sgi

SGI® Altix® UV GRU Development Kit
Programmer’s Guide

007-5668—-002

COPYRIGHT

© 2010, SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is
granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in
part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
SGI, Altix, and the SGI logo are are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in
the United States and other countries.

Linux is a registered trademark of Linus Torvalds in several countries.

New Feature in This Manual

This rewrite of the SGI Altix UV GRU Development Kit Programmer’s Guide supports
the SGI ProPack 7 Service Pack 1 release.

Major Documentation Changes
Added "Accessing the Altix UV GRU Direct Access API" on page 2.
Added Chapter 3, "GRU Software Functions" on page 25.

007-5668-002

Record of Revision

Version Description

001 June 2010
Original Printing.

002 July 2010
Updated to support the SGI ProPack 7 Service Pack 1 release.

007-5668-002

Contents

About This Manual
Obtaining Publications

Related Publications and Other Sources
Conventions
Reader Comments

1. Altix UV GRU Direct Access API
Accessing the Altix UV GRU Direct Access API

SGI High Level APIs Supporting GRU Access

Overview of API for Direct GRU Access
GRU Resource Allocators
GRU Man Pages

gru_tenp_reserve(3)
gru_pal | ocat e(3)
gru_resource(3)

GRU Memory Access Functions

XPMEM Library Functions

MPT Address Mapping Functions
MPI _SAE _gam ptr Function
MPI _SA _symmetric_addr Function
shmem pt r Function

GRU Library Program Example

2. GRU Driver and GRU Libraries Environment Variables
GRU_TLBM SS_MODE

007-5668-002

O© ~N o1 O w NN NN

L i e
A W W W L O O

17
17

vii

Contents

GRU_CCH_REQUEST_SLI CE
GRU_TLB_PRELOAD

GRU_STATI STI CS_FI LE
GRU_TRACE_FI LE

GRU_TRACE_| NSTRUCTI ONS
GRU_TRACE_EXCEPTI ONS
GRU_TRACE_| NSTRUCTI ON_RETRY
GRU Files in / proc

grust at s Command

3. GRU Software Functions
Checking the Status of GRU Operations

Displaying GRU Error Information
GRU Data Transfer Functions
xtype
exopc

Functions for GRU Instructions

Index

viii

17
18
18
18
19
19
19
20
22

25
25

25

25
26

26
27

37

007-5668-002

About This Manual

This publication documents the SGI Altix UV global reference unit (GRU)
development Kit. It describes the application programming interface (API) that allows
an application direct access to GRU functionality.

Obtaining Publications

You can obtain SGI documentation in the following ways:

See the SGI Technical Publications Library at: http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

You can also view man pages by typing man title on a command line.

Related Publications and Other Sources

This section describes documentation you may find useful, as follows:

007-5668-002

Message Passing Toolkit (MPT) User’s Guide

Describes industry-standard message passing protocol optimized for SGI
computers.

Unified Parallel C (UPC) User’s Guide

Documents the SGI implementation of the Unified Parallel C (UPC) parallel
extension to the C programming language standard.

SGI Altix UV 1000 System User’s Guide

This guide provides an overview of the architecture and descriptions of the major
components that compose the SGI Altix UV 1000 system. It also provides the
standard procedures for powering on and powering off the system, basic
troubleshooting information, and important safety and regulatory specifications.

About This Manual

= SGI Altix UV 100 System User’s Guide

This guide provides an overview of the architecture and descriptions of the major
components that compose the SGI Altix UV 100 system. It also provides the
standard procedures for powering on and powering off the system, basic
troubleshooting information, and important safety and regulatory specifications.

Conventions

The following conventions are used throughout this document:

Convention

comand

manpage(X)
variable

user input

[]

Reader Comments

Meaning

This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

Man page section identifiers appear in parentheses after
man page names.

Italic typeface denotes variable entries and words or
concepts being defined.

This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

Brackets enclose optional portions of a command or
directive line.

Ellipses indicate that a preceding element can be
repeated.

If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

007-5668-002

= Send e-mail to the following address:
techpubs@sgi.com

= Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

= Send mail to the following address:

SGI

Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.

Xi

Chapter 1

007-5668-002

Altix UV GRU Direct Access API

Note: This manual only applies to SGI Altix UV 100 and SGI Altix UV 1000 series
systems.

This chapter provides an overview of the SGI Altix UV global reference unit (GRU)
development Kit. It describes the application programming interface (API) that allows
an application direct access to GRU functionality.

The GRU is part of the SGI Altix UV Hub application-specific integrated circuit
(ASIC). The UV Hub is the heart of the SGI Altix UV 1000 or Altix UV 100 system
compute blade. It connects to two Intel Xeon 7500 series processor sockets through
the Intel QuickPath Interconnect (QPI) ports and to the high speed SGI NUMAIlink
interconnect fabric through one of four NUMAIink 5 ports. The Intel processor
sockets can have two four-core, six-core, or eight-core processors with on-chip
secondary caches.

This UV Hub acts as a crossbar between the processors, local SDRAM memory, and
the network interface. The Hub ASIC enables any processor in the single-system
image (SSI) to access the memory of all processors in the SSI.

The system architecture for the Altix UV 1000 and Altix UV 100 system is a
fifth-generation NUMAflex distributed, shared memory (DSM) architecture known as
NUMALIink 5. In the NUMAIink 5 architecture, all processors and memory can be tied
together into a single logical system.

For more information on the SGI Altix UV hub, Altix UV compute blades, QPI, and
NUMALIink 5, see the SGI Altix UV 1000 System User’s Guide or the SGI Altix UV 100
System User’s Guide, respectively. This chapter covers the following topics:

= "Accessing the Altix UV GRU Direct Access API" on page 2
= "SGI High Level APIs Supporting GRU Access" on page 2
= "Overview of API for Direct GRU Access " on page 2

= "GRU Resource Allocators" on page 3

= "GRU Man Pages" on page 5

< "GRU Memory Access Functions" on page 10

1. Altix UV GRU Direct Access API

e "XPMEM Library Functions" on page 10
< "MPT Address Mapping Functions" on page 11
= "GRU Library Program Example" on page 14

Accessing the Altix UV GRU Direct Access API

In order to access and use the Altix UV GRU direct access API, you need to install the
following RPMs on your SGI Altix UV system:

< Xxprmem devel
e gru-devel
e gru_all oc-devel

e |ibgru-devel

Note: These RPMs are not installed by default.

SGI High Level APIs Supporting GRU Access

Message Passing Interface (MPI), SHMEM, and Unified Parallel C (UPC) high level
APIs and programming models that are implemented and supported by SGI that
support access to GRU functionality. For more information, see npi (1), shrmenm(3), or
sgi upc(l) man pages and the Message Passing Toolkit (MPT) User’s Guide and Unified
Parallel C (UPC) User’s Guide.

Overview of API for Direct GRU Access
The Direct GRU Access API has four components, as follows:
= GRU resource allocators

The GRU resource allocator functions provide management of the GRU resources
to allow independent software components in the same program access the GRU
without oversubscribing the GRU resources.

007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

< GRU memory access functions

The GRU memory access functions perform GRU operations that include memory
read, memory write, memory-to-memory copies, and atomic memory operations
and so on.

< XPMEM address mapping functions

The XPMEM address mapping functions set up mappings to target memory
throughout the system into local GRU-mapped virtual addresses.

< MPT address mapping functions

The MPT address mapping functions are a layer on top of XPMEM, and expose
mapped memory regions already set up for MPI and SHMEM to the user
application.

GRU Resource Allocators

007-5668-002

The UV global reference unit (GRU) has control block (CB) and data segment (DSEG)
resources associated with it. User applications need to allocate CB resources and
usually DSEG resources for use in GRU memory access functions.

There are two categories of GRU resources used by any thread: temporarily and
permanently allocated. A program starts running with all the available GRU
resources being in the temporary pool until some resources are allocated permanently
via the gru_pal | ocat e() function.

The preferred way to get access to all the GRU temporary CBs and DSEG is through
the use of the lightweight gru_t enp_reserve() and gru_tenp_rel ease()
functions. These functions should wrap any use of the GRU memory access functions,
with an exception to be described later.

#i ncl ude <gru_all oc. h>
void gru_tenp_reserve(gru_alloc_thdata_t *gat);

typedef struct {

gru_segnent _t *gruseg;
gru_control _bl ock_t *cbp;
voi d *dsegp;
int cb_cnt;

1. Altix UV GRU Direct Access API

int dseg_si ze;
} gru_alloc_thdata_t;

The gru_al | oc_t hdat a_t structure returned from this function will describe the
GRU resources available for use until the next call to gru_t enp_r el ease().

The following code example shows a GRU memory access function gru_gamni rr ()
being called after which the gru_t enp_r eserve() function reserves the GRU
resources, and before the gru_wai t _abort () function waits for completion of the
operation. Then, followed by a call to gru_t enp_r el ease() to release the
temporary GRU resources.

Example 1-1 GRU Memory Access Function (gru_gamirr())

gru_alloc_thdata_t gat;

gru_tenp_reserve(&gat);

gru_gamrr(gat.cbp, EOP_I RR DECZ, address, XTYPE_DW |MA CB_DELAY);
gru_wait_abort(gat.cbp);

gru_tenp_rel ease();

The effect of the gru_t enp_reserve() andgru_tenp_rel ease() functions is
thread-private, so related POSIX threads or OpenMP threads could be executing the
above sequence, concurrently.

An alternative allocation scheme is permanent allocation. The gr u_pal | ocat e()
function returns CB and DSEG resources that can be used at any time thereafter. This
can simplify the allocation strategy but it has the disadvantage of reducing the
number of GRU resources that can be used by other software. An example would be
a call to gru_bcopy() which allows you to pass a DSEG work buffer of any size.
The achieved bandwidth for gr u_bcopy() is higher with larger DSEG work buffers.

You can find more detailed information in the following man pages:
e "gru_tenp_reserve(3)" on page 5

< "gru_pal |l ocat e(3)" on page 7

e "gru_resource(3)" on page 9

Use the man(1) command to view these man pages online. For your convenience,
copies of the GRU-related man pages are included in the following section.

4 007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

GRU Man Pages

This section contains GRU-related man pages.

gru_tenp_reserve(3)

007-5668-002

NAME
gru_tenp_reserve, gru_tenp_rel ease - temporary GRU resource allocator
SYNOPSIS

#i ncl ude <gru_all oc. h>
void gru_tenp_reserve(gru_alloc_thdata_t *gat);
int gru_tenp_reserve_try(gru_alloc_thdata_t *gat);

void gru_tenp_rel ease(void);

typedef struct {

gru_segnent _t *gruseg;
gru_control _bl ock_t *cbp;

voi d *dsegp;
int cb_cnt;
int dseg_si ze;

} gru_alloc_thdata_t;

LIBRARY
-lgru_alloc
DESCRIPTION

The gru_tenp_reserve() and gru_tenp_reserve_try() functions will allocate
and reserve the temporary use GRU resources for a thread. The

gru_al l oc_t hdat a_t structure returned in gat describes the number and locations
of the temporary use GRU resources which may be used until the next call to
gru_tenp_rel ease().

The fields are defined, as follows:

gruseg The GRU segment

1. Altix UV GRU Direct Access API

chp A convenient pointer to the first control block (CB).
Equal to gru_get _cb_poi nter (gat - >gruseg, 0).

dsegp A pointer to data segment space (DSEG) space available
for temporary use.

cb_cnt The number of consecutive CBs in the GRU segment
that are available for temporary use.

dseg_si ze The size of the DSEG region available for temporary
use (bytes).

The first call to gru_t enp_reserve() will allocate a GRU segment for the calling
thread, and this same segment will be assigned to the thread for use after any call to
gru_tenp_reserve().

Every call to gru_t enp_reserve() sets a thread-private "temporary resources in
use" (TRU) flag. The temporary GRU resources identified by the gat structure are
valid and may be referenced only when the TRU flag is set. Note that later calls to
gru_tenp_reserve() may return different values in the gat structure.

The program will abort if the TRU flag is already set when a call is made to
gru_tenp_reserve() orgru_pallocate().

The GRU allocation library attempts to provide a quantity of temporary use GRU
resources that is equal to the quantity on each UV hub divided by the number of
processors per hub. This quantity will be reduced by any GRU resources permanently
allocated via the gru_pal | ocat e() function.

SUGGESTED USAGE CONVENTIONS
The above usage rules suggest two natural usage conventions that are equally valid:

A. Users surround code blocks that use temporary GRU resources with
gru_tenp_reserve() and gru_tenp_rel ease() calls.

or

B. Users should insert calls to gru_t enp_r eserve() at the beginning of each
GRU-using function and calls to gru_t enp_r el ease() at each return point for that
function. In addition, every function call site that might end up calling a GRU
function with temporary GRU resources should have a call to gru_t enp_r el ease()
prior to the call site and a call to gru_t enp_r eserve() upon return.

6 007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

gru_pal | ocat e(3)

007-5668-002

Note that use of GRU functions with temporary storage in signal handlers is
dangerous. The program will abort if the TRU flag is set when a signal handler is
entered that also calls gru_t enp_reserve().

ENVIRONMENT VARIABLES

See the gr u_r esour ce(3) man page for information about environment variables
that can control the amount of GRU resources that are allocated.

RETURN VALUE

gru_tenp_reserve_try returns 0 if able to reserve the temporary GRU resources,
and -1, otherwise.

Failure to reserve temporary resources results from a previous reservation on the
temporary resource still being in effect. gru_t enp_r eser ve aborts if unable to
reserve the temporary GRU resources.

NOTES

The deprecated gru_al | _reserve() function has the same effect as
gru_tenp_reserve().

The deprecated gru_al | _rel ease() function has the same effect as
gru_tenp_rel ease().

SEE ALSO

gru_pal l ocate(3),gru_all _reserve(3), and gru_r esour ce(3)

NAME
gru_pal | ocat e - permanently allocate GRU resources
SYNOPSIS

#i ncl ude <gru_all oc. h>

int gru_pallocate(int numcbs, int dseg_sz, gru_segment_t **gruseg,
int *cbnum void **dseg);

int gru_pallocate_dseg_granularity(void);

1. Altix UV GRU Direct Access API

LIBRARY
-lgru_alloc
DESCRIPTION

The gr u_pal | ocat e() function will permanently reserve a specified number of GRU
control blocks (CBs) and data segment space (DSEG).

Arguments are, as follows:

num cbs (input) the number of CBs desired.

dseg_sz (input) the number of bytes of DSEG space desired.
dseg_sz must be a multiple of the DSEG allocation
granularity.

gruseg (output) assigned the pointer to the GRU segment
containing the returned resources.

cbnum (output) assigned the ordinal value of the first CB in
the GRU segment that is part of the allocation.

dseg (output) assigned the pointer to the allocated DSEG
space.

The gru_pal | ocat e() function may not be called between calls to
gru_tenp_reserve() and gru_tenp_rel ease(). After gru_pal | ocate() is
called, the amount of GRU resources available to the caller of gru_t enp_reserve()
will be decreased.

The gru_pal | ocat e_dseg_granul arity() function returns the DSEG allocation
granularity, which is the smallest number of bytes of DSEG space that may be
allocated.

RETURN VALUE

gru_pal | ocat e() returns 0 on success, -1 on error with one of the following er r no
values set:

ENOVEM - the library GRU segment local to this thread had insufficient CB or DSEG
space to satisfy the request.

El NVAL - the dseg_sz value is not a multiple of the DSEG allocation granularity.
SEE ALSO

8 007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

gru_resource(3)

007-5668-002

gru_tenp_reserve(3), gru_tenp_rel ease(3)

NAME

gru_resour ce - tuning the GRU allocator run-time library
LIBRARY

i bgru_all oc run-time library

DESCRIPTION

The GRU allocator run-time library is linked in to some programs and libraries to
manage available GRU resources. The amount of GRU resource that can be allocated
defaults to a logical CPU’s share of the GRU resources on an Altix UV hub. However,
the user can modify and tune the quantities of GRU resource by setting environment
variables, as described in the following section of this man page.

ENVIRONMENT VARIABLES

GRU_RESOURCE_FACTOR Multiplies the quantity of control blocks (CB) and data
segment space (DSEG) resources assigned to each
thread by the factor given. For example, when parallel
jobs are run with only one user thread per core, a factor
of 2 could be specified. If only one GRU-using thread or
process will be run on each socket, and each socket had
16 hyperthreads, then a factor of 16 could be specified.
If GRU_THREAD_CBS or GRU_THREAD DSEG SZ are
specified, they override GRU_RESOURCE_FACTOR

GRU_THREAD_ CBS Overrides the number of per-thread CBs assigned to the
caller of gru_tenp_reserve(). The default is a
processor’s fair portion of the available CBs, which is 8
on systems with 8 cores per socket and 10 on systems
with 6 cores per socket.

CGRU_THREAD DSEG Sz Overrides the amount of per-thread DSEG space
assigned to the caller of gru_t enp_reserve(). The
default is a processor’s fair portion of the available
DSEG space, which is 2048.

SEE ALSO

1. Altix UV GRU Direct Access API

cpumap(l)

GRU Memory Access Functions

The GRU memory access functions perform GRU operations that include memory
read, memory write, memory-to-memory copies, and atomic memory operations.
These functions use an ordinary virtual address or a GRU-mapped virtual address to
reference the remote memory.

The interfaces to these functions are viewable in the uv/ gru/ gru_i nstructions. h
header file installed by the gr u- devel RPM.

The following code example of a GRU memory access function illustrates the basic
call structure.

Example 1-2 GRU Memory Access Function Basic Call Structure

static inline

voi d gru_vl oad(gru_control _block_t *cb, void *rmem addr,
unsigned int tri0O, unsigned char xtype, unsigned |ong nelem
unsi gned |long stride, unsigned |ong hints);

Argunents are:
cb - pointer to CB
mem addr - address of targeted nenory

tri0 - index to DSEG buffer. Conpute it
using gru_get_tri().

xtype - log2 of data type byte size (XTYPE B ...)

nel em - nunber of elenents to transfer

stride - menory stride, scaled in elenents

hints - | MA_CB DELAY is commonly used

All memory access operations are asynchronous. The wait functions, such as,
gru_wai t _abort (), specify the CB handle and are used to wait to completion.

XPMEM Library Functions

The XPMEM interface can map a virtual address range in one process into the
GRU-mapped virtual address in another process. The XPMEM interface was designed

10 007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

to meet the needs of MPI and SHMEM implementations and provide ways to map
any data region. As a GRU API user, you need to find a way to map the needed
memory regions into the processes or threads involved. The Linux operating system
offers many options for doing this, as follows:

- mmap
= System V shared memory

= memory sharing among pt hr eads

= memory sharing among OpenMP threads

These methods are the likely first choice for most potential GRU users.

The sn/ xprrem h header file installed by the xpnem devel RPM has interface
definitions for all the XPMEM functions.

The following example shows the main XPMEM functions:
Example 1-3 Main XPMEM Functions

extern __s64 xpnmem nmake_2(void *, size_t, int, void *);

extern int xpmemrenove_2(__s64);

extern __s64 xpnemget_2(__s64, int, int, void *);

extern int xpmemrel ease_2(__s64);

extern void *xpnem attach_2(__s64, off_t, size_t, void *);
extern void *xpnem attach_high_2(__s64, off_t, size_t, void *);
extern int xpmemdetach_2(void *, size_t size);

extern void *xpnemreserve_high_2(size_t, size_t);

extern int xpmem.unreserve_high_2(void *, size_t);

For more information on using XPMEM, see SGI Altix UV Systems Configuration and
Operations Guide.

MPT Address Mapping Functions

007-5668-002

The MPT | i bnpi library uses XPMEM to cross-map virtual memory between all the
processes in an MPI job. Several functions are available to lookup mapped virtual
addresses that are pre-attached in the virtual address space of a process by MPI. The
addresses returned by the lookups may be passed to the GRU library functions.

11

1. Altix UV GRU Direct Access API

12

Not all GRU API users can require their code to execute in an MPI job, but if you do,
you may find the MPT address mapping functions are a convenient way to reference
remote data arrays and objects.

The MPT address mapping functions are shown below. They reference ordinary
virtual addresses or addresses of symmetric data objects. Symmetric data is static
data or array-defined in the i nt r o_shmen{(3) man page.

The following example shows an MPI _SG _gam t ype:
Example 1-4 MPl _SG _gam t ype

#i ncl ude <npi _ext. h>

int

WPl _SE _gam type(int rank, MPlI_Comm comm)

Return value is the XPMEM accessibility of the specified rank.

MPI _ GAM_NONE - not referenceable by |oad/store or GRU

MPI _GAM CPU NONCCH - Al'tix 3700 noncoherent

WPl _GAM CPU - if referencable by |oad/store only

WPl _GAM GRU - if referenceable by GRU only

MPI _GAM CPU_PREF - if referenceable by either |oad/store
or GRU, preferred by |oad/store

MPI _GAM GRU_PREF - if referenceable by either |oad/store

or GRU, preferred by GRU

The MPT address mapping functions are influenced by the MPI _GSM_NEI GHBORHOOD
environment variable. This variable may be used to specify the "neighborhood size"
for shared memory accesses. Contiguous groups of ranks within a host can be
considered to be in the same neighborhood. The MPI _GSM_NEI GHBORHOOD variable
specifies the size of these neighborhoods, as follows:

= MPI processes within a neighborhood will return gam t ype MPI _GAM CPU_PREF.

= MPI processes outside a neighborhood with a host will return gam t ype
MPI _GAM GRU_PREF.

= MPI processes from a different host within a Altix UV system will return
gam type MPI _GAM GRU.

007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

When MPI _GSM_NEI GHBORHOOD is not set, the neighborhood size defaults to all
ranks in the current host.

MPI _SA _gam ptr Function

The MPI _SA _gam ptr function is, as follows:

#i ncl ude <npi _ext. h>

void * MPI_SA _gam ptr(void *remaddr, size_t len, int remote_rank,
MPl _Comm conm int acc_node);

Given a virtual address in a specified MPI process rank, returns a general virtual
address that may be used to directly reference the memory.

This function is for general users.

acc_node Chooses CPU or GRU addressable
MPlI _GAM CPU Requests CPU address that can be referenced
MPlI _ GAM GRU Requests GRU address that can be referenced

This function prints an error message when error conditions occur and then aborts.

MPI _SGE _symmretric_addr Function

shmem pt r Function

007-5668-002

The MPl _SA _symmetri c_addr function is, as follows:

void *MPI _SA _synmetric_addr(void *local _addr, size_t |en,
int remote_rank, MPI_Conmm comm

For symmetric objects, returns the virtual address (VA) of the corresponding object in
a specified MPI process.

The shrrem pt r function is, as follows:

#i ncl ude <npp/ shnem h>

13

1. Altix UV GRU Direct Access API

void *shnemptr(void *target, int pe);

Returns a processor-referencable address that can be used to reference symmetric data
object target on a specified MPI process. See shmem pt r (3) for more details.

GRU Library Program Example

This section provides a global reference unit (GRU) library program example, as
follows:

/*

* This SHVEM program uses GRU APl function gru_bcopy to

* read the bbb variable on PE N+1 to acconplish a circul ar
* shift of bbb into aaa.

*/

#i ncl ude <npi _ext. h>

#i ncl ude <npi . h>

#i ncl ude <npp/ shnem h>

#i ncl ude <uv/gru/gru_alloc. h>

#i ncl ude <uv/gru/gru_instructions. h>

int aaa, bbb; /* static data is remptely accessible */

int min ()

{
int *gptr;
gru_al l oc_thdata_t thd;
int tri;

start_pes(0);
shmem barrier_all();

gru_tenp_reserve(&hd); /* reserve tenp GRU resources */
gptr = MPI _SGE _gamptr (

&bbb, /* address of source */
1, /* nunber of elenents */

(_ny_pe() + 1) %

14 007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

_numpes(), /* PE owner of data */
MPI _COMM WORLD, /* SHVEM uses MPI _COVM WORLD */
MPI _GAM GRU); /* get CGRU accessible address */

tri = gru_get_tri(thd.dsegp); /* get offset to DSR buffer */

gru_bcopy(
thd.cbp, /* CB O will be used */

gptr, /* CGRU pointer for source of copy */
&aaa, /* GRU pointer for destination of copy */

tri, /* offset to DSR buffer */
XTYPE_W /* data type is 4 byte word */
1, /* nunber of elenents to copy */

2, /* nunber of cache |ines of DSR buffer */
0); /* hints */

gru_wait_abort(thd.cbp); /* wait for conpletion of gru_bcopy() */
gru_tenp_release(); /* release GRU resources */

shmem barrier_all(); /* synchronize all PEs */

}

007-5668-002 15

Chapter 2

GRU Driver and GRU Libraries Environment
Variables

This chapter describes environment variables that can be used to specify options to
the global reference unit (GRU) driver and GRU libraries. For a description of the
GRU, see Chapter 1, "Altix UV GRU Direct Access API" on page 1.

GRU_TLBM SS_MODE

If an instruction references a virtual address that is not in the GRU translation
lookaside buffer (TLB), a TLB miss occurs. TLB misses can be handled in several ways:

e user_polling

TLB dropins are done as a side effect of users calling gru_wai t or
gru_check_st at us on the coherence buffer request (CBR).

e interrupt

The GRU sends an interrupt to the CPU. The TLB dropin is done in the GRU
interrupt handler.

= The default mode is "interrupt" although you can override this default using an
option on the gru_creat e_cont ext () request. The environment variable can
be used to override both, as follows:

setenv GRU TLBM SS_MODE [i nterrupt]|user_polling]

GRU_CCH REQUEST SLI CE

007-5668-002

The GRU execution unit timeslices across all active instructions. By default, the GRU
issues four NUMAIink get/put messages for an active instruction, then switches the
next active instruction. You can override the default, as follows:

setenv GRU CCH REQUEST SLI CE [0] 1] 2| 3]

- issue 4 requests

i ssue 8 requests

- issue 16 requests

- not sliced. Al requests are issued

w N O

17

2: GRU Driver and GRU Libraries Environment Variables

GRU_TLB_PRELOAD

The GRU driver can be configured to do anticipatory TLB dropins for GRU BCOPY
instructions that take a TLB miss. When a TLB miss occurs, and the instruction is a
BCOPY, the GRU driver will dropin multiple TLB entries. To configure the GRU
driver to do anticipatory TLB dropins for GRU, perform the following:

set env GRU_EXCEPTI ON_RETRY <nun®
<nun® nunber of consecutive retries before returning an error

GRU_STATI STI CS_FI LE

You can collect statistics of a task’s usage of GRU contexts by using this option to
specify a statistics file, as follows:

setenv GRU STATI STICS FI LE <fil enane>

Whenever a task exits or a GRU context is destroyed, statistics are written to this file.
A sample file is, as follows:

Pi d: 23020 Mon Cct 19 20: 46:56 2009
Command: ./sgup2
CBRs: 4
DSRs: 24576 bytes
Gseg vaddr: Ox7fe3ale80000
46740 instructions
23 instruction_ wait
0 exceptions
9903 FM tl b dropin
1 UPMtlb dropin
1040 context stol en

GRU_TRACE FI LE

You can collect detailed trace of GRU instructions. Use this option to specify the
name of the file for the trace information. There are levels of tracing, as follows:

« All GRU instructions

18 007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

= GRU instructions that return error EXCEPTIONS to users
= GRU instructions that fail and are automatically retried
To collect detailed trace of GRU instructions, perform the following:

setenv GRU_TRACE FI LE <fil enane>

GRU_TRACE_| NSTRUCTI ONS

Setting this option enables tracing of every GRU instruction, as follows:

set env GRU_TRACE_| NSTRUCTI ONS

GRU_TRACE_EXCEPTI ONS

This option enables tracing of GRU instruction that cause exceptions. Note that some
exceptions for GRU MESQ instructions are automatically handled by the GRU nesq
library routines. These exceptions are not traced if <val > is equal to 1 (or not
specified). If you want to see these exceptions (mesq_f ul | , anb_nacked, and so
on), set <val > to 2.

set env GRU_EXCEPTI ON_RETRY <nun®e
<nun® nunber of consecutive retries before returning an error

GRU_TRACE_| NSTRUCTI ON_RETRY

This option enables tracing of GRU instructions that fail due to transient errors. The

GRU library routine normally retry the instruction and the failure is hidden from the
user. If you want to see these failure that are retried successfully, enable this option,

as follows:

set env GRU_TRACE | NSTRUCTI ON_RETRY
An example output file is, as follows:

Pid: 25276 - gru_wait
opc: NOP, xtype: BYTE, inma: |mResp
istatus: |DLE

007-5668-002 19

2: GRU Driver and GRU Libraries Environment Variables

Pid: 25276 - gru_wait
opc: VLOAD, xtype: DWORD, inmma: Del Resp, baddr0: 0x604450, triO: O0xO, nelem Ox1, stride: Oxl1
istatus: |DLE

Pid: 25276 - gru_wait
opc: VSTORE, xtype: DWORD, ima: Del Resp, baddr0: 0x604450, triO: 0Ox0, nelem Ox1, stride: Oxl
istatus: |DLE

Pid: 25276 - gru_wait
opc: |VLOAD, xtype: DWORD, ima: Del Resp, baddr0: 0x0, triO: OxO, tril: Ox40, nelem Ox1
istatus: |DLE

Pid: 25276 - gru_wait
opc: | VSTORE, xtype: DWORD, ima: Del Resp, baddrO: 0xO, triO: Ox0, tril: 0x40, nelem Ox1
istatus: |DLE

Pid: 25276 - gru_wait

opc: VSET, xtype: DWORD, inm: Del Resp, baddr0: 0x604450, val ue: 0x483966aal27dedld, nelem Ox1, stride:

istatus: |DLE
Pi d: 25284, Tid: 25289 - gru_wait
opc: MESQ, xtype: CACHELINE, ima: Del Resp, baddr0O: 0x606000, triO: 0xO, nelem Ox1
i status: EXCEPTIQN, isubstatus: Q.IMT, avalue: 0f0000000f
execstatus: EXCEPTI ON
state: Ox1, exceptdetO: 0x606000, exceptdetl: O0x8
Pi d: 25284, Tid: 25288 - gru_wait
opc: MESQ, xtype: CACHELINE, ima: Del Resp, baddr0O: 0x606000, triO: 0xO, nelem Ox1
i status: EXCEPTIQON, isubstatus: AMO NACKED, aval ue: 00
execstatus: EXCEPTI ON
state: Ox1, exceptdet0O: 0x606000, exceptdetl: 0x8

GRU Files in / proc

The / proc/ sgi _uv/ gru directory contains several files that have information about
GRU state, as follows:

e gru_options

Bit-field that can be used to enable or disable options
e cch_status

List of tasks using GRU contexts
e gru_status

List of available GRU resources

20 007-5668-002

Ox1

SGI® Altix® UV GRU Development Kit Programmer’s Guide

e statistics
Detailed GRU driver statistics (if enabled)
e nts_status
Timing information for kernel GRU commands
Some examples of the files in / proc/ sgi _uv/ gru are, as follows:
Example 2-1 gr u_st at us - Available Resources

The file shows the free resources available in each GRU chiplet, as follows:

% cat gru_status

gid nid ctx cbr dsr ctx cbr dsr
busy busy busy free free free
0 0 8 36 32768 8 92 0
1 0 1 4 4096 15 124 28672
2 1 7 56 28672 9 72 4096
3 1 7 28 28672 9 100 4096

Example 2-2 gru_opt i ons - Enable or Disable Driver Features

Various GRU options (mostly debugging) can be enabled or disabled by writing
values to / proc/ sgi _uv/ gru/ gru_options file. Use cat command, to view the
file to see the current settings or to see a description of the various options.

% cat debug_options
bitmask: 1=trace, 2=statistics, 0x10=No_4k_dsr_ AU war
bit mask: 0x20=no_i abort_war, O0x40=no_chiplet_affinity
bi tmask: 0x80=no_tI|b_war, 0x100=no_nesq_war

0x0001 - enable statistics (they are not free)
0x0002 - enabl e VERY verbose driver trace information to /var/l og/ messages

Example 2-3 st ati sti cs - Very Detailed Driver Statistics
You can collect detailed driver statistics, as follows:

% echo 2 > /proc/sgi_uv/gru/gru_options

007-5668-002 21

2: GRU Driver and GRU Libraries Environment Variables

This enabled, detailed statistic collection occurs in numerous places in the driver.
There is system usage overhead associated with this collection, especially on large

systems.

% cat /proc/sgi_uv/gru/statistics
45806 vdata_all oc
45771 vdata_free
195712 gts_all oc
195668 gts_free
34351 gns_al |l oc
34333 gns_free

149398 gts_doubl e_al | ocate

(lots nore)

grustats Command

uv15-sys

22

eNeNeolNelNolNeolNolNeolNolNolNolNolNolNolNolNolNolNolNolNol

You can use the gr ust at s command, to view GRU statistics. You will see output

similar to the following:

TOTAL GRU STATI STI CS SI NCE COMWAND START
vdata_al | oc

vdat a_open

vdata_free

gts_alloc

gts_free

gnms_al | oc

gns_free
gts_doubl e_al | ocate
assi gn_cont ext
assign_context_failed
free_cont ext

| oad_user _cont ext

| oad_kcont ext

| oad_kcont ext _assi gn
| oad_kcont ext _stea

| ock_kcont ext

unl ock_kcont ext

get _kcont ext _cbr

get _kcont ext _cbr _busy
| ock_async_resource

elNeNeolNelNolNolNeolNeolNolNolNeolNolNolNolNolNolNolNolNolNol

copy_gpa
read_gpa

nesq_recei ve
nMesq_r ecei ve_none
nmesq_send
nesq_send_fail ed
nmesq_noop
nmesq_send_unexpect ed_error
nmesq_send_| b_overfl ow
nmesq_send_qgli mt_reached
nmesq_send_ano_nacked
nmesq_send_put _nacked
nmesq_gf _| ocked

nmesq_qgf _noop_not _ful
nmesq_gf _swi tch_head_fail ed
nmesq_gf _unexpected_error
nmesq_noop_unexpect ed_error
nmesq_noop_| b_overfl ow
nmesq_noop_qlimt_reached
nmesq_noop_ano_nacked

007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

unl ock_async_resource

st eal _user _cont ext

st eal _kernel _cont ext
0 steal _context failed

and much more

O O o

007-5668-002

O O oo

nmesq_noop_put _nacked
nmesq_noop_page_overfl ow
inmplicit_abort
inmplicit_abort_retried

23

2: GRU Driver and GRU Libraries Environment Variables

For a usage statement, once the gr ust at s command is executing, enter the letter h
for help. A usage statement appears, as follows:

Intstats hel p:

h - help (this screen)

q - quit

r - reset command-start statistics

t or <TAB> - toggle between total and increnmental node
CTL-L - redraw screen

CR - to return to display

24 007-5668-002

Chapter 3

GRU Software Functions

This chapter describes software functions that can be used on the global reference
unit (GRU). For a description of the GRU, see Chapter 1, "Altix UV GRU Direct
Access API" on page 1. This chapter describes a subset of the
/usr/include/uv/gru/gru_instructions. h file.

Checking the Status of GRU Operations

This section describes software functions used for checking the status of GRU
operations, as follows:

extern int gru_check_status_proc(gru_control _block_t *cb); extern int gru_wait_proc(gru_cont
gru_wait_abort_proc(gru_control _block_t *cb);

extern void gru_abort(int, gru_control _block_t *cb, char *str);

The gru_check_status_proc() and gru_wai t _proc() functions return one of
the following GRU control block status (CBS) values:

CBS_| DLE
CBS_EXCEPTI ON
CBS_ACTI VE
CBS_CALL_OS

Displaying GRU Error Information

This section describes software functions used for displaying GRU error information,
as follows:

extern char *gru_get_cb_exception_detail _str(int ret, gru_control _block_t *cb,
char *buf, int size);

GRU Data Transfer Functions

This section describes some GRU data transfer functions.

007-5668-002 25

3: GRU Software Functions

xtype

exopc

26

xt ype - datatype of the transfer. Choose from the following list:

XTYPE_B byte

XTYPE_S short (2-byte)
XTYPE_W word (4-byte)
XTYPE_DW doubleword (8-byte)
XTYPE_CL cacheline (64-byte)

exopc - extended opcode for atomic memory operations (AMO).

AMOs inplicit operand opcodes

EOP_IR FETCH /* Plain fetch of menory */
EOP IR CLR /* Fetch and clear */

EOP IR INC /* Fetch and increnment */

ECP IR DEC /* Fetch and decrenment */

EOP_IR QCHK1 /* Queue check, 64 byte nsg */
EOP_IR_ QCHK2 /* Queue check, 128 byte nsg */

Regi stered AM3s with inplicit operand opcodes

EOP_IRR_ FETCH /* Registered fetch of nenory */
EOP_IRR CLR /* Registered fetch and clear */

EOP_IRR_INC /* Registered fetch and increnment */
EOP_IRR_ DEC /* Registered fetch and decrenent */

EOP_IRR DECZ /* Registered fetch and decrenent,
AM>s with explicit operand opcodes

EOP_ER SWAP /* Exchange argunment and nenory */
EOP_ER OR /* Logical ORwith menory */

EOP_ER AND /* Logical AND with menory */
EOP_ER XOR /* Logical XOR with menory */

GRU data transfer functions have some arguments in common with each other:

updat e on zero*/

007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

EOP_ER ADD /* Add value to menory */
EOP_ER CSWAP /* Conpare wi th operand2, wite operandl if match*/
EOP_ER CADD /* Queue check, operandl*64 byte msg */

Regi stered AM3s with explicit operand opcodes

EOP_ERR SWAP /* Exchange argunent and nenory */

EOP_ERR OR /* Logical OR with nenory */

EOP_ERR AND /* Logical AND with menory */

EOP_ERR XOR /* Logical XOR with menory */

EOP_ERR ADD /* Add value to nmenory */

EOP_ERR CSWAP /* Conpare with operand2, wite operandl if match*/

AM>s with extened opcodes in DSR
EOP_XR CSWAP /* Masked conpare exchange */
hints

| MA_CB DELAY /* hold read responses until status changes */

Functions for GRU Instructions
This section contains functions for GRU instructions, as follows:

- nelemand stride are in elenents
- tri0O/tril is in bytes for the beginning of the data segnent.

static inline void gru_vload(gru_control _block_t *cb, void *nem addr,
unsigned int triO, unsigned char xtype, unsigned |ong nel em
unsi gned long stride, unsigned |ong hints) {
struct gru_instruction *ins = (struct gru_instruction *)cb;

i ns->baddr0 = (| ong)mem addr;

ins->nel em = nel em

ins->opl_stride = stride;

gru_start_instruction(ins, __ opdword(OP_VLOAD, 0, xtype, |AA RAM 0,
(unsigned long)triO, hints));

007-5668-002 27

3: GRU Software Functions

static inline void gru_vstore(gru_control _block_t *cb, void *mem addr,
unsigned int triO, unsigned char xtype, unsigned |ong nel em
unsi gned long stride, unsigned |ong hints) {

struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong)mem addr;

ins->nel em = nel em

ins->opl_stride = stride;

gru_start_instruction(ins,
tri0, hints));

opdwor d(OP_VSTORE, 0, xtype, |AA RAM 0,

}

static inline void gru_ivload(gru_control _block_t *cb, void *mem addr,
unsigned int tri0O, unsigned int tril, unsigned char xtype,
unsi gned | ong nel em unsigned |ong hints) {
struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong)mem addr;
i ns->nel em = nel em
ins->tril bufsize 64 = tril;
gru_start_instruction(ins, __opdword(OP_I VLOAD, 0, xtype, |AA RAM O,
tri0, hints));
}

static inline void gru_ivstore(gru_control _block_t *cb, void *mem addr,
unsigned int tri0O, unsigned int tril,
unsi gned char xtype, unsigned |ong nelem unsigned |ong hints) {
struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong)mem addr;
i ns->nel em = nel em
ins->tril bufsize 64 = tril;
gru_start_instruction(ins, __opdword(OP_I VSTORE, 0, xtype, |AA RAM O,
tri0, hints));
}

static inline void gru_vset(gru_control _block_t *cb, void *mem addr,
unsi gned | ong val ue, unsigned char xtype, unsigned |ong nel em
unsi gned long stride, unsigned |ong hints) {

struct gru_instruction *ins = (void *)cb;

28

007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

i ns->baddr0 = (| ong)mem addr;
i ns->o0p2_val ue_baddr1 = val ue;
ins->nel em = nel em
ins->opl_stride = stride;
gru_start_instruction(ins, __ opdword(OP_VSET, 0, xtype, |AA RAM O,
0, hints));
}

static inline void gru_ivset(gru_control _block_t *cb, void *nem addr,
unsigned int tril, unsigned |ong value, unsigned char xtype,
unsi gned | ong nel em unsigned |ong hints) {

struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong)mem addr;
i ns->o0p2_val ue_baddr1 = val ue;
ins->nel em = nel em
ins->tril bufsize 64 = tril;
gru_start_instruction(ins, __ opdword(OP_I VSET, 0, xtype, |AA RAM 0,
0, hints));
}

static inline void gru_vflush(gru_control _block_t *cb, void *mem addr,
unsi gned | ong nel em unsigned char xtype, unsigned |ong stride,
unsi gned | ong hints)

{

struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong)mem addr;
ins->opl_stride = stride;
ins->nel em = nel em
gru_start_instruction(ins, __opdword(OP_VFLUSH, 0, xtype, |AA RAM O,
0, hints));
}

static inline void gru_nop(gru_control _block_t *cb, int hints) {
struct gru_instruction *ins = (void *)cb;

gru_start_instruction(ins, _ opdword(OP_NOP, 0, O, O, 0, O, hints)); }

007-5668-002 29

3: GRU Software Functions

static inline void gru_bcopy(gru_control _block_t *cb, const void *src,
voi d *dest,
unsigned int tri0O, unsigned int xtype, unsigned |ong nelem
unsi gned int bufsize, unsigned |ong hints) {
struct gru_instruction *ins = (void *)chb;

#i f def UV_REV_1_WARS
if (tri0 + bufsize * 64 >= 8192)
gru_abort_bcopy_war (0);
if (((tri0O + bufsize * 64) & 8191) == 0) // GRU 1.0 WAR
gru_abort_bcopy_war (1);
if (bufsize > 128) /1 GRU 1.0 WAR
gru_abort_bcopy_war (2);
#endi f
i ns->baddr0 = (| ong)src;
i ns->o0p2_val ue_baddr1 = (I ong)dest;
i ns->nel em = nel em
ins->tril bufsize 64 = bufsize;
gru_start_instruction(ins, __opdword(OP_BCOPY, 0, xtype, |AA RAM
IAA RAM tri0O, hints));
}

static inline void gru_bstore(gru_control _block_t *cb, const void *src,
voi d *dest, unsigned int tri0O, unsigned int xtype,
unsi gned | ong nel em unsigned |ong hints) {

struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong)src;
i ns->o0p2_val ue_baddr1 = (I ong)dest;
ins->nel em = nel em
gru_start_instruction(ins, __opdword(OP_BSTORE, 0, xtype, 0, |AA RAM
tri0, hints));
}

static inline void gru_gam r(gru_control _block_t *cb, int exopc, void *src,
unsi gned int xtype, unsigned long hints) {
struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong)src;

#i fdef UV_REV_1 WARS
ins->nelem=1; // GRU 1.0 WAR

30

007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

#endi f
gru_start_instruction(ins, __opdword(OP_GAM R, exopc, xtype, |AA RAM O,
0, hints));
}

static inline void gru_gamrr(gru_control _block_t *cb, int exopc, void *src,
unsi gned int xtype, unsigned long hints) {
struct gru_instruction *ins = (void *)chb;

i ns->baddr0 = (| ong)src;
#i f def UV_REV_1_WARS
ins->nelem=1; // GRU 1.0 WAR

#endi f
gru_start_instruction(ins, __ opdword(OP_GAM RR, exopc, xtype, |AA RAM O,
0, hints));
}

static inline void gru_ganer(gru_control _block_t *cb, int exopc, void *src,
unsi gned int xtype,
unsi gned | ong operandl, unsigned | ong operand2,
unsi gned | ong hints)

{

struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong)src;

ins->opl_stride = operandl;

i ns->o0p2_val ue_baddr1 = operand2;
#i f def UV_REV_1_WARS

ins->nelem = 1; // GRU 1.0 WAR

#endi f
gru_start_instruction(ins, __opdword(OP_GAMER, exopc, xtype, |AA RAM O,
0, hints));
}

static inline void gru_ganerr(gru_control _block_t *cb, int exopc, void *src,
unsi gned int xtype, unsigned |ong operandl,
unsi gned | ong operand2, unsigned |ong hints) {

struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong)src;
ins->opl_stride = operandl;

007-5668-002 31

3: GRU Software Functions

i ns->o0p2_val ue_baddr1 = operand2
#i f def UV_REV_1_WARS
ins->nelem = 1; // GRU 1.0 WAR

#endi f
gru_start_instruction(ins, __opdword(OP_GAMERR, exopc, xtype, |AA RAM O
0, hints));
}

static inline void gru_ganxr(gru_control _block_t *cb, void *src
unsigned int tri0O, unsigned long hints) {
struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (Il ong)src;

ins->nelem = 4

gru_start_instruction(ins,
IAA RAM 0, 0, hints));

opdwor d(OP_GAMXR, EOP_XR_CSWAP, XTYPE_DW

}

static inline void __gru_nesq(gru_control _block_t *cb, void *queue,
unsigned long tri 0O, unsigned | ong nel em
unsi gned | ong hints)

{

struct gru_instruction *ins = (void *)cb;

i ns->baddr0 = (| ong) queue;
i ns->nel em = nel em
gru_start_instruction(ins, __opdword(OP_MESQ 0, XTYPE CL, |AARAM O
tri0, hints));
}
#if !defined(WW_REV_1_WARS)
static inline void gru_nmesq(gru_control _block_t *cb, void *queue,
unsigned long tri 0O, unsigned | ong nel em
unsi gned | ong hints)

{

__gru_mesqg(cb, queue, tri0O, nelem hints); } #else extern void gru_nesq(gru_control _block_t *cb, void *
unsigned long tri 0O, unsigned | ong nel em
unsi gned | ong hints);

#endi f

static inline unsigned |ong gru_get_amo_val ue(gru_control _block_t *cb) {
struct gru_instruction *ins = (void *)cb;

32 007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

return ins->aval ue;

}

static inline int gru_get_ano_val ue_head(gru_control _block_t *cb) {

struct gru_instruction *ins

return ins->avalue & Oxffffffff;

}

(void *)cb;

static inline int gru_get_amo_value_linit(gru_control_block_t *cb) {

struct gru_instruction *ins

return ins->aval ue >> 32;

}

(void *)cb;

static inline union gru_mesghead gru_mesq_head(int head, int limt) {
uni on gru_nesghead ngh

ngh. head

mgh. i mi t

}

#defi ne GRU_EXC_STR SIZE 1024

/*

head;
=limt;
return ngh

* Control block definition for checking status */ struct gru_control _block_status {

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

};

nt

int
int
int

nt

int
int
int

icmd :1;

im :3;
reservedO : 4;
unusedl :24
unused2 : 24;
istatus :2;

i subst atus : 4;
unused3 :2;

/* Get CB status */
static inline int gru_get_cb_status(gru_control _block_t *cb) {

007-5668-002

33

3: GRU Software Functions

struct gru_control _bl ock_status *cbs = (void *)cb;

return cbs->i status;

}

/* Get CB nessage queue substatus */
static inline int gru_get_ch_nessage_queue_substatus(gru_control _bl ock_t
struct gru_control _bl ock_status *cbs = (void *)chb;

return chs->i substatus & CBSS_MSG QUEUE_MASK; }

/* Get CB substatus */
static inline int gru_get_cb_substatus(gru_control _block_t *cb) {
struct gru_control _bl ock_status *cbs = (void *)chb;

return cbs->i subst at us;

}

* User interface to check an instruction status. UPM and exceptions
* are handl ed automatically. However, this function does NOT wait
* for an active instruction to conplete.

*/

static inline int gru_check_status(gru_control _block_t *cb) {
struct gru_control _bl ock_status *cbs = (void *)chb;
int ret;

__barrier();

ret = cbs->i status;

/* Must call if IDLE to update statistics */
if (ret !'= CBS_ACTI VE)

ret = gru_check_status_proc(ch);

return ret;

}

* User interface (via inline function) to wait for an instruction
* to conplete. Conpletion status (IDLE or EXCEPTION is returned

* to the user. Exception due to hardware errors are autonmatically
* retried before returning an exception.

34

*cb) {

007-5668-002

SGI® Altix® UV GRU Development Kit Programmer’s Guide

*
*/

static inline int gru_wait(gru_control _block_t *cb) {
return gru_wait_proc(cb);

}

/*

* Wait for CB to conplete. Aborts programif error. (Note: error does NOT
* mean TLB nmis - only fatal errors such as menory parity error or user

* bugs will cause termi nation.

*/

static inline void gru_wait_abort(gru_control _block_t *cb) {
gru_wait_abort_proc(ch);

}

/*
* Get a pointer to a control block
* gseg - GSeg address returned fromgru_get_thread_gru_segnent()

* index - index of desired CB
*/
static inline gru_control _block_t *gru_get_cb_pointer(gru_segnent_t *gseg,
int index)
{

return (void *)gseg + GRU CB BASE + index * GRU HANDLE_STRI DE; }

/*

* Get a pointer to a cacheline in the data segnment portion of a GSeg

* gseg - GSeg address returned fromgru_get_thread_gru_segnent()

* index - index of desired cache |line

*/

static inline void *gru_get_data_poi nter(gru_segnent_t *gseg, int index) {
return (void *)gseg + GRU DS BASE + index * GRU CACHE LI NE_BYTES; }

/*

* Convert a vaddr into the tri index within the GSEG
* vaddr - virtual address of within gseg

*/

static inline int gru_get_tri(void *vaddr) {
return ((unsigned |ong)vaddr & (GRU_M N _GSEG PAGESI ZE - 1)) - GRU_DS BASE; }

/*

007-5668-002 35

3: GRU Software Functions

* Decode and print a GRU instruction.
*/
void gru_print_cb_detail (const char *id, int ret, void *cb);

36 007-5668-002

Index

A

accessing the Altix UV GRU direct access API, 2

C

checking the status of GRU operations, 25

D

data transfer data type

exopc, 26

xtype, 26
direct GRU access overview, 2
displaying GRU error information, 25

E

environment variables
GRU_CCH_REQUEST SLICE, 17
GRU_STATISTICS FILE, 18
GRU_TLB PRELOAD, 18
GRU_TLBMISS MODE, 17
GRU_TRACE_EXCEPTIONS, 19
GRU_TRACE_FILE, 18
GRU_TRACE_INSTRUCTION_RETRY, 19
GRU_TRACE_INSTRUCTIONS, 19

functions for GRU instructions, 27

007-5668-002

G

global reference unit, 1
GRU
man pages
gru_pallocate(3), 7
gru_resource(3), 9
gru_temp_reserve(3), 5
memory access functions, 10
resource allocators, 3
See "global reference unit", 1
software functions, 25
checking status of GRU operations, 25
data transfer functions, 25
displaying GRU error information, 25
GRU data transfer functions, 26
GRU files in /proc, 20
GRU library program example, 14
grustats command, 22

introduction, 1

M

man pages
gru_pallocate(3), 7
gru_resource(3), 9
gru_temp_reserve(3), 5

MPT address mapping functions, 11

37

Index

O libgru-devel, 2
xpmem-devel, 2
overview of direct GRU access, 2

S
P
SGI APIs
/proc GRU files, 20 mpi, shmem, sgiupc, 2
R X
required RPMs XPMEM library functions, 10

gru-devel, 2
gru_alloc-devel, 2

38 007-5668-002

	New Feature in This Manual
	Major Documentation Changes

	Table of Contents
	About This Manual
	Obtaining Publications
	Related Publications and Other Sources
	Conventions
	Reader Comments

	1. Altix UV GRU Direct Access API
	Accessing the Altix UV GRU Direct Access API
	SGI High Level APIs Supporting GRU Access
	Overview of API for Direct GRU Access
	GRU Resource Allocators
	GRU Man Pages
	gru_temp_reserve (3)
	gru_pallocate (3)
	gru_resource (3)

	GRU Memory Access Functions
	XPMEM Library Functions
	MPT Address Mapping Functions
	MPI_SGI_gam_ptr Function
	MPI_SGI_symmetric_addr Function
	shmem_ptr Function

	GRU Library Program Example

	2. GRU Driver and GRU Libraries Environment Variables
	GRU_TLBMISS_MODE
	GRU_CCH_REQUEST_SLICE
	GRU_TLB_PRELOAD
	GRU_STATISTICS_FILE
	GRU_TRACE_FILE
	GRU_TRACE_INSTRUCTIONS
	GRU_TRACE_EXCEPTIONS
	GRU_TRACE_INSTRUCTION_RETRY
	GRU Files in /proc
	grustats Command

	3. GRU Software Functions
	Checking the Status of GRU Operations
	Displaying GRU Error Information
	GRU Data Transfer Functions
	xtype
	exopc

	Functions for GRU Instructions

	Index

