Sgi.

SGI[®] Altix[®] UV CMC Controller Software User's Guide

007-5636-003

COPYRIGHT

© 2010, SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS

Altix, NUMAlink, SGI, the SGI logo, Silicon Graphics, and Supportfolio are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in the United States and other countries.

Record of Revision

Version	Description
001	June 2010 Initial release.
002	June 2010 Added information for SGI Altix UV 100 systems.
003	October 2010 Updated to support the SGI Foundation Software 2.2 release.

New Features in This Guide

Major Documentation Changes

- Added "Using the hwcfg Command" on page 20.
- Updated information in "Upgrading System BIOS" on page 31.
- Added a new section called "CMC Command Targets" on page 33.
- Updated information in "power" on page 41.

Contents

Record of Revision				•									•							iii
Figures			•	•	•	•					•		•	•	•	•	•	•	•	ix
About This Guide.																				xi
Related Publications																			. 1	xii
Obtaining Publication	ns																		. X	iii
Conventions																			. X	iii
Reader Comments.																			. X	iv
Introducing Altix UV	/ Sy	yste	em	Cor	ıtro	l T	opo	log	y.											1
Altix UV 1000 Overvi	iew						•		·											1
Altix UV 100 Overvie	w																			6
System Management																				7
Chassis Manager	Co	ntr	olle	r.																8
System Control N	Vetv	vor	k.	•	•						•		•							9

1.

	Determining Rack Numbers . </th <th> 11 13</th>	11 13
2.	Using the Altix UV CMC Software Commands	15
	Connecting to the UV System Controller Network	15
	Power on and Booting an Altix UV System from Complete Power Off	16
	Power off an Altix UV System	18
	Power NMI to Drop into KDB	19
	Viewing Your System Configuration	19
	Using the hwcfg Command	20
	Finding the CMC IP Address.	24
	System Partitioning	24
	Upgrading System BIOS	31
	Hyper-Threading on Altix UV 100 or Altix UV 1000 Systems	32
3.	Altix UV CMC Software Commands	33
	CMC Command Targets	33
	bios	35
	bmc	36
	cmc	36
	config	37
	console (uvcon)	38
	flashbios	39
	hwcfg	39
	log	40
	power	41
	sensor	42
	showbios	42
	uvcon	43
	Index	45

Figures

Figure 1-1	Individual Rack Unit	•	•	•	•	3
Figure 1-2	Basic System Building Blocks for Altix UV 1000 Systems					4
Figure 1-3	SGI Altix UV System Rack					5
Figure 1-4	SGI Altix UV 100 IRU Front View					7
Figure 1-5	Chassis Manager Controller					9
Figure 1-6	CMC Ethernet Ports on SGI Altix UV 1000 Systems .	•				10
Figure 1-7	CMC Ethernet Ports on SGI Altix UV 100 Systems	•	•	•		11

About This Guide

This guide describes how to use the controller commands on your chassis manager controller (CMC) to monitor and manage the following systems:

- SGI Altix UV 100 systems
- SGI Altix UV 1000 systems

SGI Management Center (SMC) software running on the system management node (SMN) provides a robust graphical interface for system configuration, operation, and monitoring. This manual describes commands that can be used on systems without an SMN or not running the SMC. For more information on the SMC, see *SGI Management Center System Administrator's Guide*.

The SGI Altix UV System Management Node Administrator's Guide describes the system management node (SMN) for SGI Altix UV 1000 and SGI Altix UV 100 series systems. It provides information on how to install, configure, and use software on the SMN to manage and monitor SGI Altix UV systems.

Note: The UV controller commands described in this manual do not apply to SGI Altix UV 10 systems. For information on the SGI Altix UV 10 system, see the *SGI Altix UV 10 System User's Guide*.

The following topics are covered in this guide:

- Chapter 1, "Introducing Altix UV System Control Topology"
- Chapter 2, "Using the Altix UV CMC Software Commands"
- Chapter 3, "Altix UV CMC Software Commands"

Related Publications

The following publications contain additional information that may be helpful:

- *SGI Altix UV 10 System User's Guide* provides an overview of the Altix UV 10 system components, and it describes how to set up and operate this system. It also describes the standard procedures for powering up and powering down the system, basic troubleshooting information, and it includes important safety and regulatory specifications.
- *SGI Altix UV 100 System User's Guide* provides an overview of the Altix UV 100 system components, and it describes how to set up and operate this system. It also describes the standard procedures for powering up and powering down the system, basic troubleshooting information, and it includes important safety and regulatory specifications.
- *SGI Altix UV 1000 System User's Guide* provides an overview of the Altix UV 1000 system components, and it describes how to set up and operate this system. It also describes the standard procedures for powering up and powering down the system, basic troubleshooting information, and it includes important safety and regulatory specifications.
- *SGI Performance Suite 1.0 Start Here* provides information about the SGI Performance Suite 1.0 release including information about major new features, software installation, and product support.
- SGI Altix UV Systems Linux Configuration and Operations Guide provides information for people who manage the operation of SGI UV systems running SGI Performance Suite software. It explains how to perform general system configuration and operations under the Linux operating system used with SGI UV systems.
- *SGI Altix UV System Management Node Administrator's Guide* describes the system management node (SMN) for SGI Altix UV 1000 and SGI Altix UV 100 series systems. It provides information on how to install, configure, and use software on the SMN to manage and monitor SGI Altix UV systems.
- *SGI Management Center Installation and Configuration* is intended for system administrators. It describes how to install and configure the SGI Management Center. A companion manual, SGI Management Center System Administrator's Guide, describes general cluster administration.
- SGI Management Center System Administrator's Guide describes how you can monitor and control a cluster using the SGI Management Center. A companion manual, SGI Management Center Installation and Configuration Guide, describes installing and configuring the SGI Management Center.

Obtaining Publications

You can obtain SGI documentation in the following ways:

- See the SGI Technical Publications Library at http://docs.sgi.com. Various formats are available. This library contains the most recent and most comprehensive set of online books, release notes, man pages, and other information.
- You can view release notes on your system by accessing the README.txt file for the product. This is usually located in the /usr/share/doc/productname directory, although file locations may vary.
- You can view man pages by typing man *title* at a command line.

Conventions

The following conventions are used throughout this publication:

Convention	Meaning
command	This fixed-space font denotes literal items such as commands, files, routines, path names, signals, messages, and programming language structures.
variable	Italic typeface denotes variable entries and words or concepts being defined.
user input	This bold, fixed-space font denotes literal items that the user enters in interactive sessions. (Output is shown in nonbold, fixed-space font.)
[]	Brackets enclose optional portions of a command or directive line.
	Ellipses indicate that a preceding element can be repeated.
manpage(x)	Man page section identifiers appear in parentheses after man page names.
GUI element	This font denotes the names of graphical user interface (GUI) elements such as windows, screens, dialog boxes, menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments

If you have comments about the technical accuracy, content, or organization of this document, contact SGI. Be sure to include the title and document number of the manual with your comments. (Online, the document number is located in the front matter of the manual. In printed manuals, the document number is located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

- Contact your customer service representative and ask that an incident be filed in the SGI incident tracking system.
- Send mail to the following address:

Technical Publications SGI 46600 Landing Parkway Fremont, CA 94538

SGI values your comments and will respond to them promptly.

Introducing Altix UV System Control Topology

This manual describes controller software commands on SGI Altix UV 100 and SGI Altix UV 1000 systems.

Note: This manual does not apply to SGI Altix UV 10 systems. For information, see the SGI Altix UV 10 System User's Guide.

Altix UV 1000 Overview

The SGI Altix UV 1000 system is a blade-based, cache-coherent non-uniform memory access (ccNUMA), computer system that is based on the Intel Xeon 7500 series processor. The UV 1000 system scales, as follows:

- From 32 to 2048 threads in a single system image (SSI)
- A maximum of 2048 processor cores with hyper-threading turned off
- A maximum of 4096 processor threads (2048 processor cores) with hyper-threading turned on

Note: Each processor core supports two threads. A processor with hyper-threading enabled is treated by the operating system as two processors instead of one. This means that only one processor is physically present but the operating system sees two logical processors, and shares the workload between them. At initial release, the maximum SSI supported by the Linux operating system is 2048.

The main component is an 18U-high individual rack unit (IRU) shown in Figure 1-1 that supports 16 compute blades and is configurable to support multiple topology options.

The compute blades in the IRU are interconnected using NUMAlink 5 technology. NUMAlink 5 has a peak aggregate bi-directional bandwidth of 15 GB/s. Multiple IRUs are also interconnected with NUMAlink 5 technology.

A maximum of two IRUs can be placed into a custom 42U rack as shown in Figure 1-2. Each rack supports a maximum of 512 processor cores; therefore, the largest SSI system requires four racks. A maximum of 128 four rack cells can be interconnected to create a 512 rack system (256K processor cores).

Figure 1-1 Individual Rack Unit

UV Rack

Figure 1-2 Basic System Building Blocks for Altix UV 1000 Systems

The Altix UV system supports direct attach I/O on the compute blade. The compute blade is designed to host one of four different I/O riser cards. Various PCI express based I/O components are supported. Figure 1-3 shows a full SGI Altix UV system rack.

Figure 1-3 SGI Altix UV System Rack

For a detailed hardware description, see the *SGI Altix UV 1000 Systems User's Guide*. Figure 1-3 on page 5.

The SGI hardware manuals contain detailed descriptions of Altix system architecture. For a list of these manuals, see "Related Publications" on page xii.

Note: Online and postscript versions of SGI documentation is available at SGI Technical Publications Library at http://docs.sgi.com.

Altix UV 100 Overview

The SGI Altix UV 100 system is a small, blade-based, cache-coherent, non-uniform memory access (ccNUMA), computer system that is based on the Intel Xeon 7500 series processor. The SGI Altix UV 100 system scales, as follows:

A maximum of 768 processor cores

From 16 to 1536 threads in a single system image (SSI)

Note: Each processor core supports two threads.

The main component is a 3U-high IRU, shown in Figure 1-4, that supports two compute blades and is configurable to support multiple topology options.

Figure 1-4 SGI Altix UV 100 IRU Front View

The two compute blades in the IRU are interconnected using NUMAlink 5 technology. NUMAlink 5 has a peak aggregate bi-directional bandwidth of 15 GB/s. Multiple IRUs are also interconnected with NUMAllink 5 technology.

A maximum of twelve IRUs can be placed into a standard 42U 19" custom tall rack. Each rack supports a maximum of 384 processor cores.

The Altix UV system supports direct attach I/O on the compute blade. The compute blade is designed to host one of four different I/O riser cards. Various PCI express based I/O components are supported. For a detailed hardware description, see the *SGI Altix UV 100 Systems User's Guide*.

System Management

The system management provides a single control point for system power up, initialization, booting and maintenance. System management on an SGI Altix UV 1000 consists of three levels. The first level of system management is the board management controllers (BMCs) on the node boards. The second level is the chassis management controllers (CMC) in the rear of the IRU. The third level is the system management node (SMN). The SMN is required on SGI Altix UV 1000 series systems. It is not required for the SGI Altix UV 100 series systems.

Important: The UV 1000 and UV 100 system control network is a private, closed network. It is not to be reconfigured in any way different from the standard UV installation, nor is it to be directly connected to any other network. The UV system control network does not accommodate additional network traffic, routing, address naming other than its own schema, and DCHP controls other than its own configuration. The system control network also is not security hardened, nor is it tolerant of heavy network traffic, and is vulnerable to Denial of Service attacks.

The System Management Node acts as a gateway between the UV system control network and any other networks.

SGI Management Center (SMC) software running on the system management node (SMN) provides a robust graphical interface for system configuration, operation, and monitoring. This manual describes commands that can be used on systems without an SMN or not running the SMC. For more information, see *SGI Management Center System Administrator's Guide*.

Chassis Manager Controller

The chassis manager controller (CMC) in the rear of the IRU, as shown in Figure 1-5, and Figure 1-6, supports powering up and down of the compute blades and environmental monitoring of all units within the IRU. The CMC sends operational requests to the baseboard manager controller (BMC) on each compute node. The CMC provides data collected from the compute nodes within the IRU to the system management node upon request. The CMC blade on the right side of the IRU is the primary CMC. A secondary CMC is currently not supported.

Figure 1-5 Chassis Manager Controller

System Control Network

Chassis manager controller (CMC) for SGI Altix UV 1000 systems has seven RJ45 Ethernet ports, as shown in Figure 1-6.

The Ethernet ports are used, as follows:

- SMN the system management node port is used to connect to the SMN.
- **SBK** Each 16 rack group is called a super block. A building block is four racks. A super block is four building blocks. The SBK connects one super block to another super block.
- **CMC0** and **CMC1** these two ports are used to interconnect multiple IRUs within a building block together.
- **EXT0**, **EXT1**, **EXT2** connects to external devices such as I/O chassis and smart PDUs.

CONSOLE - the console connection supports a serial channel connection directly to the CMC for system maintenance.

Figure 1-6 CMC Ethernet Ports on SGI Altix UV 1000 Systems

For information on finding the CMC IP address and hostname, see "Finding the CMC IP Address" on page 24.

The chassis manager controller (CMC) for SGI Altix UV 100 systems is a board assembly integrated into the IRU and has four RJ45 Ethernet ports, as shown in Figure 1-4.

The Ethernet ports are used, as follows:

- ACC the accessory is used to connect miscellaneous devices to the CMC network, for example smart power distribution units (PDUs).
- SMN the system management node port is used to connect to the SMN.
- **CMC0** and **CMC1** these two ports are used to interconnect multiple IRUs together to form a string topology.

CONSOLE - the console connection supports a serial channel connection directly to the CMC for system maintenance.

Determining Rack Numbers

The system controller network has strict requirements for rack numbering. The requirements minimize the amount of information that must be manually configured for each CMC when it is plugged into an IRU. Currently, only the rack and u-position of the IRU must be set. The u-position is the physical location of the IRU in the rack. The rack and u-position values are found in the /etc/sysconfig/module_id file. Besides

uniquely identifying the physical location of the CMCs, the values are used to generate several IP address for the various VLANs on the CMC and are used by any software interacting with the system controller network to target operations.

For large Altix UV 1000 configurations, a building block consists of four racks with two IRUs in each rack with the CMCs in those IRUs interconnected via their CMC0 and CMC1 jacks. In order for racks to be considered part of the same building block, their rack numbers must be consecutive and satisfy the following equation:

(rack - 1) MOD 4 = 0, 1, 2 or 3

or

(rack - 1) DIV 4 = the same value for all racks in the building block

For example, a system with four racks numbered 1, 2, 3, and 4 has one building block. Similarly, a system with four racks number 9, 10, 11, and 12 has one building block.

A system with racks numbered 10, 11, 12, 13 would have to two building blocks with 10, 11 and 12 in one building block; 13 is in a second building block. The system controller network must be cabled appropriately for each configuration.

A super block (SBK) consists four building blocks. Two primary CMCs in each building block are used to interconnect the building blocks via their SBK jacks. For racks to be considered part of the same SBK their rack numbers must be consecutive and satisfy the following equation:

(rack - 1) MOD 16 = 0, 1, 2, ... 15

or

(rack - 1) DIV 16 = the same value for all racks in the SBK

In summary, a single SBK can support up to four building blocks, or in other words, 16 racks.

Altix UV System Controller Software

The controller is designed to manage and monitor the individual blades in SGI Altix UV systems. Depending on your system configuration, you can monitor and operate the system from the system management node (SMN) or on smaller systems, such as, the Altix UV 100 from the CMC itself. UV 1000 systems up to 16 racks (four building blocks, also called one super block) can also be controlled and monitored from a CMC in the system.

The following list summarizes the control and monitoring functions that the CMC performs. Many of the controller functions are common across both IRU and routers; however, some functions are specific to the type of enclosure.

- Controls and monitors IRU and router fan speeds
- Reads system identification (ID) PROMs
- Monitors voltage levels and reports failures
- Monitors and controls warning LEDs on the enclosure
- Provides the ability to create multiple system partitions (single system image) running their own operating system.
- Provides ability to flash system BIOS

Using the Altix UV CMC Software Commands

This chapter describes how to use the CMC controllers to power on, manage, and monitor an SGI Altix UV 1000 or UV 100 system in the following sections:

- "Connecting to the UV System Controller Network" on page 15
- "Power on and Booting an Altix UV System from Complete Power Off" on page 16
- "Power off an Altix UV System" on page 18
- "Power NMI to Drop into KDB" on page 19
- "Viewing Your System Configuration" on page 19
- "Using the hwcfg Command" on page 20
- "Finding the CMC IP Address" on page 24
- "System Partitioning" on page 24
- "Upgrading System BIOS" on page 31
- "Hyper-Threading on Altix UV 100 or Altix UV 1000 Systems" on page 32

Connecting to the UV System Controller Network

The console type and how these console types are connected to the Altix UV 1000 systems is determined by what console option is chosen. Establish either a serial connection or network/Ethernet connection to the CMC.

Establish a serial connection

If you have an Altix UV 1000 system and wish to use a serially-connected "dumb terminal", you can connect the terminal via a serial cable to the (DB-9) RS-232-style console port connector on the CMC board of the IRU.

The terminal should be set to the following functional modes:

- pin 2 receive
- pin 3 transmit
- pin 5 ground
- Baud: 115200
- Data bits: 8
- Parity: no
- Stop bits: 1
- No flow control

Note that a serial console is generally connected to the first (bottom) IRU in any single rack configuration. For more information, see the "Console Hardware Requirements" section in the *SGI Altix UV 1000 System User's Guide*.

Establish a Network/Ethernet connection (see SBK port, EXT port, and SMN port in Figure 1-6)

CMCs have their rack and u position set at the factory. The CMC will assign itself IP addresses, as follows:

SBK 172.17.<rack>.<slot>

EXT 10.<rack>.<slot>.1

On the system management node (SMN) port, the CMC is configured to request an IP address via dynamic host configuration protocol (DHCP).

Either connection, serial or network, will present a login prompt. For more information, see the "Levels of System Control" section in the *SGI Altix UV 1000 System User's Guide*.

Power on and Booting an Altix UV System from Complete Power Off

To boot an SGI Altix UV 1000 or UV 100 system from complete power off, perform the following steps:

- 1. Make sure the power breakers are on.
- 2. Establish a serial connection to the **CONSOLE** on the CMC (see Figure 1-6 on page 10). See "Connecting to the UV System Controller Network" on page 15 or skip to the next step.
- 3. Establish a network connection to the CMC. "Connecting to the UV System Controller Network" on page 15. Use the ssh command to connect to the CMC, similar to the following example:

Note: This is only valid if your PC is connected to the CMC (via the network connection) has its /etc/hosts file setup to include the CMCs.

```
ssh root@hostname-cmc
SGI Chassis Manager Controller, Firmware Rev. 0.0.22
```

CMC:rlilc>

Typically, the default password set out of the factory is root. The CMC prompt appears. CMC:rlilc refers to rack 1, IRU 1, CMC (see Figure 1-5 on page 9 and Figure 1-6 on page 10)

If the host name is **not** set up in the PC/workstation's hosts file, you can simply use the IP address of the CMC, as follows:

ssh root@<IP-ADDRESS>

4. Power up your Altix UV system using the power on command, as follows:

CMC:rlilc> power on

Note: You can open a second window on the CMC, **ssh root@***hostname***-cmc** and use the **uvcon** command to open a console and watch the system power on.

5. Open a second console to the CMC using the uvcon command to see the system power on, as follows:

```
ssh root@hostname-cmc
SGI Chassis Manager Controller, Firmware Rev. 0.0.22
CMC:rlilc> uvcon
uvcon: attempting connection to localhost...
uvcon: connection to SMN/CMC (localhost) established.
uvcon: requesting baseio console access at r00li01b00...
uvcon: tty mode enabled, use 'CTRL-]' 'q' to exit
```

```
uvcon: console access established
uvcon: CMC <--> BASEIO connection active
****** START OF CACHED CONSOLE OUTPUT ******
******* [20100512.143541] BMC r001i01b10: Cold Reset via NL
broadcast reset
******* [20100512.143541] BMC r001i01b07: Cold Reset via NL
broadcast reset
******** [20100512.143540] BMC r001i01b08: Cold Reset via NL
broadcast reset
******* [20100512.143540] BMC r001i01b12: Cold Reset via NL
broadcast reset
******** [20100512.143541] BMC r001i01b14: Cold Reset via NL
broadcast reset
******** [20100512.143541] BMC r001i01b04: Cold Reset via NL
                . . . .
```

Note: Use CTRL-] q to exit the console.

6. Depending upon the size of your system, in can take 5 to 10 minutes for the Altix UV system to power on. When the **shell**> prompt appears, enter fs0, as follows:

shell> **fs0**

7. At the **fs0** prompt, enter boot, as follows:

fs0> boot

ELILO Linux Boot loader is called and various SGI configuration scripts are run and the SUSE Linux Enterprise Server 11 SP1 installation program appears.

Power off an Altix UV System

To power down the Altix UV stem, use the power off command, as follows:

```
CMC:rlilc> power off
==== r001i01c (PRI) ====
```

You can use the power status command, to check the power status of your system

CMC:rlilc> **power status** ==== r001i01c (PRI) ==== on: 0, off: 32, unknown: 0, disabled: 0

Power NMI to Drop into KDB

To send a nonmaskable interrupt (NMI) signal from the power command to the CMC to drop into the kernel debugger (KDB), use the power nmi command, as follows:

CMC:r1i1c> power nmi

```
Entering kdb (current=0xffff8aa3fe11c040, pid 0) on processor 7 due to
NonMaskable Interrupt @ 0xfffffff8100ad42
   bp = 0xfffffff81927380
                      bx = 0xffff8ac1ff11dfd8
   rll = 0xffffffff8101a2c0
                      r10 = 0xfff88000beefd18
   r9 = 0x0000000ffffffff
                       si = 0xffff8ac1ff11dfd8
   di = 0xffffffff81a2b308 orig_ax = 0xfffffffffffffffff
   ip = 0xffffffff8100ad42
                       flags = 0x00000000000246
                       sp = 0xfff88000bee7ff0
    ss = 0x00000000000018 & regs = 0xffff88000bee7f58
[7]kdb>
```

Viewing Your System Configuration

To view your system configuration, use the config -v command, as follows: CMC:rlilc> config -v

```
CMCs: 2
r001i01c UV1000
r001i02c UV1000
BMCs: 32
r001i01b00 IP93-BASEIO
r001i01b01 IP93-DISK
r001i01b02 IP93-EXTPCIE
r001i01b03 IP93-EXTPCIE
r001i01b04 IP93
r001i01b05 IP93
```

r001i01b06	IP93
r001i01b07	IP93
r001i01b08	IP93
r001i01b09	IP93
r001i01b10	IP93
r001i01b11	IP93
r001i01b12	IP93
r001i01b13	IP93
r001i01b14	IP93
r001i01b15	IP93
r001i02b00	IP93-BASEIO
r001i02b01	IP93-EXTPCIE
r001i02b02	IP93-DISK
r001i02b03	IP93-EXTPCIE
r001i02b04	IP93-EXTPCIE
r001i02b05	IP93-EXTPCIE
r001i02b06	IP93-EXTPCIE
r001i02b07	IP93-EXTPCIE
r001i02b08	IP93-INTPCIE
r001i02b09	IP93-INTPCIE
r001i02b10	IP93-INTPCIE
r001i02b11	IP93-INTPCIE
r001i02b12	IP93-INTPCIE
r001i02b13	IP93-INTPCIE
r001i02b14	IP93-INTPCIE
r001i02b15	IP93-INTPCIE
Dartitions: 1	
nartition00)0 BMCs: 32

r001i01b00 refers to rack 0, IRU 1, and blade 0. For a view of the physical layout of an IRU, see Figure 1-1 on page 3, Figure 1-2 on page 4, and Figure 1-3 on page 5.

Using the hwcfg Command

The hwcfg command allows you to set hardware configuration overrides. Many of the hardware overrides available on early Altix UV systems are no longer necessary due to firmware enhancements and hardware changes. Most of these overrides are still available but have been "hidden" and require the -h flag to make them visible.

To see a list of current override settings, use the "hwcfg" command. This will show all overrides set on any blades in the system. If any overrides are set on some blades and not on others, the output will show a count of blades where the override is set.

To see a list of blades where each override is set, use the hwcfg -v command.

To see individual list of blades and their overrides, use hwcfg -vv command.

```
To set one or more overrides, use hwcfg <name>=<value> command. For example, hwcfg DEBUG_SW=0x4
```

To clear overrides, use hwcfg -c command.

- To clear all overrides, use the hwcfg -c -a command.
- To clear one or more variables, use hwcfg -c <name> [...<name>].

Multiple <name>=<value> pairs can be set in one command

You can show a list of hwcfg variables available, as follows:

```
uv44-cmc CMC:rlilc> hwcfg --list
==== 4/4 BMC(s) ====
SOCKET_DISABLE=yes no <socket bitmask>
        Socket 0 disable
PARTITION=<numeric value 0-65535>
        Partition number for this blade
SMT_ENABLE=yes | no
        SMT (HyperThread) enable
MAX CORES=<numeric value 0-255, 0=no limit>
        Maximum number of cores allowed (per node)
BLADE_DISABLE=yes no
        Disable this blade
IORISER_DISABLE=yes no
        Disable the I/O riser on this blade
ICH_DISABLE=yes | no
        Disable ICH10 on this BaseIO
```

```
DEBUG_SW=<32-bit value>
        Software debug switches (see "hwcfg --help DEBUG_SW" for details)
HUB_CORE_SPEED=320 | 367 | 375 | 383 | 400
        Clock frequency of the HUB
NL5_ENABLE=yes | no | <NL5 port bitmask>
        Enable NL5 links
NL5_RATE=1.25 2.5 3.125 5.0 6.25
        NL5 transfer rate
NL5_CABLE_ENABLE=yes no
        Enable cabled NL5 links
NL5_NEAR_LB=yes | no
        Configure NL5 channels in near loopback
NL5_SCRAMBLE=yes no <NL5 port bitmask>
        Enable scramble mode on NL5 links
NL5_HUB2_WAR=yes | no
        Enable the NL5 PHY/BIST war for Hub2.0
                       To show all variables regardless of state, perform the following:
                       uv44-cmc CMC:r1i1c> hwcfg --all
                       BLADE_DISABLE=no
                       DEBUG SW=0x0
```

DEBUG_SW=0x0 HUB_CORE_SPEED=375 ICH_DISABLE=no IORISER_DISABLE=no MAX_CORES=0 NL5_CABLE_ENABLE=yes NL5_HUB2_WAR=yes NL5_HUB2_WAR=yes NL5_NEAR_LB=no NL5_RATE=6.25 NL5_SCRAMBLE=0x0 PARTITION=0 SMT_ENABLE=no SOCKET_DISABLE=no uv44-cmc CMC:rlilc>

To show a list of hidden hardware overrides, perform the following:

uv44-cmc:~ # hwcfg --hidden --all BACKPLANE_TYPE=default BLADE_DISABLE=no DEBUG_SW=0x100 ICH_DISABLE=no IORISER_DISABLE=no MAX_CORES=0 NL5_CABLE_ENABLE=yes NL5 ENABLE=yes PARTITION=0 ROUTER_TYPE=ordinary SMT_DISABLE=no SOCKET_DISABLE=no {HIDDEN} BIOS_GO_REG=(null):0x0 {HIDDEN} BIOS_HOLD=no {HIDDEN} BMC_RESET_DEBUG=0x0 {HIDDEN} BOOTMODE=DC {HIDDEN} HUB_CORE_SPEED=375 {HIDDEN} HUB_DISABLE=no {HIDDEN} HUB_QPI_BMC_CONFIG=FULL {HIDDEN} HUB_QPI_SPEED=5.86 {HIDDEN} HUB_XDP=no {HIDDEN} IOH_QPI_BMC_CONFIG=NONE {HIDDEN} IOH_QPI_SPEED=6.4 {HIDDEN} IO_XDP=no {HIDDEN} LTC_FILE= {HIDDEN} NL5_CABLE_RATE=6.25 {HIDDEN} NL5_CABLE_TX_EMPHASIS=0x0 {HIDDEN} NL5_HUB2_WAR=yes {HIDDEN} NL5 NEAR LB=no {HIDDEN} NL5_NO_NI3_WAR=no {HIDDEN} NL5_RATE=6.25 {HIDDEN} NL5_SCRAMBLE=yes {HIDDEN} NL5_TUNE_ENABLE=yes {HIDDEN} NL5_TX_EMPHASIS=0x0 {HIDDEN} QPI_CRC_MODE=0x0 {HIDDEN} SKT_QPI_BMC_CONFIG=NONE {HIDDEN} SKT_QPI_SPEED=6.4 {HIDDEN} SPREAD_SPEC_CLK=no

Finding the CMC IP Address

CMCs have their rack and u position set at the factory. The CMC will assign itself IP addresses, as follows:

SBK 172.17.<rack>.<slot>

EXT 10.<rack>.<slot>.1

On the system management node (SMN) port, the CMC is configured to request an IP address via dynamic host configuration protocol (DHCP).

To find the IP address of the CMC, connect a network cable to the SMN jack and CMC will request and get a DHCP address. See "Connecting to the UV System Controller Network" on page 15.

The IP address and hostname of your system CMC resides in the /etc/sysconfig/ifcfg-eth0 file, as follows:

```
CMC:rli1c> cat /etc/sysconfig/ifcfg-eth0
BOOTPROTO=static
IPADDR=137.38.82.88
NETMASK=255.255.255.0
GATEWAY=137.38.82.254
HOSTNAME=uv15-cmc
```

System Partitioning

A single SGI ProPack for Linux server can be divided into multiple distinct systems, each with its own console, root filesystem, and IP network address. Each of these software-defined group of processors are distinct systems referred to as a partition. Each partition can be rebooted, loaded with software, powered down, and upgraded independently. The partitions communicate with each other over an SGI NUMAlink connection. Collectively, all of these partitions compose a single, shared-memory cluster.

The following example shows how to use CMC software to partition a two rack system containing four IRUs into four distinct systems, use the uvcon command to open a console and boot each partition and repartition it back to a single system.

Important: Each partition must have one base I/O blade and one disk blade for booting. 001i01b00 refers to rack 1, IRU 0, and blade00. r001i01b01 refers to rack 1, IRU 0, and blade01.

Base I/O and the boot disk are displayed by the config -v command, similar to the following:

```
r001i01b00 IP93-BASEIO
r001i01b01 IP93-DISK
```

1. Use the hwcfg command to create four system partitions, as follows:

```
CMC:rlilc>hwcfg partition=1 "rlilb*"
CMC:rlilc>hwcfg partition=2 "rli2b*"
CMC:rlilc>hwcfg partition=3 "r2ilb*"
CMC:rlilc>hwcfg partition=4 "r2i2b*"
```

2. Use the config -v command to show the four partitions, as follows:

```
CMC:rlilc> config -v
```

```
CMCs: 4
r001i01c UV1000 SMN
r001i02c UV1000
r002i01c UV1000
r002i02c UV1000
```

```
BMCs:
                64
        r001i01b00 IP93-BASEIO P001
        r001i01b01 IP93-DISK P001
        r001i01b02 IP93-INTPCIE P001
        r001i01b03 IP93 P001
        r001i01b04 IP93 P001
        r001i01b05 IP93 P001
        r001i01b06 IP93 P001
        r001i01b07 IP93 P001
        r001i01b08 IP93 P001
        r001i01b09 IP93-INTPCIE P001
        r001i01b10 IP93-INTPCIE P001
        r001i01b11 IP93-INTPCIE P001
        r001i01b12 IP93-INTPCIE P001
        r001i01b13 IP93 P001
        r001i01b14 IP93 P001
        r001i01b15 IP93 P001
```

r001i02b00	IP93-	-BASEIO P002
r001i02b01	IP93-	-DISK P002
r001i02b02	IP93-	-INTPCIE P002
r001i02b03	IP93	P002
r001i02b04	IP93	P002
r001i02b05	IP93	P002
r001i02b06	IP93	P002
r001i02b07	IP93	P002
r001i02b08	IP93	P002
r001i02b09	IP93	P002
r001i02b10	IP93	P002
r001i02b11	IP93	P002
r001i02b12	IP93	P002
r001i02b13	IP93	P002
r001i02b14	IP93	P002
r001i02b15	IP93	P002
r002i01b00	IP93-	-BASEIO P003
r002i01b01	IP93-	-DISK P003
r002i01b02	IP93	P003
r002i01b03	IP93	P003
r002i01b04	IP93	P003
r002i01b05	IP93	P003
r002i01b06	IP93	P003
r002i01b07	IP93	P003
r002i01b08	IP93	P003
r002101609	1P93	P003
r002101b10	IP93	P003
r002101b11	IP93	P003
r002101b12	IP93	P003
r002101b13	IP93	P003
r002101b14	IP93	P003
r002101015	TP93	PUU3
r002102000	1P93-	BASEIO PUU4
r002102001	1P93-	DISK PUU4
1002102D02	TDOO	P004
r002102003	TP93	P004
r002102004	TP93	P004
2002102005	TD02	P004
×002102D00	1273 7007	P004 D004
r002102D07	TDQ2	D004
×002102D00	LE SS COUT	
r002102D09	TDQC	D004
r002i02b10	TDQS	P004
r002i02b12	TD03	D004
		1001

```
r002i02b13 IP93 P004
r002i02b14 IP93 P004
r002i02b15 IP93 P004
Partitions: 4
partition001 BMCs: 16
partition002 BMCs: 16
partition003 BMCs: 16
partition004 BMCs: 16
```

3. Use can also use the hwcfg command to display the four partitions, as follows:

CMC:rlilc> h	vcfg	
NL5_RATE=5.0		
PARTITION=1		54
BMC(s)		
PARTITION=2		54
BMC(s)		
PARTITION=3		54
BMC(s)		
PARTITION=4		54
BMC(s)		

4. To reset the system and boot the four partitions, use the following commands:

```
CMC:rlilc> power on
CMC:rlilc> power reset "p*"
```

Note: In the **power reset** "**p***" command, above, quotes are required to prevent shell expansion.

5. Use the uvcon command to open consoles to each partition and boot the partitions. Open a console to partition one, as follows: CMC:r1i1c> uvcon p1 uvcon: attempting connection to localhost... uvcon: connection to SMN/CMC (localhost) established. uvcon: requesting baseio console access at partition 1 (r001i01b00)... uvcon: tty mode enabled, use 'CTRL-]' 'q' to exit uvcon: console access established (OWNER) uvcon: CMC <--> BASEIO connection active ****** START OF CACHED CONSOLE OUTPUT ****** ***** ******* [20100513.215944] BMC r001i01b15: Cold Reset via NL broadcast reset ******* [20100513.215944] BMC r001i01b07: Cold Reset via NL broadcast reset ******** [20100513.215945] BMC r001i01b13: Cold Reset via NL broadcast reset ******* [20100513.215945] BMC r001i01b05: Cold Reset via NL broadcast reset ******* [20100513.215945] BMC r001i01b06: Cold Reset via NL broadcast reset ******** [20100513.215946] BMC r001i01b10: Cold Reset via NL broadcast reset ******* [20100513.215946] BMC r001i01b09: Cold Reset via NL broadcast reset ******** [20100513.215945] BMC r001i01b11: Cold Reset via NL broadcast reset ******* [20100513.215945] BMC r001i01b12: Cold Reset via NL broadcast reset ******* [20100513.215945] BMC r001i01b04: Cold Reset via NL broadcast reset ******* [20100513.215945] BMC r001i01b08: Cold Reset via NL broadcast reset

******* [20100513.215946] BMC r001i01b02: Cold Reset via NL broadcast reset ******** [20100513.215945] BMC r001i01b00: Cold Reset via NL broadcast reset ******* [20100513.215945] BMC r001i01b14: Cold Reset via NL broadcast reset ******* [20100513.215947] BMC r001i01b09: Cold Reset via ICH ******** [20100513.215946] BMC r001i01b12: Cold Reset via ICH ******* [20100513.215947] BMC r001i01b10: Cold Reset via ICH ******* [20100513.215947] BMC r001i01b11: Cold Reset via ICH ******* [20100513.215947] BMC r001i01b02: Cold Reset via ICH ******** [20100513.215947] BMC r001i01b00: Cold Reset via ICH ******* [20100513.215953] BMC r001i01b03: Cold Reset via NL broadcast reset ******** [20100513.220011] BMC r001i01b01: Cold Reset via NL broadcast reset ******** [20100513.220012] BMC r001i01b08: Cold Reset via NL broadcast reset ******* [20100513.220012] BMC r001i01b07: Cold Reset via NL broadcast reset ******** [20100513.220011] BMC r001i01b15: Cold Reset via NL broadcast reset ******* [20100513.220012] BMC r001i01b06: Cold Reset via NL broadcast reset ******** [20100513.220012] BMC r001i01b05: Cold Reset via NL broadcast reset ******** [20100513.220012] BMC r001i01b14: Cold Reset via NL broadcast reset ******** [20100513.220012] BMC r001i01b13: Cold Reset via NL broadcast reset ******* [20100513.220011] BMC r001i01b04: Cold Reset via NL broadcast reset ******** [20100513.220012] BMC r001i01b03: Cold Reset via NL broadcast reset ******** [20100513.220013] BMC r001i01b09: Cold Reset via NL broadcast reset ******* [20100513.220013] BMC r001i01b10: Cold Reset via NL broadcast reset ******** [20100513.220013] BMC r001i01b11: Cold Reset via NL broadcast reset ******** [20100513.220012] BMC r001i01b12: Cold Reset via NL broadcast reset ******* [20100513.220012] BMC r001i01b02: Cold Reset via NL broadcast reset

******** [20100513.220012] BMC r001i01b00: Cold Reset via NL broadcast reset ******** [20100513.220014] BMC r001i01b09: Cold Reset via ICH ******* [20100513.220014] BMC r001i01b10: Cold Reset via ICH ******** [20100513.220014] BMC r001i01b11: Cold Reset via ICH ******* [20100513.220013] BMC r001i01b12: Cold Reset via ICH ******* [20100513.220013] BMC r001i01b02: Cold Reset via ICH ******** [20100513.220016] BMC r001i01b00: Cold Reset via ICH ******* [20100513.220035] BMC r001i01b14: Cold Reset via NL broadcast reset ******** [20100513.220035] BMC r001i01b06: Cold Reset via NL broadcast reset ******* [20100513.220034] BMC r001i01b15: Cold Reset via NL broadcast reset ******** [20100513.220035] BMC r001i01b05: Cold Reset via NL broadcast reset ******** [20100513.220034] BMC r001i01b01: Cold Reset via NL broadcast reset ******* [20100513.220035] BMC r001i01b07: Cold Reset via NL broadcast reset Hit [Space] for Boot Menu. ELILO boot:

Note: Use the uvcon command to open consoles on the other three partitions and boot them. The system will then have four single system images.

6. Use the hwcfg -c partition command to clear the four partitions, as follows:

CMC:rlilc> hwcfg -c partition PARTITION=0 <PENDING RESET>

7. To reset the system and boot it as a single system image (one partition), use the following command:

CMC:rlilc> power reset "p*" For detailed instructions on how to use the UV controller commands to partition a system, see "System Partitioning" in the SGI Altix UV *Linux Configuration and Operations Guide.*

Upgrading System BIOS

To upgrade the compute blade BIOS, perform the following steps:

1. From the CMC prompt, to show the current PROM level perform the following command:

```
CMC:rlilc> showbios
Flashed on Sat May 1 14:14:45 UTC 2010 was bios.latest.fd
(20100429_1603)
```

- 2. Get the newest PROM image from SupportFolio Online at http://support.sgi.com/
- 3. Copy the latest BIOS to a directory on the CMC in /work/bmc/common/ An example directory is, as follows:

CMC:rlilc> **ls** bios.latest.fd flashbios

4. Use the flashbios command to flash the compute blade BIOS, as follows:

```
CMC:rlilc> flashbios
Using default bios: bios.latest.fd
Checking processor status on all nodes....
Done. System is read for BIOS flash update
Flashing bios bios.lastest.fd (20100429_1603) This will take several
minutes.
...
```

There are three firmware flashing commands available from the system management node (SMN) for flashing an entire SGI Altix UV system, as follows:

- flashcmc
- flashbmc
- flashiobmc

For more information on how to use these commands, see the "Updating Firmware" section in chapter one of the SGI Altix UV System Management Node Administrator's Guide.

Hyper-Threading on Altix UV 100 or Altix UV 1000 Systems

Threading in a software application splits instructions into multiple streams so that multiple processors can act on them.

Hyper-Threading (HT) Technology, developed by Intel Corporation, provides thread-level parallelism on each processor, resulting in more efficient use of processor resources, higher processing throughput, and improved performance. One physical CPU can appear as two logical CPUs by having additional registers to overlap two instruction streams or a single processor can have dual-cores executing instructions in parallel.

For more information about using HT, see "Using Cpusets with Hyper-Threads" in the *Linux Resource Administration Guide*.

Altix UV CMC Software Commands

You can use SGI Altix UV controller commands to monitor and manage SGI Altix UV systems. You can use them from the SGI Management Node command line interface (CLI) or the chassis manager controller (CMC) CLI.

Typically, commands available from the SMN or CMC command line are in the form of:

command [options] [targets]

For available commands see below or type "help" at the SMN/CMC prompt. Commands are located in /sysco/bin on both the SMN and CMC. For options available with each command, type "command -help".

CMC Command Targets

Multiple targets may be specified, if no targets are specified, all BMCs or CMCs (as appropriate for a command) are assumed. Some targets may need to be quoted to avoid wildcard expansion by the SMN/CMC shell.

 Table 3-1
 CMC Command Targets

Command Target	BMCs (rack,upos,slot,BMC type)	CMCs (rack,upos,CMC type)
*,all	Any,Any,Any,Any	Any,Any,Any
r*	rack,Any,Any	rack,Any,Any
r*i*	rack,upos,Any,IRUCOMP	rack,upos,IRU
r*q*	rack,upos,Any,	rack,u,
r*i*b*	rack,upos,slot,IRUCOMP	N/A
r*i*r*	rack,upos,slot,	N/A

Command Target	BMCs (rack,upos,slot,BMC type)	CMCs (rack,upos,CMC type)
r*q*r*	rack,upos,slot,	N/A
*c	N/A	Any,Any,Any
r*i*c	N/A	rack,upos,IRU
r*q*c	N/A	rack,upos,
allb,allc	Any,Any,Any,IRUCOMP	N/A
allr	Any,Any,Any	N/A
allri	Any,Any,Any	N/A
allrq N/A	Any,Any,Any,IRUCOMP	N/A
p *	all IRUCOMP with matching partition	N/A

Table 3-1CMC Command Targets

An asterisk references all values in that position such that r^{*} references all racks, i^{*} references all IRUs, etc. A decimal number can replace any asterisk to narrow the target selection. Ranges are not support but a space separated list of targets is supported.

BMC Types

IRUCOMP - IRU computer blades (blade slots 0 through 15 on Altix UV 1000, or 0 through 1 on Altix UV 100).

CMC Types

IRU - Altix UV 1000 or Altix UV 100

Note: Most of the commands (bios, bmc, cmc, config, hwcfg, log, power, uvcon (console)) are available at both the CMC prompt (as user **root**), as well as, the system management node (SMN) prompt (as user **sysco**).

The available commands on the CMC are, as follows:

```
CMC:rlilc> help
available commands are:
```

auth	authenticate SSN/APPWT change
bios	perform bios actions
bmc	access BMC shell
CMC	access CMC shell
config	show system configuration
help	list available commands
hwcfg	access hardware configuration variable
leds	display system LED values
log	display system controller logs
power	access power control/status

type '<cmd> --help' for help on individual command.

bios

Use the bios command to get BIOS information for your system after it is powered on, as follows:

```
CMC:r1i1c> bios
==== r001i01b00 ====
SGI BIOS Version 1 Revision 2 built in 20100506_1553 by ajm on May 6
2010 at 16:02:59
==== r001i01b01 ====
SGI BIOS Version 1 Revision 2 built in 20100506_1553 by ajm on May 6
2010 at 16:02:59
==== r001i01b02 ====
SGI BIOS Version 1 Revision 2 built in 20100506_1553 by ajm on May 6
2010 at 16:02:59
==== r001i01b03 ====
SGI BIOS Version 1 Revision 2 built in 20100506_1553 by ajm on May 6
2010 at 16:02:59
==== r001i01b04 ====
SGI BIOS Version 1 Revision 2 built in 20100506_1553 by ajm on May 6
2010 at 16:02:59
==== r001i01b05 ====
SGI BIOS Version 1 Revision 2 built in 20100506_1553 by ajm on May 6
                . . . .
```

```
You can get a usage statement, as follows:

CMC:rlilc> bios --help

usage: bios [-v] [--help] [TARGET]...

-v, --version display last BIOS version/banner

--help display this help and exit
```

bmc

Allows you to send a command to one or more board management controllers (BMCs). It is a shell command similar in behavior to the ssh command.

You can get a usage statement, as follows:

```
CMC:rlilc> bmc --help
usage: bmc exec <command> [-t <seconds>] [TARGET]...
exec
                         executes command on BMC(s)
<command>
                         command to execute
-t, --timeout=<seconds> timeout value
usage: bmc list [TARGET]...
list
                          list active shells on BMC(s)
usage: bmc kill [TARGET]...
kill
                          kill all active shells on BMC(s)
usage: bmc --help
--help
                          display this help and exit
```

CMC

Allows you to send a command to one or more chassis manager controllers (CMCs). It is a shell command similar in behavior to the ssh command.

CMC:rlilc> **cmc** --help usage: cmc exec <command> [-t <seconds>] [TARGET]... exec executes command on CMC(s) <command> command to execute -t, --timeout=<seconds> timeout value usage: cmc list [TARGET]... list list active shells on CMC(s) usage: cmc kill [TARGET]... kill kill all active shells on CMC(s) usage: cmc --help --help display this help and exit

config

The CMC cofig command shows your system configuration, as follows:

```
CMC:r1i1c> config -v
CMCs:
                  1
        r001i01c UV1000
                  2
BMCs:
        r001i01b00 IP93-BASEIO
        r001i01b01 IP93-DISK
Partitions:
                 1
        partition000 BMCs:
                               2
Time since last update: 1:23:53
You can get a usage statement, as follows:
CMC:r1i1c> config --help
usage: config [-v] [--help]
   -v, --verbose
                              verbose output
--help
                           display this help and exit
```

console (uvcon)

The console (uncon) command allows allows you to open a console window on the CMC or BMC or even a compute blade. Use CTRL -] q to exit. A usage statement is, as follows:

```
usage: console [-bnd23] [--steal] [--spy] [--kill] [--notty] [--nocache] [--clrcache]
[TARGET]
  -b, --baseio
                                  specifies baseio bmc console
  -n, -0, --normal
                                  specifies node BMC console (normal channel)
  -d, -1, --debug
                                  specifies node BMC console (debug channel)
  -2, --chan2
                                  specifies node BMC console (channel 2)
  -3, --chan3
                                  specifies node BMC console (channel 3)
   --steal
                                  steal the console
                                  spy the console
  --spy
  --kill
                                  kill all other uvcon sessions
                                  disables tty interventions
   --notty
   --nocache
                                  don't return cached output
   --clrcache
                                  clear cached output
  TARGET
                                  console target
  NOTE: When tty mode is enabled, use 'CTRL-]' 'q' to exit.
  usage: console -d[band23c] [-1 <count>] [TARGET]...
  -d, --dump
                                  dump cached console output
  -b, --baseio
                                  specifies baseio bmc console
  -a, --all
                                  all node BMC consoles
   -n, -0, --normal
                                  specifies node BMC console (normal channel)
   -d, -1, --debug
                                  specifies node BMC console (debug channel)
  -2, --chan2
                                  specifies node BMC console (channel 2)
  -3, --chan3
                                  specifies node BMC console (channel 3)
  -1, --lines=<count>
                                  limit output to last <count> lines
   -c, --clear
                                  clear after dumping (-cc to clear without dumping)
  TARGET
                                  console target(s)
  usage: console --help
   --help
                                  display this help and exit
```

flashbios

Use the flashbios command to flash the latest BIOS located in the /work/bmc/common directory on your CMC. For an example of how this command is used, see "Upgrading System BIOS" on page 31.

You can get a usage statement, as follows:

CMC:rlilc> **flashbios --help** Illegal option --NAME flashbios -- Flash UV BIOS from CMC

SYNOPSIS

flashbios [-e] [-n] [flashfile]

DESCRIPTION

The file specified by flashfile is flashed into the flash devices on all nodes of the UV system. By default the system will be automatically reset after the flash completes.

The flash file must be located in the CMC directory /work/bmc/common on the CMC. The default name of the flash file is 'bios.latest.fd'.

The following options are available:

- -e Erase BIOS variables and BIOS scratch space while resetting the system. This option will be ignored if '-n' is also specified.
- -n Do not automatically reset the system.

hwcfg

The hwcfg command can be used to access hardware override variables.

CMC:rlilc> hwcfg -a -v BLADE_DISABLE=no DEBUG_SW=0x0 HUB_CORE_SPEED=400 ICH_DISABLE=no IORISER_DISABLE=no MAX_CORES=0 NL5_CABLE_ENABLE=yes NL5_ENABLE=yes NL5_HUB2_WAR=no NL5_NEAR_LB=no NL5_RATE=6.25 NL5_SCRAMBLE=0x0 PARTITION=0 SMT_ENABLE=no SOCKET_DISABLE=no

Here is an example showing a system with four partition.

uv32-cmc CMC:rlilc> hwcfg -a -v	
NL5_RATE=5.0	
PARTITION=1	16/64
BMC(s)	
PARTITION=2	16/64
BMC(s)	
PARTITION=3	16/64
BMC(s)	
PARTITION=4	16/64
BMC(s)	

You can use hwcfg -c to clear the four partitions, as follows:

uv32-cmc CMC:rlilc> hwcfg -c partition PARTITION=0 <PENDING RESET>

You can get a usage statement, as follows:

```
CMC:r1i1c> hwcfg --help
```

usage: hwcfg [-dv] [var[=val]]... [--help] [TARGET]...

var[=val]	variable [and value to set]
-d,default	reset variable(s) to default value
-v,verbose	<pre>show variable(s) regardless of override state</pre>
help	display this help and exit, use with
variable(s) to get specif:	ic help

log

Provides a log of various operations performed on the CMC.

power

The CMC power command allows you to power on, power off, reset, cycle, get status and invoke the kernel debugger (KDB). When using the power command, you no longer have to power up the individual rack unit (IRU). When you issue the power command, it checks to see if the IRU is powered on, if not, it will power it up first and then the compute blades.

You can get a usage statement, as follows:

CMC:r1i1c> power --help

```
usage: power [-vcow] on up [bmc] [TARGET]...
on|up
                          turn power on
bmc
                          turn aux power on
-v, --verbose
                          verbose output
-c, --clear
                          clear EFI variables (system and partition targets only)
-o, --override
                          override partition check
-w, --watch
                          watch boot progress
usage: power [-vo] off down [bmc] [TARGET]...
off|down
                          turn power off
bmc
                          turn aux power off
-v, --verbose
                          verbose output
-o, --override
                          override partition check
usage: power [-vchow] reset [bmc|iobmc] [TARGET]...
reset
                          system reset
bmc | iobmc
                          BMC reset
-v, --verbose
                          verbose output
-c, --clear
                          clear EFI variables (system and partition targets only)
-h, --hold
                          hold reset high
-o, --override
                          override partition check
-w, --watch
                          watch boot progress
usage: power [-vhow] cycle [bmc] [TARGET]...
cycle
                          cycle power off on
bmc
                          cycle aux power
-v, --verbose
                          verbose output
-h, --hold
                          hold reset high
-o, --override
                          override partition check
-w, --watch
                          watch boot progress
```

status	show power status
-v,verbose	verbose output
-1,on	show only blades with on status
-0,off	show only blades with off status
-u,unknown	show only blades with unknown status
-d,disabled	show only blades with disabled status
usage: power [-ov] nmi de] nmi debug -o,override -v,verbose	oug [TARGET] issue NMI override partition check verbose output
usage: power [-v] margin margin high low norm <value> -v,verbose</value>	[high low norm <value>] [TARGET] power margin control margin state verbose output</value>
<pre>usage: power on off cycle on off cycle reset all c <slot#></slot#></pre>	reset all c <slot#> control aux power or BMC reset blade slot</slot#>
usage: powerhelp help	display this help and exit

sensor

Only valid for CMC data in this form. Use the sensor command to get system temperatures, fan speed, and voltage information and so on, as follows:

CMC:rlilc> sensor

Use the command from the cmc or bmc, as follows:

cmc sensor bmc sensor

showbios

Use the showbios command to show the latest BIOS version used on your system, as follows:

```
CMC:rlilc> showbios
Flashed on Sat May 1 14:14:45 UTC 2010 was bios.latest.fd
(20100429_1603)
```

uvcon

The uvcon command allows you to open a console window on the CMC or BMC or even a compute blade. Use CTRL -] q to exit.

You can get a usage statement, as follows:

```
CMC:rlilc> uvcon --help
usage: uvcon [-bnd23] [--smn=<hostname>] [--cmc=<hostname>] [--steal] [--spy] [--kill]
[--dump] [--notty] [--nocache] [--help] [TARGET] Note:
--smn=<hostname>
                               SMN hostname
--cmc=<hostname>
                               CMC hostname
-b, --baseio
                                specifies baseio bmc console
-n, --normal
                                specifies nbmc console (normal channel)
-d, --debug
                                specifies nbmc console (debug channel)
-2, --chan2
                                specifies nbmc console (channel 2)
-3, --chan3
                                specifies nbmc console (channel 3)
--steal
                                steal the console
--spy
                                spy the console
--kill
                               kill all other uvcon sessions
--dump
                               dump the cached console, exit
--notty
                               disables tty interventions
--nocache
                               don't return cached output
--help
                               display this help and exit
TARGET
                                console target
```

Note: When tty mode is enabled, use 'CTRL-]' 'q' to exit.

Index

В

booting, 16

С

chassis manager controller, 8 CMC controller software overview. 13 commands bios, 35 bmc, 36 cmc, 36 config, 19, 25, 37 flashbios, 31, 39 help, 33 hwcfg, 25, 39 log, 40 power, 41 power reset, 28 sensor, 42 showbios, 31, 42 uvcon, 28, 43

D

determining rack numbers, 11

F

finding the CMC IP address, 24

I

individual rack unit (IRU), 2 introduction, 1 IP address CMC, 24

Κ

kernel debugger (KDB), 19

Ν

nonmaskable interrupt (KDB) kernel debugger, 19

Ρ

power off, 18 power on, 16

S

SGI Altix UV 100 system overview, 6 SGI Altix UV 1000 system overview, 1 SGI Management Center (SMC), 8 SGI Management Node (SMN), 8 system control network, 9 system management, 7 system partitioning, 24

U

upgrading system PROM, 31

۷

viewing your system configuration, 19