Collect any other system log files that may contain information about corosync/pacemaker or the services included in the HA configuration (if not otherwise gathered by the above tools).

Collect HA Cluster Information

To collect HA cluster information, use the following commands:

- RHEL: crm_report(8)
- SLES: hb_report(8)

The commands use a similar format:

```
ha# command -f "from_time" [-t "to_time"] [destination_directory]
```

where:

- command is either crm_report (RHEL) or hb_report (SLES)
- *from_time* and *to_time* are in the format *YYYY-MM-DD H:M:S*. If you omit the -t option, the command collects data up to the present.
- *destination_directory* is the destination directory. If you omit this argument, the command will use its own naming convention for the compressed tarball:
 - RHEL default:

pcmk-date.tar.bz2

For example, the tarball will be named pcmk-Tue-10-Dec-2013.tar.bz2 if you execute the following command on 10 December 2013:

rhel# crm_report -f "2013-12-09 08:00"

– SLES default:

hb_report-*date*.tar.bz2

For example, the tarball will be named hb_report-Tue-10-Dec-2013.tar.bz2 if you execute the following command on 10 December 2013:

sles# hb_report -f "2013-12-09 08:00"

For more details, see the crm_report(8) and hb_report(8) man pages.

Collect SGI Service-Specific Information

Collect service-specific information. For example, run dmcollect for a resource group that contains DMF and cxfsdump for a resource group that contains CXFS. See the dmcollect(8) and cxfsdump(8) man pages for more information.

Generate a Kernel Crash Dump

Note: This procedure assumes that the appropriate kernel-default-debuginfo RPM is installed and that any CXFS node in the HA cluster has a fail policy that does not include reset.

To generate a kernel crash dump, do the following:

1. If the totem token value is not long enough to allow a dump to take place (which is usually the case), avoid system resets by disabling STONITH:

ha# crm configure property stonith-enabled=false

Note: Be aware of the following:

- If you disable STONITH, the resources may not fail over properly and the cluster may enter an unpredictable state.
- With a totem token value that is long enough for a dump to take place, it is possible that the system may restart before the failover system recognizes the situation, which can be problematic.
- 2. Force a crash dump to occur. For example:

ha# echo 1 > /proc/sysrq-trigger

3. If you disabled STONITH in step 1, reenable it:

ha# crm configure property stonith-enabled=true

4. Package up the kernel crash dump:

ha# /usr/sbin/sgi_collect_dump

Use SGI Knowledgebase

If you encounter problems and have an SGI support contract, you can use the SGI Knowledgebase tool to search for information:

1. Log in to Supportfolio Online:

https://support.sgi.com/login

- 2. Click on Search the SGI Knowledgebase.
- 3. Select the type of search you want to perform.

If you need further assistance, contact SGI Support.

Failover Testing Strategies

Before performing any sort of failover testing, do the following so that you can predict the expected results and examine the actual results:

- 1. Verify the state of the HA cluster:
 - a. Check the resource fail counts:

ha# crm status failcounts

- b. If there has been a failure, ensure that the issue that caused a resource failure has been resolved.
- c. Reset the individual resource fail counts on the required nodes:

ha# crm resource failcount resourcePRIMITIVE delete nodename

d. Clear any implicit location constraints that may have been created for the resource group by a previous administrative move command:

ha# crm resource unmove resourceGROUP

2. Clearly delineate the start of each test in the logs by using the logger(1) command. For example:

ha# logger "TEST START - testdescription".

Note: The HBA tests presume that the system has redundant Fibre Channel HBA paths to storage.

Table 10-1 describes failover testing strategies.

Test Type	Action	Expected Result
Administrative failover	Move the individual resource or resource group to the failover node: ha# crm resource move resourcePRIMITIVE failover_node or: ha# crm resource move resourceGROUP failover_node	The individual resource or the resource group moves to the failover node. Occasionally, filesystems may fail to dismount cleanly or in a timely fashion, thus preventing an administrative move from occurring cleanly. In this case, the active node will likely be reset when a stop operation passes its timeout limit.
		Note: Remember that longer resource stop operation timeouts may result in longer failover times, and shorter resource stop operation timeouts may result in more frequent system reset events.
System reboot	Reboot the active node: active# reboot	All resources running on the rebooted server should move to the failover node
Simulated system crash	Reset the active node	All resources running on the node that was reset should move to the failover node
Simulated NFS daemon failure	<pre>Stop the NFS server: • RHEL: rhel# service nfs stop • SLES: sles# service nfsserver stop</pre>	The resources should move to the failover node due to a monitor operation failure for the nfsserver resource
Simulated filesystem failure	Unmount the filesystem: ha# umount filesystem	The resources should move to the failover node due to a monitor operation failure for the Filesystem resource

230

Test Type	Action	Expected Result
Single simulated HBA failure	Disable the port for the Fibre Channel HBA. For example: brocade> portdisable portnumber	A device failover will not actually occur until I/O is attempted via the failed HBA path. An XVM failover to an alternate path should occur after I/O is performed on the system.
		Note: Remember to reenable the port after the test. For example:
		brocade> portenable portnumber
Multiple simulated HBA failures	Disable the port for the Fibre Channel HBA. For example:	The server should be reset after I/O is performed on the system. There will likely be multiple moniton encoding
HDA lanules	brocade> portdisable portnumber	likely be multiple monitor operation failures for various resources followed
	Repeat for every HBA port on the system.	by a stop operation failure, which will result in a system reset and a forced XVM failover.
		Note: Remember to reenable the port after the test. For example:
		brocade> portenable portnumber

Corrective Actions

The following are corrective actions:

- "Recovering from an Incomplete Failover" on page 232
- "Recovering from a CIB Corruption" on page 233
- "Clearing the Failcounts After a Severe Error" on page 233

Recovering from an Incomplete Failover

After an incomplete failover, in which one or more of the individual resources are not started and the cluster can no longer provide high availability, you must do the following to restore functionality:

1. Put the cluster into maintenance mode:

ha# crm configure property maintenance-mode=true

2. Determine which individual resources have failcounts:

ha# crm resource failcount resourcePRIMITIVE show node

Repeat for each individual resource on each node.

- 3. Troubleshoot the failed resource operations. Examine the log files (see "Examine Log Files" on page 24) and application logs around the time of the operation failures in order to deduce why they failed. Then deal with those causes.
- 4. Ensure that all of the individual resources are working properly.
- 5. Remove the failcounts found in step 2:

ha# crm resource failcount failed_resourcePRIMITIVE delete node

Repeat this for each individual failed resource on each node.

6. Remove error messages:

ha# crm resource cleanup failed_resourcePRIMITIVE node

Repeat this for each individual failed resource on each node.

7. Return the cluster to managed status, enter the following:

ha# crm configure property maintenance-mode=false

Recovering from a CIB Corruption

Note: This procedure assumes that you have a good backup copy of the CIB that contains only static configuration information, as directed in "Backing Up the CIB" on page 192.

Do the following to recover from a CIB corruption:

1. Erase the existing corrupt CIB:

ha# crm configure erase

2. Load a new CIB from the backup copy:

ha# crm configure load replace CIB.xxxxxx

For example, for the copy made on August 24 (CIB. 20100824-130236):

ha# crm configure load replace CIB.20100824-130236

For more information, see the SUSE *High Availability Guide* and the cibadmin(8) man page.

Clearing the Failcounts After a Severe Error

Under certain circumstances, a severe failure will cause the failcount for the individual resources to be set to INFINITY. This means that the individual resources cannot run on a specific node again until the failcount is cleared, which requires administrative action. See "Clearing the Resource Failcount" on page 192.

Resource Reference

This appendix discusses the following:

- "copan_ov_client" on page 237
- "cxfs" on page 242
- "cxfs-client" on page 245
- "cxfs-client-clone" on page 249
- "cxfs-client-nfsserver" on page 251
- "cxfs-client-smnotify" on page 256
- "cxfs-nfs-clone" on page 260
- "dmcopytool" on page 262
- "dmf" on page 265 ٠
- "dmf-group" on page 268 ٠
- "dmfman" on page 270 •
- "dmfsoap" on page 273 •
- "fence_ipmilan" on page 276
- "Filesystem" on page 279
- "IPaddr2" on page 283
- "ipalias-group" on page 285 ٠
- "ipmi" on page 287 •
- "lxvm" on page 290 ٠
- "MailTo" on page 293 •

- "nfsserver" on page 295

- "nmb" on page 298

• "openvault" on page 300

- "ping" on page 304
- "smb" on page 307
- "tmf" on page 309
- "winbind" on page 314

copan_ov_client

This section discusses the following:

- "copan_ov_client Purpose" on page 237
- "copan_ov_client Requirements" on page 237
- "Testing Before Applying HA" on page 238
- "HA Control of the Service" on page 238
- "copan_ov_client Template" on page 238

copan_ov_client Purpose

The copan_ov_client resource defines a COPAN MAID shelf to be used by an OpenVault client. Each shelf requires its own primitive instance. It is used in a COPAN MAID OpenVault client HA service for DMF parallel data-mover nodes or optionally in a DMF HA service. See:

- Chapter 7, "Create the COPAN MAID OpenVault Client HA Service for Mover Nodes" on page 165
- Chapter 6, "Create the DMF HA Service" on page 75

The following figures depict the order in which this resource falls in the configuration process:

- Figure 6-4 on page 111
- Figure 7-3 on page 178

copan_ov_client Requirements

See:

- "COPAN MAID Requirements for a DMF HA Service (Optional)" on page 81
- "COPAN MAID Requirements for an OpenVault Client HA Service" on page 165

Testing Before Applying HA

See "Configure and Test the COPAN MAID OpenVault Client Before Applying a DMF HA Environment" on page 88.

HA Control of the Service

To use the copan_ov_client resource, you must stop the openvault service on each node before applying an HA environment:

node1# chkconfig openvault off
node1# service openvault off

node2# chkconfig openvault off
node2# service openvault off

The HA software will control this service.

copan_ov_client Template

Template location:

/usr/share/doc/sgi-ha/templates/copan_ov_client

Use the following:

• COPAN MAID OpenVault client HA service:

```
primitive SHELF ocf:sgi:copan_ov_client \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params shelf_name="SHELF" \
    meta resource-stickiness="250" migration-threshold="1"
location SHELF-MOVER1-LOCATION SHELF 200: MOVER1
location SHELF-MOVER2-LOCATION SHELF 100: MOVER2
colocation SHELF-CXFS-COLOCATION inf: SHELF CXFS-CLIENT-CLONE
order SHELF-CXFS-ORDER inf: CXFS-CLIENT-CLONE SHELF
```

• DMF HA service:

```
primitive SHELF ocf:sgi:copan_ov_client \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params shelf_name="SHELF" \
    meta resource-stickiness="1" migration-threshold="1"
```

Note: The copan_ov_client template contains two sections, one for a COPAN MAID OpenVault client HA service and another for a DMF HA service – you must fill in the values in the section for the service you want to configure and delete the other section entirely.

Variable	Description
SHELF	Name of this resource instance, normally the three-character COPAN shelf ID, using the naming convention described in the <i>COPAN</i> <i>MAID for DMF Quick Start Guide</i> , such as CO0 for cabinet 0, shelf 0 (the bottom shelf)
SHELF-MOVER1-LOCATION	Name of the location constraint for the primary parallel data-mover node, such as COO-MOVER1-LOCATION
MOVER1	Name of the primary parallel data-mover node, such as MOVER1
SHELF-MOVER2-LOCATION	Name of the location constraint for the secondary parallel data-mover node, such as C00-MOVER2-LOCATION
MOVER2	Name of the secondary parallel data-mover node, such as MOVER2
SHELF-CXFS-COLOCATION	Name of the colocation constraint, such as C00-CXFS-COLOCATION

```
CXFS-CLIENT-CLONE
                                              Name of the clone, such as
                                              CXFS-CLIENT-CLONE (see
                                              "cxfs-client-clone Template"
                                              on page 249)
SHELF-CXFS-ORDER
                                              Name of the order constraint, such
                                              as COO-CXFS-ORDER
For example, for a COPAN MAID OpenVault client HA service:
primitive COO ocf:sgi:copan_ov_client \
  op monitor interval="120s" timeout="60s" on-fail="restart" \
  op monitor interval="0" timeout="60s" \
  op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
  op stop interval="0" timeout="120s" on-fail="fence" \
  params shelf_name="C00" \
  meta resource-stickiness="250" migration-threshold="1"
location COO-MOVER1-LOCATION COO 200: MOVER1
```

location C00-MOVER2-LOCATION C00 100: MOVER2 colocation C00-CXFS-COLOCATION inf: C00 CXFS-CLIENT-CLONE order C00-CXFS-ORDER inf: CXFS-CLIENT-CLONE C00

For example, for a DMF HA service:

```
primitive C16 ocf:sgi:copan_ov_client \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params shelf_name="C16" \
    meta resource-stickiness="1" migration-threshold="1"
```

Note: The primitive instance for the COPAN MAID OpenVault client HA service requires location, colocation, and order constraints and a high value for resource-stickiness indicates that it will be unlikely to move to the other node, whereas the primitive instance for the DMF HA service requires no constraints and has a resource-stickiness value that matches the rest of the resources in the DMF-GROUP resource (see "dmf-group Template" on page 268).

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Starts the COPAN MAID shelf client by ensuring that RAID sets are available and that the OpenVault LCP and at least one DCP are running
- Fails if any of the above conditions are not met

The stop operation does the following:

- Stops the COPAN MAID OpenVault client resource
- Fails if the COPAN MAID OpenVault client resource fails to stop

cxfs

This section discusses the following:

- "cxfs Purpose" on page 242
- "cxfs Requirements" on page 242
- "Testing Before Applying HA" on page 242
- "HA Control of the Service" on page 243
- "cxfs Template" on page 243

cxfs Purpose

The cxfs resource controls the CXFS metadata location in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-2 on page 101 depicts the order in which this resource falls in the configuration process.

cxfs Requirements

See the following:

"CXFS Requirements" on page 76:

- "CXFS Server-Capable Administration Nodes" on page 76
- "CXFS Relocation Support" on page 77
- "Applications that Depend Upon CXFS Filesystems" on page 77
- "CXFS and System Reset" on page 77
- "CXFS Start/Stop Issues" on page 77
- "CXFS Volumes and Filesystems Managed by DMF" on page 78

Testing Before Applying HA

See "Configure and Test CXFS Before Applying an HA Environment" on page 86.

HA Control of the Service

Do not disable the cxfs and cxfs_cluster services. Unlike other services, these services will not be controlled by HA software in an HA cluster.

cxfs Template

Template location:

/usr/share/doc/sgi-ha/templates/cxfs

Use the following:

```
primitive CXFS ocf:sgi:cxfs \
    op monitor interval="120s" timeout="180s" on-fail="restart" \
    op monitor interval="0" timeout="180s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    params volnames="VOLUME-LIST" \
    meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
CXFS	Name of this resource instance, such as $\ensuremath{\mathtt{CXFS}}$
VOLUME-LIST	Comma-separated list of volumes under the /dev/cxvm directory, such as:
	cxfsvol1,cxfsvol2

Note: Do not include any links or volumes that are filesystems managed by DMF.

For example:

```
primitive CXFS ocf:sgi:cxfs \
    op monitor interval="120s" timeout="180s" on-fail="restart" \
    op monitor interval="0" timeout="180s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    params volnames="cxfsvol1,cxfsvol2" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Waits until all volumes in VOLUME-LIST are mounted by checking /proc/mounts
- Relocates the metadata server for all volumes in VOLUME-LIST
- Waits for all volumes in *VOLUME-LIST* to be owned by the local node according to clconf_info output
- Never explicitly fails, but can time out

The stop operation never explicitly fails, but can time out.

cxfs-client

This section discusses the following:

- "cxfs-client Purpose" on page 245
- "cxfs-client Requirements" on page 245
- "Testing Before Applying HA" on page 246
- "HA Control of the Service" on page 246
- "cxfs-client Template" on page 246

cxfs-client Purpose

The cxfs-client resource controls the CXFS client. It is used in the CXFS NFS edge-serving HA service and in the COPAN MAID OpenVault client HA service. See:

- Chapter 5, "Create the CXFS NFS Edge-Serving HA Service" on page 47
- Chapter 7, "Create the COPAN MAID OpenVault Client HA Service for Mover Nodes" on page 165

The following figures depict the order in which this resource falls in the configuration process:

- Figure 5-1 on page 54
- Figure 7-2 on page 173

cxfs-client Requirements

See the following:

- Edge-serving: "Edge-Serving Requirements" on page 48
- COPAN MAID OpenVault client: "COPAN MAID Requirements in a Mover-Node HA Cluster" on page 166

Testing Before Applying HA

See:

- "Configure and Test the CXFS Client Before Applying a COPAN MAID HA Environment" on page 167
- "Configure and Test the CXFS Client Before Applying the HA Environment" on page 50

HA Control of the Service

To use the cxfs-client resource, you must stop the cxfs_client service on each node before applying HA:

node1# chkconfig cxfs_client off
node1# service cxfs_client stop

node2# chkconfig cxfs_client off node2# service cxfs_client stop

The HA software will control this service.

For related services that must be HA-controlled, see:

- Edge-serving: "Stop Services Before Applying an HA Environment" on page 52
- COPAN MAID OpenVault client: "Stop the cxfs_client and openvault Services Before Applying an HA Environment" on page 168

cxfs-client Template

Template location:

/usr/share/doc/sgi-ha/templates/cxfs-client

Use the following:

```
primitive CXFS-CLIENT ocf:sgi:cxfs-client \
    op monitor interval="0" timeout="30s" \
    op monitor interval="120s" timeout="30s" on-fail="restart" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
```

params volnames="VOLUME-LIST"

Variable	Description
CXFS-CLIENT	Name of this resource instance, such as CXFS-CLIENT
VOLUME-LIST	Comma-separated list of volume names under the /dev/cxvm directory, as appropriate for the HA service:

- CXFS NFS edge-serving HA service: the CXFS filesystems to be served via NFS, such as cxfsvol1,cxfsvol2
- **COPAN MAID OpenVault client HA service**: all of the managed filesystems and the DMF administrative filesystems represented by the following parameters in the DMF configuration file:

CACHE_DIR SPOOL_DIR TMP_DIR MOVE_FS STORE_DIRECTORY for a DCM MSP

For example, suppose you have the following output:

# ls /dev/cxvm		
cache	dmfusr2	move
diskmsp	home	spool
dmfusr1	journal	tmp

Note: In a COPAN MAID OpenVault client HA service, you should not include the HOME_DIR or JOURNAL_DIR filesystems because a parallel data-mover node typically needs no access to these filesystems.

You would likely enter the following (everything except home and journal):

cache,diskmsp,dmfusr1,dmfusr2,move,spool,tmp

For example, for the CXFS NFS edge-serving HA service:

```
primitive CXFS-CLIENT ocf:sgi:cxfs-client \
    op monitor interval="0" timeout="30s" \
    op monitor interval="120s" timeout="30s" on-fail="restart" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params volnames="cxfsvol1,cxfsvol2"
```

For example, for the COPAN MAID OpenVault client HA service:

```
primitive CXFS-CLIENT ocf:sgi:cxfs-client \
    op monitor interval="0" timeout="30s" \
    op monitor interval="120s" timeout="30s" on-fail="restart" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params volnames="cache,diskmsp,dmfusr1,dmfusr2,move,spool,tmp"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

• Starts the CXFS client by calling the following:

service cxfs_client start

- Checks the /proc/mounts file until all volumes in VOLUME-LIST are mounted
- Fails if the CXFS client fails to start

The stop operation does the following:

• Stops the CXFS client by calling the following:

service cxfs_client stop

Fails if the CXFS client fails to stop

To add more resources, see "Map of Resources for the Edge-Serving HA Service" on page 53.

cxfs-client-clone

This section discusses the following:

- "cxfs-client-clone Purpose" on page 249
- "cxfs-client-clone Template" on page 249

cxfs-client-clone Purpose

The clone resource named by default CXFS-CLIENT-CLONE implements control of a CXFS client. It is used in a COPAN MAID OpenVault client HA service. See Chapter 7, "Create the COPAN MAID OpenVault Client HA Service for Mover Nodes" on page 165.

Figure 7-2 on page 173 depicts the order in which this resource falls in the configuration process.

cxfs-client-clone Template

Template location:

/usr/share/doc/sgi-ha/templates/cxfs-client-clone

Use the following:

clone CXFS-CLIENT-CLONE CXFS-CLIENT \ meta clone-max="2" target-role="Stopped" interleave="true"

Variable	Description
CXFS-CLIENT-CLONE	Name of this clone instance, such as CXFS-CLIENT-CLONE
CXFS-CLIENT	Name of the cxfs-client resource instance (see "cxfs-client Template" on page 246), such as CXFS-CLIENT

For example:

clone CXFS-CLIENT-CLONE CXFS-CLIENT \
 meta clone-max="2" target-role="Stopped" interleave="true"

The target-role is initially set to Stopped because you do not want the clone to start until you are ready to test it.

To add more resources, see "Map of Resources for the COPAN MAID OpenVault HA Service" on page 170.

cxfs-client-nfsserver

This section discusses the following:

- "cxfs-client-nfsserver Purpose" on page 251
- "cxfs-client-nfsserver Requirements" on page 251
- "Testing Before Applying HA" on page 251
- "HA Control of the Service" on page 251
- "cxfs-client-nfsserver Template" on page 252

cxfs-client-nfsserver Purpose

A cxfs-client-nfsserver resource controls the NFS server running on a CXFS client. It is part of a clone resource that runs on both nodes in the cluster. It is used in a CXFS NFS edge-serving HA service. See Chapter 5, "Create the CXFS NFS Edge-Serving HA Service" on page 47.

Figure 5-1 on page 54 depicts the order in which this resource falls in the configuration process.

cxfs-client-nfsserver Requirements

See "Edge-Serving Requirements" on page 48.

Testing Before Applying HA

See "Configure and Test the NFS Edge Service Before Applying an HA Environment" on page 50.

HA Control of the Service

To use the cxfs-client-nfsserver resource, you must stop the NFS service on each node before applying an HA environment, according to the operating system:

• RHEL:

rhel_node1# chkconfig nfs off
rhel_node1# service nfs stop

rhel_node2# chkconfig nfs off
rhel_node2# service nfs stop

• SLES:

sles_node1# chkconfig nfsserver off
sles_node1# service nfsserver stop
sles_node2# chkconfig nfsserver off
sles_node2# service nfsserver stop

The HA software will control this service.

cxfs-client-nfsserver Template

Template location:

/usr/share/doc/sgi-ha/templates/cxfs-client-nfsserver

Use the following:

```
primitive EDGENFS-A ocf:sgi:cxfs-client-nfsserver \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60os" on-fail="restart" \
    params nfs_init_script="NFS-INIT-PATH" statedir="STATEDIR" \
    statefile="STATEFILE" volnames="VOLUME-LIST" \
    nfslock_init_script="NFSLOCK-INIT-PATH"
```

Variable

Description

EDGENFS-A NFS-INIT-PATH Name of this resource instance, such as EDGENFS-A Path to the NFS initialization script:

• RHEL: /etc/init.d/nfs

	• SLES: /etc/init.d/nfsserver
NFSLOCK-INIT-PATH	Path to the nfslock initialization script:
	• RHEL: /etc/init.d/nfslock
	• SLES: (not used)
STATEDIR	Directory in the NFS filesystem that will be used to store NFS file-lock state for this HA cluster (equivalent to /var/lib/nfs/ in a nonclustered configuration), such as:
	/mnt/cxfsvol1/statd/nfs1-nfs2
	Note: This value must be must be unique to this HA cluster.
STATEFILE	File in the NFS filesystem that will store NFS file-lock state for all of the NFS edge-serving HA clusters (equivalent to /var/lib/nfs/state in a nonclustered configuration), such as:
	/mnt/cxfsvol1/statd/state
	Note: This value must be identical to the <i>STATEFILE</i> value specified for cxfs-client-smnotify. All HA clusters within a CXFS cluster must have an identical <i>STATEFILE</i> value.
VOLUME-LIST	Comma-separated list of volume names containing CXFS filesystems that are to be served via NFS, such as:
	cxfsvoll

For example:

```
primitive cxfs-client-nfsserver-1 ocf:sgi:cxfs-client-nfsserver \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="restart" \
    params nfs_init_script="/etc/init.d/nfsserver" \
        statedir="/mnt/cxfsvol1/statd/nfs1-nfs2" \
        statefile="/mnt/cxfsvol1/statd/state" volnames="cxfsvol1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Creates the STATEDIR directory and STATEFILE file as needed
- (NFS v3 only) Updates /etc/sysconfig/nfs to set the following:
 - statd_options to -p STATEDIR -s STATEFILE
 - start_smnotify to no
- Enables NLM grace notification for all volumes in VOLUME-LIST
- Starts the NFS server:
 - RHEL:

service nfs start

- SLES:

service nfsserver start

 Fails if the NFS server does not start or if the NLM grace notification cannot be enabled

The stop operation does the following:

- Stops the NFS server:
 - RHEL:

service nfs stop

- SLES:

service nfsserver stop

- Disables NLM grace notification for all volumes in VOLUME-LIST
- Fails if the NFS server does not stop or if the NLM grace notification cannot be disabled

To add more resources, see "Map of Resources for the Edge-Serving HA Service" on page 53.

cxfs-client-smnotify

This section discusses the following:

- "cxfs-client-smnotify Purpose" on page 256
- "cxfs-client-smnotify Requirements" on page 256
- "cxfs-client-smnotify Template" on page 256

cxfs-client-smnotify Purpose

A cxfs-client-smnotify resource controls NFS client notification of NFS server failovers and restarts. It is used in a CXFS NFS edge-serving HA service as part of a group resource that includes an IPaddr2 resource. See Chapter 5, "Create the CXFS NFS Edge-Serving HA Service" on page 47.

Figure 5-1 on page 54 depicts the order in which this resource falls in the configuration process.

cxfs-client-smnotify Requirements

See the following:

- "Edge-Serving Requirements" on page 48
- "Requirements for a Second Edge-Serving HA Cluster" on page 72

cxfs-client-smnotify Template

The templated is located in:

/usr/share/doc/sgi-ha/templates/cxfs-client-smnotify

Use the following:

```
primitive SMNOTIFY-X ocf:sgi:cxfs-client-smnotify \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="30s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="30s" on-fail="fence" \
    params ipalias="IPADDRESS-ALIAS" statedir="STATEDIR" statefile="STATEFILE" \
```

High Availability Guide for SGI[®] InfiniteStorage[™]

gracedir=" GRACEDIR " hostname=" IPALIAS-HOST " \ seconds="120" volnames=" VOLUME-LIST " \ meta resource-stickiness="1" migration-threshold="1"	
Variable	Description
SMNOTIFY-X	Name of this resource instance, such as SMNOTIFY-1
IPALIAS-ADDRESS	IP address of the alias associated with the NFS client-lock state, which is reclaimed by the NFS client from the NFS server when it receives the NSM reboot notification that is initiated by the cxfs-client-smnotify resource agent, for example 128.162.244.244
STATEDIR	Directory in the NFS filesystem that will be used to store NFS file-lock state for this NFS edge-serving HA cluster.
	Note: This value must be identical to the <i>STATEDIR</i> value specified for cxfs-client-nfsserver, and must be unique to this HA cluster.
STATEFILE	File in the NFS filesystem that will store NFS file-lock state for all of the NFS edge-serving HA clusters within one CXFS cluster (equivalent to /var/lib/nfs/state in a nonclustered configuration), such as:
	/mnt/cxfsvol1/statd/state
	Note: This value must be identical to the <i>STATEFILE</i> value specified for cxfs-client-nfsserver. All HA clusters within a CXFS cluster must have an identical <i>STATEFILE</i> value.
GRACEDIR	Directory on the NFS file-lock-state filesystem that specifies the directory containing the grace-period state (the grace period specified by the seconds attribute is the time during which the CXFS tokens owned by a

given CXFS client will be maintained by that client to permit time for failover), such as:

/mnt/cxfsvol1/grace

Note: All HA clusters within a CXFS cluster must have an identical *GRACEDIR* value.

Hostname of *IPALIAS-ADDRESS*, which must match what is in /etc/hosts or be resolvable with DNS, such as hostalias1 or hostalias2

Comma-separated list of all volumes that will be served via *IPALIAS-HOST*, such as:

cxfsvoll

For example:

IPALIAS-HOST

VOLUME-LIST

```
primitive SMNOTIFY-1 ocf:sgi:cxfs-client-smnotify \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="30s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="30s" on-fail="fence" \
    params ipalias="128.162.244.244" statedir="/mnt/cxfsvoll/statd/nfs1-nfs2" \
        statefile="/mnt/cxfsvol1/statd/state" \
        gracedir="/mnt/cxfsvol1/grace" hostname="myhost" \
        seconds="120" volnames="cxfsvol1" \
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- · Ends any active NLM grace period for the IP address alias
- Runs sm-notify to send out an NSM reboot notification to clients
- Fails if sm-notify returns an error

The stop operation does the following:

· Starts an NLM grace period for the IP address alias

- Drops all locks associated with the IP address alias
- Fails if locks cannot be dropped

cxfs-nfs-clone

This section discusses the following:

- "cxfs-nfs-clone Purpose" on page 260
- "cxfs-nfs-clone Template" on page 260

cxfs-nfs-clone Purpose

A clone resource named by default CXFS-NFS-CLONE implements a CXFS NFS edge-serving HA service. It consists of a group (such as CXFS-NFS-GROUP) constructed of two resources (such as CXFS-CLIENT and NFS). See Chapter 5, "Create the CXFS NFS Edge-Serving HA Service" on page 47.

Figure 5-1 on page 54 depicts the order in which this resource falls in the configuration process.

cxfs-nfs-clone Template

Template location:

/usr/share/doc/sgi-ha/templates/cxfs-nfs-clone

Use the following:

group CXFS-NFS-GROUP CXFS-CLIENT NFS clone CXFS-NFS-CLONE CXFS-NFS-GROUP \

meta clone-max="2" target-role="Stopped" interleave="true"

Variable	Description
CXFS-NFS-GROUP	Name of this group instance, such as CXFS-NFS-GROUP
CXFS-CLIENT	Name of the cxfs-client resource instance (see "cxfs-client Template" on page 246), such as CXFS-CLIENT
NFS	Name of the nfsserver resource instance (see "nfsserver Template" on page 296), such as NFS

007-5617-011

CXFS-NFS-CLONE

Name of this clone instance, such as CXFS-NFS-CLONE

For example:

group CXFS-NFS-GROUP CXFS-CLIENT NFS
clone CXFS-NFS-CLONE CXFS-NFS-GROUP \
 meta clone-max="2" target-role="Stopped" interleave="true"

dmcopytool

This section discusses the following:

- "dmcopytool Purpose" on page 262
- "dmcopytool Requirements" on page 262
- "Testing Before Applying HA" on page 262
- "dmcopytool Template" on page 262

dmcopytool Purpose

A dmcopytool resource controls one instance of the SGI DMF copytool (lhsmtool_dmf), which is a version of the Lustre copytool (lhsmtool_posix) that has been tuned to work efficiently with the DMF archive system. Its primary function is to copy files between the Lustre filesystem and the DMF archive system. It may optionally be used in a DMF HA service.

dmcopytool Requirements

See "DMF Copytool Requirements" on page 84.

Testing Before Applying HA

See "Configure and Test Lustre Before Applying the DMF Copytool an HA Environment" on page 92

dmcopytool Template

The templated is located in:

/usr/share/doc/sgi-ha/templates/dmcopytool

Use the following:

```
primitive DMCOPYTOOL ocf:sgi:dmcopytool \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
```

```
op stop interval="0" timeout="600s" on-fail="fence" \
params archive="NUM" hsmroot="PATH" lustredevice="DEVICE" \
dmctmount="DMCT-MOUNT" dmfmount="DMF-MOUNT" \
meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
DMCOPYTOOL	Name of this resource instance, such as DMCOPYTOOL
NUM	The archive number registered with the Lustre HSM coordinator for this instance of the copytool. Each Lustre filesystem using the DMF copytool should be given its own unique archive number.
PATH	Path of a directory within a filesystem managed by DMF that is used for archiving or restoring Lustre files. This directory must already exist.
DEVICE	The Lustre filesystem device to be mounted for use by the DMF copytool.
DMCT-MOUNT	The Lustre filesystem mount point that will be used by the DMF copytool.
DMF-MOUNT	The Lustre filesystem mount point that will be used by DMF. This mount point must match the name of a filesystem object defined in the DMF configuration file with a MIGRATION_LEVEL parameter set to archive.

For example:

```
primitive DMCOPYTOOL ocf:sgi:dmcopytool \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params archive="2" hsmroot="/usr3" lustredevice="128.162.245.79@tcp0:/lustrefs" \
    dmctmount="/lfs_dmct" dmfmount="/lfs_dmf" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Mounts the Lustre filesystem to two mount points, defined by the *DMCT-MOUNT* and *DMF-MOUNT* values
- Starts the lhsmtool_dmf command
- Fails if either of the two mount operations fails or if the tool cannot be started

The stop operation does the following:

- Stops the lhsmtool_dmf command
- Unmounts the Lustre filesystem from the two mount points defined by the *DMCT-MOUNT* and *DMF-MOUNT* values
- Fails if tool could not be stopped or if either of the two unount operations fails

dmf

This section discusses the following:

- "dmf Purpose" on page 265
- "dmf Requirements" on page 265
- "Testing Before Applying HA" on page 265
- "HA Control of the Service" on page 266
- "dmf Template" on page 266

dmf Purpose

A dmf resource starts/stops DMF. It is used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-5 on page 136 depicts the order in which this resource falls in the configuration process.

dmf Requirements

See "DMF Requirements" on page 81:

- "Potential DMF Server Requirements" on page 82
- "Ordering of Resources" on page 83
- "Virtual Hostname Requirement" on page 83
- "Parallel Data-Mover Option Requirements" on page 83
- "Control of the dmf Service" on page 83
- "Use of the Wildcard in OpenVault Configuration" on page 83

Testing Before Applying HA

See "Configure and Test DMF Before Applying an HA Environment" on page 89.

HA Control of the Service

To use the dmf resource, you must stop the dmf service on each node before applying an HA environment:

node1# chkconfig dmf off
node1# service dmf stop

node2# chkconfig dmf off
node2# service dmf stop

The HA software will control this service.

Note: There are other associated services that you must stop when using a DMF HA environment. See "Stop Services Related to DMF Before Applying an HA Environment" on page 95.

dmf Template

Template location:

/usr/share/doc/sgi-ha/templates/dmf

Use the following:

primitive DMF ocf:sgi:dmf \
op monitor interval="120s" timeout="60s" on-fail="restart" \setminus
op monitor interval="0" timeout="60s" \
op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \setminus
op stop interval="0" timeout="120s" on-fail="fence" \
params monitor_level="0" \
<pre>meta resource-stickiness="1" migration-threshold="1"</pre>

Variable	Description
DMF	Name of this resource instance, such as DMF

Note: In a CXFS environment, ensure that the timeout values are appropriate for your site; you must account for the time required to relocate the CXFS metadata server for the managed filesystems.

For example:

```
primitive DMF ocf:sgi:dmf \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params monitor_level="0" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

• Starts DMF by calling the following:

service dmf start

- Waits for a successful DMF startup by calling dmstat in a loop until dmfdaemon responds successfully
- Fails if dmfdaemon does not respond to a dmdstat query before the resource times out

The stop operation does the following:

• Stops DMF by calling the following:

service dmf stop

- Issues a dmclrmount command
- Fails if DMF could not be stopped

dmf-group

This section discusses the following:

- "dmf-group Purpose" on page 268
- "dmf-group Template" on page 268

dmf-group Purpose

The DMF HA implementation uses a single group resource that contains all of the other required resources, so that HA processes can coherently control all of the resources, starting and stopping them in the required order. The name of the group by default is DMF-GROUP, but it can be any name you choose. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-2 on page 101 depicts the order in which this resource falls in the configuration process.

dmf-group Template

Template location:

/usr/share/doc/sgi-ha/templates/dmf-group

Following are some sample group definitions, including optional resources:

A CXFS environment using OpenVault:

group DMF-GROUP CXFS IP OV DMF NFSSERVER etc_samba var_lib_samba SMB NMB DMFMAN DMFSOAP

A CXFS environment using TMF:

group DMF-GROUP CXFS IP TMF DMF NFSSERVER etc_samba var_lib_samba SMB NMB DMFMAN DMFSOAP

• A local XVM environment using OpenVault:

group DMF-GROUP LXVM dmfusr1 dmfusr2 home spool move_fs journals \
tmp move_fs cache store IP OV DMF NFSSERVER etc_samba var_lib_samba \
SMB NMB DMFMAN DMFSOAP

• A local XVM environment using TMF:

group DMF-GROUP LXVM dmfusr1 dmfusr2 home spool move_fs journals \
tmp move_fs cache store IP TMF DMF NFSSERVER etc_samba var_lib_samba \
SMB NMB DMFMAN DMFSOAP

dmfman

This section discusses the following:

- "dmfman Purpose" on page 270
- "dmfman Requirements" on page 270
- "Testing Before Applying HA" on page 270
- "HA Control of the Service" on page 270
- "dmfman Template" on page 271

dmfman Purpose

The dmfman resource controls DMF Manager. It may optionally be used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-9 on page 159 depicts the order in which this resource falls in the configuration process.

dmfman Requirements

See "DMF Manager Requirements (Optional)" on page 84.

Testing Before Applying HA

See "Test DMF Manager Before Applying an HA Environment" on page 95.

HA Control of the Service

To use the dmfman resource, you must stop the dmfman service on both nodes:

node1# chkconfig dmfman off
node1# chkconfig dmfman off
node2# chkconfig dmfman off

node2# chkconfig dmfman off

The HA software will control this service.

Note: There are other associated services that you must stop. See "Stop Services Related to DMF Before Applying an HA Environment" on page 95.

dmfman Template

Template location:

/usr/share/doc/sgi-ha/templates/dmfman

Use the following:

```
primitive DMFMAN ocf:sgi:dmfman \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="100"
```

Variable

Description

Name of this resource instance, such as DMFMAN

For example:

DMFMAN

```
primitive DMFMAN ocf:sgi:dmfman \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="100"
```

The monitor operation probes to see if the resource is already running.

The start operation does the following:

• Starts DMF Manger by calling the following:

service dmfman start

- Waits for DMF Manager to start successfully by calling the following in a loop: service dmfman status
- Fails if DMF Manager does not start successfully before the resource times out

The stop operation does the following:

- Stops DMF Manger by calling the following: service dmfman stop
- Verifies the DMF Manager status by calling the following: service dmfman status
- Fails if DMF Manager does not stop successfully

dmfsoap

This section discusses the following:

- "dmfsoap Purpose" on page 273
- "dmfsoap Requirements" on page 273
- "Testing Before Applying HA" on page 273
- "HA Control of the Service" on page 273
- "dmfsoap Template" on page 274

dmfsoap Purpose

The dmfsoap resource controls the DMF client Simple Object Access Protocol (SOAP) service. It may optionally be used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-10 on page 162 depicts the order in which this resource falls in the configuration process.

dmfsoap Requirements

See "DMF Client SOAP Service Requirements (Optional)" on page 85.

Testing Before Applying HA

See "Test the DMF Client SOAP Service Before Applying an HA Environment" on page 95.

HA Control of the Service

To use the dmfsoap resource, you must stop the dmfsoap service on both nodes:

node1# chkconfig dmfsoap off
node1# chkconfig dmfsoap off
node2# chkconfig dmfsoap off
node2# chkconfig dmfsoap off

The HA software will control this service.

Note: There are other associated services that you must stop. See "Stop Services Related to DMF Before Applying an HA Environment" on page 95.

dmfsoap Template

Template location:

/usr/share/doc/sgi-ha/templates/dmfsoap

Use the following:

primitive **DMFSOAP** ocf:sgi:dmfsoap \

```
op monitor interval="0" timeout="60s" \
op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
op stop interval="0" timeout="120s" on-fail="fence" \
meta resource-stickiness="1" migration-threshold="100"
```

Variable

Description

Name of this resource instance, such as DMFSOAP

For example:

DMFSOAP

```
primitive DMFSOAP ocf:sgi:dmfsoap \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="100"
```

The monitor operation probes to see if the resource is already running.

The start operation does the following:

• Starts the DMF client SOAP service by calling the following:

service dmfsoap start

• Waits for DMF client SOAP service to start successfully by calling the following in a loop:

service dmfsoap status

• Fails if DMF client SOAP service does not start successfully before the resource times out

The stop operation does the following:

• Stops the DMF client SOAP service by calling the following:

service dmfsoap stop

- Verifies the DMF client SOAP service status by calling the following: service dmfsoap status
- Fails if the DMF client SOAP service does not stop successfully

fence_ipmilan

This section discusses the following:

- "fence_ipmilan Purpose" on page 276
- "Testing Before Applying HA" on page 276
- "fence_ipmilan Template" on page 276

fence_ipmilan Purpose

A fence_ipmilan resource implements STONITH for one RHEL node in the cluster. It may be used in any HA service for a RHEL cluster. See "RHEL STONITH" on page 185.

Note: This resource does not apply to SLES nodes.

Testing Before Applying HA

Verify that the IP address for the BMC of the node that this resource will control is accessible, such as by using the ping(1) command.

fence_ipmilan Template

Note: This resource provides STONITH for RHEL nodes. It does not apply to SLES nodes.

Template location:

/usr/share/doc/sgi-ha/templates/fence_ipmilan

Use the following:

primitive STONITH-NODE stonith:fence_ipmilan \
 params pcmk_host_list="NODE" ipaddr="BMC-IP" login="admin" \
 passwd="admin" delay="DELAY"
location STONITH-NODE-LOCATION STONITH-NODE -inf: NODE

007-5617-011

Variable	Description
STONITH-NODE	Name of this resource instance, such as STONITH-nodel
NODE	Hostname of the RHEL node that this resource will control, such as node1
BMC-IP	The IP address for the BMC for <i>NODE</i> , such as 128.162.245.197
DELAY	The number of seconds by which the action should be delayed. The nodes must have different values, such as 0 and 15, so that they will not begin the reset process at the same time. This will ensure that both nodes cannot power each other off nearly simultaneously, so that neither is remaining to turn the other back on.
STONITH-NODE-LOCATION	Name of this location instance if you want to use something other than the default

Note: The values shown for the BMC user ID and password are typical, but you must verify the values at your site.

Ensure that the acpid service is turned off and will not restart.

For example, for two nodes (node1 and node2):

```
primitive STONITH-nodel stonith:fence_ipmilan \
    params pcmk_host_list="nodel" ipaddr="128.162.245.197" login="admin" \
    passwd="admin" delay="0"
primitive STONITH-node2 stonith:fence_ipmilan \
    params pcmk_host_list="node2" ipaddr="128.162.245.199" login="admin" \
    passwd="admin" delay="15"
location STONITH-node1-LOCATION STONITH-node1 -inf: node1
location STONITH-node2-LOCATION STONITH-node2 -inf: node2
```

The location constraints ensure that the STONITH-nodel resource will never be located on nodel and that the STONITH-node2 resource will never be located on node2. This ensures that the power reset is performed via IPMI from another system.

Filesystem

This section discusses the following:

- "Filesystem Purpose" on page 279
- "Filesystem Requirements" on page 279
- "Testing Before Applying HA" on page 280
- "Filesystem Template" on page 280

Filesystem Purpose

A Filesystem resource implements the mount control for a single filesystem.

- A Filesystem resource is used the following HA services:
- DMF HA service in a local XVM environment for the following:
 - Filesystems managed by DMF
 - DMF administrative filesystems
 - Dedicated filesystem for the OpenVault serverdir directory (optional)
 - With Samba, for the Samba directories that are bind-mounted on /etc/samba and /var/lib/samba
- DMF HA service with Samba in a CXFS environment, for the Samba directories that are bind-mounted on /etc/samba and /var/lib/samba

Note: The Filesystem resources used with Samba require fstype="none", which differs from the template below, and options="bind".

Figure 6-2 on page 101 depicts the order in which this resource falls in the configuration process.

Filesystem Requirements

See "Local Filesystem Requirements" on page 79.

Testing Before Applying HA

See "Configure and Test Local XVM Before Applying an HA Environment" on page 86.

Filesystem Template

Template location:

/usr/share/doc/sgi-ha/templates/Filesystem

Use the following:

primitive FILESYSTEM ocf:heartbeat:Filesystem \ op monitor interval="120s" timeout="60s" on-fail="restart" \ op monitor interval="0" timeout="60s" \setminus op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \ op stop interval="0" timeout="120s" on-fail="fence" \ params device="DEVICE-FILE" directory="MOUNT-POINT" fstype="xfs" \ options="MOUNT-OPTIONS" \

meta resource-stickiness="1" migration-threshold="1"

Variable	Description
FILESYSTEM	Name of this resource instance, such as:
	• dmfusr1 for a managed filesystem
	• dmf_spool_fs for the DMF administrative filesystem defined by the SPOOL_DIR parameter in the DMF configuration file
	 openvaultfs for the filesystem to use as the OpenVault serverdir directory
DEVICE-FILE	The /dev/lxvm volume name of the DMF filesystem device, such as /dev/lxvm/dmfusr1, /dev/lxvm/dmf_spool, or /mnt/data/.ha/etc_samba
MOUNT-POINT	The mount point for the DMF filesystem, such as /dmfusr1, /dmf/dmf_spool, or /etc/samba. This mount point must already exist on all nodes in the HA cluster before you load this text into the CIB.
MOUNT-OPTIONS	The mount options for the filesystem.

007-5617-011

Note: Filesystems that must be mounted with the dmi mount option should also have an mtpt mount option whose value matches the filesystem's *MOUNT_POINT* value. This includes the *MOVE_FS* filesystem and all filesystems with filesystem stanzas (other than those with a MIGRATION_LEVEL setting of archive) in the DMF configuration file.

The following provide examples of Filesystem resources:

- "Filesystem Example for a Managed Filesystem" on page 281
- "Filesystem Example for the Samba Directory bind-Mounted on /etc/samba" on page 282

Filesystem Example for a Managed Filesystem

The following examples for a managed filesystem:

```
primitive dmfusrl ocf:heartbeat:Filesystem \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params device="/dev/lxvm/dmfusrl" directory="/dmfusrl" fstype="xfs" \
         options="rw" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Mounts the filesystem
- Fails if the mount is unsuccessful

The stop operation does the following:

- Unmounts the filesystem
- Fails if the unmount is unsuccessful

Filesystem Example for the Samba Directory bind-Mounted on /etc/samba

The following example is for the Samba directory bind-mounted on /etc/samba:

```
primitive etc-samba ocf:heartbeat:Filesystem \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params device="/mnt/data/.ha/etc-samba" directory="/etc/samba" fstype="none" options="bind\
    meta resource-stickiness="1" migration-threshold="1"
```

The operations and parameters here are similar to the previous example for the managed filesystem, except that this Filesystem resource requires fstype="none" and options="bind".

IPaddr2

This section discusses the following:

- "IPaddr2 Purpose" on page 283
- "IPaddr2 Requirements" on page 283
- "IPaddr2 Template" on page 283

IPaddr2 Purpose

The IPaddr2 resource controls the addition/deletion of an IP address alias on a network interface. It is used in the CXFS NFS edge-serving HA service and in the DMF HA service (in either a CXFS environment or a local XVM environment). See:

- Chapter 5, "Create the CXFS NFS Edge-Serving HA Service" on page 47
- Chapter 6, "Create the DMF HA Service" on page 75

The following figures depict the order in which this resource falls in the configuration process:

- Figure 5-1 on page 54
- Figure 6-3 on page 107

IPaddr2 Requirements

See:

- Edge-serving: "IP Address Alias Requirements in an Edge-Serving HA Cluster" on page 49
- DMF: "IP Address Alias Requirements" on page 79

IPaddr2 Template

Use the following:

```
primitive IP ocf:heartbeat:IPaddr2 \
    op monitor interval="0" timeout="30s" \
    op start interval="0" timeout="90s" on-fail="restart" requires="fencing" \
```

```
params ip="IP-ADDRESS" \<br/>meta resource-stickiness="1" migration-threshold="1"VariableDescriptionIPName of this resource instance, which must match the<br/>named used to define it in the associated group<br/>resource (for example, IP used DMF HA example in<br/>this guide or IP-1 or IP-2 used in the CXFS NFS<br/>edge-serving example in this guide).IP-ADDRESSIP address of the virtual channel, such as<br/>128.162.244.240
```

op stop interval="0" timeout="100s" on-fail="fence" \

For example:

```
primitive IP-1 ocf:heartbeat:IPaddr2 \
    op monitor interval="0" timeout="30s" \
    op start interval="0" timeout="90s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="100s" on-fail="fence" \
    params ip="128.162.244.240" \
    meta resource-stickiness="1" migration-threshold="1"
```

The monitor operation probes to see if the resource is already running. Normally, this is the only monitor operation required for an IPaddr2 resource.

The start operation does the following:

- Establishes the IP address alias
- Fails if the IP address alias is not established

The stop operation does the following:

- Removes the IP address alias
- · Fails if the IP address alias is not removed

ipalias-group

This section discusses the following:

- "ipalias-group Purpose" on page 285
- "ipalias-group Template" on page 285

ipalias-group Purpose

A group resource named IPALIAS-GROUP controls the IPaddr2 and cxfs-client-smnotify resources. You will have a pair of IPALIAS-GROUP resources, each with their own set of colocation and order constraints. It is used in a CXFS NFS edge-serving HA service. See Chapter 5, "Create the CXFS NFS Edge-Serving HA Service" on page 47.

Figure 5-1 on page 54 depicts the order in which this resource falls in the configuration process.

ipalias-group Template

Use the following:

group IPALIAS-GROUP-X IP-X SMNOTIFY-X \
 meta target-role="Stopped"
colocation IPALIAS-WITH-NFS-X inf: IPALIAS-GROUP-X CXFS-NFS-CLONE
order NFS-BEFORE-IPALIAS-X inf: CXFS-NFS-CLONE IPALIAS-GROUP-X

Variable	Description
IPALIAS-GROUP-X	Name of this resource instance, such as IPALIAS-GROUP-1
IP-X	Name of the IPaddr2 resource instance (see "IPaddr2 Template" on page 283), such as IP-1
SMNOTIFY-X	Name of the cxfs-client-smnotify resource instance (see "cxfs-client-smnotify Template" on page 256), such as SMNOTIFY-1

IPALIAS-WITH-NFS-X	Name of this colocation constraint, such as IPALIAS-WITH-NFS-1
CXFS-NFS-CLONE	Name of the NFS clone (see "cxfs-nfs-clone Template" on page 260) such as CXFS-NFS-CLONE
NFS-BEFORE-IPALIAS-X	Name of this order constraint, such as NFS-BEFORE-IPALIAS-1

For example:

• For the first group:

```
group IPALIAS-GROUP-1 IP-1 SMNOTIFY-1 \
    meta target-role="Stopped"
colocation IPALIAS-WITH-NFS-1 inf: IPALIAS-GROUP-1 CXFS-NFS-CLONE
order NFS-BEFORE-IPALIAS-1 inf: CXFS-NFS-CLONE IPALIAS-GROUP-1
```

• For the second group:

```
group IPALIAS-GROUP-2 IP-2 SMNOTIFY-2 \
    meta target-role="Stopped"
colocation IPALIAS-WITH-NFS-2 inf: IPALIAS-GROUP-2 CXFS-NFS-CLONE
order NFS-BEFORE-IPALIAS-2 inf: CXFS-NFS-CLONE IPALIAS-GROUP-2
```

The colocation and order constraints ensure that IPALIAS-GROUP-1 will only run on a server that is also running a CXFS-NFS-CLONE instance, and the clone instance will be started first.

ipmi

This section discusses the following:

- "ipmi Purpose" on page 287
- "Test the BMC IP Address Before Applying an HA Environment" on page 287
- "ipmi Template" on page 287

ipmi Purpose

An ipmi resource implements STONITH for one SLES node in the cluster.

Note: This resource does not apply to RHEL nodes.

Test the BMC IP Address Before Applying an HA Environment

Verify that the IP address for the BMC of the node that this resource will control is accessible, such as by using the ping(1) command.

ipmi Template

Note: This resource provides STONITH for SLES nodes. It does not apply to RHEL nodes.

Template location:

/usr/share/doc/sgi-ha/templates/ipmi

Use the following:

primitive STONITH-NODE stonith:external/ipmi \
 op monitor interval="0" timeout="60s" \
 op monitor interval="300s" timeout="60s" on-fail="restart" \
 op start interval="0" timeout="60s" on-fail="restart" \
 params hostname="NODE" ipaddr="BMC-IP" userid="admin" \
 passwd="admin" interface="lan"

location STONITH-NODE-LOCATION STONITH-NODE -inf: NODE

Variable	Description
STONITH-NODE	Name of this resource instance, such as STONITH-node1
NODE	Name of the SLES node that this resource will control, such as node1
BMC-IP	The IP address for the BMC of the node this resource will control, such as 128.162.232.79.
STONITH-NODE-LOCATION	Name of the location constraint if you want to use something other than the default

Note: You should verify that BMC userid, passwd, and interface values are correct for your site. (The BMC hardware at some sites may require the lanplus value for interface.)

For example:

```
primitive STONITH-nodel stonith:external/ipmi \
    op monitor interval="0" timeout="60s" \
    op monitor interval="300s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="60s" on-fail="restart" \
    params hostname="nodel" ipaddr="128.162.232.79" userid="admin" \
        passwd="admin" interface="lan"
primitive STONITH-node2 stonith:external/ipmi \
    op monitor interval="0" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="60s" on-fail="restart" \
    params hostname="nodel" ipaddr="128.162.246.63" userid="admin" \
        passwd="admin" interface="lan"
location STONITH-node1-LOCATION STONITH-node1 -inf: nodel
location STONITH-node2-LOCATION STONITH-node2 -inf: node2
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Initializes the information required for the stonithd daemon to act when necessary
- Fails if the information cannot be initialized

The location constraint ensures that the STONITH-nodel resource will never be located on nodel. This ensures that the power reset is performed via IPMI from some other system.

lxvm

This section discusses the following:

- "lxvm Purpose" on page 290
- "lxvm Requirements" on page 290
- "Testing Before Applying HA" on page 290
- "lxvm Template" on page 290

1xvm Purpose

An lxvm resource implements node ownership control for local XVM volumes. It is used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75

Figure 6-2 on page 101 depicts the order in which this resource falls in the configuration process.

lxvm Requirements

See "Local XVM Requirements" on page 78.

Testing Before Applying HA

See "Configure and Test Local XVM Before Applying an HA Environment" on page 86.

1xvm Template

Template location:

/usr/share/doc/sgi-ha/templates/lxvm

Use the following:

primitive LXVM ocf:sgi:lxvm \
 op monitor interval="120s" timeout="180s" on-fail="restart" \
 op monitor interval="0" timeout="180s" \
 op start interval="0" timeout="900s" on-fail="restart" requires="fencing" \
 op stop interval="0" timeout="900s" on-fail="fence" \

007-5617-011

```
Variable
                            Description
LXVM
                            Name of this resource instance, such as LXVM
PHYSVOL-LIST
                            Comma-separated list of the physical volumes for the
                            resource agent to steal, such as:
                            myCluster,myClusterStripe1,myClusterStripe2
                            Note: PHYSVOL-LIST must contain all of the physical
                            volumes for every logical volume listed in
                            VOLUME-LIST. All physical disks that belong to a
                            logical volume in an HA cluster must be completely
                            dedicated to that logical volume and no other.
VOLUME-LIST
                            Comma-separated list of volume names under
                             /dev/lxvm to monitor, such as:
                            openvault, home, journals, spool, move, tmp, diskmsp, dmfusr1, dmfusr2
```

params physvols="PHYSVOL-LIST" volnames="VOLUME-LIST" \
meta resource-stickiness="1" migration-threshold="1"

Note: A 900-second start timeout should be sufficient in most cases, but sites with large disk configurations may need to adjust this value. You should usually use the same timeout value for start and stop.

For example:

```
primitive LXVM ocf:sgi:lxvm \
    op monitor interval="120s" timeout="180s" on-fail="restart" \
    op monitor interval="0" timeout="180s" \
    op start interval="0" timeout="900s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="900s" on-fail="fence" \
    params physvols="myCluster,myClusterStripe1,myClusterStripe2" volnames="openvault,home,\
        journals,spool,move,tmp,diskmsp,dmfusr1,dmfusr2" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Steals all physical volumes in *PHYSVOL-LIST* that are not already owned by the local system
- Verifies that all volumes in VOLUME-LIST are online
- Probes paths for all local XVM devices
- Switches to preferred paths for all local XVM devices
- Fails if any volume in VOLUME-LIST does not come online

The stop operation does the following:

- Gives all physical volumes in *PHYSVOL-LIST* to a pseudo-cluster whose ID is of the form OCF-*host-pid*, which allows the lxvm resource agent to identify the filesystems that it must steal when it becomes active
- Fails if any physical volume in PHYSVOL-LIST could not be given away

MailTo

This section discusses the following:

- "MailTo Purpose" on page 293
- "Testing Before Applying HA" on page 293
- "MailTo Template" on page 293

MailTo Purpose

A MailTo resource implements failover notification for a given resource. It may be used in any HA service. A message is sent whenever the specified resource starts or stops.

Testing Before Applying HA

Before applying an HA environment, ensure that the email addresses are valid.

MailTo Template

Template location:

/usr/share/doc/sgi-ha/templates/MailTo

Use the following:

primitive NOTIFY ocf:heartbeat:MailTo \
 params email="EMAIL-ADDRESS" subject="RESOURCE-TO-TRACK"
colocation NOTIFIER inf: RESOURCE-TO-TRACK NOTIFY

Variable	Description
NOTIFY	Name of this resource instance, such as NOTIFY
EMAIL-ADDRESS	The address to be sent notifications
RESOURCE-TO-TRACK	Name of the resource to be tracked, which may be an individual resource such as dmf or a group resource such as DMF-GROUP (see "dmf-group Template" on page 268)

NOTIFIER Name of the colocation constraint, such as NOTIFIER

For example:

primitive NOTIFY ocf:heartbeat:MailTo \
 params email="admin@mycompany.com" subject="DMF-GROUP"
colocation NOTIFIER inf: DMF-GROUP NOTIFY

007-5617-011

nfsserver

This section discusses the following:

- "nfsserver Purpose" on page 295
- "Testing Before Applying HA" on page 295
- "HA Control of the Service" on page 295
- "nfsserver Template" on page 296

nfsserver Purpose

The nfsserver resource controls the start/stop of NFS. It may be used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-6 on page 142 depicts the order in which this resource falls in the configuration process.

Testing Before Applying HA

See "Configure and Test the NFS Service for DMF Use Before Applying an HA Environment" on page 89

HA Control of the Service

Using NFS with HA software requires the following:

- On all HA nodes during HA operation, disable the NFS service from being started automatically at boot time, according to the operating system:
 - RHEL:

rhel_node1# chkconfig nfs off
rhel_node1# service nfs stop

rhel_node2# chkconfig nfs off
rhel_node2# service nfs stop

– SLES:

sles_node1# chkconfig nfsserver off
sles_node1# service nfsserver stop
sles_node2# chkconfig nfsserver off
sles_node2# service nfsserver stop

The HA software will control the service.

nfsserver Template

Template location:

/usr/share/doc/sgi-ha/templates/nfsserver

Use the following:

```
primitive NFSSERVER ocf:heartbeat:nfsserver \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params nfs_shared_infodir="STATEDIR" nfs_ip="IP ADDRESS-ALIAS" \
    meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
NFS	Name of this resource instance, such as NFS.
STATEDIR	Directory in the NFS filesystem that will be used to store NFS file-lock state for this HA cluster, such as the /mnt/cxfsvoll/.nfs subdirectory in the exported filesystem.
IP ADDRESS-ALIAS	IP address alias associated with the NFS client lock state (which is reclaimed by the NFS client from the NFS server when it receives the NSM reboot notification that is initiated by this nfsserver resource), for example 128.162.244.244. This IP address alias will be the same IP address specified for

IP-ADDRESS in one of the IPaddr2 resources (see "IPaddr2 Template" on page 283).

For example:

```
primitive NFSSERVER ocf:heartbeat:nfsserver \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="120s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="120s" on-fail="fence" \
    params nfs_shared_infodir="/mnt/cxfsvol1/.nfs" nfs_ip="128.162.232.79" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Starts the NFS server:
 - RHEL:

service nfs start

- SLES:

service nfsserver start

- Notifies clients by calling the nfs_notify_cmd command
- Fails if the NFS server does not start

The stop operation does the following:

- Stops the NFS server:
 - RHEL:

service nfs stop

- SLES:

service nfsserver stop

• Fails if the NFS server does not stop

nmb

This section discusses the following:

- "nmb Purpose" on page 298
- "nmb Requirements" on page 298
- "HA Control of the Service" on page 298
- "nmb Template" on page 298

nmb Purpose

An nmb resource controls the nmbd service for Samba. It may be used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75

Figure 6-7 on page 147 depicts the order in which this resource falls in the configuration process.

nmb Requirements

See "Samba Requirements (Optional)" on page 84.

HA Control of the Service

On all HA nodes during HA operation, disable the nmb service from being started automatically at boot time on all HA nodes:

ha# chkconfig nmb off

The HA software will control this service.

nmb Template

Template location:

/usr/share/doc/sgi-ha/templates/nmb

Use the following:

```
primitive NMB lsb:nmb \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="1"
```

Variable

NMB

Description

Name of this resource instance, such as NMB.

For example:

```
primitive NMB lsb:nmb \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

• Starts the nmbd service by calling the following:

service nmb start

• Fails if the nmbd service does not start

The stop operation does the following:

• Stops the nmbd service by calling the following:

service nmb stop

Fails if the nmbd service does not stop

openvault

This section discusses the following:

- "openvault Purpose" on page 300
- "openvault Requirements" on page 300
- "Testing Before Applying HA" on page 300
- "HA Control of the Service" on page 300
- "openvault Template" on page 301

openvault Purpose

An openvault resource controls the start/stop of all OpenVault processes. It is used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-4 on page 111 depicts the order in which this resource falls in the configuration process.

openvault Requirements

See "OpenVault Requirements" on page 80.

Testing Before Applying HA

See "Configure and Test OpenVault Before Applying an HA Environment" on page 87.

HA Control of the Service

To use the openvault resource, you must stop the openvault service on each node before applying HA:

node1# chkconfig openvault off
node1# service openvault stop

node2# chkconfig openvault off node2# service openvault stop The HA software will control this service.

openvault Template

Template location:

/usr/share/doc/sgi-ha/templates/openvault

Use the following:

```
primitive OV ocf:sgi:openvault \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="90s" on-fail="fence" \
    params virtualhost="VIRTUALHOSTVALUE" serverdir="SERVERDIR" \
    meta resource-stickiness="1" migration-threshold="1" is-managed="false"
```

Variable	Description
OV	Name of this resource instance, such as OV.
VIRTUALHOSTVALUE	Hostname where the OpenVault server will be listening (which must also have its own IPaddr2 resource instance, see "IPaddr2 Template" on page 283).
SERVERDIR	The directory that will eventually contain the OpenVault server configuration. <i>SERVERDIR</i> could be a directory that will be dedicated for OpenVault use (such as /dmf/openvault) or it could be an HA filesystem in the same resource group that has sufficient space (such as /dmf/home) to contain the subdirectory (such as /dmf/home/openvault) and its contents. The filesystem must be either:
	• A directory that will become a mountable CXFS filesystem managed by a cxfs resource
	• A directory that will become a mountable XFS

filesystem managed by a Filesystem resource in the same resource group as the openvault resource **Note:** As part of the conversion to an HA environment, OpenVault will create this directory and move its database and logs into the directory; OpenVault will fail if the directory already exists.

For example, if you define SERVERDIR as /dmf/home/openvault, the parent directory /dmf/home directory can exist but the entire path /dmf/home/openvault must not exist.

For example:

```
primitive OV ocf:sgi:openvault \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="300s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="90s" on-fail="fence" \
    params virtualhost="myvirtualhost" serverdir="/dmf/home/openvault" \
    meta resource-stickiness="1" migration-threshold="1" is-managed="false"
```

Note: For the initial configuration process, the setting for the is-managed attribute must be false as shown above. The step in section "Make the openvault Resource HA-Managed" on page 127 will reset this attribute to true so that the resource will run under HA control.

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Verifies that the OpenVault serverdir directory is mounted and that the *VIRTUALHOSTVALUE* IP address is available
- Starts OpenVault with the following command:

ov_start server clients

• Fails if either *SERVERDIR* or *VIRTUALHOSTVALUE* is unavailable, or if OpenVault does not start

The stop operation does the following:

• Stops OpenVault with the following command:

ov_stop server clients

- Kills any remaining OpenVault processes found by ov_procs
- Clears the OpenVault semaphore with the following command:

ipcrm -s

• Fails if OpenVault could not be stopped or if the semaphore could not be cleared

ping

This section discusses the following:

- "ping Purpose" on page 304
- "Testing Before Applying HA" on page 304
- "ping Template" on page 304

ping Purpose

The HA software calculates a score for each node that determines where resources will run. A ping resource further influences the node on which a given resource will run. It may be used in any HA service.

Testing Before Applying HA

Before applying an HA environment, ensure that the IP addresses you want to include are valid and accessible with the ping(1) command.

ping Template

Template location:

/usr/share/doc/sgi-ha/templates/ping

Use the following cloned resource:

```
primitive PING ocf:pacemaker:ping \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="60s" on-fail="restart" \
    params name="PINGSCORE" multiplier="NNNN" debug="true" \
    host_list="IP-PING-LIST"
clone PING-CLONE PING
```

The above creates an attribute called *PINGSCORE* on both nodes (because the *PING* resource is cloned). The value of the *PINGSCORE* attribute will be calculated as the number of IP addresses (from *IP-PING-LIST*) successfully pinged from that node times the *NNNN* multiplier.

To implement a connectivity influence constraint on *RESOURCE* in which the node that can successfully contact the most IP addresses in *IP-PING-LIST* will be chosen (assuming that all other elements of the cumulative node scores for *RESOURCE* are equal), use the following:

location BEST-LOCATION RESOURCE \
 rule PINGSCORE: defined PINGSCORE

This adds the value of *PINGSCORE* on each node to that node's overall score for *RESOURCE*, if the *PINGSCORE* attribute is defined (that is, the *PING* resource is running on the node).

To implement a connectivity influence constraint on *RESOURCE* that requires a node to meet a minimum-connectivity requirement in order to be eligible to run the *RESOURCE*, use the following constraint:

```
location THRESHOLD-LOCATION RESOURCE \
    rule -inf: not_defined PINGSCORE or PINGSCORE lt THRESHOLD-VALUE
```

This sets the node score for *RESOURCE* to -INFINITY if either the *PINGSCORE* attribute is not defined for a node (that is, the *PING* resource is not running on the node) or the value of *PINGSCORE* is less than the defined *THRESHOLD-VALUE* on that node.

Variable	Description
PING	Name of this resource instance, such as PING.
IP-PING-LIST	Comma-separated list of IP addresses on which to execute ping, such as:
	28.162.246.63,128.162.246.61,128.162.232.79
PINGSCORE	Name of the attribute (such as PINGSCORE) that will consist of a value computed by the ping resource agent.
	Note: Because the <i>PING</i> resource is cloned, all nodes in the cluster will use the same attribute. On each node, the value of the attribute is calculated by the ping resource agent for the <i>PINGSCORE</i> parameter will be computed as the number of IP addresses (from the <i>IP-PING-LIST</i>) that were successfully accessed via the ping command multiplied by the <i>NNNN</i> value.

NNNN	The arbitrary value, such as 1000, by which the number of the IP addresses from <i>IP-PING-LIST</i> which were successfully reached via ping will be multiplied.
PING-CLONE	Name of the clone instance
BEST-LOCATION	Name of the location constraint
THRESHOLD- LOCATION	Name of the location constraint
RESOURCE	Resource to be influenced, such as DMF-GROUP (see "dmf-group Template" on page 268)
THRESHOLD-VALUE	The minimum number of IP addresses that <i>RESOURCE</i> must be able to ping, multiplied by the <i>NNNN</i> multiplier value

For example, suppose that you want to ensure that a node running the DMF-GROUP is always able to successfully ping at least two of the IP addresses in *IP-PING-LIST*; using an *NNNN* multiplier value of 1000, the *THRESHOLD-VALUE* would be 2000. You could use the following:

```
primitive PING ocf:pacemaker:ping \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="60s" on-fail="restart" \
    params name="PINGSCORE" multiplier="1000" debug="true" \
    host_list="128.162.246.63,128.162.246.61,128.162.232.79"
clone PING-CLONE PING
location THRESHOLD-LOCATION DMF-GROUP \
    rule -inf: not_defined PINGSCORE or PINGSCORE lt 2000
```

smb

This section discusses the following:

- "smb Purpose" on page 307
- "smb Requirements" on page 307
- "HA Control of the Service" on page 307
- "Testing Before Applying HA" on page 307
- "smb Template" on page 308

smb Purpose

The smb resource controls the smb service for Samba. It may be used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-7 on page 147 depicts the order in which this resource falls in the configuration process.

smb Requirements

See "Samba Requirements (Optional)" on page 84.

HA Control of the Service

On all HA nodes during HA operation, disable the smb service from being started automatically at boot time on all HA nodes:

ha# chkconfig smb off

The HA software will control this service.

Testing Before Applying HA

See "Configure and Test Samba Before Applying an HA Environment" on page 91.

smb Template

Template location:

/usr/share/doc/sgi-ha/templates/smb

Use the following:

```
primitive SMB lsb:smb \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="1"
```

Description

Variable

Name of this resource instance, such as SMB.

For example:

SMB

```
primitive SMB lsb:smb \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

• Starts the smbd service by calling the following:

service smb start

• Fails if the smbd service does not start

The stop operation does the following:

• Stops the smbd service by calling the following:

service smb stop

• Fails if the smbd service does not stop

tmf

This section discusses the following:

- "tmf Purpose" on page 309
- "tmf Requirements" on page 309
- "Testing Before Applying HA" on page 309
- "HA Control of the Service" on page 309
- "tmf Template" on page 310

tmf Purpose

The tmf resource controls the start/stop of TMF. It may be used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-4 on page 111 depicts the order in which this resource falls in the configuration process.

tmf Requirements

See "TMF Requirements" on page 79.

Testing Before Applying HA

See "Configure and Test TMF Before Applying an HA Environment" on page 87.

HA Control of the Service

To use the tmf resource, you can optionally stop the tmf service on each node before applying an HA environment:

node1# chkconfig tmf off
node1# service tmf stop

node2# chkconfig tmf off
node2# service tmf stop

The HA software will control this service.

If tape drives are defined and used outside of DMF, you must manually start TMF on the inactive server.

Note: There are other associated services in a DMF environment that you must stop. See "Stop Services Related to DMF Before Applying an HA Environment" on page 95.

tmf Template

Template location:

/usr/share/doc/sgi-ha/templates/tmf

Use the following:

```
primitive TMF ocf:sgi:tmf \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params devgrpnames="DEVGRPNAME-LIST" mindevsup="MINDEVSUP-LIST" \
        devtimeout="DEVTIMEOUT-LIST" loader_names="LOADERNAME-LIST" \
        loader_hosts="HOST-LIST" loader_users="USER-LIST" \
        loader_passwords="PASSWORD-LIST" admin_emails="EMAIL-ADDRESS-LIST" \
        meta resource-stickiness="1" migration-threshold="1"
```

Variable	Description
TMF	Name of this resource instance, such as TMF.
DEVGRPNAME-LIST	Comma-separated list of TMF device groups defined in the $tmf.config$ file that are to be managed by HA software, such as:
	ibm3592,t10ka
MINDEVSUP-LIST	Comma-separated list of the minimum number of devices, one entry per device group, that must be configured up successfully within the corresponding

device group in order to count the group as being highly available, such as:

1,0

Note: A value of 0 indicates that failover will never be initiated, even if all the devices in that device group are unavailable. This value is supported for all device groups; however, in order for TMF to be considered up, at least one tape device in some device group must be up. If there are no devices up in all defined device groups, then the resource agent will be considered to be in a stopped state, which will impact the resource monitor and the resource start actions.

DEVTIMEOUT-LIST Comma-separated list of device timeouts in seconds, one entry per device group, that are used to decide how long to wait for a device in that device group to finish configuring up or down, such as:

120,240

Changing the up/down state of a device may require rewinding and unloading a tape left in the drive by a previous host. Different tape device types have different maximum rewind and unload times, which can be obtained from the vendor's product literature. To calculate the timeout value for a particular device group, add the maximum rewind time for a device in that group to the device's unload time plus add an additional 10 seconds to allow for any required robot hand movement.

For example, 3592 tape drives with a maximum rewind time of 78 seconds and an unload time of 21 seconds require a value of 78+21+10=109 seconds. 9940B tape drives with a maximum rewind time of 90 seconds and an unload time of 18 seconds require a value of 90+18+10=118.

	Note: The tmf resource agent will try twice to configure each drive up before considering it unusable, so the start timeout value should therefore be at least twice the greatest value in <i>DEVTIMEOUT-LIST</i> . For example, 2*118=236. You should usually use the same timeout value for start and stop.
LOADERNAME-LIST	Comma-separated list of loader names configured in <i>DEVGRPNAME-LIST</i> tmf.config that correspond to the device groups listed in <i>DEVGRPNAME-LIST</i> , such as:
	ibm3494,1700a
HOST-LIST	Comma-separated list of hosts through which the corresponding loaders listed in <i>LOADERNAME-LIST</i> are controlled, such as:
	ibm3494cps,stkacs1s
USER-LIST	Comma-separated list of user names that are used to log in to the corresponding hosts listed in <i>HOST-LIST</i> , such as:
	root,acssa
PASSWORD-LIST	Comma-separated list of passwords corresponding to the user names listed in USER-LIST, such as:
	passwd1,passwd2
EMAIL-ADDRESS-LIST	(Optional) Comma-separated list of administrator email addresses corresponding to the device groups listed in <i>DEVGRPNAME-LIST</i> , such as:
	root,admin1

Note: You can use the same email address for more than one device group (such as admin1, admin1). The email address will be used to send a message whenever tape drives that were previously available become unavailable, so that the administrator can take action to repair the drives in a timely fashion.

For example:

```
primitive TMF ocf:sgi:tmf \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op monitor interval="0" timeout="60s" \
    op start interval="0" timeout="600s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="600s" on-fail="fence" \
    params devgrpnames="ibm3592,t10ka" mindevsup="1,0" devtimeout="120,240" \
        loader_names="ibm3494,1700a" loader_hosts="ibm3494cps,stkacsls" \
        loader_users="root,acssa" loader_passwords="passwd1,passwd2" \
        admin_emails="root,admin1" \
    meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

- Starts the TMF daemon if necessary
- Configures up the tape loader and all tape drives in each device group
- Preempts reservations
- Forces dismount if necessary
- Fails if insufficient drives come up in any device group

The stop operation does the following:

- Configures down all tape drives in each device group
- Forces a release of drives allocated to a user job
- · Fails if any drive in any device group could not be stopped

winbind

This section discusses the following:

- "winbind Purpose" on page 314
- "Testing Before Applying HA" on page 314
- "HA Control of the Service" on page 307
- "winbind Template" on page 314

winbind Purpose

If your Samba implementation uses an authentication type that requires the winbind daemon, you can use a winbind resource to control it. It may be used in a DMF HA service. See Chapter 6, "Create the DMF HA Service" on page 75.

Figure 6-7 on page 147 depicts the order in which this resource falls in the configuration process.

Testing Before Applying HA

See "Configure and Test the Winbind Service Before Applying an HA Environment" on page 91.

HA Control of the Service

If winbind is used for authentication, disable the winbind service from being started automatically at boot time on all HA nodes:

ha# chkconfig winbind off

The HA software will control this service.

winbind Template

Template location:

/usr/share/doc/sgi-ha/templates/winbind

Use the following:

```
primitive WINBIND lsb:winbind \
    op monitor interval="0" timeout="60s" \
    op monitor interval="120s" timeout="60s" on-fail="restart" \
    op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
    op stop interval="0" timeout="60s" on-fail="fence" \
    meta resource-stickiness="1" migration-threshold="1"
```

Description

Variable

WINBIND

Name of this resource instance, such as WINBIND

For example:

primitive WINBIND lsb:winbind \setminus

```
op monitor interval="0" timeout="60s" \
op monitor interval="120s" timeout="60s" on-fail="restart" \
op start interval="0" timeout="60s" on-fail="restart" requires="fencing" \
op stop interval="0" timeout="60s" on-fail="fence" \
meta resource-stickiness="1" migration-threshold="1"
```

The first monitor operation probes to see if the resource is already running and the second periodically verifies that it continues to run.

The start operation does the following:

• Starts the winbind service by calling the following:

service smb winbind

• Fails if the winbind service does not start

The stop operation does the following:

• Stops the smbd service by calling the following:

service smb winbind

• Fails if the winbind service does not stop

Glossary

active/active cluster

An HA cluster in which multiple nodes are able to run disjoint sets of resources, with each node serving as a backup for another node's resources in case of node failure.

active/passive cluster

An HA cluster in which all of the resources run on one node and one or more other nodes are the failover nodes in case the first node fails.

active node

The node on which resources are running.

BMC

Baseboard management controller, a system controller used in resetting x86_64 systems.

CIB

Cluster information base, used to define the HA cluster.

clone

A resource that is active on more than one node.

control services

The set of underlying services that control the cluster, which vary by operating system:

- RHEL:
 - CMAN
 - Corosync
 - Pacemaker
- SLES:
 - OpenAIS
 - Corosync
 - Pacemaker

COPAN MAID

Power-efficient long-term data storage based on an enterprise massive array of idle disks (MAID) platform.

Corosync

The infrastructure that provides core messaging and membership functionality

CXFS

Clustered XFS.

CXFS NFS edge-serving

A configuration in which CXFS client nodes can export data with NFS.

DCP

Drive control program.

DMF Manager

A web-based tool you can use to deal with day-to-day DMF operational issues and focus on work flow.

edge-serving See CXFS NFS edge-serving.

fail policy

A parameter defined in the CIB that determines what happens when a resource fails.

failover node

The node on which resources will run if the active node fails or if they are manually moved by the administrator. Also known as the *passive node* or *standby node*.

fencing

The method that guarantees a known cluster state when communication to a node fails or actions on a node fail. (This is *node-level fencing*, which differs from the concept of *I/O fencing* in CXFS.)

HA

High availability, the state in which resources fail over from one node to another without disrupting services for clients.

HA filesystem

A filesystem that will be made highly available according to the instructions in this guide.

HA service

The set of resources and resource groups that can fail over from one node to another in an HA cluster. The HA service is usually associated with an IP address. See also *non-HA service*.

High Availability Extension

SUSE Linux Enterprise product for HA.

IPMI

Intelligent Platform Management Interface, a system reset method for x86_64 systems.

ISSP

InfiniteStorage Software Platform, an SGI software distribution.

LCP

library control program.

LSB

Linux Standard Base.

monitor operation

See probe monitor operation and standard monitor operation.

mover1

In the examples in this guide, the initial parallel data-mover node (which will later become a node in the HA cluster) which will be the initial owner node of shelves 0 and 1. See also *mover2*.

mover2

In the examples in this guide, the alternate parallel data-mover node in the HA cluster (which will later become a node in the HA cluster) which will be the initial owner node of shelves 2 and 3. See also *mover1*.

node1

In the examples in this guide, the initial host (which will later become a node in the HA cluster) on which all of the filesystems will be mounted and on which all tape drives and libraries are accessible. See also *node2*.

node2

In the examples in this guide, the alternate host in the HA cluster other than the first node (node1). See also *node1*.

non-HA service

A service such as DMF before an HA environment is applied. See also HA service.

NSM Network Status Monitor.

OCF

Open Cluster Framework.

OpenVault

A mounting service used by DMF.

owner node

The node that DMF will use to perform migrations and recalls on a given shelf. The node on which you run ov_copan becomes the owner node of that shelf. In an HA environment, ownership is transferred as part of failover.

physvol

XVM physical volume.

primitive

Used to define a resource in the CIB.

probe monitor operation

A monitor operation that checks to see if the resource is already running.

resource

An application that is managed by HA software.

resource agent

The software that allows an application to be highly available without modifying the application itself.

resource group

A set of resources that are colocated on the same node and ordered to start and stop serially. The resources in a resource group will fail over together as a set.

resource stickiness

An HA concept that determines whether a resource should migrate to another node or stay on the node on which it is currently running.

serverdir directory

A directory dedicated to holding OpenVault's database and logs within a highly available filesystem in the DMF resource group.

SOAP

Simple Object Access Protocol

split cluster

A situation in which cluster membership divides into multiple clusters, each claiming ownership of the same filesystems, which can result in filesystem data corruption. Also known as *split-brain syndrome*.

standard monitor operation

A monitor operation that periodically verifies that the resource continues to run.

STONITH

Shoot the other node in the head, the facility that guarantees cluster state by fencing non-responsive or failing nodes.

TMF

Tape Management Facility, a mounting service used by DMF.

XFS

A filesystem implementation type for the Linux operating system. It defines the format that is used to store data on disks managed by the filesystem.

WSDL

Web Service Definition Language

XVM

Volume manager for XFS filesystems (local XVM) and CXFS filesystems.

Index

A

acpid chkconfig and, 223 active/passive cluster, 4 administrative tasks CIB backup copy, 27 CIFS, 192 cleaning up the local resource state, 193 clearing the fail count, 192 log files, 192 manual system reset, 207 number of historical files, 193 stopping HA service, 206 application-specific problems, 224 applications that depend on CXFS filesystems, 77

B

back up the CIB, 27
backups and HA, 16
base HA cluster configuration, 35
base object, 83
best practices, 15

administration, 26
before applying an HA environment, 15
configuring, 17
maintenance, 30
testing, 17

Bind Network Address, 42, 43

С

CACHE_DIR, 83 chkconfig, 45, 188

007-5617-011

chkconfig settings, 222 CIB recovery, 233 CIFS, 192 clearing failcounts, 233 cluster information base (CIB) backup, 27 cman chkconfig and, 223 colocation constraints, 25 configuration tools, 23 configuring COPAN MAID for HA, 173 configuring CXFS NFS edge-serving for an HA environment, 47 consensus, 28, 44 constraints. 24 COPAN MAID cluster resources, 173 copan ov client resource agent, 2 requirements, 81, 165 testing the non-HA service, 88, 167 COPAN MAID failover example, 8 COPAN OpenVault client resource moving, 28 copan_ov_client, 2, 127 moving, 195 copan_ov_client template, 128, 179, 237 core file identification, 29 core membership timeout, 28 corosync.log, 24 corruption of CIB, 233 crm, 23 crm status and monitoring for problems, 27, 190 crm_verify, 23, 24, 222 crm_verify -LV and monitoring for problems, 27, 190 CXFS applications that depend on CXFS, 77 colocation, 77

Index

cxfs resource agent, 2 licensing, 33 nodes for failover, 76 number of nodes in the cluster, 76 relocation support, 77 requirements, 76 start-ordering, 77 start/stop issues, 77 system reset, 77 testing the cxfs resource, 104 testing the non-HA service, 86 cxfs chkconfig and, 223 CXFS fail policy, 16 CXFS heartbeat timeout, 28 **CXFS NFS edge-serving** testing the non-HA service, 50 CXFS NFS edge-serving an HA environment, 47 CXFS NFS edge-serving failover example, 4 CXFS NFS edge-serving node and NFS client, 29 cxfs template, 102, 242 cxfs-client template, 245 cxfs-client-clone template, 174, 249 cxfs-client-fs, 3 cxfs-client-nfsserver, 3 cxfs-client-nfsserver template, 57, 251 cxfs-client-smnotify template, 64, 256 cxfs-nfs-clone template, 55, 260 cxfs client chkconfig and, 223 cxfs_cluster chkconfig and, 223

D

debugging, 27, 190
default-resource-failure-stickiness, 25
Disk Name values must be unique, 79
dmcopytool, 84
resource, 155
dmcopytool template, 262

dmcopytool-1.0.10, 84 DMF active/passive cluster, 4 cluster resources, 75 configuration, 136 configuring the Filesystem resource managed user filesystem, 280 connectivity to libraries and drives, 82 DMF client SOAP service requirements, 85 DMF Manager requirements, 84 dmf resource agent, 3 dmfman resource agent, 3 dmfsoap resource agent, 3 licensing, 33 requirements, 81 testing the dmf resource, 140 testing the dmfman resource, 161 testing the dmfsoap resource, 157, 163 testing the non-HA service, 89 dmf, 135 chkconfig and, 223 DMF client SOAP dmfsoap resource agent, 3 DMF configuration parameters, 194 DMF copytool requirements, 84 testing, 92 DMF copytool resource template, 262 DMF failover example, 7 DMF for an HA environment, 75 add resources, 97 configure and test before applying HA, 85 confirm completed status, 164 put into production mode, 165 requirements, 75 stop services, 95 **DMF** Manager dmfman resource agent, 3 testing the non-HA service, 95 DMF SOAP testing the non-HA service, 95

dmf template, 139, 265 dmf-group, 105 DMF-GROUP template, 101, 268 dmfman, 159 chkconfig and, 223 dmfman template, 160, 270 dmfman_setup_ha, 160 dmfsoap, 162 chkconfig and, 223 dmfsoap template, 156, 163, 273 dump from metadata server, 136

Е

edge-serving, 48 edge-serving requirements, 48 error message verbosity, 44 error messages in log files, 222 /etc/corosync/corosync.conf, 44 /etc/exports, 50, 89 Ethernet switch, 38 exfs-client template, 56, 174

F

fail count clearing, 192 failcount values, 27 failcounts, 233 failover, 25 failover nodes, 76 failover testing strategies, 228 failpolicy, 16 fence_ipmilan template, 276 fencing See "STONITH", 25 fencing terminology (HA vs CXFS), 21 Filesystem, 105 Filesystem requirements, 79 Filesystem resource managed user filesystem, 280

007-5617-011

OpenVault serverdir, 280 Filesystem template, 279 filesystems testing the Filesystem resource, 148 full cluster outage, 32 fully qualified domain name, 16

G

Generate Auth Key File, 43 GID 189, 35

Η

HA control services stopping the service, 206 HA service terminology, 1 haclient group, 35 hacluster user, 35 hardware maintenance, 30 hardware requirements, 34 heartbeat timeout, 28 historical files, 193 HOME_DIR, 82 hostname consistency, 16

Ι

I/O fencing and system reset, 77 implicit constraint, 28 incomplete failover, 232
INFINITY, 28
INTERFACE, 83 interval value, 21 introduction, 1
IP address alias, 79 requirements, 79

Index

IPaddr2, 107 requirements, 79 IPaddr2 template, 63, 108, 283 IPALIAS-GROUP template, 62, 285 ipmi template, 287 ISSP release note, 3 software, 2 ISSP HA service, 46

J

JOURNAL_DIR, 82

Κ

kernel dump, 227 kernel-default-debuginfo, 16 kernel.core_pattern, 29 Knowledgebase, 228

L

lfs, 92 lhsmtool_dmf, 84, 156, 158 lhsmtool_dmf resource template, 262 lhsmtool_posix, 156 licensing requirements, 33 local filesystem requirements, 79 local XVM lxvm resource agent, 3 requirements, 78 testing lxvm, 106 testing the non-HA service, 86 location constraints, 25 log files, 24, 192 logd chkconfig and, 223

logging, 44 Lustre testing the non-HA service, 92 Lustre filesystem mount points, 157 lxvm, 105 lxvm resource agent, 3 lxvm template, 290

Μ

MAID shelf, 81, 165 MailTo resource, 26 MailTo template, 293 maintenance mode, 31, 191 manual system reset, 207 Messages, 192 meta attributes, 22 migration-threshold, 22 MIGRATION_LEVEL, 84, 157 monitor operation, 21 monitoring for problems, 27, 190 mounting service See "OpenVault or TMF", 80 move and unmove, 28 MOVE_FS, 82 moving the COPAN OpenVault client resource, 28 mtcp_hb_period, 28 Multicast Address, 42, 43 Multicast Port, 42, 43 multicasting, 38

Ν

networking and HA, 15 NFS configuration for an HA environment, 142 testing the nfsserver resource, 144 testing the non-HA service, 89 nfs

328

chkconfig and, 223 NFS client and CXFS NFS edge-serving node, 29 NFS client and server, 29 NFS state information filesystem, 16 nfslock chkconfig and, 223 nfsserver chkconfig and, 223 nfsserver template, 143, 295 nmb chkconfig and, 223 testing the nmb resource, 153 nmb template, 151, 298 noarch/sgi-isspdocs, 37 node configuration, 38 node object, 83 node-level fencing See "STONITH", 25 nodes for failover. 76 non-HA service configuration and testing COPAN MAID, 88, 167 **CXFS**, 86 CXFS NFS edge-serving, 50 DMF, 89 DMF Manager, 95 DMF SOAP, 95 local XVM, 86 NFS, 89 OpenVault, 87 TMF, 87 number of nodes in the cluster, 76

0

openais chkconfig and, 223 OpenVault configuration for an HA environment, 118 configuring the Filesystem resource serverdir, 280 openvault resource agent, 3

007-5617-011

requirements, 80 serverdir directory, 80 testing the non-HA service, 87 testing the openvault resource, 133 wildcard and, 80 openvault, 127 chkconfig and, 223 openvault template, 118, 300 OpenVault wildcard, 83 operations, 21 order constraints, 25 ownership of a MAID shelf, 81, 165

P

pacemaker
chkconfig and, 223
Parallel Data-Mover Option
DMF configuration and, 138
licensing, 33
OpenVault configuration and, 124
requirements, 34
passive cluster, 4
physvol Disk Name values must be unique, 79
PID in core files, 29
ping Resource, 26
ping template, 304
preliminary testing tasks, 228
probe monitor, 21

R

redundancy and HA, 15 release note, 3 relocation support for CXFS, 77 reporting problems to SGI, 225 requirements, 48 COPAN MAID, 81, 165 CXFS, 76

Index

DMF, 81 DMF client SOAP service, 85 DMF copytool, 84 DMF Manager, 84 hardware, 34 IP address alias. 79 IP address alias in an edge-serving cluster, 49 IPaddr2, 79 licensing, 33 local filesystem, 79 local XVM, 78 OpenVault, 80 Parallel Data-Mover Option, 34 Samba, 84 software version, 34 system reset, 34 time synchronization, 34 TMF, 79 reset CXFS and, 77 enabling, 187 manual, 207 requirements, 25, 34 resource dmcopytool, 155 nfsserver configuration, 142 nmb configuration, 147 openvault configuration, 118 smb configuration, 147 terminology, 1 resource agents provided by SGI, 2 terminology, 1 resource class, 19 resource configuration Filesystem managed user filesystem, 280 OpenVault serverdir, 280 resource format, 18 resource group colocation and ordering, 25 terminology, 1

resource provider, 19 resource stickiness, 25 resource templates, 17 copan_ov_client, 128, 179, 237 cxfs, 102, 242 cxfs-client-clone, 174, 249 cxfs-client-nfsserver, 57, 251 cxfs-client-smnotify, 64, 256 cxfs-nfs-clone, 55, 260 dmcopytool, 262 dmf, 139, 265 DMF-GROUP, 101, 268 dmfman, 160, 270 dmfsoap, 156, 163, 273 exfs-client, 56, 174, 245 fence_ipmilan, 276 Filesystem, 279 IPaddr2, 63, 108, 283 IPALIAS-GROUP, 62, 285 ipmi, 287 lxvm, 290 MailTo, 293 naming conventions, 19 nfsserver, 143, 295 nmb, 151, 298 openvault, 118, 300 ping, 304 smb, 151, 152, 307 tmf, 112, 309 winbind, 152, 314 resource testing cxfs, 104 dmf, 140 dmfman, 161 dmfsoap, 157, 163 Filesystem, 148 IPaddr2, 109 lxvm, 106 nfsserver, 144 openvault, 133 smb and nmb, 153

330

tmf, 116 resource type, 19 resource-stickiness, 22 restart the OpenVault server, 194 restore, 136 RHEL HA configuration, 39

S

Samba configuration for an HA Environment, 147 requirements, 84 testing the non-HA service, 91 score calculation, 25 SERVER_NAME, 83 serverdir directory for OpenVault, 80 service terminology, 1 SGI InfiniteStorage Software Platform See "ISSP", 3 SGI ISSP High Availability software, 2 SGI Knowledgebase, 228 SGI products, 1 sgi-isspdocs, 37 shelf on MAID, 81, 165 short hostname, 16 SLES HA configuration, 42 smb chkconfig and, 223 testing the smb resource, 153 smb template, 151, 152, 307 software upgrades, 197 software version requirements, 34 spaces in resource names, 19 SPOOL_DIR, 82 standard service configuration and testing Lustre, 92 Samba, 91 Winbind, 91 start operation, 21 start/stop issues and CXFS, 77

007-5617-011

status output, 221 **STONITH** enabling, 187 fence_ipmilan (RHEL), 276 requirements, 25, 34 stonith command, 207 testing ipmi, 187 STONITH capability testing, 224 stonith command, 224 stop operation, 21 stopping services DMF configuration, 95 stopping underlying HA control services, 206 STORE_DIR, 83 Supportfolio, 228 sysctl, 28 system configuration and HA, 15 system reset and I/O fencing, 77 system reset enabling, 187 system software updates, 31

Т

template location, 18 template workfile, 18 templates See "resource templates", 235 test components before applying HA, 16 test the base HA cluster, 45 testing COPAN MAID non-HA service, 88, 167 CXFS NFS edge-serving non-HA service, 50 CXFS non-HA service, 86 CXFS resource, 104 DMF copytool standard service, 92 DMF Manager standard service, 95 DMF non-HA service, 89 dmf resource, 140 DMF SOAP standard service, 95 dmfman resource, 161

Index

dmfsoap resource, 157, 163 Filesystem resource, 148 IPaddr2 resource, 109 ipmi. 187 local XVM standard service, 86 Lustre, 92 lxvm resource, 106 NFS non-HA service, 89 nfsserver resource, 144 nmb resource, 153 openvault resource, 133 OpenVault standard service, 87 Samba serving non-HA service, 91 smb and nmb resource, 153 TMF non-HA service, 87 tmf resource, 116 Winbind non-HA service, 91 testing COPAN MAID for an HA environment, 173 testing CXFS NFS edge-serving for an HA environment, 47 testing strategies, 228 time synchronization, 34 timeout values, 22 TMF configuration for an HA environment, 112 requirements, 79 testing the non-HA service, 87 testing the tmf resource, 116 tmf resource agent, 3 tmf chkconfig and, 224 tmf template, 112, 309 TMP_DIR, 82 token, 44 token consensus, 28 tools. 23 tools for configuration, 23 totem consensus. 44 totem token, 28, 44 troubleshooting CIB recovery, 233 clearing failcounts, 235

error message, 222 general troubleshooting, 221 incomplete failover, 232 reporting problems to SGI, 225 using SGI Knowledgebase, 228

U

UID 189, 35 unmove and move, 28 updates, 31 upgrades, 197 /usr/lib/dmf/dmfman_setup_ha, 160 /usr/share/doc/packages/sgi-issp-ISSPVERSION/TITLE, 37

V

/var/log/cluster/corosync.log, 24
/var/log/messages, 24, 192
verbosity and high—availability commands, 24
virtual IP address
requirements, 79
testing the IPaddr2 resource, 109
volume names must be unique, 78

W

wildcard and OpenVault, 80 wildcard in OpenVault, 83 Winbind testing the non-HA service, 91 winbind chkconfig and, 223 winbind template, 152, 314

Х

XCOPY, 192

xfsdump and xfsrestore, 136